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Quantum and59. Quantum and Biocomputing –
Common Notions and Targets

Mika Hirvensalo

Biocomputing and quantum computing are both
relatively novel areas of information processing
sciences under the umbrella natural computing
established in the late twentieth century. From the
practical point of view one can say that in both
bio and quantum paradigms, the purpose is to re-
place the traditional media of computing by an
alternative. Biocomputing is based on an appro-
priate treatment of biomolecules, and quantum
computing is based on the physical realization of
computation on systems so small that they must
be described by using quantum mechanics. The
efficiency of the proposed biomolecular computing
is based on massive parallelism, which is imple-
mentable by already existing technology for small
instances. In a sense, also quantum computing in-
volves parallelism. From time to time, there are
proposals or attempts to create a uniform ap-
proach to both biocomputational and quantum
parallelism. The main purpose of this article is the
explain why this a very challenging task. For this
aim, we present the usual mathematical formalism
needed to speak about quantum computing and
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compare quantum parallelism to its biomolecular
counterpart.

59.1 Overview

In 1994 Adleman aroused a lot of attention by describ-
ing a biomolecular solution to the traveling salesman
problem [59.1] (see also [59.2]). It is by no means
exaggerated to say that Adleman actually set the es-
tablishment of a new kind of science, even though
the ideas of bio-inspired computational models are far
older. For example, the theoretical properties of artifi-
cial neural networks had been studied decades before,
and a notable exposition was published by Minsky and
Papert in 1969 [59.3]. However, the previous studies
on bio-inspired computing seemed to focus on analo-
gies of biological processes, and that is exactly where
Adleman took one step further: he proposed that instead

of simulation, it could be useful to utilize directly the
biochemical processes to perform computation.

By a coincidence, another branch of new science
gained a lot of attention in 1994, too. In that year Shor
published his famous polynomial-time algorithm for
integer factorization [59.4]. Shor’s study was remark-
able for several reasons. First, since antiquity, there has
been an unsuccessful quest for an efficient procedure for
integer factorization. Another reason making Shor’s dis-
covery important is a very practical one. The security of
the broadly used RSA encryption system is based on the
assumption that no efficient method for factoring inte-
gers exists. The third important feature of Shor’s results
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1072 Part L Nature Inspired Integrated Information Technologies

was that the factoring method was designed for quan-
tum computers and could not be directly described in
terms of traditional Turing machines [59.5].

It is also true that quantum computing did not begin
with Shor’s article. The first ideas of quantum informa-
tion were coined by von Neumann in 1927 [59.6, 7],
but the first ideas of the quantum computer were intro-
duced as late as early 1980s by Benioff [59.8, 9], and
very notably by Feynman [59.10], who actually sug-
gested that quantum computers may be more efficient
that the traditional ones. The theory was further de-
veloped by Deutsch, who introduced quantum Turing
machines [59.11] and quantum networks [59.12]. Also
the first examples of the superior efficiency of quantum
computers were given by Deutsch and Jozsa [59.13]
in 1992. In 1994, Simon presented a more usable ex-
ample [59.14], and Shor actually built his factoring
procedure on Simon’s algorithm. In 1997 Bernstein and
Vazirani established quantum complexity theory using
an improved version of Deutsch’s quantum Turing ma-
chine [59.15].

Since the early days, the theory of quantum com-
puting has been under strong development, but many
basic questions still remain unresolved. For instance,
we know that factoring integers would be feasible
by quantum computers, but we cannot prove it un-
feasible for classical computers. All we know is that
no-one has discovered any feasible factoring for clas-
sical computers. In fact we do not know for sure of any
problems for which quantum computers could provably
be more powerful. This lack of knowledge becomes
understandable when noticing that many basic ques-
tions on classical computing remain unresolved, too:
as of 2013, we do not know whether polynomial-
time nondeterministic computing any more powerful
than its deterministic counterpart. This so-called P ver-
sus NP-problem is generally acknowledged as one of

the most difficult problems in contemporary mathe-
matics [59.16], and there is no reason to believe that
analogous problems on the relations between quan-
tum and classical computing were any simpler to
resolve.

Quantum computing has an important common fea-
ture with molecular computing: in both paradigms,
the idea is to perform computation on non-traditional
hardware. To run quantum algorithms requires a quan-
tum computer, i. e., a computer capable of storing and
handling quantum information. For that purpose, the
information should be presented by using physical sys-
tems so small that the quantum effects occur. From time
to time, the analogies between quantum and biomolec-
ular computing encourage authors to submit an idea of
joint computing model. However, the success of such
models has been very limited so far, and the main
purpose of this article is to explain why to a reader
only weakly familiar with quantum computing con-
cepts. This will be done by introducing the basic notions
of quantum computing in a superficial way and pointing
out the essential differences between the two computing
paradigms. One single and perhaps the most essential
difference between the computational paradigms can
be introduced without presenting any deeper structures.
The objects of molecular computing (DNA molecules)
are microscopic to humans, but yet macroscopic from
the quantum computing perspective. Hence the infor-
mation in molecular computing is treated as classical
information, whereas the starting point of quantum
computing is the quantumness of information.

