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Path Finding i19. Path Finding in Biological Networks

Lore Cloots, Dries De Maeyer, Kathleen Marchal

Understanding the cellular behavior from a sys-
tems perspective requires the identification of
functional and physical interactions among di-
verse molecular entities in a cell (i. e., DNA/RNA,
proteins, and metabolites). The most straightfor-
ward way to represent such datasets is by means
of molecular networks of which nodes correspond
to molecular entities and edges to the interac-
tions amongst those entities. Nowadays with large
amounts of interaction data being generated,
genome-wide networks can be created for an in-
creasing number of organisms. These networks can
be exploited to study a molecular entity like a pro-
tein in a wider context than just in isolation and
provide a way of representing our knowledge of
the system as a whole. On the other hand, viewing
a single entity or an experimental dataset in the
light of an interaction network can reveal previous
unknown insights in biological processes.

In this chapter we focus on different ap-
proaches that have been developed to reveal the
functional state of a network, or to find an ex-
planation for the observations in functional data
through paths in the network. In addition we give
an overview of the different omics datasets and
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data-integration techniques that can be used to
build integrated biological networks.

19.1 Background

With the advent of new molecular profiling tech-
niques, genome-wide datasets that describe interactions
between molecular entities (i. e., mRNA, proteins,
metabolites, etc.) are being generated at an ever in-
creasing pace. These datasets each measure a specific
type of interaction that is active under certain con-
ditions within the cell or that occurs as a response
to specific environmental signals. The distinct nature
of these datasets often brings about complementary
views on cellular behavior. A network-based repre-
sentation of various biological systems captures many

of the essential characteristics of these data and in-
tegrating complementary molecular interaction layers
into a single network thus provides a way of rep-
resenting our knowledge of the system as a whole.
Application of well-established tools and concepts de-
veloped in fields such as graph theory on such networks
can provide valuable insights into the system’s mode
of action and functionalities [19.1]. The identification
of motifs, which are statistically significant reoccur-
ring characteristic patterns in a network [19.2], has
for instance shown that specific types of motifs carry
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290 Part D Modeling Regulatory Networks: The Systems Biology Approach

out specific information-processing functions within
cells [19.3].

An integrated interaction network can also reveal
previous unknown insights in biological processes or
functional behavior by explicitly interrogating it with
independent functional data sets. Methodologies that
identify and explore paths in networks between given
input and output nodes have gained much interest.
Such a path in a network can be seen as a mechanis-
tic representation of the way information propagates
through the network. Identifying biologically meaning-
ful paths in the network between nodes of interest,

nodes which can be defined from functional data sets
that are independent from the network itself, can un-
veil previously uncovered signal flow mechanisms that
are responsible for the observed functional behavior or
define a measure for relatedness of two nodes in the
network.

In this chapter, we highlight diverse omics datasets
and data-integration techniques that can be used to build
integrated biological networks and discuss several cat-
egories of network-based path finding methodologies
that aim at obtaining a more functional understanding
of cellular behavior.

19.2 Inferring Interaction Networks from Omics Data

Understanding the cellular behavior from a systems per-
spective requires the identification of functional and
physical interactions among diverse molecular entities
in a cell (i. e., DNA/RNA, proteins and metabolites).
The most straightforward manner of capturing inter-
actions between molecular entities is by representing
them as an interaction network. Here, molecular entities
are represented by nodes and the interactions between
them by edges. In this section, we elaborate on different
types of networks that can be constructed from omics
data and present supervised learning strategies to assign
reliabilities to interactions.

19.2.1 Network Representations

Classically, a distinction is made between a func-
tional network in which nodes usually correspond to
proteins or genes, and edges represent functional rela-
tions between the nodes and a physical network where
edges represent direct physical interactions (Fig. 19.1).
Proteins connected in a functional network can be in-
terpreted as being active in the same pathway or being
needed together to mediate a specific function, but
they do not necessarily physically interact. Examples
of specific functional networks are, for instance, ge-
netic interaction networks and coexpression networks.
Within a physical network, different molecular layers
can be distinguished: intracellular signal transduction,
which transmits information from the surface to the
nucleus, for instance by means of protein phosphoryla-
tion, and protein interactions that propagate this signal.
In addition, (post-) transcriptional regulation processes
comprise transcription factor (TF) proteins or sRNAs
regulating the expression of genes and finally metabolic

reactions catalyzed by enzymes, where metabolites are
converted into energy and building blocks. Each of
these different layers in a physical network can be de-
ducted from their own specific datasets and will have
their own characteristics.

Overview of Different Datasets
Small-scale laboratory experiments alone are imprac-
tical for creating a genome-scale network of different
types of interactions, mainly for reasons of cost and
time. Recently, advances in experimental methods made
it possible to generate interaction datasets in a high
throughput manner. Such datasets, like for instance,
protein–protein interactions (PPI), have been generated
for model organisms such as Saccharomyces cere-
visiae [19.4–8], Caenorhabditis elegans [19.9], and
Drosophila melanogaster [19.10, 11], as well as Homo
sapiens [19.12, 13] by genome-wide yeast two hybrid
(Y2H) screens and large-scale affinity purification/mass
spectrometry. Technologies such as ChIP-chip and
ChIP-seq, make it possible to measure the TF-DNA
interactions at a genomic scale [19.14–16], and mass
spectrometry (MS)-based proteomics have enabled
the large-scale mapping of in vivo phosphorylation
sites [19.17].

Due to the large flood of experimental interaction
data becoming available, several efforts have been made
to store and centralize these datasets through the con-
struction of databases. Some databases capture data
about a specific organism or research topic, like, for in-
stance, transcriptional regulation, while others integrate
data from specific organisms and/or different interac-
tion types in a standardized manner. Gradually more and
more specific databases are merged into these integrated
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Fig. 19.1a,b Overview of molecular networks that can be inferred from omics data. (a) Functional networks: molecu-
lar entities represented by nodes in the network share a functional relation that does not require their physical contact.
Genetic interaction network: edges reflect the phenotype that is observed when both nodes (genes) are inactivated simul-
taneously (double mutant). Coexpression network: nodes correspond to genes and edges represent the mutual similarity
in expression profiles between connected nodes. (b) Physical interaction networks. Physical contact occurs amongst
members (nodes) of the network. Signaling network. Nodes are proteins and edges represent signaling events (e.g., phos-
phorylation). Protein interaction network. Edges represent physical interactions between proteins represented by the
nodes. (Post-)transcriptional network. Nodes represent either regulators or target genes and the directed edges reflect the
physical regulator (transcription factor, sRNA)-target interactions. Metabolic network. Edges correspond to metabolic
reactions catalyzed by enzymes represented by the nodes

databases. Table 19.1 gives an overview of some fre-
quently used databases that provide physical interaction
data for several eukaryotic model organisms, catego-
rized by the type(s) of data they provide.

