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Pattern Form6. Pattern Formation and Animal Morphogenesis

Michael G. Paulin

The millions of species of animals on Earth can
be divided into only about 35 phyla based on
underlying morphology. Animal bodies are con-
structed using a small set of structural motifs that,
as 19th century embryologists recognized, can be
generated spontaneously by nonliving physico-
chemical processes. The discovery of genes early in
the 20th century, and of their molecular identity
a few decades later, led to the view that morphol-
ogy is a consequence of patterned gene expression
during development. Advances in mathematical
theory and numerical methods in the second half
of the 20th century have made it possible to an-
alyze, classify, and simulate patterns that emerge
spontaneously in nonlinear dynamical systems.

The body of this chapter is in three sections.
The first section (Sect. 6.1) introduces mathematical
models and methods of dynamical systems theory.
Section 6.2 explains principles and mechanisms
of dynamical pattern formation using this theory,
while Sect. 6.3 discusses the possible role of these
mechanisms in the evolution and development of
animal morphology. The mathematical notation is
loose and the presentation avoids technicalities,
in order to make the chapter more accessible to
its intended audience: biologists who have not
yet mastered nonlinear dynamical systems theory,
and mathematical engineers and physicists seeking
opportunities to apply their skills in biology.

The theory shows that macromolecular reaction
networks are capable in principle of generating
a larger class of patterns than actually occurs.
This raises an interesting puzzle: Why do devel-
opmental genes only build structures that could
build themselves? The question lies at the heart
of evo-devo, an emerging scientific program that
aims to synthesize evolutionary molecular biology
and developmental mechanics. Dynamical mod-
els suggest that metazoan developmental genes
may have evolved not as generators of morphol-
ogy, but to stabilize and coordinate self-organizing
mechanical and physicochemical processes. Simple

6.1 Historical Overview ............................... 74

6.2 Models ................................................ 76
6.2.1 Ordinary Differential Equations ...... 76
6.2.2 Pendulum ................................... 76
6.2.3 van der Pol Oscillator .................... 76
6.2.4 Lotka–Volterra ............................. 76
6.2.5 Linearization ............................... 77
6.2.6 State Space Models ....................... 77
6.2.7 Linear State Space Models ............. 78
6.2.8 Critical Points .............................. 78
6.2.9 Autonomy ................................... 78
6.2.10 Partial Differential Equations ......... 79
6.2.11 Networks .................................... 79

6.3 Where Patterns Come From ................... 80
6.3.1 Oscillations in Linear Systems ........ 80
6.3.2 Feedback and Dynamic Stability ..... 80
6.3.3 External Pattern Generators........... 81
6.3.4 Structural Stability........................ 81
6.3.5 Attractors .................................... 81
6.3.6 Bifurcations ................................. 82
6.3.7 Global Dynamics .......................... 82

6.4 Evolution and Development
of Morphology...................................... 84
6.4.1 The Origin of Order ....................... 84
6.4.2 Turing Patterns ............................ 84
6.4.3 Segments: Growth Transforms Time

into Space ................................... 85
6.4.4 Sticking Together:

The Invisible Hand of Adhesion ...... 85
6.4.5 Making a Splash........................... 86
6.4.6 Buckling the Trend ....................... 86
6.4.7 Genes for Regional Specification .... 87

6.5 Genes and Development ....................... 88
6.5.1 Morphology First .......................... 88
6.5.2 Post Hox ergo Propter Hox? ........... 89

6.6 Discussion and Future ........................... 90

References .................................................. 91

simulations show how molecular patterns that
now presage anatomical patterns in development
may have been a consequence rather than a cause
of those patterns in early animal evolution.
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6.1 Historical Overview

In the Aristotelian world view, every effect has a cause.
This principle can be formally expressed by

x′ = f (x) , (6.1)

according to which the rule f describes how the cause x
generates the effect x′. In the 16th century, Newton
introduced a new way to quantify causality in terms
of continuously changing states. The Newtonian world
view can be encapsulated in the same formal equation,
except that x′ represents the rate of change of state x at
an instant, rather than a new state at a subsequent time.

Newtonian mechanics allowed us to supersede the
primitive, common-sense view that patterns in struc-
ture and behavior must reflect patterns in an underlying
cause. Newton showed that patterns can be generated
autonomously in a physical system when the rate of
change of state is a function of state.

The iconic example is Newton’s model of the or-
bits of the planets. Seen from the Earth, planets move
in complex patterns among the stars. Copernicus ex-
plained that these paths would look simple if we could
view them from the sun. Newton, building on Ke-
pler’s mathematical model of the paths that planets take
around the sun, explained how they result from a sim-
ple rule of the form (6.1). The cause in Newton’s model
is a radial force acting towards the sun, but the ef-
fect is qualitatively different, a periodic elliptical orbit
around the sun. Newton’s beautifully simple, accurate
predictive model displaced the beautifully simple an-
cient explanation that planets perform a complex dance
in the heavens because an intelligent designer employed
angels to make it so (Fig. 6.1a).

Medieval thinkers had a very simple explanation of
animal form: preformation. They proposed that a minia-
ture human, a homunculus, is folded into each human
egg. Development merely unfolds a structure that al-
ready exists. In the late 19th century the Newtonian
scientific revolution began to have an influence on de-
velopmental biology. In 1874, His demonstrated how
the development of anatomical structures can be mim-
icked by nonliving materials. Shortly thereafter, Roux
coined the term Entwicklungsmechanik (or developmen-
tal mechanics) to describe this approach to explaining
animal form. The approach was eloquently championed
by Darcy Wentworth Thompson in the early 20th cen-
tury. His epic tome, On Growth and Form [6.1], was
described by Sir Peter Medawar as the greatest work
of scientific literature ever written in the English lan-
guage [6.2]. Its frontispiece showing a drop of milk

splashing onto a surface (Fig. 6.1) has become an iconic
image in biology. Thompson pointed out that the beau-
tiful, regular, and reproducible pattern is not present in
the falling milk drop. We must seek its creator in the dy-
namics of the splash, not in angels that intervene just at
that moment.

However, the early insights of developmental me-
chanics were overtaken by developments elsewhere.
While Thompson was writing his book in Scotland,
Thomas Hunt Morgan was studying the inheritance of
fruit fly body parts in New York. Building on Mendel’s
earlier work, Morgan made the Nobel Prize-winning
discovery that body parts are inherited as if instruc-
tions for building them are laid out in lines like beads
on a string [6.3]. He called these instructions genes.
They remained theoretical objects until the middle of
the 20th century, when they were identified with DNA
nucleotide sequences [6.4]. This discovery ushered in
a period of spectacular productivity in molecular biol-
ogy, as the beautiful ideas of developmental mechanics
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Fig. 6.1 (a) Viewed from Earth (E) other planets follow
idiosyncratic complex paths. Newton showed that the dif-
ferent paths can be predicted by the same simple rule.
In Newton’s model planets move nearly at right angles
to the forces that move them (arrow). Common sense
is not merely useless, but misleading in trying to un-
derstand pattern formation in this simplest of dynamical
systems. (b) Howard Edgerton’s famous photograph of
a milk splash, which formed the frontispiece of Darcy
Wentworth Thompson’s On Growth and Form. In violation
of common sense, a complex, lifelike form is generated
from a simple, egg-shaped precursor, by dropping it from
a height onto a formless constraint. Does animal morpho-
genesis employ analogous, autonomous pattern-forming
mechanisms? Thompson thought so, but died before math-
ematical methods capable of explaining crown splash
formation, and computer simulation methods capable of
replicating it, were developed
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were swept away by the ugly facts: Morphogenesis
is controlled by patterns of gene expression [6.5].
Genomes evolve by blind evolutionary tinkering to con-
struct organisms that perpetuate the genes [6.6, 7]. Any
resemblance between the living and the dead is merely
coincidental.

As predicted by the theory that genes determine
morphology, disrupting genes or gene expression can
disrupt morphological development. However, genetic
determination of form has turned out not to be as sim-
ple as first suggested by Mendel’s peas and Morgan’s
flies. Many of the claims that have been made about
the effects of genes can be made, using comparably
good evidence, about the effects of star signs. The zo-
diacal sign of one’s birth predicts height, susceptibility
to mental and physical illness, career choices, sport-
ing ability, and various other personal attributes and life
outcomes [6.8–11]. These observations are real, but it
requires some critical thought and a little understanding
of statistical theory to understand why these correla-
tions occur. Ought not the same standard be applied
in developmental genetics? Morphological patterns are
predictable from gene expression patterns during devel-
opment. The question is, why?

