TimeSquare:
Treat Your Models with Logical Time*

Julien DeAntoni and Frédéric Mallet

Aoste Team-Project
Université Nice Sophia Antipolis
13S - UMR CNRS 7271, INRIA Sophia Antipolis Méditerranée
2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex, France
{julien.deantoni, frederic.mallet}@inria.fr
http://www-sop.inria.fr/aoste/

Abstract. TimeSquare is an Eclipse and model-based environment for
the specification, analysis and verification of causal and temporal con-
straints. It implements the MARTE Time Model and its specification
language, the Clock Constraint Specification Language (CCSL). Both
MARTE and ccsL heavily rely on logical time, made popular by its use in
distributed systems and synchronous languages. Logical Time provides
a relaxed form of time that is functional, elastic (can be abstracted or
refined) and multiform. TimeSquare is based on the latest model-driven
technology so that more than 60% of its code is automatically gener-
ated. It provides an XText-based editor of constraints, a polychronous
clock calculus engine able to process a partial order conforming to the
set of constraints and it supports several simulation policies. It has been
devised to be connected to several back-ends developed as new plugins
to produce timing diagrams, animate UML models, or execute Java code
amongst others.

Keywords: Embedded systems, Polychronous specifications, Logical
Time, Model-Driven Engineering.

1 Introduction

Models abstract away the irrelevant aspects of a system to focus on what is im-
portant for a given purpose. Model-driven engineering provides tools and tech-
niques to deal with models. These models are nowadays mainly structural but
can often be refined with a behavioral description. The behavioral description is
usually a specific implementation of externally defined behavioral requirements.
To fully benefit from models right from the requirements we propose to specify
behavioral requirements as logical time constraints directly linked to the model.

* This work has been partially supported by the RT-SIMEX ANR
project (http://www.rtsimex.org) and the PRESTO ARTEMIS project
(http://wuw.presto-embedded.eu/|).

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 34-ffT] 2012.
© Springer-Verlag Berlin Heidelberg 2012

http://www-sop.inria.fr/aoste/
http://www.rtsimex.org
http://www.presto-embedded.eu/

TimeSquare 35

This is done by using the Time Model from MARTE conjointly with its formal
companion language ¢CSL (Clock Constraint Specification Language [1]). This
approach is tooled by the Timesquare framework, which is a set of Eclipse plugins
that implement the model-based declarative language CCSL and provide support
for the analysis and execution of CCSL specifications.

In this paper, we overview the main functionality of Timesquare. Our tool,
which is itself based on a model-driven approach, allows for the enrichment of
models with formal annotations by using semantic models. CCSL concrete syntax
is based on Xtext (http://www.eclipse.org/Xtext/) so that the user directly
constructs an EMF model while typing. This model can be parsed easily to provide
useful information like the clock tree graph that represents the polychronous
specification in a graphical way [6]. Keeping the specification as a model enables
a better integration with a model-driven approach because the model, the formal
language and the solver are in the same technological space. The main benefits
is the ability to link specification as well as results directly to the models. The
feedback to the user is then greatly improved compared with transformational
techniques, which translate a model to an existing formal language. The output
of Timesquare is also an EMF model that defines a specific partial order of events,
which represents the trace of the simulation. It is important to notice that a single
simulation provides a partial order and consequently captures several possible
executions (several total orders). It is possible to subscribe to specific events
during the construction of this trace by using the extension point mechanism
provided by Eclipse. User-defined or domain-specific backends can be deployed
by registering to selected events.

The architecture of Timesquare is shown in Figure[Il Straight arrows indicate
the model flows, whereas dashed arrows represent the links between two models.
The trace model is directly linked to cCsL model elements, which in turns are
linked to other (EMF) model elements.

The paper organization follows this architecture. Section[2 after a brief overview
of CcCsL semantics, describes the CCSL concrete syntax and tooling. Section [3]
explains how the solver produces the trace model according to the simulation
policy. Finally, before concluding, section 3] details the back-end mechanism
and details some of the main existing back-ends.

2 CCSL Specifications

2.1 Semantics

Contrary to most real-time constraint tools, we use a polychronous time model
that allows the duration and time values to be expressed relatively to other
clocks, and not only relatively to a common chronometric clock counting physical
time. For instance, a duration can be expressed relative to the clock cycle of a
given processor core or bus. In many current electronic devices, the clock cycle
varies according to the battery level or some other optimization criteria. This
kind of time is named logical time and has been used in distributed systems [5/4]

http://www.eclipse.org/Xtext/

36 J. DeAntoni and F. Mallet

@t

Any EMF [e-ooooomiaeias oo e e
model i i

ZGPEEETE - Clock Trace Backend

Solver e J Manager

Xtext 2.0 - |
[Rendom ASAP
Simulation Policy Simulation Policy

VCD Code
Generator Executor

Papyrus
Animator

Fig. 1. Big Picture of the Timesquare Architecture

for its ability to represent (untimed) causalities but also in synchronous language
where it has prooved to be meaningful from requirements to implementations [2].

