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Preface

The 11th International Conference on Software Composition (SC 2012) provided
researchers and practitioners with a unique platform to present and discuss chal-
lenges of how composition of software parts may be used to build and maintain
large software systems. Co-located with the TOOLS 2012 Federated Conferences
in Prague, SC 2012 built upon a history of a successful series of conferences on
software composition held since 2002 in cities across Europe.

We received 42 submissions co-authored by researchers, practitioners, and
academics from over 20 countries. Each paper was peer-reviewed by at least
three reviewers, and discussed by the Program Committee. Based on the rec-
ommendations and discussions, we accepted 12 papers, leading to an acceptance
rate of 28.6%.

Besides these technical papers, we are excited to have won Uwe Assmann and
Mehdi Jazayeri as keynote speakers for SC 2012, who shared their insights on
aspects of software composition with the combined SC 2012 and TOOLS 2012
audience.

We are grateful to the members of the Program Committee and the external
reviewers for helping us to seek submissions and provide valuable and timely re-
views. Their efforts enabled us to put together a high-quality technical program
for SC 2012. We are indebted to the local arrangements team of TOOLS 2012 for
the successful organization of all conference and social events. The SC 2012 sub-
mission, review, and proceedings process was extensively supported by the Easy-
Chair Conference Management System. We also acknowledge the prompt and
professional support from Springer, who published these proceedings in printed
and electronic volumes as part of the Lecture Notes in Computer Science series.
Finally, we would like to thank our sponsors adesso AG and AOSD Europe for
their generous support of this conference.

Most importantly, we would like to thank all authors and participants of SC
2012 for their insightful works and discussions!

May 2012 Thomas Gschwind
Flavio De Paoli

Volker Gruhn
Matthias Book
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Keynote Speakers

Mehdi Jazayeri is professor of computer science and founding dean of the
Faculty of Informatics at the University of Lugano. From 1994 through 2007,
he was also professor of computer science and head of the Distributed Systems
Group at the Technical University of Vienna. He is interested in programming,
software engineering, programming languages, and distributed systems. He has
worked at both technical and management capacities at Hewlett-Packard Lab-
oratories, Palo Alto, Synapse Computer Corporation, Ridge Computers, and
TRW Vidar. He spent two years in Pisa, Italy, to set up and manage a joint re-
search project on parallel systems between Hewlett-Packard and the University
of Pisa. He has been an assistant professor of computer science at the Univer-
sity of North Carolina at Chapel Hill, adjunct professor at Georgia Institute of
Technology, University of Santa Clara, and San Jose State University. He was
a Fulbright Scholar at the University of Helsinki (1979) and a visiting professor
at the Politecnico di Milano (1988). He was a principal investigator on several
European projects dealing with software architectures and advanced distributed
systems.

Mehdi Jazayeri was named an IEEE Fellow in 2007. He is also a Member of
ACM, the Austrian, German, and Swiss Computer Societies. He holds degrees
from Massachusetts Institute of Technology (SB, 1971) and Case Western Re-
serve University (MS, 1973; PhD, 1975). He has been a consultant to the US
Government and to multinational companies in the areas of software engineering,
design, architecture, and processes.

Uwe Aßmann holds the Chair of Software Engineering at the Technical Uni-
versity of Dresden. He got a PhD in compiler optimization and a habilitation
from Karlsruhe University on “invasive software composition” (ISC), a com-
position technology for code fragments enabling flexible software reuse. ISC
unifies generic, connector-, view-, and aspect-based programming for arbitrary
program or modeling languages. The technology is demonstrated by the Reuse-
ware environment, a meta-environment for the generation of software tools
(http://www.reuseware.org).

Currently, in the project “Highly Adaptive Energy-Efficient Computing
(HAEC)” at TU Dresden, Uwe Aßmann’s group applies ISC to energy-aware
autotuning (EAT), a technique to dynamically recompose code adapted to the
required quality of service, to the context of the system, and to the hardware
platforms. EAT is based on multi-objective optimization (MOO) and always de-
livers an optimal system configuration with respect to the context parameters.
It is a promising technology also for the optimization of other qualities of future
cyber-physical systems (CPS).
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Modeling Dynamic Architectures Using Dy-BIP�

Marius Bozga, Mohamad Jaber, Nikolaos Maris, and Joseph Sifakis

UJF-Grenoble 1 / CNRS, VERIMAG UMR 5104, Grenoble, F-38041, France
Firstname.Lastname@imag.fr

Abstract. Dynamic architectures in which interactions between components can
evolve during execution, are essential for modern computing systems such as
web-based systems, reconfigurable middleware, wireless sensor networks and
fault-tolerant systems. Currently, we lack rigorous frameworks for their model-
ing, development and implementation. We propose Dy-BIP a dynamic extension
of the BIP component framework rooted in rigorous operational semantics and
supporting a powerful and high-level set of primitives for describing dynamic
interactions. These are expressed as symbolic constraints offered by interacting
components and computed efficiently by an execution Engine. We present exper-
imental results which validate the effectiveness of Dy-BIP and show significant
advantages over using static architecture models.

1 Introduction

Architectures are essential for mastering the complexity of systems and facilitate their
analysis and evolution. They allow a separation between detailed behavior of compo-
nents and their overall coordination. Coordination is usually expressed by constraints
that define possible interactions between components. There exists a large number of
formalisms supporting a concept of architecture, including software component frame-
works, systems description languages and hardware description languages. Despite an
abundant literature and a considerable volume of research, there is no agreement on a
common concept of architecture, while most definitions agree on the core e.g. diagram-
matic representations by using connectors. This is due to two main reasons.

First, is the lack of rigorous operational semantics defining architectures as composi-
tion operators on components. That is the behavior of a composite component is inferred
from the behavior of its constituent components by applying architectural constraints.
For existing component frameworks, the definition of rigorous operational semantics
runs into many technical difficulties. They fail to clearly separate between behavior of
components and architecture. Connectors are not just memoryless switching elements.
They can be considered as special types of components with memory e.g. fifo queues
and specific behavior. Another difficulty stems from verbose architecture definitions
e.g. by using ADLs [1], that do not rely on a minimal set of concepts. Such definitions
are hardly amenable to formalization. Finally, some frameworks [2] use declarative lan-
guages e.g. first order logic to express global architecture constraints which are useful
for checking correctness but as a rule do not provide a basis for defining operational
semantics.
� This work is partially supported by the FP7 IP ASCENS.

T. Gschwind et al. (Eds.): SC 2012, LNCS 7306, pp. 1–16, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The second reason is the distinction between static and dynamic architectures. Usu-
ally, hardware and system description languages rely on static architecture models. The
relationships between components are known at design time and are explicitly specified
as a set of connectors defining possible interactions. Dynamic architectures are needed
for modeling reconfigurable systems or systems that adapt their behavior to changing
environments. They are defined as the composition of dynamically changing architec-
ture constraints offered by their constituent components. Filling the gap between static
and dynamic architecture models raises a set of interesting problems. In principle, dy-
namic architecture models are more general: each configuration corresponds to a static
architecture model. Is it possible to define a dynamic architecture modeling language
as an extension of a static architecture modeling language? Furthermore, if we restrict
to systems with a finite - although potentially large - set of possible configurations, any
dynamic architecture model can be translated into a static architecture model. Such a
translation can yield very complex static architecture models. As a rule, using dynamic
architectures may lead to more concise models. However, static architecture models can
be executed more efficiently thanks to the global and static knowledge of connectors [3].

We propose the Dy-BIP component framework based on rigorous operational seman-
tics for modeling both static and dynamic architectures. Dy-BIP can be considered as an
extension of the BIP language [4] for the construction of composite hierarchically struc-
tured components from atomic components. These are characterized by their behavior
specified as automata extended with data and functions described in C. A transition of
an automaton is labeled by a port name, a guard (boolean condition on local data) and
an action (computation on local data). In BIP architectures are composition operators
on components defining their interactions. An interaction is described as a set of ports
from different components. It can be executed if there exists a set of enabled transitions
labeled by its ports. The completion of an interaction is followed by the completion of
the involved transitions: execution of the corresponding actions followed by a move to
the target state. An operational semantics for BIP has been defined in [5]. It provides a
basis for the implementation of an Engine that orchestrates component execution. The
Engine knows the set of the interactions modeling the architecture. It executes cycli-
cally and atomically the following three-step protocol: 1) from a state each component
sends to the Engine the ports of its enabled transitions; 2) the Engine computes the set
of feasible interactions (sets of received ports corresponding to some interaction); 3) the
Engine chooses non-deterministically one interaction amongst the feasible interactions
by sending back to the components the names of their ports involved in this interaction.
Figure 1(a) shows a static architecture defined by interactions pq and qr. Its consists
of three components offering communications through ports p, q and r. In contrast to
BIP, the set of interactions characterizing architectures in Dy-BIP changes dynamically
with states. A port p has an associated architecture constraint Cp which describes pos-
sible sets of interactions involving p. Feasible interactions from a state are computed
as maximal solutions of constraints obtained as the conjunction of constraints offered
by enabled transitions. Figure 1(b) illustrates a dynamic architecture with three compo-
nents offering ports p, q and r with associated constraints Cp, Cq and Cr. As for the
static architecture, the possible interactions are pq and qr.
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Architecture Constraints

p q q r

q rp

p q r

p q rp q q r

(a) Static architecture

r

p[Cp] q[Cq]

p q

r[Cr]

r

p qp q q r q

(b) Dynamic architecture

Fig. 1. Static and dynamic architecture

We provide operational semantics for Dy-BIP implemented by an Engine which as
for BIP, orchestrates components by executing atomically a three-step protocol. The
protocol differs in that components send not only port names of enabled transitions but
also their associated architecture constraints.

Dy-BIP is an extension of BIP. A BIP model with a global architecture constraint C,
can be represented as a Dy-BIP model such that the constraint Cp associated with a port
p is the set of the interactions of C involving p.

Dy-BIP allows modeling dynamic architectures as the composition of instances of
component types. For the sake of simplicity, we assume that there is no dynamic cre-
ation/deletion of component instances. The main contributions are the following:

– Definition of a logic for the description of architecture constraints. The logic is not
only expressive but also amenable to analysis and execution. It encompasses quan-
tification over instances of component types. Formulas involve port names used
as logical variables and characterise sets of interactions. Given a formula, a feasi-
ble interaction is any set of ports assigned true by a valuation which satisfies the
formula.

– Study of a semantic model and a modeling methodology for writing architecture
constraints associated with ports. For a port p, the associated constraint is decom-
posed into three types of constraints characterizing interaction between ports [6]:
“causal constraint”, “acceptance constraint”, “filter constraint”. The causal con-
straint defines the ports required for interaction. The acceptance constraint defines
optional ports for participation. The filter constraint is an invariant used to discrim-
inate undesirable configurations of a component’s environment.

– Implementation principles for Engines handling symbolic architecture constraints.
The proposed implementation is based on the resolution of architecture constraints
on-the-fly. The Engines use efficient constraint resolution techniques based on
BDDs. For a given model, quantifiers over components can be eliminated and for-
mulas become boolean expressions on ports.

– Experimental results and benchmarks showing benefits from using dynamic archi-
tectures compared to static architectures. We consider several examples showing
that compositional modeling of dynamic architectures allows enhanced concise-
ness and rigorousness. In particular, it is possible to master complexity of intricate
dynamic interactions by compositional specification of interactions of individual
components.
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The paper is structured as follows. Section 2 presents related work. Section 3 describes
the semantic model for Dy-BIP. Section 4 presents the dynamic architecture description
language and the methodology for writing constraints. Section 5 is dedicated to exam-
ples and experimental results. Section 6 concludes and discusses future work directions.

2 Related Work

In contrast to other frameworks [7,8] Dy-BIP relies on a clear distinction between
behavior and architecture as a set of stateless architecture constraints characterizing
interactions. Architecture constraints are specified compositionally as the conjunction
of individual architecture constraints of components. Existing frameworks usually de-
scribe dynamic architectures as a set of global transitions between configurations. Only
process algebras adopt a compositional approach e.g. pi-calculus [9]. Nonetheless, they
do not encompass a concept of architecture as behavior and composition operators are
intermingled. Dy-BIP differs from other formalisms such as [10] in that it has rigor-
ous operational semantics. In [2], a first order logic extended with architecture-specific
predicates is used. However, there is no clear methodology on how to express syn-
chronisation protocols (e.g., rendezvous, broadcast) whose combination is expressive
enough to represent any kind of interaction and avoids the exhaustive enumeration of
all possible interactions [11]. In [12], a dynamic architecture is defined as a set of global
transitions between global configurations. These transitions are expressed in a first order
logic extended with architecture-specific predicates. The same logic is used in [13,14]
but global configurations are computed at runtime from the local constraints of each
component. Dy-BIP follows the same approach but constraints are stateless (they are
based on the boolean representation of causal rules [6]) and take advantage of the state-
ful behavior of the components by eliminating some of the undesirable global configu-
rations implicitly. [15] provides an operational semantics based on the composition of
global configurations from local ones. These express three forms of dependencies be-
tween services (mandatory, optional and negative). Nonetheless, dynamism is supported
only at the installation phase.

In BIP [4], coordination between components is modeled by using connectors [6].
A simple (or flat) connector is an expression of the form p′1 . . . p

′
kpk+1 . . . pn where

primed p′i ports are triggers, and unprimed ports pj are synchrons. For a flat connector
involving the set of ports {p1, . . . , pn}, interaction semantics defines the set of its inter-
actions γ by the following rule: an interaction is any non-empty subset of {p1, . . . , pn}
which contains some port that is trigger; otherwise (if all ports are synchrons), the only
possible interaction is the maximal one, that is p1 . . . pn.

Connectors, representing these two protocols for a sender s and receivers r1, r2,
r3, are shown in 2-(a,b). Triangles represent triggers, whereas bullets represent syn-
chrons. Hierarchical connectors are expressions composed of types ports and/or typed
sub-connectors. Figure 2-c shows a connector realizing an atomic broadcast from a
port s to ports r1, r2, r3. The sending port s is trigger, and the three receiving ports
are strongly synchronized in a sub-connector itself typed as a synchron. The connector
shown in Figure 2-d is a causal chain of interactions initiated by the port s, the possible
interactions are s, sr1, sr1r2, sr1r2r3.
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� � � �
s r1 r2 r3

� � � �
s r1 r2 r3

γ = {sr1r2r3} γ = {s, sr1, sr2, sr3, sr1r2, sr2r3, sr1r2r3}
(a) Rendezvous (b) Broadcast

� � � �
�

s
r1 r2 r3

� ��
��

�
s

r1 r2 s3

γ = {s, sr1r2r3} γ = {s, sr1, sr1r2, sr1r2r3}
(c) Atomic broadcast (d) Causal chain

Fig. 2. Graphic representation of connectors

Connectors can be used to define easily any type of coordination between compo-
nents. However, in this case connectors and their interactions are defined statically, and
this leads to inefficiency for systems with dynamically changing architecture.

3 The Dynamic-BIP Model

Dy-BIP offers primitives for dynamic architecture modeling. Atomic components are
transition systems. Transitions are labeled with ports, that is, action names, and con-
straints for interaction with other components.

Ports are used to define interactions between atomic components. Henceforth P is a
universal set of ports. An interaction is a non empty subset a ⊆ P . To simplify notation,
an interaction a = {p1, p2, . . . pn} is simply denoted by a = p1p2 . . . pn.

3.1 Interaction Constraints

To introduce dynamic architectures, we consider that each atomic component provides
its own interaction constraints at each computation step. A global interaction is defined
as a solution of the set of interaction constraints offered by components. As the interac-
tions at some state may depend on interactions in the past, it is necessary to parametrize
interaction constraints by history variables which keep track of the interactions already
executed. For example, in a protocol, if A sends a message to B, then A can record the
identity of B in a history variable to remember that an acknowledgement is expected
from B. If A does not use history variables then it is necessary to encode the identity of
the receiver in control locations and this may result in an explosion of the number of its
control locations.

Definition 1 (Interaction Constraint). Given a set of history variables H , an interac-
tion constraint C is defined by the following grammar:

C ::= true | p∈h | p | ¬C | C ∧C (1)

where p ∈ P is a port, and h ∈ H is a history variable.
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The syntax of interactions constraints is tacitly extended for all boolean operators e.g.,
false, ⇒, ∨ in the usual way. To simplify notation, we overload the meaning of a
port symbol p: within p ∈ h it denotes the port itself whereas p alone denotes a boolean
variable. This ambiguity is removed in the two-step definition of semantics given below.
We denote by C the set of all interaction constraints and by Cb the subset of boolean
constraints, that is, without history variables.

Given a valuation of history variables μ : H �→ 2P , an interaction constraint C ∈ C
defines a boolean interaction constraint [[C]]μ by the following rules:

[[true]]μ = true

[[p ∈ h]]μ =

{
true if p ∈ μ(h)
false otherwise

[[p]]μ = p
[[¬C]]μ = ¬[[C]]μ
[[C1 ∧ C2]]μ = [[C1]]μ ∧ [[C2]]μ

(2)

That is, the terms of the form p ∈ h are replaced by true or false as the case may
be: true if port p belongs to the stored interaction and false otherwise. All the other
terms of the interaction constraint remain unchanged.

An interaction a ⊆ P satisfies a boolean constraint C ∈ Cb (denoted by a |= C), as
defined by the following rules:

a |= true

a |= p ⇔ p ∈ a
a |= ¬C ⇔ ¬(a |= C)
a |= C1 ∧ C2 ⇔ (a |= C1) ∧ (a |= C2)

(3)

We denote by I(C) and Imax(C) the set of interactions and respectively maximal
interactions satisfying C, formally:

I(C) = {a | a |= C}
Imax(C) = {a ∈ I(C) | �a′ ∈ I(C) . a′ ⊃ a} (4)

For example, we can specify interaction constraints for: (1) rendez-vous between
p1, p2, p3 by C1 = (p1 ⇒ p2) ∧ (p2 ⇒ p3) ∧ (p3 ⇒ p1), the only possible interaction
is the maximal one, that is I(C1) = Imax(C1) = {p1p2p3}; (2) broadcast where s is
the sending port and r1, r2, r3 are the receiving ports by C2 = (true ⇒ s) ∧ (r1 ⇒
s)∧(r2 ⇒ s)∧(r3 ⇒ s), the possible interactions are I(C2) = {s, sr1, sr1r2, sr1r2r3}
and Imax(C2) = {sr1r2r3}; (3) the constraint p ⇒ false means absence of p from
any interaction; (4) p⇒ true allows inclusion of p in any interaction.

3.2 Atomic Components

An atomic component is an automaton extended with history variables. Transitions rep-
resent relations on control locations (local states). Each transition is labeled by a port,
an interaction constraint and a set of history variables to be updated.
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Definition 2 (Atomic Component). An atomic component is a tuple B =
(L, P,H, T ), where,

– L is a finite set of control locations;
– P ⊆ P is a finite set of ports;
– H is a finite set of history variables;
– T ⊆ L×P×C×2H×L is a finite set of transitions. Each transition (�, p, C,h, �′),

denoted by �
p, C,h−−−−−→ �′ is labeled with:

• p ∈ P , the port offered for interaction
• C ∈ C, the interaction constraint on P and H
• h ⊆ H , the set of history variables to be updated

Given μ : H �→ 2P a valuation of the history variables H , the state of an atomic
component B = (L, P,H, T ) is a pair (�, μ), where � ∈ L is a control location. Q =
L × μ is the set of states ot the atomic component B, where μ denotes the set of
valuations on H . For each state (�, μ) ∈ Q, we define its associated state constraint
SC(�, μ) as follows:

SC(�, μ) =

⎡
⎢⎢⎢⎢⎣

∨
�
p, C,h−−−−−→�′

⎛
⎝p ∧ [[C]]μ ∧

∧
p′∈P\{p}

¬p′
⎞
⎠
⎤
⎥⎥⎥⎥⎦ ∨

∧
p∈P

¬p (5)

The state constraint characterizes the set of possible contributions of the component
to a global interaction at state (�, μ). Either the component executes some transition

�
p, C,h−−−−−→ �′ and offers interactions (1) involving p and excluding all other ports label-

ing transitions from this state, that is, p ∧
∧

p′∈P\{p} ¬p′ holds and (2) involving ports
which satisfy the constraint C for the valuation μ, that is, [[C]]μ. Or, the component does
not interact, if none of its ports is used, that is

∧
p∈P ¬p.

3.3 Composition

A system S = B1‖ . . . ‖Bn is defined as the composition of a set of atomic components
Bi = (Li, Pi, Hi, Ti)i=1,n. We assume that the sets of locations, ports and history
variables are pairwise disjoint. The semantics of the composition is provided by the
following definition.

Definition 3 (Composition). The behavior of a system S = B1‖ . . . ‖Bn is a labeled
transition system (Q,Σ,−→), where,

– Q =
∏n

i=1 Qi is the set of states, where Qi is the set of states of component Bi;
– Σ = 2P is the set of interactions, where P = ∪ni=1Pi;
– −→⊆ Q×Σ ×Q is the set of transitions, defined by the following rule:
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{μi : Hi �→ P}ni=1 a = {pj}j∈J ∈ Imax(
∧n

i=1 SC(�i, μi))

∀j ∈ J. �j
pj, Cj ,hj−−−−−−−→ �′j

∧
j∈J [[Cj ]]μj μ′

j = μj [a/hj ]

∀j �∈ J. �′j = �j μ′
j = μj

((�1, μ1), . . . , (�n, μn))
a−→ ((�′1, μ

′
1), . . . , (�

′
n, μ

′
n))

Intuitively, system transitions are taken for maximal interactions a that satisfy all state
constraints defined by atomic components

∧n
i=1 SC(�i, μi). The components partici-

pating in the interaction change their location according to the selected transition and
update their local valuation of history variables. The components which do not partici-
pate keep their state unchanged.

The composition semantics has been implemented by using a centralized execution
Engine. The Engine gathers current state interaction constraints from all atomic com-
ponents. Then, it builds the overall system of constraints and solves it, that is, finds the
set of maximally satisfying interactions. One maximal interaction is then selected and
executed atomically by all involved components. This operation is repeated by the En-
gine on-the-fly, at every state reached at execution. More formally, atomic components
interact and coordinate their execution through the Engine according to the following
protocol:

1. Each component Bi, computes its state constraint SC(�i, μi) and sends it to the
Engine.

2. The Engine computes the global constraint GC as the conjunction of state con-
straints defined by atomic components GC =

∧n
i=1 SC(�i, μi).

3. The Engine picks some maximal interaction a on P , such that a |= GC. That is,
a ∈ Imax(GC).

4. The Engine notifies the selected interaction a to all participating components, that
is, all Bj such that a ∩ Pj �= ∅.

5. Each notified component Bj executes its local transition labeled by pj = a ∩ Pj

and updates its history variables.

Example 1. Figure 3 shows an example of a composite component consisting of three
atomic components B1, B2, and B3. Component B1 requests synchronization with ei-
ther B2 or B3, and then performs some computation with the synchronized component.
To do so, we model component B1 as follows. It has two control locations l1, l2, two
ports s, r, and a history variable h. From control location l1, the transition labeled by the
port s requests synchronisation with ports b1 or b2 (s⇒ b1∨ b2), forbids the synchroni-
sation with b1 and b2 at the same time (¬(b1∧b2)), and forbids the synchronisation with
f1 and f2 (¬f1∧¬f2). After executing this transition, the executed interaction is stored
in the history variable h (Update h), to keep track of the identity of the synchronized
component. From control location l2, the transition labeled by the port r, depending on
the value of the history variable h, either (1) requests synchronisation with port f1 and
forbids the synchronisation with port f2; or (2) requests synchronisation with port f2
and forbids the synchronisation with port f1. In both cases, it forbids the synchronisa-
tion with ports b1 and b2 (¬b1 ∧ ¬b2).



Modeling Dynamic Architectures Using Dy-BIP 9

b1 ⇒ s

h

Cr =
(
(b1 ∈ h)⇒ [(r ⇒ f1) ∧ ¬f2]

)
∧
(
(b2 ∈ h)⇒ [(r ⇒ f2) ∧ ¬f1]

)
∧
(
¬b1 ∧ ¬b2

)

l1

l2

s r

r s

Cs

Updateh

Cr

B1

l3
b1 f1 B2

l5
b2 f2 B3

l6

l4
Cs = (s⇒ b1 ∨ b2)
∧¬(b1 ∧ b2)
∧(¬f1 ∧ ¬f2)

f2 ⇒ r

f2 b2

b2 ⇒ s

f1 ⇒ r

f1 b1

Fig. 3. An example of a composite component in Dy-BIP

From location l1 the state constraint is SC(l1, μ1) = (s ∧Cs ∧ ¬r) ∨ (¬s ∧ ¬r) re-
gardless of the value of μ1. This is due to the fact that constraint Cs does not depend on
history variables. For this constraint, the possible interactions are Imax(SC(l1, μ)) =
{sb1, sb2}. From location l2, if the history variable h contains the interaction sb2,
then the state constraint is SC(l2, μ1) = (r ∧ [[Cr ]]μ1 ∧ ¬s) ∨ (¬s ∧ ¬r), where
[[Cr]]μ1 =

(
false⇒ [(r ⇒ f1)∧¬f2]

)
∧
(
true⇒ [(r ⇒ f2)∧¬f1]

)
∧
(
¬b1∧¬b2

)
.

For this constraint, the only possible interaction is Imax(SC(l2, μ1)) = {rf2}.
Initially, components B1, B2, and B3 are in locations l1, l3, and l5, respectively.

Starting from these locations, the Engine coordinates execution of these components as
follows: (1) Components B1, B2, and B3 compute their state constraints SC(l1, μ1),
SC(l3, μ2), and SC(l5, μ3), respectively, where, SC(l1, μ1) = (s ∧Cs ∧ ¬r) ∨ (¬s ∧
¬r), SC(l3, μ2) = (b1∧(b1 ⇒ s)∧¬f1)∨(¬b1∧¬f1), and SC(l5, μ3) = (b2∧(b2 ⇒
s)∧¬f2)∨(¬b2∧¬f2); (2) The Engine picks any interaction from Imax(SC(l1, μ1)∧
SC(l3, μ2) ∧ SC(l5, μ3)) = {sb1, sb2}; (3) If the Engine selects the interaction sb2, it
notifies components B1 and B3; (4) Components B1 and B3 execute their transitions
labeled by s and b2, respectively. Moreover, component B1 sets its history variable h
to sb2.

4 Methodology for Writing Interaction Constraints

Writing interaction constraints associated with transitions of atomic components, in the
proposed declarative language may be error-prone or may lead to incomplete specifica-
tions. We provide a methodology based on a classification of constraints and on a set
of macro-notations for enhancing soundness and completeness. The classification dis-
tinguishes between interactions in which a port p must, may or must not be involved. It
allows a systematic analysis of interaction capabilities of components to make sure that
no essential properties are omitted. Macro-notations allow a compact and high-level
expression of the most commonly used constraints, thus avoiding specification errors.
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We extend the interaction constraint language towards a first order logic with quan-
tification over component instances. This extension is useful because in practice,
systems are built from multiple, replicated instances of components of different types.
The formulas of the logic interaction constraints are therefore defined as follows:

C ::= true | x.p ∈ h | x.p | x = y | x = self | ¬C | C ∧ C | ∀x :T.C(x) (6)

In this definition, T denotes a component type. Each component type represents a set
of component instances with identical interfaces and behavior. The variables x, y range
over component instances. These variables must occur in the scope of a quantifier, e.g.
∀x : T.C(x). They are strongly typed and moreover, they can be tested for equality.
Additionally, self represents a fixed component instance, that is, the (context) compo-
nent where the constraint belongs. The remaining syntactic constructs are directly lifted
from the propositional case: h ∈ H denotes a history variable and x.p denote the port p
belonging to component instance x. As previously, we consider the standard extension
of this logic for all boolean operators and existential quantification.

In the sequel, we consider systems consisting of finitely many instances for each
component type. Under this restriction, an interaction constraint written in the logic
above boils down into a propositional interaction constraint by (1) substituting self by
the current component instance, (2) elimination of universal quantifiers and (3) eval-
uation of equality constraints. For example, for a component type T with instances
t1, . . . tk, universal quantifiers of the form ∀x :T can be eliminated:

∀x :T.C(x) ≡ C(t1) ∧ . . . ∧C(tk) (7)

In the rest of this section, we provide guidelines for writing interaction constraints in
this logic. Consider a fixed transition in some component (type) which is labeled by
a port p. The associated interaction constraint Cp is a conjunction of three types of
constraints, respectively causal, acceptance and filtering, as explained below.

4.1 Causal Constraints

These constraints are used to specify the ports required for interactions of p. At proposi-
tional level, they can be reduced to the one of the two following forms, either true⇒ p
or p⇒ C, whereC is a boolean interaction constraint without negated ports. To express
such constraints in practice, we provide hereafter few useful abbreviations:

– Trigger≡ true⇒ self.p. This constraint specifies that port p is a trigger, that is,
the transition labeled by Trigger does not require synchronization with transitions
of other components to occur.

– Require T.q ≡ ∃x : T.(self.p ⇒ x.q). This constraint specifies that an arbitrary
instance of component type T must participate with the port q in the interaction
involving p.

– Require x1.q1...xn.qn[x1 : T1 . . . xn : Tn|C1(x1, ..., xn)] ≡ ∃x1 : T1...∃xn :
Tn.

(
C1(x1, ..., xn)∧self.p⇒ (x1.q1∧. . .∧xn.qn)

)
. This is the most general type

of require constraint. It specifies that a set of component instances x1, . . . xn satis-
fying the constraint C1(x1 . . . xn) must jointly participate with respectively ports
q1, . . . qn in the interaction involving p. Usually, the constraint C1 is used to check
previous participation of x1 . . . xn in interactions recorded into history variables.
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4.2 Acceptance Constraints

These constraints define optional ports for participation used to define the boundary of
interactions. They are expressed by excluding explicitly from interactions all the ports
that are not optional. At propositional level, they are of the form r ⇒ false where port
r is excluded from interaction. In practice, we use the following abbreviations:

– Accept T.q ≡
∧

(T ′,q′) �=(T,q) ∀x : T ′.
(
x.q′ �= self.p ⇒ (x.q′ ⇒ false)

)
. This

constraint accepts only ports q of component instances of type T .
– Accept x.q[x : T |x.r ∈ h] ≡ Accept T.q ∧ ∀x : T.

(
x.r �∈ h ⇒ (x.q ⇒ false)

)
.

This constraint restricts participation to ports of component instances x that had
participated in the interaction stored in h.

4.3 Filtering Constraints

These constraints are used to exclude some of interactions allowed by causal and ac-
ceptance constraints. At propositional level, filter constraints are of the form p ⇒ C
where each monomial in C has at least one negated port. In practice, we are commonly
requiring unicity constraints of the form:

– Unique T.q ≡ ∀x : T.∀y : T. (x.q ∧ y.q ⇒ x = y). This constraint forbids the
participation of p with more than one instance of component type T with the port q.

5 Experimental Results

The operational semantics of Dy-BIP has been implemented using the CUDD BDD
package1. We compare execution times for Dy-BIP and BIP (where we define archi-
tecture statically) for a Master-Slave example. Two other non-trivial examples, Fault-
Tolerant Servers, and Tracker and Peers are provided. Static architecture modeling for
these examples in BIP leads to complex descriptions and may be error-prone. Dy-BIP
models are concise and can be efficiently implemented. We present below the three
examples and the simulation results. Execution times are provided for executing 1000
interactions of the Engine running on PC Quad-Xeon 2.67HGz with 6GB RAM.

5.1 Masters and Slaves

In this example, we consider two scenarios. In the first scenario, involves a system con-
sisting of M Masters and S Slaves. Each Master sends requests sequentially to two
Slaves, and then performs some computation involving both of them. The model of the
Master component type is shown in Figure 4(a). Initially, from location 0, a Master
requests synchronization with some Slave. To do so, it must synchronize his request
port with the get port of any Slave (Require Slave.get). As it requires one and only
one Slave, we add a Unique constraint. When a Master instance m1 synchronizes with

1 CUDD: CU decision diagram package
(http://vlsi.colorado.edu/˜fabio/CUDD/)
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[y : Slave | y.get ∈ h2]

req

Require x.get[x : Slave | x.get /∈ h1]

Accept x.get[x : Slave | x.get /∈ h1]

Unique Slave.get

Update h2

0 1 2

req req

compute

req

Require Slave.get

Accept Slave.get
Unique Slave.get

Update h1

Accept x.work y.work[x : Slave | x.get ∈ h1]

Require x.work y.work[x : Slave | x.get ∈ h1]
compute

[y : Slave | y.get ∈ h2]

(a) Master type

[x : Master | x.req ∈ h]

0 1

get

work

Update h

get

Require Master.req

Accept Master.req

Unique Master.req

work
Require x.compute

Accept Slave.work x.compute
[x : Master | x.req ∈ h]

(b) Slave type

Fig. 4. Masters and Slaves in Dy-BIP

some Slave instance, say s1, interaction m1.req s1.get is chosen. Then, the Master m1

has to keep track of the identity of the synchronized Slave (s1) by saving the interac-
tion m1.req s1.get to the history variable h1 (Update h1). From location 1 the Master
requires another Slave to synchronize with it, and keeps again track of its identity. Fi-
nally, from location 2, the Master establishes a ternary interaction with the two Slaves
recorded in its history variables.

The Slave component type is shown if Figure 4(b). It accepts a request and provides
a response. In order to allow participation in ternary interactions, the Accept clause
includes the port of one Master and the work port of another Slave. Notice that, the
statically predefined connector structure (using BIP) needs M ×S +M ×S × (S − 1)
interactions.

Figure 5(a) shows execution times of 1000 interactions for BIP and Dy-BIP, as a
function of the number of components in the system. Dy-BIP considerably outperforms
BIP. Figure 5(b) shows the number of the interactions created dynamically for Dy-BIP
along the evolution of the system for 20 Masters and 40 Slaves. Notice that, for BIP the
number of the interactions created is 32000 regardless of the system state.
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In the second scenario, we developed a simplified version of the Master-Slave model
presented above. Each Master performs some computation in tight synchronization with
any Slave. The model of the Master and Slave component types are shown in Figures
6(a) and 6(b). As expected, Figure 6(c) shows that the execution time for BIP outper-
forms Dy-BIP. This is due to the fact that the number of the interactions created is
M ×N for BIP as well as for Dy-BIP regardless of the system state.

work

work

Require Slave.req

Accept Slave.req
Unique Slave.req

0

(a) Master type

work

work

Require Master.req

Accept Master.req

Unique Master.req

0

(b) Slave type
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(c) Simple Master-Slave execution time

Fig. 6. Simple Master-Slave in Dy-BIP

5.2 Fault-Tolerant Servers

This example is inspired from the Fault-Tolerant Client-Server System presented in [3].
We consider a system consisting of a fixed number of available Servers and a pool
of alternative Servers used in case of crash. When a Server crashes, another Server is
turned on to preserve availability of the service, and so on. After successive crashes,
we get a chain of Servers s1 . . . st where s1 . . . st−1 are crashed and st is available.
Crashes in this example are software crashes like a memory error. So, turning off and
on a crashed Server is also a way of repairing it through an action called softrepair.
Additionally, whenever a crashed Server si gets repaired, then the running Server in
the chain should turn off st and all crashed Servers that replaced the repaired Server
(sj, i + 1 < j < t) provide a softrepair. Figure 5.2 shows a possible scenario with
four Servers: (1) the first Server is turned on while all the others are turned off; (2)
the first Server crashes and turns on the second Server; (3) the second Server crashes
and turns on the third Server; (4) the first Server gets repaired. In this case, the third
Server must be turned off and the crashed Server (the second one) has to turn off by

(4)

on

off off off

crash

on

off off off off

on

off

crash offcrash

on

(1)

(2)

(3)

Fig. 7. Possible scenario for Fault-Tolerant Client-Server
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executing softrepair. Notice that, the decision of turning off a running Server has to be
propagated from the repaired Server. Also, Servers have to change state synchronously
to keep constant the number of available Servers.

The model of a Server component is shown in Figure 8. Moreover, we use the plus
symbol “+” to denote logical disjunction of require constraints involving several ports
determined by the same expression. For instance, Require x.repair+x.softrepair[x :
Server | x.crash ∈ h2] ≡ Require x.repair[x : Server | x.crash ∈ h2] ∨
Require x.softrepair[x : Server | x.crash ∈ h2]. A turnoff requires a repair or
a softrepair from any Server that has crashed.

Notice that, statically predefined connector structure (using BIP) leads to more than
NN interactions, where N is the total number of Servers. For this reason, modeling
statically this architecture is practically impossible even for a relatively small number
of Servers. Figure 9(a) depicts execution time for Dy-BIP. For a total number of 27
Servers with 13 available Servers, executing 1000 interactions requires only 8 seconds.
Notice that, using BIP we have to statically define more than 2727 interactions!

repair

onoff crash
turnon

turnoff repair

crash

Require Server.crash

Accept Server.crash
Unique Server.crash

turnon

Update h2

Require Server.turnon

Accept Server.turnon
Unique Server.turnon

crash

Update h1

softrepair
Require x.repair y.turnoff + x.repair y.softrepair + x.softrepair y.softrepair

+ x.softrepair y.turnoff [x : Server | x.crash ∈ h2][y : Server | y.turnon ∈ h1]
Accept Server.repair Server.softrepair Server.turnoff

Require x.repair + x.softrepair

Accept Server.repair Server.softrepair

[x : Server | x.crash ∈ h2]

Unique Server.turnoff
Accept Server.repair Server.softrepair Server.turnoff
Require x.turnoff + x.softrepair[x : Server | x.turnon ∈ h1]

turnoff

Fig. 8. Fault-Tolerant Servers in Dy-BIP
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5.3 Trackers and Peers

As third benchmark, we consider a simplified wireless audio protocol for reliable mul-
ticast communication. The protocol allows an arbitrary numbers of participants (named
Peers) to dynamically connect and communicate along an arbitrary number of wireless
communication channels (managed by dedicated Trackers).

In this protocol, Peers are allowed to use at most one communication channel at a
time. The access to channels is subject to an explicit registration mechanism. Dynam-
ically, every Peer selects and registers to the channel it wants to use. Once registered,
Peers can either speak, that is, send data over the channel, or listen, that is, receive data
sent by others. For every channel, its associated Tracker ensures for any communication
that (1) exactly one registered peer (on that channel) is speaking and (2) all other regis-
tered peers are listening. That is, data is delivered atomically to all potential receivers.
Finally, Peers can dynamically de-register, then register to other channels, etc.

The Dy-BIP model is depicted in Figure 10. As for the previous example, we use the
“+” abbreviation for disjunction of require constraints applied to several ports. Notice
that, a statically predefined connector structure is exponentially complex and the model
explodes rapidly. We need P ×T × (3+2P−1) connectors, where P is the total number
of Peers and T is the total number of Trackers.

[x : Tracker | x.log ∈ h]

listen
Require x.broadcast[x : Tracker | x.log ∈ h]
Accept Peer.speak Peer.listen x.broadcast

[x : Tracker | x.log ∈ h]

Update h

register

Require Tracker.log

Accept Tracker.log
Unique Tracker.log

Require Tracker.log

Accept Tracker.log
Unique Tracker.log

unregister

0 1

register speak

listenunregister

Accept Peer.listen x.broadcast
[x : Tracker | x.log ∈ h]

Require x.broadcast
speak

(a) Peer type

log

Trigger
broadcast

Accept Peer.speak Peer.listen
Unique Peer.speak

Require: Peer.register + Peer.unregister

Accept: Peer.register Peer.unregister

log

broadcast

(b) Tracker type

Fig. 10. Trackers and Peers in Dy-BIP

Figure 9(b) shows execution times for 1000 interactions for a Dy-BIP model where
there are four times more Peers than Trackers.

6 Conclusion

The paper provides a simple modeling language for compositional description of dy-
namic architectures. The language as a straightforward extension of a static architecture
modeling language, bridges the gap between static and dynamic description styles. It is
simple but expressive enough as illustrated by non-trivial examples. Its associated mod-
eling methodology leads to concise and intelligible models obtained as the composition
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of components. Global architecture constraints can be synthesized by composing ar-
chitecture constraints of individual components. Using history variables in components
avoids state explosion and duplication of ports.

This work contrasts with existing approaches for dynamic architectures which lack
clear semantics and are not compositional. It proposes a rigorous methodology for writ-
ing architecture constraints of components. In particular, the distinction between differ-
ent types of constraints provides guidance for their soundness and completeness. The
choice between different implementations permits exploration of efficiency trade-offs.
On-the-fly computation seems more adequate for architectures with a large number of
configurations while regular BIP execution is more advantageous for systems with a
small number of configurations.

Further developments will focus on integrating data transfer, priorities, as well as
creation and deletion of components.
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Abstract. To support the constant evolution of modern enterprises,
business process models are becoming exponentially more complex. Busi-
ness process composition is regarded as a flexible mechanism capable to
cope with this issue and make processes easier to understand, maintain
and evolve. Composition operators are the foundation and the enablers of
process composition. BPMN, the standard language for modelling busi-
ness processes, is lacking such composition operators. Therefore, in this
paper, we propose to extend the BPMN standard with a set of composi-
tion operators and with the concept of composition interface.

Keywords: Model composition, composition operators, Petri Nets,
BPMN.

1 Introduction

The increasing transparency and accountability of all organisations, together
with the modern complexity and importance of information and communica-
tions technology, tends to heighten the demand for process improvement. Busi-
ness Process Modelling and Management (BPM) [1], [12] is an essential part of
understanding and restructuring the activities an enterprise uses to achieve its
business goals as efficiently as possible.

Modern enterprises are constantly changing and evolving [6]. Implicitly, busi-
ness processes have to meet changes in application requirements, technology,
policies and organization. As a result, they are becoming exponentially more
complex: increased number of elements, high number of paths, processes model
complex interactions between multiple actors and systems. This complexity
makes a business process more difficult to understand and use when communi-
cating with stakeholders. It also makes it complicated to determine if the process
properly captures the right business practices and to validate it. Due to complex-
ity, business processes also become more difficult to maintain and evolve over
time, and at higher costs. Modelling complex, real-life business process models
is of the utmost importance and represents a major challenge.

This situation emphasizes the need for separation of concerns (SOC) mech-
anisms [17] as support for modelling complex business processes. In the SOC
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paradigm, concerns are defined separately and assembled into a final system us-
ing composition operators [23]. Business process composition [9] is regarded as
a flexible mechanism capable to cope with the increasing complexity of business
processes. Similar to component-based software development [13], the core idea
is to create a complex process by assembling simpler ones. Process composition
reduces complexity by having smaller process components connected together by
flexible mechanisms to realize a process that provides the same business support
as the initial complex process. The complexity of building a business process is
taken away from the business analyst and delegated to the composition.

Creating a process by composition facilitates its understanding and its use.
Moreover, it can be updated more easily, as the necessary changes are performed
on smaller separate models. The maintainability of the business process is also
enhanced. Another strong argument motivating the use of process composition
is process reuse [16]. The desire to better manage processes and improve business
efficiency has led to increased awareness and desire to reuse processes [7]. Process
reuse is a way to promote the efficiency and quality of process modelling. Fewer
business processes are built from scratch, as many existing processes are used
for the development of new ones, following a compositional approach.

The general approach when applying model composition is to provide compo-
sition operators. They are mechanisms that take two (or more) models as input
and generate an output that is their composition. Most languages provide a fixed
set of composition operators, with explicit notations, specific behaviour and de-
fined semantics. In case a language does not provide a composition operator with
the desired behaviour, different workarounds need to be used.

In recent years, the Business Process Model and Notation 2.0 (BPMN) [2]
has received increasing attention, becoming the standard for business processes
modelling. We study how a complex BPMN process can be obtained through
the composition of simpler ones. A thorough analysis of the BPMN specification
[20] reveals that the standard does not address in any way nor does it provide
support for business process composition. However, there are several possible
workarounds. Conversations and choreographies, used to model interactions and
message exchanges between participants, are a possible solution. Gateways, nor-
mally used to express control flow, can be used together with sub-processes,
global tasks or call activities as a possible way to express process composition.
Sub-processes are flow objects used as an abstraction mechanism in BPMN. They
are used to hide or reveal additional levels of business process detail. Therefore,
they can be used for hierarchical process decomposition. The use of sub-processes
is a possible workaround for replacing some composition operators, like refine-
ment. Nevertheless, complex compositions like choice or synchronization cannot
be expressed using sub-processes. All these workarounds are very limited in terms
of possible results that can be obtained. Composition of BPMN models currently
requires specific knowledge in advance and takes up a lot of time and effort [18].

There are no composition operators available for BPMN. They are necessary
to achieve the composition of BPMN processes. Therefore, the major contribu-
tion of this paper is to extend the BPMN standard with a set of composition
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operators. To successfully apply a composition operator we must know where
a business process can be connected with other processes. These are the places
where the actual composition is performed. As a second contribution, we fur-
ther extend BPMN with the notion of composition interface and explain how it
facilitates the application of composition operators.

The standard defines the execution semantics of BPMN it in terms of enabling
and firing of elements, based on a token-game. The start event generates a token
The token traverses the sequence flow and passes through the flow objects of
the process and it is eventually consumed at an end event. The behaviour of the
business process can be described by tracking the path(s) of the token through
the process. The dynamic behaviour of Petri Nets is also defined in terms of
firing of transitions which triggers the passing of a token through the net. As
the execution semantics of both languages are defined in a similar manner, we
consider that Petri nets might provide useful composition operators that can also
be applied to BPMN. Therefore, in this paper, Petri net composition operators
are taken as the basis for constructing BPMN composition operators.

The rest of this paper is structured as follows. Section 2 briefly describes Petri
nets and explains their relation with BPMN. An overview of some existing Petri
net composition operators is also presented. Section 3 contains the main contri-
bution of the paper. We provide a formalization of the BPMN abstract syntax
and extend it with the composition interface concept. Then we define a set of
composition operators for BPMN. In Section 4 we exemplify how a complex
BPMN process can be constructed by applying several of the composition oper-
ators proposed. Finally, we draw some conclusions and present some perspectives
for future work in Section 5.

2 Research Context

2.1 Petri Nets

The execution semantics of BPMN is defined in terms of enabling and firing of
elements, based on a token-game. The dynamic behaviour of Petri Nets is also
defined in terms of firing of transitions, triggering the passing of a token through
the net. Due to this similarity of execution semantics, we consider appropriate to
analyse closer the field of Petri nets and see if the composition operators defined
for it can be a source of inspiration for defining BPMN composition operators.

Overview of Petri Nets. Petri nets [19] are a language for the modelling and
validation of systems in which concurrency, communication and synchronisation
play a major role [15]. It combines a rich mathematical theory with a useful
graphical notation.

A Petri net [22] is a bipartite graphs containing places and transitions con-
nected by directed arcs. Places model local system states, while transitions sym-
bolise system actions. State changes are modelled by the flow relation which
connects places with transitions and transitions with places using arcs. States of
the system are represented by markings. A marking is a distribution of tokens
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in the net. Tokens are denoted by a solid dot and can be put inside places. The
initial state of the system is represented by the initial marking.

The semantics of a Petri net is described by the flow of tokens through the net.
The token flow is initiated by the firing of transitions. First of all, a transition
must be enabled. This happens when all of its input places contain at least
one token. When enabled, transitions can be fired. When this happens, tokens
are removed from all its input places and inserted into all its output places. The
number of tokens removed and inserted may be different. The dynamic behaviour
of a net is therefore described by a sequence of steps, where each step is the firing
of a transition, taking the net from one marking to another.

Petri Net Composition Operators. Literature [4] [5] suggests a lot of dif-
ferent composition operators, for different purposes and different classes of nets.
We briefly present in the following some of the best known operators.

The sequential composition operator [5] is the most commonly found. The
result of applying it on two input nets S1 and S2 is a composite net that performs
net S1 first, followed by net S2, in sequence, one after the other. In the result
obtained, net S1 must be completed before net S2 can start. Most frequently, it
is used when there is a causality relation, either logical or functional, between
the two nets that are composed.

The parallel composition operator [11] defines the concurrent execution of two
nets, independently of each other. Two nets can be executed concurrently if they
do not depend on each other, i.e. they are not causally linked. Some authors [8]
consider parallel composition as simply the disjoint union of two nets.

The exclusive choice operator [10] represents different possible paths of exe-
cution when the flow of control is determined based on a specific condition or
decision, or even non-deterministically. It defines an alternate functionality, so
the main goal of the net can be achieved in two (or more) distinct ways. Once
one net executes its fist operation, the other net cannot be reached any more.