As Newman and Forgacs [6.12] point out, the idea
of a genetic program for building an organism took hold
among molecular biologists despite the fact that no con-
vincing model of a causal link between gene expression
and the three-dimensional form of an animal had ever
been presented. The Human Genome Project, whose
goal was to print out the instruction book for human bi-
ology, marked the high point for the paradigm that every
problem in organismal biology can be reduced to the
problem of finding a gene for it [6.13]. However, the
failure of genomics to live up to its early promise has
not dampened enthusiasm for more of the same. Instead,
molecular biologists are extending the paradigm to in-
corporate multiple genes for a trait, multiple effects of
a gene, interactions between genes, and feedback loops
between genes and gene products [6.13].

In the late 20th century, molecular genetics be-
came eerily reminiscent of the last gasps of Ptolemaic
astronomy. A proliferation of epicycles leads to an in-
creasingly accurate description of rapidly accumulating
data, and ever more accurate predictions [6.14]. We
can only thank our lucky stars – irony intended – that
Kepler’s contemporaries did not have computers. With
even a modest 21st century desktop computer, 17th cen-
tury astrologers could have developed astroinformatics
and bequeathed to us an ability to describe everything
in the world with arbitrary precision, while leaving us

utterly ignorant of our place in it. It is worth noting
that the Ptolemaic model is not inherently false, just
a different way of looking at the data. It remains to
this day capable of describing observations with greater
precision than modern astronomy, because Ptolemaic
epicycles are constrained only by a need to fit the data
while modern astronomers are obliged to ensure that
their models obey certain constraints now called the
laws of physics.

It is true that large numbers of genes and gene
products interact in complex networks during devel-
opment, and there is nothing inherently false in the
theory that there are systematic relationships between
patterns of gene expression and patterns of morphol-
ogy, physiology, and behavior. The problem is that
developmental systems are clearly dynamical systems.
As illustrated above, even the simplest dynamical sys-
tems are beyond human comprehension if we attempt
to model them as Aristotelian causal chains or net-
works; For example, while on the one hand we cannot
help but be impressed by the prodigious effort, skill,
and technology that has gone into mapping out the
molecular genetic network underlying sea urchin mor-
phogenesis [6.5], we also cannot help noticing that the
result tells us nothing about how sea urchin morphology
arises in this simplest of animal developmental sys-
tems. From a computational modeler’s point of view
a molecular network map makes it possible to sim-
ulate the molecular network that operates while the
animal is developing, without giving us the slightest
hint about how to simulate the development of the
animal.

This chapter is a call for developmental genetics
to become reacquainted with developmental mechan-
ics. Modern mathematical methods and computational
tools make it possible to analyze the dynamics of com-
plex networks, and morphogenesis in expanding soft
matter (i. e., the idea formerly known as growth and
form). This chapter will lay out some ideas that may be
fundamental to understanding the relationship between
genes and proteins at the microscopic level, and mor-
phology, physiology, and behavior at the macroscopic
level. These ideas are currently not a standard part of
molecular geneticists’ training. One of the key ideas
that will be explained is that, in general, there are in-
finitely many sets of components and interactions that
will generate a particular pattern. As a consequence of
this, attempts to understand how the pattern arises by
cataloguing the underlying components and their inter-
actions are likely to be hindered by large variability at
the microscopic level; For example, what appears to be
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the same macroscopic process in two individuals could
be accompanied by overexpression of a particular gene
in one individual and reduced expression in the other.
The good news is that the global characteristics of a net-
work that specify its behavior are generally much fewer
than the number of components, and very much fewer
than the number of interactions. This means that the cost
of learning abstract mathematical concepts is repaid by
a simpler reality.

A second important concept is that, while the
dynamics of genetically regulated macromolecular re-

action networks does have the potential to account for
the diversity of pattern and form in biology, it strug-
gles to explain the lack of it. Why, among all of the
patterns that could be generated by such networks, do
they appear to restrict themselves to instructing tissues
to develop in ways that they could develop without in-
structions? This chapter will outline a possible solution,
drawing on recent progress in evo-devo, a research pro-
gram that is producing a new synthesis of 19th century
developmental mechanics and modern molecular genet-
ics.

6.2 Models

6.2.1 Ordinary Differential Equations

Ordinary differential equations quantify how the rate
of change of some variable(s) depends on some other
variable(s), which may include the state variables them-
selves.

This section introduces three simple dynamical
systems that will subsequently be used to illustrate
principles of dynamical pattern formation. These are
systems whose behavior can be analyzed using two-
dimensional plots. The methods of analysis are gen-
eral, but are difficult to visualize for more complex
systems.

It is not necessary to follow this section in detail in
order to get the key points, which can be summarized as
follows.

1. There is a general mathematical model, called the
state space model, for any dynamical system with
a finite number of components.

2. We can draw a map showing the kinds of behavior
that a system can generate – the topology of its tra-
jectories – by examining mathematical properties of
its state space model.

3. There is, in general, an infinite class of state space
models whose trajectories have a given topology.

4. Correspondingly, on the one hand we can design in-
finitely many networks of interacting components
that exhibit any specified behavior, while on the
other hand it is impossible to determine how a net-
work will behave by examining its components and
their interactions, unless you know all of them.

5. The ideas extend to systems with an infinite num-
ber of components, in particular to the mechanics of
continuous materials.

6.2.2 Pendulum

Pendulums oscillate spontaneously at a frequency de-
pending on their effective length. The oscillations die
away because energy is dissipated by friction and drag.
The equation of motion for a simple pendulum includ-
ing velocity-dependent drag is

θ̈ +μθ̇ + g

r
sin θ = 0 , (6.2)

where θ is the angular deviation from the vertical equi-
librium position, g is the acceleration due to gravity, r is
the length of the pendulum, and μ is a drag parameter.
The dot notation represents differentiation with respect
to time; i. e., θ̇ is angular velocity and θ̈ is angular accel-
eration. This equation is nonlinear because the restoring
force, the component of gravity driving the pendulum
back towards the vertical equilibrium position θ = 0,
depends on the sine of the angle.

6.2.3 van der Pol Oscillator

Formally, the van der Pol oscillator resembles the pen-
dulum. It has a linear restoring force, but has nonlinear
drag that switches to antidrag when θ < 1. It generates
periodic behavior that does not die away. Energy dissi-
pated by drag in some parts of the cycle is replaced by
work done by antidrag in other parts of the cycle.

θ̈ +μ(1− θ2)θ̇ + θ = 0 . (6.3)

6.2.4 Lotka–Volterra

The Lotka–Volterra equations are often used to model
predator–prey systems. Using r to represent the number
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of rabbits and f to represent the number of foxes,

ṙ = αr −βr f , (6.4a)

ḟ = −γ f + δr f . (6.4b)

The first equation states that rabbits are born at a con-
stant birth rate, and die at a rate proportional to the
number of foxes. The second says that foxes die at
a constant rate and are born at a rate proportional to the
number of rabbits.

This model has a simple realistic interpretation in
terms of the probability that foxes and rabbits will
encounter each other. If each species is randomly dis-
tributed over a region, then the probability that one will
encounter the other is proportional to the product of the
population densities. These densities are proportional to
population numbers in a fixed region. The coefficients
of the product terms are different in each equation be-
cause the effects of predator–prey encounters are not
symmetric. The predator gains a little while the prey
loses a lot when they meet (the life–lunch principle).

The Lotka–Volterra equations generate periodic
fluctuations in rabbit and fox numbers. These patterns
are qualitatively similar to patterns generated by the
pendulum and van der Pol oscillator equations, and yet
(6.4) seem qualitatively different from (6.2) and (6.3).
Subsequently, we shall see that these equations are not
as different as they seem to be at first sight.

6.2.5 Linearization

Because sin θ ≈ θ for small θ, for small swing angles
we can approximate the nonlinear pendulum model with
the linear model

θ̈ +μθ̇ + g

r
θ = 0 . (6.5)

The same equation (6.5) is obtained by linearizing the
van der Pol oscillator at θ = 0.

