
275

Kernel Metho18. Kernel Methods and Applications
in Bioinformatics

Yan Fu

The kernel technique is a powerful tool for con-
structing new pattern analysis methods. Kernel
engineering provides a general approach to in-
corporating domain knowledge and dealing with
discrete data structures. Kernel methods, espe-
cially the support vector machine (SVM), have been
extensively applied in the bioinformatics field,
achieving great successes. Meanwhile, the devel-
opment of kernel methods has also been strongly
driven by various challenging bioinformatic prob-
lems. This chapter aims to give a concise and
intuitive introduction to the basic principles of
the kernel technique, and demonstrate how it
can be applied to solve problems with uncommon
data types in bioinformatics. Section 18.1 begins
with the product features to give an intuitive idea
of kernel functions, then presents the definition
and some properties of kernel functions, and then
devotes a subsection to a brief review of kernel
engineering and its applications to bioinformatics.
Section 18.2 describes the standard SVM algorithm.
Finally, Sect. 18.3 illustrates how kernel methods
can be used to address the peptide identification

18.1 Kernel Functions 276
18.1.1 Product Features 276
18.1.2 Definition and Properties

of Kernel Functions 276
18.1.3 Kernel Engineering and

Applications in Bioinformatics 277

18.2 Support Vector Machines 278
18.2.1 Maximum-Margin Classifier 278
18.2.2 Soft Margin 279

18.3 Applications of Kernel Methods
to Bioinformatics.................................. 280
18.3.1 Kernel Spectral Dot Product

for Peptide Identification 280
18.3.2 Pair Kernel for Protein Homology

Prediction 282

18.4 Conclusions .. 283

References .. 283

and the protein homology prediction problems in
bioinformatics, while Sect. 18.4 concludes.

Kernel methods are a large class of pattern analysis
methods that use the kernel technique to implicitly
map input patterns to a feature space [18.1]. As the
dot product in the feature space, a kernel function can
be incorporated into any computational processes that
exclusively involve dot product operations on input pat-
terns. Kernel functions have been most successful in
statistical learning algorithms, exemplified by the sup-
port vector machine (SVM) [18.2]. They can also be
viewed as similarity measures of input patterns and used
in all distance-based algorithms.

When the input patterns or the variables taken by
a kernel function are vectors, the mapping induced

by the kernel function is usually nonlinear, and all
dot-product-based linear algorithms can be directly ex-
tended to their nonlinear versions by simply replacing
the dot product with the kernel function. When the in-
put patterns are not vectors, such as strings, trees, and
graphs, kernel functions provide a general approach
to making vector-based algorithms applicable to these
nonvector or discrete data structures.

Kernel methods, especially the SVM, have been
extensively applied in bioinformatics, achieving great
successes (see [18.3–5] for reviews). Meanwhile, the
development of kernel methods has also been strongly
driven by various challenging bioinformatic problems;

Part
C

1
8

276 Part C Machine Learning Methods for the Analysis, Modeling and Knowledge Discovery from Bioinformatics Data

For example, bioinformatics is a field full of discrete
data structures, such as nucleic acid and protein se-
quences, phylogenetic trees, and molecular interaction
networks. Engineering proper kernel functions for these
biological data has considerably expanded the applica-
tion scope of kernel methods.

This chapter aims to give readers a concise and intu-
itive introduction to the basics of the kernel technique,

and demonstrate how it can help construct a nonlinear
algorithm and how it can be used to solve challenging
problems in bioinformatics. Although the well-known
SVM algorithm will be briefly described as an exam-
ple of kernel methods, the emphasis of this chapter is
on more extensive usages of kernel functions, such as
kernel engineering and kernel functions for similarity
search.

18.1 Kernel Functions

18.1.1 Product Features

To have an intuitive idea of kernel functions, let us
start with the product features [18.6]. In pattern clas-
sification, the input patterns are usually from the real
vector space, i. e., x ∈ R

N , and linear classification al-
gorithms use a hyperplane in the vector space to classify
the patterns. Different ways to search for the hyper-
plane result in different algorithms. However, it is often
the case in practice that the patterns cannot be classi-
fied by a hyperplane in the original space; For example,
the essential features of patterns may be all the d-order
products (called product features) of dimensions of the
input space

x j1 · x j2 · · · · · x jd ,

j1, j2, . . . , jd ∈ {1, . . . , N} . (18.1)

All product features constitute a new space F (called the
feature space), in which patterns are linearly separable;
i. e., they can be separated by a hyperplane in F. For
example, when N = 2 and d = 2, the dimensionality NF
of the feature space F is 3

(x1, x2) →
(

x2
1, x2

2, x1x2

)
. (18.2)

In general, we have

NF = (N +d −1)!
d!(N −1)! . (18.3)

NF will increase rapidly with N and d; For example,
for images with 16 × 16 pixels, we have N = 256, and
when d = 2, the order of magnitude of NF is as large
as 1010. Such high dimensionality will lead to serious
computational difficulties.

However, if an algorithm only involves dot product
operations on input vectors, then we need not actually
work in the feature space. We can construct a version
of the algorithm for the feature space from the input

space, as long as we can compute the dot product in the
feature space from the original space. Consider the fea-
ture space with dimensions being the ordered product
features. When N = 2 and d = 2, the input patterns are
transformed from two dimensions to four dimensions

C2 : (x1, x2) →
(

x2
1, x2

2, x1x2, x2x1

)
. (18.4)

The dot product of two vectors in this feature space is
then

C2(x) ·C2(y) = x2
1 y2

1 + x2
2 y2

2 +2x1x2 y1 y2 = (x · y)2 .

