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Abstract. Shape-from-Shading (SfS) is one of the fundamental techniques to re-
cover depth from a single view. Such a method has shown encouraging but limited
results in laparoscopic surgery due to the complex reflectance properties of the or-
gan tissues. On the other hand, Template-Based Deformable-Shape-from-Motion
(DSfM) has been recently used to recover a coarse 3D shape in laparoscopy.

We propose to combine both geometric and photometric cues to robustly re-
construct 3D human organs. Our method is dubbed Deformable-Shape-from-
Motion-and-Shading (DSfMS). It tackles the limits of classical SfS and DSfM
methods: First the photometric template is reconstructed using rigid SfM (Shape-
from-Motion) while the surgeon is exploring – but not deforming – the peritoneal
environment. Second a rough 3D deformed shape is computed using a recent
method for elastic surface from a single laparoscopic image. Third a fine 3D de-
formed shape is recovered using shading and specularities.

The proposed approach has been validated on both synthetic data and in-vivo
laparoscopic videos of a uterus. Experimental results illustrate its effectiveness
compared to SfS and DSfM.

1 Introduction

Over the past few years efforts have been made to develop systems for computer aided
laparosurgery. It consists on helping the practitioners during the intervention to improve
their perception of the intra-operative environment [10]. 3D sensing offers a virtual
controllable view-point and is one of the major possible improvements to the current
technology. However, due to the unpredictable, complex and elastic behaviour of living
peritoneal tissues, 3D shape recovery from laparoscopic images is a difficult and open
problem.

On the one hand, DSfM methods has shown effectiveness in recovering 3D shapes
of elastic deformations in laparoscopy [17,7]. Based on how does the feature corre-
spondences cover the surface, the 3D reconstruction can go from coarse to fine when
the correspondences go from sparse to dense. Usually human organs are textureless
and very specular which makes it difficult to densely cover the surface with feature
correspondences using automatic feature detection and matching. On the other hand,
SfS methods allow one to recover surface details. However, it is difficult to achieve
remarkable 3D reconstructions due to the complex reflectance of the organ tissues. In
addition, SfS does not allow one to solve temporal registration. In order to take ad-
vantage of these two methods and overcome their drawbacks, we propose to combine
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them in a Deformbale-Shape-from-Motion-and-Shading (DSfMS) framework. Figure 1
shows the effectiveness of our proposal when compared to SfS and DSfM: the shad-
ing cue provides details on the surface and the motion cue adds smoothness and global
consistency.

Paper Organization. Section §2 presents state-of-the-art. Section §3 gives a geomet-
ric characterization of smooth surfaces. Section §4 presents the 3D template recon-
struction. Section §5 gives a photometirc reconstruction of the template albedo map.
Section §6 recalls monocular conformal reconstruction. Section §7 presents monocular
conformal reconstruction with shading cues. We finally report experimental results in
section §8 and conclude. Our notation will be introduced throughout the paper.

(a) image (b) SfS (d) DSfMS (e) DSfMS(c) DSfM (f) DSfM

Fig. 1. Qualitative comparison between the proposed approach and previous methods. Using one
Single input image with deformed organ from an in-vivo video sequence, the result of three
reconstruction methods is shown. The reconstruction using classic SfS in figure (b) shows bumpy
region. The reconstructions using DSfM and DSfMS in (c) and (d) show smoother results. An
enlarged view of the deformed region allows us to observe in figure (e) that our DSfMS recovers
the deformation while in figure (f) the DSfM recovers a coarse smooth surface.

2 Related Work

Intra-operative 3D sensing has recently gained a lot of interest in the field of laparo-
surgery. Various methods have been proposed that can be classified as active and pas-
sive. Active approaches consist of sensing techniques that modify the laparoscope’s
hardware. In [5,6] an approach based on the detection of a laser beam line is described.
The approach requires the insertion of two monocular endoscopes: one for the projec-
tion of the laser beam and one for observing the projected laser beam. In [12] a pro-
totype of Time-of-Flight (ToF) endoscope is proposed and in [19] a set of incremental
algorithms for 3D reconstruction has shown promising results using ToF endoscopes.
Passive approaches consist of vision techniques based only on ‘regular’ images from the
laparoscope. Both stereo and monocular endoscopes are concerned. In [17,3] methods
based on disparity map computation for stereo-laparoscope have been proposed. Visual
SLAM for dense surface reconstruction has been proposed in [18]. In the context of
monocular laparoscopy, very few methods were proposed [2].

