
On a DAG Partitioning Problem

Soroush Alamdari1 and Abbas Mehrabian2

1 David R. Cheriton School of Computer Science
University of Waterloo
s26hosse@uwaterloo.ca

2 Department of Combinatorics and Optimization
University of Waterloo
amehrabi@uwaterloo.ca

Abstract. We study the following DAG Partitioning problem: given a
directed acyclic graph with arc weights, delete a set of arcs of minimum
total weight so that each of the resulting connected components has
exactly one sink. We prove that the problem is hard to approximate in
a strong sense: If P �= NP then for every fixed ε > 0, there is no (n1−ε)-
approximation algorithm, even if the input graph is restricted to have
unit weight arcs, maximum out-degree three, and two sinks. We also
present a polynomial time algorithm for solving the DAG Partitioning
problem in graphs with bounded pathwidth.

Keywords: DAG Partitioning, Inapproximability, Reduction, 3-SAT,
pathwidth, fixed parameter tractable.

1 Introduction

Tracking ideas and memes as they spread and evolve through the web has been
studied extensively in recent years. Adar, Zhang, Adamic, and Lukose [2] studied
the influence of blogs by analyzing the linking behavior of posts. They asked the
question of finding a single source for each topic and assigning a topic to each
post. Leskovec, Backstrom, and Kleinberg [9] formulated this question as the
following DAG Partitioning problem: Given a directed acyclic graph with arc
weights and n nodes, delete a set of arcs of minimum total weight so that each
of the resulting connected components has a single sink. Here a sink refers to
a vertex with no outgoing arc, and by connected components we mean weakly
connected components.

In the information retrieval literature, there is a large interest on analyzing
the spread of influence and topics throughout objects in the Web (see, e.g.,
[1,2,4,8,9,10]). Such objects can be blog posts, quotes by people, news headlines,
or almost anything that appears on the Web. An immediate question is to assign
a source of influence to each of these objects. We can model these objects by a
directed graph, in which the vertices represent the objects and the arcs, which
are weighted, represent traces of possible influence. These arcs can be extracted
from the Web using different methods, such as studying linkage structure or

A. Bonato and J. Janssen (Eds.): WAW 2012, LNCS 7323, pp. 17–28, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

18 S. Alamdari and A. Mehrabian

studying occurrences of similar phrases; in the latter case, the weight of an arc
is the degree of similarity between phrases. These objects influence each other in
an acyclic manner in reality, but this might not be the case in the retrieved graph
of influence. Yet, there are ways to find an acyclic subgraph of a given graph
without dramatically distorting the structure of the graph (see [3] for instance).
Once a directed acyclic graph is formed, the most natural way to assign a source
to the objects, seems to be the DAG Partitioning problem we study here.

Leskovec et al. [9] proved the NP-hardness of the DAG Partitioning problem,
by reducing the Multiway Cut problem to it (see [6] for the definition of the latter
problem). Their reduction converts an instance of the Multiway Cut Problem
with k terminals to an instance of the DAG Partitioning problem with k sinks.
The Multiway Cut problem can be solved efficiently for 2 terminals, and when
there are k terminals, a (32 − 1

k)-approximation algorithm is known [6]. Thus
one might expect similar approximation algorithms for the DAG Partitioning
problem as well. In section 2 we show that this is far from being true, and
even the simplest case of this problem is hard to approximate. Indeed, assuming
P �= NP , for every fixed ε > 0, there is no (n1−ε)-approximation algorithm for
the DAG Partitioning problem. It is a standard assumption to restrict the graph
to have vertices with only constant number of outgoing arcs, since it is true for
real instances of the problem. We show that our hardness result holds, even if
the input graph is restricted to have unit weights, maximum out-degree three,
and just two sinks. We use reduction from the 3-SAT problem.

The pathwidth of a directed graph is simply the pathwidth of its undirected
underlying graph. In section 3 we study the parameterized version of the prob-
lem, with pathwidth chosen as the parameter. We show that the problem is fixed
parameter tractable. More precisely, we present an algorithm that given a path
decomposition of the graph with width k, solves the DAG Partitioning problem
optimally and has running time 2O(k2)n. Thus, for graphs with bounded path-
width, the problem is solvable in linear time. We conclude with an open problem
in section 4.

2 The Hardness Result

For a directed acyclic graph D, a good cut is a subset C of arcs such that when
deleted from D, each of the resulting connected components has a single sink.
So the DAG Partitioning problem is just the problem of finding a good cut with
minimum weight. The size of an instance of a 3-SAT problem is simply the
number of clauses in the instance, and in the following we will assume that this
number is sufficiently large.

The basic construction we use is the following.

Definition. Let I be an instance of the 3-SAT problem, and M be a positive
integer. Arcs of weight M are called the heavy arcs, and the rest of the arcs are
called the light arcs. The directed graph D = D(I,M) is the following:

– There are four special vertices t, t′, f, f ′ in D, where (t′, t) and (f ′, f) are
heavy arcs.

On a DAG Partitioning Problem 19

– For each variable x of I, there are
• four vertices x, x, xt, xf ,
• two heavy arcs (t′, xt) and (f ′, xf), and
• eight arcs (xt, x), (xt, x), (x, t), (x, t), (xf , x), (xf , x), (x, f), and (x, f)
of weight one (see Figure 1).

– For each clause L = (a ∨ b ∨ c), there is
• a vertex L,
• a heavy arc (t′, L), and
• three arcs (L, a), (L, b), (L, c) of weight one (see Figure 2).

