
C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 42–57, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Quality Evaluation of Object-Oriented and Standard
Mutation Operators Applied to C# Programs

Anna Derezińska and Marcin Rudnik

Institute of Computer Science, Warsaw University of Technology,
Nowowiejska 15/19, 00-665 Warsaw, Poland

A.Derezinska@ii.pw.edu.pl

Abstract. Mutation testing is a kind of fault injection approach that can be used
to generate tests or to assess the quality of test sets. For object-oriented
languages, like C#, both object-oriented and standard (traditional) mutation
operators should be applied. The methods that can contribute to reducing the
number of applied operators and lowering the costs of mutation testing were
experimentally investigated. We extended the CREAM mutation tool to support
selective testing, sampling and clustering of mutants, and combining code
coverage with mutation testing. We propose an approach to quality evaluation
and present experimental results of mutation operators applied to C# programs.

Keywords: mutation testing, object-oriented mutation operators, C#.

1 Introduction

Mutation testing is a fault-injection technique that can be used for assessment of test
set quality and support for test case generation [1]. Once a defined fault is introduced
in a program, a mutated program (mutant) is created. A program modification is
determined by a mutation operator. Within this paper we deal with first order
mutation, i.e. one mutation operator is applied in one place. If a mutant behavior
differs from that of the original program while running against a test case, the mutant
is said to be killed by this test. The test is effective at killing the mutant. A quality of a
test set is a mutation score MS calculated as the ratio between the number of killed
mutants over all the generated but not equivalent mutants. An equivalent mutant has
the same behavior as the original program and therefore cannot be killed by any test.

Mutation testing process is counted as a very cost-demanding testing activity. The
cost is determined by the number of generated mutants, the number of tests involved
in the process and their ability to test mutants, the number of equivalent mutants and
their recognizing, a kind of a mutation tool support, etc.

Important factors of mutation testing are mutation operators that reflect possible
faults made by programmers and therefore should deal with different constructs in
programming languages. In C# programs, as for any general purpose language,
standard (i.e. structural, intra-class or statement-level) operators can be applied, e.g.
dealing with logical, arithmetical, relational operators like those defined in Fortran or
C. Moreover, object-oriented (or inter-class) operators should also be used. Operators

 Quality Evaluation of Object-Oriented and Standard Mutation Operators 43

of object-oriented features were primarily defined for the Java language [2-4].
Applicability of those operators was studied for C# programs, and analogous
operators of the same or similar scope were proposed [5]. Its set was extended with
new operators, for example dealing with exception handling, or devoted to the
programming constructs specific to C# but not present in Java, like delegates or
properties [6]. Empirical evaluation of object-oriented and other advanced operators
in C# programs was conducted on above 13 thousands of mutants [6-11].

However, a quality of object-oriented mutations, both in Java or C#, remains still
an open question in the relation to the cost estimation. A problem is, which object-
oriented operators we really need, and which of them can be omitted without loosing
the ability to qualify a given test set. Should we reduce the cost by selecting operators,
random sampling of mutants, or other reduction techniques? These issues were
studied for structural languages [12-15] and partially for Java programs [16-18].

According to our experience [6-11], object-oriented operators generate fewer
mutants than the standard ones, and are more dependant on the concerned programs.
Therefore we extended the CREAM mutation testing tool for C# programs with the
facility to carry out experiments into cost reduction techniques. They cover operator
selecting, mutant random sampling and clustering [1, 19-22]. Using the tool some
experiments on fist-order mutation in C# programs were conducted. They showed that
relations between different cost techniques are not necessarily the same as for the
standard mutation in C [15]. The main contributions of the paper are:

- Evolution of the mutation testing tool for C# programs, and incorporated
processes of an empirical and statistical analysis of mutation results.

- New quality metrics for assessment of a tradeoff between mutation score
accuracy and mutation costs in terms of number of mutants and number of tests.

- The first experiments on the selective mutation of C# programs performed and
analyzed for 18 object-oriented (OO in short) and 8 standard mutation operators.

- The first general estimation of results for experiments on mutant sampling and
clustering for object-oriented mutation.

The paper is organized as follows: Section 2 summarizes briefly the main features of
the CREAM mutation testing tool. In Section 3 we give details about selected
investigation processes incorporated in the tool and the quality metrics. Section 4
describes an experimental set-up and results of the conducted experiments. Finally,
the remaining sections present related work and conclusions.

2 CREAM Mutation Testing Tool for C# Programs

CREAM (CREAtor of Mutants) was the first mutation testing tool supporting object-
oriented mutation operators for C# programs [7,8,23]. It is a parser-based tool. A fault
defined by a mutation operator is introduced into a parser output after analysis of a C#
project. Then the C# source code is reconstructed from the modified syntax tree. It
can be compiled, so creating a mutated program that can be run against a test set.

Currently, the next, third version of the tool is ready to use. It was extended to
support more mutation operators, to keep-up with new versions of the C# language
and cooperate with new tools in order to work on emerging real-word applications. It
can create mutants for the whole code or only for the code covered by the test cases, if

44 A. Derezińska and M. Rudnik

required. Moreover, it was equipped with a wizard aimed at evaluation of detailed
statistics and supporting experimental studies on mutation operator assessment. The
most important functionalities of the current version of CREAM are as follows:

1. It supports parser-based generation of first order mutants of C# programs with 18
object-oriented operators and 8 selected standard operators, listed in Tab. 1.

2. It runs mutants against test suites and evaluates test results. Unit tests can be
compatible with the NUnit tool [24] or with MSTest (another tool built in
Microsoft Visual Studio).

3. It optionally takes into account code coverage results while creating mutants. The
coverage data can be delivered by NCover [25] (.xml files), Microsoft Visual
Studio (.coverage files) or Tester [9] (.txt files).

4. It optionally stores mutants in the local or remote SVN repository [26] in order to
reduce an occupied disk space [9].