(18.5)

In general, if Cd maps x ∈ R
N to vector Cd(x) with el-

ements consisting of all ordered d-order products, then
we have

k(x, y) = Cd(x) ·Cd(y) = (x · y)d . (18.6)

Further, if the feature space consists of all product fea-
tures of up to d-orders, we have

k(x, y) = (x · y +1)d , (18.7)

which is the commonly used polynomial kernel function
in kernel methods.

18.1.2 Definition and Properties
of Kernel Functions

A general definition of kernel functions is given as:
A kernel function, or a kernel for short, is a binary
function k such that, for all x, y ∈ A, we have

k(x, y) = φ(x) ·φ(y) , (18.8)

where φ is some mapping from the input space A to
a feature space B. Usually, φ is a nonlinear mapping,
and the feature space B has very high or even infi-

Part
C

1
8
.1

Kernel Methods and Applications in Bioinformatics 18.1 Kernel Functions 277

nite dimensionality (Hilbert space). According to this
definition of kernel functions, any computations based
on dot products in the feature space can be accom-
plished by the kernel function from the input space, thus
avoiding the explicit mapping from the input space to
the feature space. Typical examples of kernel functions
are

Linear kernel: x · y

Polynomial kernel: [a(x · y)+γ]d

RBF kernel: exp(−λ||x− y||2)

Sigmoid kernel: tanh[a(x · y)+γ] . (18.9)

RBF stands for radical basis function. Note that the
sigmoid kernel satisfies the definition of kernel func-
tions only for certain parameter values [18.2]. Some
operations on kernel functions lead to still valid ker-
nel functions; For example, if k1(x, y) and k2(x, y) are
valid kernels, then the following functions are also valid
kernels:

k(x, y) = a1k1(x, y)+a2k2(x, y) , for a1, a2 > 0 ,

k(x, y) = k1(x, y)k2(x, y) ,

k(x, y) = pol+[k1(x, y)] ,

k(x, y) = exp[k1(x, y)] , (18.10)

where pol+ indicates polynomials with positive coeffi-
cients.

According to the definition of kernel functions, all
operations that exclusively involve dot products in the
feature space can be implicitly done in the input space
by an appropriate kernel. A nonlinear version of an
algorithm can be readily obtained by simply replac-
ing the dot products with kernels. This is called the
kernel technique. The underlying mathematical conclu-
sions of it were derived almost one century ago [18.7],
but it was very recently that the kernel technique was
widely used. The most successful application of kernels
is to extend various linear learning algorithms to their
nonlinear versions. The first such attempt was made
in 1964 [18.8]. However, the great success of kernel
methods is due to the SVM algorithm, introduced in
the early 1990s [18.2, 9]. Other famous kernel-based
nonlinear learning algorithms include kernel principal
analysis [18.10], kernel canonical correlation analy-
sis [18.11], kernel discriminant analysis [18.12], kernel
independence analysis [18.13], etc.

However, kernels are not limited to learning algo-
rithms. As the dot product in the feature space, a kernel
is a measurement of similarity, and defines the metrics
of the feature space [18.6]; For example, we have the

following kernel-based cosine and Euclidian distances
in the feature space:

cos[φ(x), φ(y)] = k(x, y)√
k(x, x) · k(y, y)

, (18.11)

d[φ(x), φ(y)] = √
k(x, x)+ k(y, y)−2k(x, y) .

(18.12)

Therefore, in a more general sense, all distance-
based algorithms can be kernelized [18.14]. Kernels
can even be directly used for similarity search, e.g.,
nearest-neighbor search [18.15, 16] and information re-
trieval [18.17–19].

18.1.3 Kernel Engineering and Applications
in Bioinformatics

In many real-world problems, the input patterns are not
given in the form of vectors but are nonvector, discrete
structures, such as strings, trees, graphs, or objects in
any form. Usually, these discrete structures are very dif-
ficult, if not impossible, to represent as vectors. Thus,
vector-based algorithms cannot be directly applied to
these structures. Even if these structures can be vec-
torized in some way, the essential information may be
irretrievably lost, and therefore the discriminative power
of algorithms may be greatly reduced.

The common kernels given in (18.9) require the
input patterns to be vectors. However, in fact, in the def-
inition of kernel functions the input space can be the set
of any types of patterns or objectives, as long as the ker-
nel can be represented as the dot product in some space.
If we can construct an appropriate kernel for the discrete
structure of interest, all vector-based algorithms can be
directly applied to the discrete structure by simply re-
placing the dot product with the kernel. In such cases,
a kernel can be considered as a similarity measurement
between input patterns [18.6].

A string kernel has been proposed for text classi-
fication, which implicitly maps strings into the feature
space of all possible substrings [18.20]. Watkins showed
that the conditionally symmetrically independent joint
probability distributions can be written as dot products
and therefore are valid kernels [18.21]. Haussler pro-
posed a more general scheme for kernel engineering,
named convolution kernels [18.22]. The Fisher kernel
is a method for constructing kernels for classifiers using
generative models [18.23]. Kondor and Lafierty pro-
posed the diffusion kernels on graphs [18.24].

Kernel engineering has been successfully applied to
bioinformatics. The mismatch kernels, a class of string
kernels, showed good performance in the protein clas-

Part
C

1
8
.1

278 Part C Machine Learning Methods for the Analysis, Modeling and Knowledge Discovery from Bioinformatics Data

sification problem [18.25, 26]. A kernel on fixed-length
strings was proposed and used for prediction of signal
peptide cleavage sites [18.27]. It is based on the fact that
strings are similar to each other if they possess many
common rare substrings. Zien et al. [18.28] incorporated
the local correlation in DNA sequences into a kernel
function, and obtained better results than previous meth-
ods for translation initiation site prediction. The Fisher
kernel based on the hidden Markov model (HMM) was
used to detect protein homologies and performed bet-
ter than other methods including HMM [18.29]. As
pointed out by Watkins [18.21], the pair HMM used
for scoring sequence alignment is in fact a valid kernel.
Diffusion kernels were used for microarray data analy-
sis [18.30]. A tree kernel on phylogenetic profiles was
engineered and used together with SVM and principle
component analysis (PCA) for biological function pre-

diction [18.31]. Kernels on graphs were engineered and
used to predict protein functions [18.32].