In MARTE, the Time Model relies on logical time. In this context, a clock is
a totally ordered set of instants. A time structure is a set of clocks C' and a set
of relations on instants. I denotes the union of all instants of all clocks within
a given time structure. We consider two kinds of relations: causal and temporal
ones. The basic causal relation over I is causality/dependency, i € [,j € I,i < j
means ¢ causes j or j depends on i, i.e., if j occurs then i also occurs. The
three basic temporal relations over I are precedence (<), coincidence (=), and
exclusion (#). For any instants ¢ and j in a time structure, ¢ < j means that
the only acceptable execution traces are those where ¢ occurs strictly before
(precedes) j. @ = j imposes instants ¢ and j to be coincident, i.e., they must
always occur at the same execution step, both or none . ¢ # j forbids the
coincidence of the two instants, i.e., they cannot occur at the same execution
step. Note that, some consistency rules must be enforced between causal and
temporal relations. ¢ < j can be refined either as ¢ < j or i = j, but j can never
precede i. Furthermore, we do not assume a global notion of time. Temporality
is given by the precedence binary relation, which is partial, asymmetric (i.e.,
antisymmetric and irreflexive) and transitive. The coincidence binary relation
is an equivalence relation on instants, i.e., reflexive, symmetric and transitive.
Specifying a full time structure using only instant relations is not realistic since
clocks are usually infinite sets of instants. Thus, CCSL defines a set of relations
and expressions between clocks that apply to infinitely many instant relations.
Please refer to [I] to learn about CCSL semantics.

2.2 Implementation

The clock constraint specification language (CCSL) complements structural mod-
els by formally defining a set of kernel clock constraints, which apply to infinitely

TimeSquare 37

many instant relations. The operational semantics of CCSL constraints is defined
in a technical report [I]. Some recurrent constraints from a specific domain can
be complex. To ease the application of such complex constraints, libraries of
user-defined constraints can be built by composing existing constraints. This
language and the library mechanism is defined in a metamodel accessible here:
http://timesquare.inria.fr/resources/metamodel. This metamodel can be
instantiated from two different classes depending on whether the user wants to
create a CCSL specification or a library. Because using the ecore reflective edi-
tor provided by EMF is not suitable for any user, we created a textual concrete
syntax using XText. XText automatically generates a textual editor for a given
EMF metamodel and allows for customizing the concrete syntax. Then, when
using the textual editor, the corresponding EMF model is automatically built.
Amongst other things, direct links to external EMF models are supported. In the
ccsL editor, we use such links to map CCSL clocks to EMF model elements such
as the UML model elements whose execution is triggered by the cCSL clocks. Such
direct links are important to help the user in the specification of constraints and
the creation of a coherent specification (completion, detection of errors on the
fly, tips, etc). Two kinds of model can be imported in a CCSL specification: ex-
ternal libraries and EMF-based models. If a library is imported, the Xtext editor
automatically proposes, as a completion mechanism, the relations and the ex-
pressions from the library. It also checks the parameters provided and proposes
some changes if a problem is detected. Such customization features are very
helpful to build the specification. Figure 2l illustrates a simple CCSL specification
being edited with the XText constraint editor.

+ basic.extendedCCSL = = o #Clock Graph &2
f* ~ |[frinria.acste timesquare.c
* A simple CCSL specification [1
* @author: Julien DeAntoni
¢ date : Wed 18th of January 2012 (<o)
*/
ClockConstraintSystem MySpec {

imports { —
import "ccsl:kernel” as kernel ; @‘ = cl==c2

}
entryBlock main

Block main { P
)
& Qutline =
=+ main
cl
Expression = { Clockl-= JClock2-=] c2
Relation [§[l(Clockl-> , Clock2->]
Relation rif l{LeftClock -> «, RightClock ->] €3
Relation r2[J{LeftClock -= , RightClock ->] cd
)
¥ v =r]l : Precedes
» +or2 : SubClock
=l * =0 : Union

Fig. 2. A simple cCsL specification in TimeSquare

If an EMF model is imported in a CCSL specification, all the elements from the
model that own a “name” property will be accessible and possibly constrained.
Figure 3l shows a part of the previous CCSL specification where an import from a

http://timesquare.inria.fr/resources/metamodel

38 J. DeAntoni and F. Mallet

UML model is done. It allows enriching the Clock declaration with the structural
element from the UML model (here subject to completion). The meaning of the
link can also be specified: i.e.,, the clock ticks can represent the starting/finishing
of a behavior, the sending/reception of a message. ..

