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Abstract. Radical prostatectomy (RP) is viewed by many as the gold
standard treatment for clinically localized prostate cancer. State of the
art radical prostatectomy involves the da Vinci surgical system, a laparo-
scopic robot which provides the surgeon with excellent 3D visualization
of the surgical site and improved dexterity over standard laparoscopic
instruments. Given the limited field of view of the surgical site in Robot-
Assisted Laparoscopic Radical Prostatectomy (RALRP), several groups
have proposed the integration of Transrectal Ultrasound (TRUS) imag-
ing in the surgical work flow to assist with the resection of prostate and
sparing the Neuro-Vascular Bundle (NVB). Rapid and automatic regis-
tration of TRUS imaging coordinates to the da Vinci tools or camera is
a critical component of this integration. We propose a fully automatic
registration technique based on accurate and automatic localization of
robot tool tips pressed against the air-tissue boundary of the prostate, in
3D TRUS. The detection approach uses a multi-scale filtering technique
to uniquely identify and localize the tool tip in the ultrasound volume
and could also be used to detect other surface fiducials in 3D ultra-
sound. Feasibility experiments using a phantom and two ex vivo tissue
samples yield promising results with target registration error (defined as
the root mean square distance of corresponding points after registration)
of (1.80 mm) that proves the system’s accuracy for registering 3D TRUS
to the da Vinci surgical system.

Keywords: Robot-assisted surgery, da Vinci surgical robot, 3D ultra-
sound, fiducial detection.

1 Introduction

Laparoscopic surgery (also known as keyhole or minimally invasive surgery) has
various advantages over traditional open surgery, including reduced blood loss,
hospital stay, recovery time, and scar-tissue formation. Robot-assisted laparo-
scopic surgery using the da Vinci Surgical System (Intuitive Surgical, Sunnyvale,
CA) is emerging as a new standard of treatment, particularly for urologic pro-
cedures such as radical prostatectomy. Augmented reality, implemented as the
overlay of medical images data onto a stereoscopic camera view, is one research
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concept aimed at offsetting the visual and haptic limitations of da Vinci la-
paroscopic surgery. The displayed data can come from several medical imaging
modalities such as ultrasound [2,10], fluoroscopy, CT [10] and MRI, depend-
ing on the tissue types involved in the procedure [5,7]. All augmented reality
systems must include algorithms for accurately registering medical images to
camera images in real time.

A current augmented-reality-based research in this area involves registering
intraoperative 3D ultrasound images of the prostate to the da Vinci stereoscopic
camera view during robot-assisted laparoscopic radical prostatectomy (RALRP).
A robotic system for Transrectal ultrasound (TRUS) imaging during RALRP is
designed [1] and is being used to capture two-dimensional and three-dimensional
B-mode and elastography data. A method for 3D ultrasound to stereoscopic
camera registration through an air-tissue boundary [14] is used to register the
TRUS images to the da Vinci camera. The same registration technique is also
implemented to allow the TRUS robot to automatically track the da Vinci tool
tips with the TRUS imaging planes to provide guidance without any distraction
to the surgeon. A schematic of this approach and the prostate anatomy during
RALRP is shown in Figure 1. This registration method uses da Vinci tool tips or
other fiducials pressed against the air-tissue boundary and requires knowledge
of the position of the tool tips/fiducials in the ultrasound frame in real time.
The da Vinci API or the da Vinci camera are used to provide the location of the
tool tips/fiducials in the da Vinci frame or the camera frame. Once fiducials are
localized in both frames, the homogeneous transformation between them could
be solved using a least squares method.

The process of localizing the da Vinci tool tips or the surface fiducials in 3D
ultrasound volumes is done manually and involves scrolling through 2D slices of
the volume, finding the 2D slice with the tool tip inside and selecting the approx-
imate center of each fiducial through mouse positioning and clicking. While the
overall registration technique is a success, the process of manual fiducial selection

Fig. 1. Air-tissue boundary registration concept for automatic tool-tracking in RALRP
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is time consuming and the interpretation of the fiducial centers in series of 2D
ultrasound images in the volume is subjective and varies from user to user. An
automatic fiducial localization algorithm would be easier to use than the manual
selection and also may help to avoid disrupting the surgical workflow, moving
the overall augmented reality and tool tracking systems further towards a real
time implementation. This work will address the problem of automatic da Vinci
tool tip localization in 3D TRUS but the detection algorithm could be easily
used for other types of surface fiducials.