5. It automates analysis of generated mutants according to cost reduction techniques:
mutation operator selection, mutant sampling and clustering.

6. It evaluates statistics of many experiments, and enables presentation of output data
in cooperation with a Data Viewer tool.

Table 1. Mutation operators: standard and object-oriented supported in CREAM v.3

No Type Abbreviation Name
1 Standard ABS Absolute Value Insertion
2 Standard AOR Arithmetic Operator Replacement (+, -, *, /, %)
3 Standard ASR Assignment Operator Replacement (=, +=, -=, /=, *=)
4 Standard LCR Logical Connector Replacement (&&, ||)
5 Standard LOR Logical Operator Replacement (&, |, ^)
6 Standard ROR Relational Operator Replacement (<, <=, >, >=, ==, !=)

7 Standard UOI Unary Operator Insertion (+, -, !, ~)
8 Standard UOR Unary Operator Replacement (++, --)

1 Object-oriented DMC Delegated Method Change

2 Object-oriented EHR Exception Handler Removal

3 Object-oriented EOA Reference Assignment and Content Assignment Replacement

4 Object-oriented EOC Reference Comparison and Content Comparison Replacement

5 Object-oriented EXS Exception Swallowing

6 Object-oriented IHD Hiding Variable Deletion

7 Object-oriented IHI Hiding Variable Insertion

8 Object-oriented IOD Overriding Method Deletion

9 Object-oriented IOK Overriding Method Substitution

10 Object-oriented IOP Overriding Method Calling Position Change

11 Object-oriented IPC Explicit call of a Parent’s Constructor Deletion

12 Object-oriented ISK Base Keyword Deletion

13 Object-oriented JID Ember Variable Initialization deletion

14 Object-oriented JTD This Keyword Deletion

15 Object-oriented OAO Argument Order Change

16 Object-oriented OMR Overloading Method Contents Change

17 Object-oriented PRM Property Replacement with Member Field

18 Object-oriented PRV Reference Assignment with other Compatible Type

 Quality Evaluation of Object-Oriented and Standard Mutation Operators 45

3 Investigation Process of Mutation Operators

In this section we explain the basic setup of an experimental process. The empirical
evaluation of mutant features can be considered as several experimental scenarios:
three relating to selective mutation, six to mutant sampling, and one to mutant
clustering. Mutant sampling refers to random selection of a given % of all mutants or
of mutants uniformly distributed for all classes, files, methods, operators or
namespaces. The examination of mutation results is done independently for object-
oriented operators and standard ones. For the brevity reasons we only describe the
general experimental scenario of all types of experiments and the details of selective
mutation. The details of sampling and clustering scenarios are omitted [27].

3.1 Generic Scenario of Experiments

A) In the first step, common for all experiments, all mutants of a program under test
are generated for a given set of operators. In this case all standard and all object-
oriented operators available in CREAM v.3 were used independently (Tab. 1). This
original set of all mutants is called MAll.

B) Secondly, all mutants are run against a whole set of tests TAll considered as a
basic, complete set of tests taken into account in the experiments for a given program.
Results of all mutants and all tests are stored in a file and can be examined during
different experiments, or viewed by a user. Taking into account these results a
mutation score can be calculated. Further we refer to this value as to the “original”
mutation score MSorig. = MS (MAll, TAll).

C) Next, the subsequent steps (C1-C4) and D are repeated many times in
accordance to different parameters specific to each kind of experiments (e.g. numbers
of mutation operators, number of kinds of mutant sampling, etc.).

C1) A subset of mutants MC1 ⊆ MAll is selected according to given criteria of the
experiment. This set determines the maximal mutation score generated using all tests
MSC1max= MS (MC1, TAll).

C2) A list L of subsets of TAll is created. Usage of any test set in L against MC1

gives the mutation score equal to MSC1max. But each test set of L is minimal, i.e. all
tests are necessary. All test sets of this kind can be generated using prime implicant of
a monotonous Boolean function [27]. The number of all test sets is finite but can be
high. Therefore the cardinality of the list L is limited, |L| ≤ TestSetLimit. It is fixed as
a parameter of an experiment that restricts its complexity. |X| is cardinality of set X.

C3) For a set MC3 ⊆ MAll, mutation scores MSC3j are calculated using consecutively
each minimal test set in L: MSC3j= MS(MC3,Tj),where Tj ⊆ TAll, Tj ∈L, j=1..|L|. The
considered mutant set MC3 depends on the type of the experiment (Sec. 3.2).

C4) The average mutation score MSavg = (∑j=1..|L| MSC3j)/|L| is calculated for all
minimal test sets in L. The average number of test sets in L is NTavg = (∑j=1..|L| |Tj|)/|L|.

D) In mutant sampling, calculation of average statistics for many random runs of
steps C1-C4 for a given experiment parameter. Basing on data from C4 new average
values MSavg, NTavg are calculated over those repeated runs for this parameter.

E) Calculation of final statistics and normalization of results (see Sec. 3.3).

46 A. Derezińska and M. Rudnik

3.2 Experimental Flows on Selective Mutation

In selective mutation, only a subset of mutation operators is used. Considering
different policies of operator selection, and determination of minimal test sets and sets
of mutants used for evaluation of a final mutation score, three kinds of experiments
are supported in CREAM.

Experiment 1. Mutation operators that generate the biggest number of mutants are
excluded. Therefore, omitting the fewer number of operators the biggest number of
mutants could be not used.

In these experiment, steps C1-C4 are repeated for different numbers of excluded
operators (i = 0..k, where k is a number of all operators, in this case 8 for standard and
18 for object-oriented ones). In general, for a given value of i it could be the binomial
coefficient C(k,i) of various subsets including i operators. But we exclude i operators
generating the biggest number of mutants. In almost all cases there was exactly one
such subset with i operators, otherwise one such subset was randomly selected.