In summary, as the dot products in the feature space,
kernels can be used in all dot-product-based algorithms.
We can directly use a kernel without knowing the spe-
cific form of the feature space induced by the kernel.
This advantage makes kernels a powerful tool to deal
with problems on discrete structures. There are plenty
of discrete structures in the biological domain, such as
DNA or protein sequences, protein three-dimensional
structures, phylogenetic trees, interaction networks, etc.
These data are hard to convert into vectors for analy-
sis by vector-based methods. The kernel technique is
a promising solution to these problems. Research in
this direction is still in its infancy. Engineering more
powerful kernels on more discrete structures is an open
problem.

18.2 Support Vector Machines

This section illustrates how the kernel function can be
incorporated into SVM [18.2, 9, 33], the first and most
successful kernel method.

18.2.1 Maximum-Margin Classifier

When two classes of patterns (represented as vectors)
are linearly separable, multiple hyperplanes that can
classify the patterns exist in the vector space. Different
linear classifiers use different criteria to find the hy-
perplane. The so-called maximum-margin hyperplane
is the one that not only separates the patterns but also
has the largest margin to the patterns. According to
the statistical learning theory [18.2], the maximum-
margin hyperplane has low Vapnik–Chervonenkis (VC)
dimension and better generalizability (ability to clas-
sify unseen patterns). The algorithm searching for the
maximum-margin hyperplane is called a support vec-
tor machine (SVM). As we will see later, SVM only
involves dot product operations on input vectors and
therefore can be kernelized. In addition to the statistical
foundation, the kernel technique is another factor con-
tributing to the great success of SVM. For this reason,
SVM is sometimes called a kernel machine. A third ad-
vantage of SVM is the global optimality of its solution.
Multiple ways to formulate SVM have been presented,
and there are SVMs for different purposes, e.g., classifi-
cation and regression. Below, we introduce the standard
SVM for classification.

Let H be a hyperplane that can separate two classes
of samples, and H1 and H2 be two hyperplanes par-
allel to H and passing through the samples closest
to H . The distance between H1 and H2 is called the
classification margin. Suppose that the equation for hy-
perplane H is x ·w+ b = 0, where x ∈ R

N , w is the
weight coefficient vector, and b is the displacement. We
can normalize this equation so that a linearly separable
two-class training sample set, (xi , yi), i = 1, 2, . . . , n,
x ∈ R

N , y ∈ {+1, −1}, satisfies

yi (x ·w+b)−1 ≥ 0, i = 1, 2, . . . , n . (18.13)

Under this condition, we have that the classifica-
tion margin is 2/||w||. Maximizing the margin is
equivalent to minimizing ||w||. The hyperplane that sat-
isfies the condition in (18.13) and minimizes ||w|| is
the maximum-margin hyperplane. Figure 18.1 shows
an example in two-dimensional space. To find the

H1

H2
H

2/||w||

Fig. 18.1 Maximum margin

Part
C

1
8
.2

Kernel Methods and Applications in Bioinformatics 18.2 Support Vector Machines 279

Φ

Fig. 18.2 Nonlinear mapping

maximum-margin hyperplane, we need to solve the fol-
lowing optimization problem

min
w,b

||w||2

with yi (x ·w+b)−1 ≥ 0, i = 1, 2, . . . , n .

(18.14)

The Lagrangian dual problem of this problem is

max
α

n∑
i=1

αi − 1

2

n∑
i=1

n∑
j=1

yi y jαiα j (xi · x j)

with
n∑

i=1

yiαi = 0 ,

∀i : αi ≥ 0 , i = 1, 2, . . . , n . (18.15)

Solving this optimization problem leads to a classifica-
tion function

f (x) = sgn

[
n∑

i=1

α∗
i yi (x · xi)+b∗

]
. (18.16)

When the training samples are not linearly sepa-
rable, we cannot find a solution to the optimization
problem in (18.15). However, if the samples are non-
linearly separable, we can map the input samples to
a higher-dimensional space with a properly chosen
nonlinear mapping Φ so that the samples become lin-
early separable and the problem in (18.15) is solvable,
as shown in Fig. 18.2. However, this may dramati-
cally increase the dimensionality of the feature space,
resulting in the so-called dimension disaster. The an-
swer lies in the kernel technique introduced above.
Notice that the problem in (18.15) and the optimal
classification function in (18.16) exclusively involve
the dot product operation on input vectors. We can
avoid an explicit nonlinear mapping by using some
appropriate kernel function k(xi , x j) to replace the
dot product xi · x j , where k(xi , x j) = Φ(xi) ·Φ(x j). In
this way, we have the nonlinear maximum-margin
classifier.

