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Brain-like Inf47. Brain-like Information Processing
for Spatio-Temporal Pattern Recognition

Nikola Kasabov

Information processes in the brain, such as gene
and protein expression, learning, memory, per-
ception, cognition, consciousness are all spatio-
and/or spectro temporal. Modelling such processes
would require sophisticated information science
methods and the best ones could be the brain-
inspired ones, that use the same brain information
processing principles. Spatio and spectro-temporal
data (SSTD) are also the most common types of
data collected in many domain areas, includ-
ing engineering, bioinformatics, neuroinformatics,
ecology, environment, medicine, economics, etc.
However, there is lack of methods for the efficient
analysis of such data and for spatio-temporal pat-
tern recognition (STPR). The brain functions as a
spatio-temporal information processing machine
and deals extremely well with spatio-temporal
data. Its organization and functions have been the
inspiration for the development of new methods
for SSTD analysis and STPR. Brain-inspired spik-
ing neural networks (SNN) are considered the third
generation of neural networks and are a promising
paradigm for the creation of new intelligent ICT for
SSTD. This new generation of computational mod-
els and systems is potentially capable of modeling
complex information processes due to the ability
to represent and integrate different information
dimensions, such as time, space, frequency, and
phase, and to deal with large volumes of data
in an adaptive and self-organizing manner. This
chapter reviews methods and systems of SNN for
SSTD analysis and STPR, including single neuronal
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models, evolving spiking neural networks (eSNN),
and computational neurogenetic models (CNGM).
Software and hardware implementations and
some pilot applications for audio-visual pattern
recognition, EEG data-analysis, cognitive robotic
systems, BCI, neurodegenerative diseases, and
others are discussed.

47.1 Spatio and Spectro-Temporal Data Modeling
and Pattern Recognition

Most problems in nature require spatio or/and spectro-
temporal data (SSTD) that include measuring spatial
or/and spectral variables over time. SSTD is described

by a triplet (X, Y, F), where X is a set of independent
variables measured over consecutive discrete time mo-
ments t, Y is the set of dependent output variables, and
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814 Part I Information Modeling of Perception, Sensation and Cognition

a) b)
Fig. 47.1 (a) EEG SSTD recorded
with the use of emotive EEG equip-
ment (after [47.1]). (b) fMRI data
(after [47.2])

F is the association function between whole segments
(chunks) of the input data, each sampled in a time win-
dow dt, and the output variables belonging to Y

F : X(dt) ≥ Y , (47.1)

where

X(t) = (x1(t), x2(t), . . . , xn(t)), t = 1, 2, . . . .

It is important for a computational model to capture
and learn whole spatio and spectro-temporal patterns
from data streams in order to predict most accurately fu-
ture events for new input data. Examples of problems
involving SSTD are: brain cognitive state evaluation
based on spatially distributed EEG electrodes [47.3–8]
(Fig. 47.1a); fMRI data [47.9] (Fig. 47.1b); moving ob-
ject recognition from video data [47.10–12] (Fig. 47.15);
spoken word recognition based on spectro-temporal au-
dio data [47.13,14]; evaluating risk of disease, e.g., heart
attack [47.15]; evaluating response of a disease to treat-
ment based on clinical and environmental variables, e.g.,
stroke [47.16], prognosis of outcome of cancer [47.17],
modeling the progression of a neurodegenerative dis-
ease, such as Alzheimer’s disease [47.18,19], and mod-
eling and prognosis of the establishment of invasive
species in ecology [47.20, 21]. The prediction of events
in geology, astronomy, economics and many other areas
also depends on accurate SSTD modeling.

The commonly used models for dealing with tem-
poral information based on hidden Markov models
(HMM) [47.22] and traditional artificial neural net-
works (ANN) [47.23] have limited capacity to achieve
the integration of complex and long temporal spa-
tial/spectral components because they usually either
ignore the temporal dimension or over-simplify its
representation. A new trend in machine learning is
currently emerging and is known as deep machine
learning [47.24, 24–27]. Most of the proposed models
still learn SSTD by entering single time point frames
rather than learning whole SSTD patterns. They are

also limited in addressing adequately the interaction be-
tween temporal and spatial components in SSTD.

The human brain has the amazing capacity to learn
and recall patterns from SSTD at different time scales,
ranging from milliseconds to years and possibly to mil-
lions of years (e.g., genetic information, accumulated
through evolution). Thus the brain is the ultimate in-
spiration for the development of new machine learning
techniques for SSTD modeling. Indeed, brain-inspired
spiking neural networks (SNN) [47.28–30] have the po-
tential to learn SSTD by using trains of spikes (binary
temporal events) transmitted among spatially located
synapses and neurons. Both spatial and temporal in-
formation can be encoded in an SNN as locations
of synapses and neurons and the time of their spik-
ing activity, respectively. Spiking neurons send spikes
via connections that have a complex dynamic be-
havior, collectively forming an SSTD memory. Some
SNN employ specific learning rules such as spike-time-
dependent-plasticity (STDP) [47.31] or spike driven
synaptic plasticity (SDSP) [47.32]. According to the
STDP a connection weight between two neurons in-
creases when the pre-synaptic neuron spikes before the
post-synaptic one. Otherwise, the weight decreases.