ClockConstraintSystem MySpec {
imports {
import "ccsl:kermel” as kernel ;
import “model.uml” as aModel;

entryBlock main
Block main {
-=eventl|{ "aModel->Model::"):send

Model::Component_1::Connectorl [Connector]
Model::Component_1::Connector2 [Connector]
Model::Component_1::Connector? [Connector]

3 # Model::Component_1::Connector? [Connector]

= Model::Component_1::P1 [Port]

= Model::Component_1::P2 [Port]

= Model::Component_1::P3 [Port]

--I Model::Component 1::P4 [Port]

Fig. 3. Link between a model (UML here) and a cCSL specification, helped by comple-
tion

3 Simulation

The formal operational semantics of CCSL constraints makes CCSL specifications
executable. A run of a time system is an infinite sequence of steps (if no deadlocks
are found by the solver). During a step, a Boolean decision diagram represents
the set of acceptable sets of clocks that can tick. If the CCSL specification con-
tains assertion(s), then the Boolean decision diagram also represents the state
of the assertion (violated or not). Assertions never change the clocks that can
tick. It has been used in the RT-Simex project to check if a specific execution
trace is correct with regards to a CCSL specification [3]. If the CcCSL specification
is deterministic, there exists a single set; if not, a simulation policy is used to
choose amongst the possible solutions. TimeSquare offers several simulation poli-
cies (Random, As soon as possible, etc). It is possible for a user to add a new
simulation policy by using a specific TimeSquare extension point. The choice of
the simulation policy, the number of steps to compute as well as the choices
about debugging information are integrated in the existing eclipse configuration
mechanism so that a run or a debug (step by step) of a CCSL specification is
accessible as in other languages like java.

3.1 Analysis Features and Back-Ends

TimeSquare can be used in various model-driven approaches. Depending on the
domain, users are interested in different feedback or analysis of the results. To
allow an easy integration of TimeSquare in various domains, we implemented a
back-end manager, which enables the easy addition of user-defined back-ends.

TimeSquare 39

The back-end manager receives the status of the clock (it ticks or not) at each
simulation step. It also receives the status of relations (causality and coincidence)
as well as the status of the assertions (violated or not). By using a specific
extension point, a developer can create a back-end that subscribes to some of
these events. The registered back-end are then notified when the events they
subscribed to occur during the simulation step. We present in the remainder of
this section the three main backends: the VCD diagram creator, the papyrus
animator and the code executor.

VCD Diagram Creator: VCD is a format defined as part of IEEE1364 and is
mainly used in the electronic design domain. It is very close to the UML timing
diagram and represents the evolution of each event (Clock) wvs. time evolution,
represented horizontally. It classically represents a total order of events. Because
TimeSquare provides a trace which is only partially ordered, the classical VCD
features have been extended to graphically represent such a partial order. On
Figure[d] a simple VCD is represented. It results from the simulation of the ccsL
specification represented on Figure [2] where the cO clock is hidden to simplify
the reading. We can notice the optional presence of two kinds of links between
the ticks of the clocks: blue arrows, which represent causalities (loose synchro-
nizations) and red links, which represent coincidences (strong synchronizations).
The result is that the partial order is valid as long as the red links are not broken
and the blue arrows never go back in time.

maln:cz n 1 I 1
.t L
mainzct L [e L - -
aimca3 g B | i
+ t :
maln::cd | L

Fig. 4. The extended VCD diagram back-end

Papyrus Diagram Animator: When a CCSL specification is linked to a UML
model, the model is often represented graphically in a UML tool. Papyrus
(http://www.eclipse.com/Papyrus) is an open source UML tool integrated
with eclipse EMF and GMF. The papyrus animator provides a graphical anima-
tion of the UML diagrams during the simulation. The kind of graphical animation
depends on the “meaning” of the event linked to the UML model (send, reveive,
start, etc). This animation provides a very convenient feedback to the user who
wants to understand what happens in the model according to the constraints
he wrote. Additionally to graphical animation, the Papyrus animator adds com-
ments to the UML model elements that represent their activation trace, keeping
this way a trace of the simulation directly in the UML model. The Papyrus
animator is shown conjointly (and synchronized with) the VCD diagram on
Figure [l

http://www.eclipse.com/Papyrus

40 J. DeAntoni and F. Mallet

Fila Edit Navigate Search Project Run Ved Edor Window Help . 1
o] e-0-ar @ & - . - [Fossug -

© Dabug 11 -) T =0 e Variables % Breakpaints ==g
= ¢ Papyrusinimation_timme2 [CCSLModel] Hame |value {
= S CCSL simulator A india, acste. timesqu o il 5 plel extandedCCSL o Naut Step To Compute IE] J

= # CCSLOwbugThread (1] * Vinible Step 2 i

= .

o CCSL simulation process 4

L o

axamplal axtandedCCIL 3 model di ¢ L wcasnplal2011_0621_172059 ved axample1I01] 0621 171726 ved "o

My ToySystem

* EsFirstingu

T - RsSeconding..