Localization of surgical tools in 3D ultrasound has been addressed in a few
works [6,11], but to the best of authors’ knowledge, there is no report on auto-
matic tool tip localization in 3D Transrectal ultrasound. This problem can be
divided into two sub-problems: (i) automatically detecting the presence of the
tool tip in the ultrasound volume and finding its slice number, (ii) automati-
cally locating the center of each detected tool tip in the 2D frame. Poon and
Rohling [12], in a study on calibration of 3D ultrasound probes (a separate and
unrelated type of calibration), used the centroid of an image region around a
user-supplied location to semi-automatically detect the center of each fiducial.
This simple concept solves the second sub-problem, but not the first. The goal of
this study is to recommend a method to target both of the above problems and
make the tool tip localization procedure fully automatic without compromising
the previously achieved registration accuracy 2.37± 1.15 mm [1].

A multi scale filtering technique based on second order Gaussian derivative
and a circular Hough transform is proposed and implemented for da Vinci too
tip localization in 3D ultrasound. A 3D mask is created based on the background
ultrasound volume (a volume that has been imaged before inserting the tool tip
into the tissue) and applied to the ultrasound volume that includes the tool
tip. This ultrasound volume is then filtered to find the edges representing the
candidate tip locations in the remaining part of the image. Eventually, the tip of
the tool is found by using a circular Hough transform. Hence, the tool location
is both determined in the ultrasound volume and inside its 2D frame. The same
method could be used to localize any surface fiducial pressed against the air-
tissue boundary. Experiments have been performed to evaluate the registration
accuracy using this automatic fiducial localization method and the results are
compared with the manual method. To the best of authors’ knowledge, this is
the first implementation of an automatic algorithm for detecting da Vinci tools
inside 3D ultrasound volumes.

2 Material and Methods

Several key factors are relevant to the selection of a detection algorithm for this
problem. The ultrasound data is available in real time as a series of 2D images
generated by the 3D ultrasound transducer scanning the body. Although the
ultrasound considered in this study is three-dimensional, the actual volumes are
created by an off-line scan conversion algorithm and therefore, the detection al-
gorithm must be applied to the sequence of 2D images creating the 3D volume.



Automatic Detection and Localization of da Vinci Tool Tips 25

The appearance of the target objects is fairly consistent. Ultrasound images of
da Vinci tool tips pressed against air-tissue boundaries all contain similar fea-
tures: strong horizontal lines from the air-tissue boundary and approximately
circular areas of high-intensity from the tool tips themselves. The scale of the
ultrasound volumes is fixed by the spatial resolution of the ultrasound trans-
ducer, so scale invariance is not required. Prostate surgeries will involve fairly
consistent relative orientations of transducer and probe, so rotational invariance
is likewise not required. Finally, the detection must be very rapid. In an ideal
real time augmented reality system, the medical image data displayed in the
surgeon’s stereo view would be updated at a rate close to that of normal video
(i.e. 30 frames per second) and therefore, a detection algorithm that can scan
an entire volume in a few seconds is necessary to avoid disrupting the surgical
work flow.

2.1 Automatic Detection Algorithm

In this study, the automatic extraction of da Vinci tool tips is done in four steps:
masking, filtering, circle detecting and removing the false positives. A schematic
of the first three steps of this method is shown in the diagram of Figure 3. The
idea behind creating the mask is to detect the air tissue boundary and remove
everything which lies below this line corresponding to the air part in the ul-
trasound image. Figure 2 shows an example image of da Vinci tool tip pressed
against the air-tissue boundary of an ex vivo liver tissue. To create a 3D mask,
first series of 2D images of the background volume have been filtered using a
Hessian based Frangi vesselness filter [4]. In this filtering approach, the principal
directions in which the maximum changes occur in the gradient vector of the
underlying intensity in a small neighborhood are identified. Eigenvalue decom-
position of the Hessian matrix can give these directions. Therefore, the Hessian
matrix at each pixel of the image for a particular scale (σ) of the Gaussian
derivative operator is computed. Then, the eigenvalue decomposition is used to
extract two orthonormal directions. Based on the computed eigenvalues (λ1, λ2)