In step C1, MC1 is the subset of MAll containing the mutants generated by the
operators not excluded in the current experiment run.

In step C3, the mutation scores are calculated for all mutants, i.e. MC3 = MAll.
Step D is not used.

Experiment 2. One mutation operator is excluded. The selection is performed for
each mutation operator separately. In this way all mutation operators are examined in
accordance to their influence on the mutation score result.

The number of repetition of steps C1-C4 is equal to the number of considered
mutation operators. Step D is not used.

In step C1, we determine MC1 as the subset of MAll containing the mutants
generated by the operators not excluded in the current experiment run.

In step C3, MC3 = MAll.

Experiment 3. One mutation operator is excluded, similarly as in the second type of
the selective experiment (steps C1 and C2 are the same). But, in this case the mutation
scores in step C3 are calculated for the set of mutants MC3 generated by the operator
excluded in the current experiment run (MC1 ∪ MC3 = MAll). Step D is not used.

The motivation of this experiment is assessment of an operator quality. A “good”
operator is an operator for which no mutants are generated by other operators and are
killed by the same tests. A “poor” operator can be counted as a redundant one, tests
that kill other mutants can also kill mutants generated by this operator.

3.3 Quality Metrics

The cost of mutation testing process is influenced by different factors, mainly the cost
of mutant generation, of running mutants against tests, dealing with equivalent
mutants and analyzing test results. Reduction of the cost can cause decrease of
mutation score accuracy. Therefore, we proposed metrics to assess a tradeoff
concerning the loss of MS accuracy on the one hand and profits of using a smaller

 Quality Evaluation of Object-Oriented and Standard Mutation Operators 47

number of mutants and smaller number of tests on the other hand. It assists in
comparing results for different programs and different experiments.

The quality metric EQ takes into account three variables:

SMS - reflects a loss of Mutation Score adequacy (MS) in an experiment,
ZT - approximates a profit of a cost decrease due to a reduced number of tests

required for killing mutants in an experiment,
ZM - assesses a profit of a cost decrease due to a reduced number of mutants

considered in an experiment.

These variables are calculated as given in Equations (1)-(3).
The first variable SMS is evaluated in a different way in accordance to the

experiment type. It is calculated as a ratio of the current average mutation score to the
original mutation score if we look for a possible smallest difference to MSorig.
Otherwise, if we are interested in the biggest difference, SMS is equal to 1 minus the
ratio mentioned in the previous case (Eq. 1). The average mutation score MSavg is
calculated for all minimal test sets in step C4 (or in D if applicable).

⎪⎩

⎪
⎨
⎧

−
=

)/(1

/

origavg

origavg

MS MSMS

MSMS
S

experiment selective rd3 and nd2in

clustering sampling, ,experiment selective st1in
(1)

Variable ZT is calculated as 1 minus a ratio of an average number of tests for a
current experiment divided by the number of all tests considered for a program, if the
divident is bigger than zero. Otherwise ZT is equal to zero (Eq. 2). The average
number of tests NTavg is defined in step C4 (or in D if used for many random cases).

⎩
⎨
⎧ −

=
0

|)|/(1 Allavg

T

TNT
Z

otherwise

 0 if >avgNT
 (2)

Value ZM is equal to 1 minus a ratio of a mutant number currently taken into account
in the experiment (|MC1| from step C1) to a maximal number of all mutants generated
for the program (in the set MAll), if the current mutant number is bigger than zero.
Otherwise ZM is set to zero (Eq. 3).

⎩
⎨
⎧ −

=
0

|)|/|(|1 1 AllC
M

MM
Z

otherwise

 0|| if 1 >CM (3)

Next, the variables obtained for different parameters of an experiment are normalized.
The normalization function NORM(x) represents a normalized value of variable x over
a set of its values X (Eq. 4).

NORM(x) = (x-MIN(X)) / (MAX(X)- MIN(X)), where x∈X (4)

In result, the normalized variable x will be distributed within the <0,1> interval and
can be further processed in an comparable way. The normalization is calculated for a
set of results determined by experiment parameters. For example, in the second
selective experiment on object-oriented operators the set of variables correspond to

48 A. Derezińska and M. Rudnik

exclusion of one selected operator. In this case cardinality of the set X equals the
number of operators (18).

The quality metric EQ is based on a weighted sum of three components (Eq. 5).

EQ(WMS, WT , WM) = NORM(WMS*NORM(SMS) + WT*NORM(ZT) + WM*NORM(ZM)) (5)

The weight coefficients WMS, WT, WM state for parameters of the analysis and are
determined according to the importance assigned to particular components of the
metric. The sum of coefficients must be equal to 1.

The whole metric is also normalized over the set of values calculated for different
parameters of an experiment, similarly as the variables.

4 Experiments

In this section we describe the subject programs and their results of mutation testing.
Outcomes of experiments on selective mutation are also discussed.

4.1 Investigated Programs

Objects of experiments were three, commonly used open-source programs. They were
selected to cover different types of complexity, application domain, and origin.

1. Enterprise Logging [http://entlib.codeplex.com] - a module from the “pattern &
practices” library developed by Microsoft. It is used for logging information about
code faults.

2. Castle [http://www.castleproject.org] - a project supporting development of
advanced applications in .NET. Four modules were used in experiments:
Castle.Core, Castle.DynamicProxy2, CastleMicroCernel and Castle.Windsor.

3. Mono Gendarme [http://www.mono-project.com/Gendarme] - a tool for inspection
of programs written in Mono and .NET environments. It looks for flaws not
detected by a compiler.

The following measures of the programs are summarized in Table 2.