The fragmentation of data over a rising amount
of databases [19.33] makes an integrated and com-
prehensive use very difficult. To reduce this problem,
Bader, Cary, and Sander [19.34] provide an extensive
overview of several databases (at the time of this writ-

Table 19.1 Overview of databases containing physical interaction data for eukaryotic model organisms

Type of interactions Database

Metabolic pathways KEGG [19.18], MetaCyc [19.19], BiGG [19.20]

Protein–protein interactions BioGRID [19.21], BIND [19.22], DIP [19.23], MINT [19.24], MIPS [19.25],

STRING [19.26], HPRD [19.27] (H. sapiens)

Protein complexes MIPS [19.25], CORUM [19.28] (mammalian organisms)

Transcription factor–DNA interactions TRANSFAC [19.29], modENCODE [19.16] (D. melanogaster, C. elegans),

YPD [19.30] (S. cerevisiae)

Signaling interactions PhosphoPOINT [19.31], PhosphoSite [19.32]

ing this number was equal to 328) spanning different
interaction layers across a multitude of organisms in
a meta-database named Pathguide.

Assessing the Confidence
in Interactions Derived
from High-Throughput Experimental Data

Experimental datasets generated by high-throughput
methods like Y2H or ChIP-chip are not only prone to
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high rates of false positive interactions [19.15, 35], low
overlap between them also indicates that the current
interaction maps are far from complete [19.36]. Assess-
ing the quality of the data obtained is useful both for
deciphering the correct molecular mechanisms underly-
ing given biological functions, and for intelligent future
experiment design [19.37].

Von Mering et al. [19.38] addressed the problem of
extracting highly confident interactions between pro-
teins from high throughput data sources by using the
intersection of direct high throughput experimental re-
sults. Although they were able to achieve low false
positive rates, the coverage in the number of retrieved
interactions was also very low. Increasing the cov-
erage of a network is especially useful for humans
since the protein interaction map, for instance, was
estimated to be only 10% complete [19.36]. Predict-
ing interactions augments the current knowledge of the
relationship between distinct cellular processes and un-
derlying mechanisms of diseases.

Several machine-learning methodologies were sug-
gested to assign reliabilities to interactions identified
by experimental data, as well as to predict de novo in-
teractions. In Sect. 19.2.2, we, therefore, introduce the
concept of supervised learning to assess interactions.

19.2.2 Integration Frameworks
Based on Supervised Techniques
to Predict Interactions

Supervised learning methods [19.39] infer a function
from a training set. Such a training set consists of pairs
of input vectors and their corresponding known output.
When the output is discrete, the supervised method is
called a classifier. The learned function between input
and output can then be used to predict the output of
any valid input of which the output is not yet known.
Applied here, a classifier would exploit known interac-
tions to infer novel interactions from omics data. They
can learn the set of data characteristics (features) that
allow distinguishing true from false interactions from
a set of known interactions (training set). A novel inter-
action is then predicted to be true or false, depending
on the extent to which it shares similar features with the
interactions in the training set.

Since classifiers are commonly used to assess the
confidence in interactions from omics data, some guide-
lines for the choice of features and training sets are
discussed in the next section, as well as two types
of classifiers that are frequently used to stratify many
candidate interactions by confidence or predict novel

interactions, namely Bayesian approaches and logistic
regression. A short case study in predicting PPI and
functional interactions is presented in the last part of
this section, as an enormous amount of high throughput
experimental data for PPI is nowadays freely available
in several databases. However, the integration process
is general and can be used for assessing interactions at
other network levels as well, using the standard frame-
works described below, together with a set of features
and training set that is specific for the dataset being
assessed (e.g., [19.35, 40] for assessing TF-DNA inter-
actions obtained from ChIP-chip).

Features
The set of features provided to the classifier are measur-
able entities or evidences that characterize an interaction
or a noninteraction. The classifier then learns which
of the provided features are predictive for the in-
teractions at hand. Such measurable entities can be
direct information (e.g., the interaction was seen in
an experiment) or indirect information (e.g., the ex-
pression correlation of two proteins could indicate
that they are members of the same complex). Ex-
amples for predicting PPI are, for instance, network
topology-based features [19.41] and GO biological pro-
cess similarity [19.42,43], amongst others. Nucleosome
occupancy [19.40], DNA binding motifs [19.35, 40],
and shared phylogenetic profiles (i. e., occurrence of
the interaction in multiple species) [19.35] have been
shown to be predictive for TF-DNA interactions. Coex-
pression between genes [19.35,40,42–45] has been used
both for predicting TF-DNA and PPIs.

Training Sets
The prediction quality of a classification scheme stands
or falls with the choice of a golden standard training
set. This training dataset usually consists of positive and
negative examples and is used to discover a predictive
relationship between several features and the positive
and negative examples.

An ideal golden standard should be independent
of the data sources serving as features, sufficiently
large for reliable statistics, and free of systematic
bias [19.42]. Moreover, the choice of training set also
depends on the prediction task at hand: positive and neg-
ative examples should reflect the same entities as the
ones one would like to predict. This means, for instance,
that a golden standard for predicting protein complexes
should consist of proteins belonging or not belonging
to the same complex, while positive and negative exam-
ples for predicting a functional network, on the other
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hand, should reflect functional and nonfunctional rela-
tionships, respectively.

A set of positive examples is usually based on a cu-
rated, literature-derived dataset, containing only high-
confidence interactions. For predicting physical protein
interactions, a high quality subset of the Database of
Interaction Proteins (i. e., DIP [19.23]) discovered by
small-scale experiments or data from individually per-
formed experiments listed in The Munich Information
Center for Protein Sequences (i. e., MIPS [19.25]) can,
for instance, be applied. TF–DNA interactions from the
Incyte YPD database [19.30] could serve as a positive
set for transcriptional interactions in yeast [19.35, 40].
Positive examples of functional relations between pro-
teins can be extracted from the gene ontology (i. e.,
GO [19.46]) database annotations. Usually, proteins are
considered functionally related if they share a specific
biological process GO term (e.g., contain less than 200
annotations [19.47]).