When applying the choice composition operator [3] on two input nets S1 and
S2, we obtain a net that can perform either net S1, either net S2 or both of
them. This means the nets are executed alternatively.

The refinement composition operation [25] models the transformation of a
design from a high level abstract form to a lower level more concrete form. It
consists in replacing a place or a transition in a net by another, more refined
net, to introduce a higher level of detail. This operation is also known as place
refinement or transition refinement.

The synchronization composition operator [21] specifies a situation in which
two nets synchronize their execution because they have specific similarities be-
tween one or more places or transitions. The synchronization can be done both
at the level of places (place fusion) or transitions (transition synchronization).
For performing the actual synchronization operation, a matching process is per-
formed to determines the synchronization set, which contains places and/or tran-
sitions from the two nets where the actual synchronization is performed. The
result of this operator is a net that performs in parallel the parts of the two nets
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that do not belong to the synchronization set, and merges (synchronizes) and
performs only once the elements from the synchronization set.

2.2 BPMN: Business Process Modelling and Notation

The Business Process Modelling and Notation [2] is the standard for modelling
business process flows proposed by the Object Management Group (OMG) [20].
Its primary goal is to provide a notation that is easily understandable by all
business users.

The main concept defined in BPMN 2.0 is the business process diagram
(BPD), used to create graphical models of business processes and their opera-
tions. It is based on a flowchart technique. BPMN is easy to use and understand
while also offering the expressiveness to model very complex business processes.
A BPD is made up of several graphical elements, chosen to be distinguishable
from each other and to utilize shapes that are familiar to most modellers [24].

There are four basic categories of elements defined: Flow Objects, Connect-
ing Objects, Swimlanes and Artifacts. Flow Objects are the main graphical ele-
ments used to create BPDs and are separated into: Events (start, intermediate
and end), Activities (atomic Task and compound Sub-Process) and Gateways
(decision making, forking and merging of paths). Flow Objects are connected
together to create the basic skeletal structure of a business process. These con-
nectors are: Sequence Flow, Message Flow and Association. Swimlanes are used
to group activities into separate categories for different functional capabilities or
responsibilities. A Pool represents a participant in a process, and can be divided
into Lanes. BPMN provides the ability to add context appropriate to a specific
modelling situation. Any number of Artifacts can be added to a diagram as ap-
propriate for the context of the business processes being modelled. Three types
of artifacts are pre-defined: Data Object, Group and Annotation.

3 Creating BPMN Composition Operators

We start by introducing a set-based formalization of the abstract syntax of
BPMN. This is required for defining the composition operators. We then intro-
duce composition interfaces as an extension to BPMN and discuss their purpose.
Finally, we define a set of composition operators for BPMN.

3.1 Abstract Syntax of BPMN Diagrams

As the BPMN standard does not provide a formal definition, we propose in the
following a set-based formalization of the BPMN abstract syntax.

Definition 1. We define the following notations for BPMN processes:
Let O be the set of all objects that appear in all BPMN diagrams.
Let F be the set of flow objects for all BPMN diagrams: F ⊆ O
Let A be the set of activities for all BPMN diagrams: A ⊆ F
Let E be the set of events for all BPMN diagrams: E ⊆ F
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Let G be the set of gateways for all BPMN diagrams: G ⊆ F
The set of flow objects is partitioned into disjoint sets of activities A, events

E, and gateways G: F = A∪ E ∪ G
The set of events is partitioned into disjoint sets of start Es, intermediate Ei,

and end events Ee: E = Es ∪ Ei ∪ Ee
The set of gateways is partitioned into disjoint sets of parallel Gp, exclusive

Gx, inclusive Gi, and complex gateways Gc: G = Gp ∪ Gx ∪ Gi ∪ Gc
The set of activities is partitioned into disjoint sets of tasks T and sub-

processes SP : A = T ∪ SP
Let Ar be the set of artifacts for all BPMN diagrams: Ar ⊆ O
Let S be the set of swimlanes for all BPMN diagrams: S ⊆ O

We propose the following definition for a BPMN process:

Definition 2. A BPMN process is a tuple BP = (F, S, Ar, SF, MF, AS) where:
F is the set of flow objects of the BPMN process, with F ⊆ F
F is partitioned into disjoint sets of activities A, events E, and gateways G:

F = A ∪ E ∪G, where A ⊆ A, E ⊆ E , G ⊆ G,
S is the set of swimlanes of the BPMN process, with S ⊆ S
Ar is the set of artifacts of the BPMN process, with Ar ⊆ Ar
SF ⊆ F × F defines a sequence flow relation between flow objects
MF ⊆ E ∪ A × E ∪ A defines a message flow relation between events or

activities
AS ⊆ F×Ar defines an association relation between flow objects and artifacts

We also define predecessor and successor functions for flow objects:
Let pred : F → F, pred(x) = {y|(y, x) ∈ SF}
Let succ : F → F, succ(x) = {y|(x, y) ∈ SF}
Additionally, we propose a set of consistency rules to assure the validity and

correctness of the BPMN processes created. Due to lack of space, these rules are
not presented here, but are available in [14].

3.2 Extending BPMN with Composition Interfaces

We extend the BPMN standard with the composition tag concept. A composition
tag is a type of artifact and can be represented as a textual tag that is added
on flow objects. It explicitly denotes the places where a business process can be
composed with other ones. Composition tags can be added on any type of flow
object (activity, event or gateway). A flow object having an input tag denotes
that, by composition, another process fragment can be connected to the current
one, right after the tagged flow object. Similarly, a flow object having an output
tag denotes that another process fragment can be connected before the tagged
flow object. We propose two types of composition tags: input and output.

CT ⊂ Ar , CT = CTi ∪ CTo, partitioned into disjoint sets of input CTi and
output CTo composition tags.

We also define a tagging function that returns the composition tag of a flow
object, if it has one: Tag : F → CT , where F ⊆ F
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To apply a composition operator on a BPMN process, we need to know the
exact places where it can be composed with others. For this purpose, we intro-
duce the notion of composition interface. A composition interface can be: input
or output. They are defined using the previously introduced notion of composi-
tion tag. We define the input composition interface of a BPMN process as the
set of all its flow objects tagged with an input composition tag, and the output
composition interface as the set of all its flow objects tagged with and output
composition tag.

Definition 3. The composition interface of a BPMN process is I = Ii ∪ Io:
Ii is the input composition interface: Ii = {x|x ∈ F, Tag(x) ∈ CTi}
Io is the output composition interface: Io = {x|x ∈ F, Tag(x) ∈ CTo}

We can now define the extended BPMN processes used as input for our com-
position operators:

Definition 4. An extended BPMN process is a tuple BPext = (F, S, Ar, SF,
MF, AS, Tag) where (F, S, Ar, SF, MF, AS) defines a normal business process
and Tag is a tagging function returning the composition interfaces of flow objects.

For an extended BPMN process, we define the following functions:
out : BP → Ee, out(BP ) = {e|Tag(e) ∈ CTin}, Ee = E ∩ Ee returns the end

events of a process tagged with an input composition interface
in : BP → Ee, out(BP ) = {e|Tag(e) ∈ CTout}, Es = E ∩ Es returns the start

events of a process tagged with an output composition interface

3.3 Sequential Composition Operator

To apply this operator, two conditions need to hold on the input BPMN models:
BP1 has an input composition interface at one of its end events; BP2 has an
output composition interface at its start event.
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Fig. 1. Sequential composition operator for BPMN
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Definition 5. Let BP1 = (F1, S1, Ar1, SF1,MF1, AS1, I1) and
BP2 = (F2, S2, Ar2, SF2,MF2, AS2, I2) be two business processes. The result of
applying the sequential composition operator on processes BP1 and BP2, denoted
seq(BP1, BP2), is a new BPMN process
BPres = (Fres, Sres, Arres, SFres,MFres, ASres, Ires) where:

The flow objects of the result contains the union of the flow objects from
the input models, from which we remove the end event of BP1 tagged with a
composition interface and the start event of BP2:
Fres = F1 ∪ F2 \ {out(BP1), in(BP2)}

For the resulting sequence flow, we need to disconnect out(BP1) and in(BP2)
from the initial models, then connect together the remaining process fragments:
SFres = SF1∪SF2\{(pred(out(BP1)), out(BP1)), (in(BP2), succ(in(BP2)))}∪
(pred(out(BP1)), succ(in(BP2)))

The swimlanes, artifacts, message flow and associations of the result are the
union of their counterparts from the input processes:

Sres = S1∪S2 , Arres = Ar1∪Ar2 , MFres = MF1∪MF2 , ASres = AS1∪AS2

The composition interface of the result is the union of the interfaces of the
input models, from which we need to remove out(BP1) and in(BP2):
Ires = Ii−1 \ {out(BP1)} ∪ Ii−2 \ {in(BP2)}
In terms of token passing, the semantics of this operator is the following: a new
token is generated at the start event of BP1 and through the outgoing sequence
flow arrives at the first flow element of BP1, enabling it. Once the flow element
has executed, the token is sent through to the next flow element. In the same
manner, the token traverses in sequence all the flow elements of BP1, then those
of BP2, until it reaches the end event of BP2 where it is consumed. As this is the
only token generated, the process is considered completed. The trace obtained
is the same as for the Petri net operator.
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Fig. 2. Input BPMN models then parallel, choice and exclusive choice compositions

3.4 Parallel, Choice and Exclusive Choice Composition Operators

Although very different semantically, these three operators produce results that
are similar from a structural point of view. They can be represented using the
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same general pattern, with slight variations for each individual operator. There-
fore, we introduce them in the following manner: the common parts are presented
only once; we define precisely the aspects particular to each individual operator.

In order to apply any of these operators, two conditions need to hold on the
input BPMN models: both BPMN1 and BPMN2 have an input composition
interface at one of their end events and an output composition interface at their
start events.

Definition 6. Let BP1 = (F1, S1, Ar1, SF1,MF1, AS1, I1) and
BP2 = (F2, S2, Ar2, SF2,MF2, AS2, I2) be two business processes. The result
of applying the parallel/choice/exclusive choice composition operator on pro-
cesses BP1 and BP2, denoted par(BP1, BP2)�cho(BP1, BP2)�exc(BP1, BP2)
is a new BPMN process
BPres = (Fres, Sres, Arres, SFres,MFres, ASres, Ires) where:

The result contains the union of all activities from the input processes:
Ares = A1 ∪ A2

The end result contains the union of the events of the input processes, from
which we need to remove the start events of BP1 and BP2 and their end events
tagged with composition interfaces, then add a new start and end event:

Eres = E1 ∪ E2 \ {in(BP1), out(BP1), in(BP2), out(BP2)} ∪
{startnew, endnew}, where E1 ⊆ F1, E2 ⊆ F2, startnew ∈ Es, endnew ∈ Ee

To obtain the gateways of the result, we take the union of the gateways of the
input models and add two new gateways, different for each composition operator:

Gres = G1 ∪ G2 ∪ {g1, g2}, where G1 ⊆ F1, G2 ⊆ F2 and g1, g2 ∈ Gp for the
parallel operator, g1, g2 ∈ Gx for the exclusive choice operator, g1, g2 ∈ Gi for the
choice operator.

For all these operators, the sequence flow is obtained from the union of se-
quence flows of the input models, from which we first need to disconnect the start
and end events, then connect the new start and end events to the newly intro-
duced gateways and finally connect these gateways to the remaining parts of the
input processes:

SFres=SF1∪SF2\{(in(BP1), succ(in(BP1))), (pred(out(BP1)), out(BP1)),
(in(BP2), succ(in(BP2))), (pred(out(BP2)), out(BP2))} ∪ {(startnew , g1),
(g2, endnew), (g1, succ(in(BP1))), (g1, succ(in(BP2))), (pred(out(BP2)), g2),
(pred(out(BP1)), g2)}

The swimlanes, artifacts, message flow and associations of the result are the
union of their counterparts from the input processes:

Sres = S1∪S2 , Arres = Ar1∪Ar2 , MFres = MF1∪MF2 , ASres = AS1∪AS2

The composition interface of the result contains the union of interfaces of the
input models, from which we remove the start events and end events tagged with
interfaces of BP1 and BP2, and add an output interface at the newly introduced
end event and an input interface at the newly introduced start event:

Ires = I1∪I1\{in(BP1), out(BP1), in(BP2), out(BP2)}∪{startnew, endnew}
where startnew ∈ Es, endnew ∈ Ee

These three operators are illustrated in Figure 2.
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The semantics of these operators is defined in terms of token passing as follows:
a token is generated by the start event and, through the outgoing sequence flow,
reaches the different split gateways, that control the diverging of sequence flow.
For the parallel operator, two parallel flow are generated, one for each outgoing
arc, and a token produced on each output flow of the gateway. The tokens
traverse in parallel the two branches and are synchronized by the merge parallel
gateway. For the exclusive choice operator, a token is sent only on one of the
output paths, based on the decision taken, activating just one of the two flows.
The active path is then traversed by the token. The merge exclusive gateway
must wait until the token from the active path arrives, and only then the sequence
flow continues. For the choice operator, when the inclusive gateway is reached,
for each outgoing sequence flow with a true condition, a token is generated and
traverses that path. The merge inclusive gateway allows the process to continue
only when tokens arrive from all incoming sequence flows where a token was
generated before. After passing the merge gateways, the token is consumed by
the end event, for each operator. The traces obtained, for each of these operators,
are the same as for the Petri net operators.

3.5 Refinement Composition Operator

To apply this operator, two conditions need to hold on the input BPMN models:
BPMN1 must have an input or output composition interface at an internal task
of the process; BPMN2 must have an input interface at one of its end events
and an output interface at the start event.
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Fig. 3. Refinement operator for BPMN diagrams
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We use of the following notations: let comp1 be the task of BPMN1 tagged
with input or output composition interface

Definition 7. Let BP1 = (F1, S1, Ar1, SF1,MF1, AS1, I1) and
BP2 = (F2, S2, Ar2, SF2,MF2, AS2, I2) be two business processes. The result
of applying the refinement composition operator on processes BP1 and BP2,
denoted ref(BP1, BP2), is a new BPMN process
BPres = (Fres, Sres, Arres, SFres,MFres, ASres, Ires) where:

The flow objects of the result contain the union of the flow objects of the input
models, from which we remove the activity from BP1 tagged with a composition
interface and the start end tagged end event from BP2:

Fres = F1 ∪ F2 \ {comp1, in(BP2), out(BP2)}
The sequence flow of the result is obtained by first disconnecting the tagged

activity from BP1 and then connecting the resulting two process fragments to
process BP2 from which we removed the start and tagged end event:

SFres = SF1 ∪ SF2 \ {(pred(comp1), comp1), (comp1, succ(comp1)),
(in(BP2), succ(in(BP2))), (pred(out(BP2)), out(BP2))} ∪
{(pred(comp1), succ(in(BP2))), (pred(out(BP2)), succ(comp1))}

The swimlanes, artifacts, message flow and associations of the result are the
union of their counterparts from the input processes:

Sres = S1∪S2 , Arres = Ar1∪Ar2 , MFres = MF1∪MF2 , ASres = AS1∪AS2

The composition interface of the result contains the union of interfaces of the
input models, from which we remove the tagged activity of BP1:

Ires = I1 ∪ I2 \ {comp1}

This operator is exemplified in Figure 3. We would like to add that a similar
result can be obtained is using sub-processes in the following manner: in BP1,
activity B becomes a sub-process. This sub-process can then be expanded to
contain process BP1.

In terms of token passing, the semantics of this operator is the following: a
new token is generated by the start event. Through the output sequence flow,
it sequentially enables all the flow elements of BP1, until it reaches the flow
element tagged with a composition interface. Then, the token passes sequentially
through all the flow elements of BP2. After the last flow element of BP2, the
token moves to the flow element of BP1 situated right after the tagged element.
It then enables sequentially the rest of the flow elements of BP1 until reaching
end event of BP1, where it is consumed. The same traces are obtained when the
equivalent Petri net operator is applied.

3.6 Synchronization Composition Operator

To apply this composition operator, several conditions need to hold on the input
processes:

– BPMN1 and BPMN2 have synchronization sets Sync1 and Sync2
– elements in Sync1 must be tagged with input composition interfaces and

those in Sync2 with output composition interfaces
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– define the overall synchronization set (can only contain activities): SyncSet=
{(x, y)|x ∈ Sync1, y ∈ Sync2}, with x ∈ A1, y ∈ A2, A1 ⊆ F1, A2 ⊆ F2

We use the following notation:
let (act1i, act2j) ∈ SyncSet, actij ∈ A, i, j = 1..|SyncSet|

Definition 8. Let BP1 = (F1, S1, Ar1, SF1,MF1, AS1, I1) and
BPMN2 = (F2, S2, Ar2, SF2,MF2, AS2, I2) be two business processes. The re-
sult of applying the synchronization composition operator on processes BP1 and
BP2, denoted synch(BP1, BP2), is a new BPMN process
BPres = (Fres, Sres, Arres, SFres,MFres, ASres, Ires) where:

Activities of the result are the union of those of the input models, removing
activities from SyncSet and adding new ones representing their merging:

Ares = A1 ∪ A2 \ {acti, actj} ∪ {actij}, actij is the merging of acti and actj
The events of the result are the union of events of the input models, from

which we remove the start and end events and add new start and end events:
Eres = E1 ∪ E2 \ {in(BP1), out(BP1), in(BP2), out(BP2)} ∪

{startnew, endnew}, where Eres ⊆ Fres, E1 ⊆ F1, E2 ⊆ F2, startnew ∈
Es, endnew ∈ Ee

To obtain the gateways of the result, we take the union of gateways of the input
models and add new parallel gateways, depending on the number of elements in
the synchronization set:

Gres = G1 ∪G2 ∪ {gi|gi ∈ Gp, i = 1..2 ∗ |SyncSet|}
When the SyncSet has only one element, it defines two fragments (above,

bellow) on each input process. The above fragments are put in parallel using
parallel gateways; the same applies for the below fragments. The results thus
obtained are then put in sequence, adding between them a new element that is
the merging of synchronization elements:
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SFres=SF1∪SF2\{(in(BP1), succ(in(BP1))), (pred(out(BP1)), out(BP1)),
(in(BP2), succ(in(BP2))), (pred(out(BP2)), out(BP2)), (pred(act11), act11),
(act11, succ(act11)), (pred(act21), act21), (act21, succ(act21))} ∪ {(startnew , g1),
(g1, succ(in(BP1))), (g1, succ(in(BP2)), (pred(act11), g2), (pred(act21), g2),
(g2, act12), (act12, g3), (g3, succ(act11)), (g3, succ(act21)), (pred(out(BP1)), g4),
(pred(out(BP2)), g4), (g4, endnew) , where SyncSet = {(act11, act21)}

If |SyncSet| > 1, SFres we follow the same procedure, having also to compose
the process fragments created between successive synchronization elements.

The swimlanes, artifacts, message flow and associations of the result are the
union of their counterparts from the input processes:

Sres = S1∪S2 , Arres = Ar1∪Ar2 , MFres = MF1∪MF2 , ASres = AS1∪AS2

The composition interface of the result is constructed from the ones of the
input models, from which we remove the elements from SyncSet.
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Ires = I1 ∪ I2 \ {act1i, act2j}, i, j = 1..|SyncSet|,(act1i, act2j) ∈ SyncSet

A simple example describing how this operator is applied is depicted in Figure 4.
We can observe that the refinement operator can be replaced by the combined
application of other, less complicated operators: sequential and parallel.

In terms of token passing, the semantics of this operator is the following: a
token is generated by the start event and through the outgoing sequence flow
reaches the first split parallel gateway. Here, two tokens are generated for each
outgoing sequence flow, which are executed in parallel. The flows synchronize at
the merge parallel gateway. From its output sequence flow, the token is passed
to the first merged synchronization element. Further, the same idea is applied
for the process areas situated between and bellow synchronization elements, as
they are put in parallel and tokens traverse them. After the last merge parallel
gateway, the token is consumed by the end event.

4 Exemplification of Composition Operators

To better understand the composition operators introduced in Section 3, we ex-
plain how they can help construct complex business processes with the help of an
example. In this example, we create an entire vacation reservation process using
several composition operators. The process we want to create should cover the
following aspects: explain how to book a plain or train ticket to the destination;
describe the process of booking the hotel accommodation; describe the payment
process, which can be performed either using a credit card or by bank transfer;
finally, we want to receive the tickets bought either by email or by post. The
user does not have to deal with all the complexity of creating such a process, as
it is delegated to the composition operators.

To create the above mentioned process, we follow a separation of concerns
approach and start by modelling a set of smaller business processes representing
the individual activities to be performed: plane booking, train booking, hotel
reservation, credit card payment, bank transfer, ticket delivery by email, ticket
delivery by post, passenger data entry. All these business process fragments are
depicted in Figure 5.

To obtain the desired business process, we need to apply several composition
operators in successive steps. In a first composition step, the following interme-
diate business processes are obtained:

– transportation booking : we want to obtain a process that allows booking
either a place ticket or a train ticket. Therefore, we apply the exclusive
choice operator on the train booking and plane booking input processes.

– payment : we want to obtain a process allowing to choose either a credit card
payment or a payment by bank transfer. We thus apply the exclusive choice
operator on the credit card payment and bank transfer input processes.

– ticket delivery: we want a process that allows to deliver a ticket by email or
by regular post or having both options. We apply the choice operator on the
ticket deliver by email and ticket deliver by post input processes.
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Refinement 1  (  Exclusive choice 1 ,  passenger details entry ) 
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Choice ( email ticket delivery ,  mail ticket delivery )

Write name and 
address of 
destinatary

Enter ID number

Enter billing 
address

Enter passenger 
name & surname

Enter destination 
email address

Enter name of 
destinatary

Enter passenger 
address

        <<input>>        
Enter passenger 

details

Enter destination 
bank

Enter credit card 
number

Print ticket to pdf 
format

Print ticket on 
paper

Select 
destination

Select 
destination

Choose price 
class

Enter IBAN of 
destinatary

Enter amount to 
transfer

Book flight

Book flight

Select travel 
dates

Select travel 
time

Confirm 
payment5

Select travel 
time

Choose flight 
operator

Stamp envelope

Enter 
destination

Enter billing 
name

Enter 
destination

Attach pdf ticket

Choose price 
class

Choose flight 
operator

Select travel 
dates

Confirm 
payment

Send envelope 
by mail Book ticket

Send email

Choose credit 
card type

Choose seats

Enter SWIFT 
bank code

Book ticket

Choose seats

<<input>>

<<output>>

<<input>>

<<output>>

<<output>>

<<input>>

<<output>>

<<input>>

Fig. 6. First step of applying composition operators

– detailed transportation booking : we make use of the transportation book-
ing process previously obtained. For thsi process, we require model details
regarding the passenger data entry. Therefore, we apply the refinement op-
erator on the transportation booking and passenger detail entry processes.

All the intermediate processes obtained are described in Figure 6.
In a second composition step, we make use of the intermediate business pro-

cesses previously obtained and construct a new set of intermediate processes
that bring us closer to the end result. The newly created processes are:
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Fig. 7. Second step of applying composition operators

– transportation and hotel booking: we want a process that allows to book a
hotel accommodation but in the same time to reserve a train or plane ticket
to the desired destination. This process is obtained by applying the parallel
operator on the transportation booking and hotel booking input processes.

– transportation, hotel booking and payment : we make use of the previous pro-
cess, but in addition we now also require the possibility to pay for the reser-
vations. Therefore, we use the sequential composition operator to compose
the transportation and hotel booking process with the payment process.

These intermediate processes obtained during the second composition step are
depicted in Figure 7.

To obtained the final result modelling the entire vacation reservation process,
we need to compose, using the sequential operator, the following two intermedi-
ate business processes: transportation, hotel and payment process with the ticket
delivery process.

5 Conclusions

Modern enterprises are constantly changing and evolving. Implicitly, business
processes have to accommodate such changes. Therefore, business process models
are becoming exponentially more complex. This complexity makes them hard to
understand and use, and renders their maintenance and evolution more difficult
and at higher costs.
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Business process composition is a viable solution to the above-mentioned is-
sues. At the heart of every process composition are composition operators. Most
languages adopt and provide a fixed set of composition operators.

BPMN, the standard language for modelling business processes, is lacking
such composition operators. Throughout this paper, we proposed to extend the
BPMN standard with a well defined set of composition operators. They are for-
mally defined and their semantics is briefly presented in terms of token passing.
In addition, we extend BPMN with composition interfaces, to explicitly mark the
places where a process can be composed with other ones. Composition interfaces
are also used when applying the proposed operators.

We already started to define other composition operators for BPMN:
unordered sequence, parallel composition with communication, discriminator
composition or fragment insertion. We are also interested in determining which
properties of a business process are conserved by the different operators. As an-
other possible research direction, we want to study how constructing a business
process using a compositional approach can help its verification and validation.
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Abstract. This paper addresses the issue of state sharing in CSP‖B
specifications: B machines controlled by various CSP parts are supposed
not to refer to, share or modify the same state space. However, some
kinds of B state sharing can be allowed without creating inconsistencies
in CSP‖B specifications. To achieve this, we present a B-based solution
for allowing architectures with B state sharing in the CSP‖B components.
We show that the inconsistencies in state sharing can be identified by
translating the CSP controllers into B specifications and then using a
more refined consistency checking process. We also hint at possible ex-
tensions towards other CSP‖B architectural patterns with various types
of sub-components sharing.

Keywords: CSP‖B, sharing, architecture, consistency, rely-guarantee.

1 Introduction

In this work we address the question of how to safely reuse already-developed B
component models in which there is a common and shared part when developing
a CSP‖B model. The problem of sharing is known to be difficult in the framework
of the B method whereas it is naturally supported by the CSP formalism.

The present work is motivated by an example which arose during the process
of assembling already formally specified and proved components. In the context
of the TACOS project, we modelled a multi-agent system of a convoy [1] while a
complex B model of a location component was also independently designed [2].
Integrating the latter into the former appears to be problematic because the
resulting assembly risks breaking the consistency of the whole vehicle compo-
nent, as state sharing is involved. Machine sharing, like in the location compo-
nent, is not valid at the CSP‖B level. In fact, such an architecture goes against
� Work supported by the ANR-06-SETI-017 project: “TACOS: Trustwor-

thy Assembling of Components: frOm requirements to Specification”
(http://tacos.loria.fr).
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the general (and well-known) “one controller≡one machine” CSP‖B constraint.
Moreover, although more recent results allow several controllers to share a B
machine, like in [3], they do not permit to deal with our case study.

Several relevant architectures involve B state sharing which can happen be-
cause of sharing a B machine by other B machines. This is the reason why we
focused primarily on using notions coming from the B setting such as its modu-
larity links. In a nutshell, our approach is about characterising the links between
controllers and machines as seeing or importing links in the B sense. It then
becomes possible to consider the whole CSP part of the system as a single B
machine and to use the B constraints upon this “transformed” system to decide
whether the shared B machines of the system can have their invariants broken
or not.

Unlike [3,4], the novelty of our approach is thus bringing B sharing to the
B level. Indeed, in [4], Evans et.al used CSP controllers ”augmented” with a B
part to perform automatic consistency and non-discrimination checks of CSP‖B
models. In that work, determining which parts of a CSP‖B analysis can be
handled within the B method has been left aside as a future work direction. The
approach advocated in the present paper deals mostly with the B part, hence
it can be viewed as complementary. Those works and ours could thus be used
together to bring state sharing at every level of the CSP‖B formalism. More
precisely, we show how to use the B modularity constraints to allow CSP‖B
models with multiple controllers for a B machine or with a single controller for
multiple, and possibly shared, B machines. We then propose a refined consistency
checking of CSP‖B based on such architectural patterns.
Layout of the paper. Before introducing a platoon example and a part of its
modelling in Section 3, we present the necessary formalisms, concepts and tools
in Sect. 2. Our main contributions are in Sect. 4 and 5. We propose 1) a method—
based on the B modularity—for detecting inconsistent CSP‖B architectures, and
2) a refinement of CSP‖B consistency check requirements based on architectural
patterns. In addition, we propose extensions for addressing the verification of
more complex cases. Finally, conclusions and assessments are drawn in Sect. 6,
combined with related work on state sharing in CSP‖B and B.

2 Concepts and Tools for CSP‖B Components

The B machines specifying components are open modules which interact by
the authorised operation invocations. CSP describes processes, i.e. objects or
entities which exist independently, but may communicate with each other. When
combining CSP and B to develop distributed and concurrent systems, CSP is
used to describe execution orders for invoking the B machines operations and
communications between the CSP processes.

2.1 B Machines

B is a formal software development method used to model and reason about sys-
tems [5]. The B method has proved its strength in industry with the development
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of complex real-life applications such as the Roissy VAL [6]. The principle behind
building a B model is the expression of system properties which are always true
after each evolution step of the model, the evolution being specified by the B
operations. The verification of a model correctness is thus akin to verifying the
preservation of these properties, no matter which step of evolution the system
takes.

The B method is based on first-order logic, set theory and relations. A strength
of the B method is its stepwise refinement feature: each refinement makes a model
more deterministic and also more precise by introducing programming language-
like features, until the code of the operations can actually be implemented in a
programming language.

Let us assume here that the initialisation is a special kind of operation. In
this setting, a B architecture is consistent if the following conditions hold [5,7]:

– Each machine has its invariant preserved by its operations, i.e. the model is
consistent.

– Each refinement or implementation can replace the B machine it refines.

Both items above are semi-local: the proof obligations correspond to a local
reasoning, but the machines can use operations of included or seen machines.
It must then be verified that these operations are correctly used: this is done
implicitly when operation invocations are expanded into their respective bodies.
This ensures that the proof obligation contains a sub-goal for checking that the
invoked operation is indeed called within its precondition.

Support tools such as B4free (http://www.b4free.com) or AtelierB
(http://www.atelierb.eu) automatically generate Proof Obligations (POs) to
ensure the consistency [5]. Some of them are “obvious” POs which are automat-
ically discharged whereas the normal POs have to be proved interactively if it
was not done fully automatically.

Modularity in B. The B project architecture can be handled through some
specific clauses SEES, INCLUDES and USES that allow a machine to list its
seen machines, included machines or used machines, respectively. The IMPORTS
clause corresponds to INCLUDES for an implementation model. A B architec-
ture must respect some modularity constraints. For instance, one machine cannot
end up being included or imported twice by two different inclusion paths, as this
could break the invariant. In [8] the modularity constraints in [5] have been
proved to be not strong enough, because intermediate SEES links could hide the
fact that a machine could be modified through refinement. In [7], a modularity
constraint to ensure no invariant breakage and no interference by a machine with
a seen machine through another indirect path, is given:

Theorem 1. (uses; can_alter) ∩ ((imports; s+) ∪ (sees; s∗)) = ∅
with sees being the set of couples (M1, M2) where the implementation of M1

”sees” the machine M2, imports a similar set where the implementation of M1

”imports” M2, s the set where M1 directly ”sees” M2, uses = sees ∪ imports

http://www.b4free.com
http://www.atelierb.eu
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and can_alter = (uses∗; imports). The ; operator corresponds to the B relation
composition, ∗ to the B reflexive transitive closure, and + to the transitive clo-
sure. No double importation and no violation of the constraint of Theo. 1 ensure
no invariant breakage and no interference by a machine with a seen machine
through another indirect path.

When taking into account all implicit hypotheses about B modularity [7], the
formula can actually be simplified into the following shape: can_alter∩sees = ∅.
We pointed out this modularity constraint because of the role it plays in our
contribution in Sect. 4.

2.2 Communicating Sequential Processes (CSP)

CSP allows the description of entities, called processes, which exist indepen-
dently but may communicate with each other. Thanks to dedicated operators
it is possible to describe a set of processes as a single process, making CSP an
ideal formalism for building a hierarchical composition of components. CSP is
supported by the FDR2 model checker (http://www.fsel.com). This tool is
based on the generation of all the possible states of a model and the verification
of these states against a desired property.

The denotational semantics of CSP is based on the observation of process
behaviours. Three kinds of behaviours [9] are observed and well suited to express
the properties:

– traces, i.e. finite sequences of events, for safety properties;
– stable failures, i.e. traces augmented with a set of unperformable events at

the end thereof, for liveness properties and deadlock-freedom;
– failures/divergences, i.e. stable failures augmented with traces ending in an

infinite loop of internal events, for livelock-freedom.

Each kind of behaviours gives rise to a notion of process refinement defining a
particular semantical framework [9].

2.3 CSP‖B Components

In this section, we sum up the works by Schneider and Treharne on CSP‖B. The
reader interested in theoretical results is referred to [3,10] and the abundant
CSP‖B literature referenced therein; for case studies, see for example [11,12].

Specifying CSP Controllers. In CSP‖B architecture (as depicted Fig. 1), the
B part is specified as a B machine without any restriction, while the controller
is a CSP process, called a CSP controller, defined by the following subset of the
CSP grammar:

P ::= c ? x ! v → P | ope ! v ? x → P
| b & P | P � P | if b then P else P | S(p)

The process c ? x ! v → P can accept input x and output v along a commu-
nication channel c. Having accepted x, it behaves as P.

http://www.fsel.com
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Machine channels are introduced in CSP controllers to provide the means for
controllers to synchronise with the B machine: for each B operation x ← ope(v),
there can be a channel ope ! v ? x in the controller corresponding to the opera-
tion call: the output value v from the CSP description corresponds to the input
parameter of the B operation, and the input value x corresponds to the output
of the operation. A controlled B machine can only communicate on the machine
channels of its controller.

Remark 1. CSP‖B components must respect the “one controller≡one machine”
constraint (as shown in Fig. 1): controlled B machines are not allowed to share
states, i.e. they cannot see or import the same machines. Then, the CSP‖B
model necessarily respects the B modularity constraints (Theo 1, Sect. 2.1).

The behaviour of a guarded process b & P depends on the evaluation of the
boolean condition b: if it is true, it behaves as P, otherwise it is unable to
perform any events. In some works (e.g. [10]), the notion of blocking assertion is
defined by using a guarded process on the inputs of a channel to restrict these
inputs: c ? x & E(x) → P.

Fig. 1. CSP‖B compo-
nents

The external choice P1 � P2 is initially prepared
to behave either as P1 or as P2, with the choice made
on the occurrence of the first event. The conditional
choice if b then P1 else P2 behaves as P1 or P2 de-
pending on b. Finally, S(p) expresses a recursive call.
Finally, in addition to the expression of simple pro-
cesses, CSP provides parallel composition operators
to combine them.

Verifying CSP‖B Components. The main problem with combined specifi-
cations is their consistency: CSP and B parts should not be contradictory. Let
us assume a CSP‖B compound (P‖MP ). The verification process to ensure the
consistency of (P‖MP ) consists in verifying the following conditions [10]:

1. Check the consistency of MP with B4Free or Atelier-B for instance,
2. Check the deadlock-freedom (in the stable-failures model) and divergence-

freedom of P with FDR2,
3. Check the divergence-freedom of (P‖MP ) (see below),
4. By way of [10, Theorem 5.9] and the fact that P is deadlock-free, the

deadlock-freedom of (P‖MP ) in the stable failures model is deduced.

The given results are also generalised in [10] to a collection of B machine-CSP
process couples. The whole CSP‖B architecture must also respect the sharing
constraint recalled Remark 1.

Ensuring the Divergence-Freedom of CSP‖B Components. Originally,
the technique for ensuring the divergence-freedom of a controlled machine
(P‖MP ) involved the stating of a Control Loop Invariant (CLI) and its verifi-
cation [13,14]. Fortunately, the above technique has evolved into a more general
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and less cumbersome one. Evans & Treharne [11] have defined a fixed-point rule
for deducing the non-divergence of a controlled machine (P‖MP ).

To sum up, the fixed-point rule procedure is based on the satisfaction by
the controller P of a uniform property −−−→every(p)(S)(T ), where p is an event
predicate and S, T are states (e.g. predicates expressed in the B set theory):
P sat −−−→every(p)(S)(T ). See [11,3] for more details, with a PVS implementation.

That fixed-point rule relates the use of a CLI for verifying the divergence-
freedom of a controller to uniform properties for CSP controllers. The use of
uniform properties for CSP controllers lifts the need for preprocessing as done
earlier with the explicit construction of a CLI, and it generalises the parallel
composition of CSP controllers.

In [3], the authors deduced the divergence-freedom of P‖Q by verifying the
non-interference, i.e. a property which expresses that P does not interfere with
the traces of Q, denoted as non_interference(p, P, Q). Then, they deduced:

Property 1.

If

⎧⎪⎪⎨
⎪⎪⎩

non_interference(p, P, Q)
∧ non_interference(p, Q, P )
∧ P sat −−−→every(p)(S)(T )
∧ Q sat −−−→every(p)(S)(T )

⎫⎪⎪⎬
⎪⎪⎭ then P‖Q sat −−−→every(p)(S)(T )

3 Motivating Case Study

This section presents an example which arose during the process of assembling
already formally specified and proved components. In [1] a convoy, the so-called
platoon, of autonomous vehicles (depicted in Fig. 2) was fully specified and vali-
dated in the framework of the CSP‖B methodology. The behaviour of this system
is described in extenso in [15]. In the context of this paper we are more con-
cerned with the part of the model limited to a single vehicle. Figure 3 illustrates
a single vehicle, one element of the platoon. Its formal study can be found in [1].

Fig. 2. A platoon of autonomous vehicles as a multi-agent system

In figures the conventions are as follows: the rounded boxes depict CSP con-
trollers, whereas the others show B machines, with the plain arrows between
CSP processes or between a CSP controller and a B machine being read-write
links, and dotted arrows being read-only links.
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Fig. 3. Abstract CSP‖B vehicle

This first CSP‖B specifi-
cation was refined in [16].
The resulting more detailed
specification was proved to
refine – in the traces/fail-
ures model of CSP – the
previous specification. In [16]
the refined specification in-
volves several controllers (in-
stead of the only CtrlVehicle
controller) equipped with B

machines. It also contains an abstract model of a location component answering
the locate () B method by determining the geographic position of the physical
vehicle.

In the framework of the TACOS project, more concrete B specifications of
the location component have been independently proposed in [2]: an enhanced
realistic pure B model of the vehicle (with focus on the location problem) was
derived from the requirements specified using the KAOS method [17].

Fig. 4. Enhanced CSP‖B vehicle

One of the introduced safety re-
quirements is that location sensors
would be an assembly of several
so-called raw positioning components
based on different technologies (GPS,
Wifi, GSM, Visual sensors,. . . ). Each
raw positioning sensor provides a
chronologically ordered set of loca-
tions. The sets of all components must
be merged. In addition, to (in)validate
the provided data, an actual speed
and acceleration can be used. It allows
keeping only the possible, i.e. consis-
tent, locations, and removing the in-
consistent ones.

Figure 4 displays a simplified
CSP‖B vehicle model enhanced with
the Location component1. In this
model, Actuator_accel and Sensor_speed are separate B machines. This is the
result of differentiating acceleration values as they are passed to the engine and
acceleration values as they have been effectively applied by the engine. We want to
emphasise the fact that in Fig. 4, some of the CSP controllers share B machines.
For example, CtrlVehicleR and CtrlRaw_location share a view on Raw_location.
Consequently, the consistency of the whole CSP‖B vehicle component risks to

1 A detailed version of this paper with an appendix depicting a bigger and more
complete version of the case study is available at
http://tacos.loria.fr/drupal/?q=node/83.

http://tacos.loria.fr/drupal/?q=node/83
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be broken because of state sharing. The question we are interested in is: “Is it
possible to relax CSP‖B restrictions on the architecture of the B part so that we
can indeed realise the needed integration?”

4 B-Based State Sharing within CSP‖B

As recalled in Remark 1 (and in Fig. 1), a CSP‖B architecture disallowed any
sharing of B machines. This way, there is no risk for the invariant of the nonex-
istent shared machine to be broken, nor for any machine or controller to suffer
from interferences from an adjacent controller-machine pair. However, Figure 5
shows several relevant architectures involving B state sharing. Machine sharing
can happen because of sharing by other B machines as in (a), (b) and (d) or
because of sharing by several controllers as in (c).

Our goal, as exhibited in Sect. 3, is to relax restrictions on the architecture
of the B part of a CSP‖B model. In this section, we show that it is possible to
express the way the controlled B machines are used by the CSP part in terms of
B modularity links, and to include them in the B modularity checking, to allow
B state sharing in CSP‖B.

More precisely, we are concerned with architectures (a) and (b), with some
considerations about (d): the novelty of our approach is thus bringing B sharing
to the B level. This is the reason why we focused primarily on using notions com-
ing from the B setting such as its modularity links. In a nutshell, our approach
is about characterising the links between controllers and machines as seeing or
importing links in the B sense. It then becomes possible to consider the whole
CSP part of the system as a single B machine and to use the B constraints upon
this transformed system to decide whether the shared B machines of the system
can have their invariants broken or not.

(a) (b) (c) (d)

Fig. 5. Several architectures depicting the sharing of B machines

4.1 B Modular Characterisation of CSP Control

We want to characterise in B terms, the machine channels, i.e. the CSP-controlled
operations. In [5] Abrial indicates that an operation can be callable, callable in
inquiry or not callable. In the first case, such as for an importation link, the
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called operation can modify the state of the imported machine. In the second
case, it cannot: it is the case for a seen machine, whose such inquiry operations
allow an external machine to observe the state of the seen machine. The third
case corresponds to more specific modularity links, such as the USES link.

In modular B terms, the CSP control of a B machine can be viewed as a kind
of INCLUDES or IMPORTS links: the operations triggered by the CSP part of
the system can modify the variables of the controlled machines. A first guideline
would thus be that we would consider CSP‖B “links” as IMPORTS links. We
nonetheless can do a finer analysis: it may be the case that a CSP controller
never modifies the state of its controlled machine but merely passes around the
result of calculations, for instance. We could thus characterise CSP‖B links with
the following definition:

Definition 1. If all the operations of a B machine triggered by its CSP con-
troller are inquiry operations in the B sense, then we say that the CSP controller
SEES its controlled B machine. Otherwise, we will say that the CSP controller
IMPORTS its controlled B machine.

Detecting whether an operation is an inquiry operation is rather straightforward:
it is defined as being an operation not changing the variables of its component
[18, Annex E]. Finding if an operation is an inquiry operation can thus be done
at the syntactic level, by detecting whether the variables of the machines appear
in the left members of the modifying substitutions of the considered operation.

This way we can characterise the CSP controls of the B part in terms of the
modularity of B. Then, we want to express the CSP part of a CSP‖B system as
a B entity, to check the B modularity constraints on the whole CSP‖B system.

4.2 From CSP to B Modularity

It is well-known that a CSP system can be translated into B using results
in [19,20]. We might stop here and use this translation, with adding what is
needed for translating the CSP‖B links. Instead we go further by exploiting the
fact that the verifications to correctly share a B machine are lifted to the ar-
chitecture of the project. Indeed, these verifications can be done through two
B-based steps:

– Verifying that the way the variables and operations are used matches the
kind of modularity link that is used, for each machine. For instance, verifying
that the operations of a seen machine are inquiry operations.

– Verifying that the architecture respects the modularity constraints imposed
by the B method, such as the constraint in Sect. 4.1.

Because we characterised the CSP→B links by means of the IMPORTS or SEES
links depending on what operations the controllers use, we obtain the first step
by virtue of construction. We are left with the second step: the content of the B
machine does not matter for this step. This means that the content of the CSP
system translated into B does not matter either.
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Property 2. Let the CSP part be represented by a single B machine, and the links
between CSP controllers and B machines be characterised either as IMPORTS
links or as SEES links. If the resulting system respects the modularity constraints
of B, then no shared machine in the B part of the system can have its invariant
broken.

Proof. (Sketch) (i) Let us assume that the translation from CSP into B is correct.
It is based on the results in [20]. (ii) The interactions between CSP and B parts
can be characterised in terms of the B modularity (see Sect. 4.1).
Consequently, if the whole system expressed in B thanks to (ii) satisfies the
modularity constraints of B given by Theo 1, Sect. 2.1 then, by (i), the CSP‖B
system also satisfies the modularity constraints, and no shared B machine has
its invariant broken. Obviously, the last point only concerns the B part. 
�
This property is a direct consequence of lifting all the CSP parts of the system
into a B setting: any B architecture that respects the modularity constraints
ensures this property.

Thanks to our proposals, the process for checking that the B part of a CSP‖B
system with sharing of B machines is consistent becomes as follows:

1. Characterise the links of each controller to its controlled machine in a B
fashion (IMPORTS or SEES).

2. Represent the whole CSP system (with the CSP controllers) as a single B
machine (using csp2b for instance [19,20]) which imports or sees the various
controlled machines, depending on how the links have been characterised.

3. Check the resulting pure B architecture with usual B tools, B4free or Atelier-
B for instance.

Notice that Property2 is a sufficient but not necessary condition. If the tool
checking is successful, then the way the B machine is shared in the whole CSP‖B
system is consistent. If it fails, then the shared machines face a potential invariant
breakage. The example in the next section illustrates this step.

4.3 Application to the Vehicle System

Let us consider again Fig. 4. Let M be the B entity corresponding to the CSP
processes (or controllers): CtrlVehicleR , CtrlActuator_Accel, CtrlSensor_Speed,
CtrlRaw_location and CtrlSensor_xpos. Although there is no direct link between
CtrlVehicleR and CtrlRaw_location, they are still executed in parallel and could
cause invariant breakage in a commonly shared B machine. Let us analyse this.

Let us write the sees and imports sets depicted by Figs 6a and 6b for calcu-
lating whether the architecture respects the B modularity constraints. We kept
the names of the differentiated CSP controllers/processes with respect to Fig. 4
instead of using M. The controller→machine links are importation links because
the machines are modified, as they are used for backing up the passed value in
a log. Now after having rewritten the CSP controllers or processes into M, the
final (sees ∪ imports)∗; imports set which contains the possibly, and indirectly,
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{
Sensor_xpos �→ RealVehicle
Sensor_speed �→ RealVehicle

Location �→ Raw_location

}

(a) Initial sees set

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Actuator_accel �→ RealVehicle
CtrlActuator_accel �→ Actuator_accel
CtrlSensor_speed �→ Sensor_speed
CtrlSensor_xpos �→ Sensor_xpos
CtrlRaw_location �→ Raw_location

CtrlVehicleR �→ Location

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(b) Initial import set

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Actuator_accel �→ RealVehicle
M �→ Actuator_accel
M �→ Sensor_speed
M �→ Sensor_xpos
M �→ Raw_location
M �→ Location

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(c) Rewritten (sees ∪ imports)∗;
imports set

{
Sensor_xpos �→ RealVehicle
Sensor_speed �→ RealVehicle

Location �→ Raw_location

}

(d) Rewritten sees set

Fig. 6. sees, imports and (sees ∪ imports)∗; imports sets

modified machines is given Fig. 6c. Note that M will never be a target, because
the whole CSP part will always be a source of inclusion/sight towards B ma-
chines. The intersection of the relations in Figs 6d and 6c is empty, hence the
architectural B criterion (Sect. 2.1 and 4.1) is satisfied.

The divergence-freedom of the controlled machines is also respected. Although
the code of the machines is not shown here, it is very simple as we do not
make strong assumptions about the passed values at the moment. The various
preconditions of the machines are thus merely for typing the variables.

5 Ensuring Divergence-Freedom of Shared B Machines

Control loop invariant checking [14,10] or uniform property verification [3] ensure
that a controlled B machine never diverges, i.e. its operations are never called
outside their preconditions, through the triggering of its operations by the CSP
controller.

Let us consider the architecture of Fig. 5(a): the MS machine is imported
by MP and seen by MQ, which are themselves imported by their respective
controllers P and Q. This architecture is sound with respect to the architectural
constraints of Sect. 4.1, hence MS will not have its invariant broken.

Let us now imagine that an operation opeq of MQ references some variable of
MS in its precondition, e.g. in the shape of xS > 0. The invariant of MQ relies
thus indirectly upon the strict positivity of xS . Let us suppose that checking the
consistency of Q‖MQ does not show any problem. Then, what happens if MP ,
because it includes or imports MS , triggers an operation that makes xs = 0?
Then the precondition of opeq becomes invalid, even though consistency checking
did not exhibit the problem. The problem depicted here is typically a problem of
non-interference, and the consistency checking approach as presented in Sect. 2
is not sufficient.
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Let us notice that in [3] the authors encountered a similar problem for related
but different reasons. Their non-interference Property 1 recalled Sec. 2 is used in
a case similar to the architectural case illustrated by Fig. 5(c) because the both
controllers “import” the shared machine, hence can interfere with each another.