1. Files - number of file modules with the source code included in a program.
2. Statements - number of statements in a program.
3. Lines - number of all lines in a project including comments.
4. Percent comment lines - % of lines with comments among all program lines.
5. Percent documentation lines - % of lines with documentation among all program

lines.
6. Class, Interfaces, Structs - number of all such items defined in a program.
7. Methods per Class - average number of methods per class (a ratio of the number of

all methods to the number of all defined classes, structs and interfaces).
8. Calls per method - average number of calls of other methods in a given method.
9. Statements per method - average number of statements in a method.
10. Maximum complexity - maximal number of conditional decisions in a method.
11. Average complexity - average number of conditional decisions in methods.
12. Depth of inheritance - maximal number of inheritance levels in a project.

 Quality Evaluation of Object-Oriented and Standard Mutation Operators 49

Table 2. Details of tested programs (measured with SourceMonitor [28] and Microsoft Visual
Studio)

No Measure 1.Enterprise Logging 2.Castle 3.Mono Gendarme

with tests without
tests

with tests without
tests

with
tests

without
tests

1 Files 662 497 533 403 291 170
2 Statements 33451 17427 20284 14001 21739 9715
3 Lines 87552 57885 54496 41288 51228 25692
4 % comment lines 8.1 9.1 13.7 13.8 18.9 21.9
5 % document. lines 19.2 29.0 11.4 14.6 9.9 19.5
6 Classes, Interfaces, 991 587 724 493 907 171
7 Methods per class 5.4 5.9 5.0 5.4 3.8 5.1
8 Calls per method 3.1 1.3 2.7 2.2 2.0 2.7
9 Statem. per method 3.3 2.3 3.2 2.9 3.7 7.9

10 Max. complexity 14 14 25 25 53 28
11 Average complex. 1.3 1.5 1.6 1.8 2.0 4.0
12 Depth of inherit. 6 6 4 4 10 3

4.2 Mutant Generation and Execution

The tested programs were distributed with unit tests. For two programs additional test
cases were prepared in order to increase their code coverage results (Table 3). The
first program has unit tests compatible to MSTest and its code coverage was evaluated
using functionality build in Microsoft Visual Studio. Remaining two programs have
unit tests for NUnit [24] and were examined with the NCover coverage tool [25].

Table 3. Code coverage results (measured with NCover [25] and Microsoft Visual Studio)

 1. Enterprise Logging 2. Castle 3. Mono Gendarme

MSTest tests NUnit tests NUnit tests

Number of original tests 1148 578 784
Number of additional tests 0 64 115
All test cases 1148 642 899

Line coverage [%] 82 77 87

If demanded, CREAM v3 can generate mutants for these code statements that were
covered by tests from a test suit under consideration, when the appropriate coverage
data are provided. According to our experiences, if MS was evaluated, it was useless
to mutate the code not covered by these tests. Just in case, all possible mutants of the
programs discussed in this paper were generated and run against tests. But none of
uncovered mutants was killed by any test. Therefore, as generated mutants (column
Gen in Table 4.) are only counted these mutants that are created by modification of
covered code lines. Only this sort of mutants is used further in the calculation of
mutation results. Based on the uncovered code we obtained 265 standard and 336
object-oriented mutants for Enterprise Logging, 448 and 367 for Castle and 392, 449
for MonoGardarme, accordingly. These uncovered mutants were discarded.

50 A. Derezińska and M. Rudnik

Table 4 presents mutation results for each standard and object-oriented operator
implemented in CREAM v3. The full names of the operators are given in Tab. 1.
Columns Kill include numbers of mutants killed using all tests defined in Tab. 2.

Table 4. Mutation results (mutants generated, killed, equivalent, and mutation score in [%])

Opera
tor

1. Enterprise Logging 2. Castle 3. Mono Gendarme
Gen Kill Eq MS Gen Kill Eq MS Gen Kill Eq MS

ABS 114 7 60 13% 102 9 60 23% 116 3 79 8%
AOR 328 322 - 99% 68 19 - 28% 88 67 - 76%
ASR 160 97 - 61% 98 43 - 44% 85 54 - 64%
LCR 34 27 - 79% 196 138 - 70% 417 270 - 65%
LOR 2 0 0 0% 2 0 0 0% 16 14 - 88%
ROR 220 141 - 64% 645 427 - 66% 900 575 - 64%
UOI 795 537 - 68% 1070 842 - 79% 2342 1920 - 83%
UOR 30 20 - 67% 198 133 - 67% 189 106 - 56%

Sum 1683 1151 60 71% 2379 1611 60 70% 4153 3009 79 74%

DMC 0 0 0 - 0 0 0 - 0 0 0 -
EHR 9 6 0 67% 8 3 4 75% 5 5 - 100%

EOA 22 0 21 0% 23 2 13 20% 7 2 1 33%
EOC 98 43 18 54% 494 209 119 56% 536 159 124 39%
EXS 22 1 10 8% 11 3 0 27% 3 0 1 0%
IHD 0 0 0 - 0 0 - - 0 0 0 -
IHI 1 0 0 0% 0 0 - - 0 0 0 -
IOD 21 20 - 95% 13 10 - 77% 10 9 - 90%
IOK 20 19 - 95% 13 9 - 69% 10 8 - 80%
IOP 20 7 11 78% 7 2 4 67% 34 22 - 65%
IPC 45 35 - 78% 39 31 - 79% 0 0 - -
ISK 51 32 - 63% 18 11 - 61% 30 30 - 100%

JID 80 32 24 57% 143 106 - 74% 155 135 - 87%
JTD 458 52 353 50% 48 38 3 84% 17 0 17 0%
OAO 164 115 - 70% 212 117 - 55% 142 66 - 46%
OMR 17 16 - 94% 54 50 - 93% 0 0 - -
PRM 17 11 1 69% 16 12 - 75% 15 10 - 67%
PRV 296 169 - 57% 109 98 - 90% 34 32 - 94%

Sum 1341 558 438 62% 1208 701 143 66% 998 478 143 56%

CREAM prevents in some cases, especially for OO operators, from creating of

equivalent mutants, but still many such mutants can be obtained. Therefore, some not
killed mutants were examined manually. First, a preliminary mutation indicator was
calculated for each operator and a program (i.e. the number of killed mutants divided be
the number of generated mutants). If the indicator was below 50% for an OO operator,
or below 40% for a standard one, mutants generated by this operator were examined,
whether they are equivalent or not. These thresholds were selected after the empirical
evaluation of data. In addition, we checked those mutants that were easily to be verified.