However, the computer vision community has made some effective achievements in
the domain of template-based monocular 3D reconstruction of deformable surfaces. Us-
ing a template-based method provides a full geometric description of the surface rather
than just a sparse or partially dense description as in the previously cited methods. This
allows one to render the surface from a new viewpoint, recover self-occluded parts,
and opens applications based on Augmented Reality. The problem of template-based
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monocular 3D shape recovery is under-constrained because there is an infinite number
of 3D surfaces that can project to the same image data. It is then of critical importance
to constrain the problem to have a unique consistent solution or at least a small set of
plausible solutions. Over the recent years, different types of physical and statistical con-
straints were proposed [8,15]. An important physical prior is isometry [1,13], which
imposes that the geodesic distance is preserved by deformations. Recently a 3D con-
formal method has been proposed to reconstruct elastic deformations in the context of
laparosurgery [7]. To provide good reconstruction results, SfM needs feature detection
and matching in the deformed areas. The SfS problem is one of the eldest and funda-
mental problems in computer vision [23,14]. Recovering depths using shading cues has
been extensively used for both rigid and deformable objects [23]. To provide good re-
construction results, SfS needs an estimation of the reflectance map of the reconstructed
surface.

To overcome the bottleneck of SfS and DSfM, we can take advantage of both
methods: using feature-based reconstruction to recover a deformed 3D surface and use
shading cues to refine the reconstruction of areas which lack tracked features. This com-
bined approach has been used in several other conditions to recover coarse to fine 3D
shapes: For instance in rigid 3D reconstruction [22] presented an algorithm for com-
puting optical flow, shape, motion, lighting, and albedo from an image sequence of
a rigidly-moving Lambertian object under distant illumination. [20] proposed an ap-
proach to recover shape detail to dynamic scene geometry captured from multi-view
video frames. [8] presented a closed-form solution to the problem of recovering the 3D
shape of a non-rigid potentially stretchable surface from 3D-to-2D correspondences.
In [16], a strategy for dense 3D depth recovery and temporal motion tracking for de-
formable surfaces using stereo-video sequence is proposed. It is worth to highlight that
none of these methods were designed to combine SfS and DSfM for elastic surface
reconstruciton using one single view.

Contributions. The contribution of our work is three folds: (i) Combining SfS and
DSfM, (i) reconstruction of a template albedo map of in-vivo human organs and (iii)
using shading cues to recover deformations in regions where feature correspondences
are missing and using feature correspondences as boundary conditions to the recon-
struction with shading.

3 Notation and Geometric Characterization of Smooth Surfaces

A smooth surface Γ can be parameterized by a C2-function Φ: Ω ⊂ R
2 → R

3 :

(u, v) �→ Q =
(
Φx(u, v) Φy(u, v) Φz(u, v)

)�
. We do not make a distinction between

the surface Γ and the mapping Φ unless needed. We call template the surface at rest.

The Jacobian of Φ, denoted JΦ, is given by: JΦ =

(
∂Φx

∂u
∂Φy

∂u
∂Φz

∂u
∂Φx

∂v
∂Φy

∂v
∂Φz

∂v

)�
It is a (3 × 2)

matrix which at each (u, v) ∈ Ω maps a local unit square of Ω to a tangent plane at
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Fig. 2. Surface representation. Left: Φ is a conformal map. Geodesics on Ω, which is a flattening
of Γ , are stretched on Γ . The angles tend to be preserved by Φ and area changes are tolerated.
Φ′ is the conformal map which reconstruct a deformation of the template Γ by the surgery tool.
W is correspondence function between the template and the deformed image. In our work, Φ
is computed during the exploration phase. W is computed from feature correspondences. Π is
the projection matrix of a 3D point to the image plan including camera’s intrinsics and Φ′ is the
unknown deformation function.

