

Lecture Notes in Computer Science 7304
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Carlo A. Furia Sebastian Nanz (Eds.)

Objects, Models,
Components, Patterns

50th International Conference, TOOLS 2012
Prague, Czech Republic, May 29-31, 2012
Proceedings

13

Volume Editors

Carlo A. Furia
Sebastian Nanz
ETH Zurich
Department of Computer Science
Clausiusstr. 59
8092 Zurich
Switzerland
E-mail: {caf, nanz}@inf.ethz.ch

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-30560-3 e-ISBN 978-3-642-30561-0
DOI 10.1007/978-3-642-30561-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012937846

CR Subject Classification (1998): F.3, D.2, D.3, D.1, C.2, D.2.4, D.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Started in 1989, the TOOLS conference series has played a major role in the
development of object technology and, with its emphasis on practically useful
results, has contributed to making it mainstream and ubiquitous. This year’s
50th edition of the International Conference on Objects, Models, Components,
Patterns (TOOLS Europe 2012) appropriately celebrated this “triumph of ob-
jects”: object technology is now commonplace.

TOOLS Europe 2012 took place in Prague during May 29–31, 2012. The Pro-
gram Committee received 77 paper submissions, consisting of 61 regular papers
and 16 short and tool demo papers. Each submission was reviewed by three ex-
perts. Based on the reviewers’ reports and one week of intense discussion among
Program Committee members, we selected 24 papers for presentation at the
conference. We were impressed by the overall quality of the submissions, which
resulted in a strong competition for acceptance and in a final program of excel-
lent standing. We sincerely thank all authors for their hard work and for choosing
TOOLS Europe as venue.

Keynote talks by Lionel Briand and Alan Kay completed the scientific pro-
gram, together with a presentation by Bertrand Meyer – the Conference Chair
and a founder of the TOOLS series – on the occasion of the 50th edition. We
would like to express our gratitude to these three outstanding speakers for con-
tributing to making TOOLS Europe 2012 a memorable event.

We also thank the Program Committee members and their subreviewers for
their timely and thorough reviewing work. This was instrumental, together with
a very lively and constructive discussion, in selecting the best contributions and
in giving constructive feedback to all submissions. The EasyChair system helped
manage the whole process smoothly and efficiently.

The significant number of submissions received, a record for the latest editions
of TOOLS, was largely thanks to the extensive publicity work carried out by
our Publicity Chair Scott West. The conference would not have been possible
without the great work of the local organization team led by Pavel Tvrd́ık and
including Michal Valenta, Jindra Voj́ıková, and Jan Chrastina from the Czech
Technical University in Prague. Claudia Günthart at ETH Zurich helped manage
the finances for all TOOLS co-located conferences. The conference also benefited
from the financial support of Microsoft Research and the European Association
for Programming Languages and Systems, which sponsored the TOOLS 2012
best paper award.

March 2012 Carlo A. Furia
Sebastian Nanz

Organization

Program Committee

Jonathan Aldrich Carnegie Mellon University, USA
Gilles Barthe IMDEA Software Institute, Spain
Lorenzo Bettini University of Turin, Italy
Yuriy Brun University of Washington, USA
S.C. Cheung The Hong Kong University of Science and

Technology, China
Gordon Fraser Saarland University, Germany
Carlo A. Furia ETH Zurich, Switzerland
John Gallagher Roskilde University, Denmark
Angelo Gargantini University of Bergamo, Italy
Michael Goedicke University of Duisburg-Essen, Germany
Susanne Graf VERIMAG, France
Mark Harman University College London, UK
Michael Huth Imperial College London, UK
Yves Le Traon University of Luxembourg, Luxembourg
Yang Liu National University of Singapore, Singapore
Tiziana Margaria University of Potsdam, Germany
Sebastian Nanz ETH Zurich, Switzerland
Jerzy Nawrocki Poznan University of Technology, Poland
Nathaniel Nystrom University of Lugano, Switzerland
Manuel Oriol University of York, UK
Alessandro Orso Georgia Institute of Technology, USA
Richard Paige University of York, UK
Alexander K. Petrenko Moscow State University, Russia
Grigore Rosu University of Illinois at Urbana-Champaign,

USA
Peter Sestoft IT University of Copenhagen, Denmark
Andrey Terekhov St. Petersburg State University, Russia
Zdeněk Trońıček Czech Technical University in Prague,

Czech Republic
Naoyasu Ubayashi Kyushu University, Japan
Antonio Vallecillo University of Malaga, Spain
Kapil Vaswani Microsoft Research, Bangalore, India
Tao Xie North Carolina State University, USA
Amiram Yehudai Tel Aviv University, Israel
Michal Young University of Oregon, USA
Jian Zhang Chinese Academy of Sciences, China
Lu Zhang Peking University, China

VIII Organization

Additional Reviewers

Arcaini, Paolo
Bartel, Alexandre
Barzilay, Ohad
Beschastnikh, Ivan
Bono, Viviana
Bosselmann, Steve
Brooke, Phillip J.
Buzdalov, Denis
Caire, Patrice
Crespo, Juan Manuel
Demange, Delphine
Edwards, George
El Kateb, Donia
Ellison, Chucky
Gil, Yossi
Gorham, Justin
Guangdong, Bai
Haemmerlé, Rémy
Hwang, Jeehyun
Isberner, Malte
Ivanovic, Dragan
Jin, Dongyun
Katz, Shmuel
Klein, Jacques
Kolovos, Dimitrios
Kuhlemann, Martin
Kunz, César
Li, Yueqi
Loreti, Michele
Lucio, Levi

Matragkas, Nikos
Meng, Guozhu
Meredith, Patrick
Naujokat, Stefan
Neubauer, Johannes
Nguyen, Phu
Nistor, Ligia
Nordio, Martin
Novikov, Evgeny
Pandita, Rahul
Radjenovic, Alek
Rojas, Jose Miguel
Scandurra, Patrizia
Serbanuta, Traian
Shakya, Kiran
Shi, Ling
Song, Wei
Stefanescu, Andrei
Steffen, Bernhard
Tolstov, Konstantin
Tyszberowicz, Shmuel
Voelter, Markus
Wei, Jun
Wei, Yi
Wu, Ling
Wu, Rongxin
Xiao, Hao
Xiao, Xusheng
Ye, Chunyang
Zhang, Zhenyu

Table of Contents

Integrating Efficient Model Queries in State-of-the-Art EMF Tools 1
Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, István Ráth,
Zoltán Ujhelyi, and Dániel Varró

Poporo: A Formal Methods Tool for Fast-Checking of Social Network
Privacy Policies . 9

Néstor Cataño, Sorren Hanvey, and Camilo Rueda

DroidSense: A Mobile Tool to Analyze Software Development Processes
by Measuring Team Proximity . 17

Luis Corral, Alberto Sillitti, Giancarlo Succi,
Juri Strumpflohner, and Jelena Vlasenko

TimeSquare: Treat Your Models with Logical Time 34
Julien DeAntoni and Frédéric Mallet

Quality Evaluation of Object-Oriented and Standard Mutation
Operators Applied to C# Programs . 42

Anna Derezińska and Marcin Rudnik

101companies : A Community Project on Software Technologies and
Software Languages . 58

Jean-Marie Favre, Ralf Lämmel, Thomas Schmorleiz, and
Andrei Varanovich

An Object-Oriented Application Framework for the Development of
Real-Time Systems . 75

Francesco Fiamberti, Daniela Micucci, and Francesco Tisato

Measuring Test Case Similarity to Support Test Suite Understanding . . . 91
Michaela Greiler, Arie van Deursen, and Andy Zaidman

Enhancing OSGi with Explicit, Vendor Independent Extra-Functional
Properties . 108

Kamil Ježek, Premek Brada, and Lukáš Holý

Efficient Method Lookup Customization for Smalltalk 124
Jan Vraný, Jan Kurš, and Claus Gittinger

X Table of Contents

Fake Run-Time Selection of Template Arguments in C++ 140
Daniel Langr, Pavel Tvrd́ık, Tomáš Dytrych, and Jerry P. Draayer

Supporting Compile-Time Debugging and Precise Error Reporting in
Meta-programs . 155

Yannis Lilis and Anthony Savidis

Identifying a Unifying Mechanism for the Implementation of
Concurrency Abstractions on Multi-language Virtual Machines 171

Stefan Marr and Theo D’Hondt

Verification of Snapshotable Trees Using Access Permissions and
Typestate . 187

Hannes Mehnert and Jonathan Aldrich

Multiparty Session C: Safe Parallel Programming with Message
Optimisation . 202

Nicholas Ng, Nobuko Yoshida, and Kohei Honda

Non-interference on UML State-Charts . 219
Mart́ın Ochoa, Jan Jürjens, and Jorge Cuéllar

Representing Uniqueness Constraints in Object-Relational Mapping 236
Mark J. Olah, David Mohr, and Darko Stefanovic

Detection of Seed Methods for Quantification of Feature
Confinement . 252

Andrzej Olszak, Eric Bouwers, Bo Nørregaard Jørgensen, and
Joost Visser

Assisted Behavior Driven Development Using Natural Language
Processing . 269

Mathias Soeken, Robert Wille, and Rolf Drechsler

Learning to Classify Bug Reports into Components 288
Ashish Sureka

Incremental Dynamic Updates with First-Class Contexts 304
Erwann Wernli, Mircea Lungu, and Oscar Nierstrasz

Elucidative Development for Model-Based Documentation 320
Claas Wilke, Andreas Bartho, Julia Schroeter, Sven Karol, and
Uwe Aßmann

Table of Contents XI

Viewpoint Co-evolution through Coarse-Grained Changes and Coupled
Transformations . 336

Manuel Wimmer, Nathalie Moreno, and Antonio Vallecillo

Turbo DiSL: Partial Evaluation for High-Level Bytecode
Instrumentation . 353

Yudi Zheng, Danilo Ansaloni, Lukas Marek, Andreas Sewe,
Walter Binder, Alex Villazón, Petr Tuma, Zhengwei Qi, and
Mira Mezini

Author Index . 369

Integrating Efficient Model Queries
in State-of-the-Art EMF Tools�

Gábor Bergmann, Ábel Hegedüs, Ákos Horváth,
István Ráth, Zoltán Ujhelyi, and Dániel Varró

Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

1117 Budapest, Magyar tudósok krt. 2
{bergmann,hegedusa,ahorvath,rath,ujhelyiz,varro}@mit.bme.hu

Abstract. Model-driven development tools built on industry standard
platforms, such as the Eclipse Modeling Framework (EMF), heavily use
model queries in various use cases, such as model transformation, well-
formedness constraint validation and domain-specific model execution.
As these queries are executed rather frequently in interactive modeling
applications, they have a significant impact on the runtime performance
of the tool, and also on the end user experience. However, due to their
complexity, they can also be time consuming to implement and optimize
on a case-by-case basis. The aim of the EMF-IncQuery framework is
to address these shortcomings by using declarative queries over EMF
models and executing them effectively using a caching mechanism.

In the current paper, we present the new and significantly extended
version of the EMF-IncQuery Framework, with new features and run-
time extensions that speed up the development and testing of new queries
by both IDE and API improvements.

We demonstrate how our high performance queries can be easily inte-
grated with other EMF tools using an entirely new case study in which
EMF-IncQuery is deeply integrated into the EMF modeling infrastruc-
ture to facilitate the incremental evaluation of derived EAttributes and
EReferences.

1 Introduction

As model management platforms are gaining more and more industrial atten-
tion, the importance of automated model querying techniques is also increasing.
Queries form the underpinning of various technologies such as model transforma-
tion, code generation, domain-specific behaviour simulation and well-formedness
validation that are all essential in state-of-the-art modeling tools and toolchains.

The leading industrial modeling ecosystem, the Eclipse Modeling Framework
(EMF [1]), provides different ways for querying the contents of models. These
� This work was partially supported by the SecureChange (ICT-FET-231101) Eu-

ropean Research Project, the Certimot (ERC_HU-09-01-2010-0003) Project, the
grant TÁMOP (4.2.2.B-10/1–2010-0009) and the János Bolyai Scholarship.

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 1–8, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 G. Bergmann et al.

approaches range from manually coded model traversal to high-level declarative
constraint languages such as Eclipse-OCL [2]. However, industrial experience [3]
shows strong evidence of scalability problems in complex query evaluation over
large EMF models, taken from the various modeling domains; and manual query
optimization is time consuming to implement on a case-by-case basis.

In order to overcome this limitation, the EMF-IncQuery1 framework [3] pro-
poses to use declaratively specified queries over EMF models, executing them
efficiently without manual coding using incremental graph pattern matching tech-
niques [4]. The benefits of EMF-IncQuery with respect to the state-of-the-art
of querying EMF models [2,5] include: (i) high performance querying of models in
the range of millions of elements, (ii) efficient addressing of instance enumeration
and backward navigation (which are both frequently encountered shortcomings
of the EMF API); and (iii) a user friendly yet powerful declarative graph pattern
based formalism.

In the current tool demonstration paper, we present the next evolutionary
step of the EMF-IncQuery framework, focusing on novel query and execution
features. As a complex case study, we illustrate how EMF-IncQuery can be
deeply integrated into the EMF modeling layer to facilitate the efficient evalua-
tion of derived features (virtual attributes and references that represent indirectly
calculated structural information).

The paper is structured as follows: first, Section 2 gives a brief architectural
and feature-oriented overview of EMF-IncQuery, with a focus on novel con-
tributions. Section 3 shows how incremental queries can be integrated into the
EMF modeling layer for the evaluation of derived features. Section 4 gives an
overview of related work, and Section 5 concludes the paper.

2 Overview of EMF-IncQuery

2.1 Model Queries by Graph Patterns

Graph patterns [6] are an expressive formalism that can be used for various pur-
poses in model-driven development, such as defining declarative model transfor-
mation rules, capturing general-purpose model queries including model valida-
tion constraints, or defining the behavioral semantics of dynamic domain-specific
languages [7]. A graph pattern (GP) represents conditions (or constraints) that
have to be fulfilled by a part of the instance model. A basic graph pattern con-
sists of structural constraints prescribing the existence of nodes and edges of
a given type, as well as expressions to define attribute constraints. A negative
application condition (NAC) defines cases when the original pattern is not valid
(even if all other constraints are met), in the form of a negative sub-pattern. A
match of a graph pattern is a group of model elements that have the exact same
configuration as the pattern, satisfying all the constraints (except for NACs,
which must not be satisfied). The specification for the complete query language
of the EMF-IncQuery framework was described in [6], the current tool paper
presents its implementation.
1 http://viatra.inf.mit.bme.hu/incquery/new

http://viatra.inf.mit.bme.hu/incquery/new

Integrating Efficient Model Queries 3

Example. We illustrate our approach on a simple demonstration domain of
Schools (encoded in EMF’s ECore language as illustrated in Figure 1) that man-
age Courses involving Teachers, and enroll their students assigned to Years and
SchoolClasses. Aside from simple EAttributes and EReferences, it also features
derived features that are marked as volatile and transient, i.e. not stored explic-
itly in instance models but rather calculated on-demand by hand-written code.
Such attributes or references usually represent a (simple) computed view the
model and are frequently supported by ad-hoc Java implementations integrated
into the EMF model representation.

Fig. 1. The domain metamodel of the case study

In this paper, we show how graph patterns and EMF-IncQuery as the un-
derlying execution engine can be used to ease the specification and automate
the efficient evaluation of such features. The graph pattern teachersWithMost-
Courses(S,T) (Figure 2) is used to express the semantics of the teachersWith-
MostCourses derived EReference (connecting School and Teacher in Figure 1,
highlighted with an ellipse), that is to identify those teachers who have the
maximum number of Course instances assigned (through the Teachers.courses
reference).

This graph pattern defines the target set of teachers by combining a negative
application condition (NAC) and cardinality constraints. It expresses that a
teacher T belongs to this set iff there is no other teacher T 2 whose number of
courses M (the actual cardinality, i.e. number of elements connected through
the courses reference) would be larger than the number of courses N assigned
to T .

2.2 Execution of Incremental Queries

The overall development workflow of the EMF-IncQuery framework focuses
on the language tooling for specifying queries and then automatically generat-
ing integration code that plugs into any existing EMF-based application. As a

4 G. Bergmann et al.

1 pattern teachersWithMostCourses(S, T)=
2 {
3 School.teachers (S,T);
4 neg pattern moreCourses(S,T) = {
5 Teacher .courses (T,C) # N;
6 School.teachers (S,T2);
7 Teacher .courses (T2,C2) # M;
8 check(M > N);
9 }

10 }

Fig. 2. Graph pattern example in graphical and textual syntax

novelty targeted towards simplification, EMF-IncQuery now also features an
interpretative query execution facility that allows the developer to specify ad-
hoc queries directly from Java code, without involving the tooling and the code
generator.

Fig. 3. Overview of the novel EMF-IncQuery architecture

The overall architecture of and EMF-based application built in
EMF-IncQuery is overviewed in Figure 3. Based on the query specification
(supported by an Xtext 2-based [8] editor, featuring syntax highlighting, code
completion and well-formedness validation), pattern matcher plugins are gener-
ated that can be easily integrated to an existing Eclipse-based application. These
plugins access the core functionality of the system through the EMF-IncQuery
API that exposes three key novel services: (1) the Validation Engine provides
a wrapper to the EMF Validation service, to provide EMF-IncQuery-based
on-the-fly well-formedness validators using standard Eclipse Error Markers;

Integrating Efficient Model Queries 5

(2) the Interpretative pattern matcher provides an access point to quickly exe-
cute ad-hoc queries directly from Java code; (3) the BASE2 component provides
frequently used low-level incremental queries such as the instant enumeration of
all instance elements belonging to a given EClass, or reverse navigation along
unidirectional EReferences. BASE also provides a novel incremental transitive
closure query algorithm that can be used to incrementally compute reachability
regions.

Benefits. At the core, the incremental evaluation and lifecycle management of
queries is facilitated by the RETE engine, originally developed for the Viatra2
model transformation framework [4]. Using this approach, the query results (the
match sets of graph patterns) are cached in memory, and can be instantaneously
retrieved when queries are issued. These caches are automatically and incremen-
tally maintained upon model updates, using automatic notifications provided
by EMF. There is a slight performance overhead on model manipulation, and
a memory cost proportional to the cache size (approx. the size of match sets).
These special performance characteristics make incremental techniques suitable
for application scenarios such as on-the-fly well-formedness checking, live model
transformation and other complex use cases.

3 Integrating Incremental Queries to the EMF Modeling
Layer

In this section, we outline how the efficient querying features of the EMF-
IncQuery framework can be integrated to EMF-based applications in a deep
and transparent way, through the incremental evaluation and maintenance of
derived features. The overall architecture of our approach is shown in Figure 4.

Fig. 4. Overview of the integration architecture

Here, the application accesses both the model and the query results through
the standard EMF model access layer (query results are represented as the values
of derived attributes or references) – hence, no modification of application source
2 http://viatra.inf.mit.bme.hu/incquery/base

http://viatra.inf.mit.bme.hu/incquery/base

6 G. Bergmann et al.

code is necessary. In the background, Derived feature handlers (novel features of
the EMF-IncQuery API) are attached to the EMF .model plugin that integrate
the generated query components (pattern matchers). This approach follows the
official EMF guidelines of implementing derived features and is identical to how
ad-hoc Java code, or OCL expression evaluators are integrated.

Challenges of Using Derived Features in EMF. In using derived features with
EMF-based applications, developers may encounter two key challenges. First,
depending on the complexity of the semantics of derived features, their evalua-
tion may impose a severe performance impact (since complex calculations and
extensive model traversal may be necessary for execution). Unfortunately, this
scalability issue will affect all other software layers using the .model code, in-
cluding the user interface, model transformations, well-formedness validators etc.
Second, due to the lack of propagating notifications for derived features, model
changes will not trigger e.g. user interface updates.

Our approach provides a solution for both of these challenges. As the per-
formance characteristics of the EMF-IncQuery engine have been shown to be
practically agnostic of query complexity and model size [3], derived features of
complex semantics and inter-dependencies can be used without severe evalua-
tion performance degradation. Additionally, as shown in Figure 4, the update
propagation mechanism of the RETE network (delta monitors) are connected
to the EMF Notification layer so that the application software components are
automatically kept up-to-date about the value changes of derived features.

Implementation Details. In our prototype implementation3, we augmented the
architecture outlined above with a code generator that supports the automatic
generation of integration code (derived feature handlers) based on a simple speci-
fication model that encodes the core semantics of backing queries, that can either
be (i) a reference with a multiplicity of one (mapped to a scalar derived refer-
ence value) or ∗ (mapped to an unmodifiable EList as a derived reference value);
(ii) the cardinality (match set size) of the backing query (e.g. to support the
School.numberOfTeachers derived attribute in Figure 1).

The lifecycle of such handler objects is tied to the host EObjects, to enable
their garbage collection together with the instance model itself. Additionally,
they can be parameterized to use the EMF-IncQuery engine in the batch eval-
uation mode, which disables incremental update propagation, but may be more
efficient overall for rarely used queries, or queries whose incremental maintenance
would require too much memory.

4 Related Work

EMF-IncQuery is not the first tool to apply graph pattern based techniques
to EMF [9,10], but its incremental pattern matching feature is unique.

3 http://viatra.inf.mit.bme.hu/incquery/examples/derivedfeatures

http://viatra.inf.mit.bme.hu/incquery/examples/derivedfeatures

Integrating Efficient Model Queries 7

Model Queries over EMF. There are several technologies for providing declara-
tive model queries over EMF. Here we give a brief summary of the mainstream
techniques, none of which support incremental behavior.

EMF Model Query 2 [5] provides query primitives for selecting model elements
that satisfy a set of conditions; these conditions range from type and attribute
checks to enforcing similar condition checks on model elements reachable through
references. Unfortunately, the expressive power of Model Query 2 is weaker than
first order logic (and thus that of OCL and EMF-IncQuery). For example,
more complex patterns involving circles of references or attribute comparisons
between nodes cannot be detected.

EMF Search [11] is a framework for searching over EMF resources, with con-
trollable scope, several extension facilities, and GUI integration. Unfortunately,
only simple textual search (for model element name/label) is available by de-
fault; advanced search engines can be provided manually in a metamodel-specific
way.

OCL Evaluation Approaches. OCL [12] is a standardized navigation-based query
language, applicable over a range of modeling formalisms. Taking advantage of
the expressive features and wide-spread adoption of OCL, the project Eclipse
OCL provides a powerful query interface that evaluates OCL expressions over
EMF models. However, backwards navigation along references can still have low
performance, and there is no support for incrementality.

Cabot et al. [13] present an advanced three-step optimization algorithm for
incremental runtime validation of OCL constraints that ensures that constraints
are reevaluated only if changes may induce their violation and only on elements
that caused this violation. The approach uses promising optimizations, however,
it works only on boolean constraints, and as such it is less expressive than our
technique.

An interesting model validator over UML models is presented in [14], which
incrementally re-evaluates constraint instances whenever they are affected by
changes. During evaluation of the constraint instance, each model access is
recorded, triggering a re-evaluation when the recorded parts are changed. This
is also an important weakness: the approach is only applicable in environments
where read-only access to the model can be easily recorded, unlike EMF.
Additionally, the approach is tailored for model validation, and only permits
constraints that have a single free variable; therefore, general-purpose model
querying is not viable.

5 Conclusions

Previously [3] we presented EMF-IncQuery as prototype framework for effi-
ciently executing complex queries over EMF models, which adapts incremental
technologies [4] for graph pattern matching. In the current paper, we present
an evolved tool that includes two key improvements compared to previous ver-
sions: (i) an Xtext2-based tooling that fully implements the extended graph

8 G. Bergmann et al.

pattern language [6] and (ii) a new runtime architecture that features several
novel services including the on-the-fly validation engine and the interpretative
ad-hoc query evaluator, built on a rewritten core that provides core queries and
efficient transitive closures.

The secondary focus of this paper was a novel feature whereby queries can be
deeply and transparently integrated into EMF-based applications to facilitate the
efficient evaluation of derived features. The two key advantages of this approach
are: (i) complexity-agnostic performance characteristics that allow developers
to easily integrate derived references and attributes with complex semantics,
without a severe scalability impact, even over very large instance models; (ii)
transparent and automatic notification propagation that simplifies the integra-
tion to already existing user interfaces, model transformations and any other
code that uses EMF models.

References

1. The Eclipse Project: Eclipse Modeling Framework, http://www.eclipse.org/emf
2. The Eclipse Project: MDT OCL,

http://www.eclipse.org/modeling/mdt/?project=ocl
3. Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh, A., Balogh, Z., Ökrös,

A.: Incremental Evaluation of Model Queries over EMF Models. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MoDELS 2010. LNCS, vol. 6394, pp. 76–90.
Springer, Heidelberg (2010)

4. Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental pattern
matching in the VIATRA model transformation system. In: Karsai, G., Taentzer,
G. (eds.) Graph and Model Transformation (GraMoT 2008). ACM (2008)

5. The Eclipse Project: EMF Model Query 2, http://wiki.eclipse.org/EMF/Query2
6. Bergmann, G., Ujhelyi, Z., Ráth, I., Varró, D.: A Graph Query Language for EMF

Models. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707, pp. 167–182.
Springer, Heidelberg (2011)

7. Syriani, E., Vangheluwe, H.: Programmed Graph Rewriting with DEVS. In: Schürr,
A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 136–151.
Springer, Heidelberg (2008)

8. The Eclipse Project: Xtext, http://www.eclipse.org/xtext
9. Biermann, E., Ermel, C., Taentzer, G.: Precise Semantics of EMF Model Trans-

formations by Graph Transformation. In: Czarnecki, K., Ober, I., Bruel, J.-M.,
Uhl, A., Völter, M. (eds.) MoDELS 2008. LNCS, vol. 5301, pp. 53–67. Springer,
Heidelberg (2008)

10. Giese, H., Hildebrandt, S., Seibel, A.: Improved flexibility and scalability by inter-
preting story diagrams. In: Proceedings of GT-VMT 2009. ECEASST, vol. 18 (2009)

11. The Eclipse Project: EMFT Search,
http://www.eclipse.org/modeling/emft/?project=search

12. The Object Management Group: Object Constraint Language, v2.0 (May 2006),
http://www.omg.org/spec/OCL/2.0/

13. Cabot, J., Teniente, E.: Incremental integrity checking of UML/OCL conceptual
schemas. J. Syst. Softw. 82(9), 1459–1478 (2009)

14. Groher, I., Reder, A., Egyed, A.: Incremental Consistency Checking of Dynamic
Constraints. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013,
pp. 203–217. Springer, Heidelberg (2010)

http://www.eclipse.org/emf
http://www.eclipse.org/modeling/mdt/?project=ocl
http://wiki.eclipse.org/EMF/Query2
http://www.eclipse.org/xtext
http://www.eclipse.org/modeling/emft/?project=search
http://www.omg.org/spec/OCL/2.0/

Poporo: A Formal Methods Tool

for Fast-Checking of Social Network Privacy
Policies�

Néstor Cataño1, Sorren Hanvey1, and Camilo Rueda2

1 Carnegie Mellon University - Portugal, Madeira ITI
Campus da Penteada, Funchal, Portugal

{nestor.catano,sorrenhanvey}@m-iti.org
2 Pontificia Universidad Javeriana, Cali, Colombia

Department of Computer Science
crueda@cic.puj.edu.co

Abstract. The increase in use of Smart mobile devices has allowed for
an ever growing market for services providers. These services are in-
creasingly used to connect to users’ on-line private information through
social networking sites that share and personalise on-line information.
This leads to the problem of privacy leaks stemming from an applica-
tion’s non-adherence to a predefined set of privacy policies. This paper
presents a formal methods tool to reliably restrict the access to content in
on-line social network services. The Poporo tool builds upon a previous
work in which we provided a predicate calculus definition for social net-
working in B that models social-network content, privacy policies, and
social-network friendship relations. This paper presents the implementa-
tion and the functionality of our Poporo tool through a running example
in the domain of social networking sites.

1 Introduction

The popularity of Smart mobile devices has allowed for a new domain of on-line
user services. Demands from users for further functionality has prompted service
providers and manufactures to adopt a crowd-sourced approach to application
development wherein third party developers are allowed to build external ap-
plications that implement bespoken functionality. Although this alleviates the
burden on the service providers and manufacturers, it raises a number of pri-
vacy concerns stemming from the fact that users’ information from their on-line
profiles are now made available to third parties, who might not adhere to infor-
mation sharing policies the user might have defined within these profiles.

In this paper, we present our Poporo tool [6] for fast-checking of an applica-
tion’s adherence to a privacy policy that is defined within a social-networking
site (SNS). A privacy policy consists of a user defined policy and a set of axioms

� Sorren Hanvey and Néestor Cataño have been funded by the Portuguese Research
Agency FCT through the R&D Project WeSP, PT/SE/0028/2008.

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 9–16, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

10 N. Cataño, S. Hanvey, and C. Rueda

defined by the SNS that specify its most fundamental behaviour. For example,
an axiom might state that a user that adds a content to the SNS must be granted
all access permissions/privileges over that content.

The Poporo tool relies on a previous work in which we introduced Matelas1, a
predicate calculus abstract definition for social networking written in B [5]. Mate-
las enables the Poporo tool to express privacy policies unambiguously. Poporo
further builds upon a previous work in which we defined a sound translation of
B machines into JML specifications [8], and from JML specifications into the
input language of the Yices SMT prover [7]. JML (Java Modeling Language) is
a model-based language for specifying the behaviour of Java classes [12,4]. Yices
provides support for checking satisfiability of formulae containing uninterpreted
functions [11,10].

2 Preliminaries

2.1 JML

A simple JML specification for a Java class consists of pre- and post-conditions
added to its methods and class invariants restricting the possible states of class
instances. Specifications for method pre- and post-conditions are embedded as
comments immediately before method declarations. JML predicates are first-
order logic predicates formed of side-effect free Java boolean expressions and
several specification-only JML constructs. JML provides notations for forward
and backward logical implications, ==> and <==, for non-equivalence <=!=>, and
for logical or and logical and, || and &&.

requires P. specifies a method pre-condition P, which must be true when the
method is called. Predicate P is a valid JML predicate.

ensures Q. specifies a normal method post-condition Q. It says that if the
method terminates in a normal state, i.e. without throwing an exception, then
the predicate Q will hold in that state. Predicate Q is a valid JML predicate.

signals (E e) R. specifies an exceptional method post-condition R. If the
method throws an exception e of type E, then the JML predicate R must hold.
Predicate R is a valid JML predicate.

2.2 The SMT Solver Yices

Yices is an SMT (Satisfiability Modulo Theories) solver developed at SRI In-
ternational [11,10]. It provides support for checking satisfiability of formulae
containing uninterpreted function symbols with equality, linear real and inte-
ger arithmetic, bit-vectors, arrays, recursive data-types, universal and existen-
tial quantifiers, lambda expressions, tuples, and records. Hence, given a model
in Yices, the solver returns “sat”, “unsat”, or “unknown”, meaning the model
satisfiable, unsatisfiable or the solver cannot decide, respectively.

1 Mattress in French.

Poporo: A Formal Methods Tool 11

Java to
Ocaml

Translater

VCGen
in

OCaml

Source
Code in

Java

VCs

Yices
Solver

User Policy

Application

Execution

OK

Host System (SNS)

Verification Condition Generator

Poporo Tool

Source
code in
OCaml

Matelas Privacy Policy

Privacy Policy

Fig. 1. Poporo Framework

The example below introduces a function foo in Yices. The symbol :: means
“it has type”, so foo is a function over integers. foo is defined as a lambda

function that takes an integer y and returns its successor. Variable x is declared
and equalised to function foo applied to 1. The Yices check instruction checks
whether a valuation for x exists that equals foo applied to 1. The Yices model
is therefore satisfiable (one needs to take x equals to 2).

(define foo::(-> int int))

(assert (= foo (lambda (y::int) (+ y 1))))

(define x::int)

(assert (= (foo 1) x))

(check)

3 Poporo Tool Architecture

The Poporo tool [6] works directly on Java programs specified with JML spec-
ifications. This allowed us to have a greater control of privacy policies through
JML, and enabled us to re-use previous work and tools. Figure 1 shows the
architecture of Poporo. The tool relies on a previous work in which we intro-
duced Matelas [5], a predicate calculus definition for social networking written in
B, modelling social-network content, privacy policies, social-network friendship
relations, and how these affect policies and user content in the network. Mate-
las’ B machine invariants model the privacy policies of a social-networking site
(SNS). In addition to this, Matelas implements social-networking operations for
creating, publishing and editing content, as well as operations for commenting
the “wall”. A privacy policy is composed of Matelas’ invariants augmented with
user defined policies.

12 N. Cataño, S. Hanvey, and C. Rueda

transmit rc(ow, rc, pe) =̂
PRE
rc ∈ rawcontent ∧
ow ∈ person ∧
pe ∈ person ∧
ow �= pe ∧ pe �→ rc �∈ content
THEN
ANY prs WHERE prs ⊆ person
THEN
content := content ∪ {pe �→ rc} ∪ prs× {rc}
END
END

Fig. 2. B machine for social networking

Poporo translates Matelas abstract machines into JML abstract class specifi-
cations [8], which are then translated into a social-networking prelude written in
the input language of the Yices SMT solver [7]. Therefore, Matelas’ abstract ma-
chines are translated into JML abstract classes, machine invariants into JML in-
variants, machine operations generate JML abstract method specifications with
pre-conditions, post-conditions and “frame-conditions”. JML provides support
for design-by-contract principles. JML logical operators such as ==> (logical im-
plication), && (logical and), and || (logical or) are naturally mapped into pred-
icates imp, and, and or in Yices respectively. The mapping of JML pre- and
post-conditions into Yices relies upon the use of lambda expressions that cap-
ture the semantics of the JML specifications.

Poporo works directly on the source code of the external Java program. It
translates the Java program (a restricted syntax) into an equivalent program
written in OCaml. The user defined policy is written in JML and then translated
into Yices [7]. The verification condition generator (VCGen) takes the OCaml
program and calculates a set of weakest preconditions, one for each program
instruction (see Section 4). The verification conditions (VCs) are passed to the
Yices SMT solver for satisfiability checking. If all the checks succeed, then the
Java program does not breach the user defined policy. The Java program can be
composed of assignments, class and method declarations, conditional and loop-
ing statements, and method calls. We only allow pre-defined social-networking
methods to be called within the Java program, e.g. methods/operations for trans-
mitting and creating content, for uploading content to the network, and for set-
ting content permissions. This ensures that the Java program does not break
Matelas’ invariants (the privacy policies of the SNS).

4 Expressing Social Networking Privacy Policies in Yices

Figure 2 shows an abstract definition of the operation for publishing content to
people in the network as defined in Matelas. The operation transmit rc is used to

Poporo: A Formal Methods Tool 13

/*@ public normal_behavior
requires rawcontent.has(rc) && person.has(ow) && person.has(pe) &&

!ow.equals(pe) && !content.has(pe,rc);
ensures (\exists JMLEqualsSet<Integer> prs; prs.isSubset(person);

content.equals(\old(content.union(
JMLEqualsToEqualsRelation.singleton(pe, rc)).union(

ModelUtils.cartesian(prs, JMLEqualsSet.singleton(rc))))));
also public exceptional_behavior

requires !(rawcontent.has(rc) && person.has(ow) && person.has(pe) &&
!ow.equals(pe) && !content.has(pe, rc));

signals (Exception) true; @*/
public abstract void transmit_rc(Integer rc, Integer ow, Integer pe);

Fig. 3. A partial JML translation of the social networking machine

publish the raw content rc from the page of ow (the owner of rc) to the page of
pe. If transmit rc is invoked when its pre-condition (following PRE) is true, the
meaning of the operation is the meaning of its substitution (the code following
THEN). The operation is not guaranteed to achieve any result if invoked when its
pre-condition does not hold. In the definition of transmit rc, pe �→ rc represents
the pair of elements (pe, rc), so that the content rc is explicitly transmitted to
person pe. The construct ANY models unbounded choice substitution: it gives the
implementer the opportunity to choose any value for the bound variable prs that
satisfies theWHERE condition prs ⊆ person. Set prs represents a group of friends
of pe to whom rc should further be transmitted. Figure 3 presents the JML
translation of the operation in Figure 2. In the specification of the transmit rc

method, the normal behavior case guarantees that if the requires clause (pre-
condition) is satisfied, no exception will be thrown, only the locations listed in
the assignable clause can be modified by the method, and the post-state will
satisfy the ensures clause (post-condition). In an ensures clause, expressions
in \old are evaluated in the pre-state, while all other expressions are evaluated
in the post-state. The exceptional behavior case specifies that the method
will throw an exception and no locations will be modified if its pre-condition is
satisfied.

Poporo maps JML specifications into Yices [7]. For each JML method speci-
fication, we define two predicates in Yices implementing the mapping. The first
predicate models the pre-condition and the second the post-condition. For in-
stance, the pre-condition of transmit rc is mapped into Yices as the function
below, which makes use of predicate jmlset-is-member for checking the ex-
istence of an element in a set, and the standard Yices function mk-tuple for
constructing a pair of elements.

(define precondition-transmit-rc::

(-> jmlset jmlset jmlrel (-> int int int bool))

(lambda(rawcontent::jmlset person::jmlset content::jmlrel)

(lambda(ow::int rc::int pe::int)

(and (jmlset-is-member rawcontent-carrier rc)

(jmlset-is-member rawcontent rc) (jmlset-is-member person-carrier ow)

(jmlset-is-member person ow) (not (= ow pe))

(not (jmlrel-is-member content (mk-tuple pe rc)))))))

14 N. Cataño, S. Hanvey, and C. Rueda

5 Generating Verification Conditions

The verification condition generator takes a program in OCaml (obtained as
a translation of external Java program) and calculates a weakest precondition
predicate (WP) based on the program instructions [9]. Program instructions can
be assignments, conditional, looping statements, or calls to pre-defined methods
of the social-network, for which we know their interfaces (their pre- and post-
conditions). WP (SS,Q) stands for the weakest condition that must hold before
the execution of the program statements SS such that Q holds after their ex-
ecution. We defined a number of WP rules that account for the verification of
external programs, some of which are shown below, where m.P and m.Q are the
pre-condition and post-condition of methodm respectively, and result is a global
variable that keeps the value of the evaluation of the last program expression.

Assg: WP (x = E,Q) = WP (E,Q[x\result])
Seq: WP (S; T ,Q) = WP (S,WP (T ,Q))
MCall: WP (m(y),Q) = m.P ∧ m.Q[x\y] ⇒ Q

The VCGen parses the program statement by statement generating a verification
condition VCi for every statement Si. VCi takes the form shown below, where ri
is the pre-condition of instruction Si and ti is its post-condition. The consolidated
VC is passed to the Yices SMT solver and is checked for satisfiability. This is
further illustrated in Section 6. If Si is a method call (MCall), VCi+1 represents
the property Q (calculated through WP) the method postcondition ti must
verify. If all the VCs are verified, then the program does not breach the social
network privacy policy.

(define VCi::bool

(let ((ri::bool (precondition-Si prestate-vars))
(ti::bool (postcondition-Si prestate-vars poststate-vars)))

(and ri (implication ti VCi+1))))

VC =
i=N∧
i=1

VCi

6 Running Example

We present an example of a Java program that is verified against a social network
privacy policy. The program plugs into a social-network site in which users are
allowed to add content to the network and transmit this content to a number of
other users. The program is slated for running on a smart mobile device such as
a smartphone, and has a number of components for creating a content, accepting
the intended recipient, and transmitting content to a specified number of users.
The code of the program is implemented by function main below. Lines 1 and 2

Poporo: A Formal Methods Tool 15

create two social-network users ow and pe respectively. Line 3 creates a picture
rc (a raw content). Line 4 uploads the picture rc to the content page of user ow
so that he becomes the owner of the picture. In Line 5, ow transmits the picture
rc to user pe.

public class RunningExample {

public void main(){

1 int ow = create_content();

2 int pe = create_content();

3 int rc = create_rc();

4 upload_rc(ow,rc);

5 transmit_rc(ow,rc,pe);

}

}

We want to check the main external program against a user defined policy stating
that the user pe to whom ow transmits the picture rc is a colleague of ow that
is not a superior. The user policy is encoded in Yices as shown below. VCs are
generated for the WP (main,Q) as described in Section 5, where Q is the user
defined policy2, for which Yices answers “sat”.

(implication

(jmlrel-is-member visible (mk-tuple rc pe))

(jmlset-is-member (jmlset-diff (jmlrel-apply colleagues ow)

(jmlrel-apply superior ow) pe)))

7 Related Work

The Mobius infrastructure [3], put forth by G. Barthe and al., targets the ver-
ification of embedded frameworks that can run third party applications, which
are checked against a privacy policy modeling platform. Mobius builds upon
Foundational Proof Carrying Code [1]. It generates VCs directly from the un-
derlying operational semantics so that proof-obligations are more complicated
to generate. The Poporo approach based on weakest-precondition calculus sim-
plifies proofs as all Matelas operations have been proven to satisfy the system
invariants within the B Model beforehand.

IBM’s Enterprise Privacy Authorization Language (EPAL) [2] and the OASIS
eXtensible Access Control Markup Language (XACML) [13] are definition lan-
guages for privacy policies. These formats of policy specification raise problems
in the context of SNS as they are too restrictive, requiring the specification of
rules relating each user to each content and they do not provide the flexibility
for specifying multiple generalizable policies.

In [14], N. Sadeh and al. present several frameworks to deal with privacy
concerns when using location aware services. These frameworks rely on various
anonymization techniques. As these techniques primarily rely on altering the
content the user is sharing, they are not suitable as a generalized approach
towards policy definition.

2 The full output produced by Poporo is available from http://poporo.uma.pt/-

~ncatano/Projects/wespfm/Poporo/poporo.php

16 N. Cataño, S. Hanvey, and C. Rueda

8 Conclusion

Poporo is an effective tool for identifying possible breaches that might occur
when an untested external application is plugged into a social-networking site.
Poporo has been continuously refined to become more efficient, e.g. most
recursive definitions for functions in Yices were made non-recursive. This im-
proved the time taken by Poporo for verifying external applications. A descrip-
tion of the average processing times for standard processes can be found at
http://poporo.uma.pt/~ncatano/Projects/wespfm/Poporo.html.

Poporo accepts plug-in source code that uses a subset of Java as defined in the
OCaml VCGen. Future extensions will include Java loops. Extending Poporo to
provide support to JML libraries (e.g. for sets) at the user level would allow for
the tool to check adherence to a privacy policies defined on-the-fly as opposed
to pre-existing policies alone.

References

1. Appel, A.W.: Foundational proof-carrying code. In: LCS (2001)
2. Backes, M., Bagga, W., Karjoth, G., Schunter, M.: Efficient Comparison of En-

terprise Privacy Policies. IBM Research, Zurich Research Laboratory (September
2003)

3. Barthe, G., Crégut, P., Grégoire, B., Jensen, T., Pichardie, D.: The MOBIUS Proof
Carrying Code Infrastructure. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de
Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp. 1–24. Springer, Heidelberg
(2008)

4. Breunesse, C., Cataño, N., Huisman, M., Jacobs, B.: Formal methods for smart
cards: An experience report. Science of Computer Programming 55(1-3), 53–80
(2005)

5. Cataño, N., Rueda, C.: Matelas: A Predicate Calculus Common Formal Definition
for Social Networking. In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R.,
Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 259–272. Springer, Heidelberg
(2010)

6. Cataño, N., Rueda, C., Hanvey, S.: The Poporo tool (2011),
http://-poporo.uma.pt/~ncatano/Projects/wespfm/Poporo/poporo.php

7. Cataño, N., Rueda, C., Hanvey, S.: Verification of jml generic types with yices. In:
CCC (2011)

8. Cataño, N., Wahls, T., Rueda, C., Rivera, V., Yu, D.: Translating B machines to
JML specifications. In: SAC-SVT (to appear, 2012)

9. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Inc. (October 1976)
10. Duterte, B., de Moura, L.: The Yices SMT solver. Technical report, Computer

Science Laboratory, SRI International (2006)
11. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball,

T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

12. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for Java. ACM SIGSOFT 31(3), 1–38 (2006)

13. Moses, T.: eXtensible Access Control Markup Language (XACML) Version 2.0.
OASIS (2005)

14. Sadeh, N., Gandon, F.: Semantic web technologies to reconcile privacy and context
awareness. Journal of Web Semantics 1 (2004)

http://-poporo.uma.pt/~ncatano/Projects/wespfm/Poporo/poporo.php

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 17–33, 2012.
© Springer-Verlag Berlin Heidelberg 2012

DroidSense: A Mobile Tool to Analyze Software
Development Processes by Measuring Team Proximity

Luis Corral, Alberto Sillitti, Giancarlo Succi,
Juri Strumpflohner, and Jelena Vlasenko

Free University of Bozen-Bolzano
Piazza Domenicani 3

39100 Bolzano-Bozen, Italy
luis.corral@stud-inf.unibz.it, {alberto.sillitti,

giancarlo.succi,juri.strumpflohner,jelena.vlasenko}@unibz.it

Abstract. Understanding the dynamics of a software development process is of
paramount importance for managers to identify the most important patterns, to
predict potential quality and productivity issues, and to plan and implement cor-
rective actions. Currently, major techniques and tools in this area specialize on
acquiring and analyzing data using software metrics, leaving unaddressed the
issue of modeling the “physical” activities that developers do. In this paper, we
present DroidSense, a non-invasive tool that runs on Android-based mobile
phones and collects data about developers involvement in Agile software de-
velopment activities, e.g. Pair Programming, daily stand-ups, or planning game,
by measuring their proximity to computers and also other developers. Droid-
Sense collects data automatically via Bluetooth signal created by other phones,
personal computers, and other devices. We explain detailed design and imple-
mentation of the tool. Eventually, to show a possible application of DroidSense
we present the results of a case study.

Keywords: Mobile, Bluetooth, Proximity Measurement, Process Analysis, Pair
Programming.

1 Introduction

Despite years of research in Software Engineering, the specific actions that people
undertake when developing software are often unknown. Understanding the dynamics
of a software development process is of paramount importance for managers to
identify the most relevant patterns, to predict potential quality and productivity issues,
and to plan and implement corrective actions. The job of a software engineer is to
deliver high-quality software products at the agreed cost and schedule. For this purpose
“he needs to plan his work, do it according to this plan, and strive to produce the
highest possible quality” [1]. Project managers, on the other side, need to oversee and
control the development process, negotiate with customers, and adjust budget and
resources accordingly. To accomplish a successful and continuously improved
development process, it is necessary to count on efficient and reliable techniques and
tools that collect data and reconstruct the underlying process. Currently, there are

18 L. Corral et al.

techniques and tools that gather and analyze data using various approaches, such as
software metrics. In this case, the quality of the collected data is of paramount
importance for the resulting conclusions. For this purpose, the data can be collected in
an automated fashion using non-invasive measurement tools [2]. This also avoids the
“context-switch” problem [3], allowing engineers to focus on their actual work without
imposing additional procedures related to the process analysis.

However, this leaves unaddressed the issue of modeling the “physical” activities
that developers do. In novel software development processes, such as Agile Methods,
developers move a lot “physically.” They attend daily stand-up meeting, move to work
in pairs, interact with an on-site customer, etc. Collecting such information is of high
importance because it allows to gather essential information to complement the one
coming from software metrics. For instance, it may be of extreme interest to determine
whether developers introduce less defects while working in pairs, after meeting a
customer or a senior developer.

In this paper, we present DroidSense: a non-invasive tool that runs on Android-
based mobile phones and collects data about developers involvement in “physical”
software development activities (e.g. Pair Programming, daily stand-ups, or planning
game) by measuring their proximity to computers, various hardware devices, and also
other developers. DroidSense collects data automatically via Bluetooth signal created
by other phones, personal computers, and other devices. We explain in detail the design
and implementation of the tool. The usage of DroidSense contributes to the problem of
collecting data reliably and non-invasively during physical activities undertaken by
software developers. This kind of data can be used to reconstruct and improve a
software development process. To evidence possible applications of DroidSense, we
present results of a case study.

The rest of this paper is organized as follows: in Section 2 we present background
on software goals and software measurements focusing on Agile software development
process. In Section 3 we identify related work. In Section 4 we discuss technologies
required for proximity analysis and our approach to reproduce a software development
process through proximity measurements using Bluetooth and Android. In Section 5
we describe the detailed design of DroidSense. In Section 6 we present a case study. In
Section 7 we discuss the obtained results. Then, in Section 8 we identify limitations
and discuss future work. Eventually, in Section 9 we draw some conclusions.

2 Measuring Software Development Processes

Measurement activities should be carefully planned in order to get useful and valid
results. Thus, before measuring it is necessary to specify the goals that need to be
achieved. Then, the identified goals should be decomposed into suitable metrics that
allow to achieve these goals. Eventually, after completing the previous steps, the data
collection process can be started. The goal-question-metric approach [4] is essential for
identification of entities and attributes that are planned to be measured.

Software development comprises different stakeholders that are interested in
diverse kinds of perspectives of the process [5]. Managers are interested in the
variables like cost, productivity, product quality, and effectiveness of methodologies
and tools in order to define costs, build teams of appropriate sizes, and compare a
variety of products against each other. On the other side, developers are interested in
product and process quality measures to evaluate a project's status and continuously
improve the development process.

 DroidSense: A Mobile Tool to Analyze Software Development Processes 19

It is expected from software metrics to deliver relevant information on development
processes and products. Along with the general software process and the final outcome,
each task should be seen as a sub-activity that yields an intermediate product that can
be measured, analyzed, and also improved [6]. Software metrics should be calculated
using data provided by a robust collection plan. A defective collection effort may
produce faulty metrics that lead to erroneous results. Therefore, data collection
processes and tools should be carefully designed and deployed. One approach to assure
validity and objectivity of data collection tasks is to execute them without personal bias
of an operator [7]. An automatic data collection effort approach helps building a
trustworthy measurement system that is less prone to inconsistencies typical for
individuals and human-operated measurement instruments.

Examples of tools for non-invasive and automated data collection and analysis
coming from software development activities are PROM [8] and Hackystat [9]. These
tools allow silent data collection mechanism on developer’s performance (i.e.,
programs used, modified classes, methods, etc.) and permit aggregation of different
data sources to compute other metrics. Hence, automated data collection tools help to
reduce the complexity related to the technological aspects of metrics collection and
facilitate data acquisition without affecting the productivity of a software developers.
However, these works also have limitations analyzing the software process itself,
especially with regard to automated detection of interaction among participants.

3 Related Work

The idea of measuring proximity is not totally new. Many approaches involving in-
door proximity detection use Radio Frequency Identification (RFID) systems that
generally consist of two components: so-called tags that are allocated to or carried by
individuals and a specialized RFID tag reader that senses for such tags in its proximity.
A previous work [10] describes the realization of such a system where authors use
RFID tags in a hospital environment, tagging patients, personnel, and medical
equipment for data collection and analysis. Given the short-range nature of RFID tag
signals, the reader can assume to be in near proximity by purely detecting a given tag.

More sophisticated approach for proximity detection with wireless protocols
exploits the so-called “path loss” that is defined as the loss of power of a radio
frequency (RF) signal propagating through space. It is expressed in dB or dBm as an
abbreviation for the power ratio in decibels of the measured power of the signal
referenced to one milliwatt. The path loss depends on the distance between the
transmitting and receiving antennas and the line of sight between both of them.

Our work aims at a much less invasive approach that does not require prior setup as
needed in RFID systems (i.e., tagging of people). Instead, the objective is to reuse
existing tools. Bluetooth fulfills all of the mentioned requirements. It is a widespread
technology available on most of today’s portable devices such as mobile phones,
notebooks, and headsets. It has a suitable maximum wireless range, being larger than
infrared or RFID chipsets, but smaller than WiFi, perfectly suitable for information
processing of a device's immediate surroundings.

With a different research approach, the main goal of our work is to find mechanisms
that allow to infer a person's interaction with respect to other people or devices. The
analysis reported on this work converged to studying the Bluetooth protocol and its
possibilities for proximity measurement on the Android operating system. This
proximity data may be studied against the possibility of acquiring interesting

20 L. Corral et al.

information regarding the software development process. Furthermore, data
collection process based on proximity analysis of Bluetooth signals is fully automated,
requiring no additional effort or intervention from software engineers, which improves
the data quality, guarantees its objectiveness and avoids the “context-switch” problem
mentioned in [3]. The proposed mechanism based on proximity data detects when
developers work alone and when they do Pair Programming and with whom. Pair
Programming is a technique when two developers work together on the same task
using one computer and one keyboard. Many advantages of this technique have been
identified: [11, 12, 13, 14, 15, 16, 17].

It has been found that the developers working in pairs detect defects already when
typing and that the code written by pairs is significantly shorter than the code written
by developers working alone. Eventually, developers working in pairs constantly
exchange knowledge and are also more satisfied with their work. Still, also negative
aspects of this technique were detected. In [14] authors analyzed four software projects.
It has been found that Pair Programming does not provide extensive quality benefits
and does not result in consistently superior productivity compared to Solo
programming. In [18] it has been identified that Pair Programming decreases
productivity but also increases code quality.

4 Implementation Approach and Required Technologies

To provide an adequate environment for the automated collection of proximity
information, it is necessary to furnish an application that facilitates a mobile data
sampling approach, and communication with a central component responsible for
receiving, storing and analyzing the data. To solve this, cellphones offer a natural
mobile platform; and a server for data storing and analysis is sufficient.

As explained in Section 3, Bluetooth allows to measure proximity signals based on
signal strength. This specification for short-range wireless communication is widely
available on current mobile phones. Bluetooth has been designed for low-power
consumption, a high level of security, and robustness against interference, making it
suitable for small devices with reduced battery capabilities.

Bluetooth is defined by a protocol stack, that consist of a hardware part and a
software part. By design, it requires two initialization phases before a connection
between devices can be established: First, an initial inquiry followed by a scan phase.
The inquiry phase is needed to detect discoverable Bluetooth devices in the sender's
neighborhood [19]. Then, after a successful device discovery, a service discovery is
carried out to retrieve information about the exposed services and their attributes [20].
After successfully completing these two operations, the Bluetooth devices are paired
and then ready to collaborate.

To measure proximity using Bluetooth, we can take advantage of the device
discovery features, completing it with the detection of several parameters that the
protocol broadcasts. In particular, one of these parameters, called RSSI (Receive Signal
Strength Indication), provides strength values measured in dB for power control
purposes [21]. Nonetheless, a related value called Inquiry Result with RSSI is
additionally retrieved during a device discovery scan. In such a case, since performing
scanning only does not implies connection to a device yet, Inquiry Result monitors the
received power level and infers an approximation to the RSSI value. Such
approximation can be interpreted as a measurement of the distance between the
reference device and the sensed one, making it suitable for proximity analysis.

 DroidSense: A Mobile Tool to Analyze Software Development Processes 21

In order to deploy this strategy, we need to count on an operative environment that
supports the management of the Bluetooth stack and the associated parameters. The
Bluetooth API introduced in Android OS version 2.0 contains the parameters and
methods to write applications for Bluetooth usage and management [22], including
methods for requesting Bluetooth activation or and initiating discovery, and supporting
the retrieval of the selected Inquiry Result with RSSI.

As a development platform, Android’s layered architecture includes a Linux Kernel
as an abstraction layer between the hardware and the rest of the software stack, a
Runtime layer, Libraries that provide the capabilities delivered to the developers, an
Application Framework written in Java that consists of open APIs used by the core
applications, and User Applications written in Java, that are end-user features [23]. In
particular, the open approach of the Application Framework and the User Application
layers makes Android as the platform of choice to develop a tool to address the
requirements of proximity analysis using Bluetooth.

5 DroidSense Tool

5.1 Software System

The result of the conducted research is a system for the automated collection of data
related to the software process by using proximity measurement. The system is
composed of a set of tools grouped in a mobile Android client application, and a
central server component (Figure 1). The DroidSense client is the point of interaction
of the end user with the system, responsible for the data collection, while the server the
responsible for receiving, storing, and analyzing the data. Data can be retrieved and
visualized using a set of APIs provided by Google.

Fig. 1. System architecture

The client application presents all the Bluetooth devices detected in the
surroundings with device discovery. Data is retrieved from Bluetooth hardware and
processed through the proper APIs. After processing and storing, data is accessed
exclusively through the DroidSense Content Provider that has been implemented
according to Google's guidelines. This allows to easily abstract the data from the rest of
the application logic by exposing content URIs that can be used by DroidSense's own
user interface, as well as by potential future extensions to access the data. The main
application logic resides in the “Core” component which contains the object model and
controller classes responsible for managing the collection and persisting of the
discovered devices and RSSI values.

22 L. Corral et al.

The core contains as well the logic for the automated detection of sessions. These
components have been developed by using a test-driven development methodology,
aiming for a high degree of test coverage. The according Data Access Object (DAO)
layer abstracts the data access, potentially allowing to attach another database in the
case of a DroidSense desktop application. The DroidSense services are Android
services responsible for initiating the data collection process or data upload. They don't
contain any major logic, but rather invoke according operations on the “Core”. Finally,
the Bluetooth Discovery Action directly attaches to the Android Bluetooth API,
performing the device discovery and RSSI retrieval (Figure 2).

To guarantee an accurate measurement, the user should use the client application to
calibrate his device on the first use of the application. Calibration consists in placing
the phone for a specified time interval at an indicated distance from the Bluetooth
adapter of the scanned device. During the process, the average of the obtained values is
taken. Based on that average and a constant value, the offset used to determine the
RSSI values is calculated.

Fig. 2. Client architecture

Bluetooth devices are sensed out, detected and processed in separate entries. Each
entry of the device contains the collected proximity raw data, and the time stamp of the
discovery (Figure 3). These values are the primitives that will be used throughout the

Fig. 3. Device detail showing proximity values

 DroidSense: A Mobile Tool to Analyze Software Development Processes 23

system to evaluate proximity and evaluate time investment for the user. These
primitives are subject to an additional evaluation that, based on threshold values,
classifies the signal in ranges called “aside”, “near”, and “far”. This taxonomy is
utilized further, for the evaluation and categorization of the collected data.

To allow the automated evaluation of the collected proximity information, it is
necessary to classify the found devices using predefined tags, associated manually by
the user through a DroidSense Tagging Dialog.

- My device: Devices that the user owns or is actively using such as his own
notebook or personal computer used at work;

- Team member: Any other device whose owner is part of the team the user is
working in;

- Work: Devices whose owners are also co-located, but that do not work in the same
team.

Taking advantage of the device classification, a client view allows to retrieve a list of
aggregated sessions evaluated on the transmitted proximity data. These results show
the total amount of Solo Programming or Pair Programming sessions. By entering the
detail of a session, the involved participants are being shown too.

A "Solo Programming” session is where the user is sitting in front of his own
computer workstation. For this session to be detected successfully, the retrieved values
from the user's workstation need to be in the range of the so-called “aside” proximity,
and the device must be of type “Computer”, and it must be tagged as “Work” and “My
Device” (Figure 4). A “Pair Programming” session can be detected when the scanning
device detects two devices in “aside” proximity, a computer tagged as “My Device”
and “Work” and a mobile device tagged as “Team Member”.

Fig. 4. List of calculated sessions

According to Bluetooth's architecture, DroidSense is able to detect those devices
that have been explicitly set to be discoverable by their respective owners. DroidSense
primarily acts as a scanner, sensing in fixed time intervals for devices (both
DroidSense users or other devices with an active Bluetooth signal) in its range and
recording all of the results. At the same time, it may also have the role of being
scanned by another DroidSense device.

In Table 1 we present a list of the most relevant values calculated and recorded by
DroidSense:

24 L. Corral et al.

Table 1. Values recorded and stored by DroidSense

Value Description
Bluetooth MAC address A unique 48 bit address assigned by the Bluetooth adapter

manufacturer.
Display Name User-defined display name, usually the phone model or hostname

for computers.
Device Class Class of device record containing a major service class, major

device class, and minor device class; this helps to categorize, for
example, as “Computer” or “Phone”.

RSSI value The received signal strength indicator that is being received by
executing an inquiry with RSSI request. This value is used for
estimating the distance of the scanned device.

Discovery Timestamp Each discovered Bluetooth device may have a series of RSSI
values associated that have been retrieved during several
discovery operations. For the purpose of determining the detection
time, DroidSense associates a time stamp with each RSSI record

Completing the system architecture, the DroidSense server is in charge of storing

and analyzing the collected values by all of the DroidSense Android clients. It has been
implemented on top of J2EE and by using the Spring Application framework. For the
web front-end, the Spring Web MVC framework has been used, in conjunction with its
JSP view resolver engine and jQuery.

Fig. 5. Server architecture

DroidSense client and server operate relational databases, managed by SQLite and
MySQL, respectively, to store the data collected by different clients. The schema of
both databases is similar, with slight differences to suit other internal processes and
support metric calculations in the server side. The data between the client and server
is exchanged over the HTTP protocol. To transmit such data in a structured form,
XML-RPC has been used. XML-RPC is a remote procedure call protocol that uses
XML to encode the procedure call and HTTP as transport mechanism.

5.2 Data Visualizations

Data visualization reports in DroidSense are the primary mean to present the
information gathered by Bluetooth devices; an accurate, concise data delivery

 DroidSense: A Mobile Tool to Analyze Software Development Processes 25

represents an enormous help for the correct analysis and interpretation of the software
development process. For this purpose a web front-end has been created on the server
allowing to specify a set of filter criteria based on which the data are retrieved from the
database. The visualization is done by using jQuery and the Google Visualization API.
The visualizations that DroidSense currently offers are:

- Present devices: Lists all of the devices that have been detected during the
specified day as well as their associated tags (Figure 6).

Fig. 6. Visualization: Present devices

- Sessions: Displays the result of an automated analysis of the proximity data
against potential patterns. Currently, DroidSense is able to automatically identify
Solo Programming and Pair Programming sessions. This analysis is based on the
proximity classification done by DroidSense, incorporating only “aside” values
and discriminating other nearby data to avoid any possibility of noise. (Figure 7).

Fig. 7. Visualization: Sessions

- Scatterplot: Shows the actual values collected by the mobile client throughout a
day. The view allows to set filters to just show certain devices and provides a basic
zoom functionality to only show the values within a defined time interval (Figure
8).

26 L. Corral et al.

Fig. 8. Visualization:Scatterplot of the collected proximity values

- RSSI value distribution: Shows the distribution of the collected proximity values
by highlighting the percentage of values indicating “aside”, “near”, and “far”
proximity (Figure 9).

Fig. 9. Visualization: Distribution of the collected proximity values

- Amount values: Shows the percentage of the collected proximity values of a
device in proportion to the total number of values collected for a day (Figure 10).

Fig. 10. Visualization: Amount of proximity values

- Proximity distribution: Compares the number of collected values of all the devices.
Then, for each of them, it highlights the percentage of “aside”, “near”, and “far”
proximity values (Figure 11).

 DroidSense: A Mobile Tool to Analyze Software Development Processes 27

Fig. 11. Visualization: Proximity distribution

- Session timeline: Presents the detected sessions for longer periods and visualizes
them in a straightforward way that allows for the recognition of patterns in their
distribution (Figure 12).

Fig. 12. Visualization: Session timeline for a week

The information provided by visualizations deliver administrative reports such as
the number of active users, the way they collaborate, what kind of interactions exist
among themselves, and what is the organization of a regular working day (e.g.,
schedule, activities, meetings, etc.). In Table 2 we present some potential scenarios in
which the information coming from DroidSense may provide useful information that
can be directly applied to improve software development process:

Table 2. Measurement scenarios for DroidSense

Scenario Description
Personal process The software developer is able to understand how much time he

dedicates to actual work in front of his computer versus being around,
discussing with team members or work mates. Such analysis may be
used in the context of a personal software process (PSP).

Historical
information

DroidSense data may be used by the developer to help him remember
what activities he performed a given day. The visualizations show the
proximity to given people/devices at a given time, making it easy to
know whether he was in front of his work computer or together with
people in a meeting, or even not present in the office at all. This may be
especially useful for filling in time sheets or billing hours

Team process Data may be aggregated so that project managers are able to identify the
degree of communication among team members. This may be helpful in
determining the necessity of stand-up meetings or to lower the amount
of them in case it exceeds the actual time spent doing work at each
person’s computer.

Detection of
Teammates

The user is able to identify which of his teammates is currently in the
office by looking at the DroidSense discovered devices.

28 L. Corral et al.

These measurements contain very valuable information, since it comes directly from
developers and may be applied on a constant basis for:

- Delivering an overview of the activities and resources used by the team, outline
the time spent by the team on individual and team tasks;

- Identifying work patterns and correlating them with labor productivity (e.g.,
detecting the impact of Pair Programming sessions on quality and productivity or
calculating the amount of time spent on meetings), and

- Providing the means to facilitate teamwork among developers (e.g., by physically
reallocating team members identified as frequent collaborators).

- Giving an accurate way to understand the time spent on productive activities.
- Reporting hourly time sheets, calculating the time used on team activities such as

Pair Programming sessions, meetings, coaching, etc.

5.3 Privacy

DroidSense ensures data transparency and user privacy implementing the strategy
when all data are visible to a user before being processed. The user has the full control
over such data. For example, the user can manually delete any collected data and
choose to deactivate the data collection mechanism. Moreover, the data transmission
process is also manually initiated by the user.

The Android client tool uses notifications for announcing important events or
signaling ongoing operations. All of the performed activities can be seen by the user
and hence he has the possibility to stop them. No operation executed by the system is
performed hidden from the user.

In the offered visualization, the scope of the available information is bounded only
to personal data. In this way, the visualization offers the users a powerful tool to
understand their own performance, assuring privacy.

6 Application of DroidSense

In order to test the performance of DroidSense we have conducted 3-months long case
study in a real working environment. The obtained results evidence that the usage of
such tool could be highly beneficial for improving software measurement process.

6.1 Research Design

We have conducted a case study in order to test the performance of DroidSense and
also to verify the quality of the collected data. The goal of this study is to show that the
proposed tool can be used in a real working environment and that the collected data are
suitable for software process analysis and reconstruction.

The first release version of DroidSense has been tested by 11 employes of a large
Italian IT Company operating in the e-government sector. Due to confidentiality
reasons, the company prefers to remain anonymous and it will be referenced as “the
Company.” The study covers a time frame of 3 months, from January to March, 2011,
and the participation in this study was on the voluntary basis.

Before the beginning of the experiment we provided all the participants with
Android-based mobile phones with installed and configured DroidSense software
version. Then, we upgraded existing workstations with Bluetooth USB dongles.

 DroidSense: A Mobile Tool to Analyze Software Development Processes 29

Eventually, we have given a brief introductory lecture in order to explain the
participants main functionality of DroidSense and how we are going to use the results.
We demonstrated how to use the software and asked the participants to carry the issued
mobile phones with activated DroidSense all the time with them during their working
day. The participants were informed that they were free to stop using the application at
any moment.

During the experiment we have collected more than 240,000 proximity values that
represent activities of the 11 participants. We have used these data in order to
understand if they are valid for reconstructing the whole or at least parts of the
software development process. In the next section, we present the obtained results.

6.2 Results

The collected data represent a large time interval. To simplify its understanding, we
first provide an example of the collected data with its possible interpretation. The data
in the example cover a time frame of 4 hours from 7 to 11 am.

The plot (Figure 13) is generated automatically by the DroidSense server. It
visualizes the collected proximity values gathered from the device of User_1, and
represents user's interaction with its own machine and a machine of User_2.

It shows only the proximity values for the two following devices (other values have
been removed for the sake of clearness):
- PC_1: the machine of user User_1 (cross points), the user of reference.
- PC_2: the machine of user User_2 (dot points), a teammate of User_1.

Fig. 13. Raw Values collected at the Company

These data can be interpreted in the following way: User_1 starts to work at about
07:45 am. First, User_1 works alone at his machine PC_1. User_1 does not approach
the machine of his teammate PC_2 as it is always located at a distance of 5 to 7 meters.
At around 09:00, we notice a change in collected proximity values: the distance
between User_1 and the machines PC_1 and PC_2 inverts; this could be interpreted in
the following way: User_1 left his machine PC_1 and approached the machine PC_2
of his teammate User_2. User_1 spent about 1 hour at PC_2, then returned to his
working place.

30 L. Corral et al.

The DroidSense server analyzes these data and recognizes different working
sessions: Solo Programming and Pair Programming (Figure 14). It stores the following
values for each session:

− Session type: Solo Programming/Pair Programming
− Timestamp: Start time/End time of the session
− Participant: Machine that is used by an observed user (his own machine or

another machine)

Fig. 14. Calculated sessions at the Company

Figure 14 proves that the DroidSense server properly recognizes the Solo
Programming and Pair Programming sessions, reflecting the obtained proximity values,
shown in Figure 13.

In the end of the study we presented the data to the Company representatives and
discussed our results. Data obtained from DroidSense gave new insights into the
behavior of the team, considering that outcome data was useful for understanding the
interaction process among the team members. The proposed visualization method was
acknowledged as suitable for the further analysis on the importance of distribution of
people in a collaborative team.

Clearly, this is only one case study. In a long-term strategy and involving more
participants, data delivered by DroidSense could certainly be used for deeper purposes
on process analysis and process mapping, and also for validation of the quality of the
collected data.

7 Discussion

The results presented in the experimental setup at the company show that DroidSense
is capable to automatically collect proximity information in a non-invasive, fully
transparent approach. Also, by analyzing the collected values, it is able to infer
working sessions. Results have been verified for correctness by asking the participants
to confirm the information delivered by the system.

The implementation of the system, and feedback from user organizations
confirmed that DroidSense is of high value to constantly and accurately collect data
from developers with the purpose of process analysis. Additionally, its data aggregation
and visualizations mechanisms deliver a powerful interpretation of the collected data,
that allows the user organization to understand and improve its development and
operative processes on several areas, namely:

 DroidSense: A Mobile Tool to Analyze Software Development Processes 31

- Process Analysis: Providing a deeper insight of the organization’s software
development process, based on factual data, collected in a high-frequency basis.

- Process Mapping: Delivering the necessary data to understand the development
process, based on individual contributor’s behaviors and activities (e.g., personal
work, Pair Programming sessions, etc).

- Team Collaboration: Helping to streamline and improve organization’s internal
processes, based on patterns drawn by collaboration among individual contributors.

- Team Management: Identifying a realistic composition of teams, based on typical
grouping of contributors. This is useful to provide the necessary means to facilitate
such collaboration.

- Automated Data Collection: Automating parts of the data collection effort: data
collection activities previously conducted manually, now are executed
automatically, and can be tracked using visualizations.

- Job Automation: Automating common tasks. For example, by using certain
visualization users have accurate information to voucher hourly work. It is
possible as well, to automatically check the attendance in a meeting.

It is important to highlight that the success of the data collection effort relies on how
users trust the system. It was explained to developers how DroidSense operates, how
data privacy is ensured at all times, and how data aggregations and visualizations are
properly bounded to protect user’s personal data.

8 Limitations and Future Work

We interviewed the participants of our case study in order to understand their feelings
about the experiment and DroidSense. We have discovered that there is a certain need
for an enhancement of the tool. It has been detected that DroidSense has a very high
battery consumption rate. For a fully charged mobile phone with DroidSense activated
the battery needs to be recharged every 10 hours. As a possible solution we plan to
move most of the client side computations on the collected data to the server for
reducing the work load of the mobile phone. According to the Android Bluetooth Open
Source Documentation [24], some future releases may include Bluetooth Low Energy
which might potentially optimize Bluetooth's impact on battery consumption.

Another potential problem is the human factor: when DroidSense detects a new
device, it is the user who has to tag this devices. There is a always a possibility that
instead of tagging the device as a teammate's device, he/she can mistakenly tag it as his
device or vice versa. This could lead to an incorrect detection of Solo Programming or
Pair Programming sessions.

Eventually, we found that when the users keep their phones on a table results in a
higher number and better quality of RSSI values than when they carry them in their
pockets. This issue could lead to a wrong conclusion in the proximity estimation. As a
possible solution, we plan to implement recommender algorithms on the collected data,
allowing DroidSense to automate the tagging of the detected devices based on the data
collected from the other users.

9 Conclusions

In software quality management it is vitally important to understand the dynamics of
the development process to identify opportunities for optimization as well as to avoid

32 L. Corral et al.

potential problems in quality and productivity. Collecting and analyzing data about the
process is an initial yet important step to understand process deficiencies and areas for
optimization. The quality of the collected data is of the highest importance for drawing
correct conclusions. Therefore, it is necessary to carefully design and implement a data
collection strategies that accurately mirror what happens in the measured processes.

This paper presents a new approach to collect data about software development
process by leveraging proximity measures via Bluetooth. The results of the study
conducted with 11 software developers at a large IT company demonstrate practical
usage of DroidSense and validate obtained results of a process analysis. Thus, the
collected data provide valuable insights into the developers' behavior during their daily
work by automatically detecting their involvement in Solo Programming or Pair
Programming sessions.

Using Android Operating System and Bluetooth network technologies allows to
deploy DroidSense with no additional costs or setup activities other than those
associated with mobile devices. Eventually, data collection process is organized in a
non-invasive and automated way, so that the developers are not distracted from their
daily activities and only need to carry their mobile devices with DroidSense activated.

References

1. Humphrey, W.S.: Introduction to the personal software process. Addison-Wesley (1997)
2. Sillitti, A., Succi, G., De Panfilis, S.: Managing Non-Invasive Measurement Tools. Journal

of Systems Architecture 52(11), 676–683 (2006)
3. Johnson, P.M., Kou, H., Agustin, J.M., Chan, C., Moore, C.A., Miglani, J., Zhen, S.,

Doane, W.E.: Beyond the Personal Software Process: Metrics collection and analysis for
the differently disciplined. In: Proceedings of the 2003 International Conference on Soft-
ware Engineering, Portland, Oregon, USA, pp. 641–646 (2003)

4. Basili, R.V., Caldiera, G., Rombach, H.D.: The Goal Question Metric Approach (1994)
5. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Measures for mobile users: an architecture.

Journal of Systems Architecture 50(7), 393–405 (2004)
6. Humphrey, W.S.: Characterizing the software process: a maturity framework. IEEE Soft-

ware 5(2), 73–79 (1988)
7. Fenton, N.E., Pfeeger, S.L.: Software metrics: a rigorous & practical approach, 2nd edn.

PWS Publishing Co., Boston (1997)
8. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Collecting, Integrating and Analyzing Soft-

ware Metrics and Personal Software Process Data. In: EUROMICRO Conference (2003)
9. Johnson, P.M.: You can’t even ask them to push a button: Toward ubiquitous, developer-

centric, empirical software engineering. The NSF Workshop for New Visions for Software
Design and Productivity: Research and Applications, Nashville, TN, USA (2001)

10. Sanders, D., Mukhi, S., Laskowski, M., Khan, M., Podaima, B., McLeod, R.D.: A Net-
work-Enabled Platform for Reducing Hospital Emergency Department Waiting Times Us-
ing an RFID Proximity Location System. In: IEEE 19th International Conference on Sys-
tems Engineering, pp. 538–543 (2008)

11. Cockburn, A., Williams, L.: The costs and benefits of pair programming. In: Succi, G.,
Marchesi, M. (eds.) Extreme Programming Examined. The XP Series, pp. 223–243. Addi-
son-Wesley Longman Publishing Co. (2001)

12. Succi, G., Pedrycz, W., Marchesi, M., Williams, L.: Preliminary analysis of the effects of
pair programming on job satisfaction. In: Proceedings of XP 2002 (2002)

 DroidSense: A Mobile Tool to Analyze Software Development Processes 33

13. Heiberg, S., Puus, U., Salumaa, P., Seeba, A.: Pair-Programming Effect on Developers
Productivity. In: Marchesi, M., Succi, G. (eds.) XP 2003. LNCS, vol. 2675, pp. 215–224.
Springer, Heidelberg (2003)

14. Hulkko, H., Abrahamsson, P.: A multiple case study on the impact of pair programming on
product quality. In: Proceedings of the 27th International Conference on Software Engi-
neering, pp. 495–504 (2005)

15. Lui, K.M., Chan, K.C.: Pair programming productivity: Novice-novice vs. expert-expert.
International Journal on Human-Computer Studies 64(9), 915–925 (2006)

16. Braught, G., Eby, L.M., Wahls, T.: The effects of pair-programming on individual pro-
gramming skill. In: Proceedings of SIGCSE 2008, vol. 40 (1), pp. 200–204 (2008)

17. Vanhanen, J., Korpi, H.: Experiences of Using Pair Programming in an Agile Project. In:
Proceedings of the 40th Annual International Conference on System Sciences (2007)

18. Canfora, G., Cimitile, A., Garcia, F., Piattini, M., Visaggio, C.A.: Evaluating performances
of pair designing in industry. Journal of Systems and Software 80(8), 1317–1327 (2007)

19. Bluetooth SIG. Profles Overview, Bluetooth Special Interest Group,
http://www.bluetooth.com/English/Technology/Works/Pages/
Profles_Overview.aspx (retrieved on April 14, 2010)

20. Scott, D., Sharp, R., Madhavapeddy, A., Upton, E.: Using Visual Tags to Bypass Blu-
etooth Device Discovery. ACM SIGMOBILE Mobile Computing and Communications
Review 9, 41–53 (2005)

21. Bluetooth SIG. Core Specification Version 4.0 - Architecture - Radio, Bluetooth Special
Interest Group,
http://www.bluetooth.com/English/Technology/Works/Pages/
Architecture__Radio.aspx (retrieved on April 14, 2010)

22. Android Developers. Android Application Fundamentals,
http://developer.android.com/guide/topics/fundamentals.html
(retrieved August 20, 2011)

23. Android Documentation. What is Android?
http://developer.android.com/guide/basics/
what-is-android.html (retrieved August 20, 2011)

24. Google Code: Open Bluetooth Low Energy SDK for Android,
http://code.google.com/p/broadcom-ble/ (retrieved on January 10, 2011)

TimeSquare:

Treat Your Models with Logical Time�

Julien DeAntoni and Frédéric Mallet

Aoste Team-Project
Université Nice Sophia Antipolis

I3S - UMR CNRS 7271, INRIA Sophia Antipolis Méditerranée
2004 route des Lucioles - BP 93

06902 Sophia Antipolis Cedex, France
{julien.deantoni,frederic.mallet}@inria.fr

http://www-sop.inria.fr/aoste/

Abstract. TimeSquare is an Eclipse and model-based environment for
the specification, analysis and verification of causal and temporal con-
straints. It implements the MARTE Time Model and its specification
language, the Clock Constraint Specification Language (ccsl). Both
MARTE and ccsl heavily rely on logical time, made popular by its use in
distributed systems and synchronous languages. Logical Time provides
a relaxed form of time that is functional, elastic (can be abstracted or
refined) and multiform. TimeSquare is based on the latest model-driven
technology so that more than 60% of its code is automatically gener-
ated. It provides an XText-based editor of constraints, a polychronous
clock calculus engine able to process a partial order conforming to the
set of constraints and it supports several simulation policies. It has been
devised to be connected to several back-ends developed as new plugins
to produce timing diagrams, animate uml models, or execute Java code
amongst others.

Keywords: Embedded systems, Polychronous specifications, Logical
Time, Model-Driven Engineering.

1 Introduction

Models abstract away the irrelevant aspects of a system to focus on what is im-
portant for a given purpose. Model-driven engineering provides tools and tech-
niques to deal with models. These models are nowadays mainly structural but
can often be refined with a behavioral description. The behavioral description is
usually a specific implementation of externally defined behavioral requirements.
To fully benefit from models right from the requirements we propose to specify
behavioral requirements as logical time constraints directly linked to the model.

� This work has been partially supported by the RT-SIMEX ANR
project (http://www.rtsimex.org) and the PRESTO ARTEMIS project
(http://www.presto-embedded.eu/).

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 34–41, 2012.
� Springer-Verlag Berlin Heidelberg 2012

http://www-sop.inria.fr/aoste/
http://www.rtsimex.org
http://www.presto-embedded.eu/

TimeSquare 35

This is done by using the Time Model from marte conjointly with its formal
companion language ccsl (Clock Constraint Specification Language [1]). This
approach is tooled by the timesquare framework, which is a set of Eclipse plugins
that implement the model-based declarative language ccsl and provide support
for the analysis and execution of ccsl specifications.

In this paper, we overview the main functionality of timesquare. Our tool,
which is itself based on a model-driven approach, allows for the enrichment of
models with formal annotations by using semantic models. ccsl concrete syntax
is based on Xtext (http://www.eclipse.org/Xtext/) so that the user directly
constructs an emfmodel while typing. This model can be parsed easily to provide
useful information like the clock tree graph that represents the polychronous
specification in a graphical way [6]. Keeping the specification as a model enables
a better integration with a model-driven approach because the model, the formal
language and the solver are in the same technological space. The main benefits
is the ability to link specification as well as results directly to the models. The
feedback to the user is then greatly improved compared with transformational
techniques, which translate a model to an existing formal language. The output
of timesquare is also an emfmodel that defines a specific partial order of events,
which represents the trace of the simulation. It is important to notice that a single
simulation provides a partial order and consequently captures several possible
executions (several total orders). It is possible to subscribe to specific events
during the construction of this trace by using the extension point mechanism
provided by Eclipse. User-defined or domain-specific backends can be deployed
by registering to selected events.

The architecture of timesquare is shown in Figure 1. Straight arrows indicate
the model flows, whereas dashed arrows represent the links between two models.
The trace model is directly linked to ccsl model elements, which in turns are
linked to other (emf) model elements.

The paper organization follows this architecture. Section 2, after a brief overview
of ccsl semantics, describes the ccsl concrete syntax and tooling. Section 3
explains how the solver produces the trace model according to the simulation
policy. Finally, before concluding, section 3.1 details the back-end mechanism
and details some of the main existing back-ends.

2 CCSL Specifications

2.1 Semantics

Contrary to most real-time constraint tools, we use a polychronous time model
that allows the duration and time values to be expressed relatively to other
clocks, and not only relatively to a common chronometric clock counting physical
time. For instance, a duration can be expressed relative to the clock cycle of a
given processor core or bus. In many current electronic devices, the clock cycle
varies according to the battery level or some other optimization criteria. This
kind of time is named logical time and has been used in distributed systems [5,4]

http://www.eclipse.org/Xtext/

36 J. DeAntoni and F. Mallet

Fig. 1. Big Picture of the timesquare Architecture

for its ability to represent (untimed) causalities but also in synchronous language
where it has prooved to be meaningful from requirements to implementations [2].

In marte, the Time Model relies on logical time. In this context, a clock is
a totally ordered set of instants. A time structure is a set of clocks C and a set
of relations on instants. I denotes the union of all instants of all clocks within
a given time structure. We consider two kinds of relations: causal and temporal
ones. The basic causal relation over I is causality/dependency, i ∈ I, j ∈ I, i � j
means i causes j or j depends on i, i.e., if j occurs then i also occurs. The
three basic temporal relations over I are precedence (≺), coincidence (≡), and
exclusion (#). For any instants i and j in a time structure, i ≺ j means that
the only acceptable execution traces are those where i occurs strictly before
(precedes) j. i ≡ j imposes instants i and j to be coincident, i.e., they must
always occur at the same execution step, both or none . i # j forbids the
coincidence of the two instants, i.e., they cannot occur at the same execution
step. Note that, some consistency rules must be enforced between causal and
temporal relations. i � j can be refined either as i ≺ j or i ≡ j, but j can never
precede i. Furthermore, we do not assume a global notion of time. Temporality
is given by the precedence binary relation, which is partial, asymmetric (i.e.,
antisymmetric and irreflexive) and transitive. The coincidence binary relation
is an equivalence relation on instants, i.e., reflexive, symmetric and transitive.
Specifying a full time structure using only instant relations is not realistic since
clocks are usually infinite sets of instants. Thus, ccsl defines a set of relations
and expressions between clocks that apply to infinitely many instant relations.
Please refer to [1] to learn about ccsl semantics.

2.2 Implementation

The clock constraint specification language (ccsl) complements structural mod-
els by formally defining a set of kernel clock constraints, which apply to infinitely

TimeSquare 37

many instant relations. The operational semantics of ccsl constraints is defined
in a technical report [1]. Some recurrent constraints from a specific domain can
be complex. To ease the application of such complex constraints, libraries of
user-defined constraints can be built by composing existing constraints. This
language and the library mechanism is defined in a metamodel accessible here:
http://timesquare.inria.fr/resources/metamodel. This metamodel can be
instantiated from two different classes depending on whether the user wants to
create a ccsl specification or a library. Because using the ecore reflective edi-
tor provided by emf is not suitable for any user, we created a textual concrete
syntax using XText. XText automatically generates a textual editor for a given
emf metamodel and allows for customizing the concrete syntax. Then, when
using the textual editor, the corresponding emf model is automatically built.
Amongst other things, direct links to external emf models are supported. In the
ccsl editor, we use such links to map ccsl clocks to emf model elements such
as the uml model elements whose execution is triggered by the ccsl clocks. Such
direct links are important to help the user in the specification of constraints and
the creation of a coherent specification (completion, detection of errors on the
fly, tips, etc). Two kinds of model can be imported in a ccsl specification: ex-
ternal libraries and emf-based models. If a library is imported, the Xtext editor
automatically proposes, as a completion mechanism, the relations and the ex-
pressions from the library. It also checks the parameters provided and proposes
some changes if a problem is detected. Such customization features are very
helpful to build the specification. Figure 2 illustrates a simple ccsl specification
being edited with the XText constraint editor.

Fig. 2. A simple ccsl specification in TimeSquare

If an emf model is imported in a ccsl specification, all the elements from the
model that own a “name” property will be accessible and possibly constrained.
Figure 3 shows a part of the previous ccsl specification where an import from a

http://timesquare.inria.fr/resources/metamodel

38 J. DeAntoni and F. Mallet

uml model is done. It allows enriching the Clock declaration with the structural
element from the uml model (here subject to completion). The meaning of the
link can also be specified: i.e.,, the clock ticks can represent the starting/finishing
of a behavior, the sending/reception of a message. . .

Fig. 3. Link between a model (uml here) and a ccsl specification, helped by comple-
tion

3 Simulation

The formal operational semantics of ccsl constraints makes ccsl specifications
executable. A run of a time system is an infinite sequence of steps (if no deadlocks
are found by the solver). During a step, a Boolean decision diagram represents
the set of acceptable sets of clocks that can tick. If the ccsl specification con-
tains assertion(s), then the Boolean decision diagram also represents the state
of the assertion (violated or not). Assertions never change the clocks that can
tick. It has been used in the RT-Simex project to check if a specific execution
trace is correct with regards to a ccsl specification [3]. If the ccsl specification
is deterministic, there exists a single set; if not, a simulation policy is used to
choose amongst the possible solutions. timesquare offers several simulation poli-
cies (Random, As soon as possible, etc). It is possible for a user to add a new
simulation policy by using a specific timesquare extension point. The choice of
the simulation policy, the number of steps to compute as well as the choices
about debugging information are integrated in the existing eclipse configuration
mechanism so that a run or a debug (step by step) of a ccsl specification is
accessible as in other languages like java.

3.1 Analysis Features and Back-Ends

timesquare can be used in various model-driven approaches. Depending on the
domain, users are interested in different feedback or analysis of the results. To
allow an easy integration of timesquare in various domains, we implemented a
back-end manager, which enables the easy addition of user-defined back-ends.

TimeSquare 39

The back-end manager receives the status of the clock (it ticks or not) at each
simulation step. It also receives the status of relations (causality and coincidence)
as well as the status of the assertions (violated or not). By using a specific
extension point, a developer can create a back-end that subscribes to some of
these events. The registered back-end are then notified when the events they
subscribed to occur during the simulation step. We present in the remainder of
this section the three main backends: the VCD diagram creator, the papyrus
animator and the code executor.

VCD Diagram Creator: VCD is a format defined as part of IEEE1364 and is
mainly used in the electronic design domain. It is very close to the uml timing
diagram and represents the evolution of each event (Clock) vs. time evolution,
represented horizontally. It classically represents a total order of events. Because
timesquare provides a trace which is only partially ordered, the classical VCD
features have been extended to graphically represent such a partial order. On
Figure 4, a simple VCD is represented. It results from the simulation of the ccsl
specification represented on Figure 2 where the c0 clock is hidden to simplify
the reading. We can notice the optional presence of two kinds of links between
the ticks of the clocks: blue arrows, which represent causalities (loose synchro-
nizations) and red links, which represent coincidences (strong synchronizations).
The result is that the partial order is valid as long as the red links are not broken
and the blue arrows never go back in time.

Fig. 4. The extended VCD diagram back-end

Papyrus Diagram Animator: When a ccsl specification is linked to a uml
model, the model is often represented graphically in a uml tool. Papyrus
(http://www.eclipse.com/Papyrus) is an open source uml tool integrated
with eclipse emf and gmf. The papyrus animator provides a graphical anima-
tion of the uml diagrams during the simulation. The kind of graphical animation
depends on the “meaning” of the event linked to the uml model (send, reveive,
start, etc). This animation provides a very convenient feedback to the user who
wants to understand what happens in the model according to the constraints
he wrote. Additionally to graphical animation, the Papyrus animator adds com-
ments to the uml model elements that represent their activation trace, keeping
this way a trace of the simulation directly in the uml model. The Papyrus
animator is shown conjointly (and synchronized with) the VCD diagram on
Figure 5.

http://www.eclipse.com/Papyrus

40 J. DeAntoni and F. Mallet

Fig. 5. The animation of a UML model and the associated timing diagram in time-
square

Code Executor: When a software is prototyped, it can be convenient to run some
piece of code in order to provide application specific feedback. For instance we
developped a simple digital filter by using uml composite structure in Papyrus
and we added constraints on it representing its synchronizations (so that the
diagram can be animated conjointly with the VCD diagram). To test our al-
gorithm and ease the debugging of the synchronization in the model, we used
the JAVA code executor. It allows the declaration of object and the launch of
specific method of these objects when a desired event occurs (tick of a clock,
etc). It can be used, as in the digital filter, to represent the data manipulation
of the filter and to graphically represent the internal state of the memory. It can
also be used to pop-up information windows when an assertion is violated, etc.

Clock Graph: To allow static analysis as, for instance the one described in
[6], timesquare is able to build statically a clock graph that depicts the syn-
chronous/asynchronous relations between clocks. This specific mechanism is not
a back-end per se because it does not depend on the dynamics of the model
but it is a very useful feature to deal with polychronous specifications. A simple
ccsl specification, the corresponding and synchronized emf model in the out-
line and the associated clock graph are represented on Figure 6. The vertices are
the clocks and the edges are the clock relationships: sub denotes a subclocking
and therefore a synchronous relationship, whereas < denotes a precedence by
nature asynchronous. When two clocks are synchronous, they are merged into
a single vertex (as c1 == c2). This graph shows that the specification is fully
synchronous: c0 is the super clock of both c1 and c3. c1 in turns is a super
clock of c4 and is synchronous with c2. It also shows the precedence relationship
between c1 and c3.

TimeSquare 41

Fig. 6. Clock Graph extracted from a CCSL specification

4 Conclusions

This paper briefly presents timesquare. It is a model-based tool well integrated
in the Model Driven Development process. Its goal is to ease the use of the formal
declarative language ccsl and provides analysis support. Additionally, we wanted
to develop it by using model driven technology; in one hand it has helped in the
development of our tool and on the other hand it put the tool in the same tech-
nological space than the model under development. The main benefit is the direct
feedback offered to the users during the simulation. A video demonstration is avail-
able from the timesquare website (in French): http://timesquare.inria.fr/.
Finally, while not presented here, it also supports a form of runtime analysis
through the generation of VHDL or Esterel observers.

References

1. André, C.: Syntax and semantics of the clock constraint specification language (ccsl).
Research Report 6925, INRIA (May 2009)

2. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., De Simone,
R.: The synchronous languages twelve years later. Proceedings of the IEEE, 64–83
(2003)

3. Deantoni, J., Mallet, F., Thomas, F., Reydet, G., Babau, J.-P., Mraidha, C., Gau-
thier, L., Rioux, L., Sordon, N.: RT-simex: retro-analysis of execution traces. In:
In, K.J., Sullivan, G.-C. (eds.) SIGSOFT FSE, Santa Fe, États-Unis, pp. 377–378
(2010) ISBN 978-1-60558-791-2

4. Fidge, C.: Logical time in distributed computing systems. Computer 24(8), 28–33
(2002)

5. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM 21(7), 558–565 (1978)

6. Yu, H., Talpin, J.-P., Besnard, L., Gautier, T., Mallet, F., André, C., de Simone,
R.: Polychronous analysis of timing constraints in UML MARTE. In: IEEE Int. W.
on Model-Based Engineering for Real-Time Embedded Systems Design, Parador of
Carmona, Spain, pp. 145–151 (2010)

http://timesquare.inria.fr/

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 42–57, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Quality Evaluation of Object-Oriented and Standard
Mutation Operators Applied to C# Programs

Anna Derezińska and Marcin Rudnik

Institute of Computer Science, Warsaw University of Technology,
Nowowiejska 15/19, 00-665 Warsaw, Poland

A.Derezinska@ii.pw.edu.pl

Abstract. Mutation testing is a kind of fault injection approach that can be used
to generate tests or to assess the quality of test sets. For object-oriented
languages, like C#, both object-oriented and standard (traditional) mutation
operators should be applied. The methods that can contribute to reducing the
number of applied operators and lowering the costs of mutation testing were
experimentally investigated. We extended the CREAM mutation tool to support
selective testing, sampling and clustering of mutants, and combining code
coverage with mutation testing. We propose an approach to quality evaluation
and present experimental results of mutation operators applied to C# programs.

Keywords: mutation testing, object-oriented mutation operators, C#.

1 Introduction

Mutation testing is a fault-injection technique that can be used for assessment of test
set quality and support for test case generation [1]. Once a defined fault is introduced
in a program, a mutated program (mutant) is created. A program modification is
determined by a mutation operator. Within this paper we deal with first order
mutation, i.e. one mutation operator is applied in one place. If a mutant behavior
differs from that of the original program while running against a test case, the mutant
is said to be killed by this test. The test is effective at killing the mutant. A quality of a
test set is a mutation score MS calculated as the ratio between the number of killed
mutants over all the generated but not equivalent mutants. An equivalent mutant has
the same behavior as the original program and therefore cannot be killed by any test.

Mutation testing process is counted as a very cost-demanding testing activity. The
cost is determined by the number of generated mutants, the number of tests involved
in the process and their ability to test mutants, the number of equivalent mutants and
their recognizing, a kind of a mutation tool support, etc.

Important factors of mutation testing are mutation operators that reflect possible
faults made by programmers and therefore should deal with different constructs in
programming languages. In C# programs, as for any general purpose language,
standard (i.e. structural, intra-class or statement-level) operators can be applied, e.g.
dealing with logical, arithmetical, relational operators like those defined in Fortran or
C. Moreover, object-oriented (or inter-class) operators should also be used. Operators

 Quality Evaluation of Object-Oriented and Standard Mutation Operators 43

of object-oriented features were primarily defined for the Java language [2-4].
Applicability of those operators was studied for C# programs, and analogous
operators of the same or similar scope were proposed [5]. Its set was extended with
new operators, for example dealing with exception handling, or devoted to the
programming constructs specific to C# but not present in Java, like delegates or
properties [6]. Empirical evaluation of object-oriented and other advanced operators
in C# programs was conducted on above 13 thousands of mutants [6-11].

However, a quality of object-oriented mutations, both in Java or C#, remains still
an open question in the relation to the cost estimation. A problem is, which object-
oriented operators we really need, and which of them can be omitted without loosing
the ability to qualify a given test set. Should we reduce the cost by selecting operators,
random sampling of mutants, or other reduction techniques? These issues were
studied for structural languages [12-15] and partially for Java programs [16-18].

According to our experience [6-11], object-oriented operators generate fewer
mutants than the standard ones, and are more dependant on the concerned programs.
Therefore we extended the CREAM mutation testing tool for C# programs with the
facility to carry out experiments into cost reduction techniques. They cover operator
selecting, mutant random sampling and clustering [1, 19-22]. Using the tool some
experiments on fist-order mutation in C# programs were conducted. They showed that
relations between different cost techniques are not necessarily the same as for the
standard mutation in C [15]. The main contributions of the paper are:

- Evolution of the mutation testing tool for C# programs, and incorporated
processes of an empirical and statistical analysis of mutation results.

- New quality metrics for assessment of a tradeoff between mutation score
accuracy and mutation costs in terms of number of mutants and number of tests.

- The first experiments on the selective mutation of C# programs performed and
analyzed for 18 object-oriented (OO in short) and 8 standard mutation operators.

- The first general estimation of results for experiments on mutant sampling and
clustering for object-oriented mutation.

The paper is organized as follows: Section 2 summarizes briefly the main features of
the CREAM mutation testing tool. In Section 3 we give details about selected
investigation processes incorporated in the tool and the quality metrics. Section 4
describes an experimental set-up and results of the conducted experiments. Finally,
the remaining sections present related work and conclusions.

2 CREAM Mutation Testing Tool for C# Programs

CREAM (CREAtor of Mutants) was the first mutation testing tool supporting object-
oriented mutation operators for C# programs [7,8,23]. It is a parser-based tool. A fault
defined by a mutation operator is introduced into a parser output after analysis of a C#
project. Then the C# source code is reconstructed from the modified syntax tree. It
can be compiled, so creating a mutated program that can be run against a test set.

Currently, the next, third version of the tool is ready to use. It was extended to
support more mutation operators, to keep-up with new versions of the C# language
and cooperate with new tools in order to work on emerging real-word applications. It
can create mutants for the whole code or only for the code covered by the test cases, if

44 A. Derezińska and M. Rudnik

required. Moreover, it was equipped with a wizard aimed at evaluation of detailed
statistics and supporting experimental studies on mutation operator assessment. The
most important functionalities of the current version of CREAM are as follows:

1. It supports parser-based generation of first order mutants of C# programs with 18
object-oriented operators and 8 selected standard operators, listed in Tab. 1.

2. It runs mutants against test suites and evaluates test results. Unit tests can be
compatible with the NUnit tool [24] or with MSTest (another tool built in
Microsoft Visual Studio).

3. It optionally takes into account code coverage results while creating mutants. The
coverage data can be delivered by NCover [25] (.xml files), Microsoft Visual
Studio (.coverage files) or Tester [9] (.txt files).

4. It optionally stores mutants in the local or remote SVN repository [26] in order to
reduce an occupied disk space [9].

5. It automates analysis of generated mutants according to cost reduction techniques:
mutation operator selection, mutant sampling and clustering.

6. It evaluates statistics of many experiments, and enables presentation of output data
in cooperation with a Data Viewer tool.

Table 1. Mutation operators: standard and object-oriented supported in CREAM v.3

No Type Abbreviation Name
1 Standard ABS Absolute Value Insertion
2 Standard AOR Arithmetic Operator Replacement (+, -, *, /, %)
3 Standard ASR Assignment Operator Replacement (=, +=, -=, /=, *=)
4 Standard LCR Logical Connector Replacement (&&, ||)
5 Standard LOR Logical Operator Replacement (&, |, ^)
6 Standard ROR Relational Operator Replacement (<, <=, >, >=, ==, !=)

7 Standard UOI Unary Operator Insertion (+, -, !, ~)
8 Standard UOR Unary Operator Replacement (++, --)

1 Object-oriented DMC Delegated Method Change

2 Object-oriented EHR Exception Handler Removal

3 Object-oriented EOA Reference Assignment and Content Assignment Replacement

4 Object-oriented EOC Reference Comparison and Content Comparison Replacement

5 Object-oriented EXS Exception Swallowing

6 Object-oriented IHD Hiding Variable Deletion

7 Object-oriented IHI Hiding Variable Insertion

8 Object-oriented IOD Overriding Method Deletion

9 Object-oriented IOK Overriding Method Substitution

10 Object-oriented IOP Overriding Method Calling Position Change

11 Object-oriented IPC Explicit call of a Parent’s Constructor Deletion

12 Object-oriented ISK Base Keyword Deletion

13 Object-oriented JID Ember Variable Initialization deletion

14 Object-oriented JTD This Keyword Deletion

15 Object-oriented OAO Argument Order Change

16 Object-oriented OMR Overloading Method Contents Change

17 Object-oriented PRM Property Replacement with Member Field

18 Object-oriented PRV Reference Assignment with other Compatible Type

 Quality Evaluation of Object-Oriented and Standard Mutation Operators 45

3 Investigation Process of Mutation Operators

In this section we explain the basic setup of an experimental process. The empirical
evaluation of mutant features can be considered as several experimental scenarios:
three relating to selective mutation, six to mutant sampling, and one to mutant
clustering. Mutant sampling refers to random selection of a given % of all mutants or
of mutants uniformly distributed for all classes, files, methods, operators or
namespaces. The examination of mutation results is done independently for object-
oriented operators and standard ones. For the brevity reasons we only describe the
general experimental scenario of all types of experiments and the details of selective
mutation. The details of sampling and clustering scenarios are omitted [27].

3.1 Generic Scenario of Experiments

A) In the first step, common for all experiments, all mutants of a program under test
are generated for a given set of operators. In this case all standard and all object-
oriented operators available in CREAM v.3 were used independently (Tab. 1). This
original set of all mutants is called MAll.

B) Secondly, all mutants are run against a whole set of tests TAll considered as a
basic, complete set of tests taken into account in the experiments for a given program.
Results of all mutants and all tests are stored in a file and can be examined during
different experiments, or viewed by a user. Taking into account these results a
mutation score can be calculated. Further we refer to this value as to the “original”
mutation score MSorig. = MS (MAll, TAll).

C) Next, the subsequent steps (C1-C4) and D are repeated many times in
accordance to different parameters specific to each kind of experiments (e.g. numbers
of mutation operators, number of kinds of mutant sampling, etc.).

C1) A subset of mutants MC1 ⊆ MAll is selected according to given criteria of the
experiment. This set determines the maximal mutation score generated using all tests
MSC1max= MS (MC1, TAll).

C2) A list L of subsets of TAll is created. Usage of any test set in L against MC1

gives the mutation score equal to MSC1max. But each test set of L is minimal, i.e. all
tests are necessary. All test sets of this kind can be generated using prime implicant of
a monotonous Boolean function [27]. The number of all test sets is finite but can be
high. Therefore the cardinality of the list L is limited, |L| ≤ TestSetLimit. It is fixed as
a parameter of an experiment that restricts its complexity. |X| is cardinality of set X.

C3) For a set MC3 ⊆ MAll, mutation scores MSC3j are calculated using consecutively
each minimal test set in L: MSC3j= MS(MC3,Tj),where Tj ⊆ TAll, Tj ∈L, j=1..|L|. The
considered mutant set MC3 depends on the type of the experiment (Sec. 3.2).

C4) The average mutation score MSavg = (∑j=1..|L| MSC3j)/|L| is calculated for all
minimal test sets in L. The average number of test sets in L is NTavg = (∑j=1..|L| |Tj|)/|L|.

D) In mutant sampling, calculation of average statistics for many random runs of
steps C1-C4 for a given experiment parameter. Basing on data from C4 new average
values MSavg, NTavg are calculated over those repeated runs for this parameter.

E) Calculation of final statistics and normalization of results (see Sec. 3.3).

46 A. Derezińska and M. Rudnik

3.2 Experimental Flows on Selective Mutation

In selective mutation, only a subset of mutation operators is used. Considering
different policies of operator selection, and determination of minimal test sets and sets
of mutants used for evaluation of a final mutation score, three kinds of experiments
are supported in CREAM.

Experiment 1. Mutation operators that generate the biggest number of mutants are
excluded. Therefore, omitting the fewer number of operators the biggest number of
mutants could be not used.

In these experiment, steps C1-C4 are repeated for different numbers of excluded
operators (i = 0..k, where k is a number of all operators, in this case 8 for standard and
18 for object-oriented ones). In general, for a given value of i it could be the binomial
coefficient C(k,i) of various subsets including i operators. But we exclude i operators
generating the biggest number of mutants. In almost all cases there was exactly one
such subset with i operators, otherwise one such subset was randomly selected.

In step C1, MC1 is the subset of MAll containing the mutants generated by the
operators not excluded in the current experiment run.

In step C3, the mutation scores are calculated for all mutants, i.e. MC3 = MAll.
Step D is not used.

Experiment 2. One mutation operator is excluded. The selection is performed for
each mutation operator separately. In this way all mutation operators are examined in
accordance to their influence on the mutation score result.

The number of repetition of steps C1-C4 is equal to the number of considered
mutation operators. Step D is not used.

In step C1, we determine MC1 as the subset of MAll containing the mutants
generated by the operators not excluded in the current experiment run.

In step C3, MC3 = MAll.

Experiment 3. One mutation operator is excluded, similarly as in the second type of
the selective experiment (steps C1 and C2 are the same). But, in this case the mutation
scores in step C3 are calculated for the set of mutants MC3 generated by the operator
excluded in the current experiment run (MC1 ∪ MC3 = MAll). Step D is not used.

The motivation of this experiment is assessment of an operator quality. A “good”
operator is an operator for which no mutants are generated by other operators and are
killed by the same tests. A “poor” operator can be counted as a redundant one, tests
that kill other mutants can also kill mutants generated by this operator.

3.3 Quality Metrics

The cost of mutation testing process is influenced by different factors, mainly the cost
of mutant generation, of running mutants against tests, dealing with equivalent
mutants and analyzing test results. Reduction of the cost can cause decrease of
mutation score accuracy. Therefore, we proposed metrics to assess a tradeoff
concerning the loss of MS accuracy on the one hand and profits of using a smaller

 Quality Evaluation of Object-Oriented and Standard Mutation Operators 47

number of mutants and smaller number of tests on the other hand. It assists in
comparing results for different programs and different experiments.

The quality metric EQ takes into account three variables:

SMS - reflects a loss of Mutation Score adequacy (MS) in an experiment,
ZT - approximates a profit of a cost decrease due to a reduced number of tests

required for killing mutants in an experiment,
ZM - assesses a profit of a cost decrease due to a reduced number of mutants

considered in an experiment.

These variables are calculated as given in Equations (1)-(3).
The first variable SMS is evaluated in a different way in accordance to the

experiment type. It is calculated as a ratio of the current average mutation score to the
original mutation score if we look for a possible smallest difference to MSorig.
Otherwise, if we are interested in the biggest difference, SMS is equal to 1 minus the
ratio mentioned in the previous case (Eq. 1). The average mutation score MSavg is
calculated for all minimal test sets in step C4 (or in D if applicable).

⎪⎩

⎪
⎨
⎧

−
=

)/(1

/

origavg

origavg

MS MSMS

MSMS
S

experiment selective rd3 and nd2in

clustering sampling, ,experiment selective st1in
(1)

Variable ZT is calculated as 1 minus a ratio of an average number of tests for a
current experiment divided by the number of all tests considered for a program, if the
divident is bigger than zero. Otherwise ZT is equal to zero (Eq. 2). The average
number of tests NTavg is defined in step C4 (or in D if used for many random cases).

⎩
⎨
⎧ −

=
0

|)|/(1 Allavg

T

TNT
Z

otherwise

 0 if >avgNT
 (2)

Value ZM is equal to 1 minus a ratio of a mutant number currently taken into account
in the experiment (|MC1| from step C1) to a maximal number of all mutants generated
for the program (in the set MAll), if the current mutant number is bigger than zero.
Otherwise ZM is set to zero (Eq. 3).

⎩
⎨
⎧ −

=
0

|)|/|(|1 1 AllC
M

MM
Z

otherwise

 0|| if 1 >CM (3)

Next, the variables obtained for different parameters of an experiment are normalized.
The normalization function NORM(x) represents a normalized value of variable x over
a set of its values X (Eq. 4).