Fortunately, it turns out that Property 1 can be simplified in our architectural
case depicted Fig. 5(a). Indeed, we know that the shared machine is effectively
imported only by one controller, because of the B rule stating that a machine
can only be imported once. Hence we know that this shared machine will be
unaffected by all other controllers: they will only ultimately be allowed to refer
to the shared machine through SEES links, hence they can never modify the
shared machine. We thus integrate this specificity in Property 1, leading to:

Property 3. If P is a controller that ends up importing a shared machine
(Fig. 5(a)), and⎧⎨
⎩

non_interference(p, P, Q)
∧ P sat −−−→every(p)(S)(T )
∧ Q sat −−−→every(p)(S)(T )

⎫⎬
⎭ then P‖Q sat −−−→every(p)(S)(T )

As the non-interference property is trivially verified for Q with P thanks to
the knowledge about the architecture of the system, we simply removed it. The
other non-interference properties must be kept: because P imports the shared
machine, it can still have an effect on the other controllers that see the shared
machine.

Proof. (Sketch) Let assume without loss of generality that the whole CSP‖B
system satisfies the modularity constraints (Sect. 4.1). As a consequence, in our
architectural case only P can write into MS . Hence Q (or other seeing controllers)
can only use non-modifying operations of MS. As a result, Q does not interfere
with the P behaviour. This can be shown (i) by induction on the traces tr—
universally specified in every(p)(S)(T )(tr)—of invocations by P of operations of
the controlled B machines MP and MS , and (ii) by analysis of the effect of MS op-
erations called by Q via MQ: as operations are non-modifying there is no interfer-
ence in this case. On the other hand, because of the non_interference(p, P, Q)
hypothesis, P does not interfere with the Q behaviour, and we are done. 
�

Thanks to our proposals, the restriction on state sharing in CSP‖B can be relaxed
as follows. If a CSP‖B system with machine sharing in the B part meets the
following requirements:

– The CSP system viewed as a B entity together with the B part respects
Property 2 (as presented in the previous section)

– The controllers, at least those that involve shared machines, respect Prop-
erty 3

then the CSP‖B system is consistent for the parts sharing B machines. The rest
of the system can be verified e.g. with the techniques of [3].
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Discussion about Other Architectural Patterns. The solution for intro-
ducing shared B machines in a CSP‖B system also gives clues about other kinds
of architectural evolutions for a CSP‖B system. The “one machine-several con-
trollers” as in Fig. 5(c) is already handled by the consistency definition in [3].
The “one controller-several machines” case illustrated by Fig. 5(b) is conjectured
to be solved by our approach. Assuming that the controller does not contain any
parallel composition, as is the case usually for CSP controllers, then there is no
interference problem. Hence the problem here is strictly reduced to the verifica-
tion of B modular constraints. In case both controlled machines are imported by
the CSP controller, our approach does not allow to decide the (in)consistency of
the shared machine.

We are left with the case of Fig. 5(c) when modifications happen for all links.
In that case, the basic assumptions of B modularity are obviously not met,
hence apart from the full use of consistency checking techniques from [3], one
would have to use an extension of B allowing such modularity links. We can
surmise that the “invariant ownership” approach of [21] or the “rely-guarantee”
approach of [22] would fit. Given that Boulmé concludes that [21, conclusion,
third paragraph] the rely-guarantee approach is more modular, we suggest that
using Büchi’s extension of B as a replacement for classical B would bring what
is needed for such an architectural case. As this extension impacts mostly the
modularity of B and not its core (set theory and substitutions), we think the
changes needed at the level of CSP‖B would be minor.

6 Conclusion

This paper proposed a B-based solution for allowing architectures with B state
sharing in the CSP‖B components. The proposal involved the verification that
the shared B machine has not its invariant broken, and that the introduction of
sharing does not disturb the components. As the first verification is rooted to
B semantics, we proposed a verification methodology based on the fact that the
CSP parts of the system can be viewed as a single B machine. We thus were
left with characterising the links between CSP controllers and B machines as B
modularity links. We have shown that the verification could thus be reduced to
check that the B modularity constraints are satisfied.

The second verification involved problems of interference between controllers.
We adapted and simplified the solution proposed by Evans & Treharne [3] for
verifying the non-interference of controllers. We exploit the additional knowledge
given by modularity links at the B level to naturally deduce non-interference
properties from the modularity links.

Related Work Addressing Sharing in B and CSP‖B. Let us now compare
this approach to similar approaches applied to CSP‖B or B alone (see Sect. 4).

On the one hand, the architecture of Fig. 5(c) was first introduced in [3],
thanks to the use of uniform properties for deciding machine consistency. The
reason was that the use of rely-guarantee properties when analysing the con-
sistency of a controlled machine allowed one controller keeping track of what
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the other controller could change or not in the machine. In [4], Evans et.al used
CSP controllers ”augmented” with a B part to perform automatic consistency
and non-discrimination checks of CSP‖B models of information systems. Our
approach deals mostly with the B part, hence it can be viewed as complemen-
tary. Those works and ours could thus be used together to bring state sharing
at every level of the CSP‖B formalism.

On the other hand, several works on the B formalism proposed tightened
modularity constraints for ensuring the absence of inconsistency or extending the
formalism for allowing some useful kinds of sharing. The already mentioned in
Sect. 2.1 works in [8,7] are still situated in the single-writer paradigm. Assuming
the CSP controllers can be viewed as a single B entity, the modularity constraints
would allow the architectures (a) and (b) of Fig. 5, because of the clear separation
of the seeing (read-only) paths and the importing (read-write) paths. These
tightened modularity constraints were quickly integrated into the B commercial
tools.

A few works have attempted to deal with the multiple-writer paradigm within
the B method. Boulmé and Potet [21] proposed an approach inspired by a similar
technique of Spec#, where a developer can mark at what places a shared object
(hence, for B, a shared machine) can have its invariant broken. This allows
having a broader set of architectures for B but the drawback is a greater number
of proof obligations. This approach has no tool support we are aware of.

Büchi and Back [22] proposed changing the B modularity mechanisms to allow
for multiple writers in a rely-guarantee fashion. B machines become equipped
with contracts, each describing several roles. Each contract corresponds to a
way of sharing the machine, with all roles corresponding to a way of invoking
the operations of the shared machine. In our opinion, only a combination of
CSP with Büchi’s B along with the use of uniform properties could deal with
the architecture of Fig. 5(d), because of multiple-writers at the B level and the
danger of interferences at the CSP controllers level.

Butler [19] proposed a way of translating CSP systems into action systems,
which was later adapted to the B method [20]. The translation keeps the seman-
tics of the CSP operators (sequence, parallel, interleaving) with the additional
following constraints: interleaving can only happen at the outermost level and
another constraint relevant to the use of so-called conjoined B machines, which
is a peculiarity of csp2b that we do not use. Finally, viewing the CSP part of a
CSP‖B system as a B entity is possible.

Finally, Event-B—an event-based variant of the classical B—does not pro-
vide sharing mechanisms, but some extensions propose sharing solutions to aug-
ment the scalability of Event-B: parallel (de-)compoition of events/machines and
their refinement [23], or modularization like in [24]. In addition, let us note that
CSP‖Event-B systems have recently been studied wrt. modularity and refine-
ment [25,26]: the deadlock-freeness is ensured under some conditions, and the
combined specification refinement guarantees the CSP trace refinement but not
the failure refinement.
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Perspectives. Our proposal allows the relaxation of some constraints upon B
machines in a CSP‖B system allowing more flexibility with choosing specification
architectures. From there, we conjecture that most architectural patterns can be
solved with a combination of our solution and the consistency checking rules
of [3]. We think at this point that, for addressing the multiple-writers problem
at both the level of CSP‖B and B, one would need using another extension
of B allowing such a paradigm. A version of B extended with rely-guarantee
contracts [22] seems to be a good candidate.

Longer-term perspectives include the study of CSP‖B component refinements
adapted to our problem. Preliminary studies of recent advances in this do-
main [27] imply that the kind of refinement we seek would be different because
of a more complex evolution of the B part through the design. Other interesting
perspectives would involve the adaptation of the consistency rules of [3] from
PVS to ProB—an animator and model checker for the B method [28], or to a
library for the B method in Coq [29], as the affinity of Coq with fixed-point
reasoning could help in the verification of uniform properties.
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Abstract. Network-based applications usually rely on the explicit
distribution of components, which interact by means of message pass-
ing. Assembling components into a workflow is challenging due to the
asynchronism inherent to the underlying message-passing communica-
tion model. This paper presents the PaCE language, which aims at co-
ordinating asynchronous network-based components by exploiting the
data-flow execution model. Specifically, PaCE has been designed for
dealing with components compliant with the P-REST architectural style
for pervasive adaptive systems. Moreover PaCE provides reflective fea-
tures enabling run-time adaptation and evolution of workflows.

1 Introduction

The advent of new resource-constrained mobile computing devices (e.g., smart-
phones, and tablets) equipped with wireless networking technologies (e.g., WiFi,
Bluetooth and 3G), together with the exploitation of new computing paradigms
(e.g., Service Oriented Computing, Cloud Computing, and Pervasive Comput-
ing), is boosting a fast move from developing applications as standalone systems,
to developing applications as network-based systems. Specifically, network-based
systems rely on the explicit distribution of components, which interact by means
of (asynchronous) message passing. Indeed, network-based systems differ from
distributed systems in the fact that the involved networked components are in-
dependent and autonomous, rather than considered as integral part of a concep-
tually monolithic system [28].

In this settings, network-based applications can be easily modeled and de-
veloped as a set of interacting actors [4]. An actor is a computational unit that
reacts to external stimuli (e.g., messages) by executing one or more of the follow-
ing actions when stimulated: (i) sending messages to other actors, (ii) creating
new actors, and (iii) designating the behavior for the next stimulus. Since there
is no causal sequentiality between these actions, they can be carried on in par-
allel. Indeed, the Actor model is characterized by inherent concurrency among
actors, dynamic creation of actors, and interaction through explicit asynchronous
message passing (with no restriction on message arrival order).
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Although Actors are proper abstractions for modeling single reactive com-
ponents that simply react to external stimuli, asynchronism makes them diffi-
cult to deal with when modeling component compositions. A composition is an
“active” actor, also referred to as orchestrator, which orchestrates a process by
accessing other components and consuming their artifacts. Indeed, the orchestra-
tor queries actors, and aggregates their responses, to achieve its goal. However,
since interactions are asynchronous, the orchestrator does not block its execu-
tion while waiting for responses. Rather, the orchestrator continues executing,
and responses are processed asynchronously, with no causal order. To cope with
such issues, we raised the level of abstraction, and devised a new coordination
language satisfying the following requirements:

1. Using a RPC-like syntax
2. Retaining the inherent asynchronism of the pervasive environment
3. Making distribution and code parallelization as seamless as possible
4. Integrating local functions to carry out operations which are not

coordination-related (i.e., manipulating the local state)

This paper presents PaCE (Prime Coordination languagE), a data-flow lan-
guage for coordinating asynchronous network-based components. Data-flow lan-
guages [21][16] structure applications as a directed graph of autonomous software
components that exchange data by asynchronous message passing. In the data-
flow paradigm the components do not “call” each other, rather they are activated
by the run time system, and react according to the provided input (received mes-
sage). Once the output is available, the run time system is in charge of moving
data towards the proper destination. Data-flow applications are inherently par-
allel. Exploiting the data-flow paradigm introduces a set of advantages: 1) con-
currency and parallelism are natural and components can be easily distributed
across the network, 2) asynchronous message passing is natural for coordinat-
ing independent and autonomous components, and 3) applications are flexible
and extensible since components can be hierarchically composed to create more
complex functionalities.

Specifically, the PaCE language has been designed and developed for compos-
ing and coordinating components built according to the P-REST architectural
style [9], where components are called resources (we will use this term from now
on) and are first-class abstraction acting as “prosumer” [24] – i.e., fulfilling both
roles of producer (reactive actor) and consumer (active actor). To support the
P-REST style we implemented the Prime (P-rest Run-tIME) middleware [10].
Since Prime has been specifically designed to deal with pervasive environments,
where applications must support adaptive and evolutionary situation-aware be-
haviors, achieving Adaptation and Evolution is primary requirement for the mid-
dleware. Adaptation refers to the ability to self-react to environmental changes
to keep satisfying the requirements, whereas evolution refers to the ability of
satisfying new or different requirements. Prime satisfies such goals by provid-
ing support for: (i) flexibility, the middleware is able to deal with the run-time
growth of the application in terms of involved resources, (ii) genericity, the
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middleware accommodate heterogeneous and unforeseen functionalities into the
running application, and (iii) dynamism, the middleware is able to discover new
functionality at run time and rearrange the application accordingly.

Therefore, PaCE allows developers to specify the active behavior (compo-
sition logic) of a composite resource in terms of the set of operations defined
by the Prime programming model. Moreover, PaCE exploits Prime features
to achieve both adaptation and evolution of compositions in terms of resource
addition, resource removal, resource substitution, and resource rewiring [23].

The paper is organized as follows: Section 2 discusses related work, Section 3
overviews the Prime middleware, and its programming model. Section 4.1,
Section 4.2, and Section 5 present the PaCE syntax, semantics, and inter-
preter, respectively. Section 5.1 discusses dynamic adaptation features provided
by PaCE, and Section 6 assesses the work done by presenting a case study.
Finally, Section 7 concludes the paper and sketches our perspectives for future
work.

2 Related Work

The growth in complexity and heterogeneity of software systems imposes the
need of raising the level of abstraction to make the software development process
as rigorous as possible. Gelernter and Carriero [13] advocated for the sharp
separation between computation (i.e., the tasks that must be executed to achieve
the final goal), and coordination (i.e., how the tasks must be arranged to achieve
the final goal) in large systems. PaCE is a data-flow coordination language.

Data-flow languages emphasize data, and the transformations applied to it to
produce desired outputs. The introduction of this perspective is mainly moti-
vated by the inherent unsuitability of the Von Neumann’s architecture to the
massive parallelism due to its global program counter and its shared memory
that rapidly become bottlenecks in parallel programs [6].

In the data-flow computational model, a program is represented by a directed
graph built at compile time, where nodes represent instructions, and arcs repre-
sent the data dependencies between instructions. When all the arcs entering a
node (the firing set) have data on them, the node becomes fireable. During the
execution, the instruction (represented by the fireable node) is executed and its
result is placed on (at least) one of the outgoing arcs. Then, the node suspends
executing as long as it is again non-fireable. Figure 1 shows the translation of a
simple program (on the left-hand side) into the equivalent data-flow graph (on
the right-hand side).

Liskov and Shrira in [19] introduced a similar solution for asynchronous and
type-safe RPC in the Argus programming language. The basic idea is similar
(i.e., continue executing as long as it is possible), but, with respect to data-flow
languages, the degree of parallelism attained is lower because of the benefits
granted by functional features.

Therefore, exploiting a data-flow approach to compose and coordinate soft-
ware components is very appealing and the benefit is twofold: (i) focusing on
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A = X + Y
B = Y / 10
C = A*B +

/
*

10

Y

X

C

Fig. 1. A simple program and its translation into the equivalent data-flow graph

data allows for a more natural composition modeling approach since, if aided
with a visual support, it can also be used and understood by non technical peo-
ple; (ii) developers do not explicitly care about tasks concurrency. Rather, the
execution model allows for automatic parallelization.

Pautasso and Alonso exploited the former benefit by proposing the JOpera
visual composition language [26], and run-time support [25]. The JOpera lan-
guage models both data-flow and control-flow dependencies among the tasks
in the composition and the development environment is in charge of keeping
the two perspectives consistent. The approach does not exploit the data-flow
model to implicitly achieve parallelization, rather, the latter is achieved through
imperative constructs inserted in the control-flow perspective. In [26] Pautasso
and Alonso point out that the data-flow perspective is not enough to model ev-
ery process because it ignores indirect dependencies (e.g., tasks communicating
through databases or configuration files) or because there are dependencies that
are not data-related like a compensation handler. PaCE addresses the first is-
sue by adopting a purely functional approach, where no side-effects are allowed,
and thus no indirect dependencies can be introduced. On the other hand, the
compensation handler issue is out of our research scope.

Regarding the latter benefit – i.e., implicit parallelization – a complete general-
purpose coordination language has not been proposed. Rather, researchers fo-
cused on raising the level of abstraction by proposing languages where nodes
in the data-flow graph are functions written in different languages. For exam-
ple Bernini and Mosconi [8] proposed a visual data-flow language called VIPERS
where the node in the data-flow graph are Tcl fragments. Also textual approaches
exist, like GLU [14] that embeds C fragments in the LUCID [29] data-flow lan-
guage. These solutions exploit the implicit parallelism and delegate to other
languages the whole computation. As a final remark, they are mostly focused on
exploiting parallel computers for scientific computations and are not designed to
fit distributed environments.

Another research area slightly related to this work, comprises agent-based
workflow modeling and enactment. Indeed, an agent is an autonomous and in-
telligent program that make decisions on next actions to perform based on its
current state. Hence, in agent-based workflow management, agents are provided
with goals extracted from the overall workflow schema, thus each of them de-
velops and its own work plan to achieve those goals. Agents-based workflow
management systems coordinate agents by exploiting different approaches [15]:
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Fig. 2. P-REST architectural style

(i) role-based, where different agents fulfill different roles and perform a work-
flow autonomously, (ii) activity-based, where agents coordinate the execution of
activities as defined within the workflow schema without the need for a cen-
tral workflow enactment service, and (iii) mobility-based, where the workflow
instance is migrated to different locations to perform specific tasks.

3 The P-REST Approach at a Glance

In this section we briefly introduce the Pervasive-REST (P-REST) [9] architec-
tural style, and the Prime middleware, which provides the run-time support
needed for implementing P-RESTful applications – i.e., applications built fol-
lowing the P-REST style.

The P-REST architectural style (depicted in Figure 2) is defined as a refine-
ment of the well known REST architectural style [12], to specifically deal with
pervasive environments. P-REST promotes the use of Resource as first-class ob-
ject that plays the role of “prosumer” [24], i.e., an entity that fulfills both roles
of provider and consumer. To support coordination among resources, P-REST
extends the traditional request/response mechanism through new primitives: (i)
a Lookup service that enables the discovery of new resources at run time, (ii) a
distributed Domain Name System (DNS) [22] service that maintains the map-
pings between resource URIs and their actual location in case of mobility, and
(iii) a coordination model based on the Observer pattern [18] that allows a re-
source to express its interest in a given resource and to be notified whenever
changes occur.

In P-REST, resources directly interact with each other by exchanging their
representations. Referring to Figure 2, both Resource1 and Resource2 observe
Resource3 (messages 1 ). When a change occurs in Resource3, it notifies (mes-
sage 2 ) the observer resources. As the notification is received, Resource1 issues
a request for Resource3 and obtains as a result the representation ρ3 (message
3 ). Note that, while observe/notify interactions take place through the point-
to-multipoint connector (represented as a cube), REST operations exploit point-
to-point connector (represented as a cylinder). All the resources exploit both
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Fig. 3. Prime layers

the Lookup operation to discover the needed resources, and the DNS service to
translate URIs into physical addresses.

According to the uniformity principle [12] P-REST describes every software
artifact as a Resource implementing a set of well-defined operations, namely PUT,
DELETE, POST, GET, and INSPECT. Moreover, P-REST adopts semantic resource’s
descriptions to specify both functional and non-functional properties of a re-
source. Indeed, descriptions support the implementation of the lookup service
by enabling run-time semantic-aware resource discovery.

P-REST enhances the REST addressability principle – i.e., a resources is iden-
tified by means of an URI – by distinguishing between Concrete URI (cURI) and
Abstract URI (aURI). cURI identify concrete resource instances, whereas aURI
identify groups of resources. Such groups are formed by imposing constraints
on resource descriptions (e.g., all the resources implementing the same func-
tionality). Therefore, cURI achieves point-to-point communication, and aURI
achieves point-to-multipoint communication. Resources can be used as building-
blocks for composing complex functionalities. A Composition is still a resource
that can, in turn, be used as a building-block by another compositions. Resources
involved in a composition are handled by means of a Composition Logic.

The Prime(P-rest Run-tIME) [10] middleware provides the run-time sup-
port for the development of P-RESTful applications1. Referring to Figure 3, the
Prime architecture exploits a two-layer design where each layer deals with a
specific issue:

Communication layer – To deal with the inherent instability of pervasive envi-
ronments, Prime arranges devices in an overlay network built on top of low-level
wireless communication technologies (e.g., Bluetooth, Wi-Fi, Wi-Fi Direct, and
UMTS). Such an overlay is then exploited to provide two basic communication
facilities, namely point-to-point and point-to-multipoint. Point-to-point commu-
nication grants a given node direct access to a remote node, whereas point-to-
multipoint communication allows a given node to interact with many different
nodes at the same time. Furthermore, the Prime communication layer provides
facilities for managing both physical and logical mobility [27].

1 Prime is available at http://code.google.com/p/prime-middleware/, under the
GNU/GPLv3 license.

http://code.google.com/p/prime-middleware/


PaCE: A Data-Flow Coordination Language 57

Programming model – Prime provides the programming abstractions to im-
plement P-RESTful applications by leveraging the functional programming fea-
tures of the Scala language [1] and the Actor Model [4]. In particular, Prime
defines two main abstractions and a set of operations to be performed on them.
Resource represents the computation unit, whereas Container handles both the
life-cycle and the provision of resources. The set of operations allowed on re-
sources defines the message-based Prime interaction protocol and includes: (i)
Access, which gathers the set of messages to access and manipulate resources,
(ii) Observe/Notify, which allows resources to declare interest in a given re-
source and to be notified whenever changes occur, (iii) Create, which provides
the mechanism for creating a new resource at a given location, and Move, which
provides the mechanism to relocate an existing resource to a new location, and
(iv) Lookup, which allows for discovering new resources on the basis of a given
semantics-aware description.

It is worth noticing that the Prime programming model exploits the Ac-
tor Model, which in turn relies on the Prime communication layer to provide
message-passing interaction among actors.

4 PaCE – Prime Coordination languagE

This section presents both the syntax (§4.1) and semantics (§4.2) of PaCE,
which have been specifically designed to offer the set of core features characteriz-
ing data-flow languages [16]: (1) single assignment of variables, (2) freedom from
side-effects, (3) data dependencies equivalent to scheduling (statements are not
executed in the order they are written, but as their input data become available),
(4) an unusual notation for iterations (due to features 1 and 2), and (5) lack of
history sensitivity in procedures (in a language without a deterministic control
flow, histories cannot be univocally built by a developer).

Realizing such features strongly impacts on both syntax and semantics. In
fact, (1) and (2) ask for a functional programming style, where multiple variable
assignment is avoided, and functions are side-effects free (i.e., do not affect the
environment, and their results depend only on input values). Moreover, features
(1) and (2) are fundamental to induce scheduling from data dependencies (3).
In fact, since scheduling is determined from data dependencies, it is important
to guarantee that variables do not change between their definition and their use.
Whenever variables are modified at run time, the data-flow graph (see Figure 1)
would be invalidated. On the other hand, due to single-assignment, the order
of statements is in general not relevant. However, single assignment conflicts
with the imperative style in loops (4) because it forbids the increment of loop
variables, thus loops are implemented through special constructs. Finally, data-
flow languages inherit from the functional languages the lack of history sensitivity
for procedures (5). In a language without a deterministic order of execution,
histories cannot be univocally built by a programmer. Therefore, operations rely
on the input parameters only and not on previous invocations. The functional
operators along with the ordered queues are enough to guarantee a deterministic
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ID = [A-Za-z]([A-Za-z] | [0-9])*
INTEGER = [1-9]([0-9])*
STRING = "([A-Za-z] | [0-9])*"
URI = ID | STRING
OP = OPTWOPAR ‘(’ URI ‘,’ ID ‘)’

| OPONENOPAR ‘(’ URI ‘)’
OPTWOPAR = ‘post’ | ‘put’
OPONEPAR = ‘get’ | ‘delete’ | ‘inspect’
BLOCK = ‘{’ STATEMENT+ ‘}’
STATEMENT = LOOP | ASSGNM | OBSERVE | CREATE | OUTPUT

| INFLOOP | IF | WRITE | LOOKUP | SMFUN
OBSERVE = ‘observe’ ‘(’ URI ‘)’ BLOCK
CREATE = ID ‘=’ ‘create’ ‘(’ URI ‘,’ ID ‘)’

| ID ‘=’ ‘create’ ‘(’ URI ‘,’ ID ‘,’ URI ‘)’
LOOKUP = ID ‘=’ ‘lookup(’ ID ‘)’
ASSGNM = ID ‘=’ OP

| ID ‘=’ ID ‘(’ (STRING)? (‘,’ STRING)* ‘)’
| ID ‘=’ ‘get(’ ‘stdin’ ‘’)’

SMFUN ID ‘(’ (STRING)? (‘,’ STRING)* ‘)’
OUTPUT = ID ‘(’ (STRING)? (‘,’ STRING)* ‘)’

| ‘put’ ‘(’ ‘stdout’ ‘,’ ID ‘)’
| ‘put’ ‘(’ ‘stdout’ ‘,’ STRING ‘)’

LOOP = ‘while’ ID ‘in’ ID ‘to’ ID BLOCK
INFLOOP = ‘while’ ‘(’ ‘true’ ‘)’ BLOCK
IF = ‘if’ ‘(’ BOOLEXP ‘)’ BLOCK ‘else’ BLOCK
BOOLEXP = BOOLEXP

( ‘&&’ | ‘||’ | ‘<’ | ‘>’| ‘<=’ | ‘>=’ | ‘==’ )
BOOLEXP
| ID | INTEGER | STRING |‘!’ BOOLEXP
| ‘(’ BOOLEXP ‘)’| ‘true’| ‘false’

Fig. 4. EBNF for PaCE

behavior for the model, that is, for a given set of inputs, a program always
produces the same set of outputs [5][11][17].

4.1 Syntax

According to the above guidelines, PaCE’s syntax is mainly inspired by common
functional languages but for control structures, which instead are close to the
imperative style. Therefore, every instruction is an assignment, operations are
side-effects free (i.e., do not affect the environment, and their results depend only
on input values), and multiple variable assignment is avoided. Moreover, since
PaCE is tailored to the P-REST style, it directly embeds P-REST operations,
which in turn are straightforwardly mapped to the Prime programming model.

Referring to the generative EBNF for PaCE (see Figure 4), Prime’s access
operations are derived from the OP non-terminal. OPONEPAR operations are in-
voked with one mandatory parameter – i.e., the list of URIs identifying the target
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resources –, whereas OPTWOPAR operations get the URIs list, and an additional pa-
rameter containing a representation. Return values are lists of representations,
and depend on the specific operation used: GET returns the representation of
the target resource; PUT, DELETE and POST return a representation of the sta-
tus code (e.g, “ERROR”, “OK”, and “NORESPONSE”), and INSPECT returns a
representation of the resource description. Note that all PaCE operations are
designed to work on lists. It is also possible to issue GET and PUT on two special
URIs: stdin and stdout, respectively. The operation a = GET(stdin) reads a
from the standard input, and assigns a value to the variable a. Conversely, the
instruction PUT(stdout, ID) writes the value of ID on the stdout.

The EBNF can also generate invocation to two categories of external func-
tions. The first one gathers the functions without a return type. These functions,
thus, cannot directly affect the PaCE script but can only update the state of
the composite resource the script is attached to. For this reason they are called
State-Manipulating Functions (smfun from now on). The second one comprises
the functions with a return value that are generated by the ASSGNM nontermi-
nal. Notice that also these functions might have side effects on the composite
resource state.

The LOOKUP operation is invoked with one parameter, which represents the
identifier of the external function used to filter out the resources, and returns a
list of URIs. The CREATE operation gets as input the container URI where the
resource has to be created, and the representation used to initialize the new
resource. A third parameter can be provided to impose a specific URI for the
new resource. The return value is the URI of the new resource. The OBSERVE
operation, which exploits the event-driven communication model provided by
Prime, is defined as control structure. OBSERVE defines a block of statements
that is executed whenever an event, generated by observed resources (specified
by the URI parameter), is received.

PaCE provides a set of simple control structures. The infinite loop (i.e., while
(true) {...}), and conditional structure (i.e., if (cond) {...} else {...})
have the usual syntax. Whereas the LOOP control structure requires for special
attention. As already mentioned, the single assignment feature prevents the im-
plementation of standard loops where the loop variable is explicitly incremented
at every iteration. To overcome such an issue, PaCE defines a control structure
of the form: while var in b1 to b2 {...}, where var ranges from b1 to b2 by
preventing its explicit assignment within the loop.

4.2 Semantics

Since PaCE is inspired by data-flow languages, it adheres to the data-flow exe-
cution model. However, while data-flow languages build explicitly the data-flow
graph to drive the execution, in PaCE such graph is built implicitly. Indeed,
PaCE does not completely depart from the sequential execution of instruc-
tions, but makes it asynchronous: statements are evaluated sequentially, but
their execution is non-blocking. That is, given a two-statements sequence <
S1, S2 >, S2 can be executed independently of the S1 termination, as long as the
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a = GET(stdin) b = GET(stdin)
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op1(a)

finish

PROGRAMSTDINUSER
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(a) Pure data-flow execution model

a = GET(stdin)

wait for a

PROGRAMSTDIN

insert a

wait for read
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op1(a)

b = GET(stdin)

wait for b

b obtained

finish

USER

stdin lock

ready to insert a

ready to insert b

insert b

(b) PaCE execution model

Fig. 5. Execution model

execution of S2 does not need data produced by S1. When a statement is invoked,
it returns immediately by yielding a future variable – i.e., a special variable that
will eventually contain the result of an asynchronous computation. Whenever
the variable is accessed, execution is suspended if the value is not available, yet.

PaCE scripts are compliant with the data-flow execution model. However,
their execution is not purely concurrent since parallel operations are executed
as soon as the interpreter evaluates them, and needed data is available. Having
non-pure parallelism, allows the PaCE interpreter to retain at run time the infor-
mation about the instruction order. This is particularly important when dealing
with I/O and control structures. In the data-flow execution model, sequentiality
of instructions is lost when the data-flow graph is built, since only data depen-
dencies are considered. For instance, let S1 =<a = get(stdin), c = op1(a)
b = get(stdin)> be a sequence with two independent gets. According to the
data-flow execution model, they can be executed in any order. As a consequence,
it is impossible to univocally determine which result, coming from a get(stdin),
must be stored in a, and which in b (see Figure 5a). To this end, PaCE semantics
imposes the mutually-exclusive access to the stdin resource by exploiting the
information about the instruction order. When the first get(stdin) is executed,
it locks the standard input; then, when the second get tries to access stdin, it
is suspended as long as the first get completes. In this case the two gets are
ordered, and stdin lock ensures the mutual-exclusion policy for accessing to
the standard input. It is worth noticing that such an issues does not concern the
put(stdout, ID), which can be executed whenever the ID variable is available.

As introduced in Section 4.1, PaCE scripts can also contain control structures:
i.e., conditional (if-else), loops (while), and observe structures. Notice that
for the sake of clarity, the Petri nets in Figure 6 do not take into account pos-
sible dependencies between instructions in the control structures’s bodies and
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condition 
evaluable

true false

if 
body

else 
body

finish

(a) if

condition 
evaluable

false true

finish

.  .  . op1 op2 op3 opn

synch

(b) while

EVENT 
GENERATION

event 
arrived

.  .  . op1 op2 op3 opn

synch

OBSERVE

ready to 
process

(c) observe

Fig. 6. Semantics of the PaCE control structures

instructions outside the bodies. However, whenever any dependency holds, it is
treated according to the data-flow execution model.

Conditional Structure – According to the execution model discussed above,
the conditional structure is evaluated as soon as the conditional expression be-
comes evaluable. Hence, the proper branch is executed. Figure 6a shows the Petri
net specifying the if-else semantics.

Loop Structure – As introduced in Section 4.1, the concept of loop does
not fit the data-flow paradigm. However, having loops instead of the equivalent
tail recursion, is fundamental for the adoption of the paradigm [3]. Therefore,
the rationale of the loop syntax (see Figure 4) relies in the fact that PaCE
is conceived as a coordination language. Indeed, any computation should be
accomplished by either remote resources or external functions. According to the
syntax given above, every loop iteration is forced to happen in isolation. That
is, all the instructions in the loop body must complete before the next iteration
can be executed. Moreover, all the variables, allocated within an iteration, are
deallocated at the end the iteration, to guarantee the single-assignment property.
Data dependences holding between instructions in the loop body and external
instructions must be satisfied before the execution of the first iteration. Figure 6b
shows the Petri net defining the while semantics. Note that, the isolation is
guaranteed by synch, which forces the Petri net to wait until all the instructions
in the body complete.

Observe Structure – The observe operation introduces the event-based pro-
gramming paradigm: the observe is an infinite loop whose body is executed
every time an event is produced in one of the observed resources. To avoid lock-
ing the execution in such infinite loops, every observe is executed separately to
allow the interpretation of a script to continue beyond any observe. According
to P-REST (see Section 3), the observe operation accepts as input the list of
resources to be observed (specified by means of their URIs). Whenever an event
is received from an observed resource, the body is executed according to the
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data-flow execution model. Notice that also in this case the body is executed in
isolation and events are queued and consumed sequentially. Figure 6c shows the
Petri net specifying the observe semantics: event generator produces tokens
(events), which observe consumes; event arrived models the incoming queue.

External Functions – PaCE allows for the definition of two types of external
functions: side-effect-free and state-manipulation functions. Side-effect-free func-
tions are used to manipulate PaCE variables (e.g., to translate the data from
one encoding to another). State-manipulation (smfun) functions are used to ma-
nipulate the internal state of the composite resource. Due to the shared-nothing
paradigm exploited by PaCE, smfun functions are critical, and two main prob-
lems arise. First, smfuns can conflict with the POST operation since it can modify
the internal state. Second, concurrent smfuns can potentially modify the same
data. To this extent, on one hand, PaCE provides mutual exclusion mechanisms
to avoid the simultaneous access to the state of the composite resource. On the
other hand, POST and SMFUNs should not be used at the same time to avoid
unforeseen (and unpredictable) behaviors of the PaCE scripts. A POST changes
the internal state of a resource, and SMFUNs can be used to read such internal
state. Thus, the script behavior could be implicitly modified, and this fact would
break the functional assumption of data-flow languages. Such interactions could
lead to unforeseen (and unpredictable) behaviors of the PaCE scripts.

5 PaCE: Interpreter

This section presents the PaCE interpreter, and details how PaCE scripts are
mapped to the underlying Prime middleware.

The PaCE interpreter is developed in Scala [1], and exploits the Scala parser
combinator library [20]. However, since in PaCE all the variables are stored as
future variables, the interpretation algorithm makes use of an auxiliary symbol
table containing all the bindings between variable names and future values. Ac-
cording to PaCE semantics (§4.2), every operation immediately returns a future
variable that will be eventually filled with the result. Whenever the operation
to be executed requires input parameters, whose values are not yet available,
the interpreter suspends the execution of the analyzed instruction that will be
resumed whenever the missing values will become available. Clearly, suspend-
ing the execution of an instruction does not suspend the execution of the whole
script. Rather, the execution flow proceeds according to the data-flow paradigm,
and allows for the implicit construction of the data-flow graph.

The interpreter also implement a basic error-handling mechanism. Requests
are automatically reissued if a configurable timeout expires up to three times
before terminating the script. This simple mechanism accounts for network prob-
lems only. Conversely, errors at the application level (i.e., errors generated by
the queried resources) must be taken care of explicitly in the script because they
are directly notified in the response.
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PaCE implements P-REST operations by exploiting the Prime middleware,
which is in charge of dispatching requests and responses (see Section 3). Since
Prime operations are completely asynchronous, the PaCE interpreter imple-
ments an indexing system that (i) binds received responses to issued requests
and, (ii) assigns the values embedded in the responses to the proper future
variable in the symbol table.

The PaCE interpreter also offers an abstraction for developing and using
external functions. In order to be used, external functions must be made avail-
able to the interpreter at run time. External functions are defined by extending
the ExternalFunctions abstract class, which implements all the mechanisms
needed to parse, validate and publish functions. ExternalFunctions exploits
the Java reflection mechanism, and exposes a method invoke, which takes as
input the name of the functions to be executed and a list (possibly empty) of
parameters. The invoke method executes the function in a future block to guar-
antee asynchronism. In addition, invoke checks whether the function is a smfun
or not. In fact, according to the PaCE semantics (§4.2), smfun functions are
executed in mutual exclusion, whereas non-smfun functions can be executed
concurrently.

5.1 Run-Time Adaptation

A primary requirement for P-RESTful applications is to support adaptive and
evolutionary situation-aware behaviors [9]. To this extent, PaCE provides four
operations on resources – i.e., resource addition, resource removal, resource sub-
stitution, and resource rewiring – that allow PaCE’s scripts to be reconfigured
at run time.

According to the PaCE syntax and semantics discussed above, resource ad-
dition/removal simply refer to the ability of adding/removing a URI to/from a
list, and resource rewiring means changing the value of a variable containing a
URI. resource substitution, instead, consists of rewiring a resource binding, and
moving the state of the old resource to the new one. It is worth to notice that,
to avoid inconsistencies in the symbol table, the interpreter suspends the exe-
cution of scripts before performing any reconfiguration. Indeed, reconfigurations
are performed asynchronously and in isolation – i.e., reconfigurations are queued
and executed only when the interpreter is in a safe state. While add, remove and
rewire operations are entirely implemented within the PaCE interpreter, substi-
tute exploits the primitives provided by Prime to retrieve the state of the old
resource (GET), and to initialize the new one (PUT).

Special attention should be paid whenever the adaptation involves a vari-
able containing observed URIs. Indeed, observed variables are referred once, at
the beginning of the observe structure, when the variable is defined, and the
corresponding subscription is generated. Hence, adaptation operations must be
carefully examined before their application:

add: the intended semantics concerns the addition of a new resource to the
pool of resources already observed. Whether an add is performed, a new
subscription is issued to start observing the new resource.
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remove: the intended semantics is the opposite of the add operation, i.e., the
given resource URI should be no longer observed. Therefore, the old subscrip-
tion is removed so that no further notifications will arrive from a specific
URI.

rewire: the intended semantics concerns the substitution of the entire resource
pool with a new one. This operation is implemented by removing every URI
from the list, then adding new URI to the list.

substitute: this operation, if applied to the variable containing the observed
resources, does not affect the behavior of the observe block.

6 Case Study

In this section we want to show how PaCE can be used to orchestrate Prime
resources. This section also covers the run-time adaptation facilities of the PaCE
interpreter.

Let us introduce the following Pervasive Slide Show (PSS) scenario: Carl, a
university professor, is going to give a talk in a conference room, and carries his
laptop storing both the slides and related handouts. The conference room provides
speakers with a smart-screen available on the local wireless network, whereas the
audience is supposed to be equipped with devices (e.g., laptops, smartphones and
tablets), which can be used for displaying either the currently-projected slide on
the screen or the related handouts. The audience and the speaker always refer to
the same slide, and to the same page of the handouts. Every device is required
to have a running Prime instance.

The PSS implementation conforms to the P-REST conceptual model and
specifies the following resources: CurrentSlide and CurrentPage represent the
currently-projected slide and the corresponding handout page, respectively. Pre-
sentation is the composition that implements the interface Carl uses to browse
the slide-show. It also encapsulates the slides and the handouts along with the
pointers that keep track of the current slide and handout page. Reader visualizes
the slide show or the handout on the audience’s devices. Projector handles the
smart-screen of the conference room. The Projector resource is deployed on
the smart-screen Prime container. The other resources are initially deployed on
Carl’s container, and made available to the devices in the audience which join
the slide-show.

When a participant (say, Bob) enters the conference room, he uses the Prime
resource finder built-in tool, which lists all of the resources available within the
overlay, to explore the environment and find the Reader resource. Hence, select-
ing Reader from the list, the Prime node issues a GET operation to retrieve a
representation of Reader, which, in turn, is used to create a local instance. Fig-
ure 7 shows the PaCE script for Presentation and Reader. The Presentation
resource is a composition meant to aid Carl to project his slides. Thus, the asso-
ciated PaCE script (see Figure 7a) searches the conference center for a projector
by using the external function projSearch. The resulting URIs are stored in the
proj variable to be used later. Then, the execution enters in an infinite loop
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pro j = lookup ( projSearch )
whi le ( t rue ){

cmd = GET( s td in )
i f (cmd == ‘ ‘ fwd ’ ’ ) {

rep = getNextS l id e ( )
PUT( cu r rS l i d e , rep )
PUT( proj , rep )

}
i f (cmd == ‘ ‘bwd ’ ’ ) {

rep = ge tPr ev i ou sS l i d e ( )
PUT( cu r rS l i d e , rep )
PUT( proj , rep )

}
}

(a) Script for Presentation

observe ( slURI ){
s l i d e = GET(obsURI )
view ( s l i d e )

}

whi le ( t rue ){
cmd = GET( s td in )

i f (cmd == ‘ ‘ ho ’ ’ )
r ewi r e ( slURI , hoURI)

i f (cmd == ‘ ‘ pres ’ ’ )
r ewi r e ( slURI , presURI )

}

(b) Script for Reader

Fig. 7. Scripts for PSS scenario

to serve Carl’s commands. In case of a “fwd” (“bwd”) command the script calls
an smfun called getNextSlide. It returns the representation of the new slide
and, as a side-effect, updates the pointers to the current slide and to the current
handout page in the Presentation resource. The new representation is stored
in the rep variable and it is used as a parameter for the following two PUT oper-
ations: one, issued towards the CurrSlide resource, the other, towards the proj
variable, that is, towards all the the smart-screens found in the conference room.
All the Projector resources will react by projecting the new slide. As for the
CurrentSlide resource, it is involved in a more complex interaction. Indeed,
looking at Figure 7b, the Reader script observes the state of CurrentSlide and,
whenever it changes, the Reader issues a GET towards it. When the new slide
is retrieved, it is visualized through the view external function. Apart from the
observe body, the script for Reader also features an infinite cycle to allow Bob
to toggle between the presentation and the handout. This second part makes use
of the adaptation primitives described in 5.1. They are used in a reflective way,
that is, the script for the Reader reconfigures itself to serve Bob’s commands.
Specifically, when Bob issues the “ho” command, the script invokes the rewire
functions with slURI (the observed URI) as first parameter (the old binding)
and the URI of the CurrentPage resource (hoURI) as second parameter. The
hoURI variable is hard-wired in the script by the system developer. Being slURI
an observed variable the special rules presented in 5.1 apply. Specifically, the
symbol table is updated so that the slURI will denote the CurrentPage URI
and not the CurrentSlide anymore. As a consequence, also the obsURI vari-
able is updated accordingly. To make the update effective the observe body
must be executed once before starting processing the new data stream. After
the rewire has completed, Bob will be able to follow the handout on his device.
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Later on, Bob will be able to switch back to the presentation by issuing the
“pres” command.

7 Conclusion

In this paper we addressed the problem of coordinating resources adhering to
the P-REST architectural style. Such resources are modeled by Prime as ac-
tors, i.e., an autonomous and asynchronous computational resource reacting to
external stimuli. Although Actors are proper abstractions for modeling P-REST
resources, asynchronism makes them difficult to deal with when assembled into
a workflow. Indeed, resource coordination is a time-consuming and error-prone
process for a developer.

To address these problems, in this paper we propose PaCE, a data-flow lan-
guage for composing and coordinating resources built on top of the Prime mid-
dleware [9]. Moreover, PaCE exploits Prime features to enable both run-time
adaptation and evolution of compositions. We described PaCE’s syntax and se-
mantics, and discussed the advantages and issues induced by the adoption of the
data-flow paradigm. We also presented the PaCE interpreter, which provides
reflective capabilities to achieve reconfiguration operations, namely resource ad-
dition, resource removal, resource substitution, and resource rewiring.

As for the future research directions, we want to improve the language by
adding a full support to the error-handling before removing the strict binding
between PaCE and P-REST, to obtain a general purpose coordination language
suitable for every inherently parallel and asynchronous environment. Further-
more, following well known approaches, e.g., Yahoo Pipes [2], Mashlight [7] and
JOpera [26], we plan to develop a tool for visually specifying resource composi-
tions. This would further ease the development process, by allowing developers
to fully benefit from data-flow paradigm: focus on how things interact, rather
than on how things happen.

Acknowledgements. This research has been funded by the Euro-
pean Commission, Programme IDEAS-ERC, Project 227077-SMScom
(http://www.erc-smscom.org).
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{antonina.danylenko,welf.lowe}@lnu.se

Abstract. The context-aware composition approach (CAC) has shown to im-
prove the performance of object-oriented applications on modern multi-core
hardware by selecting between different (sequential and parallel) component vari-
ants in different (call and hardware) contexts. However, introducing CAC in
legacy applications can be time-consuming and requires quite some effort for
changing and adapting the existing code. We observe that CAC-concerns, like of-
fline component variant profiling and runtime selection of the champion variant,
can be separated from the legacy application code. We suggest separating and
reusing these CAC concerns when introducing CAC to different legacy applica-
tions.

For automating this process, we propose an approach based on Aspect-
Oriented Programming (AOP) and Reflective Programming. It shows that manual
adaptation to CAC requires more programming than the AOP-based approach; al-
most three times in our experiments. Moreover, the AOP-based approach speeds
up the execution time of the legacy code, in our experiments by factors of up
to 2.3 and 3.4 on multi-core machines with two and eight cores, respectively.
The AOP based approach only introduces a small runtime overhead compared to
the manually optimized CAC approach. For different problems, this overhead is
about 2-9% of the manual adaptation approach.

These results suggest that AOP-based adaptation can effectively adapt legacy
applications to CAC which makes them running efficiently even on multi-core
machines.

Keywords: Context-Aware Composition, Autotuning, Aspect-Oriented Program-
ming.

1 Introduction

Context-aware computation is an essential part of a wide range of application domains,
where an application should adapt behavior according to potentially changing context or
environment during its execution. Context-oriented programming is a technique for the
design of such applications [1,2]. Context-aware composition (CAC) as a special case of
context-aware computation aims at adapting applications to changing call contexts and
available resources in the system environment. Its goal is to improve performance (or
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other optimization goals) of such applications. Among others, CAC allows to develop
performance-portable programs for modern multi-core hardware.

CAC applications evaluate their call contexts and system environment at runtime
and, depending on that, select between different alternative sequential and parallel com-
ponent variants. The selected decisions are based on previous experience from offline
profile execution or from online execution monitoring abstracted and aggregated using
automated machine learning.

In order to exploit the benefits of the recent hardware development toward multi-core
processors, possibly supported by hardware accelerators such as GPUs, applications
have to adapt to their respective system environment. Creating new CAC applications
is well understood [3,4]. However, introducing CAC in existing applications usually
requires a high re-engineering and implementation effort and, therefore, can be time-
consuming and error-prone.

Regardless of the concrete applications, adoption of CAC needs to address some
common concerns: offline profiling and/or runtime monitoring, machine learning to ex-
trapolate or interpolate the profiling/moitoring results, and runtime variant selection and
dynamic composition for each call context and system environment. These concerns can
be separated from the actual application.

It has been shown before that context-awareness is in principle a crosscutting con-
cern and, therefore, can be treated as an aspect [5]. By means of a so-called advice,
aspects can be applied to certain program points called join points. This can be con-
trolled by the actual context of the join point, its program state, and the state of the
system environment, which has to be determined at runtime.

In this paper, we suggest an approach based on Aspect-Oriented (AOP) and Reflec-
tive Programming that separates the concerns of offline profiling and runtime composi-
tion and reuses them when adapting legacy applications to CAC. The context-awareness
aspect becomes reusable regardless of the legacy application. It selects the optimum
component variant dynamically for each actual call context, including recursive calls.

Our approach provides a simple way to adapt the existing applications to context-
awareness. Assuming good object-oriented design, adaptation does not require any
changes in the legacy applications. This enables the (re-)engineering of self-adaptive
and performance-portable (legacy) applications which makes them run efficiently on
modern hardware.

The remainder of the paper is structured as follows: Section 2 gives an overview of
CAC and sketches the common manual approach of implementing CAC in legacy ap-
plications. It discusses the main principles of aspect-oriented context-aware program-
ming and how it could be applied to the adaptation of legacy applications. Section 3
presents key ideas of our implementation approach. Section 4 assesses AOP-based and
manual code adaptation approaches in two legacy applications: Sorting and Matrix-
Multiplication. More specifically, it assesses the speed-up gained by CAC, the per-
formance overhead of the AOP-based approach, and the lines of code required by a
programmer. Section 5 discusses related work, and Section 6 concludes the paper and
points out directions of future work.
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2 Towards Context-Aware Composition with AOP

In this section, we introduce our AOP-based adaptation approach. After a short intro-
duction to Context-Aware Composition (CAC) in Section 2.1, we discuss the manual
steps to adapt to CAC in Section 2.2. Then Section 2.3 defines the common CAC con-
cerns and Section 2.4 demonstrates how to implement these concerns with reusable
aspects.