As a secondary purpose, we describe briefly the
four types of existing quantum algorithms and some
restrictions of quantum computing to present an idea
of what can be achieved by using quantum computing.
The types presented cover almost all known quantum
algorithms.

59.2 Biomolecular and Quantum Parallelism

Adleman designed and expressed his algorithm for the
traveling salesman problem (actually Adleman’s for-
mulation was a problem which should be called the
Hamiltonian path problem) by using biomolecular oper-
ations. Anyone interested can learn details about those
operations in [59.1], but roughly speaking, Adleman’s
procedure can be described as follows. The problem
itself is to decide whether in a given directed graph
(city map) there is a path beginning and ending at fixed
vertices and visiting every vertex exactly once. Adle-

man’s solution was to encode each vertex and edge
into a single-stranded DNA-sequence in such a way,
that if there is an edge e from vertex c1 to c2, then
half of the strand encoding c1 is complementary to
a half of the strand encoding e, and the latter half
of e is complementary to a half encoding c2. As there
may be multiple incoming and outgoing edges, there
may also be multiple encodings of cities. In a test tube
containing multiple copies of DNA strands encoding
both vertices and edges, the single (let us call them
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Quantum and Biocomputing – Common Notions and Targets 59.2 Biomolecular and Quantum Parallelism 1073

lower) strands c1, c2, . . . tend to form longer strands
ci1 ci2 ci3 . . . bounded by the upper (single) strands
ei1 ei2 . . . (ei1 extends over ci1 and ci2 , ei2 over ci2 and
ci3 , etc.) The encoding ensures that ci j and ci j+1 will
be adjacent only if there is an edge from ci j to ci j+1 .
This means that the chemical tendency of DNA sticking
to its complementary counterpart will generate various
double-stranded DNA sequences encoding paths in the
graph that was originally encoded.

The problem is then to detect whether a strand en-
coding a desired path exists. Using electrophoresis it
is possible to filter out DNA strands of wrong length,
and additional existing techniques suffice to filter out
exactly the desired paths, if there are any. The crucial
point is that it is known how to the duplicate the exist-
ing DNA. Once the encodings are available, they can
be duplicated to the extent guaranteeing that the above
procedure will detect a desired solution with high prob-
ability, if any exists.

The above description emphasizes that Adleman’s
DNA-based solution actually utilizes heavy parallelism.
A test tube containing multiple copies of vertex and
edge encodings acts like a nondeterministic device gen-
erating potential paths, and the problem is to filter out
the desired path – a solution, if any exists. An existing
biotechnique is sufficient to do the filtering.

In quantum computing, there also occurs paral-
lelism – quantum parallelism, which will be described
in the rest of this chapter. The presentation here will be
merely informal, but the notions will be defined in the
next chapter. It is not necessary to focus on any specific
NP-complete problem, and we choose to study a general
version.

59.2.1 A General NP-Complete Problem

• Input: N ∈ N and f : {0, 1}N → {0, 1} a polynomial-
time (in N) computable function.• Output:

⎧
⎨

⎩

1, if there is x ∈ {0, 1}N so that f (x) = 1 ,

0, otherwise .

Here and hereafter, {0, 1}N stands for the bit strings of
length N , so a general NP-complete problem is typi-
cally a search problem: one has to decide whether there
is an N-bit string x so that f (x) = 1. A solution to
this problem can evidently be obtained via exhaustive
search, but that is computationally expensive: try all
2N candidates x ∈ {0, 1}N and check if any of them
satisfies f (x) = 1. By assumption, any value f (x) can

be computed in polynomial time (in N), but there are
exponentially many (2N ) possibilities to be checked.

In quantum computing, it is possible to form a state

∑

x∈{0,1}N

1√
2N

|x〉 , (59.1)

so-called superposition of all bit strings x ∈ {0, 1}N , and
then to compute function f on all possible inputs simul-
taneously by a cost of single computation to obtain

∑

x∈{0,1}N

1√
2N

|x〉| f (x)〉 . (59.2)

This is what quantum parallelism means: all values
x ∈ {0, 1}N occur, in a sense, parallel in (59.1), and all
values f (x) are, again in a sense, computed simultane-
ously.

However, this so-called quantum parallelism is very
different from the biomolecular parallelism described
earlier. In (59.1) there are no 2N physical systems each
consisting of N bits, but only a single physical system
of N bits in a state, which allows, in a sense, an in-
terpretation as any x ∈ {0, 1}N . Quantum parallelism is
not comparable to DNA computing parallelism, and the
incomparability is underlined by the physical interpre-
tation of (59.2). Observation of (59.2) will give any pair

(x, f (x)), each with probability
∣
∣
∣1/

√
2N

∣
∣
∣
2 = 1

2N , but on
a measurement, (59.2) is destroyed irreversibly.

