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Bioinformatic10. Bioinformatic Methods to Discover
Cis-regulatory Elements in mRNAs

Stewart G. Stevens, Chris M. Brown

Cis-regulatory elements play a number of impor-
tant roles in determining the fate of messenger
RNAs (mRNAs). Due to these elements, mRNAs may
be translated with remarkable efficiency, or de-
stroyed with little translation. Untranslated regions
cover over a third of a typical human mRNA and of-
ten contain a range of regulatory elements. Some
elements along with their RNA or protein bind-
ing partners are well characterized, though many
are not. These require different types of bioinfor-
matic methods for identification and discovery.
The most successful techniques combine a range
of information and search strategies. Useful infor-
mation may include conservation across species,
prior biological knowledge, known false positives,
or noisy high-throughput experimental data. This
chapter focuses on current successful methods de-
signed to discover elements with high sensitivity
but low false-positive rates.
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10.1 The Importance of Cis-regulatory Elements in mRNAs

Cells respond to the environment by changing gene
expression. In human cells, gene expression is often
regulated at both the transcriptional and translational
levels. Steady-state levels of mRNAs and their pro-
teins will alter due to the combined effects of this
regulation. Regulation at the posttranscriptional level
is critical for rapid responses to environmental factors.

While there is correlation with the levels of mRNA,
translational control is key to determining cellular levels
of specific protein [10.1]. Cis-regulatory elements com-
monly affect mRNA stability or translational efficiency
of the mRNA [10.2]. Figure 10.1 shows a simpli-
fied schematic of the regulatory elements found in
mRNAs.
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Fig. 10.1 Simplified schematic of regulatory elements in
DNA and an mRNA transcribed from the corresponding
genomic region. White outlined elements (e.g., TFBS) are
present but nonfunctional in the mature mRNA (CDS: cod-
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Fig. 10.2 PUF3p in complex with the Cox17 mRNA. The
PUF3 binding site is not base paired. (Figure rendered us-
ing pyMol, PDB, 3K49)

Many different proteins potentially bind to RNAs.
In yeast there are estimated to be over 600 RNA-binding
proteins (Fig. 10.2) [10.3], and in humans, based on
the occurrence of RNA binding motifs in proteins, it
is likely that this number is substantially higher [10.4].

The most common domains are K homology (KH,
Fig. 10.3c), RNA recognition motif (RRM, Fig. 10.3d),
and double-stranded RNA (dsRNA, Fig. 10.3a) bind-
ing domains [10.5]. Many of these proteins are part
of other structures, for example, ribosomes or splic-
ing complexes, but some of these have additional
roles in mRNA binding. In addition, there are many
proteins that do not have obvious canonical RNA
binding domains but bind specifically to groups of
RNAs [10.6].

Some of these trans-acting binding proteins bind to
specific cis-regulatory elements in mRNAs, providing
a regulatory mechanism determining transcript fate. The
translation, stability, and localization of an mRNA may
vary in response to these interactions.

Interactions with microRNAs (miRNAs) are of
particular importance in determining mRNA stability.
Predicted target sites for miRNAs have been reported
for over 30% of human genes. However, only a small
proportion of these predictions are experimentally
confirmed.

The cis-regulatory elements encoded in the tran-
script are most often found in the untranslated regions
(UTRs). This bias may partly be because study of
these regions is more tractable to experimental and
bioinformatic analysis. There is however evidence that
trans-acting factors such as miRNAs are easily dis-
placed by the translational machinery and so operate
more readily in the 3′ UTR [10.7]. Translation can be
entirely repressed immediately after nuclear export, and
so this displacement is not an issue for elements such
as those found in the coding region of the mRNA for
ASH1 [10.8]. Some cis-regulatory elements such as the
binding site for iron regulatory proteins certainly occur
in the 5′ UTR [10.9].

Regulatory elements that act in the DNA may be
also present in the mRNA. RNAs exported from the
nucleus contain some of these elements that are non-
functional in the mature transcript. This is particularly
confounding for de novo element discovery in mRNAs.
Knowledge of the genomic elements acting at the tran-
scriptional level can help to resolve this.

Many types of structured and unstructured cis-
regulatory mRNA elements act at the posttranscription-
al level. Examples of such elements are the selenocys-
teine insertion sequence (SECIS), Histone3, PUF3, and
iron responsive element (IRE). Computational methods
have been developed to find each of these [10.10–12].
It is also useful to consider such well-characterized el-
ements in order to estimate the variation that may exist
in novel elements.
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Fig. 10.3a–d Examples of RNA–
protein interactions. (a) dsRNA
binding domain in complex with
Staufen (PDB 1EKZ). (b) Iron re-
sponsive element of ferritin mRNA
in complex with an iron regulatory
protein (PDB 2IPY). (c) KH domain
(PDB 2ANR). (d) RRM domain (PDB
2L41). (All figures rendered using
PyMol)

Methods developed for genes encoding structured
noncoding RNAs (ncRNAs) may be applied to cis-
regulatory elements [10.13, 14].

Most importantly, these well-characterized elements
may be used for benchmarking the performance of pre-
diction algorithms that may then be applied in the search
for novel elements. For this purpose a subset of the
Rfam database [10.15] (e.g., CisReg), or small parts of

databasesofknownRNAsecondarystructures,e.g.,RNA
STRAND [10.16] or CompaRNA [10.17], can be used.

In the past, the limitations of methodology for de-
termining cis-regulatory elements have meant that there
was a large role for bioinformatic prediction. In the last
few years new high-throughput RNA-Seq techniques
combined with bioinformatics are now being devel-
oped [10.18–21].