 Quality Evaluation of Object-Oriented and Standard Mutation Operators 51

Mutants examined of being equivalent are denoted in Table 4. In column Eq a number
of detected equivalent mutants is given (“-“ states for not examined mutants).

Finally, a mutation score (column MS) was evaluated, as a ratio of killed mutants
to generated but not equivalent mutants.

4.3 Experiments on Selective Mutation

The experiments were conducted according to assumptions given in Sec. 3, and for
the limit of minimal test sets TestSetLimit equal to 100. The required quality condition
is that a decrease of the mutation score accuracy is acceptable while there are
considerable benefits in the cost reduction in terms of the lowering of the mutant
number and the number of tests required for killing those mutants. The quality metrics
EQ given in tables (Tab. 5, 6) were calculated for the weight coefficients WMS, WT ,
WM equal to 0.6, 0.2, 0.2 accordingly, i.e. the mutation score accuracy amounts to
60% in the quality measure whereas efficiency factors to 40% (20% for the number of
mutants and 20% for the number of tests).

1st Experiment on Selective Mutation - Exclusion of the Most Popular Operators
The experiment investigates how many mutation operators that generate the biggest
number of mutants (and which of them) can be omitted. Selection of less than 8
standard, or less than 8 object-oriented operators to be excluded was unique in all
cases (comp. Sec. 3.2). In general, excluding mutation operators that generate the
biggest numbers of mutants results in the decrease of the mutation score even for one
operator (Table 5.), regardless standard or object-oriented operators were concerned.
In the first column a number of excluded operators is given. Columns MS1 include
average mutation scores (in %) calculated under these conditions.

Considering potential profits in a reduced number of mutants and tests, the quality
metric was calculated (EQ1). Selecting the quality value above 90% for object-
oriented operators, we obtained different sets of operators to be excluded. The
common result for all programs was elimination of two operators EOC and OAO.

In the case of the standard operators, the results for different programs are more
similar to each other than for object-oriented ones. A maximal quality value was
obtained for one or two excluded operators. Assuming a quality value about 90% the
common two operators to be excluded are UOI and ROR .

2nd Experiment on Selective Mutation - Exclusion of One Mutation Operator
In this experiment each time one mutation operator was omitted. Average mutation
scores obtained while omitting mutants generated by one of operators are given in
Tab. 6 (column MS2 in [%]). Omitting one mutation operator gives in many cases
similar results in comparison to all operators (row None, i.e. none operator omitted).

Quality measure EQ2 has value close to 100% when an operator attributes to the
MS (is a selective one), while values close to 0% when the operator could be omitted.
On the contrary to the previous experiment, we look for operators that should not be
excluded from the analysis, because it causes observable lowering of a mutation score
The following operators give EQ2 above 15% for at least one program and could stay:
7 OO operators PRV, OAO, JTD, JID, EOC, IPC, IOP, and 3 standard ones UOI,
ROR, LCR. It can be seen that the result partially contradicts the previous experiment.

52 A. Derezińska and M. Rudnik

Table 5. Average results for excluding the most popular mutation operators: mutation score
(MS1) and quality metric (EQ1)

 1. Enterprise Logging 2. Castle 3. Mono Gendarme

MS1 [%] EQ1 [%] MS1 [%] EQ1 [%] MS1 [%] EQ1 [%]
OO St OO St OO St OO St OO St OO St

0 62 71 86 91 66 70 71 84 56 74 87 61
1 57 65 100 100 56 65 86 93 45 67 100 99
2 48 55 91 94 52 63 92 100 34 59 89 100
3 43 48 85 89 51 58 100 97 24 33 70 57
4 39 24 94 60 45 37 91 75 20 24 65 39
5 38 22 99 59 41 28 91 65 18 20 56 32
6 35 13 96 48 35 24 78 61 12 8 33 2
7 33 0 94 0 30 0 67 0 9 7 25 0
8 33 98 29 66 9 25
9 25 74 25 56 4 5

10 23 64 24 53 3 0
11 9 2 17 34 0 0
12 9 3 15 26 0 0
13 7 0 8 4 0 0
14 0 0 7 0 0 0

3rd Experiment on Selective Mutation - Mutation Operator Quality
This experiment evaluates a quality of each implemented mutation operator. In this
case quality metric EQ3 of a low value (close to zero) denotes an operator that could
be omitted. The operator generates some mutants that are redundant (i.e. tests that kill
mutants of other operators are also able to kill those mutants). In the contrast to the
previous metric EQ2, this metric is less sensitive to the number of generated mutants.

However, it should be noted that this qualification does not take into account the
ability to generate equivalent mutants. For example ABS operator has EQ3 equal to
100% (is selective and generated necessary mutants), but also generated many
equivalent mutants that were distinguished and removed during the preliminary
analysis (Sec. 4.2). One of the following operators could be selected: standard ABS,
LCR, UOI, ROR, UOR for EQ3 > 25% and object-oriented EHR, EOC, EXS, OAO,
IPC, JTD, PRV for EQ3 > 50%. The obtained values are in many cases different for
various programs, which is observable especially for the object oriented operators.