NORM(x) = (x-MIN(X)) / (MAX(X)- MIN(X)), where x∈X (4)

In result, the normalized variable x will be distributed within the <0,1> interval and
can be further processed in an comparable way. The normalization is calculated for a
set of results determined by experiment parameters. For example, in the second
selective experiment on object-oriented operators the set of variables correspond to

48 A. Derezińska and M. Rudnik

exclusion of one selected operator. In this case cardinality of the set X equals the
number of operators (18).

The quality metric EQ is based on a weighted sum of three components (Eq. 5).

EQ(WMS, WT , WM) = NORM(WMS*NORM(SMS) + WT*NORM(ZT) + WM*NORM(ZM)) (5)

The weight coefficients WMS, WT, WM state for parameters of the analysis and are
determined according to the importance assigned to particular components of the
metric. The sum of coefficients must be equal to 1.

The whole metric is also normalized over the set of values calculated for different
parameters of an experiment, similarly as the variables.

4 Experiments

In this section we describe the subject programs and their results of mutation testing.
Outcomes of experiments on selective mutation are also discussed.

4.1 Investigated Programs

Objects of experiments were three, commonly used open-source programs. They were
selected to cover different types of complexity, application domain, and origin.

1. Enterprise Logging [http://entlib.codeplex.com] - a module from the “pattern &
practices” library developed by Microsoft. It is used for logging information about
code faults.

2. Castle [http://www.castleproject.org] - a project supporting development of
advanced applications in .NET. Four modules were used in experiments:
Castle.Core, Castle.DynamicProxy2, CastleMicroCernel and Castle.Windsor.

3. Mono Gendarme [http://www.mono-project.com/Gendarme] - a tool for inspection
of programs written in Mono and .NET environments. It looks for flaws not
detected by a compiler.

The following measures of the programs are summarized in Table 2.

1. Files - number of file modules with the source code included in a program.
2. Statements - number of statements in a program.
3. Lines - number of all lines in a project including comments.
4. Percent comment lines - % of lines with comments among all program lines.
5. Percent documentation lines - % of lines with documentation among all program

lines.
6. Class, Interfaces, Structs - number of all such items defined in a program.
7. Methods per Class - average number of methods per class (a ratio of the number of

all methods to the number of all defined classes, structs and interfaces).
8. Calls per method - average number of calls of other methods in a given method.
9. Statements per method - average number of statements in a method.
10. Maximum complexity - maximal number of conditional decisions in a method.
11. Average complexity - average number of conditional decisions in methods.
12. Depth of inheritance - maximal number of inheritance levels in a project.

 Quality Evaluation of Object-Oriented and Standard Mutation Operators 49

Table 2. Details of tested programs (measured with SourceMonitor [28] and Microsoft Visual
Studio)

No Measure 1.Enterprise Logging 2.Castle 3.Mono Gendarme

with tests without
tests

with tests without
tests

with
tests

without
tests

1 Files 662 497 533 403 291 170
2 Statements 33451 17427 20284 14001 21739 9715
3 Lines 87552 57885 54496 41288 51228 25692
4 % comment lines 8.1 9.1 13.7 13.8 18.9 21.9
5 % document. lines 19.2 29.0 11.4 14.6 9.9 19.5
6 Classes, Interfaces, 991 587 724 493 907 171
7 Methods per class 5.4 5.9 5.0 5.4 3.8 5.1
8 Calls per method 3.1 1.3 2.7 2.2 2.0 2.7
9 Statem. per method 3.3 2.3 3.2 2.9 3.7 7.9

10 Max. complexity 14 14 25 25 53 28
11 Average complex. 1.3 1.5 1.6 1.8 2.0 4.0
12 Depth of inherit. 6 6 4 4 10 3

4.2 Mutant Generation and Execution

The tested programs were distributed with unit tests. For two programs additional test
cases were prepared in order to increase their code coverage results (Table 3). The
first program has unit tests compatible to MSTest and its code coverage was evaluated
using functionality build in Microsoft Visual Studio. Remaining two programs have
unit tests for NUnit [24] and were examined with the NCover coverage tool [25].

Table 3. Code coverage results (measured with NCover [25] and Microsoft Visual Studio)

 1. Enterprise Logging 2. Castle 3. Mono Gendarme

MSTest tests NUnit tests NUnit tests

Number of original tests 1148 578 784
Number of additional tests 0 64 115
All test cases 1148 642 899

Line coverage [%] 82 77 87

If demanded, CREAM v3 can generate mutants for these code statements that were
covered by tests from a test suit under consideration, when the appropriate coverage
data are provided. According to our experiences, if MS was evaluated, it was useless
to mutate the code not covered by these tests. Just in case, all possible mutants of the
programs discussed in this paper were generated and run against tests. But none of
uncovered mutants was killed by any test. Therefore, as generated mutants (column
Gen in Table 4.) are only counted these mutants that are created by modification of
covered code lines. Only this sort of mutants is used further in the calculation of
mutation results. Based on the uncovered code we obtained 265 standard and 336
object-oriented mutants for Enterprise Logging, 448 and 367 for Castle and 392, 449
for MonoGardarme, accordingly. These uncovered mutants were discarded.

50 A. Derezińska and M. Rudnik

Table 4 presents mutation results for each standard and object-oriented operator
implemented in CREAM v3. The full names of the operators are given in Tab. 1.
Columns Kill include numbers of mutants killed using all tests defined in Tab. 2.

Table 4. Mutation results (mutants generated, killed, equivalent, and mutation score in [%])

Opera
tor

1. Enterprise Logging 2. Castle 3. Mono Gendarme
Gen Kill Eq MS Gen Kill Eq MS Gen Kill Eq MS

ABS 114 7 60 13% 102 9 60 23% 116 3 79 8%
AOR 328 322 - 99% 68 19 - 28% 88 67 - 76%
ASR 160 97 - 61% 98 43 - 44% 85 54 - 64%
LCR 34 27 - 79% 196 138 - 70% 417 270 - 65%
LOR 2 0 0 0% 2 0 0 0% 16 14 - 88%
ROR 220 141 - 64% 645 427 - 66% 900 575 - 64%
UOI 795 537 - 68% 1070 842 - 79% 2342 1920 - 83%
UOR 30 20 - 67% 198 133 - 67% 189 106 - 56%

Sum 1683 1151 60 71% 2379 1611 60 70% 4153 3009 79 74%

DMC 0 0 0 - 0 0 0 - 0 0 0 -
EHR 9 6 0 67% 8 3 4 75% 5 5 - 100%

EOA 22 0 21 0% 23 2 13 20% 7 2 1 33%
EOC 98 43 18 54% 494 209 119 56% 536 159 124 39%
EXS 22 1 10 8% 11 3 0 27% 3 0 1 0%
IHD 0 0 0 - 0 0 - - 0 0 0 -
IHI 1 0 0 0% 0 0 - - 0 0 0 -
IOD 21 20 - 95% 13 10 - 77% 10 9 - 90%
IOK 20 19 - 95% 13 9 - 69% 10 8 - 80%
IOP 20 7 11 78% 7 2 4 67% 34 22 - 65%
IPC 45 35 - 78% 39 31 - 79% 0 0 - -
ISK 51 32 - 63% 18 11 - 61% 30 30 - 100%

JID 80 32 24 57% 143 106 - 74% 155 135 - 87%
JTD 458 52 353 50% 48 38 3 84% 17 0 17 0%
OAO 164 115 - 70% 212 117 - 55% 142 66 - 46%
OMR 17 16 - 94% 54 50 - 93% 0 0 - -
PRM 17 11 1 69% 16 12 - 75% 15 10 - 67%
PRV 296 169 - 57% 109 98 - 90% 34 32 - 94%

Sum 1341 558 438 62% 1208 701 143 66% 998 478 143 56%

CREAM prevents in some cases, especially for OO operators, from creating of

equivalent mutants, but still many such mutants can be obtained. Therefore, some not
killed mutants were examined manually. First, a preliminary mutation indicator was
calculated for each operator and a program (i.e. the number of killed mutants divided be
the number of generated mutants). If the indicator was below 50% for an OO operator,
or below 40% for a standard one, mutants generated by this operator were examined,
whether they are equivalent or not. These thresholds were selected after the empirical
evaluation of data. In addition, we checked those mutants that were easily to be verified.

 Quality Evaluation of Object-Oriented and Standard Mutation Operators 51

Mutants examined of being equivalent are denoted in Table 4. In column Eq a number
of detected equivalent mutants is given (“-“ states for not examined mutants).

Finally, a mutation score (column MS) was evaluated, as a ratio of killed mutants
to generated but not equivalent mutants.

4.3 Experiments on Selective Mutation

The experiments were conducted according to assumptions given in Sec. 3, and for
the limit of minimal test sets TestSetLimit equal to 100. The required quality condition
is that a decrease of the mutation score accuracy is acceptable while there are
considerable benefits in the cost reduction in terms of the lowering of the mutant
number and the number of tests required for killing those mutants. The quality metrics
EQ given in tables (Tab. 5, 6) were calculated for the weight coefficients WMS, WT ,
WM equal to 0.6, 0.2, 0.2 accordingly, i.e. the mutation score accuracy amounts to
60% in the quality measure whereas efficiency factors to 40% (20% for the number of
mutants and 20% for the number of tests).

1st Experiment on Selective Mutation - Exclusion of the Most Popular Operators
The experiment investigates how many mutation operators that generate the biggest
number of mutants (and which of them) can be omitted. Selection of less than 8
standard, or less than 8 object-oriented operators to be excluded was unique in all
cases (comp. Sec. 3.2). In general, excluding mutation operators that generate the
biggest numbers of mutants results in the decrease of the mutation score even for one
operator (Table 5.), regardless standard or object-oriented operators were concerned.
In the first column a number of excluded operators is given. Columns MS1 include
average mutation scores (in %) calculated under these conditions.

Considering potential profits in a reduced number of mutants and tests, the quality
metric was calculated (EQ1). Selecting the quality value above 90% for object-
oriented operators, we obtained different sets of operators to be excluded. The
common result for all programs was elimination of two operators EOC and OAO.

In the case of the standard operators, the results for different programs are more
similar to each other than for object-oriented ones. A maximal quality value was
obtained for one or two excluded operators. Assuming a quality value about 90% the
common two operators to be excluded are UOI and ROR .

2nd Experiment on Selective Mutation - Exclusion of One Mutation Operator
In this experiment each time one mutation operator was omitted. Average mutation
scores obtained while omitting mutants generated by one of operators are given in
Tab. 6 (column MS2 in [%]). Omitting one mutation operator gives in many cases
similar results in comparison to all operators (row None, i.e. none operator omitted).

Quality measure EQ2 has value close to 100% when an operator attributes to the
MS (is a selective one), while values close to 0% when the operator could be omitted.
On the contrary to the previous experiment, we look for operators that should not be
excluded from the analysis, because it causes observable lowering of a mutation score
The following operators give EQ2 above 15% for at least one program and could stay:
7 OO operators PRV, OAO, JTD, JID, EOC, IPC, IOP, and 3 standard ones UOI,
ROR, LCR. It can be seen that the result partially contradicts the previous experiment.

52 A. Derezińska and M. Rudnik

Table 5. Average results for excluding the most popular mutation operators: mutation score
(MS1) and quality metric (EQ1)

 1. Enterprise Logging 2. Castle 3. Mono Gendarme

MS1 [%] EQ1 [%] MS1 [%] EQ1 [%] MS1 [%] EQ1 [%]
OO St OO St OO St OO St OO St OO St

0 62 71 86 91 66 70 71 84 56 74 87 61
1 57 65 100 100 56 65 86 93 45 67 100 99
2 48 55 91 94 52 63 92 100 34 59 89 100
3 43 48 85 89 51 58 100 97 24 33 70 57
4 39 24 94 60 45 37 91 75 20 24 65 39
5 38 22 99 59 41 28 91 65 18 20 56 32
6 35 13 96 48 35 24 78 61 12 8 33 2
7 33 0 94 0 30 0 67 0 9 7 25 0
8 33 98 29 66 9 25
9 25 74 25 56 4 5

10 23 64 24 53 3 0
11 9 2 17 34 0 0
12 9 3 15 26 0 0
13 7 0 8 4 0 0
14 0 0 7 0 0 0

3rd Experiment on Selective Mutation - Mutation Operator Quality
This experiment evaluates a quality of each implemented mutation operator. In this
case quality metric EQ3 of a low value (close to zero) denotes an operator that could
be omitted. The operator generates some mutants that are redundant (i.e. tests that kill
mutants of other operators are also able to kill those mutants). In the contrast to the
previous metric EQ2, this metric is less sensitive to the number of generated mutants.

However, it should be noted that this qualification does not take into account the
ability to generate equivalent mutants. For example ABS operator has EQ3 equal to
100% (is selective and generated necessary mutants), but also generated many
equivalent mutants that were distinguished and removed during the preliminary
analysis (Sec. 4.2). One of the following operators could be selected: standard ABS,
LCR, UOI, ROR, UOR for EQ3 > 25% and object-oriented EHR, EOC, EXS, OAO,
IPC, JTD, PRV for EQ3 > 50%. The obtained values are in many cases different for
various programs, which is observable especially for the object oriented operators.

Comparison of Experiment Results. The results based on the above experiments are
summarized in Table 7. Program identifiers and types of mutation operators (standard
or object-oriented) are denoted in the first column. Number of mutants, number of
tests and mutation scores calculated in four cases are compared. In the first, reference
case, mutants are generated for all considered operators and all tests are used
(columns All). Remaining results (columns Ex1, 2, 3) refer to cases decided on the
basis of the above experiments and their quality metrics. If we exclude the most
popular operators selected in experiment 1st, or use operators chosen in experiment 2nd,

 Quality Evaluation of Object-Oriented and Standard Mutation Operators 53

or finally select operators according to EQ3, then we would obtain less accurate
mutation score but also use fewer mutants and fewer tests, as given in columns Ex1-3,
accordingly. The tradeoff of the accuracy and efficiency is visible, but in general the
best results are in the last two cases (Ex2, Ex3), i.e. mutation scores close to the
maximal ones for the significantly lower numbers of mutants and tests.

Table 6. Results for omitting one mutation operator (MS and quality metrics in [%])

Omitted
operator

1. Enterprise Logging 2. Castle 3. Mono Gendarme
MS2 EQ2 EQ3 MS2 EQ2 EQ3 MS2 EQ2 EQ3

ABS 70.7 3 87 69.6 0 0 73.9 0 0.7
AOR 70.9 8 12 69.6 1 15 73.9 2 6
ASR 70.7 5 13 69.4 2 12 73.8 2 0.4
LCR 70.7 2 18 68.8 19 54 71.7 30 100
LOR 70.9 0 0 69.6 0 0 73.9 1 0
ROR 70.3 12 19 68.9 24 35 73.3 13 31
UOI 64.4 100 100 65.1 100 100 66.8 100 92
UOR 70.9 0 0 69.4 6 26 73.7 5 20
None 70.9 69.6 73.9

DMC 61.8 0 0 65.8 0 0 55.9 0 0
EHR 61.3 5 57 65.7 1 34 55.4 4 69
EOA 61.8 0 0 65.8 1 0.2 55.9 0 1
EOC 58.7 50 89 55.0 100 100 44.1 100 100
EXS 61.7 3 85 65.7 3 67 55.9 0 0
IHD 61.8 0 0 65.8 0 0 55.9 0 0
IHI 61.8 0 0 65.8 0 0 55.9 0 0
IOD 61.7 2 6 65.8 0 0 55.9 2 1
IOK 61.7 11 12 65.8 1 1.3 55.9 2 1
IOP 61.8 0 0 65.8 1 41 54.6 16 47
IPC 60.1 17 30 63.6 17 78 55.9 0 0
ISK 61.3 11 21 65.8 1 1.5 55.9 1 5
JID 61.3 15 19 65.1 14 23 53.2 32 33
JTD 60.0 31 49 65.5 5 13 55.9 0 0
OAO 52.1 100 100 63.8 26 41 51.3 41 68
OMR 60.9 10 41 64.9 11 25 55.9 0 0
PRM 61.8 6 2 65.6 3 20 55.8 3 15
PRV 56.6 71 58 65.1 24 33 53.7 15 51
None 61.8 65.8 55.9

4.4 Threats to Validity

Conclusion validity of the experiments is limited by a number of investigated
programs. Three programs were not small, quite representative and of different origin,
but may not reflect all programming tendencies in usage of new programming
concepts of the C# language. Therefore, for example, no mutants for the DMC
operator dealing with delegates were created, which is a specialized concept of C#.

54 A. Derezińska and M. Rudnik

Table 7. Mutation results and benefits for three experiments on mutation operator selection

Prog.
Oper.

Mutation Score [%] Number of mutants Number of tests

All Ex1 Ex2 Ex3 All Ex1 Ex2 Ex3 All Ex1 Ex2 Ex3

1 OO 61.8 42.5 57.1 59.7 903 363 710 711 1148 63 105 115
1 St 70.9 59.2 70.3 70.6 1623 578 1015 1103 1148 47 114 120
2 OO 65.8 52.0 61.6 62.4 1065 478 887 795 642 81 132 135
2 St 69.6 58.0 68.3 69.2 2316 403 1715 1950 642 60 124 143
3 OO 55.9 39.1 55.1 49.7 855 267 777 595 899 78 132 94
3 St 73.9 58.8 71.4 73.3 4074 643 3242 2987 899 157 273 319

Another factor influencing the reasoning behind the experiments is existence of
equivalent mutants. The manual analysis significantly lowered this threat, but it
cannot guarantee that all equivalent mutants were detected.

Construct validity concerns the quality metrics used for evaluation of experimental
results. Their interpretation is in accordance to weight coefficients subjectively
selected by the authors. However, they suggest only tendencies in usage of different
operators. The data calculated for other coefficients (0.8, 0.1, 0.1) gave analogous
results. The final results (Table 7.) are expressed in terms of strict measures, such as
mutation score, number of mutants or number of tests.

In order to minimize a threat to external validity, the programs used in experiments
were parts of big, commonly used projects. Though, all of them were open-source
projects and might have slightly different features than the commercial ones.

5 Related Work

Research on object-oriented mutation operators was conducted on Java and C#
programs. Previous experiments on object-oriented operators of C# [5-10] were
summarized in [11]. It concerned 29 object-oriented and specialized mutation
operators defined for C#, and indicated on the difficulty to generalize results of the
object-oriented operators. One operator (e.g. PNC, JID) can generate many mutants
for one program, but only few for another program.

Application of object-oriented mutation operators to Java was studied in series of
experiments [15-18, 22,29,30] with MuJava [31] that implements the most
comprehensive set of 28 object-oriented operators, and MuClipse [32] - the plug-in
for Eclipse adopted from MuJava.

An overview of cost reduction techniques, including selective mutation, mutant
sampling and clustering can be found in [1,19]. Selective mutation was studied for
structural languages [12-14], giving a recommendation of five standard operators in
[12] that were also applied in CREAM. Ten operators for C were selected in empirical
studies performed using the Proteum tool [13]. Comparison between two approaches:
operator-based mutant selection and random mutant selection did not confirm a
superiority of the first one [15], but this result only referred to standard operators.

Selectiveness of operators was also investigated for Java programs [16,17].
General conclusions were similar to those of C#. Object-oriented mutants are killed
by a lower number of tests than standard mutants, but a significant decrease in the

 Quality Evaluation of Object-Oriented and Standard Mutation Operators 55

number of mutation operators is no so visible as for standard operators. In [17] it was
recommended not to use OAC, PCI, and one of EAM, EMM operators, but those
operators were not selected for implementation in CREAM.

Apart from CREAM, only the ILMutator prototype implements 10 object-oriented
and C# specific mutation operators [10]. It introduces mutations into Intermediate
Language of .NET for programs originated from C#, hence is more time effective in
generating mutants than CREAM. Other mutation tools for C# like Nester [33] and
PexMutator [34], do not support any object-oriented operators.

A problem of code converge in relation to the ability of killing mutants was
addressed in the work of [35]. Uncovered mutants were manually identified as a type
of equivalent mutants, whereas CREAM can automatically decide not to generate an
uncovered mutant, if appropriate coverage data are provided. In experiments reported
in [32] sufficiently high statement coverage (80%) was an initial requirement, but did
not directly influence mutant generation. In the contrast to other tools PexMutator is
aimed at creating test cases in order to kill mutants. It extends the Pex tool that creates
tests in order to obtain the high code coverage.

6 Conclusions

The main lessons learned after investigation of three different open-source C#
projects are the following.

The simplest and most beneficial way of mutation cost reduction is introducing
mutation only to a covered code. Using tests that cover on average 82% of the code
75% of all mutants were generated giving no loss in the mutation score (MS)
accuracy. The conclusion is obvious, but it practically means that coverage and
mutation tools should be combined. In CREAM the mutants can be generated for the
whole code, or for the fragments covered by a given test set. It is especially important
for a project under development, when only parts of the code are currently examined.
Though, the cost will be not reduced if the code is covered in 100%.

The remaining results gave no explicit conclusion about the general superiority of
one applied cost reduction technique over the other ones. However, it was possible to
obtain a small decline of a mutation score (99% of MSorig for standard mutation and
93% for object-oriented) with a significant gain in lowering mutation costs: the
number of mutants (81% of standard mutants used, 74% OO mutants) and the number
of tests (22% for standard and 14% for OO). We proposed metrics to evaluate a
tradeoff between these factors. They could also be used to compare tradeoffs in other
mutant selection experiments and adjusted to higher order mutation [18].

In all investigated approaches to mutation operator selection and mutant sampling
the MS accuracy of object-oriented mutants was worse (from few to 10%) than the
corresponding accuracy of standard mutants. We stated that omitting a selected
mutation operator was more beneficial than excluding mutants generated by the most
popular operators (about 10% better MS). However, similarly to the previous studies
on the object-oriented mutation the detailed results depend on the programs under
concern. Especially programs using specialized programming constructs can give
different results (e.g. DMC - operator of delegates was not used in these programs).

The same approach to quality evolution was also applied to mutant sampling. The
best quality tradeoff was obtained when 35% of mutants where randomly selected for
each class giving about 85% of the original MS for the object-oriented mutation and

56 A. Derezińska and M. Rudnik

using 10% of tests. In the case of standard operators, 30% of mutants selected for
each operator and 15% of tests resulted in 93% of MSorig. In general, the random
mutant sampling allows to obtain significant reduction in number of mutants and
tests, but the loss of MS accuracy was a bit higher than in the operator selection
experiments.

The detailed results of mutant clustering are also behind the scope of this paper.
However, in general we obtained 97% of the original MS for object-oriented mutants
using 32% of mutants and 17% of tests. Whereas for standard mutations, it was only
91% MS for 19% of mutants and 15% of tests. These results were less promising than
the results of clustering for standard mutation in C [21]. Moreover, experiences of
clustering are difficult to reproduce to other projects.

The experiments on the cost reduction techniques can be performed on other kinds
of C# projects using the wizard built-in the CREAM mutation testing tool.

References

1. Jia, Y., Harman, M.: An Analysis and Survey of the Development of Mutation Testing.
IEEE Transactions on Software Engineering 37(5), 649–678 (2011)

2. Chevalley, P.: Applying Mutation Analysis for Object-Oriented Programs Using a
Reactive Approach. In: Proc. of the 8th Asia-Pacific Software Engineering Conference,
ASPEC, pp. 267–270 (2001)

3. Kim, S., Clark, J., McDermid J.A.: Class Mutation: Mutation Testing for Object-Oriented
Programs. In: Conference on Object-Oriented Software Systems, Erfurt, Germany (2000)

4. Ma, Y.-S., Kwon, Y.-R., Offutt, J.: Inter-class Mutation Operators for Java. In: Proc. of
International Symposium on Software Reliability Engineering, ISSRE 2002. IEEE
Computer Soc. (2002)

5. Derezińska, A.: Advanced Mutation Operators Applicable in C# Programs. In: Sacha, K.
(ed.) Software Engineering Techniques: Design for Quality. IFIP, vol. 227, pp. 283–288.
Springer, Boston (2006)

6. Derezińska, A.: Quality Assessment of Mutation Operators Dedicated for C# Programs. In:
Proc. of the 6th International Conference on Quality Software, QSIC 2006, pp. 227–234.
IEEE Soc. Press (2006)

7. Derezińska, A., Szustek, A.: Tool-supported Mutation Approach for Verification of C#
Programs. In: Zamojski, W., et al. (eds.) Proc. of International Conference on
Dependability of Computer Systems, DepCoS-RELCOMEX 2008, pp. 261–268. IEEE
Comp. Soc. (2008)

8. Derezińska, A., Szustek, A.: Object-Oriented Testing Capabilities and Performance
Evaluation of the C# Mutation System, In: Szmuc, T., Szpyrka, M., Zendulka, J. (eds.)
CEE-SET 2009. LNCS, vol. 7054, pp. 229–242 (2012)

9. Derezińska, A., Sarba, K.: Distributed Environment Integrating Tools for Software
Testing. In: Elleithy, K. (ed.) Advanced Techniques in Computing Sciences and Software
Engineering, pp. 545–550. Springer, Dordrecht (2009)

10. Derezińska, A., Kowalski, K.: Object-oriented Mutation Applied in Common Intermediate
Language Programs Originated from C#. In: Proc. of 4th International Conference
Software Testing Verification and Validation Workshops, 6th Workshop on Mutation
Analysis, pp. 342–350. IEEE Comp. Soc. (2011)

11. Derezińska, A.: Classification of Operators of C# Language. In: Borzemski, L., et al. (eds.)
Information Systems Architecture and Technology, New Developments in Web-Age
Information Systems, pp. 261–271. Wrocław University of Technology (2010)

 Quality Evaluation of Object-Oriented and Standard Mutation Operators 57

12. Offut, J., Rothermel, G., Zapf, C.: An Experimental Evaluation of Selective Mutation. In:
Proc. of 15th International Conference on Software Engineering, pp. 100–107. IEEE
Comp. Soc. Press (1993)

13. Barbosa, E.F., Maldonado, J.C., Vincenzi, A.M.R.: Toward the Determination of
Sufficient Mutant Operators for C. Journal Software, Testing, Verification, and
Reliability 11, 113–136 (2001)

14. Namin, S., Andrews, J.H.: On Sufficiency of Mutants. In: Proc. of 29th International
Conference on Software Engineering, ICSE 2007 (2007)

15. Zhang, L., Hou, S.-S., Hu, J.-J., Xie, T., Mei, H.: Is Operator-Based Mutant Selection
Superior to Random Mutant Selection? In: Proc. of the 32nd International Conference on
Software Engineering, ICSE 2010, pp. 435–444 (2010)

16. Ma, Y.-S., Kwon, Y.-R., Kim, S.-W.: Statistical Investigation on Class Mutation
Operators. ETRI Journal 31(2), 140–150 (2009)

17. Hu, J., Li, N., Offutt, J.: An Analysis of OO Mutation Operators. In: Proc. of 4th
International Conference Software Testing Verification and Validation Workshops, 6th
Workshop on Mutation Analysis, pp. 334–341. IEEE Comp. Soc. (2011)

18. Kaminski, G., Praphamontripong, U., Ammann, P., Offutt, J.: A Logic Mutation Approach
to Selective Mutation for Programs and Queries. Information and Software Technology,
1137–1152 (2011)

19. Usaola, M.P., Mateo, P.R.: Mutation Testing Cost Reduction Techniques: a Survey. IEEE
Software 27(3), 80–86 (2010)

20. Mathur, A.P., Wong, W.E.: Reducing the Cost of Mutation Testing: An Empirical Study.
Journal of Systems and Software 31, 185–196 (1995)

21. Hussain, S.: Mutation Clustering. Ms. Th., King’s College London, Strand, London (2008)
22. Ji, C., Chen, Z.Y., Xu, B.W., Zhao, Z.: A Novel Method of Mutation Clustering Based on

Domain Analysis. In: Proc. of 21st International Conference on Software Engineering &
Knowledge Engineering, SEKE 2009, pp.422–425 (2009)

23. CREAM, http://galera.ii.pw.edu.pl/~adr/CREAM/
24. NUnit, http://www.nunit.org
25. NCover, http://www.ncover.com
26. Subversion svn, http://subversion.tigris.org
27. Derezińska, A., Rudnik, M.: Empirical Evaluation of Cost Reduction Techniques of

Mutation Testing for C# Programs, Warsaw Univ. of Tech., Inst. of Computer Science
Res. Rap. 1/2012 (2012)

28. Source Monitor, http://www.campwoodsw.com/sourcemonitor.html
29. Lee, H.-J., Ma, Y.-S., Kwon, Y.-R.: Empirical Evaluation of Orthogonality of Class

Mutation Operators. In: Proc. of 11th Asia-Pacific Software Engineering Conference.
IEEE Comp. Soc. (2004)

30. Ma, Y.-S., Harrold, M.J., Kwon, Y.-R.: Evaluation of Mutation Testing for Object-
Oriented Programs. In: Proc. of 28th International Conference on Software Engineering,
pp 869–872. IEEE Comp. Soc. Press (2006)

31. Ma, Y.-S., Offutt, J., Kwon, Y.-R.: MuJava: an Automated Class Mutation System.
Software Testing, Verification and Reliability 15(2) (June 2005)

32. Smith, B.H., Williams, L.: A Empirical Evaluation of the MuJava Mutation Operators. In:
Proc. 3rd International Workshop on Mutation Analysis Mutation 2007 at TAIC.Part 2007,
Cumberland Lodge, Windsor UK, pp. 193–202 (September 2007)

33. Nester, http://nester.sourceforge.net/
34. Pexmutator, http://www.pexase.codeplex.com
35. Segura, S., Hierons, R.M., Benavides, D., Ruiz-Cortes, A.: Mutation Testing on an Object-

oriented Framework: an Experience Report. Information and Software Technology, 1124–1136
(2011)

101companies: A Community Project
on Software Technologies and Software Languages

Jean-Marie Favre1, Ralf Lämmel2, Thomas Schmorleiz2, and Andrei Varanovich2

1 University of Grenoble, France
2 University of Koblenz-Landau, Germany

Abstract. 101companies is a community project in computer science (or soft-
ware science) with the objective of developing a free, structured, wiki-accessible
knowledge resource including an open-source repository for different stakehold-
ers with interests in software technologies, software languages, and technolog-
ical spaces; notably: teachers and learners in software engineering or software
languages as well as software developers, software technologists, and ontologists.
The present paper introduces the 101companies Project. In fact, the present paper
is effectively a call for contributions to the project and a call for applications of
the project in research and education.

Keywords: 101companies, Software technologies, Software languages, Techno-
logical spaces.

1 Introduction

Today’s developers face a myriad of software technologies and software languages.
IT industry demands technology-savvy ‘polyglot developers’ with strong knowledge
of entire development ecosystems. Any project of significant size involves a dozen
of different technologies and languages, each one with specific concepts and termi-
nology possibly obfuscated by buzzwords. The involved languages are programming
languages, modeling languages, technology-specific languages for configuration and
metadata, and various other software languages.

How can such stress be relieved? What would help developers so that they are faster
at technology and language adoption and more profoundly informed about vocabulary,
abstractions, and options? How can research help here? How can education contribute?

Part of the problem is that developers may be framed in a specific technological
space [DGD06,KBA02], i.e., a specific context of software development with regard to
community and technologies, e.g., ‘Javaware with the use of JDBC, DOM, and Swing’.1

Developers acquire ‘silos of knowledge’ laboriously. However, developers are expected

1 For the reader’s convenience, we quote a more profound and assumably fitting definition of
‘technological space’ as of [KBA02]: ‘A technological space is a working context with a set
of associated concepts, body of knowledge, tools, required skills, and possibilities. It is often
associated to a given user community with shared know-how, educational support, common
literature and even workshop and conference meetings. It is at the same time a zone of estab-
lished expertise and ongoing research and a repository for abstract and concrete resources.’

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 58–74, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

101companies 59

to travel technological spaces and to adopt to new technologies and languages rapidly
and continuously. This will only be possible once developers obtain convenient access
to sufficiently organized, abstract, and connected knowledge resources.

The present paper introduces the community project 101companies2, which provides
a knowledge resource as motivated before.

Objective of 101companies. 101companies is a community project in computer science
(or software science) with the objective of developing a free, structured, wiki-accessible
knowledge resource including an open-source repository for different stakeholders with
interests in software technologies, software languages, and technological spaces; no-
tably: teachers and learners in software engineering or software languages as well as
software developers, software technologists, and ontologists.

The Notion of Contribution. The project relies on the aggregation, organization, an-
notation, and analysis of an open-source corpus of contributions to an imaginary Human
Resource Management System: the so-called 101companies System, which is prescribed
by a set of optional features. Contributions may be implementations of system variations
and specifications thereof. Each contribution should pick a suitable, typically small set of
features and demonstrate original and noteworthy aspects of software technologies and
software languages in a focused manner. Contributions are grouped in themes to better
apply to varying stakeholders and objectives. The project also relies on contributions
in the broader sense of resources for software technologies and software languages, or
components of an emerging ontology.

Connection to Research and Education in Computer Science. The project is inter-
esting from a research perspective because it provides challenges for applying
ontologies to software engineering [Ahm08], for developing new forms of models
for software technologies, e.g., megamodels [BJV04,SCFC09], and for comparative and
yet other forms of software linguistics [FGLP11]. The project is interesting from an edu-
cation perspective because it directly provides content and structure for different forms
of classical education, self-learning, or e-learning. The project supports comparison
and cross-referencing for diverse software technologies and software languages across
technological spaces. Hence, the project serves a more general scope in software devel-
opment, when compared to other efforts on program collections and domain-specific
software development challenges or benchmarks; see the related work discussion.

Objective of the Paper and Call to Arms. This is the inaugural paper describing the
101companies Project in terms of identifying the key categories of an emerging on-
tology, the relevant stakeholders, optional features of the 101companies System, and a

2 http://101companies.org/ The “companies” postfix in “101companies” refers to the
kind of system that is built time again in this project: a system that models companies in
terms of some human resources aspects: department structure, employees, salaries. The “101”
prefix in “101companies” refers to “101 ways” of building said system. Indeed, there are more
than ”101 ways” of building a human resource management system with different software
technologies and software languages.

http://101companies.org/

60 J.-M. Favre et al.

model for the structured documentation of implementations of said system. 101com-
panies is an active project, in fact, it is a Research 2.0 effort. Hence, the current paper
must be understood as just a snapshot of current affairs. (Most of the paper’s content
was extracted from the project’s current wiki and repository.) The present paper is ef-
fectively a call for contributions to the project and a call for applications of the project
in research and education.

Road-Map of the Paper §2 illustrates the nature of the 101companies Project. §3
identifies key categories of an emerging ontology for software technologies and soft-
ware languages as well as project-specific concepts. §4 identifies stakeholders of the
project. §5 sketches features of the 101companies System. §6 briefly discusses themes
as a grouping mechanism for contributions to the project. §7 proposes a document model
for contributions (in fact, implementations at this stage). §8 discusses related work. §9
concludes the paper.

2 Illustration

The following illustrations are meant to clarify the nature of the project and the scale
that has been reached. These illustrations should not be confused with any sort of (sci-
entific) validation of the project or the existing contributions.

The 101companies System (or just ”the system”) is an imaginary Human Resource
Management System (HRMS) that serves as the ”running example” in the 101companies
Project. That is, contributions to the project implement or specify or otherwise address
a HRMS system for a conceived company as a client.

A company consist of (top-level) departments, which in turn may break down hi-
erarchically into further sub-departments. Departments have a manager and other em-
ployees. The imaginary system may be used by conceived employees and managers
within the conceived company. Employees have a name, an address, and a salary. The
system may support various features. For instance, the system could support operations
for totaling all salaries of all employees and cutting them in half, it could provide a user
interface of different kinds, and it could address concerns such as scalability or security.
Features of the system are discussed in §5. Figure 1 specifies the basic data model of
the system in UML.

Fig. 1. A UML class diagram serving as an illustrative data model

101companies 61

At the time of writing, there are 122 implementations in the repository.
N

um
be

r
of

fi
le

s

Implementations ordered by number of files

L
in

es
of

co
de

Implementations ordered by lines of code

Fig. 2. Illustrative code-level complexity indicators for 101companies implementations

Technology usage Language usage

209 tags / 111 distinct tags 193 tags / 43 distinct tags

Fig. 3. Illustrative tag clouds regarding usage of technologies and languages by implementations

Figure 2 gives an idea of the varying code-level complexity for the existing imple-
mentations of the 101companies System. (Other forms of contributions are not consid-
ered here.) Based on systematic tagging, we count only developer-authored code-like
units as opposed to generated code or IDE support files. The plots show the number of
files and the lines of code for such units. (Lines of code may include comments.) The
number of files hints at ‘file-level modularity’ of the implementations. As the medians
suggest, most implementations are in the range of a few hundred lines of code and less
than ten files. The distribution of these numbers is a result of different programming
languages, different technologies, different feature sets that are implemented as well as
subjective factors due to developer choices. We should emphasize that the plots serve
for illustration; they cannot be expected to hint at any proper metric.

Figure 3 gives an idea of the diversity of technology and language usage for the
existing implementations. The size of a term in a tag cloud expresses the frequency of
usage across all the implementations: the bigger, the more implementations declare to
use a technology or a language.

62 J.-M. Favre et al.

3 Key Categories of the 101companies Ontology

The ontology classifies all entities that are relevant for the 101companies Project. The
categories (or classes or concepts) are organized in two dimensions. In the first dimen-
sion, we distinguish between general entities that can be said to exist regardless of the
project (such as technologies) versus project-specific entities (such as the features of
the 101companies System). In the second dimension, we distinguish between primary
entities versus subordinated entities. While the first dimension is profound, the second
dimension is only introduced for convenience of consuming the classification.

The categories for primary, general entities are Technology for the deep classification
of actual software technologies, Capability for the deep classification of capabilities of
technologies, Language for the deep classification of actual software languages and

Programming technologies

Technology a software technology

– Application technology a technology that is reusable in software applications

– Development technology a technology that is used in software development

– Language technology a technology that is dedicated to one or more software languages
– Mapping technology a technology for mapping between technological spaces
– Programming technology a technology that is dedicated to a certain programming domain

Software languages

Language a software language

– Domain-specific language a software language that addresses a specific domain

– Format language a software language that defines a representation format

– Markup language a software language that facilitates the annotation of text

– Metadata language a software language that facilitates the addition of metadata to artifacts

– Metalanguage a software language to define software languages

– Modeling language a software language to express information or knowledge or systems

– Programming language a software language for implementing programs

– Query language a software language for executable queries

– Scripting language a software language that is used to control applications

– Style sheet language a software language for presenting structured documents

– Tool-defined language a software language that is effectively defined by a tool

– Transformation language a software language for executable transformations

– XML language a software language that uses XML for representation

Technological spaces

Space a community and technology context

– Fileware a technological space focused on sequential and indexed files

– Grammarware a technological space focused on (textual) language processing

– Lambdaware a technological space focused on functions and functional programming
– Modelware a technological space focused on modeling and model-driven engineering

– Objectware a technological space focused on objects and OO programming
– Ontoware a technological space focused on ontologies and knowledge engineering

– Relationalware a technological space focused on relational databases

– XMLware a technological space focused on XML representation and XML processing

Fig. 4. The key categories of the 101companies Ontology

101companies 63

Space for the enumeration of actual technological spaces. When adding a new technol-
ogy to the ontology, then classifiers from the Technology tree are to be applied and the
technology may also be associated with capabilities, languages as well as technological
spaces. When documenting a contribution to the 101companies Project, the contribu-
tion is to be associated with technologies and languages. Classification and association
help the users of the 101companies Project to navigate between software technologies,
capabilities thereof, software languages, technological spaces, and contributions of the
project.

In Figure 4, the categories of technologies and languages are broken down into (only
the immediate) subcategories for the classification of such entities; also, actual techno-
logical spaces are revealed as members of category Space. Specific technologies and
languages may be members of multiple subcategories, and they may be associated with
multiple technological spaces.

Technologies may be subdivided into development or application technologies de-
pending on whether they target the developer by providing some kind of tool support or
the application by providing some kind of reusable components. For instance, IDEs or
tools count as development technologies whereas libraries or frameworks count as ap-
plication technologies. Classification of technologies may also apply to their possible
status of being a programming technology in the sense that they serve specific pro-
gramming domains; consider, for example, web technology or data technology. Given
the central role of technological spaces, classification of technologies may also apply
to their possible status of being a mapping technology across spaces. Finally, some
technologies specifically support some software language, giving rise to further clas-
sification according to language technology; consider, for example, compilers or pro-
gram generators. All these categories of technologies may be broken down further into
subcategories. Some technologies may be naturally instances of multiple categories.
Technologies are further characterized by their capabilities.

Technologies are seen as providing capabilities to the developers or the systems that
use the technology. Examples of capabilities include logging, serialization, data paral-
lelism, and mapping. Thus, each specific technology is not just classified according to
technology subcategories, but it is also to be associated with capabilities. For instance,
the mapping capability further breaks down into Object/XML mapping, Object/Rela-
tional mapping, etc. Each specific technology can be indeed associated with several
capabilities. For instance, JAXB provides the capabilities of both Object/XML mapping
for Java and (XML-based, open) serialization.

4 Stakeholders of the 101companies Project

A stakeholder of the 101companies Project is someone who affects or is affected by the
project or could be expected to do so. There are users of the project: learners subject
to self-learning, professional training, etc. who use the project to learn about software
technologies and languages as well as teachers in university or professional education
who use the project to prepare their courses, lectures, etc. Further, there are contribu-
tors to the project: developers of implementations or specifications of the 101companies
System, authors of wiki content including classifications of software technologies and

64 J.-M. Favre et al.

101stakeholder a stakeholder of the 101companies Project

– 101contributor anyone who contributes to the 101companies Project

– – 101advisor anyone who serves on the advisory board of the project

– – 101author anyone who authors content for the wiki of the 101companies Project

– – 101developer anyone who develops a contribution to the 101companies Project

– – 101engineer anyone who contributes to the infrastructure of the 101companies Project

– – 101gatekeeper anyone administering wiki and repository of the 101companies Project

– – 101research20er anyone who contributes as a community engineer to the 101companies Project

– – 101reviewer anyone who reviews a contribution to the 101companies Project

– 101researcher anyone interested in research on software technologies and languages

– – 101linguist anyone researching software linguistics

– – 101ontologist anyone researching ontologies for software technologies and languages

– 101technologist anyone seeking technology adoption through the 101companies Project

– 101user anyone who uses the 101companies Project

– – 101learner anyone who leverages the 101companies Project for learning

– – 101teacher anyone who leverages the 101companies Project for teaching

Fig. 5. Stakeholders of the 101companies Project

languages, community engineers who manages the project from a Research 2.0 per-
spective, and yet other kinds of contributors. There are also stakeholders who may be
interested in the project more broadly because they are researchers in a relevant context
(such as ontology engineering or software linguistics) or technologists (such as owners
of a software technology). Stakeholder roles are non-disjoint. For instance, a technolo-
gist may be expected to also serve as an educator (a teacher) as well as a contributor.

The classification tree of stakeholders is shown in Figure 5.

5 Features of the 101companies System

The term feature should be understood broadly as referring to optional requirements for
the imaginary system, e.g., as in the established sense of functional and non-functional
requirements. The optionality of features encourages smaller contributions that demon-
strate specific aspects of software technologies and software languages. The feature set
is not driven by concepts of the human resources domain. Instead, the important consid-
eration for each new feature is that it should be helpful in demonstrating particularities
of software technologies and software languages. The feature set is constantly under re-
vision since each additional technology in scope, each new implementation (planned or
completed) may trigger additional features or a revision of the classification tree. Some
features are left underspecified intentionally so that contributions can apply suitable
refinements for the benefit of useful demonstrations. (For instance, there is a feature
Client-server to constrain design such that an implementation uses a client-server ar-
chitecture without though specifying precisely client and server.) Ideally, each feature
would be demonstrated by several contributions. Some features may not be demon-
strated yet at all because they are at the stage of calling for contributions.

101companies 65

101feature features of the 101companies System
– 101behavior behavior-related features of the 101companies System
– – Cut an operation to cut the salaries of all employees in half
– – Depth an operation to determine the depth of department nesting
– – Export the behavior to export company data from the system
– – Import the behavior to import company data into the system
– – Logging the behavior of logging data access on company data
– – Total an operation to total the salaries of all employees
– – Visualization the behavior of visualizing company data in an insightful manner
– 101meta features related to reverse/reengineering of implementations
– – API usage analysis analyse and report API usage
– – Complexity metrics calculate and report structural complexity metrics
– – Coupled transformation perform a coupled system transformation
– 101quality quality-like features of the 101companies System
– – 101design design qualities of the 101companies System
– – – Code generation leverage code generation for implementation
– – – Data mapping leverage mapping for the data access layer
– – – Reusability provide reusability for other provided features
– – 101execution execution qualities of the 101companies System
– – – Access control support access control for company data
– – – Client-server leverage a client-server architecture
– – – Persistence support persistence of company data
– – – Reliability provide reliability for the system services
– – – Scalability provide scalability for large data volume or multiple users
– – – Serialization support serialization of company data
– 101structure structure-related features of the 101companies System
– – Company the basic tree-based data model for companies
– – Mentoring an association between employees for mentees and mentors
– – Precedence a constraint on salaries to decrease with department nesting
– 101ui UI-related features of the 101companies System
– – Attribute editing provide UI support for editing attributes
– – Intelligent UI provide intelligent UI support
– – Localization provide UI support for different languages
– – Navigation provide a basic UI for the navigation of companies
– – Structural editing provide UI support for structural editing
– – Touch control provide UI support for touch control
– – Undo/redo provide undo/redo capability in the UI
– – Voice control provide UI support for voice control
– – Web UI run the system through a web browser

Fig. 6. Features of the 101companies system

The classification tree of features is shown in Figure 6. The feature set could be
subdivided in a classic manner into functional and non-functional requirements. Instead,
a richer categorization is applied here:

– 101structure: structure-related features. There is a feature for the basic, tree-like
structure of company data. There is another feature for adding mentoring so that

66 J.-M. Favre et al.

487 feature tags / 25 distinct feature tags across 122 implementations

Fig. 7. Illustrative tag cloud regarding feature frequency for implementations

a graph-like structure is needed. Further structure-related features are conceivable,
e.g., a global invariant for salaries to decrease downwards the company tree.

– 101behavior: behavior-related features. There are features for basic operations to
total all salaries in a company or to cut salaries in half. These features exercise the
fundamental notions of aggregation and (endogenous) transformation. Various other
operations or behaviors are conceivable, e.g., for importing/exporting company data,
for computing the depth of the company trees (thereby exercising the notion of a
recursive query) as well as for logging data modifications such as salary changes.

– 101ui: UI-related features. These features are concerned with navigation and editing
of companies as well as support for additional UI facets such as voice control, touch
control, localization, and intelligence.

– 101quality: quality-like features. Some features are concerned with execution quali-
ties, e.g., scalability. Other features are concerned with ”design qualities”, e.g., code
generation. Most of these features are likely to necessitate the use of a designated
software technology such as library, framework, or code generator.

– 101meta: features related to reverse/reengineering of implementations. These fea-
tures do not directly concern the system itself; instead, they are part of a demonstrated
lifecycle of the system.

Figure 7 gives an idea of the distribution of feature coverage by existing contributions
(in fact, by implementations). The size of a feature name in the tag cloud expresses
the frequency of demonstration across all the implementations: the bigger, the more
implementations declare to demonstrate the feature. (The popularity of Company, To-
tal, and Cut is a consequence of the fact that most implementations pick these func-
tional requirements as a lower bar for demonstration. In fact, these basic structural and
behavioral features are interesting enough to demonstrate already many programming
techniques, mapping concerns, and overall capabilities of software technologies.)

6 Themes of 101companies Contributions

A theme is an explicitly declared group of contributions to the 101companies Project.
Themes are meant to help users of the 101companies Project to efficiently consume
knowledge about contributions, software technologies, capabilities thereof, software
languages, and technological spaces. To this end, themes are tailored towards
interests of specific stakeholders. Such specificity translates into focus on a certain

101companies 67

Themes with lists of members

Java mapping theme Java theme of implementations that travel technological spaces

– antlrObjects Object/Text mapping for Java with ANTLR for parsing
– emf Model/Object mapping for Ecore and Java with EMF
– hibernate Object/Relational mapping for Java and SQL/HQL with Hibernate
– jaxbComposition Object/XML mapping for Java and XSD with JAXB

XML theme XML theme of implementations

– csharpLinqToXml in-memory XML processing in C# with LINQ to XML
– dom in-memory XML processing in Java with DOM
– jaxbComposition Object/XML mapping for Java and XSD with JAXB
– sax push-based XML parsing in Java with SAX
– xmlReader pull-based XML parsing in C# with XmlReader
– xquery XML processing in XQuery
– xslt XML processing in XSLT

Haskell theme Haskell theme of implementations

– happstack Web programming in Haskell with Happstack
– haskell a basic implementation in Haskell
– haskellConcurrent concurrent programming in Haskell
– haskellDB type-safe database programming in Haskell with HaskellDB
– haskellParser parsing of concrete textual syntax in Haskell with Parsec
– hxt in-memory XML processing in Haskell with HXT
– syb scrap your boilerplate in Haskell
– wxHaskell GUI programming in Haskell with wxHaskell

Detailed theme descriptions

XML theme: The theme collects representatives of the most established XML processing options. Several

of these options rely on APIs so that of XML processing is embedded into an existing language such

as C# or Java. More specifically, there are options for in-memory XML processing, push-based XML
parsing, and pull-based XML parsing. In the case of in-memory processing, two options are included:

one for the more classic DOM approach and another more declarative, query-oriented which is based

on LINQ in that case. Besides those API-based options, the theme also covers two major styles of XML

processing when it is supported directly by languages designated to either querying or transformation.

Finally, there is a mapping-based option such that an object model is derived from an XML schema such

that de-/serialization can be used to access XML data through objects and extract XML data from objects.

Java mapping theme: Subject to appropriate bridges, i.e., subject to mapping facilities, any program-

ming language can be made to access and process models, XML, relational database tables, and text
(concrete syntax) in a type-based (say, schema-aware or metamodel-aware or grammar-aware) manner.

The present theme collects corresponding implementations for the programming language Java.

Haskell theme: This theme demonstrates Haskell’s approach to several programming domains: concur-
rent programming, database programming, generic programming, GUI programming, parsing, and XML
programming. As a starting point, there is also a simple (a trivial) Haskell-based implementation. Some

of the implementations nicely demonstrate some strengths and specifics of Haskell. This is true, for ex-

ample, for the implementations that illustrate concurrency, XML processing, and SYB. Some other imple-

mentations are mainly included to provide coverage for important domains without necessarily arguing

that the Haskell-based implementation is superior, interesting, or surprising. This is true, for example,

for the implementation that demonstrates GUI programming. The selection of theme members was also

based on the idea that relatively mature and established options should be demonstrated as opposed to

research experiments.

Fig. 8. Some themes of 101implementations

68 J.-M. Favre et al.

technological space, or a category of technologies, or a certain programming language,
etc. For instance, the Haskell theme addresses interests of those who want to approach
Haskell through the 101companies setup as well as those who want to approach the
101companies setup on the grounds of Haskell knowledge.

Themes should be of a manageable size: 4-10 contributions per theme. Accordingly,
the composition of a theme needs to be selective in identifying theme members. For
instance, the XML theme covers presumably all fundamental approaches to XML pro-
cessing, but it leaves out variations in terms of APIs and languages. Such variations can
still be discovered easily by users because contributions are richly tagged and cross-
referenced.

Some themes of implementations are sketched in Figure 8.

7 A Document Model for 101companies Implementations

An implementation of the 101companies System can only be useful for the stakeholders
of the 101companies Project, if it is appropriately documented. Such documentation
associates the implementation with metadata based on the 101companies Ontology and

Intent: Object/XML mapping for Java and XSD with JAXB

Motivation: XML import and export is supported for a Java-based implementation by means of
O/X mapping. The primary data model for companies is an XML schema. The schema compiler
xjc of JAXB is used to generate Java classes from the schema. In this manner, operations on
an XML representation of companies can be implemented in near-to-regular OO fashion while
using a problem-specific object model. In different terms, one can carry out XML processing
while essentially staying in the technological space of objectware. It is insightful to compare
XML schema and schema-derived classes. The XML schema is defined in a manner that the
resulting object model systematically leverages object composition and no class inheritance. In
fact, the schema-derived classes are very similar to a regular OO design; see implementation
javaComposition. It is important to note that the operations on companies are not implemented
as instance methods since this would imply modification of schema-derived classes—unless
advanced modularization mechanisms were leveraged. Instead, the operations are implemented
as static methods in non-schema-derived classes.

Technologies

– JAXB
– xjc (part of JAXB)

– Eclipse
– GNU make

Languages

– XML
– XSD
– Java
– JAXB annotations
– xjc POJOs

Features

– Company

– Total

– Cut

– Import

– Export

– Data mapping

– Code generation

Fig. 9. Documentation of the implementation jaxbComposition (part I/III)

101companies 69

Illustration: The following XML schema fragment shows the element declaration for departments:

<xs:element name="department">
<xs:complexType>
<xs:sequence>
<xs:element ref="name"/>
<xs:element name="manager" type="employee"/>
<xs:element ref="department" maxOccurs="unbounded" minOccurs="0"/>
<xs:element name="employee"

type="employee" maxOccurs="unbounded" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>

That is, department elements line up children elements for name, manager, sub-departments, and employ-

ees. There is an XSD type employee which is used in two local element declarations: one for managers;

another one for regular employees. The schema-derived class for departments looks as follows:

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "",
propOrder = { "name", "manager", "department", "employee" })

@XmlRootElement(name = "department")
public class Department {

@XmlElement(required = true)
protected String name;
@XmlElement(required = true)
protected Employee manager;
protected List<Department> department;
protected List<Employee> employee;
// Getters and setters omitted

}

This class essentially models POJOs for departments in a way similar to regular OO programming. How-

ever, the schema compiler injects a number of annotations into the schema-derived classes so that sufficient

information is tracked for serialization, and, in fact, XML Schema-based validation. For instance, the fields

for name and manager are annotated with required=true, thereby expressing that a valid department ob-

ject must specify a name and a manager. On top of the schema-derived classes, the operation cut can be

implemented with static methods as follows:

public class Cut {
public static void cut(Company c) {
for (Department d : c.getDepartment())
cut(d);

}
public static void cut(Department d) {
cut(d.getManager());
for (Department s : d.getDepartment())
cut(s);

for (Employee e : d.getEmployee())
cut(e);

}
public static void cut(Employee e) {
e.setSalary(e.getSalary() / 2);

}
}

Fig. 10. Documentation of the implementation jaxbComposition (part II/III)

describes important aspects of the implementation in free (English) text. There is the
following document model; ”?” is used to mark an optional section; all other sections
are mandatory:

70 J.-M. Favre et al.

Architecture: Company.xsd is the schema for schema-first mapping. Makefile shows how to
(trivially) invoke the schema compiler xjc of JAXB. Package org.softlang.company hosts all
schema-derived classes and interfaces. Package org.softlang.features hosts implementations for
feature Total and feature Cut as well as some boilerplate code for importing and exporting XML
documents. Package org.softlang.tests hosts JUnit tests.

Usage:

– The implementation is provided as an Eclipse project.

– The schema-derived classes are included into the repository.

– Hence, open the project with Eclipse; this will also build the project.

– There are JUnit tests available in package org.softlang.tests.

– If you want to regenerate classes from the scheme, see the Makefile.

Hint: if you need to add schema files to a project so that XML files are automatically validated
on the grounds of their namespace, as it is useful for the schema Company.xsd, which is part of
the present implementation, then you need to add the files via Eclipse preferences → XML →
XML catalog.

Fig. 11. Documentation of the implementation jaxbComposition (part III/III)

– Intent: an extended title for overall classification and association

– Motivation: the demonstration value of an implementation

– Status?: maturity status of an implementation

– Technologies: a list of used technologies

– Languages: a list of used languages

– Features: a list of implemented features

– Illustration?: a code snippet-based summary of the implementation

– Architecture?: a short description of the architecture

– Usage: advice on building, testing, and running an implementation

– Issues?: a list of issues to be aware of and to be fixed eventually

– Contributors: a list of contributors and their roles

– Acknowledgments?: any credits not yet covered by the contributors section

The Motivation section is critical in making an implementation useful for users of
the 101companies Project. The section should answer these questions: What does the
implementation demonstrate in terms of software technologies, capabilities thereof,
software languages, and other concepts in software development? What does the im-
plementation contribute to the corpus, when compared to other implementations; that
is, how does it complement or vary other implementations?

The Usage section is supposed to help users with building, testing, and running im-
plementations. Easy to follow steps should be provided for the users. This is particularly
important when a given implementation requires technology-specific steps. The Archi-
tecture section describes the architecture of the implementation, where different notions

101companies 71

of architecture may apply, e.g., package- or file-level architecture as well as linguistic
architecture based on megamodels.

For instance, figures 9–11 show the documentation of implementation jaxbCompo-
sition: an implementation with the intent of demonstrating “Object/XML mapping for
Java and XSD with JAXB”. Hence, the intent points out a capability of JAXB that is
demonstrated by the implementation. The text of the motivation section makes good
use of references to the 101companies Ontology (as indicated by the terms in italics).
Finally, consider the software languages exercised by the implementation; there are
straightforward languages such as Java, XML, and XSD; there are also very technology-
specific languages: the annotation or metadata language used by JAXB and the Java
subset for POJOs that are generated by JAXB’s class generation tool xjc. In this man-
ner, we obtain a ‘semantically rich’ documentation, thereby facilitating navigation and
understanding.

8 Related Work

In the communities of modeling, metamodeling, software languages, and elsewhere, the
notion of technological spaces [KBA02,DGD06] has been recognized as being helpful
in identifying and communicating commonalities and differences for grammarware,
XMLware, modelware, objectware, and relationalware. The 101companies Project is
an unprecedented, advanced, technical effort to illustrate the variation points and tech-
nology options that are linked to the notion of technological spaces.

Let us compare the 101companies Project with programming chrestomathies, i.e.,
collections of program examples, possibly in different languages, which are used to
demonstrate the specifics of programming languages, their implementations, paradigms,
and platforms. In the simplest case, a chrestomathy may exercise the ‘Hello World!’
example. In more advanced cases, chrestomathies demonstrate ‘stacks’ or even ‘prod-
uct portfolios’ by vendors; see, e.g., chrestomathies for Microsoft3 or Oracle/Sun4.
Suites of performance benchmarks account for a specific category of programming
chrestomathies. Such suites consist of source code of programs that are suitable to
challenge performance of language implementations systematically. The results can be
compared across different implementations of a language or across different languages.
For instance, The Computer Language Benchmarks Game (CLBG)5 is a widely used
repository of such comparisons across a wide range of programming languages.

As a concise approach to the comparison of some related programming chrestomath-
ies with the 101companies Project, we offer the following matrix whose rows are con-
cerned with aspects that relate to the objectives of the 101companies Project and its
stakeholders.

To summarize, no existing chrestomathy specifically targets technology comparison.
The 101companies Project also stands out in being repository-based, ontology-driven,
class room-tested, in using structured documentation, and in being focused on techno-
logical spaces. Overall, the 101companies Project must not be reduced to an effort for

3 http://archive.msdn.microsoft.com/ContosoAutoOBA
4 https://wikis.oracle.com/display/code/Home
5 http://shootout.alioth.debian.org/

http://archive.msdn.microsoft.com/ContosoAutoOBA
https://wikis.oracle.com/display/code/Home
http://shootout.alioth.debian.org/

72 J.-M. Favre et al.

Table 1. Comparison of programming chrestomathies and the 101companies Project

Aspect 101companies Java Pet Store6 99 Bottles of Beer7 Rosetta Code8 CLBG
Focus Technologies Java platform Task Tasks Algorithms
Scope of comparison Implementations - Languages Languages Languages
Technological spaces covered limited ignored limited ignored
Ontology-driven yes no no no no
Class room-tested yes yes(?) no no no
Source code GitHub Zip archive Website Website Website

the collection of program samples; the role of documentation, cross-referencing, and
underlying ontology must not be underestimated. Also, software languages other than
programming languages play an important role.

There are also generalized benchmarks or ‘challenges’ that go beyond the notion
of program collections with the focus on performance. These generalized benchmarks
usually involve elements of expressiveness (perhaps in combination with performance).
Such benchmarks exist in various areas of programming languages, databases, and soft-
ware engineering, and they are usually focused on the evaluation of technologies and ap-
proaches in a more specific domain, e.g.: [RJJ+08]—a generic programming
benchmark for Haskell libraries; STBenchmark [ATV08]—a benchmark for mapping
systems for schemas such as relational database schemas; [RG10]—a contest for graph-
transformation tools; the Semantic Web Services Challenge [MKS12]—a challenge ded-
icated to taming the complexity of service orchestration and service discovery.

The 101companies Ontology is meant to help managing knowledge about program-
ming technologies and it relates in this regard to other applications of ontologies to
knowledge management [CJB99,SSSS01]. For instance, the work of [RFD+08] de-
scribes the semi-automatic derivation of an ontology for domain-specific programming
concepts—as they are supported, for example, by APIs for XML or GUI program-
ming. Such ontologies may feed into a more comprehensive ontology of programming
technologies. There is also related work on the use of ontologies in teaching, e.g.,
[SG05,KYNM06], which may help in advancing the 101companies Project in becom-
ing more accessible for its stakeholders. In §6, we presented the notion of theme as a
related ontological tool in organizing implementations.

9 Concluding Remarks

101companies may become to the specialized community of ‘polyglot developers and
technological space travelers’ what Wikipedia is to the ‘general population’. 101compa-
nies combines a wiki, an open source repository, an ontology, and further abstractions
under development. At the given stage, the aggregated corpus of contributions, the asso-
ciated documentation, and the emerging ontology already constitute several man-years

6 http://java.sun.com/developer/releases/petstore
7 http://www.99-bottles-of-beer.net/
8 http://rosettacode.org/

http://java.sun.com/developer/releases/petstore
http://www.99-bottles-of-beer.net/
http://rosettacode.org/

101companies 73

of qualified software language engineer’s time. There are problems of quality and cov-
erage, which require strong community involvement and the project’s ability to manage
such involvement. New forms of modeling and data integration (e.g., based on RDF, or,
in fact, Linked Data) are currently investigated to get to the next level of sophistication.

An important direction for future work concerns Web 2.0 and Research 2.0. That is,
at the point of writing, 101companies is relatively conservative in terms of the process
for submitting, maintaining, and annotating contributions to the project. For instance,
content authors must register on the designated wiki, and no other means are provided
to affect the semi-structured content for contributions, technologies, and languages. We
are in urgent need of having Web 2.0 community features. In this context, we invision
that data acquisition from developers or other stakeholders as well as automated data
mining from source code and wiki content should enable interesting empirical research
on software technologies and software languages. At the next level of sophistication,
we expect 101companies to possibly serve as a Research 2.0 infrastructure.

A short or midterm target for the project is to prove itself useful in classical un-
dergraduate education (that is, in Master’s courses, and advanced Bachelor’s courses at
universities) and in innovative graduate education and research (e.g., in summer schools
on software development). Some experiences have been gathered by the authors9, but
it remains to broadly export the utility of 101companies. As of writing, discussions are
underway to build new 101companies-supported themes (see §6), if not courses, for
example, for the domains of parallel programming, security, and embedded systems.

Acknowledgments. The authors are grateful to all those people who contributed
101companies implementations, wiki content, and insight as well as energy to the
project. We want to mention Sebastian Jackel and Tobias Zimmer specifically. A num-
ber of hackathons (at GTTSE 2011 and in Koblenz in summer 2011) have helped to
mature the project. The authors are particularly grateful to Dragan Gasevic who was
inspiring and instrumental in launching the project in summer 2010.

References

Ahm08. Ahmed, E.: Use of Ontologies in Software Engineering. In: Proceedings of the 17th
International Conference on Software Engineering and Data Engineering (SEDE
2008), pp. 145–150. ISCA (2008)

ATV08. Alexe, B., Tan, W.-C., Velegrakis, Y.: STBenchmark: towards a benchmark for map-
ping systems. Proc. VLDB Endow. 1, 230–244 (2008)

BJV04. Bezivin, J., Jouault, F., Valduriez, P.: On the Need for Megamodels. In: Proceedings of
Workshop on Best Practices for Model-Driven Software Development at the 19th An-
nual ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications (2004)

CJB99. Chandrasekaran, B., Josephson, J.R., Richard Benjamins, V.: What Are Ontologies,
and Why Do We Need Them? IEEE Intelligent Systems 14, 20–26 (1999)

DGD06. Djuric, D., Gasevic, D., Devedzic, V.: The Tao of Modeling Spaces. Journal of Object
Technology 5(8), 125–147 (2006)

9 http://softlang.wikidot.com/course:ptt

http://softlang.wikidot.com/course:ptt

74 J.-M. Favre et al.

FGLP11. Favre, J.-M., Gasevic, D., Lämmel, R., Pek, E.: Empirical Language Analysis in Soft-
ware Linguistics. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS,
vol. 6563, pp. 316–326. Springer, Heidelberg (2011)

KBA02. Kurtev, I., Bézivin, J., Aksit, M.: Technological Spaces: an Initial Appraisal. In:
CoopIS, DOA 2002 Federated Conferences, Industrial track (2002)

KYNM06. Kasai, T., Yamaguchi, H., Nagano, K., Mizoguchi, R.: Building an ontology of IT
education goals. International Journal of Continuing Engineering Education and Life
Long Learning 16, 1–17 (2006)

MKS12. Margaria, T., Kubczak, C., Steffen, B.: The XMDD Approach to the Semantic Web
Services Challenge. In: Brian Blake, M., Cabral, L., Knig-Ries, B., Kster, U., Her-
ausgeber, D.M. (eds.) Semantic Web Services: Advancement through Evaluation.
Springer, Heidelberg (to appear, 2012)

RFD+08. Ratiu, D., Feilkas, M., Deissenboeck, F., Jürjens, J., Marinescu, R.: Towards a Repos-
itory of Common Programming Technologies Knowledge. In: Proc. of the Int. Work-
shop on Semantic Technologies in System Maintenance, STSM (2008)

RG10. Rensink, A., Van Gorp, P.: Graph transformation tool contest 2008. STTT 12(3-4),
171–181 (2010)

RJJ+08. Rodriguez, A., Jeuring, J., Jansson, P., Gerdes, A., Kiselyov, O., Oliveira, B.C.D.S.:
Comparing libraries for generic programming in Haskell. In: Proceedings of the 1st
ACM SIGPLAN Symposium on Haskell, Haskell 2008, pp. 111–122. ACM (2008)

SCFC09. Sottet, J.-S., Calvary, G., Favre, J.-M., Coutaz, J.: Megamodeling and Metamodel-
Driven Engineering for Plastic User Interfaces: MEGA-UI. In: Human-Centered Soft-
ware Engineering, pp. 173–200 (2009)

SG05. Sosnovsky, S., Gavrilova, T.: Development of Educational Ontology for C-
Programming. In: Proceedings of the XI-th International Conference Knowledge-
Dialogue-Solution, vol. 1, pp. 127–132. FOI ITHEA (2005)

SSSS01. Staab, S., Studer, R., Schnurr, H.-P., Sure, Y.: Knowledge processes and ontologies.
IEEE Intelligent Systems 16(1), 26–34 (2001)

An Object-Oriented Application Framework

for the Development of Real-Time Systems

Francesco Fiamberti, Daniela Micucci, and Francesco Tisato

University of Milano - Bicocca, Viale Sarca 336, Milan, Italy
{fiamberti,micucci,tisato}@disco.unimib.it

Abstract. The paper presents an object-oriented application framework
that supports the development of real-time systems. The framework con-
sists of a set of architectural abstractions that allow time-related aspects
to be explicitly treated as first-class objects at the application level. Both
the temporal behavior of an application and the way the application deals
with information placed in a temporal context can be modeled by means
of such abstractions, thus narrowing the semantic gap between specifi-
cation and implementation. Moreover, the framework carefully separates
behavioral policies from implementation details improving portability
and simplifying the realization of adaptive systems.

Keywords: real-time, object-orientation, application framework, archi-
tectural abstractions.

1 Introduction

Time is a key element in real-time systems as their correctness depends on
when activities are performed [15]. Key elements in specific application domains
are usually captured and modeled by means of architectural abstractions [6].
In particular, the design of real-time systems should be supported by a set of
architectural abstractions that model the temporal behavior of the system with
concepts including time and speed. Surprisingly, time and speed seldom emerge
as basic abstractions. The lack of such abstractions leads to the development
of tricky code that heavily depends on platform mechanisms, intermixes design
choices and implementation details, can be hardly tested and maintained.

Many recent developments focus on the representation and on the analysis
of time-related issues. MARTE [11], for example, is a UML profile that adds
capabilities to UML for the design of real-time and embedded systems. AADL
[13] is an analysis and design language that not only allows a representation of
the software architecture to be defined, but also the syntax and semantics, so
that the representation can be verified and validated [10]. Both the approaches,
however, only provide modeling capabilities but no embedded tools to directly
implement the system. The same holds for [12], which exploits MARTE (the
logical time concept) and the CCSL language (Clock Constraint Specification
Language) [9] to specify the causal and temporal characteristics of the software
as well as the hardware parts of the system.

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 75–90, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

76 F. Fiamberti, D. Micucci, and F. Tisato

Languages like Giotto [4] and SIGNAL [3] extend existing paradigms to in-
clude time-related issues. However, such issues are managed at compile time,
preventing the system temporal behavior from being adaptive. Similar to Giotto,
PTIDES (Programming Temporally Integrated Distributed Embedded Systems)
[16] is a programming model for distributed embedded systems based on a global,
consistent notion of time. Finally, [8] proposes a modular modeling methodology
to specify the timing behavior of real-time distributed component-based applica-
tions. It allows building models of resources and of software components, which
are reusable and independent from the applications that use them.

It is widely known that object-oriented frameworks promote reuse and re-
duce design effort [5]. This is demonstrated by the wide range of application
frameworks that have been proposed for many different application domains.
Surprisingly, there is relatively little work on application frameworks for the
design of real-time systems. An example is SESAG [5], an object-oriented ap-
plication framework for real-time systems. SESAG proposes five components in
the design of real-time systems, but neglects an explicit representation of time-
related concepts. The same holds for SIMOO-RT [1], which is an object-oriented
framework designed to support the whole development cycle of real-time indus-
trial automation systems. It is based on the concept of distributed active objects,
which are autonomous execution entities that have their own thread of control,
and that interact with each other by means of remote methods invocation. Other
frameworks have been proposed for specific domains: [14], for example, is a an
object oriented framework for GPGPU-based image processing.

The key idea behind our proposal is that time should be a full-fledged first-
class concept, which directly turns into basic architectural abstractions sup-
ported by a running machine [2]. The abstractions are reified by mechanisms
that an application can directly exploit to dynamically adapt its own policies by
relying on time-related knowledge both about the domain and its own behavior.
According to the principle of separation of concerns, the abstractions capture
three well distinguished concepts: time sensitivity, time consciousness and time
observability. A time sensitive activity is driven by events that are assumed to
model the flow of time (for example, it periodically samples incoming data).
A time conscious activity reasons about facts placed in a temporal context, no
matter when the computation is realized (for example, it performs off-line statis-
tics on timestamped historical data). A time observer activity observes “what
time it is” (for example, it observes the current time to timestamp the gen-
erated data). Performers are entities that accomplish time sensitive activities.
Performers may be further classified: a time conscious performer is a performer
whose time sensitive activity is also time conscious, a time observer performer
is a performer whose time sensitive activity is also time observer. A full-fledged
time-aware system is a collection of performers that are time conscious, time
observer and/or a combination of the two.

The identified time-related concepts turn into an object-oriented application
framework that provides the base classes to easily define domain-dependant
performers, the running machine that supports the real-time execution of the

An Object-Oriented Framework Supporting Real-Time Systems 77

performers, a set of scheduling algorithms and a simple configuration schema to
specify the initial system configuration. The framework has been developed in
the Java language, thus it is suitable to build soft real-time systems.

The paper is organized as follows: Section 2 presents key concepts related to
time; Section 3 illustrates how the identified abstractions are realized by the
object-oriented application framework; Section 4 presents some experimental
results; finally, Section 5 presents conclusions and outlines future work.

2 Basic Concepts

2.1 Core Concepts

Time sensitivity implies the generation of events modeling the flowing of the
time. As sketched in Figure 1, a timer is a source of ticks, which are periodic
events that are assumed to denote the flowing of the time. A timer ticks time
sensitive entities, that is, entities that must be periodically activated. Timers are
hierarchically arranged in a tree. A virtual timer is a timer with an associated
reference timer and whose period is the number of ticks it receives from its
reference timer for each tick it generates. In other words, a virtual timer is a time
sensitive entity that, in turn, behaves like a timer: it counts the events generated
by its reference timer and ticks the time sensitive entities it controls when the
count equals its period. The root of the hierarchy is a ground timer, which is
an autonomous source of ticks. The period of a ground timer can be interpreted
as the elapsed time between two ticks expressed in terms of an arbitrary “real”
reference time. The absolute period of a virtual timer is the number of ground
ticks for each tick of the virtual timer.

Time consciousness implies the temporal contextualization of facts.
As sketched in Figure 1, a timeline models the time as a numbered sequence
of atomic time grains. A grain is an elementary unit of time, identified by the
index of its position in the timeline. A time interval is a sequence of contiguous
time grains. A fact is a predicate about a subject. A timed fact is a fact that is
valid inside a time interval defined over a timeline. Timelines are arranged in a
tree. A virtual timeline is a timeline whose grains (virtual grains) have a dura-
tion that can be expressed as a time interval in an associated reference timeline.
The ground timeline is the root of the hierarchy (i.e., it does not have a refer-
ence timeline). Grains of the reference timeline (ground grains) have a duration
that can be interpreted as an elementary time interval in an arbitrary ground
reference time (e.g., the “real” time from the application viewpoint).

Finally, time observability implies to be aware about the current time. As
sketched in Figure 1, a clock associates a timer with a timeline. It defines the
duration of the grains of the timeline according to the period of the timer. It also
defines the concepts of past and future in the associated timeline by counting the
ticks generated by its timer. If c is the current count of the clock, the grains with
index less than c belong to the past of the timeline and the grains with index
greater than c belong to the future of the timeline. Present time corresponds to
the grain whose index is c.

78 F. Fiamberti, D. Micucci, and F. Tisato

Fact

TimedFact

Timeline

TimeInterval

constra ints
{in v: sel f.end .inde x >= self.b egin .inde x}

Grain

ind ex

constra ints
{in v: sel f.inde x >= 0}

VirtualTimeline

GroundTimeline
{1}

GroundGrain

VirtualGrain

constra ints
{du ratio n}

duration
inv: self.duration.timeline = self.timeline.reference

Timer

pe riod

VirtualTimerGroundTimer
{1}

TimeSensitiveEntity

Clock

cou nt

tim e sen sitivi tytim e sen sitivi ty

tim e co nscio usnesstim e co nscio usness

tim e ob serva bilitytim e ob serva bility

Performer

pe rform ()
tick()

TimeConsciousPerformer

ob serve ()
pe rform ()
exp ose()
tick()

TimeObserv erPe rformer

pe rform ()
tick()

en d1

0..*

ticks

1

1

{po st: cl ock.count = clo ck.co unt@pre +1}

0..1

reference

1

0..*

1.. * {ord ered}

1..*
{ordered }

0..1

ad vance s tim e

tim eline
1

rea ds cu rrent time from

rea ds/writes t imed facts from /to

1
0..*

{in v: cou nt = prese ntTi me.in dex}

pre sentT ime 1

/

0..*

de fined over

1

du ration 1

reference 1

0..*

be gin1

0..*

is valid in

1

Fig. 1. Core concepts

2.2 Performers

Performers are entities that accomplish domain-dependant time sensitive activ-
ities, thus they are time sensitive entities (see Figure 1). It follows that their
activation is triggered by the ticks of a timer. The performer activity is reified
by the perform operation, whose duration must be less than or equal to the
period of the ticking timer to fulfill real-time constraints.

As depicted in Figure 2, two states characterize a performer: waiting and
running. When its ticking timer ticks, the performer passes in the running state,
which implies the execution of its perform operation. When this operation is
completed, the performer passes in the waiting state.

An Object-Oriented Framework Supporting Real-Time Systems 79

wa iting running

- en try / p erformexe cutio n co mple ted

ticking t imer's peri od e xpired /tick()

Fig. 2. Performer states

wa iting

writing

- en try / e xpose

reading

- en try / o bserve

running

- en try / p erform
exe cutio n co mple ted

ticking t imer's peri od e xpired /tick()

Fig. 3. Time conscious performer states

Performers can be further classified. A time conscious performer reads and
writes timed facts from or to one or more timelines. A time observer performer
reads one or more clocks to get their current times. The states of a time observer
performer are the same as the ones of a pure time sensitive performer. Differ-
ent is the case of time conscious performers, since they deal with timelines. A
time conscious performer is expected to read facts, to perform some operations
(possibly on the read facts) and to write new facts. However, the duration of
the perform operation is in general not negligible and can be shorter than the
duration of the grain. Because time is discrete and what happens inside a grain
is not observable, facts cannot be written directly at the end of the perform
operation. Thus, a performer must read facts at the beginning of a grain and
can write facts only at the end of the grain. Because the end of a grain is the
same as the beginning of the next one, writing facts at the end of a grain is
equivalent to writing them at the beginning of the next grain. Therefore, a time
conscious performer writes facts at the beginning of the next grain. This behav-
ior is depicted in Figure 3. The expose operation writes timed facts to timelines,
whereas the observe operation reads timed facts from timelines.

3 The Application Framework

3.1 Performers

As sketched in Figure 4, the Performer interface reifies the performer as de-
fined in Subsection 2.2. Since the duration of the perform operation may not
be negligible and several performers may be competing for computing resources,

80 F. Fiamberti, D. Micucci, and F. Tisato

some mechanisms are required to explicitly manage preemption. For example, the
framework running machine (detailed in Subsection 3.3) must be able to suspend
the execution of a performer because another performer has been given higher
priority according to the used scheduling policy. At the aim, the Performer

interface defines the suspend method that suspends the execution of the per-
former and the execute method that starts/resumes its execution. Moreover,
the interface defines the getDuration method that returns the duration of the
performer execution, required for schedulability checks (see Subsection 3.5).

Two kinds of performers have been specified, shown in Figure 4: threaded
and state machine-based. Threaded performers (ThreadedPerformer class) have
been designed to provide full preemptive behavior: the perform method reifies
the perform operation and it is executed in a separate thread, which is resumed
or suspended by the framework running machine by means of the resume and
suspend methods respectively, whose implementations are based on methods
of the Java Thread class. Notice that the preemption mechanism is completely
controlled by the framework running machine rather than by the Java virtual
machine, because at every moment at most one among the performer threads
is left in the runnable state. Only the low-level context-switch management be-
tween a thread that has been explicitly suspended and a thread that has been
started or resumed is delegated to the Java virtual machine. Even though the
methods suspend and resume of the Java Thread class are deadlock-prone, they
can be used under the assumption that all the performers use timelines as the
only shared resources. This may result in a limitation, but the proposed one is
a prototype implementation aimed at validating the main ideas.

State machine-based performers (StateMachinePerformer class) have been
designed for use with cooperative preemption: the perform operation is reified
by an ordered set of methods (denoted stepn , where n is a positive discrete
number) whose executions can be assumed to be of negligible duration with
respect to the typical time scales of the system. Every time the performer is
given control of a processing resource, a single step is invoked synchronously. At
the end of the step, the performer relinquishes the control of the resource, thus
allowing the framework running machine to select the next performer to execute.

Observing Figure 4, it is possible to notice that all the methods are stereotyped
system. This stereotype means that the methods are designed to be used by the
framework running machine only, to prevent an improper use that would result
in an uncorrect behavior of the system. On the contrary, the user stereotype
(see for example Figure 5) means that the developer can safely use the method
when designing the perform or stepn methods of the performer.

Following the performer classification introduced in Subsection 2.2, the
TimeConsciousPerformer and TimeObserverPerformer interfaces have been
defined as sketched in Figure 5. Such interfaces define all the methods a time
conscious and a time observer performer respectively require. Since the Java
language does not support multiple inheritance, it was necessary to use inter-
faces and to implement the defined methods in delegate classes (respectively,
TimeConsciousPerformerDelegate and TimeObserverPerformerDelegate).

An Object-Oriented Framework Supporting Real-Time Systems 81

«in terfa ce»
Performer

«system »
+ exe cute () :vo id
+ suspend () :vo id
+ ge tDura tion() :lon g

Sta teMachinePerformer

- ste pMethods :Arra yList<Me thod>

«system »
+ exe cute () :vo id
+ suspend () :vo id

Runnab le
ThreadedPerformer

thread :Thre ad

«system »
+ exe cute () :vo id
+ suspend () :vo id
+ pe rform() :vo id

PerformerImpl

- du ration :lon g

«system »
+ ge tDura tion() :lon g

Fig. 4. Performer types for preemption

«in terfa ce»
Performer

«system »
+ exe cute () :vo id
+ suspend () :vo id
+ ge tDura tion() :lon g

«in terfa ce»
TimeConsciousPerformer

«u ser»
+ ge tTime dFacts(tim eLin eNam e) :ArrayList<Time dFact>
+ ad dTim edFa ct(tim eLin eNam e, ti med Fact) :void
+ rem ove Time dFact(time Line Nam e, tim edFa ct) :void

«system »
+ ob serve () :vo id
+ exp ose() :vo id

«in terfa ce»
TimeObserv erPe rformer

«u ser»
+ ge tCurre ntTi me(clockName) :lon g

TimeConsciousPerformerDelegate

+ ge tTime dFacts(tim eLin eNam e) :ArrayList<Time dFact>
+ ad dTim edFa ct(tim eLin eNam e, ti med Fact) :void
+ rem ove Time dFact(time Line Nam e, tim edFa ct) :void
+ ob serve () :vo id
+ exp ose() :vo id

TimeObserv erPe rformerDe lega te

+ ge tCurre ntTi me(clockName) :lon g

Fig. 5. Performer classification

Dealing with time conscious performers, the TimeConsciousPerformer inter-
face defines the methods a developer can use to manage timed facts on time-
lines. In particular, the getTimedFacts, addTimedFacts and removeTimedFacts

methods read, write and delete timed facts from timelines respectively. It is im-
portant to note that these methods work on local copies of timelines. Such copies

82 F. Fiamberti, D. Micucci, and F. Tisato

are synchronized with the “real” timelines by means of the system methods
expose and observe (reifying the homonymous operations described in Subsec-
tion 2.2) at the beginning of every grain. This ensures that all the performers
that are ticked at the same time have the same picture of the timelines inde-
pendently from the order of execution. Finally, the TimeObserverPerformer

interface defines the single method getCurrentTime, which a developer can use
to read a clock’s current time.

The framework provides a set of basic predefined classes that the developer
can subclass to build real-time systems. If the system only requires performers,
for every threaded performer the developer has to override the performmethod,
whereas for every state machine-based performer all the needed stepn method
must be implemented. If a full time-aware system is required, the framework
provides all the classes needed to define time conscious, time observer and the
combination of the two typologies, both for threaded and state machine-based
performers. Figure 6 shows such classes (highlighted in gray) in the threaded
case. Again, the developer is only expected to implement the perform method
for threaded performers, or the stepn methods for state machine-based ones.

TimeConsciousThreadedPerformer

+ pe rform() :vo id

TimeConsciousTimeObserverThreadedPerformer

+ pe rform() :vo id

TimeObserverThreadedPerformer

+ pe rform() :vo id

Runnab le
ThreadedPerformer

+ pe rform() :vo id

«in terfa ce»
TimeConsciousPerformer

«in terfa ce»
TimeObserv erPe rformer

«in terfa ce»
Performer

TimeConsciousPerformerDelegateTimeObserv erPe rformerDe lega te

Fig. 6. Predefined performer classes

3.2 Core Classes

Classes sketched in Figure 7 reify the concepts presented in Subsection 2.1,
except for the Performer interface described in the previous subsection.

An Object-Oriented Framework Supporting Real-Time Systems 83

Timer

- pe riod :long

«system »
+ tick() :void

GroundTimer
{1}

«system »
+ setEngi ne(En gine) :vo id

VirtualTimer

«u ser»
+ slo wDown(lon g) :void
+ spe edUp(lon g) :void

«system »
+ che ckExpired () :b oolea n

GroundTimerTicker

«system »
+ em itEve nt() :void

Clock

«system »
+ no w() :l ong

TimeLine

«system »
+ ad dTim edFa ct(Ti medFact) :void
+ rem ove Time dFact(Tim edFa ct) :void
+ ge tTime dFacts(Ti meIn terva l) :A rrayL ist<Ti med Fact>
+ ge tTime dFacts(lo ng) :ArrayList<Time dFact>
+ ge tAllT imed Facts() :A rrayLi st<Ti med Fact>

TimeInterval

«u ser»
+ ge tBegi n() :l ong
+ ge tEnd() :lon g
+ setBegi n(lon g) :void
+ setEnd(long) :voi d
+ setBoun ds(lo ng, lo ng) :void
+ con tain s(long) :bo olea n
+ intersects(Tim eInterval) :bo olean

«in terfa ce»
Performer

«system »
+ exe cute () :vo id
+ suspend () :vo id

TimedFact

«u ser»
+ getFact() :Fact
+ ge tTime Interval() :Tim eInte rval

Fact

- de script ion :Strin g

Physica lTicker
{1}

- ph ysica lPerio d :lo ng

tim e sen sitivi tytim e sen sitivi ty tim e ob serva bilitytim e ob serva bility

tim e co nscio usnesstim e co nscio usness

-co ntrol led 0..*

-re feren ceTim er
1

-clock

-pe rform ers

-tim edFacts

#g round Time r

-tim er

-tim eLin e

-tim eInterval

-fact

-clock

Fig. 7. Framework core classes

Dealing with time sensitivity, the GroundTimerTicker is an abstract class
modeling a source of periodic events for the GroundTimer (i.e., the ground timer
as defined in Subsection 2.1). A special kind of ticker is the PhysicalTicker,
an autonomous source of ticks that models the “real” reference time: it ticks
the GroundTimer when its physicalPeriod (expressed in milliseconds) elapses.
Another possible implementation of GroundTimerTicker may consist in a user
interface that provides controls to realize a step-by-step execution (simulated
time). It is important to note that the GroundTimerTicker is the only (possible)
connection with the “real” external time, which guarantees reproducibility of the
temporal system behavior in a testing environment.

The Timer class models the timer concept as specified in Subsection 2.1.
The GroundTimer reifies the ground timer, being the root of the virtual timers
hierarchy. The VirtualTimer class reifies the virtual timer. Each VirtualTimer

has one reference timer only and each Timer may have several controlled timers.
The tick method of a timer counts the number of received ticks and ticks the

84 F. Fiamberti, D. Micucci, and F. Tisato

controlled timers when the count equals the period. The VirtualTimer class
makes available to developers the slowDown and speedUpmethods to respectively
slow down or speed up virtual timers. A period variation implies a modification
of the activation speed of all the time sensitive entities ticked by the timer. A
period variation of a virtual timer VTi produces a corresponding variation of
the absolute periods of all the virtual timers in the subtree whose root is VTi.
Thus, it indirectly modifies the activation speeds of all the time sensitive entities
ticked by the timers belonging to the subtree. Moreover, the VirtualTimer class
maintains the list of the performers that it periodically ticks.

Dealing with time consciousness, the TimeLine class reifies a timeline. Its
methods handle timed facts on timelines. For this reason, they must be only
used by the framework running machine, allowing the performers to share a
consistent view of the timelines. Grains as defined in Subsection 2.1 are reified
by long values. The remaining classes model facts, time intervals and timed facts.

Finally, the Clock class enables time observability by realizing the concept of
current time over a timeline: it binds a Timer with a TimeLine. Its now method
returns the current time of the clock.

3.3 The Framework Running Machine

The running machine is the core of the framework in charge of executing per-
formers. Main classes are sketched in Figure 8.

The Engine class models the entity that triggers the execution of perform-
ers by means of its execute method (detailed in Subsection 3.4). It is a time
sensitive entity periodically ticked by the GroundTimer. In details, the engine is
responsible both of ordering the ticked performers in a queue and of executing
them. The ordering and execution of performers are not encapsulated inside the
Engine class, but they are delegated to the SchedulingPolicy and Dispatcher

classes respectively. This way, when building a time-aware system, the developer
may specify the preferred scheduling policy and the way in which the performers
are actually executed, which heavily depends on the available resources (e.g., the
number of CPU cores). The actual implementation of the framework includes
three specializations of the SchedulingPolicy, providing the following schedul-
ing policies: Rate Monotonic, First Come First Served and Earliest Deadline
First. Each class properly overrides the reordermethod whose aim is to reorder
the ticked performers. On the contrary, the framework provides one dispatcher
only, denoted SingleCoreDispatcher, designed to manage the execution of one
performer at a time on a single-core configuration. Its dispatch method sus-
pends the running performer (suspendmethod) and executes (executemethod)
the one that has been given highest priority by the scheduling policy.

3.4 Dynamics

Time sensitivity implies the generation of events at each unit of the “real” refer-
ence time and the corresponding update of the timer hierarchy. As sketched in
Figure 9, the PhysicalTicker ticks the GroundTimer when its physical period

An Object-Oriented Framework Supporting Real-Time Systems 85

Dispatcher
{1}

+ wa keUp () :vo id
+ dispatch () :void
+ removePerformer(Perfo rmer) :void

SingleCoreDispa tcher

+ dispatch () :void
+ rem ove Perfo rmer(Perfo rmer) :vo id

Engine
{1}

+ exe cute () :vo id

SchedulingPolicy
{1}

+ checkFeasib il ity(Collection<VirtualTimer>) :boo lean
+ checkFeasib il ity(Collection<VirtualTimer>, VirtualTimer, long) :bool ean
+ resched ule(L ist<Perform er>) :voi d

RMSchedulingPolicy

+ reo rder(List<Perfo rmer>, Ve ctor<Perfo rmer>) :vo id

Timer
GroundTimer

{1}

«in terfa ce»
Performer

-pe rform erQu eue

* {o rdere d}

-en gine

-di spatcher

-di spatcher-schedu lingPolicy

-executi ngPe rform er

Fig. 8. Running machine

expires. The GroundTimer ticks its controlled virtual timers when its counter
equals its period. In turn, each ticked VirtualTimer ticks its controlled virtual
timers every time its period expires and marks itself as expired. The update
process goes on until the leaves of the timer hierarchy have been reached. At
the end of the update process, the GroundTimer invokes the execute method of
the Engine that, as described later, ultimately executes the ticked performers.
At the end of the execute method, the ticker is ready to emit the next event.
If the ticker is an instance of PhysicalTicker, its thread suspends (sleep call)
until the time at which the next event must be emitted.

Going back to the Engine’s execute method (detailed in Figure 10), it:

1. Retrieves the expired timers
2. Gets the list of the performers ticked by each expired timer
3. Writes timed facts to timelines by calling the expose method of every ticked

time conscious performer
4. Reads timed facts from timelines and synchronizes them with the performers’

internal copies by calling the observe method of each ticked time conscious
performer

5. Synchronously invokes the reschedule method of the SchedulingPolicy,
to add the performers to the performerQueue (Figure 8) according to the
chosen scheduling policy

6. Wakes up the Dispatcher by means of an asynchronous call to the wakeUp
method

It is remarkable that both kinds of performers (threaded or state machine-based)
are dealt with in the same way by the framework running machine.

86 F. Fiamberti, D. Micucci, and F. Tisato

:Ph ysica lTicker :Ground Time r vt1 :VirtualTi mer vt2 :VirtualTi mer :En gine

opt

[re ceive dTicks % perio d == 0]

loop

[fo r all contro lled timers]

opt

[re ceive dTicks % p erio d == 0]

loop

[fo r all contro lled timers]

loop

[tru e]
tick()

tick()

tick()

exe cute ()

sle ep(ph ysica lPeriod)

Fig. 9. Timer update

3.5 System Start-Up

The framework provides an easy way to configure a time-aware application by
means of an XML file, where the developer can specify the timers, clocks, time-
lines and performers and their relations, the required scheduling policy and,
basing on computing resources, the dispatcher type.

When the system is started, the framework reads the configuration file and
instantiates all the specified objects with the required associations. Moreover, if
the durations of performer executions are provided, the framework performs a
schedulability check (if supported by the chosen scheduling policy). This anal-
ysis makes the developer aware of the actual schedulability of the built system
when sufficient conditions are met. If the schedulability check is not performed
(because no sufficient conditions are known for the chosen scheduling policy or
because the check has been explicitly disabled in order to allow the system to
execute even if it did not pass the check), the framework supports anyway the
execution. In this case, an exception is thrown when a deadline is missed. Finally,
the framework starts the system execution.

The schedulability check is also performed at every attempt to modify a vir-
tual timer’s period by means of a call to speedUp or slowDown. This is particu-
larly useful to ensure that schedulability is always preserved even in temporally
adaptive systems.

An Object-Oriented Framework Supporting Real-Time Systems 87

:En gine:Ground Time r :Vi rtualT ime r «in terfa ce»
:Ti meConsci ousPerform er

toBeSch edul ed:L ist :Schedu lingPolicy :Di spatcher

loop

[fo r all v irtua l time rs]

opt

[if expired]

loop

[fo r all t ime conscious perfo rmers]

loop

[fo r all t ime conscious perfo rmers]

opt

[if time conscious perfo rmers have bee n ticked]

exe cute ()

che ckExpired ()

ge tPerfo rmers()

exp ose()

ob serve ()

ad d(performe rs)

resched ule(to BeSched uled)

wakeUp()

dispatch ()

Fig. 10. Running machine behavior

4 Experimental Results

In order to check the functional correctness of the framework, we considered a
test set of performers and implemented it using several scheduling algorithms.
Threaded performers have been used, because this provides full preemption and
therefore the closest resemblance to the standard approach used in hard real-
time operating systems. Moreover, we used simple time-sensitive performers, as
properties related to time observation or consciousness are not of interest for
this kind of experimentation.

The algorithms we tested are: First Come First Served (FCFS), Rate Mono-
tonic (RM) and Earliest Deadline First (EDF). For the sake of simplicity, dead-
lines are assumed to be equal to the corresponding periods. The performers we
considered have the following properties:

– T1 with period P1 = 4 s and duration d1 = 1 s

– T2 with period P2 = 7 s and duration d2 = 4 s

88 F. Fiamberti, D. Micucci, and F. Tisato

This choice of periods and durations fulfills the sufficient conditions for schedu-
lability with RM and EDF [7], and is found to be schedulable with FCFS too.
Figures 11a, 11b and 11c show the results of the tests run with the three schedul-
ing algorithms. In all the cases, the system has been let run for 60 s, with a
ground timer period of 1 and a physical period for the ground timer ticker of 1
s. The relevant performer events (start, finish and context switches) have been
logged to a file and later reloaded for plotting. In the figures, dark gray and light
gray rectangles denote execution slices of T1 and T2 respectively. Note that the
logging of the low-level behavior related to preemption was very easy because,
even though the framework implementation uses standard Java threads, it does
not rely on the virtual machine thread management, but threads are controlled
directly by the framework by means of the methods provided by the Thread

class.
As an example of a more detailed analysis of the behavior of the scheduling

algorithm, Figure 12 shows the expanded view of the scheduling sequence for a
short time interval in the EDF case. In that figure, the arrows denote the ticks
of the virtual timers ticking the two performers. This view allows checking the
correctness of the scheduling according to the EDF algorithm in a simpler way:

1. At t = 0 both timers tick. The absolute deadline for the corresponding
execution of T1 is represented by the instant of the next tick of its ticking
timer, that is, t = 4. Similarly, the deadline for T2 is t = 7. Because the latter
deadline is farther in the future than the former, T1 is selected for execution

2. At t = 1, T1 ends its execution and the dispatcher selects T2 for execution.
T2 continues to run past t = 2 and t = 3, being the only performer in the
execution queue

3. At t = 4, a tick by the ticking timer puts T1 into the execution queue, with
deadline at t = 8. However, since the deadline for T2 is at t = 7, T2 continues
its execution until the end, at t = 5. Now T1 can run, ending at t = 6

4. At t = 7 a new tick by the timer causes the beginning of the execution of
T2, which is the only performer in the queue, with deadline t = 14

5. At t = 8, T1 is woken up again, with deadline t = 12. Because such a deadline
is closer than the one for T2, the execution of T2 is stopped and T1 is let run

6. At the end of T1’s execution, at t = 9, the suspended execution of T2 is
resumed until its end at t = 12, when a new execution of T1 is started

The results show that the framework correctly deals with the given set of per-
formers and the chosen scheduling algorithm. Moreover, some typical features
of the three considered algorithms can be easily recognized. As for the RM al-
gorithm, the execution of the performer with shorter period (which thus gets
the highest priority) is exactly regular (no jitter). The EDF algorithm produces
greater jitter for both performers, but it guarantees schedulability also for per-
former sets presenting higher CPU loads [7]. Finally, the FCFS algorithm shows
no preemption at all, as expected.

An Object-Oriented Framework Supporting Real-Time Systems 89

(a) FCFS

(b) RM

(c) EDF

Fig. 11. Diagram of scheduling behavior using different algorithms

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 12. More detailed diagram of scheduling behavior using the EDF algorithm

5 Conclusions and Future Directions

The paper presented an object-oriented application framework that supports
the design of real-time systems. The framework is based on a set of architectural
abstractions that model the temporal behavior of a system, allowing time-related
aspects to be explicitly treated as first-class concepts at the application level.

The framework provides a set of base classes that the developer will specialize
to code the domain-dependant behavior of the system. Moreover, the framework
internally supports the mechanisms for the proper temporal execution of the
system. Finally, the framework also provides an easy way to configure a time-
aware system by means of an XML file. This allows developers to concentrate
only on domain-related issues, because the temporal synchronization of activities
is completely managed by the framework.

Moreover, since the framework allows time-related aspects to be explicitly
treated as first-class objects, time-related concepts can be observed and partially
controlled. In particular, the execution speed of the activities can be dynamically
varied to meet fluctuating temporal constraints, thus promoting the realization
of time-aware adaptive systems.

The actual implementation of the framework in based on the Java language
and experimental results demonstrated that the framework correctly (from a
temporal point of view) manages the scheduling of a set of performers with dif-
ferent period and duration. Even though this Java implementation cannot always
be used to build actual real-time systems, this framework can help dramatically
for debugging.

90 F. Fiamberti, D. Micucci, and F. Tisato

In view of the achieved results, we are planning to implement the architecture
on a microcontroller, which would allow testing its usefulness for the development
of bare-metal, hard real-time systems.

In the same way, we are evaluating to implement the architecture as an in-
termediate layer to be used on top of an existing underlying real-time operating
system, to simplify the construction of time-aware applications.

References

1. Becker, L.B., Pereira, C.E.: SIMOO-RT-an object-oriented framework for the devel-
opment of real-time industrial automation systems. IEEE Transactions on Robotics
and Automation 18(4), 421–430 (2002)

2. Fiamberti, F., Micucci, D., Tisato, F.: An architecture for time-aware systems.
In: 2011 IEEE 16th Conference on Emerging Technologies & Factory Automation
(ETFA), pp. 1–4. IEEE (2011)

3. Gamatié, A., Gautier, T., Guernic, P.L., Talpin, J.P.: Polychronous design of em-
bedded real-time applications. ACM Trans. Softw. Eng. Methodol. 16(2) (2007)

4. Henzinger, T., Horowitz, B., Kirsch, C.: Giotto: a time-triggered language for em-
bedded programming. Proceedings of the IEEE 91(1), 84–99 (2003)

5. Hsiung, P.A., Lee, T.Y., Fu, J.M., See, W.B.: Sesag: an object-oriented application
framework for real-time systems: Research articles. Softw. Pract. Exper. 35, 899–
921 (2005)

6. Kristensen, B.: Architectural abstractions and language mechanisms. In: Proceed-
ings of 1996 Asia-Pacific Software Engineering Conference, pp. 288–299 (1996)

7. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM 20, 46–61 (1973)

8. Lopez, P., Medina, J., Drake, J.: Real-time modelling of distributed component-
based applications. In: 32nd EUROMICRO Conference on Software Engineering
and Advanced Applications, SEAA 2006, pp. 92–99 (2006)

9. Mallet, F.: Clock constraint specification language: specifying clock constraints
with UML/MARTE. Innovations in Systems and Software Engineering 4(3), 309–
314 (2008)

10. de Niz, D.: Diagrams and Languages for Model-Based Software Engineering of
Embedded Systems: UML and AADL,
http://www.aadl.info/aadl/documents/UML_AADL_Comparison.pdf

11. OMG: MARTE Modeling and Analysis of Real-Time and Embedded systems
(2009), http://www.omg.org/spec/MARTE/1.0/PDF/

12. Peraldi-Frati, M., DeAntoni, J.: Scheduling multi clock real time systems: From
requirements to implementation. In: 14th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC
2011), pp. 50–57 (2011)

13. SAE: AADL Architecture Analysis and Design Language (2009),
http://www.aadl.info

14. Seiller, N., Singhal, N., Park, I.K.: Object oriented framework for real-time image
processing on gpu. In: 17th IEEE International Conference on Image Processing
(ICIP 2010), pp. 4477–4480 (2010)

15. Stankovic, J.: Misconceptions about real-time computing: a serious problem for
next-generation systems. Computer 21(10), 10–19 (1988)

16. Zhao, Y., Liu, J., Lee, E.A.: A programming model for Time-Synchronized dis-
tributed Real-Time systems. In: 13th IEEE Real Time and Embedded Technology
and Applications Symposium, RTAS 2007, pp. 259–268. IEEE (2007)

http://www.aadl.info/aadl/documents/UML_AADL_Comparison.pdf
http://www.omg.org/spec/MARTE/1.0/PDF/
http://www.aadl.info

Measuring Test Case Similarity to Support Test

Suite Understanding

Michaela Greiler, Arie van Deursen, and Andy Zaidman

Delft University of Technology, The Netherlands
{m.s.greiler,arie.vandeursen,a.e.zaidman}@tudelft.nl

Abstract. In order to support test suite understanding, we investigate
whether we can automatically derive relations between test cases. In par-
ticular, we search for trace-based similarities between (high-level) end-
to-end tests on the one hand and fine grained unit tests on the other.
Our approach uses the shared word count metric to determine similarity.
We evaluate our approach in two case studies and show which relations
between end-to-end and unit tests are found by our approach, and how
this information can be used to support test suite understanding.

1 Introduction

Modern software development practice dictates early and frequent (automated)
testing. While automated test suites are helpful from a (continuous) integration
and regression testing perspective, they lead to a substantial amount of test
code [16]. Like production code, test code needs to be maintained, understood,
and adjusted upon changes to production code or requirements [8,10,13].

In light of the necessity of understanding and maintaining test suites, which
can become very costly due to the large amounts of test code, it is our stance
that tool support can reduce the burden put on the software and test engineers.
The V-model from Figure 1 shows that different levels of tests validate different
types of software artifacts, with each level contributing to the large amount of
test code. Figure 1 also shows that, ideally, requirements can be traced all the
way to source code, making it easier to perform impact analysis, i.e., determining
what the impact of a changing requirement is on the source code. The right side
of the V-model however, the test side, does not have similar tool support.

In this paper we propose to support engineers by helping them to understand
relationships between different types of test suites. As an example, an automated
test suite can include “end-to-end” tests, exercising an application from the user-
interface down to the database, covering functionality that is meaningful to the
end user.1 The test suite will typically also include dedicated unit tests, aimed
at exercising a very specific piece of behavior of a particular class. Suppose now
a requirement changes, entailing a modification to the end-to-end test, which
unit tests should the software engineer change as well? And vice-versa, if a unit
test is changed, should this be reflected in an end-to-end test as well?

1 We deliberately did not use the term acceptance test, as it is commonly associated
with tests executed by the customers/users.

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 91–107, 2012.
� Springer-Verlag Berlin Heidelberg 2012

92 M. Greiler, A. van Deursen, and A. Zaidman

Requirements End-to-end tests

... ...

Design Integration tests

Code Unit tests

Traceability
Te

st
Sim

ila
rit

y

Fig. 1. The V-model for testing

Our goal is to develop an automated technique for establishing relations be-
tween test cases, in order to assist developers in their (test suite) maintenance
activities. To reach this goal, we employ dynamic analysis [4]. We collect call
traces from test executions, and use these to compute a similarity value based
on the shared word count metric. The resulting technique, which we call test
connection mining, can be used to establish connections between test cases at
different levels. An implementation of our technique is available via a framework
called the Test Similarity Correlator.

We evaluate the approach in two case studies, by elaborating on the useful-
ness of the approach to improve the understanding. We analyze how measuring
similarity based test relations can help to (1) find relevant tests by showing test
relationships, (2) understand the functionality of a test by describing high-level
test cases with related unit test cases and (3) reveal blank spots in the investi-
gated unit test suites.

This paper is structured as follows: in Section 2, we discuss our test execution
tracing approach. In Section 3, we describe the similarity metrics we use to
compare traces. Subsequently, we describe our approach and its implementation
(Section 3) as well as the set-up of our case studies (Section 4). The two case
studies are covered in Sections 5 and 6. We conclude with discussion, related
work, and a summary of our contributions in Sections 7–9.

2 Tracing and Trace Reduction

Test connection mining first of all requires obtaining execution traces with rele-
vant information of manageable size. This section describes the specific execution
trace we use and the trace reduction techniques we apply.

2.1 Tracing Test Executions

Before the test run, the production and test code are instrumented. Subsequently,
during the test run we obtain an execution trace comprised of various types of
events : (1) test execution events represent the execution of a test method, (2)
set-up and tear-down events mark the execution of a method which is either used
for test set-up or tear-down, (3) method execution events signalling the execution

Measuring Test Case Similarity 93

of a public method within the code under test and (4) exception thrown events
indicating that an exception has been thrown.

For the similarity measurements it is important to be able to distinguish be-
tween production and test code. Otherwise, executions of test helper methods
will appear in the trace and render the test cases as less related. Due to the
common practice to put the test code in a separate package (e.g., test.jpacman),
we simply filter executions of methods belonging to test code out during instru-
mentation. If test and production code are within the same packages, test classes
can be annotated and correctly addressed during instrumentation.

2.2 Handling Mocks and Stubs

When mocks or stubs are used, care has to be taken to correctly trace calls to
mocked classes and map these calls to the corresponding original class.

A first issue is that using mocking frameworks can have the effect that an
automatically created mock-object is not part of the instrumented package. For
example, by using the JMock2 library interfaces and classes defined to be mocked
are automatically wrapped in a proxy class which is located in the same pack-
age as the class directing the mocking operation, which will usually be the test
class or a helper class within the test package. Because we do not trace execu-
tions of methods defined in the test package, these classes have to be addressed
specifically. We do so by keeping track of a list of mocked types.

Mocking also plays a role for tracing the production code, as the mocked and
unmocked classes have to be mapped to allow identifying their similarity. There-
fore, we have to indicate that a method on a mockable object has been invoked.
To that end, we check whether the runtime type of the target is contained in
the list of mocked classes. If yes, we further investigate whether the method
intercepted is part of the mockable type, since a class implementing a mockable
interface can have additional methods. Therefore, we derive recursively, via re-
flection, the set of methods belonging to this type including all methods defined
by it and its (potential) super-types. Only if the method intercepted is an actual
method of the mockable type, we discovered a mockery execution. As such, we
add it to the trace and mark it with a mockery mark.