10.2 Searching for Cis-regulatory Elements Using Bioinformatics

Elements in mRNAs are necessary for regulation of sta-
bility, translational control, and localization. They may
have structural motifs critical to their function or be
characterized by primary sequence alone. These cis-
regulatory elements are the targets for miRNAs and
protein binding sites. Bioinformatic analysis of mRNA
can be useful in proposing new models and hypothe-
ses for experimental testing and interpreting existing
data. The aim of this analysis is to discover those reg-
ulatory sequences that regulate the fate of the mRNAs
containing them.

There are many challenges in identifying cis-
regulatory elements within RNAs. Their primary se-
quence patterns are often sparse. The binding sites for
proteins may depend on just a few nucleotides with
critical secondary structure. Determination of RNA
structure is experimentally difficult, and prediction tools

are often inaccurate. Regulatory elements are only
sometimes conserved, and there are many distracting
signals, such as elements operating at the transcriptional
level. Some regulatory elements may be unique to a par-
ticular mRNA, but others such as the iron responsive
element certainly operate within many mRNAs with
divergent regulatory outcomes [10.12]. Even when ef-
fective bioinformatic models exist for a cis-regulatory
element, the application of this model for the purposes
of discovery will inevitably yield some false positives.

Some methods have been developed that attempt to
discover new regulatory elements in mRNA sequences
using only limited biological knowledge. However, the
most successful methods utilize as much biological
knowledge as is available in order to refine and inform
the predictions. Despite the development and publi-
cation of several hundred methods (particularly for
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Table 10.1 Commonly used and current tools and research directions

Name Purpose Type Reference URL

General tools

UCSC Genome Browser Visualize and download many dif-
ferent data for various genomes

Web [10.22] http://genome.ucsc.edu/

ncRNA Genome Browser Version of the UCSC browser that
includes many data tracks particu-
larly aimed at RNA analysis

Web [10.23] http://www.ncrna.org/

Galaxy Suite Web-based service that eases data
acquisition, processing, and vi-
sualization by integrating many
different tools

Web [10.24] http://galaxy.psu.edu/

Narrowing the search space

RepeatMasker Identify repeat elements Command line
via UCSC

[10.22,
25]

http://www.repeatmasker.org/

Transfac Identify TFBS Web [10.26] http://www.gene-regulation.com/

Jaspar Web [10.27] http://jaspar.genereg.net/

STAMP Binding motif/matrix comparison
tool

Web
Command line

[10.28] http://www.benoslab.pitt.edu/services.html

Refseq Gene annotation database that al-
lows focus on UTRs

Via UCSC [10.29] http://www.ncbi.nlm.nih.gov/RefSeq/

Known regulatory elements

Rfam Contains covariance models of
many known regulatory elements

Web [10.15] http://rfam.sanger.ac.uk/

Transterm Contains pattern-based models of
known regulatory elements

Web [10.30] http://mrna.otago.ac.nz/Transterm.html

UTRsite Web [10.31] http://utrsite.ba.itb.cnr.it/

RBPDb Database of protein binding sites Web [10.32] http://rbpdb.ccbr.utoronto.ca/

TargetScan Tools and database of predicted
miRNA binding sites

Web
Via UCSC

[10.33] http://www.targetscan.org/

PicTar Database of predicted miRNA
binding sites

Web [10.34] http://pictar.mdc-berlin.de/

miRbase Database of miRNAs Web [10.35] http://www.mirbase.org/

ElMMo Database of predicted miRNA
binding sites – also allows search-
ing based on mRNA expression
profiles

Web [10.36] http://www.mirz.unibas.ch/ElMMo2/

Primary sequence analysis

MEME Tools for finding overrepresented
patterns in primary sequences

Web
Command line

[10.37] http://meme.nbcr.net/

Weeder Web
Command line

[10.38] http://www.pesolelab.it/

TEIRESIAS Web
Command line

[10.39] http://cbcsrv.watson.ibm.com/Tspd.html

miRNA sites) only a few are commonly used (or cited).
This may sometimes be because the expected or actual
utility of the software is outweighed by the difficulty
of installing and using it. In other cases the benefits of
a particular tool may be outweighed by the familiarity
of commonly used tools that do a similar job.

10.2.1 Summary of Tools and Data Sources

The most promising commonly used and current tools
and research directions are discussed here (listed in Ta-
ble 10.1). Lists with different foci can be found in the
literature [10.40–42].
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Table 10.1 (continued)

Name Purpose Type Reference URL

Secondary structure prediction [10.42]

mfold/UNAfold Predict secondary structure from
primary sequences

Command line [10.43] http://mfold.rna.albany.edu/

RNAfold and RNAplFold Web
Command line

[10.44] http://www.tbi.univie.ac.at/RNA/

RNAalifold Predict secondary structure from
alignments of primary sequences

Web
Command line

[10.45] http://www.tbi.univie.ac.at/RNA/

Dynalign/Multilign Simultaneous alignment and fold- Command line Mathews, http://rna.urmc.rochester.edu/
ing of multiple similar RNAs to GUI 2010 RNAstructure.html
predict structure #28239}

Turbofold Command line Mathews, http://rna.urmc.rochester.edu/
GUI 2010 RNAstructure.html

#28239}
Comparing secondary and tertiary structures

RNAdistance 2-D structure comparison Command line [10.44] http://www.tbi.univie.ac.at/∼ivo/RNA/

RNAforester Command line [10.46] http://bibiserv.techfak.uni-bielefeld.de/
rnaforester/

iPARTS 3-D structure comparison Web [10.47] http://bioalgorithm.life.nctu.edu.tw/
iPARTS/

Searching for secondary structures

RNAMotif Search method to identify motifs
that may be described structurally
and/or by sequence

Command line [10.48] http://casegroup.rutgers.edu/

CMFinder A tool that finds conserved mo- Web [10.49] http://wingless.cs.washington.edu/htbin-
tifs based on predicted structures Command line post/unrestricted/CMfinderWeb/
using covariance models CMfinderInput.pl