Models of single neurons as well as computational
SNN models, along with their respective applications,
have been already developed [47.29, 30, 33–36], in-
cluding evolving connectionist systems and evolving
spiking neural networks (eSNN), in particular where
an SNN learns data incrementally by one-pass prop-
agation of the data via creating and merging spiking
neurons [47.37, 38]. In [47.38] an eSNN is designed to
capture features and to aggregate them into audio and
visual perceptions for the purpose of person authentica-
tion. It is based on four levels of feed-forward connected
layers of spiking neuronal maps, similarly to the way
the cortex works when learning and recognizing images
or complex input stimuli [47.39]. It is an SNN realiza-
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Brain-like Information Processing for Spatio-Temporal Data Spatio and Spectro-Temporal Data Modeling 815

tion of some computational models of vision, such as
the five-level HMAX model inspired by the information
processes in the cortex [47.39].

However, these models are designed for (static) ob-
ject recognition (e.g., a picture of a cat), but not
for moving object recognition (e.g., a cat jumping to
catch a mouse). If these models are to be used for
SSTD, they will still process SSTD as a sequence of
static feature vectors extracted in single time frames.
Although an eSNN accumulates incoming information
carried in each consecutive frame from a pronounced
word or a video, through the increase of the membrane
potential of output spike neurons, they do not learn com-
plex spatio/spectro-temporal associations from the data.
Most of these models are deterministic and do not allow
to model complex stochastic SSTD.

In [47.40, 41] a computational neurogenetic model
(CNGM) of a single neuron and SNN are presented
that utilize information about how some proteins and
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Fig. 47.2 A single biological neuron with the associated synapses is a complex information processing machine (af-
ter Wikipedia)

genes affect the spiking activities of a neuron, such
as fast excitation, fast inhibition, slow excitation, and
slow inhibition. An important part of a CNGM is a dy-
namic gene regulatory network (GRN) model of genes/
proteins and their interaction over time that affect the
spiking activity of the neurons in the SNN. Depending
on the task, the genes in a GRN can represent either bi-
ological genes and proteins (for biological applications)
or some system parameters including probability pa-
rameters (for engineering applications). Recently some
new techniques have been developed that allow the
creation of new types of computational models, e.g.,
probabilistic spiking neuron models [47.42, 43], prob-
abilistic optimization of features and parameters of
eSNN [47.21, 44], reservoir computing [47.36, 45], and
personalized modeling frameworks [47.46, 47]. This
chapter reviews methods and systems for SSTD that
utilize the above and some other contemporary SNN
techniques along with their applications.
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816 Part I Information Modeling of Perception, Sensation and Cognition

47.2 Single Spiking Neuron Models

47.2.1 A Biological Neuron

A single biological neuron and the associated synapses
is a complex information processing machine, that in-
volves short-term information processing, long-term in-
formation storage, and evolutionary information stored
as genes in the nucleus of the neuron (Fig. 47.2).

47.2.2 Single Neuron Models

Some of the-state-of-the-art models of a spiking
neuron include: early models by Hodgkin and Hux-
ley [47.48]; more recent models by Maas, Gerstner,
Kistler, Izhikevich and others, e.g., spike response mod-
els (SRM) [47.29, 30]; the integrate-and-fire model
(IFM) [47.29,30]; Izhikevich models [47.49–52], adap-
tive IFM, and others.

The most popular model for both biological model-
ing and engineering applications is the IFM. The IFM
has been realized on software-hardware platforms for
the exploration of patterns of activities in large scale
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Fig. 47.3 (a) Example of an LIFM. (b) Input spikes, output
spikes, and PSP dynamics of an LIFM

SNN under different conditions and for different appli-
cations. Several large scale architectures of SNN using
IFM have been developed for modeling brain cognitive
functions and engineering applications. Figure 47.3a,b
illustrates the structure and the functionality of the leaky
IFM (LIFM), respectively. The neuronal post-synaptic
potential (PSP), also called membrane potential u(t),
increases with every input spike at a time t multi-
plied to the synaptic efficacy (strength) until it reaches
a threshold. After that, an output spike is emitted and the
membrane potential is reset to an initial state (e.g., 0).
Between spikes, the membrane potential leaks, which is
defined by a parameter.

An important part of a model of a neuron is the
model of the synapses. Most neuronal models assume
scalar synaptic efficacy parameters that are subject to
learning, either on-line or off-line (batch mode). There
are models of dynamics synapses (e.g., [47.43, 53, 54]),
where the synaptic efficacy depends on synaptic param-
eters that change over time, representing both long-term
memory (the final efficacy after learning) and short-
term memory – the changes of the synaptic efficacy
over a shorter time period not only during learning, but
during recall as well.