(a) (b)

Fig. 2. (a) Example of an air-tissue boundary in an ex vivo liver phantom. (b) da Vinci
tool tip pressed against an air-tissue boundary.
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at each scale (Σ = 1, 3, 5) , a measure is defined as follows [4]:

S = max
σ∈Σ

S(σ) =

{
0 if λ2 > 0

exp(
R2

b

2β2 )(1 − exp(−R2
n

2c2 )) if λ2 < 0
(1)

Rb =
λ1

λ2
is the blobness measure in 2D, and Rn =

√
λ2
1 + λ2

2 is a background or
noise reduction term. Rb shows deviation from blob-like structures and Rn shows
the presence of the structure using the fact that the magnitude of the derivatives
(eigenvalues) is small in the background pixels. In this equation β is chosen as
0.5 and c is chosen to be the maxx,y Rn. Images are further processed to remove
the small areas of high intensity which are randomly scattered in the filtered
image and are due to speckles. The image is first thresholded by a threshold
obtained from the mean value of the intensities of pixels of the images. Next,
parts that have less than M connected components are removed. M is a number
obtained by trial and error for TRUS images. The remaining components, which
represent the high intensity and relatively large areas corresponding to the tissue
structures in the image, are dilated using morphological operators. To find the
air-tissue boundary a line detection using Hough transform has been applied
to the images. Lines with the minimum length of 30 and minimum gap of 15
pixels between them, have been extracted. A mask has been created using the

Fig. 3. The structure of the automatic tool detection algorithm. The background ul-
trasound volume and the volume with the tool inside are the inputs. Slice number and
x,y position of the tool tip in the detected slice are the outputs.
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Fig. 4. Experimental setup used for ultrasound imaging: TRUS robot and the da Vinci
surgical system

detected air-tissue boundary and artifacts. The mask is responsible to remove
regions corresponding to the artifacts and regions outside the tissue boundary.

After applying the mask to the 3D ultrasound volume, the Frangi filter is
applied to the series of 2D images and the relatively large components are ex-
tracted. A circular Hough transform is applied to the obtained components to
find circles with radius of approximately 5 pixels and minimum pixels of 20. The
mean location of these circles in each 2D image is computed as candidates of the
tool location. Next, a hierarchical clustering algorithm [9] is performed to find
the group of candidates which are in adjacent slices, considering the fact that the
tool tip can be seen in a couple of consecutive slices. Euclidean distance between
the identified candidates has been used as a similarity measure and those which
are close to each other are linked to create the cluster. The linkage function
continues until an inconsistency coefficient reaches its threshold [8]. Using this
approach false positively detected candidates will be removed due to the fact
that false positives do not necessarily occur in adjacent slices. Once the cluster
of 2D images that have the tool inside them are found, the middle slice in the
cluster is chosen to be the output slice for the detection algorithm.

2.2 Experimental Setup for Ultrasound Image Acquisition

The robotic system shown in Figure 4, which is designed for intra-operative TRUS
imaging duringRALRP, is used for ultrasound image acquisition in this study. The
system has three main parts: a robotic ultrasound probe manipulator (robot), an
ultrasoundmachine with a biplane TRUS probe, and control and image processing
software. Ultrasound images are captured using a parasagittal/transverse biplane
TRUS probe in combination with a Sonix TABLET ultrasound machine (Ultra-
sonix Medical Corp., Richmond, Canada). 3D ultrasound volumes are collected
by rotating the 2D imaging planes and automatically recording the encoder posi-
tions for each image. Software running on the ultrasound console is responsible for
directing the robot movements and the ultrasound data acquisition. Currently, a
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(a) Prostate phantom (b) Liver dataset (c) Bovine meat dataset

Fig. 5. Sample tool detection results for three different data sets

simple graphical user interface (GUI) is being used to allow the user to position
the probe, and automatically collect 2D B-mode images and radio-frequency (RF)
data while rotating from -40 to +40 degrees. A standard brachytherapy stabilizer
arm (Micro-Touch 610-911; CIVCO Medical Solutions, Kalona, IA) is mounted
to the operating table and the robot is installed on the stabilizer as it is shown in
Figure 4.