18.2.2 Soft Margin

Above, we have shown how kernel functions can be used
to implicitly map the samples into a feature space in
which the samples become linearly separable. However,
it may be problematic if we always rely on the mapping
induced by a kernel function to achieve perfect separa-
tion of samples. This is because the samples in practice
are usually imperfect and are subject to interferences of
various noises, and the linear inseparability of samples
in the input space may have resulted from the noises and
not be an inherent characteristic of the patterns. Further,
even if the patterns are not linearly separable in the in-
put space, there are still noises in the samples. A strong
nonlinear mapping seeking perfect separation may lead
to potential overfitting to training samples and reduced
generalizability of classifiers. Therefore, a good algo-
rithm should be able to tolerate some training errors. In
SVM, this is achieved by introducing the concept of soft
margin. The idea of this is to augment the margin by
allowing some misclassified samples in the training pro-
cess. The optimization problem then becomes

min
w,b

1
2 ||w||2 +C

n∑
i=1

ξi

with yi (x ·w+b)−1+ ξi ≥ 0 , i = 1, 2, . . . , n ,

ξi ≥ 0 , i = 1, 2, . . . , n , (18.17)

where ξi are slack variables, C is the parameter control-
ling the tradeoff between the classification margin and
training errors, and the coefficient 1/2 is introduced for
representation convenience. The Lagrangian dual prob-
lem of this problem is

max
α

n∑
i=1

αi − 1

2

n∑
i=1

n∑
j=1

yi y jαiα j (xi · x j)

with
n∑

i=1

yiαi = 0 ,

∀i : 0 ≤ αi ≤ C, i = 1, 2, . . . , n . (18.18)

Again, the problem exclusively involves the dot product
operation on input vectors. Therefore, the dot product
can be replaced by a kernel function; That is,

max
α

n∑
i=1

αi − 1
2

n∑
i=1

n∑
j=1

yi y jαiα j k(xi , x j)

with
n∑

i=1

yiαi = 0 ,

∀i : 0 ≤ αi ≤ C, i = 1, 2, . . . , n . (18.19)

Part
C

1
8
.2

280 Part C Machine Learning Methods for the Analysis, Modeling and Knowledge Discovery from Bioinformatics Data

Solving this optimization problem leads to the nonlinear
soft margin classifier

f (x) = sgn

[
n∑

i=1

α∗
i yik(x, xi)+b∗

]
, (18.20)

in which α∗
i is the solution to the problem in (18.19),

and b∗ can be calculated with

b∗ = 1

yi
−

n∑
j=1

α∗
i y jk(xi , x j) , (18.21)

where i is an arbitrary index satisfying 0 < αi < C.
Only the samples with α∗

i > 0 contribute to the final
maximum-margin hyperplane, being called support vec-
tors (SVs). SVs are those samples that are on or between
the hyperplanes H1 and H2.

18.3 Applications of Kernel Methods to Bioinformatics

Kernel methods, especially the SVM, have been suc-
cessfully used to address various biological problems,
e.g., gene prediction [18.34], gene expression data
analysis [18.35], RNA splicing site prediction [18.36],
protein classification [18.26], protein structure predic-
tion [18.37], protein function prediction [18.38], protein
mass-spectrometric data analysis [18.39, 40], etc. This
section does not list all applications of kernel meth-
ods in bioinformatics (some reviews already exist,
e.g., [18.3–5]), but gives some detailed research results
on two specific problems, namely peptide identifica-
tion from tandem mass spectra and protein homology
prediction.

18.3.1 Kernel Spectral Dot Product
for Peptide Identification

Peptide identification from tandem mass spectra is the
foundation of bottom-up proteomics [18.41]. In tan-
dem mass spectrometry, peptides are ionized, isolated,
and fragmented. Roughly speaking, the tandem mass
spectrum of a peptide is a mass (or more accurately,
mass-to-charge ratio m/z) histogram of fragment ions
of this peptide [18.42]. To identify the peptide respon-
sible for a tandem mass spectrum, the database search
approach is commonly used, in which theoretical mass
spectra are predicted from the peptide sequences in
a database for comparison with the input experimen-
tal spectrum [18.43]. However, the mass spectrum of
a peptide cannot in general be accurately predicted.
Therefore, the scoring function that measures the sim-
ilarity between the theoretical and the experimental
spectra is the core of a peptide identification algorithm.

The spectral dot product (SDP) is the most widely
used similarity measure for mass spectra [18.43, 44]. In
SDP, mass spectra are represented as vectors and the
SDP is simply the dot product of spectral vectors. A dis-
advantage of SDP is that it, as a linear function, totally

ignores possible correlations among fragment ions. Ac-
cording to expert knowledge, when positively correlated
fragment ions are matched together, the matches are
more reliable as a whole than as individuals. Therefore,
such matches should be scored higher than separate
matches.

Kernel Spectral Dot Product
A straightforward idea is to extend the SDP with a ker-
nel to incorporate the correlations between fragment
ions. Since not all fragment ions are correlated, com-
mon kernel functions, e.g., the polynomial kernel, do
not directly apply here. The central problem becomes
how to find a kernel that only emphasizes co-occurring
matches of truly correlated fragment ions while ignor-
ing others. Inspired by the locally improved polynomial
kernel [18.28, 45], we solved this problem by exerting
kernels separately on all possible groups of correlated
fragment ions, and then summing them up [18.46]. This
is achieved by arranging the predicted fragment ions
into a correlative matrix as shown in Fig. 18.3, and
grouping the correlated fragment ions into local correl-
ative windows, e.g., the dotted rectangles in Fig. 18.3.

All fragment ions in a theoretical spectrum are
assumed to possess unique m/z values. Under this
assumption, all nonzero dimensions in the theoreti-
cal spectral vector t can be arranged into a matrix
T = (tpq)m×n according to their fragmentation positions
and fragment ion types, where m is the number of frag-
ment ion types for theoretical fragmentation and n +1
is the peptide sequence length; For example, t2,3 cor-
responds to the fragment ion b∗

3 in Fig. 18.3. For the
experimental spectral vector c, the dimensions at the
m/z value corresponding to tpq are also extracted and
arranged into a matrix C = (cpq)m×n . It follows that

SDP = c · t =
m∑

p=1

n∑
q=1

cpqtpq . (18.22)

Part
C

1
8
.3

Kernel Methods and Applications in Bioinformatics 18.3 Applications of Kernel Methods to Bioinformatics 281

Given the definition of correlative windows, the gen-
eral form of the kernel spectral dot product (KSDP) is
defined as

KSDP =
∑

j

k(c j , t j) , (18.23)

where k(c j , t j) is a kernel function, c j is the vector with
elements cpq , and t j is the vector with elements tpq , in
which the subscript (p, q) traverses all the elements in
the j-th correlative window in the matrices C and T.