Comparison of Experiment Results. The results based on the above experiments are
summarized in Table 7. Program identifiers and types of mutation operators (standard
or object-oriented) are denoted in the first column. Number of mutants, number of
tests and mutation scores calculated in four cases are compared. In the first, reference
case, mutants are generated for all considered operators and all tests are used
(columns All). Remaining results (columns Ex1, 2, 3) refer to cases decided on the
basis of the above experiments and their quality metrics. If we exclude the most
popular operators selected in experiment 1st, or use operators chosen in experiment 2nd,

 Quality Evaluation of Object-Oriented and Standard Mutation Operators 53

or finally select operators according to EQ3, then we would obtain less accurate
mutation score but also use fewer mutants and fewer tests, as given in columns Ex1-3,
accordingly. The tradeoff of the accuracy and efficiency is visible, but in general the
best results are in the last two cases (Ex2, Ex3), i.e. mutation scores close to the
maximal ones for the significantly lower numbers of mutants and tests.

Table 6. Results for omitting one mutation operator (MS and quality metrics in [%])

Omitted
operator

1. Enterprise Logging 2. Castle 3. Mono Gendarme
MS2 EQ2 EQ3 MS2 EQ2 EQ3 MS2 EQ2 EQ3

ABS 70.7 3 87 69.6 0 0 73.9 0 0.7
AOR 70.9 8 12 69.6 1 15 73.9 2 6
ASR 70.7 5 13 69.4 2 12 73.8 2 0.4
LCR 70.7 2 18 68.8 19 54 71.7 30 100
LOR 70.9 0 0 69.6 0 0 73.9 1 0
ROR 70.3 12 19 68.9 24 35 73.3 13 31
UOI 64.4 100 100 65.1 100 100 66.8 100 92
UOR 70.9 0 0 69.4 6 26 73.7 5 20
None 70.9 69.6 73.9

DMC 61.8 0 0 65.8 0 0 55.9 0 0
EHR 61.3 5 57 65.7 1 34 55.4 4 69
EOA 61.8 0 0 65.8 1 0.2 55.9 0 1
EOC 58.7 50 89 55.0 100 100 44.1 100 100
EXS 61.7 3 85 65.7 3 67 55.9 0 0
IHD 61.8 0 0 65.8 0 0 55.9 0 0
IHI 61.8 0 0 65.8 0 0 55.9 0 0
IOD 61.7 2 6 65.8 0 0 55.9 2 1
IOK 61.7 11 12 65.8 1 1.3 55.9 2 1
IOP 61.8 0 0 65.8 1 41 54.6 16 47
IPC 60.1 17 30 63.6 17 78 55.9 0 0
ISK 61.3 11 21 65.8 1 1.5 55.9 1 5
JID 61.3 15 19 65.1 14 23 53.2 32 33
JTD 60.0 31 49 65.5 5 13 55.9 0 0
OAO 52.1 100 100 63.8 26 41 51.3 41 68
OMR 60.9 10 41 64.9 11 25 55.9 0 0
PRM 61.8 6 2 65.6 3 20 55.8 3 15
PRV 56.6 71 58 65.1 24 33 53.7 15 51
None 61.8 65.8 55.9

4.4 Threats to Validity

Conclusion validity of the experiments is limited by a number of investigated
programs. Three programs were not small, quite representative and of different origin,
but may not reflect all programming tendencies in usage of new programming
concepts of the C# language. Therefore, for example, no mutants for the DMC
operator dealing with delegates were created, which is a specialized concept of C#.

54 A. Derezińska and M. Rudnik

Table 7. Mutation results and benefits for three experiments on mutation operator selection

Prog.
Oper.

Mutation Score [%] Number of mutants Number of tests

All Ex1 Ex2 Ex3 All Ex1 Ex2 Ex3 All Ex1 Ex2 Ex3

1 OO 61.8 42.5 57.1 59.7 903 363 710 711 1148 63 105 115
1 St 70.9 59.2 70.3 70.6 1623 578 1015 1103 1148 47 114 120
2 OO 65.8 52.0 61.6 62.4 1065 478 887 795 642 81 132 135
2 St 69.6 58.0 68.3 69.2 2316 403 1715 1950 642 60 124 143
3 OO 55.9 39.1 55.1 49.7 855 267 777 595 899 78 132 94
3 St 73.9 58.8 71.4 73.3 4074 643 3242 2987 899 157 273 319

Another factor influencing the reasoning behind the experiments is existence of
equivalent mutants. The manual analysis significantly lowered this threat, but it
cannot guarantee that all equivalent mutants were detected.

Construct validity concerns the quality metrics used for evaluation of experimental
results. Their interpretation is in accordance to weight coefficients subjectively
selected by the authors. However, they suggest only tendencies in usage of different
operators. The data calculated for other coefficients (0.8, 0.1, 0.1) gave analogous
results. The final results (Table 7.) are expressed in terms of strict measures, such as
mutation score, number of mutants or number of tests.

In order to minimize a threat to external validity, the programs used in experiments
were parts of big, commonly used projects. Though, all of them were open-source
projects and might have slightly different features than the commercial ones.

5 Related Work

Research on object-oriented mutation operators was conducted on Java and C#
programs. Previous experiments on object-oriented operators of C# [5-10] were
summarized in [11]. It concerned 29 object-oriented and specialized mutation
operators defined for C#, and indicated on the difficulty to generalize results of the
object-oriented operators. One operator (e.g. PNC, JID) can generate many mutants
for one program, but only few for another program.

Application of object-oriented mutation operators to Java was studied in series of
experiments [15-18, 22,29,30] with MuJava [31] that implements the most
comprehensive set of 28 object-oriented operators, and MuClipse [32] - the plug-in
for Eclipse adopted from MuJava.

An overview of cost reduction techniques, including selective mutation, mutant
sampling and clustering can be found in [1,19]. Selective mutation was studied for
structural languages [12-14], giving a recommendation of five standard operators in
[12] that were also applied in CREAM. Ten operators for C were selected in empirical
studies performed using the Proteum tool [13]. Comparison between two approaches:
operator-based mutant selection and random mutant selection did not confirm a
superiority of the first one [15], but this result only referred to standard operators.