2.1 Context-Aware Composition

CAC is the runtime context dependent binding of a call in one component to a matching
callee out of a set of matching callee variants defined by other components. In this paper,
we assume that CAC is used to improve application runtime performance (while other
optimization goals like decreasing energy or memory consumption are possible, too).
Optimization is achieved by binding the caller with the currently best-fit callee variant
depending on the actual runtime context. Context-aware composition operates on the
following concepts:

Formal context is a call site with formal context parameters. Formal context parame-
ters can include (abstractions and selections of) the formal call parameters (e.g., the
problem size), the locally assessable system state, and even the system environment
(e.g., the number of available processors).

Actual context is a valuation of the formal context parameters at runtime before a
corresponding call.

Component interface is a callee interface that can be bound to the call site of a con-
text. Formally, it is an abstract method with pre-conditions and post-conditions
always implied by and always satisfying the call site.

Component variant is a callee implementation, formally, a co-variant subtype of the
component interface. The implementation variants can range from alternative algo-
rithms and data structures to alternative schedulings or exploitations of hardware
accelerators. Note that not all implementation variants need to fit all actual call
contexts (co-variance) as long as there is always one variant matching each possi-
ble actual call context.

Utility function is an optimization goal function mapping an actual context and a com-
ponent variant to numerical values representing the variant’s performance, foot-
print, memory consumption, etc. (or combinations thereof) in that context.

Context-aware composition requires a learning phase, where the component variants
are tested for different actual context and the champion variant of each context is deter-
mined. This information is extrapolated and interpolated using machine learning from
a total mapping of contexts to champion variants. This mapping function is used in the
actual composition phase for selecting the presumably optimal variant for each actual
context.

While in principle learning and composition may happen offline or online (depending
on whether the formal context parameters allow for a static actual context evaluation and
binding or not), offline learning and online composition are the most common cases,
which are also the basis of the present work.
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-algorithm context
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*

representation :=
repr -> clone(representation)

+clone(in rep : Representation)

Representation

+clone(in repr : Representation)

Representation Variant 1
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Representation Variant k...

-representation
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+execute()
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+execute()

Algorithm Variant 1

+execute()
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+setAlgVariantTo(in alg : Algorithm)
-callAlgVariant()
+algorithm()

ADT

-context

1

*

...

algorithm := algalgorithm ->
execute()

Fig. 1. Object-oriented design for adaptation to CAC

2.2 Prerequisites for Adaptation to Context-Aware Composition

For applying automated adaptation of legacy applications to CAC, we require a
good object-oriented design following appropriate design patterns. If an application
is not designed accordingly, the design must be established in a manual refactor-
ing/reengineering step.

We need to separate component variants from component interfaces and to distin-
guish the stateful from the stateless components in such a way that they both could
be changed independently. Therefore, we assume the Strategy design pattern [6] as de-
picted in Figure 1: each abstract data type ADT (component) encapsulates states and
algorithms operating on that state. It separates the abstract state from its representa-
tion and the abstract algorithms from their implementations. All algorithm implemen-
tations need access to the state representations (general or special). Besides setting and
getting the state or invoking the algorithms, users of the ADT can also control the
implementations.

More specifically, ADT is configured with concrete Strategy objects determining
Algorithm Variant and Representation Variant. The ADT maintains a
reference to these objects and defines an interface that lets the algorithm variants uni-
formly access the data. Algorithm and representation variants are implemented sep-
arately by subclasses of the abstract Representation and Algorithm classes.
The ADT exposes means to changes the data representation variant (changeReprTo)
and the algorithm variant (setAlgVariantTo). Calls to an abstract algorithm are
redirected to the current algorithm variant (callAlgVarinat) using the current rep-
resentation.
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Table 1. Application-specific and general CAC concerns

Application-specific CAC concern General CAC concern

Design Formal context, Actual context assess-
ment function.

-

Learning Sample context and test data generator. Variant testing, Utility function, Train-
ing data generation, Machine learning.

Composition - Actual context assessment, Binding to
the champion variant.

2.3 Concerns of Context-Aware Composition

Once the prerequisites are established, the following concerns have to be defined: the
formal context affecting the choice of the implementation variants, and functions as-
sessing the actual context at each corresponding call site. These concerns cannot be
guessed automatically and have to be implemented manually for each ADT. The call
sites still bind to the ADT operations on interface level; they neither invoke functions
for assessing the actual context nor explicitly control the implementations of represen-
tations or algorithms.

For the offline learning phase, test data needs to be generated for each sample of
the actual contexts. This test data generator needs to be implemented manually for each
abstract representation. The learning infrastructure is independent of the specific ADT;
it generates test data, assesses the actual context, invokes all implementation variants
(all admissible combinations of algorithm and representation implementation), mea-
sures performance (or any other utility function) of each combination, and captures the
best variant together with the actual context. This training data is an input to a machine
learning infrastructure which creates a total mapping from actual context to a champion
variants.

The actual composition phase at runtime is responsible for dispatching an actual
context to its champion implementation variant. The responsible infrastructure is again
independent of the actual ADT. It assesses the actual call context, changes represen-
tation and algorithm implementation to the presumable champion combination, and
dynamically invokes the algorithm. Table 1 summarizes the application-specific and
general concerns of the design, and the learning and composition phases, respectively.

2.4 Aspect-Oriented Context-Aware Composition

To separate the profiling/learning from the composition phases and to avoid changing
legacy applications (except for refactoring the code to guarantee the prerequisites de-
scribed in Section 2.2), we use the Template design pattern [6]. The pattern implements
the common behavior of profiling/learning and composition once and for all applica-
tions that have established prerequisites for adaptation to CAC. The common behavior
of profiling/learning is implemented in a template method train of the Profiler
class, cf. Figure 2. The train method profiles all algorithm variants with different data
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Fig. 2. Design of profiling/learning phase in CAC

representations and captures the best-fit variant. It is defined as a skeleton algorithm
deferring the implementation of some steps to subclasses that are specific for concrete
applications. These steps are generateContext and generateTrainData. The
former operation samples actual contexts while the second operation generates the in-
put data to the algorithm variants based on these samples. Context is an abstract class
with an abstract getCurrentContext method that provides the actual context; this
method implementation is again deferred to application-specific implementations. Fi-
nally, the best-fit variant for each actual context is captured and abstracted to a final
Decision Function using machine learning. The actual learning technology can
be exchanged as well, based, e.g., on Dispatch Tables, Decision Diagrams, etc. [7].

The common behavior of composition is separated (cf. the Composition block
of Figure 2 and Figure 3 for details). Composition only needs access to evaluate the
actual context via getCurrentContext and to decide on the corresponding best-fit
variant via decide in the Decision Function.

The program points of interposition, where the method calls to alternative algorithm
variants occur, are theoretically known. During the learning phase, the method interpo-
sition occurs in recursive calls of the algorithm implementation variants. In contrast to
that, at runtime, it occurs at every call site to a method with implementation variants.
However, regardless of the phase, the call sites, and the target method, the same com-
position mechanism applies, i.e., the same code fragments have to be inserted at these
call sites.
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Fig. 3. Design of the Composition Block - AOP-based composition phase in CAC

Because the set of interposition points cut across a number of application module
boundaries, they can be defined as cross-cutting concerns. AOP is designed to handle
these concerns by providing a mechanism, called aspect, for expressing and automati-
cally incorporating them into a program1 [8]. That is, the points of method interposition
are defined once, at one place, making them easy to understand and maintain. Using
the terminology of AOP, we refer to an interposition program point as a join point, a
composition of joint points as a pointcut, a set of actions to be executed at a join point
as an advice and the unit of a program that encapsulates these constructs as an aspect.

One of the important properties for adapting existing legacy codes to CAC is that
the program modules require no modifications to be advised by the aspects. This is
achieved by a process called weaving that occurs at build or runtime. It adds the abil-
ity to replace method bodies with new implementations, inserts code before, after, or
around method calls, and what is most important associates new state and behavior
with existing classes. Therefore, expressing context dependencies in aspects follows
naturally while separating the definitions of join points, the definition of actual context,
and the definition of advice.

Figure 3 complements the profiling/learning phase presented in Figure 2 and shows
AOP-based adaptation to CAC. To model aspects in the UML diagram, we used the
bottom-up approach presented in [9].

1 http://www.ibm.com/developerworks/rational/library/2782.html
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The aspect Composition modeled as a class defines the pointcut methodCall
and the advice method contextCall. The pointcut picks the set of join points where
the set of actions defined by the advice method are executed. To actually perform the ad-
vice, the aspect requires a concrete Context class evaluating the actual
context, and a Decision Function class to decide the best-fit variant. The point-
cut methodCall as part of the aspect Composition binds the aspect to occur-
rences of execute operations that occur in some Caller or even recursively in an
Algorithm Variant.

3 Implementation Details

In our implementation we used Java/JDK 1.6, as the main programming language both
for the AOP adaptation system and for exiting legacy code. For a better understanding of
the legacy code adaptation to CAC we consider the example from the sorting problem
which is used in our experiments in the next section. In what follows we present a
snippet of the actual code of the QuickSort algorithm that sorts an array arr of
general type E:

public class QuickSort {
(1) public boolean quick_sort(E[] arr, int l, int u) {
(2) ...
(3) quick_sort (arr, l, j+1);
(4) quick_sort (arr, j+1, u);
(5) return true;}}

The next snippet depicts manual adaptation of legacy code to CAC that fulfils the re-
quired prerequisites regarding object-oriented design discussed in Section 2.2 by im-
plementing the component interface Sort.

public interface Sort {
(1) public boolean sort(E[] arr, int l, int u);
}
public class QuickSort implements Sort {
(2) public boolean sort(E[] arr, int l, int u) {
(3) ...
(4) sort_dispatch (arr, l, j+1);
(5) sort_dispatch (arr, j+1, u);
(6) return true;}
protected static boolean sort_dispatch (E[] arr, int l, int u) {
(7) Object [] params = context.getCurrentContext(arr, i, u);
(8) Sort m = decider.decide(params);
(9) return m.sort(a, l, u);}}

All original calls to an algorithm variant quick sort are manually replaced by a
(monomorphic) call to a decider method sort dispatch(), cf. lines 4–5, that based
on the current context chooses the best-fit component variant (lines 7–8), followed by
a polymorphic call to the instance of the best-fit algorithm variant implementation, cf.
line 9.
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For the implementation of CAC aspect, cf. Figure 3, we used AspectJ 1.6.122. As-
pectJ is an AOP environment for the Java language implementing join points, pointcuts,
advices, and aspects. At compilation time, the AspectJ compiler inserts the codes de-
fined in an aspect to the existing Java codes and a standard Java compiler compiles
these codes to the final class files of the program. For our experiments, we only used
algorithm variants while neglecting the data representation variants.

To model algorithm variants and to maximally minimize the change of legacy code,
we complement AOP with reflective programming (Java Reflection API’s3) that allows
accessing class definitions at execution time. To specify the methods to be intercepted
and the program points where interception has to occur, we exploit Java annotations. We
created an @CACMethod annotation identifying the methods with alternative algorithm
variants.

During training when the algorithm performance for different actual contexts was
measured, the alternative method variant objects are obtained by reflection instantiated
from algorithm classes containing these methods. Training invokes these methods using
invoke() of java.lang.reflect.Method.

CAC requires the interception of certain method calls to algorithm variants. These
calls can be represented by a set of join points that are eventually picked up by the point-
cut methodCall. It is worth mentioning that not every call to an algorithm variant has
to be intercepted when measuring the algorithm performance, only recursive calls se-
lecting a new best-fit variant based on the new actual context (e.g., a smaller problem
size). This is achieved by the call pointcut that matches all calls within a method with
@CACMethod annotation.

pointcut methodCall(): call(@CACMethod * *(..));
@Around(methodCall())
public Object callContext(ProceedingJoinPoint pjp){
(1) Object [] params = context.getCurrentContext(pjp.getArgs());
(2) Method m = context.decider.decide(params);
(3) return m.invoke(getMethodInstance(m), pjp.getArgs());}

Thus, returning to the actual code of QuickSort algorithm, the quick sortmethod
will be annotated by @CACMethod and the join points will occur at lines 3 and 4.
Notice that QuickSort in this case has to implement Sort interface.

An AspectJ advice can be executed @Before, @After or @Around a certain join
point. The advice contextCall uses the @Around annotation. In our case, it makes
sure that the original method does not execute at all. The arguments to this method are
extracted from the first parameter of the callContext (of type ProceedingJoinPoint)
using getArgs. Thereafter, the actual context is received (line 1) and used for deter-
mining a best-fit method for this context from a decider instance, in our case a dis-
patch table, cf. line 2. The dispatch table was implemented as a simple two-dimensional
array capturing the corresponding number of algorithm variants. The aspect knows all
alternative method variant objects and class instances to reflectively invoke the best-fit

2 http://www.eclipse.org/aspectj/
3 http://www.ibm.com/developerworks/library/j-dyn0603/
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variant method during the execution of the program. The value returned by the aspect
advice is the return value of the best-fit method execution and is the return value seen
by the caller of the initial method.

4 Experiments

For our experiments, we picked two applications: Sorting and Matrix-Multiplication.
For both, implementations with the required object-oriented design as well as manual
CAC implementations existed already. Algorithm variants use textbook implementa-
tions [10] and we did not optimize them further. Especially, parallelization of these
algorithms did greedily create new threads when admitted by the essential program de-
pendencies regardless of the actual number of cores available. Sorting comes in the
well-known variants of Selection-Sort, QuickSort, MergeSort, and two parallel ver-
sions of QuickSort and MergeSort. The latter fork a new thread for one of the two
recursive sub-problem calls in each divide step. Matrix-Multiplication implementation
variants include the classic algorithm based on three nested loops (referred to as Pro-
ductInlined later on), a variant reducing the problem to matrix-vector and then further
to vector-vector multiplications, a recursive variant based on eight multiplications of
sub-matrixes of one quarter the size of the original, and the famous Strassen algorithm
with only seven sub-matrix multiplications. Additionally, the recursive variant was par-
allelized; it forks new threads for seven of the eight recursive sub-matrix multiplications
in each recursion step.

Sorting is an extreme problem for CAC in the sense that the ratio of dynamic variant
selection and payload is rather high. Therefore, the performance overhead in this appli-
cation gives insights on expected upper bounds of this overhead in more common cases
like Matrix-Multiplication.

All experiments are executed on two different multi-core machines with native JVMs
virtual machine parameters4: (M1) a 2 core Fujitsu Siemens Esprimo Mobile v5515
PC running Windows XP (2002, SP 3) on an Intel Dual Core T5300 at 1.73GHz and
1.75GB RAM, and (M2) an 8 core Server Dell Precision WorkStation T7400 running
Windows 7 Enterprise 32-bit on an Intel 8 Core Xeon E5410 at 2.33GHz and 8GB
RAM(3GB RAM usable).

4.1 Overall Performance

In this section we compare the overall performance of the CAC applications using the
AOP-based and manual-based adaptation approaches. In the deployment phase, we con-
structed dispatch tables for the different multi-core machines (M1, M2). The formal
contexts are problem size N and core availability P. For sorting, N was the array size
sampled at powers of two between 20 . . . 216; for matrix-multiplication, N is the number
of rows (columns) of the (square) matrixes sampled as 1, 16 up to 256 with step of 16.
For both problems, P is a Boolean encoding whether or not a free core is available.

4 -Xms40m -Xmx384m.



78 A. Danylenko and W. Löwe

Table 2. Speed-up of different CAC approaches for Sorting

Platform Problem size QuickSort[msec] Aspect Manual (Aspect) Manual (Manual)

PC 2 cores 50,000 34.5 1.46 1.57 2
(M1) 500,000 661.1 2 2.1 2.5

1,000,000 1531.2 2.2 2.3 2.8

Server 8 cores 50,000 21.7 1.2 1.5 1.7
(M2) 500,000 324.3 1.5 1.57 1.9

1,000,000 775.3 1.6 1.75 2

Table 3. Speed-up of different CAC approaches for Matrix-Multiplication

Platform Problem size P.Inlined[msec] Aspect Manual (Aspect) Manual (Manual)

PC 2 cores 100 294.9 1.07 1.01 1.3
(M1) 500 41119 1.9 1.9 1.9

800 172820 2.3 2.3 2.5

Server 8 cores 100 198.8 2 2.07 2.03
(M2) 500 29276 2.97 2.98 3.05

800 124722 3.4 3.5 3.4

For a fair evaluation, we compared the performance with the manual approach us-
ing both the dispatch table produced by aspect-oriented CAC and the dispatch table
generated by manual CAC. In the former approach (Manual Adaptation (Aspect)), the
dispatch table is generated by learning based on the AOP-based CAC approach that also
involves reflection. The latter approach (Manual Adaptation (Manual)) uses the manu-
ally programmed CAC in learning and execution, i.e., it comes without any AOP and
reflection. In the pure AOP-based approach Aspect, at each invocation of an algorithm
variant the advice looks up the best-fit algorithm and executes it using the reflective
invoke method. The invocation of algorithm variants corresponds to join points in
AspectJ. In our experiments the sorting problem has 8 join points that are picked up
by the pointcut and the matrix multiplication problem has 35 join points. In both man-
ual approaches, all original calls to an algorithm variant are manually replaced by a
(monomorphic) call to a decider method that chooses the best-fit variant followed by a
polymorphic call to the instance of the best-fit algorithm variant implementation class.

In the experiments, we compare performance with the fastest context-unaware solu-
tions: the sequential QuickSort and ProductInlined, respectively. The third column of
Tables 2 and 3 shows their execution time for two platforms and three selected problem
sizes. Columns 4–6 show the speed-up of the CAC approaches relative to the execution
time of QuickSort and ProductInlines, respectively, on the same platform and archi-
tecture. For instance, in Table 2 Aspect gives a speed-up of about 1.46 for M1 and a
problem size of 50,000 array elements as it requires only 34.5msec/1.46 = 23.6msec of
the corresponding QuckSort execution time.

Altogether, for sorting, the pure AOP-based approach gives a speed-up of 1.2 and 2.2
depending on the problem size and the platform. Manual Adaptation (Aspect) has a bit



Aspect-Oriented Adaptation to Context-Aware Composition 79

0

200

400

600

800

1000

1200

1400

1600

1800

50000 200000 350000 500000 650000 800000 950000

Sorting: PC 2 core (M1)

QuickSort

Aspect Adaptation

Manual Adapt (Aspect)

Manual Adapt (Manual)

0

100

200

300

400

500

600

700

800

900

50000 200000 350000 500000 650000 800000 950000

Sorting: Server 8 core (M2)

(a) Sequential QuickSort and CAC approaches in Sorting.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 100 200 300 400 500 600 700 800

Matrix: PC 2 cores (M1)

Inlined

Aspect Adaptation

Manual Adapt (Aspect)

Manual Adapt (Manual)

0

20000

40000

60000

80000

100000

120000

140000

1 100 200 300 400 500 600 700 800

Matrix: Server 8 cores (M2)

(b) Sequential ProductInlined and CAC approaches in Matrix-Multiplication.

Fig. 4. Homogeneous algorithms and CAC using AOP-base and manual approaches. The x-axis
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higher speed-up that is between 1.5 and 2.3. Manual Adaptation (Manual) provides the
highest speed-up, a factor of up to 2.8. Figure 4(a) shows the experimental results from
the sorting problem on the two platforms over a wider range of problem sizes. On M1,
the AOP-based approach has an average speed-up of 2.05 over sequential QuickSort
over array sizes from 50,000 – 1,000,000 (step 50,000). The manual approaches have
an average speed-up of 2.17 and 2.5 for aspect and manually constructed dispatch table,
respectively. For M2, the difference between AOP-based and manual adaptation is even
smaller: average speed-ups of 1.6 versus 1.7 and 1.9, respectively.

For Matrix-Multiplication, Table 3 shows that AOP-based adaptation speeds up the
baseline by factors between 1.07 and 3.4 for M1 and M2, respectively. Similar to sort-
ing, the manual approach is slightly faster and speeds up the baseline by factors up to
3.5. Figure 4(b) shows again the performance for a wider range of problem sizes. The
average speed-up of the AOP-based approach over matrix sizes of 1–800 rows (step 50)
is on average 1.74 and 2.5 for M1 and M2, respectively. However, unlike in sorting,
the difference between this AOP-based and manual approaches is minimal: the Manual
Adaptation (Aspect) has an average speed-up of 1.76 and 2.61, and Manual Adaptation
(Manual) an average speed-up of 1.9 and 2.6 for M1 and M2, respectively.
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4.2 Performance Overhead

The differences in the speed-ups of AOP-based and manual approaches can be ex-
plained by the additional overhead due to AOP and reflection used in the AOP-based
approach. In order to measure this overhead in a fair way, we compared the CAC exe-
cution time using the AOP-based approach with the execution time of the manual ap-
proach where both use the same dispatch table. Hence, both approaches select exactly
the same variants all the time.

For sorting, the AOP-based approach introduces an average overhead of 5% and
9% over the corresponding Manual Adaptation (Aspect) approach for the 2 and 8 core
machines, respectively, as it requires 1.05 and 1.09, respectively, of the corresponding
Manual Adaptation (Aspect) execution time. The overhead is considerably smaller for
Matrix-Multiplication; on average about 3% for M1 and 2% for M2.

The overhead of the AOP-based approach is the result of reflection and aspect calls
interceptions. For sorting problem, this happens frequently in the recursive algorithms
(QuickSort, MergeSort and their parallel implementations). These algorithms are ex-
treme in their ratio between decision points (recursive calls) and workload. This ex-
plains the difference in the speed-up of the AOP-based and the manual approaches.
In contrast, Matrix-Multiplication shows a rather low overhead. In the recursive algo-
rithms, the ratio between decision points and workload is rather low as can be expected
from many other applications.

In both example applications, the overhead of CAC is more than compensated by the
speed-up compared to the homogenous variants.

4.3 Lines of Code

The slightly higher performance of the manual CAC approaches are paid by a higher
programming effort. In order to measure the effort required to adapt a given legacy ap-
plication to CAC, we used the lines of code (LOC) metrics. It measures the number of
lines of a program’s source code. Specifically, we measured LOC required for the man-
ual CAC adaptation, referred to as LOCM, and LOC required for the AOP-based adapta-
tion, referred to as LOCA. The manual adaptation may reuse some parts of the existing
legacy application and change only some lines of the code. LOCM counts only lines
that require additional changes or have to be added to achieve CAC. The AOP-based
approach reuses the code implementing general CAC concerns. LOCA counts only the
application-specific code, cf. Table 1. Finally, the programming effort improvement due
to the AOP-based approach is simply assessed with a metrics PI = LOCM/LOCA. For
the sorting problem, LOCM = 154 and LOCA = 115 lead to quite a productivity im-
provement of PI = 1.4. For Matrix-Multiplication, LOCM = 383 and LOCA = 134 lead
to PI = 2.8.

The code changed in the manual adaptation is actually spread throughout the legacy
application. It requires some time and effort to identify which lines have to be changed
for CAC adaptation, which is not assessed by our metrics PI. For instance the total
lines of code (LOCT) of the sorting problem is 441. Thus, the tangling ratio TR =
LOCM/LOCT is 0.35. For the matrix multiplication problem LOCT = 1500. Thus,
TR = 0.25. Therefore, the actual improvement of the programming (and later main-
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tenance) effort is even higher due to the encapsulation of the respective concerns in
AOP.

Altogether, the experiments showed that our approach can effectively adapt existing
legacy codes to CAC which makes them run efficiently even on multi-core machines.
Even though the speed-ups of applications with CAC adapted manually is slightly
higher than with the AOP-based approach, the performance overhead is quite small.
Moreover, AOP-based adaptation requires a smaller programming effort and the result-
ing systems still significantly outperform the fastest heterogeneous applications. Based
on these observations, we claim that the AOP-based approach can be widely used by
software developers to adapt legacy applications to CAC.

5 Related Work

In general, context-aware computing allows application changes depending on the
location of the user, hosts, accessible devices, etc [11]. Variants differ in the applied
problem domain, which can include, e.g., mobile, Web, e-services [12,13,14], and com-
position technology. Context-awareness can be achieved with Context-Oriented Pro-
gramming [15,1,2]. Context-aware composition aims at dynamically optimizing
applications in changing call contexts and available resources in the system environ-
ment [16,17,18].

The optimization of domain-specific libraries for linear algebra or signal processing
is a natural target for optimized composition, called autotuning. Because the domain
and code base is limited and statically known, computations can often be described in
a restricted domain-specific language from which variants can be generated and tuned
automatically. Well-known examples include the library generators ATLAS [19] for
basic linear algebra computations, and FFTW [20] and SPIRAL [21,22] for transfor-
mations in signal processing. Even though these approaches are similar to CAC, they
do not have any separated concerns for introducing autotuning to any other domain than
the one they were defined for. Additionally, the dynamic program optimization can be
achieved by the tracing just-in-time compilers that determine frequently executed traces
(hot path and loops) in running programs and focus their optimization effort by emitting
optimized machine code specialized to these traces [23]. This strategy is beneficial for
dynamic languages [24], and has been recently implemented for Microsoft Common
Intermediate Language (CIL) [25] and Java [26,27].

Optimized composition has been proposed as an optimization technique also in the
more general context of component based systems, where the programmer is respon-
sible for annotating components so that their composition can be optimized for per-
formance. However, only few approaches consider recursive components with deep
composition, and only few consider the co-optimization of the selection of implemen-
tation variants with other variation possibilities, such as the layout and data structure of
operands or scheduling [28,29,30,31]. For instance, Andersson et al. use CAC to com-
pose and optimize implementation variants of data structures and recursive algorithms,
considering Matrix-Multiplication as a case study [16]. Kessler and Löwe [17,18] con-
sider optimized composition at the level of annotated user-defined components (i.e., not
limited to closed libraries) together with scheduling, resource allocation and other opti-
mizations, which allows for simultaneous optimization. They use Sorting as one of their
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case studies. Yu and Rauchwerger [32] investigated dynamic algorithm selection for re-
ductions in the STAPL [33] library for sorting and matrix computations. Olszewski and
Voss [34] proposed a dynamic adaptive algorithm selection framework for devide- and
-conquer sorting algorithms in a fork-join parallel setup. They use dynamic program-
ming algorithm to select the best sequential algorithm for different problem sized. A
detailed discussions on these approaches can be found in our previous work [7], where
we compare the accuracy and the performance of different machine learning approaches
in CAC. However, regardless of all the benefits of CAC, it still requires a considerable
effort to design and implement applications accordingly. This becomes even more com-
plicated when adapting existing complex legacy applications to CAC. Therefore, the
current work presented in this paper is orthogonal to the previous work as is suggests a
general way for introducing CAC to legacy applications.

The notion of a context-aware aspect with behavior depending on the context was
first presented by Tanter et al. [5]. They analyze the appropriateness of the support
of AOP languages for expressing aspect for accessing the information associated to
the current application contexts. Moreover, the authors propose an open framework for
context-aware aspects that supports the definition of context-awareness constructs for
aspect. It also includes the ability to refer to past contexts, and to provide domain and
application specific contexts. CAC applications additionally require learning from past
context experiences about the best-fit component variants to be executed in an actual
context.

There are ongoing efforts supporting the development of context-aware computing
systems. For instance, David et al. [3] present the WildCAT system which is a general
context awareness toolkit. It provides a way for Java developers to make their soft-
ware context-aware, by providing APIs (and shared low level code) to maintain various
events (contexts) occurring at program runtime. Using this system in our AOP-based
approach could avoid application-specific context implementation. Delicato et al. [13]
propose a framework for developing context-aware applications for mobile computing.
The framework is aspect-oriented and is implemented in AspectJ. It provides a set of
default adaptive concerns common to mobile applications along with concrete aspects
implementing these concerns. However, besides implementing a GUI interface, the de-
veloper has to specify which concerns have to be used at which program points that
are specific to the application to be implemented. Li et al. [35] present an AOP-based
approach to address context-aware Web service composition. Their approach semanti-
cally composes different Web services whenever the context changes. This work shows
that context weaving is suitable for the implementation of CAC services when the con-
text is dynamic and hard to predict. Although these approaches allow for implementing
new CAC systems, they still remain domain specific and, in contrast to our work, do not
consider the adaptation of existing legacy application to CAC for improving application
performance.

6 Conclusions and Future Work

Context-aware composition allows improving the performance of applications on mod-
ern multi-core hardware by separating the concerns of design, deployment, and exe-
cution of component adaptations. It provides reusable, performance-portable systems
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selecting (sequential and parallel) component variants for actual (call and hardware)
contexts. Some of these concerns are general regardless of the application domain.

However, manually introducing CAC in legacy applications can be time-consuming
since it requires additional effort for changing application design and adapting the exist-
ing code. For automating this process, we proposed an AOP-based adaptation approach.
Due to the strong encapsulation of AOP programs, the general CAC concerns can be
reused easily for different applications and may also be used in the development of new
CAC applications from scratch; developers can focus on their own application design
and add the CAC aspect later rather than implement the CAC design pattern manu-
ally. Our main objectives were to impose as little execution overhead as possible and to
require as little as possible changes from the (legacy or core) application.

Our AOP-based approach was evaluated on Sorting and Matrix-Multiplication appli-
cations in terms of performance and programming effort relative to the manual adap-
tation approach. The experiments showed that applications derived by our AOP-based
adaptation speeds up the execution time by factors of up to 2.2 and 3.4 for Sorting
and Matrix-Multiplication, respectively, on multi-core machines with two and eight
cores. The application manually adapted and optimized to CAC achieved a slightly
higher speed-up (2-9% higher). However, development and maintenance effort for the
manual adaptation is higher than for the AOP-based approach. Manual adaptation re-
quires almost three times the code of the AOP-based approach and is additionally spread
throughout the application and not nicely encapsulated as in the AOP-based adaptation.
These results suggest that an AOP-based adaptation to CAC can effectively improve the
performance of existing applications with a moderate transition effort.

As a matter of future work, we will handle data representation variants and combine
their selection with the best-fit algorithm variants at a runtime using AOP. Also, the
aspect in our current implementation can only adapt explicit method calls to alternative
variants. However, legacy application might also contain more indirect and dynamic
calling mechanisms including dynamic invocations, stub-invocations etc. Therefore, we
have to generalize the current aspect implementation to include these possible point-
cut types. Future work also includes experimenting with other legacy applications and
reevaluating our approach in online learning scenarios as required in self-adaptive sys-
tems; this should provide a more general approach to CAC code adaptation. Finally, we
need to evaluate our approach in a real industrial project and measure gained speed-ups
and programming effort required for CAC adaptation.
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18. Kessler, C., Löwe, W.: Optimized composition of performance-aware parallel components.
Concurrency and Computation: Practice and Experience (2011)

19. Whaley, C., Petitet, A., Dongarra, J.J.: Automated empirical optimization of software and the
atlas project. Parallel Computing 27, 2001 (2000)

20. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceedings of the
IEEE 93(2), 216–231 (2005)

21. Moura, J.M.F., Johnson, J., Johnson, R.W., Padua, D., Prasanna, V.K., Püschel, M., Singer,
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Abstract. Instrumentation techniques are widely used for implement-
ing dynamic program analysis tools like profilers or debuggers. While
there are many toolkits and frameworks to support the development of
such low-level instrumentations, there is little support for the refinement
or composition of instrumentations. A common practice is thus to copy
and paste from existing instrumentation code. This, of course, violates
well-established software engineering principles, results in code duplica-
tion, and hinders maintenance. In this position paper we identify two
challenges regarding the refinement and composition of instrumentations
and illustrate them with a running example.

Keywords: Instrumentation, composition, aspect-oriented program-
ming, domain-specific languages.

1 Introduction

Many dynamic program analyses, including tools for profiling, debugging, testing,
program comprehension, and reverse engineering, rely on code instrumentation.
Such tools are usually implemented with toolkits that allow for the careful low-
level optimization of the inserted code. While this low-level view is needed to keep
the overhead incurred by dynamic program analyses low, it currently brings with
it a lack of support for refining and composing the resulting instrumentations.
Code duplication, caused either by copy and paste or by the reimplementation
of common instrumentation tasks, is therefore a common code smell of many
instrumentation-based tools; it is known to be error-prone and to hinder software
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maintenance. This is all the more problematic, as errors in low-level code are
notoriously hard to find.

Before we discuss the challenges arising from the refinement and composition
of instrumentations, we first define our terminology and context. An instru-
mentation selects certain sites in the code of a given base program—so-called
instrumentation sites—and inserts code to be executed whenever the control
flow reaches these sites. The inserted code must not change the semantics of the
base program; it must complete after a finite number of instructions without
throwing any exception into the base program and may read but not write any
memory location accessed by the base program. Inserted code must thus resort
to dedicated memory locations to pass data between different instrumentation
sites. For example, local variables invisible to the base program may be used to
pass data between several instrumentation sites within the same method body.
Likewise, thread-local variables or global variables may be used to pass data
between instrumentation sites in different methods. The inserted code typically
invokes analysis methods, e.g., to update a profile. We call the classes defining
those methods the runtime classes of the analysis.

Suitable refinement and composition mechanisms for instrumentations need
to address the following two general challenges:

1. Specification and enforcement of constraints: Instrumentations usually fail
to state important assumptions that are crucial for the instrumentations’
correctness in general and when refining or composing instrumentations in
particular. Such assumptions may constrain the following.

(a) Instrumentation sites: The selection of sites by the different instrumen-
tations must be consistent; different instrumentations, e.g., may need to
refer to the same part of a program, regardless of whether they share
common instrumentation sites or not.

(b) Instrumentation ordering: Composing instrumentations often requires
defining ordering constraints, not only for the instrumentations as a
whole but possibly even for each instrumentation site that they target.

(c) Data passing: Instrumentations may declare variables to pass data be-
tween instrumentation sites. Each of these variables has to be initialized
by one instrumentation before it can be read by another.

2. Avoiding hard-coded dependencies: Usually, the inserted code has hard-coded
dependencies on specific runtime classes. Such dependencies typically resem-
ble invocations of static methods or constructors of runtime classes in the
inserted code. When refining or composing instrumentations, these depen-
dencies may need to be changed to use different runtime classes.

As original contribution, in this position paper we study the aforementioned chal-
lenges regarding refinement and composition of instrumentations and illustrate
them with a running example (Section 2). Section 3 discusses related work and
Section 4 concludes.
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void onMethodExit() {
  CCTAnalysis.leaveCC();
}

CCTInstr

void onMethodEntry(String mID) {
  currCC = CCTAnalysis.enterCC(mID);
}

@SyntheticLocal CallingContext currCC;

AllocInstr

BBInstr

void onBBEntry(String bbID) {
  BBAnalysis.profBB(bbID, currCC);
}

<write> <read>

<read>

public class IntArrayFactory {

  public Integer[] createIntArray(int length) {

  Integer[] intArray = new Integer[length];

  int i = 0;

  while (true) {

    intArray[i] = new Integer(i);

    if(++i >= length)

      return intArray;

}}}

base code

[A]

[B]

[C]

[D]

[E]

void onAlloc(Object allocObj) {
  AllocAnalysis.profAlloc(allocObj, currCC);
}

Fig. 1. Instrumentation sites for a composition of three instrumentations: calling con-
text profiling (CCTInstr), basic block profiling (BBInstr), and object allocation profil-
ing (AllocInstr)

2 Challenges

There are several challenges that make refinement and composition of instru-
mentations difficult. To explain these challenges, we first introduce a running
example in which three common instrumentations are composed. Next, we moti-
vate the need for specifying and enforcing instrumentation constraints. Finally,
we consider the problem of hard-coded dependencies from inserted code to spe-
cific runtime classes.

2.1 Motivating Example

Figure 1 illustrates our motivating example: a composition of three instrumen-
tations (pseudo-code) applied to some base program. While the inserted code
is intentionally kept simple, the three instrumentations have interactions that
resemble those of complex, real-world analyses.

CCTInstr. The CCTInstr analysis maintains a Calling Context Tree (CCT) [1],
i.e., a data structure that can be used to store dynamic metrics separately for
each individual calling context. To efficiently expose a reference to the CCT
representation of the current calling context to the code inserted into the same
base-program method by the other two instrumentations, CCTInstr declares the
synthetic local variable currCC that will be mapped to a local variable in each
instrumented method. CCTInstr.onMethodEntry(...) represents the code inserted
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at instrumentation site [A]. We assume the instrumentation framework provides
some context information; the string mID identifies the base-program method
to be instrumented. The runtime class CCTAnalysis keeps track of the current
calling context for each thread and maintains the CCT. CCTAnalysis.enterCC(...)
updates the current thread’s calling context on method entry and returns a
reference to it, which is then stored in currCC. CCTAnalysis.leaveCC(), inserted
at instrumentation site [E], updates the current thread’s calling context on
method completion.
BBInstr. The BBInstr analysis counts how often each basic blocks of code is
executed. The code of BBInstr.onBBEntry(...) is inserted at the instrumentation
sites [A], [C], and [E]. As context information provided by the instrumenta-
tion framework, bbID identifies the executed basic block. BBAnalysis.profBB(...)
updates a counter corresponding to bbID in the current calling context (currCC).
AllocInstr. The AllocInstr analysis profiles object allocations. The code
of AllocInstr.onAlloc(...) is inserted at the instrumentation sites [B]
and [D]. As context information, allocObj refers to the allocated object.
AllocAnalysis.profAlloc(...) updates an object allocation counter in the current
calling context (currCC).

2.2 Specification and Enforcement of Constraints

We now describe the implicit constraints that must be respected to preserve
correctness when refining or composing the instrumentations illustrated in Fig. 1.

Instrumentation Sites. To ensure soundness of the CCT, CCTInstr must
be comprehensively applied to all classes. In contrast, restricting the scope of
BBInstr and AllocInstr does not impair the correctness of the (subset of) collected
data. To reduce the runtime overhead of the analysis, it may even be desirable to
restrict expensive instrumentations like BBInstr to a subset of the base-program
classes. To ensure the consistency of one’s measurements, however, it is likewise
desirable to ensure that BBInstr and AllocInstr are applied to the same selection
of classes.

Instrumentation Ordering. A hard constraint of the instrumentations illus-
trated in Fig. 1 concerns the synthetic local variable currCC used to share the
current calling context among the instrumentations. Even if not explicitly stated,
both BBInstr.onBBEntry(...) and AllocInstr.onAlloc(...) expect this variable to be
initialized by CCTInstr.onMethodEntry(...). That is, if multiple instrumentations
insert code on method entry, CCTInstr.onMethodEntry(...) must be applied first.
As a consequence, at instrumentation site [A], CCTInstr.onMethodEntry(...) has
to be inserted before BBInstr.onBBEntry(...). For the other instrumentation sites,
no particular ordering is required.1 Unfortunately, ordering constraints are often
1 Intuitively, at instrumentation site [E], CCTInstr.onMethodExit() should be in-

serted after BBInstr.onBBEntry(...). But as CCTInstr.onMethodExit() does not
modify the synthetic local variable currCC, the insertion order at [E] does not
matter.
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implicit in the implementation of complex instrumentations. Therefore, compos-
ing instrumentations usually requires in-depth knowledge of their implementa-
tion to avoid violating any implicit ordering constraint.

Data Passing. Efficient communication between different composed instrumen-
tations is often necessary to reduce runtime overhead. However, the declaration
of the name and the type of variables used for such communication is usually
hard-coded in the instrumentations; thus, it is difficult to refine them without in-
depth knowledge of all implementation details. In our example, both BBInstr and
AllocInstr expect a variable of type CallingContext named currCC. This constraint
hinders composition of instrumentations, as it is often necessary to update the
code of some instrumentations to communicate through the same variables.

2.3 Hard-Coded Dependencies

Frequently, instrumentations use static method calls to access runtime classes,
often in a desire to avoid the runtime overhead associated with virtual methods.
For example, the instrumentations illustrated in Fig. 1 include static calls to
methods in the runtime classes CCTAnalysis, BBAnalysis, and AllocAnalysis.
These dependencies constrain refinement of runtime classes, as static methods
cannot be overridden. Refactoring runtime classes to adhere to the singleton
pattern helps mitigate the problem, but the static method returning the singleton
instance cannot be refined so as to return an instance of a refined runtime class.
To address this issue, mechanisms for dependency injection are needed.

3 Related Work

In the past, both low-level frameworks and aspect-oriented approaches have been
used for various instrumentation tasks. While the former are typically more
expressive and lead to faster code, the latter may offer more powerful refinement
and composition mechanisms. In the following text, we compare the properties
of both kinds of approaches. For brevity, we limit the discussion to solutions for
the Java Virtual Machine, as it is a widely used deployment platform and has
been targeted by a large body of related work.

3.1 Instrumentation Frameworks

Bytecode Manipulation Frameworks. Low level bytecode manipulation
frameworks like ASM2, BCEL3, Javassist [5], or Soot [15] support the direct gen-
eration or transformation of arbitrary bytecode. While they offer the maximally
possible control over bytecode instrumentation, composition of instrumentations
is not directly supported. When instrumentations are to be developed separately,
2 See http://asm.ow2.org/
3 See http://commons.apache.org/bcel/

http://asm.ow2.org/
http://commons.apache.org/bcel/
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they can thus only be composed by applying them sequentially. In this case,
however, each instrumentation receives the bytecode resulting from the previous
instrumentations as input. Thus, later instrumentations generally cannot distin-
guish between the original code and code inserted by earlier instrumentations.4
As a consequence, controlling the composition of instrumentations becomes in-
feasible. This is also true of the Scala library Mnemonics [11] which is slightly
less low-level than the aforementioned frameworks; by exploiting Scala’s type
system, it ensures that only certain well-formed, type-safe bytecode sequences
can be generated.

RoadRunner. Flanagan and Freund [6] propose a framework for composing
different small and simple analyses for concurrent programs. Each analysis can
stand on its own, but by composing them one can obtain more complex ones:
each dynamic analysis is essentially a filter over event streams, and filters can be
chained. Per program run, only one chain of analyses can be specified. Thus, it is
generally not possible to combine arbitrary analyses; for example, two analyses
that filter (e.g., suppress) events in an incompatible way cannot be combined.

DiSL. DiSL [9, 18] is a domain-specific language for instrumentation. While it
offers high-level abstractions to ease the development of instrumentations, it also
gives the programmer fine-grained control over the inserted code. However, DiSL
lacks refinement and composition mechanisms.

3.2 Aspect-Oriented Approaches

Aspect-oriented programming (AOP) is frequently used as a high-level, language-
based approach to implementing analyses. An analysis roughly maps to one or
more aspects; then the instrumentations of the analysis correspond to pairs of
pointcuts and advice. Pointcuts select the instrumentation sites and advice de-
fine the inserted code, in this analogy. But as aspect-oriented languages typically
focus on high-level interaction with the program execution, the available instru-
mentation sites and context accessible in inserted code is limited. Nevertheless,
the requirements for the re-use and composition of aspects are similar to those of
analyses and their instrumentations. In the following text, we thus briefly discuss
selected aspect-oriented languages and their features with respect to (1) con-
straining instrumentation sites (scope), to (2) specifying the order of aspects at
shared instrumentation sites, and to (3) sharing structure and implementation
between aspects (e.g., to realize data sharing).

AspectJ. In the past, the AspectJ language [8] (or derivatives) has been used
for implementing dynamic analyses; often alternative compilers are used for this
purpose, such as MAJOR [4, 16, 17] and MAJOR2 [10, 13] which allows instru-
menting the Java class library unlike the standard AspectJ weaver. In AspectJ,
4 Soot provides a way to tag statements and bytecode instructions. However, there

are no guidelines that would govern or enforce a principled use of this mechanism.
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aspects extend classes with pointcuts and advice.5 Pointcuts are boolean expres-
sions whose operands are again (possibly primitive) pointcuts. They can also be
named and then referenced from multiple other pointcuts.

Scope: In an abstract aspect, pointcut expressions may also refer to abstract
named pointcuts; e.g., the pointcut expression scope() && call(*.new(..)) se-
lects all constructor call sites at which also the pointcut scope() matches,
which can be declared as an abstract pointcut. Abstract aspects can be ex-
tended whereby concrete expressions must be provided for abstract pointcuts.
In this way, an analysis implemented in an aspect can be re-used while the
scope for applying the analysis may be reduced, e.g., by specifying an ex-
pression for the scope() pointcut that only matches within a certain package.

Order: Ordering constraints between instrumentations (i.e., pointcut-advice
pairs) can be imposed by explicitly declaring the precedence of entire as-
pects, possibly external to the aspects in question.

Sharing: Extending an abstract aspect is the only means to code re-use sup-
ported by AspectJ. The sub-aspect has to concretize abstract pointcuts and
can override virtual methods.

CaesarJ. With respect to the pointcut-advice mechanism, aspects in CaesarJ [2]
are very similar to those of AspectJ. Two extensions are relevant for the scoping
and sharing issue of this paper, however.

Scope: Additionally, it allows to programmatically deploy and undeploy aspects
and to limit their activation to certain threads or objects, thereby refining
the scope of an aspect.

Order: CaesarJ provides the same mechanism for declaring aspect precedence
as AspectJ.

Sharing: The CaesarJ language extends the Java type system with dependent
types, i.e., types which are properties of (aspect) instances. Thus, expressions
like this can be used in type declarations and the compiler can verify that
covariant types are used together consistently.

JAsCo. The JAsCo language [12] extends Java beans with so-called hooks to
aspect beans. Similar to AspectJ and CaesarJ, it offers a pointcut-advice mech-
anism, however, in JAsCo it is composed of several individual concepts which
improve re-usability and configurability.

Scope: A hook is similar to an inner class which defines a context-independent
pointcut in its constructor. Being context-independent, the pointcut expres-
sion does not refer to actual methods but rather refers to the constructor’s
parameters, which are made concrete upon hook instantiation. Besides its
constructor and advice, a hook can contain the possibly abstract method
isApplicable, which furthermore refines the hook’s scope. Hooks are instanti-
ated and deployed using so-called connectors which supply concrete method
patterns to the hooks’ constructors and implement any abstract isApplicable
methods.

5 The extension with inter-type declarations is out of the scope for this paper.
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Order: Connectors not only specify the hooks’ scope, they also fix their order
either explicitly or implicitly through programmatic combination strategies.
The latter can also be used to conditionally remove applicable hooks to
mimic overriding.

Sharing: JAsCo allows to override hook methods on a per-advised-object basis.
In this way aspect beans can be re-used and extended on different contexts.

HyperJ. The HyperJ [14] approach attempts to decompose a program along
different dimensions. For each dimension, a partial program, called a hyperslice,
is written which must be declaratively complete; functionality not provided but
required by a hyperslice must be declared as abstract methods. A control file
then governs the composition of hyperslices, which configures how the methods
of the hyperslices are matched and merged.

Scope: One matching strategy is to match methods with the same names, but
it is possible to compensate mismatches which especially occur when hyper-
slices are developed independently.

Order: The merging strategy is similarly configurable; if all except one of the
definitions are abstract, the merging is trivial. For more than one concrete,
matching unit, HyperJ provides merging strategies such as overriding or
aggregating the result of the separate unit.

Sharing: In HyperJ, abstract methods, together with appropriate matching and
merging strategies, can be used to share functionality among hyperslices.

Composition Filters. The Composition Filters Model [3] is based on the con-
cepts of filters which are applied to method invocations.

Scope: A filter selects invocations based on the method’s name and signature
and it can perform additional actions or influence the execution of the tar-
get method. Filtermodules group filters and can declare data fields holding
shared values. They can declare parameters to be used, e.g., for the type of
fields or in the filters’ expressions for selecting method invocations. A super-
imposition block has to be declared, possibly in a separate module, which
deploys filtermodules on a set of types and provides concrete values for the
parameters.

Order: For jointly superimposed filtermodules, a partial order can be specified.
Other relations like overriding between filters can be declared in a similar
way.

Sharing: A filtermodule can be superimposed multiple times on different type
sets and with different parameter values.

Framed Aspects. In the Frames approach, so-called tags may be inserted into
the code. For these tags a configuration file can then provide an application-
specific replacement.
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Scope: The Framed Aspects approach [7] allows the insertion of tags into as-
pects. Tags can be used, e.g., in place of type or method names, expressions
or in patterns used by pointcuts. Thus, the scope of aspects can be refined
in the configuration file.

Order: The Framed Aspects approach is independent of a concrete aspect lan-
guage. The approach does not by itself offer a mechanism for specifying the
order between aspects, but it inherits the mechanisms of the underlying AOP
languages.

Sharing: Besides adopting the features for re-using aspect offered by the under-
lying language, the Framed Aspects approach itself provides re-usable aspect
templates. The templates can be concretized through the configuration file.