Combining primary and secondary structural search methods

Infernal/cmsearch Search method using covariance
models built from sequence align-
ments to a consensus structure

Command line [10.50] http://infernal.janelia.org/

Scan for matches Pattern-based search method Command line [10.51] http://blog.theseed.org/servers/2010/07/
scan-for-matches.html

Evidence for common regulation and tissue-specific expression

GEO Database of gene expression ex-
periments

Web [10.52] http://www.ncbi.nlm.nih.gov/geo/

Publicly available combinatorial methods

MEMERIS An extension of MEME guided by Command line [10.53] http://cs.stanford.edu/people/hillerm/Data/
predicted secondary structure MEMERIS/

RNAz A tool that finds conserved struc-
tural motifs in aligned sequences

Web
Command line

[10.54] http://www.tbi.univie.ac.at/∼wash/RNAz/

FIRE A tool that combines detection
of overrepresented primary se-
quence patterns with other biolog-
ical data

Web
Command line

[10.55] https://iget.princeton.edu/
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10.3 Obtaining High-Quality mRNA Sequence Data to Analyze

Individual mRNA sequences can be obtained from the
University of California, Santa Cruz (UCSC), Ensembl,
or the National Center for Biotechnology Information
(NCBI). Refseq annotations of UTRs are useful to focus
on, as these avoid many elements acting at the tran-
scriptional level and also patterns in coding sequences.
The Refseq annotations are more conservatively curated
than the Ensembl ones, which contain many predicted
transcripts. The UTRs may be readily obtained from
Ensembl using the web-based Biomart interface. Ref-
seq transcripts along with their annotations can be
obtained from NCBI or UCSC – the annotations must
be processed to produce UTR sequences. Downstream
statistical processing may be necessary to remove du-
plicate sequences and to remove redundant, very similar
sequences (e.g., using CD-HIT-EST).

Multiple sequence alignments for several species
can be obtained from the UCSC genome browser. The
output is supplied in multiple alignment format (MAF).
The alignments can be filtered to include only those
sequences for which there is reasonable conservation.
This process is simplified by using the online tool
Galaxy [10.24].

10.3.1 Evidence for Common Regulation
and Tissue-Specific Expression

mRNA Expression
In order to discover regulatory elements in a gene of
interest it is useful to look for common sequences and
structures in similarly regulated genes. Also, in the
scenario where a regulatory element is known for a par-
ticular gene, it is sensible to search for similar elements
that may be identified in coregulated genes. The gene
expression omnibus [10.52] (GEO) contains mRNA
expression data for multiple species and tissues un-
der many experimental conditions. GEO also includes
data from RNA immunoprecipitation chip (RIP-chip)
experiments, e.g., with Staufen1 (GSE8438) or HuR
(GSE29778) and more recently RIP-RNA-Seq data
(e.g., Tdrd1 GSE29418).

The web interface provided by GEO allows the re-
searcher to identify coregulated mRNAs via a link to
profile neighbors. Expression data may also be down-
loaded and other statistical tools used to identify and
quantify these neighbors, which is worth doing if
a study of special interest is available. The profile neigh-
bors provided by GEO are simply the 200 most closely
expressed genes.

There are also some relevant sets of publicly avail-
able data from published work that are not included
in GEO, e.g., co-localized genes for fruit-fly em-
bryos [10.56] or the data from yeast RIP-Chip [10.3],
which are provided as websites or supplemental
data.

RNA Binding Protein Expression. The expression of
RNA binding proteins in specific tissues can also be
obtained from GEO. On the GEO website the protein
expression data may be readily accessed using the ad-
vanced search option and specifying “Protein” for the
“Sample Type” field.

miRNA Expression. Coexpression of miRNA and tar-
get may be an indication that a functional interaction
occurs. Many miRNAs, like mRNAs, are expressed
in specific tissues. Studies and methods that consider
coexpression in the same tissues have been useful
in identifying biologically relevant pairs. Large stud-
ies have determined the expression of most small
RNAs in many tissues, for example, over 250 small
RNA libraries from 26 different organ systems [10.57].
Several databases provide access to these expression
data [10.58]. Some databases such as ElMMo combine
both miRNA and mRNA data.

10.3.2 Narrowing the Search Space
to Biologically Relevant Regions

In the search for novel cis-regulatory elements that op-
erate at the posttranscriptional level, sequence elements
that are likely to be false positives must be avoided.
These include repetitive elements and elements acting
purely at the transcriptional level.

When de novo element discovery is being pursued
these distracting elements may overwhelm pattern pre-
diction algorithms and so must be masked in input
sequence. When searching for known elements these
distractions should be considered at a later stage when
assessing the likelihood of a putative hit.

Coding sequence contains confounding patterns
arising from protein constraints and common com-
binations of amino acids in the translated product.
They may be masked from analysis in a straight-
forward fashion where sufficient gene annotation is
available. If this is not the case but sufficient protein
information is available, it is possible to use tblastn
(protein–nucleotide 6-frame translation) to map and
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mask out likely coding regions. It must be noted that
this approach will inevitably fail when the interest-
ing cis-regulatory regions are actually in the coding
region.

10.3.3 Distinguishing and Avoiding
Repetitive Elements

Repetitive sequences arising from events such as vi-
ral retrotransposition are abundant in many genomes;
For example, the Alu-element forms 10% of the hu-
man genome; furthermore, it is concentrated in gene
regions and overlaps mRNAs [10.59]. Therefore, many
human 3′ UTRs contain detectable Alu remnants of the
7S RNA.

This and other repeat elements are catalogued in
Repbase [10.25]. These sequences may be masked out
at an early stage of analysis using the RepeatMas-
ker [10.60] program. Alternatively, the UCSC genome
browser [10.22] may be used when assessing putative
elements – this has a RepeatMasker track and allows
intersection of uploaded candidate cis-regulatory ele-
ments to report overlaps.