Selectiveness of operators was also investigated for Java programs [16,17].
General conclusions were similar to those of C#. Object-oriented mutants are killed
by a lower number of tests than standard mutants, but a significant decrease in the

 Quality Evaluation of Object-Oriented and Standard Mutation Operators 55

number of mutation operators is no so visible as for standard operators. In [17] it was
recommended not to use OAC, PCI, and one of EAM, EMM operators, but those
operators were not selected for implementation in CREAM.

Apart from CREAM, only the ILMutator prototype implements 10 object-oriented
and C# specific mutation operators [10]. It introduces mutations into Intermediate
Language of .NET for programs originated from C#, hence is more time effective in
generating mutants than CREAM. Other mutation tools for C# like Nester [33] and
PexMutator [34], do not support any object-oriented operators.

A problem of code converge in relation to the ability of killing mutants was
addressed in the work of [35]. Uncovered mutants were manually identified as a type
of equivalent mutants, whereas CREAM can automatically decide not to generate an
uncovered mutant, if appropriate coverage data are provided. In experiments reported
in [32] sufficiently high statement coverage (80%) was an initial requirement, but did
not directly influence mutant generation. In the contrast to other tools PexMutator is
aimed at creating test cases in order to kill mutants. It extends the Pex tool that creates
tests in order to obtain the high code coverage.

6 Conclusions

The main lessons learned after investigation of three different open-source C#
projects are the following.

The simplest and most beneficial way of mutation cost reduction is introducing
mutation only to a covered code. Using tests that cover on average 82% of the code
75% of all mutants were generated giving no loss in the mutation score (MS)
accuracy. The conclusion is obvious, but it practically means that coverage and
mutation tools should be combined. In CREAM the mutants can be generated for the
whole code, or for the fragments covered by a given test set. It is especially important
for a project under development, when only parts of the code are currently examined.
Though, the cost will be not reduced if the code is covered in 100%.

The remaining results gave no explicit conclusion about the general superiority of
one applied cost reduction technique over the other ones. However, it was possible to
obtain a small decline of a mutation score (99% of MSorig for standard mutation and
93% for object-oriented) with a significant gain in lowering mutation costs: the
number of mutants (81% of standard mutants used, 74% OO mutants) and the number
of tests (22% for standard and 14% for OO). We proposed metrics to evaluate a
tradeoff between these factors. They could also be used to compare tradeoffs in other
mutant selection experiments and adjusted to higher order mutation [18].

In all investigated approaches to mutation operator selection and mutant sampling
the MS accuracy of object-oriented mutants was worse (from few to 10%) than the
corresponding accuracy of standard mutants. We stated that omitting a selected
mutation operator was more beneficial than excluding mutants generated by the most
popular operators (about 10% better MS). However, similarly to the previous studies
on the object-oriented mutation the detailed results depend on the programs under
concern. Especially programs using specialized programming constructs can give
different results (e.g. DMC - operator of delegates was not used in these programs).

The same approach to quality evolution was also applied to mutant sampling. The
best quality tradeoff was obtained when 35% of mutants where randomly selected for
each class giving about 85% of the original MS for the object-oriented mutation and

56 A. Derezińska and M. Rudnik

using 10% of tests. In the case of standard operators, 30% of mutants selected for
each operator and 15% of tests resulted in 93% of MSorig. In general, the random
mutant sampling allows to obtain significant reduction in number of mutants and
tests, but the loss of MS accuracy was a bit higher than in the operator selection
experiments.

The detailed results of mutant clustering are also behind the scope of this paper.
However, in general we obtained 97% of the original MS for object-oriented mutants
using 32% of mutants and 17% of tests. Whereas for standard mutations, it was only
91% MS for 19% of mutants and 15% of tests. These results were less promising than
the results of clustering for standard mutation in C [21]. Moreover, experiences of
clustering are difficult to reproduce to other projects.

The experiments on the cost reduction techniques can be performed on other kinds
of C# projects using the wizard built-in the CREAM mutation testing tool.

References

1. Jia, Y., Harman, M.: An Analysis and Survey of the Development of Mutation Testing.
IEEE Transactions on Software Engineering 37(5), 649–678 (2011)

2. Chevalley, P.: Applying Mutation Analysis for Object-Oriented Programs Using a
Reactive Approach. In: Proc. of the 8th Asia-Pacific Software Engineering Conference,
ASPEC, pp. 267–270 (2001)

3. Kim, S., Clark, J., McDermid J.A.: Class Mutation: Mutation Testing for Object-Oriented
Programs. In: Conference on Object-Oriented Software Systems, Erfurt, Germany (2000)

4. Ma, Y.-S., Kwon, Y.-R., Offutt, J.: Inter-class Mutation Operators for Java. In: Proc. of
International Symposium on Software Reliability Engineering, ISSRE 2002. IEEE
Computer Soc. (2002)

5. Derezińska, A.: Advanced Mutation Operators Applicable in C# Programs. In: Sacha, K.
(ed.) Software Engineering Techniques: Design for Quality. IFIP, vol. 227, pp. 283–288.
Springer, Boston (2006)

6. Derezińska, A.: Quality Assessment of Mutation Operators Dedicated for C# Programs. In:
Proc. of the 6th International Conference on Quality Software, QSIC 2006, pp. 227–234.
IEEE Soc. Press (2006)

7. Derezińska, A., Szustek, A.: Tool-supported Mutation Approach for Verification of C#
Programs. In: Zamojski, W., et al. (eds.) Proc. of International Conference on
Dependability of Computer Systems, DepCoS-RELCOMEX 2008, pp. 261–268. IEEE
Comp. Soc. (2008)