Φ(u, v). The normal of the surface at a point (u, v) is given byN =
(

∂Φx

∂u
∂Φy

∂u
∂Φz

∂u

)�
×

(
∂Φx

∂v
∂Φy

∂v
∂Φz

∂v

)�
. Where × stands for the cross product in R

3. Let W : Ω → R
2 be

a known warp which maps points from the template to surface points in the deformed
image. The deformed image contains the projection of the deformed surface. In practice,
W can be a function which matches features in the template and in the deformed image.
Let Π : R3 → R

2: (x y z)� �→ (a b)� be the projection of a 3D point to the image plan.

4 Reconstruction of the Template’s 3D Shape

Fig. 3. Uterus template reconstruction during the exploration phase using a classic technique of
Rigid SfM. From left-to-right: The rigid frames are combined to extract a dense point cloud of the
uterus surface. Then, the 3D points are meshed and texture mapped. Finally, conformal flattening
is applied.
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As in [7], we assume that during the exploration of the peritoneal environment, the or-
gans are at rest and the acquired image sequence undergoes a rigid motion of a rigid
scene. This allows us to reconstruct both the template’s 3D shape. From M views, Rigid
SfM finds camera parameters as well as a set of 3D points (xj yj zj), j = 1, . . . , Nv

which will be the template points. There are several ways to proceed for Rigid SfM [4].
We chose the classical sequential approach where two different views with enough base-
line are used to compute the essential matrix, from which the relative camera position
can be extracted and used to triangulate a first set of 3D points. The camera position,
Ti, i = 1, . . . ,M − 1, for each other view is then computed on turn using camera
resection, and new 3D points are triangulated. Finally, bundle adjustment is launched
to minimize the reprojection error, and the 3D points are connected to form a mesh
with NF faces F and Nv vertices V given by the set of triangulated 3D points. Image
consistent meshing can be used [9]. Conformal flattening can be used to estimate the
geometric parameterization of the obtained surface. The results of applying this method
to an in-vivo video sequence from laparosurgery is shown in figure 3.

5 Reconstruction of the Template’s Albedo

Several methods were proposed to estimate the albedo of a surface [11,20]. In the
context of laparosurgery, the light source is rigidly mounted on the tip of the endo-
scope and then can be assumed as being co-linear to the axis of the camera’s prin-

cipal axis L =
(
0 0 1

)�
(see figure 4). Assuming a Lambertian diffuse surface, the

reflectance model expresses the image intensity at a pixel W(u, v) with respect to the
surface normal N(u, v) and the direction of the distant light source L: I(W(u, v)) =
α(u, v)L cotN(u, v), with α(u, v) is the albedo of the surface. Using the reconstructed
template 3D surface the normals N(u, v) can be easily computed. Given an image i,
i = 1, . . . ,M , the corresponding albedo map can be estimated as:

αi(u, v) =
Ii(u, v)

L · (RiN(u, v))
, i = 1, . . . ,M (1)

where Ri is the rotation part of Ti. This equation is not defined when L is perpendicular
to RiN(u, v). This situation can be easily detected since both vectors are known and
αi(u, v) is set to a pre-defined maximum value. Another interesting situation is when
the light source direction is parallel to the surface normal and then the full projected
light is reflected by the surface toward the camera. Usually this effect saturates the
camera sensor and the correponding area appears as specular shining white in the image.
We finally define the albedo map by computing the minimum value at each pixel over
all frames. This process handles specularities and most of the other unmodeled effects:

α(u, v) = min
i∈{1,...,M}

αi(u, v) (2)

The obtained template’s albedo of the in-vivo uterus sequence is displayed in figure 4.
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Fig. 4. Left: The image intensity at a surface point depends on the laparoscope’s light source
direction and the surface normal at that point. Points which have a normal parallel to the light
direction produce specularities in the resulting image. Right: The histogram values of the albedo
of the vertices.