Commonly, the presented approaches allow explicit declaration of precedence
among aspects which can address ordering constraints between instrumentations.
AspectJ and CaesarJ support re-use (i.e., sharing) and configuration (i.e., scop-
ing) through inheritance and overriding; in HyperJ code can be re-used by com-
position while the composition specification (the control file) cannot be re-used
at all. JAsCo and Composition Filters support black-box re-use and configura-
tion through parameterization, however, the languages only support parameters
for a limited set of constructs. These two approaches and CaesarJ additionally
provide control over scoping by means of their programmatic deployment or su-
perimposition features. Framed Aspects supports parameters in a more flexible
way, but parameterization requires a fair amount of variability analysis to deter-
mine extension points of a planned feature. Since it requires predetermination
of extension points, it limits the use of unforeseen instrumentations.

4 Conclusion

Although tools based on instrumentation techniques are in wide-spread use, the
engineering of such tools often violates basic reuse principles. As efficiency of the
tools is of paramount importance, low-level instrumentation frameworks, which
suffer from a lack of mechanisms for refining and composing instrumentations,
are commonly used. As a consequence, instrumentations are often implemented
by resorting to the tedious and error-prone copy/paste anti-pattern.

In this position paper we identified two challenges that need to be addressed
by future mechanisms in support of refinement and composition of instrumenta-
tions: specification and enforcement of constraints, and avoidance of hard-coded
dependencies. We illustrated these challenges with a running example.

In our ongoing research, we are exploring novel refinement and composi-
tion mechanisms in the context of the domain-specific instrumentation language
DiSL [9,18]. We are working on instrumentation contracts that make constraints
explicit and allow for automated checks that enforce these constraints. Further-
more, we are integrating a mechanism for dependency injection to deal with the
problem of hard-coded dependencies.
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Abstract. Separation of concerns is difficult to achieve in the implemen-
tation of a programming language interpreter. We argue that evaluator
concerns (i.e., those implementing the operational semantics of the lan-
guage) are, in particular, difficult to separate from the runtime concerns
(e.g., memory and stack management) that support them. This precludes
the former from being reused and limits variability in the latter.

In this paper, we present the Game environment for composing cus-
tomized interpreters from a reusable evaluator and different variants of
its supporting runtime. To this end, Game offers a language for spec-
ifying the evaluator according to the generic programming methodol-
ogy. Through a transformation into defunctionalized monadic style, the
Game toolchain generates a generic abstract machine in which the se-
quencing of low-level interpretational steps is parameterized. Given a
suitable instantiation of these parameters for a particular runtime, the
toolchain is able to inject the runtime into the generic abstract machine
such that a complete interpreter is generated.

To validate our approach, we port the prototypical Scheme evaluator
to Game and compose the resulting generic abstract machine with sev-
eral runtimes that vary in their automatic memory management as well
as their stack discipline.

1 Introduction

In the implementation of an interpreter for a programming language, one can
distinguish evaluator concerns from the runtime concerns that support them.
The evaluator concerns implement the operational semantics of the language,
often assuming computational resources are unbounded. The supporting runtime
concerns maintain this illusion on a physical machine through data structures
and algorithms for memory and stack management.

There is great variation among an interpreter’s runtime support, of which we
identify the following sources:

– The first source of variation is the evaluator itself. Different language fea-
tures require different kinds of runtime support. For instance, closures require
the ability to capture an environment and keep it alive for an indeterminate
period of time. Likewise, exception handling requires the ability to skip com-
putations after an error occurred and to proceed with the exception handler.
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These features affect the implementation of environments and of the execu-
tion stack respectively.

– The second source of variation is the host platform. If the host platform is
a high-level language, it will also have a supporting runtime that can be
reused. For instance, when implementing a garbage collected language in
another garbage collected language. The bigger the mismatch between the
host platform and the evaluator, however, the more effort is required from
the supporting runtime. This is, for instance, the case when implementing a
language with first-class continuations in C.

– The non-functional requirements of the interpreter represent the third source
of variation. The supporting runtime must not only satisfy the needs of the
evaluator, it must also do so in a manner that meets efficiency requirements
(e.g., memory usage and power consumption). This leads to many trade-offs,
which are influenced by the idiosyncrasies of the host platform as well as the
expected usage of the interpreter (i.e., the kinds of programs it will run).

On par with the operational semantics of the language, the evaluator should not
be affected by variation in runtime support. However, the practice of interpreter
development does not reflect this. In the implementation of an interpreter, eval-
uator concerns are difficult to separate from the runtime concerns that support
them. This precludes the former from being reused and limits variability in the
latter. The contributions of this paper are as follows:

– Using the case of automatic memory management, we illustrate that the
choice for a particular runtime has a severe impact on the structure of the
evaluator (Section 2).

– We introduce the notion of a generic abstract machine (Section 3.2), an
abstract machine [5] that anticipates the supporting runtime without com-
mitting to any details using generic programming techniques. A generic ab-
stract machine corresponds to the evaluator in an intermediate form called
defunctionalized monadic style.

– We present the Game environment (Section 3), consisting of a language and
a toolchain centered around the notion of a generic abstract machine. Using
the Game programming language, the developer of the evaluator decides on
the interface between the evaluator and the runtime —thus enabling reuse
of the evaluator. Using the Game toolchain, the developer of the supporting
runtime can inject a concrete runtime variant in the evaluator —giving rise to
a customized interpreter. Our proof-of-concept implementation of the Game
toolchain generates this interpreter in a subset of R6RS Scheme. This subset
is sufficiently low-level for targeting C to be realistic.

– We validate our approach by implementing the prototypical Scheme
evaluator from SICP [1] in Game (Section 3.1) and instantiating the re-
sulting generic abstract machine with several runtimes (Section 4). These
runtimes vary in their memory management (e.g., a non-moving mark-and-
sweep versus a moving stop-and-copy GC) and in their stack discipline (e.g.,
reusing the host stack versus managing an explicit stack). The generated
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interpreters are, together with the Game prototype, publicly available at
http://soft.vub.ac.be/~stimberm/game/sc12/.

2 Motivating Example: The Impact of Automatic
Memory Management on the Structure of an Evaluator

This section illustrates the impact of runtime support on the structure of the
evaluator. Their interaction inhibits reusing the evaluator in other interpreters.

Consider adding automatic memory management to the prototypical evalua-
tor for Scheme depicted in Figure 1. The evaluator corresponds to the one from
Section 4.1 of SICP [1], implemented in Game (cf. Section 3.1). For the purpose
of this section, Game has the same syntax and semantics as regular Scheme.

Garbage collectors (GCs) use reachability as a heuristic to determine whether
an object on the heap can be reclaimed. It is the evaluator’s responsability to
hand the GC all heap objects that are a priori reachable. Objects that cannot
be reached from these root pointers can no longer be accessed from the program
and are therefore safe to reclaim. Root pointer treatment comprises the main
source of interaction between an evaluator and a GC.

Varying an interpreter’s GC strategy may require varying the treatment of
root pointers in the interpreter’s evaluator. Some GC algorithms move objects
around to avoid fragmentation. All pointers to a particular object must be up-
dated to reflect the new location of the object. Concretely, the evaluator should
not use the pointers stored in local variables after every point in its execution
where GC may have occurred.

The consequences of errors in the treatment of root pointers are severe. If the
evaluator neglects to communicate a root pointer to the GC, the object referred
to by the root pointer may be reclaimed. If the evaluator subsequently derefer-
ences this pointer again, the resulting behavior is unpredictable. The memory
chunk may have been cleared, or it may have been reused to store another object.
After a moving GC, a neglected root pointer may even point in the middle of
some other object. Such bugs are difficult to diagnose. Their occurrence depends
on the state of the entire heap and on the arbitrary moment GC occurs.

Restructuring the SICP Evaluator for Garbage Collection. As the GC expects to
be handed a set of root pointers, we have to restructure the entire SICP evaluator
such that it can construct this set at all places where a GC might occur. Consider
the list-of-values function depicted on line 35 of Figure 1. It returns a list that
contains the values to which the expressions exps evaluate one by one in the
environment env. As evaluating an individual expression may trigger a GC, there
is a risk of dangling pointers within this function. We will adapt its code such
that root pointers are preserved for a non-moving and a moving GC respectively.

Adaptation 1: Non-Moving GC. In Figure 2a, recursive evaluations within the
function have been made explicit. In this version, it is clear that variable first

may contain a root pointer to an object on the heap, which must be preserved

http://soft.vub.ac.be/~stimberm/game/sc12/
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1 (define (eval exp env)
2 (cond ((self -evaluating? exp) exp)
3 (( variable ? exp) (lookup-variable -value exp env))
4 (( quoted? exp) (text -of- quotation exp))
5 (( assignment? exp) (eval -assignment exp env))
6 (( definition? exp) (eval -definition exp env))
7 ((if? exp) (eval -if exp env))
8 (( lambda? exp)
9 (make -procedure (lambda-parameters exp)

10 (lambda-body exp)
11 env))
12 ((begin? exp)
13 (eval -sequence (begin -actions exp) env))
14 ((cond? exp) (eval (cond ->if exp) env))
15 (( application? exp)
16 (apply (eval (operator exp) env)
17 (list -of-values (operands exp) env)))
18 (else
19 (error "Unknown expression type -- EVAL" exp))))

21 (define (apply procedure arguments)
22 (cond ((primitive -procedure? procedure)
23 (apply -primitive -procedure procedure arguments))
24 ((compound -procedure? procedure)
25 (eval -sequence
26 (procedure -body procedure)
27 (extend -environment
28 (procedure -parameters procedure)
29 arguments
30 (procedure -environment procedure))))
31 (else
32 (error
33 "Unknown procedure type -- APPLY" procedure))))

35 (define (list -of -values exps env)
36 (if (no-operands ? exps)
37 null
38 (cons (eval (first -operand exps) env)
39 (list -of-values (rest -operands exps) env))))

41 (define (eval -assignment exp env)
42 (set-variable -value! (assignment -variable exp)
43 (eval (assignment -value exp) env)
44 env)
45 ok-symbol)

47 (define (eval -definition exp env)
48 (define-variable ! (definition -variable exp)
49 (eval (definition -value exp) env)
50 env)
51 ok-symbol)

53 (define (eval -if exp env)
54 (if (true? (eval (if-predicate exp) env))
55 (eval (if -consequent exp) env)
56 (eval (if -alternative exp) env)))

58 (define (eval -sequence exps env)
59 (if (last -exp? exps)
60 (eval (first -exp exps) env)
61 (begin (eval (first -exp exps) env)
62 (eval -sequence (rest -exps exps) env ))))

Fig. 1. The prototypical Scheme evaluator from Section 4.1 of SICP [1]
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(define (list -of-values exps env)
(if (no-operands ? exps)

null
(let (( first (eval (first -operand exps) env))

(rest (list -of-values (rest -operands exps) env)))
(cons first rest))))

(a) with explicit names for subcomputations

(define (list -of-values exps env)
(if (no-operands ? exps)

null
(begin (register -nm exps)

(register -nm env)
(define first (eval (first -operand exps) env))
(register -nm first)
(define rest (list -of-values (rest -operands exps) env))
(unregister -nm 3)
(cons first rest))))

(b) with root registration for a non-moving GC

(define (list -of-values exps env)
(if (no-operands ? exps)

null
(begin (register -m exps)

(register -m env)
(define first (eval (first -operand exps) env))
(define exps2 (unregister -m))
(define env2 (unregister -m))
(register -m first)
(define rest (list -of-values (rest -operands exps2) env2))
(define first2 (unregister -m))
(cons first2 rest))))

(c) with root registration for moving GC

Fig. 2. Adaptations of list-of-values

across subsequent evaluations triggered by the recursive call to list-of-values.
Variables exps and env may also contain root pointers as expressions and envi-
ronments can be stored on the heap. Figure 2b depicts function list-of-values as
adapted to a particular non-moving GC. Root pointers are registered with the
GC through register-nm and are subsequently unregistered through unregister-nm.
These functions behave in a LIFO manner. The parameter to unregister-nm indi-
cates that 3 pointers must be discarded from the root set. Note that rest does not
have to be registered as it is passed to cons without any interleaved evaluation.

Adaptation 2: Moving GC. A moving GC further complicates the treatment of
root pointers. If a local variable contains a root pointer prior to a potential GC,
merely registering that root pointer no longer suffices. The GC may move the
object around on the heap and render the pointer stored in the local variable
invalid. This problem can be solved by having the GC provide the new root
locations to the evaluator, which must then refrain from using the old pointers.
Figure 2c depicts function list-of-values as adapted to such a moving GC. Root
pointers are registered with the GC through register-m. In turn, the GC provides
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the updated root pointer through a corresponding call to unregister-m. Again,
these functions behave in a LIFO manner. Note that a root pointer stored in a
local variable is never used again after a recursive evaluation.

The two adaptations show that composing the SICP evaluator with a custom
GC has a structural impact on the evaluator. Furthermore, the details of the re-
structuring depends on the chosen GC strategy, which means that it is also not
possible to prepare the evaluator for GC once and for all. Instead, the evaluator
must be adapted for each variation of memory management. This lack of sepa-
ration of concerns hinders reuse of the evaluator and evolution of the interpreter
as a whole.

3 Overview of Game

The novel notion of a generic abstract machine is key to our approach to con-
structing customized interpreters from a reusable evaluator and different variants
of a supporting runtime. A generic abstract machine corresponds to a recursive
evaluator implemented using generic programming techniques such that a run-
time is anticipated but not yet committed to, transformed into a low-level form
that lends itself better to injecting a concrete runtime. To support this approach,
we developed Game; the Generic Abstract Machine Environment. Using Game,
constructing an interpreter entails four different activities: one for the evalua-
tor developer, another for the runtime developer and two that are left to the
toolchain. Before discussing these activities in detail, we briefly outline their key
aspects using Figure 3. Figure 3a clarifies the interdependencies of the different
kinds of artifacts that are involved in these activities and indicates whether they
are generated or have to be provided by one of the developers. Figure 3b depicts
how these artifacts flow throughout the environment.

gen-eval.g

IDependencies.g

calls

IBind.g

generic
evaluator

supporting 
runtimes

interpreter.rkt

deps.g

bind.g

runtime.rkt

calls (FFI)

gam.g

calls

calls

calls

calls (FFI)

(a) Artifacts

interpreter.rkt

G
am

e\i

IDependencies.g

bind.g

deps.g

gen-eval.g

G
am

e\t

G
am

e\c

IBind.g

gam.g

(b) Toolchain

Fig. 3. Overview of Game
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Developing a generic evaluator (evaluator developer). Game offers the
generic programming language Game\l for implementing an evaluator in a
high-level, recursive functional style. Most importantly, this evaluator does
not have to adhere to the specifics that would be dictated by the choice for
a particular supporting runtime (e.g., the root pointer treatment protocols
discussed in Section 2). The evaluator’s own dependencies on the runtime
(i.e., operations that must be provided by every runtime it will be composed
with) are specified through interface declarations. In Figure 3a, gen-eval.g and
IDependencies.g correspond to the generic evaluator and the interface declara-
tion of its dependencies respectively. Note that both artifacts are the sole
responsibility of the evaluator developer.

Deriving a generic abstract machine (Game). Given such a generic eval-
uator, Game’s transformation engine Game\t transforms it into an abstract
machine —inspired by the work on defunctionalized interpreters [4,2]. The
actual transformation inserts hooks that make every computational step in
the generic evaluator explicit and programmable. As these hooks are de-
clared through an interface, we call the result a generic abstract machine.
The transformation requires type information computed for Game\l input
by a type inferencer called Game\i. In Figure 3a, gam.g and IBind.g correspond
to the generic abstract machine and the interface for the hooks respectively.
Note that the generic abstract machine inherits the dependencies of the origi-
nal evaluator, hence the arrow from gam.g to IDependencies.g. Figure 3b indicates
that gam.g is produced from gen-eval.g by Game\t.

Instantiating the generic abstract machine (runtime developer). It is
now up to the runtime developer to inject a concrete runtime into the generic
abstract machine that was generated above. This will yield a customized in-
terpreter expressed in Game\l. Note that the runtime developer does not
have to analyze the generic abstract machine itself, but only has to imple-
ment the interface dependencies of the machine. In other words, gam.g can
be considered a black box. In Figure 3a, deps.g implements the interface of
the evaluator dependencies declared in IDependencies.g; bind.g implements the
interfaces for the additional dependencies of the generic abstract machine
declared in IBind.g. Both implementations import runtime functionality from
runtime.rkt using a simple Foreign-Function Interface. Developing these three
files is the sole responsibility of the runtime developer.

Generating an executable interpreter (Game). The final activity entails
compiling the Game\l interpreter constructed above to the host platform.
In this case, Game’s compiler Game\c targets R6RS Scheme, in particu-
lar Racket1. Game\c performs simple optimizations, converts polymorphic
into monomorphic code and removes the overhead introduced by the generic
programming. Furthermore, the generated code does not use Scheme’s more
advanced features such as dynamic typing, long-lived closures, first-class con-
tinuations or tail-call elimination in such a way that C code generation would

1 http://racket-lang.org/

http://racket-lang.org/
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(define (true? x)
(not (eq? x false_sv )))

(define (self -evaluating? exp)
(cond ((number? exp) true)

((string? exp) true)
(else false )))

(define (tagged -list? exp tag)
(if (pair? exp)

(eq? (car exp) tag)
false))

(define (lambda? exp)
(tagged -list? exp lambda-symbol ))

(define (lambda -parameters exp)
(cadr exp))

(define (lambda -body exp)
(cddr exp))

(a) Fragment of the helper functions
implemented in Game\l

(type -function (SV) *)

(interface (Scheme)
(ok-symbol (tf SV))
...
(true_sv (tf SV))
(false_sv (tf SV))
...
(pair? (-> ((tf SV)) (effect) Bool))
(number ? (-> ((tf SV)) (effect) Bool))
...

(car (-> ((tf SV)) (effect IO) (tf SV)))
...
(cons (-> ((tf SV) (tf SV))

(effect IO GC)
(tf SV)))

...)

(b) Interface for the required dependencies of
the SICP evaluator

Fig. 4. Supporting functions for the SICP evaluator

be unfeasible. Figure 3b illustrates how Game\c compiles the generated
interpreter.rkt together with runtime.rkt into a final executable interpreter.

3.1 Developing a Generic Evaluator

Figure 1 depicts the prototypical Scheme evaluator from SICP [1] implemented
in Game\l. Other than substituting ok-symbol for the Scheme symbol ’ok, the code
is identical to the original. The evaluator relies on various helper functions, such
as variable? and lambda? for testing whether an expression is of a certain type, and
lookup-variable-value and extend-environment for manipulating environments. Some of
these helper functions can also be implemented in Game\l itself (see Figure 4a).
However, at some point the evaluator requires functions such as number? and car

which are not available in Game\l. Enumerating these functions as required
dependencies renders the evaluator generic.

Figure 4b depicts an extract from the Game\l declaration of the required de-
pendencies for the generic SICP evaluator, using an interface (akin to a Haskell
type class). Note that the required dependencies are explicitly typed. We intro-
duce a single type SV for typing Scheme values as Scheme is dynamically typed.
Because the concrete type depends on the runtime the evaluator is instantiated
with, we define SV as a type function [16], without any arguments. The * indicates
the kind of SV. Types can use this type function using (tf SV). For example, the
type for ok-symbol is simply (tf SV), because symbols are regular Scheme values.
The type for the function pair? is (-> ((tf SV)) (effect) Bool), where -> is a type
constructor with three arguments; first a list of types for the parameters of the
function; third the result type of the function; second the side-effects of the
function. Section 3.2 explains the crucial role these effect annotations play.
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3.2 Deriving a Generic Abstract Machine

As illustrated in Section 2, the original SICP evaluator has to be restructured be-
fore it can be composed with a custom GC. Furthermore, there are variations in
the details of the restructuring for a moving and a non-moving GC. Game intro-
duces defunctionalized monadic style to capture the essence of this restructuring
and to abstract over the details. As its name suggests, defunctionalized monadic
style derives from monadic style, which generalizes continuation-passing style.
Computations are explicitly sequenced, using higher-order functions to represent
continuations. Defunctionalized monadic style turns these continuations into ex-
plicit data structures, such that the transfer of data between sequenced compu-
tations also becomes explicit. Therefore, an evaluator written in defunctionalized
monadic style has a more low-level structure than a recursive evaluator.

Figure 5 depicts function list-of-values (cf. Figure 1) in defunctionalized
monadic style. The essential construct in defunctionalized monadic style is spe-
cial operator >>> (pronounced bind). It explicitly sequences two computations, of
which the first is passed as the first argument. The second and third parameters
represent the second computation. The second parameter is a reference to a con-
tinuation function, a top-level function that receives the result of the evaluation.
The third argument lists all additional data that should be preserved because it
is still needed in the continuation function. The continuation function receives
two arguments: first the preserved data, then the result of the evaluation. In
the example of list-of-values, the first expression in exps is evaluated, but both
exps and env are preserved for later, when they are needed in the continuation
function cnt-list-of-values-1. This is achieved by passing the tuple (* exps env) as
third argument to >>>. That continuation function cnt-list-of-values-1 uses pattern
matching, a Game\l feature, on its first argument to retrieve exps and env again.
The second argument first is the result of evaluating the first operand. The
body of cnt-list-of-values-1 uses >>> again to sequence the evaluation of the rest of
the arguments with cnt-list-of-values-2. This time, only first must be preserved.
Finally, cnt-list-of-values-2 simply combines the results using cons.

An evaluator expressed in defunctionalized monadic style has the structure of
an abstract machine [5], and is better suited for composition with a supporting
runtime. Using Game, abstract machines do not have to be developed by hand.

(define (list -of-values exps env)
(if (no-operands ? exps)

null
(>>> (eval (first -operand exps) env)

cnt -list -of-values -1
(* exps env))))

(define (cnt-list -of-values -1 (* exps env) first)
(>>> (list -of -values (rest -operands exps) env)

cnt-list -of-values -2
(* first )))

(define (cnt-list -of-values -2 (* first) rest)
(cons first rest))

Fig. 5. The function list-of-values in defunctionalized monadic style
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(defmacro (>>> e k frame)
(bind (lambda () e) k frame))

(interface (Frame (frm *) (t *) (res *))
(bind (forall ((e !*) (ke !*))

(-> ( (-> () e t)
(-> (frm t) ke res)
frm)

(effect IO e ke)
res))))

Fig. 6. Declaration of >>> and bind

Instead, Game derives them from evaluators by transforming the latter to de-
functionalized monadic style. This transformation is referred to as Game\t and
follows the work of defunctionalized interpreters [4,2], which in turn goes back
to the seminal work on definitional interpreters [13]. The essence of their deriva-
tion is CPS transformation followed by defunctionalization, yielding first-order,
tail-recursive evaluators, which are equivalent to well-known abstract machines.
Game\t works similarly, but adapts the original in two ways: first, Game\t
generates a generic abstract machine, and second, Game\t works automatically,
whereas in [13,2], the derivation is performed by hand. These two adaptations
are further discussed in the following two paragraphs, respectively.

Generic Abstract Machines. A generic abstract machine is expressed in defunc-
tionalized monadic style, where the semantics of >>> is customizable, that is, >>>

is a hook in the abstract machine, used to inject the supporting runtime (see
Section 3.3). This is achieved by using generic programming, in the same way
that the evaluator dependencies are treated. However, >>> is not a regular func-
tion because it should not execute its first argument immediately; instead, we
define >>> as a macro in terms of a function bind, by wrapping the first argument
to >>> in a thunk, as shown in Figure 6. The function bind is overloaded on the
types of the frame, the value produced by the thunk and the final result of the
continuation. The type of bind is polymorphic in the effects of the higher-order
arguments, hence the effect variables e and ke with kind !*.

Automatic Derivation. It is not necessary to transform every function call in
the evaluator to defunctionalized monadic style. Helper functions such as number?

and car do not trigger a GC, so introducing a >>> construct would be overkill.
Therefore, Game\t applies the transformation selectively: only computations
that potentially trigger a GC are transformed into defunctionalized monadic
style. To distinguish between computations that may trigger a GC and those
who do not, Game\t uses information derived from a type and effect system
in the style of [18]. Effect annotations are useful to track properties such as
“may trigger a GC” because they propagate through the evaluator: a function
that calls another function which potentially triggers a GC inherits this prop-
erty. Using Game, there is no need to manually annotate an evaluator with
effects. Instead, Game\i performs type and effect inference which derives the
required information from unannotated code. However, the declaration of the
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dependencies must explicitly declared their type as they cannot be “guessed”
by Game\i. Figure 4b shows some of the type annotations. Function types not
only specify the types of the arguments and result, but also the effect of the
function. An effect (effect ...) denotes the union of elementary effects. For ex-
ample, (effect) denotes the empty effect and (effect IO) the singleton effect, where
IO indicates general side effects such as accessing and modifying heap-allocated
memory. The type of cons is special: the effect of the function is (effect IO GC),
which means that cons may produce both the general effect IO and the effect GC.
This annotation is propagated through the evaluator and is used by the transfor-
mation to distinguish between functions that may trigger a GC and those who
do not.

These two adaptations, with the combination of Game\i with Game\t, forms
the basis for the automatic derivation of generic abstract machines from evalua-
tors. The type annotation for cons in Figure 4b indicates that invocations of cons

are a source of GC. This information is propagated through the unannotated
evaluator, such that Game\i assigns the following type to eval.
(forall () (Scheme)

(-> ((tf SV) (tf SV)) (effect IO GC) (tf SV)))

The effect annotation (effect IO GC) indicates that eval may trigger a GC. The type
constraint Scheme accounts for the required dependencies used in the evaluator.
Subsequently, Game\l introduces >>> only for those computations that include
GC in their effect. This is reflected in the following new type of eval.
(forall () (Scheme

(Frame (* ) (tf SV) (tf SV))
(Frame (* (tf SV) ) (tf SV) (tf SV))
(Frame (* (tf SV) (tf SV)) (tf SV) (tf SV)))

(-> ((tf SV) (tf SV)) (effect IO GC) (tf SV)))

The three Frame constraints arise because >>> is overloaded on the type of the frame
(via bind). For example, the constraint (Frame (* (tf SV) (tf SV)) (tf SV) (tf SV)) in-
dicates that at some point a >>> construct is used to preserve two Scheme values.

3.3 Instantiation of Generic Abstract Machines

In this section we illustrate how we can instantiate a generic abstract machine
by providing implementations for both the required dependencies of the original
evaluator and the additional dependencies introduced by the derivation of the
generic abstract machine. In this section we only give a “default” instantiation
to explain the mechanism in Game. The more interesting instantiations for GC
are given in Section 4.

Figure 7 gives the Game\l code that instantiates the generic machine pro-
duced by Game\t. As the type of eval indicates, this instantiation must satisfy
four constraints, one Scheme constraint and three Frame constraints. In Figure 7a,
we use a Foreign-Function Interface (FFI) to import the appropriate functions
from the underlying platform, in this case the R6RS Scheme implementation of
PLT Racket. We also introduce a single type RV denoting a Racket value. In Fig-
ure 7b, we use axiom constructs (akin to Haskell’s type class instances) to actually
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(type -decl RV () *)
(foreign -import "pair?" r_pair?

(-> (RV) (effect) RV))
(foreign -import "number ?" r_number ?

(-> (RV) (effect) RV))
...
(foreign -import "car" r_car

(-> (SV) (effect IO) SV))
(foreign -import "cdr" r_cdr

(-> (SV) (effect IO) SV))
...
(define (bindR thunk k frame)

(k frame (thunk )))

(a) FFI imports and definitions

(axiom () () (~ (tf SV) RV))
(axiom () ()

(? Scheme)
(mkScheme ...

r_pair?
r_number ?
...
r_car
r_cdr
...))

(axiom ((frm *)) ()
(? (Frame frm RV RV))

(mkFrame bindR))

(b) Instantiation with axiom

Fig. 7. Default instantiation of the SICP generic abstract machine

instantiate the generic abstract machine by satisfying its dependencies. The type
function SV is instantiated with RV and the Scheme constraint with the imported
functions. The three Frame constraints are all instantiated with bindR, which sim-
ply executes thunk and passes the resulting value along with the frame to the
continuation. Note that this implementation introduces no supporting runtime,
and simply reintroduces the recursion that was made explicit by Game\t. The
axiom declaration for Frame is polymorphic in the type of the frame, which is why
there is only one.

4 Evaluation

To evaluate Game we instantiate the generic abstract machine derived from the
SICP evaluator with several runtimes, which vary in their memory management
and stack discipline. Concretely, we give three instantiations: one for a non-
moving mark-and-sweep and another for a moving stop-and-copy GC which both
rely on the recursion stack of the underlying platform (Racket); and finally an
instantiation for a custom stack, using trampolining. We stress again that all
three instantiations reuse the original evaluator from Figure 1.

Instantiation for a Non-Moving Mark-and-Sweep GC. For this instantiation, the
implementation for cons, imported via the FFI in Figure 7a, is not the standard
Racket cons, but a custom implementation which uses a mark-and-sweep GC. The
code for the instantiation itself is shown in Figure 8b. Figure 8a defines helper
functions for the registration of root pointers in frames, which ultimately rely
on register-nm and unregister-nm which were also used in Section 2. These functions
are part of the mark-and-sweep memory manager and are also imported using
the FFI. In Figure 8b, bindNonMovGC satisfies the Frame constraints, by registering
the roots in the frame before executing thunk, then unregistering the correspond-
ing number of roots and finally proceeding with the continuation function. The
axiom for Frame is again polymorphic, by referring to the NMRoots interface, because
bindNonMovGC is defined for every frame that supports register-roots-nm.
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(interface (NMRoots (t *))
(register -roots -nm

(-> (t) (effect IO) Int )))

(foreign -import "register -nm" register -nm
(-> (RV) (effect IO) Unit))

(foreign -import "unregister -nm" unregister -nm
(-> (Int) (effect IO) Unit))

(define (register0 (*)) 0)
(define (register1 (* val))

(register -nm val)
1)

(define (register2 (* val1 val2))
(register -nm val1)
(register -nm val2)
2)

(a) Non-moving root registration

(define (bindNonMovGC thunk frame k)
(let* ((cnt (register -roots -nm frame))

(val (thunk )))
(unregister -nm cnt))
(k frame val))

(axiom ((frm *)) ((? (NMRoots frm)))
(? (Frame frm RV RV))

(mkNMRoots bindNonMovGC ))
(axiom () () (? (NMRoots (*)))

(mkNMRoots register0 ))
(axiom () () (? (NMRoots (* RV)))

(mkNMRoots register1 ))
(axiom () () (? (NMRoots (* RV RV)))

(mkNMRoots register2 ))

(b) Instantiation

Fig. 8. Instantiation for a non-moving mark-and-sweep GC

Instantiation for a Moving Stop-and-Copy GC. For a moving GC, the instan-
tiation with bindNonMovGC in Figure 8b is not suitable, because the continuation
function receives the old frame, whose root pointers may be invalidated if a mov-
ing GC occurs in the course of executing thunk. Figure 9 shows an adapted in-
stantiation. The roots are treated differently, using the function register-m and
unregister-m, which work in a LIFO manner (see Section 2). The function bindMovGC

in Figure 9b registers to roots before executing the thunk and then unregistering
them again, which gives the update frame frame2, which is then passed to k. Note
that the original frame is not used after registering it.

Instantiation for an Explicit Stack. Figure 10 shows an instantiation which main-
tains an explicit recursion stack instead of reusing the host stack. The definition
of bindStack in Figure 10b pushes both the continuation and the frame on the
stack and simply returns the value of executing the thunk. The function engine

defines a loop which pops the top continuation of the stack and executes it until
the stack is empty. The continuation pushed on the stack in bindStack is not the
original k. Instead, it is wrapped in a lambda such that it pops its own frame from
the stack, as the layout of the frame may vary across continuation functions.
Note however that k is a reference to a top-level function and that the lambda

expression does not capture other local variables. This means that if Game\c
inlines bindStack, the lambda can be lifted, such that again only top-level function
pointers are required from the host platform. The functions push0, pop0, . . . , are
similar to the register functions of the previous instantiation, but instead they
ultimately rely on push-rv and pop-rv. This instantiation effectively converts the
evaluator into trampolined style [7]. Therefore, this instantiation would be a
good starting point for extending the interpreter with first-class continuations.

Discussion. All three instantiations2 successfully compile to Racket and cor-
rectly execute a small Scheme program. In particular, the GC instantiations do
2 The full code of the generated interpreters can also be found on
http://soft.vub.ac.be/~stimberm/game/sc12/

http://soft.vub.ac.be/~stimberm/game/sc12/
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(interface (MRoots (t *))
(register -roots -m

(-> (t) (effect IO) Unit))
(unregister -roots -m

(-> () (effect IO) t)))

(foreign -import "register -m" register -m
(-> (RV) (effect IO) Unit))

(foreign -import "unregister -m" unregister -m
(-> () (effect IO) RV))

(define (register0 (*)) unit)
(define (unregister0) (*))
(define (register1 (* val))

(register -m val))
(define (unregister1)

(* (unregister -m)))
(define (register2 (* val1 val2))

(register -m val1)
(register -m val2))

(define (unregister2)
(let* ((val2 (unregister -m))

(val1 (unregister -m)))
(* val1 val2 )))

(a) Moving root registration

(define (bindMovGC thunk frame k)
(register -roots -m frame)
(let* ((val (thunk))

(frame2 (unregister -roots -m)))
(k frame2 val)))

(axiom ((frm *)) ((? (MRoots frm)))
(? (Frame frm RV RV))

(mkFrame bindMovGC ))
(axiom () () (? (MRoots (*)))

(mkMRoots register0 unregister0 ))
(axiom () () (? (MRoots (* RV)))

(mkMRoots register1 unregister1 ))
(axiom () () (? (MRoots (* RV RV)))

(mkMRoots register2 unregister2 ))

(b) Instantiation

Fig. 9. Instantiation for a moving stop-and-copy GC

not suffer from dangling or corrupt pointers after a GC. Manual instantiations
would require three rewrites of the SICP evaluator, whereas by using Game, the
evaluator can be reused as is. However, Game also has a number of limitations.
First of all, an instantiation of a generic abstract machine consists of a single
monolithic entity, which must be composed manually by the runtime developer.
For example, code that does not go through the Game toolchain still has to
track roots itself. Second, the evaluator is treated as a single entity, with little
support for modularization, especially compared to modular interpreters using
monad transformers [11,17]. However, we believe both of these concerns to be
orthogonal to the original goal of Game, which is to separate concerns between
and not whitin the evaluator and the runtime.

5 Related Work

In the context of modularity in interpreters, monads and monad transform-
ers proved to be a very useful abstraction technique [11,17]. The notion of
defunctionalized monadic style incorporates the abstraction power of monadic
style. Furthermore, both approaches share the use of type classes to express
the monadic operators and vary their behavior. However, the work on monadic
interpreters focussed on modularization of individual language constructs, with-
out considering the supporting runtime. Game on the other hand, specifically
considers the supporting runtime, and its relation with the evaluator as a whole.

PyPy [14] is both a toolchain for implementing virtual machines in RPython
(a restricted subset of Python) and a meta-circular implementation of Python
(in RPython). PyPy translates virtual machines written in RPython to C, and in
the process also injects required runtime functionality. PyPy supports variations
of the memory management strategy: the default translation uses a conservative
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(foreign -import "push -rv" push -rv
(-> (RV) (effect IO) Unit))

(foreign -import "pop -rv" pop-rv
(-> () (effect IO) RV))

(foreign -import "pushCnt " pushCnt
(forall ((ke !*))

(-> ((-> (RV) ke RV))
(effect IO)
Unit)))

(foreign -import "popCnt" popCnt
(-> () (effect IO) (-> (RV)

(effect IO)
RV)))

(foreign -import "stack -empty?"
stack -empty?

(-> () (effect IO) Bool))

(a) Pushing and popping values and con-
tinuation functions

(define (bindStack thunk frame k)
(push frame)
(pushCnt (lambda (val) (k (pop) val)))
(thunk ))

(define (engine val)
(if (stack -empty?)

val
(engine ((popCnt) val))))

(axiom ((frm *)) ((? (Stack frm)))
(? (Frame frm RV RV))

(mkFrame bindStack))
(axiom () () (? (Stack (*)))

(mkStack push0 pop0))
(axiom () () (? (Stack (* RV)))

(mkStack push1 pop1))
(axiom () () (? (Stack (* RV RV)))

(mkStack push2 pop2))

(b) Instantiation

Fig. 10. Instantiation for an explicit stack

GC but it is also possible to choose a mark-and-sweep GC. However, in PyPy,
the GC must be specified in relation to RPython, whereas Game allows the GC
to be tailored towards the implemented evaluator.

The combination of transformation into continuation-passing style and de-
functionalization (transforming the continuations into data structures) was in-
troduced in [13] and extensively used to relate evaluators and abstract machines
[2,4], but also to restructure programs for the Web [8]. Game builds on this
work and automates the transformation, using a type and effect system to apply
it selectively. A similar idea is also used in [12], which introduces a selective
CPS transformation to implement non-local control flow constructs, and is also
used to implement delimited continuations in Scala [15]. It has however not been
used in the work on defunctionalized interpreters [4], where instead the trans-
formation was applied manually. Furthermore, Game goes beyond the level of
the abstract machine, by instantiating it with a supporting runtime, yielding an
customized and executable interpreter.

6 Conclusions and Future Work

We presented Game, an environment consisting of a programming language and
toolchain for constructing customized interpreters. Using Game, a reusable eval-
uator is converted into a generic abstract machine, which is subsequently instan-
tiated with a runtime, giving rise to a customized interpreter. Our experiments
demonstrate that the high-level SICP evaluator can be reused in three different
interpreters, of which the runtime varies in memory management (a non-moving
mark-and-sweep versus a moving stop-and-copy GC) and in the stack discipline
(managing an explicit stack).
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We are currently investigating how to apply Game to other runtime varia-
tions, such as tail-call optimization [9], first-class continuations [3], the structure
of the interpreter loop [6], and support for implicit parallelization using continu-
ators [10]. The results for GC strengthen our confidence that these concerns can
also be injected in high-level evaluators.
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Abstract. We study the specification and verification of real-time sys-
tems. To deal with the properties of such systems, different toolboxes re-
garding timing aspects and their related decidable properties have been
elaborated: Uppaal [16], Tina [7], Cadp [11] and Kronos [21]. They
enable the specification of real-time systems using different formalisms
(timed automata and time Petri nets) and the verification of properties
expressed in LTL, CTL, TCTL, etc. In this paper we are interested in
the Uppaal specification language for which we propose a revised defini-
tion of timed automata composition. Moreover, in order to make Uppaal
timed automata more expressive, we define an extension enabling in-
stantaneous conditional data communications by superposing message
exchange to synchronization. We define an extended timed transition
system (ETTS) as a semantic model for both Uppaal timed automata
(TA) and Uppaal extended ones for which we have established a compo-
sitionality result. In order to reuse the basic Uppaal tool, we give trans-
lation rules for transforming a description with the new semantics into
a description with the basic Uppaal semantics. Furthermore, to prove
the translation correctness, we study the bisimilarity between the ETTS
semantics of extended Uppaal TA composition and that corresponding
to the translation to basic Uppaal ones.

Keywords: Real-time systems, timed transition systems, verification,
composition, timed automata.

1 Introduction

Modern communicating systems are often designed through big assemblies of
different components. Because of the interaction and timing constraints of such
components, the specification and verification of these systems become a hard
task. To dual with such a complexity, expressive specification languages, power-
ful analysis techniques and associated toolboxes have been proposed and built.
In this paper, we are interested in specifications in terms of networks of timed
automata [1], their analysis in a hierarchical and compositional way [6] and the
associated widely used toolbox: Uppaal [16]. Uppaal is an integrated tool for the
modeling, simulation and verification of real-time systems where the properties
to be checked are expressed in restricted TCTL [4]. In this paper, we are inter-
ested in the Uppaal specification language where we revisit the semantics of Up-
paal basic component’s (TA) composition so that the semantics of a network of

T. Gschwind et al. (Eds.): SC 2012, LNCS 7306, pp. 114–131, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Revising and Extending the Uppaal Communication Mechanism 115

components is a product of the semantics of individual components. This makes
possible compositional verification [9] which reduces the problem of checking
whether a system S = S1 ‖ . . . ‖ Sn satisfies a property P to a number of simpler
problems of checking whether each component Si satisfies a property Pi where P
is a composition of Pi. It is important to note that S is not actually constructed.
Actually:

Fig. 1. Extensions Correctness

1. we propose a revised composition with a
compositional semantics for Uppaal TA;

2. we define a new extension of Uppaal TA
called synchronization with conditional
data communications which consists in
superposing message exchange to syn-
chronization;

3. in order to reuse the basic Uppaal tool,
we elaborate translation rules for trans-
forming an extended description into a
description with the basic Uppaal se-
mantics.

With respect to our previous paper [8], where we have already presented the
composition. In this paper, we go further by specifying the translation rules and
establishing their correctness.

The rest of the paper is organized as follows: Section 2 cites the existing
related work and presents the motivation and the benefits of our proposal. In
section 3, we define the formal basis of our work where we introduce Labelled
Transition Systems (LTS) and their bisimilarity, Extended Timed Transition
Systems (ETTS), as a low-level timed transition systems, with the correspond-
ing semantics and refinement and establish an associative product of ETTSs.
Moreover, we give the semantics of Uppaal timed automata (TA) and networks
of timed automata (NTA) in terms of ETTS. In section 4, we define a compo-
sitional semantics for the Uppaal TA composition and establish a correctness
theorem of the translation of our semantics to that of basic Uppaal. Besides, we
define TA with conditional data communications (TACDC) as an extension of
Uppaal TA and give both the ETTS and the NTA corresponding to a network
of TACDC and study the bisimilarity of the resulting semantics.

2 Related Work

Timed automata[1] have been studied for a long time and different concepts
have been introduced like variables, priorities and synchronization to deal with
the different aspects of modern complex systems and the underlying compo-
sition [5,15,6,10,14,22]. However, a compositional framework for the compo-
sition of such structures is lacking. With respect to this issue, we are only
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interested in work [5,6] focusing on the composition of extended timed systems
with synchronization, committedness and variables.

The authors of [5] define a framework with a non compositional semantics
for Uppaal timed automata product where ,on a synchronization, such a model
checks the guards of the involved transitions before applying any action. On the
other hand, [6] describes a framework for compositional abstraction and defines
a parallel composition operator for Uppaal timed automata. To establish their
results, the authors of [6] restrict both TA and their semantics where both input
transition guards (A) and location invariant (B) do not refer to shared variables.
Besides, in TA a committed location should have an outgoing transition (C ).

Furthermore, in the major part of work[5,6,15,10,14,22], the communication
of components is performed via read/write actions on shared variables. Thus,
with such a mechanism the modeling of resource allocators and schedulers (with
conditional communication) is a difficult task. In this paper, we propose a new
semantics for TA composition where the input transition guard is checked after
the execution of the output transition action. These changes solve the restrictions
(A) and (C ). Moreover, in order to make communications easier, we extend TA
with instantaneous communication where, transfer of data can happen upon
successful synchronization.

Motivating Example. To discuss the benefits of our proposal, let us consider
the resource allocator system depicted in Figure 2. According to its requirement,
the process client specifies the amount of required resources through the assign-
ment of its local variable need to the shared variable req. Such an amount
has to be known by the process allocator. Moreover, the variable resource

represents the quantity of remaining resources of the process allocator. The

executready

true free!

true alloc!

req:=need

act

true free?

resource:=resource+req

req<=resource alloc?

resource:=resource-req

Fig. 2. Resource allocation

synchronization of both processes client
and allocator takes place through the chan-
nel alloc. Logically, the allocator should
grant a request once the required resources
are available. Otherwise, the request is
postponed. To sum up, the resource alloca-
tion transition of the allocator is guarded
by req≤ resource. One may remark here
that the basic UPPAAL synchronization
protocol does not fit our needs because,
in UPPAAL, the guards of both synchro-
nizing transitions (sender and receiver)
are evaluated before the synchronization
starts, i.e., in our case, before the process
client updates the shared variable req. We
propose a way to trigger such a synchro-
nization where the guard of the receiver
(allocator) is evaluated after the execution of the update action req := need
of the sender (client). With respect to our example, this means that the client
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first updates the variable shared req through the assignment req := need, then,
the allocator grants the request provided its guard evaluates to true1.

3 Transition System Extensions

In this section we briefly introduce one of the fundamental models of concur-
rency, transition systems, originally introduced in [19,3], and since then studied
extensively by [18] and others. In fact, transition systems are an elegant model
for representing the behavioral aspects. They are essentially composed of states
and transitions. States correspond to the configurations reached by the modeled
system whereas transitions link these states through the actions of the system.
In order to enhance their expressiveness, we consider an extension of classical
transition systems where we introduce variables, communications and priority.
Due to their safety properties verifiable using model-checking, transition systems
have been intensively applied to the modeling of complex systems as well as for
giving semantics to synchronous languages and real-time formalisms.

3.1 Labelled Transition Systems

Labelled transition systems [3] are the reference model used to express and to
compare behaviors through simulations. They offer a strong notion of equivalence
that can be checked efficiently. First, let us start with a brief recall of classical
labelled transition systems (LTS) and their bisimulation relation. Throughout
this paper, labelled transition systems constitute the lowest semantical level of
our study.

Definition 1 (LTS). A labelled transition system (LTS) over an alphabet Σ is
a tuple 〈Q,Q0 ⊆ Q,→〉 where Q is the state space, Q0 ⊆ Q is the set of initial
states and →⊆ Q×Σ ×Q is the transition relation.

Here and elsewhere, we note t : q
σ→ q′ for (q, σ, q′) ∈→. Moreover, if not needed,

the name t of transitions can be omitted. In order to compare LTS’s behavior
and ensure that a given concrete LTS implements an abstract one, we define
LTS simulation.

Definition 2 (Simulation). Given two LTSs Tc = 〈Qc, Q
0
c ,→c〉 (concrete) and

Ta = 〈Qa, Q
0
a,→a〉 (abstract), Tc simulates Ta, we write Tc �R Ta, through a

relation R ⊆ Qc × Qa if ∀qc ∈ Q0
c, there exists qa ∈ Q0

a such that R(qc, qa)

and ∀qc q′c qa σ, if qc
σ→c q′c and R(qc, qa) then there exists q′a ∈ Qa such that

qa
σ→a q′a and R(q′c, q

′
a).

Roughly speaking, two LTSs Ti and Tj are bisimilar through a relation R, we
write Ti ∼R Tj , if Ti �R Tj and Tj �R−1 Ti.
1 The synchronization protocol is atomic: if on the receiver side, the guard does not
evaluate to true, updates on the sender side do not take place.
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3.2 Timed Transition Systems Extensions

Timed Transition Systems (TTS) [12] are the reference model to define the
semantics of real-time formalisms. Basically, a TTS is an LTS where labels can
be events or durations. In this section, we define Extended Timed Transition
Systems (ETTS) as an extension of TTS by introducing local variables, global
variables, static priority (committedness) and location invariants. Moreover, to
make transition systems communicate, we specialize the state space and the
alphabet to allow several communication protocols:

– via a shared space: we distinguish local and global state spaces updated via
a set of actions. These actions can be non-deterministic and blocking.

– via CCS-like channels: we introduce a set C of send-receive channels where
two transitions synchronize if their actions are complementary. The resulting
transition of such a synchronization corresponds to an internal transition in
the composition.

– via CSP-like synchronization: we introduce a set Δ of many-to-many syn-
chronization events. Such a synchronization is used to model a system transi-
tion where all of the processes make a lock-step [13]. Throughout this paper,
we use this synchronization to model the evolution of time.

Furthermore, Committedness is a high level mechanism to express that commit-
ted transitions have priority over non-committed ones. Committed transitions
starting from a given location hide non committed ones starting from that loca-
tion. In fact, this notion is relevant when considering composition. Note that hid-
ing is supposed to be static: a non firable committed transition can hide a firable
non committed transition. A location q is said to be committed (Comm(q) = �)
if at least one of its outgoing transitions is committed. We have also introduced
location invariants to ensure liveness.

Definition 3 (Timed space). Given the time structure 〈Δ, 0,+,≤〉 where +
is associative and commutative, 0 is neutral and a ≤ b � ∃c, a+ c = b, a timed
space is a set E together with an operator ⊕ : E ×Δ→ E defining the advance
of time. ⊕ is supposed to be compatible with the time structure:

– Additivity : (x⊕ δ1)⊕ δ2 = x⊕ (δ1 ⊕ δ2).
– Zero-delay : x⊕ 0 = x.

