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Machine Lear12. Machine Learning Methodology in Bioinformatics

Colin Campbell

Machine learning plays a central role in the in-
terpretation of many datasets generated within
the biomedical sciences. In this chapter we focus
on two core topics within machine learning, su-
pervised and unsupervised learning, and illustrate
their application to interpreting these datasets. For
supervised learning, we focus on support vector
machines (SVMs), which is a subtopic of kernel-
based learning. Kernels can be used to encode
many different types of data, from continuous
and discrete data through to graph and sequence
data. Given the different types of data encountered
within bioinformatics, they are therefore a method
of choice within this context. With unsupervised
learning we are interested in the discovery of
structure within data. We start by considering hi-
erarchical cluster analysis (HCA), given its common
usage in this context. We then point out the ad-
vantages of Bayesian approaches to unsupervised
learning, such as a principled approach to model
selection (how many clusters are present in the
data) through to confidence measures for assign-
ment of datapoints to clusters. We outline five
case studies illustrating these methods. For super-
vised learning we consider prediction of disease
progression in cancer and protein fold prediction.
For unsupervised learning we apply HCA to a small
colon cancer dataset and then illustrate the use of
Bayesian unsupervised learning applied to breast
and lung cancer datasets. Finally we consider
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network inference, which can be approached
as an unsupervised or supervised learning task
depending on the data available.

In this chapter we consider the application of mod-
ern methods from machine learning to the analysis of
biomedical datasets. There are a substantial number of
machine learning methods which could be used in the
context of bioinformatics, and so we are necessarily se-
lective. We focus on the two commonest themes within
machine learning, namely supervised and unsupervised
learning. Many methods have been proposed for su-

pervised learning, and so, in Sect. 12.1, we choose to
concentrate on kernel-based methods, specifically sup-
port vector machines (SVMs). SVMs are a popular
approach to classification and have several advantages
in handling datasets from bioinformatics. In particu-
lar, biomedical data can appear in many forms from
continuous-valued and discrete data to network struc-
tures and sequence data. These different types of data
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186 Part C Machine Learning Methods for the Analysis, Modeling and Knowledge Discovery from Bioinformatics Data

can be encoded into kernels which quantify the similar-
ity of data objects. We start by introducing classification
and the support vector machine for binary classification.
In Sect. 12.1.1 we then extend this approach to multi-
class classification, learning in the presence of noise, the
association of confidence measures to class labels, and
regression (i. e., using continuously valued labels). In
Sect. 12.1.3 we consider simple kernels, complex ker-
nels for graphs, strings, and sequences, and multiple
kernel learning, where we build a decision function for
prediction using multiple types of input data.

The second area of machine learning we consider
is unsupervised learning, where we are interested in

the discovery of structure in data. In Sect. 12.2.1 we
start with hierarchical cluster analysis (HCA), given
the common usage of this unsupervised learning ap-
proach in the biomedical community. We then point
out that Bayesian approaches can have certain advan-
tages over HCA. We consider variational approaches
to Bayesian unsupervised learning and illustrate the use
of this approach in finding novel disease subtypes in
cancer research. We then consider Markov chain Monte
Carlo (MCMC) approaches, which can be more accu-
rate than variational methods, and illustrate their use in
cancer research for finding the most probable pathway
structure from a set of candidate pathway topologies.

12.1 Supervised Learning

Many bioinformatics problems involve prediction over
two classes; For example, we may want to predict
whether a tumor is benign or malignant, based on ge-
netic data. An abstract learning machine will learn
from training data and attempt to generalize and thus
make predictions on novel input data. For the train-
ing data we have a set of input vectors, denoted xi ,
with each input vector having a number of component
features. These input vectors are paired with corre-
sponding labels, which we denote yi , and there are
m such pairs (i = 1, . . . , m). Thus, for our cancer exam-
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Fig. 12.1 (a) The argument inside the decision function of our SVM
classifier is w · x+b. The separating hyperplane corresponding to
w · x+b = 0 is shown as a line on this plot. This hyperplane sep-
arates the two classes of data, with points on one side labeled
yi = +1 (w · x+b ≥ 0) and points on the other side labeled yi = −1
(w · x +b < 0). (b) The perpendicular distance between the sepa-
rating hyperplane and a hyperplane through the closest points (the
support vectors) is called the margin, γ . x1 and x2 are examples of
support vectors of opposite sign. The hyperplanes passing through
the support vectors are canonical hyperplanes, and the region be-
tween the canonical hyperplanes is the margin band. The projection
of the vector (x1 − x2) onto the normal to the separating hyperplane
(w/ ||w||2) is 2γ

ple, yi = +1 may denote malignant and yi = −1 benign.
The matching xi are input vectors encoding the genetic
data derived from each patient i. Typically, we would be
interested in quantifying the prediction performance be-
fore any practical usage, and so we would evaluate a test
error based on a test set of data.

The training data can be viewed as labeled data-
points in an input space, which we depict in Fig. 12.1.
For two classes of well-separated data, the learning
task amounts to finding a directed hyperplane, i.e., an
oriented hyperplane such that datapoints on one side
will be labeled yi = +1 and those on the other side as
yi = −1. The directed hyperplane found by a support
vector machine is intuitive: it is that hyperplane which
is maximally distant from the two classes of labeled dat-
apoints. The closest such points on both sides have most
influence on the position of this separating hyperplane
and are therefore called support vectors. The separating
hyperplane is given as w · x+b = 0 (where “·” denotes
the inner or scalar product). b is the bias or offset of
the hyperplane from the origin in input space, and x
are points located within the hyperplane. The normal
to the hyperplane, the weight vector w, determines its
orientation.

Of course this picture is too simple for many appli-
cations. The two clusters could be highly intermeshed
with many overlapping datapoints: the dataset is then
not linearly separable. This situation is one motivation
for introducing the concept of kernels later in this chap-
ter. We can also see that stray datapoints could have
a significant impact on the orientation of the hyperplane,
and so we need a mechanism for handling anomalous
datapoints and noise.
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Machine Learning Methodology in Bioinformatics 12.1 Supervised Learning 187

Statistical learning theory is the theoretical study
of learning and generalization. From the perspective of
statistical learning theory, the motivation for consider-
ing binary classifier SVMs comes from a theoretical
upper bound on the generalization error, that is, the the-
oretical prediction error when applying the classifier to
novel, unseen instances. This generalization error bound
has two important features.

1. The bound is minimized by maximizing the margin,
γ , i. e., the minimal distance between the hyper-
plane separating the two classes and the closest
datapoints to the hyperplane, and

2. The bound does not depend on the dimensionality
of the space.

Suppose we consider a binary classification task
with datapoints xi (i = 1, . . . , m) having corresponding
labels yi = ±1 and a decision function

f (x) = sign (w · x+b) , (12.1)

where · is the inner product. From the decision func-
tion we see that the data is correctly learnt if yi (w ·
xi +b) > 0∀i, since (w · xi +b) should be positive when
yi = +1 and it should be negative when yi = −1. The
decision function is invariant under a positive rescaling
of the argument inside the sign-function, leading to an
ambiguity in defining a distance measure and therefore
the margin. Thus, we implicitly define a scale for the
(w, b) by setting w · x+b = 1 for the closest points on
one side and w · x+b = −1 for the closest on the other
side. The hyperplanes passing through w · x + b = 1
and w · x+ b = −1 are called canonical hyperplanes,
and the region between these canonical hyperplanes is
called the margin band. Let x1 and x2 be two points
inside the canonical hyperplanes on both sides of the
separating hyperplane (Fig. 12.1b). If w · x1 +b = 1 and
w · x2 +b = −1, we deduce that w · (x1 − x2) = 2. For
the separating hyperplane w · x+b = 0, the normal vec-
tor is w/ ||w||2 (where ||w||2 is the square root of
wTw). Thus, the distance between the two canoni-
cal hyperplanes is equal to the projection of x1 − x2
onto the normal vector w/ ||w||2, which gives (x1 −
x2) ·w/ ||w||2 = 2/ ||w||2. As half the distance between
the two canonical hyperplanes, the margin is there-
fore γ = 1/ ||w||2. Maximizing the margin is therefore
equivalent to minimizing

1

2
||w||22 , (12.2)

subject to the constraints

yi (w · xi +b) ≥ 1 ∀i . (12.3)

This is a constrained optimization problem in which
we minimize an objective function (12.2) subject to the
constraints (12.3).