A good set of negative examples is harder to define,
since noninteracting pairs cannot be observed. Negative
training sets can, for instance, consist of randomly com-
bined pairs [19.35], 44], randomly observed interactions
in a high throughput dataset [19.45, 48], or, in the case
of protein interactions, proteins occurring in different
subcellular components [19.42–44], and proteins not
sharing any specific GO term [19.47, 49–53].

Bayesian Approaches
Different sources of evidence can be probabilistically
combined to predict interactions using Bayesian for-
malism. This learning framework allows for combining
highly dissimilar types of data in a model that is easy
to interpret and that can readily accommodate missing
data.

The posterior odds of interaction between two mo-
lecular entities (Opost) represent the probability that an
interaction occurs given the presence of several ge-
nomic features, divided by the probability that such an
interaction will not occur given the presence of these
features. This can be formalized using Bayes’ theorem,

Opost = P(I | f1, . . ., fN )

P(∼ I | f1, . . ., fN )
, (19.1)

=
P( f1,..., fN |I )·P(I )

P( f1,..., fN )
P( f1,..., fN |∼I )·P(∼I )

P( f1,..., fN )

, (19.2)

= P(I )

P(∼ I )
· P( f1, . . ., fN |I )

P( f1, . . ., fN | ∼ I )
, (19.3)

= Oprior ·LR . (19.4)

The posterior odds of an interaction can thus be cal-
culated as the product of the prior odds (Oprior) of
interaction and the likelihood ratio (LR) of an interac-
tion (19.4).

The prior odds of interaction are defined as the prob-
ability of encountering an interaction among all pairs,
divided by the probability of observing no interaction
between a pair. The likelihood ratio represents the prob-
ability of observing the values in the predictive datasets
given that a pair of molecular entities interacts, divided
by the probability of observing these values given that
the pair does not interact.

A naive Bayesian classifier makes the assumption
that the genomic features (denoted by f1, . . ., fN ) are
independent. In this case, the LR can be calculated as
the product of the individual likelihood ratios from the
respective genomic features (19.5)

LR =
N∏

i=1

[
P( fi |I )

P( fi | ∼ I )

]
. (19.5)

The likelihood ratio for every genomic feature can
be estimated by counting the frequency of occurrence
of interacting and noninteracting pairs in the golden
standard that possess a particular value of the feature.

In the case of features with correlated evidence, the
likelihood ratio cannot be factorized in this way and
all possible combinations of all states of the features
must be considered, which can be computationally in-
tensive. The prior odds are more difficult to assess, since
not all true interactions are known. For PPI this pa-
rameter, for instance, be estimated by examining the
average number of interactions per protein for which
all known interactions have been identified in the lit-
erature [19.43, 44].

After deriving likelihood ratios for independent fea-
tures from the golden standard, the likelihood ratio
for every protein pair can be determined by combin-
ing the likelihood ratios for every independent evidence
source [19.43, 44]. An interacting pair is then predicted
as positive if its likelihood ratio exceeds a certain cut
off [19.42, 49, 51].

Logistic Regression
A logistic regression is a generalized linear model that
is used to calculate the probability of the outcome of
an event, e.g., the probability of observing an interac-
tion between two proteins. The relationship between the
response variable (e.g., observing an interaction (= 1)
or not (= 0)) and the predictor variables (i. e., genomic
features and/or experimental observations) is given by
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a logistic function

P(I ) = 1

1+ e−(β0+β1 f1+...+βN fN )
. (19.6)

The logistic function can take as an input (i. e., ev-
idence features f1, . . ., fN ) any value from negative
infinity to positive infinity, whereas the output (i. e.,
probability of an interaction P(I )) is confined to values
between 0 and 1. Parameters β1, . . ., βN can be esti-
mated by using a set of positive and negative interaction
pairs as output (yielding output values of 1 and 0, re-
spectively) and their corresponding features as input in
a maximum likelihood approach [19.39]. The estimated
parameters can then be used together with evidence
features corresponding to an interaction between two
molecular entities to predict the probability that these
entities truly interact.

Case Study: Inferring Protein Interaction
Networks from Omics Data

Examples of PPI and Functional Networks. Using the
Bayesian framework or slight variations of it and spe-
cific sets of genomic features or experimental datasets,
both functional networks for S. cerevisiae [19.49,
50], C. elegans [19.54], human [19.53], Arabidop-
sis thaliana [19.52], mouse [19.47] and protein-
complex [19.42], and PPI networks [19.43, 44] for
human were developed.

Methods based on logistic regression have been
used to assess the confidence of interactions observed

in experimental data [19.41, 45, 48] by integrating ex-
perimental information, topological measures and/or
expression correlation, and have been used in sev-
eral path finding approaches to assign a confidence
score to the PPI in a yeast network [19.55–58] or
a human network [19.59], and to assess the reliabil-
ity of experimentally determined protein interactions in
D. melanogaster [19.11].

Performance. Many supervised classification methods
have been developed to integrate direct and indirect
information on protein interactions. They each differ
in the collection of integrated data sources, approach,
and implementation. Qi et al. [19.60] independently in-
vestigated the performance of different classifiers and
the importance of different biological datasets, together
with various golden standards. They concluded that
a classifier based on Random Forests performed best
among the classifiers, followed by a logistic regres-
sion. However, Suthram et al. [19.61] assessed the
performance of six approaches, each with their own
combination of features and classification method, and
showed that a rather complex approach based on Ran-
dom Forests [19.62] had lower overall performance
compared to other methods tested. Both authors could
conclude that including many input variables does not
necessarily result in a better prediction performance,
and in some cases even the opposite can be true. How-
ever, utilizing any probability scheme turned out to be
better than considering all interactions observed to be
true or equally probable.

19.3 Using Interaction Networks to Interpret Functional Data

Nowadays with large amounts of interaction data being
generated, genome-wide networks can be created for an
increasing number of organisms. These networks can
be exploited to study a molecular entity like a protein
in a wider context than just in isolation. However, the
inferred physical networks are static and do not reveal
which parts of the networks are active under certain con-
ditions and how perturbations are propagated through
the network. Integrating physical interaction networks
with functional data, like gene expression data makes it
possible to reveal relevant active paths or substructures
in the network.

High-throughput techniques now allow genome-
wide views of the molecular changes that occur in
cells as they respond to stimuli. However, data derived

from these high-throughput techniques unveil that our
understanding of cellular systems is still fragmentary,
even of well-characterized model systems. In humans,
for instance, only about 30–40% of all differentially
expressed genes for transcription factors NF-kB and
STAT1 appear to be direct targets [19.63]. Yeger–Lotem
et al. [19.64] observed that the results of genetic screen-
ings (i. e., identifying genetic hits, or genes whose
individual manipulation alters the phenotype of stim-
ulated cells) and mRNA profiling (i. e., identifying
differentially expressed genes following stimuli) often
hardly overlap and provide a limited and biased view of
cellular responses.