One generalization of LIFM and the dynamic synap-
tic models is the probabilistic model of a neuron [47.42]
as shown in Fig. 47.4a, which is also a biologically
plausible model [47.30, 43, 55]. The state of a spiking
neuron ni is described by the sum PSPi (t) of the inputs
received from all m synapses. When PSPi (t) reaches
a firing threshold ϑi (t), neuron ni fires, i. e., it emits
a spike. Connection weights (w j,i , j = 1, 2, . . . , m) as-
sociated with the synapses are determined during the
learning phase using a learning rule. In addition to
the connection weights w j,i (t), the probabilistic spik-
ing neuron model has the following three probabilistic
parameters:

1. A probability pc j,i (t) that a spike emitted by neuron
n j will reach neuron ni at a time moment t through
the connection between n j and ni . If pc j,i (t) = 0, no
connection and no spike propagation exist between
neurons n j and ni . If pc j,i (t) = 1 the probability for
propagation of spikes is 100%.

2. A probability ps j,i (t) for the synapse s j,i to con-
tribute to the PSPi (t) after it has received a spike
from neuron n j .

3. A probability pi (t) for the neuron ni to emit an
output spike at time t once the total PSPi (t) has
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Fig. 47.4 (a) A simple probabilistic
spiking neuron model (after [47.42]).
(b) Different types of noisy thresholds
have different effects on the output
spikes (after [47.7, 56])

reached a value above the PSP threshold (a noisy
threshold).

The total PSPi (t) of the probabilistic spiking
neuron ni is now calculated using the following for-
mula [47.42]

PSPi (t) =
∑

p=t0,...,t

⎛

⎝
∑

j=1,...,m

e j f1(pc j,i (t − p))

f2(ps j,i (t − p))w j,i (t)+η(t − t0)

)
,

(47.2)

where e j is 1, if a spike has been emitted from neuron
n j , and 0 otherwise; f1(pc j,i (t)) is 1 with a proba-
bility pc ji (t), and 0 otherwise; f2(ps j,i (t)) is 1 with
a probability ps j,i (t), and 0 otherwise; t0 is the time
of the last spike emitted by ni ; and η(t − t0) is an ad-
ditional term representing decay in PSPi . As a special
case, when all or some of the probability parameters
are fixed to “1”, the above probabilistic model will
be simplified and will resemble the well-known IFM.
A similar formula will be used when an LIFM is used
as a fundamental model, where a time decay parameter
is introduced.

It has been demonstrated that SNN that utilize the
probabilistic neuronal model can learn better SSTD than
traditional SNN with simple IFM, especially in a nosy
environment [47.56,57]. The effect of each of the above
three probabilistic parameters on the ability of a SNN
to process noisy and stochastic information was studied
in [47.56]. Figure 47.4b presents the effect of differ-
ent types of nosy thresholds on the neuronal spiking
activity.

47.2.3 A Neurogenetic Model of a Neuron

A neurogenetic model of a neuron was proposed
in [47.41] and studied in [47.40]. It utilizes informa-
tion about how some proteins and genes affect the
spiking activities of a neuron such as fast excitation,
fast inhibition, slow excitation, and slow inhibition. Ta-
ble 47.1 shows some of the proteins in a neuron and
their relation to different spiking activities. For a real
case application, apart from the GABAB receptor some
other metabotropic and other receptors could be also
included. This information is used to calculate the con-
tribution of each of the different synapses, connected to
a neuron ni , to its post-synaptic potential PSPi (t)

ε
synapse
ij (s) = Asynapse

(
exp

(
− s

τ
synapse
decay

)

− exp

(
− s

τ
synapse
rise

))
,

(47.3)

where τ
synapse
decay/rise are time constants representing the rise

and fall of an individual synaptic PSP, A is PSP’s am-
plitude, ε

synapse
ij represents the type of activity of the

synapse between neuron j and neuron i that can be
measured and modeled separately for a fast excitation,
fast inhibition, slow excitation, and slow inhibition (it is
affected by different genes/proteins). External inputs
can also be added to model background noise, back-
ground oscillations or environmental information.

An important part of the model is a dynamic
gene/protein regulatory network (GRN) model of the
dynamic interactions between genes/proteins over time
that affect the spiking activity of the neuron. Although
biologically plausible, a GRN model is only a highly
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818 Part I Information Modeling of Perception, Sensation and Cognition

Table 47.1 Neuronal action potential parameters and related proteins and ion channels in the computational neurogenetic
model of a spiking neuron: AMPAR – (amino-methylisoxazole-propionic acid) AMPA receptor, NMDR – (N-methyl-
d-aspartate acid) NMDA receptor, GABAAR – (gamma-aminobutyric acid) GABAA receptor, GABABR – GABAB

receptor, SCN – sodium voltage-gated channel, KCN – kalium (potassium) voltage-gated channel, CLC – chloride
channel (after [47.40])

Different types of action potential of a spiking neuron used as parameters
for its computational model

Related neurotransmitters and ion channels

Fast excitation PSP AMPAR

Slow excitation PSP NMDAR

Fast inhibition PSP GABAAR

Slow inhibition PSP GABABR

Modulation of PSP mGluR

Firing threshold Ion channels SCN, KCN, CLC

simplified general model that does not necessarily take
into account the exact chemical and molecular interac-
tions. A GRN model is defined by:

1. A set of genes/proteins, G = (g1, g2, . . . , gk)
2. An initial state of the level of expression of the

genes/proteins G(t = 0)
3. An initial state of a connection matrix L =

(L11, . . . , Lkk), where each element Lij defines

the known level of interaction (if any) between
genes/proteins g j and gi

4. Activation functions fi for each gene/protein gi
from G. This function defines the gene/protein ex-
pression value at time (t + 1) depending on the
current values G(t), L(t) and some external infor-
mation E(t)

gi (t +1) = fi (G(t).L(t), E(t)) . (47.4)

47.3 Learning and Memory in a Spiking Neuron

47.3.1 General Classification

A learning process has an effect on the synaptic ef-
ficacy of the synapses connected to a spiking neuron
and on the information that is memorized. Memory can
be:

1. Short-term, represented as a changing PSP and tem-
porarily changing synaptic efficacy

2. Long-term, represented as a stable establishment of
the synaptic efficacy

3. Genetic (evolutionary), represented as a change
in the genetic code and the gene/protein expres-
sion level as a result of the above short-term
and long-term memory changes and evolutionary
processes.

Learning in SNN can be:

1. Unsupervised – there is no desired output signal
provided

2. Supervised – a desired output signal is provided
3. Semi-supervised.

Different tasks can be learned by a neuron, e.g.,

1. Classification
2. Input–output spike pattern association.

Several biologically plausible learning rules have
been introduced so far, depending on the type of the
information presentation:

1. Rate-order learning, which is based on the average
spiking activity of a neuron over time [47.58–60]

2. Temporal learning, that is based on precise spike
times [47.61–65]

3. Rank-order learning, that takes into account the
order of spikes across all synapses connected to
a neuron [47.65, 66].

Rate-order information representation is typical for
cognitive information processing [47.58]. Temporal
spike learning is observed in the auditory [47.13], the
visual [47.67], and motor control information process-
ing of the brain [47.61, 68]. Its use in neuroprosthetics
is essential, along with applications for a fast, real-
time recognition and control of sequence of related
processes [47.69]. Temporal coding accounts for the
precise time of spikes and has been utilized in several
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Brain-like Information Processing for Spatio-Temporal Data 47.3 Learning and Memory in a Spiking Neuron 819

learning rules, the most popular being spike-time de-
pendent plasticity (STDP) [47.31,70] and SDSP [47.32,
69]. Temporal coding of information in SNN makes use
of the exact time of spikes (e.g., in milliseconds). Every
spike matters and its time matters too.

47.3.2 The STDP Learning Rule

The STDP learning rule uses Hebbian plasticity [47.71]
in the form of long-term potentiation (LTP) and de-
pression (LTD) [47.31, 70]. Efficacy of synapses is
strengthened or weakened based on the timing of post-
synaptic action potential in relation to the pre-synaptic
spike (an example is given in Fig. 47.5a). If the dif-
ference in the spike time between the pre-synaptic and
post-synaptic neurons is negative (pre-synaptic neuron
spikes first) then the connection weight between the
two neurons increases, otherwise it decreases. Through
STDP, connected neurons learn consecutive tempo-
ral associations from data. Pre-synaptic activity that
precedes post-synaptic firing can induce long-term po-
tentiation (LTP); reversing this temporal order causes
long-term depression (LTD).

47.3.3 Spike Driven Synaptic Plasticity
(SDSP)

SDSP is an unsupervised learning method [47.32, 69],
a modification of the STDP that directs the change of
the synaptic plasticity Vw0 of a synapse w0 depending
on the time of spiking of the pre-synaptic neuron and
the post-synaptic neuron. Vw0 increases or decreases,
depending on the relative timing of the pre-synaptic and
post-synaptic spikes.

If a pre-synaptic spike arrives at the synaptic ter-
minal before a postsynaptic spike within a critical time
window, the synaptic efficacy is increased (potentia-
tion). If the post-synaptic spike is emitted just before
the pre-synaptic spike, synaptic efficacy is decreased
(depression). This change in synaptic efficacy can be
expressed as

ΔVw0 = Ipot(tpost)

C p
Δtspk if tpre < tpost , (47.5)

ΔVw0 = − Idep(tpost)

Cd
Δtspk if tpost < tpre , (47.6)

where Δtspk is the pre-synaptic and post-synaptic spike
time window.

The SDSP rule can be used to implement a super-
vised learning algorithm, when a teacher signal, which
copies the desired output spiking sequence, is entered
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Fig. 47.5 (a) An example of synaptic change in an STDP
learning neuron (after[47.31]). (b) Rank-order LIF neuron

along with the training spike pattern, but without any
change of the weights of the teacher input.