3 Results

The proposed automatic tool detection method has been tested on three different
acquired data sets: a custom-made PVC prostate phantom, an ex vivo liver and
ex vivo bovine meat. Some sample results of the tool detection algorithm along
with the testing configuration for each of the data sets are shown in Figure 5.

The rigid point registration technique proposed by Umeyama in [13], is used
in this study to evaluate the automatic detection algorithm’s performance. The
manual fiducial localization process is replaced by the developed automatic lo-
calization algorithm, and the registration accuracy is re-calculated. Da Vinci tool
tips are pressed against 12 different points on the air-tissue boundary of each of
the three collected data-sets (Nt = 12) and its positions (x0) in the ultrasound
robot frame {O0, C0} is calculated using our automatic detection algorithm. The
da Vinci API is used to provide the location of the tool tips (x1) in the da Vinci
frame {O1, C1}.

For each registration experiment, Nf number of points (Nf ≥ 3) are randomly
picked from the total points collected for each tissue type and the rigid point
registration method explained in [14] is used to compute the transformation be-
tween the frames T 1

0 to minimize the Fiducial Registration Error (FRE). FRE is
computed as the root-mean-square of distances between corresponding fiducials
after this registration. Next, the rest of the points in each data-set are assumed
to be the target points and the calculated transformation is used to transform
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Fig. 6. FRE and TRE and their standard deviations for different numbers of fiducials
(Nf ) and target points(Nt)

them from the ultrasound robot frame to the da Vinci frame and the Target
Registration Error (TRE) is estimated. Estimated TRE includes the real TRE
and the target localization error (TLE). TRE is defined as the root-mean-square
of distances between corresponding fiducials after registration, i.e., the distance
between the localized position of each tool tip as transformed from the ultra-
sound robot space to da Vinci space and the position of that corresponding tool
tip localized in the da Vinci space provided by the API. Because of the Fiducial
Localization Error (FLE), the registration is inevitably inaccurate to some ex-
tent, and TRE is used as the available measure of registration error. Values of
FRE and TRE are computed for different number of fiducials Nf chosen between
the total points for each data-set Nt. The mean values of FRE and TRE and
their standard deviations are then calculated for each combination of (Nf , Nt)
for 100 iterations (n = 100) and the results are plotted for the liver dataset in
Figure 6. As it can be seen from Figure 6, as (Nf ) increases, both mean and
standard deviation of TRE decreases and based on this analysis, the number of
fiducials suggested for this registration is (Nf = 5). The mean and standard de-
viation values of the target registration error (TRE) for this number of fiducials
and 100 iterations are reported in the anatomical frame of the patient in Table 1.
Tool tip segmentation error is also calculated in (x, y, θ) directions. Three sub-
jects were asked to independently identify the location of the tool in ultrasound
images. The difference between the average user defined positions and the result
of our algorithm, in addition to the inter-subject variations are calculated. For
the liver dataset, automatic segmentation error is: e(x, y) = 3.11 ± 0.88 mm,

Table 1. Mean errors (n = 100) between tool tip location and predicted location based
on registration. Errors are presented in the anatomical frame of the patient, along the
superior-inferior (eS−I), medial-lateral (eM−L) and anterior-posterior (eA−P ) axes.