Exploiting the network structure can help in gain-
ing a comprehensive picture of the functioning of a cell,
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Example network

a) b) c)

Simple path Branched path

Fig. 19.2a–c Definition of a path (a) example of an interaction network, with an input node (red node), output node (blue
node), and other interacting entities (green nodes) mapped on the network. Arrows between nodes represent directed
interactions, lines between nodes represent undirected interactions (b) a simple path from input to output node is high-
lighted in the network, dashed lines, arrows, and transparent nodes do not belong to the selected path (c) a branched path
from input to output node, containing multiple simple paths is highlighted in the network. Dashed lines, arrows, and
transparent nodes do not belong to the path

by providing a mechanistic explanation that links the
observed effects to the perturbation or cause exerted.
Such an underlying mechanism is unlikely to be discov-
erable when looking at all datasets separately. Several
approaches exist for mining the information embedded
in integrated networks, dependent on the specifics of the
problem statement. Network clustering strategies for in-
stance, which search for highly connected subnetworks,
have been successfully used to distinguish cancer-
causing mutations from neutral mutations [19.65] or to
assess the structure of the yeast genetic interaction net-
work, revealing insights in gene function and modular
organization [19.66].

In this chapter we focus on different approaches that
have recently been developed to reveal the functional
state of a network or to find an explanation for the obser-
vations in functional data through paths in the network.
A simple path in a network is illustrated in Fig. 19.2b
and is defined as a collection of edges that connect
a source node (i. e., gene causing an effect or input gene
of interest) and a target node (i. e., affected gene or out-
put gene of interest) in an interaction network, such
that each selected edge is connected to one other se-
lected edge and the information spread by the source
node can reach the target node without interruption.
A path can be a collection of simple paths, containing
several branches connecting a source with a target node
(Fig. 19.2c). There is no further constraint that the nodes
within a path should be densely connected to each other,
which would refer to a cluster in a graph and would
comprise a different problem statement.

In this second part of the chapter, an extensive
overview of path finding methodologies, illustrated with

several applications, is given. Different approaches are
categorized according to the underlying goal they try to
accomplish. These goals are represented in an abstract
way in Figs. 19.3–19.6, and are further clarified at the
beginning of each category.

19.3.1 Connecting One or Several Causes
to Their Effect(s) by Unveiling
the Underlying Active Paths

The common objective of methods described in this
paragraph is to reveal the underlying pathways trans-
mitting a signal from one or several causes to their cor-
responding observed effect(s) by adopting a network-
based approach (Fig. 19.3). The cause could, for in-
stance, be a membrane protein and the observed effect
a DNA binding protein that receives the signal, but the
intermediate molecular interactions through which the
signal was transduced from cause to effect is unknown.

Several of the methods developed for this purpose
use, in addition to the given cause and effect pairs,
other functional data like gene expression to extract
biologically relevant paths from the network. This ei-
ther by using the extent to which a network node is
differentially expressed as an indication of its contri-
bution to a plausible signaling path [19.64, 67] or by
using a measure of expression correlation between edge
nodes [19.55, 68], between edge nodes and the source
and target nodes [19.69], or between edge nodes and
target node [19.70] to indicate the confidence we have
in an edge contributing to a causal path.

The reconstruction of signaling pathways by over-
laying PPI data with cause–effect pairs has received
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?

a) b)

Fig. 19.3a,b Connecting one or several causes to their effect(s) by unveiling the underlying active paths. (a) Example
of an interaction network on which a known causal gene (red node or input) and its affected gene (blue node or output)
were mapped. The underlying path responsible for transferring the information from input to output is unknown (blue
dashed line). (b) The underlying mechanism that explains the observed effect is highlighted in the network, dashed lines,
arrows, and transparent nodes do not belong to the selected path. Arrows between nodes represent directed interactions,
lines between nodes represent undirected interactions

a great deal of attention. Steffen et al. [19.71] were one
of the first to model simple paths of a specified length
through a physical protein interaction network, starting
at a membrane protein and ending on a DNA binding
protein in a procedure called NetSearch. Paths were
ranked based on a statistical scoring metric, reflecting
how many path members clustered together according
to their expression profiles. Simple paths that had com-
mon starting points and endpoints and the highest ranks
among each other were then combined into the final
model of branched networks.

In reality, simple paths cannot capture the full
complexity of signaling pathways since there may
be multiple interaction paths within a pathway. Scott
et al. [19.55], therefore, adapted the color coding
technique and allowed the identification of more com-
plicated substructures such as trees and series-parallel
graphs. A number of candidate paths are firstly found
with a score assigned to each candidate and the top scor-
ing paths are then assembled into a signaling network.
Lu et al. [19.69] extracted nonlinear path structures

from the network and potential interactions between
related paths were taken into account.

However, most of these methods generally cannot
directly find a signaling network as a whole, i. e., they
first identify separate paths and then heuristically as-
semble them into a signaling network. Other approaches
like those of Zhao et al. [19.68], Yosef et al. [19.58],
Yeger-Lotem et al. [19.64], and Ren et al. [19.70] in-
fer active paths immediately as a subnetwork from the
whole network. The methods have in common that
they try to explain cause–effect pairs in a particular
set of experiments by solving an optimization prob-
lem which typically balances the reliability of the edges
used by the length and complexity of the possible
paths. A third category of methods uses the frequency
of occurrence of a path with a predefined form (i. e.,
a motif) in the network to explain cause–effect pairs
on a more statistical basis. An example of this cate-
gory is the method of Joshi et al. [19.72], which is
discussed in more detail in the case study at the end of
this section.
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a) b)

Fig. 19.4a,b Integrating cause–effect pairs to confidently infer edge attributes on the network (a) example of an interac-
tion network on which different known cause (red nodes)–effect (blue nodes) pairs were mapped. The type of observed
effect is also taken into account: a regular arrow represents an activating effect from input to output; a cut arrow rep-
resents an inhibiting effect from input to output. The underlying path responsible for transferring the information from
input to output is unknown (blue dashed line). Also the type of effect (i. e., activating or inhibiting) for each edge on the
path must be inferred consistently by making use of the cause–effect pairs (b) the underlying path that explains the ob-
served effect is highlighted in the network, whereby also a type of effect to each edge in the path is assigned. Dashed
lines, arrows, and transparent nodes do not belong to the selected path, the blue dashed lines show the observed cumu-
lative effect from input to output as in (a). Arrows between nodes represent directed interactions, lines between nodes
represent undirected interactions

The majority of these methods use one or more
MAP kinase signaling pathways involved in pheromone
response, filamentous growth, maintenance of cell wall
integrity, and high osmolarity as their benchmark, since
these are among the best studied signaling networks.
These pathways are activated by G protein-coupled
receptors and characterized by a core cascade of
MAP kinases that activate each other through sequen-
tial binding and phosphorylation reactions. A method
comparison performed by Zhao et al. [19.68] demon-
strated that most methods can to a large extent uncover
the known signaling paths, which confirm the effec-
tiveness and prediction power of the approaches. On
the other hand, the results also show that there is
no single method that can perform the best in all
cases, and different models are complementary to each
other.