The SDSP model is implemented as an VLSI analog
chip [47.72]. The silicon synapses comprise bistabil-
ity circuits for driving a synaptic weight to one of two
possible analog values (either potentiated or depressed).
These circuits drive the synaptic-weight voltage with
a current that is superimposed on that generated by the
STDP and which can be either positive or negative. If,
on short time scales, the synaptic weight is increased
above a set threshold by the network activity via the
STDP learning mechanism, the bistability circuits gen-
erate a constant weak positive current. In the absence
of activity (and hence learning) this current will drive
the weight toward its potentiated state. If the STDP de-
creases the synaptic weight below the threshold, the
bistability circuits will generate a negative current that,
in the absence of spiking activity, will actively drive the
weight toward the analog value, encoding its depressed
state. The STDP and bistability circuits facilitate the im-
plementation of both long-term and short-term memory.

47.3.4 Rank-Order Learning

The rank-order learning rule uses important information
from the input spike trains – the rank of the first incom-
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820 Part I Information Modeling of Perception, Sensation and Cognition

ing spike on each synapse (Fig. 47.5b). It establishes
a priority of inputs (synapses) based on the order of the
spike arrival on these synapses for a particular pattern,
which is a phenomenon observed in biological systems
as well as an important information processing concept
for some STPR problems, such as computer vision and
control [47.65, 66].

This learning makes use of the extra information
of spike (event) order. It has several advantages when
used in SNN, mainly: fast learning (as it uses the ex-
tra information of the order of the incoming spikes)
and asynchronous data entry (synaptic inputs are ac-
cumulated into the neuronal membrane potential in an
asynchronous way). The learning is most appropriate
for AER input data streams [47.10] as the events and
their addresses are entered into the SNN one by one, in
the order of their happening.

The post-synaptic potential of a neuron i at a time t
is calculated as

PSP(i, t) =
∑

modorder( j)w j,i , (47.7)

where mod is a modulation factor, j is the index for
the incoming spike at synapse j, i and w j,i is the cor-
responding synaptic weight, and order( j) represents the

order (the rank) of the spike at the synapse j, i among all
spikes arriving from all m synapses to the neuron i. The
order( j) has a value 0 for the first spike and increases
according to the input spike order. An output spike is
generated by neuron i if the PSP(i, t) becomes higher
than a threshold PSPTh(i).

During the training process, for each training in-
put pattern (sample, example) the connection weights
are calculated based on the order of the incoming
spikes [47.66]

Δw j,i (t) = modorder( j,i(t)) . (47.8)

47.3.5 Combined Rank-Order
and Temporal Learning

In [47.11] a method for a combined rank-order and tem-
poral (e.g., SDSP) learning is proposed and tested on
benchmark data. The initial value of a synaptic weight
is set according to the rank-order learning based on
the first incoming spike on this synapse. The weight is
further modified to accommodate following spikes on
this synapse with the use of a temporal learning rule –
SDSP.

47.4 STPR in a Single Neuron

In contrast to the distributed representation theory
and to the widely popular view that a single neu-
ron cannot do much, some recent results showed that
a single neuronal model can be used for complex
STPR.
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A single LIF neuron, for example, with simple
synapses can be trained with the STDP unsupervised
learning rule to discriminate a repeating pattern of syn-
chronized spikes on certain synapses from noise (from
[47.1]) – see Fig. 47.6.

Single neuron models have been introduced for
STPR, for example, Temportron [47.74], Chronotron
[47.75], ReSuMe [47.76], SPAN [47.77, 78]. Each of
them can learn to emit a spike or a spike pattern (spike
sequence) when a certain STP is recognized. Some of
them can be used to recognize multiple STP per class
and multiple classes [47.76–78]. Figure 47.7c,d shows
the use of a single SPAN neuron for the classification
of five STP belonging to five different classes [47.78].
The accuracy of classification is rightly lower for the
class 1 (the neuron emits a spike at the very beginning
of the input pattern) as there is no sufficient input data –
Fig. 47.7d [47.78].

Fig. 47.6 A single LIF neuron with simple synapses can
be trained with the STDP unsupervised learning rule to
discriminate a repeating pattern of synchronized spikes on
certain synapses from noise (after [47.73]) �
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Fig. 47.7 (a) The SPAN model (after [47.78]). (b) The Widrow–Hoff delta learning rule applied to learn to associate an
output spike sequence to an input STP (after [47.32, 78]). (c,d) The use of a single SPAN neuron for the classification of
5 STP belonging to five different classes (after [47.78]). The accuracy of classification is rightly lower for the class 1 –
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Fig. 47.7 (continued)

47.5 Evolving Spiking Neural Networks

Despite the ability of a single neuron to conduct STPR,
a single neuron has a limited power and complex STPR
tasks will require multiple spiking neurons.

One approach is proposed in the evolving spiking
neural networks (eSNN) framework [47.37, 79]. eSNN
evolve their structure and functionality in an on-line
manner, from incoming information. For every new in-
put pattern, a new neuron is dynamically allocated and
connected to the input neurons (feature neurons). The
neurons connections are established for the neuron to
recognize this pattern (or a similar one) as a positive ex-

ample. The neurons represent centers of clusters in the
space of the synaptic weights. In some implementations
similar neurons are merged [47.37, 38]. This makes it
possible to achieve very fast learning in an eSNN (only
one pass may be necessary), both in a supervised and in
an unsupervised mode.