As a constrained optimization problem, the above
formulation can be reduced to minimization of a La-
grange function, consisting of the sum of the objective
function and the m constraints multiplied by their re-
spective Lagrange multipliers, denoted αi . We will call
this the primal formulation

L(w, b) = 1

2
(w ·w)−

m∑

i=1

αi
[
yi (w · xi +b)−1

]
,

(12.4)

where αi are Lagrange multipliers, and thus αi ≥ 0
(a necessary condition for the Lagrange multiplier). At
the optimum, we can take the derivatives with respect to
b and w and set these to zero

∂L

∂b
= −

m∑

i=1

αi yi = 0 , (12.5)

∂L

∂w
= w−

m∑

i=1

αi yi xi = 0 . (12.6)

Substituting w from (12.6) back into L(w, b) we then
get a dual formulation (also known as a Wolfe dual)

W(α) =
m∑

i=1

αi − 1

2

m∑

i, j=1

αiα j yi y j
(
xi · x j

)
, (12.7)

which must be maximized with respect to the αi subject
to the constraints

αi ≥ 0,

m∑

i=1

αi yi = 0 . (12.8)

The objective function in (12.7) is quadratic in the
parameters αi , and thus it is a constrained quadratic
programming (QP) problem. QP is a standard prob-
lem in optimization theory, so there are a number of
resources available, such as QUADPROG in MATLAB,
MINOS, and LOQO. In addition there are a number of
packages specifically written for SVMs such as SVM-
light, LIBSVM, and SimpleSVM [12.1].

So far we have not considered point (2), i.e., that
the generalization bound does not depend on the dimen-
sionality of the space. For the objective (12.7) we notice
that the data xi only appear inside an inner product. To
get an alternative representation of the data, we could
therefore map datapoints into a space with different di-
mensionality, called feature space, through

xi · x j → Φ (xi) ·Φ(x j ) , (12.9)
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188 Part C Machine Learning Methods for the Analysis, Modeling and Knowledge Discovery from Bioinformatics Data

where Φ(·) is the mapping function. Data which are
not separable in input space can always be separated in
a space of high enough dimensionality. A consequence
of the generalization bound, given in (2), is that there
is no loss of generalization performance if we map to
a feature space where the data are separable and a mar-
gin can be defined.

Surprisingly, the functional form of the mapping
Φ(xi ) does not need to be known in general, since
it is implicitly defined by the choice of the kernel:
K (xi , x j ) = Φ(xi ) ·Φ(x j ) or inner product in feature
space. For nonseparable continuous-valued data a com-
mon choice is the Gaussian kernel (Sect. 12.1.3)

K (xi , x j ) = e−(xi−x j )2/2σ2
. (12.10)

The introduction of a kernel with its implied mapping to
feature space is known as kernel substitution. The class
of mathematical functions which can be used as ker-
nels is very general. Apart from continuous-valued data
we can also consider many data objects which appear
in bioinformatics such as graphs (representing networks
and pathways), strings, and sequences (such as genetic
or protein sequence data).

For binary classification with a given choice of ker-
nel the learning task therefore involves maximization
of

W(α) =
m∑

i=1

αi − 1

2

m∑

i, j=1

αiα j yi y j K (xi , x j ) ,

(12.11)

subject to the constraints (12.8). The bias, b, is found
separately. For a datapoint with yi = +1,

min{i|yi=+1} [w ·Φ(xi )+b] =

min{i|yi=+1}

⎡

⎣
m∑

j=1

α j y j K (xi , x j )

⎤

⎦+b = 1 , (12.12)

using (12.6), with a similar expression for datapoints
labeled yi = −1. We thus deduce that

b = −1

2

⎧
⎨

⎩ max
{i|yi=−1}

⎡

⎣
m∑

j=1

α j y j K (xi , x j )

⎤

⎦

+ min{i|yi=+1}

⎡

⎣
m∑

j=1

α j y j K (xi , x j )

⎤

⎦

⎫
⎬

⎭ .

(12.13)

Thus, to construct an SVM binary classifier, we place
the data (xi , yi ) into (12.11) and maximize W(α) sub-
ject to the constraints (12.8). From the optimal values
of αi , which we denote α�

i , we calculate the bias b from
(12.13). For a novel input vector z, the predicted class
is then based on the sign of

φ(z) =
m∑

i=1

α�
i yi K (xi , z)+b� , (12.14)

where b� denotes the value of the bias at optimality.

12.1.1 Multiclass Classification
and Other Extensions

Multiclass Classification
Many bioinformatics problems involve multiclass clas-
sification, and a number of schemes have been outlined.
If the number of classes is small then we can use a di-
rected acyclic graph (DAG) [12.2] with the learning
task reduced to binary classification at each node. The
idea is illustrated in Fig. 12.2. Suppose we consider
a three-class classification problem. The first node is
a classifier making the binary decision label 1 versus
label 3, say. Depending on the outcome of this deci-
sion, the next steps are the decisions 1 versus 2, or 2
versus 3. We could also use a series of one-against-all
classifiers [12.3]. Thus, we construct C separate SVMs,
with the c-th SVM trained using data from class c as the
positively labeled samples and the remaining classes as
the negatively labeled samples. Associated with the c-
th SVM we have fc(z) =∑

i yc
i α

c
i K (z, xi )+bc, and the

novel input z is assigned to class c such that fc(z) is
largest. Other schemes have been suggested [12.4–7].

Learning with Noise: Soft Margins
Many biomedical datasets are intrinsically noisy, and
a learning machine could fit to this noise, leading to
poor generalization. As remarked earlier, outliers can
have an undue influence on the position of the separat-
ing hyperplane used by an SVM (Fig. 12.1). Potential

1/3

1/2

1 2 3

2/3

Fig. 12.2 A multiclass classification problem reduced to
a series of binary classification tasks
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noise in a dataset can be handled by the introduction of
a soft margin [12.8]. Two schemes are commonly used.
With an L1 error norm, the learning task is the same as
in (12.11, 12.8) except for the introduction of the box
constraint

0 ≤ αi ≤ C . (12.15)

On the other hand, for an L2 error norm, the learning
task is (12.11, 12.8) except for the addition of a small
positive constant to the leading diagonal of the kernel
matrix

K (xi , xi ) ← K (xi , xi )+λ . (12.16)

The appropriate values of these parameters can be found
by means of a validation study. With sufficient data
we would split the dataset into a training set, a vali-
dation set, and a test set. With regularly spaced values
of C or λ, we train the SVM on the training data and
find the best choice for this parameter based on the
validation error. With more limited data, we may use
cross-validation, or rotation estimation, in which the
data are randomly partitioned into subsets and rotated
successively as training and validation data.

With many biomedical datasets there is an imbal-
ance between the amount of data in different classes,
or the significance of the data in the two classes can
be quite different; For example, for the detection of tu-
mors on magnetic resonance imaging (MRI) scans, it
may be best to allow a higher number of false positives
if this improved the true-positive detection rate. The bal-
ance between the detection rate for different classes can
be easily shifted by introducing asymmetric soft margin
parameters [12.9]. Thus, for binary classification with
an L1 error norm we use 0 ≤ αi ≤ C+ (yi = +1) and
0 ≤ αi ≤ C− (yi = −1), but K (xi , xi ) ← K (xi , xi ) +
λ+ (if yi = +1) and K (xi , xi ) ← K (xi , xi ) +λ− (if
yi = −1) for the L2 error norm.

Introducing a Confidence Measure
Suppose we are using a support vector machine for
diagnostic categorization or prediction of disease pro-
gression; then, it would be plainly useful to have
a confidence measure associated with the class assign-
ment. A clinician could be expected to plan differently
with a high confidence prediction over a low confidence
one. A SVM has an in-built quantity that could provide
a confidence measure for the class assignment, i. e., the
distance of a new point from the separating hyperplane
(Fig. 12.1). A new datapoint with a large distance from
the separating hyperplane should be assigned a higher
degree of confidence than a point which lies close to the

hyperplane. Before thresholding, the output of a SVM
is given by

φ(z) =
∑

i

yiαi K (xi , z)+b . (12.17)

One approach is to fit a probability measure p(y|φ) di-
rectly [12.10]. A good choice for the mapping function
is the sigmoid

p(y = +1|φ) = 1

1+ exp(Aφ+ B)
, (12.18)

with the parameters A and B found from the training set
(yi , φ(xi )). Let us define ti as the target probabilities

ti = yi +1

2
, (12.19)

so for yi ∈ {−1, 1} we have ti ∈ {0, 1}. We find A and
B by performing the following minimization over the
entire training set:

min
A,B

[
−
∑

i

ti log(pi )+ (1− ti ) log(1− pi )

]
,

(12.20)

where pi is simply (12.18) evaluated at φ(xi ). This is
a straightforward two-dimensional minimization prob-
lem which can be solved using a variety of optimization
methods. Once the sigmoid has been found using the
training set, we can use (12.18) to calculate the prob-
ability that a new test point belongs to either class.
Figure 12.3 shows the margins of training data points

–2.0 –1.5 –1 –0.5 0 0.5 1 1.5

Probability of membership of one class
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Fig. 12.3 Probability of membership of one class (y-axis)
versus margin (x-axis). The plot shows the training points
and fitted sigmoid for an ovarian cancer dataset
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190 Part C Machine Learning Methods for the Analysis, Modeling and Knowledge Discovery from Bioinformatics Data

(x-axis) and fitted sigmoid for a microarray dataset for
ovarian cancer. The distinction is ovarian cancer versus
normal. There are no datapoints present in a band be-
tween +1 and −1 since this corresponds to the margin
band of the SVM.