While previous methods concentrate on the recon-
struction of signaling cascades between a membrane
receptor protein and a target protein, Yeger–Lotem
et al. [19.64] focus on identifying molecular interaction
paths connecting several related genetic hits (sources)
and differentially expressed genes (targets), revealing
the underlying response pathways. They hypothesize
that some of the genetic hits, which are enriched for
regulators of cellular response, will be connected via
regulatory paths to the differentially expressed genes,
which are the outputs of such paths, via components of
the response that were not detected by either the genetic
or the mRNA profiling assays themselves. To identify
these undetected path components, the authors devel-
oped a flow algorithm called ResponseNet. Huang and
Fraenkel [19.67] reconsidered this problem by taking
into account that both the input data from experimen-
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Fig. 19.5a,b Identifying (an) unknown causal input(s) for (an) observed effect(s). (a) Example of an interaction network
on which several candidate causal genes (red nodes or possible inputs) and an affected gene (blue node or output)
were mapped. The underlying path responsible for transferring the information from input to output is unknown (blue
dashed line). Also the most likely input for the observed output should be identified (red question marks). (b) the most
likely causal gene (red node) together with the underlying mechanism that explains the observed effect (blue node) is
highlighted in the network, dashed lines and arrows and transparent nodes do not belong to the selected path. Arrows
between nodes represent directed interactions, lines between nodes represent undirected interactions

tal observations and the interactome can contain noise.
They treat the goal of connecting data as a constraint
that is attempted to be satisfied through an optimiza-
tion procedure, resulting in a subnetwork that contains
mainly reliable edges while excluding possibly false
positive source or target nodes.

Other application examples of this problem formu-
lation can be found in the reconstruction of metabolic
pathways [19.73], connecting a source metabolite to
a target metabolite, and the reconstruction of transcrip-
tional regulation [19.74], connecting regulators to their
target module consisting of coexpressed genes.

Case Study
Previously mentioned techniques do not search for gen-
eral mechanisms or path structures that are common
between different cause and effect pairs, nor include
a significance analysis that assesses the statistical sig-
nificance of the inferred paths. In this way, it is difficult
to assess if a given network model truly reflects under-

lying regulation mechanisms or appears just by chance
due to the inevitable noise inherent in the perturbation
data as well as in the physical interaction networks.

Joshi et al. [19.72], therefore, propose an alterna-
tive strategy by searching for regulatory path motifs
in an integrated transcriptional (TRI), protein–protein
(PPI) and phosphorylation (PhI) interaction network.
Regulatory path motifs are defined as paths of length
up to three, which connect a causative gene (for ex-
ample a transcription factor) to a set of effect genes
which are differentially expressed after perturbation
of the causative gene, and occur significantly more
often than expected by chance in an integrated phys-
ical network. The method was tested by searching
regulatory motifs between 157 deleted [19.75] and
55 overexpressed [19.76] TFs in S. cerevisiae, to-
gether with their corresponding differentially expressed
genes.

The significance of the regulatory path motifs is de-
termined by a randomization strategy: the cause and
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a) b)

Fig. 19.6a,b Identifying network entities related to network entities of interest. (a) Example of an interaction network
on which a known disease-related gene (red node and full blue line to the disease) and candidate disease-related genes
(orange nodes and dashed blue lines to the disease) were mapped. To infer the most likely candidate disease-gene(s), their
relatedness to the known disease-related gene (dashed orange lines) is examined through interactions on the network.
(b) The most likely candidate disease-related gene and its relation to the known disease-related gene is highlighted on the
network. Dashed lines and arrows and transparent nodes do not belong to the selected paths

effect pairs were permuted for 10 000 times, keeping the
number of perturbed genes for each transcription fac-
tor constant. Next, the frequency of occurrence of each
path motif in the randomized data sets was calculated. If
the number of paths in the real perturbation data lies at
the right tail of this random distribution (using a z-test
statistic), the path was considered significant.

Out of all possible paths of length up to three, the
algorithm identified eight regulatory path motifs, of
which five where enriched in both deletion and over-
expression data. These eight motifs explain 13% of
all genes differentially expressed in deletion data and
24% in overexpression data, a more than five to tenfold
increase compared to using directional transcriptional
links only, confirming that perturbational microarray
experiments contain mostly indirect regulatory links.

Like static network motifs [19.2, 77, 78], regula-
tory path motifs were found to aggregate into modular
structures where the differentially expressed targets of
a transcription factor reached by the same path through
the same intermediate nodes, form a module. Many path

modules showed a high coexpression and were overrep-
resented in a particular functional category, validating
the biological relevance of the regulatory path motifs.

This approach is not only more likely to reflect
reflect general regulatory strategies used in biological
networks, but also the specificity of a TF to a particu-
lar regulatory path can hint towards its mode of action.
It was found for instance, that 75% of the genes being
perturbed after MET4 overexpression, can be explained
by TRI, PPI-TRI, and PPI-TRI-TRI motifs, indicating
that MET4 acts together with different combinations of
auxiliary factors. In addition they observed that many
network motifs that were significantly enriched in re-
sponse to DNA damage in yeast were shorter than
those enriched during cell cycle, exemplifying that en-
vironmental responses prefer fast signal propagation
while developmental processes progress through mul-
tiple stages of interconnecting TFs [19.72, 79]. Thus
regulatory path motifs can be used to characterize
the condition-dependency of the response mechanisms
across multiple integrated networks.
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19.3.2 Integrating Cause–Effect Pairs
to Confidently Infer Edge Attributes
on the Network

While previous approaches limit themselves to inferring
common underlying paths connecting related cause–
effect pairs, others integrate several (even unrelated)
known cause–effect pairs in order to assign specific
attributes to the interaction graph (Fig. 19.4). Such at-
tributes are, for instance:

1. The presence or absence of an edge in the path con-
necting cause and effect

2. The regulatory effect of a node, i. e., activating or
repressing

3. The direction of information flow through an edge.

By integrating several cause–effect pairs more
assignments of attributes can be made than when
considering each pair in isolation. This because the
assignment of attributes explaining a particular cause–
effect pair should also be able to explain causes and
observed effects that occur downstream of this pair in
the network. Or in other words, the objective is trying to
explain as many cause–effect pairs as possible such that
the biological constraints on the network are consistent.