6 Monocular Conformal Reconstruction

In [7] a discrete conformal reconstruction of deformable surfaces is proposed from Nc

point correspondences between the deformed shape in an image and the 3D template
Φ(ui, vi) ↔ W(ui, vi), i = 1, . . . , Nc. In the template, the correspondences are given
by their barycentric coordinates (fi bi)�, i = 1, . . . , Nc, relatively to the triangle they
lie on. In the image, the correspondences are given in pixel coordinates W(ui, vi)

�,
i = 1, . . . , Nc. Extensible 3D reconstruction was formulated in [7] as:

min
V′

∑Nc

i=1 ‖ Π(K v′(fi)bi)−W(ui, vi) ‖ (motion)

+λ1

∑NF

i=1 ‖ Si − S0i ‖2 (shearing)
+λ2

∑NF

i=1 ‖ Ai − A0
i ‖2 (anisotropy)

+λ3 ‖ ΔV ′ ‖2 (smoothing)

(3)

where K is the (3 × 3) intrinsic matrix of the camera, v′(fi) is the (3 × 3) matrix
whose columns are the 3D coordinates of the vertices of face i, Si and Ai are the 2D
shearing and anisotropy scaling transforms from the template to the deformed ith face,
λ1 and λ2 are two real positive weights that tune the importance of the shearing, the
anisotropy scaling and the smoothing energy term. The combination of these two non-
isometric transforms relaxes the inextensible condition and allows one to deal with local
extensible deformations. S0 and A0 are average amounts of shearing and anisotropy
for each face of the 3D template mesh. They can be either learned from training data
or experimentally set. Practically, normalized shearing and anisotropy transforms are
experimentally set and then scaled by the triangle area of each face fi to obtain the
transforms S0i and A0

i . The additional weighted energy term smoothes the deformed
shape. It is expressed through the linear Laplace-Beltrami discrete linear operator Δ
of dimension Nv ×Nv [21]. V ′ is an Nv × 3 matrix which concatenates the 3D mesh
vertices V ′

i of the reconstructed deformed mesh. This result is used as input to our
monocular DSfMS method.
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7 Monocular Conformal DSfMS

The resulting deformed shape with the set of vertices V ′
i , i = 1, . . . , Nv, recovered from

the previously described method can be refined using shading cues. Using the recon-
structed template albedo values α(ui, vi), i = 1, . . . , Nv for each vertex, we formulate
the conformal reconstruction with motion and shading cues reconstruction as:

min
V′′

∑Nc

i=1 ‖ (0 0 1)�v′′(fi)

⎛

⎝
b1i
b2i
b3i

⎞

⎠− (0 0 1)�v′(fi)

⎛

⎝
b1i
b2i
b3i

⎞

⎠ ‖ + (boundary cond.)

λ4

∑N
v

i=1

‖ Π(Kv′′i )−Π(Kv′i) ‖2 + (reprojection cond.)

λ5

∑

i∈Dv

‖ I ′(W ′′(ui, vi))− α(ui, vi)L.N
′′(ui, vi) ‖2 + (diffuse vertices)

λ6

∑

i∈Sv

‖ L× N′′(ui, vi) ‖2 + (specular vertices)

λ7 ‖ ΔV ′′ ‖2 (smoothing)
(4)

where Dv and Sv are respectively the diffuse and specular vertices. The specular ver-
tices can be easily detected as saturated regions in the deformed image intensity I ′. The
real parameters λ4, λ5, λ6, λ7 are experimentally set. Through the boundary condition,
this formulation gives confidence to the depth of the correspondences reconstructed by
the conformal method using motion. The reprojection condition limits the refinement
of the vertices along the camera sightlines. The diffuse condition refines the diffuse
vertices according to the Lambertian model using shading. The specular vertices are
constrained to have their normals parallel to the direction of the source light. Due to
noise in the image intensity a smoothing term is needed to avoid bumpy surface recon-
structions. The diffuse and specular terms allows us to recover the deformed surface in
regions where the data correspondences are missing.

8 Experimental Results

8.1 Synthetic Data

The synthetic deformation model. The obtained template mesh is deformed to evaluate
the performance of our approach with different amounts of edge extension and curvature
changes. The synthetic deformation model enables us to simulate a push and pull by the
surgeon’s tool upon the uterus tissue. It is defined as a set of pairs of unit vectors Fj and
attraction points gj: {(Fj ,gj)}j∈J , J = {1, . . . , d}. Fj represents the main direction
of deformation toward the attraction point gj and d is the number of attraction points.
Given a pair (Fj ,gj), the new location of a vertex of the template mesh is computed

as:
−−→
viv

′
i = k( ̂(Fj ,

−−→vigj))
−−→vigj + εNi, where Ni is the unit normal of the surface

at the point vi, ε is a real number of small value used to move the vertex according
to the tangent plan and avoid to drag it abruptly toward the attraction point. k is a
function which models the effect of the attraction between gj and vi. It is assumed
to be dependent only on the angle between the main direction of deformation and the
vector joining the vertex to the attraction point. The smaller this angle the bigger the
effect of the attraction point on the vertex.
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Fig. 5. 3D reconstruction error versus extensibility for conformal DSfM and DSfMS methods
using the synthetic sequence ext