It is worth noticing that the quantum parallelism, as
described above, is not far apart from probabilistic par-
allelism: Toss N times a fair coin to obtain a random
bit string x ∈ {0, 1}N , then compute f (x). A string x
with the property f (x) = 1 (if any exists) will be found
exactly with the same probability as observing (59.2)
would give. Hence the problem with straightforward
quantum parallelism (59.2) is the same as with the prob-
abilistic parallelism. If there are only a few, or even only
one string x (let us call it solution) such that f (x) = 1,
then the cases solution exists and no solution cannot be
distinguished from each other with any better probabil-
ity than 1

2N .
However, as Deutsch and Josza’s [59.13], Si-

mon’s [59.14], and Shor’s [59.4] discoveries demon-
strated, quantum computing offers possibilities to solve
some problems more efficiently than any known classi-
cal procedure allows. But it may be useful to underline
right now that it is strongly believed (although not
proved) that quantum computers cannot solve NP-
complete problems in polynomial time.
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59.3 Quantum Computing Preliminaries

In this chapter, the basics of quantum information
will be presented only very superficially, and a reader
desiring more detailed exposition is advised to con-
sult [59.17,18] or [59.19]. To understand the formalism,
it is necessary to accept the fact that quantum mechan-
ics is a stochastic theory, meaning that in general, the
complete description of the system, the state, cannot in
general result into any deterministic description, only
a probability distribution over potential outcomes. The
probabilistic structure of quantum mechanics is very
well studied, and lots of results are already available.
We could ask, for instance, whether there could be
a deterministic theory lying under quantum mechanics,
and the probability distribution is only due to unknown
boundary values (hidden variables). For instance, when
tossing a classical coin, one could imagine that if the
initial circumstances are known precisely enough, one
could be always predict the outcome.

A deep investigation has shown that the quantum
randomness cannot emerge from any deterministic pro-
cedure as described above, but randomness in inherently
inseparable feature of quantum mechanics (see [59.20],
for instance).

59.3.1 Hilbert Space Basic Structure

The Hilbert space formalism of quantum comput-
ing is usually based on pure states and requires
some basic notions. An n-level quantum system means
a (quantum) physical system with n different states
which are mutually distinguishable with certainty.
An n-dimensional Hilbert space Hn is a complex
vector space C

n equipped with a Hermitian inner
product 〈x|y〉 = x∗

1 y1 + . . .+ x∗
n yn . The inner prod-

uct induces a norm ‖x‖ = √〈x|x〉. For any element
(x1, . . . , xn) ∈ C

n , a A ket-vector is defined as column
vector (n × 1-matrix)

|x〉 =

⎛

⎜
⎜
⎜
⎜
⎝

x1

x2
...

xn

⎞

⎟
⎟
⎟
⎟
⎠

,

and a bra-vector as 1 × n-matrix (row vector)

〈x| = (
x∗

1, x∗
2, . . . , x∗

n

)
.

Usually C
n is identified with the space of ket-vectors

(n×1-matrices), and we say that Hn is the state space of

the quantum system. The mathematical description of
an n-level quantum system is based on n-dimensional
Hilbert space in the following way: an orthonormal ba-
sis {|x1〉, . . . , |xn〉} is fixed as a computational basis,
and a general state of the system is presented as a su-
perposition of computational states

α1|x1〉+ · · ·+αn |xn〉 , (59.3)

so that |α1|2 +|α2|2 +· · ·+ |αn |2 = 1. In other words,
a general state of an n-level system can be represented
as unit-length vectors in Hn . Basically any basis for
Hn could be chosen for representation (59.3), but some
bases may preferred because of the physical implemen-
tation. Hence the term computational basis should not
be understood as any mathematical definition, but as
a chosen reference basis. States of a computational basis
are also called basis states and complex coefficients αi
amplitudes.

An observable of quantum system Hn is a collection
of mutually orthogonal subspaces {V1, . . . , Vk} so that
Hk = V1 ⊕· · ·⊕ Vk. The intuitive meaning of the notion
is that each subspace Vi refers to a physical property the
system can have. For example, the computational basis
itself induces an observable {L(x1), . . . , L(xn)}, where
L(xi ) stands for the subspace generated by xi .

The minimal interpretation of quantum physics is
an axiom connecting the mathematical structure to the
real world. For this representation, it is sufficient to
introduce the minimal interpretation in the following
way: let {V1, . . . , Vk} be an observable and x = α1x1 +
· · ·+αkxk a presentation of state x so that xi ∈ Vi and
‖xi‖ = 1 for each i. Then the probability that quantum
system in state x is seen to have property Vi is

P(i) = |αi |2 . (59.4)

It may be worth mentioning here that usually an extra
element is associated to an observable: a real number λi
to each subspace Vi . Number λi is the observable value,
and equation (59.4) should read as

P(λi ) = |αi |2 ,

meaning that the probability that the measured value of
the observable is λi equals |αi |2, However, when just
studying quantum computation, it is not usually neces-
sary to address explicit values λi ∈ R, but it is enough
to identify λi with its index i.