The inferred models of Yeang et al. [19.80], called
physical network models, are annotated molecular in-
teraction graphs. In this framework the presence of
a certain edge in the physical network, the directionality
of signal transduction in PPIs, and the regulatory effect
of the interaction are determined if their combination
is able to explain observed differential expression upon
single gene knockouts. These strategies where further
explored to investigate the mechanisms of the coupling
between regulatory and metabolic networks [19.81].
The MTO algorithm of Medvedovsky et al. [19.82] and
the method of Gitter et al. [19.83] limit themselves to
determining a single direction for each edge, so that
a maximum number of pairs have a directed path from
the cause to the effect.

Case Study
SPINE [19.57] improved the physical network mod-
els [19.80] by assigning an activation/repression at-
tribute with each protein so as to explain (in expectation)
a maximum number of knockout effects observed. They
do not explicitly model the direction of the edges, but
most PPIs appeared in one direction only in the inferred
consistent pathways. The goal of the algorithm is to infer
regulatory pathways in the network that provide a con-
sistent explanation for the input set of knockout pairs.

A path is a consistent explanatory path (Fig. 19.4b)
if:

1. The aggregate sign of the path is equal to the
observed expression direction (upregulated or acti-
vated versus downregulated or inhibited)

2. If every subpath connecting another knockout pair
is also consistent.

The optimization problem is defined as that of find-
ing an assignment that will maximize the expected
number of pairs that have at least one consistent path,
given by

E

⎛

⎝
∑

(s,t)∈X

Ks,t

⎞

⎠ =
∑

(s,t)∈X

E(Ks,t )

=
∑

(s,t)∈X

p(Ks,t = 1) , (19.7)

where Ks,t is a variable that indicates if there exists
at least one regulatory path consistent with a knock-
out pair (s, t) out of a collection of knockout pairs X;
p(Ks,t = 1) corresponds to the probability that at least
one consistent path exists for knockout pair (s, t). The
optimization problem is reformulated and solved as an
integer linear program.

The authors evaluated their method by applying it
on a genome-wide integrated yeast network consisting
of PPI and TF-DNA data, in order to explain the effects
observed in gene expression under different single-gene
knockouts [19.84]. Here, a significant overlap between
the model’s prediction and the known signs was seen.
Moreover, increasing the path length from one edge
(i. e., only a direct TF-DNA link) up to three edges (i. e.,
one TF-DNA link and two other PPI/TF-DNA links) in
different runs clearly showed the importance of look-
ing at paths rather than considering direct edges only,
since the amount of explained knockout pairs increased
accordingly.

19.3.3 Identifying (an) Unknown Causal
Input(s) for (an) Observed Effect(s)

In this section, we discuss applications where several
effects are observed, but the true cause of these effects
is unknown (Fig. 19.5). The common objective here is
thus to infer this unknown cause or causes by use of
a network. Examples of such problems can be found in
the domain of expression quantitative trait loci (eQTL)
mapping. With the availability of complete genomes of
single strains, identifying which alterations in the DNA
sequence (i. e., causes) are responsible for observed
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changes in gene expression (i. e., the quantitative trait,
or effects) becomes increasingly important. Usually, in
a first step the association between a gene’s expression
level (i. e., eQTL mapping) and each genomic region
(i. e., the expression quantitative locus or eQTL) is ex-
amined by a statistical method [19.85]. In the case
of multifactorial traits, multiple loci can be associated
with the gene’s expression behavior, which complicates
eQTL analysis. In addition, due to linkage disequilib-
rium each of the associated loci can contain several
genes, which limits the localization of the true causal
gene. Even when the causal gene can be identified, the
molecular mechanism through which the association is
exerted often remains elusive [19.86].

Path finding methods can here be used to identify
the causal gene within an associated genomic locus and
the underlying pathways that transmit signals from the
locus to the affected target. The genes that altered their
expression levels are considered as effects, while all
the genes in the associated loci are defined as possible
causes.

Tu et al. [19.87] proposed a random walk approach
to infer the causal gene in a locus and the underlying
pathways from a physical interaction network con-
sisting of protein phosphorylation, PPI, and TF-DNA
interactions. They assumed that the pathway starts with
one causal gene in an associated locus and ends at the
transcription factors regulating the target gene such that
the expression of the genes on the pathway are corre-
lated with the target gene. For each affected gene and
each of its associated eQTLs their stochastic algorithm
is performed separately to identify the causal gene. Dur-
ing the walks initiated on the network, different genes
will be visited with different frequencies depending on
their expression profile. The genes with higher frequen-
cies are then assumed to be more likely to be the causal
gene, and the most frequently traveled paths are re-
garded as the underlying regulatory pathways. For 239
out of 585 eQTLs identified in a study of 112 yeast seg-
regants of Brem et al. [19.88] a causal gene could be
significantly predicted. The authors highlighted GPA1
as causal regulator for target gene PRP39, a result that
was experimentally verified by Yvert et al. [19.89].

Suthram et al. [19.86] further adapted the method of
Tu by considering the analogy between random walks
and electric circuits in a new method, named eQTL
electrical diagrams (eQED). eQED models the flow of
information from a locus to a target gene as electric cur-
rents through the protein network. The authors consider
all loci influencing the target simultaneously, allowing
multiple loci to reinforce each other when they fall

along a common regulatory pathway. The causal gene
in each locus is then predicted as the one with the high-
est current running through it. By validating the eQED
model on the eQTL data set of Brem and Kruglyak
against a golden standard of knockout expression pro-
files, the multilocus model indeed showed a highly
improved accuracy compared to the single-locus model
and the method of Tu et al. (80% versus 72% and 50%,
respectively).