A linear approximation to the Lotka–Volterra equa-
tion at f = 0, r = 0 is

ṙ = αr , (6.6a)

ḟ = −γ f . (6.6b)

The linearized pendulum and the linearized van der
Pol system are damped oscillators, but the linearized
Lotka–Volterra system (6.6) does not oscillate. We will
examine this in more detail now.

6.2.6 State Space Models

The pendulum can be rewritten as a pair of first-order
equations like the Lotka–Volterra system, by introduc-
ing state variables x1 = θ and x2 = θ̇. The pendulum
equation becomes

ẋ1 = x2 , (6.7a)

ẋ2 = −μx2 − g

r
sin x1 (6.7b)

and the van der Pol equation becomes

ẋ1 = x2 , (6.8a)

ẋ2 = μ
(
1− x2

1

)
x2 − x1 . (6.8b)

In each case, state variable x1 specifies the configu-
ration while state variable x2 specifies the rate of change
of configuration.

This trick illustrated for single second-order equa-
tions can be used to convert any set of differential
equations, of any order, into a system of first-order
differential equations in a set of state variables. The
resulting state space form is a general model for a finite-
dimensional dynamical system,

ẋk = fk(x) , (6.9)

where xk is the kth state variable and x is the state
vector, containing all of the state variables.

The generality of the state space model for finite-
dimensional nonlinear dynamical systems means that
we can analyze arbitrary systems in terms of this model.
Because all of the relevant variables and their rates of
change are treated on the same footing, conceptually we
can consider any finite-dimensional nonlinear dynami-
cal system to be an ecosystem of interacting species:
foxes, rabbits, etc. In different dynamical systems the
state variables may be chemical reagent concentrations,
mechanical configuration variables, or any properties of
interacting components in a network.

Nonlinear dynamical systems can be difficult to un-
derstand because everything is connected to everything
and everything is always changing. You generally can-
not see what a dynamical system will do next by looking
at its current configuration, even if you have its equa-
tion of motion. However, state space models make it
possible to represent and visualize dynamical systems
geometrically. Some species in a dynamical model may
correspond to directly observable or measurable quan-
tities – like the species in the Lotka–Volterra model –
while others may correspond to abstract or unobserv-
able properties that are much more troublesome to
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Fig. 6.2a,b In a snapshot of a pendulum (a) it is im-
possible to tell which way the pendulum is moving. As
illustrated in (a), it can be impossible to see how a sim-
ple mass will move even if you know the forces acting on
it. (b) In contrast, the pendulum’s future behavior is easy
to predict and visualize from a snapshot in state space. At
any point the state space model specifies a vector showing
how the state changes at that point. A trajectory starting at
any point can be determined by following the flow of the
vector field

human intuition. These different kinds of variables are
treated on the same footing in state space models, which
quantify how the state changes as a function of the cur-
rent state. It is possible to visualize this across the state
space (Fig. 6.2). This is a major conceptual advantage
of the state space model; it lets us freeze arbitrary non-
linear dynamics in a snapshot that characterizes what
happens next. We will explore how to use state space
maps to analyze dynamical systems in more detail be-
low.

Another advantage of the state space model is that
it is relatively straightforward for a numerical algorithm
to map out trajectories from arbitrary starting positions
in state space, given such a model. The most commonly
used numerical integration routines for solving ordi-
nary differential equations require the equations to be
specified in state space form [6.15].

6.2.7 Linear State Space Models

We derived linear approximations to three nonlinear dif-
ferential equations in Sect. 6.2.5. It is generally easy
to linearize a state space model at any specified point
in state space by taking partial derivatives of the func-
tions fk in (6.9) at that point. The state space model
linearized at x0 is

ẋ = Fx , (6.10)

where F is the matrix of partial derivatives Fk j =
∂ fk/∂x j |x=x0 ; For example, the state space model (6.6)

for the pendulum becomes

ẋ1 = x2 (6.11a)

ẋ2 = −μx2 − g

r
x1 , (6.11b)

which can be written in the form (6.10) with

F =
(

0 1

−g/r −μ

)

. (6.12)

The linearized state space model describes the local
behavior of a smooth dynamical system near x0. The
behavior can be characterized in terms of the proper-
ties of the matrix F; that is, analyzing the local behavior
of a dynamical system comes down to matrix algebra.
If the system is linear then its global behavior can be
determined by matrix algebra (Sect. 6.3).

6.2.8 Critical Points

A critical point is a point in state space at which the state
derivatives are zero,

fk(x) = 0 , for each k . (6.13)

At a critical point, the linear approximation to
a smooth nonlinear system is

ẋk = 0 , (6.14)

which implies that the system will freeze up if it reaches
a critical point. This can happen, but a critical point may
be unstable, meaning that arbitrarily small perturbations
cause the system to move away.

Critical points of nonlinear systems are important
for understanding the kinds of behavior that they can
generate, because near unstable critical points small
perturbations of the state can cause large changes in
a system’s behavior. Near stable critical points, small
perturbations have little or no effect.

In one dimension there are three kinds of critical
point (Fig. 6.3). The critical point is either stable, in
which case the system will converge to the critical point
from nearby states, or unstable, in which case the sys-
tem will diverge away from the critical point.

Nonlinear systems are qualitatively linear away
from critical points, in the sense that small perturbations
have proportionately small effects on trajectories.

6.2.9 Autonomy

The nonlinear state space model (6.9) describes how
the rate of change of state of a system depends on its
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a) b) c)

Fig. 6.3a–c Critical points in two-dimensional state space.
(a) Stable critical point, all state derivative vectors point
inwards. (b) Unstable critical point, states diverge away.
(c) Saddle point, some trajectories lead in to the critical
point, while others lead away

current state. It conspicuously fails to include external
inputs that may also influence the evolution of the state.
Equation (6.9) should be modified to include external
influences,

ẋk = fk(x, u) , (6.15)

where u(t) is an external signal acting on the system.
However, by introducing time as a state variable,

xn+1 = t (6.16)

and an additional equation of motion for this state vari-
able,

ẋn+1 = 1 , (6.17)

(6.15) can be transformed into (6.9).
The equivalence of models (6.9) and (6.15) means

that technically it makes no difference at all whether we
regard system and environment as separate entities that
interact, or as parts of one larger system. From a mathe-
matical point of view, then, the nature–nurture debate is
epistemological (about how we describe things) rather
than ontological (about things). The mathematical solu-
tion is unambiguous: Choose the model that is simpler
to analyze (rather than getting caught up in the nature–
nurture debate – the map is not the territory).

6.2.10 Partial Differential Equations

We want to consider dynamics of continua, such as
spatially inhomogeneous chemical reactions and the
mechanics of continuous materials. In these systems the
states are functions of location and time x(r, t), not just
functions of time x(t). Models of continuum dynamics
require partial differential equations (PDEs), rather than
the ordinary differential equations (ODEs) that we have
been considering thus far.

We can model a continuum approximately by con-
sidering states at grid points. In two dimensions we can
choose an array of locations rk j and replace the spatially
distributed state with a finite set of state variables,

xk j (t) � x(rk j , t) . (6.18)

In this way we can model a continuum using a large
set of ordinary differential equations instead of one par-
tial differential equation. As we have seen in Sect. 6.2.5
this set of ODEs can be rewritten in state space form, so
(6.9) is a general model for continuum systems.

This observation that continuum systems can be
modeled as very large dynamical networks of discrete
interacting components may seem a little simplistic.
However, the truth is that, under the hood, many numer-
ical methods for solving partial differential equations
explicitly solve systems of equations like (6.18). Con-
versely, materials that have classically been modeled
as continua are in fact very large collections of very
small interacting components. As computing technol-
ogy advances, we are increasingly able to simulate
macroscopic phenomena explicitly in terms of micro-
scopic mechanisms, and as we will see below there are
modern computing environments such as NetLogo that
make it remarkably easy to do this. I am not trying to
suggest that PDE models have nothing to contribute
to developmental biology, only pointing out that for
present purposes we can avoid the complexities of PDEs
and treat everything as a network.

6.2.11 Networks

In integral form, (6.9) becomes

xk =
∫

fk(x)dt . (6.19)

It follows that, via a state space model, any dynami-
cal system can be modeled using an array of integrators
whose outputs loop back to the inputs via a transfor-
mation. It is worth the effort to understand how the
networks in Fig. 6.4 can be drawn by inspection of the
corresponding ODEs in state space form.