It is possible that a novel common repeat element
may be discovered as a putative regulatory element in
a set of coregulated mRNAs. The choice of an appro-
priate negative control set of real RNAs (rather than
simulated sequences) from the same species is impor-
tant to avoid this.

10.3.4 Distinguishing and Avoiding
Elements Acting
at the Transcriptional Level
and Other RNA Features

Elements acting in the DNA such as transcription factor
binding sites (TFBSs) and enhancers may be misiden-
tified as elements acting posttranscriptionally. If the
genome of interest is well annotated or sufficient tran-
script sequence data are available, a genomic search can

be avoided. This will go some way to avoiding tran-
scriptionally acting elements.

The methods discussed in this chapter may be use-
fully restricted to untranslated regions (UTRs). This
will avoid many false positives from genomic sequences
and patterns associated with coding sequence.

TFBSs in Transcription Promoters that May Overlap
5′ Regions of the mRNA. TFBS databases such as
Transfac [10.26] and Jaspar [10.27] contain both ex-
perimentally defined and computational predictions. As
these databases contain many false positives it is inad-
visable to mask or remove predicted TFBSs from an
early stage of analysis.

The difficulties with predicted TFBSs are reviewed
here [10.61]. One approach to improving TFBS predic-
tion is to use conservation information, although this is
controversial as binding sites may not be conserved in
multispecies alignments [10.62].

The web-based tool STAMP [10.28] may be em-
ployed to determine whether a set of aligned predicted
cis-regulatory elements coincides with any of those
TFBSs in the public databases.

Enhancers that May Overlap 3′ Regions
ChIP-seq studies can be used to identify binding sites
for known enhancers [10.63]. The cited review points
out that there is conflicting evidence regarding the con-
servation of enhancer regions and TFBS; although many
sites are conserved, there are a large number of non-
conserved sites. Bearing these limitations in mind, the
available data should still be considered; For example,
a recent study first identified highly conserved non-
coding sequences and then tested associated genes for
tissue-specific expression during mouse embryogene-
sis [10.64]. Although the identified enhancer sites are
clearly a subset of all such elements and very few
occur within gene transcripts, putative cis-regulatory
elements acting in mRNAs should be cross-checked
against known enhancer regions.

10.4 Known Regulatory Elements

When a cis-regulatory element is characterized by
a primary sequence, pairwise alignment methods
or multiple ones, including hidden Markov models
(HMMs), may be used to search for it in other
RNAs. Pairwise alignment methods are best estab-
lished and have many fast, readily available imple-

mentations such as the basic local alignment search
tool (BLAST) [10.65]. On the other hand, HMMs
which probabilistically model state transitions and
thereby account for gaps in a nonarbitrary manner can
have increased sensitivity, albeit at a computational
cost [10.66].
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An example where bioinformatic primary sequence
analysis has been successful is in a study of the mRNA
for the Vg1 localized mRNA. This mRNA was shown
to be localized to the vegetal cortex of Xenopus laevis
oocytes by parts of a 340-base region in the 3′ UTR.
Subsequently, this was shown to be bound by proteins
that contain multiple KH domains. Schnapp’s group
first identified using bioinformatics four repeated se-
quence elements, but experimental deletion showed that
only one of these elements, UUCAC (E2), was critical
for function [10.67].

Mowry’s group also studied the localization of the
mRNA for Vg1 and took a different approach [10.68].
They systematically deleted sequences over the en-
tire 340-nt region. Interestingly, the result they found
was quite different – a different sequence, UUUCUA
(VM1), was identified as critical, and this was supported
using site-specific mutagenesis [10.68]. Although this
sequence corresponded to one of the three (E1) ele-
ments identified in the Schnapp laboratory, their results
showed those deletion constructs had reduced but not
abolished localization.

The UUCAC, E2 element was also found to be re-
quired for localization of the mRNA for vegT [10.69].
Interestingly, both the vegT and the Vg1 mRNAs had
multiple (five) copies of this element. Subsequently
a shorter more generalized motif, CAC, was postu-
lated, repeats of which are present in the majority of
RNAs localized to the vegetal cortex of Xenopus laevis
oocytes [10.70].

This demonstrates the utility of bioinformatic anal-
ysis, although the requirement to find repeated clusters
of short sequence required the development of a util-
ity specialized to this task. For such a short motif (3–6
bases) multiple copies may be found by chance in any
mRNA, and statistical tools have been developed to ana-
lyze this [10.71]. Functionally, multiple small dispersed
E2 and VM1 elements provide, in combination, a spe-
cific binding site for the RNA-binding proteins in this
case.

Notably many of the experimentally determined el-
ements collected in the RBPDb are short (4–8 bases)
and alone would not provide specificity. Computational
tools that consider combinations of weakly informa-
tive sites have been used in other systems, e.g., for
TFBS and miRNA targets. However, the functional re-
lationships between multiple instances of the same or
different sites are not usually known. For some sites,
notably the important classes of AU-rich and CU-rich
elements, programs to detect these sites operate by
weighting multiple nearby repeats.

10.4.1 RNA Binding Protein Target Sites

Known protein binding sites are available from several
public databases. The Rfam [10.15] database contains
a growing group of covariance models for many cis-
regulatory elements including RNA binding protein
sites. Transterm [10.30] also contains patterns and de-
scriptions of many known cis-regulatory elements –
particularly protein binding sites. Nonredundant sets of
sequences from NCBI or other uploaded sequences of
interest may be searched for matches against these pat-
terns. UTRsite [10.31] is a similar database of patterns.
The RNA-Binding Protein DataBase [10.32] (RBPDb)
catalogs proteins and their binding sites curated from
the literature. Unstructured sequence motifs of binding
sites may be downloaded and filtered by experiment
type, species, and/or binding protein affinity.