Regression
Some bioinformatics applications involve regression
and the construction of models with real-valued labels
yi . To model the dependency between the input vectors
xi and the yi we could use a linear function of the form

g(xi) = wTxi (12.21)

to approximate yi . Thus, we could minimize the follow-
ing function in w:

L(w) = 1

2

m∑

i=1

[
yi − g(xi )

]2
(12.22)

to get a solution yi ≈ g(xi). If we make a mapping to
feature space xi → Φ(xi ) and introduce a variable ξi =
yi −wTΦ(xi ), then (12.22) could be reformulated as

min
w,ξ

{
L =

m∑

i=1

ξ2
i

}
, (12.23)

subject to the constraints

yi −wTΦ(xi ) = ξi∀i (12.24)

wTw ≤ B2 . (12.25)

The latter constraint (12.25) is a regularization con-
straint on the w; that is, it is used to avoid an
overcomplex solution which fits to noise in the data,
leading to poor generalization. As a constrained opti-
mization problem with objective function (12.23) and
two constraint conditions (12.24) and (12.25), we derive
a Lagrange function

L =
m∑

i=1

ξ2
i +

m∑

i=1

βi

[
yi −wTΦ(xi )− ξi

]

+λ
(
wTw− B2

)
(12.26)

with Lagrange multipliers βi and λ for these two con-
straint conditions. If we take derivatives of L with
respect to ξi and w, we get

ξi = 1

2
βi , (12.27)

w = 1

2λ

m∑

i=1

βiΦ(xi ) . (12.28)

Substituting these back into L gives the dual formula-
tion

W =
m∑

i=1

(
−1

4
β2

i +βi yi

)

− 1

4λ

m∑

i, j=1

(
βiβ j K (xi , x j )

)−λB2 , (12.29)

which with a redefined variable αi = βi/2λ (a positive
rescaling, since λ ≥ 0) gives the following restatement:

max
αi ,λ

⎧
⎨

⎩W = −λ2
m∑

i=1

α2
i +2λ

m∑

i=1

αi yi

−λ

m∑

i, j=1

αiα j K (xi , x j )−λB2

⎫
⎬

⎭ .

(12.30)

In contrast to a SVM for binary classification, where
we must solve a constrained QP problem, (12.30) gives
a direct solution

α = (K +λI)−1 y . (12.31)

This gives a means for finding w in (12.21) via
(12.28). The above is one of the simplest kernel-based
approaches to regression [12.11, 12]. However, for pre-
diction on a novel datapoint we implicitly use all
the datapoints via the kernel matrix K . Sample spar-
sity is desirable since it reduces the complexity of
the model. For this reason, it not the best approach
to finding a regression function, and thus a num-
ber of approaches which involve constrained quadratic
programming have been developed [12.13–17]. These
minimize the number of support vectors favoring sparse
hypotheses and giving smooth functional approxima-
tions to the data.

12.1.2 Case Study 1: Predicting
Disease Progression

As an example of the use of SVMs within the con-
text of bioinformatics, we consider an application
to predicting disease progression. In this example,
the objective is to predict relapse versus nonrelapse
for Wilm’s tumor, a cancer which affects children
and young adults [12.18]. This tumor originates in
the kidney, but it is a curable disease in the large
majority of affected children. However, there is a rec-
ognized aggressive subtype with a high probability
of relapse within a few years. It is therefore clini-
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Fig. 12.4 The number of LOO test errors (y-axis) versus
number of top-ranked features (x-axis) remaining (with
features ranked by a t-test statistic) for predicting relapse
or nonrelapse for Wilm’s tumor

cally important to predict risk of relapse when the
disease is first diagnosed, with an alternative treat-
ment regime if risk of relapse is high. In this study
we used microarray data as input to the support vec-
tor machine. The microarray had 30 720 probes, each
measuring gene expression, roughly quantifying the
amount of protein produced per gene. A number of
these readings were poor quality, so quality filtering
was used, reducing the number of features to 17 790.
The dataset consisted of 27 samples, of which 13
samples were from patients who relapsed with the
disease within 2 years and the remainder labeled as
nonrelapse due to long-term survival without disease
recurrence.

The task is binary classification, and the large num-
ber of features means the relatively small number of
datapoints are embedded in a high-dimensional space.
As a consequence, the dataset is separable and we use
a linear kernel K (xi , x j ) = xi · x j . Since we do not
have large training and test sets we use leave-one-out
(LOO) testing; i. e., we train on 26 samples and evaluate
classifier performance on the single left-out datapoint,
successively rotating the test datapoint through the data.
The vast majority of features are likely to be irrelevant,
so we use feature selection to remove uninformative
features and thus improve performance.

Using a t-test statistic to rank features [12.19] we
can obtain a minimal LOO test error of 1 from 27
(the t-test must be run separately per LOO partition-
ing to avoid corrupting the test statistic). However, this
tentative prediction performance is only achieved with
a small set of the most informative features, and, if all
features are included, the vast number of uninforma-

tive and noisy features is sufficient to overwhelm this
predictive genetic signature.

12.1.3 Different Types of Kernels

Biomedical data can appear in many different formats,
and in this section we consider how to construct kernels
representing these different types of data.

Permissable Kernels
If a proposed kernel matrix is positive semidefinite
(PSD) then it is an allowable kernel. For any arbitrary
set of real-valued variables a1, . . . , am , a PSD kernel
satisfies

m∑

i=1

m∑

j=1

aia j K (xi , x j ) ≥ 0. (12.32)

This type of kernel is symmetric, K (xi , x j ) = K (x j , xi ),
with positive components on the diagonal, K (x, x) ≥ 0.
An example is the linear kernel introduced earlier

K (xi , x j ) = xi · x j . (12.33)

It is symmetric, K (x, x) ≥ 0, and it satisfies (12.32)
since

m∑

i=1

m∑

j=1

aia j (xi · x j ) =
∣∣∣∣∣

∣∣∣∣∣

m∑

i=1

ai xi

∣∣∣∣∣

∣∣∣∣∣

2

≥ 0 . (12.34)

We can determine if a proposed kernel matrix is PSD by
determining its spectrum of eigenvalues: if the matrix
has at least one negative eigenvalue λ with correspond-
ing eigenvector v, say, then vT Kv = λvTv < 0, so it
is not PSD. There are, indeed, strategies for handling
non-PSD kernel matrices [12.20–24].

From permissable kernels we can construct other
permissable kernels; For example,

1. If K1(xi , x j ) is a kernel then so is

K (xi , x j ) = cK1(xi , x j ) , (12.35)

where c is a positive constant.
2. If K1(xi , x j ) and K2(xi , x j ) are two kernels then

the sum K (xi , x j ) = K1(xi , x j )+ K2(xi , x j ) and the
product K (xi , x j ) = K1(xi , x j )K2(xi , x j ) are both
permissable kernels.

3. If K1(xi , x j ) is a kernel and f (x) is any function of
x, then the following is a permissable kernel:

K (xi , x j ) = f (xi )K1(xi , x j ) f (x j ) . (12.36)

4. If K1(xi , x j ) is a kernel then so is

K (xi , x j ) = p
[
K1(xi , x j )

]
, (12.37)
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where p(·) is a polynomial with nonnegative coeffi-
cients. As an example, the following is a kernel:

K (xi , x j ) = exp[K1(xi , x j )] , (12.38)

since exp(·) can be expanded in a Taylor series with
positive coefficients.