We note ⊕δ the function x �→ x⊕ δ. In fact, the timed space enables to quantify
time and specify its progress (timeliness).

Definition 4 (ETTS). An Extended Timed Transition System over a shared
timed space G and a set of channels C is a tuple 〈Q, q0,L, I, I, T, α, β, d〉2 where:

– Q is the set of locations (local states), q0 is the initial location,
– L is the local timed space,
– I ⊆ L × G defines the initial states,

2 In the rest of the paper, we often omit the projection functions α, β and d.
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– I : Q→ 2L×G associates an invariant to each location,

– T is the set of transitions,

– α : T → Q and β : T → Q are functions associating respectively the corre-
sponding source and target locations of each transition,

– d : T → 2L×G × Λ× (L × G → L× G) × B is a function associating to each
transition the corresponding guard, label, action (supposed to be determinis-
tic) and committedness flag where Λ = C?∪C!∪Δ∪{τ} is the set of labels.
Δ is the time domain, C! and C? correspond respectively to send and receive
labels over channels of C. The action associated to a transition labelled by
δ ∈ Δ is ⊕δ ⊗⊕δ

3 which adds δ to both local and global parts of the state.

Furthermore, an ETTS must satisfy a wellformedness condition : time synchro-
nization transitions (with labels in Δ) are supposed to be non committed.

We write t : q
G/λ/a−−−−→b q

′ for t ∈ T with α(t) = q, β(t) = q′, d(t) = 〈G, λ, a, b〉. If
absent, b is considered to be false. If not needed, the name of a transition will be
omitted. Again, the set of transition T is often denoted by the transition relation
→. By now, we define formally the predicate Comm by:

Comm(q) =

{
� If ∃ G λ a q′ | q G/λ/a−−−−→� q′

⊥ Otherwise

The semantics of an ETTS is specified by its associated LTS defined below. It
allows comparing ETTSs through simulation and bisimulation.

Definition 5 (Semantics of an ETTS). Given the global timed space G, the
semantics of the ETTS 〈Q, q0,L, I, I, T 〉 is the LTS 〈Q × L × G, {q0} × (I ∩
I(q0)), {(q, l, g), λ, (q′, l′, g′) | (l, g) |= I(q), (l′, g′) |= I(q′), ∃G, ∃ a, ∃ b, ∃t :

q
G/λ/a−−−−→b q

′ ∈ T, (l, g) ∈ G, and ((l, g), (l′, g′)) ∈ a and ¬b⇒ q � �}〉.

The notation q � � states the absence of outgoing committed transitions from
q. Moreover, we state by (l, g) ∈ G that the valuation of both local and global
spaces satisfies the guardG. Here, one can remark that the ETTS non-committed
transitions outgoing from a committed location are not held in the corresponding
LTS semantics because they are hidden. In fact, only non-hidden enabled ETTS
transitions are held. In the meantime, we define the similarity of ETTSs through
their LTSs semantics.

Definition 6 (Similarity). An ETTS Ti is said to be (bi)similar to an ETTS
Tj if their associated LTSs are (bi)similar.

In fact, such a definition enables to get rid managing priorities during bisimula-
tions proofs.

3 The function composition operator ⊗ is defined by: (f ⊗ g)(x, y) = (f(x), g(y)).
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Restriction of an ETTS. On composition of ETTSs, unmatched synchronizing
transitions are ignored. We define the corresponding operation so-called restric-
tion [17]. In fact, the restriction of an ETTS over a set of channels is an ETTS
where transitions composable over these channels have been deleted.

Definition 7 (ETTSs restriction). Let T = 〈Q, q0,L, I, I,−→〉 be an ETTS
over a set of channels C. Let C′ ⊆ C, we define the restriction of T to C′,

denoted T \C′, to be the ETTS 〈Q, q0,L, I, I,−→ \{q
G/λ/a→b q′ | λ ∈ C′!∪C′?}〉.

3.3 Product of ETTSs

In this section, we define an associative n-ary product of ETTSs where the local
space of composition is simply obtained by the merge of individual local spaces.
In a simpler case, we may consider the merge as a renaming of the corresponding
variables. Moreover, guards, actions and location invariants of each individual
ETTS, depending on its local space, are extended according to the new local
space of the composition.

Definition 8 (N-ary product of a family of ETTSs). Given an indexed
family of n ETTSs Ti = 〈Qi, q

0
i ,Li, Ii, Ii,→i〉 over the same shared space G,

their product ΠiTi is defined by the ETTS over G:
〈×iQi, 〈q01 , .., q0n〉,×iLi,∩iIi ↑i, 〈q1, .., qn〉 �→ ∩iIi(qi) ↑i, →〉

where for E ⊆ Li × G, its extension to (×iLi) × G is defined by: E ↑i� {〈l, g〉 |
〈li, g〉 ∈ E}, for a : Li × G → Li × G its extension to (×iLi) × G → (×iLi) × G
is defined by: a ↑i 〈l, g〉 � 〈l[i �→ a(〈li, g〉) ↓1], a(〈li, g〉) ↓2〉. → is the smallest
relation such that:

ti : qi
G/λ/a−−−−→i,b q

′
i λ ∈ C! ∪C?

q
G↑i/λ/a↑i−−−−−−−→b q[i← q′i]

ASYNC(ti)

(∀i) qi
Gi/δ/⊕δ⊗⊕δ−−−−−−−−−→i,⊥ q′i δ ∈ Δ

q
∧

i Gi↑i/δ/(⊗i⊕δ)⊗⊕δ−−−−−−−−−−−−−−−→⊥ q′
TIME

ti : qi
G/τ/a−−−−→i,b q

′
i (

∨
j Comm(qj))⇒ b

q
G↑i/τ/a↑i−−−−−−−→b q[i← q′i]

TAU(ti)

ti : qi
Gi/c!/ai−−−−−→i,bi q

′
i tj : qj

Gj/c?/aj−−−−−−→j,bj q′j
i �= j (

∨
k Comm(qk))⇒ (bi ∨ bj)

q
Gi↑i∧((Gj↑j)◦(ai↑i))/τ/aj↑j◦ai↑i−−−−−−−−−−−−−−−−−−−−−−→bi∨bj q[i← q′i, j ← q′j ]

SR(ti, tj)

The locations, respectively initial locations, of the product are obtained by merg-
ing the locations, respectively initial, locations, of individual ETTS. Moreover,
the initial valuations I, respectively invariant I, of the composition are defined
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through the intersection of initial valuations, respectively invariants, of individ-
ual Ti. The notation q[i← q′i] states the replacement of the ith location of state
q by location q′i. Here, one may distinguish that, on a synchronization, the input
transition guard is checked after the execution of the output transition action.

Moreover, Comm(q) ⇒ b with t : qi
G/λ/a−−−−→i b q′i specifies that t must be com-

mitted if there exists another outgoing committed transition from q. Otherwise
stated: a prioritized transition cannot be hidden by a less prioritized transition.
In fact, through rule ASY NC(ti), we allow the ETTS Ti to hold its synchroniz-
ing transition ti, for a future composition, without checking its committedness
flag because it may be that a compatible committed transition will synchronize
with ti, making then the resulting transition committed. The rule TIME states
that a delay δ of the composition may occur when each component performs
a delay δ. In fact, through ⊕δ ⊗ ⊕δ we specify the progress of both local and
global clock variables. TAU(ti) induces an internal transition of the composition
from the transition ti of component Ti. Through such a rule, the corresponding
transition of the composition is non-committed if each location qi of the current
state is non-committed. Otherwise, TAU(ti) provides that ti has priority over
the other transitions outgoing from q. Finally, SR(ti, tj) (for send/receive) de-
scribes the synchronization of components Ti and Tj on channels c ∈ C where
the guard Gj of the receiver is checked after simulating the update made by
the sender action ai. In fact, two components synchronize if their synchroniz-
ing transitions are compatible. The resulting transition, labelled by the internal
event τ , is committed if either the send or the receive transition is committed.
Otherwise, a non-committed synchronization may only occur if the current state
q is non-committed.

Theorem 1 (Generalized associativity). The product of ETTSs is associa-
tive, i.e.: Πi∈I(Πj∈JiTi,j) ∼ Πi∈I,j∈JiTi,j.

Proof. It essentially consists in defining an isomorphism between the two struc-
tures (state space and transitions) preserving labels and priorities.

3.4 Uppaal Networks of Timed Automata

In this section, we consider Uppaal timed automata (TA) [5,6] and networks of
timed automata (NTA). In fact, they are an extension of the classical ones where
local variables, global variables and other high level concepts like committedness
and communication have been introduced. Moreover, location committedness is
a static priority relation where transition enabledness is not taken into account.
It defines two priority levels where transitions outgoing from committed locations
have priority over others.

Notations. Given a set V of variables valued in a domain D.

– E(V ) defines the set of expressions built over V .
– P(V ) defines the set of predicates built over V .
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– !iVi � ∪i{i} × Vi.
– ↑i is a function converting each expression of E(Vi) to an expression of

E(!jVj) by renaming variables v ∈ Vi into (j, v) ∈ !jVj .

According to former notations, we introduce the following semantics functions:

– p ∈ P(V ), [[p]] ⊆ V → D.
– e ∈ E(V ), [[e]] ∈ (V → D)→ D.
– For an action a : V � E(V ), usually denoted v1 := e1 ‖ . . . ‖ vn := en where
{v1 . . . vn} = dom(a) and ei = a(vi), its semantics [[a]] : (V → D) → (V →

D) is defined by env �→ (v �→
{
[[a(v)]]env if v ∈ dom(a)
env(v) otherwise

)

– The semantics of a sequence of actions is defined by: [[ai; aj ]] � [[aj ]] ◦ [[ai]].
– For a predicate P with [[P ]]→ 2V→D, we outline the following semantics:

[[P ( )]] : D → 2V→D

[[e]] : (V → D)→ D
[[P (e)]] = {u ∈ V → D | u ∈ [[P ( )]]([[e]](u))}

Note that the restrictions of both expressions and predicates construction are not
detailed here. By now, we give the Uppaal semantics of both TA and networks
of TA through extended timed transition systems (ETTSs).

Timed Automata. Timed automata has been introduced as a modeling frame-
work, a basic mathematical framework to support the description and analysis
of systems. In such a formalism, a process is modeled as an automaton. An au-
tomaton is structured as a set of states linked through a number of transitions,
going from state to state, denoting the execution of elementary actions, the ba-
sic unit of behavior. Also, there is an initial state (sometimes, more than one)
and eventual final states. Structurally, a timed automaton[2,1] is a finite-state
machine extended with a finite collection of real-valued clocks initialized to zero
and increased synchronously. In this section, we consider the set of variables
split to local and global ones. This distinction has been established to make TA
structure composable according to the Uppaal NTA definition.

Definition 9 (Timed automaton). A timed automaton on a set of clocks χ,
a set of global variables Vg, its initialization function Initg ∈ Vg → D and a set
of channels C is a tuple 〈Q, q0,K,V l, Init, I, T, α, β,Grd,Act, s〉 4 where:

– Q is a set of locations, q0 ∈ Q is the initial location,
– K ⊆ Q is a set of committed locations,
– V l is a set of local variables,
– Initl : V l → D is the initialization function of local variables,
– I : Q→ P(V l ∪ Vg ∪ χ) associates an invariant to each location,
– T is the set of transitions,
– α : T → Q and β : T → Q are functions associating respectively the corre-

sponding source and target locations of each transition,

4 We assume that χ ∩ Vg = Vl ∩ Vg = Vl ∩ χ = ∅.
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– Grd : T → P(V l ∪ Vg ∪ χ) is a function associating to each transition the
corresponding guard,

– Act : T → ((V l ∪ Vg ∪ χ) � E(V l ∪ Vg)) is a partial function associating to
each transition the corresponding action. In fact, actions assign to a subset
of variables of V l ∪ Vg a formula built on variables of V l ∪ Vg,

– s : T → C? ∪ C! ∪ {τ} is a function associating to each transition a label.

Here and elsewhere, we note t : q
G/λ/a−−−−→ q′ for t ∈ T with α(t) = q, β(t) =

q′, Grd(t) = G, Act(t) = a, s(t) = λ. As previously stated, we often omit T
and the projection functions α, β, Grd, Act and s. They are implicitly given by
the transition relation→. In order to study the bisimulation of timed automata,
different semantics of TA through TTS have been proposed [6,15,14]. Here, we
define the semantics of TA over ETTSs. First, let us specify the timed space
(G,⊕) associated to a timed automaton by the following:

– G = (Vg → D)× (χ→ R+)
– (ug, uχ)⊕ δ = (ug, x �→ uχ(x) + δ)

Definition 10 (ETTS of a TA). Given a set of channels C, a set of global
variables Vg with its initialization function Initg and a set χ of clocks. The se-
mantics of a timed automaton 〈Q, q0,K,V l, Initl, I,→ta〉 is defined by the ETTS
〈Q, q0, (V l → D), I, I,→〉 over the timed space (G,⊕) where I = {(Initl, (Initg,
χ× {0}))} and → is the smallest relation such that:

q
G/λ/a−−−−→ta q′

q
[[G]]/λ/[[a]]−−−−−−→q∈K q′

Action
q ∈ K

q
⊥/τ/IdL×G−−−−−−−→� q

Empty

(q �∈ K)

q
�/δ/IdL ⊗ ⊕δ−−−−−−−−−−→⊥ q

Delay

The rule Action associates to each TA transition an ETTS transition labelled by
the same event, guarded by the semantics of the TA transition guard and engag-
ing with the semantics of the corresponding TA action. The Empty transition
(identity) is not firable, it is especially used to hold the committedness informa-
tion of a TA location when the former does not have any outgoing transition.
Furthermore, from each TA non-committed location, the Delay rule specifies a
non-committed ETTS transition outgoing from that location. Such a transition
updates only clock (global) variables. One can remark that both Empty and
Delay-transitions do not modify local states (locations).

Simulation. We say that a TA Tc refines another TA Ta if the simulation relation
holds between their associated ETTSs: Tc � Ta � ETTS(Tc) � ETTS(Ta).

Composition of Timed Automata. To model compound systems wherein
several components are concurrently run, timed automata are concurrently com-
posed giving rise to networks of timed automata. Every automaton may fire a



124 A. Boudjadar, J.-P. Bodeveix, and M. Filali

transition separately. The state of the system (network) is then described by
the vector of the locations reached in automata. The Uppaal language [16] has
adopted the CCS parallel composition semantics where, according to [6], the
NTA semantics[5] is not compositional.

Definition 11 (Network of timed automata). A network of timed automata
on a set of shared variables Vg is a finite collection of timed automata defined
on the same set of clocks χ and channels C.

In order to study the properties of timed automata composition, such as com-
positionality, we recall the semantics of Uppaal NTA according to [5] where,
on a synchronization, Uppaal checks that both involved transition’s guards are
simultaneously satisfied.

Definition 12 (NTA semantics). Given a network of timed automata 〈Qi, q
0
i ,

Ki,V l
i , Init

l
i, Ii,→i〉i∈{1..n} defined on the same set of channels C, clocks χ and

global variables Vg with the initialization function Initg, its semantics is defined
by the ETTS 〈×iQi, 〈q01 , . . . , q0n〉, (

⊎
i V l

i) → D, I, I,→ 〉 over the timed space
(G,⊕) where I = {((i, v) �→ Initli(v), (Init

g, χ × {0}))}, I(q) =
∧

i Ii(qi) ↑i and
→ is the smallest relation such that:

qi
G/τ/a−−−−→i q

′
i (

∨
j qj ∈ Kj)⇒ qi ∈ Ki

q
[[G↑i]]/τ/[[a↑i]]−−−−−−−−−→qi∈Ki q[i← q′i]

Taui

∧
i qi �∈ Ki

q
�/δ/IdL ⊗ ⊕δ−−−−−−−−−−→⊥ q

Delay

qi
Gi/c!/ai−−−−−→i q

′
i qj

Gj/c?/aj−−−−−−→j q
′
j i �= j

(
∨

k qk ∈ Kk)⇒ qi ∈ Ki ∨ qj ∈ Kj

q
[[Gi↑i]]∧[[Gj↑j ]]/τ/[[aj↑j ]]◦[[ai↑i]]−−−−−−−−−−−−−−−−−−−−→qi∈Ki∨qj∈Kj q[i← q′i, j ← q′j ]

SRi,j

Due to the extension of each TA local variables V l
i to

⊎
i V l

i , both guards, actions
and location invariants of each individual TA are syntactically extended to the
new set of local variables. The guards and actions of the underlying ETTS are
defined by the semantics of TA extended guards and actions. The rule Delay is
earlier presented in the semantics of a TA. Moreover, rules TAUi and SRi,j are
respectively similar to rules TAU and SR of the ETTS product. We may remark
that only non-hidden transitions of NTA are held in the ETTS semantics.

4 Extensions of Uppaal

In this section, we propose a revised definition of timed automata composition
with a compositional semantics. Moreover, in order to enhance Uppaal timed
automata, we define an extension enabling instantaneous conditional data com-
munications by superposing message exchange to synchronization. For each ex-
tension, a translation to basic Uppaal is established.
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4.1 Compositional Uppaal

Similarly to the product of ETTSs, we define a new timed automata composition
where the input transition guard is only checked after taking into account the
effect of the corresponding output transition action.

Definition 13 (Compositional NTA semantics). Given a network of timed
automata 〈Qi, q

0
i ,Ki,V l

i , Initi, Ii,→i〉i∈{1..n} defined on the same set of channels
C, clocks χ and global variables Vg, its compositional semantics is defined by the
ETTS 〈×iQi, 〈q01 , . . . , q0n〉, (

⊎
i V l

i)→ D, Ii, I,→ 〉 given by Definition 12 where
the transition relation → is redefined by rules TAUi, Delay and the following
rules:

qi
Gi/c!/ai−−−−−→i q

′
i qj

Gj/c?/aj−−−−−−→j q
′
j i �= j

b = (qi ∈ Ki ∨ qj ∈ Kj) , (
∨

k qk ∈ Kk)⇒ b

q
[[Gi↑i]]∧([[Gj↑j ]]◦[[ai↑i]])/τ/[[aj↑j ]]◦[[ai↑i]]−−−−−−−−−−−−−−−−−−−−−−−−−−→b q[i← q′i, j ← q′j ]

SRi,j

qi ∈ Ki

q
⊥/τ/IdL×G−−−−−−−→� q

Empty

The rule Empty is earlier presented in the semantics of a TA. Hence, on a
synchronization SRi,j , the input transition guard Gj ↑j, extended on the new
set of local variables, is checked after the execution of the output transition
(extended) action ai ↑i. One can remark that both Uppaal semantics and our
compositional one are the same if all of the input transition guards equal to
true. In the following, the compositionality of such a semantics is established.

Theorem 2 (Compositional semantics).The ETTS of a network of timed au-
tomata is bisimilar to the restriction to time and τ-transitions of the product of
ETTSsassociated to individualTA.Formally,ETTS(NTA) ∼ ΠiETTS(TAi)\C.

Proof. It is direct because we have the same composition rules in both sides. The
difference resides in the occurrence of unmatched communication transitions in
the ETTSs product, but these transitions will be suppressed when applying the
restriction operator. This result is mainly another formulation of the result that
we formally proved with the Coq theorem prover [8]. �

4.2 Translation of Compositional Uppaal to Basic Uppaal

In order to reuse the Uppaal tool, we outline a model transformation convert-
ing a compositional network of timed automata into a new network of timed
automata to be analyzed by Uppaal. The proposed transformation is decom-
posed into three basic transformations where each one preserves the semantics
of the transformed NTA. The composition of these transformations applied on
the original network of timed automata generates a NTA such that Uppaal se-
mantics and our proposed semantics are the same. It follows that we can check
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a NTA, through the Uppaal model checker, according to our semantics. In the
following, we outline a normal form of networks of timed automata for which
Uppaal semantics and our proposed one are bisimilar. Thereafter, we give the
basic transformations, we establish their correctness and their composition.

Networks of Timed Automata Normal Form. A network of timed
automata is said to be in normal form if:

– Only global data is used.
– each channel is used by at most one sender and one receiver. Such channels

are called “one one” channels.
– Channel receptions are not guarded, i.e., the expression used to guard any

reception is true.

Properties. Given a normalized timed automata, its Uppaal semantics and its
semantics according to our proposal are the same.

Translation. The basic idea of transformation is to move the “late” reception
guards to the sending point.

Step 1: Variables Globalization. Local variables occurring in guards of receptions
become global. This transformation allows to evaluate guards out of their local
initial context. Formally, given a NTA N = 〈Vg, Initg, χ, C, 〈Qi, q

0
i ,Ki,V l

i , Init
l
i,

Ii, Ti, αi, βi, Grdi, Acti, si〉i〉, its transformation through this step is
the NTA Step1(N) = 〈(

⊎
i V l

i) ∪ Vg, Init, χ, C, 〈Qi, q
0
i ,Ki, ∅, Initli, Ii ↑i

, Ti, αi, βi, Grd′i, Act
′
i,

si〉i〉 where⎧⎪⎨
⎪⎩

Init(〈i, x〉) = Initli(x) if x ∈ V l
i

Init(y) = Initg(y) if y ∈ V g

Grd′i : Ti → P(
⊎

i Vl
i ∪ Vg ∪ χ) ∀t ∈ Ti, Grd′i(ti) = Grdi(ti) ↑i

Act′ : Ti → ((Γ ∪ χ ∪⊎
i Li)� E(Γ ∪⊎

i Li)) ∀t ∈ Ti, Act′i(ti) = Acti(ti) ↑i

Note that both guard and action scopes are extended to the new set of variables.

Theorem 3 (Bisimulation). An NTA and its translation through Step1 are
bisimilar for both Uppaal and compositional semantics.

Proof. It consists in defining a mapping between original variables and their
globalization, which is a renaming.

Step 2: Unique Reception Transition. This transformation al-
lows to retrieve the succeeding receptions. Each reception is dis-
tinguished by a dedicated channel. Formally, given a NTA N =
〈Vg, Initg, χ, C, 〈Qi, q

0
i ,Ki,V l

i , Init
l
i, Ii, Ti, αi, βi, Grdi, Acti, si〉i〉, its trans-

formation through this step is the NTA Step2(N) = 〈Vg, Initg, χ,
⋃

i{ti|si(ti) ∈
C?}, 〈Qi, q

0
i ,Ki,V l

i , Init
l
i, Ii, T

′, α′
i, β

′
i, Grd′i, Act

′
i, s

′
i〉i〉 where:
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– T ′ =
⋃

j,c∈C{〈ti, tj〉 | si(ti) = c! ∧ sj(tj) = c?} ∪ {ti|si(ti) /∈ C!}
– α′

i(〈ti, tj〉) = αi(ti) , α
′
i(ti) = αi(ti)

– β′
i(〈ti, tj〉) = βi(ti) , β

′
i(ti) = βi(ti)

– s′i(〈ti, tj〉) = ti! , s
′
i(ti) = τ if si(ti) = τ else ti?

– Grd′i(〈ti, tj〉) = Grdi(ti) , Grd′i(ti) = Grdi(ti)
– Act′i(〈ti, tj〉) = Acti(ti) , Act

′
i(ti) = Acti(ti)

Thus, we establish the following theorem:

Theorem 4 (Bisimulation). The compositional semantics of an NTA and that
of its translation through Step2 are bisimilar.

Proof. When transforming, each input transition is translated with a new name
and a new channel for each transition name. Similarly, each output transition t on
a channel c will be translated with a new name (t, c) and labelled with the channel
of the corresponding translated input. In fact, the proof consists in finding a
mapping between output and input transitions where an output transition (ti, ci)
synchronizes with an input one tj if s′i(ti) = s′j(tj) and si(ti) = sj(tj) = c

Lemma 1 (Reception existence). In Step2(N), for each channel c ∈ C,
there exists at least one reception transition on c, i.e. labeled by c?. Formally,
∃fi : C →

⋃
i{t ∈ Ti | si(t) ∈ C?}

Lemma 2 (Reception uniqueness). In Step2(N), for each channel c ∈ C,
there exists a unique reception transition on c, i.e. labelled by c?. Formally,
∀t ∈ Ti, t′ ∈ Tj, c, (si(t) = c? ∧ sj(t

′) = c?)⇒ (i = j ∧ t = t′).

Step 3: Reception Guards Elimination. The reception transition guard is moved
to the sender side after calculating the effect of the sender action. The correctness
of this transformation relies on the fact that there is no local variables and for
each channel there is an unique reception transition (denoted by the function r).
Formally, the transformation of a NTA 〈Vg, Initg, χ, C, 〈Qi, q

0
i ,Ki, ∅, Initli, Ii, Ti,

αi, βi, Grdi, Acti, si〉i〉 through this step is the NTA where each function Grdi is
replaced by:

Grd′i(t) =

⎧⎨
⎩

true if si(t) ∈ C?
Grdi(t) ∧ [Acti(t)]Grdj(t

′) where〈j, t′〉 = r(c) if si(t) = c!
Grdi(t) Otherwise

Theorem 5 (Bisimulation). The compositional semantics of an NTA and that
of its translation through Step3 are bisimilar.

Proof. It is straightforward.
We summarize the preceding steps by the following table.

Step 1

i:

�

�

�

�

int l;

◦ gr(l)/c?/ar(l)−−−−−−−−−→ ◦ ⇒
int i l;

i:

�
�

	

◦ gr(i l)/c?/ar(i l)−−−−−−−−−−−→ ◦

Step 2 Step 3

g/c!/as

gi/c?/ai
⇒ []ig/ci!/as

gi/ci?/ai

g/ci!/a
gi/ci?/ai

⇒ g ∧ [a]gi/ci!/a
�/ci?/ai
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Translation Correctness Theorem. Through the composition of the former
basic transformations, we conclude that the semantics of a compositional NTA
and that corresponding to its translation to an Uppaal one are similar.

Theorem 6 (Translation Correctness). Given a NTA N , the compositional
semantics of N and the Uppaal one (non compositional) of the translation Step3◦
Step2 ◦ Step1(N) are bisimilar.

4.3 Compositional Uppaal with Conditional Data Communication

We extend timed automata by instantaneous data communication which con-
sists in superposing message exchange to synchronization. We use the notation
c!e||c?x to designate a synchronization on a channel c with the communication of
an expression e of the sender. The value of e will be assigned to the local variable
x of the receiver. Furthermore, we constrain the reception by an additional con-
dition c?x where P (x), expressing that a sender and a receiver can synchronize
with a data communication if the communicated data satisfies the predicate P .
Otherwise, the synchronization will be blocked, i.e. the communicated data is
ignored and the update made by the output transition is not applied.

TA with Conditional Data Communication (TACDC). First, we give a
formal definition of TA with conditional data communication where the guard G

of each input communicating transition q
G/c?x where P (x)/a−−−−−−−−−−−−−−→ q′ does not depend

on variable x. Moreover, we carry out the translation of TACDC to basic TA.

Definition 14 (TA with conditional data communication). Given a set
of clocks χ, a set of global variables Vg with its initialization function Initg and
a set of actions Act, a timed automaton with data communication is a tuple
〈Q, q0,K,V l, Initl, I,→〉 where 〈Q, q0,K,V l, Initl, I〉 are defined as in TA and
the transition relation → is defined by →⊆ Q×P(V l ∪ Vg ∪ χ)× Act× Σ ×Q
where the set of labels Σ = {C?× V l ×P(V l ∪ Vg)} ∪ {C!× E(V l ∪ Vg)} ∪ {τ}.

In order to check the properties of TACDC, we define their translation into
compositional Uppaal TA, introduced in Section 4.1, where the communication
of data is performed through read-write actions on shared variables. Moreover,
in such a communication, the received value must satisfy the constraint P .

Definition 15 (TA corresponding to TACDC). Given a set of channels
C, a set of global variables Vg with its initialization function Initg and a set
X of clock variables, a timed automaton with conditional data communication
〈Q, q0,K,V l, Initl, I,→c〉 is the TA 〈Q, q0,K,V l, Initl, I,→〉 defined on C, χ
and global variables Vg ∪ {sh} 5 where sh is a new shared variable and the
transition relation → is defined by:

5 Practically, sh will be typed as the union of all the message types.



Revising and Extending the Uppaal Communication Mechanism 129

q
G/τ/a−−−−→c q′

q
G/τ/a−−−−→ q′

Tau
q

G/λ!e/a−−−−−→c q′ λ ∈ C

q
G/λ!/sh:=e;a−−−−−−−−−→ q′

Send

q
G/λ?x where P (x)/a−−−−−−−−−−−−−−→c q′ λ ∈ C

q
G∧P (sh)/λ?/x:=sh;a−−−−−−−−−−−−−−→ q′

Receiv

Through rule Tau, the internal transitions of TACDC are still unchanged. How-
ever, in communicating ones (Send, respReceiv) the data exchange is carried out
through an assignment into, respectively from, the variable sh.Moreover, the pred-
icate P is evaluated on the value of sh when checking the input transition guard.

Networks of TACDC. In this section, we consider the networks (composition)
of TACDC and study the bisimilarity between their ETTS (direct) semantics and
that corresponding to their translation to Uppaal NTA. In fact, we define the
semantics of networks of TACDC through ETTSs where each conditional data
communication is performed through the assignment of communicated data to
the corresponding receiver local variable. Furthermore, the resulting transition
is again guarded by the predicate P (x). According to our composition, the sat-
isfaction of both input transition guard and predicate P (x) is only checked after
the execution of the output transition action.

Definition 16 (Semantics of a network of TACDC). Given a network of
TACDC 〈Qi, q

0
i ,Ki,V l

i , Init
l
i, Ii,→i〉i defined on the same set of channels C,

clocks χ and a set of global variables Vg with the initialization function Initg,
its semantics is defined by the ETTS 〈×iQi, 〈q01 , . . . , q0n〉, (

⊎
i V l

i)→ D, I, I,→ 〉
over the timed space (G,⊕) and the set of channels C where I = {((i, v) �→
Initli(v), (Init

g, χ× {0}))}, I(q) =
∧

i Ii(qi) ↑i and → is defined by:

qi
G/τ/a−−−−→i q

′
i (

∨
j qj ∈ Kj)⇒ qi ∈ Ki

q
[[G↑i]]/τ/[[a↑i]]−−−−−−−−−→qi∈Ki q[i← q′i]

TAUi

∧
i qi �∈ Ki

q
�/δ/IdL ⊗ ⊕δ−−−−−−−−−−→⊥ q

Delay

qi
Gi/c!e/ai−−−−−−→i q

′
i qj

Gj/c?x where P (x)/aj−−−−−−−−−−−−−−−→j q
′
j

i �= j b = (qi ∈ Ki ∨ qj ∈ Kj) (
∨

k qk ∈ Kk)⇒ b

q
[[Gi↑i]]∧(([[Gj↑j ]]∧[[P( )↑j ]]([[e↑i]]))◦([[ai↑i]]))/τ/[[aj↑j ]]◦[[ai↑i]]◦[[x↑j:=e↑i]]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→bq[i←q′i,j←q′j ]

SRi,j

Again, both guards and actions of individual TA are extended on the new set
of local variables. All of the rules TAUi, Delay and SRi,j are earlier explained.
Moreover, for SR where the communicated data e is assigned to the local variable
x of the receiver, one can remark that the Uppaal semantics of TA composition
cannot model the current extension because Uppaal requires that the guards of
both synchronizing transitions should be satisfied before executing the sender
action. In fact, this semantics does not evaluate P (x) after the update of x by
the sender.
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Translation of NTACDC to NTA. In order to provide model-checking sup-
port, we give the translation of NTACDC in terms of compositional Uppaal
NTA. When synchronizing, the sender copies communicated data into a shared
variable that will be read by the receiver during the receive action. The resulting
transition of such a synchronization will be guarded by P (x).

Definition 17 (NTA corresponding to NTACDC). Given a network of
TACDC 〈T1, .., Tn〉 defined on the same set of channels C, clocks χ and global
variables Vg, the NTA (with compositional semantics) corresponding to 〈T1, .., Tn〉
is defined by 〈T ′

1, .., T ′
n〉 on C, χ and global variables Vg ∪{sh} where each TA

T ′
i is the translation of the TACDC Ti given in Definition15.

Therefore, we have defined the semantics and translation of NTACDC through
that of their individual TACDC. Similarly to TA composition, we study the
compositionality of the semantics of TACDC composition.

Translation Correctness. Through the translation of NTACDC to NTA, we
compare both semantics: the ETTS of a NTACDC and that corresponding to
the translation of the NTACDC to a NTA, and establish the following theorem:

Theorem 7 (Bisimilarity). The ETTS semantics of a network of TACDC is
bisimilar to the ETTS semantics of the corresponding NTA.

Proof. It relies on proving the correctness of the guards and actions of transitions
produced by the rule SRi,j . Based on the compositionality of NTA we have
established, we conclude with the compositionality of the semantics of NTACDC.

Corollary 1 (NTACDC Compositionality). The ETTS of a NTACDC is
bisimilar to the restriction to time and τ-transitions of the product of ETTSs
associated to individual TACDC.

5 Conclusion

In this paper, we have studied the composition of timed systems, especially
Uppaal timed automata, by considering different concepts like as communica-
tion, synchronization, variables, etc. In fact, we have defined an extended timed
transition system with static priorities as a semantic model. Thereafter, our
framework has been instantiated to define a compositional semantics for Up-
paal TA composition. A translation of our compositional NTA to Uppaal NTA
has been proposed with correctness arguments. Moreover, we have defined an
extension enabling synchronizing TA to perform instantaneous conditional data
communications. In the same way, in order to reuse the Uppaal tool, a transla-
tion of TACDC into basic Uppaal TA has been also proposed with correctness
arguments. In the future, we intend to fully mechanize the work presented in
this paper. This work will rely on our previous mechanization of a composi-
tional semantics for Uppaal [8]. We wish also to extend our framework to modal
specifications [20].
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Abstract. Service locator is a popular design pattern that facilitates
building modular and reconfigurable systems. We investigate how exist-
ing monolithic systems can be automatically refactored using this pattern
into more modular architectures, and measure the benefits of doing so.
We present an Eclipse plugin we have developed for this purpose.

Keywords: static analysis, architectural antipatterns, refactoring, Java.

1 Introduction

Software modularity is an important principle in software engineering for build-
ing large and complex systems. In recent years several techniques have been
introduced to facilitate software modularisation. In order to take advantage of
modern modularisation techniques, many software vendors are refactoring their
existing monolithic products to modular architectures. For instance, the Jigsaw
project has been initiated to refactor the Java Development Kit (JDK) into a
modular architecture [3]. This raises the question whether modularisation can
be (semi-) automated.

Our approach is based on the assumption that modularity can be measured
by the presence (or absence) of architectural antipatterns such as circular de-
pendencies between modules [23], subtype knowledge [19], abstraction without
decoupling [11] and degenerated inheritance [20]. Empirical studies [9, 17] have
shown that real world systems are ripe with these antipatterns, indicating a lack
of modularity. In [10] we have presented an algorithm to detect critical depen-
dencies between classes that compromise modularity. It can be shown that on
the model level, the removal of these dependencies can significantly improve the
modularity of the respective program. The question arises how dependencies can
actually be removed or reorganised in the actual program.

The service locator pattern can be used to address this problem. In this
pattern, service implementation classes are decoupled from their client classes.
Fowler [12] describes the service locator pattern as a registry that is used to look
up implementation classes. An alternative to manage dependencies is the closely
related dependency injection pattern [12]. There is a subtle difference between
service locators and the dependency injection. In the former, the client class

T. Gschwind et al. (Eds.): SC 2012, LNCS 7306, pp. 132–147, 2012.
� Springer-Verlag Berlin Heidelberg 2012
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pulls a service implementation from a registry, while in the latter the service
implementation is pushed (“injected”) into the client class. In this paper, we use
the service locator pattern as it is less invasive - the use of dependency injection
often requires the generation of additional methods (setters) and constructors in
the client class.

Consider listing 1.1 as an example of the service locator pattern. In this exam-
ple, the type B object is instantiated through a global factory class ServiceLo-
cator. The method getBImpl() returns an implementation of the type B for the
instantiation purpose. In ServiceLocator a setter method can be used to assign
any implementation of type B. Other ways to provide the implementation type
include Java Reflection and Service Registry. In particular, the use of reflection
can be used to avoid design time dependencies from the implementation classes
- the class names can be configured in meta data or configuration files, and the
service locator can load those classes using reflection. This approach is widely
used in frameworks such as Spring and OSGi.

pub l i c c l a s s A {
p r i v a t e B bObject = nu l l ;
pub l i c vo id m( ) {

bObject = Se rv i c eLoca to r . getBImpl ( ) ;
. . .

} . . .
}

Listing 1.1. Java source code with service locator pattern

When using the service locator pattern to decouple classes, abstract types are
used to declare program elements. However, we find that in practice abstract
types are rarely used to declare variables and fields in a class. For example,
Steimann et al. [21] presented a study that in several large Java projects only 1
out of 4 variables was declared through its interface. Therefore, we do not only
have to replace constructor invocations of concrete classes by the invocation of
service locator methods, but that we also have to replace declaration types by
more abstract types. We have developed an Eclipse plugin for this purpose.

The rest of the paper is organised as follows: section 2 provides an overview of
the related work in type generalisation and the service locator pattern. Section 3
presents a methodology to tackle the problem by explaining several refactoring
processes. In the subsequent sections, we discuss experiments and results. Finally,
we summarise the work and consider future directions.

2 Related Work

Martin has defined the Dependency Inversion Principle (DIP) [14], which states
that “high level modules should not depend upon low level modules. Both should
depend upon abstractions”. This means a class should depend on an abstract
type rather than on a concrete class. However, these abstract types still have
to be instantiated using concrete classes. There are several ways to instantiate
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a concrete class and pass it to the client class exhibiting DIP. For example,
Fowler [12] has proposed to use service locators and the dependency injection
for this purpose.

In the literature, several tools and techniques exist that aid developers to use
more abstract types. For example, Mayer et al. [16] has developed a refactor-
ing tool that detects code smells and executes refactorings on the source code
level. In this tool the supertype hierarchy is displayed to the user in the form
of a lattice. The user can choose a relevant refactoring among multiple refac-
toring suggestions. This process involves human interaction and cannot be fully
automated.

Streckenbach and Snelting [24] have developed the KABA refactoring tool,
which proposes split classes and move members refactorings. A drawback of this
tool is that it cannot modify a program’s source code. However, it can be used to
modify the bytecode of the program. Bach et al. [6] have developed an Eclipse
plugin, which finds better fitting types in programs. This plugin looks for all
variable declarations, field declarations, method parameter types and method
return types to compute valid supertypes. Once valid supertypes are computed,
this plugin generates warnings in the Problem View of Eclipse. Quick fixes are
associated with each variable declaration to automatically re-declare a variable
with an abstract type. The selection of an abstract type for re-declaring a variable
must be done manually. We found that this plugin is not scalable for large
programs.

There are several approaches based on a metrics suite to determine the refac-
toring opportunities for types generalisation. Mayer [15] has analysed the use of
interfaces in large object-oriented programs. This study reveals that interfaces
are not very popular among programmers. The author defined a metric suite
to identify source code places where the use of interfaces should be applied. For
this purpose, the author developed an Eclipse plugin, which assists programmers
to make use of interfaces for variable and field declarations rather than using
concrete classes. In our study, we try to generalise to any compatible supertype
and we don’t restrict ourself to interfaces.

Gobner et al. [13] has investigated the use of interfaces in Java Development
Kit. They advocate that there is a big opportunity for replacing existing types
with their supertypes. The authors have validated the results with the help of
several metrics that are related to the use of interfaces within the project. This
study doesn’t consider abstract classes but only focuses on interface utilisation.
In a similar way, Steimann et al. [22] have presented a study showing that in
several large Java projects 1 out of 4 variables was declared through its interface.
The authors have defined a metric suite related to interface utilisation in object
orient programs and proposed refactorings for a better utilisation of interfaces
in programs. The metrics definition is very vague and no implementation exists
to validate the correctness of the approach.

Opdyke and Johnson [18] have proposed refactorings for creating abstract
super classes from concrete classes. The authors identified refactoring steps
and provided techniques on how to automate these steps. Tip et al. [25] have
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proposed a constraint satisfaction mechanism to verify preconditions for type
generalisation refactorings such as extract interface, use super type where possi-
ble and generalize declared types. These refactorings have been implemented in
the standard distribution of Eclipse. Steimann et al. [21] have followed a similar
approach by developing a tool that can automatically infer types from concrete
classes. By selecting a variable the infer type refactoring allows programmers to
generate a new minimal interface that can be used to declare that variable. A
disadvantage of their approach is that the excessive use of this approach may
result in many similar interfaces.

3 Methodology

3.1 Antipatterns Definition

In this paper, we have focused on a set of architectural antipatterns that compro-
mise modularity. These antipatterns compromise the separability of name spaces
(packages) and separability of abstract and concrete types, therefore undermine
software modularity. A more detailed discussion can be found in [9,10]. We have
used visual definitions to introduce these antipatterns. Boxes inside packages rep-
resent classes and arrows represent paths (sequence of edges). Paths can traverse
more than one packages. Cardinality constraints (1:M) represent the minimum
and the maximum path length, where ”M” is unbound.

We have used a stronger definition of circular dependency (SCD) where there
is a single path that connects package1 and package2 as shown in figure 1. This
definition is different from the standard definition used in many places in the
literature [1,4,23] where there might not be a single dependency path that creates
a dependency cycle between packages. On the other hand, SCD antipattern
represents a stronger coupling between packages and cannot be easily refactored
by simply splitting packages.

package1 package2 

Fig. 1. Circular Dependency between Packages

In the subtype knowledge (STK) antipattern [19] as shown in figure 2 a super-
type either directly or indirectly uses its subtype. This implies that we cannot
use super and subtypes in isolation. In the presence of STK, separating super-
types and subtypes in different name spaces results in a circular dependency
between name spaces.
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Fig. 2. Subtype Knowledge

In the abstraction without decoupling (AWD) antipattern (figure 3), a client
depends on a service (supertype) and the implementation of the service (subtype)
at the same time. This antipattern has several problems, such as, the client
code needs to be changed whenever the service implementation changes. This
situation could be avoided, had the client only depended on the service and not
on the implementation. The service locator pattern can be used to avoid this
antipattern.

Fig. 3. Abstraction Without Decoupling

Degenerated inheritance (DEGINH) antipattern [20] as shown in figure 4 ap-
pears in a program when there are multiple inheritance paths from a subtype
to its supertype. In Java programs, this can be introduced by the use of multi-
ple inheritance through interfaces. This antipattern creates redundancy in the
program structure and makes it more difficult to separate subtypes from their
supertypes.

Fig. 4. Degenerated Inheritance
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3.2 The Architectural Model

The architectural model we have used is the dependency graph of classes and
their relationships [10]. The dependency graph is extracted from the bytecode
of a program. In the dependency graph classes are represented as nodes, while
edges represent relationships between classes. Dependency graphs provide an
abstract representation of a program, which is useful in detecting architectural
antipatterns. Several antipattern detection and refactoring tools are based on
dependency graphs [2,4,7,8]. The process used to extract the dependency graph
from programs is described in our previous work [9].

The tool we have used to detect architectural antipatterns instances is Guery
[8]. In Guery, we define antipatterns as graph queries to be run on dependency
graphs extracted from the bytecode of programs. This tool has an easy-to-use
query language and a scalable implementation of the query engine that can
detect antipattern instances in large programs. It provides scripting support to
analyse a large set of programs [10].

3.3 Dependency Classification

Listing 1.2 shows different types of dependencies in a Java program. In this
listing class A depends on other types B, C, D, E, F, G, H and System. In this
context, we call class A the source type, and the rest of the classes target
types.

pub l i c c l a s s A extends B implements C {
p r i v a t e D ob je c t = new E( ) ;
pub l i c F m(G obj ) throws H {

System . out . p r i n t l n ( obj . t oSt r ing ( ) ) ;
. . .
r e turn obj . getF ( ) ;

}
}

Listing 1.2. Java source code creating dependencies

We can broadly classify a dependency relationship between a source and a
target type into the following eight categories:

1. Variable Declaration (VD): The target type is used to declare a variable or
a field, for example, A→uses D.

2. Method Return Type (MRT): The target type is used as a return type of a
method in the source type, for example, A→uses F .

3. Method Parameter Type (MPT): In this case the target type is used as a
method parameter in the source type, for example, A→uses G.

4. Method Exception Type (MET): The target type is used as an exception
type using throws keyword, for example, A→uses H .

5. Constructor Invocation (CI): A target type constructor is invoked through
new keyword, for example, A→uses E.
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6. Static Member Invocation (SMI): When a static member of a class (field or
method) is invoked on the target type, for example, A→uses System.

7. Superclass (SC): The target type is used as a supertype through the extends
keyword, for example, A→extends B.

8. Interface (IN): The target type is used as an interface through implements
keyword, for example, A→implements C.

In the dependency graph, an edge can represent three types of relationships:
uses, extends and implements. Categories from 1-6 are represented as uses edge.
SC relationship is represented by an extends edge, while implements edge repre-
sents IN relationships. In this paper, we have tried to break dependencies from
category 1-6. We have used a replace by supertype refactoring for first four cat-
egories, while the introduce service locator refactoring is used for CI and SMI
categories.

3.4 The Refactoring Process - CARE Plugin

In order to execute the whole refactoring process, we have developed an Eclipse
plug-in named CARE (Code and Architectural Refactoring Environment)1. The
purpose of this plugin is to identify and execute refactorings on the source code
level with a push of a button. The plugin has the ability to analyse a single
program or batch-script multiple programs in an Eclipse workspace environment.
Since we have built this plugin on top of existing stable refactoring tools and
techniques, the refactorings we apply are proved to be safe [5, 6, 25].

The detailed refactoring process of the CARE plugin is shown in figure 5.
CARE initially parses Abstract Syntax Tree (AST) from the source code. A
refactoring is only executed if it passes pre and postconditions.

Following are main steps of the refactoring algorithm:

1. Building a dependency graph from the bytecode of a program.

2. Using the Guery engine, compute a set of SCD, STK, AWD and DEGINH
instances.

3. Computing a list of high-scored edges (class dependencies) by their ranking
based on their participation in all types of antipattern instances.

4. Parsing the program’s source code into ASTs.
5. Checking preconditions whether a high-scored edge can be refactored.

6. If the preconditions are satisfied, apply the refactoring on the program’s
ASTs. Otherwise try the next high-scored edge.

7. Evaluate the postconditions to check whether the applied refactoring has
introduced any errors.

8. If postconditions are satisfied, update the program source code. Otherwise,
rollback the ASTs to their previous states.

9. Repeat the process until all antipatterns instances are removed or a certain
number of iterations are performed (MAX is 50 in our case).

1 http://code.google.com/p/care/
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Fig. 5. Automated Refactoring Process

Scoring Function. Refactoring all antipattern instances identified in a pro-
gram would completely remove the particular problem. However, refactoring all
antipattern instances in large programs could be a resource demanding task. To
overcome this problem we have used a scoring mechanism [10]. Scoring associates
a number with each edge indicating in how many antipattern instances this edge
occurs.

Fig. 6. Example program’s dependency graph

Figure 6 shows an example of the dependency graph of a program. There are
five classes in the program namely A, B, C, D, E in four packages named as
package1, package2, package3 and package4. This program has two types of an-
tipattern instances i.e. SCD and STK. The following paths represent antipattern
instances:
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– An SCD antipattern instance is represented by the path A→extends B →uses

D →uses A.
– An SCD instance caused by B →uses D →uses E.
– An STK antipattern instance is represented by the path B →uses D →uses

A→extends B.

In this example, the edge B →uses D gets the score of three. The rest either get
one or two. All of these antipattern instances can be removed either by redirect-
ing the edge B →uses D to B →uses C or by removing the edge B →uses D.

In our algorithm we have compute those edges with the highest score. If
multiple edges get the same score, we sort them by the fully qualified name of
the start and the end vertex to make the process repeatable.

Parsing Source Code. After the identification of critical edges (class depen-
dencies) that compromise modularity, we need to analyse the source code to
verify whether removing or reorganising these dependencies is possible or not.
For this purpose, our plugin extracts the Abstract Syntax Tree (AST) of the
program. We have used the JDeodorant [5] API based on Eclipse Java Devel-
opment Tool (JDT) to parse a program’s source code. The plugin only parses
the source code once and later if any changes are made to the source code, the
modified class files are parsed through ElementChangeListener API of Eclipse
JDT.

Refactoring Preconditions. Once we have the list of high-scored edges, we
iterate over the edges until we find an edge which satisfies the preconditions.
Given a source and a target type from the high-scored edge, we check the source
class to make sure that all references to the target type can be replaced with ref-
erences to a supertype. In case the target type is used in a CI or SMI dependency,
we introduce the service locator pattern.