These databases (Rfam, Transterm, UTRsite, and
RBPDb) are useful in identifying known elements and
may be used to find interesting candidates for testing.
The reasoning behind this approach is to direct the
identification of putative elements by their identity or
similarity to known elements that have been experimen-
tally demonstrated in other mRNAs. Another important
usage of these databases is as a source of benchmark-
ing datasets for any algorithms or pipelines designed to
predict cis-regulatory elements de novo.

A note of caution is warranted. Database entries
depend on manual curation based on literature review
to remain current; For example, we have recently up-
dated the Rfam model for the IRE [10.12] – the previous
model was out of date and could not be used to identify
many IREs that had been more recently experimentally
demonstrated. It must also be considered that the mod-
els in Rfam, Transterm, and UTRsite inevitably vary
in their sensitivity and specificity when identifying el-
ements in target sequences.

Most of the entries in RBPDb are characterized by
single sequences alone, and so if these data are to be
used, the user must currently confine their search to
be based on primary sequence only or build their own
models to include predicted/demonstrated secondary
structure. RBPDb does, however, contain some posi-
tion weight matrices (PWMs) from systematic evolution
of ligands by exponential enrichment (SELEX) experi-
ments – the web interface may be employed to search
mRNA sequences using these.

For some types of RNA–protein interactions it may
be possible to predict either the binding from the protein
structure, or the reverse. For a few classes of proteins
this has been possible (e.g., PUF domain-containing
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proteins), but research in this area is beyond the scope
of this chapter [10.72, 73].

10.4.2 miRNA Target Sites

miRNAs have short ungapped seed sequences comple-
mentary to their target sites and act to downregulate
expression. These targets are characterized by primary
sequence with secondary structure normally impairing
binding. Higher eukaryotic genomes may contain many
hundreds of miRNAs (1,424 Human miRNAs in MiR-
Base release 17, 4/2011), and each one of those tested
affects the expression of several hundred mRNAs. Some
of the changes in expression are undoubtedly the result
of indirect regulation; For example, transcription fac-
tors are regulated by miR-34a, so changes in miR-34a
expression certainly have effects beyond the immediate
targets [10.74].

There are numerous predicted miRNA binding sites,
mainly in 3′ UTRs. It has been estimated that over
30% of human genes contain target sites. However,
relatively few target sites have been validated ex-
perimentally. miRTarBase [10.75] listed the greatest
number (2,819) of verified targets for the 269 human
miRNAs that had been tested (4/2011). Databases of
less reliable high-throughput data map over 150 000 tar-
gets to genomes [10.75].

Prediction of target sites for miRNAs is more
straightforward than for proteins. However, there are
many methods available which will detect different sub-
classes of sites with different accuracies; these have
been recently reviewed [10.76], and ensemble methods
that combine several different tools are available [10.77,
78]. Several examples of predictive tools are outlined
below.

TargetScan [10.33] predicts miRNA target sites.
Base pairing between the seed sequence at the 5′ end of
the miRNA and the target mRNA and evolutionary con-
servation of the sites are the primary consideration. The
software has been developed to additionally account for
conservation at the seed region, minimum free energy of

the hybridization including additional 3′ binding, flank-
ing AU-rich sequence, proximity to additional miRNA
target sites, and the position of the target site within
the UTR [10.79, 80]. The UCSC genome browser is
a straightforward way of accessing the TargetScan pre-
dictions. These have been calculated using conservation
information based on multiple species alignment. The
inclusion of this information reduces false positives and
is probably a good idea for genome-wide analysis. If the
target for analysis is restricted to several genes it may
be worthwhile to consider nonconserved miRNA target
sites by running the TargetScan program on unaligned
sequence.

An alternative method is PicTar [10.34]. It allows
the identification of target sites that have reduced con-
servation but are within mRNAs coexpressed with the
targeting miRNA. The authors report that 30–50% of
such sites are functional [10.81].

Another method, miRanda/mirSVR [10.82], has the
distinction of allowing noncanonical G–U base pairs in
the seed sequence; miRanda is also available on the web
and has recently been extended to include a support
vector regression algorithm – mirSVR [10.83]. This
incorporates the relevant biological data, including ex-
pression data, into a scoring system and avoids a strict
filter based on conservation.

An alternative method offering greater sensitivity
to nonconserved target sites is ElMMo [10.36]. The
algorithm uses Bayesian methods to assign priors cal-
culated from the phylogenetic distribution of target sites
for each miRNA. This allows miRNA-dependent ad-
justment of posterior probabilities for target sites with
similar conservation patterns. The benefit of this is that
conservation information is automatically tuned to each
specific miRNA. The disadvantage is that it will be
hard to match a nonconserved target site of an miRNA
that has many widely conserved target sites. ElMMo is
available via a web server and includes convenient filter-
ing of mRNA targets to search using expression levels
from numerous datasets, also providing Gene Ontology
enrichment information on the identified targets.

10.5 De Novo Element Discovery

The discovery of new regulatory elements is a key
goal for improved understanding of gene regula-
tion. Recurring patterns in sequence and predicted
structure may be detected and assessed for statisti-
cal significance. Some approaches for dealing with
false positives caused by distracting sequence patterns

have already been discussed. In de novo detection
these steps are of particular importance – there is
no model of even low specificity with which to
begin.

There are many tools available for the detec-
tion of patterns in primary sequence, usually be-
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cause they have been developed for finding DNA
regulatory regions and this is then applied to
RNA.

This is despite the demonstrated importance of
structure in many regulatory elements. The reason for
this lies in the difficulty of secondary structure pre-
diction and that primary sequence patterns are still
characteristic of structured elements.