8. Derezińska, A., Szustek, A.: Object-Oriented Testing Capabilities and Performance
Evaluation of the C# Mutation System, In: Szmuc, T., Szpyrka, M., Zendulka, J. (eds.)
CEE-SET 2009. LNCS, vol. 7054, pp. 229–242 (2012)

9. Derezińska, A., Sarba, K.: Distributed Environment Integrating Tools for Software
Testing. In: Elleithy, K. (ed.) Advanced Techniques in Computing Sciences and Software
Engineering, pp. 545–550. Springer, Dordrecht (2009)

10. Derezińska, A., Kowalski, K.: Object-oriented Mutation Applied in Common Intermediate
Language Programs Originated from C#. In: Proc. of 4th International Conference
Software Testing Verification and Validation Workshops, 6th Workshop on Mutation
Analysis, pp. 342–350. IEEE Comp. Soc. (2011)

11. Derezińska, A.: Classification of Operators of C# Language. In: Borzemski, L., et al. (eds.)
Information Systems Architecture and Technology, New Developments in Web-Age
Information Systems, pp. 261–271. Wrocław University of Technology (2010)

 Quality Evaluation of Object-Oriented and Standard Mutation Operators 57

12. Offut, J., Rothermel, G., Zapf, C.: An Experimental Evaluation of Selective Mutation. In:
Proc. of 15th International Conference on Software Engineering, pp. 100–107. IEEE
Comp. Soc. Press (1993)

13. Barbosa, E.F., Maldonado, J.C., Vincenzi, A.M.R.: Toward the Determination of
Sufficient Mutant Operators for C. Journal Software, Testing, Verification, and
Reliability 11, 113–136 (2001)

14. Namin, S., Andrews, J.H.: On Sufficiency of Mutants. In: Proc. of 29th International
Conference on Software Engineering, ICSE 2007 (2007)

15. Zhang, L., Hou, S.-S., Hu, J.-J., Xie, T., Mei, H.: Is Operator-Based Mutant Selection
Superior to Random Mutant Selection? In: Proc. of the 32nd International Conference on
Software Engineering, ICSE 2010, pp. 435–444 (2010)

16. Ma, Y.-S., Kwon, Y.-R., Kim, S.-W.: Statistical Investigation on Class Mutation
Operators. ETRI Journal 31(2), 140–150 (2009)

17. Hu, J., Li, N., Offutt, J.: An Analysis of OO Mutation Operators. In: Proc. of 4th
International Conference Software Testing Verification and Validation Workshops, 6th
Workshop on Mutation Analysis, pp. 334–341. IEEE Comp. Soc. (2011)

18. Kaminski, G., Praphamontripong, U., Ammann, P., Offutt, J.: A Logic Mutation Approach
to Selective Mutation for Programs and Queries. Information and Software Technology,
1137–1152 (2011)

19. Usaola, M.P., Mateo, P.R.: Mutation Testing Cost Reduction Techniques: a Survey. IEEE
Software 27(3), 80–86 (2010)

20. Mathur, A.P., Wong, W.E.: Reducing the Cost of Mutation Testing: An Empirical Study.
Journal of Systems and Software 31, 185–196 (1995)

21. Hussain, S.: Mutation Clustering. Ms. Th., King’s College London, Strand, London (2008)
22. Ji, C., Chen, Z.Y., Xu, B.W., Zhao, Z.: A Novel Method of Mutation Clustering Based on

Domain Analysis. In: Proc. of 21st International Conference on Software Engineering &
Knowledge Engineering, SEKE 2009, pp.422–425 (2009)

23. CREAM, http://galera.ii.pw.edu.pl/~adr/CREAM/
24. NUnit, http://www.nunit.org
25. NCover, http://www.ncover.com
26. Subversion svn, http://subversion.tigris.org
27. Derezińska, A., Rudnik, M.: Empirical Evaluation of Cost Reduction Techniques of

Mutation Testing for C# Programs, Warsaw Univ. of Tech., Inst. of Computer Science
Res. Rap. 1/2012 (2012)

28. Source Monitor, http://www.campwoodsw.com/sourcemonitor.html
29. Lee, H.-J., Ma, Y.-S., Kwon, Y.-R.: Empirical Evaluation of Orthogonality of Class

Mutation Operators. In: Proc. of 11th Asia-Pacific Software Engineering Conference.
IEEE Comp. Soc. (2004)

30. Ma, Y.-S., Harrold, M.J., Kwon, Y.-R.: Evaluation of Mutation Testing for Object-
Oriented Programs. In: Proc. of 28th International Conference on Software Engineering,
pp 869–872. IEEE Comp. Soc. Press (2006)

31. Ma, Y.-S., Offutt, J., Kwon, Y.-R.: MuJava: an Automated Class Mutation System.
Software Testing, Verification and Reliability 15(2) (June 2005)

32. Smith, B.H., Williams, L.: A Empirical Evaluation of the MuJava Mutation Operators. In:
Proc. 3rd International Workshop on Mutation Analysis Mutation 2007 at TAIC.Part 2007,
Cumberland Lodge, Windsor UK, pp. 193–202 (September 2007)

33. Nester, http://nester.sourceforge.net/
34. Pexmutator, http://www.pexase.codeplex.com
35. Segura, S., Hierons, R.M., Benavides, D., Ruiz-Cortes, A.: Mutation Testing on an Object-

oriented Framework: an Experience Report. Information and Software Technology, 1124–1136
(2011)

	Quality Evaluation of Object-Oriented and Standard
Mutation Operators Applied to C# Programs
	Introduction
	CREAM Mutation Testing Tool for C# Programs
	Investigation Process of Mutation Operators
	Generic Scenario of Experiments
	Experimental Flows on Selective Mutation
	Quality Metrics

	Experiments
	Investigated Programs
	Mutant Generation and Execution
	Experiments on Selective Mutation
	Threats to Validity

	Related Work
	Conclusions
	References