According to the projection postulate, the quantum
system collapses to the observed state, and the super-
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position is irreversibly lost. That is, if property i was
observed, then the state immediately after the observa-
tion is xi . The projection postulate is among the most
problematic features in quantum mechanics, but this
article cannot be extended to treat that specifically.

Example 59.1: A two-level quantum system is re-
ferred as to a quantum bit, or qubit for short. We
fix an orthonormal computational basis |0〉 = (1, 0)T,
|1〉 = (0, 1)T for H2 (T stands for transposition), and
a general state of a quantum bit is a vector

α|0〉+β|1〉 , (59.5)

where |α|2 +|β|2 = 1 (meaning that the length of (59.5)
is 1). Let C = {L(|0〉), L(|1〉)} be an observable con-
sisting of two subspaces generated by |0〉 and |1〉,
respectively, and C′ = {L(|0′〉), L(|1′〉)} another observ-
able, where |0′〉 = 1√

2
(|0〉+ |1〉) and |1′〉 = 1√

2
(|0〉−

|1〉). If a quantum bit is in state (59.5), and observable C
is measured, then 0 is seen with probability |α|2 and 1
with probability |β|2.

Hence a qubit state (59.5) may look like a gener-
alized probability distribution, but that is not the case.
It is perfectly possible to measure also observable C′ in
state (59.5), and the outcome may be totally different.
In fact,

1√
2
|0〉+ 1√

2
|1〉 = 1 · |0′〉+0 · |1′〉 , (59.6)

so measuring observable C results in 0 with probability
1
2 and 1 with probability 1

2 . On the other hand, measur-
ing observable C′ results in 0′ with probability 1 and 1′
with probability 0. This is to emphasize that the state
of a quantum system cannot be treated as a probabil-
ity distribution. In fact, for every state of a finite-level
(excluding the trivial case n = 1) quantum system there
is a nontrivial (i. e., with more than 1 potential values)
observable so that a single value will be observed with
probability 1.

Based on the above definitions, we can now clarify
the role of the computational basis a little bit. In fact,
observing state (59.3) would generally require spec-
ification of the observable to be measured, but it is
traditional to use the terminology observing a state, if
the observable is induced by the computational basis.

59.3.2 Compound Systems

The states of a quantum system consisting of two
distinguishable subsystems can be presented by using

a tensor product construction. For the purposes of this
article, it is not necessary to define the notion of ten-
sor product exactly, it is enough just to know that the
tensor product is (essentially) associative and distribu-
tive, but a non-commutative product of vectors obeying
the obvious scalar rules. For more details, see [59.17]
or [59.19]. It is also worth emphasizing that the coun-
terpart of the tensor product in concrete objects such as
matrices is the Kronecker product.

Now if Hm and Hn are the state spaces of m-
and n-level quantum systems with computational bases
{|x1〉, . . . , |xm〉} and {|y1〉, . . . , |yn〉}, then the state
space of the compound system is mn-dimensional if
tensor product Hm ⊗ Hn , whose computational basis
can be chosen as

{|xi〉⊗ |y j〉 | (i, j) ∈ {1, . . . , m}× {1, . . . , n}} .

It is common to use shorthand notations |xi〉⊗
|y j〉 = |xi〉|y j〉 = |xi , y j〉, (even |xi y j〉 is used if there
is no danger of confusion) so the state of the compound
system can be represented as

m∑

i=1

n∑

j=1

αij |xi , y j〉 ,

where

m∑

i=1

n∑

j=1

|αij |2 = 1 . (59.7)

It is clear that the observables of subsystems give raise
to observables of the compound system.

State (59.7) is called decomposable if it can be pre-
sented as a product state

(
m∑

i=1

αi |xi〉
)⎛

⎝
n∑

j=1

β j |y j〉
⎞

⎠ ,

otherwise, the state is called entangled.

Example 59.2: A two-qubit state

1

2
|00〉+ 1

2
|01〉+ 1

2
|10〉+ 1

2
|11〉

is decomposable, as

1

2
|00〉+ 1

2
|01〉+ 1

2
|10〉+ 1

2
|11〉

= 1√
2

(|0〉+ |1〉) 1√
2

(|0〉+ |1〉) .
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On the other hand, a two-qubit state

1√
2
|00〉+ 1√

2
|11〉 (59.8)

is entangled, since assumption

1√
2
|00〉+ 1√

2
|11〉

= (α0|0〉+α1|1〉)(β0|0〉+β1|1〉)
= α0β0|00〉+α0β1|01〉+α1β0|10〉+α1β1|11〉

leads into equations α0β0 = α1β1 = 1√
2

and α0β1 =
α1β0 = 0, which are clearly impossible.