TREA−P mm TRES−I mm TREM−L mm Mean TRE mm

Phantom 0.62 ± 0.31 1.29 ± 0.22 0.82 ± 0.24 1.80 ± 0.32
Liver 0.72 ± 0.83 2.65 ± 0.51 1.18 ± 0.54 3.33 ± 0.81

Bovine meat 1.90 ± 0.79 1.24 ± 0.34 3.51 ± 0.70 4.54 ± 0.88
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e(θ) = 0.79◦±0.39◦ and the inter-subject variation is: e(x, y) = 4.25±1.45 mm,
e(θ) = 2.05◦± 0.8◦. For the pvc phantom dataset, automatic segmentation error
is: e(x, y) = 2.13±0.97 mm, e(θ) = 0.67◦±0.34◦ and the inter-subject variation
is: e(x, y) = 3.65± 0.88 mm, e(θ) = 1.55◦ ± 0.39◦. For the bovine meat dataset,
automatic segmentation error is: e(x, y) = 2.42± 1.19 mm, e(θ) = 0.68◦ ± 0.48◦

and the inter-subject variation is: e(x, y) = 3.13±0.88mm, e(θ) = 1.43◦±0.44◦.

4 Discussion

The overall average TRE previously reported using the manual fiducial localiza-
tion of three fiducials on the PVC tissue phantom was 2.37 ± 1.15 mm . The
overall average TRE using the automatic detection technique in this study is
1.80± 0.32 mm for the recommended number of fiducial points, Nf = 5, on the
PVC tissue phantom. As the number of fiducials is increased to 9, the TRE value
reaches its minimum calculated value which is 1.61± 0.39 mm, which is consis-
tent with the previously reported theoretical analysis [3]. To further evaluate the
algorithm, experiments have been done on ex vivo liver and bovine meat which
are more similar to the human prostate tissue. The minimum calculated TRE
value is 2.86 ± 1.40 mm for the liver and 4.15 ± 0.61 mm for the bovine meat
for picking 9 fiducials on the air-tissue boundary. According to these results,
the automatic detection algorithm could yield the same registration accuracy
as the manual detection method does, and it could also compensate for errors
resulting from mis-interpretation of tool location in the ultrasound volume. The
goal of tracking is to have the tool tips appear in the TRUS images and errors
in the axial and lateral ultrasound directions are irrelevant as long as the tool
tips are within the image boundaries. And because the thickness of the TRUS
beam at the anterior surface of the prostate is on the order of millimeters, small
errors in the elevational direction likely are not critical. We propose choosing
five tool positions on the tissue surface, Nf = 5, both to achieve an acceptable
registration error and to have a reasonable number of tissue poking repetitions
during the surgical procedure. Because this registration technique is designed
for RALRP procedure, it is recommended to choose two points on the prostate
apex, one point on the mid-gland and two points on the prostate base. In this
process, da Vinci tool is slightly pressed on the surface of the tissue at different
locations. Hence, there won’t be a significant movement in the organ and only
the air-tissue boundary is moved about 2 − 3 mm at locations where the tool
tip is placed. Also, only the tip of the tool (i.e., the area that touches the tissue)
could be seen and detected in the ultrasound images. The instrument shaft could
not be seen in the images and could not be used as an additional feature.

Replacing the process of manual detection of tool tips or surface fiducials in the
ultrasound volume will accelerate the registration time and reduces the amount
of surgical work-flow disruption. There will be no need for a sonographer to
attend the surgery to find the tool tip in the ultrasound volume and the algorithm
will reliably find the tool tips and send the points to the registration module to
calculate the transformation. In addition, the results will not be dependent on
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the person who is choosing the points in the ultrasound volumes as it is the case
in the manual detection.

5 Conclusions

In this study, we have addressed the problem of detecting da Vinci tool tips
pressed against an air-tissue boundary, in a 3D ultrasound volume. A method
based on multi-scale filtering and circle detection has been proposed. The tool
tip localization accuracy is evaluated by analyzing the registration error between
the TRUS robot frame and the da Vinci frame. Results show the equivalency of
the proposed method and the previously reported manual detection procedure.
As an overall comment on the proposed method, it is to be stressed that the
method has a significant improving effect on both the duration,complexity and
accuracy of the registration procedure. Future work will involve investigating
in vivo studies to verify the accuracy and reliability of the proposed technique
during RALRP procedure.
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