In the light of preceding theory, Fig. 6.4 shows
that networks of integrators and static transformations
can mimic arbitrary dynamical systems. This result is
applied, for example, in analog circuit design. Given
a state space model, an engineer can design a circuit
whose behavior mimics any dynamical system. The task
is made easy in electronics by the availability of com-
ponents designed to implement standard mathematical
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Fig. 6.4a–c Network implementations of differential equations. (a) Linear pendulum with drag, (b) van der Pol oscil-
lator, (c) Lotka–Volterra system. These networks can be implemented as analog electronic circuits using off-the-shelf
components. A state space model of a dynamical system can be directly interpreted as a circuit diagram for a network of
interacting operators that mimics the system. The reader is encouraged to check the correspondence between signals and
operations in the illustrated networks, and the operands and operators in the differential equation models

operations. Given the ability to select from a sufficiently
diverse set, circuits could be constructed using other
kinds of components; For example, the state variables

could be implemented using reagent concentrations in
a macromolecular reaction network, or spiking proba-
bilities in a neural network [6.16].

6.3 Where Patterns Come From

6.3.1 Oscillations in Linear Systems

It is easy to verify by substitution that the function

θ(t) = A e−t/τ cos ωt (6.20)

satisfies the pendulum equation (6.2), when τ = 2/μ

and ω = √
g/r −1/τ2. This function describes an os-

cillation that may decay or grow (Fig. 6.5c). For a real
pendulum, μ is positive, corresponding to a velocity-
dependent drag force, and in this case the oscillation
decays exponentially with time constant τ . The decay
reflects energy dissipated by the drag force.

If there is no drag (μ = 0), as in a vacuum, then the
solution is simple harmonic oscillation (Fig. 6.5b),

θ(t) = A cos

√
g

r
t . (6.21)

Linear oscillations occur in a mechanical system when
there is a force driving its configuration towards a point,
proportional to how far away it is from that point; For
example, such restoring forces can be approximately
generated by gravity acting through a rotational con-
straint, as in a pendulum, or by springs. Oscillations
can be generated by second-order dynamical loops in
other kinds of physical systems. In a second-order loop,

the rates of change of two state variables are coupled in
a closed chain.

6.3.2 Feedback and Dynamic Stability

Suppose we use an actuator to apply a force on the
pendulum proportional to its velocity. This is called
feedback, because the applied force is a function of
state. Adding this term to the linearized model (6.5), we
obtain the closed-loop equation of motion

θ̈ +μθ̇ + g

r
θ = λθ̇ . (6.22)

By choosing λ = μ, we create a pendulum that os-
cillates periodically.

A pattern is dynamically stable if it persists when
the state is perturbed. The feedback-controlled pendu-
lum oscillator is not stable because small perturbations
of θ and/or θ̇ alter its amplitude. However, it is not un-
stable either, because while a perturbation will move the
pendulum off one trajectory, it will move it onto a simi-
lar, neighboring trajectory. This is an example of neutral
stability.

When λ < μ in the feedback system, so that μ−
λ > 0, the pendulum’s state moves onto the trajectory
(θ, θ̇) = (0, 0); i. e., it comes to rest at the origin. This
trajectory is dynamically stable, but not very interesting
from a biological pattern-formation point of view.
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Fig. 6.5a–e Oscillations due to second-order
coupling between state variables and their rates
of change. (a) State trajectories of a pendulum
with different values of the drag parameter μ.
A closed cycle appears when μ = 0. There is
a stable point attractor S at the origin when
μ > 0. (b,c) Configuration of the pendulum
over time with different values of μ. Persistent
sinusoidal oscillation occurs when μ = 0. (d)
State trajectories of a van der Pol oscillator,
showing trajectories that start near the periodic
attractor A converging onto it. (e) Config-
uration θ of the van der Pol oscillator over
time. When μ is small, oscillations generated
by the van der Pol oscillator closely resem-
ble an undamped pendulum (simple harmonic
motion)

6.3.3 External Pattern Generators

Persistent oscillations in the feedback-controlled pen-
dulum are not free. The actuator must use energy to do
the work necessary to compensate for dissipation due
to drag. This means that the controlled system must
have an external energy source, powering an actuator
that delivers a periodic force to the pendulum. Without
the illumination provided by dynamical systems theory,
intelligent observers might agree that this periodic ex-
ternal force causes the pattern of movement. However,
from a dynamical systems point of view the external
feedback loop is a component added to an autonomous
pattern-generating system in order to select and stabi-
lize a desirable pattern. The feedback element simply
defends a naturally occurring pattern from the ravages
of the second law of thermodynamics.

6.3.4 Structural Stability

Dynamical stability, considered in Sect. 6.2.8, is about
whether a pattern persists when the state is perturbed.
Structural stability is about whether a system’s behavior
persists when its structure is perturbed.

The controlled pendulum (6.22) is structurally
unstable. Arbitrarily small errors in the feedback pa-
rameter λ destroy its periodic oscillation. If λ < μ, the
oscillation decays and the pendulum comes to a halt at
the origin in state space. This behavior is structurally
stable. When there is net drag, small changes in its
magnitude do not qualitatively alter this behavior. They
only affect how long it takes the pendulum to stop
swinging.

The growing oscillation that occurs when λ > μ is
also structurally stable. If the feedback is too strong then
small changes in its strength only affect how rapidly
the oscillations grow. Note that structural stability is
a formal mathematical property of the model (6.20).
Excessive feedback in a real oscillating system will
eventually result in some kind of physical breakdown
that invalidates the model. Investigating that breakdown
would require a more sophisticated model.

6.3.5 Attractors

An attractor is a locus in state space onto which a sys-
tem’s trajectories converge from nearby trajectories.
Closed loops in the state space of the feedback-
controlled pendulum when net drag is zero (Fig. 6.5a)
are not attractors, because the pendulum will shift onto
a neighboring closed-loop trajectory if the state is per-
turbed. The origin is an attractor when net drag is
positive, however, because a damped pendulum will
slow to a halt at the origin and stay there in the face
of perturbations.

However, as noted before, attractors in pendulum
dynamics are not very interesting from a biological
pattern-generating point of view. The periodic trajec-
tories of a linear pendulum are not attractors (they are
not dynamically stable), and not structurally stable. The
only stable attractor of (6.5) is a point at the origin,
where it goes to die.

The van der Pol oscillator, on the other hand, has
a structurally stable periodic attractor (Fig. 6.5d). When
its parameter μ is small, the behavior of a van der
Pol oscillator closely resembles the behavior of an un-
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damped pendulum (Fig. 6.5e), but this pattern resists
perturbations in the state and structure of the oscilla-
tor. This stability incurs a design cost and a running
cost. The oscillator must incorporate a mechanism that
provides appropriate nonlinear state feedback, and this
mechanism must draw power from an external source
because the nonlinear term dissipates energy when the
coefficient of θ̇ is positive and does work when it is
negative.

We have seen on the one hand that pattern forma-
tion is easy to analyze in linear systems using analytical
solutions of ODE models, but this is not directly rele-
vant to biological pattern formation because the patterns
that linear systems generate are unstable and/or unin-
teresting. On the other hand, the van der Pol example
illustrates how nonlinear ODE models can generate
structurally and dynamically stable patterns, but it is
usually impossible to solve nonlinear ODEs analyti-
cally.

Fortunately, it is straightforward in principle to char-
acterize and map the attractors of a nonlinear system
from a state space model. We need not consider the de-
tails of how to do this, because our present concern is
not to know how it is done so much as to know that it
can be done. The technical procedure is very clearly ex-
plained by Strogatz [6.17]. The result is a map of the
state space showing critical points and attractors, and
how the system’s trajectories flow around them, i. e., di-
agrams such as Fig. 6.5a for the simple pendulum and
Fig. 6.5d for the van der Pol oscillator.

Dynamical systems are said to be topologically
equivalent if their critical points and attractors can be
matched up by continuously warping the state space.
Topologically equivalent systems have essentially the
same sets of behaviors.

6.3.6 Bifurcations

By adding a parameter to the van der Pol model we
obtain a model that can be smoothly modified into
a damped linear pendulum model,

θ̈ +μ(1−λ2θ2)θ̇ + θ = 0 . (6.23)

This model becomes (6.3) when λ = 1 and (6.5)
when λ = 0. Assuming that μ is small and positive, this
system can have either a stable point attractor or a sta-
ble periodic attractor. This change happens suddenly as
the parameter λ changes gradually.