Entangled state (59.8) is historically and philosophi-
cally of great interest. Indeed, Bohm used [59.21] a state
analogous to it to reformulate an apparent paradox of
quantum mechanics introduced by Einstein, Podolsky,
and Rosen [59.22]. That formulation eventually led Bell
to present a resolution of the paradox [59.23] (for an
exposition, see [59.20]). State (59.8) is called an EPR
state, and a pair of qubits in state (59.8) an EPR pair for
the aforementioned reasons.

The minimal interpretation implies directly that if
the state (59.8) is observed (i. e., observable generated
by the computational basis is measured), then we will
see “00” with probability of 1

2 , and “11” with prob-
ability of 1

2 , too. Hence the quantum bits in an EPR
state (59.8) are perfectly correlated; when observed,
they always have the same value, which, however, can
be 0 or 1, either with probability 1

2 .
It has been experimentally demonstrated that the

correlation of the EPR pairs as described above is de-
tectable even if the two physical systems (quantum bits)
are spatially separated by 144 km [59.24]. However, the
correlation over distance should not be surprising or
anything specific to quantum physics; it is left to the
reader to describe a non-quantum bipartite system with
distant correlations analogous to the EPR state.

Whereas the correlation itself is not specific to
quantum mechanics, the violation of Bell inequalities
is [59.20], for instance. Violation of Bell inequalities
has been experimentally detected over a physical dis-
tance of 144 km [59.24].

The mathematical description of compound systems
with more than 2 subsystems is again based on tensor
product construction. In this article, we will not focus
on details, but will merely present an example.

Example 59.3: A system of N quantum bits has its de-
scription in a state space H2 ⊗· · ·⊗ H2, a Hilbert space

isomorphic to H2N . A general state of H2N can be de-
scribed as

∑

x∈{0,1}N

αx|x〉 ,

where
∑

x∈{0,1}N

|αx|2 = 1 .

State
1√
2

(|0〉+ |1〉) · · · 1√
2

(|0〉+ |1〉)

= 1√
2N

∑

x∈{0,1}N

|x〉 (59.9)

presents a uniformly distributed superposition over all
basis states |x〉. It is worth noticing that presenta-
tion (59.9) shows that the state is clearly decomposable.

59.3.3 Quantum Operations

It was explained in the previous sections, in a very sim-
plified way, how to present quantum information in pure
states. It is, however, clear that the stagnant pictures of
quantum states are not sufficient for using the theory. In-
stead, it is necessary to describe how quantum systems
change in time. For most quantum computing mod-
els, and also for this article, it is sufficient to describe
closed quantum system transformations, which will be
mathematically formalized as follows: a (closed) quan-
tum system state transformation is a unitary mapping
Hn → Hn . A linear mapping U is unitary, if U∗U =
UU∗ = I (identity mapping), where U∗ is the complex
conjugate of the transpose of U . A closed quantum sys-
tem state transformation is also called a quantum gate,
see [59.25] for a study on quantum gates.

Example 59.4:

H = 1√
2

(
1 1

1 −1

)

.

If is straightforward to verify that H∗ = H , and that
H∗ H = HH∗ = HH = I , meaning that H is unitary.
H is hence a unary quantum gate, i. e., a gate on
one qubit. The action of H on computational basis
{|0〉 = (1, 0)T, |1〉 = (0, 1)T} is given by

H|0〉 = 1√
2

(|0〉+ |1〉) and H|1〉 = 1√
2

(|0〉− |1〉).
Gate H is called a Hadamard transform or a Walsh
transform.
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Example 59.5: Mapping

C =

⎛

⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞

⎟
⎟
⎟
⎠

can be easily verified to be unitary. C is a binary gate
called controlled not, and its name is justified by com-
puting its action. First, matrix presentations of |00〉,
|01〉, |10〉, |11〉 are obtained by using the Kronecker
product

|00〉 = |0〉⊗ |0〉 =
(

1

0

)

⊗
(

1

0

)

=

⎛

⎜
⎜
⎜
⎝

1

0

0

0

⎞

⎟
⎟
⎟
⎠

,

|01〉 =
(

1

0

)

⊗
(

0

1

)

=

⎛

⎜
⎜
⎜
⎝

0

1

0

0

⎞

⎟
⎟
⎟
⎠

,

|10〉 = |1〉⊗ |0〉 =
(

0

1

)

⊗
(

1

0

)

=

⎛

⎜
⎜
⎜
⎝

0

0

1

0

⎞

⎟
⎟
⎟
⎠

,

and

|11〉 =
(

0

1

)

⊗
(

0

1

)

=

⎛

⎜
⎜
⎜
⎝

0

0

0

1

⎞

⎟
⎟
⎟
⎠

.