Finally, we need to neutralize those mock and stub calls. As illustrated in
Listing 1.1, an execution of a method of a mocked type can be traced as the
execution of an inner class within the (test) class defining the mock operation.
As this differs from the trace events left behind by the execution of a method
of the actual type, we render them as similar, by using the mockery marks set
during tracing. Note also the actual type might differ from the mocked type by
being the implementation of a type or extending a common type. We inspect
the trace and replace all executions of methods of an actual type, as well as the
executions of the mocked type by their common (super) type. For example, the
traces in Listing 1.1 would be mapped to “void Sniper.join()”.

2 http://www.jmock.org

http://www.jmock.org

94 M. Greiler, A. van Deursen, and A. Zaidman

Listing 1.1. Trace differences with or without mocking

//Execution of method join of the mocked interface Sniper
void TestClass.�Proxy1.join()

//Execution of method join of class AuctionSniper implementing Sniper
void AuctionSniper.join()

2.3 Trace Reduction

Trace reduction techniques are important in order to reduce the size of traces to
improve performance and scalability, and to help reveal the key functionality of
the test case, e.g., by reducing common functionality or noise [3]. We adopt the
following five reduction techniques before starting our analysis:

Language based Reduction. The traces are reduced to only public method execu-
tions and do not comprise any private or protected methods. Furthermore, only
the production code is fully traced; for the test code only test method execution
events are traced to be able to separate individual test cases from an entire test
run.

Set-up and Tear-Down Reduction. As set-up and tear-down methods do not
explicitly contribute to the specific focus of a unit test, and are usually shared
by each test case within a test class, all method executions taking place during
set-up or tear-down are removed.

Shared Word Reduction. This trace reduction focuses on helping identify the
core functionality of a test case, by removing trace events that are omnipresent
in almost all test traces (defined by a variable threshold).

Complement Reduction. This reduction focuses on reducing the trace size by
removing calls within the trace of interest that are not existing in any of the
test traces to compare to. Although, after such a reduction target traces will
be calculated as more similar to the source trace, the reduction itself does not
influence the information perceived useful for ranking the target traces with
respect to each other.

Unique Set of Calls. This technique reduces all trace events within a trace to a
unique set of events. Because information such as order and position of events
are not preserved this reduction is only useful for similarity measurements that
do not take such information into account.

3 Determining Similarity Measurements

The second step involved in test connection mining consists of computing trace
similarities. In particular, we compute the similarity between a source trace te
(e.g., from an end-to-end test) and a target trace tu (e.g., from a unit test).

As similarity metrics we compared (1) shared word count [14], (2) Leven-
shtein distance [12] and (3) pattern matching based on the Knuth-Morris-Pratt
algorithm [12]. From an initial experiment we observed that all three metrics
provided similar results, which is why we continue with the shared word count
in the remainder of this paper.

Measuring Test Case Similarity 95

The shared word count measurement [14] assesses the number of tracing events
that two test execution traces have in common. The similarity between a source
trace and a target trace is calculated as the number of tracing events comprised
in both test traces.

3.1 Relevancy Support Based on Occurrence

Some tests are related to other tests, because they test common functionality.
Using this piece of knowledge, we can improve our results, by marking these
more general tests as less important. Vice versa, by giving a test appearing less
often a high impact, results with more specific functionality are ranked higher.
We do so by multiplying the similarity measurement for a specific trace tu with
the total number of test cases it has been compared to, and dividing this by the
number of times the trace appeared as a result. We also use the average similarity
of test case tui to rank similar results. For example, if target test cases tu1 and
tu2 have the same similarity with te, than the test case with the smaller average
similarity among all tej is ranked first.

3.2 Implementation

We implemented the various trace reduction techniques and similarity measure-
ments presented in this paper in a Java based framework called Test Similarity
Correlator.3 Our tool offers an API to steer customized test similarity measure-
ments, varying in trace reduction, thresholds and similarity calculations.

To instrument the test execution we use the AspectJ4 framework. We offer
three different annotations to facilitate tracing of execution of test-methods, set-
up and tear-down methods. Test Similarity Correlator comprises several aspects,
addressing join points to weave in our tracing advices, including the aspect to
address code generated by the mocking library JMock.

4 Set-Up for Case Studies

4.1 Research Questions

To evaluate the usefulness of test connection mining, we conducted an explorative
study based on two case studies. In these case studies, we aim at answering the
following questions:

RQ1 How do the associations found by test connection mining relate to associ-
ations a human expert would establish?

RQ2 Are the associations found useful for a typical test suite understanding
task, i.e., getting familiar with the test suite of a foreign system?

RQ3 How does mocking influence the similarity measurements?
RQ4 What are the performance characteristics, both in time and in space, of

the analysis conducted?

3 http://swerl.tudelft.nl/bin/view/Main/TestSimilarityCorrelator
4 http://www.eclipse.org/aspectj

http://swerl.tudelft.nl/bin/view/Main/TestSimilarityCorrelator
http://www.eclipse.org/aspectj

96 M. Greiler, A. van Deursen, and A. Zaidman

To answer these questions, we select a subject system that is shipped with both
a functional test suite as well as a unit test suite. We manually compile a con-
ceptual mapping between unit and functional test cases, and compare these to
the mappings found through test connection mining automatically.

The first case study is used to assess RQ1 and RQ4, whereby in the second
case study we focus on RQ2 and RQ3.

4.2 Technique Customization

The specific trace reduction configuration (see Section 2) we use in the case
studies consists of the following steps.

Before calculating the trace similarity, traces are reduced by using the Set-up
and Tear-Down reduction, followed by the Shared Word, and the Complement
reductions. The order of the reduction is important and influences the ranking
of the results. For example, if all unit test cases call a method “quit()” as part of
their tear down method, but only one unit test actually uses this method during
test execution, the application of first the Shared Word reduction and then the
Set-up and Tear-Down reduction would eliminate this call from the trace. The
Shared Word reduction technique can be customized by a threshold influencing
how many traces must comprise a trace event before it is removed.

For similarity measurements based on shared word count, which does not take
the order of events into account, the traces are further reduced to their unique
set of events.

5 Case Study I: JPacman

As first subject system we use JPacman,5 a simple game written in Java inspired
by Pacman, used for educational purposes at Delft University of Technology since
2003. Key characteristics of JPacman are listed in Figure 2.

JPacman follows the model-view-controller architecture. Each class in the
model package comes with a (JUnit) unit test class, which together comprise 73
unit test cases. The test suite makes use of several test patterns described by
Binder [1], using state machines, decision tables, and patterns such as polymor-
phic server test (reusing superclass test suites at the subclass level). This results
in a line coverage of 90% in the model package, as measured by Cobertura.6

Code size (lines) 4,000
Test code size (lines) 2,000
No of classes 26
No of test classes 16
No of unit tests 73
No of functional tests 14

Fig. 2. JPacman characteristics

Given [context]
And [some more context]...

When [event]
Then [outcome]

And [another outcome]...

Fig. 3. JPacman Test Scenarios

5 Version 4.4.4, dated October 2011. JPacman can be obtained for research and edu-
cational purposes from its author, 2nd author of this paper.

6 http://cobertura.sourceforge.net/

http://cobertura.sourceforge.net/

Measuring Test Case Similarity 97

The functional test suite is directly derived from a set of JPacman user sce-
narios written in behavior-driven development7 style. These scenarios are of the
form given in Listening 3. There are 14 such scenarios, each of which is trans-
lated into a JUnit test case. The resulting functional test cases exercise around
80% of the user interface code and around 90% of the model code.

5.1 Obtaining the Conceptual Mapping

JPacman’s main developer created a conceptual mapping in advance. The key
criterion to identify a relation between an end-to-end test t and a unit test u was
the question whether the behavior of u is important in order to understand the
behavior of t. The conceptual mapping contains both positive incidences (im-
portant connections to be established) and negative ones (unlikely connections
that would be confusing). In most end-to-end (ETE — numbered from ETE01
to ETE14) test cases, we had at least 5 positive and 9 negative connections.

While the mapping obtained can be considered a useful baseline, it should
be noted that it is incomplete: it only identifies clearly connected and clearly
disconnected test pairs. The remaining tests are categorized as undecided. Fur-
thermore, we tried to be as specific as possible: relations to “infrastructure” unit
test cases relevant to many end-to-end tests were not included.

5.2 RQ1: Comparison to Conceptual Mapping

We used a spreadsheet containing 14 × 73 matrices to study the differences
between the conceptual mapping as well as the ones obtained through our au-
tomated analysis. Due to size restrictions, we can not show all results of the
measurements8. Besides saving space, showing the top 5 results is also realistic
from a practical point of view, because in practice a user of the tool would also
look primarily at the highest ranked results. In Table 1 we show for each end-
to-end test the 5 most similar unit tests based on the shared word count metric.
A ranking is indicated as optimal in case it is marked as highly related in the
conceptual mapping and it is ranked high (i.e. top match). Incidences marked as
related by the expert which are high ranked are evaluated as good. Results of the
category undecided are subjected to additional manual analysis: the results are
indicated as ok only if the relation is strong enough to be justified, and labeled
as nok otherwise. Unrelated results ranked highly, as well as (highly) related
results ranked low, are also evaluated as nok.

The overall impression is that the automated analysis provides a useful ap-
proximation of the manually obtained mapping. Looking at all the results for
each end-to-end test case, we found that:

– For all but one end-to-end test (i.e. ETE02), the top match is ranked as the
first or second automatically calculated result.

7 http://dannorth.net/whats-in-a-story/
8 The complete results are available at
http://swerl.tudelft.nl/twiki/pub/Main/TestSimilarityCorrelator/

similarityResults.zip

http://dannorth.net/whats-in-a-story/
http://swerl.tudelft.nl/twiki/pub/Main/TestSimilarityCorrelator/similarityResults.zip
http://swerl.tudelft.nl/twiki/pub/Main/TestSimilarityCorrelator/similarityResults.zip

98 M. Greiler, A. van Deursen, and A. Zaidman

Table 1. Top 5 ranked unit tests per end-to-end test for JPacman

Test Case (no.) match Test Case (no.) match Test Case (no.) match
1 Move to empty cell & undo 2 Move beyond border 3 Move to wall
MovePlayer (23) optimal FoodMove (44) ok DxDyImpossibleMove (15) optimal
UndoEmptyMove (17) optimal FoodMoveUndo (39) ok SimpleMove (22) good
UndoDxDy (18) optimal UndoFoodMove (19) ok DieAndUndo (26) optimal
UndoFoodMove (19) ok PlayerWins (24) ok DieAndRestart (25) optimal
Apply (38) optimal wonSneakPaths (35) ok MovePlayer (23) good
4 Eat food & undo 5 Win and restart 6 Get killed and restart
FoodMoveUndo (39) optimal SetUp (12) ok DieAndRestart (25) optimal
UndoFoodMove (19) optimal PlayerWins (24) optimal PlayerWins (24) ok
UndoFood (47) optimal FoodMoveUndo (39) good wonSneakPaths (35) ok
FoodMove (44) optimal FoodMove (44) optimal Updates (37) ok
MovePlayer (23) good DxDyPossibleMove (14) ok UndoFoodMove (19) ok
7 Monster to empty cell 8 Monster beyond border 9 Monster to wall
16 UndoMonsterMove optimal Wall (70) optimal EmptyCell (69) optimal
MoveMonster (28) optimal MonsterPlayer (73) ok MonsterFood (72) ok
Updates (37) ok MonsterFood (72) ok MonsterPlayer (73) ok
OutOfBorder (68) ok EmptyCell (69) optimal Wall (70) optimal
FoodMove (71) ok MonsterKillsPlayer (27) ok MonsterKillsPlayer (27) ok
10 Monster to food 11 Monster to player 12 Suspend
MoveMonster (28) optimal MonsterPlayer (73) optimal SuspendRestart (29) optimal
Updates (37) ok 70 Wall ok Start (21) good
Apply (66) good MonsterFood (72) ok SneakPlaying (33) ok
FoodMoveUndo (67) optimal EmptyCell (69) good SuspendUndo (30) optimal
FoodMove (71) ok MonsterKillsPlayer (27) optimal SneakHalted (36) good
13 Die and Undo 14 Smoke
DieAndUndo (26) optimal SetUp (12) good
MovePlayer (23) good PlayerWins (24) optimal
wonSneakPaths (35) ok FoodMoveUndo (39) ok
SimpleMove (22) ok wonSneakPaths (35) ok
DieAndRestart (25) optimal FoodMove (44) ok

– Within the top 10 results only one unit test case marked unrelated is listed.
– All remaining results ranked within the top 10 (i.e. from the undecided cat-

egory) are sufficiently related to the end-to-end tests to justify investigation.
– No relations are missing as all test cases marked as relevant by the expert

have been identified as related. Thereby, 80% of all test cases marked as re-
lated have been ranked within the upper half of the results showing similarity
and within the top 30% of overall results.

– 92% of all tests marked as unrelated correctly map to no similarity by the
measurements. The remaining unrelated tests revealed weak connections and
have been ranked in the bottom half of the results, except for one test (14).

Correct Identifications. Top matches. The top two results of the measure-
ments in most cases also contain the top match for an end-to-end test case. For
example, the end-to-end test involving a keyboard event to move the player to
the right and then undoing that move (ETE01), is connected to a unit test actu-
ally moving the player. As another example, ETE03 attempts to move through
a wall (which is impossible), and is connected to a unit test addressing the cor-
rect positioning of the Pacman’s mouth after attempting an impossible move.
As dying is a type of an impossible state, connections to dying are also correct.

Moving Monsters vs. Players. Some groups of test cases are moving players (i.e.
44, 45, 46), whereas other tests (72, 73, 74) are moving monsters. In the

Measuring Test Case Similarity 99

conceptualmapping, testsmoving players are related to ETE tests 1-6, andmarked
as unrelated for ETE tests 7-11, whereby tests moving players are related the op-
posite way. These relations respectively non-relations are correctly identified by
the measurements, except for test case 74, which we will outline below.

Surprises. Moving Monsters. According to the expert, a group of tests (72,
73, 74) all move monsters, and should lead to similar rankings. Surprisingly, one
test (74) performs differently from the rest, and also differs from the conceptual
mapping. After investigation, it became apparent that this test is not as focused
as expected and desired by the expert. The test even concludes with a method
which is never followed by an assertion statement. This investigation revealed a
clear “test smell” and pointed the expert to a place in need of a refactoring.

Sneak paths. A surprising connection is provided for the “monster to player”
test (ETE11), which is connected to “wonSneakPaths” (35). This relates to unit
tests aimed at testing for sneak paths in state machines, following Binder’s test
approach for state machines [1]. A sneak path is an illegal transition, and the
JPacman sneak path test cases verify that illegal 〈state, event〉 pairs do not lead
to a state change. To do so, the test case brings the application in the desired
state (e.g., Playing, or Died), and then attempts to trigger a state change.

The process of bringing the application in a given state, however, may bear
similarity with other test cases. For example in unit test 35, the player first
wins. Then multiple steps, such as the player getting caught by a monster or the
player running into a monster, are triggered which should not change the state
from “won” to “lost” anymore. As this triggers the player to die or being killed,
this sneak path test case shows up as being related not only to end-to-end tests
triggering winning situations. A better separation of set-up logic (bringing the
application in the right state) and executing the method-under-test would help
reveal more focused associations.

Deviations. Moving beyond border. ETE02 is the only test which does not map
to a top match within the first 5 results. The first top matches are found from
rank 7 onwards. Reasons for this behavior are that ETE02 is one of the smallest
end-to-end tests involving a move, and that testing the behavior for “beyond
border” covers branches that only lead to different data, not different calls made.
All 5 high ranked results correctly involve doing a move. After investigation of
the results, the expert reports that the unit test cases indicated as related in the
conceptual mapping do a bit more than only a move (e.g. an undo operation),
which is why our approach gives these unit tests a lower rank.

Move to Wall. ETE03 contains the only unrelated connection within the top
10 results: on rank 9 is the “possible move” test. On the other hand, counterpart
test “impossible move” is a top match.

Disparate test sizes. The main deviations (tests marked as unrelated being
ranked higher than tests marked as related) are due to extreme size differences in
unit tests. The expert easily relates narrow focused tests, whereby the automatic
approach, by design of the shared word count, gives preference to broader tests
(which share more events). A prime example is the “wonSneakPaths” test, which

100 M. Greiler, A. van Deursen, and A. Zaidman

is related to many end-to-end tests as it triggers a broad range of functionality.
The more equal the amount of functionality tested by the unit test cases is, the
better the results revealed by the automatic approach.

Additional Lessons Learned. API violations. The smoke test (ETE14) con-
sists of a series of events applied to JPacman. As such, it is fairly heterogeneous,
doing many different things. This makes it hard to come up with a reasonable
positive mapping to unit tests. On the other hand, some unit test cases are not
relevant to any end-to-end test, including the “smoke test”. As an example, tests
57, 58 and 59 deal with using the API in a wrong way, which should generate an
appropriate exception. Seeing that these test cases are not related to the smoke
test gives confidence that such violations are not possible at a higher level.

Human vs. automated mapping. Fine-grained deviations between tests, like
state and specific object instantiations, have been used by the expert to relate
tests to each other. For example, for the expert the determining events for re-
lating unit test cases involving moving to end-to-end tests have been the actual
actors (objects). The automated approach is able to differentiate similar to an
expert between objects. On the other hand, the importance of states for hu-
man mappings is not equally reflected by the automated approach as it assigns
every event the same importance. Identifying and prioritizing states before the
similarity calculation is performed could improve the approximation to the “hu-
man” conceptual mapping. As we will see in the second case study, if tests are
small and focused, the impact of state changes reflects well in the similarity
measurements.

5.3 RQ4: Performance Characteristics

Since JPacman is the larger case study, we will answer RQ4 here. The traces
obtained for both case studies are relatively small: the smallest one is 1kb and
comprises 2 trace events, the largest being 62Kb and 700 trace events (after ap-
plying trace reduction). Similarity calculations within this dimension are com-
puted within 10 seconds for the whole test suite. Even the results for the smoke
test of JPacman, comprising approximately 60,000 trace events (4Mb) before
reduction, are almost instantly ready after applying trace reduction techniques.

6 Case Study II: Auction Sniper

The second case study revolves around a system developed in strict test-driven
development (TDD) manner called Auction Sniper. Its test suite also makes
heavy use of mocking techniques in order to isolate unit tests. In contrast to the
first case study, where we compare the test relations with a conceptual mapping
of an expert, in this case study we investigate the usefulness of the technique
to help an outsider understand test relations (RQ2). In addition, we investigate
how our technique can cope with the influence of mocking techniques (RQ3).

Auction Sniper is an application which allows to automatically bid in auctions.
Auction Sniper watches different auctions and increases the bid in case a higher
bid of another bidder arrived until the auction closes or a certain limit has

Measuring Test Case Similarity 101

been reached. This system is used as an example in the book “Growing Object-
Oriented Software, Guided by Tests” by Freeman et al. [6] to describe TDD
techniques. The software and the related tests are explained in detail in this
book and are publicly available9. The system comprises approximately 2,000
lines of code. The test suite has 1,240 lines of code, which constitute 37 unit
tests, 6 end-to-end tests and 2 integration tests.

6.1 Obtaining an Initial Understanding

We analyzed the book and derived an initial understanding of the relations
between end-to-end tests and unit tests. The authors always start with an end-
to-end test, which kick-starts each development circle for a new functionality,
whereby the authors explain each end-to-end test “should have just enough new
requirements to force a manageable increase in functionality” [6]. Then, the
scaffold implementation of the new functionality follows. Prior to implementation
of detailed functionality, the authors develop and explain the necessary unit tests.

Based on this iterative development, we map each unit test case developed
within the cycle of an end-to-end (ETE) test as related to this ETE test. We
refine this first mapping by identifying the differences of the ETE test cases
based on their code. We mapped some unit tests not covered in the book based
on their name. In the following we summarize the functionality of the six ETE
tests. All unit test case names are given in Table 4 which can be helpful during
comprehension of the presented results.

The End-to-End Tests. ETE tests 01 to 06 are actually enhancements of each
other, involving a lot of common functionality. The main steps are: 1. An auction
sells an item, 2. An auction sniper joins this auction. 3. Then, the auction closes,
4. Finally, the auction sniper shows the outcome of an auction.

In addition, test cases 02 to 05 place actual bids. Only test case 06 deviates
from the rest, as it does not close the auction and sends an invalid message.
Another main difference between the test cases is the state in which the sniper
is when the auction closes. In ETE01 the sniper is in the state “joining” when
the auction closes, which results in a lost auction. In ETE02 the sniper makes
a bid, but loses in the “bidding” state. In ETE03 the sniper makes a higher
bid, and wins in the “winning” state. ETE04 simply tests that a sniper can
bid on two items. The functionality of ETE03 and ETE04 is so similar that
we will treat them as one test subsequently. In ETE05 the sniper is already in
“losing” state before the auction closes, because of a stop price. ETE06 tests
failure reporting. The test sends an invalid message to the auction and causes
the application to throw and handle an error, but leaves the auction unclosed.

6.2 RQ2: Suitability of Measurements for Understanding Test
Relations

After measuring the similarity of the tests, we investigate each unit test via code
inspection, and assess the ranking and the mapping, which results in the final

9 https://github.com/sf105/goos-code

https://github.com/sf105/goos-code

102 M. Greiler, A. van Deursen, and A. Zaidman

Listing 1.2. Test case: hasEnoughColumns

@Test public void
isWonWhenAuctionClosesWhileWinning() {
assertEquals(SniperState.LOST, SniperState.JOINING.whenAuctionClosed());
assertEquals(SniperState.LOST, SniperState.BIDDING.whenAuctionClosed());
assertEquals(SniperState.WON, SniperState.WINNING.whenAuctionClosed()); }

conceptual mapping illustrated in Table 4. Based on this detailed investigation
we finally assess the rankings of the similarity measurements. Below we outline
correct identifications, surprises and deviations of the measurements with our
initial understanding by sketching groups of unit tests. We will see that the
automatic mapping reflects the final mapping derived after in-depth investigation
very accurately, and is thus useful for supporting an outsider in understanding
the test suite and its relations. The rankings and assessments for the best 5
results are illustrated in Table 2. For test case ETE06 we present the top 10
results to illustrate the effect of the relevancy support (see Table 3). A ranking
is indicated as optimal only in case it is highly related and ranked within the top
first results. Otherwise, results highly related, or results related are indicated as
okay (i.e., ok) in case they are within the first 5 results. On the other hand,
in case of a related result, which is not highly related, but is ranked before the
highly related ones, it is marked as not okay (i.e., nok).

Correct Identifications. Report Close of Auction. Unit test cases 02, 08,
and 09 revolve around reporting the closing of an auction, and are thus indeed
related to all ETE tests except to ETE06. Nevertheless, each of them provokes a
different state of the sniper when the auction closed event takes place. Therefore,
the mapping should be the strongest for ETE01 with test 02, ETE02 with test
08, ETE3/04 with test 11, and ETE05 with test 09. The measurements for these
relations accurately reflect those subtle differences.

Notifies Bid Details. Tests 33 and 34 are related to all of the ETE tests,
except for ETE01, which does not make a bid. As ETE02 exclusively focuses
on bidding, the relation is correctly identified as the strongest for this test. For
other tests they appear on ranks 6 and 7.

Mapping per Focus. Test case 03 which only bids correctly achieves the high-
est rank for test ETE02. Test case 10, related to winning an auction, maps to
ETE03/04. Tests 05, 06 and 09, which address losing before the auction is closed
are also correctly identified as highest-ranking results for ETE05. Test cases 35-
37, and 12-15 are testing the reporting of a failing auction. They are correctly
ranked as highly related to ETE06. ETE06 is a good example to demonstrate
the impact of the relevancy support based on occurrence, described in Section
3.1. Test cases 33 and 34 share more steps with ETE06 than for example test
cases 35 and 37. Both achieve just a similarity ranking of 0.2. Nevertheless, tests
35 and 37 reflect much stronger the focus of ETE06. Because 35 and 37 are never
indicated as related to any other ETE test, the relevancy support pushes them
to the top results. The new ranking of, for example test 35, is calculated as its

Measuring Test Case Similarity 103

Table 2. Top 5 similarity rankings for ETE01 to ETE05

ETE 01 ETE 02 ETE 03 & 04 ETE 05
test sim avg match test sim avg match test sim avg match test sim avg match
02 1.20 1.73 optimal 03 0.55 1.95 optimal 11 0.64 3.15 optimal 05 0.55 1.95 optimal
09 0.67 2.50 ok 08 0.55 2.88 optimal 06 0.55 2.13 ok 06 0.55 2.13 optimal
08 0.67 2.88 ok 11 0.45 3.15 nok 08 0.45 2.88 ok 09 0.55 2.50 optimal
11 0.67 3.15 ok 33 0.44 1.85 ok 10 0.44 1.57 ok 08 0.45 2.88 ok
20 0.50 0.61 ok 34 0.44 1.85 ok 15 0.44 1.77 ok 11 0.45 3.15 ok

similarity divided by the number of times it has been ranked as a result among
all tests (i.e., 0.2 divided by 1/6).

Surprises. Winning and State Transitions. A surprise was the ranking of test
case 20 “isWonWhenAuctionClosesWhileWinning” within the results of ETE01,
as the name suggests it is rather related to winning (i.e., ETE03/04). Inspecting
the code, illustrated in Listing 1.2, reveals that the name is misleading as it tests
different auction outcomes. Two times the auction is lost, contrary to the name,
and it also triggers the rarely addressed state of ETE01 (i.e., “joining” when the
auction is closed). Test case 18 also triggers the transition between each stage
and therefore should have a low relation to each of the test cases.

Not bidding, bidding and losing. Test cases 05 and 06, contrary to their name
suggestions, do place bids and lose and are therefore also related to other test
cases than ETE06. Actually only test case 32 does not make a bid, which is
correctly mapped to ETE01 and gets low ratings for the other tests. Since test
case 06 also reaches the winning state before losing, the indicated relation to
ETE03/04 in understandable.

Defects and a Failing Auction. We expected test cases 21, 22 to be related to
ETE06. But, tests 21 and 22 create a different failure as they put the system
in a faulty state and assert a specific exception to be thrown. Such a behavior
is not triggered in the end-to-end test, and consequently the non-appearance of
those test cases for any ETE is correct.

Deviations. Reporting winning. Test case 11, which reports that an auction
has been won after closing is ranked as the third result for ETE02 even though
this end-to-end test addresses losing. The common events, such as starting an
auction, bidding for an item and closing an auction dominate the ranking.

Additional Lessons Learned. Common functionality. Some functionality is
common to all tests. For example, tests of the class “SniperTablesModelTest”
check the rendering of the user interface. Tests 01, 16, and 17 trigger common
functionality such as adding a sniper and listeners. Such trace events are reduced
and can yield to empty test cases. Traces reduced to empty traces are marked
as common functionality in the ranking.

6.3 RQ3: Handling Mocking

The test suite of Auction Sniper makes heavy use of the mocking library JMock.
Without explicitly addressing mocked types during the analysis test cases in-

104 M. Greiler, A. van Deursen, and A. Zaidman

Table 3. Similarity rankings for ETE06 with and without support

ETE 06
test sim avg match test sims avg match
12 0.50 1.59 optimal 13 1.20 0.20 optimal
15 0.50 1.77 optimal 35 1.20 0.20 optimal
14 0.40 1.22 optimal 36 1.20 0.20 optimal
33 0.40 1.85 ok 37 0.60 0.10 optimal
34 0.40 1.85 ok 12 0.60 1.59 optimal
03 0.40 1.95 ok 15 0.60 1.77 optimal
05 0.40 1.95 ok 14 0.48 1.22 optimal
06 0.40 2.13 ok 33 0.48 1.85 ok
10 0.30 1.57 nok 34 0.48 1.85 ok
08 0.30 2.88 nok 03 0.48 1.95 ok

volving mocked classes are ranked very low or as unrelated even though they
are highly related. For example, without the mockery aspect test case 35 is not
linked to test ETE06 as the runtime types differ. By addressing mockery classes
as described in Section 2.2 we can correctly identify test relations.

7 Discussion

Lessons Learned and Limitations. Separation of Set-up and Tear-down.
Consistent usage of set-up and tear-down methods improves the similarity re-
sults, as it helps in revealing the core functionality and focus of test cases. Test
suites which a priori do not use set-up and tear-down methods to structure their
test might yield less accurate results.

Performance. The performance of the approach is an important criterion es-
pecially if the size and complexity of the system under study increases. During
our two case studies, we experienced no performance issues with the systems un-
der study. For larger systems further trace reduction techniques might become
necessary [3]. On the other hand, performance depends more on the size of the
traces (i.e., amount of functionality covered by a test), than on the number of
tests. Test case size is independent of the complexity and size of the systems.

Future Work. Assertions. At this stage, our technique does not address the
meaning of assertions. As future work, we would like to investigate how the
meaning of assertions can influence the ranking of a test case.

Test suite quality inspection. The discovered relations do not only help to
see similarity of test cases, they also help to assess the quality of the test suite
and discover areas for improvement, e.g., identifying unit test cases that do too
much, or identifying behavior which is not addressed by any end-to-end test.

User study. We aim to further investigate the usefulness of our tool through
a user study that allows actual developers and testers to work with it.

Threats to Validity. Concerning external validity, our case studies address
relatively small Java systems. Scalability to larger case studies is a key concern
that we aim to address in our future work, making use of case studies from the
Eclipse plug-in domain we used in earlier studies (Mylyn, EGit) [8].

Measuring Test Case Similarity 105

Table 4. Final conceptual mapping of end-to-end tests to unit tests

Test Case Name Test Case Relation
sniperJoinsAuctionUntilAuctionCloses – ETE01
notifiesAuctionClosedWhenCloseMessageReceived ≡ 32 highly related
reportsLostWhenAuctionClosesImmediately ≡ 02 highly related
isWonWhenAuctionClosesWhileWinning ≡ 20 related
reportAuctionClosesX ≡ 08, 09, 11 related
sniperMakesAHigherBidButLoses – ETE02
reportsLostIfAuctionClosesWhenBidding ≡ 08 highly related
bidsHigherAndReportsBiddingWhenNewPriceArrives ≡ 03 highly related
doesNotBidAndReportsLosingIfSubsequentPriceIsAboveStopPrice ≡ 05 related
doesNotBidAndReportsLosingIfPriceAfterWinningIsAboveStopPrice ≡ 06 related
reportAuctionClosesX ≈ 09, 11 related
sniperWinsAnAuctionByBiddingHigher – ETE03 and sniperBidsForMultipleItems – ETE04
reportsWonIfAuctionClosesWhenWinning ≡ 11 highly related
reportsIsWinningWhenCurrentPriceComesFromSniper ≡ 10 highly related
doesNotBidAndReportsLosingIfPriceAfterWinningIsAboveStopPrice ≡ 06 related
reportAuctionClosesX ≡ 08, 09 related
sniperLosesAnAuctionWhenThePriceIsTooHigh – ETE05
reportsLostIfAuctionClosesWhenLosing ≡ 09 highly related
doesNotBidAndReportsLosingIfSubsequentPriceIsAboveStopPrice ≡ 05 highly related
doesNotBidAndReportsLosingIfPriceAfterWinningIsAboveStopPrice ≡ 06 highly related
doesNotBidAndReportsLosingIfFirstPriceIsAboveStopPrice ≡ 04 highly related
continuesToBeLosingOnceStopPriceHasBeenReached ≡ 07 highly related
(reportAuctionClosesX) ≡ 08, 11 related
sniperReportsInvalidAuctionMessageAndStopsRespondingToEvents – ETE06
notifiesAuctionFailedWhenBadMessageReceived ≡ 35 highly related
notifiesAuctionFailedWhenEventTypeMissing ≡ 36 highly related
writesMessageTranslationFailureToLog ≡ 37 highly related
reportsFailedIfAuctionFailsWhenBidding ≡ 12 highly related
reportsFailedIfAuctionFailsImmediately ≡ 13 highly related
reportsFailedIfAuctionFailsWhenLosing ≡ 14 highly related
reportsFailedIfAuctionFailsWhenWinning ≡ 15 highly related
ETE 01 – 06
transitionsBetweenStates ≡ 18 related
ETE 02 – 06
bidsHigherAndReportsBiddingWhenNewPriceArrives ≡ 03 related
ETE 02 - 05
notifiesBidDetailsWhenCurrentPriceMessageReceivedFromOtherBidder ≡ 33 related
notifiesBidDetailsWhenCurrentPriceMessageReceivedFromSniper ≡ 34 related
Common functionality and UI
UI related tests (e.g. test of class SniperTablesModelTest) ≡ 23 − 31 related
Listeners and common states ≡ 01, 16, 17 related
Functionality not addressed by any ETE
defectIfAuctionClosesWhenWon ≡ 21 unrelated
defectIfAuctionClosesWhenLost ≡ 22 unrelated

With respect to internal validity, the main threat consists of the manually
obtained conceptual mapping. Creating such a mapping is inherently subjective,
as illustrated by the process we applied to the Auction Sniper case study.

In order to reduce threats to reliability and to improve repeatability, both our
tool and the systems under study are available to other researchers.

8 Related Work

An initial catalogue of test smells negatively affecting understanding was pre-
sented by Van Deursen et al., together with a set of corresponding refactor-
ings [5]. Later, a thorough treatment of the topic of refactoring test code was

106 M. Greiler, A. van Deursen, and A. Zaidman

provided by Meszaros [10]. Van Rompaey et al. continued this line of work by
studying automated analysis of these smells [13].

Tools for assisting in the understanding of test suites have been proposed by
Cornelissen et al., who present a visualization of test suites as sequence dia-
grams [2]. Greiler et al. propose higher level visualizations, aimed at assisting
developers in seeing plug-in interactions addressed by their test suites [8].

Galli et al. have developed a tool to order broken unit tests [7]. It is their
aim to create a hierarchical relation between broken unit tests, so that the most
specific unit test that fails can be inspected first. In essence, their technique
allows to steer and optimize the debugging process.

Rothermel and Harrold discuss safe regression testing techniques in [11]; re-
gression test selection techniques try to find those tests that are directly respon-
sible for testing the changed parts of a program and subsequently only run these
tests. Hurdugaci and Zaidman operationalize this in the IDE for unit tests [9].

Yoo et al. cluster test cases based on their similarity to support experts in
test case prioritisation, which outperforms coverage-based prioritisation [15].

9 Conclusion

In this paper we showed how a combination of dynamic analysis and the shared
word count metric can be used to establish relations between end-to-end and unit
tests in order to assist developers in their (test suite) maintenance activities.

We evaluated our test connection mining techniques in two case studies, by
elaborating the usefulness of the approach to improve understanding. We saw
that after using the proposed trace reduction techniques our approach produces
accurate test mappings, which can help to 1) identify relevant tests, 2) under-
stand the functionality of a test by describing high-level test cases with related
unit test cases and 3) reveal blank spots in the investigated unit test suites.

Contributions. The contributions of this paper are 1) tracing and trace re-
duction techniques tailored for handling test code, including test specific events
such as set-up, tear-down and mocking 2) an assessment of the usefulness of
the rankings based on two case studies, 3) the development of a Test Similarity
Correlator, a framework for mining test connections.

References

1. Binder, R.V.: Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison-Wesley Professional (October 1999)

2. Cornelissen, B., van Deursen, A., Moonen, L., Zaidman, A.: Visualizing testsuites
to aid in software understanding. In: Proc. of the European Conference on Software
Maintenance and Reengineering (CSMR), pp. 213–222. IEEE CS (2007)

3. Cornelissen, B., Moonen, L., Zaidman, A.: An assessment methodology for trace
reduction techniques. In: Proc. Int’l Conf. Software Maintenance (ICSM), pp. 107–
116. IEEE CS (2008)

Measuring Test Case Similarity 107

4. Cornelissen, B., Zaidman, A., van Deursen, A., Moonen, L., Koschke, R.: A sys-
tematic survey of program comprehension through dynamic analysis. IEEE Trans-
actions on Software Engineering 35(5), 684–702 (2009)

5. van Deursen, A., Moonen, L., van Den Bergh, A., Kok, G.: Refactoring test code.
In: Extreme Programming Perspectives, pp. 141–152. Addison Wesley (2002)

6. Freeman, S., Pryce, N.: Growing Object-Oriented Software, Guided by Tests, 1st
edn. Addison-Wesley Professional (2009)

7. Galli, M., Lanza, M., Nierstrasz, O., Wuyts, R.: Ordering broken unit tests for
focused debugging. In: Int’l Conf. Softw. Maintenance (ICSM), pp. 114–123. IEEE
(2004)

8. Greiler, M., Groß, H.G., van Deursen, A.: Understanding plug-in test suites from
an extensibility perspective. In: Proceedings Working Conference on Reverse En-
gineering (WCRE), pp. 67–76. IEEE CS (2010)

9. Hurdugaci, V., Zaidman, A.: Aiding developers to maintain developer tests. In:
Conf. Softw. Maintenance and Reengineering (CSMR), pp. 11–20. IEEE CS (2012)

10. Meszaros, G.: xUnit Test Patterns: Refactoring Test Code. Addison-Wesley (2007)
11. Rothermel, G., Harrold, M.: Empirical studies of a safe regression test selection

technique. IEEE Transactions on Software Engineering 24(6), 401–419 (1998)
12. Stephen, G.A.: String searching algorithms. World Scientific Publishing Co. (1994)
13. Van Rompaey, B., Du Bois, B., Demeyer, S., Rieger, M.: On the detection of

test smells: A metrics-based approach for general fixture and eager test. IEEE
Transactions on Software Engineering 33(12), 800–817 (2007)

14. Weiss, S., Indurkhya, N., Zhang, T., Damerau, F.: Text Mining: Predictive Methods
for Analyzing Unstructured Information. Springer (2004)

15. Yoo, S., Harman, M., Tonella, P., Susi, A.: Clustering test cases to achieve effective
and scalable prioritisation incorporating expert knowledge. In: Proceedings of the
Eighteenth International Symposium on Software Testing and Analysis, ISSTA
2009, pp. 201–212. ACM, New York (2009)

16. Zaidman, A., Van Rompaey, B., van Deursen, A., Demeyer, S.: Studying the co-
evolution of production and test code in open source and industrial developer test
processes through repository mining. Empir. Softw. Eng. 16(3), 325–364 (2011)

Enhancing OSGi with Explicit, Vendor

Independent Extra-Functional Properties�

Kamil Ježek, Premek Brada, and Lukáš Holý

Department of Computer Science and Engineering
University of West Bohemia

Univerzitni 8, 30614 Pilsen, Czech Republic
{kjezek,brada,lholy}@kiv.zcu.cz

Abstract. Current industry and research organisations invest consid-
erable effort to adopt component based programming which is promis-
ing rapid development process. Several issues, however, hinder its wider
adoption. One of them is the practical use of extra-functional proper-
ties (EFPs) that research community aims at integrating to component
composition but for which industrial applications are still rare. When
extra-functional properties are not considered or mis-interpreted, incon-
sistencies in application performance, security, reliability, etc. can result
at run-time. As a possible solution we have proposed a general extra-
functional properties system called EFFCC. In this paper we show how
it can be applied to an industrial component model, namely the OSGi
framework. This work analyses OSGi from the extra-functional proper-
ties viewpoint and shows how it can be enhanced by EFPs, expressed as
OSGi capabilities. The proposed benefits of the presented approach are
seamless integration of such properties into an existing framework and
consistency of their interpretation among different vendors. This should
support easier adoption of extra-functional properties in practice.

Keywords: Component, Extra-functional, Compatibility, Binding,
OSGi.

1 Introduction

With today’s need for large and complex software, industry and the research
community invest considerable effort to component based programming. De-
spite partial success, several issues remain unsolved. One of the important ones
concerns the usage of extra-functional properties (EFPs) that should improve
compatibility verifications of the components.

On the one hand, EFPs and their use in component models are an area of
active research. On the other hand, practically used industrial models such as

� The work was partially supported by the UWB grant SGS-2010-028 Advanced
Computer and Information Systems and by the Czech Science Foundation project
103/11/1489 Methods of development and verification of component-based applica-
tions using natural language specifications.

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 108–123, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Enhancing OSGi with Explicit Vendor Independent EFPs 109

OSGi or Spring only slowly adopt systematic EFP support. One of the reasons
may be wide misunderstanding of what EFPs are [9] that eventually leads to
only a partial and non-systematic EFPs adoption in practice. As a suggested
solution, a general mechanism consolidating EFPs understanding among differ-
ent vendors as well as different applications, called EFFCC1, has been proposed
in our previous work2 [13]. In this paper, the application of the mechanism to
OSGi as a demonstration of its abilities is presented.

Dealing with the discrepancies in EFP terminology, the following generic def-
inition will be used within this paper while other possible options of EFP un-
derstanding will be omitted:

An extra-functional property holds any information, explicitly provided
by a software system, to specify a characteristic of the system apart from
its genuine functionality to enrich client’s understanding of usage of the
system supported by technical [computational] means.

This paper first overviews other related approaches in Section 2. Then, a sum-
mary of the current OSGi specification and its abilities to express EFPs (accord-
ing to the given definition) is provided in Section 3. Finally, Section 4 introduces
the application of EFPs in OSGi using the EFFCC mechanism [13] and discusses
pros and cons of the approach.

2 Related Work

EFP systems have been addressed from several directions and a lot of approaches
have been proposed. For instance, one group of approaches proposes independent
descriptions of EFPs [7,1,17,11,18]. While this group splits the EFP description
from their application, a different group concerns modelling of the EFPs as a
part of a software design [16]. These groups treat EFPs rather independently.
On the other hand, comprehensive component models exists which take EFPs
natively into account [2,27].

Concerning EFP specification, one of the approaches is to employ an ordi-
nary programming code. Examples are: NoFun [7] describes EFPs in a general
manner first, then the definitions are applicable to software systems; CQML
[1] uses named Quality Characteristic with their constraints assigned in Qual-
ity Statement and put into Quality Profile on a component; CQML+ [26] is an
extension of CQML allowing to define dependencies of components on runtime
environment. These dependencies also allow to express Deployment Contracts
[17]. There also exist a lot of specialized languages: TADL [18] for security and
safety, HQML [11] for web-development, or SLAng for service-level agreement
[15].

QML/CS deals with EFPs in terms of a language as well as formal approach.
A system is modelled using Temporal Logic of Actions (TLA+) [16] that specifies

1 Extra-functional properties Featured Compatibility Checks.
2 Project hosted at: http://assembla.com/spaces/efps

110 K. Ježek, P. Brada, and L. Holý

a system as states with traces among the states. The system is called feasible
(fulfilling requirements) if the combination of intrinsic, resource and container
models implies the extrinsic ones. Other approaches cover component models
and frameworks with native EFP support.

Palladio [2] comprises a software architecture simulator, which focuses on
performance, reliability, maintainability, and cost for the architecture realiza-
tion prediction. All of these can be analysed in the Palladio Component Model
allowing to make the balance among EFP to achieve desired trade-offs. It is
able to accomplish a model-to-model transformation of an architectural model
to a stochastic process algebra automatically and then evaluate the algebraical
expressions analytically. It uses extended UML State Diagrams to model states
of a system with performance characteristics on the diagram edges. Palladio al-
lows deriving the right software architecture design, on the other hand stochastic
probabilities and models settings rely on correct human estimation.

Procom [27] defines Attributable elements that consist of a type and one or
more values. The ability to store multiple values for one attribute comes from the
Procom’s concept of refining attributes during the development process. The val-
ues consist of data, metadata and conditions under which each attribute is valid.
Data is a generic structure which can be specialized into simple data types or a
reference to an object. It also enables attribute compositions to get an attribute
for the composite component as well as defining the attribute value for composite
component explicitly. User is able to select the attributes by versions or config-
uration filters. The selection may comprise a number of conditions combining
AND/OR operators, attribute metadata and Latest, Timestamp, and Version-
name keywords. As a result, Procom can define EFPs for different deployment
runtime and compose complex properties.

SOFA 2.0 [5] has components and connectors and the key abstraction is meta-
modelling using MOF [21]. SOFA’s concepts such as automatic reconfiguration,
behaviour specifications or dynamic evaluation of an architecture at runtime
extends a simple functionality and it may be understood as extra-functionality.

Further, specialised component models are: Robocop [19,3] dealing with real-
time characteristics for portable or embedded devices; PECOS [8,20] using Petri
Nets to model timing and synchronising behaviour of a system. Developers sep-
arately model behaviour of each component and the components are composed
using a scheduler to coordinate the composition of Petri Nets.

An issue also being solved is modelling of EFPs. For instance, the OMG group
standardized a UML profile [22] covering the quality of services, or MARTE [23]
for real-time and embedded systems. Furthermore, UML Profiles for NoFun [4]
or CQML [1] have been developed.

On the other side, widely used industrial frameworks OSGi (detailed in Section
3), Spring [28], EJB [6] use advanced features such as localisation, transaction,
user privileges, synchronisation, composition specification (e.g. @Qualifier an-
notation in Spring allows to specialise candidates to the Dependency Injection)
that may be understand as EFPs. However, they still do not provide a systematic
EFP approach.

Enhancing OSGi with Explicit Vendor Independent EFPs 111

3 Overview of Extra-Functionality in OSGi

The OSGi specification [25] is an approach to modularised Java-based applica-
tions adopting several aspects of component based programming as it has been
stated by Szyperski [29]. In a nutshell, a component is a Java .jar file (possibly)
developed by third parties and independently deployable to its runtime.

OSGi introduces the concept of Bundles as the components. The bundles en-
capsulate main communication mean, services, in a form of Java classes imple-
menting Java interfaces. Each bundle explicitly exports and imports its packages
and explicitly registers and obtains services. The package and service based com-
munication is the main concept and other extensive means such as remote service
calls will be omitted here. OSGi runtime then accesses only these packages and
services while other ones are hidden. The hiding is technically realised by us-
ing separate classloaders for each bundle. This considerably distinguishes OSGi
bundles from the standard Java .jar files where only coarse-grained accessibility
modifiers (public, private or protected) are provided.

The OSGi specification allows to express restrictions that influences binding
of the packages as well as the service lookup. Although they are not called EFPs
in the OSGi specification, they may be understood as EFPs.

It is worth mentioning OSGi supports e.g. security concerning signed .jar files,
certificates or Remote services calls. Although it goes behind genuine services’
function, this work concerns only the properties extending the binding process.

3.1 Motivation: Components Enriched with EFPs

This section shows an example component application enriched with EFPs. The
example has been inspired by the Nokia adaptation of the web browser product
line [12]. In Nokia’s project, components to develop a variety of browsers have
been designed. The components follow a structure of web browsers presented in
[10] a subset of which is shown in Fig. 1. For simplicity, only the sub-part rendering
web pages loaded via the Internet is shown. Following Fig. 1, RenderingEngine
loads raw HTTP data via the Networking interface and renders HTML pages us-
ing CSS, HTML and JS components. The UI interface accesses platform dependent
libraries to draw User Interface primitives. Finally, the pages are provided by the
RenderingQuery interface. Their consequent processing is omitted here.

Fig. 1 furthermore shows some EFPs (shown as UML notes) expressing se-
lected web browser characteristics. The EFPs concern several disjunctive domain
dependent areas. A first domain covers performance (a network speed and a
speed to process HTML, CSS and JavaScript), a second domain covers different
operating systems (a user interface library – ui_library and dynamic HTML
support – dhtml – depending on graphical libraries provided by the operating
system) and the last one covers domain constant characteristics (JavaScript, CSS
and HTML versions).

Section 3.2 will show ability and limitation of expressing such properties in
current OSGi while Section 4 will show our approach aiming at avoided the
detected limitations.

112 K. Ježek, P. Brada, and L. Holý

Fig. 1. Example Web Browser Components

3.2 OSGi Parameters, Attributes and Filters

The following parts of this section show four OSGi aspects that have been lo-
calised as allowing to express certain EFPs.

Parametrised Exports and Imports. OSGi binding process matches exported and
imported packages that consist of a name and a set of parameters. For instance, a
bundle implementing operations on HTML pages for a web browser may declare
the following package export:

Bundle-Name: HTML

Export-Package: cz.zcu.kiv.web.html;version=1.3,html_version=5.0

A bundle rendering the web pages requires the html package to parse the web
pages:

Bundle-Name: RenderingEngine

Import-Package: cz.zcu.kiv.web.html;version=1.3;

resolution:=optional,html_version=5.0

A variety of built-in as well as user defined parameters may be used. In this ex-
ample, version and resolution are built-in parameters while html_version is
a user-defined one. Specialising fine-grained binding constraints, html_version
has been used to define a HTML version these bundles provide/require.

Although these parameters may express EFPs, OSGi lacks their common un-
derstanding. Some parameters have a specialised meaning, however, the meaning
is defined only in the OSGi text specification with no technical support. User
defined parameters are only ad-hoc definitions. Hence, it is a question of how
these parameters may be used across different vendors. For instance, if one ven-
dor provides the html_version parameter, a different vendor does not have to
even know of the existence of the parameter.

Provided and Required Capabilities. In contrary to the packages’ parameters,
the capabilities are attributes and filters counter elements. The attributes are
typed name-value pairs while filters are LDAP conditions over the attributes.

Enhancing OSGi with Explicit Vendor Independent EFPs 113

In addition, the capabilities are bound to name spaces that are supposed to
explicitly assign them with semantics.

For instance, a bundle from the web browser domain responsible for drawing
user interfaces may require some graphical libraries:

Bundle-Name: UIBackand

Require-Capability: osgi.ee;

filter:="(|(ui_library=GTK)(ui_library=Qt))"

The example shows an LDAP filter that constraints ui_library to either GTK
or Qt libraries. The Execution Environment name space (osgi.ee) is an OSGi
predefined one, however, users may also use their own ones.

Provided capabilities are set as OSGi runtime parameters or by other bundles.
Using the latter case, a bundle may provide the ui_library (a different name
space signals it is not a Runtime Environment attribute):

Bundle-Name: UILibrary

Provide-Capability: cz.zcu.kiv.web.ui;ui_library=Qt

A set of predefined name spaces exists3 as well as any user defined one may be
created. Despite the name spaces aim at providing the parameters with semantic,
it still lacks of common understanding. There is no technical mean to distribute
existing name spaces across vendors.

Parametrised Services. Each bundle may register a service and the registration
may contain a set of attributes. An LDAP filter may be then used to obtain
the service according to the attributes used in its registration. This principle is
equivalent to the capabilities.

OSGi API is called within the bundles’ source code to register and get the
services. This approach is awkward because a developer of one bundle should
have to study the source code of another bundle to find out which parameters
are actually used.

A way to register and get a Networking service stating its Network speed
attribute may look as follows:

Hashtable ht = new HashTable();

ht.put("network_speed", 10);

bundleContext.registerService(Networking.class, this, ht);

It is assumed that bundleContext is a reference to the BundleContext class
specified in OSGi. The different bundle may obtain it according to a filter con-
dition:

Collection<ServiceReferences<Networking>> services = bundleContext

.getServiceReferences(Networking.class,

"(network_speed >= 10)");

3 Current list is available at http://www.osgi.org/headers (2011).

114 K. Ježek, P. Brada, and L. Holý

Notice that apart from the capabilities, there is no name space definition. To-
gether with different concepts to express import/export parameters, filters used
for capabilities and non-transparent usage of parametrised services, this brings
yet another ambiguity to the concept.

Parametrised Declarative Services. Introduction of Declarative Services to OSGi
specification aims at avoiding drawbacks of Services mentioned above. The reg-
istration concept has been replaced by Dependency Injection defined in XML
files distributed with bundles.

Although the explicit publication of Declarative Services outside the source
code is considerable improvement, the attribute-filter concept remains un-
changed. The XML files contain specific elements to express the attributes and
filters described in the OSGi Service Compendium [24].

4 Our Approach: Explicit Extra-Functional Properties in
OSGi

Although OSGi contains variety of properties that may be considered as EFPs,
it has been already mentioned its approach is weak in terms of semantics, gen-
eral understanding, exchange and evaluation of EFPs. In this section a novel
approach aimed at these deficiencies will be presented. The approach uses a gen-
eral extra-functional properties framework called EFFCC [13] applied to OSGi.

In nutshell, EFFCC is the implementation of a general extra-functional prop-
erties support consisting of remotely accessible EFPs storage, tools to apply the
EFPs to components and an embeddable evaluator. The EFPs storage is imple-
mented as a JEE4 Server and the tools are Java desktop applications described in
our previous work [13]. The embeddable evaluator provides a generic evaluation
mechanism also implemented in Java that is included into existing Java-based
component frameworks via a set of extension points.

Fig. 2 overviews the main usage concept: describing the image from left to
right, independent (worldwide) vendors develop their components accessing com-
mon EFPs storage first. Another vendor then uses the components to assembly
an application verifying the components are compatible for the assembly.

Another EFFCC novelty is the split of component development and deploy-
ment phases in which different process of EFPs work-flow is used. First, the EFPs
are loaded from the repository (using the tool) via the Internet and applied to
components in the development phase. The EFPs are copied from the repository
and mirrored on the components which furthermore causes the components may
be used in the off-line mode without the Internet connection in the assembly or
deployment phase.

Main advantage of this solution lies in the repository that unifies EFPs and
thus improves EFPs’ understanding among the vendors. Apart from any kind of
written documentation, the EFP understanding is here supported by a technical
mean instantly available to general usage.

4 Java Enterprise Edition.

Enhancing OSGi with Explicit Vendor Independent EFPs 115

Fig. 2. Development Process with EFFCC on OSGi

As a result, this concept should prevent misunderstanding and improve con-
solidation of EFPs used among components provided by different vendors and
integrated to a final application. As it will be shown later, the repository is capa-
ble of holding more detailed information about EFPs than e.g. the OSGi name
spaces.

In this work, EFFCC is embedded to OSGi enriching its binding process
explicitly considering the binding parameters, attributes and filters as EFPs.
The main idea, which will be detailed later in this work, is that the OSGi binding
integrates data from the EFP repository unifying their semantics.

The EFFCC mechanism uses approach that splits component model depen-
dent and independent part. The independent part holds the most logic related
to EFPs’ operations in an abstracted form while the dependent part is a light-
weighted layer customising the abstract form to the concrete component model
implementation. A benefit is that a common logic may be re-used among multi-
ple component models while a little of additional code must be written to apply
the approach to a concrete component model. A detailed description of the inde-
pendent part, abstract EFPs’ definitions and the evaluator algorithm have been
already given in our previous work [13] while this work details the application
of the component model dependent part, in particular to OSGi.

4.1 Structure of the EFP Data

Although the abstract EFP definitions have been already formalised in [14], a
short overview will be provided here to support the fluency of the text. The
repository stores EFPs as tuples e = (n,Ed, γ, V,M) where tuple elements re-
spectively represent: n the name of the property, Ed = {ei | i = 1 · · ·N,N > 0}
a set of properties deriving (composing) this property, γ : V ×V → ZZ a gamma
function comparing two property values, V data type and M extensible set of
meta informations.

The repository itself is named Global Registry and formalised as: GR =
(id, name, {ei | i = 1 · · ·N,N > 0}). It means the repository has a unique

116 K. Ježek, P. Brada, and L. Holý

identifier (id) a human readable name (name) and it lists the EFPs. One Global
Registry represents one domain of usage and it is furthermore segmented to a set
of sub-domains for different area-of-usage. Each such a sub-domain is called Local
Registry formalised as: LR = (id,GR, name, {LRi | i = 1 · · ·N,N > 0}, S,D)
holding a unique identifier (id), a reference to its Global Registry (GR), a name
(name), a set of other Local Registries (LRi) that this Local Registry aggregates.

S and D are sets holding values assigned for this particular sub-domain.
Shortly, the S set assigns a name to property values giving them semantic and
rounding their precision while the D set assigns formulas evaluating the derived
properties from the deriving ones. Due to the space constrains, detail formalisa-
tion is not provided here and may be found in [14].

Fig. 3. A Mirrored Repository Assigned to a Bundle

4.2 Specifying EFPs as OSGi Attributes

The application of this EFP mechanism in OSGi is shown in Fig. 3. Its realisation
stores the component model independent EFP data as an XML file distributed
together with each bundle. In addition, this EFP data are linked to a bundle
in the manifest file format or the declarative service XML descriptor via the
existing means described in Section 3. It creates a set of all possible assignments
F ×E × VA where F is a set of all component features (e.g. Bundle packages or
services), E is a set of properties from current GR (e ∈ E ∈ GR) and VA is a
set of assigned values that includes a value from LR, directly assigned value of
the V type or a computed value.

The advantage of this solution is that the EFP data are written in a manner
similar to the existing OSGi attributes and filters. In addition, a more precise
semantic is stored in the unified XML file. While the OSGi resolving process
treats these EFPs as standard attributes and filters, the EFP mechanism trig-
gered in the resolving process evaluates also these additional data, resulting in
more precise compatibility checks.

OSGi EFP Attributes. Designing a new concept of EFPs, still compatible
with current OSGi attributes, lead to the following proposed structure of the
EFP attributes:

<gr-id>.<efp>=<lr-id>.<value>

Enhancing OSGi with Explicit Vendor Independent EFPs 117

Here efp is a string name of an EFP and gr-id is a unique identifier of Global
Registry this property is defined for. Furthermore, lr-id is a unique identifier
of Local Registry and value is a value assigned to the EFP. The value form
will differ depending on a Registry used. If the lr-id is omitted, the EFP has
a value assigned that is valid among the domain Global Registry it has been
created for. In this case, either a concrete value or a computing formula may be
used. It is proposed to use a string representation of concrete values and string
representation of formulas evaluating computed values.

If the lr-id prefix is used, the value is related to Local Registry (sub-domain
of Global Registry) and a named value or a formula deriving a derived property
may be used. It is proposed to use a string name for the named values (e.g.
“small”, “slow”, “high”, “fast”) directly to represent named intervals assigned
in respective Local Registry and the literal "computed" for the deriving rules.
The deriving rules itself will be stored in the XML file.

For instance, two attributes may be defined as: 1.network_speed=1.fast
and 1.html_version=[4.0..5.0] where fast = [10..100] Mb/s is an interval
stored in XML and [4.0..5.0] is a directly assigned interval. A small drawback
of this solution may be that the named values are not known without looking
into related XML files. However, it is assumed users will access the data via the
provided tools and thus do not need to access manifest files manually.

EFP Attribute Data Type. A task related to EFP attributes is their evalu-
ation. Original OSGi specification allows to define a data type of the value (e.g.
Long, Double, String, Version, using a colon syntax) that in essence denotes
the comparing method to be used. User defined types may be also used. Hence,
the writing :EFP (e.g. 1.html_version:EFP=[4.0..5.0]) causes the values to
be bound to the new EFP data type and OSGi tries to load a respective class
named EFP. This class is implemented in EFFCC as an adapter which delegates
the evaluation to the EFP system, concretely to the respective gamma function
defined for each EFP and stored in the XML file. Since not all OSGi implemen-
tations currently handle the data type concept5, a temporal solution is to store
all EFP-related attributes in a separate file distributed along the manifest file.

The attributes defined this way may be used in all OSGi parts mentioned in
Section 3 (exported packages, provided capabilities and registered services). One
exception is that the parameters on exported packages do not allow to define
the data type. These parameters use only string comparison. This is a restriction
inherited from older OSGi specification which cannot be overcome for compati-
bility reasons. On the other hand, the parametrised package export/import may
be replaced by capability wiring allowing full attributes/filter evaluation. For
instance, a provided/required capabilities’ pair may look like:

Provided-Capability: osgi.wiring.package;

(osgi.wiring.package=cz.zcu.kiv.web.html,

1.html_version=[4.0..5.0]

5 Apache Felix for example, which is used in our experiments.

118 K. Ježek, P. Brada, and L. Holý

Required-Capability: osgi.wiring.package;

(&(osgi.wiring.package=cz.zcu.kiv.web.html)

(1.html_version=4.0))

This notation expresses package export and import. It is also worth pointing out
that the study of the Apache Felix OSGi implementation have also shown a ten-
dency to internally express export/import packages as these wiring capabilities.
Therefore, there is a chance this approach may be a recommended practise in
the future while export/import package headers may be marked as obsolete.

4.3 EFP Queries as OSGi Filters

Having the attributes defined according to rules mentioned in previous section,
the OSGi filters may be used the same way as it is described in the OSGi
specification. When OSGi applies the filters, it compares values required by the
filter with the values of provided attributes. As long as the provided attributes
are defined together with a Bundle, EFFCC loads them and a filter is evaluated
delegating each value comparing to the EFFCC implementation (described in
Section 4.5).

For instance, a filter may be defined as: (1.network_speed>=1.slow) to filter
a network service with at least a “slow” connection where the value slow =
[1..10]Mb/s will be loaded from the XML file when the filter is being evaluated.

As a result, the filters are used transparently without explicitly considering
EFPs while EFFCC running behind treats the values as extra-functional ones.
The main advantage is that OSGi implementation is enriched with EFPs provid-
ing better semantic than OSGi standard means, however, modification to neither
OSGi specification nor implementation is required.

4.4 An Example: EFPs in XML Mirror and OSGi Manifest

Section 3.1 showing a few OSGi bundles will be in this section completed by the
example of the EFP data assigned to the bundles.

Fig. 4 depicts a shortened version of the EFP XML repository and attributes
plus filters referring to these EFPs. The XML contains definitions of EFPs orig-
inating from one Global Registry (the gr element) and several disjunctive Local
Registries (the lr element).

The example shows two Local Registries with IDs 463 and 464 designed for
different performance platforms and Local Registry with ID 465 for a concrete
operating system. It is assumed these values are understood as the most typi-
cal ones for respective platforms. Hence, deployment of such components may
use compatibility verifications according to these platforms. This may look as
a weakness because this approach requires measurement of all components in
all assumed platforms. On the other hand, vendors should test their products
for all the platforms to ensure quality and this approach provides a technical
mean to express and publish component measurement results together with the
component.

Enhancing OSGi with Explicit Vendor Independent EFPs 119

Fig. 4. Example EFPs Applied in OSGi

The case-study furthermore shows several kind of assignable values: (1)
web_speed is specialised using a mathematical function, (2) dhtml has a value
assigned for which computation is expressed as a logical formula in Local Reg-
istry with ID 465, and (3) network_speed is used in a filter referencing the value
slow from Local Registry ID 463. The last type of value – directly assigned – is
not used in the example.

4.5 EFP Evaluation Connected to OSGi Binding

A crucial moment to integrate EFFCC to OSGi is to invoke the evaluation of
EFPs at the moment OSGi performs binding of bundle features (e.g. packages
or capabilities) or bundles service lookup. OSGi version 4.3 have brought the
concept of hooks that may be used to observe and modify the bundles’ binding
in their life-cycle. A hook is an implementation of a specific interface with a set of
call-back methods invoked once a particular operation is performed. According
to features described in Section 3 two hooks have been implemented to bridge
OSGi binding and EFP evaluation.

The first hook implements the ResolverHook interface with a method:

void filterMatches(BundleRequirement requirement,

Collection<BundleCapability> candidates)

120 K. Ježek, P. Brada, and L. Holý

Fig. 5. EFFCC Connected to OSGi Resolver Process

This method is called every time the framework is to bind one feature to an-
other one. The first method argument is a requirement that can be fulfilled by
capabilities in the second argument. Concrete implementation may remove an
item from the capabilities collection to prevent the binding.

This is the moment at which EFFCC evaluation is called. The sequence of
calls is depicted in Fig. 5. Once the filterMatches method is called, EFFCC
adaptor to OSGi (EfpResolverHook) invokes EfpComparator that consequently
loads EFP data from a bundle using EfpAssignment. The data are evaluated
and a result is returned to the hook. If the matched EFPs are incompatible, the
capabilities collection is shrunk which excludes the capability from the binding.

The only implementation necessary to adapt EFFCC to OSGi have
been the EfpResolverHook class and an EfpAssignment sub-module
(EfpAssignmentOSGi) loading the EFP data from the OSGi bundles. All other
parts are component model independent and re-usable among variety of differ-
ent systems. It is also important to highlight that the amount of program code
written in EfpResolverHook and EfpAssignmentOSGi is considerably smaller
comparing to the code used in other EFFCC modules. As a result, a noticeable
strength of this approach is that it requires only a little code to be implemented
while most logic have been already pre-prepared.

The other hook implements the FindHook interface. This hook covers service
dynamism and it is invoked every time a bundle tries to get a service from its
bundle context or a declarative service is to be injected. The only method of the
hook is:

void find(BundleContext context, String name, String filter,

boolean allServices, Collection<ServiceReference<?>> references);

The implementation of this hook may filter the service references, returning a
shrunk collection of available references. The work-flow is similar to that pre-
sented for the Resolver Hook: once the EFFCC implementation of FindHook

Enhancing OSGi with Explicit Vendor Independent EFPs 121

receives a request for a service, the EFFCC modules are invoked to load and
compare EFP data. If the EFP data are incompatible, the respective service ref-
erence is removed from the references collection preventing a bundle to obtain
it. Because of the similarity with the Resolver Hook process, a detailed sequence
diagram is not provided here.

To sum up, the implementation of the mentioned two hooks covers both static
binding of bundle features stated in the manifest file and dynamic finding of ser-
vices among bundles. Therefore, static features (export/import packages, capa-
bilities) as well as dynamic features (services, declarative services) from Section
3 are covered which fulfils the main goal of this work.

5 Conclusion

This paper has pointed out a discrepancy in the use of extra-functional properties
in research and industrial component models caused among other reasons by a
weak standardisation of properties’ understanding. OSGi has been selected as
one of the industrial models and discussion of its possibilities to express EFPs
have been provided. The discussion has shown that OSGi is capable of defining
certain EFPs, however, their semantic is weak.

The main contribution of this paper is the demonstration of how an existing
component model may be enriched with a strong EFP support. It has been
demonstrated that our previously proposed mechanism that consolidates EFP
understanding among vendors and component models can be used to enhance
OSGi with better EFP support. Thanks to the design of the mechanism which
separates the component model dependent and independent parts, we could
reuse the latter part in full. The former part consists of a semantic rich EFP
definitions stored in unified XML format.

In this particular work, two extensions to OSGi have been proposed. First,
OSGi parameters, attributes and filters are used to link independent EFP defini-
tions with concrete OSGi bundle features. Secondly, this work uses the concept
of OSGi hooks that invokes EFP evaluation as bundles are being resolved or
bundle services are being found. Comparing to plain OSGi, this new approach
adds better EFP semantics with EFPs consolidated among multiple vendors
since EFPs come from the common repository. The means to express EFPs for
different applications are also provided using a layered structure of the repository
where each layer targets a concrete application.

References

1. Aagedal, J.Ø.: Quality of Service Support in Development of Distributed Systems.
Ph.D. thesis, University of Oslo (2001)

2. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-
driven performance prediction. Journal of Systems and Software 82(1), 3–22 (2009),
special Issue: Software Performance - Modeling and Analysis

122 K. Ježek, P. Brada, and L. Holý

3. Bondarev, E., Chaudron, M.R., de With, P.H.: Compositional performance anal-
ysis of component-based systems on heterogeneous multiprocessor platforms. In:
Proceedings of Euromicro Conference on Software Engineering and Advanced Ap-
plications, pp. 81–91. IEEE Computer Society (2006)

4. Botella, P., Burgues, X., Franch, X., Huerta, M., Salazaruml, G.: Modeling non-
functional requirements. In: Proceedings of Jornadas de Ingenieria de Requisitos
Aplicada JIRA 2001 (2001)

5. Bures, T., Hnetynka, P., Plasil, F.: SOFA 2.0: Balancing advanced features in a
hierarchical component model. In: Software Engineering Research, Management
and Applications, pp. 40–48. IEEE Computer Society (2006)

6. EJB: Enterprise JavaBeans, Version 3.0. EJB Core Contracts and Requirements.
Sun Microsystems (May 2006), JSR220 Final Release

7. Franch, X.: Systematic formulation of non-functional characteristics of software.
In: Proceedings of International Conference on Requirements Engineering (ICRE),
pp. 174–181. IEEE Computer Society (1998)

8. Genssler, T., Christoph, A., Schulz, B., Winter, M., Stich, C.M., Zeidler, C., Müller,
P., Stelter, A., Nierstrasz, O., Ducasse, S., Arevalo, G., Wuyts, R., Liang, P.,
Schönhage, B., van den Born, R.: PECOS in a nutshell. Pecos Handbook (Septem-
ber 2002)

9. Glinz, M.: On non-functional requirements. In: Requirements Engineering Confer-
ence, pp. 21–26. IEEE Computer Society, Los Alamitos (2007)

10. Grosskurth, A., Godfrey, M.W.: A reference architecture for web browsers. In:
Proceedings of the 21st IEEE International Conference on Software Maintenance,
pp. 661–664. IEEE Computer Society, Washington, DC (2005)

11. Gu, X., Nahrstedt, K., Yuan, W., Wichadakul, D., Xu, D.: An XML-based quality
of service enabling language for the web. Journal of Visual Language and Comput-
ing, Special Issue on Multimedia Language for the Web 13, 61–95 (2001)

12. Jaaksi, A.: Developing mobile browsers in a product line. IEEE Software 19, 73–80
(2002)

13. Ježek, K., Brada, P.: Correct matching of components with extra-functional prop-
erties - a framework applicable to a variety of component models. In: Evaluation
of Novel Approaches to Software Engineering (ENASE). SciTePress (2011) ISBN:
978-989-8425-65-2

14. Ježek, K., Brada, P.: Formalisation of a Generic Extra-functional Properties Frame-
work. In: Evaluation of Novel Approaches to Software Engineering. CCIS. Springer,
Heidelberg (to be published, 2012)

15. Lamanna, D.D., Skene, J., Emmerich, W.: Slang: A language for defining service
level agreements. In: IEEE International Workshop of Future Trends of Distributed
Computing Systems, p. 100. IEEE Computer Society (2003)

16. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002)

17. Lau, K.-K., Ukis, V.: Defining and Checking Deployment Contracts for Software
Components. In: Gorton, I., Heineman, G.T., Crnković, I., Schmidt, H.W., Stafford,
J.A., Ren, X.-M., Wallnau, K. (eds.) CBSE 2006. LNCS, vol. 4063, pp. 1–16.
Springer, Heidelberg (2006)

18. Mohammad, M., Alagar, V.S.: TADL - An Architecture Description Language for
Trustworthy Component-Based Systems. In: Morrison, R., Balasubramaniam, D.,
Falkner, K. (eds.) ECSA 2008. LNCS, vol. 5292, pp. 290–297. Springer, Heidelberg
(2008)

Enhancing OSGi with Explicit Vendor Independent EFPs 123

19. Muskens, J., Chaudron, M.R.V., Lukkien, J.J.: A Component Framework for Con-
sumer Electronics Middleware. In: Atkinson, C., Bunse, C., Gross, H.-G., Peper,
C. (eds.) Component-Based Software Development for Embedded Systems. LNCS,
vol. 3778, pp. 164–184. Springer, Heidelberg (2005)

20. Nierstrasz, O., Arévalo, G., Ducasse, S., Wuyts, R., Gao, X.-X., Müller, P.O.,
Zeidler, C., Genssler, T., van den Born, R.: A Component Model for Field Devices.
In: Bishop, J.M. (ed.) CD 2002. LNCS, vol. 2370, pp. 200–209. Springer, Heidelberg
(2002)

21. OMG: MOF 2.0 core. OMG Document ptc/06-01-01 (January 2006)
22. OMG: UML profile for modeling quality of service and fault tolerance character-

istics and mechanism specification 1.1. Tech. rep., OMG - Object Management
Group (2008), formal/2008-04-05

23. OMG: UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded
Systems. OMG (2009), formal/2009-11-02,
http://www.omg.org/spec/MARTE/1.0/PDF (2010)

24. OSGi: OSGi Service Platform Service Compendium 4.2. The OSGi Alliance (2009),
http://www.osgi.org/Download/Release4V42 (2011)

25. OSGi: OSGi Service Platform Core Specification 4.3. OSGi Aliance (2011),
http://www.osgi.org/

26. Röttger, S., Zschaler, S.: CQML+: Enhancements to CQML. In: Bruel, J.M. (ed.)
Proc. 1st Int’l Workshop on Quality of Service in Component-Based Software En-
gineering, Toulouse, France, pp. 43–56. Cépaduès-Éditions (June 2003)

27. Sentilles, S., Štěpán, P., Carlson, J., Crnković, I.: Integration of Extra-Functional
Properties in Component Models. In: Lewis, G.A., Poernomo, I., Hofmeister, C.
(eds.) CBSE 2009. LNCS, vol. 5582, pp. 173–190. Springer, Heidelberg (2009)

28. Spring Comunity: Spring Framework, ver.3, Reference Documentation. Spring-
Source, ver. 3 edn. (2010), http://static.springsource.org/spring/
-docs/3.0.x/spring-framework-reference/html/

29. Szyperski, C., Gruntz, D., Murer, S.: Component Software - Beyond Object-
Oriented Programming, 2nd edn., 624 pages. Addison-Wesley / ACM Press (2002)
ISBN-13: 978-0201745726

http://www.omg.org/spec/MARTE/1.0/PDF
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/
http://static.springsource.org/spring/-docs/3.0.x/spring-framework-reference/html/
http://static.springsource.org/spring/-docs/3.0.x/spring-framework-reference/html/

Efficient Method Lookup Customization for Smalltalk

Jan Vraný1, Jan Kurš1, and Claus Gittinger2

1 Software Engineering Group,
Czech Technical University in Prague,
Thákurova 9, Prague, Czech Republic

{jan.vrany,kursjan}@fit.cvut.cz
2 eXept Software A.G.

Zeppelinstrasse 4, Bönnigheim, Germany
cg@exept.de

Abstract. Programming languages are still evolving, and programming langua-
ges and language features are being designed and implemented every year. Since
it is not a trivial task to provide a runtime system for a new language, existing
runtime systems such as the Java Virtual Machine or the Common Language
Runtime are used to host the new language.

However, most of the high-performance runtime systems were designed for
a specific language with a specific semantics. Therefore, if the new language
semantics differs from the semantics hard-coded in a runtime system, it has to be
emulated on top of features supported by the runtime.

The emulation causes performance overhead.
To overcome the limitations of an emulation, a runtime system may provide

a meta-object protocol to alter the runtime semantics. The protocol should fulfill
opposing goals: it should be flexible, easy to use, fast and easy to implement at
the same time.

We propose a simple meta-object protocol for customization of a method
lookup in Smalltalk. A programmer may define his own custom method lookup
routine in Smalltalk and let the runtime system to call it when needed. There-
fore there is no need to modify the runtime system itself. Our solution provides
reasonable performance thanks to low-level support in a runtime system, never-
theless the changes to the runtime system are small and local. At the same time, it
provides the flexibility to implement a wide range of features present in modern
programming languages.

The presented approach has been implemented and validated on a Smalltalk
virtual machine.

1 Introduction

Many new programming, scripting and domain specific languages are created every
year. In the past, each of the languages came up with its own runtime system – there is
the Java Virtual Machine for Java, the Common Language Runtime for .NET languages
and runtime systems for Perl, Python and Ruby.

Unfortunately, the implementation of a high-quality runtime system for a new lan-
guage is challenging. Modern and high-performance runtime systems are complex ma-
chines providing memory management, thread management, performance optimization

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 124–139, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Efficient Method Lookup Customization for Smalltalk 125

and other features. Therefore, the current trend is to reuse an existing runtime system,
such as the Java Virtual Machine (JVM) or the Common Language Runtime (CLR) to
host the new language. For example, there have been over 300 languages implemented
on top of the JVM [12], and many languages have been implemented on top of the CLR
(IronPython, IronRuby or IKVM.NET to name some of them) or the Parrot VM1.

Unfortunately, most of the high-performance runtime systems were designed with a
particular semantics. Part of the hosted language where the semantics differs must be
emulated on top of facilities provided by the runtime. A method lookup algorithm is
one place where languages differ.

Despite many tricks which can be employed to improve the performance of an emu-
lated method lookup, the performance is worse in comparison with a direct support in
the underlying runtime system.

Microsoft provides a Dynamic Language Runtime (DLR) framework [4] built on top
of the CLR. The DLR is an universal and flexible framework that does not require any
changes in the underlying CLR. As discussed later, a disadvantage of the DLR is that it
does not provide sufficient performance. In the JVM, there is a new instruction called
invokedynamic in version 7 implemented within a scope of a JSR 292 [8]. Although the
invokedynamic provides an excellent performance, the use of the new instruction means
that an existing code cannot be customized without recompilation.

In this paper we present a simple meta-object protocol [9] for customization of a
method lookup in the Smalltalk environment. A user-provided method lookup routine
implemented in Smalltalk can be set for an arbitrary class. This user method lookup
routine is then called by the Smalltalk runtime system. We validated our solution on
Smalltalk/X, yet we are not aware of any obstacles preventing implementation in an ar-
bitrary Smalltalk runtime system. The proposed meta-object protocol (MOP) allows the
extension of an existing Smalltalk language or the implementation of a new language
with a wide range of different lookup algorithms.

To get a better performance, our solution relies on a support in the underlying runtime
system. However, the changes to the runtime system are kept as small as possible to
facilitate the implementation of the proposed solution.

The contributions of this paper are (i) a design and an implementation of a simple,
flexible and fast meta-object protocol for Smalltalk runtime systems and (ii) a valida-
tion of the presented approach on a language extension (selector namespaces) and a
language implementation (Ruby) in Smalltalk/X.

The paper is organized as follows: Section 2 provides motivation and describes
the problem in more detail. Section 3 describes our solution – a meta-object proto-
col (MOP) for a method lookup. Section 4 presents examples of using the MOP and
validates its design. Section 6 discusses implementation issues, section 5 presents re-
sults of performance benchmarks. Section 7 discusses related work, and finally section
8 concludes and discusses directions of future research.

1 http://parrot.org

http://parrot.org

126 J. Vraný, J. Kurš, and C. Gittinger

2 Problem Description

Current runtime systems (or virtual machines – we will use these terms as synonyms)
are complex systems providing high performance execution of high-level languages.
Since most of the runtime systems were designed to support only one language, they
lack a sufficient meta object protocol (MOP). In the following section we will present
some examples, in which existing runtime systems fail to provide required flexibility.

2.1 Motivation

Selector Namespaces. Many object-oriented languages including Smalltalk, Ruby and
C# provide class extensions – a mechanism to add or override a method for a class al-
ready present in the system and defined in a module other than the extending one.
Because any module may extend a class in another module, naming conflicts are likely
to occur. Selector namespaces provide a mechanism to solve such name clashes. A se-
lector namespace defines a namespace for methods: multiple methods with same name
but in a different namespace may coexist in the same class. A selector namespace may
import other namespaces. During a method lookup, a class is first searched for a method
in the same namespace as the sending method’s namespace. If no method is found, the
search continues in an imported namespace, if any.

Although selector namespaces can provide useful functionality and can solve some
problems of the class extensions, we are not aware of any runtime system supporting
selector namespaces. The only exception is the Smalltalk/X [1], which utilizes the meta-
object protocol proposed in this paper.

SmallRuby. SMALLRUBY2 is an implementation of the Ruby programming language
built on top of the Smalltalk/X virtual machine [1]. One of the goals of SMALLRUBY

is to provide a fast Ruby implementation with a seamless integration into the Smalltalk
development platform. Because of the scripting nature of Ruby, it provides some use-
ful language shortcuts including default argument values, variadic arguments, optional
block arguments and mixin inheritance [3]. All these features are directly supported by
Ruby’s original runtime system.

Smalltalk/X VM lacks a direct support for these features, because they are missing
in the Smalltalk language for which the VM has been designed.

Classboxes. Classbox [2] is a module system supporting local class refinements. Within
a classbox, classes, methods and variables may be defined. Each class, method and
variable belongs precisely to one classbox, namely the one in which it is originally de-
fined. A classbox may import classes from other classboxes making them visible in the
importing classbox. Any class visible within a classbox may be imported by another
classbox i.e., imports are transitive.

Classboxes were implemented for Java on the JVM and for Smalltalk on the Squeak
VM. The implementation of classboxes requires a method lookup refinement, but nei-
ther of the VMs provides a direct support. Therefore, the implementations are based on
a reflection and a bytecode manipulation. A runtime system with a customized method
lookup can make the implementation simpler and more straightforward.

2 https://swing.fit.cvut.cz/projects/smallruby

https://swing.fit.cvut.cz/projects/smallruby

Efficient Method Lookup Customization for Smalltalk 127

2.2 Problems

In the previous section we motivated a flexible meta-object protocol. Modern runtime
systems use various techniques, such as inline caches, a just-in time (JIT) compilation
or inlining to get a better performance during execution. But the optimization makes
systems hard to modify. A flexible meta-object protocol design has to consider an im-
plementation effort and a performance impact. Therefore, the design of a meta-object
protocol must balance between flexibility, implementation and performance.

2.3 Requirements

We identified the following requirements for the meta-object protocol, which we kept
in mind during the design of the MOP.

Simplicity. The meta-object protocol should be easy to use and easy to implement.
The meta-object protocol should provide an interface in the user-level code. Simul-
taneously, the meta-object protocol should minimize the implementation impact on
the runtime system.

Flexibility. Implementors of new languages should have as much freedom in design as
possible. Therefore, the meta-object protocol should provide enough flexibility to
support features such as multiple dispatch, selector namespaces, classboxes, mix-
ins, variadic arguments and others.
To support multiple languages on top of a single virtual machine, the MOP should
allow programmers to specify different lookup algorithms for different classes.

Efficiency. The performance of the runtime system without the meta-object protocol
should be comparable to the runtime system with the meta-object protocol. Mod-
ern runtime systems use low-level techniques – inline caches, polymorphic inline
caches, method inlining and just-in-time compilation to improve the performance.
The meta-object protocol should be compatible with these techniques.

Compatibility. This requirement comes from practice. Many lines of code have been
already written and verified and they must run on an MOP-enabled runtime sys-
tem. Selector namespaces, for example, require an extension of the existing lookup
semantics. The meta-object protocol should allow the implementation of selector
namespaces without having to change existing code.

3 Method Lookup Customization

3.1 Customization in a Nutshell

The main idea is to move the method lookup outside the VM to the user-level code. It
makes changing the method lookup semantics simple. The VM is instructed to call the
user code whenever a method is looked up. Figure 1 shows the whole method invocation
process. Consider a code that sends an #asURL message to a string. A VM routine
responsible for sending messages (step 1) asks the VM lookup routine for a method
that will be dispatched (step 2). The VM lookup routine eventually calls a user-level

128 J. Vraný, J. Kurš, and C. Gittinger

. . .
'http://tools2012.fit.cvut.cz' asURL
. . .

Fig. 1. Method invocation in MOP-enable VM

code with a method lookup (step 3). A proper method is looked up, returned to the VM
send routine (steps 4,5) and dispatched (step 6).

In an object oriented world a common approach to realize a callback is to provide an
object that implements a method with a predefined signature. In accordance with this
approach we call the object a lookup object. A lookup object is responsible for looking
up a method based on a receiver, a sender, a given method name and arguments.

Figure 2 shows a standard Smalltalk method lookup implemented using the method
lookup MOP. It iterates a class hierarchy, starting with the initial search class, and
searches for a method with the given selector (line 7). If the method is found, it is
returned to the VM and dispatched (line 10). If no method is found along the inheri-
tance hierarchy, a nil is returned indicating that the method with the given selector is
not found (line 12). The VM may be instructed to remember the result of the lookup
to avoid subsequent, possibly costly, invocations of the custom method lookup routine
(line 9). Caching and cache effects are discussed later in section 3.3. Line 13 installs
the custom method lookup routine into the class XMLNode, so all instance methods of
the XMLNode will be looked up by the custom lookup.

3.2 Virtual Machine Support

In traditional virtual machines a method lookup is performed by the virtual machine
as a part of the message send operation. In our solution, the method lookup routine is
extended to allow method lookup customization. It consists of two phases.

– Lookup-Object Lookup. Within a lookup phase, a sending method and receiver’s
class are searched for a lookup object. When the sending method or the receiver
class acquires the lookup object, the method lookup semantics is in possession

Efficient Method Lookup Customization for Smalltalk 129

of the lookup object attached to the sending method or to the receiver. Semantics
specified by sending method takes priority over receiver-specified semantics.

– Lookup. Once the lookup object is determined (by the lookup-object lookup phase),
the VM asks for a method, passing a method name, a receiver’s class, arguments
and other information required for the method lookup. The result of the lookup
will be either a method to execute or nil. The nil means that the message is not
understood by the receiver.

MOP-Enabled Lookup Routine. Figure 3 shows the meta-object protocol-aware meth-
od lookup VM routine. We will use pseudo-C to distinguish VM code from user level
code, which is in Smalltalk. Whenever the method must be looked up, the virtual ma-
chine uses this routine to determine which method should be executed. If there is no
custom lookup object set, i.e., the lookup_lookup method returns nil, a lookup
hard-coded in the virtual machine is used (Figure 3, line 11). Otherwise, a custom
method lookup routine is invoked to determine which method to execute.

Contrary to traditional method lookup routines as found in common virtual ma-
chines, our MOP-enabled lookup routine takes three more arguments: a method that
issued the message send (sending_method), an array of actual arguments, and a
cache object representing the inline cache. The first two extra arguments allow us to
implement lookup algorithms where the result depends on the sender or on the argu-
ments. The cache object can be used to avoid subsequent lookups. We will discuss
method caching later in section 3.3. The extra arguments are present for method execu-
tion in Smalltalk/X and in most of the common virtual machines, so they do not bring
significant implementation overhead.

Lookup-Object Lookup Phase. The lookup object is used to specify a customized
method lookup algorithm.

The lookup-object lookup algorithm is shown in Figure 4. The first step of the lookup
object lookup process (line 3) gives us the possibility to override the method lookup on
a per-sending method basis. Searching for the lookup object within the class hierarchy
(lines 5-8) gives us a possibility to define the lookup object at one place without having
to deal with subclasses that may be dynamically loaded or created later.

1 StdLookup»lookupMethodForSelector: sel directedTo: searchCls
2 from: sendingMethod arguments: args cache: cache
3

4 | class method |
5 class ← searchCls.
6 [class notNil] whileTrue:
7 method ← class compiledMethodAt: sel.
8 method ifNotNil:
9 [cache bindTo: method.
10 ↑ method].
11 class ← class superclass].
12 ↑ nil.
13 XMLNode setLookupObject: StdLookup new.

Fig. 2. An example of a custom method lookup

130 J. Vraný, J. Kurš, and C. Gittinger

1 Method method_lookup (String selector, Class search_class,
2 Method sending_method, Object[] args, Cache cache)
3 {
4 Object lookup;
5 Method method;
6 lookup = lookup_lookup(sending_method,receiver_class);
7 if (lookup != nil) {
8 method = lookup_custom(lookup,selector,receiver_class,sending_method,
9 args,cache);
10 } else {
11 method = lookup_vm(selector,receiver_class,sending_method);
12 }
13 return method;
14 }

Fig. 3. Method lookup routine hard-coded to the virtual machine

Line number 3 in Figure 4 is not essential. The lookup on a per-sending method
basis can be achieved if each receiver checks the sender. Nevertheless, we use it in our
protocol, because it is minor modification and it might help with the implementation of
some features.

The reader may raise the objection that since the sending method always takes prece-
dence, it might override the receiver’s class lookup. Since the lookup objects are acces-
sible through the reflection API, a method-specified lookup object can communicate
with the lookup object of the receiver’s class and decide which lookup routine will be
used.

1 Object lookup_lookup (Method sending_method, Class receiver_class)
2 {
3 if (sending_method.lookup != nil) return sending_method.lookup
4 Class current_class = receiver_class;
5 while (current_class != nil) {
6 if (current_class.lookup != nil) return current_class.lookup;
7 current_class = current_class.superclass;
8 }
9 return nil;
10 }

Fig. 4. Lookup object lookup algorithm

Lookup Phase. The lookup phase takes the lookup-object determined in the lookup-
object lookup phase and invokes a custom method lookup routine by sending a “lookup”
message to the lookup-object. The lookup routine is shown in Figure 5. During the
custom lookup, other messages might be sent. It may happen that one of the messages
uses the custom lookup as well. In that case, a message sent from the custom method
lookup routine may lead to another custom method lookup routine invocation and to the
endless recursive loop. To prevent such a situation, a thread-local stack of the activated
lookup objects is maintained (lines 6 and 8). If a recursive activation is detected (by

Efficient Method Lookup Customization for Smalltalk 131

examining the lookup object stack), a built-in lookup routine is used. This mechanism
enables setting a lookup object on the root of a class hierarchy, and to some extent, it
allows programmers to use the customized lookup even for the lookup objects.

The solution with a stack of activated lookups might be replaced by a more straight-
forward approach. The thread-local boolean variable can be used to signal whether the
lookup is performed from the lookup object or not. If the lookup is initiated from the
lookup object, the lookup_vm routine is called by default. In this approach, the lookup
object is not allowed to use a customized method lookup.

1 Method lookup_custom (Object lookup, String selector, Class search_class,
2 Method sending_method, Object[] args, Cache cache)
3 {
4 Method method;
5 if (! is_recursive_lookup(lookup)) {
6 push_lookup(lookup);
7 method = send(lookup,"lookup",selector,search_class,
8 sending_method,args,cache);
9 pop_lookup();
10 } else {
11 method = lookup_vm(selector,search_class,sending_method);
12 }
13 return method;
14 }

Fig. 5. A Lookup routine that calls a user-defined method lookup

3.3 Caching of Method Lookup Results

Most VM implementations use caching strategies to reduce or eliminate the perfor-
mance penalties of the dynamic method lookup algorithm. For instance, Smalltalk/X
uses a three-layer cache hierarchy, consisting of (i) inline cache, (ii) polymorphic in-
line cache and (iii) global selector cache. The inline caches remember the code-pointer
of the last lookup at the call site as described in [5] and [13]. These caches reduce
message-send overhead to a single direct or indirect function call instruction followed
by a check of the receiver class in the called method (a compare and branch). For a
hit (i.e. the send is to an instance of the same class as cached), the dynamic overhead
consists of a function call, followed by a compare and an untaken conditional branch.

For a miss, a polymorphic inline cache is consulted. It provides code addresses for
a small (<20) number of receiver classes organized as the least-recently-used cache of
recently called targets [7].

Finally, if the inline cache fails to provide a target address, the VM built-in lookup
method is invoked which performs a full search, fills the polymorphic inline cache
and/or the inline cache cache slots for the next call, and passes a control to the target
method. This built-in full lookup uses a global selector cache3, but its effect is actually
marginal.

3 Note, that for MOP-enabled VM the global selector cache must use triplet {receiver’s class,
selector, sending method } as a key.

132 J. Vraný, J. Kurš, and C. Gittinger

The key point is that the result of a full lookup (either of the built-in lookup or the
custom lookup method) is placed into the inline cache or polymorphic inline cache as
usual. Therefore, the performance penalties of the MOP as compared to the built-in
lookup are only seen in the cache miss situations. In typical programs, inline cache
hit rates are above 95 The relatively slow MOP performance is hardly noticed. The
case of a very polymorphic code, such as iterating all objects in a system or a very
deep inheritance hierarchy when the polymorphic inline cache overflows [6] is when
the performance slowdown appears.

Inline cache, polymorphic inline cache and global selector caching significantly im-
prove method invocation performance by avoiding a full method lookup in most cases.
However, they can be used only for those method lookup algorithms whose result is
effect-free and depends only on a receiver class and a selector. To allow method lookup
algorithms that do not fit into the above limitations, an implementor may instruct the
VM not to cache the result. The cache object passed to a custom method lookup routine
is used for this purpose. If the custom method lookup routine does not explicitly bind
the cache to a result, the result of the method lookup is not cached and the subsequent
message send results in another invocation of the custom method lookup. Caches are
flushed as usual – when a class or method is added or removed or explicitly flushed.

The proposed MOP does not suggest more flexible changes in VM caches because
of the implementation effort. It does not suggest more flexible caching mechanism on
a higher level, which is easier to implement, because it cannot provide sufficient per-
formance – as shown in section 5. The limitation of the traditional VM caches can be
partly overcome, albeit with a performance penalty, which we discuss in the following
section.

3.4 Multiple-Dispatch and Other Non-single-Dispatch Lookup Algorithms

Although almost all widely used programming languages use a single-dispatch, some
languages use more interesting lookup algorithms. For example, CLOS [10] or Groovy4,
use a multiple-dispatch – a method lookup where the dispatched method depends on a
selector and runtime types of a receiver and arguments. In a Classboxes-enabled envi-
ronment, the dispatched method also depends on a classbox associated with the given
execution thread. In theory, a method lookup may depend on an arbitrary context.

Such dispatch algorithms can be handled using the proposed MOP as long as a result
of the lookup is not cached. As mentioned before, commonly used caching mechanisms,
such as a global selector table and inline caches cache the lookup result only on a per-
receiver type basis.

To avoid caching while using our MOP, the custom method lookup routine should
simply return a method without binding the cache. This way, the custom method lookup
routine is invoked upon each message send.

Naturally invocation of the custom method lookup routine over and over significantly
affects the overall performance. To improve the performance, the lookup routine may
generate an intermediate method that does additional resolution and caching on the
object level. This approach is a trade-off between the implementation effort (changes

4 http://groovy.codehaus.org/

http://groovy.codehaus.org/

Efficient Method Lookup Customization for Smalltalk 133

in the VM caching mechanism) and flexibility (allowing multiple dispatch and other
non-single dispatch lookup algorithms).

4 Validation

We defined the requirements of the meta-object protocol in section 2.3. The user of
MOP can easily redefine the lookup semantics by specifying an algorithm in a user-
level code. To facilitate the implementation of our protocol, we changed only the lookup
routine.

Since our solution does not change the bytecode and since our protocol provides a
default implementation of the lookup algorithm, the backward compatibility is ensured.
In this section, we will validate the flexibility requirements; the performance will be
discussed in section 5.

Selector Namespaces. Selector namespaces defines a new lookup algorithm different
from a method lookup algorithm used in a standard Smalltalk environment. Methods
are not looked up only by a name but also by a namespace of a sending method. In
systems that does not allow for customization of method lookup, the required lookup
would be emulated on the user-level. This emulation requires considerably more effort
to implement, and the resulting code is much slower.

Figure 6 shows a selector namespace aware lookup method for Smalltalk/X using
proposed MOP. For backward compatibility, if no method is found in a given or in an
imported namespaces, the search continues in a nil namespace, which means that the
method is in no namespace, and thus visible in every selector namespace.

SmallRuby. We re-implemented the lookup algorithm to account for variadic argu-
ments, mixins, block arguments and default argument values as mentioned in section
2.1 using the proposed MOP. We used selector namespaces (described in section 4) to
deal with a situation in which multiple versions of a method must coexist in a single
class.

Prior to describing the custom lookup method used in SMALLRUBY, we have to
explain the difference between a function name and a selector. The function name is
the name of the Ruby function or method as written in the source code. The selector
is an identifier of a method used by the VM. The selector reflects the number of given
arguments. In Smalltalk, there is no difference between the function name and the se-
lector. Due to Ruby’s default argument values, variadic arguments and optional blocks,
a single Ruby method with one function name may match multiple selectors.

SMALLRUBY’s lookup method is shown as Figure 7.
First, it searches the given class for a method that exactly matches the selector, taking

the inheritance and mixed modules into account (lines 6 – 9). If no method is found,
it searches the classes again for a method with the given function name. If a method
is found, a new placeholder method is compiled dynamically and installed into the
receiver’s class for future use and returned.

134 J. Vraný, J. Kurš, and C. Gittinger

1 lookupMethodForSelector: selector directedTo: initialSearchClass
2 from: sendingMethd arguments: args cache: cache
3

4 | sendingNs queue seen namespaces methods method |
5

6 sendingNs ← sendingMthd nameSpace.
7 namespaces ← Array with: sendingNs.
8 seen ← Set new.
9 [namespaces notEmpty] whileTrue:
10 [|imports |
11 namespaces ← queue removeFirst.
12 imports ← Set new.
13 methods ← self lookupMethodsForSelector: selector
14 directedTo: initialSearchClass
15 inNamespaces: namespaces.
16 methods size > 0 ifTrue:
17 [methods size == 1
18 ifTrue: [method ← methods anyOne].
19 ifFalse: [method ← self ambiguousMessage: selector].
20 cache bindTo: method.
21 ↑ method].
22 namespaces do: [:namespace | imports addAll: namespace imports].
23 namespaces ← imports].
24

25 methods ← self lookupMethodsForSelector: selector
26 directedTo: initialSearchClass.
27 methods size == 1 ifTrue:
28 [method ← methods anyOne.
29 cache bindTo: method.
30 ↑ method].
31 ↑ nil

Fig. 6. A selector namespace aware lookup method

5 Performance Benchmarks

5.1 Performance of Method Lookup MOP

A natural question to raise concerns about actual performance overhead of the MOP.
To measure an actual overhead, a set of benchmarks was run in Smalltalk/X in four
different configurations.

STD VM – a standard, unmodified Smalltalk/X virtual machine without the MOP sup-
port. The method lookup algorithm is hard-coded in the virtual machine. This con-
figuration serves as a reference.

MOP VM, no lookup object – an MOP-enabled VM with no lookup object set for
any class. This configuration shows the overhead of the MOP-enabled VM lookup
routine.

Efficient Method Lookup Customization for Smalltalk 135

1 lookupMethodForSelector: selector directedTo: searchClass
2 from: sendingMethod arguments: args cache: cache
3

4 | fname method |
5 method ← self lookupMethodForSelector:selector directedTo:searchClass.
6 method ifNotNil:[cache bindTo: method. ↑ method].
7

8 fname ← selector asRubyFunctionName.
9 method ← self lookupMethodForName: fname directedTo: searchClass.
10 method ifNotNil:
11 [method ← Ruby::Compiler new
12 compileProxyForSelector: selector
13 method: method inClass: searchClass.
14 cache bindTo: method.
15 ↑ method].
16 ↑ nil.

Fig. 7. SMALLRUBY’s method lookup implementation

MOP VM, std. lookup object (C optimized) – an MOP-enabled VM with a user-de-
fined lookup object set on an Object class (it is the worst case as the custom
lookup is performed for every message send to arbitrary object). The custom lookup
object implements a standard Smalltalk lookup. The actual implementation of the
method lookup is optimized at the C level and uses a global selector cache. This
configuration shows the overhead of the MOP when the hand-optimized custom
method lookup is used.

MOP VM, std. lookup object (pure Smalltalk) – an MOP-enabled virtual machine
with a custom lookup object set on an Object class. The actual implementation
of the custom method lookup is written purely in Smalltalk and does not use any
caching. This configuration shows the worst case: a custom method lookup algo-
rithm is used for every message send and the implementation of the method lookup
is not optimized at all.

STD VM, callsite simulator – a standard unmodified Smalltalk/X virtual machine with-
out the MOP support. This configuration uses an approach similar to the DLR. A
custom lookup is encoded by special compiler instrumenting and emulating on the
object level. Results of the lookup are cached in a polymorphic inline cache-like
structure.

Benchmarks consist of:
Unimorphic sends – a micro-benchmark that performs 1 000 000 message sends send-

ing the same message to an instance of the same class.
Polymorphic sends x – a micro-benchmark that performs 1 000 000 message sends

sending the same message each time to an instance of different classes. The x stands
for the total number of unique classes. Tests were run for x ∈ {2, 4, 20, 512}.

Web application – a macro-benchmark that measures the time required to process
an HTTP request made to a simple web application written in the AidaWeb frame-
work and running on the Swazoo HTTP server (both are written purely in Smalltalk).

The computer used for this experiment is Intel Core 2 Duo 2.00GHz, 3GB RAM, run-
ning Linux 2.6.31 and Smalltalk/X 6.2.1β.

136 J. Vraný, J. Kurš, and C. Gittinger

Figure 8 shows the slowdown ratio for each benchmark compared to the results ob-
tained by running the benchmark on the standard unmodified VM5.

sl
ow

do
w

n
[1

]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

STD VM
MOP VM, no lookup obj
MOP VM, std lookup obj C optimized
MOP VM, std lookup obj pure Smalltalk
STD VM, callsite simulator

Fig. 8. Performance benchmarks of an MOP-enabled VM

Unimorphic and Polymorphic Sends Up to 20 Classes. The results show that the MOP
does not impose noticeable runtime overhead. This is due to the use of the inline caches
and polymorphic inline caches – the method is looked only for the very first message
send for each unique class. In 1 000 000 sends, the overhead of Smalltalk lookup method
is hardly noticeable. The time variations are within the precision of the measurement.
Polymorphic sends 512. This scenario represents a super-polymorphic code, which
has 512 different receiver classes and therefore overflows the capacity of a polymor-
phic inline cache. The capacity of the polymorphic inline cache in Smalltalk/X is 21.
Therefore, the polymorphic inline cache fails each time and the full method lookup is
performed. Since the class hierarchy is flat and the method is always found in the re-
ceiver’s class, the overhead is caused just by dispatching back to the Smalltalk code
which involves a relatively expensive context manipulation.
Web Application. A web application using a web framework and an HTTP server rep-
resents a typical code. The vast majority of polymorphic message sends fit into a poly-
morphic inline cache and thus the runtime overhead of an MOP lookup is negligible.

The benchmarks show that the overhead introduced by the MOP is hardly noticeable
in cases where inline caches or polymorphic inline caches are used. This property holds
for the vast majority of the code.

The callsite simulator configuration shows that emulation of a custom lookup on the
object level is roughly 3 times slower than the cached lookup. The Web Application

5 A complete benchmark description, code and results can be found at
https://swing.fit.cvut.cz/wiki/supplementarymaterials/
TOOLS2012a

https://swing.fit.cvut.cz/wiki/supplementarymaterials/TOOLS2012a
https://swing.fit.cvut.cz/wiki/supplementarymaterials/TOOLS2012a

Efficient Method Lookup Customization for Smalltalk 137

benchmark was not run in the callsite simulator configuration because it required us to
instrument the whole system, including basic classes, which is not technically possible
in Smalltalk/X, to get proper numbers. The Polymorphic 512 benchmark with a custom
method lookup routine is magnitude slower than a VM built-in lookup.

5.2 Performance Comparison of DLR, and Invokedynamic

As discussed before, the VM-level caching mechanism is essential for a high-perfor-
mance execution. As a proof of our statement we provide results of a measurement in
which we compared the performance of user-level caches and VM-level caches. We run
a program with the same semantics, first time written in Java and second time written in
C#. We measured the time of a native message send and the time of a message sends with
a customized method lookup (using invokedynamic or DLR)6. The DLR uses the user-
level caches and the Java 7 (using the invokedynamic instruction) uses VM-level caches.

The results for unimorphic sends (one receiver) and for polymorphic sends (with 2,
4 and 16 receivers) are in Table 1. The dynamic invocation in Java is only 4 This has
fundamental impact on performance, considering that unimorphic sends are the most
common sends. In case of polymorphic code, the invokedynamic is the slower the higher
is a level of polymorphism, for highly polymorphic codes, it is comparable with the
DLR. But the highly polymorphic code is rather unusual in standard programs.

Table 1. A slowdown of a dynamic invocation compared to a native invocation for the particular
level of polymorphism

Level of polymorphism Java 7 DLR
Unimorphic 1.04 13.02
Polymorphic 2 3.32 12.81
Polymorphic 4 3.51 12.75
Polymorphic 16 7.60 16.37

6 Discussion

Implementation Implications. Only the method lookup routine must be changed to add
the proposed MOP support into an existing Smalltalk implementation (or into any other
similar virtual machine). This has several important consequences. First, the rest of
the virtual machine responsible for a code execution, such as a bytecode interpreter or a
JIT compiler, remains unchanged. Second, every method invocation can be customized,
which makes modifications to existing languages significantly easier. For example, a
selector namespaces can be implemented just by implementing a proper custom lookup
routine and by attaching the routine to a root of a class hierarchy. Once accomplished,
every object in a system understands selector namespaces.

Method Inlining. The inline caches and the polymorphic inline caches significantly
improve performance.

6 A complete benchmark description, code and results can be found at
https://swing.fit.cvut.cz/wiki/supplementarymaterials/
TOOLS2012a

https://swing.fit.cvut.cz/wiki/supplementarymaterials/TOOLS2012a
https://swing.fit.cvut.cz/wiki/supplementarymaterials/TOOLS2012a

138 J. Vraný, J. Kurš, and C. Gittinger

Advanced compilers go even further and generate more optimized code by inlining
a target method into a code of a sending method, eliminating the overhead connected
with the method execution. The proposed MOP does not impose any difficulties for
inlining compilers. Before inlining, the inlined method must be looked up with the
method lookup routine. The only change is to update the compiler to use the MOP-
enabled method lookup routine. In most cases the inlining compiler exploits data in
inline caches and polymorphic inline caches.

7 Related Work

JSR 292: Invoke Dynamic. JSR 292: Invoke Dynamic introduces a new, general mech-
anism for method calls into the Java Virtual Machine. A new bytecode instruction – the
invokedynamic – with a few supporting objects allows language implementors to inter-
cept method calls at the call site and provide their own method lookup logic [11].

Whereas the JSR 292 provides support for other languages on top of the JVM, our
MOP allows the modification of the native language itself, i.e., the language the runtime
system was designed for. Both the JSR 292 and the described MOP can be used to
provide a user-specific method lookup algorithm without a performance loss. In both
cases, a user has to explicitly mark objects with a user-defined lookup and the lookup
itself can be implemented as a normal Smalltalk or Java code without a changing the
virtual machine itself. However, the proposed MOP differs from the JSR 292 in two
ways. Firstly, since the JSR 292 uses a new instruction, a code that uses a custom lookup
should be compiled specially. However, our MOP allows lookup customization without
recompilation. Secondly, the JSR 292 allows only a call site interception of a method
lookup, whereas our protocol allows both call site and (possibly at the same time) a
receiver site interception.

To illustrate the limitations of JSR 292, consider a hypothetical implementation of
traits using the invokedynamic. Then, consider an object o of a class that uses a trait
to reuse an implementation of hashCode() and equals() methods. When the object o is
added into a HashSet collection, the instance of the HashSet sends the hashCode() to the
o. To get the proper method called, i.e., the method from a trait, the JSR 232 requires
all the methods of the HashSet to be recompiled with the invokedynamic7. Using the
described MOP, the only change required is to attach a trait-aware method lookup to
the class of the o.

Dynamic Language Runtime. A Dynamic Language Runtime (DLR) is .NET library
that facilitates the implementation of dynamic languages for the .NET platform. The
scope and purpose of the DLR are similar to those of the JSR 292 and also to those of
the described MOP.

The difference is that the DLR requires no special support in a runtime system,
whereas the described MOP relies on the runtime support because of performance rea-
sons. The DLR emulates all the semantics on the object level. Despite all the optimiza-
tions done by a JIT compiler, a method dispatch encoded by the DLR is on order of
magnitude slower than method dispatch directly supported by the CLR.

7 Which is impossible anyway due to limitations and “security features” of JVM.

Efficient Method Lookup Customization for Smalltalk 139

8 Conclusion

In this paper we have motivated the need for a virtual machine with a meta-object
protocol that customizes a method lookup and we have presented such a protocol. We
have validated the protocol by implementing selector namespaces. We have also shown
that the possibility to control the method lookup is very useful for porting existing
languages (Ruby in our case) to a new platform (Smalltalk/X in our case).

We plan to extend the meta-object protocol at the object level and provide mecha-
nisms to combine multiple custom lookups that are not aware of each other.

Another interesting direction would be to explore how to decouple the VM from
class objects and their internal layout which now has to be known to the VM.

Acknowledgement. We would like to gratefully thank to Alexandre Bergel, Stéphane
Ducasse for valuable discussions we had, and Oscar Nierstrasz and Jorge Ressia and
for their precious comments.