The KSDP given in (18.23) is also a kernel func-
tion. If k(c j , t j) is the dot product kernel, the KSDP
reduces to the SDP. For a properly chosen kernel func-
tion k(c j , t j), the KSDP implicitly maps the spectral
space to a high-dimensional space where the new di-
mensions correspond to the combinations of correlated
fragment ions.

KSDP for Consecutive Fragment Ions
In our earlier work [18.46], we developed the computa-
tion of the KSDP for consecutive fragment ions using
the locally improved polynomial kernel, given by

m∑
i=1

n∑
j=1

⎡
⎣

j+l2∑
k= j−l1

(ciktik)
1
d

⎤
⎦

d

, (18.24)

where the positive integers l1 and l2 are equal to 	(l −
1)/2
 and �(l −1)/2�, respectively, the integer l is the
size of the correlative window, and cik and tik are set to
zero for k ≤ 0 and k > n.

Here, we build on our previous work by developing
a radial basis function (RBF) version of the KSDP for
consecutive fragment ions as

m∑
i=1

n∑
j=1

exp

⎡
⎣−γ

j+l2∑
k= j−l1

(cik − tik)2

⎤
⎦ , (18.25)

where γ is the parameter in the RBF kernel. The RBF-
KSDP can be computed in O(mn) time, similarly to the
polynomial KSDP.

Performance of KSDP
To show the effectiveness of the KSDP and to ex-
plore its parameters, the polynomial KSDP given in
(18.24) and the RBF-KSDP given in (18.25) were di-
rectly used as the scoring function of the pFind search
engine [18.46, 47]. Spectra from a standard protein
dataset were searched [18.46, 48]. The error rates of
the two KSDP implementations are given in Fig. 18.4.
Both implementations significantly outperformed SDP

Consecutive
window

Complementary
window

Homologous
window

b1
2+ b2

2+ b3
2+ b4

2+ . . . bn
2+

b1
* b2

* b3
* b4

* . . . bn
*

b1
0 b2

0 b3
0 b4

0 . . . bn
0

b1 b2 b3 b4 . . . bn

yn yn–1 yn–2 yn–3 . . . y1

yn
0 yn

0
–1 yn

0
–2 yn

0
–3 . . . y1

0

yn
* yn

*
–1 yn

*
–2 yn

*
–3 . . . y1

*

yn
2+ yn

2+
–1 yn

2+
–2 yn

2+
–3 . . . y1

2+

Fig. 18.3 Correlative matrix and examples of correlative windows.
Horizontal direction is the fragmentation position in peptides, and
vertical direction is the ion type

0.6 0.8 1 1.2 1.4 1.6

RBF-KSDP

SDP

SDP

a) Error rate (%)

γ

l = 3

l = 4

l = 6

l = 5

l = 2

22

20

18

16

14

12

10

8

6

0.2 0.4 0.6 0.8 1 1.2 1.4

Polynomial KSDPb) Error rate (%)

�

l = 2

l = 4

l = 3

l = 5

l = 6

22

20

18

16

14

12

10

8

6

Fig. 18.4a,b Error rates of KSDP for consecutive frag-
ment ions (a). In the polynomial KSDP, the parameter d
is equal to 1+β(l −1) (b)

Part
C

1
8
.3

282 Part C Machine Learning Methods for the Analysis, Modeling and Knowledge Discovery from Bioinformatics Data

for a large range of parameter values. Compared with
SDP, RBF-KSDP reduced the error rate by 13% at best
in this experiment.

18.3.2 Pair Kernel for Protein Homology
Prediction

The three-dimensional structures of proteins are crucial
for the biological functions of proteins. The experimen-
tal approach to protein structure determination is both
slow and expensive, and therefore, theoretical predic-
tion of protein structure becomes an important research
topic in bioinformatics. Since homologous proteins
(evolved from the same ancestor) usually share similar
structures, predicting protein structures based on pro-
tein homologies has been one of the most important
bioinformatic problems [18.49]. Protein homology pre-
diction is a key step in template-based protein structure
prediction methods.

In terms of information retrieval and machine learn-
ing, protein homology prediction is a typical ranking
problem [18.50]. In this problem, the database objects
are protein sequences with known three-dimensional
structures, and the query is a protein sequence with un-
known structure. The objective is to find those proteins
in the database that are homologous to the query pro-
tein so that the homologous proteins can be used as
structural templates. The homology or match of two
proteins can be captured by multiple features, which,
as in other retrieval problems, need to be integrated into
a single score (called a ranking function) in an intelli-
gent manner in order to accurately rank the proteins in
the database. Currently, this is often done by learning
a ranking function from a training dataset.

A major characteristic of the ranking-function learn-
ing problem is that each feature vector is computed
based on a query. Therefore, all feature vectors are
partitioned into groups by queries. Here, we call each
group of data associated with a query a block. Unlike
traditional learning tasks, e.g., classification and regres-
sion, in which data are assumed to be independently
and identically distributed, the ranking data belonging
to the same block are correlated via the same query.
This block structure of the data is a unique feature of
the ranking-function learning problem. Although ignor-
ing the existence of the block structure would reduce
the complexity of the ranking-function learning prob-
lem, a potential source of information for improving
the ranking performance would also be ignored. In the
past, the block structure was not fully explored by most
ranking-function learning algorithms.