Masked alignments

Search for sequence

BLAST

Search for structure

RNAMotif

Primary sequence
pattern discovery

MEME MEMERIS

Secondary structure
pattern discovery

Predictor.
e.g., RNAalifold

RNAfold
mfold

Structure
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Glam2

Candidate
motif

Primary Secondary

Combined structure
&

sequence search

Infernal Scan for matches

Known
motifs

RFAM Transterm UTRsite RBPDb

Weeder Teiresias

RNAz

CM finder

Masked sequences

Fig. 10.4 Discovery of motifs starting from input sequences or alignments that are similarly regulated. The general goal
of each component is shown, with some specific examples of currently available software named

10.5.1 Primary Sequence Analysis
for Elements Lacking Significant
Secondary Structure

A number of enumerative methods are available for
de novo detection of primary sequence patterns. The
patterns being sought are generally far shorter than
the genomic and transcript sequences in which they
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are contained. Real primary sequence elements may
be degenerate, gapped, redundant, and repetitive. Sev-
eral differently patterned elements may be responsible
for similar regulatory outcomes in different tran-
scripts. All these factors contribute to the difficulty of
detection.

Overrepresented patterns in a set of unaligned in-
put sequences may be identified by multiple expectation
maximization for motif elicitation (MEME) [10.37].
A background model may be provided for this analysis.
The output motifs consist of position weight matrices
(PWMs) showing the probability of a particular nu-
cleotide at each position within the motif. MEME will
not consider gaps in a motif. GLAM2 [10.84] allows
gaps in the matched primary sequence, but it does not
include these gaps in the output motifs.

An alternative approach offered by Weeder [10.38]
involves building suffix trees from a set of input se-
quences. These are used to find all patterns of a set
length, occurring in at least a certain number of
sequences, with an upper limit on the number of mis-
matches (mutations). The program may be run in an
automated way multiple times to detect patterns of dif-
ferent lengths.

The TEIRESIAS [10.39] algorithm is not restricted
to searching for patterns of specific length and can
detect gapped patterns. This is computationally more in-
tensive, in both memory and processing requirements.
The large number of results requires further processing
for statistical significance.

The application of these methods is shown in
overview in Fig. 10.4. Further methods are reviewed and
benchmarked elsewhere [10.85].

10.5.2 Secondary Structure Prediction
for Structured Element Discovery

Relatively few confirmed secondary or tertiary struc-
tures for cis-regulatory elements are available. There-
fore, predictions of RNA structures are made com-
putationally. High-throughput methods that may allow
more structures to be determined experimentally are
becoming available [10.86]. However, these meth-
ods are limited, and a combination of bioinformatic
and high-throughput experiment has been success-
ful [10.18].

In addition, it may be possible to predict the three-
dimensional structures of RNAs using bioinformatics,
which will become increasingly feasible as the num-
ber of known structures increases [10.87]. Packages
are available to assist in tertiary structural predic-

tion [10.88, 89]. These may be used with sequences of
interest alone or in combination with available experi-
mental data on similar structures.

Single Sequences
Predicting folding on individual sequences is a common
technique. This may be done globally (for the entire
mRNA) or locally on windows within a biologically
relevant section (e.g., 80-base windows in 3′ UTRs).
A global RNA fold prediction algorithm from the Zuker
laboratory is implemented by the mfold [10.43] pro-
gram. These methods are commonly used, and the
paper associated with this program has over 700 ci-
tations in the literature. The Vienna RNA package
provides a similar program, RNAfold [10.44]. Like
mfold, this calculates predicted secondary structure for
RNAs based on minimum free energies (MFE) using
conformations derived from published values for stack-
ing and destabilizing energies.

The UNAFold [10.90] software is a development of
mfold and further predicts hybridization and melting
profiles. Like RNAfold, it produces dotplots showing
pairing probabilities over the sequence (Fig. 10.5). The
dotplots from both programs include the pairing proba-
bilities corresponding to suboptimal (predicted) folding
of the input sequence. Suboptimal structures are dis-
cussed later.
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Fig. 10.5a,b Predicted secondary structures for the IRE in hu-
man CDC14A. (a) Optimal MFE structure from RNAfold
(−2.9 kcal/mol). The dot plot (b) represents the ensemble of struc-
tures. Some suboptimal structures contain predicted pairs in a lower
stem, their presence being more consistent with other IRE struc-
tures. The C–G base pair in the loop observed in the experimental
structure (b) is not predicted by MFE methods
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Local folding methods are likely to be more ap-
propriate for small cis-regulatory elements. Several
algorithms which are particularly suitable have been de-
veloped. These perform better on known cis-regulatory
elements [10.91]. This is an area of active development
and testing; current methods include RNAplfold and
Rfold [10.92, 93]. In addition, methods that combine
structure prediction with comparison with known sec-
ondary structures of homologous sequences are being
developed [10.94].

RNA structure is dynamic. Binding interactions
with a structured cis-regulatory element are likely to
further influence the structure of that element. A limited
set of thermodynamic measurements provides the basis
of the RNA structure predicting algorithms. Further-
more, these methods do not account for pseudoknots,
G-quartets, and other structures. The predicted struc-
tures cannot be expected to entirely model the complex
molecular interactions found in the in vivo environ-
ment. Approaches using homology to known secondary
and tertiary structures that are not necessarily the MFE
structures should assist in this [10.87, 94, 95].

Some elements may contain pseudoknots, but the
prediction of pseudoknots remains computationally
slow and is only tractable for shorter RNA sequences.
The pknots [10.96] program and HotKnots [10.97]
are methods that may be employed on targeted re-
gions if such structures are expected [10.98]. There are
cis-regulatory elements containing pseudoknots, for ex-
ample, frameshift elements. Further examples may be
found in general and specific databases [10.15, 99].

Predicted structures do not always match natively
observed structures. An example is the iron responsive
element (IRE) found in the human mRNA for CDC14A.
Both the UNAfold and RNAFold program find the same
MFE. Additional base pairs are seen in the dotplot,
some of which would make a lower stem observed in all
IREs tested. Some pairs are not predicted at all by MFE
approaches, e.g., the C–G in the apical loop (Fig. 10.5).

When there is existing information about the
structure of a particular cis-regulatory element, these
constraints may be provided to the folding programs.
This allows the estimation of the MFE in a candidate
element even when this is not the lowest resulting from
prediction. Other sources, such as gene expression and
phylogenetic information, may then be used in combi-
nation to arrive at strong candidates for experimental
testing.

Benchmarking on ncRNA genes has shown both
sensitivity and specificity of RNA structure predic-
tion using MFE methods to be limited (22–63% and

20–60%, respectively) [10.100]. Newer algorithms im-
prove on this [10.101]. Although secondary and tertiary
structure is a factor in RNA interaction, the difficulty
of experimentally determining these structures and of
accurately predicting them must be always borne in
mind.

These programs do not allow noncanonical bases,
e.g., U–U or A–G, which have been observed in
many experimentally determined RNA structures. Sev-
eral algorithms do allow predictions that include these
noncanonical pairs [10.89, 101]. Though these are con-
siderably slower, they may be used with short structured
cis-regulatory elements.

Multiple Sequences
Calculating the consensus structure for aligned se-
quences can overcome some of the shortcomings in
the accuracy of MFE calculations for single sequences.
This approach depends on the ability to obtain a rea-
sonable alignment of the primary sequences. Methods
available include RNAalifold [10.45] – part of the Vi-
enna RNA package.

Covariance (e.g., an A–U base pair being exchanged
by some other pairing) or compatible mutation (e.g.,
a G–C base pair being exchanged by a G–U pair) help
tools such as RNAalifold to provide an optimal struc-
ture consistent with the alignment. However, too many
variations in the primary sequence will make alignment
at this level impossible.

A further class of algorithm simultaneously folds
and aligns input sequences. The approach is computa-
tionally more intensive, though may be useful where
the primary sequence alignments have limited similar-
ity [10.41]. Dynalign, Multilign, and Turbofold are all
part of the RNAstructure package [10.14]. The orig-
inal Dynalign works with two sequences – Multilign
operates on multiple sequences. Turbofold does not pro-
duce an alignment but presents separate structures for
each of the sequences in the input, rather than one
consensus structure. Structures are predicted based on
pairing probabilities in each sequence severally, com-
bined with the pairing probabilities in a consensus
model [10.102].

Foldalign and FoldalignM [10.103] will produce
local and global alignments along with structure pre-
dictions. An interesting feature of Foldalign is that it
will attempt local alignments over the input sequences
(based on structure and primary sequence) and then re-
port the best alignments found. It is therefore also an
element detection tool and not limited to structural pre-
diction. Additional discussion and comparison of RNA
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fold prediction algorithms can be found in recent re-
views [10.14, 87, 104].

10.5.3 Comparing Secondary Structures

It is useful to compare two structures to assess their
similarity. In some cases the best information about
a regulatory element may be its secondary structure, and
so this is key in finding similar elements. RNAdistance,
RNAforester, and Cofolga2mo [10.105] allow these
comparisons for simple secondary structures. A simpli-
fication of the problem is to compare overall shapes,
e.g., stem loop or cloverleaf [10.106].

The Vienna RNA package provides RNAdis-
tance [10.44], which allows not only comparison of
pairs of structures but also simultaneous comparison
of multiple structures, providing a comparison matrix
for all input structures. The output quantifies the differ-
ences between the structures. A pipeline on the Vienna
RNA servers, Structure Conservation Analysis, includes
this method. Input is an alignment and RNAalifold is
used to predict MFE structures that are compared with
predicted structures of individual sequences.

The RNAforester [10.46] algorithm builds tree-like
data structures that represent RNA secondary structure.
These can then be used to build multiple alignments of
different RNA structures. Thresholds may be applied
determining whether a particular structure is sufficiently
similar to form part of an aligned group. This allows the
degree of similarity between structures to be assessed
as well as the grouping of RNAs into structurally de-
termined families. Another useful output of this tool is
an alignment of input sequences that is wholly deter-
mined by the given structures. This can be useful to
build a seed for a covariance model.

10.5.4 Searching for Secondary
or Tertiary Structural Elements

When there is good evidence for structure but the speci-
ficity of the primary sequence in the regulatory element
is largely or completely unknown, a search based on
structure alone is required. RNAMotif [10.48] allows
the creation of a pattern which has no or little infor-
mation about primary sequence. The resulting matches
may be used to find additional sequences for testing;

alignments of these will hopefully allow the incorpora-
tion of primary sequence information into the model for
the regulatory element in question. Three-dimensional
(3-D) motifs (for example, G-bulges from a lysine ri-
boswitch can be searched for with RMdetect [10.95].

10.5.5 Combining Primary and Secondary
Structural Search Methods

A covariance model (CM) is a stochastic context-free
grammar (SCFG) that can be used to model the con-
sensus sequence and structure of RNAs. Given an
alignment to a consensus secondary structure, not only
nucleotide residues at single-stranded positions but also
base pairings, insertions, and deletions are scored. The
Infernal [10.50] software package provides the tools to
build covariance models and to search for matches to the
model over a target sequence. The resulting bit score is
the log-odds ratio of the probability of the target match-
ing the model to the probability of target matching
random sequence. This methodology is key to the Rfam
database which catalogs RNA families using these mod-
els, showing their paralogs and homologs [10.15].

When sufficient information exists about a cis-
regulatory element such that known examples may be
meaningfully aligned to a consensus structure, a co-
variance model may be constructed. This model may
be used to search for matches within other mRNA
sequences – as has been done in the case of the
IRE [10.12] and other cis-regulatory elements in the
Rfam database. This can result in new candidates for
experiment testing.