References

1. Smalltalk/X (August 2010),
http://www.exept.de/en/products/smalltalk-x/stx-overview

2. Bergel, A., Ducasse, S., Nierstrasz, O., Wuyts, R.: Classboxes: Controlling visibility of class
extensions. Computer Languages, Systems and Structures 31(3-4), 107–126 (2005)

3. Bracha, G., Cook, W.: Mixin-based inheritance. In: Proceedings OOPSLA/ECOOP 1990.
ACM SIGPLAN Notices, vol. 25, pp. 303–311 (October 1990)

4. Chiles, B., Turner, A.: Dynamic Language Runtime (August 2010),
http://dlr.codeplex.com/wikipage?title=Docs%20and%20specs

5. Peter Deutsch, L., Schiffman, A.M.: Efficient implementation of the Smalltalk-80 system.
In: Proceedings POPL 1984, Salt Lake City, Utah (January 1984)

6. Gittinger, C.: Smalltalk/X Programmers Reference Manual - Smalltalk Performance Myths
and Facts, http://live.exept.de/doc/online/english/programming/
STspeed.html

7. Hölzle, U., Chambers, C., Ungar, D.: Optimizing Dynamically-typed Object-oriented Lan-
guages with Polymorphic Inline Caches. In: America, P. (ed.) ECOOP 1991. LNCS, vol. 512,
pp. 21–38. Springer, Heidelberg (1991)

8. JSR-000292 Supporting Dynamically Typed Languages on the Java Platform (August 2010),
http://jcp.org/aboutJava/communityprocess/edr/jsr292/
index.html

9. Kiczales, G., des Rivières, J., Bobrow, D.G.: The Art of the Metaobject Protocol. MIT Press
(1991)

10. Lawless, J.A., Milner, M.M.: Understanding Clos the Common Lisp Object System. Digital
Press (1989)

11. Rose, J.R.: Bytecodes meet combinators: Invokedynamic on the jvm. In: VMIL 2009: Pro-
ceedings of the Third Workshop on Virtual Machines and Intermediate Languages, pp. 1–11.
ACM, New York (2009)

12. Tolksdorf, R.: Programming languages for the java virtual machine (August 2010),
http://www.is-research.de/info/vmlanguages/

13. Ungar, D.M.: The Design and Evaluation of A High Performance Smalltalk System. PhD
thesis, EECS Department, University of California, Berkeley (February 1986)

http://www.exept.de/en/products/smalltalk-x/stx-overview
http://dlr.codeplex.com/wikipage?title=Docs%20and%20specs
http://live.exept.de/doc/online/english/programming/STspeed.html
http://live.exept.de/doc/online/english/programming/STspeed.html
http://jcp.org/aboutJava/communityprocess/edr/jsr292/index.html
http://jcp.org/aboutJava/communityprocess/edr/jsr292/index.html
http://www.is-research.de/info/vmlanguages/

Fake Run-Time Selection

of Template Arguments in C++

Daniel Langr1, Pavel Tvrd́ık1, Tomáš Dytrych2, and Jerry P. Draayer2

1 Czech Technical University in Prague
Department of Computer Systems, Faculty of Information Technology

Thákurova 9, 160 00, Praha, Czech Republic
2 Louisiana State University

Department of Physics and Astronomy
Baton Rouge, LA 70803, USA

Abstract. C++ does not support run-time resolution of template type
arguments. To circumvent this restriction, we can instantiate a template
for all possible combinations of type arguments at compile time and then
select the proper instance at run time by evaluation of some provided
conditions. However, for templates with multiple type parameters such a
solution may easily result in a branching code bloat. We present a tem-
plate metaprogramming algorithm called for id that allows the user to
select the proper template instance at run time with theoretical mini-
mum sustained complexity of the branching code.

Keywords: C++, run-time selection, template arguments, template
metaprogramming, type sequences.

1 Introduction

C++ templates allow to define a piece of code for which we specify data types
later as template arguments. According to the C++ Standard [15], template
arguments must be known at compile time. However, consider the following
situations where we might want to postpone the choice of template arguments
to run time:

Run-Time Choice of Floating-Point Precision: Many pieces of nowadays
scientific and engineering software allow to choose the floating-point precision
at compile time, see for instance [3,13,14,16,22]. If we then want to alternate
single-precision and double-precision computations, we need either to recom-
pile programs frequently or to maintain both versions simultaneously.

Minimization of Memory Requirements: Indexes pointing into arrays of
different sizes constitute essential parts of data structures in scientific and
engineering software. Let us have an array of size ξ whose elements are
indexed from 0 to ξ − 1. The minimum number of bits of unsigned integer
data type that is capable to index such an array on a 64-bit computer is
then

b(ξ) = min
{
η ∈ {8, 16, 32, 64} : ξ ≤ 2η

}
. (1)

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 140–154, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Fake Run-Time Selection of Template Arguments in C++ 141

In some software, such as PETSc [3], users can choose between 32-bit and
64-bit data types for indexes. However, the choice has to be done at compile
time and the same data type is then used for all indexes independently of
the actual size of indexed arrays.

Reading Data from Binary Files: The program might not know particular
data types until it opens the file at run time. For instance, when reading files
based on the HDF5 file format [20], we can find out information about the
types of stored data sets in the form of numerical constants.

Let us now define the problem we want to address.

Problem 1. Assumptions:

1. Suppose f is a function object1 with a templated function call operator. We
will call the number of its template parameters the dimension of the problem
and denote it by d.

2. Let us have d finite sequences of data types T1, . . . , Td, where

Ti = {tki : k = 1, . . . , ni}.

3. Let us further have d sequences of mutually exclusive Boolean conditions
C1, . . . , Cd, where

Ci = {cki : k = 1, . . . , ni − 1},

that cannot be evaluated until run time (for every Ci, at most one condition
can be true at a given time).

We now want to apply the function object f, that is, to call

f.operator()<t1, . . . , td>();

such that

ti =

{
tki if there exists k ∈ {1, . . . , ni − 1} such that cki is true,

tni

i otherwise.
�

A simple one-dimensional example of Problem 1 is a run-time selection of floating
point precision for some algorithm via program’s command line option:

Example 1. Suppose a function object called algorithm defined as follows:

struct {

template <typename T> void operator()() { ... /* some code */ }

} algorithm;

Let T1 = {float, double} and C1 = {strcmp(argv[1], "1")}.
�

1 A function object, or simply a functor, is an object of a class that overloads the
function call operator. See, for example, Prata [17] or Stroustrup [18] for more details.

142 D. Langr et al.

That is, we want to invoke algorithm.operator()<double>() if the value of
the first command line options is "1", and algorithm.operator()<float>()

otherwise. The obvious solution is to branch the code according to the provided
condition as follows:

if (strcmp(argv[1], "1")) algorithm.operator()<float>();

else algorithm.operator()<double>();

Generally, for Problem 1, we may define the solution based on code branching
as follows.

Solution 1.

if (c11 && c12 && · · · && c1d) f.operator()<t11, t
1
2, . . . , t

1
d>();

else if (c11 && c12 && · · · && c2d) f.operator()<t11, t
1
2, . . . , t

2
d>();

...

else f.operator()<tn1
1 , tn2

2 , . . . , tnd

d >();
�

The drawback of this solution is obvious—the complexity of the branching code
grows combinatorially (recall that we need the templated function call operator
to be instantiated for all possible combinations of data types). That is, it yields

the total number of branches NΠ =
∏d

i=1 ni.

The theoretical minimum for the number of branches is NΣ =
∑d

i=1 ni, be-
cause all conditions must be evaluated in the worst case scenario. Such a mini-
mum would be achieved by the following imaginary code:

???? t1;
if (c11) t1 = t11;
else if (c21) t1 = t21;
...

else if (cn1−1
1) t1 = tn1−1;

1

else t1 = tn1
1 ;

... // similarly for the remaining dimensions

f.operator()<t1, . . . , td>();

Unfortunately, such a code is not valid, because C++ does not allow to assign
types2.

In this paper, we present a solution of Problem 1 that achieves the theoretical
minimum of required code branches NΣ . Its application to Example 1 may look
simply like:

typedef boost::mpl::vector<float, double> fp_types;

...

int fp_id = (strcmp(argv[1], "1")) ? 0 : 1;

for_id<fp_types>(algorithm, fp_id);

2 Using typedefs instead of assignment would not help here, because even though
most C++ compilers do accept typedefs in a function body, such type definitions
would not propagate from inside the code branches.

Fake Run-Time Selection of Template Arguments in C++ 143

This solution is based on template metaprogramming [2,4,12,21] and sequences
of types from Boost Metaprogramming Library (MPL) [1]. Although we cannot
choose template arguments at run time, we can choose positions (ids) of de-
sired data types inside type sequences. Based on these ids, the presented for id

algorithm invokes a proper template instance3. Since both approaches are syn-
tactically similar, we refer to our solution as fake run-time selection of template
arguments.

The rest of the paper is organized as follows. In Section 2, the previous work
related to our problem is presented and analyzed. Section 3 covers design and
implementation of the proposed for id algorithm. In Section 4, experiments are
described and their results are presented and discussed. Section 5 summarizes
the properties of the for id algorithm and describes its usage in an existing
high performance computing (HPC) code.

2 Related Work

C++ templates and template metaprogramming have always been intended to
be utilized primarily at compile time. Boost MPL [1] is a widely-used general-
purpose metaprogramming library advertised as “high-level C++ template meta-
programming framework of compile-time algorithms, sequences and metafunc-
tions” [19]. There are many compile-time algorithms inside Boost MPL, but
there is only one run-time algorithm called for each. The call boost::mpl::
for each<seq>(f) applies the function object f (calls its function call operator)
to every element of the type sequence seq at run time. There are two significant
differences between Boost MPL’s for each and our for id:

1. for each applies the function object to all elements in the type sequence.
for id applies the function object to a single element only—the one that is
identified by its position (id).

2. for each is one-dimensional, that is, it can operate only on a single type
sequence. for id is multi-dimensional and we designed it with no imposed
limit of the number of dimensions (type sequences). This limit is given solely
by the compiler.

Generic Image Library (GIL) [6] allows to design generic algorithms for different
types of images that are not known until run time. According to the actual image
properties, such as the color space or bit depth, a proper template instance of the
algorithm is invoked at run time. However, this functionality is tightly coupled
with GIL and is not presented as an independent metaprogramming algorithm
for general-purpose usage. Some implementation details are described in the
paper of Bourdev and Järvi [7], but for deeper understanding of their solution,
we need to study undocumented functions and class templates from GIL’s source
code.

3 In fact, for id is an ordinary C++ templated function (not a metafunction). How-
ever, its functionality matches the category that is called algorithms in Boost MPL.

144 D. Langr et al.

3 Design and Implementation

3.1 Notation

To prevent code listings from being too long, we use the following notation rules
in the further text:

1. We omit inclusion directives for all necessary header files.
2. We omit the boost:: and boost::mpl:: prefixes, as well as the ::type

and ::value suffixes for all Boost entities. For example, we simply write
next<B1> instead of boost::mpl::next<B1>::type.

3. We omit the typename keyword. For example, we simply write
template<S1, B1 = begin<S2> > instead of
template <typename S1, typename B1 = typename begin<S1> >.

4. We use the τ symbol for MPL iterators such that deref<τki > is equal to tki ,
and τni+1

i denotes end<Ti>.

By the symbol id we denote a zero-based index into a type sequence. We say
that id is valid for the sequence S if it belongs to {0, . . . , size<S> − 1}.

3.2 Initial Step

Let us first define a metafunction pos that returns a zero-based index of a type
within a type sequence (that is, pos <Ti, tki > is equal to to k − 1).

template <S,T> struct pos : distance<begin<S>, find<S,T> > { };

Our initial solution of one-dimensional Problem 1 is then:

template <S1, B1=begin<S1>, E1=end<S1> > struct for_id_impl_1 { // (1)

template <T> static void execute(T& f, int id1) { // (2)

if (pos<S1, deref<B1> > == id1) // (3)

f.template operator()<deref<B1> >(); // (4)

else if (1 == distance<B1,E1>) throw std::invalid_argument(""); // (5)

else for_id_impl_1<S1, next<B1>, E1>::execute(f, id1) // (6)

} };

template <S1, E1> struct for_id_impl_1<S1, E1, E1> { // (7)

template <T> static void execute(T& f, int id1) { } };

It iterates over the type sequence S1 either until the position of the actual type
matches the desired id , or until the end of the sequence is reached. In the former
case, the function object is applied. In the latter case, an exception is thrown.
The partial specialization (7) is never reached at run time, however, it is needed
to stop the recursive instantiation at compile time.

Let us go back to our Example 1 where T1 = {float, double}. What happens
when we now call for id impl 1<T1>::execute(algorithm,id1) and id1 is 1?

1. At code line (1), the default arguments are resolved resulting in <T1, τ11 , τ31 >.
2. At code line (2), the execute function is invoked, wherein id1 is equal to 1

and pos<T1, t11> is equal to 0.

Fake Run-Time Selection of Template Arguments in C++ 145

3. The condition at code line (3) is hence not satisfied. At the same time, the
condition at code line (5) is not satisfied as well, because distance<τ11 , τ

3
1 >

is 2. Hence, the following command is executed:
for id impl 1<T1, τ21 , τ31 >::execute(algorithm,1).

4. The condition at code line (3) is now satisfied, because both pos<T1, t21> and
id1 are equal to 1. Since deref<τ21> is equal to t21 which is double, the follow-
ing command is executed: algorithm.template operator()<double>().

This is exactly what we wanted, that is, to select the <double> instance of the
function call operator of algorithm by a run-time parameter id1 (zero-based
index of double in T1 is 1).

What would happen if id1 would be invalid—for example, would be equal
to 10? Up to the point 3. in the previous list the behavior would be the same.
However, then it would run differently:

4′. The condition at code line (3) is not satisfied, because id1 is equal to 10 and
pos<T1, t21> is equal to 1. However, the condition at line (5) is now satisfied,
since distance<τ21 , τ

3
1 > is 1. We are already at the end of T1 and there are

no more types to iterate over. Hence, the exception that indicates the wrong
id1 argument is thrown.

3.3 Extension to Multiple Dimensions

The following solution for two dimensions is based on the same idea of iterating
over type sequences—we just have two of them and for each one a separate id .

template <S1, S2, B1=begin<S1>, B2=begin<S2>, E1=end<S1>,

E2=end<S2>, T1=deref<B1> > struct for_id_impl_2 { // (1)

template <T> static void execute(T& f, int id1, int id2) {

if (pos<S1, deref<B1> > == id1) // (2)

for_id_impl_2<S1,S2,E1,B2,E1,E2,deref<B1> >::execute(f,id1,id2);

else if (1 == distance<B1,E1>) throw std::invalid_argument("");

else for_id_impl_2<S1,S2,next<B1>,B2,E1,E2,T1>::execute(f,id1,id2);

} };

template <S1, S2, B2, E1, E2, T1>

struct for_id_impl_2<S1,S2,E1,B2,E1,E2,T1> { // (3)

template <T> static void execute(T& f, int id1, int id2) {

if (pos<S2, deref<B2> > == id2) // (4)

f.template operator()<T1,deref<B2> >();

else if (1 == distance<B2,E2>) throw std::invalid_argument("");

else for_id_impl_2<S1,S2,E1,next<B2>,E1,E2,T1>::execute(f,id1,id2);

} };

template <S1, S2, E1, E2, T1>

struct for_id_impl_2<S1,S2,E1,E2,E1,E2,T1> {

template <T> static void execute(T& f, int id1, int id2) { } };

In the primary template at code line (1), the program iterates over the first
type sequence S1. However, when the desired type is found, that is, when the
condition at code line (2) is satisfied, the function object cannot be applied,

146 D. Langr et al.

because the second type is not yet known. Instead, the resolved type is stored into
the template parameter T1 and the process proceeds to the second dimension.
This is done by setting B1 to E1, which causes the transition to the partial
specialization defined at code line (3). This partial specialization iterates over
the second type sequence and when id2 is matched at code line (4), the function
object may be finally applied, since all data types are now known.

Extension to three and more dimensions can be done by following the same
pattern. However, this approach has the quadratic complexity of the number of
definitions. For the dimension d, we need d+ 1 definitions—a primary template
and d partial specializations. So, if we want to support all dimensions from 1 to
some dmax, we finally need dmax(dmax+3)/2 = O(d2max) definitions, which is not
optimal.

3.4 The Optimal Solution

We present here the solution that needs only 2dmax+1 = O(dmax) definitions. It
primarily uses only dmax+1 definitions that are common for all d ∈ {1, . . . , dmax}.
For dmax = 2 these definitions are the following:

template <int D, S1, S2=vector<>, B1=begin<S1>, B2=begin<S2>, E1=end<S1>,

E2=end<S2>, T1=deref<B1>, T2=deref<B2> > struct for_id_impl {

template <T> static void execute(T& f, int id1, int id2 = 0) {

if (pos<S1, deref<B1> > == id1)

if (1 == D) executor<D, deref<B1>, T2>::execute(f); // (1)

// f.template operator()<deref<B1> >(); // (2)

else for_id_impl<D,S1,S2,E1,B2,E1,E2,deref<B1>>::execute(f,id1,id2);

else if (1 == distance<B1,E1>) throw std::invalid_argument("");// (3)

else for_id_impl<D,S1,S2,next<B1>,B2,E1,E2,T1>::execute(f,id1);

} };

template <D, S1, S2, B2, E1, E2, T1, T2>

struct for_id_impl<D,S1,S2,E1,B2,E1,E2,T1,T2> {

template <T> static void execute(T& f, int id1, int id2 = 0) {

if (pos<S2, deref<B2> > == id2)

executor<D, T1, deref<B2> >::execute(f); // (4)

// f.template operator()<T1, deref<B2> >(); // (5)

else if (1 == distance<B2,E2>) throw std::invalid_argument("");// (6)

else for_id_impl<D,S1,S2,E1,next<B2>,E1,E2,T1>::execute(f,id1,id2);

} };

template <D, S1, S2, E1, E2, T1, T2>

struct for_id_impl<D,S1,S2,E1,E2,E1,E2,T1,T2> { // (7)

template <T> static void execute(T& f, int id1, int id2 = 0) { } };

The idea of iterating over type sequences and moving to the next dimension after
resolving the actual one is preserved. Comparing for_id_impl with the previ-
ously defined template for_id_impl_2, we may find the following differences as
essential:

1. The D template parameter was introduced that is equal to the number of
dimensions d of the actual problem.

Fake Run-Time Selection of Template Arguments in C++ 147

2. The S2 template parameter and the id2 function parameter have default
values, because they are useless for one-dimensional problems and we do not
want to force the user to specify some meaningless values for them.

3. The condition at code line (1) was introduced, because when the type is
resolved for a particular dimension, we need to select the further action
according to the number of dimensions of the problem. At code line (1),
when the first type is already known, we need either
(a) to apply the function object for one-dimensional problems (D is 1),
(b) or move to the next dimension for two-dimensional (generally more-than-

one-dimensional) problems.
At code line (4), we further see that no such condition is needed, because
the executor structure is defined only for D equal to 1 or 2.

4. Unfortunately, within this new solution, we cannot apply the function ob-
ject directly inside for_id_impl::execute, as is suggested by the comments
at code lines (2) and (5). The reason is that for a two-dimensional prob-
lem, we suppose a function object with a templated function call operator
that has exactly two template parameters. However, in such a case, the call
f.template operator()<deref<B1> >() at code line (2) would trigger a
compilation error, because no such one-parameter version of the function call
operator exists. We have solved this problem by delegation of the application
of the function object to a helper structure called executor that is defined
as follows:

template <int D, T1, T2> struct executor;

template <T1, T2> struct executor<1, T1, T2> {

template <T> static void execute(T& obj) {

obj.template operator()<T1>(); } };

template <T1, T2> struct executor<2, T1, T2> {

template <T> static void execute(T& obj) {

obj.template operator()<T1, T2>(); } };

As in Section 3.3, the extension to three and more dimensions is straightforward.
For each supported dimension, we need to define one particular specialization of
for_id_impl and one of executor. Totally, we hence need 2dmax+1 definitions.

It might seem that this new solution introduces some overhead comparing
with the one in Sections 3.2 and 3.3, because there is too much code branching.
However, we need to realize that the conditions at code lines (1), (3) and (6)

may be evaluated at compile time and an efficient compiler will not propagate
the branching into the resulting machine code.

3.5 Wrapping Up

Although for_id_impl already solves Problem 1, we can make things more
comfortable by introducing the following wrappers:

template <S1, T> void for_id(T& f, int id1) {

for_id_impl<1, S1>::execute(f, id1); }

template <S1, S2, T> void for_id(T& f, int id1, int id2) {

for_id_impl<2, S1, S2>::execute(f, id1, id2); }

148 D. Langr et al.

which allows to write simply for_id<seq>(f,id) instead of
for_id_impl<1,seq>::execute(f,id).

3.6 Summary

With for id, we may write the solution of Problem 1 as follows.

Solution 2.

int id1;
if (c11) id1= 0;

else if (c21) id1= 1;

...

else if (cn1−1
1) id1= n1 − 2;

else id1= n1 − 1;

... // similarly for the remaining dimensions

for id <T1, . . . , Td>(f, id1, . . . , idd); �

This solution hence achieves the minimal number of code branches NΣ .

4 Experimental Results

4.1 Test Program

To evaluate for id, we have developed a program for computing the dominant
eigenvalue of a real symmetric matrix that is obtained from a file based on
the Matrix Market file format [5]. The file name is specified as a program’s
command line option, therefore, the number of matrix rows (columns) and the
number of nonzero elements are not known until run time. Within the program,
the matrix is stored in the memory in the coordinate storage sparse format using
the following data structure:

struct Matrix { uint64_t n, z; void *i, *j, *a; } m;

where

– n is the number of matrix rows;
– z is the number of matrix nonzero elements;
– i, j and a are arrays containing row indexes, column indexes, and values of

matrix nonzero elements, respectively.

The body of the main function of the program looks like:

std::ifstream ifs(argv[1]); // (1)

while (’%’ == ifs.peek()) ifs.ignore(1024, ’\n’); // (2)

ifs >> m.n >> m.n >> m.z; // (3)

uint64_t q = boost::lexical_cast<uint64_t>(argv[2]); // (4)

MatrixReader mr(m, ifs); // (5)

Fake Run-Time Selection of Template Arguments in C++ 149

... // (6)

double lambda; // (7)

PowerMethod pm(m, q, lambda); // (8)

... // (9)

std::cout << "Lambda: " << lambda << "\n"; // (10)

It consists of the following steps:

1. The file input stream ifs for the matrix file is opened (1).
2. The header and the comments are skipped (2).
3. The number of rows and the number of nonzero elements are read (3).
4. The required number of iterations for the power method is got from the

second command line option (4).
5. The mr function object is defined (5) that is responsible for allocating arrays

m.i, m.j, m.a and for filling their values. (The application of mr (6), as well
as of pm (9), will be described later.)

6. The variable lambda for storing the resulting eigenvalue is defined (7).
7. The pm function object is defined that is responsible for computing the eigen-

value and deallocating the arrays (8).
8. The computed eigenvalue is printed out (10).

Since we wanted to evaluate the for id algorithm, we created the following
instances (cases) of the program:

Cf
16 Cf

32 Cd
16 Cd

32 C∗
∗

floating-point type float float double double resolved by for id

indexing type uint16 t uint32 t uint16 t uint32 t resolved by for id

In Cf
16–C

d
32, the function call operators at code lines (6) and (9) are invoked di-

rectly, which corresponds to the classical approach where data types are resolved

at compile time. For example, in the case Cf
16, it looks as follows:

mr.operator()<float, uint16_t>(); // (6)

However, in the case C∗
∗ , the for id algorithm was utilized as follows:

for_id<fp_types, ind_types>(mr, fp_id, ind_id); // (6)

where:

1. fp types and ind types are type sequences defined as

typedef boost::mpl::vector<float, double> fp_types;

typedef boost::mpl::vector<

uint8_t, uint16_t, uint32_t, uint64_t> ind_types;

2. the floating-point type id was selected by the third command line option:

int fp_id = (strcmp(argv[3], "1")) ? 0 : 1;

150 D. Langr et al.

3. the indexing type id was selected as4:

int ind_id = 3;

if (m.n <= (1UL << 8)) ind_id = 0;

else if (m.n <= (1UL << 16)) ind_id = 1;

else if (m.n <= (1UL << 32)) ind_id = 2;

Moreover, we distinguish two sub-cases of C∗∗—Cf
∗ and Cd∗ for single and double

precision computation selected at run time, respectively.
Finally, we used the following definitions of the MatrixReader and Power-

Method classes:

class MatrixReader { public:

MatrixReader(Matrix& m, std::ifstream& ifs) : m_(m), ifs_(ifs) { }

template <typename F, typename I> void operator()() {

I* i = new I[m_.z]; I* j = new I[m_.z]; F* a = new F[m_.z];

for (uint64_t k = 0; k < m_.z; ++k) {

ifs_ >> i[k] >> j[k] >> a[k]; i[k]--; j[k]--; }

m_.i = (void*)i; m_.j = (void*)j; m_.a = (void*)a;

}

private: Matrix& m_; std::ifstream& ifs_; };

class PowerMethod { public:

PowerMethod(Matrix& m, uint64_t q, double& lambda)

: m_(m), q_(q), lambda_(lambda) { }

template <typename F, typename I> void operator()() {

I* i = (I*)m_.i; I* j = (I*)m_.j; F* a = (F*)m_.a;

std::vector<F> x(m_.n, 1.0), y(m_.n);

F lambda = 0.0;

do {

... // single iteration of the power method

} while (--q_ > 0);

lambda_ = (double)lambda;

delete[] i; delete[] j; delete[] a;

}

private: Matrix& m_; uint64_t q_; double& lambda_; };

Note, that:
1. We used the power method for computing the dominant eigenvalue.
2. We used void pointers for storing data whose types are not known until run

time.
3. We used pass-by-value and pass-by-reference constructor arguments to pass

data to and from the function objects, respectively.

4.2 Results and Discussion

For all measurements, we used GNU C++ compiler version 4.4.4.
We first compared the compilation time—the results are presented in Ta-

ble 1. When the program was built completely, the compilation time of C∗
∗ was of

4 The rows and columns indexes are integer numbers between 0 and m.n− 1, thus, we
need an unsigned integer data type of width b(m.n) bits (1).

Fake Run-Time Selection of Template Arguments in C++ 151

Table 1. Compilation time of the test program in seconds; average results of 10 mea-
surements

Cf
16 C∗

∗
preprocessing, compiling, linking 0.93 1.17

compiling only 0.76 0.94

Table 2. Sizes of the compiled files in kilobytes

Cf
16 C∗

∗
executable file 53.2 97.6

object file 104.7 211.1

25 percent higher compared to Cf
16. When the program was compiled only, the

increase was 31 percent.
Next, we compared the sizes of output files—the results are presented in Ta-

ble 2. The executable file size of C∗∗ is of 83 percent higher compared to Cf
16.

For comparison of the memory requirements of the program instances, we
used three real symmetric matrices from the collection [8]; their names and
characteristics are contained in Table 3. We measured the memory size of the
matrix and vector data structures and compared them separately for single and
double precision computations—the results are shown in Fig. 1. It is clear that
the program instances based on for id always require the minimum amount
of memory, because an optimal data type is used for indexes (if we included
program instances using the uint64 t data type into our measurements, this
advantage would be even more significant).

Lastly, we measured the computational overhead of the for id algorithm.
We used the clock gettime POSIX function to get the actual time values in
nanoseconds at three places:

1. just before the code line (9) in the main function,
2. at the beginning of the function call operator of the PowerMethod class,
3. just after the code line (9) in the main function.

The difference of the first and the second time values is equal to the time overhead
of the invocation of the pm’s function call operator. The difference of the first
and the third time values is equal to the duration of the application of the pm’s
function call operator, that is, the whole run of the power method. The statistical
information for the performed measurements are summarized in Table 4. It is
clear that the time overhead introduced by the for id algorithm is relatively
high—the invocation of the function call operator takes 2.5 times longer than
in the cases when this operator is called directly. However, in the context of
the whole program run, this overhead is insignificant, since it is of five orders of
magnitude lower than the duration of a single power method iteration.

152 D. Langr et al.

Table 3. Characteristics of matrices used for experiments

nos1 thread ldoor

number of rows 237 29.7 · 103 952.2 · 103
number of nonzero elements 627 2.3 · 106 23.7 · 106

nos1 thread ldoor

0

20

40

60

80

100

120

140

160

180
Cf

16

Cf
32

Cf
∗

(a)

nos1 thread ldoor

0

20

40

60

80

100

120

140

160

180
Cd

16

Cd
32

Cd
∗

(b)

Fig. 1. Comparison of program’s memory requirements of the matrix and vector data
structures in percents for different matrices and for computations in single (a) and
double (b) floating-point precision

Table 4. Time differences for the pm’s function call operator in nanoseconds. Statistical
information was gathered from 200 measurements with the thread matrix. The number
of iterations of the power method was set to 10.

Cf
16 Cd

32 Cf
∗

invocation
mean value 191.1 191.0 477.9
median 186.0 187.0 470.0

standard deviation 23.0 25.1 43.1

application
mean value 6.1 · 108 6.1 · 108 6.1 · 108
median 6.1 · 108 6.1 · 108 6.1 · 108

standard deviation 6.9 · 106 7.7 · 106 6.6 · 106

5 Conclusions

The contribution of this paper is a new method that allows users to select data
types for a piece of templated C++ code at run time with the minimal sustained
complexity of code branching. The only requirement for such a piece of code is
that it has to be in a form of a templated fuction call operator of some function

Fake Run-Time Selection of Template Arguments in C++ 153

object. The following conclusions can be drawn from the results of the performed
experiments:

– The use of for id allows users to select the floating-point precision for com-
putations at run time without the need of program recompilation.

– The use of for id allows the best utilization of the computer memory for
data structures that contain indexes.

– The use of for id results in a longer compilation time.
– The use of for id results in a bigger executable file, that is, in a bigger

program’s code segment.
– The use of for id imposes a run-time overhead into the application of the

function object.

The drawbacks seemingly prevail over the advantages. However, we need to re-
alize that in typical real-world situations these drawbacks will be insignificant,
since:

– Programs are usually compiled only once and then executed multiple times,
and/or their compilation time is usually much smaller than their execution
time.

– The size of the code segments of running program instances are usually much
smaller than the size of their data segments.

– The execution time of the templated code is usually of several orders of
magnitude longer than the run-time overhead of its invocation.

The purpose of our rather artificial test program was to evaluate the for id

algorithm. However, we have also successfully integrated for id into an existing
HPC code, namely the code that solves symmetry-adapted no-core shell model
problems [9–11]. These problems are extremely memory-demanding and the limit
for the size of the problem that can be solved on a particular HPC system is given
rather by the amount of available memory than by the computational power of
its processors. Inside the code, we have utilized for id for many different tasks,
including a sparse matrix-vector multiplication or a parallel file input/output of
sparse matrices.

The use of for id allows to eliminate wasting of data memory for applica-
tions that use many different data structures containing arrays of indexes. In
addition, it also allows to compile such applications only once even if the types
of indexes of submitted data and/or the floating-point precision of computations
vary for various runs. This may be especially useful for HPC programs that run
on massively parallel supercomputers. Another example where for id might be
useful as well is the implementation of generic image algorithms as used inside
GIL (see Section 2).

Acknowledgements. This work was supported by the Czech Science Founda-
tion under Grant No. P202/12/2011, by the U.S. National Science Foundation
under Grant No. OCI-0904874, and by the U.S. Department of Energy under
Grant No. DOE-0904874.

154 D. Langr et al.

References

1. Abrahams, D., Gurtovoy, A.: C++ Template Metaprogramming: Concepts, Tools,
and Techniques from Boost and Beyond. C++ in Depth Series. Addison-Wesley
Professional (2004)

2. Alexandrescu, A.: Modern C++ Design: Generic Programming and Design Pat-
terns Applied. Addison-Wesley Longman Publishing Co., Inc., Boston (2001)

3. Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D.,
Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Users Manual.
Tech. Rep. ANL-95/11 - Revision 3.2, Argonne National Laboratory (2010)

4. Barton, J.J., Nackman, L.R.: Scientific and Engineering C++: An Introduction
with Advanced Techniques and Examples, 1st edn. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston (1994)

5. Boisvert, R.F., Pozo, R., Remington, K.: The Matrix Market Exchange Formats:
Initial Design. Tech. Rep. NISTIR 5935, National Institute of Standards and Tech-
nology (December 1996)

6. Bourdev, L., Jin, H.: Generic Image Library,
http://opensource.adobe.com/gil (accessed December 2011)

7. Bourdev, L., Järvi, J.: Efficient run-time dispatching in generic programming with
minimal code bloat. Science of Computer Programming 76(4), 243–257 (2011)

8. Davis, T.A., Hu, Y.F.: The University of Florida Sparse Matrix Collection. ACM
Transactions on Mathematical Software 38(1) (November 2011)

9. Dytrych, T., Sviratcheva, K.D., Bahri, C., Draayer, J.P., Vary, J.P.: Dominant role
of symplectic symmetry in ab initio no-core shell model results for light nuclei.
Physical Review C 76(1), 014315 (2007)

10. Dytrych, T., Sviratcheva, K.D., Bahri, C., Draayer, J.P., Vary, J.P.: Evidence for
symplectic symmetry in ab initio no-core shell model results for light nuclei. Phys-
ical Review Letters 98, 162503 (2007)

11. Dytrych, T., Sviratcheva, K.D., Draayer, J.P., Bahri, C., Vary, J.P.: Ab ini-
tio symplectic no-core shell model. Journal of Physics G: Nuclear and Particle
Physics 35(12), 123101 (2008)

12. Gennaro, D.D.: Advanced C++ Metaprogramming. CreateSpace (2011)
13. Guennebaud, G., Jacob, B., et al.: Eigen, version 3.0.1 (2010),

http://eigen.tuxfamily.org (accessed July 2011)
14. Heroux, M.A., Willenbring, J.M.: Trilinos users guide. Tech. Rep. SAND2003-2952,

Sandia National Laboratories (2003)
15. ISO/IEC 14882:2003: Programming languages: C++ (2003)
16. OpenFOAM User Guide, Version 2.0.0 (2011)
17. Prata, S.: Primer Plus, 4th edn. Sams, Indianapolis, IN, USA (2001)
18. Stroustrup, B.: The C++ Programming Language: Special Edition, 3 edn. Addison-

Wesley Professional (February 2000),
http://www.worldcat.org/isbn/0201700735

19. The Boost MPL Library,
http://www.boost.org/doc/libs/1_48_0/libs/mpl/doc/index.html

(accessed December 12, 2012)
20. The HDF Group. Hierarchical data format version 5 (2000-2010),

http://www.hdfgroup.org/HDF5/ (accessed March 27, 2011)
21. Vandevoorde, D., Josuttis, N.M.: C++ Templates—The Complete Guide. Addison-

Wesley (2002)
22. Vuduc, R., Demmel, J.W., Yelick, K.A.: OSKI: A library of automatically tuned

sparse matrix kernels. Journal of Physics: Conference Series 16(1), 521–530 (2005)

http://opensource.adobe.com/gil
http://eigen.tuxfamily.org
http://www.worldcat.org/isbn/0201700735
http://www.boost.org/doc/libs/1_48_0/libs/mpl/doc/index.html
http://www.hdfgroup.org/HDF5/

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 155–170, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Supporting Compile-Time Debugging
and Precise Error Reporting in Meta-programs

Yannis Lilis1 and Anthony Savidis1, 2

1 Institute of Computer Science, FORTH
2 Department of Computer Science, University of Crete

{lilis,as}@ics.forth.gr

Abstract. Compile-time meta-programming is an advanced language feature
enabling to mix programs with definitions that are executed at compile-time and
may generate source code to be put in their place. Such definitions are called
meta-programs and their actual evaluation constitutes a compilation stage. As
meta-programs are also programs, programmers should be supported in
handling compile-time and runtime errors, something introducing challenges to
the entire tool chain along two lines. Firstly, the source point of a compile error
may well be the outcome of a series of compilation stages, thus never appearing
within the original program. Effectively, the latter requires a compiler to track
down the error chain across all involved stages so as to provide a meaningful,
descriptive and precise error report. Secondly, every compilation stage is
instantiated by the execution of the respective staged program. Thus, typical
full-fledged source-level debugging for any particular stage should be
facilitated during the compilation process. Existing implementations suffer in
both terms, overall providing poor error messages, while lacking the required
support to debug meta-programs of any staging depth. In this paper we firstly
outline an implementation of a meta-programming system offering all
mentioned facilities. Then, we detail the required amendments to the
compilation process. Finally, we discuss the necessary interoperation points
between the compiler and the tool-chain (IDE).

Keywords: Meta-programs, compile-time meta-programming, staged languages,
source-level debugging, error messages.

1 Introduction

The term meta-programming is generally used to denote programs that generate other
programs and was originally related to the existence of a macro system like the C
Preprocessor (CPP) [1] or the Lisp macro system [2] that would allow program
fragments to be built up at compile-time. Lexical systems like the CPP are recognized
as being inadequate for meta-programming as they operate on raw text, unaware of
any context information, while most languages do not share Lisp’s syntactic
minimalism to provide an equally powerful facility with seamless integration. In
modern languages, meta-programming is closely coupled with functions that operate
on some abstract syntactic form, like an abstract syntax tree (AST), and can be

156 Y. Lilis and A. Savidis

invoked during compile-time to change existing code or produce and inject additional
code in the source being compiled. Such functions are called meta-functions and they
as a whole constitute the meta-program. The compilation of a program that contains a
meta-program requires it to be executed at compile-time to produce a possibly
changed source file. If the resulting source contains additional meta-programs they
are executed in the same way until we reach a final source with no meta-programs
that will be compiled into the final executable. This iterative process may involve
multiple steps of meta-program evaluations called compilation stages. Languages that
support such a compilation scheme are called multi-stage languages ([3], [4]) with
MetaML [5] and MetaOCaml [6] being two typical examples. Multi-stage programs
are essentially programs whose source code is finalized through a sequence of
evaluations defined in the program itself. They use special annotations to explicitly
specify the order of their computations, with respect to the compilation stage they
appear in. These annotations are called staging annotations. Staging annotations
however are not limited to multi-stage languages. For example, C++ [7] is a two-
stage language where the first stage is the interpretation of the templates (denoted by
the < > tags) and the second stage is the compilation of the non-template code.

Meta-programming can help achieve various benefits [8], the most typical of which
is performance. It provides a mechanism for writing general purpose programs
without suffering any overhead due to generality; rather than writing a generic but
inefficient program, one writes a program generator that generates an efficient
solution from a specification. Additionally, by using partial evaluation it is possible to
identify and perform many computations at compile time based on a-priori
information about some of the program's input, thus minimizing the runtime
overhead. Another application is the reasoning about object-programs. It is possible to
analyze properties of an object-program that can be used to improve performance, or
provide object program validation. Finally, meta-programming can achieve code
reusability at a macroscopic scale by implementing parameterized proven design
practices (design patterns) and instantiating them based on the given parameters.

Context. As with normal programs, when writing meta-programs errors are bound to
happen, so it is important to have the proper tools to understand the origin of the error
and finally resolve it. In normal programs, there are two main error categories:
compilation and execution errors. Compilation errors are generally resolved easily as
compilers can identify exactly where something went wrong and why. On the other
hand, execution errors involve runtime state that may be different between executions
and is not directly visible to the programmer, making them harder to resolve.
Fortunately, debuggers can provide the required information by allowing inspection
of runtime values and call stack, tracing the program execution, and adding
breakpoints, thus significantly aiding the error resolution process.

Problem. The same principles regarding errors and their management apply for meta-
programs as well. However, both meta-program compilation and execution may
involve code that was never part of the original program. This means that compilation
errors are not that easy to deal with anymore as the error provided no longer reflects
code that the programmer can see and understand. Moreover, meta-program execution

 Supporting Compile-Time Debugging and Precise Error Reporting in Meta-programs 157

errors are even harder to face since there is no actual source that can be used for
debugging. It becomes obvious that error handling in meta-programs requires more
sophisticated tools, without which the programmer’s ability to write, understand and
maintain meta-programs may be severely hindered. Clearly, compilation errors due to
staging should encompass sufficient information to identify their cause while stage
execution errors should be detectable using typical source-level debugging.

Contributions. In this paper, we discuss the implementation details of a meta-
programming system addressing the previous issues based on:

• Generating source files for compilation stages and their outputs (original source
transformations) and incorporating them into the project manager of the IDE,
associated with the source being built. These files become part of the workspace
and can be used for code review, error reporting and source-level debugging.

• Maintaining the chain of all source locations involved in the generation of an
erroneous code segment to provide precise error reports. This chain includes the
original source as well as the generated compilation stage source files and their
outputs and can be easily traversed within the IDE to resolve any error.

• Mapping original source breakpoints to breakpoints for some compilation stage
and using its generated source to provide compile-time source-level debugging.

We then detail the amendments required to support such functionality. Finally, we
discuss the necessary contact sites between the compiler and the tool-chain.

2 Related Work

Our work targets the field of meta-programming in compiled languages and focuses
on the delivery of an integrated system able to support debugging of meta-programs
being executed at compile-time as well as provide precise and meaningful messages
for compilation errors originating within meta-code. In this context, the topics directly
relevant to our work are compile-time debugging and error reporting.

2.1 Compile-Time Debugging of Stages

C++ [7] support for meta-programming is based on its template system that is
essentially a functional language interpreted at compile time [9], [10]. There are C++
debuggers (e.g. Microsoft Visual Studio Debugger, GDB) that allow source level
debugging of templates, but only in the sense of tracing the execution of the template
instantiation code and matching it to the source containing the template definition.
However, there is no way to debug the template interpretation during compilation. A
step towards this end is Templight [11], a debugging framework that uses code
instrumentation to produce warning messages during compilation and provide a trace
of the template instantiation. Nevertheless, it is an external debugging framework not
integrated into any development environment and relies on the compiler generating
enough information when it meets the instrumented code. Finally, there is no
programmer intervention; the system provides tracing but not interactive debugging.

158 Y. Lilis and A. Savidis

D [12] is a statically typed multi-paradigm language that supports meta-
programming by combining templates, compile time function execution, and string
mixins (text code injected into the source). Descent [13] is an Eclipse plug-in for code
written in D and provides an experimental compile-time debugging facility that
supports simple templates and compile-time functions. However, the debugging
process does not involve the normal execution engine of the language; instead it relies
on a custom language interpreter for both execution and debugging functionality.

Nemerle [14] is a statically typed object oriented language, in the Java / C# vein
that supports meta-programming through its macro system. Nemerle and its IDE,
Nemerle Studio, provide support for debugging macro invocations during compile
time. Nemerle macros are actually compiler plug-ins that have to be implemented in
separate files and modules and are loaded during the compilation of any other file that
invokes them. Since they are dynamically linked libraries with executable code, it is
possible to debug them by debugging the compiler itself; when a macro is invoked,
the code corresponding to its body is executed and can be typically debugged.
Nevertheless, the development model posed, requiring each macro to be in a separate
file and module, is restrictive and the macro debugging process is rather cumbersome.

There are a lot more compiled languages, both functional and imperative, that
support meta-programming. Some examples include MetaOCaml [6], Template
Haskell [15], Dylan [16], Metalua [17] and Converge [18]. However, none of them
provide any support for debugging meta-programs during compilation.

2.2 Compile-Error Reporting

To our knowledge, most compiled languages that support meta-programming provide
very limited error reporting for compilation errors originating from generated code.
Typically, the error is reported directly at the generated code with no further
information about its origin or the context of its occurrence. Below we examine some
of the few cases that offer a more sophisticated error reporting mechanism.

C++ compilers (e.g. Microsoft Visual Studio Debugger, GDB) provide fairly
descriptive messages regarding compilation errors occurring within template
instantiations. Using these messages provided, the programmer may follow the
instantiation chain that begins with the code of the initial instantiation that caused the
error (typically user code) and ends with the code of the instantiation that actually
triggered the error (probably library code). Essentially, these error messages represent
the execution stack of the template interpreter. While potentially informative and able
to provide accurate information to experienced programmers, template error messages
are quite cryptic for average programmers and require significant effort to locate the
actual error. Unfortunately, this is the common case for nontrivial meta-programs and
applies especially to libraries with multiple template instantiations (e.g. Boost [10]).

Converge [18] provides some error reporting facilities related to meta-
programming by keeping the original source, line and column information for quoted-
code and retaining it at splice locations (injections into the program AST). For
runtime errors, this approach works fine but is limited by the single source code
location that can be associated with a given virtual machine instruction, not allowing

 Supporting Compile-Time Debugging and Precise Error Reporting in Meta-programs 159

for a complete trace of the error. For compile-time errors, Converge can track down
the source information of the quasi-quotes and associated insertions (i.e. any AST
creation) to provide a detailed message. However, it fails to provide information
about the splice locations, which actually involve staging execution. This means that
any error originating in generated code cannot be properly traced back to the code that
actually produced it. Finally, any compile error reported is presented only with
respect to the original source, thus providing no actual context regarding the
temporary module (i.e. computation stage) being executed to perform the splice.

3 Meta-programming System

Our meta-programming system1 is based on the Delta programming language [19]
and its IDE, Sparrow [20]. To support meta-programming facilities, several
extensions were made to the language itself as well as to its compiler and IDE.

3.1 Language Extensions

To support multi-stage meta-programming, Delta has been extended with staging
annotations similar to the ones of MetaOCaml [21].

• Quasi-quotes (written <<…>>) can be inserted around almost any language
element to enclose its syntactic form into an AST. This annotation provides the
easiest way to create language values containing code segments.

• Escape (written ~(expr)) can be used on an expression within quasi-quotes to
escape the syntactic form and interpret the expression normally. It allows
combining existing AST values in the AST being constructed by the quasi-quotes.

• Inline (written !(expr)) can be used on an expression to evaluate it at translation
time and inject its value directly into the source code. For the injection to be valid
the expression must evaluate to an AST or AST convertible value and it is
performed by properly incorporating the evaluated AST into the main source AST.

• Execute (written &stmt) can be used to execute a statement at translation time. An
addition to the original MetaOCaml annotations, it differs from inline as it does not
modify the source. It is used for computations not expressible through expressions
(e.g. loops) but also to generate code available only during compilation.

The following program is a simple example of compile-time meta-programming
illustrating the staging annotations used in Delta (trivially adopted from [21]).
Function ExpandPower creates the AST of its x argument being multiplied by
itself n times, while function MakePower creates the AST of a specialized power
function.

1 The system is fully functional and its complete source code is available for public download

through our Subversion repository https://139.91.186.186/svn/sparrow
/branches/meta using a guest account (username: ‘guest’ and empty password).

160 Y. Lilis and A. Savidis

&function ExpandPower (x, n) {
 if (n == 0) return <<1>>;
 else if (n == 1) return x;
 else return <<~x * ~(ExpandPower(x, n - 1))>>;
}
&function MakePower (n) {
 return << (
 function (x) { return ~(ExpandPower(<<x>>, n)); }
)>>;
}
power3 = !(MakePower(3)); //(function(x){return x*x*x;};)
std::print("2^3 = ", power3(2));

3.2 Compiler Extensions

The quasi-quotes and escape annotations are used to create and combine code
segments and involve no staging computation on their own. Staging occurs due to the
existence of the inline and execute annotations, which are therefore also referred to as
staging tags. Essentially this means that any program containing these staging tags
cannot be compiled until all of them are translated first. However, staging tags can be
nested or their evaluation may introduce additional staging tags, so the whole
compilation process requires multiple translation and execution stages (Fig. 1). To
support this scheme, we extend the compilation process using the following steps:

1. Parse the original source program to produce the main AST.
2. If no staging tags exist in the main AST go to step 8.
3. Traverse the main AST collecting the nodes for the next compilation stage.
4. Assemble the collected nodes to create the compilation stage AST.
5. Normally compile the compilation stage AST to executable code.
6. Execute the produced code updating the main AST in the process.
7. Go to step 2.
8. Normally compile the main AST (final AST) to executable code.

produce
(stage program)

Normal Program

Meta-program

Parser

Translator Executable
final code

Virtual
Machine

Executable
stage code

update

produce
(final program)

Multiple stage translation and execution

Staging tags involved?

yes

no

AST

Fig. 1. High level overview of a multi-stage compilation process

Each compilation stage takes place in steps 3-6. The node collection in step 3 relies
on the two following properties: (i) nested staging tags should always be evaluated at

 Supporting Compile-Time Debugging and Precise Error Reporting in Meta-programs 161

an earlier stage than outer ones; and (ii) staging tags of the same nesting level should
be evaluated within the same stage. This practically means that the staging tags
selected for a given compilation stage are the innermost. After assembling the nodes
to create the compilation stage AST (step 4), we normally compile it to executable
code (step 5). This normal compilation is possible since, by construction, the
assembled AST contains no staging tags. Then we continue with the code execution
(step 6), during which the original source inline tags that were translated to virtual
machine instructions will modify the source by injecting code into the main AST.
After the execution, the main AST is fully updated and ready for either the next stage
(step 7), or – if no more staging tags exist – the final compilation (step 8).

3.3 IDE Support for Meta-programming

Meta-programming especially for multiple stages is a quite demanding task, so our
system aims to facilitate the development of meta-programs as much as possible2.

Since the transformations of the original source code performed by the various
compilation stages are performed internally by the compiler and are therefore
transparent to programmers, special attention is given to providing them with
meaningful, descriptive and precise error reports in case some compilation stage
raises a compilation error. Such error reports provide the full error chain across all
stages involved in the generation of the erroneous code. Within Sparrow,
programmers may easily navigate back and forth across this error chain. This feature
is a significant aid in tracking the origin of the error and ultimately resolving it.

Additionally, every compilation stage is instantiated by the execution of the
respective staged program. As such, it should be subject to typical source-level
debugging even though its execution occurs during the compilation process. Sparrow
provides such functionality supporting typical debugging facilities such as expression
evaluation, watches, call stack, breakpoints and tracing. Fig. 2 illustrates a compile-
time debugging session highlighting the following points:

1. Breakpoints are initially set within a meta-function in the original source file.
2. The source file is built with debugging enabled. This launches the compiler for the

build and attaches the debugger to it for any staged program execution.
3. During compilation, the IDE is notified about any compilation stage sources.
4. Stage sources are added in the workspace associated with the source being built.
5. A breakpoint is hit, so execution is stopped at its location.
6. The source corresponding to the breakpoint hit is opened within the editor to allow

further debugging operations such as tracing, variable inspection, etc.
7. The breakpoints in the generated stage source (including the one hit) were

automatically generated based on the breakpoints set in the original source file.
8. The execution call stack is available for navigation across active function calls.
9. It is possible to inspect variables containing code segments as AST values.

2 A video showing an overview of all meta-programming related features of our system is available

from: http://www.ics.forth.gr/hci/files/plang/metaprogramming.avi

162 Y. Lilis and A. Savidis

F
ig

. 2
. A

 c
om

pi
le

-t
im

e
de

bu
gg

in
g

se
ss

io
n

in
 S

pa
rr

ow
. H

ig
hl

ig
ht

ed
 it

em
s

1-
9

ar
e

di
sc

us
se

d
w

it
hi

n
te

xt
.

5

6

1

3

7

7
8

9

9

2

5

4

9

 Supporting Compile-Time Debugging and Precise Error Reporting in Meta-programs 163

The compilation stage sources as well as their output (main AST transformation
stages) are actually created and inserted into the workspace even when performing a
non-debugged build. This allows programmers to review the assembled and the
generated code of each stage along with the effect it has on the final program even
after the build is completed, thus allowing for a better understanding of their code.
Fig. 3 highlights this functionality showing all sources related to the power example.

Fig. 3. Reviewing the compilation sources in Sparrow: Project manager view (left), original
source file (middle), compilation stage source (bottom), compilation stage result (middle right)

4 Compiler Amendments

4.1 Storing the Source Code of Every Stage and Its Output

The ASTs assembled for each compilation stage are temporary and only used for code
generation. To support reporting compile errors for stage sources or applying source-
level debugging during their execution, these ASTs can be further utilized to create
source files containing the code they represent, a process known as unparsing. These
files are meant for programmers, so their code must span across multiple lines and be
properly indented. For better visualization, we also consider that any code segment
present in the initial source should keep its original form as an unparsed version may
be significantly different (different indentation, empty lines, comments, etc), and the
one written by the programmer is clearly user-friendlier. To support this efficiently,
AST nodes contain their starting and ending character positions in the original source
to retrieve their text segments (direct association of each node with its text would be
far too resource demanding). This way, the unparsing algorithm will combine original
and generated text segments to produce a complete source for each compilation stage.

To obtain the source code for a specific compilation stage, we apply the unparsing
algorithm on its AST and store the result using some naming convention, for example
adding a suffix along with the current stage number. To allow programmers to review
not only the compilation stages, but also the code they generate and the modifications
they perform on the main AST, we also unparse the updated main AST after the
successful execution of each compilation stage. Essentially, this means that for an

164 Y. Lilis and A. Savidis

execution involving n compilation stages, there will be 2·n source files generated. The

final program being compiled into executable code is actually the output of the last
compilation stage, so it will also be available as the last generated source (Fig. 4).

Initial
main AST

Intermediate main
AST after stage 1

Stage 1
executable

update

compile

main_stage1
result

main_stage_1

unparse

main
source
code

parse

unparse

Intermediate main
AST after stage 2

Stage 2
executable

update

compile

main_stage2
result

main_stage_2

unparse

unparse

Final main AST
(after stage n)

Stage n
executable

update

compile

main_stage_n
result

main_stage_n

unparse

unparse

Final
executable

Stage 1 AST Stage 2 AST Stage n AST

...

compile

Fig. 4. Storing the source code of all compilation stages and their outputs

4.2 Tracking the Compile-Error Chain across Stages and Outputs

Any compilation stage (and the final program) is the outcome of a series of previous
compilation stages and may never appear in the original source. As a result, to
provide a meaningful and precise report for compile errors, the compiler has to track
down the error chain across all involved stages and combine all relevant information
in a descriptive message. To provide such functionality, each AST node is enriched
with information about its origin, thus creating a list of associated source references.
The source references for each node are created using the following rules:

1. Nodes created by the initial source parsing have no source reference.
2. When assembling nodes for a compilation stage, a source reference is created,

pointing to the current source location of the node present in the main AST.
3. When updating the main AST, the source locations of the modified nodes are

mapped to the latest stage source, creating the corresponding source reference.

Rules 1 and 3 along with the fact that the main AST can be modified only through the
execution of the compilation stages guarantee that the main AST nodes will always
either be a part of the original source or be generated by some previous stage and
have a source reference to it. Furthermore, rule 2 and the fact that compilation stages
are created using only nodes from the main AST guarantee the same property for all
compilation stages as well. This means that any AST being compiled, either for some
compilation stage or the final program, will incorporate for each of its nodes the entire
trajectory of the compilation stages involved in their generation. Fig. 5 provides a
sample visualization of this information upon the occurrence of an error.

 Supporting Compile-Time Debugging and Precise Error Reporting in Meta-programs 165

Fig. 5. Precise error reporting for compilation stages using the entire chain of generated sources

4.3 Compile-Time Source-Level Debugging of Stages

In order to support compile-time debugging, we need to provide the source code for
each compilation stage and support breakpoints both before and during debug
sessions. We continue by firstly discussing the general case of debugging dynamic
source code and the way we improved it when it comes to stages.

General Case: Debugging Dynamic Source Code. Debugging in the absence of a
respective source file is common when either the source code is stored in a buffer or
only its respective syntax tree is available for translation, usually both resulting from
a computation. Clearly, this is a more general case compared to the need of source-
level debugging for stages where no explicit source files are available too.

The latter is already handled in the Delta language through the reflection
infrastructure as follows: The source text is incorporated into the debug information
of the generated binary. Once the binary is loaded for execution, the source text from
the debug information is extracted by the debugger backend and is posted to the
debugger frontend when a breakpoint is hit in a statement of such dynamic source
code. Then, the frontend opens an editor for the dynamic source code enabling users
review it and also add or remove breakpoints as needed.

Apparently, before the initial creation of the dynamic source file, there is no way to
introduce respective breakpoints. At a first glance it seems that the latter applies to
stages as well, since their source code is also dynamically produced. Thus, an initial
meta-compilation round is required so that the stage sources become available.

In this context, as we discuss below, we have implemented a method improving the
debugging of stage source code by enabling the insertion of stage breakpoints directly
on the main source file even before meta-compilation.

166 Y. Lilis and A. Savidis

Specific Case: Debugging Stage Source Code. Prior to a meta-compilation round,
there are no stage sources available and no breakpoints associated with their
execution. The only available breakpoints concern the original source being compiled,
but we can translate them to breakpoints for the dynamically generated stage sources.

As discussed, every node of the syntax tree belonging to a compilation stage can be
directly traced-back across all earlier stages involved in its generation. Following this
generation chain we can always reach the original source, as even nodes introduced in
some particular stage will have been created recursively by code originating from the
initial source. Essentially, there is a direct mapping of a compilation stage node to a
node of the original source. By also keeping the reverse mapping, we can associate
any node of the original source to a list of compilation stage nodes (a single node may
generate multiple ones). In the same sense, we can associate each line of the original
source with the compilation stage source lines that they actually generate.

Line mapping
(main.dsc main_stage_1.dsc)

A line 2 line 1

B line 2 line 2

C line 4 line 3

D line 5 line 3

E line 6 line 3

F line 7 line 3

Statements

Expression
lines: 4 to 7

Body
line: 2

Formals
line: 2

Call
lines: 4 to7

Function
line: 2

compile_time
line: 2

a
line: 2

compile_time
line: 4

Identifier
line: 4

Actuals
lines: 5 to 6

1
line: 5

b
line: 2

2
line: 6

A
C
F

C

C D E

Identifier
line: 2

A A B

A A A

C
F

Node
line in main.dsc

Line mapping generated
(see table below)

D
E

Fig. 6. Extracting line mappings for a compilation stage: The assembled stage AST (top), the
original source and the compilation stage source (bottom right) and the line mappings generated
by each AST node (next to each of the AST nodes, referring to elements of the bottom left table)

To achieve this, we extend the unparsing process earlier discussed to associate each
node line of the AST being traversed to the current line of the source being generated,
taking into account the lines introduced by the unparsing implementation (Fig. 6).
Finally, we can use this association to transform breakpoints intended for the original
source into breakpoints for the compilation stage sources.

The line mappings are not unique, so a single original source breakpoint may
generate multiple stage source breakpoints (e.g. a multi-line function) and multiple

 Supporting Compile-Time Debugging and Precise Error Reporting in Meta-programs 167

source breakpoints may generate the same stage source breakpoint (e.g. a complex
multi-line expression that generates a single line of code). Nevertheless, this is the
expected functionality supposing that code modifications occur directly at the original
source line. For instance, an expression generating a function can be seen as
substituting itself with a single line containing the function definition. A breakpoint
set on the single line function would be hit during the execution of any statement
within the function; likewise, the breakpoint of the original source will generate
breakpoints for all lines the function expands to, achieving the same functionality.

5 Contact Sites between the Compiler and the Tool-Chain

5.1 Debugger

In order to support proper debugging of the compilation stages, there are two main
additions required related to the debugger. The first one is regarding the expression
evaluator and the need to inspect runtime values that represent code segments and the
second one relates to the handling of breakpoints for the compilation stage sources.

The execution of a compilation stage typically targets the modification of the
original source being compiled by adding, removing or editing code segments
expressed in ASTs. In order to properly debug such operations, it should be possible
to inspect such runtime values and browse through their contents. For example, the
programmer should be able to inspect any specific node attribute (e.g. type, name,
value, etc) as well as other related tree nodes (e.g. children, parent). The inspection
facility can be delivered using typical tree views or custom tree visualization (Fig. 7).

Fig. 7. Inspecting code segments expressed in AST form: using an expression tree view (left,
Sparrow IDE Zen debugger) and using a graphical tree visualizer (right, GVEdit for Graphviz)

Being able to specify stop points for a program execution is a vital debugging
facility, so it is important to support adding breakpoints for the execution of any
compilation stage. However, the compilation stage sources are dynamically produced
during compilation, so it is not possible for the programmer to add breakpoints to
them prior to their creation and execution. When launching the compiler, the IDE uses
the debugger frontend to collect the breakpoints for the original source and passes

168 Y. Lilis and A. Savidis

them to the compiler to later map them to breakpoints for the compilation stage
sources. During compilation, after performing the requested breakpoint mappings, the
compiler has to notify the debugger backend about the new breakpoints. Instead of
sending the breakpoints back to the IDE to propagate them to the debugger frontend
that would in turn have to communicate them to the backend, it is much simpler and
efficient to allow the execution system itself (i.e. the compiler) issue breakpoints
directly to the debugger running within it (Fig. 8). The only additional requirement is
the notification of the debugger frontend for the new breakpoints. Since these
breakpoints are essentially transient, the frontend can simply keep track of them
during the execution of each compilation stage and discard them after it is completed.

Debugger
Frontend

Executable Stage
(Debuggee)

Debugger
Backend

Build
Tools

remote communication

Get user-defined
source breakpoints

IDE
Meta compiler instrumented
for compile-time debugging

Meta Compiler

Launch compiler, passing
user defined breakpoints

Compute and supply
stage breakpoints

Pass stage
breakpoints to
the frontend

1

2

5

Breakpoints

Install stage
breakpoints 4

3.2
Launch stage

program

3.1

Fig. 8. Components involved in the generation of compilation stage breakpoints based on
original source breakpoints. Arrows indicate the information flow among the components.

5.2 IDE

The compiler can be seen as a service invoked by the IDE during the build process.
As such, the IDE may provide actions to be performed for specific events like
compilation errors, or generation of stage sources. If the compiler is implemented as a
separate executable spawned by the IDE, the communication channel between them is
typically a memory pipe using standard text input and output facilities. This requires
establishing a protocol for communicating the compiler events to the IDE using some
text representation. For example, to notify the IDE about the existence of the stage
sources, the compiler may use a special message containing resource identifiers for
them (e.g. file paths). The IDE can then retrieve these files and use them to provide
the sources required for the debugging process but also to maintain a reference point
of internal compilation resources externalized to the programmer.

Since the IDE typically incorporates the debugger frontend, another requirement
for supporting the compilation-time debugging is the ability to launch the debugger
during compilation and to properly orchestrate any other facilities previously targeted
only for build or debug sessions. Essentially, IDEs provide different tools during a
build session (e.g. error messages, build output, etc.) and during a debug session (e.g.
call stack, watches, active threads and processes, loaded modules, etc.), while usually
applying different visual configurations for each activity. Compile-time debugging

 Supporting Compile-Time Debugging and Precise Error Reporting in Meta-programs 169

involves both a build and a debug session, so it is important to combine the provided
facilities in a way that maintains a familiar working environment for the programmer.

6 Conclusion

In this paper we focused on providing error handling facilities in the context of meta-
programming. Since meta-programs are essentially programs, proper handling is
required to resolve errors occurring both during their compilation and execution.
However, existing implementations provide poor error messages and lack the required
support to debug meta-programs of any staging depth.

Towards this direction, we implemented a meta-programming system that features:
(i) precise reports for errors occurring at compilation stages or the final program using
a series of source references across the entire code generation chain; and (ii) full-
fledged source-level debugging for any stage during the compilation process. To
support these features, we based our implementation on the following three axes: (i)
source files are generated for both compilation stages and their outputs and are
incorporated into the IDE’s project manager associated with the source being built;
(ii) the chain of all source locations involved in generating an erroneous code segment
is utilized to provide precise error reports and (iii) original source breakpoints are
mapped to breakpoints for compilation stages. These features are not tightly coupled
with meta-programming, so we plan to further investigate their application to other
program transformation approaches like aspect-oriented programming.

To evaluate the effectiveness of our system we created a suite of meta-programs
containing various errors. We then assembled two groups of programmers of similar
experience and skill level and asked them to resolve the errors. One group worked
with the support of our system, while the other worked without it. Results showed that
the group using our system resolved the errors significantly faster. Users also noted
that our debugging features allowed them to handle even complex errors quite easily.

Finally, we provided a detailed overview of the amendments required to the
compilation process and tool-chain to support such functionality. We focused on an
untyped language, but the same approach can also be used with typed languages. The
only difference is that in our case, type errors result into stage execution errors, while
a type system could detect them at the stage compilation. This however, is a typical
trade-off between typed and untyped languages not related to meta-programming. All
in all, apart from the meta-programming system we built for the Delta language, we
believe that our work can provide a basis for extending other meta-programming
systems with similar features, arguably improving the meta-programming experience.

References

1. Kernighan, B.W., Ritchie, D.M.: The C programming language. Prentice-Hall, Englewood
Cliffs (1988)

2. Bawden, A.: Quasiquotation in Lisp. In: Danvy, O. (ed.) Proceedings of the Workshop on
Partial Evaluation and Semantics-Based Program Manipulation, San Antonio, pp. 88–99.
University of Aarhus, Dept. of Computer Science. Invited talk (1999)

170 Y. Lilis and A. Savidis

3. Martel, M., Sheard, T.: Introduction to multi-stage programming using MetaML. Technical
report, OGI, Portland, OR, 211, 213 (September 1997)

4. Taha, W., Sheard, T.: Multi-stage programming with explicit annotations. In: Proceedings
of the Symposium on Partial Evaluation and Semantic-Based Program Manipulation
(PEPM), Amsterdam, pp. 203–217. ACM Press (1997)

5. Sheard, T.: Using MetaML: A Staged Programming Language. In: Launchbury, J., Sheard,
T., Meijer, E. (eds.) AFP 1996. LNCS, vol. 1129, pp. 207–239. Springer, Heidelberg
(1996)

6. MetaOCaml: A compiled, type-safe multi-stage programming language (2003),
http://www.metaocaml.org/ (accessed September 13, 2011)

7. Stroustrup, B.: The C++ Programming Language Special Edition. Addison-Wesley (2000)
8. Sheard, T.: Accomplishments and Research Challenges in Meta-programming. In: Taha,

W. (ed.) SAIG 2001. LNCS, vol. 2196, pp. 2–44. Springer, Heidelberg (2001)
9. Veldhuizen, T.: Using C++ template metaprograms. C++ Report 7(4), 36–43 (1995)

10. Abrahams, D., Gurtovoy, A.: C++ Template Metaprogramming: Concepts, Tools, and
Techniques from Boost and Beyond. Addison-Wesley Professional (2004)

11. Porkolab, Z., Mihalicza, J., Sipos, A.: Debugging C++ template metaprograms. In: Proc. of
GPCE 2006, pp. 255–264. ACM (2006)

12. Alexandrescu, A.: The D Programming Language. Addison-Wesley Professional (2010)
13. Descent: An Eclipse plugin providing an IDE for the D programming language,

http://www.dsource.org/projects/descent (accessed September 13, 2011)
14. Skalski, K., Moskal, M., Olszta, P.: Meta-programming in Nemerle (2004),

http://nemerle.org/metaprogramming.pdf (accessed September 13, 2011)
15. Sheard, T., Jones, S.P.: Template meta-programming for Haskell. In: Proceedings of the

Haskell Workshop 2002. ACM (2002)
16. Bachrach, J., Playford, K.: D-expressions: Lisp power, dylan style (1999),

http://www.ai.mit.edu/people/jrb/Projects/dexprs.pdf
(accessed September 13, 2011)

17. Fleutot, F.: Man Metalua (April 2007),
http://metalua.luaforge.net/metalua-manual.html

18. Tratt, L.: Compile-time meta-programming in a dynamically typed OO language. In:
Proceedings Dynamic Languages Symposium, pp. 49–64 (October 2005)

19. Savidis, A.: Dynamic Imperative Languages for Runtime Extensible Semantics and
Polymorphic Meta-Programming. In: Guelfi, N., Savidis, A. (eds.) RISE 2005. LNCS,
vol. 3943, pp. 113–128. Springer, Heidelberg (2006)

20. Savidis, A., Bourdenas, T., Georgalis, J.: An Adaptable Circular Meta-IDE for a Dynamic
Programming Language. In: Proceedings of the 4th International Workshop on Rapid
Integration of Software Engineering Techniques (RISE 2007), Luxemburg, November 26-
27, pp. 99–114 (2007)

21. Taha, W.: A Gentle Introduction to Multi-stage Programming. In: Lengauer, C., Batory,
D., Blum, A., Vetta, A. (eds.) Domain-Specific Program Generation. LNCS, vol. 3016, pp.
30–50. Springer, Heidelberg (2004)

Identifying a Unifying Mechanism for the

Implementation of Concurrency Abstractions
on Multi-language Virtual Machines

Stefan Marr and Theo D’Hondt

Software Languages Lab, Vrije Universiteit Brussel
Pleinlaan 2, 1050 Elsene, Belgium

{stefan.marr,tjdhondt}@vub.ac.be

Abstract. Supporting all known abstractions for concurrent and paral-
lel programming in a virtual machines (VM) is a futile undertaking, but
it is required to give programmers appropriate tools and performance. In-
stead of supporting all abstractions directly, VMs need a unifying mech-
anism similar to INVOKEDYNAMIC for JVMs.

Our survey of parallel and concurrent programming concepts identi-
fies concurrency abstractions as the ones benefiting most from support
in a VM. Currently, their semantics is often weakened, reducing their en-
gineering benefits. They require a mechanism to define flexible language
guarantees.

Based on this survey, we define an ownership-based meta-object pro-
tocol as candidate for VM support. We demonstrate its expressiveness
by implementing actor semantics, software transactional memory, agents,
CSP, and active objects. While the performance of our prototype con-
firms the need for VM support, it also shows that the chosen mechanism
is appropriate to express a wide range of concurrency abstractions in a
unified way.

Keywords: Virtual Machines, Language Support, Abstraction, Paral-
lelism, Concurrency.

1 The Right Tool for the Job

Implementing parallel and concurrent systems has been argued to be a complex
undertaking that requires the right tools for the job, perhaps more than other
problems software engineering encountered so far. Instead of searching for a
non-existing silver bullet approach, we argue that language designers need to be
supported in building domain-specific concurrency abstractions.

Let us consider the implementation of a typical desktop application. A mail
application combines several components that interact and have different poten-
tials to utilize computational resources. The user interface component is tradi-
tionally implemented with an event-loop to react to user input. In a concurrent
setting, it is also desirable to enforce encapsulation like in an actor model, since
encapsulation simplifies reasoning about the interaction with other components.

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 171–186, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

172 S. Marr and T. D’Hondt

Another part of the application is the data storage for emails and address
book information. This part traditionally interacts with with a database. The
natural way to implement this component is to use a software transactional
memory (STM) system that extends the transaction semantics of the database
into the application. This allow a unified reasoning when for instance a new mail
is received from the network component and needs to be stored in the database.

A third part is a search engine that allows the user to find emails and address
book entries. Such an engine can typically exploit data-parallel approaches like
map/reduce or parallel collection operations for performance.

However, supporting the various different approaches to parallel and concur-
rent programming on top of the same platform comes with the challenge to
identify basic commonalities that allow to abstract from the particularities of
specific constructs and languages. Today’s high-level language virtual machines
(VMs) do not provide intrinsic support for more than one specific approach [17].
While some approaches like Fork/Join [14], Concurrent Collections [3] or PLINQ
can be implemented as libraries without losing any semantics or performance,
approaches like the actor model are typically implemented as an approximation
losing for instance the engineering benefits of encapsulation [11].

We approach this problem with a survey of the various concepts of paral-
lel and concurrent programming to identify concepts that are relevant for a
multi-language virtual machine (short: VM). Based on this survey, we define
an ownership-based meta-object protocol and evaluate its suitability to imple-
mented the identified concepts. Furthermore, we briefly evaluate the performance
properties of our prototype and discuss related work which could be used to re-
alize an implementation with optimal performance characteristics.

2 A Survey of Parallel and Concurrent Programming
Concepts

The goal of this survey is to identify concepts that are relevant for a multi-
language VM. To that end, we first select questions that enable us to categorize
the concepts by relevance. Afterwards, we detail our approach to identify the
concepts and finally, we present the findings and discuss our conclusions.

2.1 Survey Questions

When concepts are considered for inclusion in a VM, one of the main goals is
to avoid unnecessary complexity. From that follows, that a new concept only
needs to be added to a VM if it cannot be implemented reasonably in terms of
a library on top of the VM. Thus, our first question is:

���. Can this concept be implemented in terms of a library?

Interpreting the question very broadly, we consider whether some variation of the
concept can be implemented. Typically, such a library implementation can either
suffer from losing semantic guarantees, or it has to take performance drawbacks

Identifying a Unifying Mechanism 173

into account. Common examples are implementations of the actor model on top
of the JVM or CLR [11].

To account for that variation, we need the following two questions:

���. Does this concept require runtime support to guarantee its semantics?
���	. Would runtime support enable significant performance improvements

compared with a pure library solution?

To answer Sem, we also consider interactions of different languages on top of a
VM. This is relevant since common language guarantees are enforced by a com-
piler but do not carry over to the level of the VM. One example is the semantics
of single-assignment variables, which is typically not transferred to the bytecode
level of a VM. Similarly, we considered for Perf that knowledge about full lan-
guage semantics often enables better optimizations. For instance, the knowledge
about immutability enables constant folding, and taking the semantics of critical
sections into account enables optimizations like lock elision.

The last categorization criterion is whether the concept is prior art:

�
. Is the concept already supported by a VM like the JVM or CLR?

2.2 Selecting Subjects and Identifying Concepts

To identify concepts, we rely foremost on the overview given by two surveys [2,25]
as our main subjects. They give a broad foundation but are dated. To ensure that
the most common concepts are included, we survey also a number of languages
used in research or industry and select research papers from recent years to cover
current trends. The full list of subjects is given in Tab. 1.

Table 1. Survey Subjects: Languages and Papers

Active Objects [13] Charm++ Fortress Occam-pi Simple Java
Ada Cilk Go OpenCL Skillicorn&Talia [25]
Aida [15] Clojure Io OpenMP Sly
Alice CoBoxes [23] JCSP Orleans [4] StreamIT
AmbientTalk Concurrent Haskell Java Views [5] Oz Swing
Ateji PX Concurrent ML Join Java PAM[22] UPC
Axum Concurrent Objects Linda [7] Reactive Objects [20] X10
Briot et al. [2] Concurrent Pascal MPI SCOOP [19] XC
C# Erlang MapReduce [16] STM [24]
Chapel Fortran 2008 MultiLisp [9] Simple C/C++

Starting with the two surveys, we identify for each subject the basic con-
cepts and mechanisms introduced in the paper or provided by the language. For
languages, we regard the language-level as well as possible implementation-level
concepts. Note that the identified concepts necessarily abstract from specific
details that vary between the different subjects. Thus, we do not regard every
minor variation of a concept separately. However, this leaves room for different
interpretations of our survey questions. For subjects like C/C++ and Java, we
regard the simple core language and standard libraries. Interesting libraries or
extensions available for their eco systems are considered as separate subjects.

174 S. Marr and T. D’Hondt

2.3 Results

The analysis of the subjects given in Tab. 1 resulted in 82 identified concepts.
Since most of them are accepted concepts in the literature, we will only discuss
the results with regard to our questions in this paper. As mentioned earlier, some
concept variations have been considered together as a single concept. For exam-
ple, the distinct concepts of monitors and semaphores, have been regarded as
part of locks in this survey. Similarly, parallel bulk operations is included and also
covers parallel loops because of their similarity and closely related implementa-
tion strategies. Thus, Tab. 2a and 2b include 60 concepts and their respective
survey results.

Table 2a. Survey Results: Prior Art and Library Solutions

Prior Art PA Lib Sem Perf PA Lib Sem Perf

Atomic Primitives X - - X Co-routines X - - X
Condition Variables X X - X Critical Sections X X - X
Global Address Spaces X X - X Green Threads X - - -
Immutability X - X X Join X - - -
Locks X X - X Memory Model X - X X
Method Invocation X - - X Race-And-Repair X X - -
Thread Pools X X - - Thread-local Variables X X - X
Threads X X - - Volatiles X - X -
Wrapper Objects X X - X

Library Solutions PA Lib Sem Perf PA Lib Sem Perf

APGAS - X - - Agents - X - -
Atoms - X - - Concurrent Objects - X - -
Event-Loop - X - - Events - X - -
Far-References - X - - Fork/Join - X - -
Futures - X - - Guards - X - -
Message Queue - X - - One-sided Communication - X - -
PGAS - X - - Parallel Bulk Operations - X - -
Reducers - X - - Single Blocks - X - -
State Reconciliation - X - -

Table 2b. Survey Results: Runtime Support Required

Runtime Support Required PA Lib Sem Perf PA Lib Sem Perf

Active Objects - X X - Actors - X X X
Asynchronous Invocation - X X X Axum-Domains - X X -
Barriers - X - X By-Value - X X X
Channels - X X X Clocks - X - X
Data Movement - - - X Data Streams - X X X
Implicit Parallelism - X - X Isolation - X X X
Locality - - - X Map/Reduce - X X -
Message sends - X X X Mirrors - X - X
No-Intercession - X X X Ownership - - - X
Persistent Data Structures - X X - Replication - X X -
Side-Effect Free - - X X Speculative Execution - - X X
Transactions - X X X Tuple Spaces - X X -
Vats - X X X Vector Operations - X - X

As Tab. 2a shows, about half of the concepts are either already available in
JVM and CLR or can be implemented in terms of a library without sacrificing
semantics or performance aspects. We will discuss only the remaining 26.

Identifying a Unifying Mechanism 175

With 18, the majority of the concepts requiring runtime support (Tab. 2b)
suffer from weaker semantics. Most of these concepts are usually realized either
with enforcement on a compiler level or require correct construction by the
programmer. However, a compiler cannot enforce guarantees on a VM if they
are not present in the bytecode intermediate language. Thus, a Java program can
mutate a supposedly immutable object of another language. An example is the
semantics of final fields in Java, which can be changed via reflection, and thus,
are not truly constant. Persistent data structures and tuple spaces are examples
that rely on the notion of immutable values to provide a consistent framework
for reasoning. Similarly, E’s vats, AmbientTalk’s actors, and Axum’s domains
restrict mutation to an owner. While a reference can be obtained to an object
owned by another actor or vat, they can only be mutated within the owner’s
context. These concepts also share the property that method invocation on such
objects need to be done asynchronously in the context of the owning entity and
under the scheduling regime of the entity. This applies to active objects, too.

The other concepts, like barriers, clocks, data movement, locality, and vector
operations, will benefit from adaptive optimizations of a just-in-time compiler,
which is aware of their semantics, or require information of the underlying hard-
ware that is normally not exposed by the VM. Implicit parallelism and specula-
tive execution can be considered as adaptive optimizations, too. However, they
imply likely a significantly higher complexity.

2.4 Conclusions and Requirements

We conclude from our survey that approaching the semantics of concurrency
constructs is the most promising angle to take when improving support for par-
allel and concurrent languages. Performance is another important but to specific
problem. The concepts discussed here do not lend themselves towards more
generally applicable optimizations. Instead, such optimizations would likely be
specific to a single concept. Thus, from the set of concepts that will benefit from
semantic enforcement, we distill the following requirements for a VM:

Managed Mutation. Many concept impose rules for when and how state can
be modified. Thus mutation must be manageable in a flexible manner.

Managed Execution. Similarly, the activation of methods on an object is typ-
ically also regulated and needs to be adaptable.

Ownership. One recurring notion is that mutation and execution are regu-
lated based and relative to an owning entity. Thus, ownership needs to be
supported in a manner that enables adaptable mutation and execution rules.

Leveled Reflection. Many use cases of reflective meta-programming still need
to follow the concurrency-related language semantics to be safe. Thus, there
is a need to distinguish between restricted language-level reflection, and un-
restricted meta-level reflection.

Enforceability. These rules need to be enforceable across different concurrency
models. Thus, if a reference to an object belonging to an actor is obtained,
everything done with it must obey the rules of the actor language.

176 S. Marr and T. D’Hondt

3 An Ownership-Based MOP to Express Concurrency
Abstractions

Based on the described requirements we define a meta-object protocol (MOP) [12]
that is based on the notion of ownership. First, we describe its semantics, then
given an example how it can enforce immutability, and finally, we are going to
detail the implementation approach for our Smalltalk-based prototype.

3.1 Design of the MOP

Following the stated requirements, we base our approach on the notions of ob-
ject ownership, state access, and execution. The owner of an object, here called
domain, defines the semantics of operations on all objects it owns. The semantics
it defines regard reading of object fields, writing of object fields, and invocation
of methods on objects. A thread of execution is executing in a domain, but as
objects may change their owners, threads can change the domains they execute
in. In addition, the thread has a flag that defines whether it is executing on
the base level, where the domain semantics are enforced, or on the meta level
without enforcement. See Fig. 1 for an overview.

Depending on the VM, a domain also needs to regard globally accessible
resources that may lie beyond its scope but that can have impact on the exe-
cution. That typically includes lexical globals and primitive operations of a VM
that cannot be regarded otherwise. Thus, the following conceptual semantics are
associate with the MOP.

A Domain owns objects, and every object has an owner. It defines the con-
currency semantics for owned objects. This satisfies the ownership requirement.

A Thread is the unit of execution. It executes either in the base level, en-
forcing the semantics of domains (incl. reflective operations), or it executes on
the meta level without enforcement (execLevel). This satisfies the leveled re-
flection requirement. Furthermore, a thread runs in the context of a domain.
The newThread operation enables the domain to control the number of threads
executing at the same time. execInContext enables an existing thread to change
the execution domain for the duration of the execution of method. This is nec-
essary for the managed execution requirement.

All Read/Write operations of object fields are delegated to readField and
writeField of the owner. The domain can then decide based on the given object

readField(obj, idx)
writeField(obj, idx, val)

reqExec(obj, method, args)

newThread(method)
execInContext(method)

readGlobal(glob)
writeGlobal(glob, val)

primitiveCopy(obj)
primitive*(...)

Domain

Object

10..*

owned by

1 0..*

runs in
execLevel : [base | meta]

Thread

Fig. 1. Ownership-based Meta-object Protocol Supported by the Domain Object

Identifying a Unifying Mechanism 177

and the slot index, as well as other execution state, what action needs to be taken.
This satisfies the managed mutation requirement.

Request Execution (reqExec) is used for all method invocations enabling
the domain to decide based on the given object, the method to be executed, its
arguments, and other execution state, how the invocation is to be handled. This
satisfies, together with the execution context of a thread, the managed execution
requirement.

External Resources, i. e., globally shared variables and primitives need to
be handled by the domain if they otherwise break semantics. To that end, the
domain includes readGlobal/writeGlobal which enables for instance to give
globals a semantic local to the domain. Furthermore, it includes primitive*

operations, as for instance primitiveCopy to override the semantics of VM
primitives. The direct use of primitiveCopy would allow to copy arbitrary ob-
jects without regarding domain semantics. This and all of the above allow us to
satisfy the enforceability requirement.

3.2 Example: Enforcing Immutability

Fig. 2 gives a sequence diagram of how immutability could be enforced based on
our approach. The JavaThread starts running in the meta level and then directly
starts to execute application code in the base level. At some point, it invokes
setFoo on an immutable object. In our model, this invocation goes first as a
request for execution to the domain owning the immutable object. The domain
code executes itself on the meta level. Since immutability does not interfere with
method execution semantics, the request is granted, and setFoo is invoked on
the object. The invocation is executed in the base level to enforce the desired
semantics, which then results in a request to the domain to write a field in the
object. For this immutable object, the request is denied and instead an exception
is raised to notify the JavaThread which executes the code. The mutation would
also be denied if JavaThread would use reflection while executing in the base
level, since the reflective operations also pass by the domain.

Section 4.1 discusses a longer example, showing how to implement Clojure’s
agents based on the MOP.

JavaThread Immutable Obj Immutable Domain

base-level

imObj.setFoo(val)

imObj.setFoo(val) → reqExec(imObj, setFoo,val)

writeField(imObj, 1, val)

ImmutabilityViolationException(imObj, 1, val)

Fig. 2. Example of Immutability Enforcement based on the MOP

178 S. Marr and T. D’Hondt

3.3 Implementation Strategy

Our prototype is implemented in Smalltalk applying the implementation strategy
presented by Renggli and Nierstrasz for an STM [21]. Similar to their solution,
we enforce the use of our MOP by transforming Smalltalk bytecode. Thereby,
we abstract from a particular language that compiles to bytecode. Our trans-
formations change reads and writes of instance variables as well as globals to
the corresponding MOP operations discussed earlier. Message sends are adapted
similarly to request execution on the owning domain.

To keep meta and base level apart, selectors in base-level message sends are
prefixed. This prefixing also separates the actual compiled methods for meta
and base level. The unmodified version of the bytecode executes on the meta
level, while the transformed code executes on the base level. Instead of relying
on the conceptual execLevel flag in a thread, we explicitly enter and exit the
base level. Entry points are marked by sending #enter: to a block. The compiler
transforms all blocks that statically receive the enter message, i. e., lexically in
the form of [foo doSomething] enter: domain. To exit the base-level code,
certain methods are not transformed. To mark such exit points methods can be
annotated with <doNotTransform>. VM primitives are handled by annotating
their Smalltalk representation with <replacement: #selector>.

The owner of an object is expressed by a new slot for the domain in all classes
that support it. For some classes the VM make special assumptions and does not
allow adding slots. One example is the Array class. Here we provide an adapted
subclass with the slot and ensure it is used instead of Array.

4 Evaluation

To evaluate our approach, we present Clojure’s agents1 as a detailed example and
then discuss the expressiveness and performance of our approach. The expres-
siveness is assessed by demonstrating that a number of concurrency models can
be implemented straightforwardly. Furthermore, we comparing how our abstrac-
tion fairs compared to ad-hoc implementations. For the performance evaluation,
we use an actor implementation as well as an STM system. Both have been im-
plemented in an ad-hoc version and in a version based on our MOP to compare
the performance of the two approaches. Note that Sec. 3.1 already evaluated how
the MOP satisfies the requirements derived from our survey.

4.1 By Example: Clojure’s Agents

Since the discussion was so-far theoretical, we will look into one concurrency
construct more closely. Clojure’s agents provide an abstraction for event-loop
concurrency. An agent represents a resource with a mutable state. However, the
state is modified only by the agent itself. The agent receives update functions
asynchronously. An update function takes the old state and produces a new

1 http://clojure.org/agents

http://clojure.org/agents

Identifying a Unifying Mechanism 179

state. The execution is done in a dedicated thread, so that at most one update
function can be active for a given agent at any time. Furthermore, other threads
will always read a consistent state of the agent at any time. However, while
Clojure encourages the use of immutable data structures, it is not enforcing
it. Thus, in practice the assumed guarantees can be violated. See Lst. 1.1 for a
simplified implementation. The complete implementation is slightly longer and
takes 8 methods with a total of 31 lines of code (LOC) (cf. Tab. 3).

Object < #Agent instanceVariables: ’mailbox state ’.

Agent >> await [mailbox waitUntilEmpty]
Agent >> read [^ state]

Agent >> send: anUpdateBlock [mailbox nextPut : anUpdateBlock]

Agent >> send: anUpdateBlock with: args [
self send: [:old | anUpdateBlock value: old value: args]]

Agent >> initialize [
mailbox := SharedQueue new.
[true whileTrue: [self processIncomingMessages]] fork]

Agent >> processIncomingMessages [
| updateBlock |
updateBlock := mailbox waitForFirst.
state := updateBlock value: state.
mailbox removeFirst]

Listing 1.1. Agent implementation in Smalltalk

Like in Clojure, Lst. 1.1 does not guarantee any execution semantics. Since
Smalltalk does not have private methods, #processIncomingMessages could
even be called from another thread and violate the assumption that only one
update function is executed at a time.

To enforce the expected guarantee, we now define AgentDomain in Lst. 1.2.
Since Agent and AgentDomain implement the concurrency semantics, all meth-
ods need to be annotated with <doNotTransform>, including the ones in Lst. 1.1.
With this annotation, we make sure that our implementation code is executed
on the meta level. The domain then defines the #requestExecutionOf:on:...

methods to ensure that the main constraint of having a single thread of execution
for agent methods is obeyed.

Domain < #AgentDomain instanceVariables: ’agent ’

AgentDomain >> agent: anAgent [agent := anAgent]

AgentDomain >> requestExecutionOf: aSelector on: anObject [
<doNotTransform >
"Rules are only enforced on the agent itself"
anObject = agent ifFalse : [^anObject perform : aSelector].
(aSelector = #read or: ["White -listed methods "
aSelector = #await or: [
aSelector = #shutdown]]) ifTrue: [^agent perform : normSel].

Error signal: ’Access denied ’. "Everything else is an error"]

AgentDomain >> requestExecutionOf: aSel on: obj with: par1 [
<doNotTransform >
obj = agent ifFalse : [^obj perform : aSel with: par1.].
(aSel = #send:) ifTrue: [^agent send: par1].

180 S. Marr and T. D’Hondt

Table 3. Agent Implementation Metrics

Class #M LOC #BC

Agent 8 31 77

With Guarantees

Agent 8 39 85
AgentDomain 4 34 132

With Immutability #M LOC #BC

Agent 8 41 100
AgentDomain 4 34 132
ImmutableDomain 6 17 25
#M: number of methods

#BC: number of bytecodes

Error signal: ’Access denied ’. "Else: an error"]

AgentDomain >> requestExecutionOf: aSel on: obj with: p1 with: p2 [
<doNotTransform >
obj = agent ifFalse : [^obj perform : aSel with: p1 with: p2].
(aSel = #send:with:) ifTrue: [^agent send: p1 with: p2].
Error signal: ’Access denied ’. "Else: an error"]

Listing 1.2. AgentDomain to enforce desired guarantees

As already demonstrated in Sec. 3.2, it becomes also simple to add the guar-
antee that an agent state only refers to immutable data structures. The im-
plementation of ImmutableDomain changes the semantics of all operations that
write to object fields. Thus, for instance writeField throws an error as in Fig. 2.
The agent itself will ask the ImmutableDomain to adopt the new state after an
update function is completed. This guarantees that the immutability cannot be
violated while executing code on the base/language level. Tab. 3 shows that the
necessary adaptations are minimal to provide this extra guarantee.

4.2 Subjects

LRSTM is the STM implementation by Renggli and Nierstrasz [21]. We reim-
plemented the compiler transformations to use the same Smalltalk and libraries
as for our MOP to allow a comparison of the systems. Since the MOP is imple-
mented using the ideas of the LRSTM implementation, the resulting systems are
very similar. The STM algorithm tracks read and write operations, by keeping
read- and write-logs. It uses the read-log to detect conflicts during the commit
phase and when no conflicts are detected, it will apply the writes atomically.

AmbientTalkST is a framework to build applications using actor semantics
similar to E [18] and AmbientTalk [28]. We call it a framework, since it requires
care to set up the actors correctly to enforce the desired semantics. We have not
implemented a full language with its own syntax, parser, and compiler, which
would take care of these details implicitly. However, the framework uses stratified
proxies [1,27] to guarantee actor semantics. Since the proxies are stratified, the
guarantees are also given for reflective operations.

Actors refer to objects owned by other objects only via far-references which
in return enforce that all messages sent to them will be reified and put into

Identifying a Unifying Mechanism 181

the inbox of an actor. The actor will process the messages one at a time. The
far-reference implementation makes sure that parameters and return values are
encapsulated in far-references as necessary to avoid introducing shared state.
This implementation approach is different from our MOP-based one, but reflects
more closely how AmbientTalk enforces its language guarantees.

Additional Concurrency Abstractions. To demonstrate the expressiveness
of our abstraction, we implemented also as already discussed Clojure’s agents.
Furthermore, we implemented the Active Object pattern [13] and CSP+π, a
minimal version of occam-π’s semantics.

4.3 Expressiveness

Appropriate abstractions allow a concise description of a problem. Thus, we
compare implementation metrics to assess the impact of using our abstraction
instead of ad-hoc approaches. The used metrics are number of classes, number of
methods, LOC, and number of bytecodes. Number of methods includes necessary
extensions and changed methods in system classes. LOC refers to the length of a
method including comments but excluding blank lines. Since LOC varies based
on coding conventions and comments, we also list the number of bytecodes of
all methods.

Table 4. Metrics for Ad-hoc and MOP-based Implementations

#Classes #Methods LOC #Bytecodes

Agents (ad-hoc, without enforcement) 1 8 31 77
Agents (MOP, with enforcement) 2 12 73 217
LRSTM (ad-hoc) 8 151 886 2411
LRSTM (MOP) 7 69 167 452
AmbientTalkST (ad-hoc) 6 37 163 390
AmbientTalkST (MOP) 2 26 115 213
Active Objects (MOP) 3 15 73 148
CSP+π (MOP) 5 16 39 61
MOP base system 5 170 1068 2767

AmbientTalkST (MOP∗) 2 38 213 638
MOP base system∗ 5 206 1163 3016
∗ including duplicated code for variadic argument emulation

As the results in Tab4 show, the concurrency constructs and their guarantees
can be expressed concisely. As pointed out in Sec. 4.1, the 31 LOC of the ad-hoc
agent implementation do not include any enforcement, while the additional 42
LOC of the MOP-based one include the domain and its guarantee enforcement.
The more than 80% reduction of LOC for the MOP-based LRSTM comes mostly
from avoiding the need for a custom bytecode transformation, which is already
included in the MOP base system. The MOP-based AmbientTalkST implemen-
tation is with 115 LOC also slightly more concise than the ad-hoc version with
163 LOC. The MOP further enables the implementation of active objects in 73
LOC, and a minimal CSP in 39 LOC, both enforcing their full semantics.

182 S. Marr and T. D’Hondt

Note that Smalltalk does not support variadic methods, which currently re-
sults in replicating code for the handler of method execution requests. We du-
plicate the code for 0 to n parameters manually, which could be avoided with
a template or macro mechanism. For completeness, we also give the numbers
including the duplicated code for variadic methods.

The MOP base system is with 170 methods and 1068 LOC still manageable.
This core provides the main mechanisms for the unified reusable abstraction of
our MOP and simplifies the implementation of concurrency constructs.

4.4 Performance

We assess the overhead of our prototype by comparing the performance of the
ad-hoc with the MOP-based implementations by using AmbientTalkST and
LRSTM. We concentrate on AmbientTalkST and LRSTM, because these two
provide in both implementations the same semantics, while the other concur-
rency constructs do not enforce their semantics in the ad-hoc implementation.
Furthermore, since our prototype is meant to demonstrate the expressiveness of
our MOP-based approach, we will concentrate on kernel benchmarks to get a
first impression of the performance impact. Thus, we use adapted versions of
four kernel benchmarks from the Computer Language Benchmarks Game2 for
general assessment. Additional microbenchmarks then allow to assess which part
of the MOP influences performance most.

Our methodology is derived from the advice of Georges et al. [8]. All bench-
marks are executed 100 times on the CogVM. We measure steady-state perfor-
mance to account for the just-in-time compiler. The used machine runs OS X
10.6 with Intel Xeon E5520 processors. The benchmarks use only a single core
to avoid noise in the measurements.

Fig. 3 depicts the results as a box plot. It shows the performance ratio of ad-
hoc/MOP-based. Ideally, the implementations would perform on-par, i. e., would
be at the dashed ideal line with a value of 1. However, the benchmarks show that
the ad-hoc implementation of AmbientTalkST outperforms MOP-based one for
all but one kernel benchmark. The microbenchmarks point out that the MOP
has an impact on all method invocations and array as well as instance variable
accesses. The implementation of asynchronous (remote) message sends to other
actors is however more efficient. This explains also the behavior observed for the
FannkuchRedux kernel, which has almost no instance variable accesses, but a
high amount of inter-actor message sends. While the proxy-based solution of the
ad-hoc implementation has a higher overhead on remote sends to other actors,
it does not incur any cost for local sends and variable accesses.

The LRSTM kernel benchmarks show an overhead of 26–34% for the MOP-
based solution. Here the impact of the message sends overhead is smaller since
the performance impact of array and instance variable access is not as high as
for the AmbientTalkST implementation, since LRSTM already modifies them.

2 http://shootout.alioth.debian.org/

http://shootout.alioth.debian.org/

Identifying a Unifying Mechanism 183

B
in

a
ry

 T
re

e
s
 (

A
T

)

F
a
n
n
k
u
c
h
R

e
d
u
x
 (

A
T

)

F
a
s
ta

 (
A
T

)

N
B

o
d
y
 (

A
T

)

B
in

a
ry

 T
re

e
s
 (

L
R

)

F
a
n
n
k
u
c
h
R

e
d
u
x
 (

L
R

)

F
a
s
ta

 (
L
R

)

N
B

o
d
y
 (

L
R

)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Kernel Benchmarks
S

p
e
e
d
 R

a
ti
o
:

A
d
−

h
o
c
/M

O
P

−
b
a
s
e
d

A
rr

a
y
 A

c
c
e
s
s
 (

A
T

)

In
s
ta

n
c
e
 V

a
r.

 (
A
T

)

L
o
c
a
l
S

e
n
d
s
 (

A
T

)

R
e
m

o
te

 S
e
n
d
s
 (

A
T

)

R
e
m

o
te

 S
e
n
d
s
 (

A
T

)

w
it
h
 1

0
 a

rg
u
m

e
n
ts

A
rr

a
y
 A

c
c
e
s
s
 (

L
R

)

In
s
ta

n
c
e
 V

a
r.

 (
L
R

)

S
e
n
d
s
 (

L
R

)

S
e
n
d
s
 (

L
R

)

w
it
h
 1

0
 a

rg
u
m

e
n
ts

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Microbenchmarks

S
p
e
e
d
 R

a
ti
o
:

A
d
−

h
o
c
/M

O
P

−
b
a
s
e
d

Fig. 3. Boxplot of Speed Ratio Ad-hoc/MOP-based for AmbientTalkST (AT) and
LRSTM (LR): The ideal line (dashed) is at 1. While higher means better, everything
below indicates that the MOP-based implementations are slower than the ad-hoc ones.

While our prototypical implementation is able to enforce the desired seman-
tics, it comes with a high performance cost. Therefore, we will discuss in the
next section how our approach could be implemented in a VM.

5 Discussion and Performance Perspectives

While performance is an issue, the current MOP also has limitations since it
only regards the owner of an object as the entity defining the semantics for
interaction. This approach does not offer any mechanism to control the inter-
action of different semantics. Thus, they need to be defined directly as part of
the concurrency model for all possible combination with other concurrency mod-
els. However, for instance the possible interaction between actor-like models and
STM systems cover a wide design space that needs to be carefully considered to
achieve appropriate semantics.

Other types of guarantees, for instance deadlock freedom, are also problem-
atic. Deadlock freedom is usually guaranteed by providing only non-blocking op-
erations in a language. Thus, it is not clear how such a guarantee could be given
in a system that provides arbitrary blocking mechanisms to other languages.

Our prototypical implementation does not yet rely on runtime support. How-
ever, we expect to be able to reduce the overhead to an acceptable level by
applying the following techniques. Most promising seems to be the implemen-
tation techniques used by Hoffman et al. [10]. They use the hardware memory
protection support to enable the isolation of program components in an otherwise
shared memory model. It could be used to reduce the performance overhead for
a wide set of concurrency models, too. Especially actor-like and CSP-like models
could benefit from a protection model where local operations do not impose any
overhead. While memory protection is relevant for field accesses, the overhead
of customized semantics of method invocation mechanisms is also significant.
This could be solved with the INVOKEDYNAMIC infrastructure [26] included

184 S. Marr and T. D’Hondt

in current JVMs. Furthermore, tracing compilers [6] are known to enable the
elimination of expensive guarding checks to ensure semantics effectively.

6 Related Work

Classic MOPs were an inspiration for our approach. However, the CLOS [12] and
also current Smalltalk MOPs [29] are based on the notion of classes or metaclasses
that define the semantics of their subclasses. In contrast to that, our model is
based on ownership. Thus, a domain defines the concurrency semantics for its
objects and is orthogonal to the classic classification-based schemes.

Our survey is based on two surveys [2,25] and thus closely related to them.
However, we are not aware on any survey or approach that enables a runtime
system to directly support the semantics of multiple concurrency models.

As mentioned in Sec. 5 the work of Hoffmann et al.[10] is closely related in the
field of VMs. They enable the isolation of components enabling the enforcement
of memory access constraints inside an application. As argued, this is a promising
technique to approach the performance implications of our approach.

The prototype implementation of our approach is closely related, and inspired
by the work of Renggli and Nierstrasz [21]. While they use it to implement an
STM, we use the same ideas to enable our MOP which in return allows use to
enforce different language semantics. A similar transformation based approach
was also used to implement an STM for Java [30].

7 Conclusion

Our survey showed that most parallel constructs can be provided in terms of
libraries without sacrificing neither performance nor semantics. Concurrency
constructs however, often suffer from either the loss of semantic integrity or
a high performance penalty when implemented in terms of libraries. Based on
this survey we identified the requirements for the support of such concurrency
mechanisms in a multi-language virtual machine. A VM needs a mechanism to
managed mutation/execution with regard to ownership, as well as support for
leveled reflection to guarantee enforceability of language semantics.

Based on these requirements, we designed an ownership-based MOP and
demonstrated that it is a unifying mechanism to enforce the semantics for a
wide range of concurrency models in a concise manner. The main concepts of
the MOP are reification of field accesses, message sends, and object ownership.
The distinction between language-level and meta-level reflection enables us fur-
ther to guarantee concurrency semantics even when meta-programming is used.

The performance of our bytecode-transformation-based prototype shows that
the performance impact is significant and actual VM support is required to
achieve acceptable performance. However, it also shows the unifying potential of
the MOP. It enabled us to implement active objects, actors, agents, CSP, and
STM in less than 500 LOC in total. With the example of agents, we were also

Identifying a Unifying Mechanism 185

able to demonstrate how a concurrency abstraction can be easily extended to
provide desirable engineering properties.

For our future work, we identified a number of promising techniques that can
be used to implement our MOP more efficiently as part of a VM.

Acknowledgments. Stefan Marr is supported by a doctoral scholarship of the
Institute for the Promotion of Innovation through Science and Technology in
Flanders (IWT-Vlaanderen), Belgium.

References

1. Bracha, G., Ungar, D.: Mirrors: design principles for meta-level facilities of object-
oriented programming languages. In: Proc. of OOPSLA 2004, pp. 331–344. ACM
(2004)

2. Briot, J.P., Guerraoui, R., Lohr, K.P.: Concurrency and distribution in object-
oriented programming. ACM Computing Surveys 30(3), 291–329 (1998)

3. Budimlic, Z., Chandramowlishwaran, A., Knobe, K., Lowney, G., Sarkar, V., Treg-
giari, L.: Multi-core implementations of the concurrent collections programming
model. In: The 14th Workshop on Compilers for Parallel Computing (January
2009)

4. Bykov, S., Geller, A., Kliot, G., Larus, J.R., Pandya, R., Thelin, J.: Orleans: Cloud
computing for everyone. In: Proc. of SOCC 2011, pp. 16:1–16:14. ACM (2011)

5. Demsky, B., Lam, P.: Views: object-inspired concurrency control. In: Proc. of ICSE
2010 (2010)

6. Gal, A., Probst, C.W., Franz, M.: Hotpathvm: An effective jit compiler for resource-
constrained devices. In: Proc. of VEE 2006, pp. 144–153. ACM (2006)

7. Gelernter, D.: Generative communication in linda. ACM TOPLAS 7, 80–112 (1985)
8. Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous java performance

evaluation. SIGPLAN Not. 42(10), 57–76 (2007)
9. Halstead Jr., R.H.: Multilisp: a language for concurrent symbolic computation.

ACM Trans. Program. Lang. Syst. 7, 501–538 (1985)
10. Hoffman, K.J., Metzger, H., Eugster, P.: Ribbons: A partially shared memory pro-

gramming model. SIGPLAN Not. 46, 289–306 (2011)
11. Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the jvm platform: A

comparative analysis. In: Proc. of PPPJ 2009, pp. 11–20. ACM (2009)
12. Kiczales, G., des Rivières, J., Bobrow, D.G.: The Art of the Metaobject Protocol.

MIT (1991)
13. Lavender, R.G., Schmidt, D.C.: Active object: An object behavioral pattern for

concurrent programming. In: Pattern Languages of Program Design 2, pp. 483–
499. Addison-Wesley Longman Publishing Co., Inc. (1996)

14. Lea, D.: A java fork/join framework. In: JAVA 2000: Proceedings of the ACM 2000
Conference on Java Grande, pp. 36–43. ACM (2000)

15. Lublinerman, R., Zhao, J., Budimlić, Z., Chaudhuri, S., Sarkar, V.: Delegated
isolation. SIGPLAN Not. 46, 885–902 (2011)

16. Lämmel, R.: Google’s mapreduce programming model - revisited. SCP 70(1), 1–30
(2008)

17. Marr, S., Haupt, M., D’Hondt, T.: Intermediate language design of high-level lan-
guage virtual machines: Towards comprehensive concurrency support. In: Proc.
VMIL 2009 Workshop, pp. 3:1–3:2. ACM (October 2009) (extended abstract)

186 S. Marr and T. D’Hondt

18. Miller, M.S., Tribble, E.D., Shapiro, J.S.: Concurrency Among Strangers: Program-
ming in E as Plan Coordination. In: De Nicola, R., Sangiorgi, D. (eds.) TGC 2005.
LNCS, vol. 3705, pp. 195–229. Springer, Heidelberg (2005)

19. Morandi, B., Bauer, S.S., Meyer, B.: SCOOP – A Contract-Based Concurrent
Object-Oriented Programming Model. In: Müller, P. (ed.) LASER Summer School
2007/2008. LNCS, vol. 6029, pp. 41–90. Springer, Heidelberg (2010)

20. Nordlander, J., Jones, M.P., Carlsson, M., Kieburtz, R.B., Black, A.P.: Reactive
objects. In: Symposium on Object-Oriented Real-Time Distributed Computing,
pp. 155–158 (2002)

21. Renggli, L., Nierstrasz, O.: Transactional memory for smalltalk. In: ICDL 2007:
Proceedings of the 2007 International Conference on Dynamic Languages, pp. 207–
221. ACM (2007)

22. Scholliers, C., Tanter, E., De Meuter, W.: Parallel actor monitors. In: 14th Brazilian
Symposium on Programming Languages (2010)

23. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing Active Objects to Con-
current Components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 275–299. Springer, Heidelberg (2010)

24. Shavit, N., Touitou, D.: Software transactional memory. In: Proc. of PODC 1995.
ACM (1995)

25. Skillicorn, D.B., Talia, D.: Models and languages for parallel computation. ACM
CSUR 30, 123–169 (1998)

26. Thalinger, C., Rose, J.: Optimizing invokedynamic. In: Proc. of PPPJ 2010, pp.
1–9. ACM (2010)

27. Van Cutsem, T., Miller, M.S.: Proxies: Design principles for robust object-oriented
intercession apis. In: Proc. of DLS 2010, pp. 59–72. ACM (October 2010)

28. Van Cutsem, T., Mostinckx, S., Gonzalez Boix, E., Dedecker, J., De Meuter, W.:
Ambienttalk: Object-oriented event-driven programming in mobile ad hoc net-
works. In: Proc. of SCCC 2007, pp. 3–12. IEEE CS (2007)

29. Verwaest, T., Bruni, C., Lungu, M., Nierstrasz, O.: Flexible object layouts: En-
abling lightweight language extensions by intercepting slot access. In: Proc. of
OOPSLA 2011, pp. 959–972 (2011)

30. Ziarek, L., Welc, A., Adl-Tabatabai, A.-R., Menon, V., Shpeisman, T., Jia, L.:
A Uniform Transactional Execution Environment for Java. In: Ryan, M. (ed.)
ECOOP 2008. LNCS, vol. 5142, pp. 129–154. Springer, Heidelberg (2008)

Verification of Snapshotable Trees

Using Access Permissions and Typestate

Hannes Mehnert1 and Jonathan Aldrich2

1 IT University of Copenhagen, 2300 København, Danmark
hame@itu.dk

2 School of Computer Science, Carnegie Mellon University, Pittsburgh, USA
aldrich@cs.cmu.edu

Abstract. We use access permissions and typestate to specify and ver-
ify a Java library that implements snapshotable search trees, as well as
some client code. We formalize our approach in the Plural tool, a sound
modular typestate checking tool. We describe the challenges to verify-
ing snapshotable trees in Plural, give an abstract interface specification
against which we verify the client code, provide a concrete specification
for an implementation and describe proof patterns we found. We also
relate this verification approach to other techniques used to verify this
data structure.