A further manipulation we can apply to a ker-
nel matrix is normalization. This is achieved us-
ing a modified mapping function to feature space:
x → Φ(x)/ ||Φ(x)||2. The normalized kernel is then

K̂ (xi , x j ) = Φ(xi ) ·Φ(x j )

||Φ(xi )||2
∣∣∣∣Φ(x j )

∣∣∣∣
2

= Φ(xi ) ·Φ(x j )√
Φ(xi ) ·Φ(xi )

√
Φ(x j ) ·Φ(x j)

= K (xi , x j )√
K (xi , xi )K (x j , x j )

. (12.39)

Thus, consider the Gaussian kernel introduced in
(12.10). Since

K (xi , x j ) = exp

(
− (xi − x j )2

2σ2

)

= exp
( xi · x j

σ2
− xi · xi

2σ2
− x j · x j

2σ2

)

=
exp

(
xi ·x j

σ2

)

√
exp

(
xi ·xi
σ2

)
exp

(
x j ·x j

σ2

) , (12.40)

it is a normalized kernel. Since we know that the linear
kernel K (xi , x j ) = xi · x j is a permissable kernel, valid-
ity of a Gaussian kernel follows from properties (1), (2),
and (4) above.

For the Gaussian kernel, and various other kernels,
there is a kernel parameter (the σ for the Gaussian). The
value for this parameter needs to be found, and there are
several ways to do this. If we have enough data we can
split it into a training set, a validation set, and a test set.
We then pursue a validation study in which the learn-
ing machine is trained at regularly spaced choices of
the kernel parameter, and we use that value which min-
imizes the validation error (the error on the validation
data). If insufficient data are available and we are con-
sidering classification, then we can estimate the kernel
parameter using generalization bounds with no recourse
to using validation data [12.25–29].

Kernels for Strings and Sequences
Strings appear in many bioinformatics contexts; For ex-
ample, we could be considering DNA genetic sequences

composed of the four DNA bases A, C, G, and T,
or we could be considering proteinogenic amino acid
sequences composed of the 21 amino acids found in
eukaryotes. Strings can be defined as ordered sets of
symbols drawn from an alphabet. We can evidently see
a degree of similarity between strings. Thus, suppose
we consider the genetic sequences ACTGA, CCACTG,
and CTGACT. They have the string CTG in common,
and a matching algorithm should pick up this similar-
ity irrespective of the differing prefixes and suffixes.
Strings could differ by deletions or insertions, thus
ACGA differs from ACTGA by a gap consisting of
a single deletion.

We can consider two distinct categories when
matching ordered sets of symbols [12.30]. The first we
will call string matching: in this case contiguity of the
symbols is important. For the second category, sequence
matching, only the order is important. Thus, for our
example with ACGA and ACTGA, there are only two
short contiguous strings in common: AC and GA. On
the other hand, A, C, G, and A are ordered the same
way in both words. When matching the same genes
between two individuals, there will be extensive com-
monality, interrupted by occasional mutations and rare
deletions and insertions. In this section we consider the
p-spectrum kernel (contiguity is necessary), the subse-
quence kernel (contiguity is not necessary and the order
of symbols is important), and a gap-weighted kernel
which is influenced by both contiguity and order.

The p-Spectrum Kernel. Two strings can be compared
by counting the number of contiguous substrings of
length p which are in common. A p-spectrum ker-
nel [12.31–33] is based on the set of frequencies of
all contiguous substrings of length p; For example,
suppose we wish to compute the 2-spectrum of the
string s = CTG. There are two contiguous substrings
of length p = 2, namely u1 = CT and u2 = TG, both
with frequency of 1. As a further example, let us con-
sider the set of strings s1 = CTG, s2 = ACT, s3 = CTA,
and s4 = ATA. The 2-spectrum mapping function Φ is
given in Table 12.1, where each entry is the number

Table 12.1 A mapping function Φ for the p-spectrum ker-
nel

Φ CT AT TG TA

CTG 1 0 1 0

ATG 0 1 1 0

CTA 1 0 0 1

ATA 0 1 0 1
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Table 12.2 The p-spectrum kernel matrix from the map-
ping function in Table 12.1

K CTG ATG CTA ATA

CTG 2 1 1 0

ATG 1 2 0 1

CTA 1 0 2 1

ATA 0 1 1 2

of occurrences of the substring u (say u = CT) in the
given string (say s = CTG). The corresponding kernel
is shown in Table 12.2.

Thus, to compute the (CTG, ATG) entry in the ker-
nel matrix, we sum the products of the corresponding
row entries under each column in the mapping function
(Table 12.1). Only the pair of entries in the TG sub-
string column both have nonzero entries of 1, giving
K (CTG, ATG) = 1. For an entry on the diagonal of the
kernel matrix, we take the sum of the squares of the en-
tries in the corresponding row in Table 12.1. Thus, for
K (CTG, CTG), there are nonzero entries of 1 under CT
and TG, and so K (CTG, CTG) = 2.

The All-Subsequence Kernel. With this kernel the im-
plicit mapping function is taken over all contiguous and
noncontiguous ordered subsequences of a string, which
includes the empty set. As an example let us consider
two sequences s1 = CTG and s2 = ATG. Let Ω repre-
sent the empty set, then the mapping function is given
in Table 12.3.

The off-diagonal terms in the kernel matrix are then
evaluated as the sum across all columns of the prod-
ucts of the two entries in each column. The diagonal
terms are the sum of squares of all entries in a row
(Table 12.4).

Finally, we can consider a gap-weighted subse-
quence kernel. With this kernel a penalization is used
so that the length of the intervening gap or insertion de-
creases the score for the match. As an example, CTG
is a subsequence of CATG and CAAAAATG. How-
ever, CTG differs from CATG by one deletion, but CTG
differs from CAAAAATG by a gap of five symbol dele-
tions. By appropriately weighting the penalty associated
with the gap or insertion, we can interpolate between
a p-spectrum kernel and the all-subsequence kernel.

Table 12.3 A mapping function Φ for the all-subsequences kernel

Φ Ω A C G T CT AT TG CG AG CTG ATG

CTG 1 0 1 1 1 1 0 1 1 0 1 0

ATG 1 1 0 1 1 0 1 1 0 1 0 1

Table 12.4 The all-subsequences kernel matrix for the
mapping function in Table 12.3

K CTG ATG

CTG 8 4

ATG 4 8

Kernels for Graphs
Graphs appear in many settings in bioinformatics; For
example, we can use a graph to represent a tran-
scriptional regulatory network with the genes as the
nodes and the edges representing functional connec-
tions between genes. We can consider two types of
similarity. For a given graph we may be interested in
the similarity of two nodes within the same graph. On
the other hand we may be interested in constructing
a measure of similarity between two different graphs.
We can construct kernels for both cases, and we re-
fer to kernels on graphs [12.34, 35] when constructing
a within-graph kernel between nodes and kernels be-
tween graphs [12.36, 37] for the latter comparison.

12.1.4 Multiple Kernel Learning

Many bioinformatics prediction tasks involve different
types of data. In the preceding sections we saw that ker-
nels are available for encoding a variety of different data
types. Thus, we now consider prediction based on mul-
tiple types of input data. Plainly, if we build a predictor
which can use all available relevant information, then it
is likely to be more accurate than a predictor based on
one type of data only.

As an example, for our case study 2, considered
shortly, we predict protein fold class based on the use
of 12 different types of data. This potentially includes
sequence data derived from RNA sequences but also
continuous-valued data from various physical measure-
ments. Later, in case study 5, we consider network
completion. Based on a training set of known links and
nonlinks we attempt to predict possible links to new
nodes in an incomplete network. For the case of net-
work completion with protein–protein interaction data
there are a variety of informative data types such as
gene expression correlation, protein cellular localiza-
tion, and phylogenetic profile data. Individually, these
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types of data may be weakly informative for the pur-
poses of prediction. However, taken together, they may
yield a stronger predictive signal.

This type of problem is called multiple kernel learn-
ing (MKL). The most common approach to MKL is
to use a linear combination of candidate kernels, with
these kernels representing different types of input data.
Let K be such a set of candidate kernels, then the
objective of MKL is to simultaneously find the opti-
mal weighted combination of these kernels and the best
classification function. With such a linear combination
of p prescribed kernels {K :  = 1, . . . , p}, we have
a composite kernel

K =
p∑

=1

λK , (12.41)

where
∑p

=1 λ = 1, λ ≥ 0, and the λ are called the
kernel coefficients.

