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Abstract. Many social networks, e.g., Slashdot and Twitter, can be represented
as directed graphs (digraphs) with two types of links between entities: mutual (bi-
directional) and one-way (uni-directional) connections. Social science theories
reveal that mutual connections are more stable than one-way connections, and
one-way connections exhibit various tendencies to become mutual connections.
It is therefore important to take such tendencies into account when performing
clustering of social networks with both mutual and one-way connections.

In this paper, we utilize the dyadic methods to analyze social networks, and
develop a generalized mutuality tendency theory to capture the tendencies of
those node pairs which tend to establish mutual connections more frequently than
those occur by chance. Using these results, we develop a mutuality-tendency-
aware spectral clustering algorithm to identify more stable clusters by maxi-
mizing the within-cluster mutuality tendency and minimizing the cross-cluster
mutuality tendency. Extensive simulation results on synthetic datasets as well as
real online social network datasets such as Slashdot, demonstrate that our pro-
posed mutuality-tendency-aware spectral clustering algorithm extracts more sta-
ble social community structures than traditional spectral clustering methods.

1 Introduction

Graph models are widely utilized to represent relations among entities in social net-
works. Especially, many online social networks, e.g., Slashdot and Twitter, where the
users’ social relationships are represented as directed edges in directed graphs (or in
short, digraphs). Entity connections in a digraph can be categorized into two types,
namely, bi-directional links (mutual connections) and uni-directional links (one-way
connections). Social theories [28] and online social network analysis [2, 6, 28] have
revealed that various types of connections exhibit different stabilities, where mutual
connections are more stable than one-way connections. In other words, mutual connec-
tions are the source of social cohesion [3, 4] that, if two individuals mutually attend to
one another, then the bond is reinforced in each direction.

Studying the social network structure and properties of social ties have been an ac-
tive area of research. Clustering and identifying social structures in social networks is an
especially important problem [8, 17, 24] that has wide applications, for instance, com-
munity detection and friend recommendation in social networks. Existing clustering
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Fig. 1. An example network

methods [21, 29] are originally developed for undirected graphs, based on the classical
spectral clustering theory. Several recent studies (see, e.g., [10, 21, 27, 29]) extend the
spectral clustering method to digraphs, by first converting the underlying digraphs to
undirected graphs via some form of symmetrization, and then apply spectral clustering
to the resulting symmetrized (undirected) graphs. However, all these methods have two
common drawbacks, which prevent them from obtaining stable clusters with more mu-
tual connections. First, these methods do not explicitly distinguish between mutual and
one-way connections commonly occurring in many social networks, treating them es-
sentially as the same and therefore ignoring the different social relations and interpreta-
tions these two types of connections represent (see Section 2 for more details). Second,
by simply minimizing the total cross-cluster links (that are symmetrized in some fash-
ion), these methods do not explicitly account for the potential tendencies of node pairs
to become mutually connected. As a simple example, Fig. 1 shows two groups of peo-
ple in a network, where people in the same group tend to have more mutual (stable)
connections, and people across two groups have more one-way (unstable) connections.
When using the traditional spectral clustering method, as shown in Fig. 1(a), group B
will be partitioned into two clusters, due to its strict rule of minimizing the total num-
ber of across cluster edges. On the other hand, the correct partition should be done as
shown in Fig. 1(b), where the majority of mutual (stable) connections are placed within
clusters, and one-way (unstable) connections are placed across clusters.

In this paper, we propose and develop a stable social cluster detection algorithm that
takes into account the tendencies of node pairs whether to form mutual (thus stable)
connections or not, which can result in more stable cluster structures. To tackle this
clustering problem, we need to answer the following questions: 1) how to track and
evaluate the tendencies of node pairs to become mutual (stable) relations? and 2) how
to cluster the entities in social networks by accounting for their mutuality tendencies so
as to extract more stable clustering structures?