1 Introduction

In this paper we use access permission and typestate to formally verify snap-
shotable search trees in Plural [4, Chapter 6]. Snapshotable trees have been
proposed as a verification challenge [10], because they contain abstract separa-
tion and internal sharing: the implementation uses sharing, while the user sees
each tree and snapshot separately. The complete verified code is available at
http://www.itu.dk/people/hame/SnapTree.java.

We only verify API compliance rather than full functional correctness in this
paper. The protocol of the data structure is verified, rather than the tree content.
The protocol is intricate, with internal sharing that is hidden from the client.
The tree content could be modeled as a set, but in Plural no reasoning about
sets is implemented.

We will first recapitulate the snapshotable tree verification challenge [10],
typestate, and access permissions. Then we will briefly describe Plural and in-
troduce our solution to the challenge.

To our knowledge this is the first formal verification of a tree data structure
using access permissions and typestate. The verification of the Composite pat-
tern [6], which consists of a tree data structure, used non-formalized extensions
of Plural and was not formalized in Plural.

Snapshotable Search Trees. A snapshotable search tree is an ordered binary tree
with the additional method snapshot, which returns a handle to a read-only
persistent view of the tree. Both the tree and the snapshot implement the same

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 187–201, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

188 H. Mehnert and J. Aldrich

interface ITree. While the client can think of a tree and a snapshot as disjoint, the
actual implementation requires that snapshot be computed in constant time.
This is achieved by sharing the nodes between the tree and its snapshots. If
a new node is inserted into the tree, the nodes are lazily duplicated (copy on
write).

There are two implementation strategies, path copy persistence and node copy
persistence [8]. While the former duplicates the entire path from the root node
to the freshly inserted node, the latter has an additional handle in each node,
which is used for the first mutation of the node.

public interface ITree extends Iterable<Integer> {

public boolean contains(int x);

public boolean add(int x);

public ITree snapshot();

public Iterator<Integer> iterator();

}

The methods of the ITree interface have the following effects:

– contains return true if the given item is in the tree, otherwise false.

– add inserts the given item into the tree. If the item was already present, this
method does not have any effect and its return value is false, otherwise true.

– snapshot returns a readonly view of the current tree. Taking a snapshot of
a snapshot is not supported.

– iterator returns an iterator of the tree’s (or snapshot’s) items.

We consider only iterators over snapshots for the remainder of the paper. There
is no limit to the number of iterators over a snapshot. Iterators over a snapshot
are valid even if the original tree is mutated.

Our client code uses this behaviour, and iterates over the snapshot while
mutating the original tree:

void client (ITree t) {

t.add(2); t.add(1); t.add(3);

ITree s = t.snapshot();

Iterator<Integer> it = s.iterator();

while (it.hasNext()) {

int x = it.next();

t.add(x * 3);

}

}

The client code adds some elements to a ITree, creates a snapshot, and iterates
over the snapshot while it adds more items to the underlying tree. The client code
is computationally equivalent to the original challenge [10], we do not introduce
an unnecessary boolean variable for the loop condition.

Verification of Snapshotable Trees 189

Typestate. Typestate systems [12] were developed to enhance reliability of soft-
ware. A developer specifies the API usage protocol (a finite state machine) di-
rectly in the code. These protocols are statically checked. Empirical results [2]
have shown that API protocol definitions occur three times more often than
definitions of generics in object-oriented (Java) code. In Plaid, an upcoming
programming language, typestate is a first-class citizen [13] and has been incor-
porated into the type system.

A motivating example for typestate is the File class, shown in Figure 1. Read-
ing a file is only valid if it is open, thus the abstract File class has two states,
Opened and Closed, and the method read is only defined in the Opened state.
The method open (only defined in the Closed state) transitions the object from
the Closed to the Opened state (indicated by >>), and vice versa for close.

Fig. 1. Typestate example

This prevents common usage violations, like trying to read a closed file or
opening a file multiple times.

Access Permissions. A developer can annotate references with alias informa-
tion [1] by using access permissions [4]. Access permissions are used for control-
ling the flow of linear objects. In the presented system there are five different
permissions: exclusive access (unique), exclusive write access with others possi-
bly having read access (full), shared write access (share), read-only access with
others possibly having write access (pure) and immutable access in which no
others can write either (immutable).

Boyland et al [7] presented fractions to reason about permissions. This allow
us to split and join permissions: for example a unique permission can be split
into a full and a pure, which can later be merged back together.

Plural. The Plural1 tool does sound and modular typestate checking; it employs
fractional permissions to provide flexible alias control.

1 https://code.google.com/p/pluralism/

https://code.google.com/p/pluralism/

190 H. Mehnert and J. Aldrich

Plural was implemented as a plugin for Eclipse, on top of the Crystal frame-
work2. It consists of a static dataflow analysis which tracks constraints about
permissions in a lattice and infers local permissions.

A developer can annotate each interface with abstract states, specified by
name. Interface methods can be annotated with pre- and postconditions (re-
quired and ensured permissions and states).

Each class can be annotated with concrete states, which consist of a name
and an invariant: a linear logic formula consisting of the access permission to a
field in a specific state, or the (boolean or non-null) value of a field.

In a formula the standard linear logic conjunctions are available: implies (�,
written =>), and (⊗, written *), or (⊕, written +) and external choice (&).

Each state can be a refinement of another state; a state can be refined multiple
times. We use this to refine the default alive state.

In order to access the fields of an object, the object must be unpacked, allow-
ing temporary violations of the object’s state invariants. Special care has to be
taken to not unpack the same object multiple times (by using different aliases
and permissions thereof), because this leads to unsoundness. Plural enforces the
restriction that only a single object can be unpacked at a time. Before a method
is called, all objects must be packed. Plural makes an exception to this rule for
objects with unique permission, which is obviously sound since there cannot be
any aliases to these objects.

Overview. In Section 2 the interface specification and client code verification
will be shown. Section 3 describes some proof patterns used in the verification
of the actual implementation. In Section 4 we will describe related work and in
Section 5 we conclude and present future work.

Our study is based on Plural, and indeed we observed certain low-level tool-
specific artifacts (discussed in the conclusion) and the Plural-specific “ghost
method” proof pattern. The main focus of this paper, however, including all
other specification and proof patterns in Sections 2–3, is a high-level application
of typestate and permission concepts to verify the tree and its clients. This
may provide insights useful in other settings based on permissions [1,7] and/or
typestate [12,13].

2 Interface Specification and Client Code Verification

The verification challenge is to give an abstract specification that does not expose
implementation details, is usable by a client, and for each state an invariant can
be specified by an implementor to verify her implementation.

We will first describe the specification of the interface ITree and Iterator, and
afterwards we will show the verification of the client code using those specifica-
tions.

2 https://code.google.com/p/crystalsaf/

https://code.google.com/p/crystalsaf/

Verification of Snapshotable Trees 191

2.1 Interface ITree

We specify the interface ITree by having two disjoint typestates, Tree and Snap-
shot, which keep track whether the object is a tree or a snapshot of a tree.
The marker=true annotation ensures that the state cannot change during the
lifetime of an object. Both states refine the default state alive.

@States(refined="alive", value={"Tree", "Snapshot"}, marker=true)

interface ITree extends Iterable<Integer> {

@Pure

public boolean contains(int item);

@Full(requires="Tree", ensures="Tree")

public boolean add(int item);

@Full(requires="Tree", ensures="Tree")

@ResultPure(ensures="Snapshot")

public ITree snapshot();

@Pure(requires="Snapshot", ensures="Snapshot")

@ResultUnique

@Capture(param="underlying")

public TreeIterator iterator();

}

The annotations are intuitive: the method contains requires a pure permission
in any typestate, and returns the very same permission. The method add requires
a full permission in the Tree state; the method snapshot requires a full permis-
sion in the Tree state and the return value has a pure permission in the Snapshot
state. The iterator method requires a pure permission in the Snapshot state,
whereas the resulting iterator will have a unique permission. The Capture an-
notation indicates that this is captured by the returned TreeIterator object.

The access permissions and typestates formalize the informal constraints pre-
sented in the description of the ITree interface in Section 1.

2.2 Interface Iterator

Iterators have been specified previously in Plural [3], we include the specification
for self-containedness of this paper. We follow similar ideas (namely a non-empty
and empty state), whereas our implementation is different (see Section 3.5).

There are three states defined for an iterator, NonEmpty, Empty and Im-
possible, all refine alive. The last one is only for specifying the remove method
which throws an exception in our implementation.

The method next requires unique permission to a NonEmpty iterator. The
hasNextmethod requires immutable permission and if it returns true, the object
is in the NonEmpty state, if false is returned, it is in the Empty state.

The need for a unique permission is due to recursive calls and Plural’s re-
striction of having only a single unpacked object, mentioned in Section 1. We
will discuss this in more detail when we show the iterator implementation in

192 H. Mehnert and J. Aldrich

Section 3.5. This is a marginal drawback, since in practice iterators are used on
the stack rather than shared via the heap.

This specification actually enforces that hasNext is called before each call to
next, because otherwise the iterator is not known to be in the NonEmpty state.

@States(refined="alive", value={"NonEmpty", "Empty", "Impossible"})

interface TreeIterator extends Iterator<Integer> {

@Unique(requires="NonEmpty")

public Integer next();

@Imm

@TrueIndicates("NonEmpty")

@FalseIndicates("Empty")

public boolean hasNext();

@Unique(requires="Impossible")

public void remove();

}

2.3 Client Code Verification

The client code needs only a single annotation, that it has full permission in the
Tree state of the given argument.

class ClientCode {

@Perm(requires="full(#0) in Tree")

void client (ITree t) {

t.add(2); t.add(1); t.add(3);

ITree s = t.snapshot();

TreeIterator it = s.iterator();

while (it.hasNext()) {

int x = it.next();

t.add(x * 3);

}

}

}

The method client adds the elements 1, 2 and 3 to the tree (line 4), creates a
snapshot s (line 5) and an iterator it over the snapshot (line 6). The body of
the while loop (lines 8 and 9) adds more elements to the original tree (line 9).

In this section we have demonstrated that the client code preserves the re-
quired permissions and states, using the given specification for the ITree and
Iterator interfaces.

3 Proof Patterns and Verification of the Implementation

We have verified the A1B1 implementation [10], which does not implement rebal-
ancing and uses path copy persistence: when a snapshot is present, the complete

Verification of Snapshotable Trees 193

path from the root down to the newly inserted node is copied in a call to add.
This ensures that add does not mutate any node that is shared between the
snapshot and the tree.

The specifications of field getters, field setters, and constructors are omitted
in the paper: they are straightforward, a field getter requires an immutable
permission, a field setter a full permission and the constructor ensures a unique
permission.

The SnapTree class, which implements the ITree interface, contains two
boolean fields, isSnapshot and hasSnapshot, and a field root, which contains
a handle to the root node.

3.1 Formula Guarded by a Boolean Variable and Implication

The invariant for Snapshot is straightforward. It contains an immutable permis-
sion to the root in the PartOfASnapshot state; the isSnapshot field is true, and
the hasSnapshot field is false.

The field isSnapshot is used in the invariant to distinguish between the Tree
and Snapshot states.

For the Tree invariant we distinguish between two cases: either there is a
snapshot present, or there is no snapshot present. In the former case the invariant
contains an immutable permission to the root node in the PartOfASnapshot
state. This ensures the no node is mutated. In the latter case the invariant
contains a unique permission to the root node in the NotPartOfASnapshot state.

To implement this conditional we use a proof pattern: the permission is guarded
by an implication whose left hand side tests a boolean program variable. The vari-
able hasSnapshot is compared to true (or false), and on the right hand side of the
implication we have an immutable (or unique, respectively) permission to the root
node in the PartOfASnapshot (or NotPartOfASnapshot) state.

@ClassStates({

@State(name="Snapshot", inv="immutable(root) in PartOfASnapshot *

isSnapshot == true * hasSnapshot == false")

@State(name="Tree", inv="isSnapshot == false *

(hasSnapshot == true => immutable(root) in PartOfASnapshot) *

(hasSnapshot == false => unique(root) in NotPartOfASnapshot)"),

})

This distinction between the two cases is natural and follows from the program
implementation.

3.2 Specification of a Recursive Structure

This implementation either contains a completely immutable tree (if snapshots
are present) or a mutable tree. This is specified by the invariants of the states of
the node class. Two states are defined, and both refine alive: either the node is
part of a snapshot (PartOfASnapshot) or not part of a snapshot (NotPartOfAS-
napshot). The invariant recursively contains immutable (or unique) permissions

194 H. Mehnert and J. Aldrich

in the PartOfASnapshot (or NotPartOfASnapshot, respectively) state for the
left and right children.

@Refine({

@States(refined="alive",

value={"PartOfASnapshot","NotPartOfASnapshot"}),

})

@ClassStates({

@State(name="PartOfASnapshot",

inv="immutable(left) in PartOfASnapshot *

immutable(rght) in PartOfASnapshot"),

@State(name="NotPartOfASnapshot",

inv="unique(left) in NotPartOfASnapshot *

unique(rght) in NotPartOfASnapshot")

})

The base case for the recursion is that both the left and the right child are null.
Plural assumes the possibility that these might be null by default.

3.3 Conditional Composition of Implementations

The method add behaves differently for a mutable tree and an immutable one.
The add method in the SnapTree checks in which case the tree is and calls
the correct method, either a mutating or a functional insert. In both cases the
precondition and postcondition are a full permission to an object in the Tree
state. The annotation use=Use.FIELDS specifies that this has to be unpacked
in the method body, which is required to access the fields.

The implementation first checks whether root is null and instantiates a new
Node object if that is the case. Otherwise the boolean field hasSnapshot is tested
to determine whether a mutating insert (addM) or a functional insert (addF)
should be done. The proof goes through because the test is the same as in the
invariant of the Tree state, thus one guard is false, its implication is eliminated,
and the other guarded formula is used.

@Full(use=Use.FIELDS, requires="Tree", ensures="Tree")

public boolean add (int i) {

assert(isSnapshot == false);

if (root == null) {

setRoot(new Node(i));

return true;

} else

if (hasSnapshot) {

RefBool x = new RefBool();

setRoot(root.addF(i, x));

return x.getValue();

} else {

Verification of Snapshotable Trees 195

RefBool x = new RefBool();

root.addM(i, x);

return x.getValue();

}

}

The implementation of addF requires an immutable permission of the node in
the PartOfASnapshot state, and ensures an immutable permission in the PartO-
fASnapshot state for the returned object. It recurses down the tree to find the
location at which to insert the given value, and if the value was inserted, it du-
plicates the entire path (which is on the call stack). It uses some helper methods
to get and set fields.

@Perm(requires="immutable(this) in PartOfASnapshot",

ensures="immutable(result) in PartOfASnapshot")

public Node addF (int i, RefBool x) {

Node node = this;

if (item > i) {

Node lef = getLeft();

Node newL = null;

if (lef == null) {

newL = new Node(i);

x.setValue(true);

} else

newL = lef.addF(i, x);

if (x.getValue()) {

Node r = getRight();

node = new Node(newL, item, r);

}

} else if (i > item) {

Node rig = getRight();

Node newR = null;

if (rig == null) {

newR = new Node(i);

x.setValue(true);

} else

newR = rig.addF(i, x);

if (x.getValue()) {

Node l = getLeft();

node = new Node(l, item, newR);

}

}

return node;

}

The implementation of addM also searches for the correct place by calling itself
recursively, and assigns a freshly instantiated Node object to that place.

196 H. Mehnert and J. Aldrich

@Unique(use=Use.DISP_FIELDS,

requires="NotPartOfASnapshot",

ensures="NotPartOfASnapshot")

public void addM (int i, RefBool x) {

if (item > i)

if (left == null) {

left = new Node(i);

x.setValue(true);

} else

left.addM(i, x);

else if (i > item)

if (rght == null) {

rght = new Node(i);

x.setValue(true);

} else

rght.addM(i, x);

}

3.4 Dropping Privileges (Ghost Method)

The method snapshot requires a full permission to this in the Tree state. The
!fr annotation is equivalent to use=Use.FIELDS, but can be used in the more
general Perm annotation.

The implementation of snapshot needs to drop the permissions to all nodes,
because they are now shared with the tree and the snapshot. This is achieved in
the snapall method.

@Perm(requires="full(this!fr) in Tree",

ensures="pure(result) in Snapshot * full(this!fr) in Tree")

public ITree snapshot() {

assert(!isSnapshot);

if (hasSnapshot)

return new SnapTree(root);

else {

Node r = root;

r.snapall();

hasSnapshot = true;

return new SnapTree(r);

}

}

The method snapall drops the privileges recursively by traversing the tree. It is
implemented in the Node class. It does not have any observable computational
effect, but it is required because we must drop the permissions for the entire tree
and Plural only allows this to occur as each node is unpacked going down the
tree. In order to verify it with Plural, we need to specifically assign null to the
left/right sibling if it is already null (to associate a bottom permission).

Verification of Snapshotable Trees 197

@Perm(requires="unique(this!fr) in NotPartOfASnapshot",

ensures="immutable(this!fr) in PartOfASnapshot")

public void snapall () {

if (left != null)

left.snapall();

else

left = null;

if (rght != null)

rght.snapall();

else

rght = null;

}

Although the specific technique used here is specialized for Plural, note that an
analogous mechanism would be required to convince any tool that the permis-
sions and/or typestates are dropped recursively.

3.5 Iterator

The iterator implementation uses a field context, which contains a stack of nodes
that have not yet been yielded to the client. This is initially filled recursively
with the left path, and whenever an item is popped from the stack, the left path
of its right subtree is pushed onto the stack. The Stack class is annotated with a
proper specification, but its implementation is not verified (especially that pop
returns an object in the PartOfASnapshot typestate).

@Perm(requires="immutable(this) in Snapshot",

ensures="unique(result)")

public TreeIterator iterator() {

Node r = this.getRoot();

TreeIteratorImpl it = new TreeIteratorImpl(this);

it.pushLeftPath(r);

return it;

}

The concrete class specifies an invariant only for the top-level alive state:

@ClassStates({

@State(name="alive",

inv="immutable(tree) in Snapshot * unique(context) in alive")

})

The method pushLeftPath calls itself recursively with the left child to push the
entire left path onto the stack. It requires a unique permission to this in order
to unpack this, access the context field, and call a method on the context

object while this remains unpacked. As mentioned in Section 1, for soundness
reasons, leaving an object unpacked during a method call is only possible in
Plural if there is a unique permission to the unpacked object.

198 H. Mehnert and J. Aldrich

@Perm(requires="unique(this!fr) in alive * immutable(#0) in PartOfASnapshot",

ensures="unique(this!fr) in alive * immutable(#0) in PartOfASnapshot")

public void pushLeftPath(Node node) {

if (node != null) {

context.push(node);

pushLeftPath(node.getLeft());

}

}

The hasNext method is simply a check whether the stack is non-empty.

@TrueIndicates("NonEmpty")

@FalseIndicates("Empty")

@Imm(use=Use.FIELDS)

public boolean hasNext() {

return !context.empty();

}

The method next pops the first element of the stack and pushes the left path of
the right child onto the stack. In contrast to the original implementation [10], a
guard if hasNext() is true around lines 4-7 is not needed, because Plural verifies
that next is only called on a non-empty iterator.

@Unique(use=Use.DISP_FIELDS, requires="NonEmpty")

public Integer next() {

Integer result;

Node node = context.pop();

result = node.getItem();

if (node.getRight() != null)

pushLeftPath(node.getRight());

return result;

}

Here a unique permission is required in order to call pushLeftPath.
In this section we described proof patterns used in the verification of the path

copy persistence implementation of snapshotable trees. The complete implemen-
tation has been automatically verified with Plural.

4 Related Work

The Composite pattern, which is a tree data structure, has been verified using
typestate and access permissions [6]. This work differed in multiple aspects: first
of all it was not formalized in a tool, then it relied on extensions, like multiple
unpacking and equations using pointers, which were not proven to be sound.
Also, the verification challenge is different: the Composite pattern exposes all
nodes to a user using a share permission, and preserves an invariant upwards
the tree, namely the number of children of the subtree rooted in each node. This

Verification of Snapshotable Trees 199

leads to a specification with several typestates in the different dimensions of each
node, which fractions are cleverly distributed to allow for bottom-up updates of
the count.

A prior iterator verification [3] is similar to our specification, but the im-
plementation of the iterator is completely different. In this paper we present an
iterator which shares its content with the snapshot and holds only some elements
on the stack, pushing more onto the stack on demand.

Snapshotable trees have been verified using a higher-order separation logic [10].
This approach verified full functional correctness, while this paper can only prove
correct API usage: add and snapshot are always called on the tree, and by hav-
ing immutable permission to the contents of a snapshot, we can verify that it
will not be modified. Also, our work verifies that an iterator is always taken on
a snapshot, not the original tree, and that next is never called on an empty
iterator.

We use automation in the proof, which requires only a moderate number of
annotations to the source code. The higher-order separation logic proof requires
roughly 5000 lines of proof script, while the code and annotations for this paper
are together under 400 lines; this is less than 2 lines of annotation for every line
of source code.

An unpublished verification of snapshotable trees in Dafny [9], done by Rustan
Leino, is similar to the Plural approach. Both are automated systems using a
first-order logic. In Dafny functional correctness can be proven. The advantage
of Plural is that already existing code written in a widely deployed programming
language (Java) can be analyzed, whereas Dafny specifies its own programming
language. Dafny uses implicit framing and also relies on annotations by the user,
whereas Plural is based on linear logic (access permissions) and typestates. Dafny
does not support inheritance, thus no abstract specification is provided.

5 Conclusion and Further Work

There exist several extensions to the access permission system which support
verifying full functional correctness: Object propositions [11] combine access
permissions with first-order formulae; but there is currently no implementation
available. Symplar [5] combines access permissions with JML, thus access per-
missions are used to reason about aliasing, and JML formulae for full functional
correctness.

In order to verify iterators over the tree (vs. its snapshots) we would need to
change the unique permission of the nodes to full in order to share them between
the tree and the iterator. Because the proof relies on method calls while a unique
object is unpacked, we would have to modify Plural in order to achieve this.

There are also more advanced implementations of snapshotable trees [8],
namely rebalancing - for which we would need to have partly unique and partly
immutable permissions to the nodes in the tree. An important observation is
that rebalancing involves only freshly allocated nodes in the path copy persis-
tence implementation. Thus, we would need to carefully write the code such that
Plural can derive this observation.

200 H. Mehnert and J. Aldrich

The node copy persistence implementation is more challenging: parts of a
node are immutable while other parts are mutable. Here orthogonal dimensions
of state, which are implemented in Plural, might become useful.

To conclude this paper, we successfully verified a snapshotable tree implemen-
tation and client code in Plural. In order to achieve that we had to rewrite parts
of the reference implementation [10], mainly by adding explicit getter and setter
methods, which is good object-oriented style.

An interesting method was add, which in the reference implementation calls
addRecursive, which handles all cases at once: whether a snapshot is present
(functional insertion) or no snapshots are present (mutating insert). In the
higher-order separation logic proof this leads to three different specifications
for addRecursive, one for each separate case. In automated tools (Plural and
Dafny), it is easier to implement and verify two methods for those two cases,
due to size of invariants and automated reasoning. Evidence for this is also pro-
vided by Rustan Leino, who implemented insertion in a clean-room setting from
the beginning as two different methods. The reference implementation is clearly
more compact, but it is arguable which implementation is clearer or more in the
object-oriented spirit.

We modified the client code slightly by removing an additional temporary
boolean variable, because we found that Plural’s inference of boolean values
works better this way. The original challenge used a boolean variable because
their semantics does not allow for statements (heap access) in the loop condition,
but only expressions (stack access).

While doing this proof we found several proof patterns for Plural: using im-
plications instead of multiple typestates, inserting explicit return statements to
help Plural with automation, writing explicit alternatives for conditionals, mov-
ing methods into the specific class that concerns them because static methods
are not as well supported, avoiding choice conjuncts, and assigning null explic-
itly so that Plural can associate a bottom permission with the field. To get the
proof through, we had to write the method snapall, which does not have any
observable computational effect, but reassigns fields which were null to null.

We consider Plural to be a helpful static analysis tool which prevents runtime
bugs: it issues an error when add is called on a snapshot or when a snapshot of
a snapshot is taken.

One bug in Plural has been found (while (lc == true) leads to infinite
recursion), which silently crashed Plural, making it appear that the code was
proven. This has subsequently been fixed by the author of Plural.

Many thanks to Kevin Bierhoff for helping with specifications and best prac-
tices in Plural. The second author was funded by NSF grant CCF-1116907.

References

1. Baker, H.G.: ”use-once” variables and linear objects: storage management, reflec-
tion and multi-threading. SIGPLAN Not. 30, 45–52 (1995)

2. Beckman, N.E., Kim, D., Aldrich, J.: An Empirical Study of Object Protocols in
the Wild. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 2–26. Springer,
Heidelberg (2011)

Verification of Snapshotable Trees 201

3. Bierhoff, K.: Iterator specification with typestates. In: Proceedings of the 2006 Con-
ference on Specification and Verification of Component-Based Systems, SAVCBS
2006, pp. 79–82 (2006)

4. Bierhoff, K.: Api protocol compliance in object-oriented software. Tech. Rep. CMU-
ISR-09-108, CMU ISR SCS (2009)

5. Bierhoff, K.: Automated program verification made symplar. In: Proc. of Onward!
2011 (2011)

6. Bierhoff, K., Aldrich, J.: Permissions to specify the composite design pattern. In:
Proc. of SAVCBS 2008 (2008)

7. Boyland, J.: Checking Interference with Fractional Permissions. In: Cousot, R.
(ed.) SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

8. Driscoll, J., Sarnak, N., Sleator, D., Tarjan, R.: Making data structures persistent.
Journal of Computer and Systems Sciences 38(1), 86–124 (1989)

9. Leino, K.R.M.: Dafny: An Automatic Program Verifier for Functional Correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

10. Mehnert, H., Sieczkowski, F., Birkedal, L., Sestoft, P.: Formalized Verification of
Snapshotable Trees: Separation and Sharing. In: Joshi, R., Müller, P., Podelski, A.
(eds.) VSTTE 2012. LNCS, vol. 7152, pp. 179–195. Springer, Heidelberg (2012)

11. Nistor, L., Aldrich, J.: Verifying object-oriented code using object propositions. In:
Proc. of IWACO (2011)

12. Strom, R.E., Yemini, S.: Typestate: A programming language concept for enhanc-
ing software reliability. IEEE Transactions on Software Engineering (1998)

13. Sunshine, J., Naden, K., Stork, S., Aldrich, J., Tanter, É.: First-class state change
in plaid. In: OOPSLA 2011 (2011)

Multiparty Session C: Safe Parallel

Programming with Message Optimisation

Nicholas Ng1, Nobuko Yoshida1, and Kohei Honda2

1 Imperial College London
2 Queen Mary, University of London

Abstract. This paper presents a new efficient programming toolchain
for message-passing parallel algorithms which can fully ensure, for any
typable programs and for any execution path, deadlock-freedom, com-
munication safety and global progress through a static checking. The
methodology is embodied as a multiparty session-based programming
environment for C and its runtime libraries, which we call Session C.
Programming starts from specifying a global protocol for a target par-
allel algorithm, using a protocol description language. From this global
protocol, the projection algorithm generates endpoint protocols, based
on which each endpoint C program is designed and implemented with a
small number of concise session primitives. The endpoint protocol can
further be refined to a more optimised protocol through subtyping for
asynchronous communication, preserving original safety guarantees. The
underlying theory can ensure that the complexity of the toolchain stays
in polynomial time against the size of programs. We apply this frame-
work to representative parallel algorithms with complex communication
topologies. The benchmark results show that Session C performs com-
petitively against MPI.

1 Introduction

High-performance computing based on message-passing is one of the highly scal-
able frameworks for executing parallel algorithms with a wide range of hardware
configurations starting from a small LAN to a large cluster to supercomputers.
It is, however, hard to implement message-passing applications correctly, partly
because they rely on not only local calculation at each endpoint, but also on
global message exchange among all endpoints: if the message-passing part of
a program is wrongly implemented, then the result of the calculation is either
unavailable (e.g. by deadlock) or wrong (e.g. by receiving some values at wrong
timings or as wrong types), even if all local calculations are correct.

One of the root causes of errors in communications programming is the lack
of conformance to an assumed protocol among endpoint programs. Typical ex-
amples (written as MPI commands [27]) are a circular wait such as MPI_Send(to2)

from process 1, MPI_Recv(from3) from process 2 and MPI_Send(to1) from process 3;
and a communication mismatch such as MPI_Recv(from2) followed by MPI_Send(to3)

from process 1, MPI_Recv(from3) followed by MPI_Send(to1) from process 2 and

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 202–218, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Multiparty Session C 203

MPI_Recv(from1) followed by MPI_Send(to2) from process 3. To avoid such deadlocks,
one might permute the order of messages using asynchronous sending such as
Isend followed by Recv, but it is often forgotten to write a required synchronisa-
tion (Wait). These are simple errors often illustrated in the textbooks [14,15], but
still appeared in many programs including large scale MPI applications, e.g [24].
Such communication errors are often hard to detect except by runtime analysis.
Even if detected, hard to locate and fix the bug because the issue comes from
distributed processes. Testing in general does not offer full safety assurance as
it relies on executing a particular sequence of events and actions.

This paper proposes a new programming framework for message-passing par-
allel algorithms centring on explicit, formal description of global protocols, and ex-
amines its effectiveness through an implementation of a toolchain for C. All val-
idations in the toolchain are done statically and are efficient, with a polynomial-
time bound with respect to the size of the program and global protocol. The
framework is based on theory of multiparty session types [3, 10, 18], and it sup-
ports a full guarantee of deadlock-freedom, type-safety, communication-safety
and global progress for any well-typed programs. Global protocols serve as a
guidance for a programmer to write safe programs, representing a type ab-
straction of expressive communication structures (such as sequencing, choice,
broadcast, synchronisation and recursion). The toolchain uses a language Scrib-
ble [16, 31] for describing the multiparty session types in a Java-like syntax.
protocol Simple(role P1, role P2, role P3) {

int from P1 to P2;

char from P3 to P1;

float from P2 to P3;

}

A simple example of a protocol
in Scribble which corrects the first
erroneous MPI program (a wait
cycle) is given on the left. For end-

point code development, the programmer uses the endpoint protocol generated by
the projection algorithm in the toolchain. For example, the above global protocol
is projected to P2 to obtain int from P1; float to P3;, which gives a template for
developing a safe code for P2 as well as a basis of static verification. Since we start
from a correct protocol, if endpoint programs conform to the induced endpoint
protocols, it automatically ensures deadlock-free, well-matched interactions.

Overview of the Toolchain. A Session C program is developed in a top-
down approach. Fig. 1 (l.h.s.) shows the relationships between the four layers
(i–iv) that make up a complete Session C program. A Session C programmer
first designs a global protocol (i) using Scribble (explained in § 2.1). A Session
C program is a collection of individual programs (iv) in which each of the pro-
grams implements a participant (called endpoint) of the communication. We first
extract the endpoint protocol from the global protocol by projection (ii). The
projection takes the global protocol G and an endpoint (say Alice), and extracts
only the interaction that involves Alice (TAlice). Step (iii) describes a key element
of our toolchain, the protocol refinement. T ′

Alice is an endpoint protocol refined
from the original TAlice. This allows the programmer to write a more refined
program PAlice (which conforms to T ′

Alice) than a program following the original
TAlice. Session C supports the asynchronous message optimisation [25, 26], the
reordering of messages for minimising a waiting time as a refinement, through its

204 N. Ng, N. Yoshida, and K. Honda

Protocol (G)

TAlice

T ′
Alice

PAlice

TBob

T ′
Bob

PBob

TCarol

T ′
Carol

PCarol

Session C
Program
(iv)

Refined
Endpoint
Protocol
(iii)

Endpoint
Scribble
Protocol
(ii)

Global
Scribble
Protocol
(i)

< < <

Projection

Refinement

Conformance

clang compiler

Session type checker

Endpoint
Scribble
protocol

Session C
source code

Runtime library

Executable

Fig. 1. Session C programming framework (l.h.s.) and architecture (r.h.s.)

subtyping checker (§ 3.2). Once PAlice conforms T ′
Alice such that T ′

Alice < TAlice

(T ′
Alice is more refined), then PAlice automatically enjoys safety and progress in

its interactions with PBob and PCarol.

Programming Environment. The programming environment of Session C is
made up of two main components, the session type checker and the runtime
library (§ 2.2). Fig. 1 (r.h.s.) shows the architecture. The session type checker
takes an endpoint protocol (TAlice) and a source code PAlice as an input from the
user. The endpoint protocol is generated from the global protocol G through the
projection algorithm. The session type checker validates the source code against
its endpoint protocol. When the program is optimised, it generates T ′

Alice from
PAlice and checks if T ′

Alice < TAlice (§ 3.2). The API provides a simple but ex-
pressive interface for session-based communications programming.

Contributions

1. A toolchain for developing and executing message-passing parallel algorithms
based on a formal and explicit description of interaction protocols (§ 2.1),
with an automatic safety guarantee. All algorithms used in the toolchain are
polynomial-time bounded (§ 3.2).

2. The first multiparty session-based programming environment for a low-level
language, Session C, built from expressive session constructs supporting col-
lective operations (§ 2), together with the associated runtime library.

3. A session type checker for Session C, which is the first to offer automatic, full
formal assurance of communication deadlock-freedom (i.e. for any possible
control path and interleaving) for a large class of message-passing parallel
programs (§ 3.1), supporting messaging optimisations through the incorpo-
ration of the asynchronous subtyping [25, 26] (§ 3.2).

Multiparty Session C 205

4. The practical validation of our methodology through the implementations
of typical message-passing parallel algorithms, leading to concise and clear
programs (§ 4). The benchmark results show that representative parallel
algorithms in Session C are executed competitively against their counterparts
in MPI (the overhead is on average 1%) (§ 5).

All code and details of benchmark results are available from [13].

2 Protocols and Programming in Session C

2.1 Scribble, A Protocol Description Language

Our toolchain uses Scribble [16, 31], a developer-friendly notation for specify-
ing application-level communication protocols based on the theory of multiparty
session types [3, 10, 18]. Scribble’s development tool [31] supports parsing, well-
formedness checking and endpoint projection, with bindings to multiple pro-
gramming languages. We briefly introduce its syntax.

1 /* Protocol: Monte Carlo Pi estimation. */

2 import int;

3 protocol MonteCarloPi(role Master, role Worker0, role Worker1) {

4 // number of simulations to do in each worker

5 int from Master to Others; // broadcast

6 rec LOOP {

7 from Others to Master { Yes: No: }; // gather

8 LOOP; }

9 }

Above listing shows a simple Scribble global protocol for Monte Carlo π es-
timation. The algorithm uses random sampling to estimate the value of π. A
Scribble protocol begins with the preamble, in Line 1, consisting of a message
type declaration after the keyword import. Then the protocol definition is given
starting from, in Line 2, the keyword protocol, followed by the protocol name,
MonteCarloPi, and its parameters which are the roles to be played by participants.
Then the description of a conversation structure follows. Line 4 says that the
Master should send an integer (which specifies the number of tries) to Others, i.e.
to all other roles than Master, i.e. to the workers. Line 5 declares a recursion
named loop. In Line 6, (after each worker locally generates a random point on
a square and tests if the point is in the quarter of a circle, i.e. the shaded area
in the right figure above. Master is informed by Others (workers) whether the test
was a hit, by choosing Yes or No. Regardless, Line 7 recurs.

The description of interaction in Lines 4-8 is generic, catering for any number
of workers. Here we use collective roles in Scribble, where a single role can denote
multiple participants. We introduce two collectives roles, All (for “every role”)
and Others (for “all other roles”). Using them, we can accurately represent the
protocols for MPI collective operations as:

– MPI_Bcast (broadcast) from A: from A to Others.
– MPI_Reduce to A, a gather operation: from Others to A.

206 N. Ng, N. Yoshida, and K. Honda

– MPI_Barrier with A as a gather point, for which we use consecutive interac-
tions: from Others to A; from A to Others.

– MPI_Alltoall, a scatter-gather operation: from All to Others.

These collective roles can be used as a source and/or a target as far as it is not
ambiguous (e.g. from Others to Others) and it does not induce a self-circular com-
munication (e.g. from All to All). Each All is macro-expanded for each endpoint
when projecting a global protocol, whereas Others is preserved after projection
and is linked to programming constructs, as we shall discuss later.

Global protocol Endpoint protocol

U from myrole to role1,.., rolen/Others U to role1,.., rolen/Others

U from role1,.., myrole,.., rolen/Others to role U to role

U from role1,.., rolen/Others to myrole U from role1,..,rolen/Others

U from role to role1,.., myrole,.., rolen/Others U from role

U from All to Others U to Others; U from Others

from myrole to role { l1 : T1 · · · ln : Tn } to role { l1 : T
′
1 · · · ln : T ′

n }

from role to myrole { l1 : T1 · · · ln : Tn } from role { l1 : T
′
1 · · · ln : T ′

n }

from All to Others { l1 : T1 · · · ln : Tn } to Others { l1 : T
′
1 · · · ln : T ′

n };
from Others { l1 : T

′
1 · · · ln : T ′

n }

repeat from myrole to role { T } repeat to role { T ′
}

repeat from role to myrole { T } repeat from role { T ′
}

rec X { T } rec X { T ′
}

We present a summary of the Scribble syntax for global and local protocols
in above table, which also shows how the former is projected to the latter.
In each line, the left-hand side gives a syntax of a global protocol, while the
right-hand side gives its projection onto participant myrole. U is a payload
type; T and T ′ are global and endpoint types; and l is a label for branching. T
and T ′ can be empty, denoting termination. Line 1 indicates two cases, one “U
from myrole to role1,.., rolen”, which is a multicast from myrole to n other roles;
and “U from myrole to Others”, which is a multicast from myrole to all others.
Similarly for Lines 2-4. The right-hand side views the left-hand global interac-
tion from the viewpoint of myrole. In Line 5, “from All to Others” means “every
role sends to the remaining roles”. Hence, for myrole, it means (1) it is sending
to all others, i.e. broadcast; and then (2) receiving from all others, i.e. reduce.

/* Endpoint Scribble for Master */

import int;

protocol MonteCarloPi at Master

(role Worker0, role Worker1){

int to Others;

rec LOOP {

from Worker0, Worker1 { Yes: No: }

LOOP; }

}

/* Endpoint Scribble for Worker0 */

import int;

protocol MonteCarloPi at Worker0

(role Master, role Worker1) {

int from Master;

rec LOOP {

to Master { Yes: No: }

LOOP; }

}

As a concrete example of projection acting on the whole protocol, the endpoint
protocols resulting from the projection of the Monte Carlo simulation example
onto Master and Worker0, respectively, are given in the above listings.

Multiparty Session C 207

2.2 Session C: Programming and Runtime

Session C offers a high-level interface for safe communications programming
based on a small collection of primitives from the session type theory. These
primitives are supported by a runtime whose implementation currently uses the
ØMQ (ZeroMQ) [37] socket library, which provides efficient messaging over mul-
tiple transports including local in/inter-process communication, TCP and PGM
(Pragmatic General Multicast).

A Session C program is a C program that calls the session runtime library. The
following code implements Master whose endpoint protocol is given in the previous
subsection. In the main function, join_session (Line 7) indicates the start of a
session, whose arguments (from the command line arguments argc and argv)
are a session handle of type session * and the location of the endpoint Scribble
file. join_session establishes connections to other participating processes in the

1 /* Session C implementation for Master */

2 #include <libsess.h>

3 ...

4 int main(int argc, char *argv[])

5 { // variable declaration ...

6 session *s;

7 join_session(&argc, &argv, &s, "MCPi_Master.spr");

8 const role *Worker0 = s->get_role(s, "Worker0");

9 const role *Worker1 = s->get_role(s, "Worker1");

10
11 int count = 100;

12 msend_int(100, _Others(s));

13
14 while (count-- > 0) {

15 switch(inbranch(Worker0, &rcvd))

16 { case Yes: hits++; break; case No: break; }

17 switch(inbranch(Worker1, &rcvd))

18 { case Yes: hits++; break; case No: break; }

19 }

20 printf("Pi: %.5f\n", (4*hits)/(2*100.0));

21 end_session(s);

22 }

session, according to
a connection configura-
tion information such
as the host/port for
each participant, au-
tomatically generated
from the global proto-
col. Next, the lookup
function get_role re-
turns the participant
identifier of type role *.
Then we have a se-
ries of session opera-
tions such as send_type
or recv_type (discussed
below). Lines 15-18 ex-
pand the choice from
Others in the protocol
into individual choices.

Finally an end_session cleans up the session. Any session operation before
join_session or after end_session is invalid because they do not belong to any
session.

Programming Communications in Session C. We now outline communica-
tion primitives of Session C. In addition to the standard send/receive primitives,
our library includes a primitive for multicast sending and its reverse. msend sends
the same value to all receivers, and mrecv receives values (not necessarily identical
but of the same type) from multiple senders, as we illustrate below.

The table above lists these primitives as well as control primitives we illustrate
next, in correspondence with the Scribble protocol construct introduced in the
§ 2.1. The first six lines are for message passing. Each function name mentions
a type explicitly, as in send_datatype, following MPI and to ensure type-safety

208 N. Ng, N. Yoshida, and K. Honda

Scribble endpoint Session C runtime interface

int to Bob send_int(role *r, int val);

string from Bob recv_string(role *r, char *str);

int to role1,..,rolen msend_int(int val, int roles_count,...);

string from role1,..,rolen mrecv_string(char *str, int roles_count,...);

int to Others msend_int(int val, _Others(sess));

string from Others/role1,..,rolen mrecv_string(char *str, _Others(sess));

repeat to Bob { ... } while(outwhile(int cond,int roles_cnt,...)){..}

repeat from Bob { ... } while(inwhile(int roles_cnt, ...)){..}

rec { ... } ordinary while loop or for loop
to Bob { LABEL0: ... } outbranch(role *r, const int label);

from Bob { LABEL0: ... } inbranch(role *r, int *label);

under the lack of strong typing in C. We support char, int, float, double, string (C-
string, contiguous NULL-terminated array of char), int_array (contiguous array
of int), float_array (contiguous array of float), and double_array (contiguous array
of double). These types are sufficient for implementing most parallel algorithms;
for composite types that are not in the runtime library, the programmer can
choose to combine existing primitives, or augment the library with marshalling
and unmarshalling of the composite type, to allow type checking.

In Lines 3/4 of the table, msend and mrecv specify the number of roles (a roles
count) of the targets/sources, respectively. Lines 5/6 show how the programmer
can specify Others in msend and mrecv: the roles count and roles list are replaced
by a macro _Others(s) with the session handle as the argument.

Structuring Message Flows: Branching and Iteration. Branching (choice)
in Session C is declared explicitly by the use of outbranch and inbranch. Differ-
ent branches may have different communication behaviours, and the deciding
participant needs to inform the other participant which branch is chosen. The
passive participant will then react accordingly.

if (i>3) {

outbranch(Bob, BR_LABEL0);

send_int(Bob, 42);

} else {

outbranch(Bob, BR_LABEL1);

recv_int(Bob, &val);

}

switch (inbranch(Alice, &rcvd_label)) {

case BR_LABEL0:

recv_int(Alice, &val);

break;

case BR_LABEL1:

send_int(Alice, 42);

break;}

Above, the branching is initiated by a call to outbranch in the then-block or
else-block of an if-statement. On the receiving side of the branch, the program
first calls inbranch to receive the branch label. A switch-case statement should
then be used to run the segment of code which corresponds to the branching
label.

For iteration, two methods are provided: local and communicating iterations.
Local iteration is a standard statement such as while-statements, with session
operations occurring inside.Communicating iteration is a distributed version of
loop, where, at each iteration, the loop condition is computed by the process call-
ing outwhile and is communicated to processes calling inwhile. This while loop

Multiparty Session C 209

is designed to support multicast, so that a single outwhile can control multiple
processes. This is useful in a number of parallel iterative parallel algorithms,
which the loop continues until certain conditions (e.g. convergence) are reached
and cannot be determined statically.

// Master process (Alice)

while (outwhile(i++<3, 1, Bob))

recv_int(Bob, &value);

// Slave process (Bob)

while (inwhile(1, Alice))

send_int(Alice, 42);

Above, Alice issues an outwhile with condition i++<3 which will be evaluated
in each iteration. outwhile then sends the result of the evaluation (i.e. 1 or 0) to
Bob and also uses that as the local while loop condition. Then Bob receives the
result of the condition evaluation from Alice by the inwhile call, and uses as the
local while loop condition. Both processes execute the body of the loop, where
Bob sends an integer to Alice. This repeats until i++<3 evaluates to 0, then both
processes exit the while loop.

3 Type Checking and Message Optimisation

3.1 Session Type Checker

The session type checker for an endpoint program is implemented as a clang C
compiler plugin. The clang compiler is the full-featured C/C++/Objective-C
compiler frontend of the LLVM (Low-Level Virtual Machine) project [22]. LLVM
is a collection of modular and reusable individual libraries for building compiler
toolchains. The modular approach of the project allows easy mix-and-match of
individual components of a compiler to build source code analysis and transfor-
mation tools. Our session type checker is built as such a tool, utilising the parser
and various AST-related frontend modules from the clang compiler.

Endpoint Type Checking. verifies that the source code conforms to the cor-
responding endpoint protocol in Scribble. The type checker operates by ensur-
ing that the linear usage of the communication primitives conforms to a given
Scribble protocol, based on the correspondence between Scribble and Session C
constructs given in the table in § 2.2. The following example shows how Scribble
statements are matched against Session C communication primitives.

We quickly outline how the type checker works, which also gives the back-
ground for §3.2 later. First, the Scribble endpoint protocol is parsed into an
internal tree representation. For brevity, hereafter we refer to it as session tree.
Except for recursion (which itself is not a communication), each node of a session
tree consists of (1) the target role, (2) the type of the node (e.g. send, receive,
choice, etc.) and (3) the datatype, if relevant (e.g. int, string, etc.). For exam-
ple, a Scribble endpoint type statement “int to Worker;” becomes a node {role:
Worker, type: send, datatype: int}.

The type checking is done by inferring the session typing of each program
and matching the resulting session tree against the one from the endpoint pro-
tocol. The type inference is efficiently done by extracting session communication

210 N. Ng, N. Yoshida, and K. Honda

operations from the source code.1 A session tree is then constructed from this
session typing. For example, a runtime function call, send_int(Worker, result) will
be represented by a node {role: Worker, type: send, datatype: int}.

We can now move to the final process of session type checking in Session C.
After their construction, the session trees from both Scribble endpoint protocol
and the program are normalised, removing unused dummy nodes, branches with-
out session operations and iteration nodes without children, thus compacting the
trees to a canonical form. We then compare these two normalised session trees,
and verify that they are in the asynchronous subtyping relation (illustrated in
§ 3.2) up to minimisation.

3.2 Asynchronous Message Optimisation

This subsection illustrates one of the key contributions of our toolchain, the
type checking in the presence of asynchronous message optimisation. Parallel
programs often make use of parallel pipelines to overlap computation and com-
munication. The overlapping can reduce stall time due to blocking wait in the
asynchronous communication model, as far as the overlapping does not interfere
with data dependencies.

Stage I Stage II Stage III
send

recv

recv

send recv

send

Stage I Stage II Stage III

send
recv

send
recv

send
recv

Above (left) shows a native but immediately safe ring pipeline and (right)
an efficient parallel pipeline, which needs only two steps to complete instead
of three, since Stage I does not need to wait for data from Stage III. However,
this parallel pipeline is hard to type check against a naturally specified global
type (which would be based on the left figure where interactions take place
one by one), because of the permuted communication operations – we cannot
match the send against the recv, because they criss-cross. But these two figures
are equivalent under the asynchronous communication model with non-blocking
send and blocking receive.

while (i++ < N) { /* StageII */

recv_int(StageI, &rcvd);

send_int(StageIII, result);

compute(result);

result = rcvd;

}

while (i++ < N) { /* Optimised StageII */

send_int(StageIII, result);

compute(result);

recv_int(StageI, &rcvd);

result = rcvd;

}

To see this point concretely, the above listing juxtaposes an unoptimised and
optimised implementation of the Stage II. Both programs communicate values

1 Because C allows unrestricted type conversion by casting, we use the datatype ex-
plicitly mentioned in communication functions as the type of an argument rather
than the type of its expression. For example, send_int(Bob, 3.14) says that sending
3.14 as int is the intention of the programmer, which is safe if the receiver is intended
to receive an integer.

Multiparty Session C 211

correctly despite the different order of communication statements. Note compute

is positioned after a send, so that compute can be carried out while the data is
being sent in the background, taking advantage of non-blocking sends.

The use of parallel pipelines is omnipresent in message-passing parallel algo-
rithms. To type-check them, we apply the asynchronous subtyping theory [25,26],
which allows the following deadlock-free permutations:

1. Permuting Receive-Send to Send-Receive in the same or different channels;
2. Permuting order of Send-Send if they are in difference channels;
3. Permuting order of Receive-Receive if they are in different channels

Note that if we permute in the different direction from (1) (i.e. Send-Receive
to Receive-Send), it causes a deadlock. E.g. in the efficient pipeline described
above, if send-recv is permuted to recv-send in the Stage I, it causes a deadlock
between the Stage I and II.

We give the subtyping rules against Scribble endpoint protocols below, taking
the iso-recursive approach [25], where T is an endpoint type: where use the

−
T < T

�Id� ∀i. Ti < T ′
i

from/to role {l1 : T1 · · · ln : Tn} < from/to role {l1 : T ′
1 · · · ln : T ′

n}
�Bra�

T1 < C[T2] U ′
to role /∈ C ∀role′. U ′

from role
′ /∈ C

U from role;T1 < C[U from role;T2]
�Recv�

T1 < C[T2] U ′
from/to role /∈ C

U to role; T1 < C[U to role;T2]
�Send� T1 < T2

rec X {T1} < rec X {T2}
�Rec�

type context C defined as:

C ::= [] | U from role;C | U to role;C

The subtyping algorithm in Session C conforms to the rules listed above (which
come from [25]) and is their practical refinement, which we describe below:

1. (�Recv�) For each receive statement, search for a matching receive for the
same channel in the source code until a receive statement is found or search
failed. Send and other statements in different channels can be skipped over.

2. (�Send�) For each send statement, search for a matching send for the same
channel in the source code until a receive statement is found or search failed.
Sends can only be permuted between statements in different channels, so
overtaking a receive operation is disallowed.

3. We apply the permutation described above on consecutive statements within
rec and repeat blocks following the iso-recursive approach [25], which is more
suitable for languages such as C and Java.

Finally, we check that all nodes in the source code and protocol session type
trees have been visited.

We end this section by identifying the time-complexity of the present toolchain.
It uses well-formedness checking of a global protocol and its projection, which
are both polynomial-time bound w.r.t. the size of the global type [8, 10]. The
asynchronous subtype-checker as given above is polynomial against the size of
a local type based on the arguments from [8, 25, 26]. Type inferences for session
typed processes are polynomial [10, 18, 26]. We conclude:

212 N. Ng, N. Yoshida, and K. Honda

Remark 1. The complexity of the whole toolchain is polynomial time-bounded
against the size of a global type and a program.

Thus the toolchain is in principle efficient. Further, a careful examination of each
algorithm suggests they tend to perform linearly with a small factor in normal
cases (e.g. unless deeply nested permutations are carried out for optimisations).
Our usage experience confirms this observation.

4 Parallel Algorithms

In this section we demonstrate the effectiveness of Session C for clear, struc-
tured and safe message-passing parallel programming, through two algorithms
which exemplify complex optimisations and communication topologies. For other
implementations of representative parallel algorithms [11, 15, 23], see [13].

4.1 N-Body Simulation: Asynchronous Optimisation for Pipelines

The parallel N-body algorithm forms a circular pipeline. Such a ring topol-
ogy [2] is used in many parallel algorithms such as LU matrix decomposition [6].
The N-body problem involves finding the motion, according to classical me-
chanics, of a system of particles given their masses, initial positions and veloc-
ities. Parallelisation is achieved by partitioning the particle set among a set of
m worker processes. Each worker is responsible for a partition of all particles.

protocol Nbody /* Global protocol */

(role Head, role Body, role Tail) {

rec NrOfSteps {

rec SubCompute {

particles from Head to Body;

particles from Body to Tail;

particles from Tail to Head;

SubCompute; }

NrOfSteps; }

}

Body 1

Body nBody 0

Head Tail

Above shows the global protocol with 3 workers, Head, Body and Tail. The
simulation is repeated for a number of steps (rec NrOfSteps). In each step, the
resultant forces of particles held by a worker are computed against all particles
held by others. We arrange our workers in a ring pipeline and perform a series of
sub-computations (rec SubCompute) to propagate the particles to all workers, each
involving receiving particles from a neighbouring worker and sending particles
received in the previous sub-computation to the next worker.

All of the endpoint protocols inherit the two nested rec blocks from the global
protocol. In the body block of rec SubCompute, the order of send and receive
are different in Head and Body. As discussed in §3.2, Session C allows per-
muting the order of send and receive for optimisations under the asynchronous

Multiparty Session C 213

protocol Nbody at Body /*endpoint*/

(role Head, role Tail) {

rec NrOfIters {

rec SubCompute {

particles from Head;

particles to Tail;

SubCompute;}

NrOfIters;}

}

/* Implementation of Body worker */

while (iterations++ < NR_OF_ITERATIONS) {

while (rounds++ < NR_OF_NODES) {

send_particles(Tail, tmp_parts);//permuted

// Update veclocities

compute_forces(particles, tmp_parts,...);

recv_particles(Head, &tmp_parts);

} // Update positions by reeceived velocities

compute_positions(particles, pvs, ...);

}

subtyping, so that we can type-check this program. Using the endpoint protocols
as specification, we can implement the workers. The code on the right imple-
ments the Body worker which is typable by our session type checker, despite the
difference in order of send and receive from its endpoint Scribble.

4.2 Linear Equation Solver: A Wraparound Mesh Topology

The aim of the linear equation algorithm is finding a x such that Ax = b, where
A is an n × n matrix and x and b are vectors of length n. We use the parallel
Jacobi algorithm [1], which decomposes A into a diagonal component D and a
remainder R, A = D+R. The algorithm iterates until the normalised difference
between successive iterations is less than a predefined error.

/* Global protocol */

protocol Solver (role Master, ...) {

rec Iter {

rec Pipe {

double_array from Master to Last;

double_array from Last to East;

double_array from East ro Master;

// Other communication in pipeline

Pipe;}

// Distribute X vector from diagonal

double_array from Master to SouthWest;

double_array from Master to West;

// Distribution of other columns

Iter;}

}

Master Last East

West Diagonal EastLast

SouthWest Worker EastDiagonal

Pipeline data

Propagation of vector X after iteration

Our parallel implementation of
this algorithm uses p2 processors in
a p × p wraparound mesh topology
to solve an n×n system matrix. The
matrix is partitioned into submatrix
blocks of size n2/p2, assigned to each
of the processors. Above shows the
global protocol and the dataflow of
the linear equation solver implemen-
tation with 9 workers.

An endpoint protocol is listed be-
low on the left. The overall itera-
tion of the algorithm is controlled
by a rec Iter block. In each itera-
tion, the computed values are put
into a horizontal pipeline, as shown
on the right to compute the sums.
The resultant X vector is then calcu-
lated by the diagonal node to other
workers in the mesh for the next
iteration. The corresponding code
is given on the right. The asyn-

chronous message optimisation is again applied to the horizontal pipeline in
order to overlap communications and computations.

214 N. Ng, N. Yoshida, and K. Honda

protocol Solver at Diagonal

(role West, role EastLast,

role Last, role Worker) {

rec Iter {

rec Pipe {

double_array from West;

double_array to EastLast;

Pipe;

}

double_array to Last, Worker;

Iter;

}

}

while (!iter_completed)) {

computeProducts(partsum, blkA, newXVec, ...);

computeSums(sum, partsum, ...);

pipe = 0;

while (pipe++ < columns) {

send_double_array(EastLast, partsum, blkDim);

computeSums(sum, partsum, blkDim);

recv_double_array(West, partsum, &length);

}

// calculate X vector

copyXVector(newXVec, oldXVec, ...);

computeDivisions(newXVector, sum, ...);

msend_double_array(newXVec, Last, Worker, ...);

}

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 3000 6000 9000 12000 15000 18000 21000

R
un

tim
e

(s
ec

on
ds

)

Number of particles per process

(a) N-body simulation

MPI
Session C

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2500 3000 3500 4000 4500 5000 5500 6000

R
un

tim
e

(s
ec

on
ds

)

Matrix dimension

(b) Linear equation solver

MPI
Session C

 0

 5

 10

 15

 20

 25

 30

 35

 40

28 29 210 211 212 213 214 215 216 217

R
un

tim
e

(m
ill

is
ec

on
ds

)

Array size

(c) Fast Fourier Transformation

MPI
Session C

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 1600 1800 2000 2200 2400 2600 2800 3000

R
un

tim
e

(s
ec

on
ds

)

Array size of sub-grid

(d) Jacobi solution for the DPE

Session C (no optimisation)
MPI

Session C

Fig. 2. Benchmark results

5 Performance Evaluation

This section presents performance results for the four algorithms which feature
different topologies and communication structures. The first three benchmarks
were taken on workstations with Intel Core i7-2600 processors with 8GB RAM
running Ubuntu Linux 11.04; the Jacobi solution benchmarks were taken on a
high performance cluster with nodes containing AMD PhenomX49650 processor
with 8GB RAM running CentOS 5.6, connected by a dedicated Gigabit Ethernet
switch. Each benchmark was run 5 times and the reported runtime is the average

Multiparty Session C 215

of all 5 runs. For the MPI versions, OpenMPI 1.4.3 were used. Both use gcc 4.4.3
to compile with the optimisation level -O3.

N-body Simulation. Our results are compared against MPI. Both versions use
a ring pipeline to propagate the particles, and the two implementations share the
same computational component by linking the same compiled object code for
the compute functions. Our implementations were benchmarked with 3 workers
and 1000 iterations on a set of input particles in the two-dimensional space. The
results in Fig. 2(a) show that Session C’s execution time is within 3% of the
MPI implementation.

Linear Equation Solver. Fig. 2(b) shows that the MPI linear equation solver
is faster than Session C implementation by 1–3%, with the ratio decreasing as
the matrix size increases, suggesting the communication overhead is low, if any.
The MPI implementation uses MPI_Bcast to broadcast the results of each iteration
to all nodes in the column, while Session C explicitly distributes the results.

FFT (Fast Fourier Transform) Butterfly Algorithm. We use a 8 node
FFT butterfly. As seen from Fig. 2(c), Session C demonstrates a competitive
performance compared to MPI implementation, again with the difference in ra-
tio decreasing as the array size gets larger. The algorithm takes advantage of
asynchronous optimisation for the butterfly message exchanges.

Jacobi Solution for the Discrete Poisson Equation. Fig. 2(d) shows the
benchmark results of the implementation of Jacobi solution. We benchmarked
an optimised Jacobi solution implemented in Session C against a version without
asynchronous message optimisation and found that the optimisation improved
the performance by up to 8%. The result of this optimisation is very close (within
1%) to that of our reference implementation in MPI, demonstrating the effec-
tiveness of the asynchronous optimisation.

6 Related Works and Further Topics

Due to space limitations, we leave comparisons with other session-based lan-
guages and HPC/PGAS languages to [29].

Deadlock Detection in MPI. ISP [34] is a dynamic verifier which applies
model-checking techniques to identify potential communication deadlocks in
MPI (by “communication deadlock” we mean deadlocks due to communication
mismatch/circularity, rather than local computation, e.g. divergent loop). Their
tool uses a fixed test harness. In order to reduce the state space of possible thread
interleavings of an execution, the tool exploits an independence between thread
actions. Later in [35], they improved its scheduling policy to gain efficiency of
the verification. TASS [32] is another model checking-based tool for a deadlock
analysis in MPI. It constructs an abstract model of a given MPI program and
uses symbolic execution to evaluate the model for finding deadlocks.

Our session type-based approach differs from these approaches in that it of-
fers a full deadlock-free guarantee for communications by type-checked programs,
without being restricted to external test sets or extracted models from program

216 N. Ng, N. Yoshida, and K. Honda

code, as well as offering a low-cost static checking. We believe a communica-
tion protocol is an abstraction which a developer of a message-passing parallel
algorithm is anyway aware of. Session C encourages programmers to make this
abstraction explicit, and offers primitives and a type checker for well-structured
and formally safe message-passing parallel programs.

Formally-Founded Communication-Based HPC Languages. Pilot [5] is a
parallel programming layer on top of standard MPI, aiming to simplify complex
MPI primitives based on CSP. The communication is synchronous and channels
are untyped to allow a reuse for different types. They have a runtime analysis
for some deadlock patterns. Occam-pi [30] is a system-level efficient concurrent
language with channel-based communication based on CSP and the π-calculus.
It offers various locking and barrier abstractions, but do not support deadlock-
free analysis. Heap-Hop [33] is a verification tool for C based on dual contracts
and Separation Logic. It can detect a deadlock based on contract specifications,
but treats only binary (two parties) communications. Our work differs in that we
centre on multiparty session-based abstractions for structured communications
programming combined with a full formal assurance for communication safety.

Our previous work [29] applied Session Java (SJ) [19,20], Java enhanced with
session types, to parallel algorithms. SJ treats only binary session types [17] and
cannot guarantee deadlock freedom and global progress between more than two
processes. To ensure these properties, the tool in [29] has to run an additional
topology verification on the top of the session type-checking. Session C offers a
significant speed-up (60%) compared to SJ as well as MPI for Java [28].

Optimisation in MPI. Techniques for improving performance of MPI include
building libraries for efficient transmission of data, e.g. [7] or MPI-aware opti-
mising compilers, e.g. [12]. Most optimisations share a common theme to utilise
computation and communication overlap to reduce the negative impact of the
communication overhead. Our asynchronous message optimisation is one such
instance to facilitate communication-computation overlap. Unlike Session C, ex-
isting works do not offer a similar framework, where a type-theoretic basis gives
a formal safety assurance for optimised code.

Further Topics. To fulfill its full potential as a session-based programming
framework for parallel algorithms, we are planning several extensions of Session
C, including the support of parametrised [36] and multirole multiparty session
types [9] in Scribble, Session C and its tool chain for a fully generic protocol de-
scriptions and programming (e.g. with respect to the number of workers in the
examples in §2); synthesis of global protocols for better development lifecycle;
and adding design-by-contracts [4] for fine-grained logical verification. We also
intend to combine some features of Cyclone [21] in extending our framework to
ensure stronger safety properties in addition to communication safety.

Acknowledgements. We thank Gary Brown for his fantastic work in the Scrib-
ble project, the members of Mobility Reading Group and Custom Computing
Group for discussions, and reviewers for valuable comments. The work is par-
tially supported by EPSRC EP/F003757/01 and EP/G015635/01.

Multiparty Session C 217

References

1. Jacobi and Gauss-Seidel Iteration,
http://math.fullerton.edu/mathews/n2003/GaussSeidelMod.html

2. N-body algorithm using pipeline,
http://www.mcs.anl.gov/research/projects/mpi/usingmpi/examples/advmsg/

nbodypipe c.htm

3. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M.,
Yoshida, N.: Global Progress in Dynamically Interleaved Multiparty Sessions. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433.
Springer, Heidelberg (2008)

4. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A Theory of Design-by-Contract
for Distributed Multiparty Interactions. In: Gastin, P., Laroussinie, F. (eds.) CON-
CUR 2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010)

5. Carter, J., Gardner, W.B., Grewal, G.: The Pilot approach to cluster programming
in C. In: IPDPSW, pp. 1–8. IEEE (2010)

6. Casanova, H., Legrand, A., Robert, Y.: Parallel Algorithms. Chapman & Hall (July
2008)

7. Danalis, A., et al.: MPI-aware compiler optimizations for improving communication
-computation overlap. In: ICS 2009, pp. 316–325 (2009)

8. Deniélou, P.M., Yoshida, N.: Buffered Communication Analysis in Distributed
Multiparty Sessions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS,
vol. 6269, pp. 343–357. Springer, Heidelberg (2010)

9. Deniélou, P.M., Yoshida, N.: Dynamic multirole session types. In: POPL, pp. 435–
446. ACM (2011)

10. Deniélou, P.M., Yoshida, N.: Multiparty Session Types Meet Communicating Au-
tomata. In: Seidl, H. (ed.) Programming Languages and Systems. LNCS, vol. 7211,
pp. 194–213. Springer, Heidelberg (2012)

11. Dwarf Mine homepage, http://view.eecs.berkeley.edu/wiki/Dwarf_Mine
12. Friedley, A., Lumsdaine, A.: Communication Optimization Beyond MPI. In:

IPDPSW and Phd Forum. IEEE (2011)
13. Online Appendix, http://www.doc.ic.ac.uk/~cn06/pub/2012/sessionc/
14. Grama, A., Karypis, G., Kumar, V., Gupta, A.: Introduction to Parallel Comput-

ing, 2nd edn. Addison Wesley (January 2003)
15. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming

with the Message-Passing Interface. MIT Press (1999)
16. Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., Yoshida, N.: Scribbling

Interactions with a Formal Foundation. In: Natarajan, R., Ojo, A. (eds.) ICDCIT
2011. LNCS, vol. 6536, pp. 55–75. Springer, Heidelberg (2011)

17. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Discipline
for Structured Communication-Based Programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

18. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL 2008, vol. 5201, p. 273 (2008)

19. Hu, R., Kouzapas, D., Pernet, O., Yoshida, N., Honda, K.: Type-Safe Eventful
Sessions in Java. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 329–
353. Springer, Heidelberg (2010)

20. Hu, R., Yoshida, N., Honda, K.: Session-Based Distributed Programming in
Java. In: Ryan, M. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 516–541. Springer,
Heidelberg (2008)

http://math.fullerton.edu/mathews/n2003/GaussSeidelMod.html
http://www.mcs.anl.gov/research/projects/mpi/usingmpi/examples/advmsg/nbodypipe_c.htm
http://www.mcs.anl.gov/research/projects/mpi/usingmpi/examples/advmsg/nbodypipe_c.htm
http://view.eecs.berkeley.edu/wiki/Dwarf_Mine
http://www.doc.ic.ac.uk/~cn06/pub/2012/sessionc/

218 N. Ng, N. Yoshida, and K. Honda

21. Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J., Wang, Y.: Cyclone: A
Safe Dialect of C. In: Usenix Annual Technical Conference, Monterey, CA (2002)

22. Lattner, C., Adve, V.S.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: CGO 2004, pp. 75–88 (2004)

23. Leighton, F.T.: Introduction to parallel algorithms and architectures: arrays, trees,
hypercubes. Morgan Kaufmann (1991)

24. Metis and parmetis, glaros.dtc.umn.edu/gkhome/views/metis
25. Mostrous, D.: Session Types in Concurrent Calculi: Higher-Order Processes and

Objects. Ph.D. thesis, Imperial College London (2009)
26. Mostrous, D., Yoshida, N., Honda, K.: Global Principal Typing in Partially

Commutative Asynchronous Sessions. In: Castagna, G. (ed.) ESOP 2009. LNCS,
vol. 5502, pp. 316–332. Springer, Heidelberg (2009)

27. Message Passing Interface, http://www.mcs.anl.gov/research/projects/mpi/
28. MPJ Express homepage, http://mpj-express.org/
29. Ng, N., Yoshida, N., Pernet, O., Hu, R., Kryftis, Y.: Safe Parallel Programming

with Session Java. In: De Meuter, W., Roman, G.-C. (eds.) COORDINATION
2011. LNCS, vol. 6721, pp. 110–126. Springer, Heidelberg (2011)

30. Occam-pi homepage, http://www.occam-pi.org/
31. Scribble homepage, http://www.jboss.org/scribble
32. Siegel, S.F., Zirkel, T.K.: Automatic formal verification of MPI-based parallel pro-

grams. In: PPoPP 2011, p. 309. ACM Press (February 2011)
33. Villard, J.: Heaps and Hops. Ph.D. thesis, ENS Cachan (2011)
34. Vo, A., Vakkalanka, S., DeLisi, M., Gopalakrishnan, G., Kirby, R.M., Thakur, R.:

Formal verification of practical MPI programs. In: PPoPP 2009, pp. 261–270 (2009)
35. Vo, A., et al.: A Scalable and Distributed Dynamic Formal Verifier for MPI Pro-

grams. In: SC 2010, pp. 1–10. IEEE (2010)
36. Yoshida, N., Deniélou, P.-M., Bejleri, A., Hu, R.: Parameterised Multiparty Session

Types. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 128–145. Springer,
Heidelberg (2010)

37. ZeroMQ homepage, http://www.zeromq.org/

glaros.dtc.umn.edu/gkhome/views/metis
http://www.mcs.anl.gov/research/projects/mpi/
http://mpj-express.org/
http://www.occam-pi.org/
http://www.jboss.org/scribble
http://www.zeromq.org/

Non-interference on UML State-Charts�

Mart́ın Ochoa1,2, Jan Jürjens1, and Jorge Cuéllar2

1 Siemens AG, Germany
2 TU Dortmund, Germany

{martin.ochoa,jan.jurjens}@cs.tu-dortmund.de,
jorge.cuellar@siemens.com

Abstract. Non-interference is a semantically well-defined property that
allows one to reason about the security of systems with respect to infor-
mation flow policies for groups of users. Many of the security problems
of implementations could be already spotted at design time if informa-
tion flow would be a concern in early phases of software development. In
this paper we propose a methodology for automatically verifying the in-
teraction of objects whose behaviour is described by deterministic UML
State-charts with respect to information flow policies, based on the so-
called unwinding theorem. We have extended this theorem to cope with
the particularities of state-charts: the use of variables, guards, actions
and hierarchical states and derived results about its compositionality. In
order to validate our approach, we report on an implementation of our
enhanced unwinding techniques and applications to scenarios from the
Smart Metering domain.

1 Introduction

Secure Information Flow analysis is a fine-grained methodology for studying the
confidentiality and integrity of systems. This kind of analysis (first introduced
by Goguen and Meseguer [12] in 1982) is mathematically defined over the inputs
and outputs visible to groups of users. Its main advantage over other security
analyses is that it allows to pin down subtle flows of information that are difficult
to spot when focusing merely on analysing security mechanisms (such as access
control mechanisms). Although information flow properties assume perfect ac-
cess control to guarantee that different groups of users do not see certain inputs
and outputs of other users directly, this is a reasonable assumption: attackers
usually exploit the information that is shared by victims through common in-
terfaces instead of trying to break directly the access control mechanisms. In
words of Anderson [6] “(...) in practice, security is compromised most often not
by breaking dedicated mechanisms such as encryption or security protocols, but
by exploiting weaknesses in the way they are being used”.

� This research was partially supported by the MoDelSec Project of the DFG Priority
Programme 1496 “‘Reliably Secure Software Systems – RS3” and the EU project
NESSoS (FP7 256890).

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 219–235, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

220 M. Ochoa, J. Jürjens, and J. Cuéllar

In the past decades different information flow properties have been proposed
for coping with different system models such as non-deterministic systems, dis-
tributed systems and imperative programming languages. At the abstract level
results about compositionality and refinement have been published for many
security properties, for example [18,19,24]. In the ‘Language Based’ realm (i.e.
analysis of source code) mature tools for information flow analysis on annotated
code exist, like [1,11,2]. All of these are indeed promising steps towards the in-
dustrial application of the fine-grained analysis offered by the property-centric
point of view of Information Flow. Nevertheless, it seems that production envi-
ronments are still far from adopting these techniques.

In this paper we propose a light-weight, automatic strategy for checking non-
interference on a deterministic fragment of UML state-charts. Our aim is to
make a formally sound step towards the usability of these techniques based in
the so-called unwinding theorem, that provides sufficient conditions for non-
interference. We have extended previous work on unwinding to cope with the
complexity of UML state-charts: the use variables for keeping history of the
state, guards for transitions, hierarchical states and actions. Moreover, we aim
at verifying systems where object interaction plays a fundamental role. In order
to achieve this, we discuss sufficient conditions for deciding on the composition
of the behaviour of already verified components. This is a key factor in the
scalability of our approach, which is also an important criterion for the success
of verification in realistic settings.

In order to validate our theoretical results, we report on a prototypical ma-
chine implementation that automatically verifies models where our unwinding
theorem is applicable. We apply this implementation to examples motivated by
a case study from the Smart Grid domain. Since unwinding conditions are only
sufficient conditions, some secure models might be rejected. However it is impor-
tant to show that non-trivial secure models are actually accepted and verified.
The case study allows to discuss and validate the utility of our approach.

The rest of the paper is organized as follows: Sect. 2 discusses some prelim-
inaries about non-interference and Harel state-charts and sets the notation for
the rest of the paper. Sect. 3 is the central section of the paper, were the verifi-
cation strategy is described. In Sect. 4 we discuss the notion of composition used
for reasoning about interacting objects and the composition theorem. In Sect. 5
we illustrate our approach on examples from the Smart Metering domain. Sect.
6 reports on related work and we conclude in Sect. 7.

2 Preliminaries

In this section we recall some definitions and set the notation for the rest of
the paper. Starting with the original definition of non-interference by [12] many
other subtle information flow properties have been proposed for dealing with
non-determinism and distributed systems. In this paper we will nevertheless use
the original definition, because our focus will be the analysis of deterministic
automata.

Non-interference on State-Charts 221

2.1 Non-interference

Assume a system is a deterministic black-box transforming sequences of input
events I into sequences of output events O by means of a semantic function:

[] : I → O

We further assume there are two types of users : high users H and low users 1

L. The sets of input and output events can be divided into the events a high or
low user is allowed to see. Lists of input and output events can then be filtered
according to the type of user allowed to see them by the purging functions ·|H
and ·|L . Non-interference is the property :

∀ −→
i [

−→
i]|L = [

−→
i |L]|L (1)

In other words, the output seen by the lower users is independent of the input
by higher users, up to the point that is not even noticeable whether the high
users perform any action on the system.

Some authors (for example [17]) use the equivalent definition:

∀ −→
i1 ,

−→
i2

−→
i1 |L =

−→
i2 |L ⇒ [

−→
i1]|L = [

−→
i2]|L (2)

which corresponds to the intuition that two runs where the high user perform
different actions are equivalent to low users. A stronger version of this property
is usually used in the language-based information flow analysis domain [14,7,10].

2.2 State-Charts

In order to model the function [·] of the last subsection, consider Mealy machines
[20]. Syntactically, a Mealy machine can be represented by a directed graph
with annotated transitions of the form α/β, meaning that the input event α
triggers the output event β. Formally, a Mealy machine M is defined as a 6-
tuple (S, s0, Σ, Γ, T,G) where S is a finite set of states, s0 is an initial state,
Σ is finite input alphabet, Γ is a finite output alphabet, T : S × Σ → S is a
transition function defined over states and input symbols and G : S × Σ → Γ
is an output function defined over states and input symbols. A Mealy machine
induces thus a semantics [·] by [(σ1, σ2, . . . , σn)] = G(s0, σ1) :: · · · :: G(sn, σn)
where sn = T (. . . T (T (s0, σ1), σ2) . . . , σn) and :: denotes concatenation. Notice
that the functions T and G are naturally induced by the graph representation. In
the following we will assume that if an input is not defined in a given state, the
machine enters in a state where no further inputs are processed and no outputs
are produced.

1 For simplicity of exposition and historical reasons we will discuss about high and low
users in the rest of the paper. However the definition can be extended to an arbitrary
partition of groups of users. Also we will restrict to analysing non-interference from
high with respect to low (no-down-flows, usually associated to confidentiality), to
analyse the converse (i.e. integrity) one can just switch L for H .

222 M. Ochoa, J. Jürjens, and J. Cuéllar

If we further divide the input and output events into high an low events, we
can apply the definition of non-interference to a Mealy machine.

Example 1. Consider the system defined by the state-machine:

α/β α/β′

γ/γ′

A B

where α, β, β′ ∈ L and γ, γ′ ∈ H . Then non-interference does not hold since
[(γ, α)]|L = β′ �= [(γ, α)|L]|L = [α]|L = β.

To deal with the so-called ‘state-explosion’ problem, that arises when the number
of states and transitions increases due to the specification of complex behaviours,
other formalisms have been proposed that include the notion of sub and super-
states. More prominently Harel [15] proposed the notion of statechart that has
been used as the basis for UML. This is basically an extension to Mealy machines
that allows the following:

– Hierarchical States: Single states can contain sub-states and transitions
among the sub-states up to arbitrary depth. Let A be a super state con-
taining finitely many sub-states Ai. Then an external state B can have a
transition directly to s or to a sub-state Ai. In the first case the transition
is to be interpreted as to go to the initial sub-state of s. In the second case
it simply goes to si. This allows to modularize certain common behaviours
into super-states, improving considerably the presentation of complex state
charts.

– Clustering: To graphically summarize events that trigger a transition to the
same state in a group of states, a transition with event γ going out of a
super-state A to state B stands for a transition from each sub-state of A
with event α to B.

– Orthogonality and Concurrency: In some cases, processes within the system
are orthogonal between each other, in the sense that they could be described
with two separate state-charts with disjoint inputs. Thus, Harel state-charts
allow multiple sub-state-charts to be modelled as concurrent processes within
the same state-chart, compressing notably the notation, since for each two
independent Mealy machines with n and m states respectively, n ·m states
are needed to represent them in a single machine.

Thus formally, a Harel state-chart can be seen as a set (to represent the con-
current processes) of 6-tuples (Si, s

i
0, Σi, Γi, Ti, Gi) where Si is as a finite set of

super-states and si0 is an initial super-state. A super-state is defined as a either
a state or a state-chart, such that for every super-state there are only finitely
many nested state-charts. Ti and Gi are then similar as in the Mealy machine
case, where for a given state Ti depends also on the transitions defined at higher
hierarchical states (if any).

Non-interference on State-Charts 223

Example 2. The following state-chart:

A
B

A2

A1

α

β γ

C

D

δδ

P : Q :

contains a (sub) state-chart P containing a superstate with clustering running
concurrently with (sub) state-chart Q.

Notice that all these extensions are syntactic sugar for improving the graphi-
cal representation: any deterministic Harel state-chart can be represented by a
Mealy-Machine with equivalent semantics, and therefore we can use the same
definition of non-interference given in the previous subsection for reasoning about
the security of Harel State-charts.

3 Extending Unwinding for UML State-Charts

Verifying system designs for non-interference is a computationally difficult task,
because the definition uses universal quantifiers on inputs and outputs: to verify
accurately an arbitrary system implies running and comparing all possible input
sequences. Therefore, in order to achieve a trade-off between security and effi-
ciency, one usually needs to sacrifice some precision on the verification. In this
section we discuss how to obtain sufficient conditions for the non-interference
analysis on UML state-charts by extending traditional unwinding theorems for
finite state machines. We will first introduce the fragment of the UML state-
charts considered and discuss briefly the unwinding theorem. Then we report on
our extension for UML state-charts.

3.1 UML State-Charts à la UMLsec

UML has adopted an extension of Harel state-charts to represent the behaviour
of classes. It allows a list of actions as a consequence of an event, including
calling methods, updating variables and outputting values. In this paper we will
restrict to a fragment of UML state-charts defined as follows :

– Input events labelling transitions can be either methods of the associated
class with concrete parameters or with variables to represent calls with dif-
ferent parameters or global system events (like the tics of a system clock).

– Actions associated to an input event can be either outputting an event (writ-
ten return event) or a variable assignment, where the variables are attributes
of the associated class or parameters of the input.

– Guards are decidable conditions on the input parameters or the values of
the attributes.

224 M. Ochoa, J. Jürjens, and J. Cuéllar

[total > 100]

normaldiscount

consumed(x)/
{return ok(t′),

total + +}

consumed(x)/
{return ok(t),

total + +}

reset()/
total = 0

[total <= 100]

consumed(x)/
{return ok(t′),

total + +}

discount

consumed(1)/
ok(t)

reset()

normal0normal99

consumed(2)/
ok(t)

consumed(1)/
ok(t′)

consumed(2)/
ok(t′)

consumed(1)/
ok(t)

normal1. . .
consumed(2)/

ok(t)

Fig. 1. A model of the smart metering payment processing system as an UML state-
chart and a semantically equivalent Mealy Machine for x in range [1..2] in the param-
eters of consumed

We will restrict to the sub-set of deterministic UML State-charts as defined
above. This is similar to the UML state-charts as defined in [17], with the funda-
mental difference that there state-charts can be non-deterministic, resulting in
a more complex semantics. The semantics of the deterministic fragment defined
above can be seen as an extension of the Harel state-chart semantics (based on
their Mealy machine translation), where the guards and variables are syntactic
sugar for describing the history of the state and where parametrized method
calls stand for as many transitions as the respective guard allows.

More precisely: a transition labelled with a parametric input stands for multi-
ple transitions, one for each concrete value of the parameter. Transitions where
the actions perform variable assignation stand for multiple transitions with dis-
tinct targets (one for each possible value of the assignation). Guards with condi-
tion C represent the fact that in states where C hold then that particular labelled
transition is present, and not present in states where C does not hold. For an
example of a UML state-chart and its semantically equivalent Mealy machine
see Fig. 1. We will discuss this example in detail in Sect. 5.

3.2 Unwinding

Unwinding theorems were first proposed by Goguen and Meseguer [13]. They
provide sufficient conditions for non-interference that are amenable to verify
since they rely on local conditions of pairs of states. The idea is that if there

Non-interference on State-Charts 225

exists a reflexive relation R of the states in an input/output state machine M
for a policy dividing events in high H and low L such that:

– R is locally consistent: given a state s and s′ = T (s, h) the state resulting
after a transition triggered by an event h ∈ H then (s, s′) ∈ R.

– R is step-consistent: for all inputs i, if (s1, s2) ∈ R then (T (s1, i), T (s2, i)) ∈
R where T (s1, i) and T (s2, i) are the states resulting from the transition
triggered by i in s and t.

– R is output-consistent: if (s1, s2) ∈ R then the output of an event l ∈ L in
s1 is equal to the output of l in s2.

then non-interference holds on M for the H and L partition. For a proof see for
example [13,26].

Example. In example 1, (A,B) must be in R because of locality. However, R is
not output consistent and therefore non-interference cannot be established.

3.3 Unwinding for UML Statecharts

There are two main difficulties for extending the unwinding theorems fromMealy
machines to the subset of UML state-charts as described in Sect. 3.1: a) The
graphical syntactic sugar of Harel state-charts and b) the use of variables and
guards for keeping history of the state and for parametrizing inputs. One possi-
bility to verify UML state-charts would be to remove all syntactic sugar, unfold
a semantically equivalent Mealy machine and then find an unwinding relation
satisfying the conditions described in the previous subsection. This would be
however computationally quite expensive in general: the purpose of the UML
state-chart notation is to avoid state and transition explosion. We have extended
the unwinding theorem accordingly for coping soundly with these differences in
the notation in an efficient way. Intuitively, we statically analyse guarded tran-
sitions with actions by simultaneously extending an unwinding relation and a
tainted set associated to each state. Tainting keeps track of variables whose value
is directly or indirectly dependent on high inputs, in the spirit of language based
information flow analysis. This information allows to soundly decide on the out-
put consistency of the relation.

In the following when we refer to a state, we mean a state that does not
contain further nested sub-states. When we refer to the transitions going out of
a state s, we mean all transitions going out of all the super states containing s.
Without loss of generality we will analyse concurrent state-charts separately: by
definition (Sec. 2) two concurrent Harel state-charts have disjoint inputs, and
we further assume they also do not share variables in their UML representation.

Let R′ be a relation over the states of a UML state-chart U , H a subset of
the inputs of U and tainted(si) a set associated to each state si, such that:

Local Consistency. For a label on the transition t1 from s1 to s2 of the form

[C1] α(y1) / {return β1, x1 := E1} (3)

226 M. Ochoa, J. Jürjens, and J. Cuéllar

then s1 is in relation with the initial sub-state of s2 if there exists a parameter
a such that α(a) ∈ H . Moreover x1 ∈ tainted(s2) and tainted(s2) ⊇ tainted(s1).

Step Consistency. If (s1, s2) ∈ R′ then for every transition t1 of the form (3)
with target s′1 originating from s1 and every transition t2:

[C2] α(y2) / {return β2, x2 := E2} (4)

with target s′2 originating from s2 then it follows (s′1, s
′
2) ∈ R′. Moreover, if

α(a) ∈ H for some a or there is a variable zi ∈ tainted(si) such that zi ∈ Ci or
zi ∈ Ei then xi ∈ tainted(s′i) and tainted(s′i) ⊇ tainted(si).

Output Consistency. If (s1, s2) ∈ R′ with t1 of form (3) with a such that α(a) ∈ L
we distinguish two cases:

– If there exists x such that x ∈ tainted(s1) and x ∈ C1 then for all t2 in s2 of
form (4) it must follow β1 = β2.

– Otherwise: if there exists t2 of form (4) in s2 such that C1 = C2 then β1 = β2.
If no such t2 exists, then for all other t′2 in s2 of form (4) it holds β1 = β2.

Moreover there exists no variable x such that x ∈ tainted(si) and x ∈ βi.

Theorem 1. If U admits a relation R′ as defined above then it respects non-
interference.

Proof. It suffices to show is that the relation R induced by R′ on the unfolded
Mealy machine M of U is an unwinding relation. A state in M can be seen as
a pair (s,−→v) where s is an identifier for a state in U and −→v is a vector of con-
crete values v1, . . . , vn for the variables x1, . . . , xn used in U. R is defined thus
as ((s1,

−→v), (s2,
−→w)) ∈ R ⇔ (s1, s2) ∈ R′. Is easy to see that R satisfies local

consistency, because R′ covers all possible transitions induced by high inputs.
Step consistency also holds on R by construction of R′. The extended definition
of output consistency is similar to the original one, except for a) it is forbid-
den to output an expression depending on a tainted variable and b) the output
consistency relation is relaxed in case an output is guarded by a condition not de-
pending on tainted variables. It is not hard to see that a) is a necessary condition.
Now consider (s1, s2) ∈ R′ and w.l.o.g. belonging to the same connected graph
of U . Moreover consider a condition C depending on variables X ′ = x′

1, · · · , x′
n

such that x′
j /∈ tainted(si). By the definition of R′ there exist ancestors p1 and

p2 (of s1 and s2 respectively) such that there is a high transition between p1
and p2 and by definition of tainting this transition does not change the value of
any variable in X ′. For any input η changing the state of p1 and p2 to p′1 and p′2
respectively then if η ∈ H then the valuation of X ′ remains unaltered. If η ∈ L
triggers an action changing the value of a variable in X ′ then the transition was
triggered on a condition depending on variables in X ′. By hypothesis variables
in X ′ had the same value on p1 and p2, and therefore η changes the valuation
in both states equivalently. The same reasoning can be done inductively obtain-
ing that the values of X ′ in s1 and s2 depend on the values of X ′ in p1 and

Non-interference on State-Charts 227

side-effects triggered by low inputs exclusively. Therefore if C holds in (s1,
−→v)

for a given input trace starting on p1, then it must also hold in (s2,
−→w) for an

equivalent trace on the low inputs that reaches s2.
Notice that it would be also sound to simply compare all outputs in s1 and

s2, but this would be too coarse for practical uses, where usually a condition an
its negation are defined as guards for the same input on a given state, as we will
see in Sect. 5. It suffices to compare the outputs guarded by C and not both
the outputs of C and those of ¬C, because in the unfolded Mealy machine the
states where ¬C holds are not necessarily in the minimal unwinding relation.

4 Object Interaction

As discussed in Sect. 3.1 UML state-charts are commonly used to represent
the behaviour of a class. In the previous section we have discussed unwinding
theorems that can be used to decide on the security of single, monolithic state-
charts. To reason about the security of a system that is built upon interacting
objects, we would need to obtain composed state-charts out of the state-charts
defining the single object’s behaviour. It would be however desirable to have
sufficient conditions that allow to reason on information flow policies on the
single components mainly for achieving scalability. In this section we discuss the
notion of composition we will use and present sufficient conditions that guarantee
that a composition respects non-interference for a given policy.

4.1 Composition

We will follow [17] by reasoning at the instance level: we will assume that the
behaviour described by a state-chart is that of an instantiated object 2. The
notion of composition we will use is based on message passing between state-
charts: the output messages generated by a state-chart A can be input messages
for a state-chart B but not vice-versa. This corresponds formally to a special
case of parallel composition as defined for example in [8,21] where we restrict the
feedback only to occur in one direction. In other words we do not allow call-backs,
which are related to recursive method calls. This is indeed a difficult topic on
its own, since subtleties on the semantics play a fundamental role (as discussed
for example in [28]), and goes outside the scope of this paper. Nevertheless, the
composition notion defined here is useful to reason about the security of non-
trivial object interaction, as we will see in Sect. 5, and has nice preservation
properties for non-interference.

More precisely, let classes A and B with inputs IA and IB respectively and
outputs OA and OB. A and B are composable if OA ∩ IB �= ∅ and OB ∩ IA = ∅.
The resulting composed object has inputs I = IA ∪ (IB \ OA) and outputs
O = OB ∪ (OA \ IB). Semantically, A⊗B is defined by the product of the states
in A and B where the states with at least one output o ∈ OA such that o ∈ IB

2 Therefore if we want to reason about different instantiations of an object we would
need to define as many classes as desired objects.

228 M. Ochoa, J. Jürjens, and J. Cuéllar

s3 s4

β/δ β′/δ

γ′/η

β/δ

β′/δ

α/β s1, s3 s1, s4

s2, s3 s2, s4

B :

A ⊗ B :
α/β α/β′

γ/γ′

A :

s1 s2

A × B :

α/β

α/β′α/β′

β/δ

β′/δ

γ′/η

γ′/η

γ/γ′
γ/γ′

s1, s3

s2, s4

α/δ

α/δ
γ/η

Fig. 2. State-chart UB and its composition with the state-chart UA

cannot be processed by B are discarded, because synchronisation cannot take
place. This is similar to the notion parallel composition in CCS [21]. The outputs
of transitions of A matching inputs of B in every state are then replaced by the
induced outputs in B.

Example 3. Consider the state-charts A and B of Fig. 2. Although in principle
there exists four possible states in the product state-chart A × B we discard the
states where an output ofA that is in the interface ofB cannot be processed byB.

4.2 Compositionality and Non-interference

In general, for scalability reasons, it is desirable that verification results on single
components can be re-used efficiently for deciding on their composition. In our
setting this means, for a given partition of the set of inputs I = I|H ∪ I|L and
outputs O = O|H∪O|L of the composition A⊗B there exists sufficient conditions
on A and B such that this composition respects non-interference. This is notably
not the case in general for information flow properties [18]. However, in our case
we can derive a positive result in this sense. We first observe that given a policy
on a composition A⊗B, the events on IB ∩OA remained unspecified since they
are not part of the interface of the composition. Although formally possible, it
is not sound from a security point of view to mark events from IB ∩OA as high
in one component and low in the other (or vice-versa), and therefore we will
exclude that possibility in the following.

Theorem 2. Let I = I|H ∪ I|L and O = O|H ∪ O|L a partition of the input
and output alphabets of A ⊗ B . If non-interference holds for an extension of
the policy in I and O to the unspecified events in IB ∩ OA in A and B, then
non-interference holds on A⊗B.

Proof. First consider the case where OA = IB (sequential composition). If there

exists a sequence
−→
i of inputs of A ⊗ B such that [

−→
i]A⊗B|L �= [

−→
i |L]A⊗B|L.

Non-interference on State-Charts 229

Then, because of sequentiality and subsequent application of non-interference of
B followed by non interference of A and of B again:

[
−→
i]A⊗B|L S

= [[
−→
i]A]B|L B

= [[
−→
i]A|L]B |L A

= [[
−→
i |L]A|L]B|L B

= [[
−→
i |L]A]B|L (5)

now observe that:

[
−→
i |L]A⊗B |L S

= [[
−→
i |L]A]B|L (6)

but by hypothesis (5) �= (6), contradiction.
The other cases follow easily by observing that whenever an input iB of B is

not an output of A then A can be extended by adding a single non connected
stated with a transition i′B/iB, thus returning to the sequential case and without
harming the sufficient conditions (and similarly when output oA is not an input
to B).

Notice that the hypothesis of Theorem 2 although sufficient, are not necessary:
in fact, the Example 3 has a component A violating non-interference for H =
{γ, γ′}, but the composition A⊗B respects it for H = {γ, η}.

5 Validation

In this section we report on experiments made to implement the enhanced un-
winding technique and the compositionality theorem and applications to exam-
ples from our case study.

5.1 Tool Support

There are two basic strategies to construct the relation R′ on a given state-chart.
One possibility is to proceed top down: first put in relation all the states that
respect output consistency and then check for local consistency and step consis-
tency. It is however not clear how to proceed from there if the relationship does
not respect the unwinding conditions. We have opted to construct it bottom up:
first, put every state in relation with itself. Then we compute all relationships
due to local consistency, and subsequently for each pair, we enlarge R′ by step
consistency. When constructing R′ we do a preliminary tainting analysis that
could be imprecise in presence of loops. This was enough to evaluate our exam-
ples, where tainting occurs only in one step (a more accurate tainting analysis
are matter of current work). Finally we check for output consistency. If output
consistency does not hold, there exists no unwinding relationship, because there
exists no minimal one.

We have prototypically implemented the algorithm described in Sect. 3 in
Haskell [3] because of its compact and elegant syntax. A state-chart is repre-
sented as a pair of list of nodes and list of transitions where the nodes contain
the tainting set and a list of 5-tuples:

230 M. Ochoa, J. Jürjens, and J. Cuéllar

type Node = (Label,Tainted)

type Transition = (Condition, Input, Output, Origin, Target)

type StateChart = (Nodes,Transitions)

For example, to check for output consistency of a pair in R′ with respect to a
set of low inputs low we have implemented the following code:

compareLowOutput :: StateChart -> Low -> (Node,Node) -> Bool

compareLowOutput (nodes,transitions) low (x,y) =

(null[(tran1,tran2) | (tran1,tran2) <-lowTransitions,

(getInputMethod tran1 == getInputMethod tran2),

(getReturn tran1 /= getReturn tran2)])

where lowTransitions = (getLowTransitions transitions low x y)

where getLowTransitions is defined as the filtering function including the ex-
ception based on the tainting analysis.

5.2 Case Study

Smart grids use information and communication technology (ICT) to optimize
the transmission and distribution of electricity from suppliers to consumers, al-
lowing smart generation and bidirectional power flows – depending on where gen-
eration takes place. With ICT the Smart Grid enables financial, informational,
and electrical transactions among consumers, grid assets, and other authorized
users[22]. The Smart Grid integrates all actors of the energy market, including
the customers, into a system which supports, for instance, smart consumption in
cars and the transformation of incoming power in buildings into heat, light, warm
water or electricity with minimal human intervention. Smart grid represents a
potentially huge market for the electronics industry [27]. The importance of the
smart grid for the society is due to the expectation that it will help optimize the
use of renewable energy sources [25] and minimize the collective environmental
footprint [9]. Two basic reasons why the attack surface is increasing with the new
technologies are: a) The Smart Grid will increase the amount of private sensitive
customer data available to the utility and third-party partners and b) Introduc-
ing new data interfaces to the grid through meters, collectors, and other smart
devices create new entry points for attackers.

Among other requirements, confidentiality and privacy of user data is an im-
portant security issue. There are many privacy issues, related to the use of sen-
sitive personally identifiable information (PII) related to the consumption of
energy, the location of the electric car, etc. This data must be kept secure from
unauthorized access, and the measurement process is subject to strict lawful
requirements in terms of accuracy, dependability and security, see in particular
the European Union directive [4]. See also [16] for a current version of proposed
technologies to solve this power systems management and associated informa-
tion exchange issues. In the following we will model two scenarios in this domain
(for details see [23]).

Non-interference on State-Charts 231

Scenario 1. Consider the behaviour described in Fig. 1. This models an energy
provider that processes the amount energy a user x consumes, described by the
event consumed(x) (x is a positive integer, the user’s ID) representing one unit of
energy consumed. After one unit is consumed, a confirmation ok(t) with the price
t of the consumption is sent to the user. If all consumers of a given region consume
more than 100 units, the price of the unit drops from t to t′. Now, assuming that
a given user with id 1 is not supposed to know about the consume of other
users, we would like to check whether this requirement holds for this system.
By setting the events {consumed(x) | x �= 1} as high, we can check whether
the unwinding conditions hold automatically via our Haskell implementation.
In this case, the model is rejected because of output inconsistency. Because
unwinding only provides an approximation, it would still be possible that the
system is secure. However, by just seeing a difference in the reported price in two
consumptions (given that he does not consume himself more than 100 units), the
low user could infer bounds on the number of consumptions of his neighbours.
A possibility to obtain a positive security guarantee is to modify the model as
follows: a discount is given if a single user consumes more than 100 units. By
modelling two concurrent machines, one accepting only the inputs of the low
user and the other from high, we can positively prove the security of the model.

Scenario 2. In this scenario an electric vehicle buys power from a given provider
at an agreed price. It does so at a public recharging station. For convenience, the
car will automatically stop the recharging when the total consumption exceeds
a given value (for example 10 e) or when the battery capacity k is reached.
The behaviour of the single components and their composed model is depicted
in Fig. 3, where for illustrative purposes also the composition is spelled out. To
fulfil privacy requirements of both users and companies, it is desirable that the
recharging stations do not learn the single unit price of the energy sold to the
vehicle. In other words, we want to treat the events setPrice(x), readPrice and
getPrice as confidential for the charging station. All other events are public. We
use then Theorem 2 and proceed to verify the single components. In this case,
the behaviour of object V violates non-interference, so we cannot use the com-
positionality result for P ⊗ V ⊗C. However, if the recharging policy is modified
by not being dependent on the price, thus replacing [t = 10/p] with [t = k],
then we can verify the composed model automatically, because all components
respect the information flow policy.

6 Related Work

Starting with the work of Goguen and Meseguer [12], many information-flow
properties have appeared for specific system models and to capture different
notions of security. Rushby discusses unwinding theorems in a more modern no-
tation [26] along with transitive and intransitive information flow policies. Gen-
eral Unwinding theorems for a wide range of information flow properties have
also been suggested by Mantel in [13]. Mantel has also unified most of these

232 M. Ochoa, J. Jürjens, and J. Cuéllar

s

setPrice(x)/
price = x

getPrice/

return price

t q

stop/

return ok(t′)

start/

t′ = 0

x y

charge/

{t = 0, return start}

tic/

return stop

[t = 10/p || t = K]

s' q'

tic/{t′ + +, t + +}

setPrice(x)/
price = x

readPrice/

p = price

charge/

{t′ = 0, t = 0}

tic/

return ok(t′)

[t = 10/p || t = K]

readPrice/

p = getPrice

P : V :

C : P ⊗ V ⊗ C :

tic/t + +

tic/t′ + +

Fig. 3. Single components and composition of the Provider P , the Vehicle V and the
Charging station C

properties into a common framework, the Modular Assembly Kit for Security
MAKS [19], also deriving new unwinding theorems. This work is also proba-
bly the best reference for a discussion on the different properties proposed for
abstract non-deterministic and distributed system designs.

In the Language-based world, different static approaches have been suggested
for verifying information-flow properties, prominently type-based systems like
Volpano-Smith [29] or more recently Barthe et al. [7]. Also works based on
abstract interpretation and analysis of Program Dependency Graphs [10,14] give
approximations to non-interference for JavaCard-bytecode and Java respectively.
Tools for information flow analysis on annotated code using these techniques are
for example Jif [1], JOANA [11] and STAN [2]. Works in the language-based
domain, in particular program slicing and tainting, are related with our analysis.
However the non-interference property analysed at the code level is generally a
stronger property tailored for a non reactive system model, where inputs at the
initial program state determine all outputs in all subsequent states.

Jürjens [17] defined a stereotype for non-interference on non-deterministic
state-charts that is equivalent to the notion used in this paper for the determin-
istic case, but no verification strategy or compositionality results are discussed.
In [5] Alghathbar et al. model flows of information with UML Sequence diagrams
and Horn clauses. However their focus is on high-level information flow policies

Non-interference on State-Charts 233

where only actors and the messages their exchange are modelled, and no explicit
relation between the information control rules and a semantic property is given.

7 Conclusions

We have presented an efficient verification strategy for state-charts that is sound
with respect to classical non-interference. Our technique is fully automatic and
can help to narrow the gap between theory and practice for information-flow in
secure-software development in industrial context, by applying our results to a
non-trivial subset of UML Statecharts, extending previous work in the area. On
a technical level, we have shown how to link unwinding theorems defined in in-
put/output state-machines with verification techniques related to the imperative
programming language domain.

In order to validate our approach we have modelled interesting aspects of a
Smart Metering scenario where subtle information flows related to confidential-
ity can be captured by non-interference. These examples show that although
approximate, our unwinding theorems are fine-grained enough to verify non-
trivial state-charts. We have also prototypically implemented the construction
and the verification of the newly defined unwinding relation and unwinding con-
ditions. This implementation allowed us to verify the examples of the case study
and discuss about the practical efficiency of the procedure.

There are many directions in which this work could be extended. On the one
hand, extensions to other information flow properties for non-deterministic state-
machines are interesting to study in the context of UML. On the other hand,
a more fine-grained approximation using automatic theorem provers or SMT
solvers for evaluating expressions could improve the precision of our analysis.
Moreover, studying the preservation of non-interference on code generated from
secure UML specifications (refinement) constitutes also a necessary step towards
industrial acceptance of these verification techniques.

Acknowledgments. The authors would like to thank David von Oheimb and
Arnaud Fontaine for useful comments made to an early draft of this paper and
Andrei Popescu, Kurt Stenzel and Henning Sudbrock among other researchers
from the German Research Foundation RS3 Priority Programme for interesting
discussions on the verification of information flow properties.

References

1. Jif: Java + Information Flow, http://www.cs.cornell.edu/jif/

2. STAN: Information flow analysis for small embedded systems,
http://stan-project.gforge.inria.fr/

3. The Haskell Programming Language, http://www.haskell.org/
4. The European Parliament and Council. Measuring instruments directive

(2004/22/ec). Official Journal of the EU (2004)

http://www.cs.cornell.edu/jif/
http://stan-project.gforge.inria.fr/
http://www.haskell.org/

234 M. Ochoa, J. Jürjens, and J. Cuéllar

5. Alghathbar, K., Farkas, C., Wijesekera, D.: Securing UML information flow using
flowUML. Journal of Research and Practice in Information Technology, pp. 229–
238. INSTICC Press (2006)

6. Anderson, R.J.: Security engineering - a guide to building dependable distributed
systems, 2nd edn. Wiley (2008)

7. Barthe, G., Pichardie, D., Rezk, T.: A Certified Lightweight Non-interference Java
Bytecode Verifier. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 125–
140. Springer, Heidelberg (2007)

8. Broy, M.: A logical basis for component-oriented software and systems engineering.
Comput. J. 53, 1758–1782 (2010)

9. Das, D., Kreikebaum, F., Divan, D., Lambert, F.: Reducing transmission invest-
ment to meet renewable portfolio standards using smart wires. In: 2010 IEEE PES
Transmission and Distribution Conference and Exposition: Smart Solutions for a
Changing World (2010)

10. Ghindici, D., Grimaud, G., Simplot-Ryl, I.: Embedding verifiable information flow
analysis. In: Proc. Annual Conference on Privacy, Security and Trust, Toronto,
Canada, pp. 343–352 (November 2006)

11. Giffhorn, D., Hammer, C.: Precise Analysis of Java Programs using JOANA (Tool
Demonstration). In: 8th IEEE International Working Conference on Source Code
Analysis and Manipulation, pp. 267–268 (September 2008)

12. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20 (1982)

13. Goguen, J.A., Meseguer, J.: Unwinding and inference control. In: IEEE Symposium
on Security and Privacy (1984)

14. Hammer, C.: Information flow control for Java based on path conditions in depen-
dence graphs. In: IEEE International Symposium on Secure Software Engineering
(2006)

15. Harel, D.: Statecharts: A visual formalism for complex systems (1987)
16. International Electrotechnical Commission (IEC). IEC 62351 Parts 1-8, Informa-

tion Security for Power System Control Operations
17. Jürjens, J.: Secure Systems Development with UML. Springer (2005)
18. Mantel, H.: On the composition of secure systems. In: Proceedings of IEEE Sym-

posium on Security and Privacy, pp. 88–101 (2002)
19. Mantel, H.: A Uniform Framework for the Formal Specification and Verification of

Information Flow Security. PhD thesis, Universität des Saarlandes, Saarbrücken,
Germany (2003)

20. Mealy, G.H.: A method for synthesizing sequential circuits. Bell System Technical
Journal 34(5), 1045–1079 (1955)

21. Milner, R.: A Calculus of Communicating Systems. Springer-Verlag New York,
Inc., Secaucus (1982)

22. National Energy Technology Laboratory. A vision for the smart grid. Report (June
2009), http://www.netl.doe.gov/moderngrid/

23. Network of Excellence on Engineering Secure Future Internet Software Services
and Systems (Nessos). Deliverable 11.2 (2011)

24. von Oheimb, D.: Information Flow Control Revisited: Noninfluence = Noninter-
ference + Nonleakage. In: Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R.
(eds.) ESORICS 2004. LNCS, vol. 3193, pp. 225–243. Springer, Heidelberg (2004)

25. Potter, C.W., Archambault, A., Westrick, K.: Building a smarter smart grid
through better renewable energy information. In: 2009 IEEE/PES Power Systems
Conference and Exposition, PSCE 2009 (2009)

http://www.netl.doe.gov/moderngrid/

Non-interference on State-Charts 235

26. Rushby, J.: Noninterference, transitivity and channel-control security policies.
Technical report (1992)

27. Schneiderman, R.: Smart grid represents a potentially huge market for the elec-
tronics industry. IEEE Signal Processing Magazine 27(5), 8–15 (2010)

28. Tenzer, J., Stevens, P.: On modelling recursive calls and callbacks with two variants
of unified modelling language state diagrams. Form. Asp. Comput. 18, 397–420
(2006)

29. Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis.
J. Comput. Secur. 4, 167–187 (1996)

Representing Uniqueness Constraints
in Object-Relational Mapping

The Natural Entity Framework

Mark J. Olah, David Mohr, and Darko Stefanovic

Department of Computer Science, University of New Mexico
1 University of New Mexico, Albuquerque, NM, USA 87131

{mjo,dmohr,darko}@cs.unm.edu

Abstract. Object-oriented languages model data as transient objects, while rela-
tional databases store data persistently using a relational data model. The process
of making objects persistent by storing their state as relational tuples is called
object-relational mapping (ORM). This process is nuanced and complex as there
are many fundamental differences between the relational model and the object
model. In this work we address the difficulties in representing entity identity and
uniqueness consistently, efficiently, and succinctly in ORM. We introduce the
natural entity framework, which: (1) provides a strong concept of value-based
persistent object identity; (2) allows the programmer to simultaneously specify
natural and surrogate key constraints consistently in the object and relational rep-
resentations; (3) provides object constructors and initializers that disambiguate
the semantics of persistent object creation and retrieval; and (4) automates the
mapping of inheritance hierarchies that respect natural key constraints and allows
for efficient polymorphic queries and associations.