This sudden qualitative change in global dynamics,
from actively holding still to oscillating periodically,
is a Hopf bifurcation. In general, a bifurcation oc-

curs when a parameter change causes a change in the
system’s dynamical topology. A critical point or an
attractor may appear or disappear, and although the un-
derlying cause may be a small continuous change in
a model parameter, the effect is the sudden emergence
or extinction of some pattern(s) of behavior in the sys-
tem.

6.3.7 Global Dynamics

There is a trivial sense in which each network in Fig. 6.4
is just one of an infinite set of networks that generate
a particular pattern; For example, in network Fig. 6.4a,
we could note that 2λμ = λμ+λμ and have two path-
ways each feeding λμ back around the integrator for
x2 instead of one pathway feeding back 2λμ. However,
there is a more subtle and important way in which in-
finite families of networks are functionally equivalent.
Suppose that we construct new state variables y1 and y2
by transforming the original x1 and x2,

y = Ax , (6.24)

so that

x = A−1 y . (6.25)

Expressed in terms of the new state variables, (6.10)
becomes

ẏ = AFA−1 y . (6.26)

Equations 6.25 and 6.26 define an infinite family of
dynamical networks whose outputs x – what we actually
observe – are indistinguishable.

In general, the dynamics of a linear system with an
N-dimensional state vector are characterized not by the
N2 coefficients of its dynamical matrix F but by the N
eigenvalues of this matrix. Correspondingly, the behav-
ior of a linear integrator network depends not on the
components and their interactions but on a relatively
small number of global characteristics of the network.

This result means that engineers have consider-
able flexibility in analog circuit design. They can use
the similarity transform, F (A) = AFA−1, which leaves
eigenvalues unchanged, to change circuit components
and layout without altering the function of the cir-
cuit [6.16]. Systems related by a similarity transform are
said to be similar. This is not about having free parame-
ters that are unconstrained by the function of the circuit,
but about the ability to transform signals and operations
to achieve the same function in different ways.
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In biology, evolution selects dynamical networks
according to their function. Different molecular com-
ponents of these networks may have very similar
properties, and superficially very different networks
may generate similar patterns. This implies that what
must be conserved across organisms to achieve common
goals is not particular molecules or pathways but global
characteristics of the molecular reaction networks. As
in engineering, there are likely to be tasks for which
particular components and circuit topologies tend to be
used commonly or even universally, for reasons other
than that they produce an advantageous behavior; For
example, it may be particularly easy and cheap to pro-
duce certain components, they may draw less power
to perform the task, or it may simply be that one de-
sign became standard many years ago and it would be
too disruptive to introduce a new design now, even if it
would be better in the long run.

It is possible that the role played by a particular gene
product in one species could be carried out by an un-
related gene product in a related species. For example,
bicoid expression seems to be essential for establishing
the anterior–posterior axis in Drosophila embryos, but
other insects appear to use different gene products for
the task [6.18]. From a dynamical systems point of view,
insect development would appear to require something
to be expressed near one pole of the embryo so that
its concentration gradient can guide anterior–posterior
differentiation during development. The particular mol-
ecule that is selected for this task may be just one of
many different gene products capable of performing
it.

In complex networks where many similar compo-
nents are available, even if different individuals employ
the same molecular components, they do not need to
exhibit the same molecular concentration patterns (in-
ternal state variables) to achieve the same outcomes.
In particular, a pathological perturbation of any path-
way can be compensated by adjustments in other
pathways to maintain global function. This is straight-
forward from an engineering perspective; For example,
given a functioning network F plus a constraint such
as a maximum allowable value for some coefficient
(maximum possible reaction rate on the corresponding
pathway), it is a simple exercise in algebra to find a sim-
ilar network that satisfies the constraint – if there is one.
If there is not, then the constraint is fatal to the operation

of the network. If similarity is merely difficult or expen-
sive to achieve under the constraint, then we might label
the constraint pathological.

Dynamical systems theory suggests that we should
not necessarily be surprised or concerned about sub-
stitution of unrelated gene products in homologous
pathways, or large interindividual variation in molecular
profiles even within a species. By contrast, the natural
prediction of the genetic program theory of biological
organization is that there is some optimal level for each
gene product, that selection acts to tune gene expres-
sion to these optimal levels, and that pathology can be
identified by abnormally large deviations from popula-
tion norms. This strategy does work in some cases, but,
as noted above, it has not lived up to early expectations.
Extending the same idea to look at multiple gene prod-
ucts may simply be a more difficult and expensive path
to the same disappointment.

The genetic program paradigm encourages scien-
tists to try to correlate the expression of particular genes
to outcomes in morphology, physiology or behavior,
rather than asking how a gene product operates as a net-
work element and how the network is constructed and
regulated to generate the outcomes; For example, the
function of a resistor is to limit current flow in an
electronic pathway. However, if we try to determine
function by observing the consequences of removing or
modifying resistors in functioning circuits, we would
discover that they are pleiotropic devices with multi-
ple roles. They can prevent a system from overheating
or generating blue smoke, alter the loudness of sounds
or the brightness of lights. Their roles can be con-
tradictory: Removing a resistor from an amplifier can
make it a siren, while removing a resistor from a siren
can silence it. In addition, it might be observed that
manufacturers may substitute resistors with different
sizes and shapes, made from different materials, with-
out altering the function of a device. This would be an
excellent indoor game to play if there was a reward for
discovering and classifying patterns in the relationship
between circuit structure and function, because it occu-
pies the mind without stressing it and there is always
something to do next. An exponent of this game might
learn how to make copies of simple electronic devices
and to repair more complex ones, but this would resem-
ble primitive folklore and witchcraft more than modern
physical science and engineering.
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6.4 Evolution and Development of Morphology

6.4.1 The Origin of Order

In cellular metabolism, chemical reactions among
thousands of nucleic acid and protein species are coor-
dinated to produce simple, stable patterns in relation to
changing conditions at the cell boundary. Metabolism is
not a collection of many simple, independent reactions
but a molecular ecosystem in which all species interact
in a single giant network. Extending the methods illus-
trated before by simple two-species networks to analyze
and design networks with thousands of species seems
beyond the capacity of finite intelligence. However,
Kauffman [6.20] has shown that, under mundane con-
ditions, large networks of interacting macromolecules
are almost certain to form spontaneously.

The basic principle of Kauffman’s model is sim-
ple. A diverse population of macromolecules presents
a diverse set of potential reactions and catalytic inter-
actions. Given some probability that macromolecules
will react, and some probability that a macromolecule
will catalyze the reaction, the probability that some
catalyzed reactions will occur in a collection of macro-
molecular species grows as the number of species
grows. Kauffman demonstrated that, given some small
initial probability of catalyzed reactions, increasing the
number of molecular species eventually leads to a tip-
ping point at which all of the species join a single large
reaction network with probability approaching 1. At this
critical point there is a phase transition where a large set
of macromolecules containing small subsets of interact-
ing species suddenly coalesces into a single network of
interactions.

Kauffman’s model shows that complex interacting
networks inevitably crystalize out of macromolecular
soup containing a sufficiently large number of ingredi-
ents. He has discussed it in the context of a metabolism
first model of the evolution of living cells. This is be-
yond the brief of the current chapter, but it may be noted
in passing that network phase transitions, first identified
mathematically some decades earlier [6.21], provide

Fig. 6.6 Turing patterns, generated
by simulating Turing’s reaction–
diffusion equations using NetLogo
(after [6.19])

a simple potential explanation for the irreducible com-
plexity of the very complex and apparently very finely
tuned molecular machinery in living cells. Natural se-
lection does not have to construct such machines by
gradual modification of simpler ones. It only has to
select and modify complex whole networks that neces-
sarily occur for thermodynamic reasons.

While Kauffman’s work has primarily been the-
oretical, using mathematical models and computer
simulations, examples of self-catalyzing molecular re-
action networks have been generated in laboratory
experiments.

6.4.2 Turing Patterns

In 1952 the British mathematician Alan Turing devel-
oped a theory of how chemical reactions can create
spatial patterns [6.22]. The mechanism is a chemical re-
action in which one reagent catalyzes the formation of
the other, while the second inhibits the formation of the
first. This is a molecular analog of a predator–prey sys-
tem. We have already seen how temporal oscillations
can arise when two quantities are dynamically coupled
in this way.