To address these questions, we utilize dyadic methods to analyze social networks,
and develop a generalized mutuality tendency theory which better captures the tenden-
cies of node pairs that tend to establish mutual connections more frequently than those
occur by chance. Using these results, we develop a mutuality-tendency-aware spectral
clustering algorithm to detect more stable clusters by maximizing the within-cluster
mutuality tendency and minimizing the cross-cluster mutuality tendency. Our contribu-
tions are summarized as follows.
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� Motivated by the social science mutuality tendency theory, we establish a new cluster-
based mutuality tendency theory. It yields a symmetrized mutuality tendency for each
node pair, that measures the strength of social ties in (or across) clusters (Sec 3).
� Based on our theory, we develop a mutuality-tendency-aware spectral clustering algo-
rithm that partitions the social graphs into stable clusters, by maximizing within-cluster
mutuality tendencies and minimizing across-cluster mutuality tendencies (Sec 4).
� The experimental results – based on both social network structures of synthetical
and real social network datasets – confirm that our clustering algorithm generates more
stable clusters than the traditional spectral clustering algorithms (Sec 5).

2 Preliminaries, Related Work and Problem Definition

In this section, we first introduce the existing dyadic analysis methods in the social the-
ory literature for analyzing and characterizing social network mutual connections and
one-way connections. We then present the classic spectral clustering theory which was
developed for undirected graphs, and briefly survey some related works which apply
this theory to digraphs through symmetrization. We end the section with the problem
definition, namely, how to identify stable clusters in social networks by taking into
account mutuality tendencies of mutual and one-way connections.

2.1 Dyadic Analysis and Mutuality Tendency

Given a social network with both uni- and bi-directional links, such a network can be
represented as a (simple) digraph G = (V,E) with |V | = n nodes. Let A be the
standard adjacency matrix of the digraph, where Aij = 1 if the directed edge i → j is
present, and Aij = 0 otherwise. Social scientists commonly view the social network G
as a collection of dyads [28], where a dyad is an unordered pair of nodes and directed
edges between two nodes in the pair. Denote a dyad as Dyij = (Aij , Aji), for i < j.
Since dyad is an unordered notion, we have in total Nd = n(n − 1)/2 dyads in G.
Hence, there are only three possible isomorphism dyads. The first type of dyads is
mutual relationship, where both directional edges i → j and j → i are present. The
second type of dyads is one-way relationship, where either i → j or j → i is present, but
not both. The last type of dyads is null relationship, where no edges show up between
i and j. Let m, b, and u denote the number of mutual, one-way, and null dyads in the
network. Clearly, m+ b+ u = n(n− 1)/2.

Interpretations of Dyads. Social scientists have observed that mutual social relations
and one-way relations in social networks typically exhibit different stabilities, namely,
mutual relations are more stable than one-way relations [28]. Hence in the social science
literature, one prevalent interpretation of dyadic relations in social networks are the
following: mutual dyads are considered as stable connections between two nodes and
null relation dyads represent no relations; the one-way dyads [1,5,16,18,20] are viewed
as an intermediate state of relations, which are in transition to more stable equilibrium
states of reciprocity (mutual or no relation). Several recent empirical studies [6, 9] of
online social networks have further revealed and confirmed that mutual social relations
are more stable relations than one-way connections.
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Measuring Mutuality Tendency. The notion of mutuality tendency has been intro-
duced in the social science literature (see, e.g., [7, 28]) to measure the tendency for a
node pair to establish mutual connections. For any dyad between i and j in a digraph
G, if i places a link to j, ρij represents the tendency that j will reciprocate to i more
frequently than would occur by chance. Let Xij denote the random variable that repre-
sents whether or not node i places a directed edge to node j. There are only two possible
events (i.e., Xij takes two possible values): Xij = 1, representing the edge is present; or
Xij = 0, the edge is not present. Let Xij (resp. X̄ij) denote the event {Xij = 1} (resp.
{Xij = 0}). Then the probability of the event Xij occurring is P (Xij). The probability
that i places a directed edge to j and j reciprocates back (i.e., node i and node j are
mutually connected) is thus given by P (Xij , Xji) = P (Xij)P (Xji|Xij). Wofle [28]
introduces the following measure of mutuality tendency in terms of the conditional
probability P (Xji|Xij) as follows:

P (Xji|Xij) = P (Xji) + ρijP (X̄ji) =
P (Xij , Xji)

P (Xij)
, (1)

where −∞ < ρij ≤ 1 ensures 0 ≤ P (Xji) + ρP (X̄ji) ≤ 1 to hold. Like many
indices used in statistics, −∞ < ρ ≤ 1 is dimensionless and easy to interpret, since
it uses 0 and 1 as benchmarks, representing no tendency and maximum tendency for
reciprocation. From eq.(1), the joint distribution P (Xij , Xji) in eq.(1) can be measured
by the observed graph, namely, either P (Xij , Xji) = P (ω)(Xij , Xji) = 1, when i and
j have mutual connection, or P (Xij , Xji) = P (ω)(Xij , Xji) = 0, otherwise, where
the superscript ω indicates that the probability is obtained from the observed graph.
On the other hand, the distribution for each individual edge is measured by P (Xij) =
P (μ)(Xij) =

di

|V |−1 , where di is the out-going degree of node i. P (μ)(Xij) represents
the probability of edge i → j being generated under a random graph model, denoted
by the superscript μ, with edges randomly generated while preserving the out-degrees.
Hence, the tendency ρ is obtained by implicitly comparing the observed graph with a
reference random digraph model.

Limitations of Wolfe’s Mutuality Tendency Measure for Stable Social Structure
Clustering. Although the node pair in a dyad is unordered (i.e., the two nodes are
treated “symmetrically” in terms of dyadic relations), Wolfe’s measure of mutual ten-
dency is in fact asymmetric. This can be easily seen through the following derivation.
By definition,

ρji
ρij

=
P (Xji)P (X̄ij)

P (Xij)P (X̄ji)
=

P (Xji)− P (Xij)P (Xji)

P (Xij)− P (Xij)P (Xji)

We see that ρij = ρji if and only if P (Xij) = P (Xji) holds. Hence, given an arbitrary
dyad in a social network Wolfe’s measure of mutuality tendency of the node pair is
asymmetric – in a sense that it is a node-specific measure of mutuality tendency. It
does not provide a measure of mutuality tendency of the (unordered) node pair viewed
together. In Section 3, we will introduce a new measure of mutuality tendency that is
symmetric and captures the tendency of a node pair in a dyadic relation to establish
mutual connection. This measure of mutuality tendency can be applied to clusters and
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a whole network in a straightforward fashion, and leads us to develop a mutuality-
tendency-aware spectral clustering algorithm.

2.2 Spectral Clustering Theory and Extensions to Digraphs via Symmetrization

Spectral clustering methods (see, e.g., [15, 22, 26, 27, 29]) are originally developed for
clustering data with symmetric relations, namely, data that can be represented as undi-
rected graphs, where each relation (edge) between two entities, Aij = Aji, represents
their similarity. The goal is to partition the graph such that entities within each cluster
are more similar to each other than those across clusters. This is done by minimizing
the total weight of cross-cluster edges. Especially, [12] provides a systematic study
on comparing a wide range of undirected graph based clustering algorithms using real
large datasets, which gives a nice guideline of how to select clustering algorithms based
on the underlying networks and the targeting objectives.