1 Introduction

In an object-oriented (OO) language, data are represented as objects, but objects are
transient—they do not persist beyond a particular process or between subsequent ex-
ecutions of a program. To make the data persistent and accessible for concurrent pro-
cesses in a structured form, an object-relational mapping (ORM) can be used to store
objects as tuples in a relational database.1 An ORM is a method for translating between
a data model expressed as a class hierarchy and a data model expressed as a relational
schema. ORM software packages allow a program to create, read, update, delete, and
query objects stored persistently in a relational database using object and class methods
of an OO programming language.

Designing an ORM presents many challenges because the object data model and the
relational data model differ profoundly in how they represent, store, and access data.
We focus in this work on just one facet of the mapping between the models: the concept
of identity and uniqueness. Both data models are used to abstractly represent sets of

1 There are other possibilities, beyond the scope of this paper, such as using a persistent object
store and a programming language that supports persistence natively. Without going into the
merits of different approaches, we concentrate on ORM because of its widespread use.

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 236–251, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Representing Uniqueness Constraints in Object-Relational Mapping 237

physical or conceptual entities. An entity has multiple properties; the values of these
properties may affect entity identity and entity uniqueness. However, the concepts of
identity and uniqueness have different semantics in the object model and in the rela-
tional model [8].

In relational models uniqueness is a value-based notion defined by relational keys.
A key is a minimal set of attributes (columns) of a relation that uniquely identifies a
particular tuple (row). It can be a surrogate key, an artificial value introduced solely to
distinguish tuples; or it can be a natural key, consisting of attributes that correspond to
meaningful, real-world, properties of the entities. The attributes in a natural key repre-
sent those properties of an entity that define its identity and uniqueness in the context of
the application and are well known to the users of the entity. A natural key is a concise
description that can be used to query for the existence of a specific individual entity.
Every relation must specify a primary key, which is used as the default identifier for a
tuple. For practical reasons this is often a surrogate key. However, when a natural key
exists, it often makes sense to declare its existence as well by enforcing a uniqueness
constraint on the natural key attributes. This prevents the database from maintaining
two copies of data that represent the same entity. Additionally, declaring a natural key
results in the database maintaining an index on the natural key attributes, which allows
queries involving the natural key to be optimized [6].

In contrast, in object models value and identity are independent. While an OO exe-
cution environment enforces the uniqueness of object identities, this imposes no con-
straints on the values of objects. Hence, when real-world entities are represented by
objects, there can be many distinct objects having the same values for a set of natural
attributes and thus representing the same entity. There are no mechanisms to prevent this
error-prone duplication of entity representations, and typically no universal mechanism
to query for the existence of an object based on its value.

This fundamental difference in how uniqueness and identity are defined in relational
databases and in OO programming languages leads to problems when data representing
real-world entities are made persistent with a relational database, but are operated on as
in-memory objects. If there are multiple in-memory objects all denoting the same entity,
which object represents the true current state of that entity, and which one corresponds
to the database’s current state, i.e., the tuple representing the entity? This question be-
comes even more confusing when there are multiple execution contexts operating on
entities concurrently.

Our real-world motivation for developing the natural entity framework comes from
the experience of writing scientific computing simulations, which are distributed, con-
current applications with persistent state. Some of our examples will be drawn from
this field; similar modeling and representation problems are encountered in the busi-
ness world and in web-based applications.

To properly model the concept of entity uniqueness and identity at both the object
and the relational level, we propose a new framework of constraints and semantics
for object construction and interactions that can be enforced in modern ORM systems
and strongly object-oriented languages. Our natural entity framework provides a base
class NaturalEntity with the functionality described in this paper. Natural entities
are persistent objects in an OO execution environment that directly enforce value-based

238 M.J. Olah, D. Mohr, and D. Stefanovic

uniqueness constraints on natural attribute values. Other ORMs allow natural keys and
uniqueness constraints to be declared on the relational model, but they do not enforce
these constraints on the object model, or in the inheritance hierarchy. Making these
constraints explicit allows persistent objects to more directly represent the semantics of
relational tuples used to store their state. This simplifies the programmer’s conceptual
model and reduces potential problems with concurrency, entity identity, and uniqueness.

In contrast to creating regular objects, there is overhead when checking for value-
based uniqueness, but this overhead is not higher than manual enforcement of unique-
ness. The proposed natural entities are otherwise normal objects that exist alongside,
and interact with, other objects, and they can be queried and used polymorphically.
Hence, the natural entity framework does not reduce the expressiveness of the OO lan-
guage, and a programmer is free to represent entities using persistent objects that do
not enforce uniqueness constraints, or using regular non-persistent objects. However,
only through the use of the natural entity framework can the programmer maintain the
value-based uniqueness constraints for in-memory objects.

The primary contribution of the natural entity framework is that it allows the ORM to
manage and enforce value-based object identity and uniqueness on in-memory objects.
These value-based constraints match the constraints imposed by natural keys on the
relations that store the persistent state of the natural entities. Thus the object model for
natural entities is modified to more closely match the relational model.

This provides several advantages: (1) natural entities have a strong concept of value-
based identity and uniqueness, accessible through object attributes and methods that pre-
vent multiple in-memory objects from representing the same conceptual entity (Sec. 3);
(2) the ORM can use an identity map to provide fast value-based queries for in-memory
objects and a uniqueness constraint to provide fast queries for archived objects (Sec. 4);
(3) natural entities have constructor methods that automatically manage the uniqueness
constraints for in-memory objects and disambiguate object construction from object
retrieval (Sec. 5); and, (4) natural entities inheritance hierarchies can be mapped auto-
matically to a relational schema that uses the appropriate constraints and relations to
maintain natural key uniqueness constraints and to allow polymorphic queries (Sec. 6).

Given these features, the natural entity framework provides functionality that is lack-
ing in modern ORM systems and presents an abstraction that is easy to understand and
implement, allowing the programmer to spend more time on solving the actual prob-
lems at hand. We found this to be the case in our work on scientific simulations, and we
offer this description in the belief that the framework will be broadly applicable.

2 Background

To be specific about how the concept of uniqueness constraints is implemented, here we
summarize the terminology used for relational models and OO programming languages.

2.1 Relational Model

A relation is a tuple of attributes denoted R = R(A1, . . . ,An). The attributes come from
some domain A, and each attribute Ai has a type τi, (written Ai : τi), where τi ∈ T for

Representing Uniqueness Constraints in Object-Relational Mapping 239

some set T of basic types. For brevity we omit type signatures where they are not
essential to the discussion. A relation instance is a set of tuples from the domain (A1 ×
. . .×An) that represents the current factual state of the relation. When it is not otherwise
confusing, the term relation is used to describe both the relation’s schema (attributes,
types, and constraints) and its time-varying instances (the tuples and their values). In
the concrete context of a relational database, a relation specifies the names and types of
the columns of a table, and an instance specifies a set of table rows and their values.

A non-empty set k ⊂ {A1, . . .An} is a key of relation R(A1, . . .An) if for any instance
of the relation, the value of the attributes in k uniquely determines a tuple and no proper
subset of k is also a key. Thus, a key is a minimal set of attributes that can be used
to define the identity of a tuple. A relation may have many keys. A key is simple if it
consists of a single attribute, otherwise it is compound. Each table must have a primary
key, which is used as the canonical set of attributes for identifying a row for the purpose
of database operations and references between tuples of relations. Primary key attributes
are underlined in the notation for a relation to highlight their role (e.g., R(A1,A2,A3) has
a primary key {A1,A2}.) Associations between relations are expressed with a foreign
key constraint that restricts a set of attributes to values that come from the relational
instance state of a separate set of attributes that form a key [3].

A relational schema is a set R= {R1, . . . ,Rm} of relations along with constraints. A
relational database provides a set of types and mechanisms to define relational schemas
over those types. It maintains instances for each relation that obey all the restrictions
and allows queries to create, read, update, and delete tuples.

2.2 Object Model

An object lives in memory and has identity, type, state, and behavior. An object’s state is
given by the values of a collection of named attributes that come from a set of types T′.2

In strongly object-oriented languages, objects have a concept of identity independent of
their attribute values or addressability [9]. This allows references to objects to be tested
if they refer to the same object, and hence forms a definition for object uniqueness.

An object’s type is some class C. A class creates objects: it defines names and types
for each attribute, and the set of methods that operate on the state of an object. These
methods define the behavior of the object. An object that belongs to a class is said to be
an instance of that class.

Inheritance. A set of classes C= {C1, . . . ,Ck} is called a class schema. Classes have a
concept of inheritance. If Ci inherits from Cj, we write Ci <: Cj, and the class Ci inherits
all of the attributes and methods of Cj . The inheritance relation is reflexive, transitive,
and antisymmetric, and so defines a partial ordering on the class schema, called the
inheritance hierarchy. This relation represents specialization as objects of class Ci now
can represent all the state and behavior of Cj, but can also add or modify attributes and
methods. Thus, if Ci <: Cj and o is an instance of Ci, then o is also an instance of Cj.
This property is called polymorphism and allows objects to act as an instance of any
class more general than their own.

2 The set of OO types T′ may, but does not necessarily, intersect with the set of types T used in
the relational schema. They will almost certainly not be identical.

240 M.J. Olah, D. Mohr, and D. Stefanovic

The maximal elements in the hierarchy are called the base classes. In many lan-
guages multiple inheritance is possible, so a class can inherit directly from more than
one class. Multiple inheritance is not a focus of this paper, though the implications are
briefly considered. In a single inheritance class schema, the inheritance hierarchy is not
a general lattice, but a forest of inheritance trees, each rooted at a single base class. For
single inheritance hierarchies we can uniquely define the super relation Super(Ci) =Cj

if Ci <: Cj and Ci <: Ck <: Cj implies Ck = Ci or Ck = Cj . In other words, the super
relation determines the smallest class larger than a given class, called the immediate
superclass. Conversely, Ci is said to be a subclass of Cj.

A class can be abstract or concrete. There cannot be objects belonging to an abstract
class, only to concrete classes. Abstract classes are only used to be inherited from by
other classes.

2.3 Object-Relational Mapping

The object and relational models are general enough to apply to most modern OO lan-
guages and relational databases, hence they form a good basis for describing how ob-
jects can be mapped to relations. An ORM is a mapping from a class schema C to a
relational schema R that provides a correspondence between objects in C and tuples (or
sets of tuples) from relations in R.

In this mapping attributes of an object with type t1 ∈ T′ are mapped to one or more
tuple element with type(s) τi ∈ T. Since the types available in a programming language
(subtly) differ from those available in databases, this mapping of types is a necessity,
and may not be 1-to-1. However, for most uses the type differences have no practical
effect, and we leave exploring the implications for value-based identity as future work.

3 Object Identity and Uniqueness

The central issue addressed by the natural entity framework is consistently representing
real-world entities that possess a concept of uniqueness described succinctly by the
values of one or more well known (natural) attributes, i.e., a natural key.

Identity in OO Languages. Like objects in the natural world, objects in a program-
ming language have concepts of identity and uniqueness. Many OO programming lan-
guages (Python, Smalltalk, Java, Ruby, etc.) have a strong concept of object uniqueness
in that each object has an associated immutable internal id(entifier), distinct from the
references used to access it [9]. Such an id is called a surrogate object id since it has
no relation to the value or meaning of the object. It merely serves to define the identity
of the object and allows comparing the identity to those of other objects, as there is a
bijection from object ids to objects [14].

Identity in Relational Databases. Identity in relational databases is a value-based
property determined by a designated primary key. The primary keys should be unique,
immutable, and non-null. The database maintains a uniqueness constraint on the pri-
mary key, preventing duplicate tuples, and uses an index to quickly select tuples by

Representing Uniqueness Constraints in Object-Relational Mapping 241

their primary key or detect violations of the uniqueness constraint. The primary key is
also used to define foreign key relationships.

Because of all these important requirements placed on the primary key, it often makes
sense to use a surrogate key as the primary key, even when there is a well-known nat-
ural key. There are many good reasons to prefer surrogate keys as primary keys, most
of which arise from the fact that using surrogate keys allows the relational schema to
decouple identity and value [4]. This allows more flexibility when the relational model
needs to be updated or refactored [1]. Other benefits arise due to the fact that surro-
gate keys are simple (consist of a singleton attribute) and are typically small integral
types. Natural keys in contrast are often compound and may include strings and other
types that require more space as foreign keys. Since the primary key is always used to
represent entity relationships through foreign key constraints, having a small, simple
primary key reduces space usage and simplifies join operations. Simple integral keys
are also often faster for use in selects against the primary key. For these reasons, ORMs
often use surrogate primary keys by default [5].

However, natural keys are still useful and have some desirable characteristics. Declar-
ing a natural key communicates to the database that the relational model has a logical
uniqueness constraint on the natural key attributes and prevents a single conceptual en-
tity from being represented by more than one tuple. Additionally, the database can then
maintain a uniqueness constraint and index on the natural key. The presence of an index
allows clients to quickly retrieve objects by their natural key-values, or determine that
no such object exists. This can lead to distinct performance advantages for natural keys
in some situations [11].

3.1 Identity in the Natural Entity Framework

The natural entity framework, like other ORM tools, must reconcile the semantics of
object identity in OO languages and tuple identity in relational databases. Our goal is to
enforce the uniqueness of entity representation across both data models as determined
by natural key attributes, but we simultaneously want to support polymorphic queries,
efficient entity relationships, and flexibility for refactoring databases.

To achieve these objectives, the natural entity framework enforces the simultaneous
use of surrogate primary keys and auxiliary natural keys. This dual-key representation
achieves advantages of both surrogate and natural keys. In particular, our surrogate keys
are unique within each inheritance hierarchy rooted at the NaturalEntity class. This
uniformity of primary keys allows us to use a single top level relation to define a pri-
mary key for every object belonging to the class hierarchy. This makes polymorphic
queries and associations much more efficient and uniform than they could be with nat-
ural keys. Indeed, without a uniform key for the entire inheritance tree, representing
polymorphic associations would become problematic as there would be no single for-
eign key constraint that could be used to represent an association. Hence, surrogate
primary keys are necessary for polymorphism and flexibility, but they do not fulfill the
need for maintaining value-based uniqueness. This is achieved by the auxiliary natural
keys. These keys require a separate index, which comes at the cost of storage space and
maintenance time. However, this index is exactly what ensures the logical value-based

242 M.J. Olah, D. Mohr, and D. Stefanovic

uniqueness of natural entities, and it is heavily used by constructors (Sec. 5) and other
common queries against the natural key, thus it is both necessary and useful.

4 Management of Persistent States and Concurrency

Building on the concepts of object and relational identity, an ORM must have a way
to track and manage the identity of in-memory objects. Unlike transient objects, which
have a limited scope and lifetime, persistent objects must maintain their identity perma-
nently and consistently across concurrent processes. To simplify the tracking of persis-
tent objects and their modifications, modern ORM packages provide the concept of a
session manager. The natural entity framework relies on a session manager to manage
the persistent state of in-memory persistent objects and enforce the uniqueness con-
straints for natural entities.

Our principal contribution is to provide additional constructor methods which make
explicit the assumptions about the state of a persistent object when it is created and
prevent the user from violating the value-based uniqueness constraints.

4.1 Transactions

The session manager has transactional semantics and manages a set of persistent objects
by implementing the unit of work concept [5]. It tracks object creation, modification,
and deletion. The session manager delegates large parts of this work to the database
by using transactions. This ensures a consistent database state, even when objects are
modified concurrently by other processes. It follows that the concurrency guarantees are
largely provided by the transaction. The session manager supplies methods to control
the global transactional state for an execution context. The begin() method starts a
transaction and is implicitly called as needed if no transaction is currently in progress.
The flush() method sends pending modifications to the database, but does not end
the transaction. The commit() method commits a transaction, and this implies a flush
operation if there are still pending changes. Finally, the rollback() method undoes
all database changes made during the transaction.

4.2 Object States

From the perspective of an OO execution environment, reasoning about persistent ob-
jects is much more complicated than standard transient objects because the data repre-
senting the object can be stored in memory, in one or more relations in the RDBMs,
and/or in the memory of other concurrent processes. The session manager acts as the
single point of persistence management for an OO execution environment. It determines
how a persistent object relates to its external relational state in the database. Any object
of a class that derives from a persistent base class, such as NaturalEntity, will be
understood by the session manager to be in one of the following six states:

• Transient – The object is not managed as persistent by the session, while a cor-
responding tuple with the same natural key in the database may or may not exist;
there is no operational connection with any persistent object.

Representing Uniqueness Constraints in Object-Relational Mapping 243

• Pending – The object does not yet have a permanent record but has been success-
fully added to the session and will be added to the database when the session state
is flushed to the database. Until the object is successfully flushed it has not yet been
assigned a primary key.

• Persistent Clean – The object has a primary key and a corresponding representation
in the database. No persistently managed attributes have changed values, so no
updates need to be sent to the database.

• Persistent Dirty – The same as a persistent clean object, except the value of one
or more of the persistently maintained attributes has been changed, so that an SQL
update operation is needed to save the state of the object. Copies of this object
in other sessions do not know about the changes and may have made conflicting
changes of their own.

• Expired – The object’s state is no longer valid because it was created in a session
that has been committed or rolled back, so its state needs to be reloaded from the
database. This reloading is done transparently by the session manager when neces-
sary.

• Archived – The object is not part of the store but is persistently stored in the
database. Strictly speaking, this is not a state of an object, since no correspond-
ing object exists in the session, but conceptually the tuple in database represents an
object that is not currently loaded.

It is important to remember that the identity of a persistent object is provided by the
natural key, and maintained through transactions and the constraint imposed by the
database key. In case of conflicting concurrent transactions, e.g., simultaneous inserts or
deletes, one of the concurrent processes will be prevented from committing its changes
by an exception. In Fig. 1 we show the effect of various operations on the persistent
state of an object, but omit the expired state and other effects that occur at transaction
boundaries. The effect of commits is to expire all pending and persistent objects and the
session manager updates any identity maps of persistent objects accordingly (Sec. 5.1).

5 Object Creation

Maintaining a value-based uniqueness constraint for persistent objects causes difficul-
ties with object creation. Normally, the programming environment’s concept of object
identity is all that determines object uniqueness. When an object constructor is called, a
new object with a unique object id is always created, and an initializer method is called.
However, natural entity classes with value-based uniqueness constraints necessitate dif-
ferent semantics. First, the constructor must be given the values for each of the natural
key attributes since they must not be null. Given the natural key value, the constructor
is presented with several possibilities: (1) an object with those values already exists in
memory so we are not allowed to create a new object with a new object id and the same
natural key values; (2) an object with those values exists in an archived state, so it must
be loaded from the database; or, (3) there is no persistent or in-memory object with the
given natural key, so a new object should be created and added to the database.

Such a constructor requires a natural-keyed dictionary of in-memory persistent ob-
jects, i.e., an identity map (Sec. 5.1), and a mechanism to query for the existence of

244 M.J. Olah, D. Mohr, and D. Stefanovic

create_transient()

(default constuctor)
get_or_create()

Persistent Clean

Persistent Dirty

Transient

Pending

Archived

add()

create()

get()
query()

flush()

(modify)

expunge()
delete()

delete()

expunge()

flush()

Fig. 1. Persistent object states and effect of constructors and session commands within a single
transaction context. The effects of transaction boundaries and the expired state are omitted for
clarity.

archived objects. Both of these can be provided efficiently by the session manger, but
they nevertheless impose a significant cost, especially when the round trip time for re-
mote database queries is involved. Unfortunately, such queries are necessary if we wish
to maintain the consistency constraints; allowing the constructor to make new objects
without regard to the natural key values would result in duplicate objects in memory.
Furthermore, the cost of frequent queries can be reduced by allowing the caching of
natural keys or prefetching of objects (particularly when the database transaction iso-
lation prevents non-repeatable reads). When queries are necessary they can be handled
efficiently because of the unique index maintained on the natural key attributes.

Together all of these considerations impose a significant change to the semantics of
object creation, and can lead to conceptual problems for programmers. The natural en-
tity framework addresses this conceptual ambiguity by providing additional constructor
methods with different semantics. These constructors allow programmers to explicitly
state their intentions or assumptions when creating an object.

• get() - A constructor that takes the natural key and returns the object uniquely
identified by that key, either by returning a reference to an in-memory object repre-
senting that entity, or by loading an archived object from the database and returning
it in the persistent clean state. If no such object exists, an exception is raised.

• create() - A constructor that takes the natural key and returns a newly created
object in the pending state, but only if no persistent object with the same natural
key exists in memory or in the archived state. An exception is raised if the object
already exists.

Representing Uniqueness Constraints in Object-Relational Mapping 245

• get or create() - A constructor with the combined semantics of the get() and
create(). It takes the natural key and either returns an existing persistent object,
or returns a newly created object in the pending state. This is the default constructor.

• create transient() - A constructor with normal transient object semantics that
always returns a new object in the transient state. It can take arbitrary arguments
and ignores the uniqueness constraints.

The get or create() constructor does whatever it takes to get a reference to the
unique object that has the provided natural key. It will find that object if it is in memory
and return a reference, or it will look in the database for an archived version and return
it, and if no such persistent object exists, it will construct a new object and make it per-
sistent by moving it to the pending state. In our application domain we found that the
get or create() has the appropriate semantics in the vast majority of situations, and
therefore we have made it the default constructor, which results in particularly succinct
code (e.g., in Python var=ClassName(...)).

The create() and get() constructors are used in cases where the existence or
non-existence of a particular NaturalEntityobject represent a logical error, and the
programmer would like an exception to be raised so that the error is not silently ignored.

Finally the create transient() constructor has several uses when the normal se-
mantics of the natural entity construction are too rigid. Unlike the other constructors,
create transient() does not need to be given the natural key, and does not use any
database connections or in-memory identity maps. This is useful for testing object be-
havior without using a database. Transient objects are also useful when the user does
not wish to immediately pay the cost of the database query to check for archived ob-
jects. Furthermore, they support situations where not all of the natural key attributes
are immediately available, but it makes sense to partially construct a NaturalEntity

object, and then finish filling in the natural key attributes later. This is often the case
in GUI or web-based applications where objects are built up sequentially by user ac-
tions. A transient object can be made persistent by using the add() method, which will
check that all natural key attributes are specified and will raise an exception if the object
already exists.

5.1 Identity Map

When the (non-transient) constructors are called, they are provided with the complete
natural key for the desired object. If an object with that natural key already exists in
memory in the pending, expired, persistent clean, or persistent dirty states, it would be
incorrect to construct and return a new object. Instead we must return a reference to
the in-memory object. The ORM’s session manager is able to track the persistent state
of objects, but it also needs a way to look up objects by their natural key. This is a
common requirement for ORMs, which Fowler calls the identity map pattern [5]. The
purpose of an identity map is simply to map database keys to in-memory objects. When
working with persistent objects, sometimes different parts of the code need access to
the same data object without understanding whether that object is already in memory.
The solution is to keep a global registry (or identity map) of in-memory objects keyed
by their primary key. Normally, this identity map is stored in the session manager ob-
ject, and it is used for internal ORM lookups of foreign key mappings. However, when

246 M.J. Olah, D. Mohr, and D. Stefanovic

primary keys are surrogates, it is awkward for a user to make use of this identity map,
because the surrogates by definition are meaningless and often obscured from the user.
It is much more common for a user to query using natural key attributes, and the con-
structors must be able to do this efficiently for in-memory objects. Hence, the natural
entity system implements an auxiliary identity map, keyed on the natural key attributes.
The identity map only stores in-memory persistent objects, i.e., transient objects are
excluded. If an object is removed from the persistent store with the delete() method,
it becomes transient. Thus, a constructor will not return a reference to a deleted object,
even if that object is still in memory.

5.2 Initialization

Since the NaturalEntity constructors have multiple possible mechanisms for retriev-
ing or creating objects, the concept of initialization also needs to be refined. For natural
entities there are three distinct ways a new in-memory object could be created and re-
quire initialization: (1) it could be created as a transient object; (2) it could be retrieved
from an archived state in the database; or, (3) it could be created as a new persistent
object in the pending state. (In the case where the constructor already found the object
in memory through the identity map, no initialization is needed.) The NaturalEntity
class provides three different initializers that will be called by the constructor in each
of the three cases.

• initialize() – This method is called when a new persistent object is created.
The object will be in the pending state and the object’s (immutable) natural key
attributes will have been set to the values provided to the constructor.

• reinitialize() – This method is called when an archived object is brought into
memory by a constructor. The object will be in the persistent clean state and all
persisted attributes (including the natural key attributes) will have been set by the
ORM system.

• initialize transient() – This method is called if and only if the object is con-
structed with the create transient()method. The object will be in the transient
state, and any supplied natural key attributes will have been set, but those omitted
by the user (which is permitted for transient objects) will have no default value.

5.3 Object Creation Semantics in Other ORMs

The multiple constructors of the natural entity framework represent a departure from the
normal mechanism of persistent object creation presented by modern ORMs. In many
modern ORM systems, all objects are initially created as transients, and only after a
call to an add() method are they moved to a pending (or equivalent) state [13,10]. The
difficulty with this mechanism is that it does not allow the ORM to directly manage
value-based object uniqueness. If an object with identical natural key already exists in
the database, then the next time the session state is flushed, an exception will be raised
when the database prevents the SQL INSERT command from violating the uniqueness
constraint on the natural key. This failure mode can be eliminated by always first query-
ing for a particular natural key before attempting to create and add an object with that

Representing Uniqueness Constraints in Object-Relational Mapping 247

key. This common ORM idiom is often required in code manipulating objects with nat-
ural keys. The constructors available for NaturalEntity classes make the assumptions
of the programmer explicit, succinct, and less error-prone. Instead of remembering to
first check if an object already exists before creating it, a programmer can just create
a NaturalEntity object by passing the natural key to the constructor, and the system
will automatically do the right thing; i.e. return the unique object with given natural key.
Thus any the overhead of the natural entity constructors is comparable to what would
be required by any other implementation that wishes to protect against failures due to
duplicate objects.

6 Mapping Natural Entity Inheritance Hierarchies

All natural entity classes must inherit from the NaturalEntity class, thus we must
map all the classes in each inheritance subtree rooted at NaturalEntity into a rela-
tional schema. The natural entity system supports flexible mapping of hierarchies to
relations, which allows polymorphic queries and associations, as well as different nat-
ural keys for separate subtrees of the inheritance hierarchy. The user only needs to
supply minimal information about the desired inheritance mapping strategy and the
ORM can automatically construct the appropriate tables and constraints. As an exam-
ple we consider a distributed computer simulation system with two inheritance hier-
archies, an abstract Experiment class with two concrete subclasses and an abstract
Measurement class also with two concrete classes (Fig. 2). An Experiment has a
one-to-many relationship with measurements, so each Measurement has a foreign key
to the Experiment hierarchy’s primary key—a polymorphic association. We examine
natural keys in the relation further in Sec. 6.2.

6.1 Inheritance Mapping Strategies

The relational data model has no built-in concept of inheritance, but support for inher-
itance and polymorphism can be enforced by appropriately structuring the relational
schema and queries. There are three standard methods for mapping inheritance hier-
archies to a relational schema [5]: (1) the single table strategy maps all classes in an
inheritance hierarchy to a single table; (2) the class table strategy maps each class to its
own table; and (3) the concrete table strategy maps only concrete classes to tables.

The single and class table strategies are particularly useful for polymorphic queries
and associations as for every class in the hierarchy they store the class name (i.e., the
type) and a surrogate object id in a single top level table. Concrete table inheritance
lacks these properties and is not considered further.

Single and class table strategies are distinguished by the technique they use to rep-
resent the differing attributes for classes in the hierarchy. Single table inheritance has
a single relation which includes all attributes of all classes in the hierarchy. It allows
polymorphism by permitting attributes to be null for objects that do not include them.
In contrast, class table inheritance only includes non-inherited attributes in each class
table. It permits polymorphic queries by using joins on the primary surrogate key to
retrieve attribute values from all the relations that store an object’s state. These differ-
ences lead to quantifiable performance and space trade-offs [7]. Modern ORMs allow

248 M.J. Olah, D. Mohr, and D. Stefanovic

natural_key=("width")
width=Field(Float)

OneDimExperiment

max_time=Field(Float)
measurements=OneToMany("Measurement")
abstract=True

Experiment

natural_key=("width", "height")
width=Field(Float)
height=Field(Float)

TwoDimExperiment
inheritance="join"
time_step_size=Field(Float)
measure(max_time) = <<func>>

TimeMeasurement

natural_key=("experiment", "type")
experiment=ManyToOne("Experiment")
abstract=True

Measurement

inheritance="share"
dist_step_size=Field(Float)
measure(max_dist) = <<func>>

DistanceMeasurement

id:Int {PK}
type:Varchar {NotNull}
max_time:Float

table_experiment

id:Int {PK} {FK(table_expriment.id)}
width:Float {NK}

table_one_dim_experiment

id:Int {PK}
type:Varchar {NotNull} {NK}
experiment:Int {FK(table_experiment.id)} {NK}
dist_step_size:Float

table_measurement

(a)

(b)

id:Int {PK} {FK(table_expriment.id)}
width:Float {NK}
height:Float {NK}

table_two_dim_experiment

id:Int {PK} {FK(table_measurment.id)}
time_step_size:Float

table_time_measurement

Fig. 2. (a) A simple example of a class schema with two inheritance hierarchies, abstract classes,
multiple natural key bases, polymorphic associations, and both shared and joined inheritance
mappings. The text in each class entry is close to the actual amount of code needed to specify
this hierarchy. We use syntax that is similar to our Python-based reference implementation of the
natural entity framework. (b) The relational schema generated by the natural entity framework
from the class schema in (a). The foreign key constraints are shown.

the user to specify a mixture of these strategies within a single inheritance hierarchy [2].
When mixing strategies, the single table approach is called shared or horizontal map-
ping, while the class-table approach is called joined or vertical mapping [12]. Shared
table inheritance works best when the cost of additional join operations needed to load
rows is a limiting factor, or when a portion of the class hierarchy shares almost all of
the same persistent attributes. Joined table inheritance works best when database space
is constrained, or in portions of the hierarchy where few persistent attributes are shared
between classes.

In the natural entity framework each class in a hierarchy only needs to specify if it
will use the shared or joined inheritance strategy and the ORM can automatically derive
the relational schema.

6.2 Natural Keys and Inheritance

Every concrete class that derives from NaturalEntitymust define or inherit a natural
key, so that the constructor can enforce the value-based uniqueness constraint. Abstract
classes need not define a natural key, and any class that has no natural key must be
declared as abstract.

Representing Uniqueness Constraints in Object-Relational Mapping 249

Because of the option to use joined inheritance, an individual object can have its at-
tributes stored in several relations, but there is always a relation that stores the attributes
declared specifically in a class. This is the primary relation of the class.

Consider a class C that defines a natural key and that has no superclass which also
defines a natural key (i.e., it has only abstract superclasses). The natural key results in a
uniqueness constraint which is implemented by the database. A constraint can typically
only be defined on attributes in a single table and not on joined tables. It follows that
exactly one of the relations representing C must enforce this constraint. None of C’s
superclasses could have a natural key constraint, as enforcing a uniqueness constraint on
Super(C)’s primary relation would prevent other subclasses of Super(C) from defining
different natural keys. Hence, the natural key constraint for C must be enforced in C’s
primary relation. This implies that all C’s natural key attributes must be defined in C and
cannot be inherited, or they would not be present in C’s primary relation. Finally, note
that any subclass of C will inherit C’s natural key attributes, and because these attributes
have a uniqueness constraint defined on the relation that stores them, the subclass must
also inherit the natural key from C.

Therefore in any inheritance chain, i.e., starting at a concrete class and following
the super relation to a base class, there is exactly one class that declares a natural key.
Such a class is called a natural key base, as all classes that inherit from the natural key
base share the same natural key constraint and store their natural key attributes in the
primary relation of the natural key base. Furthermore, a natural key base, must use the
joined inheritance mapping strategy, because if C is a natural key base, Super(C) does
not have a natural key, and so the natural key attributes and uniqueness constraint must
be defined in a separate relation from Super(C)’s primary relation.

Hence, when mapping a class hierarchy to a relational schema, the mapping will
require: (1) a single table for the root class to store the primary key and object type; (2)
a table for each natural key base (unless the class is also the root); and (3) a table for
each class that uses joined inheritance (unless the class is a natural key root or the base
class).

Full-fledged multiple inheritance does not fit into the semantic model of object iden-
tity in this paper. However, the concept of mixins (additional abstract base classes) is
easily supported, because a mixin does not define entity identity or uniqueness.

6.3 Type as a Natural Key Attribute

A natural key base will pass on its natural key to all of its subclasses, and thus only
one object of any derived class may have a given natural key value. Sometimes this is
too restrictive a condition on the classes. Because the natural key distinguishes objects
based on their value, but not their type, it restricts cases where objects have identical
values but different behavior because their respective classes have different methods.

For example, consider the class structure of the distributed simulation system in
Fig. 2. The Measurement class defines a simple natural key as a foreign key rela-
tionship to the Experiment it measures. An experiment should be able to include both
a TimeMeasurement and DistanceMeasurement instance. However, because these
objects have the same natural key this becomes impossible. The two measurement sub-
classes have the same attributes, but the meaning of the attributes differs due to different

250 M.J. Olah, D. Mohr, and D. Stefanovic

method implementations. Thus, it can make sense to have more than one measurement
object with the same natural key, provided they belong to different classes. This can
be accomplished by adding the implicit type attribute to the natural key base’s primary
relation and thus adding the type to the uniqueness constraint. This allows multiple
Measurements to belong to a single Experiment, provided they are from different
classes.

In the natural entity framework the type can optionally be declared to be part of the
natural key of a class to allow this distinction when it is required. The type attribute is
automatically managed by the ORM, since it is always present as an attribute of any
object in the OO programming language.

7 Conclusion

The natural entity framework provides an OO interface for programming with objects
that have a strongly enforced concept of value-based uniqueness. These semantics re-
quire restrictions on object creation, initialization, inheritance, and relational structure.

The constructor methods of natural entities provide a consistent interface that dis-
tinguishes the different mechanisms by which a persistent class may be created and
initialized. These constructors prevent the ORM from representing the same conceptual
entity with different in-memory objects by ensuring that the value-based natural key
constraints are maintained for all natural entity objects in the execution environment.

Enforcing value-based object identity changes the semantics of object models in the
context of OO languages. However, these constraints only apply to objects from classes
that inherit from NaturalEntity. Thus natural entities can coexist with objects of
other less-strict persistent classes, as well as normal transient objects. Hence the natural
entity framework makes it easier for a programmer to reason about object uniqueness
for those entities which require it, but does not otherwise constrain the expressiveness
of programs or programming languages. This level of flexibility makes a performance
evaluation or validation of the framework complicated, as the natural entity framework
will only be used in applications that benefit from value-based uniqueness constraints,
and hence the specific application context is essential to the performance characteristics.
In future work, we will quantify the performance of the Natural Entity framework under
different application workloads and degrees of concurrency. Our own experience tells
us that many applications have classes of persistent objects that logically require value-
based uniqueness, and easily enforcing these constraints has been an invaluable tool in
writing correct scientific software.

The natural entity framework can be implemented in any OO language that supports
a strong concept of object identity. It relies on the facilities and abstractions provided
by modern ORMs. Object and class introspection, and the ability to instrument object
construction and destruction are helpful features in making the implementation easy to
use. Our reference implementation in Python is built on top of the SQLAlchemy ORM,
and the Elixir extension.

Acknowledgments. We thank the conference reviewers for their incisive and detailed
comments. This material is based upon work supported by the National Science Foun-
dation under grants 0829896 and 1028238.

Representing Uniqueness Constraints in Object-Relational Mapping 251

References

1. Ambler, S.W.: Agile Database Techniques. Wiley, Indianapolis (2003)
2. Cabibbo, L., Carosi, A.: Managing Inheritance Hierarchies in Object/Relational Mapping

Tools. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 135–150.
Springer, Heidelberg (2005)

3. Codd, E.F.: A relational model of data for large shared data banks. Communications of the
ACM 13(6), 377–387 (1970)

4. Codd, E.F.: Extending the database relational model to capture more meaning. ACM Trans.
Database Syst. 4(4), 397–434 (1979)

5. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley, Boston (2003)
6. Helman, P.: The Science of Database Management. Richard D. Irwin Inc., Burr Ride, IL

(1994)
7. Holder, S., Buchan, J., MacDonell, S.G.: Towards a Metrics Suite for Object-Relational

Mappings. In: Kutsche, R.-D., Milanovic, N. (eds.) MBSDI 2008. CCIS, vol. 8, pp. 43–54.
Springer, Heidelberg (2008)

8. Ireland, C., Bowers, D., Newton, M., Waugh, K.: A classification of object-relational
impedance mismatch. In: Proceedings of the 2009 First International Conference on Ad-
vances in Databases, Knowledge, and Data Applications, pp. 36–43. IEEE Computer Society
(2009)

9. Khoshafian, S., Copeland, G.P.: Object identity. In: OOPSLA 1986, pp. 406–416 (1986)
10. Kowark, T., Hirschfeld, R., Haupt, M.: Object-relational mapping with SqueakSave. In: Pro-

ceedings of the International Workshop on Smalltalk Technologies, IWST 2009, pp. 87–100.
ACM (2009)

11. Link, S., Lukovic, I., Mogin, P.: Performance evaluation of natural and surrogate key database
architectures. Tech. rep., Victoria University of Wellington, Wellington, NZ (2010)

12. Mork, P., Bernstein, P.A., Melnik, S.: Teaching a Schema Translator to Produce O/R Views.
In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801,
pp. 102–119. Springer, Heidelberg (2007)

13. O’Neil, E.J.: Object/relational mapping 2008: Hibernate and the entity data model (EDM).
In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of
Data, pp. 1351–1356. ACM (2008)

14. Wieringa, R., de Jonge, W.: Object identifiers, keys, and surrogates– object identifiers revis-
ited. Theory and Practice of Object Systems 1(2), 101–114 (1995)

Detection of Seed Methods

for Quantification of Feature Confinement

Andrzej Olszak1, Eric Bouwers2,3,
Bo Nørregaard Jørgensen1, and Joost Visser2

1 University of Southern Denmark, Odense, Denmark
{ao,bnj}@mmmi.sdu.dk

2 Software Improvement Group, Amsterdam, The Netherlands
{e.bouwers,j.visser}@sig.eu

3 Delft University of Technology, Delft, The Netherlands
E.M.Bouwers@tudelft.nl

Abstract. The way features are implemented in source code has a sig-
nificant influence on multiple quality aspects of a software system. Hence,
it is important to regularly evaluate the quality of feature confinement.
Unfortunately, existing approaches to such measurement rely on expert
judgement for tracing links between features and source code which hin-
ders the ability to perform cost-efficient and consistent evaluations over
time or on a large portfolio of systems.

In this paper, we propose an approach to automating measurement of
feature confinement by detecting the methods which play a central role
in implementations of features, the so-called seed methods, and using
them as starting points for a static slicing algorithm. We show that
this approach achieves the same level of performance compared to the
use of manually identified seed methods. Furthermore we illustrate the
scalability of the approach by tracking the evolution of feature scattering
and tangling in an open-source project over a period of ten years.

1 Introduction

Structural organization of software has a major influence on locality of changes
during software evolution [9]. One of the important types of such changes are
those concerned with extending and modifying the implemented functionality,
i.e. features, of a system. To minimize the effort of performing such changes, it is
important to control the confinement of features in the structural units of source
code, so that they remain properly localized and separated from one another [6].

Therefore, it is important to incorporate the quantification of feature con-
finement into the quality assessment of software systems. A number of metrics
for this purpose have already been defined based on the concepts of scattering
and tangling [11]. Scattering describes the delocalization of concerns over units
of source code, whereas tangling describes the simultaneous occurrence in the
same units of source code. We refer to these two properties jointly as feature
confinement.

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 252–268, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Detection of Seed Methods for Quantification of Feature Confinement 253

In order to measure these properties a link between features and source code of
a software system needs to be defined. While a number of approaches for doing
this exist, they are not fully automated because they rely on an association
between units of source code and human-originated specifications of features
defined by experts. This lack of automation prevents the cost-efficient evaluation
of feature confinement on a large-scale.

To define a consistent, scalable and objective association between source code
units and feature specifications this paper proposes an approach for the auto-
matic detection of so-called seed methods of features. The approach detects such
seed methods using the popularity of method names and the sizes of the static
call-graph slices they yield.

The static slices produced from the identified seed methods do not provide
an association between specific features and source code units (i.e., units ’x’
and ’y’ are involved in the implementation of feature “a”), but rather identify
functional related code units in a system. These groups are used as a basis for
quantification of feature confinement on the system level, e.g., forty percent of
the units are involved in the implementation of twenty percent of the function
groups of the system. We believe such quantifications to be useful in several
quality assurance scenario’s such as the tracking of feature confinement over
time as well as determining those systems in a portfolio which implement the
best/worst level of feature confinement.

We evaluate our approach on a group of open-source systems by comparing the
coverage of source code achieved by slices produced from the automatically de-
tected seed methods with that of the slices produced from manually-chosen seed
methods. After applying our approach to a population of systems, we demon-
strate its applicability to automatic measurement of multiple revisions of a single
system by measuring system-level scattering and tangling in 27 revisions of an
open-source project released over a period of 10 years.

2 Related Work

Quantifying feature confinement Brcina and Riebisch [5] propose two metrics
for assessing the confinement of features in architectural designs. The first one,
scattering indicator, is designed to quantify the delocalization of features over
architectural components of a system. The second metric, tangling indicator,
captures the degree of reuse of architectural components among multiple fea-
tures. For both of these metrics, the authors provide a list of problem resolution
actions that can be applied to address the problems detected by the metrics.

Eaddy et al. [6] introduced and validated a suite of metrics for quantifying
the degree to which a concern is scattered across components and separated
within a component. The defined metrics include concentration of a concern in
a component, degree of scattering of a concern over components, dedication of a
component to a concern and degree of focus of a component. Furthermore, the
authors provide a set of guidelines for manually identifying concerns in source
code, a prerequisite to a practical application of any concern-oriented metrics.

254 A. Olszak et al.

Wong et al. [14] defined three metrics for quantifying closeness between pro-
gram components and features. These metrics capture the disparity between a
program component and a feature, the concentration of a feature in a program
component, and the dedication of a program component to a feature. To support
practical application of their metrics, the authors propose a dynamic-analysis ap-
proach for establishing traceability links between features and source code using
an execution slice-based technique that identifies regions of source code invoked
when a particular feature-triggering program parameter is supplied.

Locating Features in Source Code. The problem of feature location can be seen
as an instance of the more general problem of concern location. In this context,
Marin et al. [7] have proposed a semi-automatic approach to identify crosscutting
concerns in existing source code, based on analysis of call relations between
methods. This is done by identifying the methods with the highest fan-in values,
filtering them, and using the results as candidate seed methods of concerns.
These candidate seeds are then manually inspected to confirm their usefulness
and associate them with the semantics of a particular concern they implement.

Similarly to Marin et al. [7], the majority of approaches to feature location
employ the notions of seed methods and control flow. One of the first works as-
sociating features with control flow was the software recoinnaissance approach
of Wilde and Scully [13]. Their approach is a dynamic feature location tech-
nique that uses run-time tracing of test execution. Wilde et al. propose that fea-
ture specifications are investigated in order to define a set of feature-exhibiting
and non-exhibiting execution scenarios. Individual execution scenarios are imple-
mented as a suite of dedicated test cases that, when executed on an instrumented
program, produce a set of traceability links between features and source code.

Salah and Mancoridis [10] proposed a different approach to encoding the
feature-triggering scenarios. Their approach, called marked traces, requires one
to manually exercise features through a program’s user interface. Prior to exe-
cuting a feature-triggering scenario, a dedicated execution tracing agent is to be
manually enabled and supplied with a name of the feature being exercised. Ef-
fectively, this approach removes the need for identifying starting-point methods
in source code and the need for the up-front effort of implementing appropri-
ate feature-triggering test cases. Though this is achieved at the price of manual
scenario execution.

Similarly to Salah and Mancoridis, Olszak and Jørgensen [8] proposed an ap-
proach based on user-driven execution of features. However, they reduce the bur-
den of manual activation and deactivation of a tracing agent by introducing the
notion of so-called feature-entry points. Feature-entry points are methods analo-
gous to the ones that need to be invoked by test cases in software reconnaissance
- the methods through which control flow enters feature implementations. The
approach presented in [8] requires a programmer to annotate such methods in
the source code. Using this information, the tracing agent is able to activate
itself and track the execution of individual features triggered by a user.

Feasibility of using designated methods as starting points for static, as op-
posed to dynamic, analysis was demonstrated by Walkinshaw et al. [12]. They

Detection of Seed Methods for Quantification of Feature Confinement 255

developed a feature location technique based on slicing a static call-graph ac-
cording to user-supplied landmarks and barriers. There, landmarks are manually
identified as the ”methods that contribute to the feature that is under consider-
ation and will be invoked in each execution”, whereas barriers are the methods
irrelevant to a feature. These two types of methods serve as starting points and
constraints for a static slicing algorithm. This static mode of operation improves
the overall level of automation by removing the need for designing and executing
feature-exhibiting scenarios.

3 Problem Statement

Following the methodology of Basili et al. [4], we define the goal of our study to
be to automatically quantify the confinement of functional concerns to provide a
high-level indication of this confinement for the purpose of automated evaluation
of the confinement of functional concerns from point of view of software quality
evaluators in the context of evolutionary and large-scale portfolio analysis.

Surveying the related work, three important steps in the quantification of the
confinement of functional concerns arise:

– Identification of entry points to functional concerns of an application
– Identification of those parts of the application that are being executed when

the application’s functionality is invoked by a user
– Usage of this information to calculate metrics of feature confinement to com-

pare multiple systems or to analyze the evolution of a single system

In order to quantify confinement of functional concerns on a large scale, these
steps need to be automated. Fortunately, Walkinshaw et al. [12] showed the
feasibility of using static analysis to identify the parts of the application that
are involved in the implementation of a functional concern. There, so-called
“landmark”-methods representing starting point of feature implementations are
used as seed nodes for static slicing of inter-method call graphs. Unfortunately,
the lists of suitable landmarks still have to be established manually.

A close examination of the literature does not provide a solution for auto-
matic identification of methods serving as starting points of functional concern
implementations. These starting points, which we call “seed methods”, play a
key role in identifying functionally related code units, since they are the methods
through which the control flow enters functionality-specific parts of a program’s
source code. By defining an approach to automatically detect those methods, the
quantification of the confinement of functional concerns can be fully automated.

4 Detection of Seed Methods

To detect methods that play central roles within the implementation of a software
system’s functionality (i.e., seed methods), the total set of the system’s methods
needs to be filtered. The filtering approach proposed in this paper is explained

256 A. Olszak et al.

Fig. 1. Call graph of an example program

using the example in Fig. 1 which represents a call-graph of the methods in
a small Java system. Note that the use of Java in the examples is only for
explanatory purposes, the heuristic is not limited to only this language.

A simple heuristic for filtering the methods is to keep only those methods
which are not called from within the system itself, assuming that these methods
are used either as call-backs from the interface or are exposed as part of an API
of a library. Within Fig. 1 this would lead to identifying the “actionPerformed”-
methods as the seed methods.

Unfortunately, this heuristic does not perform well. First of all, for programs
defined with a command-line interface the only method that is kept is the static
“Main”-method that starts the program. Even though this method is an impor-
tant part of the system the functional concern of starting an application too gen-
eral to be considered an important part of a specific application. Secondly, when
a system implements an internal event dispatching mechanism, the interesting
methods are likely called directly from within the system by the dispatching
infrastructure and thus not found by the heuristic.

A second heuristic for filtering is counting the names of all methods within
a system and identify names which occur proportionally more often then other
names. Note that in this situation the short-name of the methods i.e., toString or
getStudent) instead of the full-name (i.e., Student.toString or Course.getStudent)
should be counted since the latter name uniquely identifies a method within a
system, and thus the number of methods with this name is always one.

The assumption behind this approach is that, due to polymorphic mecha-
nisms and programming conventions, the methods with the same name but a
different implementation implement variations of a functional concern specific
to this system. Given the example in Fig. 1 the method “actionPerformed” is
implemented multiple times since this method is enforced by a generic interface
provided by the Swing GUI framework to handle actions taken by the user. Simi-
larly, the “getStudent”-method is implemented, either because of polymorphism
or a convention, by both “Course” and “University” classes.

Unfortunately, straight-forward application of this heuristic is problematic
because this heuristic also identifies those methods which offer generic function-
ality for objects, such as the “toString”-method, as well as getters and setters
for common properties such as names and id’s. This last category of methods
should not be considered as seed methods, since getters and setters typically do
not implement complete functional concerns.

Detection of Seed Methods for Quantification of Feature Confinement 257

To filter out these uninteresting methods we take into account the number of
methods needed to implement a specific method. This is done by counting the
number of distinct methods called by the specific method, and then recursively
counting the distinct methods used by those methods. Our assumption is that a
higher number of methods used in the implementation of a method corresponds
to a method which implements more sophisticated functionality. By only keep-
ing those methods which are a) implemented proportionally more often and b)
which use many other methods in their implementation we expect to discover
the interesting seed methods within a system.

4.1 Heuristic Formalization

For the formalization of the heuristic we model a software system S as a directed
graph D = (V,E). The set of vertexes V are methods defined in the software
product, and the set of edges E are calls modeled as a pair (x, y) from one
method x (the source) to another method y (the destination). Let FN and SN
be the sets of full names and short names, a vertex v ∈ V is a record containing
a full name and a short name, i.e., v = (fn, sn) where fn ∈ FN and sn ∈ SN .

For the first part of the heuristic the sets of vertexes that have the same short-
name need to be defined. Using the function shortname((fn, sn)) = sn, which
retrieves the short name component (sn) from a given vertex v ∈ V . The set of
vertexes Vsn is the set of vertexes v ∈ V that have sn as short name, defined as
Vsn = {v | shortname(v) = sn}.

For the second part of the heuristic we want to compute the vertexes that
are transitively connected to a given vertex. For this we define two functions.
First a function connected : V × V �→ 2 which distinguishes the vertexes that
are directly connected by a given edge e ∈ E. For two vertexes v1, v2 ∈ V ,
connected will yield True if ∃e∈E such that e = (v1, v2) and False in all other
cases. Secondly, a function connected+ : V × V �→ 2 is defined as the transitive
closure of function connected. Given these functions, the set Vv consisting of
vertexes that are transitively connected to vertex v ∈ V can be defined as Vv =
{v | connected+(v)}.

Given this formalization the heuristic can be defined in three functions. First,
a function to calculate the normalized frequency of methods with a certain short
name:

Definition 1. freq(sn) = |Vsn|
|V |

Second, a function to calculate the average number of methods needed to imple-
ment the methods with a given short name:

Definition 2. depth(sn) =
∑

v∈Vsn

|Vv |
|V |

Note that the results of both of these functions fall into the range [0, 1], which
ensures that values calculated from different systems can be compared if desired.

Lastly, to calculate the score for each short name the values of the two func-
tions need to be combined. Ideally, the aggregation function prevents compensa-
tion, i.e., a high value on one approach should not overly compensate a low value

258 A. Olszak et al.

Table 1. Normalized scores for the methods as shown in Fig. 1

ShortName freq depth score
actionPerformed 0.20 0.45 0.09
getStudent 0.30 0.06 0.02
getName 0.10 0.10 0.01
format 0.10 0.10 0.01
addStudent 0.10 0.00 0.00
toString 0.10 0.00 0.00
getGrades 0.10 0.00 0.00

on the other approach. Given this property, two simple aggregation functions can
be chosen: the minimum and the product. For our heuristic the product is used
to ensure a higher level of discriminative power, the total score for a given short
name thus becomes:

Definition 3. score(sn) = freq(sn)× depth(sn)

Applying the heuristic to the example in Fig. 1 provides us with the scores in
Table 1, note that the scores are normalized against the total number of methods
defined within the system. The “actionPerformed”-methods receive the highest
score because these methods occur twice in the system and the average number
of methods needed to implement them is 4.5. The methods called “getStudent”
are second in rank, occurring three times in the system and needing on average
0.66 methods to be implemented.

4.2 Automated Quantification of Feature Confinement

As explained in Section 3, the calculation of feature-confinement metrics requires
two steps; identification of seed methods and identification of those parts of the
system that are executed when a seed method is executed.

For the first step the score function, as defined above, can be used to identify
the δ most interesting methods. For practical reasons we use the δ = 10 best
methods as seed methods throughout the rest of this paper. Nevertheless, the
optimality of this value and the potential context-dependency of the δ parameter
needs to be investigated in the future.

The second step required for measuring feature confinement is to identify
which parts of the application are executed when a seed method is executed.
This is done by statically slicing the call-graph of the system under review.
Using the terminology defined above we execute the method connected+ for a
seed method and obtain a set of methods in return. This set, which we call a
static trace, represents a group of functionally related code units.

5 Evaluation of the Approach

The evaluation of the proposed approach is two-fold. First, in Section 6, we
validate the proposed heuristic for detecting seed methods by comparing it to
a structured manual approach. This is done by comparing the regions of source

Detection of Seed Methods for Quantification of Feature Confinement 259

Table 2. Subject systems used in the study

Program Version KLOC Type
ArgoUML 0.32.2 40 Application
Checkstyle 5.3 60 Library
GanttProject 2.0.10 50 Application
Gephi 0.8 120 Application
JHotDraw 7.6 80 Framework
k9mail 3.9 40 Mobile application
Mylyn 3.5.1 185 Application
NetBeans RCP 7.0 400 Framework
OpenMeetings 1.6.2 400 Web application
Roller 5.0 60 Web application
Log4J 1.2.16 20 Library
Spring 2.5.6 100 Framework/Container
Hibernate 3.3.2 105 Library
Glassfish 2.1 1110 Container

code covered by the static traces produced by both approaches. Our hypothesis
is that the traces stemming from seed methods found by our heuristic cover
the same amount and the same regions of code as the traces stemming from
manually-identified seed methods.

Secondly, in Section 7, we apply the proposed approach to measuring the evo-
lution of feature confinement in an open-source project. The goal of this study
is to evaluate the applicability of the measurements produced by our approach
for enriching the analysis of long-term evolution of scattering and tangling of
features. This is done by interpreting the fluctuations of the quality of feature
confinement over time, in order to generate informed hypotheses about the na-
ture of the performed evolutionary changes.

6 Validation

To validate the heuristic for identifying seed methods the following steps are
taken. First, a set of subject programs is chosen (Section 6.1). For each of the
programs, we manually identify a ground-truth set of seed methods enforced
by the respective interfacing technologies and libraries being used (Section 6.2).
This data is then used to compute static traces, whose aggregated source code
coverage allows us to reason about the completeness of the constructed ground-
truth. Then, the aggregated coverage of ground-truth slices is compared against
aggregated coverage of traces generated by the heuristic (Section 6.3). Based
on this, we evaluate whether our approach covers similar amounts and similar
regions of source code as the manually-established ground truth.

Please note, that the design of this validation experiment deviates from the
traditional designs of evaluating the accuracy of concern location approaches.
There, false positives and false negatives are usually computed by comparing
results of an approach to ground truth on per-feature basis. Such an approach
is valid for assessing the accuracy of locating features associated with particular
semantics, but unfortunately is inapplicable in our case, since our approach aims
at system-level application and identifies groups of functionally related code units
without attaching semantics.

260 A. Olszak et al.

Table 3. Correlation of subjects with technologies and their ground-truth seed methods

Technology seed methods A
rg

o
U
M

L

C
h
e
ck

S
ty

le

G
a
n
tt
P
ro

je
c
t

G
e
p
h
i

J
H
o
tD

ra
w

k
9
m
a
il

M
y
ly
n

N
e
tB

e
a
n
s
R
C
P

O
p
e
n
M

e
e
ti
n
g
s

R
o
ll
e
r

L
o
g
4
J

S
p
ri
n
g

H
ib
e
rn

a
te

G
la
ss
fi
sh

JDK run, call, main � � � � � � � � � � � � � �
Swing

actionPerformed, stateChanged, keyTyped,
keyPressed, mouseClicked, mousePressed

� � � � � �

Eclipse/SWT

handleEvent, keyPressed, mouseDown,
mouseDoubleClick, widgetSelected, widget-
DefaultSelected, runWithEvent, run, start,
execute

�

Servlet doGet, doPost �

Android
onCreate, onOptionItemSelected, onClick,
onLongClick, onKey, onKeyDown, onTouch,
onStartCommand, startService

�

Spring
handle, handleRequest, onSubmit, start, ini-
tApplicationContext

� �
Struts execute, invoke, intercept �
Log4J getLogger, log �

Hibernate
buildSessionFactory, openSession, update,
save, delete, createQuery, load, beginTrans-
action, commit, rollback

�

Glassfish start, execute, load �

6.1 Subject Systems

The evaluation experiment is performed on a set of 14 open-source Java programs
summarized in Table 2. The chosen population is intentionally diversified in order
to observe how our approach deals with discovering seed methods in not only
stand-alone applications but also libraries, frameworks, web applications and
application containers. Thereby, we aim at validating the ability of our approach
to detect seed methods that are triggered not only by GUI events, but also by
command-line parameters, calls to API methods, HTTP requests, etc.

6.2 Ground-Truth

The ground truth in our experiment is formed by manually identifying seed
methods in the subject programs. In order to make our classification of methods
objective and consistent across all experimental subjects, we use the following
procedure that is based on the observation that libraries and frameworks, which
are used for interfacing with an environment tend to enforce a reactive mode of
implementing functionality and standardize the names of methods for doing so.

For instance, the Swing Java GUI framework defines a set of methods, such as
actionPerformed, onClick, etc., that are meant to be implemented by a client ap-
plication and are called by Swing upon the reception of a given event from a user.
Such methods, exhibiting individual functional concerns in response to external
events, are used as ground-truth seed methods in our experiment. We reckon
that such chosen methods could also be appropriate candidates for execution by
software recoinnaissance’s test-cases [13], annotating as feature-entry-points [8],
marking as landmark methods [12], or starting points for static analysis [15].

Detection of Seed Methods for Quantification of Feature Confinement 261

Table 4. Percentage of LOC covered for both approaches

Program Ground truth Intersection Approach
ArgoUML 81,5 % 79,3 % 82,2 %
Checkstyle 51,8 % 48,6 % 73,6 %
GanttProject 93,9 % 93,6 % 96,1 %
Gephi 90,7 % 89,2 % 92,0 %
JHotDraw 87,3 % 85,9 % 88,9 %
k9mail 97,1 % 97,0 % 97,0 %
Mylyn 80,7 % 78,1 % 81,9 %
NetBeans RCP 81,5 % 79,9 % 89,0 %
OpenMeetings 75,9 % 73,6 % 79,5 %
Roller 80,7 % 79,8 % 83,6 %
Log4J 90,1 % 86,3 % 88,6 %
Spring 69,3 % 66,5 % 76,9 %
Hibernate 84,1 % 82,1 % 84,9 %
Glassfish 71,4 % 70,5 % 78,8 %

Based on the mentioned observation, we manually identified interfacing tech-
nologies used by the subject programs. This was done based on static dependen-
cies found in source code. For each of the discovered technologies, we identified
methods that are intended to be implemented/overridden by client programs in
order to provide a client’s functionality. We identified such methods by surveying
the available official documentation of the investigated libraries. The summary
results of this process are listed in Table 3.

6.3 Results

For each of the subject programs, the seed methods of its interfacing technologies
served as a starting point for static call-graph slices. Their aggregated coverage,
being the union of these slices, was used as the ground-truth. The aggregated
coverage percentages of both the ground truth and the proposed heuristic are
shown in Table 4. In the “Ground truth” column the percentage of code covered
by the static-slices originating from the ground truth is shown. The “Approach”
column shows the percentage of code covered by the static-slices originating from
the methods found by our heuristic. In the “Intersection” column the percentage
of code covered by intersection of both result-sets is shown.

We can observe that for most systems the ground-truth coverages remain over
75% of the LOC, which suggests a high degree of completeness of the established
ground truth. The only exceptions here are Checkstyle, Spring and Glassfish that
are covered in 51,8%, 69,3% and 71,4% respectively. The result of Checkstyle
seems to suggest incompleteness of the used ground truth. However, a closer
look reveals that there exist four other systems that managed to achieve over
75% coverage based on exactly the same set of seed methods as Checkstyle. As
we discuss later, this particular result of Checkstyle had a different cause.

Comparison of columns one and three indicates that aggregated coverage gen-
erated by our approach surpasses that of the ground truth for all the systems but
k9mail. While the differences for most of the systems appear negligible (below
5% LOC), there are four notable exceptions, namely Checkstyle with difference
of 21,8%, Spring with 7,6%, NetBeans RCP with 7,5% and Glassfish with 7,4%.

262 A. Olszak et al.

Interestingly, three of these systems are also the ones that exhibit the lowest
ground-truth coverage.

A closer investigation of the reasons for the difference of 21,8% for Check-
style revealed that the results generated by our approach contained a number
of methods that we can categorize as non-technology-originated seed methods.
For instance, the methods process, processFiltered, verify, traverse and create-
Checker, were found to yield slices containing the highest numbers of classes.
These methods constitute important domain-specific abstractions that were es-
tablished by Checkstyle’s developers for implementing functionality, instead of
relying on the general-purpose abstractions provided by the JDK or by Swing.
Similarly, we found a similar pattern in other subjects, i.e. afterPropertiesSet,
invoke, postProcessBeforeInitialization and find in Spring, or execute, addNotify
and propertyChange in the NetBeans RCP.

Comparison of the columns one and two shows that the proposed heuristic
manages to cover most of the regions of source code covered by the manually
extracted ground truth, with the average loss of only 2,5% LOC. While this
result is something that is expected for the highest sets of coverages (e.g. for the
intersection of two result-sets achieving 95% coverage, the maximum possible loss
is 5%), it is especially significant in the context of the lowest-scoring ground-
truth values, i.e., Checkstyle (for which the maximum possible loss is 26,4%)
and Spring (for which the maximum possible loss is 23,1%). This indicates that
our approach not only covers as much source code as the manually-established
ground truth, but that it also identifies largely the same regions of source code,
thus providing analogous input to measuring feature confinement.

Lastly, the aggregated coverage obtained by our approach does not appear
to be influenced by size or type of systems. Nevertheless, a sample larger than
the one used in our experiment would be needed to confirming the lack of such
causalities at a satisfying level of statistical significance.

7 Evolutionary Application

In this section, we apply our approach to evaluating the quality of features
confinement in an evolving program. We do this by automatically measuring
long-term evolutionary trends of confinement metrics in the release history of
Checkstyle1, a library for detecting violations of coding style in Java source code.
The units of functionality in Checkstyle library, and whose historical quality we
intend to assess using feature-oriented metrics, are the individual detectors for
various types of style violations, as well as the core infrastructure of the library
responsible of parsing source code, reporting results, etc. In this investigation,
we measure 27 major releases of the library since version 1.0 until version 5.4.

7.1 Measuring Feature Confinement

The existing literature proposes and demonstrates the usefulness of a number of
diverse metrics for measuring this confinement, e.g., [14,6,5]. A common theme

1 http://checkstyle.sourceforge.net/

http://checkstyle.sourceforge.net/

Detection of Seed Methods for Quantification of Feature Confinement 263

that tends to re-appear in many works is formulating measures for quantifying
locality of features in structural units of source code (i.e. packages, classes or
methods) and for quantifying overlap of features in terms of structural units.
Having this in mind, for the purpose of this work we use the most elementary
and intuitive formulations of metrics for capturing these properties. The two
metrics used here are called scattering and tangling and they are based on simply
counting the number of related classes or features. They are defined as follows:

– Scattering: denotes the delocalization of a functional concern over computa-
tional units of a program. In this work, we measure scattering for each seed
method as the total number of classes that appear in its static trace.

– Tangling: denotes the interweaving of functional concerns in a structural unit
of a program. In this work, we measure tangling for each class as the number
of seed methods in whose static traces a given class appears.

The metrics chosen to quantify feature confinement are not directly calculated
on the system level, but rather on the level of a single trace (scattering) or on
the level of the class (tangling). In order to come to a system level measurement
the values of the measurements on the lower level need to be aggregated. To
compare a variety of systems in a consistent manner the aggregation needs to
be done in such a way that the influence of other factors, for example the size of
the system or the number of concerns evaluated, do not influence the aggregated
measurement.

7.2 Aggregation of Confinement Metrics

Alves et al. [2] proposed an aggregation strategy based on benchmarking with
these characteristics which has been applied successfully [3]. In this aggregation
strategy a repository of systems is used to derive thresholds for categorizing unit
of measurement in system (i.e., the class or the trace) into one of four categories.
By summing up the size of all entities in the four categories a system-level profile
is calculated, which in turn is used to derive a system-level rating [1].

The resulting rating, normally on a scale of one to five, indicates how the
profile of a specific system compares to the profiles of the systems within the
benchmark used for calibrating the profile-rating. For example, a rating of 1
indicates that almost all systems in the benchmark have a better profile, while
a rating of 4 means that most systems in the benchmark have a lower profile.

The repository used to calibrate the rating for both scattering and tangling
consists of industry software systems previously analyzed by the Software Im-
provement Group (SIG), an independent advisory firm that employs a standard-
ized process for evaluating software systems of their clients [3]. These industry
systems were supplemented by open source systems previously analyzed by SIG’s
research department.

The repository consists of 55 Java systems, of which 11 systems are open
source. These systems differ greatly in application domain (banking, logistics,
development tools, applications) and cover a wide range of sizes, starting from
2 KLOC up until almost 950 KLOC (median 63 KLOC).

264 A. Olszak et al.

Fig. 2. Evolution of Checkstyle

7.3 Results

Fig. 2 shows a plot of the measured evolutionary trends of Checkstyle. The
figure shows the values of KLOC metrics and the ranking values of scattering
and tangling for each release. Please note that as a result of benchmarking, the
quality rankings have to be interpreted inversely to the metrics they originate
from - e.g. a high quality rank of scattering means low scattering of features.

The evolutionary trends plotted in Fig. 2 indicate that feature-oriented qual-
ity, represented by ranks of scattering and tangling tends to degrade over time.
In the following, we investigate three periods marked in Fig. 2 that exhibit par-
ticularly interesting changes of the measured ranks.

Versions 2.4 – 3.1 : a significant degradation of both scattering and tangling
quality ranks is observed. The observed degradation was initiated by changes
done in release 3.0, where one of the major changes was a restructuring to a
“completely new architecture based around pluggable module”2. This restruc-
turing involved factoring-out a common infrastructure from existing detectors.
Doing so was bound to increase the number of classes that features are scat-
tered over, and create a number of infrastructural classes meant to be reused by
multiple features, thus contributing to tangling.

Further degradation continued in release 3.1. According to Checkstyle’s change
log, the crosscutting introduction of severity levels to all detectors forces all of the
detectors to depend on an additional class. This significantly contributes to the
increase of tangling and scattering of features because before this introduction
most of the detectors were confined to a single class.

Versions 3.1 – 4.0 : a rapid extension of Checkstyle’s size is observed. In
contrast with the previous period, the feature-oriented quality of the program
remains stable. Version 3.2 is the version in which the program’s size doubled,
while the tangling rank slightly improved and the scattering rank declined. Based
on the change log, this is caused by the addition of multiple fairly well separated
J2EE-rule detectors. As discussed later, this hypothesis is supported by observed

2 http://checkstyle.sourceforge.net/releasenotes.html

http://checkstyle.sourceforge.net/releasenotes.html

Detection of Seed Methods for Quantification of Feature Confinement 265

reverse changes in tangling and scattering ranks in version 5.0b, where these
detectors are removed.

One of the most interesting characteristics of the 3.1 – 4.0 period is the
observed preservation of feature-oriented quality despite a nearly twofold growth
of the program’s size. This suggests that the new architecture established in
3.0 and adjusted in 3.1 proved appropriate for modularizing the forthcoming
feature-oriented extensions. The established underlying infrastructure appears
to provide all the services needed by features and the new features are made
confined to approximately the same number of classes as the already-existing
features.

Versions 4.4 – 5.0 : An interesting shift in feature-oriented quality is observed
in this period. Firstly, a slight improvement of the scattering rank and a degra-
dation of the tangling rank is observed in the release 5.0b. Together with the
decrease of program’s size, these changes suggest a removal of a number of fairly
separated features. The program’s change log supports this hypothesis, as it
reports removal of all the J2EE-rule detectors. It needs to be noted that the
observed magnitude of degradation of the tangling rank and improvement of
scattering rank is approximately equal to their respective changes in the release
3.2, where the J2EE-rule detectors were originally added.

Secondly, a significant improvement of the tangling rank and a significant
degradation of the scattering rank is observed in release 5.0. According to the
change log, the most likely reason is the ”Major change to FileSetCheck archi-
tecture to move the functionality of open/reporting of files into Checker”, which
”reduces the logic required in each implementation of FileSetCheck”. In other
words, by freeing individual detectors from explicitly calling ”open/reporting”,
the programmers managed to reduce the tangling among them. At the same
time, the ten newly-introduced complex detectors caused a visible degradation
of the scattering rank.

8 Discussion

The results presented in Section 6 show that seed methods automatically iden-
tified by our approach yield static slices that capture largely the same regions
of source code as a manually-established ground truth. Moreover, the heuristic
improves on the ground-truth coverage results by identifying non-technology-
originated seed methods that reflect important domain-specific functional ab-
stractions. Given these observations, we conclude that the seed methods com-
puted by our approach are adequate substitutes to manually identified seed
methods for the purpose of system-level quantification of feature confinement.

The application of our approach presented in Section 7 shows that the auto-
mated measurement of the evolution of scattering and tangling properties pro-
vides a valuable perspective on the evolution of an existing software system.
We demonstrated how to interpret these metrics in the context of Checkstyle’s
change log by generating informed hypotheses about the impact of the individ-
ual changes on the feature-oriented quality of the program. While the generated

266 A. Olszak et al.

hypotheses need additional validation, they provide a sound and firm starting
point for evaluating the evolutionary quality of feature confinement.

Algorithm Parameters. As explained in Section 4.2, the parameter δ is used to
limit the number of best-ranked methods to be chosen as seed methods. Theoret-
ically, such a value should preserve all the methods that contribute significantly
to aggregated program coverage, whereas all the remaining methods should be
filtered out. Even though the chosen δ seems to be correct for our current case-
study (i.e., adding more methods to the list of seed methods did not increase the
program coverage substantially), more work is needed to determine the optimal
value of δ. Additionally, it is important to investigate whether a single optimal
value of δ can be found for a portfolio of programs, or whether each program
needs an individually-chosen δ value.

Limitations. One of the limitations of the performed experiments is the lack
of a direct comparison against outputs of existing feature location approaches.
Ideally, a correlation study of system-level scattering and tangling metrics con-
trasting our approach with the existing ones could be conducted. However, such
a study requires a significant number of data points, being software systems,
to achieve a satisfactory level of statistical confidence. While in the case of our
approach this data can be generated automatically, to the best of our knowledge
no sufficiently large data sets exist for existing feature location approaches.

In our evolutionary investigation, the differences among the sets of identified
seed methods for subsequent versions of Checkstyle could have influenced our
results. We observed this behavior when new types of detectors using new seed
methods were added. While such a flux of the sets of seed methods reflects the
evolution of how feature implementations change over time, it may turn out
problematic with respect to comparability of measurements across versions. As
a means of addressing this threat to validity we used the metric aggregation
discussed earlier. Additionally, we confirmed that even tough the set of seed
methods changed over time the coverage remained between 68% and 75%.

Lastly, because only open-source Java systems where used in the evaluations,
the results cannot be generalized to systems with different characteristics (i.e.,
systems using a different programming paradigm). However, since the heuristic
is largely technology agnostic, it remains possible to validate the approach using
a more diverse set of systems.

9 Conclusion

Cost-efficiency of applying feature-oriented measurement is constrained by lack
of automation of measurement collection procedures. This hinders applicability
of feature-oriented metrics in large-scale and evolutionary scenarios. As a result,
it remains difficult to assess quality of feature implementations, control it over
time, and thoroughly validate new feature-oriented metrics.

In this paper we have proposed an approach for the automated measurement
of system-level feature confinement, based on statically slicing the call-graph of

Detection of Seed Methods for Quantification of Feature Confinement 267

a software system starting from a set of seed methods. The contributions of this
paper are:

– The definition of a heuristic to automatically detect seed methods in software
systems, based on popularity of method names and size of the static call-
graph slices they yield.

– The validation of the heuristic by comparing the performance of static slices
produced by our approach against slices produced from a set of manually
selected seed methods.

– A demonstration of the practical applicability of the proposed approach in
a case-study of measuring feature confinement over time.

References

1. Alves, T.L., Correia, J., Visser, J.: Benchmark-based aggregation of metrics to
ratings. In: Proceedings of the IWSM/MENSURA 2011, The Joint Conference of
the 21th International Workshop on Software Measurement (IWSM) and the 6th
International Conference on Software Process and Product Measurement, Mensura
(2011)

2. Alves, T.L., Ypma, C., Visser, J.: Deriving metric thresholds from benchmark data.
In: Proceedings of the 2010 IEEE International Conference on Software Mainte-
nance, ICSM 2010, pp. 1–10. IEEE Computer Society, Washington, DC (2010)

3. Baggen, R., Schill, K., Visser, J.: Standardized code quality benchmarking for
improving software maintainability. In: 4th International Workshop on Software
Quality and Maintainability (SQM 2010), Madrid, Spain, March 15 (2010)

4. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach. In:
Encyclopedia of Software Engineering. Wiley (1994)

5. Brcina, R., Riebisch, M.: Architecting for evolvability by means of traceability and
features. In: 23rd IEEE/ACM International Conference on Automated Software
Engineering - Workshops, ASE Workshops 2008, pp. 72–81 (September 2008)

6. Eaddy, M., Zimmermann, T., Sherwood, K.D., Garg, V., Murphy, G.C., Nagap-
pan, N., Aho, A.V.: Do crosscutting concerns cause defects? IEEE Transactions on
Software Engineering 34, 497–515 (2008)

7. Marin, M., van Deursen, A., Moonen, L.: Identifying crosscutting concerns using
fan-in analysis. ACM Transactions on Software Engineering and Methodology 17,
3:1–3:37 (2007)

8. Olszak, A., Jørgensen, B.N.: Remodularizing java programs for improved locality of
feature implementations in source code. Science of Computer Programming (2010)
(in press, corrected proof)

9. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15, 1053–1058 (1972)

10. Salah, M., Mancoridis, S.: A hierarchy of dynamic software views: From object-
interactions to feature-interactions. In: Proceedings of the 20th IEEE International
Conference on Software Maintenance, pp. 72–81. IEEE Computer Society, Wash-
ington, DC (2004)

11. Turner, C.R., Fuggetta, A., Lavazza, L., Wolf, A.L.: A conceptual basis for feature
engineering. Journal of Systems and Software 49, 3–15 (1999)

12. Walkinshaw, N., Roper, M., Wood, M.: Feature location and extraction using land-
marks and barriers. In: IEEE International Conference on Software Maintenance
(ICSM 2007), pp. 54–63 (October 2007)

268 A. Olszak et al.

13. Wilde, N., Scully, M.C.: Software reconnaissance: mapping program features to
code. Journal of Software Maintenance 7, 49–62 (1995)

14. Wong, W.E., Gokhale, S.S., Horgan, J.R.: Quantifying the closeness between pro-
gram components and features. Journal of Systems and Software 54, 87–98 (2000)

15. Zhao, W., Zhang, L., Liu, Y., Sun, J., Yang, F.: Sniafl: Towards a static noninter-
active approach to feature location. ACM Transactions on Software Engineering
and Methodology 15, 195–226 (2006)

Assisted Behavior Driven Development
Using Natural Language Processing

Mathias Soeken1, Robert Wille1, and Rolf Drechsler1,2

1 Institute of Computer Science, University of Bremen
Group of Computer Architecture, D-28359 Bremen, Germany
{msoeken,rwille,drechsle}@informatik.uni-bremen.de

2 Cyber-Physical Systems
DFKI GmbH, D-28359 Bremen, Germany

rolf.drechsler@dfki.de

Abstract. In Behavior Driven Development (BDD), acceptance tests
provide the starting point for the software design flow and serve as a
basis for the communication between designers and stakeholders. In this
agile software development technique, acceptance tests are written in
natural language in order to ensure a common understanding between
all members of the project. As a consequence, mapping the sentences to
actual source code is the first step of the design flow, which is usually
done manually.

However, the scenarios described by the acceptance tests provide
enough information in order to automatize the extraction of both the
structure of the implementation and the test cases. In this work, we pro-
pose an assisted flow for BDD where the user enters into a dialog with
the computer which suggests code pieces extracted from the sentences.
For this purpose, natural language processing techniques are exploited.
This allows for a semi-automatic transformation from acceptance tests
to source code stubs and thus provides a first step towards an automa-
tization of BDD.

1 Introduction

Historically, software testing has been a post-processing step in the classical
waterfall model. After the actual software has been created, usually a team of
test engineers writes test cases (e.g. unit tests) in order to validate the correctness
of the implemented code. In the movement of agile software engineering, the test
effort is already incorporated at an earlier point in the development process. In
particular, Test Driven Development (TDD) [1] employs so-called acceptance
tests as the starting point for the development process. These acceptance tests
represent all scenarios which have to be realized by the final system. While the
test cases fail initially before any code has been written, the desired software
system is considered complete (accepted) if all acceptance tests pass.

It has to be noted that acceptance tests are different from unit tests and are
not meant as an alternative. While unit tests check the correct implementation of
single atomic components in the software, acceptance tests check a scenario of the

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 269–287, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

270 M. Soeken, R. Wille, and R. Drechsler

system as a whole without considering how the system is actually implemented.
As a result, it is often summarized that a unit test validates that the software
does the thing right, whereas an acceptance tests checks whether the software
does the right thing [2]. Consequently unit tests are generally written by the
developers and the stakeholders will not take notice of them, whereas acceptance
tests are written by the stakeholders and are discussed with the developers as
part of the specification.

Recently, Behavior Driven Development (BDD) has been proposed [3] as a
result of problems that arose with TDD when applying agile software practices.
A major obstacle for programmers has often been to find a good starting point
or to determine which facets need to be tested and which not. As a result,
it has been noticed that the language used for describing the tests, i.e. class
names and operation names, plays an important role both for writing test cases
and for finding bugs in case of a failing test. Inspired by [4], for this purpose
BDD uses natural language as a ubiquitous communication mean to describe the
acceptance tests by means of scenarios. In fact, the natural language ensures a
common understanding of the system to be developed between all members of
the project – particularly between the designers and the stakeholders.

Based on the scenarios which are described by the acceptance tests, the de-
signers map the sentences to actual code by implementing the test cases and code
skeletons in the first step. Usually, this is a manual and thus time-consuming and
error-prone process. However, all the information that is necessary to perform
these steps is in principle already included in the natural description.

In this work, we propose a methodology which assists the designer in these first
steps by semi-automatically extracting design information from the sentences
using natural language processing techniques. We propose a design flow where
the user enters into a dialog with the computer. In an interactive manner, the
program processes sentence by sentence and suggests to create code blocks such
as classes, attributes, and operations. The user can then accept or refuse these
suggestions. Furthermore, the suggestions by the computer can be revised which
leads to a training of the computer program and a better understanding of
following sentences.

Using this new design flow, the following advantages arise.
– Having only scenarios described in natural language, the first steps towards

writing the overall structure of the whole system can be cumbersome. How-
ever, analyzing the scenarios step by step assisted by a computer program
allows for a smoother start into the design process.

– Descriptions in natural language bear the risk of misunderstandings, e.g. due
to ambiguities. These risks can be minimized when the description is parsed
by natural language processing techniques, because what a computer pro-
gram might misunderstand is also likely to be misunderstood by another
designer or stakeholder.

– Unlike previous work (cf. Sect. 6) where the result of the text processing is
given after the whole text has been parsed, our approach provides the user
with feedback after every sentence being parsed. As a result, the user can
retrace the decisions of the tool and intervene if necessary.

Assisted Behavior Driven Development Using Natural Language Processing 271

Telephone

wireless: Boolean
dial(number)

Receiver

activate()

1 1

(a) UML class diagram

:Telephone :Receiver

dial(6345789)

activate()

(b) UML sequence diagram

Fig. 1. UML class and sequence diagram

For the implementation of the proposed approach, we enhance the Cucumber
tool [2]. The sentences of each scenario are parsed and are transformed into actual
code required for the subsequent implementation of the system. Furthermore,
also user interactions are written in natural language as pre-defined background
scenarios inside the Cucumber tool, which lead to a seamless user experience.

We have evaluated our approach in a case study where we have used a candy
machine whose specification is provided by means of six use case scenarios in
natural language. Using only a few user interactions, it is possible to generate
the whole class diagram and test cases with the assistance of the computer. As a
consequence, the proposed flow allows for a semi-automatic transformation from
acceptance tests to source code stubs and thus provides a first step towards an
automatization of BDD.

The paper is structured as follows. The necessary background of method-
ologies used in this work is provided in the next section. Section 3 illustrates
the general idea while Sect. 4 gives a more detailed insight into the extraction
techniques. The results of the case study are presented in Sect. 5. Furthermore,
Sect. 6 discusses related work and conclusions are drawn in Sect. 7.

2 Preliminaries

In this work, the Unified Modeling Language (UML) is applied to represent the
code skeletons and test cases which are semi-automatically derived from natural
language. Besides that, we are also exploiting language processing tools. To keep
the paper self-contained, the underlying concepts of UML and the applied tools
are briefly reviewed in the following.

2.1 Unified Modeling Language

In this section, we briefly review the basic UML concepts which are considered
in this work. A detailed overview of the UML is provided in [5].

272 M. Soeken, R. Wille, and R. Drechsler

Class Diagrams. A UML class diagram is used to represent the structure of
a system. The main component of a class diagram is a class that describes an
atomic entity of the model. A class itself consists of attributes and operations.
Attributes describe the information which is stored by the class (e.g. member
variables). Operations define possible actions that can be executed e.g. in order to
modify the values of attributes. Classes can be set into relation via associations.
The type of a relation is expressed by multiplicities that are added to each
association-end.

Example 1. Figure 1(a) shows a UML class diagram specifying a simple tele-
phone. The class diagram consists of the two classes Telephone and Receiver.
The class Telephone has an attribute wireless of type Boolean. The receiver is
related to the telephone which is expressed by an association. As expressed by
the multiplicities, each telephone has one receiver and vice versa. Both classes
have an operation, i.e. the telephone can dial a number and the receiver can be
activated.

Sequence Diagrams. The dynamic flow caused by operation calls can be visu-
alized by sequence diagrams. Sequence diagrams offer the possibility to represent
particular scenarios based on the model provided by the class diagram. Hence, sev-
eral sequence diagrams exist for a given class diagram. In the sequence diagram,
instances of the classes, i.e. objects, are extended by life lines that express the
time of creation and destruction in the scenario. Arrows indicate operations that
are called on an object, and are drawn from the caller to the callee. Besides objects
also actors from the outside environment can be part of the sequence diagram.

Example 2. A sequence diagram is depicted in Fig. 1(b). In that scenario, first a
number is dialed from an actor in the outside environment, before the telephone
activates the receiver.

In this work, class diagrams and sequence diagrams are applied to represent the
semi-automatically determined code skeletons and test cases, respectively.

2.2 Stanford Parser

The Stanford Parser is an open source software compilation published by the
Stanford Natural Language Processing (NLP) Group [6]. It parses sentences in
different languages and returns a phrase structure tree (PST) representing the
semantic structure of the sentence. A PST is an acyclic tree with one root ver-
tex representing a given sentence. Non-terminal and terminal vertices (i.e. leafs)
represent the grammatical structure and the atomic words of this sentence, re-
spectively. A simple PST for the sentence “The small child sings a song” is given
by means of Fig. 2(a). As can be seen all leafs are connected to distinct vertices
that classify the tag of the respective word, e.g. nouns and verbs. These word
tags are further grouped and connected by other vertices labeled with a tag clas-
sifying a part of the sentence, e.g. as noun parts or verb parts. The classifier tags
are abbreviated in the PST, however, in Fig. 2(a) the full classifier is annotated

Assisted Behavior Driven Development Using Natural Language Processing 273

S
sentence

NP
noun part

DT
determiner

The

JJ
adjective

small

NN
noun

child

VP
verb part

VBZ
verb*

sings

NP
noun part

DT
determiner

a

NN
noun

song* verb, present tense, third person singular

(a) Phrase structure tree

det(child-3, The-1)
amod(child-3, small-2)
nsubj(sings-4, child-3)
root(ROOT-0, sings-4)
det(song-6, a-5)
dobj(sings-4, song-6)

(b) Typed dependencies

Fig. 2. Application of the Stanford Parser

to the vertices. For details on how a PST is extracted from a sentence, the reader
is referred to [7].

Besides the PST, the Stanford Parser also provides typed dependencies [8]
which are very helpful in natural language processing. Typed dependencies are
tuples which describe the semantic correlation between words in the sentence.
Figure 2(b) lists all typed dependencies for the sentence considered in Fig. 2(a).
For example, the nouns are assigned their articles using the det relation. Note
that the numbers after the word refer to the position in the text, which is nec-
essary if a word occurs more than once in a sentence. Two further important
relations are nsubj and dobj that allow for the extraction of the typical subject-
verb-object form. In this case it connects the verb sings with both its subject
and object.

In this work, the Stanford Parser is applied to process the structure of the
sentences describing a scenario.

2.3 WordNet

WordNet [9], developed by the Princeton University, is a large lexical database
of English that is designed for use under program control. It groups nouns,
verbs, adjectives, and adverbs into sets of cognitive synonyms, each representing
a lexicalized concept. Each word in the database can have several senses that
describe different meanings of the word. In total, WordNet consists of more than
90,000 different word senses, and more than 166,000 pairs that connect different
senses with a semantic meaning.

Further, each sense is assigned a small description text which makes the pre-
cise meaning of the word in that context obvious. Frequency counts provide
an indication of how often the word is used in common practice. The database
does not only distinguish between the word forms noun, verb, adjective, and
adverb, but further categorizes each word into sub-domains. Those categories
are e.g. artifact, person, or quantity for a noun.

In this work, WordNet is applied to determine the semantics of the sentences
describing a scenario.

274 M. Soeken, R. Wille, and R. Drechsler

3 General Idea and Proposed Approach

As outlined in Sect. 1, behavior driven development puts acceptance tests to be
realized in the focus of the design flow. These acceptance tests are provided as
scenarios written in natural language. The typical BDD design process, as it is
applied today, involves the steps illustrated by means of Fig. 3:

1. Write a scenario describing a certain behavior in natural language.
2. Write a step definition for each sentence (i.e. for each step) in the scenario

which connects the natural language to actual code. Since the sentences in
a scenario are written in natural language, they have to be implemented as
code by the designer. For this purpose, step definitions are written that con-
sist of a regular expression and a block of code. Whenever a step matches a
regular expression, the respective code block of that step definition is exe-
cuted.

3. Write a code skeleton such that the code inside the step definition is compi-
lable.

4. Implement the operations in the code skeleton such that the scenario passes.

Example 3. Figure 4 shows an example of the BDD flow as it is employed in the
Cucumber tool [2]. Here, one scenario is provided and eventually implemented in
Ruby [10]. An example of a scenario is given in Fig. 4(a) describing the process of
initiating a telephone call. For the first sentence, a step definition is created using
Ruby as depicted in Fig. 4(b). Inside the step definition code, it is written what
should be executed when the step is processed by the Cucumber tool. However,
the class Telephone as well as the operation pickUp do not exist yet. Thus,
a code skeleton is manually generated in the next step as shown in Fig. 4(c).
Then, the step definition compiles. Finally, as illustrated in Fig. 4(d), the code
skeleton is implemented in the last step. After this procedure has been applied
to all remaining sentences, the whole scenario passes representing a complete
implementation of this scenario.

So far, all steps are performed manually. Obviously, the scenario is the starting
point for the BDD flow and thus always needs to be created manually. However,
when observing the design flow as depicted in Fig. 3, the following conclusion can
be drawn. The creation of the step definition and the provision of a code skeleton
can in fact be automatized, since the sentences given in the scenario often provide
enough information for an automatic determination of these components. For
example:

Scenario Step Definition Code Skeleton Implementation

Fig. 3. Behavior Driven Development flow

Assisted Behavior Driven Development Using Natural Language Processing 275

Scenario: Placing a call

* Ada picks up the receiver from the telephone

* She dials the number 6-345-789
* The telephone places a call

(a) Scenario

Given /^Ada picks up the receiver from the telephone$/ do
@telephone = Telephone.new
@receiver = @telephone.pickUp

end
(b) Step Definition

class Telephone
def pickUp
end

end

class Receiver
end

(c) Code Skeleton

class Telephone
attr_reader :receiver

def initialize
@receiver = Receiver.new

end

def pickUp
@receiver

end
end

(d) Implementation

Fig. 4. BDD example

– Regular nouns in sentences usually are realized as objects in the system, and
therefore, they can automatically be represented by classes.

– Proper nouns usually represent actors from the outside environment who
interact with the system.

– Adjectives in sentences usually provide further information about the respec-
tive objects. Thus, they can automatically be represented by attributes of
classes.

– Verbs in sentences usually describe actions in a scenario, and can therefore
automatically be represented by operations of classes. Additionally, they
provide information when an operation is called and by whom.

In this work, we propose a BDD methodology which exploits such information
in order to semi-automatically generate step definitions and code skeletons from
scenarios given in natural language. For this purpose, we are making use of UML
class diagrams and UML sequence diagrams that are proper abstractions of code
skeletons and step definitions, respectively, from which the required pieces for
the BDD flow can easily be generated. In the following, the general idea is briefly
illustrated in Figs. 5 and 6 by means of the telephone scenario given in Fig. 4.

First the creation of a class diagram, i.e. a code skeleton, is considered. Us-
ing only the first sentence in Fig. 5 for example, the following information can
automatically be extracted:

276 M. Soeken, R. Wille, and R. Drechsler

Receiver

Telephone

wireless: Boolean
pickUp(): Receiver
dial(number)
placeCall()

1

class Telephone
attr_accessible :wireless

def pickUp
end

def dial(number)
end

def placeCall
end

end

pickUUpU

Ada picks up the receiver from the wireless telephone.

She dials the number 6-345-789.

The telephone places a call.

Fig. 5. Extracting class diagrams from scenarios for the generation of code skeletons

– The sentence contains three nouns. Since Ada is a proper noun, it is treated
as an actor and not as a component of the system. Accordingly, classes are
only created for receiver and telephone .

– The adjective wireless can be identified as related to telephone and thus is
extracted as attribute for the respective class.

– The verb pick up is specified to be an operation of telephone .
– The preposition from indicates a relationship between the receiver and the

telephone. Since the sentence states “the receiver from the wireless telephone”
it can be concluded that a telephone can only have one receiver, in contrast
to “a receiver from the wireless telephone” which would indicate more than
one receiver.

Further information can be determined from the remaining two sentences. The
fragments dials and places a call indicate further operations of the telephone.
The phone number after number can be detected as a parameter for the dial
operation. This eventually leads to the class diagram shown in Fig. 5, which can
be used to generate the code skeleton in the desired language.

Moreover, the order of the sentences and their actions described in it provide
the basis to automatically determine a test case. This is done by automatically
creating a step definition for each sentence in the scenario. From the first sen-
tence, it is known that Ada , i.e. an actor, invokes the pick up operation. The
noun She in the second sentence refers again to Ada . Thus it can be concluded
that the same actor invokes dial with the parameter 6-345-789 in the next step.
The last sentence states that at the end of this scenario the telephone invokes the
operation place a call . All steps can be summarized in a sequence diagram which
can be used to generate step definitions in the desired language as depicted in
Fig. 6.

As illustrated by this example, step definitions and code skeletons can auto-
matically be generated even if the scenario is provided in natural language. We
are aware that sentences in natural language might be ambiguous or incomplete
and thus a fully automatic determination would not always lead to the desired

Assisted Behavior Driven Development Using Natural Language Processing 277

:Telephone

pickUp()

dial(6345789)

placeCall() Given "Ada picks up the receiver from the wireless telephone" do
@receiver = get_or_create(:receiver)
@telephone = get_or_create(:telephone)
@telephone.wireless = true
@telephone.pickUp

end

())

Ada picks up the receiver from the wireless telephone.

She dials the number 6-345-789.

The telephone places a call.

Fig. 6. Extracting sequence diagrams from scenarios for the generation of step
definitions

result. However, as discussed in detail in the next section, the application of
today’s language processing tools in combination with ontologies already shows
very good results. In addition, we propose an interactive flow where the designer
enters into a dialog with the computer. In this flow, the computer is guiding
the designer through the scenario while creating the UML diagrams step by
step. During this process, the designer can refuse the automatically generated
structures or provide the program with further information which cannot be
extracted from the sentence or the ontology. In some cases this can even lead
to a rephrasing of sentences in the scenario, e.g. in the presence of ambiguities.
Then, the proposed approach also advances the design understanding within the
development. If a sentence is misunderstood by the computer program, the same
may also apply to other designers.

Overall, an approach is presented which significantly increases the efficiency
of behavior driven development. As illustrated in Fig. 7, instead of manually
creating step definitions and code skeletons, automatically generated suggestions
from the proposed method just have to be revised or confirmed. The generated
code skeleton is then used as the basis for the implementation, which remains
the only non-automatic step. A further advantage of the new flow is that this
implementation can immediately be validated against the scenario as also the
step definitions have been generated automatically.

Scenario

Step Definition
(Sequence Diagram)

Code Skeleton
(Class Diagram)

Implementation

generates

revise

generates

revise

Fig. 7. Proposed flow

278 M. Soeken, R. Wille, and R. Drechsler

S

NP

NNP

Ada

VP

VBZ

picks

PRT

RP

up

NP

NP

DT

the

NN

receiver

PP

IN

from

NP

DT

the

JJ

wireless

NN

telephone

1. (4) <noun.artifact> receiver, receiving system
(set that receives radio or tv signals)

2. (3) <noun.person> liquidator, receiver1
((law) a person (usually appointed by a court of law)
who liquidates assets or preserves them for the
benefit of affected parties)

3. (3) <noun.artifact> telephone receiver, receiver1
(earphone that converts electrical signals into sounds)

4. (1) <noun.person> recipient, receiver
(a person who receives something)

P

Fig. 8. Extraction of nouns using a PST and the WordNet dictionary

4 Semi-automatic Extraction of Information

As described above, the core of the proposed approach is the semi-automatic
determination of UML class and sequence diagrams from a given scenario in
natural language. Language processing tools and ontologies are exploited for
this purpose. This section provides details on how the required information is
extracted from the given scenarios. The determination of classes, attributes,
and operations as well as their arrangement in a UML class diagram is initially
described. Afterwards, the extraction of the actors of the system and the order
of their actions are described which lead to the desired sequence diagram.

4.1 Classes

Components of the system to be implemented will be represented as classes in a
UML class diagram. In order to extract these classes, the sentences provided by the
scenario are parsed by the Stanford Parser reviewed in Sect. 2.2. This leads to the
PST from which parts of the sentence related to a noun are extracted. Initially
all noun parts (labeled NP in the PST) are extracted, i.e. nouns together with
possible adjectives and articles. Afterwards, they are subdivided into proper nouns
(labeled NNP in the PST) and nouns (labeled NN in the PST). Proper nouns
are ignored – they represent actors and are required later in order to create the
sequence diagram. All remaining nouns are further considered by the WordNet
dictionary (cf. Sect. 2.3) in order to check whether they represent further actors
of the system or actual components for which classes have to be created.

Example 4. Figure 8 shows the PST for the sentence “Ada picks up the receiver
from the wireless telephone”. This sentence is composed of three noun parts from
which Ada is discarded since it is a proper noun. For the remaining two nouns,

Assisted Behavior Driven Development Using Natural Language Processing 279

Background:

* Consider coin.
Scenario:

* Bob picks up a coin.

(a) Example scenario with background

Phrase Meaning
Consider noun. Considers noun as a class
noun is a person. Considers noun as an actor
Ignore noun. Does not consider noun nei-

ther as class nor as an actor

(b) Possible phrases for interaction

Fig. 9. User interaction for nouns

a further check is performed using WordNet. In case of receiver , this exemplary
leads to the lexical file information as given in the page excerpt in the upper
part of Fig. 8. The four entries are ordered by their frequency counts providing
an indication about the commonly used semantic of this word. As can be seen,
receiver might been used as a person (denoted by noun.person) which would
imply an actor of the system and no creation of a class. However, since its use as
an object (denoted by noun.artifact) has a higher frequency count, this semantic
is chosen, i.e. receiver is considered a component and thus a respective class is
created. The same check is applied to telephone .

User Interaction. Although the automatic classification of nouns and thus
the creation of classes works very well for many cases, two problems may occur:
(1) the frequency counts of WordNet lead to a wrong decision or (2) the con-
sidered word cannot be classified using WordNet. In both cases, the user has to
intervene.

A trivial approach is a simple modification of the resulting class diagram
by the user, e.g. the removal of a class when it was wrongly interpreted as
component. Besides that, also an interactive learning scheme can be applied.
The latter has been seamlessly implemented into the Cucumber BDD flow [2]
where scenarios are usually grouped as features. Each feature additionally can
be enriched by a background section which is processed prior to each scenario.
We use pre-defined background steps for providing additional information (again
in natural language) that help the automatic approach to correctly retrieve the
meaning of a word or to assume a context of a scenario. The following example
illustrates the principle.

Example 5. Consider the sentence “Bob picks up a coin”. The word coin is speci-
fied as a noun.possession by WordNet and therefore cannot be classified as class
or actor. Thus in order to set the context the designer can additionally provide
more background as shown in the Cucumber feature illustrated in Fig. 9(a).
Due to the phrase “Consider coin”, the background of coin is clearly set to a
component, i.e. a class is generated for it.

Other background phrases that can be used are given in Fig. 9(b). By applying
a phrase, the approach automatically learns additional information which can
later be applied in other scenarios as well.

280 M. Soeken, R. Wille, and R. Drechsler

4.2 Attributes

The determination of the noun parts as illustrated in Fig. 8 does not only en-
able the extraction of classes, but also of their corresponding attributes. For
this purpose, all vertices representing adjectives are extracted (labeled JJ in the
PST) and are simply connected to the corresponding class. By default Boolean
attributes are assumed. If the adjective additionally is prefixed by adverbs such
as very, slightly, or almost, an integer attribute is assumed instead of the Boolean
type. These cases are explicitly emphasized by the proposed approach. The de-
signer may transform this classification later, e.g. to an enumerated type.

Example 6. Consider the noun part the wireless telephone in the example from
Fig. 8. From the corresponding noun, a class with the name Telephone is ex-
tracted. Additionally, the class is enriched by a Boolean attribute wireless due
to the adjective.

Further attributes can be extracted from other constructs of the sentence. As
an example, consider the phrase “the product 12”. The word 12 is classified as
cardinal number (labeled CD in the PST). If this appears after a noun in a
noun part, it is implied that the respective class has an attribute id of type
integer. This also works with floating point numbers. A similar rule applies
for sentence parts set in quotes. For example, consider the phrase “the song
"Wonderful Tonight"”. In this case it does not make sense to treat the words in
quotes as normal words – wonderful and tonight should clearly not be considered
as adjective and noun, respectively. Instead the whole quote is extracted from
the sentence before parsing and it is stored that the word song can have an
additional identifier. This finally leads to an attribute name of type string.

User Interaction. All information that is automatically extracted from the
sentences in the scenarios as described above can also be provided explicitly by
pre-defined sentences in the background section. The sentence “A noun can be
adjective” adds an attribute adjective of type Boolean to the class representing
noun. In a similar manner, for the sentence “A noun has an id” or “A noun has
a name”, attributes id of type integer or name of type string, respectively, are
added to the class. In contrast, the consideration of certain attributes can be
omitted by the sentences “A noun cannot be adjective”, “A noun has no id”, and
“A noun has no name”.

Further, enumeration types can be added to a class explicitly by the sentence
“The name of a noun can be value, . . . , or value”. In this case, an attribute name
is added to the class representing noun providing an enumeration for each value.

Example 7. Consider again the sentence “Ada picks up the receiver from the
wireless telephone”. By default the tool extracts an attribute wireless of type
Boolean. When adding the sentence “The type of a telephone is wireless or wired”
to the background section, an enumeration named type is added as an attribute
to the class Telephone having the two values wired and wireless. In this case, the
adjective wireless is not extracted for the class Telephone as it already appears
as a value in the enumeration.

Assisted Behavior Driven Development Using Natural Language Processing 281

1 nsubj(picks-2, Ada-1)
2 root(ROOT-0, picks-2)
3 prt(picks-2, up-3)
4 det(receiver-5, the-4)
5 dobj(picks-2, receiver-5)
6 det(telephone-9, the-7)
7 amod(telephone-9, wireless-8)
8 prep_from(receiver-5, telephone-9)

Fig. 10. Typed dependencies for sentence from Fig. 8

4.3 Operations

As outlined in Sect. 3, verbs are usually a good indicator of an operation to be
extracted from a sentence. However, in order to assign a verb and, therefore,
an operation to the corresponding class, the PST alone is not sufficient. For
example, in the sentence “Ada picks up the receiver from the wireless telephone”
it is not obvious whether the operation pick up belongs to the receiver or the
telephone . As a solution, we additionally make use of the typed dependencies
in the sentence (cf. Sect. 2.2). This allows for relating the verb to its subject
and object in the typical subject-verb-object (SVO) phrase. Thus, the first step
consists of extracting the SVO relation in the sentence. In a next step, it is
determined whether the subject or the object in the sentence is the class to
which the operation should be assigned. If one of the nouns (subject or object)
has been identified as an actor and the other one as a class, then this decision is
easy. In other cases, user interaction might be required. The following example
illustrates the principle.

Example 8. Consider again the sentence in Fig. 8. The verb picks in the sen-
tence is easily identified in the PST by searching for a vertex labeled VBZ (verb,
present tense). The typed dependencies for the same sentence are given by means
of Fig. 10. With the relations nsubj (Line 1, nominal subject) and dobj (Line 5,
direct object), the SVO relation Ada-picks-receiver can be determined. The re-
lation prt (Line 3, phrasal verb particle) allows for completing the verb to picks
up which results in the operation name pickUp. Note that the base form of the
verb picks can be identified using a WordNet query. Using this information, the
operation pickUp is added to the class Receiver, since Ada is already classified
as an actor.

However, as already depicted in Fig. 5, this is not the right decision. It makes
more sense that pickUp is an operation of the telephone that returns a receiver.
The information for taking this decision is, however, already included in the
typed dependencies. This is due to the preposition on the word receiver , which is
indicated by the relation prep_from (Line 8, prepositional modifier). Further,
this relation returns the correct link to the word telephone . Since Telephone
also has been classified as a class, the operation pickUp is added to this class.
Further, due to the preposition, Receiver can be identified as return type for
that operation.

282 M. Soeken, R. Wille, and R. Drechsler

User Interaction. If operations should not be generated for a class, the user
can write the sentence “A noun does not verb”. Note that the noun should be
the noun representing the class name the operation is assigned. If for example
the operation pickUp should not be added to the class Telephone, the user would
add “A telephone does not pick up” as a step to the background section. This
seems inconvenient at first glance, since Ada is picking up the receiver in the
sentence. However, those decisions are usually taken after seeing the result of
the automatic translation.

4.4 Generation of Step Definitions

After the class diagram has been created, the same actors and classes with their
attributes and operations can be used to generate the step definitions. While the
scenarios serve as the outline in which the steps are executed, the step definitions
describe the actual code that has to be executed in that step.

For this purpose, consider again the sentence “Ada picks up the receiver from
the wireless telephone”. The automatically generated step definition is illustrated
in Fig. 6. First, for each class extracted from the sentence a respective object
is created. This is done by making use of the factory design pattern [11]. In
particular, two cases may occur, i.e. either a new object has to be created or
the step refers to a possibly already existing object. The functions create and
get_or_create are made available for these two cases. The article of the noun
can be used to determine which function to choose, which is described in detail
in the remainder of the section. Besides that, attribute values are assigned and
operations are transformed into respective operation calls on the objects.

The Role of Articles in Test Cases. The article in front of a noun can be
used to determine whether a new object has to be created or whether the noun
references a possibly existing object. This is illustrated by the following example.

Example 9. Consider the following two sentences.

“A telephone starts ringing. A telephone stops ringing”

This scenario indicates that possibly two telephones are involved, one that starts
ringing and one that stops ringing. If, however, the scenario was specified as

“A telephone starts ringing. The telephone stops ringing”,

it is obvious that the telephone in the second sentence is the same one as in the
first sentence.

In the generation of test cases, we apply the following rule. For nouns with
an undetermined article, always a new instance is generated, i.e. the factory
function create is used. Otherwise, for nouns with an determined article, it is
first tried to find the latest created instance for the respective type. If this is not
possible, an instance is generated. This behavior is implemented in the factory
function get_or_create.

Assisted Behavior Driven Development Using Natural Language Processing 283

Scenarios:
– Customer pays with exact change
– Customer pays and gets money back
– Customer chooses product without

paying
– Machine has no change
– Machine cannot provide desired

product
– Employee fills up the machine

Scenario: Customer pays with exact change
1. A hungry customer approaches the candy machine
2. The candy machine shows the message "Ready"
3. The customer chooses product 12 by using the keypad
4. The candy machine shows the message "1,20 Dollar"
5. The customer provides the exact price to the machine
6. The candy machine returns a piece of product 12
7. The candy machine is ready for the next customer

Fig. 11. Use case scenarios for a candy machine

A similar effect is noticeable when names are used for the actors. Then, the
nouns She or He have to be assigned accordingly.

Example 10. Consider the following scenario.

“Ada and Bob play soccer. She is the goal keeper. He shoots the ball.”

In this scenario, She refers to Ada, and He refers to Bob.

To automatically determine the relation of words such as She, He and also her
or his, the first names of the actors have to be assigned a gender. WordNet is
not capable of doing this. However, probably other dictionaries suitable for that
purpose can be used for this problem. In the meanwhile, we make use of user
interaction in form of background steps such as “Ada is a woman” or “Bob is
a man”.

5 Case Study

We implemented the approach on top of the Cucumber tool [2] in Ruby and
applied it to semi-automatically design a simple candy machine specified by six
acceptance tests. These acceptance tests, provided by means of scenarios, are
summarized in the left-hand side of Fig. 11. Due to page limitations, we cannot
provide and discuss all scenarios in detail. As a consequence, we demonstrate the
usage of the proposed approach for the first scenario (provided in the right-hand
side of Fig. 11) only. For this purpose, the output of the approach as well as
the resulting parts for the class diagram are sketched for each sentence in the
following. The overall class diagram is created as union of all parts.

A hungry customer approaches the candy machine. CandyMachine

approach()
Customer has been detected as actor.
Detected class CandyMachine without attributes.
Detected operation approach for class CandyMachine.

The first sentence was correctly processed by the approach, i.e. customer was
correctly identified as an actor and candy machine as a component leading to
the creation of a class. The two words candy and machine have correctly been
identified as compound noun, since both belong to the same noun part (NN)

284 M. Soeken, R. Wille, and R. Drechsler

in the PST. Further, the automatic approach has originally created an opera-
tion approach for the corresponding verb in the sentence. However, in the role
of the designer, we decided not to use this operation in our class. For this pur-
pose, a sentence “A candy machine does not approach” has been added to the
background section in the feature description for the Cucumber tool.
The candy machine shows the message "Ready".
Detected class CandyMachine without attributes.
I do not know how to categorize message as actor or class. I know it as communication.
Do you mean message as in a communication (usually brief) that is written or spoken
or signaled; "he sent a three-word message"?