Case Study
Inspired by the eQED electric circuit model, Kim
et al. [19.90] developed a method for the identification
of candidate causal genes and dysregulated pathways
that are potentially responsible for the altered ex-
pression of target genes associated to glioblastoma
multiforme (GBM), the most common and most aggres-
sive malignant primary brain tumor in humans. Applied
on gene expression and genomic alteration (in this case
copy number variations or CNVs) profiles of 158 GBM
patients, their methodology comprises four steps:

1. In a first step a set of genes is selected that show dif-
ferential expression in the patients while taking into
account disease heterogeneities among different pa-
tients, thus extracting sets of differentially expressed
genes that are specific to a subgroup of patients.
These differentially expressed genes are hereafter
called target genes.

2. Subsequently, an eQTL mapping is performed by
a linear regression analysis to determine the asso-
ciation between the expression of each target gene
and copy number alterations of tag loci. A liberal
p-value was chosen to retain most of potentially
interesting relationships.

3. Then, to filter out false positives and to determine
the most likely causal genes within each region
of associated CNVs for each target gene, a phys-
ical network-based approach based on the electric
circuit diagrams of Suthram et al. [19.86] was ap-
plied. Each node in the circuit represents a gene
and holds a certain voltage to be determined. Each
edge represents an interaction between node entities
and has a conductance (i. e., how easily electricity
flows along a path) defined by the mean expres-
sion correlation of its nodes with the target gene. As
such, the authors ensured that a single noncorrelated
node reduced but not completely interrupted the cur-
rent flow, while a cluster of noncorrelated nodes put
a considerable resistance to the current flow. Using
Ohm’s law and Kirchhoff’s current law, the amount
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of current through a node was calculated. Candi-
date causal genes for each target gene where then
selected based on a permutation test to estimate the
statistical significance of the current flow through
the nodes.

4. Finally, this resulting set of causal genes was further
reduced by imposing another filter: a minimum set
of causal genes was selected that could explain all
disease cases except for a few outliers.

Assessing the significance of the identified set of
causal genes by determining overlap with sets of known
GBM/glioma specific genes showed that their approach
could uncover more cancer relevant genes than a simple
association approach and demonstrated the increased
predictive power of the model.

The authors also assessed the importance of genes
in the paths from putative causal genes to their tar-
get genes and observed the emergence of hubs, genes
that appeared in a disproportionally large number of
paths. Such a set of hubs contained important transcrip-
tion factors such as MYC and E2F1, and oncogenes
such as JUN and RELA, and was enriched in genes
that appeared in cancer pathways, the cell cycle, and
several important signaling pathways. While such hub
genes were clearly related to cancer, they would hardly
have been identified by analyzing differentially ex-
pressed genes alone, demonstrating the advantages of
a pathway-based approach.

Moreover, a GO biological process enrichment anal-
ysis of the uncovered subnetworks revealed frequently
re-occurring classical cancer related pathways like in-
sulin receptor signaling pathways, RAS signaling, as
well as a glioma-associated regulation of transform-
ing growth factor-b2 production and SMAD pathway.
Such pathways can then be considered as GO biological
process hubs or highways, connecting many different
causal genes with their targets. Such an observation
supports the hypothesis of a pathway-centric view of
complex disease, namely that many different genomic
alterations potentially dysregulate the same pathways in
complex diseases.

Among the discovered set of putative causal genes
and pathways, an influence of PTEN and CDC2 was
observed on the expression of WEE1 through transcrip-
tion factors TP53 and E2F4. This tyrosine kinase in
turn phosphorylates the protein product of CDC2 (i. e.,
CDK1), a signaling event that is crucial for the cyclin-
dependent passage of various cell cycle checkpoints and
suggested as an important feedback mechanism for can-
cer by the authors.

19.3.4 Identifying Network Entities
Related to Network Entities
of Interest

In this fourth and last category, the objective is to
identify entities related to a set of entities of interest
(hereafter named seeds), by exploring the paths (e.g.,
long versus short paths, paths through highly connected
nodes versus through very specific nodes, one simple
path versus multiple paths connecting cause and effect,
. . . ) that connect them in the network, rather than infer-
ring the underlying paths that transfer the signal from
a cause to affected genes like in the previously described
approaches (Fig. 19.6). This approach is useful when
one is looking for the cause of an observed effect, but
they cannot both be mapped on a physical or functional
molecular network. A domain where this strategy, for
instance, has been proven useful is when dealing with
diseases as observed effects.

For most diseases only a limited number of causal
genes is currently known [19.91]. Genome-wide associ-
ation studies, whereby genomic variation are associated
to a certain phenotype, typically result in one or more
linked chromosomal regions, which in turn can contain
several genes. Since the elucidation of disease mech-
anisms can improve diagnose or medical care, several
approaches have been developed to identify novel dis-
ease genes.

Motivated by the observation that genes causing
a specific or similar disease phenotype tend to lie close
to each other in a protein–protein network [19.92], sev-
eral network-based approaches have been developed.
These methods have a common approach in the sense
that they try to score candidate disease genes based on
the assumption that good candidates reside in the neigh-
borhood of certain a priori determined genes. These
a priori determined genes are, for instance, genes known
to be involved in the disease [19.93–95] or in related
phenotypes [19.59, 96, 97], or differentially expressed
genes upon the phenotype [19.98]. These a priori de-
termined disease related genes are called seed genes in
what follows.

Several types of measures can be applied to score
candidate genes. A first, intuitive way of identifying
disease related genes is based on direct neighborhood:
candidate genes that are directly connected to one or
more seed genes are then predicted to be potentially
causative [19.93]. However, it is possible that two dis-
ease related genes do not interact with each other
directly, but are, for instance, part of the same pathway,
and disruption in either one of them leads to the same
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disease. These cases will be missed by direct neighbor-
hood counting. To account for indirect interactions, one
can use the shortest path length between a seed node
and a candidate gene as a measure of its relatedness to
the seed gene: if a certain candidate node lies at most
k edges away from the seed node, it is considered as
a disease gene. George et al. [19.94] observed that as the
shortest path length between a seed node and a candi-
date node increases, the sensitivity of identified disease
genes improves, but the number of false positives in-
creases exponentially and reduces the specificity.

Protein–protein networks, however, possess the
small world property, meaning that the average path
length between any two nodes in the network is rather
short [19.99]. One consequence of this for methods re-
lying on direct interactions or shortest paths is that it is
not very unlikely to observe genes interacting with the
disease seed genes but that are unrelated to the disease
as such [19.95]. Moreover, methods based on shortest
path length ignore the fact that there might be multiple
shortest paths or also other paths with longer lengths,
which could point to a higher relatedness to the seed
gene than when only one path is present between seed
and candidate node.