When relations between entities are asymmetric, or the underlying graph is directed,
spectral clustering cannot be directly applied, as the notion of (semi-)definiteness is
only defined for symmetric matrices. Several recent studies (see, e.g., [10, 21, 27, 29])
all attempt to circumvent this difficulty by first converting the underlying digraphs to
undirected graphs via some form of symmetrization, and then apply spectral cluster-
ing to the resulting symmetrized (undirected) graphs. For example, the authors in [21]
discuss several symmetrization methods, including the symmetrized adjacency matrix
Ā = (A+AT )/2, the bibliographic coupling matrix AAT and the co-citation strength
matrix ATA, and so forth. Symmetrization can also be done through a random walk
on the underlying graph, where P = D−1A is the probability transition matrix and
D = diag[douti ] is a diagonal matrix of node out-degrees. For example, taking the ob-
jective function as the random walk flow circulation matrix Fπ = ΠP , where Π is
the diagonal stationary distribution matrix, we have the symmetrized Laplacian of the
circulation matrix as L̄ = (L̃+ L̃T )/2, where L̃ is the (asymmetric) digraph Laplacian
matrix [13]. Then the classical spectral clustering algorithm can then be applied using
L̄ which is symmetric and semi-definite. Zhou and et al [27, 29] use this type of sym-
metrization to perform clustering on digraphs. Moreover, Leicht and Newman [10] pro-
pose the digraph modularity matrix Q = [Qij ], which captures the difference between
the observed digraph and the hypothetical random graph with edges randomly generated
by preserving the in- and out-degrees of nodes, namely, Qij = Aij−douti dinj /m. Then,
if the sum of edge modularities in a cluster S is large, nodes in S are well connected,
since the edges in S tend to appear with higher probabilities than occur by chance. How-
ever, Q by definition is asymmetric, where [10] uses the symmetrized Q̄ = (Q+QT )/2
as objective to perform spectral clustering method. Essentially, the edge modularity cap-
tures how an individual edge appears more frequently than that happens by chance, thus
the modularity based clustering method tends to group those nodes with more connec-
tions than expected together, which like all other clustering methods presented above
completely ignores the distinction between mutual and one-way connections.

Problem Definition. In this paper we want to solve the following clustering problem in
social networks with bi- and uni-directional links: Given a directed (social) graph where
mutual connections represent more stable relations and one-way connections represent
intermediate transferring states, how can we account for mutual tendencies of dyadic
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relations and cluster the entities in such a way that nodes within each cluster have
maximized mutuality tendencies to establish mutual connections, while across clusters,
nodes have minimized tendencies to establish mutual connections? The clusters (rep-
resenting social structures or communities) identified and extracted thereof will hence
likely be more stable.

3 Cluster-Based Mutuality Tendency Theory

Inspired by Wolfe’s study in [28], we propose a new measure of mutuality tendency
for dyads that can be generalized to groups of nodes (clusters), and develop a mutuality
tendency theory for characterizing the strength of social ties within a cluster (network
structure) as well as across clusters in an asymmetric social graph. This theory lays the
theoretical foundation for the network structure classification and community detection
algorithms we will develop in section 4.

Let Xij denote the random variable that represents whether or not node i places a
directed edge to node j. There are only two possible events (i.e., Xij takes two pos-
sible values): Xij = 1, representing the edge is present; or Xij = 0, the edge is not
present. Let Xij (resp. X̄ij) denote the event {Xij = 1} (resp. {Xij = 0}). Given an
observed (asymmetric) social graph G, to capture the mutuality tendency of dyads in
this graph, we compare it with a hypothetical, random (social) graph, denoted as G(μ),
where links (dyadic relations) are generated randomly (i.e., by chance) in such a man-
ner that the (out-)degree di of each node i in G(μ) is the same as that in the observed
social graph G. Under this random social graph model, the probability of the event Xij

occurring is P (μ)(Xij) =
di

|V |−1 ; namely, i places a (directed) link to node j randomly
or by chance (the superscript μ indicates the probability distribution of link generations
under the random social graph model). The probability that i places a directed edge
to j and j reciprocates back (i.e., node i and node j are mutually connected) is thus
given by P (μ)(Xij , Xji) = P (μ)(Xij)P

(μ)(Xji|Xij) = P (μ)(Xij)P
(μ)(Xji), since

Xij and Xji are independent under the random social graph model. On the observed
social graph, denote P (ω)(Xij , Xji) to represent the event whether there is a mutual
connection (symmetric link) between node i and node j, i.e., P (ω)(Xij , Xji) = 1, if
the dyad Dyij is a mutual dyad in the observed social graph, and P (ω)(Xij , Xji) = 0,
otherwise. We define the mutuality tendency of dyad Dyij as follows:

θij : = P (ω)(Xij , Xji)− P (μ)(Xij , Xji) = P (ω)(Xij , Xji)− P (μ)(Xij)P
(μ)(Xji),

(2)

which captures how the node pair i and j establish a mutual dyad more frequently than
would occur by chance.

