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Abstract. Real-time 3D ultrasound (3DUS) imaging offers improved spatial 
orientation information relative to 2D ultrasound. However, in order to improve 
its efficacy in guiding minimally invasive intra-cardiac procedures where real-
time visual feedback of an instrument tip location is crucial, 3DUS volume 
visualization alone is inadequate. This paper presents a set of enhanced 
visualization functionalities that are able to track the tip of an instrument in 
slice views at real-time. User study with in vitro porcine heart indicates a 
speedup of over 30% in task completion time.   

Keywords: 3D ultrasound, electromagnetic tracking, graphic processing unit, 
instrument navigation, mosaicing, slice view. 

1 Introduction 

Real-time 3D ultrasound (3DUS) offers important advantages for guiding diverse 
medical procedures. Foremost is the ability to visualize complex 3D structures [1]. 
Studies have shown that real-time 3DUS is more efficient and accurate than 2DUS for 
basic surgical tasks and can enable more complex procedures [2]. Imaging rates up to 
30 volumes per second also enable good visualization of instrument-tissue 
interactions, far faster than the volumetric imaging alternatives (MR and CT scans). 
Fluoroscopy provides fast frame rates, but only has a limited number of 2D views, 
requiring the clinician to mentally combine them to derive 3D structure. Unlike 
fluoroscopy, 3DUS also allows visualization of the soft tissues, and avoids the use of 
ionizing radiation. 3DUS is easily integrated into procedures as the small probe can 
be readily placed at the point of interest. Finally, costs are also far lower, with top-of-
the-line 3D ultrasound machines costing far less than comparable fluoroscopy, CT, or 
MR systems.  

Despite these evident advantages, a decade after its commercial introduction, 
3DUS is rarely used clinically for procedure guidance. There has been a broad 
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spectrum of research in 3DUS guidance, in diverse areas including liver surgery [3] 
[4], liver ablation [5], kidney imaging [6] and cardiac imaging [7][8][9]. Nonetheless, 
2D ultrasound is still the prevailing choice in hospitals [1]. The reasons for this 
surprising lack of acceptance of 3DUS are diverse. One clear drawback of 3DUS is 
limited resolution. While voxel sizes are less than one millimeter, noise and distortion 
typically make it hard to discern features smaller than a few millimeters. In addition, 
3DUS images are typically displayed as volume-rendered images. While this is 
effective for visualizing tissue surfaces surrounded by fluids as in obstetrics and 
cardiology, volume rendering can accentuate the distortion and noise inherent in 
3DUS imaging [10], resulting in irregular surfaces and difficulty in distinguishing 
instrument artifacts [11][12]. Volume rendering is also problematic for visualizing the 
internal features of solid organs like liver and kidney, where the entire organ produces 
textured reflections that fill the imaging volume. Another limitation is the small field 
of view. Because of the inherent tradeoff in ultrasound imaging between volume size, 
resolution and frame rate, the volume size is inherently limited. 

We hypothesize that enhanced displays can overcome key limitations in current 
3DUS guidance, and bring the benefits of 3DUS to a broad range of procedures. One 
way to address the lack of surface definition and the difficulty in distinguishing 
instrument from tissue in volume rendered images is to display a cut plane image or 
“slice” from the 3DUS volume that contains the instrument tip. Because this cross-
sectional view shows the point of contact of the instrument with the tissue, as well as 
adjacent tissue regions, the clinician can determine the specifics of the tool-tissue 
interaction. Manually selecting planes within the 3DUS volume that contain the 
instrument tip, however, is highly challenging, particularly as the instrument moves 
within the volume. The ability to automatically visualize these slice views would greatly 
enhance the usability of 3DUS. 

In addition, research efforts on mosaicing multiple 3DUS volumes to create an 
extended field of view have been recently reported [13][14]. We further hypothesize 
that integrating slice views with a mosaiced volume would enable 3DUS for more 
complex interventions, particularly those requiring navigation across regions larger 
than a single 3DUS volume. 

In this paper, we describe the design of a system for tracking the catheter tip to 
enable continuous display of exactly the right slices. We report the results of a user 
study that indicates the potential of such enhanced displays in improving the efficacy 
of real-time 3DUS guided procedures. In the next section, we present the system 
design, followed by user study and results. We conclude the paper with a discussion 
of implications for the design of procedure guidance systems. 

2 System Design 
2.1 System Configuration 

To demonstrate the potential benefits of slice views and mosaicing for procedure 
guidance, we implemented a prototype visualization system. We used Philips 3DUS 
scanner iE33 with the X7-2 2D/3D probe, imaging at 8.1cm and 35Hz with a volume 
size of 112x48x112 voxels (Philips Medical Systems, Andover, MA). An 
electromagnetic (EM) tracking system (3D Guidance trakStar System, Ascension 
Technology Corporation, Burlington, VT) tracked the trajectories of the 3DUS probe 
and the instrument tip. Image processing and rendering (Fig. 1) was done on a GPU  
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the locations of the ablation catheter's tip in space. The point clouds are then 
registered to a CT or MRI based pre-operative anatomic model (e.g. CARTO, 
Biosense Webster, Diamond Bar, CA). However, this mapping and model creation 
can be a tedious process and fluoroscopy is routinely used. An ECG gated 3DUS 
mosaicing system combined with enhanced user display such as slice views could 
shorten the procedure time, reduce human exposure to fluoroscopy, and provide 
improved visualization on tool-tissue interaction. 

5 Conclusion 

In this paper, we presented a set of enhanced display modalities for real-time 3DUS 
visualization. The system integrates EM tracking systems and GPU implementation 
for real-time instrument tip cut plane tracking to mitigate the 3DUS distortions 
inherent in conventional volume rendering. Our user study and participants’ feedback 
demonstrate the potential of such enhanced visualization in instrument navigation and 
procedure execution with 3DUS guidance. 
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