Pair Kernel
Here, we explore a kernel engineering approach to mak-
ing use of the block structure information and give some
preliminary results. The approach is quite general. We
propose the following kernel, named a pair kernel, for
learning to rank

kp(〈di , qu〉, 〈d j , qv〉) = ks(siu, s jv)+ kq(qu, qv) ,

(18.26)

where di and d j are two database items, qu and qv are
two queries, 〈di , qu〉 and 〈d j , qv〉 are item–query pairs
whose relevances are of interest, siu and s jv are feature
vectors that measure the similarities between database
item i and query u and between item j and query v,
respectively, ks is a kernel on the similarity feature vec-
tors, and kq is a kernel on queries.

The pair kernel defined above says that, when we are
predicting the relevance or similarity of an item–query
pair according to another (training) pair, we should not
only consider the pairs as a whole but also consider the
similarity between queries alone. When kq ≡ 0, the pair
kernel reduces to the common kernel used for ranking
problems in information retrieval. Different implemen-
tations of kq lead to different query kernels. Here, we
give an implementation of kq as

kq(qu, qv) = kb(Bu, Bv) = k[Φ(Bu), Φ(Bv)] ,

(18.27)

where Bu and Bv are the data blocks associated with
query qu and query qv, respectively, Φ(Bu) and Φ(Bv)
are feature vectors describing block Bu and block Bv,
respectively, kb is a kernel defined on blocks, and
k[Φ(Bu), Φ(Bv)] is a kernel defined on vectors. Further,
we define

Φ(Bu) = 〈μu1, σu1, μu2, σu2, . . . , μud, σud〉 ,

(18.28)

where μuk and σuk are the mean and the standard devi-
ation, respectively, of the k-th feature in block Bu .

Performance of Pair Kernel
The dataset used to validate the pair kernel is from the
ACM KDD Cup 2004 competition [18.51]. ACM KDD
Cup is the annual data mining and knowledge discov-
ery competition organized by the ACM special interest
group on data mining and knowledge discovery, the
leading professional organization of data miners. One
of the tasks in KDD Cup 2004 was to predict protein

Part
C

1
8
.3

Kernel Methods and Applications in Bioinformatics References 283

Table 18.1 Performances of SVM with the common kernel and the pair kernel for protein homology prediction

TOP1 (maximize) RKL (minimize) APR (maximize) RMS (minimize)

Common kernel 0.8497 54.78 0.8033 0.0373

Pair kernel 0.8497 47.26 0.8253 0.0363

homologies. The best results on this task were mostly
obtained with SVMs [18.52–56]. The success of SVMs
in the competition demonstrated that kernel methods
are among the best methods for solving complicated
bioinformatic problems.

In this dataset, homology between a database pro-
tein and the query protein is described by 74 features
(constituting the input vector s of the ks kernel).
These features were generated by a protein fold recog-
nition program named LOOPP [18.57] and include
various scores of sequence alignments, scores of thread-
ing features, measures of secondary structure fitness,
etc. [18.58]. There are a total of 153 training queries
(test queries are without published labels and are not
used here). For each query, a data block consisting
of about 1000 samples is given. A sample is a 74-
dimensional vector measuring the homology between
the query and a protein in the database.

Four metrics were used to evaluate the perfor-
mance of ranking algorithms, including the frequency
of a relevant item being ranked highest (TOP1), the
average rank of the last relevant item (RKL), the av-
erage overall ranking precision (APR), and the average
root-mean-square error (RMS). For model selection, the
leave-one-block-out strategy was used [18.52]. SVM
was used as the learning algorithm. Table 18.1 presents
the results obtained with the pair kernel and the com-
mon kernel. In both cases, the dot product kernel was
used. It is demonstrated that the proposed pair kernel
can significantly improve the ranking performance, in
comparison with the commonly used kernel. This im-
provement is owing to the query kernel kq added to the
common kernel. Finally, it should be noted that the pair
kernel proposed here is a general scheme, and the con-
stituent query kernel implemented here is only a simple
demonstration of this methodology.

18.4 Conclusions

The kernel technique is a powerful tool for construct-
ing new algorithms, especially nonlinear ones. Kernel
engineering provides a promising methodology for ad-
dressing nonvector data structures. Over the past two
decades, kernel methods have become very popular for
pattern analysis, especially in the bioinformatics field. It
is neither possible nor necessary to enumerate all appli-
cations of kernel methods in bioinformatics in this short

chapter, because they have actually been applied to al-
most all bioinformatic problems that one can imagine.
This chapter, instead of giving a comprehensive review
or focusing on a specific research, presents basic princi-
ples of kernel methods and focuses on kernel engineer-
ing, in the hope that readers, after reading this chapter,
can explore their own kernel methods to address various
problems with uncommon data types in bioinformatics.

References

18.1 J. Shawe-Taylor, N. Cristianini: Kernel Methods for
Pattern Analysis (Cambridge University Press, Cam-
bridge 2004)

18.2 V.N. Vapnik: The Nature of Statistical Learning The-
ory (Springer, Berlin Heidelberg 1995)

18.3 B. Schölkopf, K. Tsuda, J.-P. Vert (Eds.): Ker-
nel Methods in Computational Biology (MIT Press,
Cambridge 2004)

18.4 A. Ben-Hur, C.S. Ong, S. Sonnenburg, B. Schölkopf,
G. Rätsch: Support vector machines and kernels for
computational biology, PLoS Comput. Biol. 4(10),
e1000173 (2008)

18.5 K.M. Borgwardt: Kernel methods in bioinformat-
ics,. In: Handbook of Statistical Bioinformatics, ed.
by H.H. Lu, B. Schölkopf, H. Zhao (Springer, Berlin
Heidelberg 2011) pp. 317–334

18.6 B. Schölkopf: Support Vector Learning. Dr. Thesis
(Technische Universität Berlin, Berlin 1997)

18.7 J. Mercer: Functions of positive and negative type
and their connection with the theory of integral
equations, Philos. Trans. R. Soc. A209, 415–446
(1909)