To overcome these limitations, several methods
have been developed that consider the topology of the
entire network (i. e., global distance measure versus lo-
cal) to define a distance measure between two nodes.
These methods generally propose a strategy based on
random walks on graphs (i. e., the interaction network).
A random walk of a certain length k on a graph rep-
resents a stochastic process starting at a seed node and
each subsequently visited node is chosen uniformly at
random from the neighbors of each previous node. The
steady state probability px,y,k(G) is then the probability
that a random walk of length k, starting at node x would
end in node y.

Kohler et al. [19.95] proposed a variant of the ran-
dom walk, namely the random walk with restart, to
identify disease genes in a human PPI network. Here,
the walk is allowed to restart in every time step at
a known disease gene (i. e., seed gene) with a certain
probability. All candidate disease genes are then ranked
according to the probability of the random walker reach-
ing the candidate gene from a (set of) seed node(s),
which reflects their global relatedness to the known
disease seed genes. Applied on 110 disease gene fam-
ilies, together with their known associated genes in
a leave-one-out cross-validation setting, they clearly
outperformed local measures as direct neighborhood or
shortest path, or approaches not based on any network.

Vanunu et al. [19.59] extended this approach by us-
ing causal genes both from the disease of interest or
similar ones as seed genes in the random walk with
restart. This approach can be very useful when no causal
genes of the disease are known. Diseases, however, can
be very heterogeneous, meaning that they can result
in different phenotypes and encompass various sub-
types. Exploiting all known disease genes that have
been related to a heterogeneous disease might not have
a sufficiently high resolution to predict novel genes for
a specific subtype of the disease. To overcome this,
two other methods proposed to identify gene-phenotype
relationships rather than finding the gene-disease rela-
tionship directly. This strategy decomposes a disease
in phenotypes and tries to identify novel phenotype-
related genes by using genes related to one or more
phenotypes of interest and related ones as seed genes.
Li and Patra [19.96] build upon the random walk with
restart strategy, but perform it on a heterogeneous net-
work connecting the gene network (i. e., consisting of
PPI) with the phenotype network (i. e., a k nearest
neighbor graph presentation of phenotypes similarity)
through gene-phenotype relations. Yang et al. [19.97],
on the other hand, make use of the associations between
protein complexes and the phenotypes of interest to per-
form a random walk with restart on a protein complex
network.

Case Study
The aforementioned methods rank candidate genes
based on their connections to known disease genes or to
known causal genes of related phenotypes in a protein–
protein network. However, these methods are usually
ineffective when little is known about the molecular ba-
sis of the phenotype (e.g., no confirmed causal genes),
or when the observed phenotypes are very specific. To
this end, Nitsch et al. [19.98] developed a computational
method to prioritize candidate disease genes for which
limited or no prior knowledge is available, by using
experimental data on differential gene expression be-
tween healthy and affected individuals for a phenotype
of interest.

Genes for which significant differential expression
was measured in an affected tissue compared to wild
type are usually considered as promising candidates
being involved in the disease. However, not neces-
sarily the expression levels of the disease gene are
affected, but rather expression of genes downstream
of this causal gene. Therefore, by mapping differen-
tial expression levels on a gene network, one expects to
observe a disrupted expression module around the dis-
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ease gene. Other candidate genes that are not causally
related to the phenotype should not be part of such
a module. For this reason, the relevance of a can-
didate gene is scored by considering the level of
differential expression in its neighborhood in a protein
network instead of only taking its own expression level
into account, under the assumption that strong candi-
dates tend to be surrounded by differentially expressed
neighbors.

In this work, a functional network was created using
human protein associations obtained from the STRING
database [19.26], since protein interaction networks are
still far from complete and according to the authors
might give suboptimal results due to many missing
components and pathways. For each gene, differential
expression values are determined from microarray ex-
periments that measure wild type versus diseased cell
lines, for a phenotype of interest. The prioritization can
be performed on a list of candidate genes on a chromo-
somal region of interest (e.g., determined from a linkage
study) or genome-wide when no list of candidate genes
are available (although this will probably result in many
more false positives).

The neighborhood of a candidate gene is then de-
termined by using a graph kernel, namely the Laplacian
exponential diffusion kernel. This gives a weight to each
gene in the network, which decreases as a function of
the distance from the causal gene, taking into account
that there might be multiple paths between the causal
gene and each gene in the network. It can be seen as
a random walk, starting from a node and transitioning
to a neighboring node with a certain probability.

Finally, each candidate gene is scored by summing
up the levels of differential expression (measures by
absolute fold changes) of each gene, weighted by its
network distance from the candidate. Higher differential
expression of neighboring genes will, therefore, result
in higher scores. The significance of a candidate gene
is determined by randomly distributing the differential
expression data on the network and computing an em-
pirical p-value from the random distribution of scores.

Besides benchmarking, the methodology on sev-
eral monogenic diseases for which the causal gene is
known, the authors also applied their method on the
polygenic disorder Stein–Leventhal [19.100] for which
currently no disease gene is known. They highly ranked
two genes on two different chromosomal regions that
were previously assigned a possible role in this disorder,
namely fibrilin 3 (FBN3) and follistatin (FST). Another
gene, DEAD box4, was found to be the best scoring
gene and was suggested as a new candidate gene poten-
tially involved in this disease. Although little is known
about the molecular function of DEAD box 4 in mam-
mals, the authors found several indications in literature
that indicate a plausible role in the Stein–Leventhal
syndrome, for instance because of its association with
stem cell recruitment to the ovaries, interaction with the
mRNA processing machinery, and impact on apoptosis.

Although the expression levels of genes can be de-
termined by multiple genes together in the case of
a polygenic order, making it difficult to determine the
true causes of the effects, the approach has neverthe-
less shown to provide plausible candidates when little
knowledge is available for the disease at hand.

19.4 Conclusion

Despite the emerging amount of data and the integration
strategies presented at the beginning of this chapter, eu-
karyotic molecular networks are still low in coverage
due to their size and complexity. We expect that the in-
creasing number of available data sets will continue to
expand current networks and further refine our knowl-
edge on the included interactions, ultimately resulting
in a better understanding of the cell’s behavior. In this

chapter we have presented several path finding method-
ologies to interrogate networks with functional data and
showed how they can be used to predict disease genes,
unveil hidden signaling paths, . . . The use of interac-
tion networks for unveiling mode of actions will only
gain in importance with functional omics datasets pro-
filing human diseases growing steadily in number and
size.
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