There are a number of criteria for learning the
kernel. For SVM binary classification an appropriate
criterion would be to maximize the margin with respect
to all the kernel spaces capable of discriminating dif-
ferent classes of labeled data. In particular, for a given
kernel K ∈ K with K (xi , x j ) = Φ(xi ) ·Φ(x j ), we have
seen that maximizing the margin involves minimizing
‖w‖2 in feature space subject to

yi (w ·Φ(xi )+b) ≥ 1, i = 1, . . . , m . (12.42)

As we have seen, maximizing the margin subject to
these constraints gives the following dual problem:

ω(K ) = max
α

⎧
⎨

⎩

m∑

i=1

αi − 1

2

m∑

i, j=1

αiα j yi y j K (xi , x j ) :

m∑

i=1

αi yi = 0, αi ≥ 0

⎫
⎬

⎭ . (12.43)

If K is now a linear combination of kernel matrices,
this maximum margin approach to kernel combination
learning reduces to

min
λ

max
α

⎧
⎨

⎩L(α, λ) =
m∑

i=1

αi

−1

2

m∑

i, j=1

αiα j yi y j

[ p∑

=1

λK(xi , x j )

]⎫⎬

⎭

(12.44)

subject to

m∑

i=1

αi yi = 0 0 ≤ αi ≤ C , (12.45)

p∑

=1

λ = 1 λ ≥ 0 . (12.46)

L(α, λ) is concave with respect to α and convex with
respect to λ. A number of approaches have been
proposed for dealing with this type of optimization
problem. One of the earliest approaches [12.38] pro-
posed a semidefinite programming (SDP) approach.
SDP is computationally intensive, so more efficient
methods were developed subsequently [12.38–43].

12.1.5 Case Study 2: Protein Fold Prediction
Using Multiple Kernel Learning

During folding a protein forms its final three-
dimensional structure. Understanding a protein’s struc-
ture gives important insights into function. Its structure
can lead to an understanding of protein–protein inter-
action or likely biological function. A knowledge of
protein structure is important in the design of small
molecular inhibitors for disabling the function of tar-
get proteins. We can use machine learning methods to
predict protein structure based on sequence and other
types of data: indeed this is an obvious application do-
main for MKL techniques. In this case study we only
consider a subproblem of structure prediction in which
the predicted label is over a set of fold classes. The
fold classes are a set of structural components, common
across proteins, which give rise to the overall three-
dimensional structure. In this study we will use 27 fold
classes with 313 proteins used for training and 385 for
testing.

There are a number of relevant types of data which
can be used to predict fold class, and in this study
we use 12 different types of data, each encoded into
a kernel. These data types included sequence and physi-
cal measurements such as hydrophobicity, polarity, and
van der Waals volume. In Fig. 12.5 we illustrate the
performance of a MKL algorithm on this dataset. In
Fig. 12.5a the vertical bars indicate the test set ac-
curacy based on using one type of data only: for
example, H is hydrophobicity, P is polarity, and V is
van der Waals volume. The horizontal line indicates
the performance of the MKL algorithm with all data
types included. Thus, we get an improvement in per-
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Fig. 12.5a,b Performance of a MKL method [12.43] on a protein fold prediction dataset. There are 27 classes and 12
types of data. (a) Test set accuracy (TSA, in %) based on individual data types (vertical bars) and using MKL (horizontal
line). (b) Kernel coefficients λ, which indicate the relative significance of individual types of data

formance if we use all available relevant sources of
data over just using the single most informative data
source.

Figure 12.5b gives the values of the kernel coeffi-
cients λ based on using a linear combination (12.41).
The relative height of the peaks indicates the rela-
tive significance of different types of input data. This

algorithm indicates that all 12 types of data are rele-
vant, though some types of data are more informative
than others (the most informative, SW1 and SW2, are
based on sequence alignments). MKL methods have
been successfully demonstrated on other bioinformat-
ics problems requiring integration of heterogeneous
datasets [12.38, 43–46].

12.2 Unsupervised Learning

Having considered supervised learning, we now discuss
unsupervised learning and the discovery of structure
in biomedical datasets. Hierarchical cluster analysis is
a commonly used approach to unsupervised learning
in the biomedical literature, and so we briefly review
this topic in Sect. 12.2.1. One of our main objectives
in this section will be to show that there are some
advantages to using more contemporary methods, for
example, from Bayesian statistics. In Sects. 12.2.3–
12.2.5 we introduce variational methods. These are
not as accurate as the Markov chain Monte Carlo
(MCMC) methods discussed in Sect. 12.2.7. However,
they are fast in practice and thus suited to some of
the large datasets which appear in many bioinformat-
ics applications. After introducing variational methods
we consider an application to the interpretation of gene
expression array datasets in cancer research. After in-
troducing MCMC, we illustrate its use with network
inference in Sect. 12.2.8 with an application to find-

ing the most probable network topology given a set of
candidate network topologies.

12.2.1 Hierarchical Cluster Analysis

In the biomedical literature, hierarchical cluster analysis
(HCA) is a commonly used technique for unsupervised
learning. This approach can be divided into agglom-
erative methods, which proceed through a series of
successive fusions of m samples into larger and larger
clusters, and divisive methods, which systematically
separate clusters into smaller and smaller groupings.
HCA methods are usually represented by a dendrogram
which illustrates the successive fusions or divisions
produced by this approach. In this section we only
consider agglomerative methods. In this case we start
with m single sample clusters, representing each data
point. At each stage in the clustering procedure we
fuse those samples or groups of samples which are
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currently closest to each other. There are a number
of criteria for evaluating the similarity or closeness of
data points. Thus, if xid corresponds to the i-th sample
(i = 1, . . . , m) with d the corresponding feature index
(d = 1, . . . , p), then a commonly used similarity mea-
sure is the squared distance

D(xi , x j ) =
p∑

d=1

(xid − x jd)2 .

Other criteria are used such as the correlation coeffi-
cient,

C(xi , x j ) =
∑

d(xid − xi )(x jd − x j )√∑
d(xid − xi )2

∑
d(x jd − x j )2

,

where xi = (
∑

d xid)/p. If each sample vector is stan-
dardized to zero mean and unit standard deviation, then
clustering based on the correlation coefficient becomes
equivalent to use of a squared distance. Using the cho-
sen distance measure, we then derive a distance matrix
encoding the distances between all data points.

Just as there are a number of ways of quantifying
similarity, there are a number of criteria for deciding
which clusters to fuse at each stage. Six methods are
commonly used in practice: single linkage, complete
linkage, average linkage, the centroid and median meth-
ods, and Ward’s method. We will illustrate the approach
with single linkage clustering as one of the simplest of
these methods. In this case the distance between group-
ings is defined as the shortest distance between any pair
of samples. This method is best illustrated with an ex-
ample. Thus, suppose we have a set of five samples with
a corresponding initial distance matrix given by

D1 =

1 2 3 4 5

1

2

3

4

5

⎛

⎜⎜⎜⎜⎜⎝

0 4 8 9 7

4 0 6 5 6

8 6 0 3 8

9 5 3 0 2

7 6 8 2 0

⎞

⎟⎟⎟⎟⎟⎠

.

In this matrix it is evident that the smallest distance is
that between samples 4 and 5. Thus, we place these two
samples into a new cluster. The new distances between
this cluster, which we label (45) and the other three
samples is obtained from the above distance matrix as

d1(45) = min (d14, d15) = d15 = 7 ,

d2(45) = min (d24, d25) = d24 = 5 ,

d3(45) = min (d34, d35) = d34 = 3 .

A new distance matrix can be derived based on these
distances and the remaining set of pre-existing dis-
tances, thus

D2 =

1 2 3 (45)

1

2

3

(45)

⎛

⎜⎜⎜⎝

0 4 8 7

4 0 6 5

8 6 0 3

7 5 3 0

⎞

⎟⎟⎟⎠ .