18.8 M.A. Aizerman, E.M. Braverman, L.I. Rozonofier:
Theoretical foundations of the potential function

Part
C

1
8

284 Part C Machine Learning Methods for the Analysis, Modeling and Knowledge Discovery from Bioinformatics Data

method in pattern recognition learning, Autom.
Remote Control 25, 821–837 (1964)

18.9 B.E. Boser, I.M. Guyon, V.N. Vapnik: A training al-
gorithm for optimal margin classifiers, Proc. 5th
Annu. ACM Workshop Comput. Learn. Theory (1992)
pp. 144–152

18.10 B. Schölkopf, A.J. Smola, K.R. Müller: Nonlinear
component analysis as a kernel eigenvalue prob-
lem, Neural Comput. 10, 1299–1319 (1998)

18.11 P.L. Lai, C. Fyfe: Kernel and nonlinear canonical
correlation analysis, Int. J. Neural Syst. 10, 365–377
(2000)

18.12 S. Mika, G. Rätsch, J. Weston, B. Schölkopf,
K.-R. Müller: Fisher discriminant analysis with ker-
nels, Neural Networks for Signal Processing, Vol. 9,
ed. by Y.-H. Hu, J. Larsen, E. Wilson, S. Douglas
(IEEE, 1999) pp. 41–48

18.13 F.R. Bach, M.I. Jordan: Kernel independent com-
ponent analysis, J. Mach. Learn. Res. 3, 1–48 (2003)

18.14 B. Schölkopf: The kernel trick for distances. In: Ad-
vances in Neural Information Processing Systems,
Vol. 13, ed. by T.K. Leen, T.G. Dietterich, V. Tresp
(MIT Press, Cambridge, MA 2001) pp. 301–307

18.15 K. Yu, L. Ji, X. Zhang: Kernel nearest-neighbor
algorithm, Neural Process. Lett. 15, 147–156 (2002)

18.16 J. Peng, D.R. Heisterkamp, H.K. Dai: Adaptive qua-
siconformal kernel nearest neighbor classification,
IEEE Trans. Pattern Anal. Mach. Intell. 26, 656–661
(2004)

18.17 Y. Fu: Machine Learning Based Bioinformation Re-
trieval, Dissertation (Chinese Academy of Sciences
2007)

18.18 J. Xu, H. Li, C. Zhong: Relevance ranking using ker-
nels, Proc. 6th Asian Inf. Retr. Soc. Symp. (2010)
pp. 1–12

18.19 W. Wu, J. Xu, H. Li, S. Oyama: Learning a robust
relevance model for search using kernel methods,
J. Mach. Learn. Res. 12, 1429–1458 (2011)

18.20 H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cris-
tianini, C. Watkins: Text classification using
string kernels, J. Mach. Learn. Res. 2, 419–444
(2002)

18.21 C. Watkins: Dynamic alignment kernels,. In:
Advances in Large Margin Classifiers, ed. by
A.J. Smola, P.L. Bartlett, B. Schölkopf, D. Schuur-
mans (MIT, Cambridge 1999) pp. 39–50

18.22 D. Haussler: Convolution kernels on discrete struc-
tures, Technical Report UCSC-CRL-99-10 (1999)

18.23 T.S. Jaakkola, D. Haussler: Exploiting generative
models in discriminative classifiers,. In: Advances
in Neural Information Processing Systems, Vol. 11,
ed. by M.S. Kearns, S.A. Solla, D.A. Cohn (MIT Press,
Cambridge, MA 1999) pp. 487–493

18.24 R.I. Kondor, J. Lafierty: Diffusion kernels on graphs
and other discrete input spaces, Proc. 9th Int. Conf.
Mach. Learn. (2002) pp. 315–322

18.25 C. Leslie, E. Eskin, W.S. Noble: The spectrum ker-
nel: A string kernel for SVM protein classification,

Proc. 7th Pac. Sympos. Biocomput. (2002) pp. 564–
575

18.26 C. Leslie, E. Eskin, J. Weston, W.S. Noble: Mismatch
string kernels for discriminative protein classifica-
tion, Bioinformatics 20(4), 467–476 (2004)

18.27 J.P. Vert: Support vector machine prediction of sig-
nal peptide cleavage site using a new class of
kernels for strings, (2002) pp. 649–660

18.28 A. Zien, G. Rätsch, S. Mika, B. Schölkopf,
T. Lengauer, K.-R. Muller: Engineering support
vector machine kernels that recognize translation
initiation sites, Bioinformatics 16, 799–807 (2000)

18.29 T. Jaakkola, M. Diekhans, D. Haussler: A discrim-
inative framework for detecting remote protein
homologies, J. Comput. Biol. 7, 95–114 (2000)

18.30 J.P. Vert, M. Kanehisa: Graph-driven features
extraction from microarray data using diffusion
kernels and kernel CCA. In: Advances in Neu-
ral Information Processing Systems, Vol. 15, ed. by
S. Becker, S. Thrun, K. Obermayer (MIT Press, Cam-
bridge, MA 2003) pp. 1425–1432

18.31 J.P. Vert: A tree kernel to analyze phylogenetic
profiles, Bioinformatics 18, S276–S284 (2002)

18.32 K.M. Borgwardt, C.S. Ong, S. Schönauer, S.V.N. Vish-
wanathan, A.J. Smola, H. Kriegel: Protein func-
tion prediction via graph kernels, Bioinformatics
1(Suppl.), 47–56 (2005)

18.33 N. Cristianini, J. Shawe-Taylor: An Introduction to
Support Vector Machines and Other Kernel-based
Learning Methods (University Press, Cambridge
2000)