This definition of mutuality tendency is a symmetric measure for dyad Dyij , i.e.,
θij = θji. In addition, it is shown that θij ∈ [−1, 1]. We remark that θij = 0 indicates
that if node i places a directed link to node j, the tendency that node j will reciprocate
back to node i is no more likely than would occur by chance; the same holds true if
node j places a directed link to node i instead. On the other hand, θij > 0 indicates
that if node i (resp. node j) places a directed link to node j (resp. node i), node j (resp.
node i) will more likely than by chance to reciprocate. In particular, with θij = 1, node
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j (resp. node i) will almost surely reciprocate. In contrast, θij < 0 indicates that if node
i (resp. node j) places a directed link to node j (resp. node i), node j (resp. node i) will
tend not to reciprocate back to node i (resp. node j). In particular, with θij = −1, node
j (resp. node i) will almost surely not reciprocate back. Hence θij provides a measure
of strength of social ties between node i and j: θij > 0 suggests that the dyadic relation
between node i and j is stronger, having a higher tendency (than by chance) to become
mutual; whereas θij < 0 suggests that node i and j have weaker social ties, and their
dyadic relation is likely to remain asymmetric or eventually disappear.

Mutuality Tendency of Clusters. The mutuality tendency measure for dyads defined
in eq.(2) can be easily generalized for an arbitrary cluster (a subgraph) in an observed
social graph, S ⊆ G. We define the mutuality tendency of a cluster S, ΘS , as follows:

ΘS :=
∑

i∼j;i,j∈S

P (ω)(Xij , Xji)−
∑

i∼j;i,j∈S

P (μ)(Xij)P
(μ)(Xji), (3)

where the subscript i ∼ j : i, j ∈ S means that the summation accounts for all (un-
ordered) dyads, and i, j are both in S. Denote the second term in eq.(3) as m(μ)

S , and the
(out-degree) volume of the cluster S as dS :=

∑
i∈S di. As P (μ)(Xij) = di/(|V | − 1)

and P (μ)(Xji) = dj/(|V | − 1),

m
(μ)
S =

∑

i∼j;i,j∈S

didj
(|V | − 1)2

=
d2S −∑

i∈S d2i
2(|V | − 1)2

, (4)

which represents the expected number of mutual connections among nodes in S under
the random social graph model. Given the cluster S in the observed social graph G,
define m

(ω)
S :=

∑
i∼j;i,j∈S P (ω)(Xij , Xji), namely, m(ω)

S represents the number of
(observed) mutual connections among nodes in the cluster S in the observed social
graph G. The mutual tendency of cluster S defined in eq.(3) is therefore exactly ΘS =

m
(ω)
S −m

(μ)
S .

Hence ΘS provides a measure of strength of (likely mutual) social ties among nodes
in a cluster: ΘS > 0 suggests that there are more mutual connections among nodes
in S than would occur by chance; whereas ΘS < 0 suggests that there are fewer mu-
tual connections among nodes in S than would occur by chance. Using ΘS , we can
therefore quantify and detect clusters of nodes (network structures or communities)
that have strong social ties. In particular, when S = G, ΘG characterizes the mutual-
ity tendency for the entire digraph G, i.e., ΘG = m