In [47.77] multiple SPAN neurons are evolved to
achieve a better accuracy of spike pattern generation
than with a single SPAN – Fig. 47.8a.

In [47.69] the SDSP model from [47.32] was suc-
cessfully used to train and test a SNN for 293 character
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recognition (classes). Each character (a static image) is
represented as a 2000 bit feature vector, and each bit is
transferred into spike rates, with 50 Hz spike burst to rep-
resent 1 and 0 Hz to represent 0. For each class, 20 dif-
ferent training patterns are used and 20 neurons are allo-
cated, one for each pattern (altogether 5860) (Fig. 47.8b)
and trained for several hundreds of iterations.

A general framework of eSNN for STPR is shown
in Fig. 47.9. It consists of the following blocks:

1. Input data encoding block
2. Machine learning block (consisting of several sub-

blocks)
3. Output block.

In the input block continuous value input variables
are transformed into spikes. Different approaches can
be used:

1. Population rank coding [47.61] – Fig. 47.10a
2. Thresholding the input value, so that a spike is gen-

erated if the input value (e.g., pixel intensity) is
above a threshold

3. Address event representation (AER) – threshold-
ing the difference between two consecutive values
of the same variable over time as it is in the
artificial cochlea [47.14] and artificial retina de-
vices [47.10] – Fig. 47.10b.

The input information is entered either on-line (for
on-line, real-time applications) or as batch data. The
time of the input data is in principle different from the
internal SNN time of information processing.

Long and complex SSTD cannot be learned in sim-
ple one-layer neuronal structures as the examples in
Fig. 47.8a,b. They require neuronal buffers as shown in
Fig. 47.11a. In [47.80] a 3D buffer was used to store
spatio-temporal chunks of input data before the data
is classified. In this case, the size of the chunk (both
in space and time) is fixed by the size of the reser-
voir. There are no connections between the layers in the
buffer. Still, the system outperforms traditional classi-

fication techniques, as it is demonstrated on sign lan-
guage recognition, where the eSNN classifier was ap-
plied [47.37, 38]. Reservoir computing [47.36, 45] has
already become a popular approach for SSTD modeling
and pattern recognition. In the classical view a reservoir
is a homogeneous, passive 3D structure of probabilis-
tically connected and fixed neurons that in principle
has no learning and memory, nor has it an interpretable
structure – Fig. 47.11b. A reservoir, such as a liquid state
machine (LSM) [47.36, 81], usually uses small world
recurrent connections that do not facilitate capturing ex-
plicit spatial and temporal components from the SSTD
in their relationship, which is the main goal of learn-
ing SSTD. Despite difficulties with the LSM reservoirs,
it was shown on several SSTD problems that they pro-
duce better results than using a simple classifier [47.7,
12, 36, 82]. Some publications demonstrated that prob-
abilistic neurons are suitable for reservoir computing
especially in a noisy environment [47.56,57]. In [47.83]
an improved accuracy of the LSM reservoir structure on
pattern classification of hypothetical tasks is achieved
when STDP learning is introduced into the reservoir.
The learning is based on comparing the liquid states for
different classes and adjusting the connection weights so
that same class inputs have closer connection weights.
The method is illustrated on the phone recognition task
of the TIMIT data base phonemes – spectro-temporal
problem. 13 MSCC are turned into trains of spikes. The
metric of separation between liquid states representing
different classes is similar to Fisher’s t-test [47.84].

After the presentation of an input data example (or
a chink of data) the state of the SNN reservoir S(t) is
evaluated in an output module and used for classifica-
tion purposes (both during training and recall phase).
Different methods can be applied to capture this state:

1. Spike rate activity of all neurons at a certain time
window: The state of the reservoir is represented as
a vector of n elements (n is the number of neurons
vector of n elements (n is the number of neurons in
the reservoir), each element representing the spik-
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ing probability of the neuron within a time window.
Consecutive vectors are passed to train/recall an out-
put classifier.

2. Spike rate activity of spatio-temporal clusters
C1, C2, . . . Ck of close (both in space and time)
neurons: The state SCi (t) of each cluster Ci is repre-
sented by a single number, reflecting on the spiking
activity of the neurons in the cluster in a defined
time window (this is the internal SNN time, usually
measured in ms). This is interpreted as the current
spiking probability of the cluster. The states of all
clusters define the current reservoir state S(t). In the
output function, the cluster states SCi (t) are used
differently for different tasks.

3. Continuous function representation of spike trains:
In contrast to the above two methods that use spike
rates to evaluate the spiking activity of a neuron or
a neuronal cluster, here the train of spikes from each

neuron within a time window, or a neuronal clus-
ter, is transferred into a continuous value temporal
function using a kernel (e.g., α-kernel). These func-
tions can be compared and a continuous value error
measured.