18.34 G. Schweikert, A. Zien, G. Zeller, J. Behr, C. Di-
eterich, C.S. Ong, P. Philips, F. De Bona, L. Hart-
mann, A. Bohlen, N. Krüger, S. Sonnenburg,
G. Rätsch: mGene: Accurate SVM-based gene find-
ing with an application to nematode genomes,
Genome Res. 19(11), 2133–2143 (2009)

18.35 I. Guyon, J. Weston, S. Barnhill, V. Vapnik: Gene
selection for cancer classification using support
vector machines, Mach. Learn. 46, 389–422 (2002)

18.36 Y. Sun, X. Fan, Y. Li: Identifying splicing sites in
eukaryotic RNA: Support vector machine approach,
Comput. Biol. Med. 33(1), 17–29 (2003)

18.37 J. Gubbi, A. Shilton, M. Palaniswami: Kernel meth-
ods in protein structure prediction. In: Machine
Learning in Bioinformatics, ed. by Y.-Q. Zhang,
J.C. Rajapakse (Wiley, Hoboken 2008)

18.38 G.R.G. Lanckriet, M. Deng, N. Cristianini, M.I. Jor-
dan, W.S. Noble: Kernel-based data fusion and its
application to protein function prediction in yeast,
Proc. 9th Pac. Symp. Biocomput. (2004) pp. 300–
311

18.39 H. Wang, Y. Fu, R. Sun, S. He, R. Zeng, W. Gao: An
SVM scorer for more sensitive and reliable peptide
identification via tandem mass spectrometry, Proc.
11th Pac. Symp. Biocomput. (2006) pp. 303–314

18.40 Y. Li, P. Hao, S. Zhang, Y. Li: Mol cell proteomics,
feature-matching pattern-based support vector

Part
C

1
8

Kernel Methods and Applications in Bioinformatics References 285

machines for robust peptide mass fingerprint-
ing, Mol. Cell. Proteomic. 10(12), M110.0057852011
(2011)

18.41 R. Aebersold, M. Mann: Mass spectrometry-based
proteomics, Nature 422, 198–207 (2003)

18.42 H. Steen, M. Mann: The ABC’s (and XYZ’s) of peptide
sequencing, Nat. Rev. Mol. Cell 5, 699–711 (2004)

18.43 J.K. Eng, A.L. McCormack, J.R. Yates: An approach
to correlate tandem mass spectral data of pep-
tides with amino acid sequences in a protein
database, J. Am. Soc. Mass Spectrom. 5, 976–989
(1994)

18.44 K.X. Wan, I. Vidavsky, M.L. Gross: Comparing similar
spectra: From similarity index to spectral con-
trast angle, J. Am. Soc. Mass Spectrom. 13, 85–88
(2002)

18.45 B. Schölkopf, P. Simard, A. Smola, V. Vapnik:
Prior knowledge in support vector kernels, Adv.
Neur. Inf. Proces. Syst., Vol. 10, ed. by M. Jordan,
M. Kearns, S. Solla (MIT, Cambridge 1998) pp. 640–
646

18.46 Y. Fu, Q. Yang, R. Sun, D. Li, R. Zeng, C.X. Ling,
W. Gao: Exploiting the kernel trick to corre-
late fragment ions for peptide identification via
tandem mass spectrometry, Bioinformatics 20,
1948–1954 (2004)

18.47 D. Li, Y. Fu, R. Sun, C. Ling, Y. Wei, H. Zhou,
R. Zeng, Q. Yang, S. He, W. Gao: pFind: A novel
database-searching software system for auto-
mated peptide and protein identification via
tandem mass spectrometry, Bioinformatics 21,
3049–3050 (2005)

18.48 A. Keller, S. Purvine, A.I. Nesvizhskii, S. Stolyar,
D.R. Goodlett, E. Kolker: Experimental protein mix-
ture for validating tandem mass spectral analysis,
Omics 6, 207–212 (2002)

18.49 Y. Zhang: Progress and challenges in protein struc-
ture prediction, Curr. Opin. Struct. Biol. 18, 342–348
(2008)

18.50 T. Liu: Learning to Rank for Information Retrieval
(Springer, New York 2011)

18.51 R. Caruana, T. Joachims, L. Backstrom: KDD Cup
2004: Results and analysis, SIGKDD Explorations 6,
95–108 (2004)

18.52 Y. Fu, R. Sun, Q. Yang, S. He, C. Wang, H. Wang,
S. Shan, J. Liu, W. Gao: A block-based support
vector machine approach to the protein homology
prediction task in KDD Cup 2004, SIGKDD Explo-
rations 6, 120–124 (2004)

18.53 C. Foussette, D. Hakenjos, M. Scholz: KDD-Cup
2004 – Protein homology task, SIGKDD Explorations
6, 128–131 (2004)

18.54 B. Pfahringer: The Weka solution to the 2004 KDD
cup, SIGKDD Explorations 6, 117–119 (2004)

18.55 Y. Tang, B. Jin, Y. Zhang: Granular support vector
machines with association rules mining for protein
homology prediction, Artif. Intell. Med. 35, 121–134
(2005)

18.56 Y. Fu, R. Pan, Q. Yang, W. Gao: Query-adaptive
ranking with support vector machines for pro-
tein homology prediction. In: ISBRA 2011, Lecture
Notes in Bioinformatics, Vol. 6674, ed. by J. Chen,
J. Wang, A. Zelikovsky (Springer, Berlin Heidelberg
2011) pp. 320–331

18.57 D. Tobi, R. Elber: Distance dependent, pair po-
tential for protein folding: Results from linear
optimization, Proteins Struct. Funct. Genet. 41, 40–
46 (2000)

18.58 O. Teodorescu, T. Galor, J. Pillardy, R. Elber: Enrich-
ing the sequence substitution matrix by structural
information, Proteins Struct. Funct. Bioinform. 54,
41–48 (2004)

Part
C

1
8

	Schaltfläche:

