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Abstract. Network-based applications usually rely on the explicit
distribution of components, which interact by means of message pass-
ing. Assembling components into a workflow is challenging due to the
asynchronism inherent to the underlying message-passing communica-
tion model. This paper presents the PaCE language, which aims at co-
ordinating asynchronous network-based components by exploiting the
data-flow execution model. Specifically, PaCE has been designed for
dealing with components compliant with the P-REST architectural style
for pervasive adaptive systems. Moreover PaCE provides reflective fea-
tures enabling run-time adaptation and evolution of workflows.

1 Introduction

The advent of new resource-constrained mobile computing devices (e.g., smart-
phones, and tablets) equipped with wireless networking technologies (e.g., WiFi,
Bluetooth and 3G), together with the exploitation of new computing paradigms
(e.g., Service Oriented Computing, Cloud Computing, and Pervasive Comput-
ing), is boosting a fast move from developing applications as standalone systems,
to developing applications as network-based systems. Specifically, network-based
systems rely on the explicit distribution of components, which interact by means
of (asynchronous) message passing. Indeed, network-based systems differ from
distributed systems in the fact that the involved networked components are in-
dependent and autonomous, rather than considered as integral part of a concep-
tually monolithic system [28].

In this settings, network-based applications can be easily modeled and de-
veloped as a set of interacting actors [4]. An actor is a computational unit that
reacts to external stimuli (e.g., messages) by executing one or more of the follow-
ing actions when stimulated: (i) sending messages to other actors, (ii) creating
new actors, and (iii) designating the behavior for the next stimulus. Since there
is no causal sequentiality between these actions, they can be carried on in par-
allel. Indeed, the Actor model is characterized by inherent concurrency among
actors, dynamic creation of actors, and interaction through explicit asynchronous
message passing (with no restriction on message arrival order).

T. Gschwind et al. (Eds.): SC 2012, LNCS 7306, pp. 51–67, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



52 M. Caporuscio, M. Funaro, and C. Ghezzi

Although Actors are proper abstractions for modeling single reactive com-
ponents that simply react to external stimuli, asynchronism makes them diffi-
cult to deal with when modeling component compositions. A composition is an
“active” actor, also referred to as orchestrator, which orchestrates a process by
accessing other components and consuming their artifacts. Indeed, the orchestra-
tor queries actors, and aggregates their responses, to achieve its goal. However,
since interactions are asynchronous, the orchestrator does not block its execu-
tion while waiting for responses. Rather, the orchestrator continues executing,
and responses are processed asynchronously, with no causal order. To cope with
such issues, we raised the level of abstraction, and devised a new coordination
language satisfying the following requirements:

1. Using a RPC-like syntax
2. Retaining the inherent asynchronism of the pervasive environment
3. Making distribution and code parallelization as seamless as possible
4. Integrating local functions to carry out operations which are not

coordination-related (i.e., manipulating the local state)

This paper presents PaCE (Prime Coordination languagE), a data-flow lan-
guage for coordinating asynchronous network-based components. Data-flow lan-
guages [21][16] structure applications as a directed graph of autonomous software
components that exchange data by asynchronous message passing. In the data-
flow paradigm the components do not “call” each other, rather they are activated
by the run time system, and react according to the provided input (received mes-
sage). Once the output is available, the run time system is in charge of moving
data towards the proper destination. Data-flow applications are inherently par-
allel. Exploiting the data-flow paradigm introduces a set of advantages: 1) con-
currency and parallelism are natural and components can be easily distributed
across the network, 2) asynchronous message passing is natural for coordinat-
ing independent and autonomous components, and 3) applications are flexible
and extensible since components can be hierarchically composed to create more
complex functionalities.

Specifically, the PaCE language has been designed and developed for compos-
ing and coordinating components built according to the P-REST architectural
style [9], where components are called resources (we will use this term from now
on) and are first-class abstraction acting as “prosumer” [24] – i.e., fulfilling both
roles of producer (reactive actor) and consumer (active actor). To support the
P-REST style we implemented the Prime (P-rest Run-tIME) middleware [10].
Since Prime has been specifically designed to deal with pervasive environments,
where applications must support adaptive and evolutionary situation-aware be-
haviors, achieving Adaptation and Evolution is primary requirement for the mid-
dleware. Adaptation refers to the ability to self-react to environmental changes
to keep satisfying the requirements, whereas evolution refers to the ability of
satisfying new or different requirements. Prime satisfies such goals by provid-
ing support for: (i) flexibility, the middleware is able to deal with the run-time
growth of the application in terms of involved resources, (ii) genericity, the
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middleware accommodate heterogeneous and unforeseen functionalities into the
running application, and (iii) dynamism, the middleware is able to discover new
functionality at run time and rearrange the application accordingly.

Therefore, PaCE allows developers to specify the active behavior (compo-
sition logic) of a composite resource in terms of the set of operations defined
by the Prime programming model. Moreover, PaCE exploits Prime features
to achieve both adaptation and evolution of compositions in terms of resource
addition, resource removal, resource substitution, and resource rewiring [23].

The paper is organized as follows: Section 2 discusses related work, Section 3
overviews the Prime middleware, and its programming model. Section 4.1,
Section 4.2, and Section 5 present the PaCE syntax, semantics, and inter-
preter, respectively. Section 5.1 discusses dynamic adaptation features provided
by PaCE, and Section 6 assesses the work done by presenting a case study.
Finally, Section 7 concludes the paper and sketches our perspectives for future
work.

2 Related Work

The growth in complexity and heterogeneity of software systems imposes the
need of raising the level of abstraction to make the software development process
as rigorous as possible. Gelernter and Carriero [13] advocated for the sharp
separation between computation (i.e., the tasks that must be executed to achieve
the final goal), and coordination (i.e., how the tasks must be arranged to achieve
the final goal) in large systems. PaCE is a data-flow coordination language.

Data-flow languages emphasize data, and the transformations applied to it to
produce desired outputs. The introduction of this perspective is mainly moti-
vated by the inherent unsuitability of the Von Neumann’s architecture to the
massive parallelism due to its global program counter and its shared memory
that rapidly become bottlenecks in parallel programs [6].

In the data-flow computational model, a program is represented by a directed
graph built at compile time, where nodes represent instructions, and arcs repre-
sent the data dependencies between instructions. When all the arcs entering a
node (the firing set) have data on them, the node becomes fireable. During the
execution, the instruction (represented by the fireable node) is executed and its
result is placed on (at least) one of the outgoing arcs. Then, the node suspends
executing as long as it is again non-fireable. Figure 1 shows the translation of a
simple program (on the left-hand side) into the equivalent data-flow graph (on
the right-hand side).

Liskov and Shrira in [19] introduced a similar solution for asynchronous and
type-safe RPC in the Argus programming language. The basic idea is similar
(i.e., continue executing as long as it is possible), but, with respect to data-flow
languages, the degree of parallelism attained is lower because of the benefits
granted by functional features.

Therefore, exploiting a data-flow approach to compose and coordinate soft-
ware components is very appealing and the benefit is twofold: (i) focusing on
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B = Y / 10
C = A*B +
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Fig. 1. A simple program and its translation into the equivalent data-flow graph

data allows for a more natural composition modeling approach since, if aided
with a visual support, it can also be used and understood by non technical peo-
ple; (ii) developers do not explicitly care about tasks concurrency. Rather, the
execution model allows for automatic parallelization.

Pautasso and Alonso exploited the former benefit by proposing the JOpera
visual composition language [26], and run-time support [25]. The JOpera lan-
guage models both data-flow and control-flow dependencies among the tasks
in the composition and the development environment is in charge of keeping
the two perspectives consistent. The approach does not exploit the data-flow
model to implicitly achieve parallelization, rather, the latter is achieved through
imperative constructs inserted in the control-flow perspective. In [26] Pautasso
and Alonso point out that the data-flow perspective is not enough to model ev-
ery process because it ignores indirect dependencies (e.g., tasks communicating
through databases or configuration files) or because there are dependencies that
are not data-related like a compensation handler. PaCE addresses the first is-
sue by adopting a purely functional approach, where no side-effects are allowed,
and thus no indirect dependencies can be introduced. On the other hand, the
compensation handler issue is out of our research scope.

Regarding the latter benefit – i.e., implicit parallelization – a complete general-
purpose coordination language has not been proposed. Rather, researchers fo-
cused on raising the level of abstraction by proposing languages where nodes
in the data-flow graph are functions written in different languages. For exam-
ple Bernini and Mosconi [8] proposed a visual data-flow language called VIPERS
where the node in the data-flow graph are Tcl fragments. Also textual approaches
exist, like GLU [14] that embeds C fragments in the LUCID [29] data-flow lan-
guage. These solutions exploit the implicit parallelism and delegate to other
languages the whole computation. As a final remark, they are mostly focused on
exploiting parallel computers for scientific computations and are not designed to
fit distributed environments.

Another research area slightly related to this work, comprises agent-based
workflow modeling and enactment. Indeed, an agent is an autonomous and in-
telligent program that make decisions on next actions to perform based on its
current state. Hence, in agent-based workflow management, agents are provided
with goals extracted from the overall workflow schema, thus each of them de-
velops and its own work plan to achieve those goals. Agents-based workflow
management systems coordinate agents by exploiting different approaches [15]:
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Fig. 2. P-REST architectural style

(i) role-based, where different agents fulfill different roles and perform a work-
flow autonomously, (ii) activity-based, where agents coordinate the execution of
activities as defined within the workflow schema without the need for a cen-
tral workflow enactment service, and (iii) mobility-based, where the workflow
instance is migrated to different locations to perform specific tasks.

3 The P-REST Approach at a Glance

In this section we briefly introduce the Pervasive-REST (P-REST) [9] architec-
tural style, and the Prime middleware, which provides the run-time support
needed for implementing P-RESTful applications – i.e., applications built fol-
lowing the P-REST style.

The P-REST architectural style (depicted in Figure 2) is defined as a refine-
ment of the well known REST architectural style [12], to specifically deal with
pervasive environments. P-REST promotes the use of Resource as first-class ob-
ject that plays the role of “prosumer” [24], i.e., an entity that fulfills both roles
of provider and consumer. To support coordination among resources, P-REST
extends the traditional request/response mechanism through new primitives: (i)
a Lookup service that enables the discovery of new resources at run time, (ii) a
distributed Domain Name System (DNS) [22] service that maintains the map-
pings between resource URIs and their actual location in case of mobility, and
(iii) a coordination model based on the Observer pattern [18] that allows a re-
source to express its interest in a given resource and to be notified whenever
changes occur.

In P-REST, resources directly interact with each other by exchanging their
representations. Referring to Figure 2, both Resource1 and Resource2 observe
Resource3 (messages 1 ). When a change occurs in Resource3, it notifies (mes-
sage 2 ) the observer resources. As the notification is received, Resource1 issues
a request for Resource3 and obtains as a result the representation ρ3 (message
3 ). Note that, while observe/notify interactions take place through the point-
to-multipoint connector (represented as a cube), REST operations exploit point-
to-point connector (represented as a cylinder). All the resources exploit both
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Fig. 3. Prime layers

the Lookup operation to discover the needed resources, and the DNS service to
translate URIs into physical addresses.

According to the uniformity principle [12] P-REST describes every software
artifact as a Resource implementing a set of well-defined operations, namely PUT,
DELETE, POST, GET, and INSPECT. Moreover, P-REST adopts semantic resource’s
descriptions to specify both functional and non-functional properties of a re-
source. Indeed, descriptions support the implementation of the lookup service
by enabling run-time semantic-aware resource discovery.

P-REST enhances the REST addressability principle – i.e., a resources is iden-
tified by means of an URI – by distinguishing between Concrete URI (cURI) and
Abstract URI (aURI). cURI identify concrete resource instances, whereas aURI
identify groups of resources. Such groups are formed by imposing constraints
on resource descriptions (e.g., all the resources implementing the same func-
tionality). Therefore, cURI achieves point-to-point communication, and aURI
achieves point-to-multipoint communication. Resources can be used as building-
blocks for composing complex functionalities. A Composition is still a resource
that can, in turn, be used as a building-block by another compositions. Resources
involved in a composition are handled by means of a Composition Logic.

The Prime(P-rest Run-tIME) [10] middleware provides the run-time sup-
port for the development of P-RESTful applications1. Referring to Figure 3, the
Prime architecture exploits a two-layer design where each layer deals with a
specific issue:

Communication layer – To deal with the inherent instability of pervasive envi-
ronments, Prime arranges devices in an overlay network built on top of low-level
wireless communication technologies (e.g., Bluetooth, Wi-Fi, Wi-Fi Direct, and
UMTS). Such an overlay is then exploited to provide two basic communication
facilities, namely point-to-point and point-to-multipoint. Point-to-point commu-
nication grants a given node direct access to a remote node, whereas point-to-
multipoint communication allows a given node to interact with many different
nodes at the same time. Furthermore, the Prime communication layer provides
facilities for managing both physical and logical mobility [27].

1 Prime is available at http://code.google.com/p/prime-middleware/, under the
GNU/GPLv3 license.

http://code.google.com/p/prime-middleware/
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Programming model – Prime provides the programming abstractions to im-
plement P-RESTful applications by leveraging the functional programming fea-
tures of the Scala language [1] and the Actor Model [4]. In particular, Prime
defines two main abstractions and a set of operations to be performed on them.
Resource represents the computation unit, whereas Container handles both the
life-cycle and the provision of resources. The set of operations allowed on re-
sources defines the message-based Prime interaction protocol and includes: (i)
Access, which gathers the set of messages to access and manipulate resources,
(ii) Observe/Notify, which allows resources to declare interest in a given re-
source and to be notified whenever changes occur, (iii) Create, which provides
the mechanism for creating a new resource at a given location, and Move, which
provides the mechanism to relocate an existing resource to a new location, and
(iv) Lookup, which allows for discovering new resources on the basis of a given
semantics-aware description.

It is worth noticing that the Prime programming model exploits the Ac-
tor Model, which in turn relies on the Prime communication layer to provide
message-passing interaction among actors.

4 PaCE – Prime Coordination languagE

This section presents both the syntax (§4.1) and semantics (§4.2) of PaCE,
which have been specifically designed to offer the set of core features characteriz-
ing data-flow languages [16]: (1) single assignment of variables, (2) freedom from
side-effects, (3) data dependencies equivalent to scheduling (statements are not
executed in the order they are written, but as their input data become available),
(4) an unusual notation for iterations (due to features 1 and 2), and (5) lack of
history sensitivity in procedures (in a language without a deterministic control
flow, histories cannot be univocally built by a developer).

Realizing such features strongly impacts on both syntax and semantics. In
fact, (1) and (2) ask for a functional programming style, where multiple variable
assignment is avoided, and functions are side-effects free (i.e., do not affect the
environment, and their results depend only on input values). Moreover, features
(1) and (2) are fundamental to induce scheduling from data dependencies (3).
In fact, since scheduling is determined from data dependencies, it is important
to guarantee that variables do not change between their definition and their use.
Whenever variables are modified at run time, the data-flow graph (see Figure 1)
would be invalidated. On the other hand, due to single-assignment, the order
of statements is in general not relevant. However, single assignment conflicts
with the imperative style in loops (4) because it forbids the increment of loop
variables, thus loops are implemented through special constructs. Finally, data-
flow languages inherit from the functional languages the lack of history sensitivity
for procedures (5). In a language without a deterministic order of execution,
histories cannot be univocally built by a programmer. Therefore, operations rely
on the input parameters only and not on previous invocations. The functional
operators along with the ordered queues are enough to guarantee a deterministic
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ID = [A-Za-z]([A-Za-z] | [0-9])*
INTEGER = [1-9]([0-9])*
STRING = "([A-Za-z] | [0-9])*"
URI = ID | STRING
OP = OPTWOPAR ‘(’ URI ‘,’ ID ‘)’

| OPONENOPAR ‘(’ URI ‘)’
OPTWOPAR = ‘post’ | ‘put’
OPONEPAR = ‘get’ | ‘delete’ | ‘inspect’
BLOCK = ‘{’ STATEMENT+ ‘}’
STATEMENT = LOOP | ASSGNM | OBSERVE | CREATE | OUTPUT

| INFLOOP | IF | WRITE | LOOKUP | SMFUN
OBSERVE = ‘observe’ ‘(’ URI ‘)’ BLOCK
CREATE = ID ‘=’ ‘create’ ‘(’ URI ‘,’ ID ‘)’

| ID ‘=’ ‘create’ ‘(’ URI ‘,’ ID ‘,’ URI ‘)’
LOOKUP = ID ‘=’ ‘lookup(’ ID ‘)’
ASSGNM = ID ‘=’ OP

| ID ‘=’ ID ‘(’ (STRING)? (‘,’ STRING)* ‘)’
| ID ‘=’ ‘get(’ ‘stdin’ ‘’)’

SMFUN ID ‘(’ (STRING)? (‘,’ STRING)* ‘)’
OUTPUT = ID ‘(’ (STRING)? (‘,’ STRING)* ‘)’

| ‘put’ ‘(’ ‘stdout’ ‘,’ ID ‘)’
| ‘put’ ‘(’ ‘stdout’ ‘,’ STRING ‘)’

LOOP = ‘while’ ID ‘in’ ID ‘to’ ID BLOCK
INFLOOP = ‘while’ ‘(’ ‘true’ ‘)’ BLOCK
IF = ‘if’ ‘(’ BOOLEXP ‘)’ BLOCK ‘else’ BLOCK
BOOLEXP = BOOLEXP

( ‘&&’ | ‘||’ | ‘<’ | ‘>’| ‘<=’ | ‘>=’ | ‘==’ )
BOOLEXP
| ID | INTEGER | STRING |‘!’ BOOLEXP
| ‘(’ BOOLEXP ‘)’| ‘true’| ‘false’

Fig. 4. EBNF for PaCE

behavior for the model, that is, for a given set of inputs, a program always
produces the same set of outputs [5][11][17].

4.1 Syntax

According to the above guidelines, PaCE’s syntax is mainly inspired by common
functional languages but for control structures, which instead are close to the
imperative style. Therefore, every instruction is an assignment, operations are
side-effects free (i.e., do not affect the environment, and their results depend only
on input values), and multiple variable assignment is avoided. Moreover, since
PaCE is tailored to the P-REST style, it directly embeds P-REST operations,
which in turn are straightforwardly mapped to the Prime programming model.

Referring to the generative EBNF for PaCE (see Figure 4), Prime’s access
operations are derived from the OP non-terminal. OPONEPAR operations are in-
voked with one mandatory parameter – i.e., the list of URIs identifying the target
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resources –, whereas OPTWOPAR operations get the URIs list, and an additional pa-
rameter containing a representation. Return values are lists of representations,
and depend on the specific operation used: GET returns the representation of
the target resource; PUT, DELETE and POST return a representation of the sta-
tus code (e.g, “ERROR”, “OK”, and “NORESPONSE”), and INSPECT returns a
representation of the resource description. Note that all PaCE operations are
designed to work on lists. It is also possible to issue GET and PUT on two special
URIs: stdin and stdout, respectively. The operation a = GET(stdin) reads a
from the standard input, and assigns a value to the variable a. Conversely, the
instruction PUT(stdout, ID) writes the value of ID on the stdout.

The EBNF can also generate invocation to two categories of external func-
tions. The first one gathers the functions without a return type. These functions,
thus, cannot directly affect the PaCE script but can only update the state of
the composite resource the script is attached to. For this reason they are called
State-Manipulating Functions (smfun from now on). The second one comprises
the functions with a return value that are generated by the ASSGNM nontermi-
nal. Notice that also these functions might have side effects on the composite
resource state.

The LOOKUP operation is invoked with one parameter, which represents the
identifier of the external function used to filter out the resources, and returns a
list of URIs. The CREATE operation gets as input the container URI where the
resource has to be created, and the representation used to initialize the new
resource. A third parameter can be provided to impose a specific URI for the
new resource. The return value is the URI of the new resource. The OBSERVE
operation, which exploits the event-driven communication model provided by
Prime, is defined as control structure. OBSERVE defines a block of statements
that is executed whenever an event, generated by observed resources (specified
by the URI parameter), is received.

PaCE provides a set of simple control structures. The infinite loop (i.e., while
(true) {...}), and conditional structure (i.e., if (cond) {...} else {...})
have the usual syntax. Whereas the LOOP control structure requires for special
attention. As already mentioned, the single assignment feature prevents the im-
plementation of standard loops where the loop variable is explicitly incremented
at every iteration. To overcome such an issue, PaCE defines a control structure
of the form: while var in b1 to b2 {...}, where var ranges from b1 to b2 by
preventing its explicit assignment within the loop.

4.2 Semantics

Since PaCE is inspired by data-flow languages, it adheres to the data-flow exe-
cution model. However, while data-flow languages build explicitly the data-flow
graph to drive the execution, in PaCE such graph is built implicitly. Indeed,
PaCE does not completely depart from the sequential execution of instruc-
tions, but makes it asynchronous: statements are evaluated sequentially, but
their execution is non-blocking. That is, given a two-statements sequence <
S1, S2 >, S2 can be executed independently of the S1 termination, as long as the
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start

a = GET(stdin) b = GET(stdin)

a obtained

b obtained

op1(a)

finish

PROGRAMSTDINUSER

insert a insert b

(a) Pure data-flow execution model

a = GET(stdin)

wait for a

PROGRAMSTDIN

insert a

wait for read

a obtained

op1(a)

b = GET(stdin)

wait for b

b obtained

finish

USER

stdin lock

ready to insert a

ready to insert b

insert b

(b) PaCE execution model

Fig. 5. Execution model

execution of S2 does not need data produced by S1. When a statement is invoked,
it returns immediately by yielding a future variable – i.e., a special variable that
will eventually contain the result of an asynchronous computation. Whenever
the variable is accessed, execution is suspended if the value is not available, yet.

PaCE scripts are compliant with the data-flow execution model. However,
their execution is not purely concurrent since parallel operations are executed
as soon as the interpreter evaluates them, and needed data is available. Having
non-pure parallelism, allows the PaCE interpreter to retain at run time the infor-
mation about the instruction order. This is particularly important when dealing
with I/O and control structures. In the data-flow execution model, sequentiality
of instructions is lost when the data-flow graph is built, since only data depen-
dencies are considered. For instance, let S1 =<a = get(stdin), c = op1(a)
b = get(stdin)> be a sequence with two independent gets. According to the
data-flow execution model, they can be executed in any order. As a consequence,
it is impossible to univocally determine which result, coming from a get(stdin),
must be stored in a, and which in b (see Figure 5a). To this end, PaCE semantics
imposes the mutually-exclusive access to the stdin resource by exploiting the
information about the instruction order. When the first get(stdin) is executed,
it locks the standard input; then, when the second get tries to access stdin, it
is suspended as long as the first get completes. In this case the two gets are
ordered, and stdin lock ensures the mutual-exclusion policy for accessing to
the standard input. It is worth noticing that such an issues does not concern the
put(stdout, ID), which can be executed whenever the ID variable is available.

As introduced in Section 4.1, PaCE scripts can also contain control structures:
i.e., conditional (if-else), loops (while), and observe structures. Notice that
for the sake of clarity, the Petri nets in Figure 6 do not take into account pos-
sible dependencies between instructions in the control structures’s bodies and
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condition 
evaluable

true false

if 
body

else 
body

finish

(a) if

condition 
evaluable

false true

finish

.  .  . op1 op2 op3 opn

synch

(b) while

EVENT 
GENERATION

event 
arrived

.  .  . op1 op2 op3 opn

synch

OBSERVE

ready to 
process

(c) observe

Fig. 6. Semantics of the PaCE control structures

instructions outside the bodies. However, whenever any dependency holds, it is
treated according to the data-flow execution model.

Conditional Structure – According to the execution model discussed above,
the conditional structure is evaluated as soon as the conditional expression be-
comes evaluable. Hence, the proper branch is executed. Figure 6a shows the Petri
net specifying the if-else semantics.

Loop Structure – As introduced in Section 4.1, the concept of loop does
not fit the data-flow paradigm. However, having loops instead of the equivalent
tail recursion, is fundamental for the adoption of the paradigm [3]. Therefore,
the rationale of the loop syntax (see Figure 4) relies in the fact that PaCE
is conceived as a coordination language. Indeed, any computation should be
accomplished by either remote resources or external functions. According to the
syntax given above, every loop iteration is forced to happen in isolation. That
is, all the instructions in the loop body must complete before the next iteration
can be executed. Moreover, all the variables, allocated within an iteration, are
deallocated at the end the iteration, to guarantee the single-assignment property.
Data dependences holding between instructions in the loop body and external
instructions must be satisfied before the execution of the first iteration. Figure 6b
shows the Petri net defining the while semantics. Note that, the isolation is
guaranteed by synch, which forces the Petri net to wait until all the instructions
in the body complete.

Observe Structure – The observe operation introduces the event-based pro-
gramming paradigm: the observe is an infinite loop whose body is executed
every time an event is produced in one of the observed resources. To avoid lock-
ing the execution in such infinite loops, every observe is executed separately to
allow the interpretation of a script to continue beyond any observe. According
to P-REST (see Section 3), the observe operation accepts as input the list of
resources to be observed (specified by means of their URIs). Whenever an event
is received from an observed resource, the body is executed according to the
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data-flow execution model. Notice that also in this case the body is executed in
isolation and events are queued and consumed sequentially. Figure 6c shows the
Petri net specifying the observe semantics: event generator produces tokens
(events), which observe consumes; event arrived models the incoming queue.

External Functions – PaCE allows for the definition of two types of external
functions: side-effect-free and state-manipulation functions. Side-effect-free func-
tions are used to manipulate PaCE variables (e.g., to translate the data from
one encoding to another). State-manipulation (smfun) functions are used to ma-
nipulate the internal state of the composite resource. Due to the shared-nothing
paradigm exploited by PaCE, smfun functions are critical, and two main prob-
lems arise. First, smfuns can conflict with the POST operation since it can modify
the internal state. Second, concurrent smfuns can potentially modify the same
data. To this extent, on one hand, PaCE provides mutual exclusion mechanisms
to avoid the simultaneous access to the state of the composite resource. On the
other hand, POST and SMFUNs should not be used at the same time to avoid
unforeseen (and unpredictable) behaviors of the PaCE scripts. A POST changes
the internal state of a resource, and SMFUNs can be used to read such internal
state. Thus, the script behavior could be implicitly modified, and this fact would
break the functional assumption of data-flow languages. Such interactions could
lead to unforeseen (and unpredictable) behaviors of the PaCE scripts.

5 PaCE: Interpreter

This section presents the PaCE interpreter, and details how PaCE scripts are
mapped to the underlying Prime middleware.

The PaCE interpreter is developed in Scala [1], and exploits the Scala parser
combinator library [20]. However, since in PaCE all the variables are stored as
future variables, the interpretation algorithm makes use of an auxiliary symbol
table containing all the bindings between variable names and future values. Ac-
cording to PaCE semantics (§4.2), every operation immediately returns a future
variable that will be eventually filled with the result. Whenever the operation
to be executed requires input parameters, whose values are not yet available,
the interpreter suspends the execution of the analyzed instruction that will be
resumed whenever the missing values will become available. Clearly, suspend-
ing the execution of an instruction does not suspend the execution of the whole
script. Rather, the execution flow proceeds according to the data-flow paradigm,
and allows for the implicit construction of the data-flow graph.

The interpreter also implement a basic error-handling mechanism. Requests
are automatically reissued if a configurable timeout expires up to three times
before terminating the script. This simple mechanism accounts for network prob-
lems only. Conversely, errors at the application level (i.e., errors generated by
the queried resources) must be taken care of explicitly in the script because they
are directly notified in the response.
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PaCE implements P-REST operations by exploiting the Prime middleware,
which is in charge of dispatching requests and responses (see Section 3). Since
Prime operations are completely asynchronous, the PaCE interpreter imple-
ments an indexing system that (i) binds received responses to issued requests
and, (ii) assigns the values embedded in the responses to the proper future
variable in the symbol table.

The PaCE interpreter also offers an abstraction for developing and using
external functions. In order to be used, external functions must be made avail-
able to the interpreter at run time. External functions are defined by extending
the ExternalFunctions abstract class, which implements all the mechanisms
needed to parse, validate and publish functions. ExternalFunctions exploits
the Java reflection mechanism, and exposes a method invoke, which takes as
input the name of the functions to be executed and a list (possibly empty) of
parameters. The invoke method executes the function in a future block to guar-
antee asynchronism. In addition, invoke checks whether the function is a smfun
or not. In fact, according to the PaCE semantics (§4.2), smfun functions are
executed in mutual exclusion, whereas non-smfun functions can be executed
concurrently.

5.1 Run-Time Adaptation

A primary requirement for P-RESTful applications is to support adaptive and
evolutionary situation-aware behaviors [9]. To this extent, PaCE provides four
operations on resources – i.e., resource addition, resource removal, resource sub-
stitution, and resource rewiring – that allow PaCE’s scripts to be reconfigured
at run time.

According to the PaCE syntax and semantics discussed above, resource ad-
dition/removal simply refer to the ability of adding/removing a URI to/from a
list, and resource rewiring means changing the value of a variable containing a
URI. resource substitution, instead, consists of rewiring a resource binding, and
moving the state of the old resource to the new one. It is worth to notice that,
to avoid inconsistencies in the symbol table, the interpreter suspends the exe-
cution of scripts before performing any reconfiguration. Indeed, reconfigurations
are performed asynchronously and in isolation – i.e., reconfigurations are queued
and executed only when the interpreter is in a safe state. While add, remove and
rewire operations are entirely implemented within the PaCE interpreter, substi-
tute exploits the primitives provided by Prime to retrieve the state of the old
resource (GET), and to initialize the new one (PUT).

Special attention should be paid whenever the adaptation involves a vari-
able containing observed URIs. Indeed, observed variables are referred once, at
the beginning of the observe structure, when the variable is defined, and the
corresponding subscription is generated. Hence, adaptation operations must be
carefully examined before their application:

add: the intended semantics concerns the addition of a new resource to the
pool of resources already observed. Whether an add is performed, a new
subscription is issued to start observing the new resource.
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remove: the intended semantics is the opposite of the add operation, i.e., the
given resource URI should be no longer observed. Therefore, the old subscrip-
tion is removed so that no further notifications will arrive from a specific
URI.

rewire: the intended semantics concerns the substitution of the entire resource
pool with a new one. This operation is implemented by removing every URI
from the list, then adding new URI to the list.

substitute: this operation, if applied to the variable containing the observed
resources, does not affect the behavior of the observe block.

6 Case Study

In this section we want to show how PaCE can be used to orchestrate Prime
resources. This section also covers the run-time adaptation facilities of the PaCE
interpreter.

Let us introduce the following Pervasive Slide Show (PSS) scenario: Carl, a
university professor, is going to give a talk in a conference room, and carries his
laptop storing both the slides and related handouts. The conference room provides
speakers with a smart-screen available on the local wireless network, whereas the
audience is supposed to be equipped with devices (e.g., laptops, smartphones and
tablets), which can be used for displaying either the currently-projected slide on
the screen or the related handouts. The audience and the speaker always refer to
the same slide, and to the same page of the handouts. Every device is required
to have a running Prime instance.

The PSS implementation conforms to the P-REST conceptual model and
specifies the following resources: CurrentSlide and CurrentPage represent the
currently-projected slide and the corresponding handout page, respectively. Pre-
sentation is the composition that implements the interface Carl uses to browse
the slide-show. It also encapsulates the slides and the handouts along with the
pointers that keep track of the current slide and handout page. Reader visualizes
the slide show or the handout on the audience’s devices. Projector handles the
smart-screen of the conference room. The Projector resource is deployed on
the smart-screen Prime container. The other resources are initially deployed on
Carl’s container, and made available to the devices in the audience which join
the slide-show.

When a participant (say, Bob) enters the conference room, he uses the Prime
resource finder built-in tool, which lists all of the resources available within the
overlay, to explore the environment and find the Reader resource. Hence, select-
ing Reader from the list, the Prime node issues a GET operation to retrieve a
representation of Reader, which, in turn, is used to create a local instance. Fig-
ure 7 shows the PaCE script for Presentation and Reader. The Presentation
resource is a composition meant to aid Carl to project his slides. Thus, the asso-
ciated PaCE script (see Figure 7a) searches the conference center for a projector
by using the external function projSearch. The resulting URIs are stored in the
proj variable to be used later. Then, the execution enters in an infinite loop
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pro j = lookup ( projSearch )
whi le ( t rue ){

cmd = GET( s td in )
i f (cmd == ‘ ‘ fwd ’ ’ ) {

rep = getNextS l id e ( )
PUT( cu r rS l i d e , rep )
PUT( proj , rep )

}
i f (cmd == ‘ ‘bwd ’ ’ ) {

rep = ge tPr ev i ou sS l i d e ( )
PUT( cu r rS l i d e , rep )
PUT( proj , rep )

}
}

(a) Script for Presentation

observe ( slURI ){
s l i d e = GET(obsURI )
view ( s l i d e )

}

whi le ( t rue ){
cmd = GET( s td in )

i f (cmd == ‘ ‘ ho ’ ’ )
r ewi r e ( slURI , hoURI)

i f (cmd == ‘ ‘ pres ’ ’ )
r ewi r e ( slURI , presURI )

}

(b) Script for Reader

Fig. 7. Scripts for PSS scenario

to serve Carl’s commands. In case of a “fwd” (“bwd”) command the script calls
an smfun called getNextSlide. It returns the representation of the new slide
and, as a side-effect, updates the pointers to the current slide and to the current
handout page in the Presentation resource. The new representation is stored
in the rep variable and it is used as a parameter for the following two PUT oper-
ations: one, issued towards the CurrSlide resource, the other, towards the proj
variable, that is, towards all the the smart-screens found in the conference room.
All the Projector resources will react by projecting the new slide. As for the
CurrentSlide resource, it is involved in a more complex interaction. Indeed,
looking at Figure 7b, the Reader script observes the state of CurrentSlide and,
whenever it changes, the Reader issues a GET towards it. When the new slide
is retrieved, it is visualized through the view external function. Apart from the
observe body, the script for Reader also features an infinite cycle to allow Bob
to toggle between the presentation and the handout. This second part makes use
of the adaptation primitives described in 5.1. They are used in a reflective way,
that is, the script for the Reader reconfigures itself to serve Bob’s commands.
Specifically, when Bob issues the “ho” command, the script invokes the rewire
functions with slURI (the observed URI) as first parameter (the old binding)
and the URI of the CurrentPage resource (hoURI) as second parameter. The
hoURI variable is hard-wired in the script by the system developer. Being slURI
an observed variable the special rules presented in 5.1 apply. Specifically, the
symbol table is updated so that the slURI will denote the CurrentPage URI
and not the CurrentSlide anymore. As a consequence, also the obsURI vari-
able is updated accordingly. To make the update effective the observe body
must be executed once before starting processing the new data stream. After
the rewire has completed, Bob will be able to follow the handout on his device.



66 M. Caporuscio, M. Funaro, and C. Ghezzi

Later on, Bob will be able to switch back to the presentation by issuing the
“pres” command.

7 Conclusion

In this paper we addressed the problem of coordinating resources adhering to
the P-REST architectural style. Such resources are modeled by Prime as ac-
tors, i.e., an autonomous and asynchronous computational resource reacting to
external stimuli. Although Actors are proper abstractions for modeling P-REST
resources, asynchronism makes them difficult to deal with when assembled into
a workflow. Indeed, resource coordination is a time-consuming and error-prone
process for a developer.

To address these problems, in this paper we propose PaCE, a data-flow lan-
guage for composing and coordinating resources built on top of the Prime mid-
dleware [9]. Moreover, PaCE exploits Prime features to enable both run-time
adaptation and evolution of compositions. We described PaCE’s syntax and se-
mantics, and discussed the advantages and issues induced by the adoption of the
data-flow paradigm. We also presented the PaCE interpreter, which provides
reflective capabilities to achieve reconfiguration operations, namely resource ad-
dition, resource removal, resource substitution, and resource rewiring.

As for the future research directions, we want to improve the language by
adding a full support to the error-handling before removing the strict binding
between PaCE and P-REST, to obtain a general purpose coordination language
suitable for every inherently parallel and asynchronous environment. Further-
more, following well known approaches, e.g., Yahoo Pipes [2], Mashlight [7] and
JOpera [26], we plan to develop a tool for visually specifying resource composi-
tions. This would further ease the development process, by allowing developers
to fully benefit from data-flow paradigm: focus on how things interact, rather
than on how things happen.
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