(ω)
G − m

(μ)
G =

∑
i∼j θij , where

m
(ω)
G :=

∑
i∼j P

(ω)(Xij , Xji) represents the number of (observed) mutual dyads
among nodes in the observed social graph G, and

m
(μ)
G =

∑

i∼j

didj
(|V | − 1)2

=
d2 −∑

i∈V d2i
2(|V | − 1)2

, (5)

represents the expected number of mutual dyads among nodes in G under the random
social graph model. Likewise, given a bipartition (S, S̄) of G, we define the cross-
cluster mutuality tendency as
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Θ∂S :=
∑

i∈S∼j∈S̄

(P (ω)(XijXji)− P (μ)(Xij)P
(μ)(Xji)) (6)

Denote the second quantity in eq.(6) as m(μ)
S ,

m
(μ)
∂S =

∑

i∈S∼j∈S̄

didj
(|V | − 1)2

=
dSdS̄

(|V | − 1)2
(7)

which represents the expected number of mutual connections among nodes across S and
S̄ under the random social graph model. Define m

(ω)
∂S :=

∑
i∈S∼j∈S̄ P (ω)(Xij , Xji)

representing the number of (observed) mutual connections among nodes across clusters
S and S̄ in the observed social graph G. The mutuality tendency across cluster S and S̄

defined in eq.(6) is therefore exactly Θ∂S = m
(ω)
∂S −m

(μ)
∂S .

The mutuality tendency theory outlined above accounts for different interpretations
and roles mutual and one-way connections represent and play in asymmetric social
graphs, with the emphasis in particular on the importance of mutual connections in
forming and developing stable social structures/communities with strong social ties.
In the next section, we will show how we can apply this mutuality tendency theory
for detecting and clustering stable network structures and communities in asymmetric
social graphs.

4 Mutuality-Tendency-Aware Spectral Clustering Algorithm

In this section, we establish the basic theory and algorithm for solving the mutuality-
tendency-aware clustering problem. Due to the space limitation, some proofs are dele-
gated to the technical report [14].

Without loss of generality, we consider only simple (unweighted) digraphs G =
(V,E) (i.e., the adjacency matrix A is a 0-1 matrix). Define the mutual connection
matrix M := min(A,AT ), which expresses all the mutual connections with unit weight
1. In other words, if node i and node j are mutually connected (with bidirectional links),
Mij = Mji = 1, otherwise, Mij = Mji = 0. Hence, we have Mij = P (ω)(Xij , Xji),
representing the event whether there is a mutual connection (symmetric link) between
node i and node j, i.e., in the dyad Dyij in the observed social graph. In addition, let
δij be the Kronecker delta symbol, i.e., δij = 1 if i = j, and δij = 0 otherwise. Then,
we define matrix

M̄ =
ddT − diag[d2]
(|V | − 1)2

with d as the out-going degree vector, where each entry

M̄ij =
didj − δijd

2
i

(|V | − 1)2
=

{
didj

(|V |−1)2 if i 	= j

0 if i = j
(8)

represents the probability that two nodes i and j independently place two unidirectional
links to each other to form a mutual dyad. Hence, M̄ij = P (μ)(Xij)P

(μ)(Xji) repre-
sents the probability of node pair i and j to establish a mutual connection under random
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graph model with edges randomly generated by preserving the node out-degrees. We
denote T = M − M̄ as the mutuality tendency matrix, with each entry

Tij = P (ω)(Xij , Xji)− P (μ)(Xij)P
(μ)(Xji) = θij (9)

as the individual dyad mutuality tendency.

Mutuality Tendency Lapacian. T is symmetric and those entries associated with non-
mutual dyads are negative, representing less mutuality tendencies to establish mutual
connections than those occur by chance. Define the mutuality tendency Laplacian ma-
trix as

LT = DT − T (10)

where DT = diag[dT (i)] is the diagonal degree matrix of T , with dT (i) =
∑

j Tij . We
have the following theorem presenting several properties of LT .