In [47.82] a comparative analysis of the three meth-
ods above is presented on a case study of Brazilian sign
language gesture recognition (Fig. 47.18) using a LSM
as a reservoir.

Different adaptive classifiers can be explored for the
classification of the reservoir state into one of the output
classes, including: statistical techniques, e.g., regression
techniques; MLP; eSNN; nearest-neighbor techniques;
and incremental LDA [47.86]. State vector transforma-
tion, before classification can be done with the use of
adaptive incremental transformation functions, such as
incremental PCA [47.87].

47.6 Computational Neurogenetic Models (CNGM)
Here, the neurogenetic model of a neuron [47.40,
41] is utilized. A CNGM framework is shown in
Fig. 47.12 [47.19].

The CNGM framework comprises a set of methods
and algorithms that support the development of compu-
tational models, each of them characterized by:

1. eSNN at the higher level and a gene regulatory net-
work (GRN) at the lower level, each functioning at
a different time-scale and continuously interacting
between each other.

2. Optional use of probabilistic spiking neurons, thus
forming an epSNN.

3. Parameters in the epSNN model are defined by
genes/proteins from the GRN.

4. Ability to capture in its internal representation both
spatial and temporal characteristics from SSTD
streams.

5. The structure and the functionality of the model
evolve in time from incoming data.

6. Both unsupervised and supervised learning algo-
rithms can be applied in an on-line or in a batch
mode.

7. A concrete model would have a specific structure
and a set of algorithms depending on the problem
and the application conditions, e.g., classification of
SSTD; modeling of brain data.

The framework from Fig. 47.12 supports the cre-
ation of a multi-modular integrated system, where

different modules, consisting of different neuronal types
and genetic parameters, represent different functions
(e.g., vision, sensory information processing, sound
recognition, and motor-control) and the whole system
works in an integrated mode.

The neurogenetic model from Fig. 47.12 uses as
a main principle the analogy with biological facts
about the relationship between spiking activity and
gene/protein dynamics in order to control the learn-
ing and spiking parameters in an SNN when SSTD is
learned. Biological support of this can be found in nu-
merous publications (e.g., [47.40, 88–90]).

The Allen Human Brain Atlas [47.91] of the Allen
Institute for Brain Science [47.92] has shown that at
least 82% of human genes are expressed in the brain.
For 1000 anatomical sites of the brains of two indi-
viduals 100 mln data points are collected that indicate
gene expressions of each of the genes and underlies the
biochemistry of the sites.

In [47.58] it is suggested that both the firing rate
(rate coding) and spike timing as spatio-temporal pat-
terns (rank order and spatial pattern coding) play a role
in fast and slow, dynamic and adaptive sensorimotor
responses, controlled by the cerebellar nuclei. Spatio-
temporal patterns of a population of Purkinji cells are
shaped by activities in the molecular layer of interneu-
rons. In [47.88] it is demonstrated that the temporal
spiking dynamics depend on the spatial structure of
the neural system (e.g., different for the hippocampus
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Fig. 47.12 A schematic diagram of a CNGM framework, consisting of: input encoding module; output function for SNN state
evaluation; output classifier; GRN (optional module). The framework can be used to create concrete models for STPR or data
modeling (after [47.19])

and the cerebellum). In the hippocampus the connec-
tions are scale free, e.g., there are hub neurons, while in
the cerebellum the connections are regular. The spatial
structure depends on genetic pre-determination and on
the gene dynamics. Functional connectivity develops in
parallel with structural connectivity during brain matu-
ration. A growth-elimination process (synapses are cre-
ated and eliminated) depend on gene expression [47.88],
e.g., glutamatergic neurons issued from the same pro-
genitors tend to wire together and form ensembles,
also for the cortical GABAergic interneuron population.
Connections between early developed neurons (mature
networks) are more stable and reliable when transfer-
ring spikes than the connections between newly created
neurons (thus the probability of spike transfer). Post-
synaptic AMPA-type glutamate receptors (AMPARs)
mediate most fast excitatory synaptic transmissions and
are crucial for many aspects of brain function, including
learning, memory, and cognition [47.40, 93].

Kasabov et al. [47.94] show the dramatic effect of
a change of single gene, that regulates the τ parameter
of the neurons, on the spiking activity of the whole SNN
of 1000 neurons – see Fig. 47.13.

The spiking activity of a neuron may affect the ex-
pressions of genes as feedback [47.95]. As pointed out

in [47.90] on longer time scales of minutes and hours
the function of neurons may cause changes of the ex-
pression of hundreds of genes transcribed into mRNAs
and also in microRNAs, which makes the short-term,
long-term, and the genetic memories of a neuron linked
together in a global memory of the neuron and further –
of the whole neural system.