The action of C is then easy to compute: C|00〉 = |00〉,
C|01〉 = |01〉, C|10〉 = |11〉, and C|11〉 = |10〉, meaning
that the second qubit is flipped exactly when the first,
the control bit, equals 1.

It is possible to establish quantum computing on
quantum gates only, and that would lead into quantum
circuit formalism [59.17, 18]. On the other hand, there
are also other possible ways to establish the formalism
of quantum computing. In fact, for any classical model
for computing, there is a canonical way of transforming
it into a quantum version. For example, for the defini-
tions of quantum finite automata, see [59.26, 27] and
for quantum Turing machines, see [59.17] or [59.19].
It must, however, be emphasized that unitary mappings
are invertible by definition, and therefore all quantum
computing models based on them are reversible. For
quantum Turing machines the reversibility does not

bring any disadvantage, as it is well known that all com-
putation can be made reversible by introducing extra
space [59.28]. On the other hand, many unitary models
of finite automata are strictly weaker than the tradi-
tional one [59.26, 27], just because the transformation
into a reversible machine would require extra space. The
unitarity can be relaxed by using open system trans-
forms, but representing them would require too much
space in this article. See [59.29] for an automaton model
with open time evolution.

Let us now revisit quantum parallelism and add
more details. If f : {0, 1}N → {0, 1} is computable
in polynomial time, there is also a polynomial-size
quantum circuit computing f . In fact, an algorithm
computing f can be efficiently turned into a quantum
circuit that computes f [59.17]. Usually it is necessary
to add some auxiliary bits to bypass the reversibility
requirement, but those extra bits are not usually writ-
ten down explicitly. This implies that it is possible to
construct a unitary mapping U f by using a polynomial
number of simple quantum gates (selected from a finite
set) with the following action

U f |x〉|0〉 = |x〉| f (x〉) ,

where x is a sequence (register) of N quantum bits. Ap-
plying the Hadamard transform to N first quantum bits
in state

|0〉|0〉
will result into state

1√
2N

∑

x∈{0,1}N

|x〉|0〉 ,

(59.9), and a further application of U f will lead into
state

1√
2N

∑

x∈{0,1}N

|x〉| f (x〉) , (59.10)

an equally balanced superposition over all potential
pairs (x, f (x)). This is the state (59.2) of a previous
example. From the computational complexity point of
view, it is important to realize that the state (59.10)
can be generated by N Hadamard gate actions plus the
number of quantum gates required to implement U f
(polynomial in N). This is exactly what quantum par-
allelism means: by a polynomial number of actions it is
possible to generate state (59.10) extending over expo-
nentially many basis states.

Unfortunately (59.10) is only a mathematical de-
scription of a state of a physical system. In particular,
the exponentially many values do not exist physically
observable to us, but observing (59.10) will give only
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a single pair (x, f (x)), each with probability 1
2N , and

observation will make (59.10) to collapse into state
|x〉| f (x〉).

Hence it is not possible to use quantum parallelism,
at least not in this straightforward way, to resolve effi-
ciently NP-complete problems.

59.4 Quantum Algorithms

The last example of the previous section clearly justifies
the following question: Why should we regard quantum
parallelism any better than a simple probability distri-
bution? In fact, we could obtain equally good results
just by selecting N random bits to form a bit string x,
then to compute f (x). If necessary, we could even in-
vent a notation for probability distribution. Let us agree
that notation

∑

x∈{0,1}N

1

2N
[x, 0]

stands for a probability distribution over N + 1 bit
strings x, 0, where each x ∈ {0, 1}N occurs with a prob-
ability 1

2N . Then, computing f results into

∑

x∈{0,1}N

1

2N
[x, f (x)] ,

and any pair (x, f (x)) is seen with a probability of 1
2N ,

as in the case of (59.10).
The answer to that question is that the straightfor-

ward use of (59.10) is obviously not the only possible
strategy. It should be noted that the amplitudes can be
negative as well, and consequently it may be possible to
design quantum computing in such a way that the de-
sirable basis states would gain more visibility because
their amplitudes would sum up, and nondesirable ones
could cancel each other. Should that happen, we would
call the former constructive interference and the latter
destructive interference.

Example 59.6: State |0〉 turns into 1√
2

(|0〉+ |1〉), if af-
fected by the Hadamard transform. If the affected state
were observed, one would see 0 and 1, both with prob-
ability 1

2 . On the other hand, if the state is not observed,
but another Hadamard transform is applied, we get the
following

H
1√
2

(|0〉+ |1〉)

= 1√
2

(H|0〉+ H|1〉)

= 1√
2

(
1√
2

(|0〉+ |1〉)
)

+ 1√
2

(
1√
2

(|0〉− |1〉)
)

=
(

1

2
+ 1

2

)

|0〉+
(

1

2
− 1

2

)

|1〉 = |0〉 ,

which demonstrates in detail how the amplitudes 1
2 and

1
2 sum up to 1, and 1

2 and − 1
2 cancel each other.