Theorem 1. The mutuality tendency Laplacian matrix LT as defined in eq.(10) has the
following properties

– Given a column vector x ∈ R
|V |, the bilinear form xTLTx satisfies

xTLTx =
∑

i∼j

Tij(xi − xj)
2. (11)

– LT is symmetric and in general indefinite. In addition,LT has one eigenvalue equal
to 0, with corresponding eigenvector as 1 = [1, · · · , 1]T .

Mutuality Tendency Ratio Cut Function. For a digraph G = (V,E), and a partition
V = (S, S̄) on G, we define the mutuality tendency ratio cut function as follows.

TRCut(S, S̄) = Θ∂S

(
1

|S| +
1

|S̄|
)
, (12)

which represents the overall mutuality tendency across clusters balanced by the “sizes”
of the clusters. Then, the clustering problem is formulated as a minimization problem
with K = 2 clusters. (More general cases with |V | ≥ K > 2 will be discussed in the
next subsection.)

min
S

TRCut(S, S̄) (13)

Since Θ∂S = ΘG − (ΘS +ΘS̄) holds true, we have

TRCut(S, S̄) = (ΘG − (ΘS +ΘS̄))

(
1

|S| +
1

|S̄|
)
.

For a given graph G, the graph mutuality tendency ΘG is a constant, the minimization
problem in eq.(13) is equivalent to the following maximization problem:

max
S

{
(ΘS +ΘS̄ −ΘG)

(
1

|S| +
1

|S̄|
)}

. (14)
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Hence, minimizing the cross-cluster mutuality tendency is equivalent to maximize the
within-cluster mutuality tendency. Using the results presented in Theorem 1, we prove
the following theorem which provides the solution to the above mutuality tendency
optimization problem.

Theorem 2. Given the tendency Laplacian matrix LT = DT − T , the signs of the
eigenvector of LT corresponding to the smallest non-zero eigenvalue indicate the opti-
mal solution (S, S̄) to the optimization problem eq.(13).

Moreover, the mutuality-tendency-aware spectral clustering can be easily generalized
for the case of K > 2 (See more details in [14]).

Choice of K . We choose K , i.e., the total number of clusters, using the eigengap heuris-
tic [25]. Theorem 1 shows that LT has all real eigenvalues. Denote the eigenvalues of
LT in an increasing order, i.e., λ1 ≤ · · · ≤ λn, The index of the largest eigengap,
namely, K := argmax2≤K≤n(g(K)), where g(K) = λK − λK−1, K = 2, · · · , n,
indicates how many clusters there are in the network.

5 Evaluations
In this section, we evaluate the performance of the mutuality-tendency-aware spectral
clustering method by comparing it with various symmetrization methods based digraph
spectral clustering algorithms. We only present the comparison results for the adjacency
matrix symmetrization method, with objective matrix as Ā = (A + AT )/2. For other
settings, we obtained similar results and omit them here, due to the space limitation.
We will 1) first test the performances using synthetic datasets, and then 2) apply our
method to real online network datasets, e.g., Slashdot social network, and discover sta-
ble clusters with respect to mutual and one-way connections.

Synthetic Datasets. We first consider synthetic datasets designed specifically to test the
performance of our mutuality-tendency-awarespectral clustering method. We randomly
generate a network with 1200 nodes and K = 3 clusters, that contain 500, 400 and
300 nodes, respectively. There are 54675 directional edges, among which 27336 edges
are bidirectional and 27339 edges are unidirectional. We are randomly placed 90.02%
of the bidirectional edges in clusters, and 89.6% of the unidirectional edges across
clusters. Fig. 2(i)-(iii) show that traditional spectral clustering algorithm detects clusters
with 661, 538 and 1 entities, respectively, while our method identify correct clusters
(See Fig. 3(i)-(iii)).

Real Social Networks. In the second set of simulations, we applied our mutuality-
tendency-aware spectral clustering algorithm to several real social network datasets,
e.g., Slashdot [23], Epinions [19], and email communication network [11] datasets, and
compare with various symmetrization methods based digraph clustering algorithms,
such as A = (A + AT )/2, AAT and Fπ = ΠP . Here we only show the compari-
son results with adjacency matrix symmetrization based digraph spectral clustering on
Slashdot dataset. All other settings lead to similar results and we omit them here.