In Turing’s reaction–diffusion model, the reaction
takes place in a thin layer of solute, in which the
reagents diffuse at different rates. Initial small spa-
tial variations in relative reagent concentrations are
amplified into spatial patterns whose wavelengths are
determined by the reaction–diffusion kinematics.

The ideas put forward by Turing have been picked
up and extended by others [6.23–28]. Various patterns
can be generated by Turing’s mechanism, most com-
monly stripes and spots resembling patterns on animal
coats (Fig. 6.6). The patterns are affected by the size and
shape of the surface in which the reaction occurs. The
Turing–Murray theorem famously asserts that a spotty
animal may have a stripy tail but a stripy animal can-
not have a spotty tail, a prediction that appears to be
confirmed in nature [6.29].
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Despite many examples of two-dimensional pat-
terns on surfaces of organisms that bear a compelling
resemblance to Turing patterns, it took the best part
of half a century to demonstrate that there really is
a Turing-like chemical reaction–diffusion process un-
derlying any of these patterns [6.30, 31]. Other patterns
that superficially resemble Turing patterns have been
shown not to be generated by this mechanism.

6.4.3 Segments: Growth Transforms Time
into Space

In 1894 Bateson noted that periodic patterns in ani-
mal form, such as vertebrate somites and earthworm
segments, could be generated by oscillating pro-
cesses coupled to growth [6.32]. In 1976, Cooke
and Zeeman formalized this idea in the mathematical
clock-wavefront model [6.33] (Fig. 6.7). An oscillat-
ing reaction generates periodic fluctuations in reagent
concentrations, while the tissue grows steadily. The re-
action is activated when the concentration of another
chemical produced at one end of the tissue is above
a threshold level. As the tissue grows steadily, the
reagent concentrations are frozen when the level of the
activating substance falls below the required threshold,
thus converting predator–prey-like temporal oscillations
into a periodic spatial pattern.

About 10 years ago, Pourquie and colleagues ob-
served that certain genes are expressed with a temporal
periodicity that matches the time taken for one somite
to form in chick embryos [6.34, 35]. They and others
have subsequently identified the gene products involved
and confirmed the clock-wavefront model for vertebrate
somite generation, more than a century after the basic
idea was put forward and three decades after the dynam-
ics of the pattern-forming mechanism were formulated
in a mathematical model [6.12].

6.4.4 Sticking Together:
The Invisible Hand of Adhesion

The drop in electrostatic potential energy that occurs
when oppositely charged entities approach each other

C

W

Fig. 6.7 Clock-wavefront model for segmen-
tation. A periodic reaction network of genes
and gene products forms a clock (C), period-
ically changing cell states. Meanwhile, gene
products diffuse along the tissue. Behind the
advancing wavefront (W), the periodic reac-
tion stops, leaving alternating stripes of cell
states

means that it is energetically favorable for them to be
adjacent to each other and work must be done to pull
them apart. This microscopic effect is responsible for
the macroscopic phenomenon of adhesion, or sticki-
ness.

In a fluid of polarized and nonpolarized particles,
the polarized particles will tend to clump together.
Surface tension arises because there is free energy as-
sociated with unmatched charge on the surface. In the
absence of other forces and constraints the clump will
contract into a sphere; For example, water molecules are
polarized and air molecules are not. It costs 7.3 × 10−8 J
to increase the surface area of a drop of water in air by
1 mm2. At small scales this overwhelms other forces,
and this is why small water droplets are spherical.

In a mix containing particles with different adhe-
sivity, less adhesive particles will form layers around
more adhesive particles. If localized charges (the sticky
bits) are restricted to parts of larger particles then the
minimum energy configurations can be sheets, tubes or
shells rather than spheres [6.12].

Cells have polarized molecules, appropriately called
cell adhesion molecules (CAMs) and surface adhe-
sion molecules (SAMs), embedded in their mem-
branes [6.36]. CAMs stick cells to each other, while
SAMs stick cells to the extracellular matrix. CAMs and
SAMs are gene products, and so genes can exploit ad-
hesion to create tissues that spontaneously self-organize
into layered structures by modulating the expression
of these proteins [6.12, 36]. In contrast, according to
the genetic program model, cell adhesion molecules are
simply labels that tell cells where they should be in the
body and how they should choose their neighbors, anal-
ogous to color coding on joints and fasteners of kitset
furniture.

Surface tension–adhesion effects dominate other
forces at small scales, and therefore probably play
a major role in organizing the overall form of organ-
isms in early development. As the organism grows,
adhesion takes on the more mundane role of just keep-
ing it together. The freshwater predator Hydra can be
dissociated into single cells that can spontaneously re-
assemble into an intact animal. This effect appears
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to be due to differential cell adhesion [6.37]. Hydra
is apparently small and simple enough that the state
space of position and movement of isolated floating
cells has a single point attractor, a minimum-energy
configuration corresponding to the adult morphology.
More complex organisms appear to require specific
developmental pathways to reach their stable adult
morphologies. They tend to drop into nonviable config-
urations corresponding to local energy minima if these
pathways are disrupted.

6.4.5 Making a Splash

Thompson and White [6.38] famously noted the mor-
phological similarity of splashes and certain animals
(Fig. 6.1). There is still technical debate about the phys-
ically correct mathematical model for crown formation
in splashing fluid droplets [6.39–41], but relevant fluid-
dynamical principles can be explained in simple terms.

The kinetic, gravitational, and adhesion energies of
molecules in a body of water are dynamically coupled.
Consequently, mechanical work that locally accelerates
water molecules or alters their height causes ripples to
propagate radially across the surface. The dynamical
coupling is such that any kinetic energy in bulk flow
(near field) is quickly converted to surface energy in the

– 0 +

a) b)

Fig. 6.8a,b Computer simulation of morphogenesis by mechanical
symmetry breaking in two dimensions. (a) When tissue growth rates
match so that there is no stress on either tissue, the organisms de-
velop as circles (right column). If the mesoderm grows at a slower
rate, they collapse into frozen splashes. The specific morphology de-
pends on the relative growth rate, which increases from left to right.
Columns are replicates with the same relative growth rate. (b) A
single mutant cell is introduced into an initially circular embryo. Its
desecendents are labelled by heavy line segments. If mutant cells
are less stiff than normals (−) then they are more likely to end up
in the mouths of the adults, while if they are stiffer they are more
likely to end up near the tips of the arms (+). Mutants with normal
stiffness (0) end up at random locations on the adult. Details in text

form of ripples that increase the surface area. Energy is
dissipated by friction between water molecules as their
kinetic, gravitational, and adhesion energies exchange
periodically, and the surface eventually returns to the
flat, minimum-energy configuration. Water molecules
bounce up and down like masses suspended by springs.
Waves radiate outwards but water molecules do not.
As in a pendulum, the wavelengths of these ripples are
characteristics of the fluid, not of the perturbing force.

If the perturbation is sufficiently energetic, a second
set of ripples can emerge around the crest of a radiating
wave. Random fluctuations along the ridge are ampli-
fied as kinetic energy is transferred into surface energy
by rippling. The number of peaks in the crown is de-
termined by the wavelength of these ripples. As the
radiating wave continues to expand outwards, if there
is still enough energy, the peaks will pinch off and form
droplets, transferring additional kinetic energy into sur-
face energy.

This informal description of crown splash formation
illustrates that the crown morphology depends on the
dynamical properties of the fluid: viscosity, density, and
surface energy. In particular, other things being equal,
because the number of points in the crown depends on
the wavenumber of the secondary ripples around a cir-
cular wave crest, the number of points depends on the
dynamical parameters of the fluid. This suggests an in-
teresting thought experiment: It ought to be possible to
selectively breed or genetically engineer cows to alter
the number of points in milk droplet splash crowns,
not by selecting a molecular program that runs during
splash formation, but by selecting for gene products that
affect the viscosity, density, and surface energy of the
milk.

6.4.6 Buckling the Trend

Metazoan development does not involve being dropped
from a height, and in any case our tissues are too vis-
cous for the crown splash mechanism to be a realistic
model of embryogenesis. Metazoan tissues are soft mat-
ter, viscoelastic materials that can be shaped by applied
forces. Kinetic energy is negligible in soft matter dy-
namics, but elastic strain energy may play an important
role. In this section a simple model and numerical sim-
ulation of morphogenesis by buckling when two tissues
grow at different rates is presented.