The smallest entry in this new distance matrix is then
between sample 3 and the cluster (45), and so we form
a new three-member cluster and a new set of distances

d1(345) = min (d13, d14, d15) = d15 = 7 ,

d2(345) = min (d23, d24, d25) = d24 = 5 ,

leading to a new 3 × 3 distance matrix. This process is
iterated until all data points belong to one cluster. The
sequence of clusterings is therefore

Step Clusters

1 (1), (2), (3), (4), (5)

2 (1), (2), (3), (45)

3 (1), (2), (345)

4 (12), (345)

5 (12345)

Of course, using the closest points within each cluster is
not necessarily a good fusion criterion. With complete
linkage clustering the distance between two groupings
is defined as the most distant pair of data points, with
each pair consisting of one sample from each of the two
groups. Again, this type of method can be influenced by
outliers within each cluster, and so a better method is to
use the average of a cluster instead. With average clus-
tering the distance between two groupings is defined as
the average of the distances between all pairs of sam-
ples, with one sample in a pair from each group. Thus,
with our example above, after merging data points 4 and
5 into the first cluster, we would compute the new set of
distances from this cluster to the other three data points
through

d1(45) = 1
2 (d14 +d15) = 8.0 ,

d2(45) = 1
2 (d24 +d25) = 5.5 ,

d3(45) = 1
2 (d34 +d35) = 5.5 .

With centroid clustering each grouping is repre-
sented by a mean vector, that is, a vector composed of
the mean values of each feature taken over all samples
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within the grouping. The distance between two clusters
is then the distance between the corresponding mean
vectors. However, centroid clustering has the following
disadvantage: if the number of members in one clus-
ter is very different from the other, then, when they are
fused, the centroid of the new cluster will be most heav-
ily influenced by the larger grouping and may remain
within that cluster. Clustering can be made independent
of group size by assuming that the two groups are of
equal size. Median clustering is a variant on centroid
clustering in which the cluster arising from the fusion
lies at such a midpoint between the two clusters. Finally,
with Ward’s method, the two clusters chosen for fusion
are the two which result in the least increase in the sum
of the distances of each sample to the centroid of its
originating cluster.

Of course, the above methods provide an approach
to finding a cluster structure but they do not indicate
the most likely number of clusters in the data. However,
various criteria have been proposed to indicate the most
probable number of clusters [12.48–50].

12.2.2 Case Study 3: An HCA Application
to Colon Cancer

As an illustration, we now apply HCA to a gene expres-
sion microarray dataset from a cancer study. A DNA
microarray has a series of microscopic probes, each
constructed from strings of nucleotides. A microarray
has tens of thousands of such probes, each of which
can hybridize to a particular target strand of comple-
mentary DNA (cDNA). Probe–target hybridization can
be measured by using fluorophore labels, for exam-
ple, with altered levels of gene expression quantified
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Fig. 12.6 HCA applied to a gene expression microarray dataset [12.47] consisting of 35 samples comprising 17 colon
cancer and 18 normal colon samples

by the level of fluorescence. In Fig. 12.6 we depict the
corresponding dendrogram (using average linkage and
a correlation coefficient distance measure) for a small
microarray dataset consisting of 17 colon tumor and
18 normal samples. The dendrogram has been largely
successful in separating normal from cancer samples.

12.2.3 Bayesian Unsupervised Learning

HCA has been the method of choice for cluster anal-
ysis for many biomedical publications. However, HCA
does have some drawbacks. Firstly, there is an implicit
assumption that each sample is associated to a particu-
lar cluster. This may not be realistic in many situations
where a sample should be better represented as overlap-
ping several clusters. Thus, tumors can be genetically
heterogeneous; i. e., tissue regions in different regions
of the tumor may have different genetic signatures. The
models we describe below are mixed membership mod-
els with each sample represented as a combinatorial
mixture over clusters. With the clinical assignment of
patient samples to clusters or disease subtypes it would
also be useful to associate a confidence measure with
the cluster assignment. This can be achieved using the
Bayesian methods outlined here. Further advantages of
a Bayesian approach are the use of sound methods to
objectively assess the number of sample clusters and
the means to penalize overfitting (at the top levels of the
dendrogram in Fig. 12.6 we are finding structure, but,
toward the leaves at the base, we are starting to fit to
noise in the data).

Let us suppose that M is a model and D is the
data, then p(M|D) represents the probability of a model
given the data. Intuitively we should seek to maximize
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the probability of the model given the data. Given an as-
sumed model structure, a fit to data is achieved through
the adjustment of model parameters, which we denote
Θ as a set and represent as the components of a vector
θ. Bayes’s theorem then implies that we should maxi-
mize

p(Θ|D) = p(D|Θ)p(Θ)

p(D)
, (12.47)

where p(Θ|D) is the posterior, p(D|Θ) is the like-
lihood, and p(Θ) is the prior. Thus, p(Θ|D) ∼
p(D|Θ)p(Θ) states that multiplying the likelihood by
our prior beliefs about the parameters, p(Θ), will give
us posterior beliefs about the parameters, having ob-
served the data, p(Θ|D). The normalization term p(D)
is called the evidence and can be found through an inte-
gration over the θ (we will refer to this as marginalizing
out the θ)

p(D) =
∫

p(D|θ)p(θ)dθ . (12.48)

Maximizing the probability of a model, given the
data, would require finding the optimal set of values for
the model parameters, which we denote Θ̂. We will call
this a set of point estimates for these parameters.

However, we cannot make inferences which are
not justified by the data. As a consequence, given
some set of data, the most we can really say is that
there is a spectrum of models which fit the data and
some of these models are more probable than oth-
ers. We call this a posterior distribution over models.
This posterior distribution carries information beyond
a model based on point estimates since a relatively
flat posterior distribution means that many models fit
the data well and the most probable model is not par-
ticularly unique. On the other hand, a sharply peaked
posterior distribution indicates that a point estimate
solution might be a sound solution to use. In the dis-
cussion below we will start with maximum likelihood
and maximum a posteriori approaches to unsupervised
learning which use point estimates. Later we discuss ap-
proaches which give a full posterior distribution over
models.

12.2.4 Maximum Likelihood
and Maximum a Posteriori Solutions

With a maximum likelihood (ML) approach we derive
a set of parameters that maximize the likelihood of
the data given the model parameters, p(D|Θ). With
the maximum a posteriori (MAP) approach we find
the set of parameters that maximize the posterior,

p(Θ|D), given the data. Thus, in terms of parameter-
dependent probabilities, the MAP and ML solutions
are related through Bayes rule p(Θ|D) ∼ p(D|Θ)p(Θ).
The MAP solution therefore enables us to include any
prior knowledge we may have about the distribution of
the parameter values.

The ease with which we may calculate p(Θ|D) de-
pends on the functional forms of the likelihood and
the prior. Also, if Θ is high dimensional, the evidence
p(D) may be difficult to evaluate. With a MAP solution
only point estimates are used for the model param-
eters. These are denoted ΘMAP, and they are based
on the mode of the posterior distribution. Since the
mode is unaffected when the distribution is multiplied
by a constant, we can ignore the evidence in the de-
nominator and only use the unnormalized distribution,
which we denote p̂(Θ|D) = p(D|Θ)p(Θ). In general,
though, we may need to evaluate the evidence, and
this motivates our discussion of Monte Carlo methods
below.

12.2.5 Variational Bayes

With a variational Bayes approach we can determine
a posterior distribution over models. In this approach
we approximate a posterior distribution p(R|D) by a pa-
rameterized distribution q(R). In this case D is the
data, as before, and R is a parameter vector consist-
ing of the model parameters Θ and any hidden variables
within the model (for example, hidden labels assigning
data components to clusters). Thus, we wish to make
q(R) as close as possible to the posterior p(R|D). Since
p(R, D) = p(R|D)p(D) and

∫∞
−∞ q(R)dR = 1, we can

write

log
[

p(D)
]= log

(
p(R, D)

p(R|D)

)
(12.49)

so

log
[

p(D)
]=

∞∫

−∞
q(R) log

(
q(R)p(R, D)

q(R)p(R|D)

)
dR

=
∞∫

−∞
q(R) log

(
p(R, D)

q(R)

)
dR

+
∞∫

−∞
q(R) log

(
q(R)

p(R|D)

)
dR

= F [R]+ KL
[
q||p

]
.
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The second term

KL
[
q||p

]=
∫

q(R) log

(
q(R)

p(R|D)

)
dR (12.50)

is a Kullback–Leibler (KL) divergence which quanti-
fies the similarity of the two distributions q(R) and
p(R|D). The key observation is that log

[
p(D)

]
does

not depend on R. Since we want to minimize the KL
divergence between q(R) and p(R|D), we can achieve
this by optimizing F[R], which is called the variational
free energy. After making distributional and other as-
sumptions we can derive an expectation-maximization
(EM) algorithm which optimizes F[R] and gives an
effective approximation to the posterior distribution
p(R|D).