In the second sentence, the approach was not able to determine whether or not
a class should be created for the noun message . It is neither classified as person
nor artifact in the WordNet database, but as communication. The approach
informs the user about that and also prints out the corresponding WordNet
information. Based on that, the user can take a decision. In the considered case,
a class should be created for message . This is achieved by adding the sentence
“Consider message” to the background section. Processing the sentences again
including this additional information leads to the following result:
The candy machine shows the message "Ready". CandyMachine

show(m: Message)

Message

name: String
Detected class CandyMachine without attributes.
Detected class Message with attribute name.
Detected operation show with parameter message for
class CandyMachine.

Now, everything has been detected correctly. The class Message automatically
gets the attribute name because of the identifier "Ready" in the sentence.

The customer chooses product 12 by using the
keypad.

KeyPad

choose(p: Product)

Product
id: Integer

Customer has been detected as actor.
Detected class Product with attribute id.
Detected class Keypad without attributes.
Detected operation choose with parameter product for
class Keypad.

In the third sentence, the operation choose is added to the class KeyPad because
of the preposition in the sentence. Since the object in the sentence is product ,
the operation gets a respective parameter. An attribute id is added to the class
Product due to the number after the noun.

The fourth sentence “The candy machine shows the message "1,20 Dollar"”
is equivalent to the second sentence in the scenario when considering structure
extraction. In fact, the sentences will even generate the same step definition,
since the Cucumber tool automatically extracts regular expressions for words in
quotes.

In the fifth sentence, the user has to manually interact since the word price
cannot be classified precisely. After it has been added as considered to the back-
ground section, the tool proceeds as follows:

Assisted Behavior Driven Development Using Natural Language Processing 285

The customer provides the exact price to the
candy machine.

CandyMachine

provide(p: Price)

Price
exact: BooleanCustomer has been detected as actor.

Detected class Price with attributes exact.
Detected class CandyMachine without attributes.
Detected operation provide with parameter price for
class CandyMachine.

Since the adjective exact is associated to the noun price , it appears as an at-
tribute for the class Price.

In a similar fashion, the remaining sentences and scenarios have been pro-
cessed. Eventually, this led to a class diagram that consists of 6 classes with
3 attributes and 7 operations. In total, 9 sentences were added to the back-
ground section for a total of 40 sentences in 6 scenarios. Analogously, 18 step
definitions have been created which cover all sentences in all scenarios and allow
the execution of the acceptance tests.

Overall, step definitions and code skeletons of a complete system, the consid-
ered candy machine, have been semi-automatically generated by the proposed
approach. For this purpose, each sentence was iteratively processed. In case of
uncertainties, the user entered into a dialog with the computer. Compared to
an entirely manual flow, this represents a significant improvement considering
that the designer is automatically served with several options which she/he can
easily refine.

6 Related Work

The proposed approach is a significant step towards an automatization of BDD.
In doing so, our solution aligns with other approaches aiming at that goal –
in particular in the domain of UML. As an example, the work presented in [12]
extracts UML class diagram from specifications in natural language which, after-
wards are used to generate code skeletons. The authors make use of a structure
similar to the PST, but not of typed dependencies and not of a lexical database
for classification. Further, the input language must be written in simple English
and follow a certain sentence structure. User interaction is not intended in this
approach.

The tool named REBUILDER UML [13] uses natural language as consti-
tuents for object oriented data modelling by using an approach based on case-
based reasoning. However, only class diagrams are supported by this operation.
Similarly, the tool LOLITA [14] generates an object model from a text in natural
language. However, the tool only identifies objects from text and cannot further
distinguish between other elements such as classes, attributes, and operations.

Class diagrams can also be extracted from natural language text using the tool
CM-BUILDER [15]. Also, here dynamic aspects are not considered. Furthermore,
the specification is considered as a whole which impedes user interaction and the
result is always the complete class diagram such that subsequent modifications
are cumbersome.

286 M. Soeken, R. Wille, and R. Drechsler

In [16] a method for generating executable test benches from a textual re-
quirements specification is proposed. For this purpose, a subset of the English
language called textual normal form has been designed that can be transformed
into UML class diagrams which can be translated into classification trees ac-
cording the Classification Tree Method for Embedded Systems (CTM/ES) [17].
These classification trees are finally used to generate the resulting executable
test benches which can be utilized in a formal verification environment. How-
ever, besides that a different domain is addressed in this approach, the designer
is limited to a restricted subset of the English language.

7 Conclusions

In this work, we proposed an assisted flow for BDD where the user enters into a
dialog with the computer in order to semi-automatically generate step definitions
and code-skeletons from a given scenario. For this purpose, natural language
processing tools are exploited. A case study illustrated the application. Instead of
going through the established BDD steps manually, the designer is automatically
served with options which easily can be refined.

The proposed approach is a significant step towards an automatization of
BDD. Moreover, while the case study focuses on acceptance test within the
BDD scheme, the results of the proposed approach also motivate a consideration
of general natural language system specifications. The proposed methodology
provides a basis for further work in this direction.

Acknowledgments. This work was supported by the German Research Foun-
dation (DFG) (DR 287/23-1).

References

1. Beck, K.: Test Driven Development. By Example. Addison-Wesley Longman, Am-
sterdam (2003)

2. Wynne, M., Hellesøy, A.: The Cucumber Book: Behaviour-Driven Development for
Testers and Developers. The Pragmatic Bookshelf (January 2012)

3. North, D.: Behavior Modification: The evolution of behavior-driven development.
Better Software 8(3) (March 2006)

4. Evans, E.J.: Domain-Driven-Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Longman, Amsterdam (2003)

5. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language reference
manual. Addison-Wesley Longman, Essex (1999)

6. Jurafsky, D., Martin, J.H.: Speech and Language Processing. Pearson Prentice Hall
(2008)

7. Klein, D., Manning, C.D.: Accurate Unlexicalized Parsing. In: Annual Meeting of
the Association for Computational Linguistics, pp. 423–430 (July 2003)

8. de Marneffe, M.C., MacCartney, B., Manning, C.D.: Generating Typed Depen-
dency Parses from Phrase Structure Parses. In: Int’l Conf. on Language Ressources
and Evaluation, pp. 449–454 (May 2006)

Assisted Behavior Driven Development Using Natural Language Processing 287

9. Miller, G.A.: WordNet: A Lexical Database for English. Communications of the
ACM 38(11), 39–41 (1995)

10. Flanagan, D., Matsumoto, Y.: The Ruby Programming Language. O’Reilly Media
(January 2008)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional, Amsterdam
(1994)

12. Bajwa, I.S., Samad, A., Mumtaz, S.: Object Oriented Software Modeling Using
NLP Based Knowledge Extraction. European Journal of Scientific Research 35(1)
(January 2009)

13. Oliviera, A., Seco, N., Gomes, P.: A CBR Approach to Text to Class Diagram
Translation. In: TCBR Workshop at the European Conf. on Case-Based Reasoning
(September 2006)

14. Mich, L., Garigliano, R.: A Linguistic Approach to the Development of Object
Oriented Systems using the NL System LOLITA. In: Bertino, E., Urban, S. (eds.)
ISOOMS 1994. LNCS, vol. 858, pp. 371–386. Springer, Heidelberg (1994)

15. Harmain, H.M., Gaizauskas, R.J.: CM-Builder: A Natural Language-Based CASE
Tool for Object-Oriented Analysis. Journal of Automated Software Engineer-
ing 10(2), 157–181 (2003)

16. Müeller, W., Bol, A., Krupp, A., Lundkvist, O.: Generation of Executable Test-
benches from Natural Language Requirement Specifications for Embedded Real-
Time Systems. In: Hinchey, M., Kleinjohann, B., Kleinjohann, L., Lindsay, P.A.,
Rammig, F.J., Timmis, J., Wolf, M. (eds.) DIPES 2010. IFIP AICT, vol. 329, pp.
78–89. Springer, Heidelberg (2010)

17. Grochtmann, M., Grimm, K.: Classification trees for partition testing. Software
Testing, Verification and Reliability 3(2), 63–82 (1993)

Learning to Classify Bug Reports

into Components

Ashish Sureka

Indraprastha Institute of Information Technology (IIIT-D)
New Delhi, India

ashish@iiitd.ac.in

Abstract. Bug reports in widely used defect tracking systems contains
standard and mandatory fields like product name, component name, ver-
sion number and operating system. Such fields provide important infor-
mation required by developers during bug fixing. Previous research shows
that bug reporters often assign incorrect values for such fields which cause
problems and delays in bug fixing. We conduct an empirical study on the
issue of incorrect component assignments or component reassignments in
bug reports. We perform a case study on open-source Eclipse and Mozilla
projects and report results on various aspects such as the percentage of
reassignments, distribution across number of assignments until closure of
a bug and time difference between creation and reassignment event. We
perform a series of experiments using a machine learning framework for
two prediction tasks: categorizing a given bug report into a pre-defined
list of components and predicting whether a given bug report will be
reassigned. Experimental results demonstrate correlation between terms
present in bug reports (textual documents) and components which can
be used as linguistic indicators for the task of component prediction. We
study component reassignment graphs and reassignment probabilities
and investigate their usefulness for the task of component reassignment
prediction.

Keywords: Mining Software Repositories (MSR), Empirical Software
Engineering and Measurements (ESEM), Automated Software Engineer-
ing (ASE).

1 Research Motivation and Aim

Quality of bug reports submitted to defect tracking systems is a topic that has
attracted a lot of research attention recently. Previous studies reveals that the
quality of information present in a bug report influences its resolution time and
has impact on the productivity of the development team [1][2][3][10][12]. Betten-
burg et al. and Zimmerman et al. investigate quality of bug reports and mention
that bug reports are often poorly written and provide inadequate and incorrect
information. This naturally results in delays during problem identification and
bug fixing. They conduct a survey with Apache, Eclipse and Mozilla project de-
velopers and present several factors impacting the quality of bug reports [2][12].

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 288–303, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Learning to Classify Bug Reports into Components 289

The difference between inadequate and incorrect information in bug reports
is import to this work. Not providing important information such as steps-to-
reproduce and stack-traces is one kind of quality issue. This is an issue of missing
or inadequate information. However, bug reports contain certain mandatory and
standard fields like product name, component name, version number, platform
and operating system. Prior studies reports that bug reporters often provide
incorrect values for such mandatory and standard fields. This is a different kind
of issue (pertaining to incorrect information rather than missing or inadequate
information) which is of interest to the work presented in this paper. For example,
accidently providing incorrect information such as an incorrect operating system
is a typical problem in bug reporting [12]. Zimmerman at al. mention that several
bug reports in Eclipse project were submitted for ”Windows” but later reassigned
to ”Linux”. Their study also reveals that for bug reporters locating a component
in which a bug occurs is often difficult and impossible to provide [12].

The focus of this work is to investigate the phenomenon of incorrect infor-
mation in standard fields and in particular study the phenomenon of incorrect
component assignment. An interesting result of the survey conducted by Zim-
merman et al. reveals that information like product name, component name,
version number and operating system are important items used by developers
during bug fixing and more importantly it causes them problems and delays in
bug fixing if such information is wrongly provided [12].

Zimmermann et al. perform an experiment using Eclipse bug reports to con-
struct a decision tree that correlates input features extracted from bug reports
(bug severity, operating system, affected component, bug priority, version num-
ber, reporter name and platform) and the location of the fix. Their study reports
three out of the seven input features influenced the location of a defect. They
demonstrate that the input feature with the most impact in determining the
defect location is component name (due to the direct mapping between source
code and component name). They found that the next most influential feature is
the version number [13]. Breu et al. analyze frequently asked questions by users
and developers in bug reports [5]. They observe that often bugs are submitted
to incorrect components or even projects. For example, some of the actual ques-
tions used in their paper are: ”Is dom the correct component?”, ”Can you verify
that this is a reconciler problem?” ”Should I move this bug report to JCore-
code assist?” Breu et al. mention that 5 out of the 94 questions (around 5-6%)
they analyzed on bug triaging were pertaining to component correction [5]. The
research performed by Breu et al. shows that bug reporters often mention incor-
rect components and developers ask questions to bug reporters for clarification
resulting in delays. The research presented in this work is motivated by the
following facts.

1. Mandatory fields like component name are important indicators for deter-
mining the location of a defect in the source code.

2. Bug reporters often provide incorrect information for standard fields like
component name.

290 A. Sureka

3. Wrong information for fields like component name can cause delays and
problems to developers in bug fixing.

The specific research aim of the work presented in this paper is the following:

1. To perform empirical analysis and measurements on component reassign-
ments phenomenon by mining data archived in defect tracking systems.

2. To investigate the usefulness of machine learning based techniques (text
classifiers) and framework for the task of automatically classifying the correct
component for bug reports.

3. To investigate the usefulness of machine learning based techniques for the
task of predicting if a component reassignment event will occur or not given
the initial component assigned by the bug reporter.

4. To study component reassignment graphs and component reassignment prob-
ability and investigate their usefulness in improving the accuracy of correct
component prediction.

2 Related Work and Research Contributions

Previous research shows that identifying the most competent developer to fix
a given bug report is a challenging task and is error prone [4][7][8][11]. The
work done on the topic of bug tossing (reassignment of bug reports to various
developers) is most closely related to the research study presented in this paper.
Recently several researchers have looked into the phenomenon of bug tossing and
proposed several techniques (based on machine learning and tossing graphs) to
perform automatic triaging and reduce the percentage of bug tossing events
[4][7][8][11]. We briefly review closely related work and list some of the key
differences between prior study and the work presented in this paper.

To the best of our knowledge and literature study, the initial work on the top
of bug tossing was performed by Jeong et al [11]. Jeong et al. introduced the idea
of deriving bug tossing graphs from historical data and employ a graph model
based on Markov chains to better assign developers to bug reports. Their study
reveals that tossing increases the time-to-correction for a bug and show that a
significant percentage (about 40%) of bugs (Eclipse and Mozilla project) have
been tossed (reassigned to a different developer) at-least once [11]. Bhattacharya
et al propose a method (an extension to prior triaging approaches) to reduce
tossing path lengths and validate their approach on popular open-source projects
like Eclipse and Mozilla [4]. Chen et al. presents an approach that computes
textual similarity between bug reports using a vector space model and uses
this information in conjunction with tossing graphs to improve bug assignments
[7]. Guo et al. mention that bug report reassignments is a commonly occurring
phenomenon during the bug fixing process and yet has rarely been studies. They
present a large-scale quantitative and qualitative analysis (in Microsoft Windows
Vista operating system project) on the topic of reasons for the software bug
report reassignments [8].

Learning to Classify Bug Reports into Components 291

The key difference between previous work and this study is that while pre-
vious work focuses on developer reassignment or tossing, our research focuses
on component reassignment. While there has been work done in the area of bug
report quality [1][2][3][10][12] and bug tossing (reassignment of a bug report to
developers) [4][9][11], we identify a research gap and a phenomenon which is not
yet explored in-depth in the literature on Mining Software Repositories. The
problem of incorrect assignment of component field (crucial information for bug
fixing) in a bug report is not yet studied closely and the objective of our research
is to improve our understanding and throw light on this relatively unexplored
phenomenon. In context to existing work, this paper makes the following unique
contributions :

1. This paper is the first focused empirical study on the topic of incorrect
assignment of component in bug reports. We perform experiments on bug re-
port data downloaded from Eclipse and Mozilla (popular open-source
projects) and report measurement results.

2. We perform a series of experiments using a machine learning framework for
the task of predicting the correct component for a given bug report and
report classification accuracy results.

3. We perform a series of experiments using a machine learning framework for
the task of predicting if a component reassignment event will occur or not
given the initial component assigned by the bug reporter.

4. We study component reassignment graphs and component reassignment prob-
abilities and present our insights.

3 Empirical Analysis

3.1 Experimental Dataset

We perform empirical analysis on publicly available dataset from two popular
open-source projects (Eclipse and Mozilla) so that our results can be replicated
and used for benchmarking or comparisons. Table 1 presents the details of the
experimental dataset obtained by downloading and parsing (XML and HTML
files) bug reports from Bugzilla (the issue tracking system used by Eclipse1 and
Mozilla2 Project) defect tracking systems. The experimental dataset consists
of 28618 fixed bug reports from Eclipse project and 16268 bug reports from
Mozilla project. Table 1 shows the number of distinct products and components
for Eclipse and Mozilla projects. For example, JDT (Java development tools)
and Platform (Eclipse platform) are products within Eclipse and APT and Core
are components within the JDT product. Table 1 displays the number of distinct
reporter, versions and assigned-to in the evaluation dataset. For example, the
number of distinct products and components for the Eclipse dataset (28618 fixed
bug reports) are 98 and 507 respectively.

1 https://bugs.eclipse.org/bugs/
2 https://bugzilla.mozilla.org/

292 A. Sureka

Table 1. Experimental dataset details (open-source Eclipse and Mozilla projects)

Eclipse Mozilla

From Bug ID 200000 400000

To Bug ID 250000 450000

From Date (Reported) Aug/2007 Oct/2007

To Date (Reported) Oct/2008 Aug/2008

Fixed Bugs 28618 16268

Distinct Component 507 449

Distinct Product 98 44

Distinct Assigned To 1078 789

Distinct Version 140 70

Distinct Reporter 3439 2229

3.2 Statistics on Reassignment Events

Bug reports consists of fields like component, product, assignee and version which
can be re-assigned after reporting or initial assignment. Guo et al. present a large-
scale quantitative and qualitative analysis of the bug reassignment process in the
Microsoft Windows Vista operating system project and categorized five primary
reasons for reassignments of assignee fields: finding the root cause, determining
ownership, poor bug report quality, hard to determine proper fix, and workload
balancing [8]. We perform statistical analysis on the evaluation dataset to com-
pute percentage of reassignment on four fields: component, product, assignee
and version.

Tables 2 and 3 displays data on the percentage of fixed bug reports in the
experimental dataset that have undergone component, product, assignee and
version reassignments (the values are computed by extracting relevant informa-
tion from the bug history available in Bugzilla defecting tracking system). The
data in Tables 2 and 3 is presented in a format that enables comparison and con-
trast between percentage of reassignment across four fields (component, product,
assignee and version). Empirical results in Table 2 reveals that the percentage of
bug reports in Eclipse undergoing component reassignment is 15.75% (average
of 98 products) and 39.63% for the EMF product (one of the products within
Eclipse). As shown in Table 3, the percentage of bug reports in Mozilla project
(average of 44 products) undergoing component reassignment is 24.21% which is
much higher than the corresponding value in Eclipse. Based on the experimental
results, we draw a conclusion that there is a significant percentage (15.75% for
Eclipse project, 24.21% for Mozilla project) of fixed bug reports for which a com-
ponent reassignment activity is performed (and hence we believe an interesting
topic for scientific investigation).

We performed a manual inspection of bug reports in the valuation dataset and
noticed a phenomenon wherein component, product, assignee and version reas-
signment happens multiple times. We conducted empirical analysis to compute
the number of times component, product, assignee and version reassignments

Learning to Classify Bug Reports into Components 293

Table 2. [Eclipse Project] NUM: number of bug reports (BRs), PER: % of BRs in the
experimental dataset, %CR: % of BRs having component reassignment event, %PR:
% of BRs having product reassignment event, %AR: % of BRs having assignee reas-
signment event, %VR: % of BRs having version reassignment event.

Product NUM PER %CR %PR %AR %VR

BIRT 2879 10.06 22.17 0.35 94.34 1.36

Community 1168 4.08 4.63 1.29 26.45 0.60

EMF 857 2.99 39.63 1.64 25.56 37.81

Equinox 1771 6.18 13.88 4.69 61.16 2.66

JDT 1449 5.06 18.88 5.32 79.92 4.56

PDE 1242 4.33 8.94 4.51 85.67 2.02

Platform 3083 10.77 13.92 5.23 77.36 4.38

Web Tools 116 0.40 13.80 1.63 37.07 1.63

All [98] 28618 100 15.75 6.77 61.77 9.88

Table 3. [Mozilla Project] Table 2 defines labels NUM, PER, %CR, %PR, %AR and
%VR

Product NUM PER %CR %PR %AR %VR

addons 768 4.72 15.76 3.52 64.98 10.29

Calendar 658 4.04 11.71 1.07 74.02 17.63

Core 3952 24.29 25.26 17.34 64.00 11.11

Firefox 1811 11.13 40.87 3.48 55.22 28.00

Localiz. 837 5.14 11.59 6.82 24.14 1.08

mozilla.org 2396 14.72 32.06 11.02 80.22 11.27

Toolkit 734 4.51 20.58 63.22 70.71 25.21

All [44] 16268 100 24.21 16.45 61.97 15.62

happens during the lifetime (from creation to close) of each fixed bug in our ex-
perimental dataset (refer to Table 4. The data in Table 4 (Left: Eclipse Project,
Right: Mozilla Project) reveals the exact percentages of fixed bug reports on
which the reassignment activities (enabling comparison and contrast across four
fields: component, product, assignee and version) are performed more than once.
Table 4 indicates that for Eclipse project, 47.69% of bug reports in the evaluation
dataset had one assignee reassignment event and 14.08% of the bug reports had
more than one assignee reassignment event. For Mozilla project, 5.79% of the bug
reports in the evaluation dataset had more than one component reassignment
event. Based on the empirical results displayed in Table 4, we draw a conclusion
that multiple reassignment (during the life-cycle of a bug report) of compo-
nent, product, assignee and version is a phenomenon which is present in open-
source projects like Eclipse and Mozilla. An interesting result is that amongst
the four fields, assignee field is most frequently reassigned and component field is
next (in terms of the percentage of reassignment activities) after assignee field.
We perform a manual inspection of the developer comments (online discussion

294 A. Sureka

Table 4. [Left: Eclipse Project, Right: Mozilla Project] Distribution of bug reports
across number of times (0,1,2,3, ≥ 4) a component, product, assignee and version
reassignment event takes place within the lifetime of a fixed bug report

0 1 2 3 ≥4

Component 84.25 13.25 1.96 0.36 0.18

Product 93.23 6.42 0.27 0.06 0.02

Assignee 38.23 47.69 9.51 3.10 1.47

Version 90.12 8.57 1.20 0.06 0.05

0 1 2 3 ≥4

Component 75.79 18.42 4.56 0.86 0.37

Product 83.55 14.53 1.64 0.21 0.07

Assignee 38.03 50.19 7.49 2.95 1.34

Version 84.38 14.16 1.11 0.28 0.07

forum in Bugzilla) to understand the reason for component reassignment in bug
reports. Table 5 displays some of the developer comments (entered in threaded
discussion) throwing light on component reassignment phenomenon. The com-
ments in Table 5 shows that indentifying the correct component is non-trivial
and developers often make mistake in component assignment. As shown Table 5,
bug reporters and developers are sometimes not sure of the correct component,
often assign bug reports to wrong component and later perform reassignments
and discuss (through online forums in Bugzilla) amongst the team to identify
the correct component for a given bug report.

We measure the difference between the creation timestamp of the bug report
and the timestamp for component and product reassignment events. Table 6
shows the minimum, maximum, lower and upper quartile values for the time
difference (in hours) for fixed bug reports in the Eclipse and Mozilla experimen-
tal dataset. The median value for the Eclipse project (component reassignment)
is 340 and the median value for the Mozilla project is 157. The numbers clearly
indicate that component reassignment (or correction) is not immediate and the
time difference between reporting time and first reassignment or between sub-
sequent reassignments (for example, between first reassignment and second re-
assignment) is significant. Hence we believe that automated techniques that can
guide developers for the task of correct component assignment aimed at reduc-
ing the percentage of reassignment events and time between reassignments can
be useful for practitioners involved in the bug fixing process. Figure 1 shows
differences phases in the life-cycle of an Eclipse bug report (BUGID 202407). As
shown in Figure, the bug is reported at timestamp T 1 (by developer Alex) and
undergoes a component (from Data Access to Connectivity), product (BIRT to
Data Tools) and version (2.2.0 to unspecified) reassignment event at timestamp
T 2. At timestamp T 3, the bug report undergoes assignee reassignment (from
birt-dataaccess-inbox to ichan) and version reassignment (from unspecified to
1.5). Component reassignment again happens at timestamp T 4 (Connectivity to
Open Data Access) and finally the bug report is fixed at T 5 (by developer Ichan)
and closed at T 6 (by developer Bfitzpat). Figure 1 (depicting the bug history and
actions perform on Eclipse BUGID 202407) indicates that component, product,
version and assignee at the time of bug reporting was not correct as a result of
which it undergoes reassignments. The component reassignment happens twice
and states at timestamp T 2, T 3 and T 4 are result of reassignments.

Learning to Classify Bug Reports into Components 295

Table 5. Illustrative examples of developer comments (on the issue of component
reassignment) in Bugzilla threaded discussions

Eclipse Mozilla

BUGID Comment BUGID Comment

200513 Not sure if this is us or SWT. 433562 Then this is an addons.mozilla.org
bug, not a download manager bug.
I’ve already moved the bug to the
proper component.

200849 This is probably the wrong compo-
nent. We’re looking to add a section
to the help at help.eclipse.org.

432653 It’s a ”Provider:GDATA” problem
and no ”Calendar View” one

200889 I believe this has been incorrectly
assigned to the ATNA component

432131 Probably not a theme issue, but I
have no idea where to look for the
real cause. Might be widget, might
be something else.

202384 Bug was categorized as JDT/APT -
I don’t think it has anything to do
with either. I’ll attempt to recate-
gorize it.

431665 Definitely a TE bug. the component
where this bug now lives.

202893 I notice that this is assigned to User
Assistance. Paul, do you think that
the bug is in UA code or in Platform
UI code?

431451 This should go to Server ops.

3.3 Automatic Component Assignment Using Linguistic Features

One of the research objectives of the work presented in this paper is to derive
a statistical and probabilistic model from historical data to predict the correct
component for a given bug report. We frame the problem of automatic com-
ponent assignment as a text classification problem. The input to the classifier
is a bug report (title and description) and the output is one of the category
(or Top-K categories) from a pre-defined finite number of discrete categories or
classes (software components). Every bug report is assigned to only one compo-
nent (no cross-cutting categorization) and hence the output categories (in the
text classification framework) are both exhaustive and mutually exclusive. Ev-
ery bug report is assigned to exactly one of the pre-defined class. We leverage
LingPipe3 which implements several types of text classifiers and conduct a series
of classification experiments.

We perform experiments to investigate the extent to which two different classi-
fiers (TFIDF and DLM) implemented in LingPipe can be used to automatically
predict the correct component of a bug report based on the title and textual
description [6] provided in the bug report. TFIDF (term-frequency (TF) and
inverse document frequency (IDF)) classifier belongs to the class of discrimina-
tive classifiers whereas DLM (Dynamic Language Model) is a language model
classifier. We frame the task of inducing a classifier as a supervised learning task

3 http://alias-i.com/lingpipe/

296 A. Sureka

Table 6. Minimum, maximum, lower and upper quartile values for the time difference
(in hours) between the bug creation timestamp and the component (CM) or Product
(PC) reassignment timestamp for fixed bug reports in the Eclipse (EC) and Mozilla
(MZ) experimental dataset

EC-CM EC-PD MZ-CM MZ-PD

Max 30506 30506 27628 29961

3rd Quart 7069 13873 5421 6540

Median 340 5203 157 1721

1st Quart 14 50 4 17

Min 0 0 0 0

Alex Alex Jgraham Ichan Ichan Bfitzpat

ECLIPSE BUG ID : 202407

Bug
Reported

CR: Data Access TO Conn.
PR: BIRT TO Data Tools
VR: 2.2.0 TO unspecified

AR: B-D-I to Ichan
VR: unspecified TO 1.5

CR: Conn. Open DA

RESOLVED
FIXED

CLOSED

Fig. 1. Lifecycle of Eclipse BUGID 202407 showing PR (product reassignment), CR
(component reassignment), AR (assignee reassignment) and VR (version reassignment)

(inferring a function or the classifier) which requires the experimental dataset to
be divided into two sets: training (for learning a classifier) and test dataset (for
evaluating the performance of the classifier). For TFIDF classifier, linguistic fea-
tures from bug reports are extracted using the IndoEuropeanTokenizerFactory
implemented in LingPipe. For the DLM classifier, we train a character based lan-
guage models and set the size of the NGRAM to be 6 characters.

We divide the experimental dataset into training (bug reports from 20000 to
230000 for Eclipse and bug reports from 400000 to 430000 for Mozilla) and test
dataset (bug reports from 23001 to 250000 for Eclipse and bug reports from
430001 to 450000 for Mozilla) and derived a predictive model for 12 products
(number of components for each product is displayed in Tables 7 and 8). The
ground-truth (correct component for each fixed bug report) is already available
as all the bug reports in the evaluation dataset are fixed and closed. Tables 7 and
8 displays accuracy result for two classifiers (default settings of TF/IDF classifier
and Dynamic Language Model classifier implemented in LingPipe text process-
ing toolkit). We report Top N accuracy (considered a hit if the actual component
is amongst the Top N component predictions) results and the performance re-
sults in Table 7 and 8 indicate that word-level and character-level features in

Learning to Classify Bug Reports into Components 297

Table 7. Top N (N = 1,2,3,4 and 5) accuracy results (component prediction) for
two machine learning (ML) classifiers (TFIDF and DLM) on Eclipse project dataset
(COMP: Number of components, TRAIN: size of training dataset, TEST: size of test
dataset)

PROD. CMP TRAIN TEST ML TOP 1 TOP 2 TOP 3 TOP 4 TOP 5

Community 26 737 431
TFIDF 48.95% 65.88% 73.53% 79.09% 83.96%
DLM 42.45% 56.37% 68.20% 74.69% 79.56%

Platform 17 2027 1056
TFIDF 46.68% 65.24% 76.50% 82.27% 85.86%
DLM 54.07% 72.06% 78.49% 82.08% 84.44%

BIRT 12 1837 1042
TFIDF 56.33% 75.61% 83.95% 89.80% 93.63%
DLM 62.18% 78.01% 85.78% 90.09% 93.06%

Equinox 9 1207 564
TFIDF 69.32% 87.05% 92.54% 96.08% 98.03%
DLM 68.79% 84.92% 92.18% 95.90% 97.49%

JDT 6 969 480
TFIDF 60.62% 82.29% 94.16% 98.32% 99.80%
DLM 62.29% 81.66% 92.91% 98.53% 99.58%

PDE 5 762 480
TFIDF 68.33% 85.41% 94.78% 98.11% 100%
DLM 73.95% 86.03% 94.98% 97.06% 100%

free-form textual reports can be used as discriminatory signals for the task of au-
tomatic component classification. As shown in Table 7 (Eclipse project), the Top
1 accuracy for the DLM multi-class classifier varies from a minimum of 42.45%
(26 mutually exclusive classes) to a maximum of 73.95% (5 mutually exclusive
classes). Table 8 (Mozilla project) reveals that the Top 5 accuracy of the TFIDF
classifier varies from a minimum of 63.86% (91 components) to a maximum of
91.88% (24 components). We perform empirical analysis to discover correlation
or association between terms in bug reports and the components. The purpose is
to understand and uncover the discriminatory terms used by the machine learn-
ing classifiers (such as the TFIDF classifier) to perform the text categorization
task. We represent bug reports as bag of terms (generated by converting the se-
quence of characters into tokens using a tokenizer) and generate the distribution
of words for each category or class. We compute the most frequent terms for
each category and compute the probability of each term given a category. If the
probability of a term in one specific category is high (i.e., the term is frequent
or prevalent) and low in other categories then the term is a good discriminatory
feature for the purpose of performing text classification.

We investigate the JDT product (Eclipse project) consisting of six compo-
nents: APT, CORE, DEBUG, DOC, TEXT and UI. We compute the probability
of each unique term in the training dataset corpus in each of the six categories.
We observe that java, eclipse, org, jdt and core are frequent terms in all the six
categories and hence are not discriminatory. However, we notice that there are
certain terms which are discriminatory for a specific class. Table 9 reveals that
the probability of the terms type or junit is 25 times more in class APT than in
class DOC. The probability of the terms jface and text is significantly higher in
TEXT component in contrast to other component. As indicated in Table 9, the
probability of the term kit is very high in the DOC category in comparison to

298 A. Sureka

Table 8. Top N (N = 1,2,3,4 and 5) accuracy results (component prediction) for
two machine learning (ML) classifiers (TFIDF and DLM) on Mozilla project dataset
(COMP: Number of components, TRAIN: size of training dataset, TEST: size of test
dataset)

PROD. CMP TRAIN TEST ML TOP 1 TOP 2 TOP 3 TOP 4 TOP 5

Core 91 2814 1138
TFIDF 38.57% 50.78% 56.84% 60.79% 63.86%
DLM 36.11% 45.51% 50.95% 55.25% 57.79%

Toolkit 26 522 212
TFIDF 43.80% 62.37% 68.56% 75.70% 80.46%
DLM 34.76% 50.47% 58.09% 64.75% 71.89%

Firefox 25 1415 396
TFIDF 50.75% 68.67% 77.50% 82.80% 85.57%
DLM 53.53% 63.37% 70.94% 77.00% 80.53%

Mozilla.org 24 1321 1075
TFIDF 53.76% 75.89% 84.63% 89.28% 91.88%
DLM 61.20% 80.45% 88.82% 91.14% 92.16%

Calendar 19 433 225
TFIDF 40.44% 59.55% 66.66% 76.43% 80.87%
DLM 40.44% 56.44% 71.10% 79.54% 84.42%

addons.mozilla 16 495 273
TFIDF 55.67% 69.95% 80.20% 85.69% 90.45%
DLM 58.97% 72.88% 82.77% 85.33% 87.52%

other categories. Terms debug and lib are common in bug reports belonging to
the DEBUG component. The data in Table 9 clearly shows that certain terms
are more common in bug reports belonging to one class in contrast to other
classes. We perform similar experiments on Equinox product (consisting of nine
components) of Eclipse platform (TFIDF classifier Top 1 accuracy is 69.32%
and DLM classifier Top 1 accuracy is 68.79%) and observed correlation between
certain terms and specific classes. We observe that terms eclipse, org, equinox
and java are frequent in majority of the classes and hence do not have discrim-
inatory power. We discover that terms password and auth are discriminatory
for the SECURITY component. Term site is discriminatory for the component
P2. Terms framework and launcher are frequent in bug reports belonging to the
component FRAMEWORK in contrast to other components.

3.4 Component Reassignment Prediction

We perform experiments to examine the degree to which the derived statistical
model (for automatic component categorization) can be used to make predic-
tions for the task of predicting if an incoming bug report will be component
reassigned or not. We apply the induced predictive model on a given bug report
and compare the predictions with the initial component assigned by the bug
reporter. If the best category (for computing Top 1 accuracy) does not match
the initial component then we predict a component reassignment event. Simi-
larly, for computing Top 2 accuracy we consider top two component predictions.
We perform a series of experiments (for which the ground-truth is already avail-
able) and report the accuracy results of our predictor. The empirical results
displayed in Table 10 indicate that Top 1 prediction accuracy (Eclipse project)
of the proposed solution varies from 45.24% to 73.95%. Table 10 provide details

Learning to Classify Bug Reports into Components 299

Table 9. Few examples of discriminatory features (terms) or important words discov-
ered from the experimental dataset (Eclipse Project: JDT Product) to demonstrate
correlation between terms and categories (components))

TERM APT CORE DEBUG DOC TEXT UI

1 file 2.541689 1.219373 2.11113 1.580986 1 1.601105

2 type 25.42729 43.36233 13.08619 1 15.81292 18.3523

3 junit 25.42729 10.38253 4.005976 1 1.83097 14.06563

4 compile 10.66306 104.6105 1.869455 1 8.156138 8.171464

5 swt 1 44.14341 70.65426 1.219162 185.2767 96.19375

6 workbench 1 38.39945 40.04826 6.095812 108.1626 70.71629

7 debug 2.956659 7.652804 94.66307 1.201549 1 4.02394

8 lib 4.927765 5.765812 283.9892 6.007745 1 2.414364

9 lang 10.66306 25.38921 41.92921 1 14.1484 16.20897

10 doc 1 2.021024 6.837509 45.10901 1.420522 1.469854

11 kit 9.401176 1 21.42688 286.539 9.538987 1.535373

12 jface 1 37.33575 28.97801 1.219162 81.37564 59.28409

13 text 1 26.69879 12.69823 1.219162 70.41732 30.21366

14 display 1 22.01852 38.09469 3.657487 65.54696 54.05795

15 action 1 14.99812 14.6518 1.219162 46.47137 40.01268

results across two projects (Eclipse and Mozilla), 12 products and two classifiers
(TF/IDF and Dynamic Language Model with NGRAM size = 6).

3.5 Component Reassignment Graphs

We conduct a series of experiments to understand component reassignment phe-
nomenon from the perspective of network analysis. While the research goal of
the work presented in Section 3.3 is to investigate the extent to which linguistic
or textual features (sequence of characters, words, terms) present in bug reports
can be used as discriminatory features for automatic component assignment, the
goal of the work presented in this section is to view the component reassignment
events as a graph or network and uncover patterns that can be used for the
task of automatic component assignment. The proposal to construct component
reassignment graph is based on our intuition and insight that there are some
components which are more prone to reassignment and there is a correlation
between certain components assigned by the bug reporter and the component to
which the bug report is finally reassigned. We explain our idea using a concrete
example (Figures 2) derived from Eclipse project experimental dataset. The bug
report history contains information about initial component assignment (by the
bug reporter) and subsequent component reassignments (if any) by the traiger
or developers. We create a graph (called as the component reassignment graph)
where nodes represent components and an arc from one node to another repre-
sents reassignment from one component to another. Thus the nodes represent
components and arcs or links represent component reassignment relationship.

300 A. Sureka

Table 10. [Eclipse (ECL) and Mozilla (MZL) Project] Accuracy results for the task
of predicting if a component will be reassigned or not)

ECL PROD. ML TOP 1 TOP 2 MZL PROD. ML TOP 1 TOP 2

Core
TFIDF 52.19% 62.03%

Community
TFIDF 51.27% 67.28%

DLM 50.52% 57.46% DLM 45.24% 57.54%

Toolkit
TFIDF 54.76% 70.47%

Platform
TFIDF 52.55% 66.00%

DLM 48.09% 60.00% DLM 59.94% 72.72%

Firefox
TFIDF 59.09% 74.24%

BIRT
TFIDF 63.53% 73.32%

DLM 60.35% 67.92% DLM 67.75% 74.28%

Mozilla.org
TFIDF 59.34% 76.83%

Equinox
TFIDF 73.22% 89.00%

DLM 63.62% 76.83% DLM 72.34% 86.87%

Calendar
TFIDF 46.22% 62.22%

JDT
TFIDF 66.25% 75.00%

DLM 44.88% 58.66% DLM 68.12% 76.04%

addons.mozilla.org
TFIDF 65.56% 75.82%

PDE
TFIDF 68.54% 82.29%

DLM 68.86% 77.28% DLM 73.95% 83.12%

Fig. 2. A component reassignment graph (Eclipse project and Product Platform). The
size of the node is proportional to the node’s in-degree.

Figure 2 is a component reassignment graphs drawn using UCINET4) reveal-
ing the degree of reassignment relationship between components for a specific
product (Eclipse Project and Product Platform).

Figures 2 is a directed graphs in which the out-degree (degree also referred to
as valency) of a node (or a vertex) represents the number of times the component
has been removed and the in-degree of a node represents the number of times
the component (represented by the node) is added. In Figure 2, the size of the
node is proportional to the node’s in-degree. Figure 2 reveals that the in-degree
(represented by the size of the node) for components like UI, IDE, Runtime, Doc
and Resources is higher in contrast to other components. Table 11 shows that
the reassignment relationship between pair of components varies and we believe

4 http://www.analytictech.com/ucinet/

Learning to Classify Bug Reports into Components 301

Table 11. Illustrative examples of number of times a component is removed (REM)
and a different component is added or assigned (ADD) for Eclipse project and Platform
product

ADD REM NUM ADD REM NUM

1 SWT UI 59 7 Releng P2 13

2 User Ast. UI 41 8 SWT IDE 11

3 UI SWT 40 9 Team UI 10

4 Text UI 22 10 UI Debug 10

5 SWT Text 18 11 UI Resources 10

6 Debug UI 17 12 UI Test 9

Table 12. Illustrative list of components (Eclipse, Platform) in increasing order of
reassignment probability [P(RSN)]

Component Incorrect Correct Total P(RSN)

Compare 3 76 79 0.0379

Ant 2 38 40 0.05

Team 6 105 111 0.0540

Debug 19 168 187 0.1016

CVS 8 56 64 0.125

UI 208 967 1175 0.1770

Text 34 94 128 0.2656

Resources 24 60 84 0.2857

Runtime 24 23 47 0.5106

Website 12 2 14 0.8571

that this useful knowledge can be learned from historical data and can be used
for making future predictions on automatic component reassignments. Table
12 is an Illustrative list of components (Eclipse Project, Platform Product) in
increasing order of reassignment probability P (RSN). Reassignment probability
is the probability that the component will be reassigned or not and is computed
as the ratio of two values: number of times the initially reported component is
accurately classified (correct and no reassignment happens) to the number of
the times the initially reported component is incorrectly classified (as a result of
which a component reassignment event happens).

Figure 3 illustrates the architecture diagram for a system that combines a
content-based (such as a TFIDF or a DLM based textual classifier) predictor
with a link-based (component reassignment graph derived from historical data)
predictor to make recommendation on the correct component or whether the as-
signed component will be reassigned or not. We perform experiments on Eclipse
project data and observe that several times content-based classifier results in
false positives (predicts a component to be reassigned when it should not be re-
assigned) outcomes. We believe that showing a score denoting the reassignment
probability of component and the probability of a reassigning relationship with
top k components can be useful to the developer.

302 A. Sureka

Component Reassignment
Graph (CRG)

0.1
0.2

Statistical Model
Textual Features

Content
Based

Link
Based

Historical or Training Data

Unseen or Test Data Predictive Model

Ranked List of
Components

Fig. 3. Architecture diagram for the proposed automatic component reassignment sys-
tem based on textual (terms present in bug reports) and link-based (derived from
reassignment relationship) features

4 Summary

Empirical evidences demonstrate the presence of a phenomenon in which the
initial component assigned by the bug reporter is later on reassigned during the
life-cycle of a bug report. The study presented in this paper shows presence of
correlation between terms in bug reports and components which can be exploited
for the task of predicting the correct component of a bug report. We investigate
the usefulness of machine learning based techniques for the task of predicting if
a component reassignment event will occur or not given the initial component
assigned by the bug reporter. Insights on component reassignment graphs and
component reassignment probability are presented.

Acknowledgement. The work presented in this paper is partially supported
by the Department of Science and Technology (DST, India) FAST grant awarded
to the author. The author would like to acknowledge Sangeeta for her help in
conducting experiments.

References

1. Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., Zimmermann, T.:
What makes a good bug report? In: International Symposium on Foundations
of software Engineering, SIGSOFT 2008/FSE-16, pp. 308–318. ACM, New York
(2008)

Learning to Classify Bug Reports into Components 303

2. Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., Zimmermann, T.:
Quality of bug reports in eclipse. In: OOPSLA Workshop on Eclipse Technology
eXchange. ACM Press, New York (2007)

3. Bettenburg, N., Premraj, R., Zimmermann, T., Kim, S.: Extracting structural
information from bug reports. In: Working Conference on Mining Software Repos-
itories, MSR 2008, pp. 27–30. ACM, New York (2008)

4. Bhattacharya, P., Neamtiu, I.: Fine-grained incremental learning and multi-feature
tossing graphs to improve bug triaging. In: Inter. Conference on Software Mainte-
nance, ICSM 2010, pp. 1–10. IEEE Computer Society, Washington, DC (2010)

5. Breu, S., Premraj, R., Sillito, J., Zimmermann, T.: Frequently asked questions in
bug reports. Technical Report 2009-924-03, University of Calgary (March 2009)

6. Carpenter, B., Baldwin, B.: Natural Language Processing with LingPipe 4, draft
edition. LingPipe Publishing, New York (2011)

7. Chen, L., Wang, X., Liu, C.: An approach to improving bug assignment with bug
tossing graphs and bug similarities. JSW Journal of Software 6(3), 421–427 (2011)

8. Guo, P.J., Zimmermann, T., Nagappan, N., Murphy, B.: ”not my bug!” and other
reasons for software bug report reassignments. In: Computer Supported Coopera-
tive Work, CSCW 2011, pp. 395–404. ACM, New York (2011)

9. Guo, P.J., Zimmermann, T., Nagappan, N., Murphy, B.: ”Not My Bug!” and Other
Reasons for Software Bug Report Reassignments. In: ACM Conference on Com-
puter Supported Cooperative Work (2011)

10. Hooimeijer, P., Weimer, W.: Modeling bug report quality. In: IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2007, pp. 34–43.
ACM, New York (2007)

11. Jeong, G., Kim, S., Zimmermann, T.: Improving bug triage with bug tossing
graphs. In: European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, ESEC/FSE 2009, pp.
111–120. ACM, New York (2009)

12. Zimmermann, T., Premraj, R., Bettenburg, N., Just, S., Schröter, A., Weiss, C.:
What makes a good bug report? IEEE Transactions on Software Engineering 36(5),
618–643 (2010)

13. Zimmermann, T., Premraj, R., Sillito, J., Breu, S.: Improving bug tracking systems.
In: Companion to the 31th International Conference on Software Engineering (May
2009)

Incremental Dynamic Updates

with First-Class Contexts

Erwann Wernli, Mircea Lungu, and Oscar Nierstrasz

Software Composition Group
University of Bern, Switzerland

http://scg.unibe.ch

Abstract. Highly available software systems occasionally need to be up-
dated while avoiding downtime. Dynamic software updates reduce down-
time, but still require the system to reach a quiescent state in which a
global update can be performed. This can be difficult for multi-threaded
systems. We present a novel approach to dynamic updates using first-
class contexts, called Theseus. First-class contexts make global updates
unnecessary: existing threads run to termination in an old context, while
new threads start in a new, updated context; consistency between con-
texts is ensured with the help of bidirectional transformations. We show
how first-class contexts offer a practical and flexible approach to incre-
mental dynamic updates, with acceptable overhead.

Keywords: dynamic language, dynamic software update, reflection.

1 Introduction

Real software systems must be regularly updated to keep up with changing
requirements. Downtime may not be tolerable for highly available systems, which
must then be updated dynamically, e.g., web servers. The key challenge for
dynamically updating such systems is to ensure consistency and correctness while
maximizing availability.

The most popular scheme for dynamic updates is to interrupt the applica-
tion to perform a global update of both the code and the state of the program
[19,26,25]. Such updates are inherently unsafe if performed at an arbitrary point
in time: running threads might run both old and new code in an incoherent
manner while old methods on the stack might presume type signatures that are
no longer valid, possibly leading to run-time type errors. Quiescent global up-
date points must be selected to ensure safe updates, but such points may be
difficult to reach for multi-threaded systems [18,26]. More generally, a global
update might not be possible due to the nature of the change, for example it
would fail to update anonymous connections to an FTP server that mandates
authentication after the update: the missing information cannot be provided a
posteriori [19].

Instead of global updates, we propose incremental updates. During an incre-
mental update, clients might see different versions of the system until the update

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 304–319, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://scg.unibe.ch

Incremental Dynamic Updates with First-Class Contexts 305

eventually completes. Each version is represented by a first-class context, which
can be manipulated reflectively and enables the update scheme to be tailored
to the nature of the application. For instance, the update of a web application
can be rolled out on a per-thread, or per-session basis. In the latter case, vis-
itors always see a consistent version of the application. Such a scheme would
not be possible with a global update: one would need to wait until all existing
sessions have expired before starting new ones. The overall consistency of the
data is maintained by running bidirectional transformations to synchronize the
representations of objects shared across contexts. We show that the number of
such shared objects is significantly smaller than the number of objects local to
a context, and that this strategy fits well with the nature of the event-based
systems we are interested in.

We introduced first-class contexts in a previous workshop paper [27], but this
original proof-of-concept suffered from several practical limitations. In contrast
to our earlier work, we support now class versioning, garbage collection and lazy
transformations, and we rely on program transformations rather than changes to
the virtual machine. Bidirectional transformations have been used to cope with
version mismatches in other settings (namely C systems [4], databases [5], and
type theory [7]). However, neither of these approaches modeled context explicitly,
nor did they tackle object-oriented systems in their full complexity, taking into
consideration type safety, performance, concurrency and garbage collection. The
main contribution of this paper is to demonstrate that first-class contexts offer
a practical means to dynamically update software.

First, we present our Theseus approach informally with the help of a running
example in section 2. We present our model in detail in section 3 and our imple-
mentation in section 4. We validate our approach in section 5 and demonstrate
that it is practical. We put our approach into perspective in section 6 and we
compare it with related work in section 7 before we conclude in section 8.

2 Running Example

To illustrate our approach let us consider the implementation of one of several
available Smalltalk web servers1. Its architecture is simple; a web server listens
to a port, and dispatches requests to so-called services that accept requests and
produce responses. For the sake of our running example, let us assume that
the server keeps count of the total number of requests that have been served.
Figure 1 illustrates the relevant classes.

2.1 The Problem with Updates

Let us consider the evolution of the Response API, which introduces chunked
data transfer2, also depicted in Figure 1. Assume that instead of sending “Hello

1 See http://www.squeaksource.com/WebClient.html (The name is misleading since
the project contains both an HTTP client and server).

2 See version 75 of the project.

http://www.squeaksource.com/WebClient.html

306 E. Wernli, M. Lungu, and O. Nierstrasz

handle(req:Request)
HelloWorldService

Response resp :=
req.getResponse();
resp.send(200, "HelloWorld");

send(code,html)
Response

start(code)
sendChunk(html)
close()

Response
Response resp :=
req.getResponse();
resp.start(200);
resp.sendChunk("Hello ");
resp.sendChunk("World");
resp.close();

handle(req:Request)
HelloWorldService

start()
stop()

port
numRequests
services

WebServer

handle(req:Request)
server

AbstractService

version 1 version 2

Fig. 1. Design of the web server and a simple behavioral update

World” over the wire we need to produce a sensible answer that takes some
time. Installing such an update globally raises several challenges. First, both the
HelloWorldService and Response classes must be installed together: How can we
install multiple related classes atomically?

Second, the methods impacted by the update can be modified or added only
when no request is being served: When can we guarantee that the installation
will not interfere with the processing of ongoing requests?

Rather than performing a global update, it would be more appealing to do an
incremental update, where ongoing requests continue to be processed according
to the old code, and new requests are served using the new code. Note that the
granularity of the increment might differ depending on the update. We could
imagine that the modification of a check-out process spanning multiple pages
would imply that the increment be the web session rather than the web request.
Our solution to enable incremental updates is to reify the execution context into
a first-class entity.

Not only the behavior but also the structure of classes can also change. Fields
can be added or removed, and the type of a field can change. As a matter of
fact, in a subsequent version of the project3, the author added a field siteUrl

to the WebServer class. Unfortunately, the server is an object shared between
multiple requests, and each service holds a reference back to the server. If the
object structure is updated globally while different versions of the code run to
serve requests, old versions of methods might access fields at the wrong index.
While the problem for field addition can be solved easily by ensuring new fields
are added at the end, we need to consider type changes as well. For instance,
one could imagine that in the future newest versions will store the siteUrl as an
HttpUrl rather than a String. Therefore, the general problem remains: How can
we ensure consistent access to objects whose structure (position or type of fields)
has changed?

3 See version 82 of the project.

Incremental Dynamic Updates with First-Class Contexts 307

Our solution to ensure consistent access is to keep one representation of the
object per context and to synchronize the representations using bidirectional
transformations. Once there is no reference any longer to a context, it is garbage-
collected and the corresponding representations of objects as well.

2.2 Lifecycle of an Incremental Update

Let us consider the addition of the field siteUrl in the WebServer class in more
detail. The following steps describe how an incremental update can be installed
with Theseus4, the implementation of our approach, while avoiding the problems
presented above.

First, the application must be adapted so that we can “push” an update to
the system and activate it. Here is how one would typically adapt an event-based
server system, such as a web server.

0. Preparation. First, a global variable latestContext is added to track the
latest execution context to be used. Second, an administrative page is added
to the web server where an administrator can push updates to the system; the
uploaded code will be loaded dynamically. Third, the main loop that listens
to incoming requests is modified so that when a new thread is spawned to
handle the incoming request, the latest execution context is used. Fourth, the
thread that listens to incoming connections in a loop is modified so that it
is restarted periodically in the latest context. Note that the listening socket
can be passed to the new thread without ever being closed.

After these preliminary modifications the system can be started, and now it
supports dynamic updates. The life cycle of an update would be as follows:

1. Bootstrap. After the system bootstraps, the application runs in a default
context named the Root context. The global variable latestContext is ini-
tialized to refer to the Root context. At this stage only one context exists
and the system is similar to a non-contextual system.

2. Offline evolution. During development, the field siteUrl is added to WebServer

and other related changes are installed.
3. Update preparation. The developer creates a class called UpdatedContext,

which specifies the variations in the program to be rolled out dynamically.
This is done by implementing a bidirectional transformation that converts
the program state between the Root context and the Updated context. Ob-
jects will be transformed one at a time. By default, the identity transforma-
tion is assumed, and only a custom transformation for the WebServer class is
necessary in our case.

4. Update push. Using the administrative web interface, the developer uploads
the class UpdatedContext as well as the other classes that will be required by
the context. The application loads the code dynamically. It detects that one

4 In reference to Theseus’ paradox: if every part of a ship is replaced, is it still the
same ship?

308 E. Wernli, M. Lungu, and O. Nierstrasz

class is a context and instantiates it. Contexts are related to each other by
a ancestor-successor relationship. The ancestor of the newly created context
is the active context. The global variable latestContext is updated to refer
to the newly created instance of the Updated context.

5. Update activation. When a new incoming request is accepted, the application
spawns a new thread to serve the request in the latestContext (which is now
the Updated context) while existing threads terminate in the Root context.

6. Incremental update. When the web server is accessed in the Updated context
for the first time, the new version of the class is dynamically loaded, and the
instance is migrated. Migration is called when the object is accessed from a
different context for the first time. In our case, this results in the fields port
and services being copied, and the field siteUrl being initialized with a
default value. Fields can be accessed safely from either the Root or Updated
context, as each context has its own representation of the object. To ensure
that the count of requests processed so far, numRequests, remains consistent
in both contexts, bidirectional transformations between the representations
are used. They are executed lazily: writing a new value in a field in one
context only invalidates the representation of the object in the other context.
The representation in the other context will be synchronized only when it
is accessed again. Synchronization is called lazily when changes happen to
objects that have already been migrated.

7. Garbage collection. Eventually the listener thread is restarted, and all re-
quests in the old context terminate. A context only holds weakly onto its
ancestor so when no code runs in the old context any longer, the context is fi-
nalized. The finalization forces the migration of all objects in the old context
that have not been migrated yet. The old context and its object representa-
tions can then be garbage-collected. It must be noted that at the conceptual
level, all objects in memory are migrated. In practice, only objects that are
shared between contexts need to be migrated.

3 First-Class Context

Our approach relies on a simple, yet fundamental, language change: the state
of an object is contextual. We assume, without loss of generality, throughout
the rest of the paper that at most two contexts exist at a time, which we refer
to as the “old” and “new” contexts. Clearly, the model could be generalized to
support any number of co-existing contexts.

3.1 User-Defined Update Strategy

Contexts are first-class entities in our system. Programmers have complete con-
trol over the dynamic update of objects and classes. Contexts are ordinary in-
stances of the class Context, shown in Figure 2. A context is responsible for
maintaining the consistency of the representations of the objects belonging to
it. A context must implement methods Context.migrate{To|From} and Context.

Incremental Dynamic Updates with First-Class Contexts 309

Class resolve(String:className)
Object migrateTo(Object:newState)
Object migrateFrom(Object:oldState)
synchronizeTo(Object:oldState,Object:newState)
synchronizeFrom(Object:oldState,Object:newState)

ancestor
Context

Fig. 2. The Context class

port
nbRequests
services

old
port
nbRequests
siteUrl
services

new

migrate From

port
nbRequests
services

old
port
nbRequests
siteUrl
services

new

migrate To

port
nbRequests
services

old
port
nbRequests
siteUrl
services

new

synchronize From

port
nbRequests
services

old
port
nbRequests
siteUrl
services

new

synchronize To

"localhost"

Fig. 3. The effects of the various methods that class Context mandates. Note that the
arrow means a field copy operation and the method always applies to the new context.

synchronize{To|From} to define the update strategy. We call “transformation”
either the migration or the synchronization of the representations.

Each context has an ancestor. Since the contexts are loaded dynamically in
an unanticipated fashion the update strategy is encoded in the newest con-
text and expressed in terms of its ancestor, never in terms of its successor.
Methods Context.*From assume the old representation is up-to-date, and trans-
form the representation from the old context to the newest context; methods
Context.*To assume the new representation is up-to-date, and update the rep-
resentation from the new context to the old context. The Root context is the
only context that does not encode any transformation and has no ancestor. User-
defined contexts should default to the identity transformation for objects with
no structural changes.

Figure 3 exemplifies the differences between the four methods using the run-
ning example. Methods Context.migrate{To|From} are responsible for creating
the representation of an object upon the first access in the given context. In our
case, the migration of the web server from the old context to the new context
would copy the existing fields as is and initialize the new field siteUrl with a
predefined value. Note that in this case, the object existed before the update and
the migration from the new to the old context will never happen in practice5.
Methods Context.synchronize{To|From} are responsible for subsequent updates
of the state. In the case of our example, the field siteUrl must not be initialized
again.

5 This may not always be the case. It is possible for an object to be created in the
new context and become reachable for objects in the old context.

310 E. Wernli, M. Lungu, and O. Nierstrasz

3.2 Reified State

From the application point of view, the state of an object will depend on the ac-
tive context, and objects will have several representations. The transformations
need to access both the old and new representations of an object. This requires
the old and new representations to be reified into distinct objects, before they
are passed to the transformations. Also, transformations are never called by the
application, but by the run-time itself when necessary upon state read or write.
Transformations run outside of any context.

Messages cannot be sent to contextual objects from within a transformation,
as the system would not be able to decide what the “contextual” class of the
object is in the absence of any context. This implies that certain objects must be
primitive: they have a unique state in the system and are not subject to contex-
tual variations. This is notably the case for the reified state, but also for contexts
themselves. Immutable objects (string, numbers, etc.) are also considered to be
primitive so that they can be used within transformations.

The reified state of an object can reference other contextual objects, however.
If one has to query the state of such a dependent object from within a transfor-
mation, one would need first to obtain the reification of its state in either the
old or new context.

Identity

State

a

a1 a2

Object

A1

A

A2 Class Object

Class

Instance of
(Color marks context)
Identity
(Color marks context)

Legend

Subclass of

Fig. 4. Conceptual view of contextual objects and classes. Object and Class are prim-
itive. Object a is contextual. Object A is a first-class class that is also contextual. The
red path illustrates a reification: if the state of a is reified in the first context, one
obtains a1, which is an instance of A1.

3.3 First-Class Classes

Classes are first-class in our model. They are contextual objects as well and a
contextual class might have two versions, as depicted in Figure 4.

Conceptually, each contextual state is an instance of a contextual class, for
example, the contextual state a1 is an instance of the contextual class A. In prac-
tice, when the state is reified, the object that is obtained is not an instance of the

Incremental Dynamic Updates with First-Class Contexts 311

contextual class, but of the reification of the contextual class: if the contextual
state a1 is reified, one obtains a primitive object that is an instance of A1.

When an object is migrated, a specific version of its state is reified and passed
as a parameter to migrate{To|From}. The method must return the new version
of its reified state, e.g., migrate a1, which is an instance of A1, to a2, which is
an instance of A2. The class can change only during migration. Indeed, methods
synchronize{From|to} take as arguments the old reified state and the new reified
state, but are not able to change the class they correspond to.

Classes are migrated similarly to regular objects. A specific version of the
class is reified and passed as parameter to migrate{To|From}. The method must
return the new version of the class, e.g., migrate A1 which is an instance of Class
to A2 which is also an instance of Class. Note that Class is a primitive in the
system.

Classes are peculiar in that they can be resolved via a name, unlike “regular”
objects. Contexts are responsible for class name resolution and must implement
the method Context.resolveClass(String) which must return a specific version,
e.g., in Figure 4 “A” might resolve either to A1 or A2. The way classes are migrated
must correspond to the way classes are resolved for the system to be consistent.

3.4 Spawning Thread

A thread can have one active context at a time. A predefined context exists,
called the Root, which is the default context after startup. The runtime must be
extended with a mechanism to query the active context, and also to specify a
new context when a new thread is spawned. If none is specified, the thread will
inherit the context of its parent thread.

4 Implementation

We report on the implementation of Theseus in Pharo Smalltalk. In contrast
to our earlier work, this implementation does not require changes to the virtual
machine. A unique aspect of our implementation is that it does not rely on
proxies or wrappers, which do not properly support self-reference, do not support
adding or changing public method signature, and break reflection [24,20].

During an incremental update, a contextual object corresponds concretely to
two objects in memory, one per context. Figure 5 depicts such a setting. To
maintain the illusion that the old and new representations of an object have
the same identity, we adapt the references when necessary: for instance, if b1 is
assigned to a field of a1 in the old context, this results in b2 being assigned to
the corresponding field of a2 in the newest context.

Objects are migrated lazily, and can be either flagged as “clean” or “dirty”.
Dirty objects are out-of-date, and need to be synchronized upon the next ac-
cess. Figure 5 shows the effect of an access to the dirty representation b2, which
triggers the migration of the representation c2 it references directly. After the
synchronization, the two representations b1 and b2 of object b are clean. Subse-
quent writes to either representation would however result in the other one to

312 E. Wernli, M. Lungu, and O. Nierstrasz

shared & clean

shared & dirtyb2

a2

b1

a1

new
old

new
old

localc1

b2

a2

b1

a1

new

old

new

old

c1 c2
new

old

d1 d1

context 2
"new"

context 2
"new"

context 1
"old"

context 1
"old"

Object b is
accessed in the
new context.

b

a

c

d

conceptual graph

Fig. 5. The arrows between the four objects a,b,c,d represent references via a field.
The objects exist in two contexts. Shared objects have one representation per con-
text, which can be either “clean” or “dirty”. Objects are migrated lazily. When object
b is accessed in the new context for the first time, the representation b2 is synchro-
nized. Since b refers to c, this triggers the migration of c and the representation c2

is created, originally considered “dirty”. An access to c in the new context would cre-
ate the representation d2, etc. Dashed lines represent relationships visible only to the
implementation, not the application.

be flagged as dirty. In the case of Figure 5, if b2 is modified, b1 would be marked
as dirty.

We use bytecode rewriting to alter accesses to state and the way classes are
resolved. Concretely, an extra check is added before each state read and state
write to determine whether the object is shared between contexts. If it is, and
the object is “dirty”, it is synchronized and then marked as “clean”. In case of
state writes, the other representation is also invalidated and flagged as “dirty”.

When the old context can be garbage-collected, we must ensure that all objects
reachable from the new context have been migrated. In the case of Figure 5, the
system would force the migration of d1 before garbage collection. If the graph
of reachable objects is big, this operation can be relatively long, but can be
conducted in background with low priority.

Concurrency. We assume that the subject program already correctly synchro-
nizes concurrent reads and writes to thread-shared entities. Indeed, developers
should neither make assumptions about the atomicity of read and write opera-
tions, nor about the visibility of side-effects between threads. Reads and writes
are not atomic and concurrent accesses might trigger concurrent transformations.

Let us consider the web server of section 2. Field numRequests is synchronized
with a lock, but port is not, as the value never changes after object creation. It is
possible that numRequests is written and port is read concurrently. Two concurrent
transformationsmight overlap and the new value of the field numRequestsmight be
overwritten with the previous one. To ensure that the behavior of the original pro-
gram is not altered, methods synchronize{To|From} take an additional parameter
field in the full interface (not shown in subsection 3.1). This way, transformations
can update fields selectively. There is also a per-field dirty flag.

Incremental Dynamic Updates with First-Class Contexts 313

When an object becomes shared, it is migrated. The migration migrate{To|-
From} must however apply to the object as a whole (i.e. all its fields), as we cannot
“partially” instantiate a representation. Also, a “forced” migration might happen
due to the garbage collection of an old context, and despite a properly synchro-
nized original program, concurrent migrations might occur. To resolve this situ-
ation, the migration of an object must be exclusive. Before a migration starts, it
checks that the object was not migrated in the meantime. If this is the case it ei-
ther (i) falls back to a synchronize{To|From} (normal migration) or (ii) is skipped
(forced migration). Changes to the flag that indicates whether an object is shared,
must not be cached by the CPU andmust update the main memory (this is always
the case in Pharo, but it would require a volatile declaration in Java).

State Relocation. Transformations can be more complex than one-to-onemap-
pings. For instance, instead of keeping track of the number of requests in num-

Requests using a primitive numeric type, the developer might introduce and use
a class Counter for better encapsulation6. During the transformation, the actual
count would be “relocated” from the web server object to the counter object that
is now used. However, in this case, when the counter is incremented, the old rep-
resentation of the web server with field numRequests needs to be invalidated.
So far we have assumed that a write would invalidate only the representation
of the object written to, which is not the case any longer. To support such
transformations, the full interface enables custom invalidation on a per-field ba-
sis with Context.invalidate{To|From}(Object oldState,Object newState,String

field).

Further Details. We used a custom compiler to rewrite the bytecode of contex-
tual classes. Primitive classes (see subsection 3.2) do not require any bytecode
rewriting. In our scheme, contextual objects must have one representation per
context, even if they are structurally equivalent. This applies to classes as well
(see subsection 3.3). In Smalltalk, two instances of the same metaclass cannot
be created, so we need to clone the metaclass as well. Closures are first-class
in Smalltak. They encode offsets of bytecode in the CompiledMethod they ref-
erence. They are treated analogously to other objects. After migration, they
reference the newest version of the corresponding CompiledMethod. The active
context is stored in a thread-local variable and we add a new method to fork a
closure in a specific context, e.g.,[...] forkWith: aContext. When a closure is
forked, it becomes a shared contextual object and is migrated. As the program
proceeds, objects referenced by the closure are migrated lazily when accessed.
Contexts hold only weak references to their ancestor and implement the method
Object>>#finalize, which forces the migration of all reachable objects before the
context becomes eligible for garbage collection. The class Semaphore is treated as
primitive so that objects can be synchronized correctly. The Object class cannot
be modified easily. To keep track of the necessary information we need about

6 This would be the refactoring “Replace Data Value with Object”. See
http://www.refactoring.com/

http://www.refactoring.com/

314 E. Wernli, M. Lungu, and O. Nierstrasz

Request B(ms) T(ms)
Read # Write # Reachable

Migrated
Shared Local Shared Local Shared Local

1st request 30 60 - 128923 - 14674 - - -

2nd request 30 127 14535 130172 21 17901 1292 2781 585

3rd request 30 77 14547 120991 34 15539 1293 3311 588

Fig. 6. Time for three successive requests, one before the update, and two after the
update. T=Theseus, B=Baseline. Migrated=cumulative number of migrated objects.

objects, we maintain a dictionary that maps objects to their extra information.
Clearly, this level of indirection would need to be optimized in a full implemen-
tation.

5 Validation

Evolution. We conducted a first experiment whose goal was to assess whether
our model could support long-term evolution, that is, whether it could sustain
successive updates. We considered the small web server of section 2, which de-
spite its simplicity cannot be updated easily with global updates. We selected
the 4 last versions with effective changes: version 75 introduced chunked data
transfer, version 78 fixed a bug in the encoding of URL, version 82 introduced
siteUrl, and version 84 fixed a bug in MIME multipart support.

The listening thread that accepts incoming connections was modified to restart
itself periodically. Only one update required us to write a custom transforma-
tion: the one that introduced the siteUrl field, which we initialized to a default
value. We ran the 4 successive dynamic updates, and verified that once it was no
longer used, the old context would be garbage-collected. In this way we validated
that our implementation was coherent.

Run-time Characteristics. For the second experiment, we picked a typical
technology stack with well-known production projects: the Swazoo web server,
the Seaside web framework, the Magritte meta-description framework, and the
Pier CMS. This corresponds to several thousand classes. We were interested in
the run-time characteristics and to assess (1) whether our assumptions about
object sharing hold, and (2) what is the performance overhead. As a case study,
we considered the default web site of the Pier demo. During maintenance, only
few classes change. Most objects are migrated with the identity transforma-
tion, and only certain objects require custom transformations. The exact nature
of the transformation is not significant. Therefore, for the sake of simplicity,
we artificially updated the system and used the identity transformation for all
objects.

We were interested to assess the overhead of our implementation in three
different cases: (i) with only the old context when no object is shared, (ii) during
the incremental update when objects are shared and migrated lazily, and (iii)

Incremental Dynamic Updates with First-Class Contexts 315

after objects have been migrated but are still considered shared. To do so, we
measured the time for three successive requests: one before the update, for case
(i), and two after the update, for cases (ii) and (iii).

The results are presented in Figure 6. The overhead of our implementation
is in the best case of factor two. In the worst case when many objects must be
migrated, we have a degradation of factor four. We tracked the number of reads
and writes to objects shared between contexts, and to objects local to a context.
We clearly see that writes are one order of magnitude less frequent than reads.
About 500 objects needed to be migrated and only a minority of accesses concern
shared objects. The migrated objects and their direct references correspond to
about 1300 reachable objects. These 1300 objects reference further about 3000
objects indirectly. These 3000 objects could be reached indirectly from both
contexts, but are in practice local to a context. There are fewer than 50 writes
to shared objects and we deduce that the code of the extra logic to invalidate
representations is negligible (see section 4). In the first request, the system checks
if objects are shared, which is never the case. In the third request, the system
needs an additional check for dirtiness, which returns always false. This explains
the difference between times (i) and (iii).

Our experiment did not simulate the run-time characteristics of a production
system, however. We did not account for concurrent requests, which could cause
objects to be synchronized back and forth. Further empirical validation is wel-
come. Also, our implementation is still relatively naive (see section 4). However,
even with this implementation we achieve reasonable response time.

These results show that the approach can be made practical and fits well to
the characteristics of real-world software.

6 Discussion

Performance. A drawback of our implementation is that shared objects need
two representations, even if they are structurally identical and will use the iden-
tity transformation. Wrappers would make it possible to keep only one represen-
tation in such cases, but pose problems of self-reference, do not support adding
or changing method signatures, and break reflection [24,20,22]. The benefit of
our implementation is that object representations are really instances of their
respective classes and avoid such problems. We plan to improve performance
by not synchronizing state on each access, and instead synchronize groups of
fields at precise locations, e.g., synchronize all fields a method uses at once at
the beginning and end of the method. Lock acquisitions/releases would force the
synchronization of pending changes, similarly to memory barriers [9]. It could,
at least, be done manually for heavily-used system classes. This would preserve
concurrent behavior but increase significantly the performance.

Applicability. The impact on development is small. Developers must figure out
the “increment” they wish, which results usually in a few well-located changes
after which development proceeds as usual. Compared to other dynamic update

316 E. Wernli, M. Lungu, and O. Nierstrasz

mechanisms, there must exist a state mapping only for shared entities (not all
entities), but the mapping must be bidirectional (not unidirectional). We can
navigate the object graph during the transformation which seems to suffice for
most evolution in practice [26,17,2]. Daemon threads must be adapted to restart
periodically, but it is easy to do given their cyclic nature. Recent works showed
that most of the transformation code can be generated automatically [21] and
it would be interesting to assess whether we can generalize such results for bidi-
rectional transformations as well.

7 Related Work

A common technique to achieve hot updates is to use redundant hardware [11],
possibly using “session affinity” to ensure that the traffic of a given client is
always routed to the same server. Our approach is more lightweight and enables
the migration of the state shared across contexts, notably persistent objects.
Also, an advantage of being reflective is that the software can “patch itself” as
soon as patches become available.

A large body of research has tackled the dynamic update of applications. Sys-
tems supporting immediate and global dynamic updates have been devised with
various levels of safety and practicality. Dynamic languages other than Smalltalk
belong naturally to this category; they are very practical but not safe. Dynamic
AOP and meta-object protocols also fit into this category. Systems of this kind
have been devised for Java [6,20,15,10,3,28,23], with various levels of flexibil-
ity (a good comparison can be found in [10]). To be type-safe, HotSwap [6]
imposes restrictions and only method bodies can be updated. The most re-
cent approaches [28,23] are more flexible but can still lead to run-time errors
if changes impact active methods. Most of these approaches rely on bytecode
transformation [20,15,10,3,23] and do not address concurrency.

Several approaches have tackled the problem of safety by relying on temporal
update points when it is safe to globally update the application. Such systems
have been devised for C [11,19], and Java [26,17]. Update points might be hard
to reach, especially in multi-threaded applications [18,26], and this compromises
the timely installation of updates.

Some mechanisms diverge from a global update and enable different versions
of the code or entities to coexist. In the most simple scheme, old entities are
simply not migrated at all and only new entities use the updated type defini-
tion [13], or this burden might be left to the developer who must request the
migration explicitly [8]. The granularity of the update for such approaches is the
object; it is hard to guarantee version consistency and to ensure that mutually
compatible versions of objects will always be used. When leveraged, transac-
tions [2,22] provide version consistency but impede mutations of shared entities.
Contexts enable mutations of shared entities and can be long-lived, thanks to
the use of bidirectional transformations. With asynchronous communication be-
tween objects, the update of an object can wait until dependent objects have
been upgraded in order to remain type-safe [14].

Incremental Dynamic Updates with First-Class Contexts 317

To the best of our knowledge, only three approaches rely on bidirectional
transformations to ease dynamic updates. POLUS is a dynamic updating system
for C [4] which maintains coherence between versions by running synchroniza-
tions on writes. We synchronize lazily on read, operate at the level of objects,
and take garbage collection into account. Duggan [7] formalized a type system
that adapts objects back and forth: when the run-time version tag of an object
doesn’t match the version expected statically, the system converts the object
with an adapter. We do not rely on static typing but on dynamic scoping with
first-class contexts, we address garbage collection, concurrency, and provide a
working implementation. Oracle enables a table to have two versions that are
kept consistent thanks to bidirectional “cross-edition triggers” [5].

Schema evolution addresses the update of persistent object stores, which
closely relates to dynamic updates. To cope with the volume of data, migra-
tions should happen lazily. To be type-safe, objects should be migrated in a
valid order (e.g., points of a rectangle must be migrated before the rectangle
itself) [2,22]. Our approach migrates objects lazily, and avoids the problem of
ordering by keeping both versions as long as necessary.

Class loaders [16] allow classes to be loaded dynamically in Java. Types seen
within a class loader never change, which ensures type safety and version con-
sistency, similarly to our notion of context. Two versions of a class loaded by
two different class loaders are different types, which makes sharing objects be-
tween class loaders complicated. This is unlike our approach which supports the
migration of classes and objects between contexts.

Context-oriented programming [12] enables fine-grained variations based on
dynamic attributes, e.g., dynamically activated “layers”. It focuses on behavioral
changes with multi-dimensional dispatch, and does not address changing the
structure and state of objects as is necessary for dynamic updates. There exist
many mechanisms to scope changes statically, e.g., Classboxes [1], but they are
not used to adapt software at run-time.

8 Conclusion

Existing approaches to dynamically update software systems entail trade-offs
in terms of safety, practicality, and timeliness. We propose a novel, incremental
approach to dynamic software updates. During an incremental update, clients
might see different versions of the system, which avoids the need for the system
to reach a quiescent, global update point.

Each version of the system is reified into a first-class context. Existing objects
are gradually migrated to the new context, and objects that are shared between
old and new contexts are kept consistent with the help of bidirectional transfor-
mations. Our validation with real-world systems indicates that only a fraction
of accesses concern such objects.

In two experiments we have demonstrated that our current implementation
is practical and flexible, with reasonable overhead. This work opens up several
research directions: exploring different granularity of increments, providing de-
veloper tools to leverage contexts, and improving further the performance.

318 E. Wernli, M. Lungu, and O. Nierstrasz

Acknowledgments. We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Synchronizing Models and
Code” (SNF Project No. 200020-131827, Oct. 2010 - Sept. 2012).

References

1. Bergel, A.: Classboxes — Controlling Visibility of Class Extensions. Ph.D. thesis,
University of Bern (November 2005)

2. Boyapati, C., Liskov, B., Shrira, L., Moh, C.H., Richman, S.: Lazy modular up-
grades in persistent object stores. SIGPLAN Not. 38(11), 403–417 (2003)

3. Cech Previtali, S., Gross, T.R.: Aspect-based dynamic software updating: a model
and its empirical evaluation. In: Proceedings of the Tenth International Conference
on Aspect-Oriented Software Development, AOSD 2011, pp. 105–116. ACM, New
York (2011)

4. Chen, H., Yu, J., Hang, C., Zang, B., Yew, P.C.: Dynamic software updating using
a relaxed consistency model. IEEE Trans. Software Eng. 37(5), 679–694 (2011)

5. Choi, A.: Online application upgrade using edition-based redefinition. In: Pro-
ceedings of the 2nd International Workshop on Hot Topics in Software Upgrades,
HotSWUp 2009, pp. 4:1–4:5. ACM, New York (2009)

6. Dmitriev, M.: Towards flexible and safe technology for runtime evolution of Java
language applications. In: Proceedings of the Workshop on Engineering Complex
Object-Oriented Systems for Evolution, in association with OOPSLA 2001 (Octo-
ber 2001)

7. Duggan, D.: Type-based hot swapping of running modules. In: Intl. Conf. on Func-
tional Programming, pp. 62–73 (2001)

8. Gemstone/s programming guide (2007)
9. Gharachorloo, K.: Memory consistency models for shared-memory multiprocessors.

Tech. rep., DEC (1995)
10. Gregersen, A.R., Jørgensen, B.N.: Dynamic update of Java applications — bal-

ancing change flexibility vs programming transparency. J. Softw. Maint. Evol. 21,
81–112 (2009)

11. Hicks, M., Nettles, S.: Dynamic software updating. ACM Transactions on Pro-
gramming Languages and Systems 27(6), 1049–1096 (2005)

12. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. Jour-
nal of Object Technology 7(3) (March 2008)

13. Hjálmtýsson, G., Gray, R.: Dynamic C++ classes: a lightweight mechanism to
update code in a running program. In: Proceedings of the annual conference on
USENIX Annual Technical Conference, ATEC 1998, p. 6. USENIX Association,
Berkeley (1998)

14. Johnsen, E.B., Kyas, M., Yu, I.C.: Dynamic Classes: Modular Asynchronous Evo-
lution of Distributed Concurrent Objects. In: Cavalcanti, A., Dams, D.R. (eds.)
FM 2009. LNCS, vol. 5850, pp. 596–611. Springer, Heidelberg (2009)

15. Kabanov, J.: Jrebel tool demo. Electron. Notes Theor. Comput. Sci. 264, 51–57
(2011)

16. Liang, S., Bracha, G.: Dynamic class loading in the Java virtual machine. In:
Proceedings of OOPSLA 1998. ACM SIGPLAN Notices, pp. 36–44 (1998)

17. Malabarba, S., Pandey, R., Gragg, J., Barr, E., Barnes, J.F.: Runtime Support
for Type-Safe Dynamic Java Classes. In: Bertino, E. (ed.) ECOOP 2000. LNCS,
vol. 1850, pp. 337–361. Springer, Heidelberg (2000)

Incremental Dynamic Updates with First-Class Contexts 319

18. Neamtiu, I., Hicks, M.: Safe and timely updates to multi-threaded programs. In:
Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, pp. 13–24. ACM, New York (2009)

19. Neamtiu, I., Hicks, M., Stoyle, G., Oriol, M.: Practical dynamic software updating
for C. In: Proceedings of the 2006 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2006, pp. 72–83. ACM, New York
(2006)

20. Orso, A., Rao, A., Harrold, M.J.: A Technique for Dynamic Updating of Java
Software. In: IEEE International Conference on Software Maintenance, p. 0649+
(2002)

21. Piccioni, M., Oriol, M., Meyer, B., Schneider, T.: An ide-based, integrated solution
to schema evolution of object-oriented software. In: ASE, pp. 650–654 (2009)

22. Pina, L., Cachopo, J.: Dustm - dynamic software upgrades using software transac-
tional memory. Tech. rep., INESC-ID (2011)

23. Pukall, M., Kästner, C., Cazzola, W., Götz, S., Grebhahn, A., Schröter, R., Saake,
G.: Flexible dynamic software updates of java applications: Tool support and case
study. Tech. Rep. 04, School of Computer Science, University of Magdeburg (2011)

24. Pukall, M., Kästner, C., Saake, G.: Towards unanticipated runtime adaptation
of java applications. In: APSEC 2008: Proceedings of the 2008 15th Asia-Pacific
Software Engineering Conference, pp. 85–92. IEEE Computer Society, Washington,
DC (2008)

25. Rivard, F.: Smalltalk: a reflective language. In: Proceedings of REFLECTION
1996, pp. 21–38 (April 1996)

26. Subramanian, S., Hicks, M., McKinley, K.S.: Dynamic software updates: a VM-
centric approach. In: Proceedings of the 2009 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2009, pp. 1–12. ACM, New
York (2009)

27. Wernli, E., Gurtner, D., Nierstrasz, O.: Using first-class contexts to realize dy-
namic software updates. In: Proceedings of International Workshop on Smalltalk
Technologies (IWST 2011), pp. 21–31 (2011),
http://esug.org/data/ESUG2011/IWST/Proceedings.pdf

28. Würthinger, T., Wimmer, C., Stadler, L.: Unrestricted and safe dynamic code
evolution for java. Science of Computer Programming (July 2011)

http://esug.org/data/ESUG2011/IWST/Proceedings.pdf

Elucidative Development

for Model-Based Documentation�

Claas Wilke, Andreas Bartho, Julia Schroeter, Sven Karol, and Uwe Aßmann

Institut für Software- und Multimediatechnik
Technische Universität Dresden
D-01062, Dresden, Germany

{claas.wilke,andreas.bartho,julia.schroeter,

sven.karol,uwe.assmann}@tu-dresden.de

Abstract. Documentation is an essential activity in software develop-
ment, for source code as well as modelling artefacts. Typically, documen-
tation is created and maintained manually which leads to inconsistencies
as documented artefacts like source code or models evolve during develop-
ment. Existing approaches like literate/elucidative programming or lit-
erate modelling address these problems by deriving documentation from
software development artefacts or vice versa. However, these approaches
restrict themselves to a certain kind of artefact and to a certain phase
of the software development life-cycle. In this paper, we propose elu-
cidative development as a generalisation of these approaches supporting
heterogeneous kinds of artefacts as well as the analysis, design and im-
plementation phases of the software development life-cycle. Elucidative
development links source code and model artefacts into documentation
and thus, maintains and updates their presentation semi-automatically.
We present DEFT as an integrated development environment for elu-
cidative development. We show, how DEFT can be applied to language
specifications like the UML specification and help to avoid inconsistencies
caused by maintenance and evolution of such a specification.

Keywords: Elucidative programming, literate programming, literate
modelling, automated documentation, automated specification, UML.

1 Introduction

To ensure comprehensibility and reusability, documentation is essential in the
software development process. Source code belonging to frameworks that shall
be reused by other developers need to be documented, as developers have to
understand how to instantiate its classes or to invoke its operations. Besides,
development models intended for reuse or explanatory reasons have to be do-
cumented as well. Finally, modelling languages or frequently used metamodels
need to be documented (typically as specifications) to explain their concepts and
intensions.

� An extended version of this paper has been published as a technical report [1].

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 320–335, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Elucidative Development for Model-Based Documentation 321

Today, documentation is mostly created and maintained manually. Textual
documents are maintained using text processing software, code listing and dia-
grams are created and pasted into these documents manually. This leads to
problems, once documented software or development artefacts evolve: The do-
cumentation needs to be maintained and artefact changes have to be reflected
in the documentation. Manual maintenance can cause inconsistencies, as sec-
tions requiring a revision could be overlooked. Furthermore, it is possible that
not all occurrences of evolved artefacts are updated in the documentation, lead-
ing to inconsistencies and contradictions. A good example for a documentation
with many inconsistencies caused by evolution and maintenance is the Unified
Modeling Language (UML) specification [2], which does not document a tool or
a framework but a modelling language used by a large community of software
developers. Since its first revision, the UML specification documents have been
maintained manually, and as a matter of fact, current versions contain many
errors and contradictions [3–8].

To solve these kinds of problems, approaches such as literate programming
(LP) [9], literate modelling (LM) [10] and elucidative programming (EP) [11]
emphasise a documentation-centric style of programming or modelling. However,
they only partially cover the software life-cycle restricting themselves to source
code documentation during the implementation phase or the documentation of
UML diagrams during the early stages of software analysis. Furthermore, to sup-
port documentation in model-driven software development (MDSD) processes,
a holistic approach would have to consider documentation of artefacts from tex-
tual and graphical domain-specific modelling languages (DSMLs), metamodels
and general purpose modelling languages, which is not the case for the current
approaches. In this paper, we propose elucidative development (ED) as a holistic
approach to create and maintain documentation, which covers multiple phases of
the software development life-cycle and also supports documentation in MDSD
processes. In fact, ED is a generalisation of LP, LM and EP. Furthermore, we
present the Development Environment For Tutorials (DEFT), a tool supporting
ED. We show how documentation can be created and maintained with DEFT
and apply ED to a short excerpt from the UML specification to show, how
inconsistencies in evolving specifications can be avoided.

The remainder of this paper is structured as follows. First, we introduce ED
and DEFT in Sect. 2. In Sect. 3, we present an excerpt from the UML superstruc-
ture as a usage example for ED and show, how DEFT can be used to maintain
its evolution. Afterwards, we discuss our approach in Sect. 4 and present related
work in Sect. 5. Finally, we conclude the paper and give an outlook for future
work in Sect. 6.

2 From Literate Programming to Elucidative
Development

In this section we introduce ED as a paradigm for documenting arbitrary software
and model artefacts consistently. ED is a generalisation of the EP paradigm, pro-
posed by Nørmark [12], which itself is a variant of LP introduced by Knuth [9].

322 C. Wilke et al.

Both, EP and LP put strong emphasis on supporting developers in writing and
maintaining program source code and its documentation in parallel during the
implementation phase of the software life-cycle. In the following, we briefly in-
troduce LP, EP and LM—a further variant of LP for documenting UML anal-
ysis models. Afterwards, we discuss the ED approach and compare it to the
aforementioned documentation approaches. Subsequently, we present DEFT,1

an Eclipse-based tool with ED support.

2.1 Literate Programming and Related Documentation Approaches

LP is an integrated approach for writing documentation and programming within
the same file format. Code and text are intertwined in the same document by em-
bedding the source code into the documentation files. Hence, programming takes
place in the documentation environment, e.g., a TEX [13] editor. Consequently,
before the program can be executed or the final documentation is rendered,
pre-compilers (called weave and tangle) have to extract printable TEX documen-
tation and compilable source code from the documentation files. This way, LP
completely avoids inconsistencies between source code and code listings in the
rendered documentation. However, LP has drawbacks in large software projects:
The program is scattered across the documentation files and every code detail
has to be described textually. As a result, the program is fragmented and inter-
twined with pieces of text which makes it harder to understand its real structure
for average programmers who expect programs to be organised along a certain
structure determined by the concepts of the programming language.

EP tries to overcome these problems by strictly separating documentation
and source code artefacts. The connection between them is maintained within
an integrated elucidative programming environment. As a result, programming
language semantics such as name analysis can be reused for consistency checks
in the documentation files. Furthermore, the granularity of the documentation
is adjusted to its actual purpose, e.g., abstract interface descriptions as well as
complete source code descriptions are possible. In comparison to LP, consistency
between code listings and the actual program code is ensured by adding so-called
relations between locations in the documentation and elements of the source
code. The entirety of documentation, source code, and relations between those
two is called an elucidative program [11]. If the source code evolves, the final
documentation can be regenerated. It is possible to identify inconsistencies to
some extent, e.g., relations which refer to removed or renamed source code.

The LM [10] approach applies concepts of LP to high-level UML analysis
models. The main focus of LM lies in improving the communication between
developers, requirements engineers and other stakeholders who are not educated
in UML and, thus, have difficulties in interpreting UML diagrams. Similar to
LP, models and documentation are intertwined within the same document –
the literate model. However, recent efforts also move LM in the direction of
separating documentation and the documented artefacts: The Literate Modelling

1 http://deftproject.org/

http://deftproject.org/

Elucidative Development for Model-Based Documentation 323

Table 1. Comparison of different advanced documentation approaches

documen-
tation
format

artefact
support

artefact
location

tool
support

operations software
dev. phases

literate
program-
ming (LP)

typesetting
language
(e.g. TEX)

homogenous
(source code)

integrated pre-compiler
(e.g.
CWEB [13])

weave, tangle implementa-
tion

elucidative
program-
ming (EP)

typesetting
language

homogenous
(source code)

separate elucidative
IDE (e.g.
Java Elu-
cidator [15])

embed implementa-
tion

literate
modelling
(LM)

WYSIWYG
format

homogenous
(UML dia-
grams)

separate literate
model edi-
tor (e.g.
LiMonE [14])

embed analysis

elucidative
develop-
ment (ED)

WYSIWYG
format or
typesetting
language

heterogeneous
(models,
source code,
XML . . .)

separate elucidative
development
environ-
ment (e.g.
DEFT [16])

hot update,
transconsis-
tency

analysis,
design,
implementa-
tion

Editor (LiMonE) [14] implementation keeps both separate and combines tex-
tual model documentation with Object Constraint Language (OCL) consistency
constraints derived from natural language descriptions.

The first three rows of Tab. 1 contrast LP, EP, and LM with each other.
As an essence, it can be seen that each of them is restricted to a single phase
in the software life-cycle and to a single type of artefact, i.e., source code in
a certain (implementation-dependent) programming language or artefacts in a
certain modelling language.

2.2 Elucidative Development

ED generalises the aforementioned documentation approaches in two ways (cf.
last line of Tab. 1). First, it covers the analysis, development and implementa-
tion phases in software development. Hence, programmers, designers and other
stakeholders can share their views on the system at different levels of abstraction.
Second, ED provides a conceptual grounding for the documentation of hetero-
geneous kinds of software artefacts, e.g., formalised requirements specifications,
models, or source code. This is essential for model-driven software development
processes, where many different metamodel-based languages are used to imple-
ment a system by transformation and code generation. As a consequence, an
elucidative development environment (EDE) has the following basic require-
ments which go beyond the requirements known from EP, LP and LM tools:

Support for model transformations. Different kinds of languages require
different kinds of transformations to prepare artefacts to be displayed in a
documentation file. This includes model-to-model transformations (e.g., ope-
rations to filter elements not being included in the documentation), model-
to-text transformations (e.g., deriving textual artefact representations) and
model-to-image transformations (e.g., converting a diagram into an image).

324 C. Wilke et al.

Fig. 1. Dataflow diagram of an ED document

Composition of model transformations. The aforementioned transforma-
tions need to be composable to produce images or code listings that integrate
with the surrounding hand-written text and other parts in the documenta-
tion file. Valid compositions are determined by the types of input and output
ports of the participating transformations. Consequently, the compositional
relation of transformations, data and the documentation text form a directed
bigraph, which represents the documents architecture [17]. Fig. 1 shows the
architecture of an hypothetic ED document. Assume a project that imple-
ments an interpreter for a DSML in Java. The corresponding Java source
code is extracted from a Java class model and transformed into a styled
code listing which is finally embedded in the documentation file. To support
the documentation, a statechart image is generated from a UML statechart
diagram. The statechart specification originates from the design phase. Fi-
nally, the documentation includes parts from the metamodel specification of
the DSML which are relevant for documenting the interpreter.

Hot update and immediate invalidation. As the documented system arte-
facts and the documentation itself evolve, frequent updates have to be trig-
gered over time. ED documents are active documents [17]. An active docu-
ment triggers an update operation as soon as a change in a source artefact
is observed. Due to its explicit architecture, the document (or the EDE,
respectively) is aware of all places where artefact representations to be re-
computed occur. Since the required transformations may contain complex
computations, the corresponding invalid parts of the document are marked
until the recomputation is finished and the document becomes consistent
again. In [17], this kind of update is called a hot update while an active
document with hot update is called a transconsistent document. Transcon-
sistency is closely related to the terms transclusion and transclude, which
both originate from the early hypertext systems [18]. Nelson defines trans-
clusion as “the same content knowable in more than one place” [19].

In the following, we introduce our tool DEFT. DEFT supports the features
discussed above to a large extent and, thus, is a good candidate for supporting
an ED processes.

Elucidative Development for Model-Based Documentation 325

Fig. 2. Supported artefacts and operations in DEFT

2.3 The Development Environment for Tutorials (DEFT)

An EDE supports developers in creating and maintaining elucidative documenta-
tions. It also provides automatic notifications and further support for hot updates
of the included source artefacts once the documented concepts evolve. DEFT is
an implementation of such an EDE. It was originally designed to keep the docu-
mentation of whole software systems and tutorials up to date. As we show in this
paper, it is also feasible for writing and maintaining large language specification
documents.

Out of the box, DEFT supports the documentation of artefacts that occur
in usual software development or MDSD, such as Java source files and Eclipse
Modeling Framework (EMF) artefacts (cf. Fig. 2, top). Furthermore, the inte-
gration of DEFT with EMF allows users to document arbitrary languages based
on Ecore, which is an Essential MOF (EMOF) implementation for Java. Con-
sequently, DEFT supports the documentation of the UML metamodel based
on EMF. For textual modelling, DEFT is integrated with EMFText [20] such
that support for EMFText-based languages is available. OCL constraints can
be documented by using the EMFText-based OCL implementation of Dresden
OCL [21]. For graphical modelling, the Ecore diagram editors of the EMF are
supported. The integration of UML models and diagrams is current work in
progress. As documentation formats, DEFT supports LATEX and Open Document
Format (ODF) documents (cf. Fig. 2, bottom).2 A documentation file produced
with DEFT can contain manually written parts like continuous text, as well as
transcluded elements like code listings or images. These elements can be derived
from all the input formats described above and can be converted or formatted
before embedded into the specification document (cf. Fig. 2, center). For exam-
ple, OCL constraints can be transformed into code listings, UML diagrams can
be rendered as images, or enumerations can be generated from UML metamodel
elements (e.g., class properties and operations). If a modification of an artefact
requires a modification of a transcluded element in the documentation, DEFT
updates the artefact representation automatically. The user interface of DEFT is

2 These formats have been selected for as they are open an broadly used. Of course,
similar formats, e.g., Office Open XML (docx) could be supported as well.

326 C. Wilke et al.

divided in multiple areas3. A project explorer presents documentation chapters,
source artefacts, and their relations. The largest part of the screen is covered
by the writing area, where the documentation text can be edited. Relations
to artefacts can be added to the document using a wizard. By default, DEFT
does not display the relations directly. Instead, the computed representation is
transcluded. Finally, DEFT provides a task view which tells the author where
changes in the source artefacts took place, where the documentation has been
updated and, thus, where proofreading is necessary.

3 The UML Use Case for Elucidative Development

To demonstrate the advantages of ED in contrast to other documentation ap-
proaches, we decided to use an excerpt from the UML 2 specification. In this
section, we first identify different kinds of consistency problems and give exam-
ples for them within the current UML standard. Afterwards, we apply ED to
the example and show, how ED can avoid the current inconsistency problems of
the UML specification.

3.1 Inconsistencies in UML 2.4.1

Since its first specification, the UML has been extended and revised multiple
times. A major change in the UML was the specification of UML 2.0 in 2005
which contained many new concepts. However, further revisions of UML 2 added
many inconsistencies to the specification document. As a small example, we com-
pare Sect. 7.3.37 of the UML 2.4.1 specification [22, p. 108–110] with the same
section of the UML 2.0 specification document [23, p. 103–105]. It specifies the
class Package within the UML Kernel package as shown in Fig. 3. Changes be-
tween UML 2.0 and UML 2.4.1 are highlighted, as well as inconsistencies that
have not been revised, yet. The example section contains a short description of
the Package class, its inheritance relationships, attributes, associations, cons-
traints, additional operations, and semantics.4

The major changes of the example section are located within the Attributes
and the Associations subsections, as shown in Fig. 3,[A]. A new attribute URI

is introduced. The association ownedMember is renamed to packagedElement.
This association and the ownedType association are marked as derived, which
is indicated by a leading backslash. Furthermore, the package association is
removed. References to the renamed element are revised as well (e.g., the subsets
relationship from nestedPackage to ownedMember). However, these references
are sources of potential errors as the complete specification has to be inspected
to check whether other references to the modified element exist that must be
updated as well. For example, the renaming of the ownedMember association leads
to an inconsistency within the Additional Operations subsection where an OCL

3 A screenshot will be presented in Sect. 3.2, in context of the case study.
4 For complexity reasons, the graphical notation, presentation options, and examples
following in the specification are not considered as part of our example.

Elucidative Development for Model-Based Documentation 327

Legend: Changes performed between UML 2.0 and 2.4.1
Semantic error in OCL expression introduced by a metamodel modification between UML 2.0 and 2.4.1
Syntactic and semantic error in OCL expression, not revised in UML 2.4.1

7.3.37 Package (from Kernel)
A package is used to group elements, and provides a namespace for the grouped elements.

Generalizations
• “Namespace (from Kernel)” on page 95
• “PackageableElement (from Kernel)” on page 105

Description
A package is a namespace for its members, and may contain other packages. Only packageable elements can be owned members of
a package. By virtue of being a namespace, a package can import either individual members of other packages, or all the members
of other packages.
In addition a package can be merged with other packages.

Attributes
No additional attributes

Associations
• /nestedPackage: Package [*] References the owned members that are Packages. Subsets

Package::ownedMember
• /ownedMember: PackageableElement [*] Specifies the members that are owned by this Package. Redefines

Namespace::ownedMember.
• /ownedType: Type [*] References the owned members that are Types. Subsets

Package::ownedMember
• package: Package [0..1] References the owning package of a package. Subsets

NamedElement::namespace
• packageMerge: Package [*] References the PackageMerges that are owned by this Package. Subsets

Element::ownedElement
• nestingPackage: Package [0..1] References the Package that owns this Package. Subsets

NamedElement::namespace

Constraints
[1] If an element that is owned by a package has visibility, it is public or private.
self.ownedElements->forAll(e | e.visibility->notEmpty() implies e.visbility = #public or e.visibility = #private)

Additional Operations
[1] The query mustBeOwned() indicates whether elements of this type must have an owner.
Package::mustBeOwned() : Boolean
mustBeOwned = false
[2] The query visibleMembers() defines which members of a Package can be accessed outside it.
Package::visibleMembers() : Set(PackageableElement);
visibleMembers = member->select(m | self.makesVisible(m))
[3] The query makesVisible() defines whether a Package makes an element visible outside itself. Elements with no visibility
and elements with public visibility are made visible.
Package::makesVisible(el: Namespaces::NamedElement) : Boolean;
pre: self.member->includes(el)
makesVisible =

-- case: the element is in the package itself
(ownedMember->includes(el)) or
-- case: it is imported individually with public visibility
(elementImport->select(ei|ei.importedElement = #public)->collect(ei|ei.importedElement)->includes(el)) or
-- case: it is imported in a package with public visibility
(packageImport->select(pi|pi.visibility = #public)->collect(pi|pi.importedPackage.member->includes(el))->notEmpty())

Semantics
A package is a namespace and is also a packageable element that can be contained in other packages.
The elements that can be referred to using non-qualified names within a package are owned elements, imported elements,
and elements in enclosing (outer) namespaces. Owned and imported elements may each have a visibility that determines
whether they are available outside the package.
A package owns its owned members, with the implication that if a package is removed from a model, so are the elements
owned by the package.
The public contents of a package are always accessible outside the package through the use of qualified names.

A

C

C

C

B

C
B
A

Fig. 3. Excerpt from UML 2.0 and its modification until UML 2.4.1 (cf. [23, p. 103f])

328 C. Wilke et al.

expression references this association (cf. Fig. 3,[B]). This is not surprising since
obviously the OCL expressions used within the UML specification have not been
revised since their original definition in UML 2.0 and have been specified without
checking their syntax and static semantics [8]. Thus, the expressions contain
various syntactic and semantic inconsistencies (cf. Fig. 3,[C]). Summarising, we
identified four kinds of problems5 occurring during specification maintenance:

(P1) Textual Representation: Modification of elements (e.g., rename, remove,
insert) specified in the language, entails the update of enumerations in the speci-
fication containing those elements. For example, the renaming of the association
ownedMembermust be performed in the Associations subsection. Neglecting this
leads to inconsistent documents.

(P2) Continuous Text: Missing updates of continuous text that documents and
clarifies specification elements. For instance, if the class Package is renamed, the
introduction of the section and the Description subsection need to be revised
accordingly as they describe the Package class.

(P3) Graphical Representation: The concepts of UML are specified graphically
as class diagrams. Thus, if any property or association of the Package class
is modified, all diagrams containing this class must be updated as well. For
example, the specification contains the Fig. 7.14 documenting the Package class
and its relations [23, p. 31] that must be revised after modifications of this class.

(P4) External References: Other content referring to the specified model ele-
ments (e.g., the OCL expressions) must be updated and modified as well. This
is a task that is obviously too complicated to be performed manually, as the
UML specification contains many inconsistency problems of this category [8].

3.2 UML Language Specification with DEFT

In this section, we show how DEFT supports ED exemplified by the UML speci-
fication excerpt presented above. The example is realised using the EMF-based
UML metamodel of Eclipse Eclipse Model Development Tools (MDT). For the
specification of derived operations and OCL well-formedeness rules (WFRs) we
use Dresden OCL. Finally, a diagram representation of the Package class and
its relations to other classes is created using the graphical Ecore editor of EMF.

For the UML example we transclude diagrams and OCL files in a specification
document. This includes the selection which parts (e.g., which lines from an
OCL file) shall be presented in the document. That way, almost all sections
from the given example can be transcluded into the document (cf. Fig. 4). The
introductory paragraph is derived from an annotated comment of the Package

class. The Generalizations, Attributes, and Associations sections are taken from
the Package class and its relations to other classes. The content of those sections

5 Three out of the four problem kinds exist within our small example.

Elucidative Development for Model-Based Documentation 329

Fig. 4. Transclusion graph for an elucidative UML specification

is directly derived from the metamodel and formatted using rendering templates.
The Constraints and Additional Operations sections are transcluded from the
linked OCL files. Only the sections Descriptions and Semantics are not present
in the artefacts and must therefore be written directly into the document.

Fig. 5 shows a snippet of the elucidative UML specfication in DEFT accord-
ing to the transclusion graph in Fig. 4. On the left side of the screen the project
content is shown in the project explorer. It presents chapters, source artefacts like
the UML metamodel and OCL constraints, and their relations side by side. The
actual specification document is displayed in the writing area and can be edited
using OpenOffice. As visualised in Fig. 5, the artefact representations in the do-
cumentation file are transcluded from the artefacts added to the project explorer.

To solve the identified problems (P1) to (P4), model artefacts and the speci-
fication document have to be modified concurrently. DEFT supports the author
with the revision of the specification. If a referenced model element changes,
DEFT immediately updates the corresponding elements in the documentation
and notifies the author. The changes are displayed in the task view (cf. Fig. 5),
which helps to keep track of the changed specification parts.

(P1) problems can be avoided by transcluding textual model descriptions. If
the models are modified, DEFT will update the descriptions automatically. (P2)
problems can be handled in a similar way. Words relating to names or content of
the UML metamodel (e.g., package or namespace in Fig. 3) are transcluded as
well, such that after a renaming, the specification is automatically updated and
the new names appear in the document. However, if the changes are more com-
plex or the semantics of the model changes, manual updates guided by DEFT

330 C. Wilke et al.

Transclude

Change Notification

Legend:

Project explorer Writing area

Task View

Fig. 5. Screenshot of the specification document in DEFT

hints might be necessary. (P3) problems are also solved automatically. The out-
dated graphical representation will be replaced by the current version of the
diagram. Finally, (P4) problems can be avoided if the OCL constraints are re-
parsed after metamodel modifications and it is checked whether they are still
consistent w.r.t. their static semantics. Possible modifications are immediately
reflected in the specification.

Maintenance of the specification is expected to be rerun in multiple iterations.
After each modification of the specified metamodel the documentation can be
revised semi-automatically using DEFT. A revised specification can be released
and the next maintenance cycle can be performed. This iterative process, using
small changes and fast iterations helps to avoid inconsistencies as each modi-
fication of the metamodel or related artefacts is immediately displayed in the
specification via hot update.

4 Discussion

After presenting ED and applying it to an excerpt of the UML specification we
now discuss the resulting benefits. In our opinion ED can help to achieve more

Elucidative Development for Model-Based Documentation 331

consistent language documentation and more formal specifications in MDSD
processes. As our results from earlier work demonstrated, almost every second
OCL constraint of the UML 2.4.1 specification contains errors that are avoidable
by applying ED [8]. A simple integration of model-based techniques and OCL
parsing into the specification process is sufficient to solve problems as syntacti-
cal and type checking errors (about 61.6% of all inconsistencies identified in [8]).
Besides, the use of transclusion avoids inconsistencies due to overlooked modifi-
cations caused evolution of the UML metamodel (another 22.1% of all inconsis-
tencies identified in [8]). Furthermore, ED allows short maintenance iterations as
the maintenance of source artefacts and the specification are intertwined. Thus,
requested changes are realised and newly revised specifications can be released
quickly and regularly. Another advantage of using source artefacts during the
specification process is that models can be shipped together with the specifica-
tion. For example, the specified UML metamodel and parsable OCL files can be
provided.

However, creating an initial documentation using DEFT can at first be time-
consuming and more complicated than using a non-elucidative process, since the
transclusion relations have to be marked-up and configured. However, we argue
that ED pays off when the documentation (or the system) evolves. Besides, for
documents like the UML specification—where similar sections occur for all the
different classes defined in the standard—a script could help to generate a first
version of the documentation containing similar information transcluded from all
the different artefacts. Such a script would have to be written once, generating
the content for all metaclasses, whereas otherwise, the same structure would
have to be created manually again and again.

The UML specification process could also be enhanced using a standard tem-
plate engine. However, instead applying ED with DEFT has several advantages.
First, the only purpose of DEFT is creating and maintaining large documenta-
tion files in an author-oriented way. Hence, it offers more appropriate abstrac-
tions and a WYSIWYG editor while a template engine is more like a simple
programming language and requires a certain amount of extra learning effort.
Second, a template engine is not aware of the involved artefact relations, thus
there is no support for hot update. Regeneration has to be triggered manually
and involves the whole documentation, in the case of the UML specification
this is time-consuming. Third, it is more difficult to identify changes that need
to be proofread by humans. Finding differences between new and previous ver-
sions requires to run a diff tool. With standard diff tools, this is cumbersome to
examine.

5 Related Work

In this section we discuss tools that are related to DEFT and applicable for
maintaining documentations and specifications. Furthermore, we present work
discussing the soundness of the UML specification and quality of WFRs within
this specification.