Results. A sequence of 500 deformations is produced so that the amount of extensibility
w.r.t. the template varies as: ext= [0% 5% 10% 15% 20%]. The deformed images are
obtained by projecting each 3D deformed mesh using a perspective projection matrix
Π . The intrinsics of this projection are taken as being the same as a Karl Storz laparo-
scope’s intrinsics. A z-buffer rendering method is used to compute the self-occluded
areas and to texture map the projected mesh. The point correspondences are from the
3D template mesh to 2D deformed image. They are obtained by randomly choosing 500
points represented by their barycentric coordinates. In the deformed mesh the points,
which have the same barycentric coordinates, are projected using the same perspec-
tive projection matrix Π to obtain the 2D correspondences in the deformed image. We
proceed to the evaluation of the developed method by adding Gaussian noise of zero
mean and different variances to the 2D correspondences. Since in real in-vivo video se-
quence it is very difficult to automatically obtain correspondences in the deformed area
due to the presence of the surgery tool and moving specularities, we do not consider
any synthetic correspondences in the deformed area. Only 25 point correspondences
are used between the 3D template and the 2D single input image. For lack of space,
the qualitative reconstructed surface are not shown for DSfM and DSfMS. The quanti-
tative results show the RMS 3D error of vertices is computed as the summed norm of
the difference between reconstructed and ground truth vertices. The RMS edge length
error is computed as the summed norm of difference of the mesh edge’s lengths be-
tween reconstructed and ground truth surface. The reprojection error is computed as the
summed norm of difference between the projection of the points in the reconstructed
mesh and the corresponding in the deformed image. As expected, in the case of sparse
feature correspondences, the DSfMS outperforms the DSfM method. When the number
of correspondences is augmented in the deformed regions, the DSfM method tends to
be as accurate as the proposed method.

8.2 Real Data

To validate the proposed approach on real data, the experiment we propose is the 3D
reconstruction of an uterus from in-vivo sequences acquired using a monocular Karl
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Storz laparoscope. The 3D template of the uterus is generated during the laparosurgery
exploration step of the inside body. Then, a set of complex and unpredictible defor-
mations may occur on the uterus when the surgeon starts to examine it. A set of 35
correspondences between the 3D uterus template and the deformed images was gen-
erated. The correspondences in deformed regions are either absent or non-stable and
then are not taken into account. As it is hard to provide ground truth data to compare
with, besides the quantitative results from the synthetic data, the qualitative 3D recon-
struction shows clear improvement of the recovery of the deformed region with no need
of point correspondences. Table 1 compares 3D reconstructed deformation with SfS,
DSfM and the proposed DSfMS. As expected, the SfS method provide bumpy recon-
structed surface due to specularities and unmodeled physical phenomena. The DSfM
method provides coarse reconstruction since feature correspondences are missing in
the deformed regions. DSfMS provides a finer and meaningful 3D reconstruction.

Table 1. 3D reconstruction on in-vivo video sequence from monocular laparoscope using SfS,
DSfM and the proposed DSfMS. First row: Single 2D views of uterus deformation with a surgery
tool. Second row: 3D reconstruction using SfS. Each 3D reconstruction is done using the single
view above. The view is given in the laparoscope view point. Third row: 3D deformed surface
seen from different point of view which provide visualization of the self-occluded part. Fourth
row: Zoom in the deformed reconstructed area with DSfMS.

Single image

Classic SfS

DSfM with
few corresp.

DSfMS with
few corresp

Zoom
(DSfMS)

9 Conclusion

In this paper, we have presented the DSfMS method to reconstruct a conformal deform-
ing living tissue in 3D by combining motion and shading cues. Our method provides
novel technical contributions and also a new way of tackling the 3D vision problem in
laparoscopy. The synthetic data and in-vivo experimental results show the ability of the
proposed method to recover a smooth surface subjected to deformation in local region
without correspondences.
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