Though we do not give more detail here, the ML,
MAP, and variational Bayes methods outlined above
can be extended in many ways; For example, we could
consider a marginalized variational Bayes approach in
which we marginalize, or integrate out, further model
parameters [12.51, 52]. With fewer parameters to esti-
mate, this approach gives higher cluster accuracy but
at the cost of model interpretability. We could consider
semisupervised clustering [12.53] if side information,
in the form of some sample labels, is present. Then
again, whereas HCA may not be amenable to data in-
tegration, Bayesian methods could provide a route to
unsupervised learning using multiple types of data; For
example, with a correspondence model [12.54, 55], we
can consider two types of data with one type of data
believed dependent on the other. In a bioinformatics
context an example would be gene expression array
data which we believe may be partially influenced by
microRNA expression [12.55].

12.2.6 Case Study 4:
An Application to the Interpretation
of Expression Array Data
in Cancer Research

To illustrate an application of these methods we con-
sider the use of ML, MAP, and variational Bayes
methods to interpret gene expression array data de-
rived in cancer research. We will start with a maximum
likelihood or MAP solution giving point estimates for
the model parameters. We start by specifying a model
which includes making certain distributional assump-
tions for the data and model parameters. This leads
us through to a likelihood bound which is optimized
using an algorithmic procedure (an EM or expectation-
maximization method).

As an example we consider latent process decompo-
sition (LPD) [12.56]. We first make assumptions about
the type of data we are considering. For expression
array data, a reasonable assumption is that the gene
expression measurements follow an approximate Gaus-
sian distribution which will have a mean μ and standard
distribution σ . Each sample in the data has a set of
features labeled by an index g = 1, . . . , G. Then, for
feature g we draw a cluster index k (k = 1, . . . , K ) with
a probability denoted βk which selects a Gaussian with
parameters μgk and σgk . Next we make assumptions
about the probability distributions involved. For the β

we assume a Dirichlet distribution, which is a standard
assumption in this context. This Dirichlet distribution
is parameterized by a K -dimensional vector α. The
expression array data D consist of a set of samples, in-
dexed a = 1, . . . , A, each with a set of features labeled
by g, and we thus denote the experimental measure-
ments by ega. It is normal to work with the log of the
likelihood so that we deal with summations rather than
products. This is sound since the log-function is mono-
tonic, so maximizing the log-likelihood is equivalent to
maximizing the likelihood. The log-likelihood is then
log p(D|μ, σ , α), which can be factorized over the indi-
vidual samples as

log p(D|μ, σ , α) =
A∑

a=1

log p(a|μ, σ , α) . (12.51)

We can rewrite this as a marginalized integral over
the β, that is,

log p(D|μ, σ , α)

=
A∑

a=1

log
∫

p(a|μ, σ , β)p(β|α)dβ , (12.52)

with p(β|α) being the Dirichlet distribution. We intro-
duce the Gaussian distributional assumption for the data

p(a|μ, σ , β) =
G∏

g=1

K∑

k=1

N
(
ega|k, μgk, σgk

)
βk .

(12.53)

Exact inference with this model is intractable, so to
increase the likelihood and therefore, implicitly, the
probability of the model given the data, we follow the
indirect route of deriving a lower bound on this log-
likelihood via Jensen’s inequality. We then maximize
this lower bound using an iterative procedure based on
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an expectation-maximization algorithm. Thus we get

A∑

a=1

log
[

p(a|μ, σ , α)
]=

A∑

a=1

log
∫

β

⎡

⎣
G∏

g=1

K∑

k=1

N(ega|k, μgk, σgk)βk

⎤

⎦p(β|α)dβ .

(12.54)

If we define Ep(z) = ∫
z p(z)dz, then Jensen’s inequal-

ity for a concave function f (x) states that

f (Ep(z)[z]) ≥ Ep(z)[ f (z)] . (12.55)

We have assumed a Dirichlet distribution for the β, so
we could introduce a sample-specific (a-dependent) dis-
tribution for the p(β|γa) as

E p(β|γa)[ f (β)] =
∫

β

f (β)p(β|γa)dβ , (12.56)

giving

f

⎡

⎢⎣
∫

β

p(β|γa)βdβ

⎤

⎥⎦

= f (Ep(β|γa ) [β]) ≥ Ep(β|γa ) [ f (β)]
=
∫

β

f (β)p(β|γa)dβ (12.57)
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Fig. 12.7 (a) Estimated log-likelihood versus number of clusters using a MAP solution [12.55] for a breast cancer expres-
sion array dataset [12.57]. (b) Variational Bayes solution for the same dataset. For both methods the peak at five clusters
indicates five principal subtypes of breast cancer. If more data were used, higher resolution may be achieved and we may
observe more subtypes

and so
∑

a

log
[

p(a|μ, σ , α)
]

=
∑

a

log

⎡

⎢⎣
∫

β

p(a|μ, σ , β)p(β|α)dβ

⎤

⎥⎦

=
∑

a

log

⎡

⎢⎣
∫

β

{
p(a|μ, σ , β)

p(β|α)

p(β|γa)

}
p(β|γa)dβ

⎤

⎥⎦

=
∑

a

log

[
E p(β|γa)

{
p(a|μ, σ , β)

p(β|α)

p(β|γa)

}]

≥
∑

a

E p(β|γa)

[
log

{
p(a|μ, σ , β)

p(β|α)

p(β|γa)

}]

=
∑

a

E p(β|γa)
[
log {p(a|μ, σ , β)}]

+
∑

a

E p(β|γa)
[
log {p(β|α)}]

−
∑

a

E p(β|γa)
[
log {p(β|γa)}] .

It is this lower bound which we optimize using
a two-step expectation-maximization algorithm [12.56].
A variational Bayes approach leads to a similar iter-
ative procedure to maximize the free energy term in
(12.50).

We applied ML, MAP, and variational Bayes meth-
ods [12.55] to the interpretation of expression array data
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derived from 78 primary breast cancer samples [12.57].
Using a MAP approach we obtained a solution for the
model parameters using an EM algorithm. If we split
the data into training and validation data, parameters in
the log-likelihood can be estimated from the training
set. Using this estimated log-likelihood and the vali-
dation data, we can then estimate model complexity,
i. e., how many clusters are apparently present in the
data – in this case how many subtypes of breast can-
cer are indicated. In Fig. 12.7a we show the estimated
log-likelihood on left-out validation data for this breast
cancer dataset. The peak indicates a minimum of five
subtypes.

We also used a variational Bayes method with the
same dataset [12.55]. In this case the maximum of the
free energy versus number of clusters indicates the ap-
propriate model complexity. In Fig. 12.7b the peak is
also at 5, indicating that this is the most appropri-
ate number of subtypes to consider. Interestingly, with
variational Bayes, we do not need to use validation
data.

Having found the most appropriate number of sub-
types, we can use these methods to find those genes
which are abnormally functioning within subtypes. The
parameters μgk and σgk can be used to model the data
distribution for gene g in cluster k. This is illustrated
in Fig. 12.8 for two genes, FOXA1 and FOXC1, which
appear to be operating abnormally within one of these
subtypes (cluster 5, denoted Cl5). The Gaussian distri-
butions are determined by the (μgk , σgk), and the actual
distribution of data values is shown below these Gaus-
sian distributions. Whereas FOXA1 and FOXC1 appear
to function normally in the other subtypes, FOXA1 ap-
pears to be underexpressing and FOXC1 overexpressing
within this subtype.

As pointed out at the beginning, one further as-
pect in which these Bayesian unsupervised learning
methods differ from HCA is that they allow for mixed
membership. As a second example (Fig. 12.9), we ap-
ply a variational Bayes method to a lung cancer gene
expression array dataset derived from 73 patient sam-
ples [12.59]. The peaks indicate the confidence that
a particular patient belongs to a particular cluster. Many
peaks are 1, but a number overlap several clusters, pos-
sibly indicating an unclear assignment of patient to
subtype. We have used lung cancer as an illustration
because there are a number of clinically established sub-
types for this disease, such as small cell lung cancer and
adenocarcinoma of the lung. The clinical assignments
are indicated by the boundary markers in this plot, and
there is reasonable agreement between clinical assign-
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1 2 3 4
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Fig. 12.8a,b Expression profiles for two genes within a subtype of
breast cancer: FOXA1 (a) and FOXC1 (b). This subtype can be iden-
tified with the basal-like or basaloid subtype of breast cancer. These
two genes show a strong reciprocal anticorrelated expression profile
within this subtype (after [12.58])

ment to subtype and those assignments made by the
variational Bayes method.