Portil: Integer [1]
+ itssecon
nsSaconding_
W Trbagar [1] portiz
AaFunctionst..
#nFunctionst
portF1_1
portF1_2
= = o £}
B East-ADL _like Ved Viewar axampiel2011 0621172099, ved

Fig. 5. The animation of a UML model and the associated timing diagram in Time-
Square

Code Ezxecutor: When a software is prototyped, it can be convenient to run some
piece of code in order to provide application specific feedback. For instance we
developped a simple digital filter by using UML composite structure in Papyrus
and we added constraints on it representing its synchronizations (so that the
diagram can be animated conjointly with the VCD diagram). To test our al-
gorithm and ease the debugging of the synchronization in the model, we used
the JAVA code executor. It allows the declaration of object and the launch of
specific method of these objects when a desired event occurs (tick of a clock,
etc). It can be used, as in the digital filter, to represent the data manipulation
of the filter and to graphically represent the internal state of the memory. It can
also be used to pop-up information windows when an assertion is violated, etc.

Clock Graph: To allow static analysis as, for instance the one described in
[6], Timesquare is able to build statically a clock graph that depicts the syn-
chronous/asynchronous relations between clocks. This specific mechanism is not
a back-end per se because it does not depend on the dynamics of the model
but it is a very useful feature to deal with polychronous specifications. A simple
CCSL specification, the corresponding and synchronized EMF model in the out-
line and the associated clock graph are represented on Figure[6l The vertices are
the clocks and the edges are the clock relationships: sub denotes a subclocking
and therefore a synchronous relationship, whereas < denotes a precedence by
nature asynchronous. When two clocks are synchronous, they are merged into
a single vertex (as ¢l == ¢2). This graph shows that the specification is fully
synchronous: c0 is the super clock of both ¢l and ¢3. ¢l in turns is a super
clock of ¢4 and is synchronous with ¢2. It also shows the precedence relationship
between ¢l and ¢3.

TimeSquare 41

B Clock Graph 52

/Tools/tools.extended CCSL
[l

Fig. 6. Clock Graph extracted from a CCSL specification

4 Conclusions

This paper briefly presents TimeSquare. It is a model-based tool well integrated
in the Model Driven Development process. Its goal is to ease the use of the formal
declarative language CCSL and provides analysis support. Additionally, we wanted
to develop it by using model driven technology; in one hand it has helped in the
development of our tool and on the other hand it put the tool in the same tech-
nological space than the model under development. The main benefit is the direct
feedback offered to the users during the simulation. A video demonstration is avail-
able from the Timesquare website (in French): http://timesquare.inria.fr/.
Finally, while not presented here, it also supports a form of runtime analysis
through the generation of VHDL or Esterel observers.

References

1. André, C.: Syntax and semantics of the clock constraint specification language (ccsl).
Research Report 6925, INRIA (May 2009)

2. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., De Simone,
R.: The synchronous languages twelve years later. Proceedings of the IEEE, 64-83
(2003)

3. Deantoni, J., Mallet, F., Thomas, F., Reydet, G., Babau, J.-P., Mraidha, C., Gau-
thier, L., Rioux, L., Sordon, N.: RT-simex: retro-analysis of execution traces. In:
In, K.J., Sullivan, G.-C. (eds.) SIGSOFT FSE, Santa Fe, Etats-Unis, pp. 377-378
(2010) ISBN 978-1-60558-791-2

4. Fidge, C.: Logical time in distributed computing systems. Computer 24(8), 28-33
(2002)

5. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM 21(7), 558-565 (1978)

6. Yu, H., Talpin, J.-P., Besnard, L., Gautier, T., Mallet, F., André, C., de Simone,
R.: Polychronous analysis of timing constraints in UML MARTE. In: IEEE Int. W.
on Model-Based Engineering for Real-Time Embedded Systems Design, Parador of
Carmona, Spain, pp. 145-151 (2010)

http://timesquare.inria.fr/

	Time
Square:Treat Your Models with Logical Time
	Introduction
	CCSL Specifications
	Semantics
	Implementation

	Simulation
	Analysis Features and Back-Ends

	Conclusions
	References