A parallel to classical information processing could
be as follows: the Hadamard transform may be inter-
preted as a fair coin toss. Beginning either from |0〉 or
|1〉, one reaches state 1/

√
2(|0〉± |1〉), where 0 and 1

are both seen with probability 1
2 (single coin toss). If

the coin is tossed twice in the classical settings, then
again 0 and 1 are seen both with 50% probability. But
in this example, the second coin toss returns the state
into |0〉, and hence 0 is seen with 100% probability.
This is a feature that is clearly impossible with classical
information.

Powerful quantum algorithms, such as Shor’s fac-
toring algorithm are indeed all algorithms utilizing
quantum interference in a clever manner. Unfortunately,
the interference behavior of a quantum algorithm is
quite difficult to control in practice, and consequently
only a few families of quantum algorithms are known
to date.

The known quantum algorithm families enclosing
almost all known quantum algorithms are:

1. Quantum algorithms based on Fourier transforms
2. Amplitude amplification methods
3. Quantum random walks
4. Adiabatic quantum algorithms.

59.4.1 Quantum Algorithms Based
on Fourier Transforms

This class of quantum algorithms usually provide
an apparent exponential speedup over their classical
counterparts. The algorithms in this class attempt to
construct a superposition

∑

x

αx|x〉
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whose amplitudes αx form a periodic or almost peri-
odic sequence. In many cases, it is then possible to
perform the discrete Fourier transform on amplitudes
(exponentially many) with only a polynomial num-
ber of operations on quantum bits (see, e.g., [59.17]).
This structure takes care of interfering quantum com-
putational paths by using centuries old knowledge on
discrete Fourier transforms.

The approach has been very successful. The
algorithm by Deutsch–Jozsa [59.13], Simon’s algo-
rithm [59.14], and Shor’s algorithm [59.4] are all
quantum algorithms that control their amplitudes by
a structure given by discrete Fourier transforms. The
most prominent examples of exponential speed-ups are
provided by Fourier transform-based quantum algo-
rithms. For details, see [59.17] or [59.19].

59.4.2 Amplitude Amplification Methods

The amplitude amplification method was presented by
Grover in 1996 [59.30], and it has been extended
thereafter. The basic form of Grover’s method in-
volves a function f : {0, 1}N → {0, 1} assumed to be
computable in polynomial time, and is applied to a su-
perposition

∑

x∈{0,1}N

αx|x〉 .

The purpose is to use quantum interference to increase
the joint squared absolute values of those amplitudes αx,
for which f (x) = 1, to make such values x more likely
to be observed. Grover presented an iterative procedure
for that purpose. An iteration step typically involves one
evaluation of f .

Among all quantum algorithms, the amplitude am-
plification methods deserve the first right to be called
quantum-most methods, as all the other ones have an
analog or a counterpart in classical computing. Grover’s
method does not have any; it is a method purely origi-
nating from quantum computing purposes.

The most remarkable consequence of Grover’s
method is that a general NP-complete problem can be
solved (with a high probability) by quantum comput-
ers using only O(

√
N) evaluations of function f . When

comparing this to O(N) evaluations in the classical
case, this is an essential improvement, but not yet not
an exponential one:

√
2N = (

√
2)N is again an exponen-

tial function, although with a smaller base. For details,
see [59.17] or [59.19].

59.4.3 Quantum Random Walks

Quantum random walks is a straightforward analog of
classical random walks. It is known that quantum ran-
dom walks sometimes have exponentially faster hitting
times than their classical counterparts [59.31], and the
technique can be attempted for a great variety of compu-
tational problems. This article is too narrow to address
quantum random walks in detail, but for an exposition,
see [59.32].

59.4.4 Adiabatic Quantum Algorithms

Adiabatic quantum algorithms should not be called
algorithms, but just a technique for designing quan-
tum algorithms. It, or at least its generality can be
loosely compared to classical evolutionary algorithms.
Adiabatic quantum computing can be adapted to any
computational problem.

Adiabatic quantum computing is based on the adi-
abatic theorem, which says that if a Hamiltonian
operator H0 is transformed into another Hamiltonian
H1 slowly enough, then the ground state |x0〉 of H0
is transformed into the ground state |x1〉 of H1, as
well. The terminology is not explained here, but the
reader is advised to consult [59.33]. Instead of detailed
definitions and descriptions, we just mention that the
adiabatic computation has been shown to be equally
as powerful as quantum computing based on quantum
gates [59.33]. The technique of adiabatic computing just
provides an advantage that the algorithm design can be
circumvented in some cases.