12.2.7 Monte Carlo Methods

Monte Carlo methods are potentially more exact than
variational methods, and they are commonly used in
probabilistic inference. If θ is high dimensional, eval-
uating the evidence

∫
p(D|θ)p(θ)dθ and finding the

posterior p(θ|D)̇ is a difficult task. For the evidence, we
could perform a Monte Carlo integration. Taken over an
arbitrary distribution h(θ), we can perform Monte Carlo
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Fig. 12.9 The peaks indicate the confidence measure that a given
sample is assigned to a particular cluster (see [12.58] for details
about the derivation of this measure). The fourth band down has
mainly adenocarcinoma of the lung (samples 1–20), and the plot
indicates some confusion of assignment between this category and
other subtypes of lung cancer

integration by writing h(θ) = f (θ)g (θ) as
∫

h(θ)dθ =
∫

f (θ)g (θ) dθ = Eg(θ)

[
f (θ)

]

≈ 1

M

M∑

m=1

f
(
θ(m)

)
, (12.58)

so that the integration becomes an expectation of f (θ)
over g (θ). By deriving a number of observations θ(m)

(m = 1, . . . , M), sampled from the distribution g (θ),
and using these samples in f (θ), the original inte-
gral can be approximately evaluated. We could use
this approach to evaluate the evidence and the poste-
rior distribution by sampling from the unnormalized
distribution p̂(θ|D) = p(D|θ)p(θ) to find the normal-
ization

∫
p(θ|D)dθ. To use this method of integration,

we must be able to draw samples reliably from a dis-
tribution of choice, such as p̂(θ|D)̇. This is not easy,
and here we briefly describe Markov chain Monte Carlo
(MCMC) methods [12.60–62], based on the Metropolis
algorithm, for performing this task.

A Markov chain is a sequence of samples
{θ1, θ2, . . .} such that each sample is only dependent

on the previous sample, i. e., p(θt |θt−1, θt−2, . . . , θ1) =
p(θt |θt−1), where t is the iteration index. In the MCMC
approach, a proposal or jump distribution Q(θt |θt−1) is
used to generate θt from θt−1. With the Metropolis al-
gorithm we assume that this distribution is symmetric,
i. e., that Q(θt+1|θt) = Q(θt |θt+1). Our objective is to
reliably draw samples from a distribution g(θ), such as
p(θ|D). Thus, we start the procedure with some θ0 such
that ĝ(θ0) > 0. After a number of iterations this proce-
dure will tend toward the stationary distribution g(θ)
so that θt represents a random draw from g(θ). In the
standard approach to MCMC, to arrive at this stationary
distribution, at each step a sample is selected from Q
and either accepted or rejected based on a comparison
with g(θ). Specifically, a candidate sample θ� is sam-
pled from Q(θt |θt−1) and accepted with probability αt
given by

αt = min

(
ĝ(θ�)Q(θt−1|θ�)

ĝ(θt−1)Q(θ�|θt−1)
, 1

)
(12.59)

or rejected. If θ� is accepted, then θ� is assigned to θt .
Otherwise, if θ� is rejected, then θt−1 is assigned to θt
instead. The Metropolis Hastings algorithm [12.63–65]
extends the Metropolis algorithm to jump distributions
which are not symmetric, and both of these methods are
members of a broad class of approaches to sampling
from high-dimensional distributions.

12.2.8 Case Study 5: Network Inference

The understanding of pathways and networks is cru-
cial to our understanding of the functional organization
of genes and proteins. At an abstract level a network
can be viewed as a set of nodes, together with a set
of directed or undirected edges between these nodes.
Biological networks of interest include, for example,
transcriptional regulatory networks. In this case a gene
may express a protein that functions as a transcriptional
inhibitor or, alternatively, as an activator of one or more
target genes. In this case the genes can be viewed as
the nodes of a network with the edges representing di-
rect regulatory connections to other genes. With signal
transduction networks the proteins are viewed as the
nodes and the edges are corresponding protein–protein
interactions. Further networks of interest are metabolic
networks, where the metabolites are the nodes.

We could use unsupervised learning to determine
the network structure, a task we could call global in-
ference of network topology. However, suppose we
consider a fully connected network with n nodes, then
we are attempting to find n(n −1)/2 possible connec-
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Fig. 12.10 Network completion. Using a training set of
known links (bold lines) and nonlinks for nodes A–E we
use supervised learning to predict links or nonlinks to
a new node X (dashed lines)

tions given limited amounts of data. A cell may have
tens of thousands of genes, whereas, in most experi-
ments, we are only considering a few hundred samples
with measurements corrupted by noise. Thus, the infer-
ence problem is typically highly underdetermined.

To make network inference more amenable as
a machine learning task, a more tractable approach is
network completion [12.66]. In this case we have an
established pathway of interest and consequently we
know certain links and nonlinks between pairs of nodes.
The problem is therefore to determine whether a given
node, perhaps representing a gene, has a link to this
pathway or not. Since we have a training set of known
links and nonlinks we can train a classifier via super-
vised learning and then predict a link to the pathway or
otherwise, for the node of interest (Fig. 12.10). Various
types of data are informative as to whether a functional
link exists, and hence we can cast this supervised learn-
ing task as an application of the multiple kernel learning
techniques of Sect. 12.1.4. As a supervised learning
problem and with a smaller set of linkages to infer,
this problem can give more reliable results than global
unsupervised inference of network topology.

We can improve accuracy by reducing the search
space further. Thus, as a third approach, we can con-
sider the use of Bayesian methods to decide the most
probable network structure given a small set of can-
didate network topologies. In this case it is assumed
that a biologist has partially determined a network but
remains undecided over a set of candidate topologies.
Thus, the task is to determine which of these pro-
posed network topologies is most probable, given the

data. As an example, Calderhead et al. [12.67, 68]
used Bayesian unsupervised learning to decide over
alternative topologies proposed for the extracellular
signal-regulated kinase (ERK) pathway. This signaling
pathway regulates growth and is defective in many can-
cers. Binding of epidermal growth factor (EGF) to the
epidermal growth factor receptor (EGFR) at the cell
surface membrane activates ERK through a chain of
proteins. Four candidate topologies were proposed. To
compare individual pairs, representing different topolo-
gies, we use the Bayes factor, that is, the likelihood
ratio

p(D|Mi )

p(D|M j )
(12.60)

stated in terms of the marginal likelihood for model M
to generate data D

p(D|Mi ) =
∫

p(D|Mi , θi )p(θi )dθi , (12.61)

where the θi are the set of model parameters marginal-
ized or integrated out. Each protein in the chain is
modeled using an ordinary differential equation (ODE),
and we use optimization methods with a least-squares
parameter fitting approach to find the optimal param-
eter values in these ODEs. We do not describe the
ODEs here but refer to the original paper [12.67, 68].
Thus, a model can be written as M = {S, θ}, where S is
the system of differential equations and θ is the set of
parameters. The marginal likelihood is therefore a non-
linear function based on the solution of these ODEs.
It cannot be computed analytically, and so we must
use MCMC-based methods. Because the posterior dis-
tribution is generated by complex dynamical systems
models, it is necessary to use more sophisticated sam-
pling methods than those mentioned in Sect. 12.2.7.
Indeed, rather than static sampling distributions we
use populations of annealed (temperature-dependent)
distributions in an approach commonly referred to as
population MCMC. Applied to ERK pathway models
it was possible to use population MCMC to compute
marginal likelihoods and thus Bayes factors, lending
support to one of the proposed topology models for the
ERK pathway [12.68].

12.3 Conclusions

Progress in the biomedical sciences can be furthered by
improved data interpretation, in addition to the acqui-
sition of more data. In this chapter we have seen that

contemporary methods from machine learning can of-
fer many advantages over more long-established data
analysis methods. There are an increasing number of
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studies where multiple types of data are acquired from
the same sample. An example is the Cancer Genome
Atlas [12.69] project, where multiple types of data are
derived from the same tumor sample. In Sect. 12.1.3
we saw that many different types of data can be en-
coded into corresponding kernels and prediction can be
achieved using multiple kernel learning. In Sect. 12.2
we saw that contemporary Bayesian unsupervised learn-
ing methods compare favorably with hierarchical cluster

analysis, providing a confidence measure for assigning
datapoints to clusters (Fig. 12.9) and an effective ap-
proach to model selection (Fig. 12.7). In the last section
we saw that Bayesian methodology is the most effec-
tive approach to other tasks such as determining the most
probable network topology given a set of candidate net-
work topologies. Further innovation in machine learning
will improve and expand the interpretability of many
datasets from the biomedical sciences.
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