Growth-driven morphogenesis in soft matter is
illustrated by a simple two-dimensional model imple-
mented in MATLAB (Fig. 6.8). The model consists of
a two-dimensional viscoelastic mesoderm surrounded
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by a line of viscoelastic ectoderm. Mesoderm is mod-
eled as a continuum that stores strain energy if it is
compressed or dilated. Ectoderm is modeled as a closed
chain of linear springs, representing cells, connected at
cell junctions by angular springs. These springs store
energy when the ectoderm is stretched, compressed or
bent.

The structure adopts the shape that minimizes to-
tal energy or, as Newton would say, balances the net
forces of the tissues against each other. The visco in
viscoelastic means that inertia is negligible, so this ad-
justment takes place as a gradual smooth movement.
During slow tissue growth the embryo will track the
minimum-energy configuration.

The embryo is initialized so that the unstressed area
of mesoderm equals the area enclosed by a regular poly-
gon formed by ectodermal cells at their rest length.
Ectodermal cell lengths and junction angles are then
randomly perturbed, and changes that result in lower to-
tal energy are selected until the embryo settles into the
minimum-energy configuration. Initially, because the
system was initialized so that the unstressed area of the
mesoderm equals the area enclosed by a regular poly-
gon of unstressed ectoderm, it morphs into that regular
polygon.

Now the two tissues begin to grow. On each cycle,
a cell is added to the ectoderm and the unstressed area
of the mesoderm is increased. Ectodermal cell positions
are adjusted by random perturbations to reduce the total
strain energy of the organism.

If the area of mesoderm grows so that it remains
equal to the area of the regular polygon enclosed by the
current number of ectodermal cells at their rest lengths,
then the embryo develops as a regular polygon, ageing
gracefully into a circle. However, if mesoderm grows at
a slower rate, the ectoderm buckles.

The underlying cause of ectodermal buckling in this
model is that the energetic cost of bending the ecto-
derm is smaller than the energetic benefit of reducing
mesodermal stretching and ectodermal compression.
Buckling tends to form uniform ripples around the
organism, rather than sharp folds, because it is energet-
ically favorable to distribute strain energy uniformly in
the ectoderm rather than concentrate it at a point.

The morphology of these embryo models can be
systematically modified by adjusting relative growth
rates and elastic parameters of the tissues. In Fig. 6.8a,
the columns are outcomes of repeated runs using the
same relative growth rates for the two tissues. If the
ectoderm grows much faster than the mesoderm, the
embryos quickly collapse into two-armed critters. As

the relative growth rate of the mesoderm increases, the
collapse is delayed and the number of arms tends to
increase. Finally, when the mesodermal growth rate is
such that its area always equals the unstressed area en-
closed by the unstressed ectoderm, the critters grow up
to be circles.

Other tissue parameters were fixed for these sim-
ulations, which were able to generate two-, three-,
and four-armed critters. The number of arms in the
adult morphology is consistent given a particular rela-
tive growth rate of the tissues. Although this parameter
is continuous, four qualitatively distinct morphologies
are generated as the parameter is varied, with sudden
switching from one morph to the next as the parameter
gradually increases.

6.4.7 Genes for Regional Specification

In the model of Sect. 6.4.6 (Fig. 6.8a), buckling is initi-
ated by amplification of small random perturbations in
the ectoderm. As a consequence, the adult morphs are
randomly oriented, i. e., arms are produced at random
locations on the body.

One can imagine that arms might confer certain
advantages on a creature that evolved the capacity to
develop them. However, to exploit those advantages it
might be quite handy to be able to coordinate develop-
mental processes so that tissues and organs are arranged
in repeatable configurations rather than sprouting in ran-
dom locations with respect to each other.

In Fig. 6.8b, mutant ectodermal cells are introduced
at random locations in the initial embryos. These mu-
tants have either stiffer or softer angular springs than
other ectodermal cells. In real organisms, such differ-
ences could be due to altered amounts or types of CAM
gene expression.

If the mutant cells are soft their descendants tend to
end up in the mouths of the adult creatures, but if they
are stiff their descendants tend to end up near the ends
of the arms. The descendants of control mutants, with
normal stiffness, tend to end up in random parts of the
adult body (Fig. 6.8b).

This simulation illustrates a simple principle. The
mutant cell breaks the mechanical symmetry of the
early embryo, so that morphogenesis tends to be aligned
with the locations of that cell’s descendants. Tissues
that develop from the mutant tend to be in particular
locations in the body in the adult.

In general there is no need for the organizer of the
morphology-generating process to be the progenitor of
tissues destined for particular location in the adult. It is
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only necessary for there to be some kind of local marker
that the two different processes, tissue specialization
and mechanical buckling, can align with; For example,
if the embryos in Fig. 6.8 were generated by budding
off from an adult, there might be some cytological dif-
ferences in the cells at the budding point that could on
the one hand affect mechanical properties and influence
buckling, and on the other hand affect gene expression
in those cells.

In this model a local alteration of gene expression
precedes and predicts the appearance of an arm (or
a mouth) at that location, but it is not a gene for an
arm (or a mouth). As Fig. 6.8a shows, arms are per-
fectly capable of building themselves without the help
of such genes. The expression of the mutant gene in
a particular location does, however, predict that an arm
will appear at that location. The symmetry-breaking
signal occurs early in development, long before the
morphology emerges, making it possible in principle
for other genes to be activated in spatial patterns that
align with the as-yet invisible adult morphology. This

makes it possible in principle for evolution to capitalize
on morphogenesis by coordinating other developmental
processes around it.

In this model the signal breaks the mechanical
symmetry directly; i. e., the mutant cell has differ-
ent mechanical properties. For evolution to be able
to take advantage of such a signal by systematically
altering the expression of other genes, it would be
simpler if the signalling molecule was a transcription
factor rather than a structural protein such as a CAM
or a SAM. A transcription factor is simply a gene
product that influences gene expression by influencing
DNA transcription. In particular, developmental genes,
such as the HOX genes that appear to sketch out the
morphology of the adult before it appears, produce
transcription factors. Modulated CAM expression lead-
ing to mechanical symmetry breaking could then be
just one of a number of developmental processes that
could be localized to specific regions of the develop-
ing embryo marked by prior expression of transcription
factors.

6.5 Genes and Development

6.5.1 Morphology First

The facts of molecular biology show that morphol-
ogy is presaged by spatial patterns of gene products,
and the relationship is evidently causal because dis-
rupting expression of these genes or manipulating the
concentrations of their products disrupts morphogene-
sis. However, there is something rather odd about this
picture: Genes apparently instruct embryos to develop
in ways that they would develop without instructions.

As outlined in Sect. 6.3, macromolecular reaction
networks could in principle generate arbitrary spatial
and temporal patterns. However, pattern formation in
animal morphogenesis is actually restricted to a small
repertoire of basic motifs that, as Thompson and
Whyte [6.38] observed, occur spontaneously in grow-
ing materials. As hinted at by the simple model in
Sect. 6.4.6, one kind of possible explanation for this ob-
servation is that the patterns generated by patterning
genes are a consequence of, not a cause of, morpho-
genesis due to physical properties of expanding soft
matter.

Newman et al. [6.42] proposed that morphogene-
sis in the first metazoans may have been determined
by mechanical properties of growing tissues, which

were subsequently stabilized and elaborated by genetic
mechanisms.

Fossil evidence and comparative morphology both
indicate that animals evolved from sponge larvae that
developed into pelagic suspension feeders. Sponges,
or poriferans, evidently evolved by aggregation of
choanoflagellates, unicellular organisms that can ex-
press cell adhesion molecules and spontaneously aggre-
gate into clumps that cooperate as suspension-feeding
colonies [6.43].

Poriferans are benthic suspension feeders with sim-
ple, variable morphologies including hollow blobs,
barrels, and cylinders. Fragments of a sponge, even
when completely dissociated into cells, can sponta-
neously reorganize into their species-specific form.
Sponge morphology and development seem to be
largely, if not entirely, due to the self-organizing proper-
ties of differential adhesion among particles in a viscous
fluid [6.44, 45].