In CARE we have two types of refactorings: Replace by Supertype and Intro-
duce Service Locator. These two refactorings are based on Eclipse Refactoring
Toolkit (LTK). The Replace by Supertype refactoring is built on top of the stan-
dard Eclipse refactoring Generalize Declared Type. In the Generalize Declared
Type refactoring we have to manually select a declaration type and see whether
this can be replaced with one of its supertypes. On the other hand, Replace by
Supertype automatically replaces all target type declaration elements within a
class with a specific compatible supertype.

The standard Eclipse refactoring Generalize Declared Type computes a list of
all possible supertypes with which a declaration type can be replaced. Generalize
Declared Type is only supported on declarations of fields and variables (VD),
method parameters (MPT) and method return types (MRT), but not on method
exception types (MET).

The following steps describe the process through which a specific supertype
for a target type T is selected:
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1. For each VD, MPT and MRT type dependency to T, compute a set of
possible supertypes (PossibleTypes) using the standard Generalize Declared
Type plugin.

2. Extract the original supertype hierarchy of the target type (AllSuperTypes).
We extract this hierarchy by using Eclipse JDT Core API ITypeHierarchy.
This API returns an array of all supertypes of the current type in bottom-up
order. This means java.lang.Object would be the last one in the list.

3. Iterate over AllSuperTypes from the first type to the last. If the type exists
in all PossibleTypes sets, choose this type as a supertype to replace the old
type in all identified places of the source class and stop the iteration. If no
such type exists, abandon this refactoring and try the next edge.

There are several preconditions that must be satisfied before either of the refac-
toring is applied on the source code level.

1. The type of a variable or a field cannot be generalized if the class members
invoked on that variable or field are not part of any supertype’s interface.
For example, consider the following method signature in a class:
MyClass : int findMaxNumber(java.util.V ector v).
This method signature can be refactored as follows:
int findMaxNumber(java.util.Collection v).
The above refactoring would not work if MyClass invoked v.get(i) in the
method body of findMaxNum. In this case, replacing java.util.Vector with its
supertype java.util.Collection is not possible because the method get(int i)
is not a part of java.util.Collection interface. In a similar way, we cannot gen-
eralise a type when a reference to the the target type is leaked. For instance,
if we have the method MyClass: int findMaxNumber(java.util.Vector v), and
we have a method invocation new OtherClass().check(v) in the method body,
then we do not know which part of the interface of Vector is used in Other-
Class. While it is possible to follow this references in principle, the existing
Generalize Declared Type refactoring does not support this.

2. The target type must not be a supertype of the source type. As we are not
refactoring the class hierarchy as such, a dependency between source and
target would remain in the program anyway.

There is another precondition, which is bound to the type of program we are
refactoring. This precondition can be enabled or disabled depending on the pro-
gram nature. If we are trying to refactor a program which is a library or a
plugin extension, we should enable the following precondition. Stand alone ap-
plications that are not used programmatically by other programs do not require
this precondition.

3. If a target type is used as the declaration type of a public field or used as a
return type of a public method, we can’t generalise that target type. Doing
so may break the external client code that was dependent on that particular
public field or method.
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Applying the Refactoring. If the preconditions are satisfied, we can replace
the occurrence of the target type with one of its supertypes and introduce the
service locator pattern, if needed. In order to execute the refactorings on the
source code level, Eclipse JDT Core provides an ASTRewrite API to record
change modifications on a program’s AST without affecting the original code.
We extend the standard Eclipse Refactoring class to write Abstraction Refac-
toring. This refactoring encompasses both refactorings i.e. Replace by Supertype
and Introduce Service Locator. Depending upon the types of dependencies the
relevant refactoring is applied. Once we apply the refactoring on the source code,
we get the UndoChange object. This object can later be used to rollback the
refactoring if postconditions are not satisfied.

Whenever the introduce service locator refactoring is performed for the first
time, it creates a new global factory class ServiceLocator in a new package named
registry. In the case of CI type of dependency, a new method stub is automatically
created in the ServiceLocator class and the source class is modified with a call
to the newly created method. For example,
B bObject = new BImpl( ); would be replaced by
B bObject = registry.ServiceLocator.getBImpl( );
A method stub is created in the ServiceLocator class with the following signature:
public static B getBImpl( ). This method would return the implementation class
of type B. In a similar way, method stubs are created for static field and method
invocations.

Refactoring Postconditions. Postconditions are evaluated in order to ensure
that a program’s behaviour is preserved. By default, the only postcondition
checked is whether the refactored code can be compiled. Since we are using
strict preconditions that can guarantee the safety of the refactorings [25], this
check is de facto redundant. However, our tool can be extended to use additional
project-dependent postconditions such as executing unit tests. Again, as the
refactorings do not change runtime types, one could argue that those checks are
redundant. However, if reflection (instanceof, use of java.lang.reflect.Method) is
used in the program, the refactorings can actually change the semantics of the
program and those postconditions might fail. If postconditions fail, we rollback
to the previous program’s state by executing the UndoChange object created
previously and continue with the next high-scored edge in the list.

Metric Computation. A refactoring should improve a program’s structure. In
order to gauge the impact of refactoring on the source code level, we have defined
an antipattern count metric. An improvement in this metrics would indicate the
improvement before and after performing the refactoring. This metric is simply a
count of the number of SCD, STK, AWD and DEGINH instances present in the
program. In computing these antipattern instances, we have ignored references
to and from ServiceLocator class, which is used to pull required dependencies
into client classes. This registry class can instantiate those classes by means of
reflection at runtime from names defined in configuration files or a program’s
meta data, therefore avoiding design time dependencies that compromise the
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maintainability of the system. This approach is widely used in dependency in-
jection frameworks and dynamic component models.

4 Results

In order to validate our approach, we have applied it to three open source Java
programs Drawsf-1.2.9, JHotDraw-7.5.1 and Findbugs-1.3.9. Drawswf is a draw-
ing application written in Java, which can be used to save drawings as flash
files. JHotDraw is a framework for creating structured and technical drawings.
It is heavily based on design patterns. Findbugs is a static analysis tool, which
can be used to detect several code smells. These programs are relatively active,
mature and suitable for academic studies. The system used to run experiments
was Macbook Pro i7 2.0 GHz with 4GB RAM and Java Runtime Environment 6.

4.1 Impact of Refactorings

Figure 7 shows the decline in the total number of antipattern instances in three
selected programs. The first few refactorings remove a big number of antipat-
tern instances. This is possible if we are able to perform a refactoring based on
a high-scored edge. As mentioned earlier, every refactoring is associated with
several preconditions that may fail. In this case, we proceed to the lower-scored
edges. Refactoring a lower-scored edge (dependency) removes fewer antipattern
instances than refactoring a high-scored edge.

Table 1 shows some statistics collected from the case studies. The antipattern
count represents combined instances of SCD, STK, AWD and DEGINH. The
antipattern instances count is high because we have computed all variants of a
particular antipattern in the dependency graph of a program. We have found
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Table 1. Results of case studies with precondition 3 enabled

Program Classes Refactorings Antipattern
Before

Antipattern
After

Types
Gener-
alised

SL Used

Drawswf-1.2.9 322 50 3736 661 31 110
JHotDraw-7.5.1 1193 50 7403 4947 4 116
Findbugs-1.3.9 1735 50 277091 125235 3 83

several cases where types were generalised. However, the majority of the cases
belonged to the service locator pattern, as shown in the table.

Table 2. Results of case studies with precondition 3 disabled

Program Refactorings Antipattern
Before

Antipattern
After

Types
Gener-
alised

SL Used

Drawswf-1.2.9 50 3736 702 31 111
JHotDraw-7.5.1 50 7403 4946 4 115
Findbugs-1.3.9 50 277091 122585 4 81

Table 2 shows the results of the same programs but with an additional precon-
dition, i.e., we do not refactor public fields and return types of public methods.
There is a slight difference between the results of two experiments in terms of the
number of types generalised and the usage of service locator pattern. This indi-
cates that not many public methods’ return types and public fields were modified
in either of the experiment. This additional precondition, however, affected the
total number of antipattern instances removed after 50 refactorings.

4.2 Discussion

In this paper, we have tried to either remove or reorganise a class dependency
that causes modularity problems. In general, it is not possible to remove all
types of dependencies. However, there are certain cases where it is possible to
safely remove undesired dependencies. For example, the first critical dependency
identified in Findbugs-1.3.9 is the reference from edu.umd.cs.findbugs.ShowHelp
to edu.umd.cs.findbugs.gui.FindBugsFrame. This dependency is caused because
ShowHelp is invoking a static method showSynopsis( ) on the target type Find-
BugsFrame, as shown in the listing 1.4. This particular dependency is also a
reference from a core package edu.umd.cs. findbugs to a presentation package
edu.umd.cs.findbugs.gui and therefore violates the design principle that logic
should not depend upon presentation. This particular dependency was involved
in 113579 SCD instances, 185 STK instances and 1811 AWD instances. There-
fore, removing this dependency reduced the total number of instances from
277091 (100%) to 161517 (58%).
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pub l i c c l a s s ShowHelp {
pub l i c s t a t i c vo id main ( St r ing [ ] a rgs ) { . . .
FindBugsFrame . showSynopsis ( ) ;

. . .
} . . .

}
Listing 1.3. Source code ShowHelp

The refactored version of the old code causing the dependency is as follows:
registry.ServiceLocator.initialiseSMIFindBugsFrame showSynopsis(). A method
stub is automatically created in the ServiceLocator class and the old reference
in the source class is replaced by a call to this method.

Another example of a critical dependency identified in JHotDraw is a reference
from org.jhotdraw.draw.TextFigure to org.jhotdraw.draw.tool.TextEditingTool.
This dependency was involved in 34 SCD instances and 7 AWD instances. The
listing 1.4 shows the variable declaration reference in the TextFigure that causes
this dependency. This particular dependency is a clear violation of the Depen-
dency Inversion Principle because TextFigure is using an abstract type Tool (an
interface) as well as a concrete type TextEditingTool (an implementation class
of Tool). This dependency is safely removed by abstracting the old variable dec-
laration type to Tool and by replacing the constructor invocation call with a call
to ServiceLocator to obtain the implementation class of the interface Tool.

pub l i c TextFigure . . . { . . .
pub l i c Tool getTool ( Point2D . Double p) {
i f ( i sEd i t ab l e ( ) && conta in s (p ) ) {
TextEdit ingTool t = new TextEdit ingTool ( ) ;
r e turn t ; }

r e turn nu l l ;
} . . .

}
Listing 1.4. Source code TextFigure

All the code level changes performed by the plugin are recorded to be reviewed
by a developer of the program. We suggest to use this tool in conjunction with
a code repository such as a Subversion client, in case the developer wants to
rollback a particular refactoring. Standard metrics can be used to check for
other changes introduced by the refactoring.

5 Conclusion

In this paper, we have presented an Eclipse plugin that can identify and execute
potentially high-impact refactorings on the source code. We have used a set of
four architectural antipatterns to identify refactorings that compromise software
modularity. The automated refactoring process, presented in this paper, removes
a large number of these antipattern instances from programs. The approach was
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applied on three open source programs. The results show a substantial improve-
ment in terms of decrease in the total number of antipattern instances. However,
it is possible to improve these results further. For instance, with the reference
leaking issue our preconditions are very strict and restrictive. By strengthening
the reasoning over the parts of the interface of a class that is actually being used
in the program, we can expect to improve the presented results significantly, i.e.,
more refactorings could be safely executed.

We have demonstrated that process of refactoring can be fully automated.
With the help of pre and postconditions it is possible to achieve the safe execution
of refactorings. We have used the type-safety mechanism through compilation to
ensure that the automated refactoring process did not introduce any errors in the
source code of programs. However, in future we intend to use other mechanisms
such as unit testing to validate the correctness of refactoring. The idea is to
execute a set of testcases before and after performing refactorings. We also intend
to extend the Introduce Service Locator refactoring by automatically adding an
instantiation mechanism (Service Registry, Java Reflection) in the method stubs
created in the registry.

There are several refactoring techniques to deal with undesired dependencies
in programs, such as, moving classes, splitting packages, object inlining etc. It
would be interesting to explore a combined search-based architectural refactoring
to deal with modularisation problems discussed in this paper.
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Abstract. Mobile devices have been making their way into our every-
day life for quite some time, and especially the market for tablets is
increasing. They are used at home for entertainment purposes as well
as in professional environments, helping to ensure productivity. A large
and constantly growing amount of apps for basically every task is avail-
able. With one exemption: programmers are still bound to the classic
PC setup and hardly use a tablet for software development. The rea-
son for this is simple: their tool chain does not fit the small screens.
The space constraints on tablets demand a paradigm shift. We propose
a prototype sketch of a development environment based on a concate-
native programming language. Concatenative programming has a strong
focus on composing words out of other words, supporting a minimalistic
and concise approach to programming. This approach perfectly fits into
the mobile world and allows developers to write programs for tablets on
tablets.

1 Introduction

For the last years, smaller and more powerful technological devices have con-
stantly appeared on the consumer market – a trend not likely to stop. These
devices support and comfort our mobility, keeping us connected, productive and
informed at any time and almost everywhere. The impact that smartphones
and tablets have on the way we interact with computers is already noticeable;
touching and sliding, dragging and dropping non-physical objects on a screen
has become a common way of handling and interacting with applications. These
new devices have their own kind of constraints and limitations, especially the
restricted space due to the smaller screen. Although familiar interfaces like a
static keyboard are making their way into the tablet world (connected e.g. via
Bluetooth), we will focus on a scenario without peripherals, just the built-in
features are considered.
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The market especially for tablets is growing heavily.1 Several hundred thou-
sands of applications are nowadays available for nearly every need; little helpers
for everyday tasks as well as complex business software can be found. Oddly
enough, the economically most important creative workforce is left out: no pro-
fessional development environment is available and programmers hardly use a
tablet to develop software. Classical PCs are a developer’s main workplace, often
with several monitors. It seems strange – one can create software for tablets but
not with tablets.

Software development is dominated by languages like Java, C and all its
derivatives.2 All of them are grammar-heavy, imperative programming languages
with many syntactical conventions, resulting in big blocks of text to create a
program. In some way, they force the developer to have a large working space.
Modern Integrated Development Environments (IDEs) support this need by pro-
viding an infrastructure similar to a complex command center – their screen is
fragmented into lots of small windows providing different views and concerns
for browsing, navigating, editing, debugging etc. Having these needs of space in
mind, developing software using a mobile device does not seem to be feasible at
all or efficient enough to be productive. Furthermore, mainstream languages do
not provide the necessary environment for developing in an interactive way.

As a counterpoint, alternative programming paradigms exist, paradigms hav-
ing a remarkable minimalism combined with high productivity. For example,
concatenative or functional programming languages have a completely different
approach to software development. Promoting an interactive programming style,
they give developers the chance to work with the program in a more connected
way and reduce the mental transition during coding. Furthermore, they do not
ship with the built-in need for a large and massive IDE.

It is clear that today’s imperative programming languages can hardly fit the
needs of a reduced yet highly mobile environment that is offered by a tablet.
We propose an alternative approach allowing a productive way of developing
software on a mobile device. Addressing the basic requirements we have to fulfil
in order to create a programming environment suitable to productive working,
three main problems will be examined:

– Identification of a suitable programming paradigm fitting the needs of mobile
devices

– Proposal of an eligible and productive developing environment
– Solving issues specific to the chosen paradigm regarding the user interface

Section 2 takes a deeper look into the concept of developing software on a mobile
device and provide some reasoning why it is interesting to do so. It will also deal
with the restrictions given by space constraints, which eventually leads to the
selection of a suitable programming paradigm. Section 3 examines concatena-
tive programming and points out the advantages of this programming paradigm
over the languages used in today’s mainstream software development. Section 4

1 http://www.gartner.com/it/page.jsp?id=1626414, Jan 2012
2 http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html, Jan 2012
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presents a graphical prototype sketch according to the requirements defined in
Sec. 2. Section 5 gives an overview of the current research situation. Section 6
presents our conclusion and gives a perspective on future work.

2 Productive Programming on a Tablet

The use of mobile devices has experienced an enormous increase over the last
years. The tablet market has grown way beyond any analyst’s prediction, increas-
ing almost about 300% from 2010 to 2011 [1]. This growth is – as a logical con-
sequence – accompanied by a growing number of applications (so-called apps),
which are getting more and more robust as developers learn to cope with the
special requirements of mobile devices. Activities like image and video editing or
document processing are common tasks with a tablet – instead of mere passive
media consumption, they are increasingly used for active content creation [10].

What makes working on a tablet so interesting? First of all, the mobility
aspect is obvious. Tablets are handy devices, made for carrying them around.
They are lightweight, optimized for running a long time on battery and they allow
to be online almost everywhere. Today, with the capabilities of internet-based
applications still increasing, the availability of information and the possibilities
offered by social networks are important to people. Mobile devices are tailored
to fit these new requirements. Tablets and smartphones are also having a major
impact on the way we work with computers nowadays, changing how we handle
applications and data. Equipped with a touch screen, tablets provide a more
interactive and intuitive approach to working with a device than classic PCs do.
Moving an object around with a finger is a complete different experience than
using a mouse – more natural and more tactile. Mobility and interactivity are
the two core concepts making tablets interesting for home as well as professional
scenarios.

Some of the capabilities mobile devices ship with could also enhance the devel-
opment process, changing the way of how software is actually created – especially
in modern software development dominated by agile methods. Besides the pos-
sibility to program practically everywhere, mobile devices are also capable of
connecting in no time to other devices, hence supporting just-in-time collabora-
tion. Newly created functions could be distributed on the fly between different
people and sharing a workspace with colleagues would be easy and straightfor-
ward.

The usage of mobile devices in the industry is increasing,3 and professionals
from different industrial branches enjoy more freedom and mobility. However,
software developers are left out. Programmers seem to be tied to their PCs
as their main working environment are tremendous IDEs like Eclipse or MS
Visual Studio, which provide a window for many different aspects such as pack-
ages, editor, debug and test window, console for error messages, version manage-
ment, etc. It is common for developers to spread this pile of information across

3 http://www.zew.de/de/presse/1837, Jan 2012
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several monitors. As shown by [4], the size of the screen makes a big difference
in productivity.

A tablet has a significantly smaller screen – hence the need for a more mini-
malistic and concise environment. With this in mind, having a development envi-
ronment on a tablet could be seen as a hard to achieve task. But the main reason
for this is not the idea itself, it is the set of tools used. Imperative programming
languages require a significant amount of syntactic load to create statements
and structure code, therefore they exceed the restrictions of the workspace on
a tablet. The strict separation of design and run time typical for current main-
stream programming languages makes interactivity difficult. This obstacle mani-
fests itself as the well-known build-deploy-run cycle – programmers usually write
code, click a button to compile and execute the code, and then examine the out-
come. As a consequence, software developers are forced to work with a mental
model of the program’s execution when actually writing it and need additional
tools like debuggers to establish a connection between both of them.

Alternative paradigms help overcome these obstacles. Concatenative program-
ming languages like Forth have interesting traits making them attractive for
programming on tablets, as their minimalistic and concise approach fits into a
reduced space environment. A suitable programming language must have com-
pact yet understandable code; a concise syntax does not only save space, it also
supports a developer’s productivity by simplifying writing and reading a pro-
gram. Code written in Forth is not only significantly smaller than corresponding
programs in other languages, the visible stack also supports understandability
for the programmer [6]. Furthermore, concatenative programming languages sup-
port interactive programming by allowing developers to directly communicate
with the run time environment.

3 Advantages of Concatenative Programming

Concatenative languages support composition of functions (or words as they are
called), leading to a more concise way of coding. Any sequence of words can
practically be transformed into and replaced by a new word, without the need
of having to take common problems like nested scopes into account. This is for
a simple reason: in contrary to mainstream languages, which apply a function
to a set of parameters (thus we call these languages applicative), concatena-
tive languages pass a data structure with all needed information from word to
word. The notion of a stack is a helpful metaphor, hence the close relation-
ship to stack-based languages. The resulting function call can be described in
simple terms: the function receives the stack as an input, pops elements of it,
does some calculation, pushes the results (if any) back on the stack and finally
returns the modified stack [8]. Words can return multiple values by just push-
ing several values back on the stack. Furthermore, this kind of processing has a
couple of benefits for our main purpose of bringing a full-fledged programming
environment to tablets. Outstanding is the lack of variables. Source code can
be written in a point-free manner, which reduces the amount of written text.
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Furthermore, without variables there is no need of taking nested scopes into
account, making programming easier by removing intellectual barriers and sup-
porting refactoring. Generally, the usage of the stack in concatenative languages
is one of the reasons for the conciseness and simplicity of the code. The resulting
postfix notation might be uncommon to programmers coming from the main-
stream languages. Postfix notation supports minimalistic syntax and helps to go
without e.g. parenthesis as they are common in Lisp dialects.

The composition abilities of concatenative languages also support an inter-
active approach to software development. Most current mainstream languages
work on two levels: the design level for writing code on the one hand and the
run time level for executing code on the other hand. Developers have to make a
mental transition from design to run time when writing the actual source code,
an approach that can barely be called interactive. As seen before, interactiv-
ity is a crucial component in the way a tablet is handled, therefore a possible
programming environment must also be highly interactive and the chosen lan-
guage should support this style of development. For starters, the approach quite
many functional programming languages use is of interest. They often ship with
a special kind of terminal, the so-called Read-Evaluate-Print-Loop (REPL). The
REPL provides a run time environment as well as the possibility to directly de-
fine new functions; developers can connect to and modify the run time straight
away. However, the use of a REPL does not exhaust the possibilities of interac-
tivity. Although it moves developers closer to the run time, the effects of code
modification are only visible when the function in question is called manually.
To match the interaction capabilities of a touch screen, a more sophisticated way
is desirable. Developers should be notified about the consequences of their code
when actually writing it.

To sum up, we discussed the core concepts of tablets and the constraints
they impose on a suitable development environment as well as their benefits.
We have seen that, to bring programming to mobile devices, we have to reduce
the amount of text written to fit the smaller screen but we also have to ensure
an interactive way of programming. Furthermore, we have seen that current
mainstream programming languages do not suffice these requirements, but that
alternative programming paradigms particularly suited for our purpose exist.

We propose to move away from grammar-heavy imperative programming and
claim that concatenative programming is well-suited to space constraints as well
as interactivity needs. On the one hand, minimalism is combined with simplicity
and conciseness, and on the other hand, concatenative programming supports
interactive working with source code. The proposed programming language for
our prototype is Factor4, a recent concatenative language enhanced with fea-
tures from other programming paradigms [11]. For example, Factor brings ideas
from object-orientation as well as functional programming into the concate-
native world and ships with a strong metaprogramming model. Furthermore,
Factor supports an interactive way of software development by allowing code
reflection and introspection as well as reload at run time. Prog. 2 shows an

4 http://factorcode.org/
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implementation of the well-known Quicksort algorithm in Factor. Compared to
its Java sibling, which is shown in Prog. 1, this example demonstrates the amount
of space gained.

Program 1. Quicksort in Javaa

public static <E extends Comparable<? super E>> List<E>

quickSort(List<E> arr) {

if (arr.size() <= 1)

return arr;

E pivot = arr.get(0);

List<E> less = new LinkedList<E>();

List<E> pivotList = new LinkedList<E>();

List<E> more = new LinkedList<E>();

// Partition

for (E i : arr) {

if (i.compareTo(pivot) < 0)

less.add(i);

else if (i.compareTo(pivot) > 0)

more.add(i);

else

pivotList.add(i);

}

// Recursively sort sublists

less = quickSort(less);

more = quickSort(more);

// Concatenate results

less.addAll(pivotList);

less.addAll(more);

return less;

}

a http://rosettacode.org/wiki/Sorting algorithms/Quicksort#Java

While most readers are likely to be familiar with the Java version, the im-
plementation of the quicksort algorithm in Factor requires some explanations.
In Prog. 2, the colon introduces a word definition, here qsort. In parenthesis,
the stack effect is given. Word qsort consumes a sequence from the top of the
stack and returns a sequence on the stack. The words following the stack effect
description up to the semicolon define the meaning of qsort. Words embraced
in squared brackets are called quotations, which represent word sequences for
deferred execution.
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Program 2. Quicksort in Factora

: qsort ( seq -- seq )

dup empty? [

unclip [ [ < ] curry partition [ qsort ] bi@ ] keep

prefix append

] unless ;

a http://rosettacode.org/wiki/Sorting algorithms/Quicksort#Factor

The Factor code is a very readable and instructive description of the quick-
sort algorithm: unless the duplicate of the topmost stack element (which is the
sequence to be sorted) is empty? the code within the quotation (from unclip to
append) is executed. The first element of the sequence is unclipped, which is
the so-called pivot element. The following quotation (from [ < ] to bi@) works
on the remaining sequence, from which the pivot element has been removed, but
keeps the pivot element on top of the stack. Whilst curry is somewhat special
and remains left without further comments, the sequence is partitioned into
two sequences, based on the criteria, whether elements are < (smaller) than the
pivot element or not. Word bi@ calls qsort on both partitions, which is the
recursive part of the quicksort algorithm. When the calls are done, the pivot ele-
ment (which has been kept topmost) is prefixed to the second sorted sequence;
after that both sorted sequences are appended, which is the result of qsort.

The interested reader might consult the Factor documentation5 to get more
information on the meaning of individual words and their stack effects. While be-
ginners of concatenative languages tend to be focused on stack effects, advanced
programmers aim to write almost literate code of documentary quality.

4 Graphical Interface Prototype

To provide a solution on the restricted space problems mentioned before, we
will focus on sketching a possible graphical interface capable of handling the
space constraints. Furthermore, we will solve some Factor related issues, e.g.
how vocabularies (a similar concept as libraries in imperative languages) will be
handled by the interface. We examine how the debug process can be implemented
in this workspace and how the navigation between words can be accomplished.
To achieve these goals, our prototype consists of four main components:

1. The dictionary, which represents our vocabularies
2. The scratchpad, the developer’s workspace
3. The traveller, a companion on the developer’s journey through his code
4. The stack viewer, an all-time information source

Figure 1 shows the default configuration of our prototype; the above numbers
refer to the areas indicated. All four components are active and positioned in
the basic layout.

5 http://docs.factorcode.org
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Fig. 1. Prototype default configuration

4.1 The Dictionary

Working with a huge number of words is a complicated task when the available
space is limited; even more so having in mind that the number of words may
increase dynamically. This is naturally the case when developers add new words
or even complete vocabularies to their program. A dictionary helps the devel-
oper in housekeeping vocabularies and the words within. Using a dictionary is
intuitive, the words are organized alphabetically, permitting to navigate between
them in a simple way by just touching the letter the developer wants to see or
use.

The dictionary’s behavior is enhanced with some special features to allow
simpler interaction. First of all, there is a section inside the dictionary called
vocabulary filter. Every time a vocabulary is added to the dictionary, its name
is added to the filter. This allows to view or hide the words of the specific
vocabulary inside the dictionary using a checkbox.

Furthermore, a drag-and-drop feature allows the developer the use of a spe-
cific word on the scratchpad. A word can be dragged from the dictionary and
simply be dropped onto the scratchpad wherever needed, supporting a faster
development process. Alternatively, a word can only be touched and released
and will automatically be inserted at the cursor’s position.
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In the top bar of the dictionary, as shown in Fig. 2, a search bar is located.
This search functionality allows the developer to search for specific words inside
the whole dictionary helping him to directly and quickly access words.

Fig. 2. The dictionary

Additionally, each word in the dictionary
is accompanied by a graphical and textual
representation of its stack effects, which is a
Factor term describing the number and type
of items consumed and produced from/on
the stack. The textual representation corre-
sponds to Factor’s built-in stack effects nota-
tion, while the graphical stack representation
uses green for consumed and red for produced
elements. If the word puts true or false af-
ter the execution on the stack, a blue block
will appear on top of the stack. If the word
does neither consume nor produce elements,
the stack is shown as empty.

4.2 The Scratchpad

The scratchpad is where the developer creates
the software itself. It is, in simple words, a
large space where all the statements are con-
densed to create pieces of Factor code to reuse
later as words. As well as the dictionary, the scratchpad ships with some enhance-
ments to ease the developer’s life and increase productivity: first of all, a list of
special symbols is shown below the scratchpad. These symbols help reduce the
usage of the normal keyboard of the tablet to a minimum. The developer will
be able to place these symbols immediately on the scratchpad at any time by
just touching them. Furthermore, the scratchpad uses syntax coloring as shown
in Fig. 3 to facilitate code visualization.

The scratchpad indicates the position where the next word or symbol will be
placed by a cursor. This cursor can be moved using a finger at any time. Having
this extra information inside the scratchpad helps to identify where new words
are placed. However, words can be moved via drag-and-drop anywhere on the
scratchpad.

Words already placed on the scratchpad can be duplicated via a multi-touch
gesture. If the fingers are left on the screen, the duplicate can be dragged to
another position and simply dropped there, while it will be auto-inserted at the
cursor position as soon as the fingers leave the screen.

The top bar of the scratchpad, see in Fig. 3, contains some additional func-
tionality to help the developer with his work. From left to right, the top bar
offers the following features:
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Fig. 3. The scratchpad

– New word button: Initializes the creation of a new word from scratch. A
stub for a word in Factor is automatically created.

– Save button: Saves the word from the scratchpad. If the word does not
have any errors, it is stored and the scratchpad is cleared.

– Execute button: All statements on the scratchpad will be executed. The
stack viewer will show the status of the data stack after execution.

– Debug button: Starts the debugging process for the statements inside the
scratchpad.

– Last word button: Shows the last saved word on the workspace again.
– Show keyboard: Gets the tablet keyboard on the screen hiding parts of

the dictionary, the traveller (see Sec. 4.3) and the stack viewer.
– Show numbers: Shows the numbers keyboard.
– Add: Allows the user to add an already built vocabulary to the dictionary

or also to create a new one.

As an addition to the scratchpad, our prototype ships with a most common
words section, which is shown at the bottom of Fig. 1. This section allows the
developer to quickly access frequently used words on a per-session base.

4.3 The Traveller

In Factor, code is composed by words which at the same time are made of other
words, thus creating a highly recursive navigation issue. Our prototype solves
this situation by using a fixed space only for navigation purposes. This space is
called the traveller.

The traveller supports navigating through the definitions of words, creating a
path to follow among words. Our prototype permits to click on each and every
word inside the scratchpad to start the trip; every time more information (of a
definition) of a word is needed, the developer touches the word on the scratchpad
and the traveller will show its definition. On the traveller space, all those words
used in the definition will be surrounded by a black box, as shown in Fig. 4 on
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the left side. The black box indicates that the word could also be touched to get
the definition.

After travelling inside the words, the developer can go back by just using a
swipe gesture inside the traveller space to go one step back.

Fig. 4. The traveller and the stack viewer

4.4 The Stack Viewer

The final section of the prototype is called the stack viewer. In this part of the
prototype two stacks are shown, the data stack and the call stack. Here the
developer has the option of looking at the stack status after executing the code
in the scratchpad. Factor itself uses a textual representation of the stack, but
we propose a visualization to clarify stack behavior. This should especially be
helpful for developers coming from an imperative language. After executing the
code inside the scratchpad, the data and the call stack will be shown with their
resulting status. To examine all elements on the stack, developers can simply
scroll the stack content up and down.

The stack viewer can also be used to monitor effects on the program when
actually coding. Whenever the developer makes (valid) changes to the code, the
stack viewer is updated and reflects those changes. This is a real-time stack effect
inference engine. By this means, the developer is supported by reducing the need
to create a mental model of the run time – the results are immediately visible.

The stack viewer can also be used for debugging purposes. When the debug
procedure is called from the scratchpad, a step-by-step activity will be launched
in the stack viewer. The developer can now examine the status of both stacks
stepwise, seeing what is pushed and what is popped. Adding breakpoints inside
the call stack is also possible to allow the developer to see the stack behavior for
specific words or a specific moment in the programm execution.

Three buttons are added inside the stack viewer during the debug process:

– Step: Move the debug process one step forward.
– In: Allows the user to go inside a word definition and stack status.
– Out: Allows the user to go back to the main word definition and stack status.

5 Related Work

At present, the connection between software development, a PC, a keyboard and
one or more displays seems to be fix and unbreakable. Research in this area is
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quite young and has merely just begun. First attempts of creating a suitable
development environment on tablets are surfacing. McDirmid proposed an in-
teresting idea built around the visual programming language YinYang in [10].
He showed how tablets can compete with classic PC setups when it comes to
programming. Despite its benefits, visual programming has not gained a lot of
acceptance – most programmers still work with text-based environments. There-
fore, we do not follow the idea of visual programming. Instead we suggest to stick
to the familiar, text-based working approach and enhance it with the advantages
of a device with touch capabilities. Tillman et al. introduced TouchDevelop in
[12], a less visual and more textual oriented approach. TouchDevelop focusses on
different aspects than we do, aiming at students and hobbyists instead of profes-
sional developers and being created mainly for smartphones. Personalization of
the phone and fun are the main objectives. TouchDevelop as well as McDirmids
development environment also use programming languages specifically created
for their purpose.

Codea6 (formerly known as Codify) is a development environment created
for the iPad. It is built around the Lua language and shows interesting ideas in
the matter of how developers can interact with their code. Lua is an imperative
language, and also the demo video implies the use of a keyboard. Our prototype
does not need any peripherals.

AIDE7 is the attempt to bring an IDE to Android to support the creation of
apps directly on an Android-based device. AIDE sticks to Java, and it should
be rated as a show-case that an IDE can be ported to Android systems; the
usability for productive programming is by all means doubtful.

Having the lack of available research in mind, the surrounding boundaries
become of interest, e.g. the usability approaches and issues on mobility presented
by Jung [9] as well as Xu and Bradburn [13]. The concept of visual programming
has been around for years with interesting ideas like the navigation solution from
Edel [5] and the usability concept created for kids by Chen, Wang and Wang [3].

As most current programming languages will not go very well with the re-
duced space environment on a mobile device, we propose to think about alterna-
tive programming paradigms. We need a minimalistic yet powerful programming
language capable of coping with the restrictions on a tablet. These requirements
are fulfilled by the family of concatenative programming languages, which in the
earliest incarnation Forth have been around quite a while [2]. In our prototype
sketch, we use Factor presented by Pestov et al. in [11] because it ships with
all needed advantages from concatenative programming and adds some inter-
esting features from other language families. An overview of the concatenative
paradigm is provided by Herzberg and Reichert, accompanied by the implemen-
tation of Concat as an example in [8]. A first glimpse of how the combination of
concatenative languages and mobile devices can be used in learning environments
to support prospective programmers in their studies is presented by Herzberg,
Hesenius and Reichert in [7].

6 http://twolivesleft.com/Codea/, Mar 2012
7 https://play.google.com/store/apps/details?id=com.aide.ui, Mar 2012
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6 Conclusions and Perspective

Creating new IDEs for mobile devices is not enough to ensure their efficiency
for productive software development. The space restrictions and the usability re-
quirements for software developers are constraints that cannot be satisfied with
imperative languages, hence different ideas are needed. Mainstream languages
with the static and ever recurring build-deploy-run cycle stand in contrast to
the interactive possibilities provided by a touch screen. We proposed an alter-
native approach, using the concatenative programming paradigm, and sketching
a prototype to provide a solution for some of the problems related to software
development on a tablet.

Our prototype demonstrates how a concatenative programming language can
be used to solve the problems with the reduced screen size on a tablet. We used
Factor as an example, which besides a minimalistic approach has a number of
interesting traits and features making it suitable for being the first choice pro-
gramming language for our purpose. We showed ideas of how the navigation
issues within vocabularies can be solved, how a debug process can be imple-
mented and how the vocabularies and words could be organized, helping the
developer to be more productive. Furthermore, Factor ships with built-in fea-
tures offering a wide range of capabilities for interactive working with source
code.

For future work some open questions and tasks remain. In an environment
without a keyboard, code completion and code suggestions are useful and wel-
come helpers – this problem can easily be solved looking up names of already
created words or investigating the stack effects of words to try to find similar
words behavior. The tablet’s built-in keyboard can be used in a more context-
sensitive way, changing its layout according to the developer’s current task or
goal. A more sophisticated system of intelligent suggestions is of interest, which
supports the developer and finds the right word when needed. In certain situa-
tions, the graphical stack representation we proposed does not suffice, therefore
some words cannot be represented this way; there is a need for a more sophis-
ticated stack visualization. The interaction abilities of a tablet are by far not
exhausted by our prototype. A first step can be done by having the current
stack always visible; changes to the code should modify this stack in an instant.
To ensure more interactivity, a close connection to the run time is needed. De-
velopers should see the consequences of changes in the running application in
the moment they alter the code as well as be able to directly manipulate the run
time by e.g. moving objects around.
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Abstract. Often an ad hoc programming language integrating features from dif-
ferent programming languages and paradigms represents the best choice to ex-
press a concise and clean solution to a problem. But, developing a programming
language is not an easy task and this often discourages from developing your
problem-oriented or domain-specific language. To foster DSL development and to
favor clean and concise problem-oriented solutions we developed Neverlang.

The Neverlang framework provides a mechanism to build custom
programming languages up from features coming from different languages. The
composability and flexibility provided by Neverlang permit to develop a new
programming language by simply composing features from previously developed
languages and reusing the corresponding support code (parsers, code generators,
. . . ).

In this work, we explore the Neverlang framework and try out its benefits in
a case study that merges functional programming à la Python with coordination
for distributed programming as in Linda.

Keywords: Development Tools, Language Design and Implementation, DSL,
Composability, Modularity and Reusability.

1 Introduction

Nowadays, several and widely used programming languages support different program-
ming paradigms, such as Erlang [25], Python [19] and Scala [21]. Such a design choice
is an attempt to remedy to the lack of conciseness that is often manifest in a tradi-
tional general-purpose language. To have at disposal only a programming paradigm is
too rigid and forces to write code that awkwardly solve specific problems, e.g., try to
imagine how should be to write generic sorting algorithms without first-order functions,
function objects or templates.

Even if multi-paradigm programming languages put at disposal several program-
ming paradigms, the different programming models might not offer a concise way to
express the desired solutions and often their complexity could be excessive with respect
to the requirements. Moreover to let coexist different programming paradigms means
to compromise some of the functionality of one or the other paradigm and such a com-
promise could endanger the expected benefits. Last but not least you are still framed in
the language designer’s design and what you need could be still missing.

T. Gschwind et al. (Eds.): SC 2012, LNCS 7306, pp. 162–177, 2012.
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Another approach to favor the conciseness of the written program is based on ex-
tending a programming language via an external library to fulfill the desired missing
features (e.g., the ODBC library). In general, this approach is tailored on the desired
feature and so cleaner but the adopted syntax and the integration of the introduced fea-
ture with the rest of the programming language are far from optimal and sometimes
its usage could result cumbersome. Moreover, the API provide a more complex inter-
face if compared with the same feature supported by the language [17] (e.g., compare
iterating on a collection in Java with or without the foreach construct) and in statically
typed languages its integration cannot be as seamless as desired (e.g., some casts could
be necessary). To clear up these issues look at the advantages of LINQ (a DSL for DB
connectivity) over ODBC based approaches [16].

Other minor issues that should foster the provision of ad hoc programming languages
are related to efficiency and extensibility. A general-purpose programming language
usually provides several programming features but some of them might be unnecessary
or redundant (e.g., Python’s map/filter/reduce and list comprehensions) and contribute
to make the language over complicate to learn and use. Mainstream programming lan-
guages have a poor support for extensibility [3, 7] and those that are designed to be
extensible (e.g., Lisp, Scala) did not gain a wide acceptance [2] or are really inefficient
(e.g., parser combinators in Scala1 ).

The ideal solution to get conciseness, efficiency and extensibility would be to de-
velop a domain specific programming language by combining only those features really
necessary to solve the target problem, reusing the definition and implementation from
other programming languages. This would allow different paradigms to be freely mixed
in a fine grained manner and to speed up the design and implementation of a new ad hoc
programming language. To this respect we have developed the Neverlang [5,6] frame-
work that permits to design new languages in terms of features of other programming
languages and to fast generate an interpreter/compiler for such language by reusing
pieces of the compilers/interpreters implementing such features.

The rest of the paper has the following organization. Sect. 2 introduces the Never-
lang framework whereas some details on the implementation are in Sect. 4. Sect. 3
explores the potential of Neverlang by showing a case study focused on the creation
of a concurrent/functional programming language; in particular it shows how to mix
two language definitions to create a new language and how to change the behavior of
an existing language. Sect. 5 provides a critical analysis of some related works pointing
out the differences and the innovations introduced by the Neverlang framework. Last
but not least, in Sect. 6 we draw our conclusions.

2 The Neverlang Framework

The Neverlang [5, 6] framework is inspired by HyperJ’s [23] multi-dimensional sep-
aration of concerns and basically reflects the fact that programming languages have a
modular definition and each language feature can be easily added to or removed from

1 http://scala-programming-language.1934581.n4.nabble.com/

Performance-of-Scala-s-parser-combinators-td3165648.html

http://scala-programming-language.1934581.n4.nabble.com/Performance-of-Scala-s-parser-combinators-td3165648.html
http://scala-programming-language.1934581.n4.nabble.com/Performance-of-Scala-s-parser-combinators-td3165648.html
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the language. Ideally, the design of a programming language should consist of select-
ing a set of features (building blocks) from existing languages and composing them
together. The whole structure of the compiler/interpreter is the result of composing the
code necessary to compile/interpret each single feature. The Neverlang framework
realizes this vision and provides a language for writing the building blocks and a mech-
anism for composing the blocks together and generating the compiler/interpreter of the
resulting language.

2.1 Neverlang at a Glance

In the next we describe the basic elements and concepts introduced by Neverlang and
the composition model behind the approach.

Basic Framework Concepts. In our approach we exploit the vision that a program-
ming language is defined in terms of its features (e.g., types, statements, relationships,
and so on) and such features can be formally described in isolation (as productions of
a grammar) and composed to form the language structure (syntax). Traditional compil-
ing techniques [1] perform some transformation on such description that brings forth to
the interpretable/compiled code. A complete compiler/interpreter built up with Never-
lang is the result of a compositional process involving several basic units describing
the language features and their support code.
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Fig. 1. Sectional DSL

These basic units are called modules. Each
module encapsulates a specific feature, such as
the syntactical aspect of a loop, and thus it is
bound to a precise role, the syntax definition in
our example. The role category determines where
a module will be attached to. Roles can be inter-
preted as dimensions and are bound to the phase
of the compilation and interpretation process.
syntax, type-checking and evaluation are ex-
amples of key roles but they are not the only and
fixed set of roles: the user can define new roles (in
the language definition) associated with specific
compilation phases and he can define the whole
compilation process in terms of the defined and
included compilation phases giving their relative order, i.e., specifying what phase pre-
cedes what (through the keyword roles).

Finally, modules regarding the same language structure but with different roles are
grouped together in slices. The final language is simply the result of the slice compo-
sition. To some extent, we can say that slices are orthogonal to roles: the former are
a collection of modules that compose the same feature, the latter are a collection of
modules regarding the same compilation/interpretation phase. In this scenario design-
ing a domain specific language consists of defining a set of slices and composing them
together. In Fig. 1 is depicted the general multi-dimensional structure of a language de-
veloped by using Neverlang, the colored jigsaw pieces are modules, those in the same
row contribute to describe the same feature and are part of the same slice whereas their
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color specifies which role they play. Neither the number of modules composing each
slice must be always the same nor a module for each role must be present in a slice.

To plug a slice in, we need a mechanism to precisely select the insertion point in-
side the compiler/interpreter. The process for selecting these insertion points, or join
points in aspect-oriented parlance, is grammar driven: they correspond to the nonter-
minal symbols of the grammar; a grammar that dynamically grows as new slices are
plugged in. In our case the code to be introduced at the join points, advice in aspect-
oriented jargon, participates to define/implement the compiler/interpreter of the new
language and consists of the grammar productions (in the syntactic module) with the
related semantic action routines (in the other modules). The Neverlang approach to
compiler/interpreter building is symmetric [13]. The DSL is a sort of patchwork of only
those features selected to be part of the language and its implementation is not achieved
by modifying an existing compiler/interpreter but built up from the implementation of
the single feature provided by the corresponding slices; that is, the compiler/interpreter
is the result of the slice composition. The composition specification defines the gram-
mar join points and its advice. A complete compiler/interpreter reifies its grammar join
points, so that it can be subsequently extended with new productions. A pleasant effect
of symmetric composition is that many slices can be easily reusable by different DSLs.

To support the various compilation/interpretation phases, the developer may need
some ancillary structures or services that concerns the whole compilation process af-
fecting all the other modules crosswise. Simple examples are the symbol table and the
code to deal with the memory management. A slightly different form of slice called en-
demic supports this kind of behavior. The fields and methods defined in an endemic slice
are accessible by all modules in the Neverlang program independently of the compil-
ing/interpreting phase. Adding/replacing an endemic slice permits to easily redefine the
whole behavior of the compiler/interpreter (more on this in Sect. 3.4).

Modules and Slices Definition. Listing 1 shows the Neverlang implementation for
the if-else conditional construct. Three roles (syntax, type-checking and evaluation)
are involved; each role is defined in a separate module (that could be written in separate
files as well) and combined together in the if slice.

Syntactically, the if-else construct can be defined by two productions: the first de-
fines the complete case with both branches and the second defines the case without the
else branch (see [1]). Such productions are defined in a module with the role syn-

tax. Each production is composed by terminals (surrounded by ’) and nonterminals
(e.g., StatementL). These productions are bound to the nonterminal Statement, other
productions bound to such nonterminal can be defined in the syntax module of other
slices. Obviously nonterminals used in the right side of the productions and unbound in
the module (such as StatementL and Expr) must become bound in the slice composition
phase where other slices with productions bound to them come into play; otherwise the
grammar will be incomplete and the compiler/interpreter could not be generated.

All the other kind of modules (in our example those with role type-checking and
evaluation) add semantic actions to the grammar rules defined in the module with syn-

tax role (see syntax-directed translation in [1]). Each of these modules associates to the
nonterminals the semantic actions necessary to carry out the corresponding
compilation/interpretation phase — e.g., the semantic actions in the module with role
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module if_syntax {
role(syntax) {
Statement � ’if’ ’(’ Expr ’)’ ’{’ StatementL ’}’ ’else’ ’{’ StatementL ’}’
Statement � ’if’ ’(’ Expr ’)’ ’{’ StatementL ’}’

}
}

module if_typechecking {
role(type-checking) {
0 { if (!$1.type.equals("Boolean")) System.err.println("ERROR: «expr» must be a boolean"); }
4 { if (!$5.type.equals("Boolean")) System.err.println("ERROR: «expr» must be a boolean"); }

}
}

module if_eval {
role(evaluation) {
0 { if (new Boolean($1.eval)) $2.eval else $3.eval; }
4 { if (new Boolean($5.eval)) $6.eval; }

}
}

slice if {
module if_syntax with role syntax
module if_eval with role evaluation
module if_typechecking with role type-checking

}
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Listing 1. Simple if-else module and slice

type-checking are used during the type checking phase. The nonterminals are identi-
fied through their position in the productions numbering with 0 the top leftmost non-
terminal and incrementing by one left-to-right and up-to-down all nonterminals inde-
pendently from any repetition and for the whole set of productions defined in the slice.
In our example, the module with role evaluation defines two semantic actions. The
first enriches the head of the first production (position 0) and simply tests the evaluation
of the boolean expression associated to the nonterminal in position 1 (Expr) and, ac-
cordingly to that, respectively evaluates the nonterminal in position 2 or 3 through their
eval attribute (such associations are made explicit by arrows in the listing). The second
action behaves similarly but refers to the case without the else branch and it is associ-
ated to the head of the second production (position 4). Semantic actions are anchored
to a nonterminal; if it is the head of the production, the action evaluation is carried out
after the evaluation of the semantic actions in the right part of the production and in its
derivation (postfix evaluation); otherwise it is done before (prefix evaluation).