A major problem with the CNGM from Fig. 47.12
is how to optimize the numerous parameters of the
model. One solution could be to use evolutionary com-
putation, such as PSO [47.57, 96] and the recently
proposed quantum inspired evolutionary computation
techniques [47.21, 44, 97]. The latter can deal with
a very large dimensional space as each quantum-bit
chromosome represents the whole space, each point
to certain probability. Such algorithms are faster and
lead to a close solution to the global optimum in
a very short time. In one approach it may be rea-
sonable to use same parameter values (same GRN)
for all neurons in the SNN or for each of different
types of neurons (cells) that will results in a signifi-
cant reduction of the parameters to be optimized. This
can be interpreted as the average parameter value for
neurons of the same type. This approach corresponds
to the biological notion to use one value (average)
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Fig. 47.13 A GRN interacting with a SNN reservoir of 1000 neurons. The GRN controls a single parameter, i. e., the τ

parameter of all 1000 LIF neurons, over a period of 5 s. The top diagram shows the evolution of τ . The response of the
SNN is shown as a raster plot of spike activity. A black point in this diagram indicates a spike of a specific neuron at
a specific time in the simulation. The bottom diagram presents the evolution of the membrane potential of a single neuron
from the network (green curve) along with its firing threshold ϑ (red curve). Output spikes of the neuron are indicated as
black vertical lines in the same diagram (after [47.94])

of a gene/protein expression for millions of cells in
bioinformatics.

Another approach to define the parameters of
the probabilistic spiking neurons, especially when
used in biological studies, is to use prior knowledge

about the association of spiking parameters with rel-
evant genes/proteins (neurotransmitter, neuroreceptor,
ion channel, neuromodulator) as described in [47.19].
Combination of the two approaches above is also
possible.

47.7 SNN Software and Hardware Implementations to Support STPR

Software and hardware realizations of SNN are already
available to support various applications of SNN for
STPR. Among the most popular software/hardware sys-
tems are [47.99–101]:

1. jAER [47.10, 102]
2. Software simulators, such as Brian [47.100], Nestor,

NeMo [47.103], etc.
3. Silicon retina camera [47.10]
4. Silicon cochlea [47.14]
5. SNN hardware realization of LIFM and SDSP

[47.72, 104–106]

Fig. 47.14 A hypothetical neuromorphic SNN application
system (after [47.98]) �

Network of
I&F neurons

Silicon retina

Silicon cochlea

Excitatory
Inhibitory
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828 Part I Information Modeling of Perception, Sensation and Cognition

6. The SpiNNaker hardware/software environment
[47.107, 108]

7. FPGA implementations of SNN [47.109]
8. The recently announced IBM LIF SNN chip.

Figure 47.14 shows a hypothetical engineering sys-
tem using some of the above tools (from [47.11,
104]).

47.8 Current and Future Applications of eSNN and CNGM for STPR

The applications of eSNN for STPR are numerous. Here
only few are listed:

1. Moving object recognition (Fig. 47.15) [47.10, 12].
2. EEG data modeling and pattern recognition [47.3–

7, 111–113] directed to practical applications, such
as: BCI [47.5], classification of epilepsy [47.112–
114] – (Fig. 47.16).
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Fig. 47.15a,b Moving object recognition with the use of AER. (a) Disparity map of a video sample; (b) address event
representation (AER) of the above video sample (after [47.10])
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Fig. 47.16 EEG recognition system

3. Robot control through EEG signals [47.115]
(Fig. 47.17) and robot navigation [47.116].

4. Sign language gesture recognition (e.g., the Brazil-
ian sign language – Fig. 47.18) [47.82].

5. Risk of event evaluation, e.g., prognosis of estab-
lishment of invasive species [47.21] – Fig. 47.19;
stroke occurrence [47.16], etc.

6. Cognitive and emotional robotics [47.19, 34].

Fig. 47.17 Robot control and navigation through EEG sig-
nals (from [47.110])
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Fig. 47.18 A single sample for each
of the 15 classes of the LIngua
BRAsileira de Sinais (LIBRAS) –
the official Brazilian sign language is
shown. Color indicates the time frame
of a given data point (black/white cor-
responds to earlier/later time points)
(after [47.82])
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Fig. 47.19 A prognostic system for ecological modeling (after [47.21])
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7. Neurorehabilitation robots [47.117].
8. Modeling finite automata [47.118, 119].
9. Knowledge discovery from SSTD [47.120].

10. Neurogenetic robotics [47.121].
11. Modeling the progression or the response to

treatment of neurodegenerative diseases, such as
Alzheimer’s disease [47.18, 19] – Fig. 47.20. The
analysis of the GRN model obtained in this case
could enable the discovery of unknown interactions
between genes/proteins related to brain disease pro-
gression and how these interactions can be modified
to achieve a desirable effect.

12. Modeling financial and economic problems (neu-
roeconomics) where at a lower level the GRN
represents the dynamic interaction between time
series variables (e.g., stock index values, ex-
change rates, unemployment, GDP, the price of
oil), while the higher level epSNN states repre-
sents the state of the economy or the system under
study. The states can be further classified into pre-
defined classes (e.g., buy, hold, sell, invest, likely
bankruptcy) [47.122].

13. Personalized modeling, which is concerned with
the creation of a single model for an individual
input data [47.17, 46, 47]. Here a whole SSTD pat-
tern is taken as individual data rather than a single
vector.
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