In addition to the ability to reproduce and disperse
by simply fragmenting and floating away, sponges can
reproduce sexually and produce larvae. The simplest
of these are spherical cell aggregates that disperse pas-
sively in ocean currents. Larvae of some species have
streamlined shapes, and the ability to actively respond
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to environmental cues and thereby increase the proba-
bility of settling in a favorable habitat [6.46–48].

Ctenophores or comb jellies are the closest living
relatives to poriferans, and both fossil and compara-
tive evidence suggest that ctenophores evolved directly
from sponges. According to Nielsen’s trochaea theory,
the first eumetazoans – animals with distinct tissues and
organs – were derived poriferan larvae that matured and
started feeding in the water column as pelagic suspen-
sion feeders, instead of settling onto the benthos [6.43].

The trochaea, the hypothetical ancestor of cteno-
phores and all other eumetazoans, is morphologically
a collapsed spherical shell of tissue (Fig. 6.9). On one
hand, this morphology results from mechanical sym-
metry breaking in an expanding shell of viscoelastic
material [6.49, 50]. On the other hand, this is the basic
morphology of ctenophores, the simplest eumetazoans.

Nielsen examines trochaea evolution from a Dar-
winian perspective, detailing the adaptive advantages of
its morphological features and associated tissue special-
izations. In brief these are that it is somewhat larger
than its larval ancestors, giving it a lower Reynolds
number [6.51] that enables it to move, and therefore
feed, more efficiently in the water column; it is radi-
ally symmetrical and streamlined, favoring motion in
one direction; anterior–posterior tissue differentiation
takes advantage of this hydrodynamic asymmetry; sen-
sory cells at the anterior pole detect environmental cues
correlated with higher nutrient density; ciliated motor
cells along the sides propel and steer the organism, un-
der the influence of neural signals from the anterior
sensors; the caudal invagination collects food particles
because of hydrodynamic eddy currents as the trochaea

iii

iiii

a) b) i

Fig. 6.9 (a) Eumetazoans evidently evolved from sponge
larvae, the simplest of which are spheroidal masses of
ciliated cells, represented diagrammatically here. (b) An
expanding shell can spontaneously collapse, creating an
asymmetrical mass with an invagination. This morphology
has the potential to provide certain advantages to a pelagic
suspension feeder, but only if tissue differentiation can be
coordinated to align with the mechanical symmetry break.
See text for details

moves forwards; and tissues in this mouth/gut region are
specialized for capturing and digesting the particles.

There is nothing new in any of the specialized tissue
functions of the trochaea, relative to its pre-Cambrian
predecessors. Colonial choanoflagellates are now, and
presumably were prior to the Cambrian explosion, ca-
pable of sensing and moving, and of capturing and
digesting food. What is new among Cambrian eumeta-
zoans is not only that these capabilities have been
delegated to specialized subgroups of cells, but that
these subgroups are systematically arranged within the
organism in relation to its overall morphology.

Figure 6.9a is a diagrammatic representation of
a symmetrical pelagic suspension feeder whose ep-
ithelial cells are all sensors, motors, and feeders.
Figure 6.9b shows a suspension feeder with a collapsed
morphology. Its morphological asymmetry means that
it now has a front and a back and it moves more ef-
ficiently forwards than backwards. Information about
what is ahead is more valuable than information about
what is behind, and nutrients naturally accumulate in
the caudal invagination [6.43]. Thus, there would be
a selective advantage for these organisms if they could
evolve some mechanism(s) so that anterior cells (i)
specialize for sensing, lateral cells (ii, iii) specialize
for propulsion, and cells in the invagination or mouth
specialize for feeding. These tissue specializations, co-
ordinated with morphogenesis, appear to be the crucial
steps that marked the transition from brainless ances-
tors with variable morphology to eumetazoans, animals
with regular, reproducible morphology, and tissues and
organs including a nervous system [6.43].

6.5.2 Post Hox ergo Propter Hox?

Nielsen discusses the adaptive significance of mor-
phological features and tissue specializations of the
trochaea, and gives a detailed explanation of how these
could have arisen in a sequence of small steps by ran-
dom modification of prior structures. However, at the
end of that fateful day, 543 million years ago at the
onset of the Cambrian explosion, we have an organ-
ism whose morphology is a predictable consequence of
the morphology and material of its ancestors (blobs of
viscoelastic soft matter consisting of replicating sticky
particles) under selection pressure to get larger, be-
cause being bigger makes suspension feeding more
efficient [6.51, 52].

It is evidently possible to believe that natural se-
lection could gradually sculpt random perturbations of
morphology into arbitrary forms, given that genera-
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tions of biologists seem to have believed that story.
However, as outlined above, viscous fluids of sticky
particles are self-organizing. With given boundary con-
ditions an aggregate of differentially adhesive cells will
have a preferred, energetically favored morphology. Be-
cause it will be energetically expensive to maintain any
slightly different morphology, natural selection cannot
produce new morphologies by accumulating small ran-
dom morphological changes. Developmental processes
may steer morphogenesis towards particular stable mor-
phologies while avoiding nonviable forms, but they
cannot arbitrarily create new ones.

In Darwinian terms the evolution of the basic
morphology of the hypothetical trochaea and ac-

tual ctenophores can be explained in terms of soft
matter dynamics with initial selection for increased
size, rather than selection for morphology. This im-
plies that Newman and colleagues are right [6.12,
42]. The spatial patterns of molecular concentra-
tion that presage morphogenesis in development must
have followed morphogenesis in evolution. The sim-
ple model outlined in Sects. 6.4.6 and 6.4.7 explains
how developmental genes could evolve to coordi-
nate tissue differentiation with morphogenesis, leading
to the situation that we see today in which tran-
scription factors are expressed in spatial patterns
that predict the adult morphology before it starts to
appear.

6.6 Discussion and Future

During the second half of the 20th century explanations
of biological pattern formation and animal morphogen-
esis were dominated by the theory that spatial patterns
and structures are a result of patterned gene expression
during development. According to the new synthesis
of evolutionary theory and molecular genetics, patterns
arise at random and the forms that we see are simply
those that survived Darwinian natural selection. Com-
pelling evidence in favor of this theory accumulated
over the century. After the development of technology
that permitted spatial patterns of gene expression pre-
ceding the appearance of corresponding morphology to
be clearly visualized in developing embryos, the case
seemed closed.

In spite of this, a small group of researchers contin-
ued to build on the ideas of 19th century developmental
mechanics. Thompson’s beautiful exposition of those
ideas was recognized as great literature, but his ar-
guments were based on analogy and esthetics rather
than rigorous mathematical models. In fact, Thomp-
son was an excellent mathematician in his day, but the
mathematics of the day was not up to the task. There
has been considerable progress in dynamical systems
theory especially in the last quarter of the 20th cen-
tury [6.17, 49, 50]. Whether this theoretical framework
is now adequate to complete Thompson’s program is
unclear, but at the start of the 21st century we have
a mathematical language and the computational ca-
pacity to develop and test self-organizing dynamical

systems models of pattern formation and morphogen-
esis.

It is clear from 20th century advances in molecu-
lar biology that 19th century developmental mechanics
cannot be an alternative to evolutionary molecular ge-
netics; the truth must be a synthesis of the two. This
newer synthesis, called evo-devo, is now gathering
steam. This chapter outlined the mathematical princi-
ples of self-organizing dynamical systems and proposed
how such systems, containing reaction networks of
genes and gene products as well as soft matter com-
ponents, may generate patterns and forms in biology.
More comprehensive treatments of ideas that will form
the framework for evo-devo in the coming century may
be found in books by Strogatz [6.17], Stewart [6.49,50],
Raff , Raff , and Kauffmann [6.53, 54], Kauffman [6.20,
55], Newman and colleagues [6.12, 42, 56], Hall [6.57],
and Carroll [6.58, 59].

The promise of developmental mechanics synthe-
sized with molecular genetics is that it may become pos-
sible to explain not only the morphology of extant or-
ganisms, but to predict morphologies that might have, or
might one day, exist. It has the potential to explain phy-
logenesis in terms of a mathematical taxonomy of form,
demoting random mutation from the creator to a mere
explorer of animal morphology. We might then be less
surprised by the anatomy of the first alien beings that we
encounter than the first Europeans to arrive in Australia
were by kangaroos, platypus, and black swans.
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