An alternative to using covariance models is to build
a pattern corresponding to a motif. This is the ap-
proach taken by Transterm and UTRsite. A useful tool
for interpreting and searching using such patterns is
scan for matches [10.51]. The pattern descriptions used
by this tool can incorporate structural information. Such
a pattern does not depend on being able to construct an
alignment of known sequence elements. However, com-
plex patterns can be difficult to construct, and the ability
to make a good pattern depends on prior knowledge
of a motif, including permissible variations at different
points. The output from scan for matches does not in-
clude the statistical information provided by the Infernal
software’s method.
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10.6 Combinatorial Methods

Figures 10.6 and 10.4 give an overview of how the tools
discussed here may be used together in the search for
cis-regulatory elements. Some combinations of tools are
sufficiently novel to be considered new methods in their
own right. These methods are discussed here.

Unpaired bases are more likely to be involved
directly with RNA interaction, and certain protein inter-
actions. Consequently, primary sequence patterns found
in unpaired regions are of particular interest. This can
be seen for example in the IRE, where the unpaired
nucleotides have been shown to interact with the iron
regulatory proteins. MEMERIS [10.53] is an extension
of the MEME algorithm. A script that comes with the
package first uses the Vienna RNA tools to predict sec-
ondary structure across the input sequences (which must
be in FASTA format with all sequence on one line). Al-
tering the prior probabilities for putative motif start sites
directs the MEME algorithm towards predicted single-
stranded positions. The weakness of not being able to
detect gapped patterns is inherited from MEME.

Given the importance of structure in cis-regulatory
elements, another useful approach is to identify se-
quence regions likely to have conserved structure.
RNAz [10.54] was originally developed to detect struc-
tured ncRNAs in genomic sequence, but this method
is also of potential interest in cis-regulatory element
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Fig. 10.6 Preparing and obtaining sequences and alignments. Solid lines indicate basic approach. Dashed lines indicate
additional steps appropriate to genome-scale analysis or de novo element discovery. Dotted lines indicate additional
processes dependent on the specific problem

discovery and can successfully detect several known
elements. The software takes a sequence alignment as
input and uses RNAalifold to calculate the MFE of con-
sensus structures arising over a sliding window. MFE
values for these same sequences are also severally cal-
culated using RNAfold. The consensus MFE in ratio
to the average single sequence MFE gives a structure
conservation index (SCI). Additionally, a z-score is cal-
culated, which represents the deviation of the MFE
score from random sequence of similar composition
and length. The z-score and the SCI are used as inputs
to a support vector machine together with the number
of aligned sequences and the pairwise identity of the
sequences – this results in a probability value for the
occurrence of a conserved structural motif. RNAz may
be run from the command line or on the Vienna RNA
servers. Also the ncRNA [10.23] site has a version of
the UCSC genome browser that includes a track for sites
predicted by RNAz.

For multiple sequences with common function,
automated production of covariance models for ele-
ments with similar sequence and structure is provided
by the CMFinder [10.49] program, which takes short
unaligned sequences (< 500 bp) as input. Based on
MFE, the algorithm first selects a number of candi-
dates from within these sequences. The candidates are
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aligned according to predicted secondary structure and
an expectation-maximization algorithm used to refine
a covariance model that identifies elements within the
candidate sequences distinct from a background distri-
bution. The input sequences are then rescanned using
this covariance model, and the top hits are included as
candidates. The authors of CMFinder note that identi-
fying larger motifs is problematic and go some way to
addressing this by attempting to merge smaller motifs
as a final step.

The importance of incorporating biological data
into the element discovery process has already been
discussed. Selection of sequence for pattern discov-
ery together with appropriate background models is an

important first step in many analyses. The finding in-
formative regulatory elements (FIRE) [10.55] pipeline
automates this process by combining the detection of
primary sequence patterns with other biological data –
either discrete or continuous data (e.g., gene expression
data). FIRE starts by looking for 7-mer seed motifs, but
these can be extended one base in either direction. The
initial seeds are systematically modified using degener-
ate International Union of Pure and Applied Chemistry
(IUPAC) codes to arrive at a motif most significantly
associated with the other biological data. This pipeline
also offers the convenience of displaying gene ontol-
ogy terms with enriched association to the identified
motifs.

10.7 Conclusions and Future Prospects

The importance of posttranscriptional regulation is be-
coming increasingly apparent as large-scale proteomic
data become available. Transcripts are translated with
a wide range of efficiencies, giving differing numbers
of functional proteins per message.

It has now become almost routine to measure tran-
script levels at a genome scale using microarrays or
next-generation sequencing. The expectation was that
transcript abundance would provide good estimates of
protein abundance in the cell. However, the early stud-
ies done over a decade ago that suggested that mRNA
levels might predict less than 45% of protein levels
have been reiterated by recent studies. This indication of
widespread posttranscriptional control is seen in many
organisms.

High-throughput wet-lab studies and analysis of
regulatory elements will facilitate discovery of ele-

ments with widely conserved functions. However, it
should also be noted that some key elements might only
be found in a small number of messages or species,
e.g., human-specific miRNA targets, or the targets of
other noncoding RNAs. These exceptional elements
are a challenge for both bioinformatic and wet-lab
studies and may also be of critical importance for
cell growth and development, and have applications in
biotechnology.

At least some of the variation in the amount of pro-
tein translated from individual mRNAs will be mediated
by cis-regulatory elements in the mRNAs. This chapter
has outlined current bioinformatic methods available for
their discovery. Development of new methods and the
use of high-throughput data on a genome-wide scale,
particularly comparative genomic, proteomic, and high-
throughput transcriptomic data, will facilitate this.
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