The semantic actions are basically pieces of Java code that access attributes com-
puted during the current (or previous) compilation/interpretation phases. What the at-
tributes are and how they are transmitted from a module to another derives directly
from how the syntax-directed translation mechanism [1] works. Attributes are accessed
through the nonterminal (by its position prefixed by $) they refer to, e.g., $1.eval is
the eval attribute of the Expr nonterminal in the first production of our example. To
make clear how the slice composition takes place, we can make a parallel with aspect-
oriented parlance and consider a nonterminal as a sort of join point where productions
and semantic actions are woven during the generation of the compiler/interpreter for the
language. Finally, the keyword slice permits to select the modules that will compose
our slice and to specify which role such modules play in the slice. Note that a role can
be played by only one module in each slice.
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# the master process defines the tasks for the slaves and collects the results.
process main { # distribute the jobs to the slaves and collect the results
rLenA = args[0] # A’s and B’s dimensions are passed as args
cLenA = args[1] rLenB = args[2] cLenB = args[3]

# A and B are randomly generated.
A = [[random(10) for y in range(cLenA)] for x in range(rLenA)]
B = [[random(10) for y in range(cLenB)] for x in range(rLenB)]

# calculates BT in a list, then converts it back to a matrix
B = [B[y][x] for x in range(cLenB) for y in range(rLenB)]
B = [[B[x] for x in range(y*rLenB, rLenB+y*rLenB)] for y in range(cLenB)]

# drops the tuples <Ai, BT
i >, x and y help in retrieving the results.

[out("data", A[x], B[y], x, y)
for x in range(rLenA)
for y in range(cLenB)

]
out("tuples", cLenA*rLenB)
cnt=rLenA*cLenB

# create an empty matrix for the result
C = [[0*y for y in range(cLenB)] for x in range(rLenA)]

tot=0 # collecting the results
[C[x][y] = tot for i in range(cnt) if in("result", ?x, ?y, ?tot)]
print(C)

}

# client (slave) calculates and drops in the tuple space the multiplications
process client {
tot = 0 len = 0
do { # search for non calculated couple of rows
in("tuples", ?len)
if (len != 0) {
out("tuples", len-1)
in("data", ?A, ?B, ?x, ?y)
[tot = tot + z for z in

[A[i]*B[j] for i in range(len(A)) for j in range(len(B)) ]
out("result", x, y, tot)

}
} while(len == 0)

}

Listing 2. Cooperative matrix calculation in the Linda+Python language

3 Neverlang at Work

In the next we present a case study that shows how Neverlang eases to mix up features
from different programming languages to form a new one.

3.1 Case Study: Linda+Python

Nowadays multi-core computers are on the rise and the opportunity to program them
as a parallel computer and possibly to communicate through their shared memory is
coming into the limelight. Some decades ago, Gelernter et al. [4,11] introduced Linda, a
parallel programming model based on shared memory, called the tuple space, to support
inter-process communication. The tuple space approach could become topical again in
the context of multi-core programming.

Linda is a coordination language with a very limited set of concepts (only six prim-
itives: in, inp, rd, rdp, out and eval) that needs to be embedded in a Turing com-
plete programming language to be useful and usable. Normally, Linda is integrated into
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another programming language either by modifying the existing compiler for the host
language or by using an external library (as in JavaSpaces [10]). As we explained in
the introduction both approaches have drawbacks: modifying a compiler is a time-
consuming and error-prone task whereas an external API could badly fit in the original
programming language and its use could be complicated and cumbersome. Neverlang
can be used to overcome these issues by simply supporting the compiler/interpreter gen-
eration for a domain specific programming language. In particular, the coordination lan-
guage Linda is merged to the functional characteristics of Python (in particular Python’s
list comprehensions) [18] to form the so-called Linda+Python programming language.
This is realized by writing down the necessary slices that permit to support (portion of)
the two languages by merging them together to define the new language. Of course,
we maximize the benefits when the languages to mix up are already implemented in
Neverlang and their slices can be reused.

The result of the process is a framework (compiler and interpreter) that permits to
compile and to interpret programs written in the Linda+Python idiom. As an exam-
ple, listing 2 implements a distributed and shared memory-based version of the matrix
multiplication algorithm in Linda+Python: keywords from the Linda language are blue-
colored whereas the red-colored are Python keywords. The program follows the mas-
ter/slaves paradigm; two kind of processes are involved: main and client. The former
(master) stores row and column couples in the tuple space and waits for the result. The
latter (slave) looks in the tuple space for such kind of couples, multiplies each couple
element by element and puts back in the tuple space a tuple with the sum of such prod-
ucts. Note that more than one client process can be launched without any conflict to
speed up the process.

3.2 Linda+Python Building Blocks

In the long term, i.e., when the Neverlang framework will support enough program-
ming languages, developing the support for the Linda+Python programming language
will simply consist of reusing the slices from Python and those from Linda regarding
the features of interest and writing some glue code to merge up the whole system. Since
we are still far from such a situation we have developed the necessary slices as well.

Linda. The Linda implementation in Neverlang should, at least, provide a slice for
each Linda primitive, a slice to support tuples and anti-tuples and the support for the
tuple space. The slices to implement the primitives and the tuples and anti-tuples do not
introduce particularly relevant concepts. The implementation of the tuple space is more
interesting since it does not introduce any piece of new syntax but it is just a sort of
data structure used by the other primitives; it is the perfect example of feature endemic
to the rest of the programming language and it is implemented in the endemic slice
TupleSpace (Listing 3). In this case, the type-checking phase does not only support
the classic type checking but also the tuple matching to extract tuples from the tuple
space. As for the tuple space management, the TupleSpace relies on an external Java
package (cf. the TupleSpaceThread class in Listing 4). The endemic slice is used by
the other slices through the syntax.
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slice TupleSpace {
decl {
import TupleSpace.TupleEntry; import TupleSpace.TupleSpaceThread;
TupleSpaceThread ts = TupleSpaceThread.getInstance(); // tuple space

Hashtable<String,String> getMatches(ArrayList<String> val,ArrayList<String> types,boolean del) {
TupleEntry res, te = new TupleEntry(types, val); // anti-tuple
if(!del) res = ts.getMatches(te); // read operation
else res = ts.getMatchesAndRemove(te); // in operation

...
}

void addEntry(ArrayList<String> values, ArrayList<String> types) {
ts.addEntry(new TupleEntry(types, values););

}
}
module TupleSpace with role endemic

}

Listing 3. The endemic slice to support the tuple space

public class TupleSpaceThread implements TupleSpaceInterface {
private static TupleSpace ts;
public static TupleSpace getInstance() {
if (ts == null) ts = new TupleSpace();
return ts;

}
public void addEntry(TupleEntry te) { ... }
public TupleEntry getMatch(TupleEntry te) { ... }
public TupleEntry getMatchesAndRemove(TupleEntry te) { ... }

}

Listing 4. The external TupleSpaceThread library

«slice name».«operation name»(«arguments»).

The endemic slices are always available and do not need to be imported.

Python. In the case of Python, we are just interested in its list datatype and in the
comprehension mechanism. Python lists are heterogeneous and dynamically typed. Dy-
namic typing forces to postpone the list type evaluation to the evaluation phase and in
the case of Linda+Python example to have a mixed type checking: static for the Linda
part and dynamic otherwise. The Neverlang framework permits to suspend and to
resume a phase on part of the AST; this feature enables the system to postpone the type
checking at the evaluation phase.

Due to space limitations, we cannot report the whole slice dealing with the list
comprehension feature but we are interested in showing how the suspend/resume mech-
anism works. Listing 5 shows how to support dynamic checking in a for-each-like con-
struct that iterates on a heterogeneous list and executes an expression on every element.
During the type-checking phase, the expression associated to the SimpleExpression

nonterminal cannot be type checked because it is (presumably) bound to the identifier
(described by the Identifier nonterminal) whose type is not available before the eval-
uation and potentially it can change at each loop since Python’s lists are not bound to a
single type. The type-checking phase for the SimpleExpression nonterminal must be
suspended by using the special function $suspend. During the evaluation phase, the
type and value of the elements of the list are stored in a variable table that can be used
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module ForEach {
role(syntax) {
ForEach � SimpleExpression ’for’ Identifier ’in’ List

}
role(type-checking) {
1 { $suspend; }

...
}
role(evaluation) {
0 {
String listValue = $3.eval;
String[] values = VarTable.getValues(listValue);
String[] types = VarTable.getTypes(listValue);
for(int i=0; i<values.length; i++) {

VarTable.putValue($2.eval, values[i]);
VarTable.putType($2.eval, types[i]);
$1.resume("type-checking");
$1.eval;

}
}

}
}

Listing 5. Postponed type checking in the implementation of the comprehensions

module Inc {
role(syntax) { SimpleExpression � Identifier ’++’ }
role(type-checking) {
0 { // type checking resumes here
if !(VarTable.getType($1.eval).equals("int")) Logger.printError("Invalid type!");
else $0.type = "int"

}
}
role(evaluation) {
0 { VarTable.putValue($1.eval, VarTable.getValue($1.eval)+1); }

}
}

Listing 6. Module Inc to implement the increment operation

by the type checker when resumed (call to the $resume special function). Given that
the SimpleExpression nonterminal expands into the increment operation (defined by
the Inc module, Listing 6), the type checking process resumes in the semantic action
associated to the head in such module, i.e., the place where the phase is resumed de-
pends on the program we are compiling. In the type-checking and evaluation phases
the values stored in the variable table before the $resume is used; the variable table is
implemented by the VarTable endemic slice as a hash table.

3.3 Building Linda+Python Up

Once the necessary slices have been developed (or selected if already existing), we
have to define (through the language statement) how such slices are composed together
to form the new Linda+Python programming language; such definition will drive the
Neverlang framework in the building of a compiler/interpreter for the new language.

Being the compilation phases syntax-driven, most of the issues the developer has
still to face are the syntactical conflicts that could rise by composing modules with role
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language Linda+Python {
slices Main BoolOp Sum Process Mul Out Read InP ReadP Eval Length Id ListsOp WildCardExpr Boolean

Int Assign ListsAccess Range In CompVarTable Tuple Args Expr Rand Var VarTable Comprehension
DoWhile If OpTable MulTable ListAssign TupleSpace IntOp Lists Print BooleanOpTable SumTable
ListsTable CompFor

roles syntax < type-checking < evaluation
}

Listing 7. Linda+Python Definition

syntax defined by different development teams. A quite common example of this prob-
lem occurs when you compose statements such as if and do-while, whose produc-
tions have different left-hand nonterminals rather than a common one as Statement;
such problem requires some glue code to redefine or to make uniform the productions.
Neverlang avoids further conflicts in the other phases since the semantic actions are
associated to the nonterminal position and this is related to a specific production inde-
pendently of the slice composition.

Listing 7 shows the language composition in our case study; such a piece of code just
lists which slices should be composed and in which order the compiling phases occur
(expressed through the keyword roles).

3.4 Flushing Flexibility Out

The tuple space implementation and the distribution provided in Listing 3 are quite
naïve; Linda’s processes are implemented as threads and the tuple space resides in the
data area common to all threads. Of course, this is just a proof of concept but it permits
to show another peculiarity of the Neverlang approach: how easy it is to evolve a
programming language (more on DSL maintenance in Neverlang can be read in [5]).
Switching from the current thread-based implementation to a more distributed RMI-
based one is just a matter of substituting the TupleSpace slice with another slice sup-
porting the desired implementation while retaining the interface.

Listing 8 shows the endemic slice TupleSpaceRMI that will replace the thread-based
implementation of the tuple space. The instance of TupleSpace does not reside in the
common data area anymore but it is accessed through RMI as a remote object. Other
minor changes are not showed due to sake of space but the access methods are synchro-
nized and the Tuple are serialized to be stored into or retrieved from the tuple space.

This kind of change is particularly easy since it just affects the run-time environment
of a running program and not its syntax and semantics and (with some care for consis-
tency) it could be done at run-time as well. Of course any kind of language evolution
can be easily taken in consideration but often this affects the source code as well due to
changes to the language syntax. Note that similar flexibility can be achieved also with
library based solutions but with a less clean syntax; moreover it is hard to change or
extend features whose implementation is less self-contained and library based. In [5]
are shown more elaborated kind of evolutions.

The complete case study can be downloaded from the Neverlang web page:

http://cazzola.dico.unimi.it/neverlang.html

http://cazzola.dico.unimi.it/neverlang.html
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slice TupleSpaceRMI { // TupleSpaceRMI differs from TupleSpace in
... // the way the tuple space is retrieved

decl {
TupleSpace ts = connect();

TupleSpace connect() {
try {
return (TupleSpaceInterface)LocateRegistry.getRegistry(Args.hostname).lookup("TupleSpace");

} catch (Exception e) { ... }
...

}

public class TupleSpaceRMI implements TupleSpaceInterface {
...

public static void main(String args[]) {
try {
TupleSpace ts = TupleSpace.getInstance();
TupleSpaceInterface stub = (TupleSpaceInterface)UnicastRemoteObject.exportObject(ts, 0);
LocateRegistry.getRegistry().rebind("TupleSpace", stub);

} catch (Exception e) { e.printStackTrace(); }
}

}
}

module TupleSpaceRMI with role endemic
}

Listing 8. RMI-based tuple space implementation

4 Neverlang Close-up

Basically, the idea behind the Neverlang framework is to compose the slices listed in
the slices section of the language statement and to exploit the syntax-directed trans-
lation [1] approach on the context-free grammar that results from the syntax module
composition which is then decorated with the semantic actions specified in the remain-
ing modules.

The resulting compiler/interpreter is mainly composed of two parts: i) a front-end
that parses the source files written in the new language and generates the classes that will
compose the abstract syntax tree (AST) and the AST itself and ii) a type-driven back-
end that attaches (through aspect-oriented programming) the semantic actions specified
by the developer to the classes composing the AST and traverses the AST to carry out
all the compilation/interpretation phases.

Front-End Generation. To render the language definition extensible and sectional we
adopted the parsing expression grammars (PEGs) [9] and the Rats! [12] an extensible
parser generator that works on these kind of grammars. PEGs look similar to context
free grammars but they are not ambiguous: if a string parses, it has exactly one valid
parse tree and it is always possible to write a recursive-descent parser running in linear
time (the pakrat parser [12]).

The compiler generation procedure starts by collecting all grammar productions con-
tained in the modules with role syntax and by translating them in Rats! modules that
define the parser for the new language. The tool builds a class (a sort of empty skeleton
to be filled later by the back-end) for each nonterminal of the generated grammar; such
classes will be used to instantiate the nodes of the AST accordingly to the grammar of
the defined language.
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The most natural way of representing an AST is to model the language constructs
as a class hierarchy with general abstract classes like Statement and Expression, and
specialized concrete classes like Assignment and AddExpression. In our case, all non-
terminals are modeled as abstract classes and the productions permit to specialize them
in concrete subclasses. All nonterminals have a common superclass, called AbsNode,
containing the fields and methods common to all nonterminals; this is refined in con-
crete classes representing the nonterminals and containing their own inherited and syn-
thesized attributes [1].

Semantic Back-End Generation. The semantic actions associated to a nonterminal are
appropriately injected into the AST node representing such nonterminal. Once all the
semantic actions related to every compilation/interpretation phase are injected, the com-
pilation/interpretation process can start. Each phase is associated to a specific visit()

method and will be carried out during the AST traversal by calling such method on each
node.

The evaluation carried out at each node is both type-driven (i.e., associated to the
corresponding nonterminal) and context-driven (i.e., related to the semantic action as-
sociated to the position of the nonterminal in a given production; a nonterminal can
occur in several positions and in each position can be decorated by a different semantic
action). Therefore, the code of the method invoked during the visit will change on a per
node basis (Polyglot [20] has similar necessities solved by delegation). AspectJ [15]
represents the perfect tool to realize the required context-driven adaptation of the AST
nodes. The code of the semantic actions associated to each nonterminal is automatically
woven into the method invoked during the tree traversal accordingly to the type of the
node, to the node position in the AST (and consequently the position the corresponding
nonterminal has in the applied production) and to the compilation/interpretation phase
(that is, the role we are effectively playing). By using this approach, semantic roles are
implemented without modifying the classes of the AST nodes and the whole role can
be easily plugged and unplugged. This context-adapting visit() method implements
a sort of aspect-oriented modular visitor pattern [22] that permits to avoid the well-
known expression problem [27]; with respect to Oliveira’s [22] proposal, this has also
the benefit of reducing the necessary casts.

In detail, a pool of aspects is created for each role (or compilation/interpretation
phase if you prefer). Such aspects wrap up the pieces of code that should be attached
to the method called during the AST traversal. Each collection of aspects contains also
a special element called driver aspect that drives the entire compilation/interpretation
phase and the switch from a phase to the following; the mechanism is quite simple:
the generated compiler/interpreter has a hook in its main program (a dummy method
invoked just after the tree construction, that permits to put in evidence a join point).
This hook is used by the driver aspect as an anchor where to hook up the AST visit()

method for a given compilation/interpretation phase (woven before the method call)
and the code to switch to the next phase (woven after the method call). At each phase,
the AST traversal depends on a flag attached to each node: if the flag is unmarked the
node and its children are skipped during the visit; normally all the nodes are marked
for the visit. The $suspend primitive unchecks the corresponding node for the current
phase and a special aspect is created to be used when resuming; the $resume primitive



174 W. Cazzola

represents a join point where such aspect is woven to permit the belated visit of the
AST. Methods and fields defined in endemic slices are wrapped in static classes and
imported by all the generated aspects and classes. These fields are initialized before
the AST traversal starts and the implemented services are available during the whole
compilation procedure.

To establish an order among the compilation/interpretation phases as expressed by
the roles keyword, we exploit the advice precedence feature of AspectJ that permits to
specify in which order to apply the advices matching the same join point. In particular,
in the main procedure we set the order in which the driver aspects are woven into the
dummy methods.

5 Related Work

Several works share Neverlang’s goals. JastAdd, xText and Polyglot are the most
pertaining.

JastAdd. The JastAdd [8, 14] system enables open modular specifications of exten-
sible compiler tools and languages. JastAdd is an extension to Java that supports a
specification formalism called rewritable circular reference attributed grammars.

JastAdd and Neverlang share a very similar object-oriented implementation of
the AST [8]. Moreover, they both adopt aspect-oriented programming to extend the
language behavior by injecting methods and fields in the AST nodes. On the other
side, in Neverlang the AST nodes and their connections come after the grammar
productions whereas in JastAdd they can be user-defined granting a major flexibility
but the generated code can bloat.

JastAdd adopts reference attributed grammars, i.e., a semantic action in q can refer
to an attribute of an unrelated nonterminal r. PEGs, adopted by Neverlang, do no
support this feature but it can be simulated by saving r in an external data structure
(through an endemic slice) during the AST visit (as we do to deal with the attributes).

In JastAdd each declared behavior rewrites the AST tree nodes giving the opportu-
nity to add or delay a phase of compilation; behaviors are similar to Neverlang roles.
Even if Neverlang’s modularity (roles) is not limited to compiler phases but straddles
the whole compilation/interpretation process via the endemic slices.

Polyglot. Polyglot [20] is an extensible compiler framework that supports the creation
of compilers for Java-like languages. Polyglot relies on an extensible parser genera-
tor that permits to express the language syntactical extensions as changes to the Java
grammar.

Polyglot extensibility is supported by delegation. Each compilation phase is sup-
ported by a delegate object present in each AST node type; the delegate object is appro-
priately replaced in each extension.

Neverlang and Polyglot share similar goals, i.e., supporting the development of
syntactical and semantical extensions to a programming language but Polyglot is lim-
ited to Java. Besides, Polyglot extensions are just source-to-source translations from
the extended language to pure Java. Modularity and reusability are issues that Polyglot
does not face.
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xText. xText is an Eclipse plug-in that provides a framework for the development of
domain-specific languages. It is tightly integrated with the Eclipse modeling frame-
work [26] to provide a language-specific IDE.

Like JastAdd the user is free to define the relation between grammar productions
and AST nodes but each parser rule will create a new node in the AST. The language
meta-model describes the structure of its AST.
xText generator leverages the modeling workflow engine from Eclipse modeling frame-
work technology and the code is generated from the meta-model created by the parser;
the meta-model is similar to the Neverlang semantic back-end.

The framework gives the opportunity to reuse existing grammars and existing meta-
models to implement the back-end for different languages. However the framework
seems oriented to infer a model from a text and to translate it to an other model (model-
driven development) rather than to create real compilers. A similar approach (model-
driven) is also provided by Frag [28].

To recap, the main difference, that evinces from this comparison, is that Never-
lang focuses on modularity and reusability of the compiler units; in Neverlang the
developer can easily extend and mix existing languages to define new languages with
working compilers/interpreters. Moreover, by compiling Neverlang programs we get
real compilers/interpreters for programming languages completely independent of the
language used to implement the compiler (Java in our case) and not (source-to-source,
model-to-model, . . . ) translators that limit the implemented programming language to
syntactic extensions of the host language.

6 Conclusions

In this paper we have introduced Neverlang: a framework to describe new program-
ming languages as the composition of programming features from existing program-
ming languages and to generate the compiler/interpreter for the new language by reusing
previous implementations. Moreover we have shown how Neverlang can be used to
mix up programming features from Python (list comprehensions) and Linda (coordina-
tion) to form a multi-paradigm programming language and showed how its implemen-
tation can be easily changed from a thread-based tuple space to a RMI-based one.

Currently an incremental parser (similar to the PetitParser [24]) is under develop-
ment, the idea is to drop the PEG-based parser in favor of a more flexible parser that
will permit to avoid of regenerating the whole parser when a slice is added or removed
from the language. This would permit to change the behavior of a running system, for
example, in the Linda+Python case study we could change the tuple space implemen-
tation from one version to another on-the-fly. Also the implementation of some well
known languages like Java and Python is under development as well as the improve-
ment of the composition mechanism to support a finer decomposition for the feature
implementation and to ease the mix up of different interpretation/compilation philoso-
phies (e.g., monadic and traditional interpretation).

Acknowledgments. The author wishes to thanks Ivan Speziale and Davide Poletti that
worked on the Neverlang implementation; without their help Neverlang would be
a nice empty box.
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Abstract. A major challenge faced by organizations is to better capture 
business strategies into products and services at an ever-increasing pace as the 
business environment constantly evolves. We propose a novel methodology 
base on a Business Process Line (BPL) engineering approach to inject 
flexibility into process modeling phase and promote reuse and flexibility by 
selection. Moreover we suggest a decision-table (DT) formalism for eliciting, 
tracking and managing the relationships among business needs, environmental 
changes and process tasks. In a real case study we practiced the proposed 
methodology by leveraging the synergy of feature models, variability 
mechanisms and decision tables. The application of DT-based BPL engineering 
approach proves that the Business Process Line benefits from fundamental 
concepts like composition, reusability and adaptability and satisfies the 
requirements for process definition flexibility.  

Keywords: business process management, business process modeling, business 
process line, feature model, variability mechanisms, decision table. 

1 Introduction 

Business processes and services are at the heart of an ongoing “silent revolution”. A 
major challenge faced by organizations in today’s environment is to monitor a 
constant evolution of business environment and better capture business strategies into 
products and services at an ever-increasing pace as the business environment evolves. 
At the same time, organizations distributed by space, time and capabilities are 
increasingly pushed to exploit synergies by integrating their business processes in 
order to produce new value-added products and services. Also mergers or acquisitions 
can entail integration of different processes, reuse of parts of the process to be 
discarded, inclusion of parts of other processes and so on.  

Both the process evolution due to internal and external factors, the Business 
Process Management (BPM) paradigm stresses the importance of integrating whole 
process rather than simply integrate data or applications [1, 2]. Also, the process wave 
initiated by Hammer and Champy [3] led to the awareness of business process models 
as indispensable artifacts to drive business management and evolution. However, 
traditionally, BPM systems were used to support static business processes, in sense of 
processes which do not change frequently. This has limited the scope of this 
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management. Business process modeling management systems and languages that are 
able to describe and unroll dynamically changing processes are today necessary.  

In this scenario, in our research work, we face how to allow a business process to 
evolve in an agile manner by injecting flexibility into process definition, so we 
approach the problem of flexibility from a modeling perspective. Flexibility is the 
adaptation to a changing environment. However, adapting process models or its 
instances during their execution fit only stable processes in expecting changes 
domain. In order to provide the capacity to anticipate the change at modeling-time, we 
argue that a more systemic view of business process variability is necessary to handle 
the problem ‘in the large’ and we suggest capturing changes in a product-line 
engineering approach based on selection and design of commonalities and variations. 
Seeing the duality that exists between products and processes, we believe that lines of 
business processes could beneficially be handled as software product lines: we 
propose to model business processes in a Business Process Line (BPL) able to elicit 
commonalities as well as variant components in order to capture process variability 
and promote reuse and flexibility needed in a constantly changing business 
environment.  

For this purpose, after a feature-oriented domain analysis as typically in software 
product line development, our proposed methodology intends to inject appropriate 
variability mechanisms in process modeling in order to enable flexibility by selection. 
Variability mechanisms [4] takes inspiration from modularity concept in the object 
oriented paradigm to establish a hierarchical construction of the business process 
modeling: so it can be possible to model business processes with inheritances, 
encapsulations, extensions, parameterizations and so on. The resultant business process 
model will benefit in terms of flexibility by leveraging of fundamental concepts like 
composition, reusability and adaptability and offer ease of change to analysts. 

However, in order to anticipate the process changes, it is essential to elicit all 
possible process characteristics and not to leave degrees of freedom in process 
execution, so we suggest to track and manage the considerable amount of process 
parameters through a decision-oriented paradigm: we introduce the use of decision 
tables (DTs) to acquire, formalize and reuse all the emerging decision points during 
business process modeling.  Decision tables are able to give a representation of the 
relationships among business needs, environmental changes and process tasks in a 
complete manner, without inconsistencies. These peculiarities are assured by compact 
overview of a large number of information, modular knowledge organization, effective 
verification of consistency, completeness and redundancy. Moreover, decision tables are 
easily maintainable by supporting the dynamic reengineering of the represented 
relationships. This paradigm seems to be particularly appropriate for representing 
knowledge intensive business processes or any kind of processes requiring flexibility.  

Briefly, our research work investigates the following Research Questions (RQ): 

• RQ1: How to capture and model variability in business processes in order to 
improve flexibility in changing environment? 

• RQ2: How to elicit and manage all possible process characteristics to prevent and 
detect anomalies in decision points? 
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To face this research questions, the following solutions are respectively proposed: 
business-process-line engineering approach and decision-table-based support. 

The structure of this paper is the following one. Section 2 introduces the proposed 
methodology. This section explains what a Business Process Line is and how to build 
it in a real case study. The section 3 describes the support of decision table formalism. 
The section 4 discusses the related works and finally the section 5 draws the  
conclusion. 

2 Business Process Lines Boosting Process Flexibility 

Process flexibility is the capacity of making compromise between, first, satisfying 
rapidly and easily the business requirements in terms of process adaptability when 
organizational, functional and/or operational changes occur; and second, keeping 
effectiveness [5]. The issue of business process flexibility can be addressed from two 
great perspective [6], as shown in figure 1:  

─ Flexibility by Selection (A Priori). It is based on modeling formalisms which offer 
the  capacity of taking into account the environmental changes without changing 
the definition of the business process. It ensures the existence of a number of 
alternatives of execution in the business description at design time. Decision points 
have to be perfectly represented. It is recommended in the case of process for 
which we can know in advance all the possible execution cases. Nevertheless, 
users note that there are processes for which they cannot always anticipate all the 
possibilities of execution at the design time.   

─ Flexibility by Adaptation (A Posteriori). It adapts the definition of the business 
process without anticipating the capacity of change of the process at its design 
time. It injects flexibility at execution time by means of a configuration mechanism 
in order to ensure the change of parameters, the change of the execution way, or 
the addition of new participants. 

 

Fig. 1. Business Process Flexibility Schema 
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Many approaches have been proposed to address the issue of flexibility support in 
business process modeling and enactment. In this paper we focus on flexibility by 
selection at build-time in order to leverage the capacity to anticipate the changes by 
means of the proposed process modeling approach. In fact, the BPL approach,  as 
well as in software product line engineering, aims at exploiting typical benefits from 
modularity and component composition able to add flexibility at modeling and design 
time according to ever-changing environments.  

The situation is similar to that in manufacturing and product engineering where the 
notions of product lines have been introduced [7]. Design of product lines 
demonstrated the need to elicit commonalities as well as variable parts in a product 
and stressed the importance of the variability concept. Managing commonalities and 
variability leads to two major advantages: reuse of common parts [8], [9] and 
adaptation to different customers and various organizational settings [10]. 

Moreover numerous reports document the significant achievements gained by 
introducing software product lines in the software industry [11] in terms of software 
engineering flexibility.  

2.1 What Is BPL 

According to the Software Product Line paradigm, our proposed methodology is 
intended to orchestrate a Business Process Line in order to manage a set of similar 
business processes as follows: 

1. share common assets (commonality) among all the business processes; 
2. characterize each business process by one or more variant assets (variability) 

depending on the specific context where the process will be applied;   
3. introduce flexibility by selection (a priori) in business processes in terms of 

features they provide, the requirements they fulfill. 

A Business Process Line is a portfolio of closely related processes with variations in 
features and operative contexts, rather than just a single business process. A BPL  
consists of:  

1. a set of invariant assets (commonality): they are common process parts which  
constitute the basis for all processes of BPL; 

2. a set of variant assets (variability): they are specific process parts related to a  
subset of features which can be selected to tailor the target process; variant assets 
must be designed with the most appropriate level of granularity by encapsulating 
the atomic process parts and hiding the problem-solution relationships in order to 
provide strategic, large-grained reuse;  

3.  a set of rules: they explicit the decision-making task to perform flexible 
composition of process assets (variant and invariant ones). 

2.2 How to Build a BPL 

A) Domain Analysis. Feature models were first introduced in the Feature-Oriented 
Domain Analysis (FODA) method by Kang [12]. Since then, feature modeling has 
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been widely adopted by the software product line community.  Feature models capture 
the functional and non-functional requirements of the products in the software product 
line and the decisions about common and variant capabilities and behaviors across the 
product line. 

According to FODA, a feature is “a prominent or distinctive user-visible aspect, 
quality or characteristic of a software system or systems”. We borrow this definition 
for BPL and define a business feature as “a representation of a visible process 
characteristic and an abstraction of a cohesive business flow of activities”. Therefore 
we use feature models in order to represent features and their dependencies in business 
scenario, typically in the form of a feature diagram with cross-tree constraints  
(figure 2). 

 

Fig. 2. An example of Feature Tree notation 

B) Modeling Variability. Variability mechanisms denote techniques for the derivation 
of process model variants from existing process models. We introduce them in our 
BPL approach in order to inject variability in the business process model (samples in 
figure 3). Similarly to the Object Oriented paradigm, the definition of variability 
mechanisms refers to the following categories (details in [13]): 

1. Extension. Extensions and extension points are used to extend an encapsulated 
process asset at predefined points, the extension points, by additional optional 
behavior selected from a set of possible variants. An extension point activity is 
marked with the stereotype <<Null>>, associations marked with <<Extension>>  
connect optional implementations. 

2. Encapsulation. Specific process assets are inserted into an invariant interface. 
Thereby, an interface is defined as the set of input and output events of an activity. 
The interface activity is marked with the stereotype <<Abstract>>. Possible 
realizations of the interface are connected using associations marked with 
<<Implementation>>. 

3. Inheritance. Inheritance adds restrictions to addition/omission/replacement of 
single elements. Inheritance modifies an existing (default) process asset by adding 
activities regarding to specific rules. An association represents inheritance from the 
child activity to the parent activity when it is marked with the stereotype 
<<Inheritance>>. 
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4. Parameterization. Using parameterization processes are built by a generic process 
with a set of parameter values. In BPMN, each attribute can be parameterized to 
support optional, alternative, or range variation points. 

 

(a) Extension (b) Encapsulation 

(c) Inheritance 
 

(d) Parameterization 

Fig. 3. Variability Mechanisms Samples 

2.3 Illustrative Case Study 

In order to motivate the discussion about modeling for flexibility with BPL 
engineering approach, let us consider the following scenario. In South Italy 
companies are working on developing a selling system for local agricultural and food 
market. They are collaborating with our research team in order to implement their 
business processes for different customers and automate them via web services. 
Within this project there are different providers offering a number of selling services 
that could be reused and adapted in each different business contexts according to the 
customer needs. That’s why the project represents a field of interest for the proposed 
approach application.  

Starting from the analysis of MIT library [14] we have achieved information useful 
to obtain a BPL library. The MIT library represents a collection of more than 5000 
business activities related in several business processes. In particular, we have 
extracted the set of business activities needed for building our Selling BPL: Share out 
goods, Register Sellers, Register Alternative Products, Arrange store displays, 
Auction, Check quality, Register Auction Result, Identify potential customers need, 
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Identify potential customers, Inform potential customers, Manage customer 
relationships. For space reason, in this section we show the BPL subsystem 
concerning the “Auction” business activity. In figure 4 there is the initial BPMN 
model of business process (open ascending-price auction). 

 

Fig. 4. Initial Process “Auction” 

A) Feature Model. Firstly, we analyzed Auction business scenario searching for 
peculiar features. As shown in figure 5, the resultant Auction feature model consists 
of the following elements, some of them mutually exclusive:  

• “open”, auction accessible to all e-marketplaces; “closed”, auction accessible to 
invited sellers/buyers; 

• “direct”, bids from the seller to buyers; “inverse”, bids from the buyer to sellers; 
• “english”,  ascending price auction; “dutch”, descending price auction; “hybrid”, 

the auction switches from english mode to dutch one if there isn’t a starting price 
appropriate for the seller. 

Auction

open

direct inverse english

dutch

hybrid

closed

 

Fig. 5. Auction Feature Model 

Starting from the feature model, for each feature we conducted the variability analysis 
step in order to identify the invariant part of the auction process and a set of variant 
process elements (Variant Assets). For example, Open/closed feature analysis lead to 
identify “Buyer Login” variant asset, according to the optional requirement of login for 
the invited buyers.  
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B) Variability Mechanisms. In order to formally represent the auction process, we 
modeled the process in BPMN formalism, starting from the invariant asset and adding 
the variant assets by means of the variability mechanisms. Based on the feature tree, we 
detected and modeled the variant and invariant process assets by means of the 
variability mechanisms.  We injected the following variant assets into the process 
model: 

 

Fig. 6. Variability Mechanisms in Auction process model 
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• “Buyer login” variant asset is connected to the invariant auction preliminary steps, 
through the Extension variability mechanism; 

• “English bidding” and “Dutch bidding” variant assets are connected to the abstract 
bidding task through the Encapsulation variability mechanism; 

• “Hybrid bidding” variant asset is connected to “English bidding” and “Dutch 
bidding” assets through the Inheritance variability mechanism.  

 
Finally, we injected the Parameterization variability mechanism in order to generalize 
some tasks (i.e. “bid”, “mark the price”, “auction end”) into the process model, by 
means of specific parameters that enable “Direct” and “Inverse” features. Figure 6 
shows the process model after the injection of all the variability mechanisms. 

2.4 The Validation Issue 

By leveraging the synergy of Feature Models and Variability Mechanisms, we can 
model a BPL able to exploit composition, reusability and adaptability typical in 
product-line engineering for the purpose of increasing process flexibility. Moreover, 
BPL model is highly maintainable and easy to change for analysts.  

However, especially in case of knowledge-intensive business processes, we  
observed a gap in the changeover from managers (decision-making performers) to 
technicians (process developers):  from the phase of process definition to process 
implementation, many process characteristics, parameters and decision points can 
remain tacit and can offer degrees of freedom to developers in choosing the 
conditions for process configuration and execution. The risk is that at execution time 
the business process will not comply with the related process model.  

We point out that it is essential to elicit all considerable process parameters and  
decision points coming out during variability modeling and injection and we suggest 
the adoption of a decision-oriented paradigm. We choose decision tables because they 
lead to three major advantages:  

1. they can be easily updated by decision-making performers; 
2. they manage the numerosity of process parameters through a compact and 

customizable view; 
3. they are supported by verification and validation checkers in order to prevent and 

detect anomalies in decision points.   
4. they decrease time consumed to create, modify and update business rules and 

increase reusability, maintainability and verifiability of them. 

3 Decision Tables: Modeling and V&V  

By means of decision tables, we can formalize the set of rules which relate the 
process features to the specific variability mechanisms needed for composition, reuse 
and adaption of the process assets.  
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3.1 What They Are 

A decision table is a tabular representation of a decision-making task, where the state 
of a set of conditions determines the execution of a set of actions [15, 16, 17, 18]. In 
general, a decision table has four quadrants: condition subjects, condition states, 
action subjects and action values. The table is defined so that, according to the action 
values, each combination of condition subjects and condition states corresponds to a 
set of action subjects to carry out. 
In the BPL context the decision table adaptation is the following: 

─ As condition subjects: FC = {FCi} (i=1..n) is the set of the feature categories 
involved in the BPL ; 
- FD = {FDi} (i=1..n) is the set of features domains,  

with FDi : the domain of FCi (i.e. the set of all possible values); 

─ As condition states: FV = {FVi} (i=1..n) is the set of feature values sets, 
with FVi = {Fik} (k=1..mi) :  an ordered set of ni feature values Fik.   

Each feature value Fik is a logical expression concerning the elements of FDi, 
that determines a subset of FDi, such that the set of all these subsets 
constitutes a partition of FDi ; 

─ As action subjects: 
- VM = {VMj} (j=1..t), all the possible actions trigging the set of variability 

mechanisms  able to produce the target process; 
- (optional) a set of links to more specific decision table  in order to produce 

more specific sub processes; 

─ As action values: V = {Vj} (j=1..t) relate each feature set to the corresponding 
action subjects, 
with Vj = {true (x), false (-), null (.)}:  the set of all possible values of action 
subject VMi, which is, in first instance, null for every action subject. 

 

Fig. 7. An example of decision-table in BPL context 
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A decision table DT can then be defined as a function from the Cartesian product of 
the condition states FVi  to the Cartesian product of the action values Vj, by which 
every condition combination is mapped into one (completeness criterion) and only 
one (exclusivity criterion) action configuration [19] : 

DT:  FC1 x FC2 x ... x FCn → V1 x V2 x ... x Vt 

Each action entry then corresponds to a decision rule. 

3.2 What They Do 

Using the decision table formalism as a decision modeling tool offers significant 
advantages in verification, because its structured nature prevents a large number of 
anomaly types and eliminates the need for a translation into some other operational 
form, such as Petri nets, first order logic, etc. [20, 21, 22].   This makes it possible to 
integrate an incremental verification step into the modeling phase itself. 

As pointed out in [23] tools that verify rule-bases after operationalizing them into 
decision table format, generally fail to find anomalies that stretch beyond simple pairs 
of rules.  Therefore, the perspective we adopt here is quite different: we start from 
the decisions that BPL requires for managing process variability, then we model the 
decision table and try to ensure it is logically correct from a verification point of view, 
by operating as much as possible on the table format it was specified in. 

It is important that knowledge in specifications is correct, consistent, complete and 
non-redundant. During and after the building process, the specifications must be 
verified and validated. This section illustrates how to prevent and detect the decision 
anomalies and make the BPL decisions non-redundant, complete and consistent. 

A) Non redundancy of Decisions. Redundancy usually does not lead to errors in the 
final system, although it may harm efficiency. The main problem with redundancy, 
however, is maintenance and the risk of creating inconsistencies when changing the 
specifications. In BPL some common forms of redundancy: 

Subsumption of Rules: in BPL might be rules with conclusions that trig the same 
variability mechanisms set but with one of them containing additional feature values 
(and therefore being less general). A more specific case of subsumption is the 
redundancy of rules (identical pair of column: same variability mechanisms and same  
features set).  

Using decision tables is possible to prevent this kind of anomaly through the 
checking of subsumed column pair, i.e. two table columns specify identical variability 
mechanisms, while the features set in one column represent a more specific of the 
application area associated with the other column. Moreover, because in the decision 
table every possible case is included in only one column (exclusivity), subsumptions 
and redundancies will not occur. 

Irrelevant Features: in a BPL a feature is considered irrelevant if its value does not 
influence which consequences are being specified: the set of variability mechanisms 
to be undertaken will be the same regardless of the value of such feature. Therefore, 
the entire feature category can be considered redundant.  
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Irrelevant features can easily be found in the contracted decision table.  This table 
format, which is obtained by merging neighboring columns with identical action parts 
(variability mechanisms), will show a "-" entry for all feature values associated with 
an irrelevant feature category. As shown in figure 8 the fourth condition “product 
type” is irrelevant and then will be eliminated.  

C1. auction access
C2. bidding
C3. buyer <=> seller D I D I D I D I D I D I

C4. product type
A1. "buyer login" extends "login" - - - - - - x x x x x x
A2. "english bidding" implements  "bidding" x x - - - - x x - - - -
A3. "dutch bidding" implements  "bidding" - - x x - - - - x x - -
A4. "hybrid bidding" implements  "bidding" - - - - x x - - - - x x
A5. "hybrid bidding" inherits  "english bidding" - - - - x x - - - - x x
A6. "hybrid bidding" inherits  "dutch bidding" - - - - x x - - - - x x
A7. "start buyer" subs "start seller" - x - x - x - x - x - x
A8. "start seller" subs "start buyer" - x - x - x - x - x - x
A9. "H" jump subs "G" jump - x - x - x - x - x - x
A10. "G" jump subs "H" jump - x - x - x - x - x - x
A11. "descending" subs "ascending" Є "EnglishBidding.bid" - x - - - x - x - - - x
A12. "ascending" subs "descending" Є "DutchBidding.bid" - - - x - x - - - x - x
A13. "price = price + ∆" subs  "price = price - ∆" Є "DutchBidding.markThePrice" - - - x - x - - - x - x
A14. "price > threshold" subs  "price < threshold" Є "DutchBidding.xor2" - - - x - x - - - x - x

-

open closed
english dutch hybrid english dutch hybrid

  

Fig. 8. An example of irrelevant feature 

B) Completeness of Decisions. Within the specific BPL domain area, the following 
omissions often occur: 

Unused Feature values or Combination: when feature values (or combinations) 
never occur as premises, a number of rules may be missing. Detecting the 
completeness of all combinations of feature values could not be simple. 

The nature of the decision table easily allows to check for completeness: the 
number of simple columns should equal the product of the number of states for every 
condition. This guaranty of completeness of condition combinations is one of the 
main advantages of decision tables. Furthermore, the blank columns into the decision 
table easy highlight what are the unused combinations of feature values.  

Unreachable Variability Mechanisms: when there are mechanisms which are never 
deduced and then never triggered. 

The format of the decision table easily shows unreachable conclusions, checking 
for rows with all “-“ into the action entries stub. 

C) Consistency of Decisions. Dividing the knowledge over a large number of rules, 
designed independently, may lead to problems of inconsistency, such as: 

Conflict of Rules: in BPL it might be rules with two or more premises containing 
same features values (or overlapping combinations), but leading to contradictory set 
of variability mechanisms to be undertaken.  

An ambivalent column pair anomaly would refer to a situation in which two table 
columns specify contradictory actions to be undertaken for overlapping sets of input 
environments. In a decision table all columns are non-overlapping and each column 
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refers to exactly one configuration of conclusions, therefore is just necessary to search 
for potential conflicts only into each single column.  

Finally, in order to automate such detection it’s possible to use a set of constraints. 
Constraints are introduced into the decision table, in order to express semantic 
relationships between different decision arguments.  These constraints can then be 
used in order to detect an ambivalent rules, e.g. rules that violate a constraint such as 
“NOT (VMi AND VMj)’ (an example in figure 9 and table 1).  

C1. auction access
C2. bidding
C3. buyer <=> seller D I D I D I D I D I D I
A1. "buyer login" extends "login" - - - - - - x x x x x x
A2. "english bidding" implements  "bidding" x x - - - - x x - - - -
A3. "dutch bidding" implements  "bidding" - - x x - - - - x x - -
A4. "hybrid bidding" implements  "bidding" - - - - x x - - - - x x
A5. "hybrid bidding" inherits  "english bidding" - - - - x x - - - - x x
A6. "hybrid bidding" inherits  "dutch bidding" - - - - x x - - - - x x
A7. "start buyer" subs "start seller" - x - x - x - x - x - x
A8. "start seller" subs "start buyer" - x - x - x - x - x - x
A9. "H" jump subs "G" jump - x - x - x - x - x - x
A10. "G" jump subs "H" jump - x - x - x - x - x - x
A11. "descending" subs "ascending" Є "EnglishBidding.bid" - x - - - x - x - - - x
A12. "ascending" subs "descending" Є "DutchBidding.bid" - - - x - x - - - x - x
A13. "price = price + ∆" subs  "price = price - ∆" Є "DutchBidding.markThePrice" - - - x - x - - - x - x
A14. "price > threshold" subs  "price < threshold" Є "DutchBidding.xor2" - - - x - x - - - x - x

open closed
english dutch hybrid english dutch hybrid

 

Fig. 9. Final decision table for Auction BPL 

Table 1. Rules and Constraints 

Rules Constraints 

If (C1.2) then A1 

If (C2.1) then A2 

If (C2.2) then A3 

If (C2.3) then A4 and A5 and A6 

If (C3.2) then A7 and A8 

If (C3.2) then A9 and A10 

If (C2.1 and C3.2) then A11 

If (C2.2 and C3.2) then A12 and A13 and A14 

If (C2.3 and C3.2) then A11 and A12 and A13 and A14 

A2 xor A3 xor A6 

A6 only if A4 and A5 

(A7 only if A8) or (A8 only if A7) 

(A9 only if A10) or (A10 only if A9) 

 

4 Related Works 

Commonality and variability management in a (software or business) product line is a 
key activity that usually affects the degree to which a product line is successful. First 
of all, Software Product Line community has spent huge amount of resources on  
developing various approaches to dealing with variability related challenges over the 
last decade. From a systematic literature review [24] attempting to identify the kinds 
of variability models used in the reviewed approaches, it was not a surprise that 
fourteen approaches used feature modeling according to FODA [12], which firstly 
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was proposed to address the issues related to commonality and variability in 1990. On 
the other hand, the decision modeling was used in six approaches, however both 
approaches are independent of any particular way of modeling variability. So we can 
state that there is no contribution in literature of mixing feature modeling and 
decision-oriented paradigms for managing variability and its evolution. 

Analyzing world of Business Process Management, many researchers highlight the 
need for a next generation process management technology, which is by orders of 
magnitudes more powerful and flexible than contemporary process management  
systems [25]. There are also some authors that have reported evaluations of existing 
tools and techniques for managing variability in process models. Aiello et al. [26] 
reported the evaluation of existing tools and frameworks for variability management. 
Such evaluation was made considering five requirements stemming from the need of 
managing evolution of processes with variability. The authors conclude that none of 
the existing frameworks addresses all or even most of the five requirements.  Also La 
Rosa et al. [27] proposed a method and tool suite for managing business process  
variability based on configurable process models. Unlike our approach, which is 
compositional, their approach is annotative, basically wrapping the variability with 
additional gateways driven by the decision model, cluttering the process model with 
configuration knowledge details. Other different approaches have been defined to 
achieve configuration by means of annotations. The PESOA (Process Family 
Engineering in Service-Oriented Applications) project [13] defines so-called variant-
rich process models as process models extended with stereotype annotations to 
accommodate variability. These stereotypes are applied to both UML Activity 
Diagrams and BPMN models. Also the authors in [28] propose a representation 
system called Map to capture variability in process models expressed in an intentional 
manner through business goals and strategies. However, they don't provide means for 
separating the analysis and modeling phase from the validation phase where 
managing process parameters and preventing anomalies in decision points. Therefore, 
we argue that there is space for extensive research and development in the area of 
methodology and frameworks for the explicit management of variability - from 
business processes to software products – by reflecting a product line. 

5 Conclusion 

The paper addresses the research question, whether and how to capture and model 
variability in business processes to solve a flexibility problem in changing 
environments. The authors propose Business Process Line engineering together with 
decision table-based support. The former takes an inspiration from Software Product 
Lines, since there is a duality between products and processes, whereas the latter is 
used to formalize the set of rules that relates the process features to the specific 
variability mechanisms. Another benefit of the decision tables is that they manage the 
relationships among business needs, environmental changes and process tasks through 
a compact and customizable view and are supported by verification and validation 
checkers that can detect and prevent anomalies in decision points. 
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In a real case study we practiced the proposed methodology by leveraging the 
synergy of feature models, variability mechanisms and decision tables. The 
application of DT-based BPL engineering approach proves that the Business Process 
Line benefits from fundamental concepts like composition, reusability and 
adaptability and satisfies the requirements for process definition flexibility. Moreover, 
decision table formalism enables decision-making performers to implement business 
processes by themselves and thus decreasing time consumed to create, modify and 
update business rules and increasing reusability, maintainability and verifiability of 
them. Our future work will focus on systematic investigation to validate and provide 
empirical evidence to the benefits of our BPL methodology in industrial case studies, 
with particular attention to service-oriented enterprises.  

As the significant achievements gained by introducing software product lines in the 
software industry, we expect that narrow and strategic application of these concepts 
could yield order of magnitude improvements in business process flexibility and a 
discontinuous jump in competitive business advantage. 
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