59.4.5 Restrictions of Quantum Computing

Theoretical computer science seems to suffer from pow-
erful absolute limitations of computational models. It
has been previously mentioned that question P �= NP
is waiting for resolution, but there are many analogous
unsolved problems. From a quantum computing point
of view, the most important such problem is probably:
Is polynomial-time quantum computing more power-
ful than its classical counterpart, at least for some
instances? Very likely this problem is at least as diffi-
cult as the P versus NP problem, and in the sight of the
present understanding, there is no apparent route how to
even approach these problems.

However, there are easy ways to obtain relativized
lower bounds for computational complexity. For rela-
tivization in computing, we refer to [59.34], but the
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basic results are easy to state as follows: a general
NP-complete problem described in an earlier section is
relativized in the sense that no structure of function f
is available. I should apologize to complexity theory
experts for the simplifications in this explanation (but
on second thought, I will not do that), but the intuitive
idea in a relativized lower bound is the following: if
nothing is known of the structure of function f (but
the values are chosen arbitrarily), then to decide about
the existence of x ∈ {0, 1}N so that f (x) = 1 will inher-
ently take 2N evaluations of f , since for any process
asking less values, there is a possibility to introduce f
assigning a wrong value to the non-queried string. This
certainly gives reasons to believe that P �= NP, but does
not constitute any proof of that, since no polynomial-
time computable function exists without a structure.

Relative lower bounds are known for quantum com-
puting, too. It is, for example, possible to say, that for
a general NP-complete problem, quantum computing
offers no polynomial time solution. Instead, at least√

2N computational steps are needed for a solution
(this is to say that Grover’s method is asymptotically
optimal). There are various techniques for obtaining rel-
ativized lower bounds for quantum computing, and as
the most notable ones we can mention the polynomial
technique [59.35] and the adversary technique [59.36].

59.4.6 Physical Realization
of Quantum Algorithms

As of 2013, quantum algorithms have been under de-
velopment almost for three decades, and many things
are known about them. In a previous section, we listed

four general families of quantum algorithms and men-
tioned some techniques for proving lower bounds for
quantum computing. Even though the development may
seem modest in some sense, there are enough interesting
quantum algorithms to justify the quantum computer
development project. Unfortunately, to build a quan-
tum computer has turned out to be a very challenging
task.

In principle, any quantum physical two-state sys-
tem could serve as a quantum bit. Unfortunately such
a system is always very vulnerable to external dis-
turbances, and consequently in many realizations, the
lifetime of a qubit is only a tiny fraction of a sec-
ond. The following physical realizations (among others)
have been proposed. Cold trapped ions [59.37], nu-
clear spin [59.38], and photon polarization [59.39]
are all potential implementations of quantum bits, but
the most advanced quantum computer (with respect
to the number of quantum bits) in modern technol-
ogy allows us to hold only 12 quantum bits [59.40].
Quantum factoring algorithm for N-bit integers will
require approximately 2N qubits [59.41]. This im-
plies that the current quantum computers cannot handle
enough bits to perform universal computation to truly
challenge RSA or other public-key cryptosystems used
currently.

Hence we have to conclude that with modern tech-
nology, we cannot yet realize very much quantum
computing. The most important lesson the 30-year last-
ing research on quantum computing provides us is,
therefore, new insights into the theory of computing
and relations between the theory of computation and
physical world.

59.5 Biological Applications of Quantum Computing

Even though large-scale quantum computers do not
exist yet, we already know various potential appli-
cations. A fast integer factoring algorithm would be
very influential, even though its influences may not be
called entirely positive. Quantum algorithms providing
an exponential speed-up over known classical ones are
almost all designed by using quantum Fourier trans-
form, and hence they are applicable only for problems
having a suitable periodic structure. Such structures do
not typically exist in biological problems, and therefore
they are not very likely to have an exponential speed-up
on biological problems.

On the other hand, a quantum computer would pro-
vide a quadratic speed-up on all search problems, and
there are various potential applications. For instance,
protein folding problems are typical search problems
that could benefit from a quadratic speed-up, but as this
would apply for any search problem, we are not going
to list especially biological search problems.

Instead, we will conclude this article by pointing out
a specific problem that quantum computers are good at
and which may have consequences in biology, as well.
This specific problem also encloses the circle: quantum
computers are good at simulating quantum physics, just
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as Feynman explained in his article [59.10]. In general,
simulating a quantum mechanical system of N particles
with classical computers seems to lead into an exponen-
tial slowdown in the simulation efficiency, and Feynman
proposed that a quantum computer could be used to
avoid the slowdown.

As quantum mechanics governs microsystems, and
large biomolecules are built of smaller particles, one
could expect that quantum mechanics to have an

important explanatory value on biomolecular pro-
cesses [59.42]. Perhaps it is so, but there is not much
existing research on this topic. One reason for this is that
structures like DNA are so complex from the physical
perspective that even the modeling becomes extremely
hard, to say nothing of the explicit solutions. Another
reason is that the help provided by computers will not
lead very far – as long as we do not have quantum
computers.
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