332 C. Wilke et al.

Documentation in MDSD processes. Besides DEFT, other tools for documenta-
tion in MDSD processes exist. Topcased6 is an open-source tool for model-driven
development. It is based on the modelling capabilities of the Eclipse MDT but
comes together with its own editors for graphical UML modelling and OCL edit-
ing support. As part of the tool suite, Topcased Gendoc allows the generation
of textual documentations for UML models. Templates consisting of explana-
tory descriptions of the modelled concepts can be defined, including queries
against UML models to derive explanatory figures and diagrams. It is possible
to generate reports similar to the documents maintained with DEFT. However,
Topcased Gendoc uses a completely generative approach to create model docu-
mentations and, thus, suffers from the shortcomings for generative approaches as
discussed in Sect. 4. The Eclipse-based tool suite Business Intelligence Reporting
Tools (BIRT) can be used to generate business reports from data maintained in
databases.7 It uses a template-based approach for the generation of textual re-
ports, including tables and charts derived from the documented data. Although
BIRT allows the creation and maintenance of documents, its major focus is on
the generation of database reports and not on the documentation of modelling
artefacts, such as EMF models. Furthermore, similar to Topcased Gendoc, BIRT
only supports a model-based an no elucidative documentation process. Intent8

is a recent documentation project inspired by LP. Documentation is created and
maintained in a textual DSML that can express textual documentation as well as
EMF-based artefacts (e.g., EMF model elements). The described artefacts and
the documentation are derived from this description.9 Besides models, Intent also
supports other artefacts expressible using EMF (e.g., source code). The LiMonE
[14] tool uses natural language processing for improving documentation consis-
tency. For example, a sentence like “A Class can have multiple Operations” can
be transformed into an OCL query that checks that the association between the
classes Class and Operation has the right multiplicity in the UML metamodel.
By combining DEFT and LiMonE, the elucidative process outlined in this paper
could be further improved, as consistency checks on explanatory descriptions
within the UML specification would be possible. Theoretically, even hints could
be derived to inform the user which sentences within the specification have to be
modified in which way to update the descriptions w.r.t. the modified metamodel.

Consistency of UML Specifications. A lot of related work with focuses on consis-
tency of the UML specification exits. One of the most well-known publications in
this domain is an article by Henderson-Sellors [4] that documents the result of a
panel discussion of a group of modelling experts documenting their impressions of
UML 2.0. Although the article addresses various kinds of problems in UML, these
descriptions include the necessity of future revisions to improve the specification
and the finding that many definitions are scattered throughout the specification.

6 http://www.topcased.org/
7 http://www.eclipse.org/birt/
8 http://eclipse.org/intent/
9 According to http://wiki.eclipse.org/Intent/Architecture, visited in March
2012.

http://www.topcased.org/
http://www.eclipse.org/birt/
http://eclipse.org/intent/
http://wiki.eclipse.org/Intent/Architecture

Elucidative Development for Model-Based Documentation 333

In [3] Selic defines a basis for a formal description of the runtime semantics of
UML 2.0. Although the paper focuses on the semantics definition, it also doc-
uments that semantics of UML concepts is scattered throughout the complete
specification and different statements even contradict, which leads to inconsis-
tent semantics definitions and statements such as that UML has “no semantics”.
Again, this work can be considered a motivation that the UML specification
requires techniques such as ED. Other authors focus on the consistency of OCL
rules within the UML specification and also on co-refactoring (or co-evolution)
of OCL rules and their constrained (meta)model. Some of these works are out-
lined below. In 2003, Fuentes et al. [6] investigated the consistency of OCL rules
within the UML 1.5 specification. They identified about 450 errors they cate-
gorised into non-accessible elements, empty names and other errors, including
about 150 errors w.r.t. inconsistencies between the rules and the UML meta-
model. Besides the identification of 450 errors Fuentes et al. also investigated
inconsistencies between the given OCL rules and their textual documentation.
In 2004, Bauerdick et al. investigated OCL WFRs specified within the UML 2.0
superstructure [7] and detected more than 350 errors within these OCL rules.
In an earlier work we investigated the consistency of constraints specified within
the UML 2.3 specification using OCL [8]. We identified about 320 errors within
442 OCL constraints. About 26% of all investigated OCL rules contained errors
w.r.t. consistency between the rules and the evolved UML metamodel. Marković
et al. formalised first refactorings of UML class diagrams that affect related OCL
constraints and proposed Query/View/Transformation (QVT) rules for OCL co-
refactorings [24]. Further work in this area based on existing Eclipse tools was
done by Hassam et al. [25]. These results could be used to further improve our
approach w.r.t. guidance for semi-automated OCL co-evolution which could help
to keep the OCL WFRs and operation body definitions consistent to the UML
metamodel.

6 Conclusion

In this paper we presented the elucidative development approach as a more
versatile variant of literate programming. ED supports the documentation of
source code, model artefacts, language specifications, and DSMLs. In ED source
artefacts, such as metamodels and OCL constraints, are transformed and trans-
cluded into documentation files via hot update. As a use case, we investigated an
excerpt from the UML specification and identified inconsistency problems of dif-
ferent kinds resulting from manual specification maintenance. As demonstrated,
these problems can be prevented by using an elucidative IDE such as DEFT.

For future work, further case studies in industrial scenarios are planned to ex-
plore the scalability of DEFT and ED. Besides, support for describing variants
of the same specification would be a valuable add-on for ED, since a different
group of readers may require different levels of abstraction with regard to the
full specification. For instance, to ease the understanding a specification usually
needs to be more abstract for a business audience, than for technical experts.

334 C. Wilke et al.

In [26], we proposed to use feature models [27] to model and generate variants
from document families based on ODF and OpenOffice document formats. Since
DEFT also supports ODF, an integration of both approaches would be feasible
in the future. Also, a combination with the LiMonE approach seems promis-
ing, especially by using feature models to capture semi-structured text content
of specifications. However, these ideas are still in an early state of evaluation.
Furthermore, ED could be combined with other techniques for co-evolution. For
example, co-evolution of UML models and OCL constraints that allows the prop-
agation of model modifications to their OCL rules would be an interesting task.
First works in this domain [24, 25] could provide a basis for such an integration.
Finally, the usability of DEFT and ED could be improved by adding round-trip
support. That allows editing transcluded model representations in the documen-
tation and propagating changes back to the model.

Acknowledgement. The authors would like to thank the unknown reviewers
for their valuable comments that helped to improve the paper. This research
has been co-funded by the European Social Fund and Federal State of Saxony
within the project ZESSY #080951806, by the European Social Fund, Federal
State of Saxony and SAP AG within project #080949335, by the Collaborative
Research Center 912 (HAEC), funded by DFG, and by the Federal Ministry of
Education and Research within the project CoolSoftware #FKZ13N10782.

References

1. Wilke, C., Bartho, A., Schroeter, J., Karol, S., Aßmann, U.: Extended Version of
Elucidative Development for Model-Based Documentation and Language Specifi-
cation. Technical Report TUD-FI12-01-Januar 2012, TU Dresden (2012)

2. Object Management Group (OMG) Unified Modeling Language. Online available
specification, http://www.omg.org/spec/UML/

3. Selic, B.: On the Semantic Foundations of Standard UML 2.0. In: Bernardo, M.,
Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 181–199. Springer, Hei-
delberg (2004)

4. Henderson-Sellers, B.: UML – The Good, the Bad or the Ugly? Perspectives from
a panel of experts. Software and Systems Modeling 4, 4–13 (2005)

5. Richters, M., Gogolla, M.: Validating UML Models and OCL Constraints. In:
Evans, A., Caskurlu, B., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 265–
277. Springer, Heidelberg (2000)

6. Fuentes, J., Quintana, V., Llorens, J., Génova, G., Prieto-Dı́az, R.: Errors in the
UML metamodel? ACM SIGSOFT Software Engineering Notes 28(6) (2003)

7. Bauerdick, H., Gogolla, M., Gutsche, F.: Detecting OCL Traps in the UML 2.0
Superstructure: An Experience Report. In: Baar, T., Strohmeier, A., Moreira, A.,
Mellor, S.J. (eds.) UML 2004. LNCS, vol. 3273, pp. 188–196. Springer, Heidelberg
(2004)

8. Wilke, C., Demuth, B.: UML is still inconsistent! How to improve OCL Constraints
in the UML 2.3 Superstructure. In: Proceedings of the Workshop on OCL and
Textual Modelling (OCL 2011). Electronic Communications of the EASST, vol. 44
(2011)

http://www.omg.org/spec/UML/

Elucidative Development for Model-Based Documentation 335

9. Knuth, D.E.: Literate Programming. The Computer Journal 27(2), 97–111 (1984)
10. Arlow, J., Emmerich, W., Quinn, J.A.: Literate Modelling — Capturing Business

Knowledge with the UML. In: Bézivin, J., Muller, P.-A. (eds.) UML 1998. LNCS,
vol. 1618, pp. 189–199. Springer, Heidelberg (1999)

11. Nørmark, K.: Elucidative programming. Nordic Journal of Computing 7, 87–105
(2000)

12. Nørmark, K.: Requirements for an Elucidative Programming Environment. In: Pro-
ceedings of the 8th International Workshop on Program Comprehension, IWPC
2000, pp. 119–128. IEEE Computer Society, Washington, DC (2000)

13. Knuth, D.E., Levy, S.: The CWEB System of Structured Documentation: Version
3.0, 1st edn. Addison-Wesley Longman Publishing Co. Inc. (1994)

14. Schulze, G.: Synchronization of UML Models and Narrative Text using Model
Constraints and Natural Language Processing. Master’s thesis, University of Inns-
bruck (2011)

15. Nørmark, K., Andersen, M., Christensen, C., Kumar, V., Staun-Pedersen, S.,
Sørensen, K.: Elucidative programming in Java. In: Proceedings of IPCC/SIGDOC
2000, pp. 483–495. IEEE Educational Activities Department (2000)

16. Bartho, A.: Creating and maintaining tutorials with DEFT. In: IEEE 17th Inter-
national Conference on Program Comprehension (ICPC 2009), pp. 309–310. IEEE
(2009)

17. Aßmann, U.: Architectural styles for active documents. Science of Computer Pro-
gramming - Spec. Issue on New Software Composition Concepts 56, 79–98 (2005)

18. Nelson, T.H.: Complex information processing: a file structure for the complex,
the changing and the indeterminate. In: Proceedings of the 1965 20th National
Conference, pp. 84–100. ACM, New York (1965)

19. Nelson, T.H.: Literary Machines, 3rd edn. Mindful Press (1981)
20. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Derivation and

Refinement of Textual Syntax for Models. In: Paige, R.F., Hartman, A., Rensink,
A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 114–129. Springer, Heidelberg
(2009)

21. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Thiele, M., Wende, C., Wilke,
C.: Integrating OCL and Textual Modelling Languages. In: Dingel, J., Solberg, A.
(eds.) MoDELS 2010. LNCS, vol. 6627, pp. 349–363. Springer, Heidelberg (2011)

22. Object Management Group (OMG) Unified Modeling Language: Superstructure
Version 2.4.1. Online available specification (August 2011)

23. Object Management Group (OMG) Unified Modeling Language: Superstructure
Version 2.0. Online available specification (August 2005)

24. Marković, S., Baar, T.: Refactoring OCL Annotated UML Class Diagrams. In:
Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 280–294.
Springer, Heidelberg (2005)

25. Hassam, K., Sadou, S., Le Gloahec, V., Fleurquin, R.: Assistance System for OCL
Constraints Adaptation During Metamodel Evolution. In: Proceedings of 15th Eu-
ropean Conference on Software Maintenance and Reengineering (CSMR 2011), pp.
151–160. Conference Publishing Services, CPS (2011)

26. Karol, S., Heinzerling, M., Heidenreich, F., Aßmann, U.: Using feature models for
creating families of documents. In: Proceedings of the 10th ACM Symposium on
Document Engineering, DocEng 2010, pp. 259–262. ACM, New York (2010)

27. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-oriented Domain
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Soft-
ware Engineering Institute, Pittsburgh, PA (1990)

Viewpoint Co-evolution through Coarse-Grained
Changes and Coupled Transformations

Manuel Wimmer, Nathalie Moreno, and Antonio Vallecillo

Universidad de Málaga, Spain
{mw,moreno,av}@lcc.uma.es

Abstract. Multi-viewpoint modeling is an effective technique to deal with the
ever-growing complexity of large-scale systems. The evolution of multi-viewpoint
system specifications is currently accomplished in terms of fine-grained atomic
changes. Apart from being a very low-level and cumbersome strategy, it is also
quite unnatural to system modelers, who think of model evolution in terms of
coarse-grained high-level changes. In order to bridge this gap, we propose an
approach to formally express and manipulate viewpoint changes in a high-level
fashion, by structuring atomic changes into coarse-grained composite ones. These
can also be used to formally define reconciling operations to adapt dependent
views, using coupled transformations. We introduce a modeling language based
on graph transformations and Maude for expressing both, the coarse-grained
changes and the coupled transformations that propagate them to reestablish global
consistency. We demonstrate the applicability of the approach by its application
in the context of RM-ODP.

1 Introduction

Large-scale heterogeneous systems are inherently much more complex to design, de-
velop, and maintain than classical, homogeneous, centralized systems. One way to cope
with such complexity is by dividing the design activity according to several areas of
concerns, or viewpoints, each one focusing on a specific aspect of the system and al-
lowing different stakeholders to observe the system from different perspectives [18].

Although separately specified, developed, and maintained to simplify reasoning about
the complete system specifications, viewpoints are not completely independent: ele-
ments in each viewpoint need to be related to elements in the other viewpoints to ensure
consistency and completeness of the global specifications. Such relationships are nor-
mally specified by means of correspondences, which are statements that permit some
items in each viewpoint to be identified as related to items in the other viewpoints.
Prominent examples that advocate such architectural decomposition are the Reference
Model of Open Distributed Processing (RM-ODP) [17], the Model-Driven Web En-
gineering (MDWE) initiative [26] or UML [27], which provide different diagrams to
represent different aspects of a system.

In this paper we are concerned with the evolution of multi-viewpoint specifications.
As any other software artefact, they evolve over time due to a variety of reasons: changes
in the requirements, errors in the design, evolution in the underlying technology, modi-
fications in the system configuration, hardware or network connections to improve per-
formance, etc. In general, dealing with model evolution is not easy, and the situation

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 336–352, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Viewpoint Co-evolution through Coarse-Grained Changes 337

is even worse in case of multi-viewpoint system specifications: this implies not only
consistent single-view evolution but also consistent multi-view evolution. A change in
a view may imply changes in the rest of the views, or in the set of correspondences,
which need to be synchronized to restore consistency.

A large number of approaches address the problem of multi-viewpoint integration
and synchronization (e.g., cf. [7,10,32,37]). Due to the low-level of detail at which
model changes are identified, represented, and handled by them, in terms of fine-grained
atomic changes, most of these approaches become quite unnatural to system modelers,
who think of model evolution in terms of coarse-grained high-level changes. Further-
more, tools supporting model evolution neither support detecting changes at this level
of abstraction, nor do they permit propagating these kinds of changes through the corre-
spondences. Therefore, everything needs to be done at the level of basic atomic changes,
such as adding and removing elements or modifying their values. Thus, the semantic
of the coarse-grained changes is lost which again may hamper the reconciliation of
models, e.g., information is lost which should be preserved.

In order to bridge this gap, we propose an approach to formally express and ma-
nipulate viewpoint changes at a higher level of abstraction, by structuring fine-grained
changes into coarse-grained ones that represent the conceptual units by which domain
experts think and reason about the changes. They can also be used to formally de-
fine reconciling operations to adapt dependent views, using coupled transformations.
For this purpose, we introduce a modeling language based on graph transformations
and Maude for expressing both the coarse-grained changes and the coupled transfor-
mations that propagate them between viewpoints. Although our proposal has been de-
signed to be generally applicable to any multi-viewpoint specification framework, in
this paper we demonstrate the applicability of the approach by its application in the
context of RM-ODP [17], the ISO/IEC and ITU-T standard architectural framework
for multi-viewpoint specification of open distributed systems. RM-ODP provides five
complementary viewpoints: enterprise, information, computational, engineering, and
technology that allow to observe the environment from different perspectives.

2 Motivating Example

In order to illustrate our proposal we will use here a simple example of a multi-view
specification in the context of the RM-ODP (Fig. 1-top). It models a banking applica-
tion, which manages accounts owned by customers. Users can access banking services
through Branches or ATMs. Some operations should be authorized by regional head of-
fices, and several databases store the customers information, account, and the own bank
organization. This can be seen as a three-layer architecture, where branches and ATMs
provide the interfaces and basic banking operations to users, the headquarters provide
the main business logic, and the databases store the system data.

The Computational Viewpoint (CV) focuses on the functionality of the system and
its software architecture, which is described in terms of components (computational
objects) and connectors (that can be either simple primitive bindings or more com-
plex binding objects). The Engineering Viewpoint (NV) deals with how the functional
components (basic engineering objects, or BEOs) are distributed in nodes (separated

338 M. Wimmer, N. Moreno, and A. Vallecillo

computing places) and connected via channels. Fig. 1 shows these two views, using
the UML Profiles defined by the UML4ODP standard notation [16]. The other three
viewpoints described by ODP (Information, Enterprise, and Technology) have not been
included here for simplicity.

The elements of these two models are related through correspondences, which are
expressed here using UML dependencies. Correspondences are shown in Fig. 1 using
thicker dashed lines. They relate computational objects and bindings with the corre-
sponding engineering objects and channels in the NV.

Evolution Scenarios in ODP. Let us think of a revised version of the Bank IT system
specification, shown in Fig. 1-bottom. It contains three main changes: (1) computa-
tional objects Branch and ATM have been merged; (2) the primitive binding between
HeadOffice and DBManager computational objects has been substituted by a binding
object with more functionality (to add more powerful security mechanisms), and (3)
the replica manager Dup in the NV has been moved from node Site4 to Site5.

Describing the changes at this level of detail is the way in which we normally reason
about any system specification. Existing model difference tools calculate a very large
number of atomic changes that need to be applied to the individual model elements.
Understanding and manipulating those changes to, e.g., reason about the evolution of
the system specifications or to propagate the (atomic) changes from one view to the
rest, becomes quite a complex and brittle task. Quoting the well-known saying: “you
can’t see the forest for the trees.”

In order to address this problem, we need to have a mechanism for representing
and manipulating changes in models at a higher level of abstraction. We do that by
structuring atomic changes into coarse-grained changes, which are closer to the way
in which domain experts think about viewpoint evolution. Of course, the higher the
abstraction level, the more domain-specific they get. This is because of the semantics
they convey. In general, high-level composite operations depend on the specific domain.
Each one defines a set of operations which reflect the kinds of changes commonly used
in such a domain. For example, when dealing with software architectures two usual
changes are to split a component into several and to merge several components into
one. They imply a set of many atomic changes due to all the arrangements that need to
be done with their ports, their connections with other components, etc. But conceptually
they are just two changes.

In the following sections, the evolution of the Bank IT system specification is used
to describe how composite changes are (a) represented; (b) identified and constructed
from the set of individual atomic changes that existing model difference tools detect;
and (c) propagated from one viewpoint to others by using Maude.

3 Formalizing Viewpoints in Maude

Maude [6] is a high-level language, a high-performance interpreter and compiler that
supports rewriting logic based specification and programming of systems. Because of
its efficient rewriting engine and complete analysis toolkit, Maude turns out to be an

Viewpoint Co-evolution through Coarse-Grained Changes 339

«Computational_Spec»
ComputationalSpecification

 : HeadOfficeInfo [1..*]

 : CustomerInfo [0..*]

 : BranchInfo [0..*]

 : Account [0..*]

«CV_Object»
DBManager

«CV_BindingObject»
Secure

«CV_BindingObject»
Reliable

«CV_Object»
HeadOffice

«CV_Object»
Branch

«CV_Object»
ATM

IToCustomer

IToATM

«Engineering_Spec»
EngineeringSpecification

«NV_Node»
Site4

«NV_Object»
Dup

«NV_BEO»
DB1

«NV_Node»
Site5

«NV_BEO»
DB2

«NV_Node»
Site3

«NV_BEO»
HeadOffice

«NV_Node»
Site1

«NV_BEO»
Branch

«NV_Channel»
Reliable

«NV_Channel»
Private«NV_Channel»

Secure

«NV_Node»
Site2

«NV_BEO»
ATM

«NV_Channel»
Chan1

«ODP_SystemSpec»
BankSpecification-before

«Computational_Spec»
ComputationalSpecification

«CV_BindingObject»
Reliable

«CV_BindingObject»
Secure

«CV_BindingObject»
Private

«CV_Object»
DBManager

«CV_Object»
HeadOffice

«CV_Object»
Branch

IToCustomer

IToATM

«Engineering_Spec»
EngineeringSpecification

«NV_Node»
Site5

«NV_Object»
Dup

«NV_BEO»
DB2

«NV_Node»
Site1

«NV_BEO»
Branch

«NV_Channel»
Private

«NV_Channel»
Reliable

«NV_Channel»
Secure

«NV_Channel»
Chan1

«NV_Node»
Site3

«NV_BEO»
HeadOffice

«NV_Node»
Site4

«NV_BEO»
DB1

«ODP_SystemSpec»
BankSpecification-after

Fig. 1. Bank IT system specification expressed in ODP: Initial (top) and revised (bottom) models

excellent tool to specify and analyze many kinds of systems, at the appropriate level of
abstraction. One of the benefits of using Maude is that its specifications are executable,
since the rewrite rules that describe the behaviour of the system can be used to simulate
it. The syntax for conditional rules is crl [l] : t => t′ if Cond, with l the rule label, t the
left-hand side (LHS) of the rule, t’ the right-hand side (RHS), and Cond its condition.

Maude supports the specification of concurrent object-oriented systems in terms of
object-oriented modules, which specify the system classes and their behaviour. Maude
objects are structures of the form < o : c | a1:v1, ..., an:vn >, where o is the
object identifier (of Sort Oid), c is the class the object belongs to, ai are attribute iden-
tifiers and vi their corresponding current values. The current state of the object-oriented
system, which is called a configuration, has the structure of a multiset made up of ob-
jects that evolves as dictated by the rewriting rules. Predefined sort Configuration
represents configurations of Maude objects, with none as the empty configuration.

340 M. Wimmer, N. Moreno, and A. Vallecillo

Correspondences
CorrespondenceSpecification CorrespondenceEndpoint

ViewpointSpecification

CorrespondenceLink

Object

Computational

PrimitiveBindingBindingObject

CVObject

Attribute Interface

Binding

Engineering

NVObject

ChannelBEO

LinkNode

0..2
0..*

0..* 2

1..*

0..*

1..*

1..*
1

2..* 0..1

0..*2..*

1..*0..1 0..*2

Fig. 2. Basic metamodels for CV, NV and Correspondences

In Maude, metamodels can be seen as object-oriented modules, which contain the
specification of the metamodel classes. Thus, attributes can be represented as Maude
attributes and references between metaclasses can be also represented as attributes, by
means of sets of Maude object identifiers (Oid’s). In this regard, depending on the mul-
tiplicity, we can use:

– a single identifier if the multiplicity is [1]
– a Maybe{Oid} which is either an identifier or a null value, for representing a [0− 1]

multiplicity or
– a Set{Oid} for multiplicity [∗]

The following listing describes the CV metamodel shown in Fig. 2 as a Maude object-
oriented module:
(omod ODP i s
p r o t e c t i n g QID INT BOOL SET{Oid} CONVERSION .
--- Computational Viewpoint
c l a s s CVObject | interface : Set{Oid} , attribute : Set{Oid} .
c l a s s Attribute | cVObject : Set{Oid} .
c l a s s Interface | binding : Maybe{Oid} , cVObject : Oid .
c l a s s Binding | interface : Set{Oid} .
c l a s s PrimitiveBinding .
c l a s s BindingObject .
s u b c l a s s e s BindingObject PrimitiveBinding < Binding .
s u b c l a s s BindingObject < CVObject .
endom) .

In the same way, a model that conforms to this metamodel can be represented in Maude
by a configuration of Maude objects. Since objects may have attribute values and links,
they are encoded as values of Maude objects’ attributes. The configuration of Maude
objects shown below represents an extract of the Bank specification model w.r.t. the CV
specification illustrated in Fig. 1. It models two CVObjects, Branch and HeadOffice,
linked by the BindingObject Reliable and two Bindings.
< ’Branch : CVObject | interface : (’IC1 , ’IC2) >
< ’HeadOffice : CVObject | interface : (’IC3 , ’IC4) >
< ’Reliable : BindingObject | interface : (’IC5 , ’IC6) >
< ’BC1 : Binding | interface : (’IC2 , ’IC5) >
< ’BC2 : Binding | interface : (’IC6 , ’IC3) >

Viewpoint Co-evolution through Coarse-Grained Changes 341

4 Change Detection: From Fine- to Coarse-Grained Changes

Two kinds of approaches to change detection may be distinguished, namely, model com-
parison and change tracking. In a perfect world, we would assume to have a complete
change log produced by the model manipulation tools automatically. However, current
modeling editors are often not equipped with a change recorder. Furthermore, models
can be edited with different tools and on different levels, e.g., within graphical or textual
modeling editors, using UML and DSM tools, using the models’ XML-based serializa-
tions, or by applying automatic model transformations. Model comparison is a generic
approach to decouple the change log computation from the actual model manipulation.

In the context of this paper, we employ a two-phase model comparison approach.
In the first phase, fine-grained changes are computed based on object identifier equiva-
lences. For this phase, we build on our previous work presented in [30]. In the second
phase, the fine-grained changes are analyzed to find coarse-grained changes between
the two model versions. Furthermore, coarse-grained changes can also be composed
into even coarser ones. In the following, we demonstrate both phases with the help of
our running example.

4.1 Phase 1: Detecting Fine-Grained Changes

The first phase of the change detection consists of two sequential steps. The first step
is to find the corresponding elements in the initial model and revised model based on
matching rules. From the match result, differences are derived in the second step based
on differencing rules.

Step 1: Matching. In the context of this paper, we use object identifiers to find the
corresponding elements. A match is reported for each pair of objects having the same
identifier assigned in the initial model and in the revised model. If such a pair is found,
a match object is created which links the two objects. Of course, more sophisticated
match rules based on name and structure similarities may be applied [30].

The following listing formalizes the previously explained match strategy. First,
classes for representing MatchModels and Matches are introduced which are instanti-
ated by the subsequent equation match. This equation is executed as long as objects
with same identifier are found in the initial and the revised version of the model. Please
note that both models are represented as configurations in Maude. Thus, the match op-
eration is defined for two configurations (representing the initial and the revised model)
and returns a match model which is again a configuration.
(omod Match i s

c l a s s MatchModel .
c l a s s Match | initEl : Oid , revEl : Oid .
s u b c l a s s MatchModel < Configuration .
vars INITIAL , REVISED , MATCH : Configuration .

op match : Configuration Configuration −> MatchModel .
eq match(< O : C1 | ATTS1 > INITIAL , < O : C2 | ATTS2 > REVISED)
= < M : Match | initEl : O , revEl : O > match (INITIAL , REVISED) .
eq match (INITIAL , REVISED) = none [owise] .

Example. When the match operation is executed for a subset of our running exam-
ple considering only the elements involved in the EnrichBinding change, matches are

342 M. Wimmer, N. Moreno, and A. Vallecillo

generated for the CVObjects, but the Binding in the initial model as well as the
BindingObject and its Bindings in the revised model remain unmatched.

Step 2: Differencing. Based on the match model, the difference detection is performed.
In the following, we introduce fine-grained change types and how instances of them
may be detected. The following listing shows the supported fine-grained change types
as Maude classes.

(omod fDiff i s
c l a s s DiffElement .
c l a s s Addition | elem : Oid .
c l a s s Deletion | elem : Oid .
c l a s s Update | elm1 : Oid , elm2 : Oid , feature : String .
s u b c l a s s Addition , Deletion , Update < DiffElement .

endom)

Diff Calculation. Classes Addition, Deletion, and Update are instantiated by
equations. These equations are built based on the following change detection rules ex-
plained in natural language: (a) If a model element of the initial model is not matched
then it generates a deletion; (b) If a model element of the revised model is not matched
then it generates an addition; (c) If a model element of the initial model is matched to
an element of the revised model then they are compared for each feature the values of
both model elements. Just when their values are different, an update is generated.

Diff Representation. For representing changes in a more convenient way, we rewrite the
produced diff elements which are typed by generic change types (cf. classes Addit-
ion, Deletion, and Update) to metamodel-specific changes. Although, such dif-
ferences are specific for a given metamodel, the difference metamodel is automatically
derivable from the modeling language metamodel by using a dedicated transformation
[4]. Instead of stating in the change model that an object has been added and more in-
formation about this change has to be queried by navigating to the objects in the revised
and initial models, we aim for presenting more information about a change directly in
the difference model (diff model) by having metamodel specific change types.

The design rationale for choosing this change representation is based on the assump-
tion that metamodel-specific change types allow for a more concise formulation of pro-
grams analyzing the fine-grained changes—so to speak to provide an intuitive program-
ming interface. Such programs are actually needed for finding coarse-grained changes
in a set of fine-grained changes as well as for change propagation. Besides usability, also
performance of dependent programs may be enhanced by this kind of representation.

Example. The differencing rules explained above allow to derive the following dif-
ference model for EnrichBinding change excerpt of the running example. By starting
from the previously calculated matches, we end up with four fine-grained differences:
DELBinding, ADDBindingObject, ADDBinding, ADDBinding.

Maude> r e w r i t e < ’M1 : Match | iniEl : ’Branch , revEl : ’Branch >
< ’M2 : Match | iniEl : ’DBManager , revEl : ’DBManager >

r e s u l t @Object : < ’D1 : DELBinding | element : ’B1 >
< ’A1 : ADDBindingObject | element : ’Reliable >
< ’A2 : ADDBinding | element : ’B2 >
< ’A3 : ADDBinding | element : ’B3 >

Viewpoint Co-evolution through Coarse-Grained Changes 343

«CV_BindingObject»
BO1

«CV_Object»
CO1

«CV_Object»
CO1

«CV_Object»
CO2

«CV_Object»
CO2

Fig. 3. Evolution pattern for the EnrichBinding change

4.2 Phase 2: Detecting Coarse-Grained Changes

Additional rules have to be formulated to structure fine-grained changes into coarse-
grained changes. The development of such rules should be done in the language of the
modelers. Because, in contrast to fine-grained changes which have simple and generic
contracts, coarse-grained changes may comprise complex contracts. Thus, we sketch
in the following subsection coarse-grained changes based on graph transformations
patterns stating the situation before a coarse-grained change is applied, i.e., the pre-
condition, as well as showing the effect of the coarse-grained change, i.e, the post-
condition. These graph transformation patterns act as blueprints for the implementation
of the detection rules for coarse-grained changes in Maude.

Sketching coarse-grained Changes. For sketching coarse-grained changes, we use
evolution patterns which are based on graph transformation patterns using the concrete
syntax of modeling languages. The pattern shown in Fig. 3 visualizes the EnrichBinding
change in the concrete notation of ODP. The LHS of the pattern represents the situation
before the change is executed and the RHS is showing the situation after the change has
been applied. Thus, the semantic of the patterns is equivalent to standard graph trans-
formation patterns. If an element resides on the LHS as well as on the RHS (i.e., the
same variable name is used on the LHS and on the RHS), then it stays in the model. If
an element only resides in the LHS and not in the RHS, it is deleted. Finally, if an ele-
ment only resides in the RHS and not in the LHS, it is created. However, the operational
semantics of such evolution patterns are different to standard graph transformation ap-
proaches. The evolution pattern is not executed by finding a match of the LHS in a
model to rewrite it as given by the RHS to produce a new model version. Instead the
evolution pattern is used to derive a program which detects the application of the de-
scribed change. The detection is done by analyzing the initial and the revised model as
well as the fine-grained changes between them.

Encoding detection rules in Maude. The detection rules for finding the evolution pat-
terns are implemented in Maude based on the Maude operation called evolution, which
has as input parameter a triple of models: (a) model before the change, (b) the model
after the change, and (c) the difference model describing the fine-grained changes. The
output is again a model which covers all coarse-grained changes happened between the
initial and the revised model.

Based on the notion of the evolution operation and sketched evolution patterns, e.g.,
cf. Fig. 3, a Maude rule may be developed which searches for the application of the
change. The main mechanism is to match for the set of fine-grained changes which
make up the coarse-grained change. Each change type is represented by its own class
which is instantiated by an accompanying rule.

344 M. Wimmer, N. Moreno, and A. Vallecillo

(omod cDiff i s
op model : Configuration −> Model [ctor] .
op evolution : Model Model Model −> Model .
c l a s s EnrichBinding | binding : Oid , bindingObject : Oid .
r l [EnrichBinding] :

evolution (
model (< C01 : CVObject | > < C02 : CVObject | >
< B1 : Binding | source : C01 , target : C02 > INITIAL) ,
model (< D1 : DELBinding | element : B1 >
< A1 : ADDBindingObject | element : B01 >
< A2 : ADDBinding | element : B2 >
< A3 : ADDBinding | element : B3 > DIFF) ,
model (< C01 : CVObject | > < C02 : CVObject | >
< B01 : CVBindingObject | >
< B2 : CVBinding | source : C01 , target : B01 >
< B3 : CVBinding | source : C02 , target : B01 > REVISED))

=> evolution (
model (< C01 : CVObject | > < C02 : CVObject | >
< B1 : Binding | source : C01 , target : C02 > INITIAL) ,
model (< EB1 : EnrichBinding | binding : B1 , bindingObject : B01 > DIFF) ,
model (< C01 : CVObject | > < C02 : CVObject | >
< B01 : BindingObject | >
< B2 : Binding | source : C01 , target : B01 >
< B3 : Binding | source : C02 , target : B01 > REVISED)) .

endom)

Example. For detecting EnrichBinding changes, the Maude rule is shown in the above
listing. The LHS of the rule is searching for matches of the evolution pattern of Fig. 3
by matching it on the initial, diff, and revised models. If a match is found, the atomic
differences in the diff model are consumed and the coarse grained change EnrichBinding
is instantiated instead, linking to the deleted binding in the initial model and to the in-
troduced binding object in the revised model. By using this rule, the atomic differences
computed by Phase 1 can be reduced to just one EnrichBinding change. This result is
further processed for change propagation in order to reflect the coarse-grained change
of one view in depending views which is explained in the next section.

5 Change Propagation by Coupled Transformations

After coarse-grained changes in one viewpoint have been detected, they have to be
propagated to dependent viewpoints. For this purpose, we follow the idea of coupled
transformations—a term originally coined by Ralf Lämmel [22]. In particular, we aim
for asymmetric reconciliation of viewpoints by exploiting explicit correspondence links
between viewpoints.

V Pb v1
(t2) �� V Pb v2

CMab v1
(t3) ��

���
�
�

���
�
� CMab v2

���
�
�

���
�
�

V Pa v1

(t1) �� V Pa v2

The schema on the RHS illustrates the notion of
coupled transformations interpreted in the context of
viewpoint synchronization. An initiator change, by ex-
ecuting t1 on the viewpoint V Pa v1, produces a new
version V Pa v2. For retaining consistency between the
dependent viewpoint V Pb v1 and V Pa v2, the reconcil-
ing transformation t2 has to be executed on V Pb v1.
Furthermore, to consider the modifications in the two
viewpoints, another reconciling transformation t3 has to
be executed on the correspondence model CMab v1.

Viewpoint Co-evolution through Coarse-Grained Changes 345

«CV_BindingObject»
BO1

«NV_Channel»
Channel

«CV_Object»
CO1

«NV_Channel»
Channel

«CV_Object»
CO2

«CV_Object»
CO1

«CV_Object»
CO2

Fig. 4. Co-Evolution pattern for the EnrichBinding change

The execution of the initiator transformation is independent, meaning that it does
not dependent on matches of other rules to compute its own matches. In contrast, the
matches of reconciling transformations are based on the matches of the initiator trans-
formations to consider the proper set of elements in dependent viewpoints which have
to be adapted. To identify this proper set of elements, the correspondences between el-
ements involved in the initiator change and elements of dependent viewpoints are the
key information.

In the following, a high-level notation is introduced for coupling transformations
which represents coarse-grained changes on different viewpoints. The notation extends
the evolution patterns for coupling different evolution patterns to model co-evolution
patterns. Subsequently, it is shown how co-evolution patterns are implemented in Maude.

5.1 Sketching Coupled Transformations

Co-evolution patterns, e.g., as shown in Fig. 4, comprise the following structure. First
the initiator transformation (t1) has to be specified. This is done by reusing an already
evolution pattern which describes the change as discussed in the previous section. Hav-
ing the initiator transformation as a basis, we may define new or reuse existing evolution
patterns for describing reconciliator transformations (t2 and t3). For determining the
exact matches of the reconciliator transformations, links between elements of the dif-
ferent patterns are used. In case of modeling languages offering explicit correspondence
models, these links are expressed by additional correspondence models interlinking el-
ements of two evolution patterns.

Example. For the EnrichBinding change, we may reuse the evolution pattern of Fig. 3
as the initiator transformation for defining the co-evolution pattern. Bindings in the
CV are linked to Channels in the NV via correspondences. So when a Binding is
deleted—this is actually the case when an EnrichBinding transformation is executed—
there remain correspondences linking to missing elements in the CV. Thus, reconcil-
iator changes are necessary to reestablish a link to proper CV elements. In case of
EnrichBinding, the correspondences from Channels have to be relinked from missing
Bindings to newly introduced BindingObjects. This reconciliation is specified
in the co-evolution pattern of Fig. 4 by modeling another transformation for the cor-
respondence model (middle layer). However, for finding the correspondences to adapt,

346 M. Wimmer, N. Moreno, and A. Vallecillo

*D3 union(D1, D2)

«CV_Object»
BC

«NV_BEO»
AN

«CV_Object»
CC

«CV_Object»
AC

«NV_BEO»
BN

«NV_BEO»
CN

*C3 union(C1, C2)

*I3 union(I1,I2)*I1

*C2

*D1

*C1

*D2
*I2

Fig. 5. Co-Evolution pattern for the MergeComponent change

the Channels of the NV are needed. Therefore another layer is introduced on top. No
change in the NV is necessary, so one Channel is shown in the LHS and in the RHS
to find the proper set of correspondences to relink.

A more complex example concerning the reconciliation of multi-viewpoints is the
MergeComponent change. When it is detected in the CV, not only the correspondences,
but also the NV has to be modified. This also involves to have sets of elements in the
evolution patterns which are marked in our notation by the star operator. For instance,
as sketched in Fig. 5, if two CVObjects named AC and BC are merged in a final
CVObject CC, the union of their interfaces and bindings (cf. union(I1,I2) and
union(D1,D2)) are required for CC. Similarly, when two BEOs are merged to reflect
the change also in the NV, the union of their links to channels has to be build as well
(cf. union(C1,C2) in Fig. 5).

5.2 Encoding Coupled Transformations in Maude

We describe the co-evolution of multi-viewpoints in Maude as an operation named mul-
tievolution that when applied to a particular configuration of viewpoints, produces a new
configuration of them as a result.

(omod Reconciliator i s . . .
op multievolution : Configuration Configuration Configuration −> Configuration .
. . . endom)

Although more than one viewpoint may evolve at the same time, for the sake of
simplicity, we assume here that there is only one base view that initializes the change.
Thus, for each initiator change type, we use a Maude rule to trigger the evolution of
other viewpoints related to the changed viewpoint. Of course, changes in one viewpoint
will require the definition of several rules—one rule for each of the viewpoints that
might be affected by the change—which describe how the system must continue to
evolve in order to reach a reconciliation state between all viewpoints. The following
listing sketches the general form of a propagation rule.

Viewpoint Co-evolution through Coarse-Grained Changes 347

r l [nameRule] :
multievolution (--- detection of the initiator change
evolution (--- V2: dependent viewpoint
model (V2−BEFORE) , model (V2−REST) , model (V3−AFTER)) ,

evolution (--- correspondences
model (CORR−BEFORE) , model (CORR−REST) , model (CORR−AFTER)) ,

evolution (--- V1: viewpoint originating the change
model (V1−BEFORE) , model (V1−REST) , model (V1−AFTER))

) =>
multievolution (--- execution of the reconciliation change
evolution (--- V2: dependent viewpoint evolves
model (V2−BEFORE) , model (V2’−REST) , model (V3’−AFTER)) ,

evolution (--- correspondences evolve
model (CORR−BEFORE) , model (CORR−REST ’) , model (CORR−AFTER ’)) ,

evolution (--- V1: viewpoint originating the change
model (V1−BEFORE) , model (V1−REST) , model (V1−AFTER))

) .

The LHS of the rule contains the evolution models for the initiator and the related
viewpoint and the correspondences relating them. For the viewpoint initiating the evo-
lution, the composite operation representing the initiator change has to be identified.
In this way, the RHS contains the effect of propagating the change to the other view-
points and to the correspondences, again defined in terms of the high-level composite
operations.

Example. Let us consider the Maude rule for propagating the EnrichBinding change
from CV to NV. As mentioned before, the NV needs no adaptation, but the correspon-
dences may have to be updated. Thus, the following rule matches for an occurrence
of the EnrichBinding change that has not been propagated yet, using the third evolu-
tion pattern in the LHS. The first and the second evolution patterns are used to find the
elements that are involved in the reconciliation. Thus, the LHS has to find the correspon-
dence which link a channel with the enriched binding. In the RHS, the first and the third
evolution patterns are equivalent to the LHS patterns, but the second evolution pattern
is not. It takes care of relinking the correspondence to the created BindingObject.
r l [EnrichBinding2NV] :
multievolution (
evolution (--- engineering viewpoint

model (< Chan : Channel | > ENG−BEFORE) ,
model (ENG−REST) ,
model (< Chan : Channel | > ENG−AFTER)) ,

evolution (--- correspondences
model (< C1 : Correspondence | source : B1 , target : Chan > CORR−BEFORE) ,
model (CORR−REST) ,
model (< C1 : Correspondence | source : B1 , target : Chan > CORR−AFTER)) ,

evolution (--- computational viewpoint originates the change
model (< C01 : CVObject | > < C02 : CVObject | >
< B1 : Binding | source : C01 , target : C02 > INITIAL−REST) ,
model (< EB1 : EnrichBinding | binding : B1 , bindingObject : B01 , propagated−

↪→NV : false > DIFF−REST) ,
model (< C01 : CVObject | > < C02 : CVObject | >
< B01 : BindingObject | > . . . REVISED−REST))

) =>
multievolution (
evolution (--- engineering viewpoint same as in LHS),
evolution (--- correspondences are updated

model (< C1 : Correspondence | source : B1 , target : Chan > CORR−BEFORE) ,
model (CORR−REST) ,
model (< C1 : Correspondence | source : B01 , target : Chan > CORR−AFTER)) ,

evolution (--- computational viewpoint same as in LHS
--- except < EB1 : EnrichBinding | propagated-NV : true >)

) .

348 M. Wimmer, N. Moreno, and A. Vallecillo

Let us now consider the Maude rule1 for propagating the MergeComponent change.
The third evolution pattern of the LHS matches for MergeComponent change in the CV
that has not been propagated, yet. If a match is found, the NV and the correspondences
start to evolve as the RHS of the rule dictates. Since each computational object that
is not a binding object corresponds to a set of one or more basic engineering objects
(and any channels which connect them), the coarse-grained MergeComponent operator
causes that the Branch and ATM BEOs in the NV must also be merged. Finally, in order
to preserve the system correspondences, the rule throws a final reconciliator evolution
in the correspondences model to reestablish proper links between the new elements
generated in the CV and the NV models. The reader should note that, at this point,
a similar rule will also be required to define the effects of the MergeBEO composite
operator in the entire system specification that we omit here for the sake of simplicity.
r l [MergeComponent2NV] :
multievolution (
evolution (--- engineering viewpoint

model (< AN : BEO | > < BN : BEO | > ENG−BEFORE) ,
model (ENG−REST) ,
model (< AN : BEO | > < BN : BEO | > ENG−AFTER)) ,

evolution (--- correspondences
model (< C1 : Correspondence | source : AC , target : AN >

< C2 : Correspondence | source : BC , target : BN > CORR−BEFORE) ,
model (CORR−REST) ,
model (< C1 : Correspondence | source : AC , target : AN >

< C2 : Correspondence | source : BC , target : BN > CORR−AFTER)) ,
evolution (--- computational viewpoint originating the change

model (< AC : CVObject | > < BC : CVObject | > COMP−BEFORE) ,
model (< MC : MergeComponent | target : CC , source1 : AC , source2 : BC ,

↪→propagated−NV : false > COMP−REST) ,
model (< CC : CVObject | > COMP−AFTER))

) =>
multievolution (
evolution (--- engineering viewpoint

model (< AN : BEO | > < BN : BEO | > ENG−BEFORE) ,
model (< XN : MergeBEO | target : CN , source1 : AN , source2 : BN , propagated−

↪→TV : false > ENG−REST) ,
model (< CN : BEO | > ENG−AFTER)) ,

evolution (--- correspondences
model (< C1 : Correspondence | source : AC , target : AN >

< C2 : Correspondence | source : BC , target : BN > CORR−BEFORE) ,
model (CORR−REST) , --- replaces both correspondences by a new one
model (< C3 : Correspondence | source : CC , target : CN > CORR−AFTER))

evolution (--- computational viewpoint same as in LHS
--- except < MC : MergeComponent | propagated-NV : true >)

) .

6 Related Work

Multi-Viewpoint Integration and Synchronization. A large number of approaches ad-
dress the problem of multi-viewpoint integration and synchronization [7]. We have
works on synchronizing artifacts in software engineering, mostly influenced by orig-
inal works on multi-view consistency [11,13] using a generic representation of mod-
ifications and relying on users to write code to handle each type of modification in
each type of view. This idea influenced later efforts on model synchronization

1 Building the union of the links (cf. union(C1,C2) in Fig. 5) requires an additional rule for
filtering reflexive links as well as duplicates which is not shown for sake of simplicity.

Viewpoint Co-evolution through Coarse-Grained Changes 349

frameworks in general [19,20] and in particular bi-directional model transformations
[33,37]. Other approaches use so-called correspondence rules for synchronizing models
in the contexts of RM-ODP and MDWE [3,10,32]. More theoretical works propose to
use different kind of lenses [8,9,12,15].

All these approaches have in common that they consider only atomic changes when
reconciling models. Thus, the goal of the reconciliation is to change the models in a way
that they satisfy again the given constraints. However, when structuring the changes to
composite changes, more appropriate reconciled models may be found. The reason for
this is that the semantics of the changes, modeling languages, and modeling domains
are considered instead of reasoning with generic atomic changes for generic model ele-
ments. For example, when merging two elements into one may be represented by three
atomic changes, namely deleting both elements and adding a new element which rep-
resents the two merged elements. When considering each atomic change in isolation,
depending elements in other views may be deleted and a new element may be added if
we have a one-to-one correspondence to fulfill between the views. However, the infor-
mation of the deleted elements is lost. By using our approach, we are able to specify
the rules for the reconciliation without information loss by merging also dependent el-
ements in the other views instead of deleting them. The only work we are aware of
allowing to propagate more complex changes is [29], however, in this approach it is
required to record the initiator changes during model editing.

Metamodel/Model and Model/Instances Co-evolution. This involves synchronization
between models of different abstraction levels [34]. In the general case, semantics-
preserving transformations must be developed manually, based on the understanding of
the semantic intent of the change. Several dedicated languages for metamodel/model
co-evolution have been recently developed for specifying semantic-preserving trans-
formations [5,14,25,31]. Most related to our approach is [36], where the composition
of atomic differences to composite differences is discussed for Ecore-based metamod-
els. Having composite differences between metamodel versions is considered to be the
prerequisite for finding the appropriate co-evolution for the model level. However, the
propagation of the composite changes to the instances has not been presented. Our
approach is generic in the sense that also metamodel/model co-evolution may be sup-
ported. In particular, the coupling between the metamodel changes and model changes
is similar as the coupling of changes between different views.

Coarse-grained changes for models. Most existing approaches for defining coarse-
grained changes focus solely on model refactorings. The work in [35] defined a set
of UML refactorings on the conceptual level by expressing pre- and post-conditions
in OCL, and [2] presented a refactoring browser for UML supporting the automatic
execution of pre-defined UML refactorings. While these two approaches focus on pre-
defined refactorings only, other approaches [21,28,38] allow the introduction of user-
defined refactorings by using dedicated textual languages. A similar idea is followed
in [1,24] but instead of textual languages, graph transformations are used to describe
refactorings. However, the proposed approaches cover mostly single-view evolution and
focus on the implementation of semi-automatically executable refactorings. Only some

350 M. Wimmer, N. Moreno, and A. Vallecillo

first ideas for tackling consistency between different views in the context of coarse-
grained changes have been presented. For instance, [23] proposed to refactor UML
class diagrams, also adapting attached OCL constraints.

7 Conclusions and Future Work

We have presented an approach for expressing, executing, and synchronizing viewpoint
changes at a high-level of abstraction. We structure atomic changes into coarse-grained
changes that represent the conceptual units that domain experts are used to, and are
coupled for propagating the semantics of one change in one viewpoint into related view-
points. A major strength of our approach comes from the use of Maude and its expres-
sive power. Although coarse-grained changes and coupled transformations have been
used in previous works, the composition of fine-grained changes into coarse-grained
changes for viewpoint synchronization using coupled transformation is novel and rep-
resents an alternative to constraint-based model synchronization.

As future work, we want to investigate a hybrid synchronization approach by using
in the first phase the presented approach for propagating coarse-grained changes and
in the second phase a constraint-based approach for propagating atomic changes which
could not be composed into coarse-grained changes. In addition, applying the approach
to other modeling domains will provide us extensive feedback. These experiences will
be used to establish a model synchronization benchmark based on real-life scenarios
coming from different application domains.

Acknowledgements. This work has been partially funded by the Austrian Science
Fund (FWF) under grant J 3159-N23, and by Spanish Research Project TIN2011-
23795.

References

1. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: Graphical Defini-
tion of In-Place Transformations in the Eclipse Modeling Framework. In: Wang, J., Whittle,
J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 425–439. Springer,
Heidelberg (2006)

2. Boger, M., Sturm, T., Fragemann, P.: Refactoring Browser for UML. In: Aksit, M., Awasthi,
P., Unland, R. (eds.) NODe 2002. LNCS, vol. 2591, pp. 366–377. Springer, Heidelberg
(2003)

3. Cicchetti, A., Ruscio, D.D.: Decoupling Web Application Concerns through Weaving Oper-
ations. Science of Computer Programming 70(1), 62–86 (2008)

4. Cicchetti, A., Ruscio, D.D., Pierantonio, A.: A metamodel independent approach to differ-
ence representation. Journal of Object Technology 6(9), 165–185 (2007)

5. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Managing Dependent Changes in Coupled Evo-
lution. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 35–51. Springer, Heidelberg
(2009)

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Talcott, C.:
All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer,
Heidelberg (2007)

Viewpoint Co-evolution through Coarse-Grained Changes 351

7. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying Overlaps of Heterogeneous Models for
Global Consistency Checking. In: Dingel, J., Solberg, A. (eds.) MoDELS 2010. LNCS,
vol. 6627, pp. 165–179. Springer, Heidelberg (2011)

8. Diskin, Z., Xiong, Y., Czarnecki, K.: From State- to Delta-Based Bidirectional Model Trans-
formations: the Asymmetric Case. JOT 10(6), 1–25 (2011)

9. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From State-
to Delta-Based Bidirectional Model Transformations: The Symmetric Case. In: Whittle,
J., Clark, T., Kühne, T. (eds.) MoDELS 2011. LNCS, vol. 6981, pp. 304–318. Springer,
Heidelberg (2011)

10. Eramo, R., Pierantonio, A., Romero, J.R., Vallecillo, A.: Change management in multi-
viewpoint systems using ASP. In: WODPEC 2008. IEEE (2008)

11. Finkelstein, A., Gabbay, D.M., Hunter, A., Kramer, J., Nuseibeh, B.: Inconsistency Handling
in Multi-perspective Specifications. In: Sommerville, I., Paul, M. (eds.) ESEC 1993. LNCS,
vol. 717, pp. 84–99. Springer, Heidelberg (1993)

12. Foster, J.N., Pilkiewicz, A., Pierce, B.C.: Quotient lenses. In: ICFP 2008, pp. 383–396. ACM
(2008)

13. Grundy, J., Hosking, J., Mugridge, W.B.: Inconsistency Management for Multiple-view Soft-
ware Development Environments. IEEE Trans. Softw. Eng. 24(11), 960–981 (1998)

14. Herrmannsdoerfer, M., Benz, S., Jüergens, E.: COPE - Automating Coupled Evolution
of Metamodels and Models. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653,
pp. 52–76. Springer, Heidelberg (2009)

15. Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: POPL 2011, pp. 371–384.
ACM (2011)

16. ISO/IEC: Information technology – Open distributed processing – Use of UML for ODP
system specifications (2009), iSO/IEC19793, ITU-T X.906

17. ISO/IEC: RM-ODP. Reference Model for Open Distributed Processing (2010), iSO/IEC
10746-1 to 10746-4, ITU-T Recs. X.901 to X.904

18. ISO/IEC 42010: Systems and software engineering – Architectural description (2008)
19. Ivkovic, I., Kontogiannis, K.: Tracing Evolution Changes of Software Artifacts through

Model Synchronization. In: ICSM 2004, pp. 252–261 (2004)
20. Johann, S., Egyed, A.: Instant and Incremental Transformation of Models. In: ASE 2004, pp.

362–365. IEEE (2004)
21. Kolovos, D.S., Paige, R.F., Polack, F., Rose, L.M.: Update Transformations in the Small with

the Epsilon Wizard Language. JOT 6(9), 53–69 (2007)
22. Lämmel, R.: Coupled Software Transformations (Extended Abstract). In: First International

Workshop on Software Evolution Transformations (2004)
23. Markovic, S., Baar, T.: Refactoring OCL annotated UML class diagrams. SoSym 7(1), 25–47

(2008)
24. Mens, T.: On the Use of Graph Transformations for Model Refactoring. In: Lämmel, R.,

Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 219–257. Springer, Heidel-
berg (2006)

25. Meyers, B., Wimmer, M., Cicchetti, A., Sprinkle, J.: A generic in-place transformation-based
approach to structured model co-evolution. In: MPM 2010 (2010)

26. Moreno, N., Romero, J.R., Vallecillo, A.: An Overview of Model-Driven Web Engineer-
ing and the MDA. In: Web Engineering: Modelling and Implementing Web Applications,
pp. 353–382. Springer (2007)

27. OMG: Unified Modeling Language (UML) 2.3. Object Management Group, Inc. (2010)
28. Porres, I.: Rule-based Update Transformations and their Application to Model Refactorings.

SoSym 4(4), 368–385 (2005)
29. Ráth, I., Varró, G., Varró, D.: Change-Driven Model Transformations. In: Schürr, A., Selic,

B. (eds.) MoDELS 2009. LNCS, vol. 5795, pp. 342–356. Springer, Heidelberg (2009)

352 M. Wimmer, N. Moreno, and A. Vallecillo

30. Rivera, J.E., Vallecillo, A.: Representing and Operating with Model Differences. In: Paige,
R.F., Meyer, B. (eds.) TOOLS EUROPE 2008. LNBIP, vol. 11, pp. 141–160. Springer, Hei-
delberg (2008)

31. Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Model Migration with Epsilon Flock.
In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 184–198. Springer, Hei-
delberg (2010)

32. Ruiz-Gonzalez, D., Koch, N., Kroiss, C., Romero, J.R., Vallecillo, A.: Viewpoint synchro-
nization of UWE models. In: MDWE 2009, pp. 46–60 (2009)

33. Song, H., Huang, G., Chauvel, F., Zhang, W., Sun, Y., Shao, W., Mei, H.: Instant and Incre-
mental QVT Transformation for Runtime Models. In: Whittle, J., Clark, T., Kühne, T. (eds.)
MoDELS 2011. LNCS, vol. 6981, pp. 273–288. Springer, Heidelberg (2011)

34. Sprinkle, J., Karsai, G.: A domain-specific visual language for domain model evolution. J.
Vis. Lang. Comput. 15(3-4), 291–307 (2004)

35. Sunyé, G., Pollet, D., Le Traon, Y., Jézéquel, J.-M.: Refactoring UML Models. In: Gogolla,
M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 134–148. Springer, Heidelberg
(2001)

36. Vermolen, S., Wachsmuth, G., Visser, E.: Reconstructing complex metamodel evolution. In:
SLE 2011. Springer (2012)

37. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic Model Syn-
chronization from Model Transformations. In: ASE 2007, pp. 164–173. ACM (2007)

38. Zhang, J., Lin, Y., Gray, J.: Generic and Domain-Specific Model Refactoring using a Model
Transformation Engine. In: Model-driven Software Development—Research and Practice in
Software Engineering, pp. 199–217. Springer (2005)

Turbo DiSL: Partial Evaluation
for High-Level Bytecode Instrumentation

Yudi Zheng1, Danilo Ansaloni2, Lukas Marek3, Andreas Sewe4, Walter Binder2,
Alex Villazón5, Petr Tuma3, Zhengwei Qi1, and Mira Mezini4

1 Shanghai Scalable Computing Lab, Shanghai Jiao Tong University, China
{zheng.yudi,qizhwei}@sjtu.edu.cn

2 Faculty of Informatics, University of Lugano, Switzerland
{danilo.ansaloni,walter.binder}@usi.ch

3 Faculty of Mathematics and Physics, Charles University, Czech Republic
{lukas.marek,petr.tuma}@d3s.mff.cuni.cz

4 Technische Universität Darmstadt, Germany
andreas.sewe@cased.de, mezini@informatik.tu-darmstadt.de

5 Universidad Privada Boliviana, Bolivia
avillazon@upb.edu

Abstract. Bytecode instrumentation is a key technique for the imple-
mentation of dynamic program analysis tools such as profilers and de-
buggers. Traditionally, bytecode instrumentation has been supported by
low-level bytecode engineering libraries that are difficult to use. Recently,
the domain-specific aspect language DiSL has been proposed to provide
high-level abstractions for the rapid development of efficient bytecode in-
strumentations. While DiSL supports user-defined expressions that are
evaluated at weave-time, the DiSL programming model requires these ex-
pressions to be implemented in separate classes, thus increasing code size
and impairing code readability and maintenance. In addition, the DiSL
weaver may produce a significant amount of dead code, which may impair
some optimizations performed by the runtime. In this paper we introduce
Turbo, a novel partial evaluator for DiSL, which processes the generated
instrumentation code, performs constant propagation, conditional reduc-
tion, and pattern-based code simplification, and executes pure methods
at weave-time. With Turbo, it is often unnecessary to wrap expressions
for evaluation at weave-time in separate classes, thus simplifying the pro-
gramming model. We present Turbo’s partial evaluation algorithm and
illustrate its benefits with several case studies. We evaluate the impact
of Turbo on weave-time performance and on runtime performance of the
instrumented application.

Keywords: Bytecode instrumentation, aspect-oriented programming,
domain-specific languages, partial evaluation, Java Virtual Machine.

1 Introduction

Dynamic program analysis tools support numerous software engineering tasks,
including profiling, debugging, and reverse engineering. Prevailing techniques for

C.A. Furia and S. Nanz (Eds.): TOOLS Europe 2012, LNCS 7304, pp. 353–368, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

354 Y. Zheng et al.

building dynamic analysis tools are based on low-level abstractions that make
tool development tedious, error-prone, and expensive. In the context of managed
languages, bytecode instrumentation is a widely used implementation technique
for dynamic analysis tools. For example, the Java Virtual Machine (JVM) sup-
ports bytecode instrumentation through a native code interface and there are
many low-level libraries and frameworks for manipulating bytecode (e.g., ASM,
BCEL, gnu.bytecode, Javassist, Serp, ShrikeBT, Soot).

The domain-specific language DiSL [8] offers high-level abstractions to en-
able rapid development of efficient dynamic analysis tools for the JVM. DiSL
succeeds in reconciling a high level of abstraction for tool development, expres-
siveness, and efficiency of the resulting tools. DiSL is an aspect language based
on a pointcut/advice mechanism [7]. The benefit of using aspects for dynamic
program analysis stems from the convenient model offered by join points (repre-
senting specific points in the execution of a program), pointcuts (denoting a set
of join points of interest), and advice (code to be executed whenever a join point
of interest is reached) [13]. A dynamic analysis aspect is concise and is easier
to define, tune and extend, compared to an equivalent implementation based on
low-level bytecode instrumentation techniques [8].

DiSL supports the weave-time evaluation of custom conditionals to decide
whether join points are woven, as long as these conditionals only depend on
static context information of the join point in question. This feature is key to
avoiding the repeated evaluation of such conditionals within advice at runtime.
Alas, the user needs to factor out the code that is to be evaluated at weave-time
from the advice. This complicates the DiSL programming model, as extra classes
and methods need to be introduced, and in some cases advice needs to be split
up into several pieces for which the weaving order has to be explicitly specified.

From the user’s point of view, it would be much more convenient to simply
write conditionals within advice code and rely on the DiSL weaver to optimize
the code and to move as much computation as possible from runtime to weave-
time. However, the DiSL weaver as presented previously [8] does not perform
any optimization of the woven advice. It may even generate a significant amount
of dead code that may hinder certain optimizations of the runtime.1

In this paper we introduce Turbo, a new partial evaluator that is plugged into
the DiSL weaver to optimize woven advice. Turbo performs constant propagation
and executes pure methods (i.e., methods that are free of side effects and compute
the same result when invoked multiple times with the same arguments) at weave-
time; it also removes dead code. Thanks to Turbo, the DiSL programmer usually
does not need to take care of factoring out expressions to be evaluated at weave-
time. Instead, such expressions are simply embedded in advice code. Turbo will
detect them and evaluate them at weave-time. In particular, Turbo guarantees
that conditionals that only depend on static context information will always be

1 For example, the just-in-time compilers of some recent JVMs base inlining decisions
on the size of methods; if the weaver inserts a lot of dead code, the woven method
may not be eligible for inlining (a very effective compiler optimization) anymore.

Turbo DiSL: Partial Evaluation for High-Level Bytecode Instrumentation 355

evaluated at weave-time. Furthermore, the DiSL user may annotate methods
that are pure such that Turbo may execute them at weave-time. Turbo is also
aware of many pure methods in the standard Java class library (e.g., methods
in java.lang.Integer or java.lang.String).

The original, scientific contributions of this paper are twofold:

1. We introduce Turbo, a partial evaluator for DiSL [8]. While partial evalua-
tion has been explored by others, Turbo is unique in simplifying the program-
ming model for the development of instrumentation-based dynamic analyses.

2. We present four case studies to illustrate the benefits of Turbo. With one
of these case studies, we evaluate the performance impact of Turbo both on
weave-time and on runtime of the woven application.

Section 2 gives an overview of DiSL. Section 3 introduces Turbo, our new partial
evaluator for DiSL. Section 4 illustrates how Turbo simplifies the DiSL program-
ming model in four case studies, before Sect. 5 explores the performance impact
of Turbo. Section 6 discusses related work and Sect. 7 concludes.

2 Background: DiSL Overview

Below we give an overview of some language constructs supported by DiSL,
limiting the discussion to the features used in this paper. We will show the DiSL
language constructs with concrete examples in Sect. 4. We refer the reader to
our comprehensive description of the DiSL language [8] for further information.

Join point model. DiSL has an open join point model in which any region of
bytecodes can be used as a join point. Pointcuts are expressed with markers
that select bytecode regions. DiSL provides an extensible library of such markers
including ones for selecting whole method bodies, basic blocks, single bytecodes,
and exception handlers. DiSL relies on guards to further restrict the join points
selected by a marker. Guards are predicate methods free of side-effects that are
executed at weave-time which have access to static context information.

Advice. Advice in DiSL are expressed in the form of code snippets. Snippets
are void methods that are instantiated by the weaver and that take annotations
indicating whether they are to be woven before or after a join point. In contrast
to mainstream AOP languages such as AspectJ, DiSL does not support around
advice (synthetic local variables [8] mitigate this limitation).

Context information. Snippets and guards have access to complete static
context information (i.e., static reflective join point information). To this end,
snippets and guards can take an arbitrary number of static context references as
arguments. Methods in static context classes return constants: primitive values,
strings, or class literals. DiSL provides an extensible library of static context
classes. Snippets have also access to complete dynamic context information,

356 Y. Zheng et al.

including local variables and the operand stack. Dynamic context information is
provided through an interface type; snippets may take an argument of that type
to access dynamic context information.

When a snippet is selected to be woven at a join point, it is first instantiated
with respect to the context of the join point. The DiSL weaver first replaces
invocations of static context methods with the corresponding constants. That
is, static context method invocations in the snippet are pseudo-method calls
that are substituted with concrete constants. This step in the weaving process
introduces constants into the snippet; thus, the opportunity to optimize the
code with partial evaluation arises. Dynamic context method invocations in the
snippet are also pseudo-method calls that are replaced with bytecode sequences
to access local variables respectively to copy operands from the stack. The partial
evaluator Turbo described below is invoked after the removal of static context
method calls but before the removal of the dynamic context method calls.

3 Turbo: Partial Evaluator for DiSL

Turbo is a new on-the-fly partial evaluator integrated with the most recent ver-
sion of the DiSL weaver. If enabled, Turbo performs code optimizations during
the process of snippet instantiation. As discussed in Sect. 2, the DiSL weaver
instantiates snippets by replacing invocations of static context methods with
bytecodes that load the corresponding constants. Turbo can perform any com-
putation in snippets that depends only on constants and does not produce any
side effects at weave-time, thus avoiding repetitive runtime computations. To re-
duce the weaving overhead, Turbo is designed to be simple but efficient, aiming
at simplifying the DiSL programming model.

Turbo partial evaluation is divided into three major steps that can be iter-
ated until no further optimization is possible: (1) constant propagation, (2) con-
ditional reduction, and (3) pattern-based code simplification. Turbo guarantees
that any intermediate result in the process of partial evaluation represents valid
bytecode without any change in the semantics with respect to the initial byte-
code. Consequently, it is easily possible to adjust the trade-off between the qual-
ity of the partially evaluated bytecode and the time spent in optimization. For
example, the DiSL programmer may specify an upper limit on the number of
iterations performed by Turbo on each snippet, so as to limit the performance
impact of Turbo on weave-time.

If Turbo is iterated until no further optimizations are possible, it guarantees
that any bytecode within conditionals that are statically known to evaluate to
false (i.e., that only depend on computation with constants and on invocations
of pure methods) will be discarded. Such conditionals may even enclose snippet
code that results in bytecode which would fail the JVM’s bytecode verification
when instantiated; as the unreachable snippet code is discarded by Turbo, this
otherwise unverifiable bytecode can neither cause a weave-time error nor a
verification error when the instrumented class is linked. In Sect. 4.3 we will show

Turbo DiSL: Partial Evaluation for High-Level Bytecode Instrumentation 357

an example where this property of Turbo is useful, as it allows the programmer
to access potentially illegal positions on the operand stack when enclosed by an
appropriate static context information check.

Below we explain each step in the partial evaluation algorithm.

Constant propagation. The constant interpreter performs constant propagation
on the input snippet. It symbolically executes the bytecodes in the control-flow
graph by transforming an input frame (which represents the local variables and
the operand stack) into an output frame according to the bytecodes’ semantics.
For each bytecode, Turbo stores a frame containing the constant status of each
local variable and stack operand before executing it. If a bytecode is reachable
through multiple execution paths, Turbo merges the input frames. This operation
will replace a constant with a dedicated value indicating that the local variable
respectively stack operand is not constant or not the same constant for all merged
input frames. Our implementation of the constant interpreter is based on the
symbolic analyzer provided by ASM, a Java bytecode manipulation framework.
This is a sensible implementation choice, since DiSL’s weaver is itself ASM-based.

Besides symbolically executing bytecodes, Turbo also executes pure methods
at weave-time, thus enabling constant propagation across pure method calls. To
this end, the DiSL programmer must annotate such methods with @Pure and
ensure that the annotated methods indeed have no side effects and that their
output does not change for subsequent invocations with the same arguments.
Moreover, the methods have to be static with parameters of primitive (resp.
wrapper) types or strings. Out-of-the-box, Turbo also supports the removal of
calls to pure methods in the Java class library (e.g., string operations).

Figure 1a presents the algorithm of constant propagation implemented by
Turbo. It uses the auxiliary operations defined in Fig. 1b.

Conditional reduction. After constant propagation, some branch instructions can
be resolved to either if(true) or if(false). Turbo discards the branch that
is not taken and replaces the branch bytecode with a number of pop bytecodes
corresponding to the number of operands that would be consumed by the branch
bytecode. This code transformation ensures that the snippet code remains valid.
After all branch bytecodes have been processed, Turbo removes inaccessible basic
blocks from the control-flow graph.

Pattern-based code simplification. After each iteration, Turbo eliminates super-
fluous code matching one of several different patterns, such as jumping to the
next instruction. Another code pattern optimized by Turbo is the sequence of pop
bytecodes introduced by conditional reduction. For each pop bytecode, Turbo
finds out the source bytecodes that push the operand. If all those bytecodes
are free of side effects, Turbo removes both the pop bytecode and its source
bytecodes; for each bytecode thus removed, Turbo inserts pop bytecodes cor-
responding to the number of stack operands that would be consumed by the
removed source bytecode.

358 Y. Zheng et al.

Input : An instruction list Φ
Output : ∪instr∈Φinstr.frame
Initially :

Q := new Queue();
Q.enqueue(〈first instruction of Φ, new Frame()〉);

Iteration :
while Q �= ∅ do

〈instr, input〉 := Q.dequeue();
changed := false;
if instr.frame = null then

instr.frame := input.clone();
changed := true;

else
for i := 0 to input.size − 1 do

if input.get(i) �= instr.frame.get(i) then
instr.frame.set(i, ĉ);
changed := true;

end
if changed then

output := input.clone();
switch instruction pattern of instr do

case Load_constant: c → dst, c ∈ C
output.set(dst, c);

case Data_transfer: src → dst
v := input.get(src);
output.set(dst, v);

case Data_processing: (op)srcs → dst
if ∀src ∈ srcs : input.get(src) ∈ C then

v := instr.process(∪src∈srcsinput.get(src));
output.set(dst, v);

else
output.set(dst, ĉ);

case Invocation: call f(srcs)→ dst
if ∀src ∈ srcs : input.get(src) ∈ C and f is pure then

v := instr.invoke(f, ∪src∈srcsinput.get(src));
output.set(dst, v);

else
output.set(dst, ĉ);

otherwise if instr rewrites dst then output.set(dst, ĉ);
endsw
∀next ∈ instr.next : Q.enqueue(〈next, output〉);

end

Fig. 1a. Turbo’s algorithm for constant propagation. Auxiliary procedures used are
shown in Fig. 1b (Notation: C denotes the set of constants (e.g., 0, 1.0, null), ĉ �∈ C
denotes a dedicated non-constant value.)

Turbo DiSL: Partial Evaluation for High-Level Bytecode Instrumentation 359

class Queue
dequeue(): Return and remove the first tuple from the queue;
enqueue(〈instruction, frame〉):

Insert the tuple 〈instruction, frame〉 at the end of the queue;
class Frame

Frame(): Initially all elements are assigned the non-constant value ĉ;
clone(): Return a copy of this frame;
get(position): Return the element at the specified position in the frame;
set(position, value):

Replace the element at the specified position in the frame with value;
class Instruction

frame: constant status of each local variable or stack operand before evaluation;
next: union of possible next instructions;
invoke(method, set〈argument〉): Execute method;
process(set〈operand〉):

Symbolically execute the instruction according to its semantics;

Fig. 1b. Auxiliary procedures used by Turbo’s algorithm for constant propagation

4 Case Studies

Below we discuss four case studies comparing real-world dynamic analyses using
plain DiSL with equivalent versions using Turbo DiSL. They illustrate how Turbo
simplifies the programming of efficient dynamic analysis tools.

4.1 Case Study 1: Configurable Instrumentation

Dynamic analyses often require some external configuration to bypass part of
their behaviors. When analyzing method calls, e.g., one might be interested in the
arguments passed or the execution time of the call. But since not all information
is always needed, it is desirable to configure the analysis accordingly to avoid
unnecessary overhead.

A straightforward implementation of such a configurable analysis is shown in
Fig. 2a. The snippet is woven in at the beginning of each method body; its code
will be executed upon each method entry. All configurable cases are coded as
conditionals within this single snippet. Alas, the configuration is evaluated at
runtime each time the snippet is invoked.2

Now, if the boolean methods profileArgs() and profileTime() always
return the same constant value, one would prefer to evaluate the conditionals
within the snippet once at weave-time instead of evaluating them upon each
method call. In plain DiSL (i.e., without Turbo), the programmer may resort
to guards [8] to factor out the code to be evaluated at weave-time, as illustrated in

2 The JVM’s just-in-time compiler may be able to remove some of this overhead.

360 Y. Zheng et al.

public class MethodAnalysis {
@Before(marker = BodyMarker.class)
static void onMethodEntry() {

if (Configuration.profileArgs()) { ... /* profile method arguments */ }
if (Configuration.profileTime()) { ... /* profile current wall time */ }

}
}

Fig. 2a. Skeleton implementation of a configurable analysis

public class MethodAnalysis {
@Before(marker = BodyMarker.class, order = 1, guard = ArgsGuard.class)
static void onMethodEntryArgs() { ... /* profile method arguments */ }

@Before(marker = BodyMarker.class, order = 0, guard = TimeGuard.class)
static void onMethodEntryTime() { ... /* profile current wall time */ }

}

public class ArgsGuard {
@GuardMethod
static boolean evalGuard() { return Configuration.profileArgs(); }

}

public class TimeGuard {
@GuardMethod
static boolean evalGuard() { return Configuration.profileTime(); }

}

Fig. 2b. Configurable analysis implemented with guards

Fig. 2b. However, the resulting code is more complicated and verbose, as the
programmer has to implement two snippets, two guards, and to supply additional
information to the snippet annotation to fix the weaving order.

With Turbo, it is not necessary to use guards to reduce runtime overhead;
the code can be implemented exactly as shown in Fig. 2a above. If the methods
profileArgs() and profileTime() in class Configuration are annotated with
@Pure, Turbo will evaluate these methods at weave-time and remove any dead
code when weaving the snippet. Consequently, the snippet code can stay simple
with all the benefits of weave-time evaluation. As another benefit, the reduction
in code size achieved by Turbo helps avoid overlong methods that would violate
constraints of the JVM.

4.2 Case Study 2: Tracking Monitor Ownership

In the JVM, each object has an associated monitor. As contention for monitor
ownership limits application’s scalability, a dynamic analysis to track ownership
can assist in finding performance bottlenecks in multi-threaded Java programs.

A thread gains ownership of a monitor either explicitly by entering a
synchronized block (i.e., by executing monitorenter at the bytecode level),
or implicitly by entering a synchronized method. In the latter case, it is the

Turbo DiSL: Partial Evaluation for High-Level Bytecode Instrumentation 361

public class MonitorOwnershipAnalysis {
@Before(marker = BodyMarker.class, guard = SynchronizedClassMethodGuard.class)
static void acquireMonitorForClass(MethodStaticContext msc, ClassContext cc) {

Object assocObj = cc.asClass(msc.thisClassName());
... /* track ownership */

}

@Before(marker = BodyMarker.class, guard = SynchronizedInstanceMethodGuard.class)
static void acquireMonitorForInstance(DynamicContext dc) {

Object assocObj = dc.getThis();
... /* track ownership */

}
}

public class SynchronizedClassMethodGuard {
@GuardMethod
static boolean isApplicable(MethodStaticContext msc) {

return msc.isMethodSynchronized() && msc.isMethodStatic();
}

}

public class SynchronizedInstanceMethodGuard {
@GuardMethod
static boolean isApplicable(MethodStaticContext msc) {

return msc.isMethodSynchronized() && !msc.isMethodStatic();
}

}

Fig. 3a. Analysis to track monitor ownership using guards

public class MonitorOwnershipAnalysis {
@Before(marker = BodyMarker.class)
static void acquireMonitor(DynamicContext dc, MethodStaticContext msc,

ClassContext cc) {
if (msc.isMethodSynchronized()) {

Object assocObj =
msc.isMethodStatic() ? cc.asClass(msc.thisClassName()) : dc.getThis();

... /* track ownership */
}

}
}

Fig. 3b. Analysis to track monitor ownership relying on partial evaluation

monitor of the receiver object (this) that is acquired for instance methods and
the monitor of the corresponding instance of java.lang.Class for class (static)
methods. Which object and hence which monitor is meant is statically known.

With plain DiSL, however, this distinction needs to be expressed through
guards, leading to the both duplicated and hard-to-read code shown in Fig. 3a.
Said code is not only verbose but also makes it hard to see that the two
cases (acquireMonitorForClass/ForInstance) complement each other. With
Turbo’s partial evaluation, the above code can be written in a single snippet
using straightforward conditionals as shown in Fig. 3b.

362 Y. Zheng et al.

public class FieldAccessAnalysis {
@Before(marker = BytecodeMarker.class, args = "getfield")
static void onFieldRead(FieldAccStaticContext fasc, MethodStaticContext msc,

DynamicContext dc) {
String methodID = msc.thisMethodFullName();
String fieldID = fasc.thisFieldID();
Object ownerObj = dc.getStackValue(0, Object.class);
... /* profile field read */

}

@Before(marker = BytecodeMarker.class, args = "putfield")
static void onFieldWrite(FieldAccStaticContext fasc, MethodStaticContext msc,

DynamicContext dc) {
String methodID = msc.thisMethodFullName();
String fieldID = fasc.thisFieldID();
Object ownerObj = dc.getStackValue(1, Object.class);
... /* profile field write */

}
}

Fig. 4a. Field access analysis with code duplication

public class FieldAccessAnalysis {
@Before(marker = BytecodeMarker.class, args = "getfield,putfield")
static void onFieldAcc(FieldAccStaticContext fasc, MethodStaticContext msc,

DynamicContext dc) {
String methodID = msc.thisMethodFullName();
String fieldID = fasc.thisFieldID();
int stackDistance = (fasc.getOpcode() == Opcodes.GETFIELD) ? 0 : 1;
Object ownerObj = dc.getStackValue(stackDistance, Object.class);
... /* profile field access (read or write) */

}
}

Fig. 4b. Field access analysis relying on partial evaluation

4.3 Case Study 3: Field Access Analysis

Figure 4a shows an instrumentation to profile any access to instance fields. The
first snippet is woven before each read access (getfield) while the second snip-
pet is woven before each write access (putfield). In the former case, the owner
object resides on top of the operand stack, whereas in the latter case it is the
second topmost stack operand.

Without partial evaluation, it is impossible to combine the two snippets by
choosing the stack location to access based on the opcode. As the first argument
for the pseudo-method getStackValue must be a constant, the snippet would
include two branches to access the stack position zero respectively one; for each
woven join point, one of the branches would constitute dead code. Moreover,
that dead branch would possibly access an illegal position on the operand stack,
resulting in bytecode that would fail verification3. With partial evaluation, such
code duplication is unnecessary; a single snippet with a conditional suffices as
3 The DiSL weaver may generate warnings if bytecode is generated that would fail

load-time verification.

Turbo DiSL: Partial Evaluation for High-Level Bytecode Instrumentation 363

public class ExecutionTraceProfiler {
@Before(marker = BasicBlockMarker.class, order = 1, guard = ClassInitGuard.class)
static void onClassInit(MethodStaticContext msc) {

... /* profile class initialization */
}

@Before(marker = BasicBlockMarker.class, order = 0)
static void onBB(CustomBasicBlockStaticContext cbbsc) {

String bbID = cbbsc.thisBBID();
... /* profile basic block entry */

}
}

public class CustomBasicBlockStaticContext extends BasicBlockStaticContext {
public String thisBBID() {

String methodFullName = staticContextData.getClassNode().name
+ "." + staticContextData.getMethodNode().name;

return methodFullName + ":" + String.valueOf(getBBindex());
}

}

public class ClassInitGuard {
@GuardMethod
static boolean evalGuard(BasicBlockStaticContext bbsc, MethodStaticContext msc) {

return (bbsc.getBBindex() == 0) && msc.thisMethodName().equals("<clinit>");
}

}

Fig. 5a. Execution trace profiler using a custom static context class and a guard

public class ExecutionTraceProfiler {
@Before(marker = BasicBlockMarker.class)
static void onBB(BasicBlockStaticContext bbsc, MethodStaticContext msc) {

if (bbsc.getBBindex() == 0 && msc.thisMethodName().equals("<clinit>")) {
... /* profile class initialization */

}
String bbID = msc.thisMethodFullName() + ":" + String.valueOf(bbsc.getBBindex());
... /* profile basic block entry */

}
}

Fig. 5b. Execution trace profiler relying on partial evaluation

shown in Fig. 4b. Turbo guarantees that this conditional is evaluated at weave-
time (since it only depends on constant data) and that only the proper constant
is propagated to the pseudo-method getStackValue.

4.4 Case Study 4: Execution Trace Profiling

Figure 5a shows a profiler that traces each executed basic block of code, identified
by a unique string comprising the fully qualified method name (package, class,
method, signature) and a basic block ID (an integer value that is unique within
the scope of a method body). In addition, the execution of the first basic block
in each class initializer (method <clinit> at the bytecode level) is specially

364 Y. Zheng et al.

tracked by the profiler. The DiSL code in Fig. 5a is complicated; it comprises
two snippets and requires both a custom static context and a guard. The static
context ensures that the special basic block identifiers are built at weave-time,
while the guard identifies the first basic block of class initializers. The snippet
order guarantees that the special profiling of the first basic block in a static
initializer happens before the normal basic block profiling.

Figure 5b shows a naïve single-snippet implementation with a conditional;
the basic block ID is built within the snippet code. While this implementation
is sound, it incurs excessive runtime overhead, since the conditional is evaluated
and the identifier is built at runtime for each woven join point, i.e., for each basic
block in the base program. However, with partial evaluation, the woven bytecode
for both versions of the profiler will be the same, as the conditional depends
on static information only and the string operations are pure. Hence, Turbo
evaluates these parts of the snippet code at weave-time. In the next section, we
will explore weave-time and runtime performance of both versions of the profiler.

5 Performance Evaluation

We use the execution trace profiler of the fourth case study for our performance
evaluation, because it intercepts the highest number of join points, both stati-
cally at weave-time and dynamically at runtime. That is, the impact of partial
evaluation on weave-time performance and the impact of code quality on runtime
performance is most pronounced in this case study.

The base programs are benchmarks from the DaCapo suite (release 9.12).4 We
exclude tradebeans and tradesoap because of a well-known issue with a hardcoded
timeout5, which prevents their use together with expensive instrumentation. All
measurements were conducted on a 3.0 GHz Intel Core 2 Quad Q9650 with
8 GB RAM running Ubuntu GNU/Linux 10.04 64-bit with kernel 2.6.35. We use
Oracle’s JDK 1.6.0_30 Hotspot Server VM (64-bit) with a 7 GB heap and DiSL
pre-release version 0.9 with complete bytecode coverage, i.e., with a completely
woven Java class library [8].

We evaluate three versions of the execution trace profiler: (1) the naïve im-
plementation shown in Fig. 5b without Turbo, which serves as a baseline for the
comparison; (2) the manually optimized implementation shown in Fig. 5a (with-
out Turbo), henceforth called “DiSL optimized”; and (3) the naïve implemen-
tation of Fig. 5b with Turbo, called “Turbo DiSL”. Moreover, we consider three
performance metrics: (a) the weave-time, i.e., the time to weave all classes loaded
during a single benchmark iteration; (b) the startup time, i.e., the process time
from creation to the termination of the first benchmark iteration; and (c) the
steady-state execution time, i.e., the median of the execution times of 15 bench-
mark iterations within the same JVM process.

For each metric, Fig. 6 illustrates the speedup of “DiSL optimized” and
“Turbo DiSL” relative to the baseline. The gray marks refer to the individual

4 See http://www.dacapobench.org/ .
5 See http://sourceforge.net/tracker/?group_id=172498 (artifact ID 2955469).

http://www.dacapobench.org/
http://sourceforge.net/tracker/?group_id=172498

Turbo DiSL: Partial Evaluation for High-Level Bytecode Instrumentation 365

0.5x

0.5x

1x

1x

DiSL optimized

Tu
rb

o
D

iS
L

(a) Weaving

10x 20x

10x

20x

1x
1x

DiSL optimized
(b) Startup

10x 20x

10x

20x

1x
1x

DiSL optimized
(c) Steady state

Fig. 6. Speedup factor relative to the naïve implementation without Turbo for the
considered DaCapo benchmarks (values below 1x indicate slowdowns)

benchmarks, while the black marks refer to the geometric mean of all speedup
factors. When the speedup factor is below 1x, it indicates a slowdown. The di-
agonal line indicates data points for which the performance of “DiSL optimized”
and “Turbo DiSL” is the same.

Regarding weave-time, Fig. 6(a), the baseline is generally faster than both the
“DiSL optimized” and “Turbo DiSL” versions, because for the baseline, Turbo is
deactivated and there is no guard to be evaluated at weave-time. However, in a
few benchmarks “DiSL optimized” outperforms the baseline because the reduced
complexity of the inlined snippet code outweighs the cost of guard evaluation.
On average, “DiSL optimized” is only 10% slower than the baseline, while the
use of Turbo increases weave-time by a factor of 4.2. This result clearly shows
the drawback of partial evaluation, a considerable increase in weave-time.

Regarding startup performance, Fig. 6(b), “DiSL optimized” outperforms the
baseline by a factor of 7.4, and “Turbo DiSL” outperforms the baseline by a factor
of 5.18. Interestingly, a single benchmark iteration (which includes weave-time)
is sufficient to achieve a significant speedup by partial evaluation. The manually
tuned version is faster still, as it does not significantly increase weave-time.

Regarding steady-state performance, Fig. 6(c), “DiSL optimized” and
“Turbo DiSL” reach the same high speedup of about 13x. This result highlights
the strengths of Turbo; high steady-state performance is achieved without having
to write complicated, manually tuned code. The fact that “Turbo DiSL” signif-
icantly outperforms the baseline clearly shows that the just-in-time compiler of
the JVM is not able to perform the same kind of optimizations as Turbo.

6 Related Work

Partial evaluation (also called program specialization) enables aggressive
inter-procedural constant propagation, constant folding, and control-flow simpli-
fications [6]. An online partial evaluator makes decisions about what to specialize
during the specialization process, while an offline partial evaluator makes all

366 Y. Zheng et al.

the decisions before specialization. Hybrid Partial Evaluation (HPE) [12] com-
bines both approaches by letting the programmer guide the specialization pro-
cess through annotations, e.g., to indicate which objects are to be instantiated
at compile time. This is similar to Turbo’s annotations used to guide the par-
tial evaluation, without which not all optimization decisions can be made in an
offline-fashion. Thus, Turbo can be considered to follow a hybrid approach, too.

Some approaches to partial evaluation are based on translating the source
program into another programming language that provides more powerful spe-
cialization mechanisms. For example, Albert et al. use partial evaluation to au-
tomatically generate specialized programs by transforming Java bytecode into
Prolog to apply powerful constraint logic programming [1]. The Prolog code is
then interpreted by the CiaoPP abstract interpreter [5]. While this approach
allows for powerful interpretative partial evaluation, it only handles a subset of
Java that lacks exception handling, multi-threading, and reflection. In contrast,
Turbo’s partial evaluator is less powerful, but does not have such limitations.

AspectJ [7] is a language often used for the kind of bytecode instrumenta-
tion tasks DiSL is designed for. The standard AspectJ compiler (ajc) already
performs partial evaluation of the aspects’ pointcuts, which are akin to DiSL’s
markers, scopes, and guards. It does not, however, partially evaluate the aspects’
advice, which are akin to DiSL’s snippets. Masuhara et al. describe this approach
in terms of a semantics-based compilation model [9]. This model follows an in-
terpretative approach to compilation, based on partially evaluating the AOP
interpreter itself (written in Scheme) to remove unnecessary pointcut tests. In
contrast to Turbo, advice code is not partially evaluated, but rather the partial
evaluator verifies if the advice should be inserted in compiled code or not.

Pesto [2] is a declarative language to describe specialization of object-oriented
programs. Pesto generates all context and configuration information needed to
use the JSpec offline Java partial evaluator [11], which then generates resid-
ual code in AspectJ. Like Turbo, Pesto uses guards to select specialized code
when invariants are satisfied. The approach is based on the observation that
partial evaluation of an object-oriented program creates new code with depen-
dencies that cross-cut the class hierarchy. Thus, the methods generated by a
given specialization can be encapsulated into a separate aspect. Whereas Turbo
uses partial evaluation to optimize the execution of advice code, Pesto performs
specialization of the base program using AspectJ aspects, which unfortunately
do not benefit from optimizations at the advice level.

Spoon [10] is a framework for program transformation and static analysis
in Java, which reifies the program with respect to a meta-model. This allows
for direct access and modification of its structure at compile-time and enables
template-based AOP; similar to DiSL, users can insert code, e.g., before or after
a method body. Spoon, however, uses source code-level transformations. This
limits its applicability for dynamic analysis, as neither basic blocks analysis
nor efficient access to context information are possible. For constant propaga-
tion, dead-code elimination, and access to static context for template instanti-
ation, Spoon provides a meta-model partial evaluation facility. Whereas Turbo

Turbo DiSL: Partial Evaluation for High-Level Bytecode Instrumentation 367

performs partial evaluation of advice code, Spoon’s partial evaluator specializes
the meta-model; partial evaluation returns specialized models rather than code.

While Spoon reifies the entire program with respect to a meta-model, the
ALIA4J approach [3] to language implementation stipulates a common meta-
model only for so-called advanced dispatching, during which one or more ac-
tions are selected depending on the current runtime context, and subsequently
executed. Many, but not all bytecode instrumentation tasks possible with DiSL
also fit this model. During language implementation, ALIA4J’s concepts like
actions, predicates, and contexts can be refined to realize the desired language
semantics, e.g., by implementing the semantics based on interpretation or code
generation [4]. In the latter case, the code generator is exposed to additional
static information which often allows for partial evaluation of a refined concept.
Unlike in Turbo, this requires manual analysis by the language implementer.

7 Conclusion

We presented Turbo, a new partial evaluator for the domain-specific aspect lan-
guage DiSL [8] that targets the development of dynamic program analysis tools
based on bytecode instrumentation. Turbo is designed as an optional component
that is activated by the DiSL weaver during the instantiation of snippets, after
static context information has been resolved. Turbo propagates constants, re-
duces conditionals, evaluates pure methods with constant input data, simplifies
certain code patterns, and performs dead-code elimination.

The most significant benefit of Turbo is that it simplifies the DiSL program-
ming model, as we illustrated with four case studies. The DiSL programmer does
not need to factor out code to be evaluated at weave-time, but can rely on Turbo
to automatically detect and optimize such code. While it is always possible to
program efficient instrumentations using DiSL constructs such as guards and
custom static context classes, the equivalent code relying on Turbo is generally
more concise and easier to write, understand, and maintain.

Our performance evaluation confirms that a simple DiSL instrumentation op-
timized by Turbo can reach the same steady-state performance as a complicated,
manually tuned instrumentation, at the expense of an increase in weave-time, i.e.,
lower startup performance. Turbo ideally supports rapid prototyping of dynamic
analyses in DiSL; the programmer need not care about factoring out parts that
can be evaluated at weave-time. If the analysis is applied only a few times (e.g.,
during workload characterization) or is applied to long-running base programs,
the increase in weave-time is usually not an issue. If fast weaving is essential, for
example in the case of frequently used profilers, the DiSL programmer may prefer
to refactor the code using guards and custom static context classes; still, Turbo
is valuable during development to explore the possible steady-state performance
of an optimized analysis before implementing it by hand.

Acknowledgments. The research presented here was conducted while
L. Marek was with the University of Lugano. It was supported by the

368 Y. Zheng et al.

Scientific Exchange Programme NMS–CH (project code 10.165), by a Sino-
Swiss Science and Technology Cooperation (SSSTC) Institutional Partner-
ship (project no. IP04–092010), by the Swiss National Science Foundation
(project CRSII2_136225), by the National Natural Science Foundation of China
(project no. 61073151), by the Science and Technology Commission of Shang-
hai Municipality (project no. 11530700500), by the Czech Science Foundation
(project GACR P202/10/J042), as well as by CASED (www.cased.de).

References

1. Albert, E., Gómez-Zamalloa, M., Hubert, L., Puebla, G.: Verification of Java Byte-
code Using Analysis and Transformation of Logic Programs. In: Hanus, M. (ed.)
PADL 2007. LNCS, vol. 4354, pp. 124–139. Springer, Heidelberg (2006)

2. Andersen, H.M., Schultz, U.P.: Declarative specialization for object-oriented-
program specialization. In: Proceedings of the Symposium on Partial Evaluation
and Program Manipulation, pp. 27–38 (2004)

3. Bockisch, C., Sewe, A., Mezini, M., Akşit, M.: An Overview of ALIA4J: An Ex-
ecution Model for Advanced-Dispatching Languages. In: Bishop, J., Vallecillo, A.
(eds.) TOOLS 2011. LNCS, vol. 6705, pp. 131–146. Springer, Heidelberg (2011)

4. Bockisch, C., Sewe, A., Zandberg, M.: ALIA4J’s [(just-in-time) compile-time] MOP
for advanced dispatching. In: Proceedings of the 5th Workshop on Virtual Machines
and Intermediate Languages, pp. 309–316 (2011)

5. Hermenegildo, M.V., Puebla, G., Bueno, F., López-García, P.: Integrated program
debugging, verification, and optimization using abstract interpretation (and the
Ciao system preprocessor). Science of Computer Programming 58(1-2), 115–140
(2005)

6. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice Hall (1993)

7. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An Overview of AspectJ. In: Lee, S.H. (ed.) ECOOP 2001. LNCS, vol. 2072,
pp. 327–353. Springer, Heidelberg (2001)

8. Marek, L., Villazón, A., Zheng, Y., Ansaloni, D., Binder, W., Qi, Z.: DiSL: a
domain-specific language for bytecode instrumentation. In: Proceedings of Modu-
larity: aosd, vol. 12, pp. 239–250 (2012)

9. Masuhara, H., Kiczales, G., Dutchyn, C.: A Compilation and Optimization Model
for Aspect-Oriented Programs. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp.
46–60. Springer, Heidelberg (2003)

10. Pawlak, R., Noguera, C., Petitprez, N.: Spoon: Program Analysis and Transforma-
tion in Java. Rapport, INRIA (2007), http://hal.inria.fr/inria-00071366/en/

11. Schultz, U.P., Lawall, J.L., Consel, C.: Automatic Program Specialization for Java.
Transactions on Programming Languages and Systems 25(4), 452–499 (2003)

12. Shali, A., Cook, W.R.: Hybrid partial evaluation. In: Proceedings of the 26th Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
pp. 375–390 (2011)

13. Tanter, E., Moret, P., Binder, W., Ansaloni, D.: Composition of dynamic anal-
ysis aspects. In: Proceedings of the 9th International Conference on Generative
Programming and Component Engineering, pp. 113–122 (2010)

http://hal.inria.fr/inria-00071366/en/

Author Index

Aldrich, Jonathan 187
Ansaloni, Danilo 353
Aßmann, Uwe 320

Bartho, Andreas 320
Bergmann, Gábor 1
Binder, Walter 353
Bouwers, Eric 252
Brada, Premek 108

Cataño, Néstor 9
Corral, Luis 17
Cuéllar, Jorge 219

DeAntoni, Julien 34
Derezińska, Anna 42
D’Hondt, Theo 171
Draayer, Jerry P. 140
Drechsler, Rolf 269
Dytrych, Tomáš 140

Favre, Jean-Marie 58
Fiamberti, Francesco 75

Gittinger, Claus 124
Greiler, Michaela 91

Hanvey, Sorren 9
Hegedüs, Ábel 1
Holý, Lukáš 108
Honda, Kohei 202
Horváth, Ákos 1

Ježek, Kamil 108
Jørgensen, Bo Nørregaard 252
Jürjens, Jan 219

Karol, Sven 320
Kurš, Jan 124

Lämmel, Ralf 58
Langr, Daniel 140
Lilis, Yannis 155
Lungu, Mircea 304

Mallet, Frédéric 34
Marek, Lukas 353

Marr, Stefan 171
Mehnert, Hannes 187
Mezini, Mira 353
Micucci, Daniela 75
Mohr, David 236
Moreno, Nathalie 336

Ng, Nicholas 202
Nierstrasz, Oscar 304

Ochoa, Mart́ın 219
Olah, Mark J. 236
Olszak, Andrzej 252

Qi, Zhengwei 353

Ráth, István 1
Rudnik, Marcin 42
Rueda, Camilo 9

Savidis, Anthony 155
Schmorleiz, Thomas 58
Schroeter, Julia 320
Sewe, Andreas 353
Sillitti, Alberto 17
Soeken, Mathias 269
Stefanovic, Darko 236
Strumpflohner, Juri 17
Succi, Giancarlo 17
Sureka, Ashish 288

Tisato, Francesco 75
Tuma, Petr 353
Tvrd́ık, Pavel 140

Ujhelyi, Zoltán 1

Vallecillo, Antonio 336
van Deursen, Arie 91
Varanovich, Andrei 58
Varró, Dániel 1
Villazón, Alex 353
Visser, Joost 252
Vlasenko, Jelena 17
Vraný, Jan 124

370 Author Index

Wernli, Erwann 304
Wilke, Claas 320
Wille, Robert 269
Wimmer, Manuel 336

Yoshida, Nobuko 202

Zaidman, Andy 91
Zheng, Yudi 353

	Title
	Preface
	Organization
	Table of Contents
	Integrating Efficient Model Queriesin State-of-the-Art EMF Tools
	Introduction
	Overview of EMF-IncQuery
	Model Queries by Graph Patterns
	Execution of Incremental Queries

	Integrating Incremental Queries to the EMF Modeling Layer
	Related Work
	Conclusions
	References

	Poporo: A Formal Methods Toolfor Fast-Checking of Social Network Privacy Policies
	Introduction
	Preliminaries
	JML
	The SMT Solver Yices

	Poporo Tool Architecture
	Expressing Social Networking Privacy Policies in Yices
	Generating Verification Conditions
	Running Example
	Related Work
	Conclusion
	References

	DroidSense: A Mobile Tool to Analyze SoftwareDevelopment Processes by Measuring Team Proximity
	Introduction
	Measuring Software Development Processes
	Related Work
	Implementation Approach and Required Technologies
	DroidSense Tool
	Software System
	Data Visualizations
	Privacy

	Application of DroidSense
	Research Design
	Results

	Discussion
	Limitations and Future Work
	Conclusions
	References

	TimeSquare:Treat Your Models with Logical Time
	Introduction
	CCSL Specifications
	Semantics
	Implementation

	Simulation
	Analysis Features and Back-Ends

	Conclusions
	References

	Quality Evaluation of Object-Oriented and StandardMutation Operators Applied to C# Programs
	Introduction
	CREAM Mutation Testing Tool for C# Programs
	Investigation Process of Mutation Operators
	Generic Scenario of Experiments
	Experimental Flows on Selective Mutation
	Quality Metrics

	Experiments
	Investigated Programs
	Mutant Generation and Execution
	Experiments on Selective Mutation
	Threats to Validity

	Related Work
	Conclusions
	References

	101companies: A Community Projecton Software Technologies and Software Languages
	Introduction
	Illustration
	Key Categories of the 101companies Ontology
	Stakeholders of the 101companies Project
	Features of the 101companies System
	Themes of 101companies Contributions
	A Document Model for 101companies Implementations
	Related Work
	Concluding Remarks
	References

	An Object-Oriented Application Frameworkfor the Development of Real-Time Systems
	Introduction
	Basic Concepts
	Core Concepts
	Performers

	The Application Framework
	Performers
	Core Classes
	The Framework Running Machine
	Dynamics
	System Start-Up

	Experimental Results
	Conclusions and Future Directions
	References

	Measuring Test Case Similarity to Support TestSuite Understanding
	Introduction
	Tracing and Trace Reduction
	Tracing Test Executions
	Handling Mocks and Stubs
	Trace Reduction

	Determining Similarity Measurements
	Relevancy Support Based on Occurrence
	Implementation

	Set-Up for Case Studies
	Research Questions
	Technique Customization

	Case Study I: JPacman
	Obtaining the Conceptual Mapping
	RQ1: Comparison to Conceptual Mapping
	RQ4: Performance Characteristics

	Case Study II: Auction Sniper
	Obtaining an Initial Understanding
	RQ2: Suitability of Measurements for Understanding Test Relations
	RQ3: Handling Mocking

	Discussion
	Related Work
	Conclusion
	References

	Enhancing OSGi with Explicit, VendorIndependent Extra-Functional Properties
	Introduction
	Related Work
	Overview of Extra-Functionality in OSGi
	Motivation: Components Enriched with EFPs
	OSGi Parameters, Attributes and Filters

	Our Approach: Explicit Extra-Functional Properties in OSGi
	Structure of the EFP Data
	Specifying EFPs as OSGi Attributes
	EFP Queries as OSGi Filters
	An Example: EFPs in XML Mirror and OSGi Manifest
	EFP Evaluation Connected to OSGi Binding

	Conclusion
	References

	Efficient Method Lookup Customization for Smalltalk
	Introduction
	Problem Description
	Motivation
	Problems
	Requirements

	Method Lookup Customization
	Customization in a Nutshell
	Virtual Machine Support
	Caching of Method Lookup Results
	Multiple-Dispatch and Other Non-single-Dispatch Lookup Algorithms

	Validation
	Performance Benchmarks
	Performance of Method Lookup MOP
	Performance Comparison of DLR, and Invokedynamic

	Discussion
	Related Work
	Conclusion
	References

	Fake Run-Time Selectionof Template Arguments in C++
	Introduction
	Related Work
	Design and Implementation
	Notation
	Initial Step
	Extension to Multiple Dimensions
	The Optimal Solution
	Wrapping Up
	Summary

	Experimental Results
	Test Program
	Results and Discussion

	Conclusions
	References

	Supporting Compile-Time Debuggingand Precise Error Reporting in Meta-programs
	Introduction
	Related Work
	Compile-Time Debugging of Stages
	Compile-Error Reporting

	Meta-programming System
	Language Extensions
	Compiler Extensions
	IDE Support for Meta-programming

	Compiler Amendments
	Storing the Source Code of Every Stage and Its Output
	Tracking the Compile-Error Chain across Stages and Outputs
	Compile-Time Source-Level Debugging of Stages

	Contact Sites between the Compiler and the Tool-Chain
	Debugger
	IDE

	Conclusion
	References

	Identifying a Unifying Mechanism for theImplementation of Concurrency Abstractions on Multi-language Virtual Machines
	The Right Tool for the Job
	A Survey of Parallel and Concurrent Programming Concepts
	Survey Questions
	Selecting Subjects and Identifying Concepts
	Results
	Conclusions and Requirements

	An Ownership-Based MOP to Express Concurrency Abstractions
	Design of the MOP
	Example: Enforcing Immutability
	Implementation Strategy

	Evaluation
	By Example: Clojure's Agents
	Subjects
	Expressiveness
	Performance

	Discussion and Performance Perspectives
	Related Work
	Conclusion
	References

	Verification of Snapshotable TreesUsing Access Permissions and Typestate
	Introduction
	Interface Specification and Client Code Verification
	Interface ITree
	Interface Iterator
	Client Code Verification

	Proof Patterns and Verification of the Implementation
	Formula Guarded by a Boolean Variable and Implication
	Specification of a Recursive Structure
	Conditional Composition of Implementations
	Dropping Privileges (Ghost Method)
	Iterator

	Related Work
	Conclusion and Further Work
	References

	Multiparty Session C: Safe ParallelProgramming with Message Optimisation
	Introduction
	Protocols and Programming in Session C
	Scribble, A Protocol Description Language
	Session C: Programming and Runtime

	Type Checking and Message Optimisation
	Session Type Checker
	Asynchronous Message Optimisation

	Parallel Algorithms
	N-Body Simulation: Asynchronous Optimisation for Pipelines
	Linear Equation Solver: A Wraparound Mesh Topology

	Performance Evaluation
	Related Works and Further Topics
	References

	Non-interference on UML State-Charts
	Introduction
	Preliminaries
	Non-interference
	State-Charts

	Extending Unwinding for UML State-Charts
	UML State-Charts à la UMLsec
	Unwinding
	Unwinding for UML Statecharts

	Object Interaction
	Composition
	Compositionality and Non-interference

	Validation
	Tool Support
	Case Study

	Related Work
	Conclusions
	References

	Representing Uniqueness Constraintsin Object-Relational Mapping
	Introduction
	Background
	Relational Model
	Object Model
	Object-Relational Mapping

	Object Identity and Uniqueness
	Identity in the Natural Entity Framework

	Management of Persistent States and Concurrency
	Transactions
	Object States

	Object Creation
	Identity Map
	Initialization
	Object Creation Semantics in Other ORMs

	Mapping Natural Entity Inheritance Hierarchies
	Inheritance Mapping Strategies
	Natural Keys and Inheritance
	Type as a Natural Key Attribute

	Conclusion
	References

	Detection of Seed Methodsfor Quantification of Feature Confinement
	Introduction
	Related Work
	Problem Statement
	Detection of Seed Methods
	Heuristic Formalization
	Automated Quantification of Feature Confinement

	Evaluation of the Approach
	Validation
	Subject Systems
	Ground-Truth
	Results

	Evolutionary Application
	Measuring Feature Confinement
	Aggregation of Confinement Metrics
	Results

	Discussion
	Conclusion
	References

	Assisted Behavior Driven DevelopmentUsing Natural Language Processing
	Introduction
	Preliminaries
	Unified Modeling Language
	Stanford Parser
	WordNet

	General Idea and Proposed Approach
	Semi-automatic Extraction of Information
	Classes
	Attributes
	Operations
	Generation of Step Definitions

	Case Study
	Related Work
	Conclusions
	References

	Learning to Classify Bug Reportsinto Components
	Research Motivation and Aim
	Related Work and Research Contributions
	Empirical Analysis
	Experimental Dataset
	Statistics on Reassignment Events
	Automatic Component Assignment Using Linguistic Features
	Component Reassignment Prediction
	Component Reassignment Graphs

	Summary
	References

	Incremental Dynamic Updateswith First-Class Contexts
	Introduction
	Running Example
	The Problem with Updates
	Lifecycle of an Incremental Update

	First-Class Context
	User-Defined Update Strategy
	Reified State
	First-Class Classes
	Spawning Thread

	Implementation
	Validation
	Discussion
	Related Work
	Conclusion
	References

	Elucidative Developmentfor Model-Based Documentation
	Introduction
	From Literate Programming to Elucidative Development
	Literate Programming and Related Documentation Approaches
	Elucidative Development
	The Development Environment for Tutorials (DEFT)

	The UML Use Case for Elucidative Development
	Inconsistencies in UML 2.4.1
	UML Language Specification with DEFT

	Discussion
	Related Work
	Conclusion
	References

	Viewpoint Co-evolution through Coarse-GrainedChanges and Coupled Transformations
	Introduction
	Motivating Example
	Formalizing Viewpoints in Maude
	Change Detection: From Fine- to Coarse-Grained Changes
	Phase 1: Detecting Fine-Grained Changes
	Phase 2: Detecting Coarse-Grained Changes

	Change Propagation by Coupled Transformations
	Sketching Coupled Transformations
	Encoding Coupled Transformations in Maude

	Related Work
	Conclusions and Future Work
	References

	Turbo DiSL: Partial Evaluationfor High-Level Bytecode Instrumentation
	Introduction
	Background: DiSL Overview
	Turbo: Partial Evaluator for DiSL
	Case Studies
	Case Study 1: Configurable Instrumentation
	Case Study 2: Tracking Monitor Ownership
	Case Study 3: Field Access Analysis
	Case Study 4: Execution Trace Profiling

	Performance Evaluation
	Related Work
	Conclusion
	References

	Author Index