Slashdot is a technology-related news website founded in 1997. Users can submit
stories and it allows other users to comment on them. In 2002, Slashdot introduced
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Fig. 2. (i)All edges, (ii)Bidirectional edges,
(iii)Unidirectional edges (Traditional spectral
clustering method in synthetic dataset)

Fig. 3. (i)All edges, (ii)Bidirectional edges,
(iii)Unidirectional edges (Tendency aware
spectral clustering in synthetic dataset)

Fig. 4. (i)All edges, (ii)Bidirectional edges,
(iii)Unidirectional edges (Traditional spectral
clustering method in Slashdot dataset)

Fig. 5. (i)All edges, (ii)Bidirectional edges,
(iii)Unidirectional edges (Tendency aware
spectral clustering in Slashdot dataset)

the Slashdot Zoo feature which allows users to tag each other as friends or foes. The
network data we used is the Slashdot social relation network, where a directed edge
from i to j indicates an interest from i to j’s stories (or topics). Hence, two people
with mutual connections thus share some common interests, while one-way connections
infer that one is interested in the other’s posts, but the interests are not reciprocated
back. The Slashdot social network data was collected and released by Leskovec [23] in
November 2008.

The statistics1 are shown in Table 1. It shows that the largest strongly connected
component (SCC) include about 70355 nodes. Then, we remove those nodes with very
low in-degrees and out-degrees, say no more than or equal to 2. By finding the largest
strongly connected component of the remaining graph, we extract a “core” of the net-
work with 10131 nodes and 197378 edges, among which there are 21404 unidirectional
edges and 175974 bidirectional edges, respectively. In our evaluations, we observe that
there is a large “core” of the network, and all other users are attached to this core net-
work. In our study, we are interested in extracting the community structure from the
“core” network. When applying our spectral clustering algorithm to the “core” net-
work, two clusters with 8892 and 1239 nodes are detected (shown in Fig.5(i)-(iii)).
In our result, a large portion (about 35.04%) of cross-cluster edges are unidirectional
edges which in turn yield lower mutuality tendency across clusters. On the other hand,
when using the traditional symmetrized Ā = (A + AT )/2, two clusters with 9640
and 491 nodes are extracted instead (shown in Fig.4(i)-(iii)). We can see that the clus-
tering result obtained using the traditional spectral clustering method has only around
5.75% of the total edges across clusters as unidirectional edges, which boost up the
mutuality tendency across clusters. However, in our clustering result, we have more
unidirectional edges placed across clusters, which decreases the mutuality tendency

1 Here, the total number of edges is smaller than that is shown on the website [23], because we
do not count for those selfloops.
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Table 1. Statistics of Slashdot Dataset (U-edge: Unidirectional edge, B-edge: Bidirectional edge)

Nodes 77360 Nodes in largest SCC 70355 Nodes in the “core” component 10131

Edges 828161 Edges in largest SCC 818310 Edges in the “core” component 197378

U-edges 110199 U-edges in largest SCC 100930 U-edges in the “core” component 21404

B-edges 717962 B-edges in largest SCC 717380 B-edges in the “core” component 175974

Table 2. Ave. mutuality tendency comparison on Slashdot dataset

. θG θS1 θS2 θ∂S
Mutuality tendency aware clustering 0.0017 0.0049 0.0028 0.00033
Traditional clustering 0.0017 0.0018 0.0021 0.00070

across clusters. From Fig. 5(i), we can clearly see that we have unidirectional (red)
edges dominating the cross-cluster parts. Moreover, Table 2 shows the average mutual-
ity tendency comparison between different clustering methods, where we can see that
the mutuality-tendency-aware spectral clustering algorithm can group nodes together
with higher within-cluster tendencies than that of traditional spectral clustering.
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