Note that a, b, c denote literals here, and a vertex is already associated with
each of them.

t′ f ′

xt xf

x x

t f

Fig. 1. The gadget corresponding to a variable: heavy arcs are dashed and light arcs
are solid.

t′

L

a b c

t f

Fig. 2. The gadget corresponding to a clause: heavy arcs are dashed and light arcs are
solid.

It is easy to verify that if I has size s > 3, then D(I,M) has at most 14s
vertices, 27s light arcs and 8s heavy arcs. Moreover, D(I,M) is acyclic and has
just two sinks t and f .

Lemma 1. The instance I is satisfiable if and only if D = D(I,M) has a good
cut that does not contain any heavy arcs.

Proof. (⇒) Consider a satisfying assignment of the variables. Build the subset
T of vertices of D as following: Put t, t′ in T . For each clause L, put L in T . For
each variable x, put xt in T . If x is true then put x in T , otherwise put x in T .
Do not put any other vertex in T .

20 S. Alamdari and A. Mehrabian

Let C be the set of arcs with exactly one endpoint in T . Then C does not
contain any heavy arcs. Deleting C results in a directed acyclic graph H with
two connected components, with one of them containing the sink t and the other
one containing the sink f . For each variable x, exactly one of x and x is in T ,
so none of xt and xf is a sink in H . If x is true, then (x, t), (x, f) are arcs in H ,
and if x is false, then (x, f), (x, t) are arcs in H , so none of x, x is a sink in H .
For each clause L = (a∨ b∨ c), at least one of a, b, c is in T , so L is not a sink in
H . Thus it can be verified that C is a good cut that does not contain any heavy
arcs.

(⇐) Let C be a good cut of minimum size that does not contain any heavy
arcs. Let H be the directed acyclic graph obtained from deleting C. We claim
that H has two connected components. First, it has at least two components as
t and f are sinks in H . If it has a third component (other than the components
containing t and f), then let r be a sink in the third component. Let e be an
arbitrary outgoing arc from r in G. Then C \ {e} is a good cut with a smaller
size that does not contain any heavy arcs, contradicting the choice of C. Hence
H has two connected components and so t and f are the only sinks in H . Denote
the components containing t and f by T and F , respectively.

For each variable x, if x ∈ T then let x be true, and let x be false otherwise.
Observe that:

– Since C has no heavy arcs, t′ ∈ T and f ′ ∈ F .
– For each variable x, we have xt ∈ T and xf ∈ F .
– Since for each variable x, none of xt or xf is a sink in H , exactly one of x, x

is in T and the other one is in F (see Figure 1).
– Since C has no heavy arc, for each clause L, vertex L is in T .
– As vertex L is not a sink in H , at least one of the vertices a, b, c is in T (see

Figure 2).

Therefore, this is a satisfying assignment, and the proof is complete. ��
Corollary 1. Let I be an instance of 3-SAT of size s, where s > 3. If I is
satisfiable then the optimal value of D(I,M) is at most 27s. Otherwise, the
optimal value of D(I,M) is at least M .

Now, we alter the construction so that we just have unit weights and out-degrees
at most 3.

Definition. Let I be an instance of the 3-SAT problem, and M be a posi-
tive integer. Note that the only arcs of non-unit weight, are those going out
from t′ and f ′. Also, the only vertices with out-degree more than three are
t′ and f ′. The directed graph D(I,M) is obtained from D(I,M) as follows.
For each heavy arc (t′, v), add M new vertices x1, x2, . . . , xM , and add the
arcs (x1, v), (x1, t), (x2, v), (x2, t), . . . , (xM , v), (xM , t). Perform the same proce-
dure for all heavy outgoing arcs from f ′. Finally, delete t′, f ′, and all adjacent
arcs.

Note that the directed graph D(I,M) has Θ(sM) vertices and Θ(sM) arcs,
and can be constructed in time polynomial in s and M . Moreover, it is acyclic

On a DAG Partitioning Problem 21

and all of its arcs have unit weights. Also, all vertices have out-degree at most
three. It is easy to check that Corollary 1 remains true for D(I,M).

Corollary 2. Let I be an instance of 3-SAT of size s, where s > 3. If I is
satisfiable then the optimal value of D(I,M) is at most 27s. Otherwise, the
optimal value of D(I,M) is at least M .

Definition. The Restricted DAG Partitioning problem is the following problem.
The input is a directed acyclic graph G with arc weights, such that the weight
of each arc is one, the out-degree of each vertex is at most three, and the graph
has exactly two sinks. The output is a set C of arcs of minimum total weight
such that each of the connected components of G− C has a single sink.

We are now ready to prove our hardness result.

Theorem 1. Assume that ε > 0 is fixed and there is a polynomial-time (n1−ε)-
approximation algorithm for the Restricted DAG Partitioning problem. Then the
3-SAT problem is in P.

Proof. Let I be an instance of 3-SAT of size s, where s > 3. Take M = Θ(s2/ε),
so that s2−ε = o(M ε), and construct the instanceD(I,M) of the Restricted DAG
Partitioning problem, which has size Θ(sM). Let w be the weight of the solution
found by the approximation algorithm. If I is satisfiable, then the optimal value
is O(s), so we would have w = O

(
s(sM)1−ε

)
= o(M). Otherwise, the optimal

value is at least M , so M ≤ w. Hence one can decide whether I is satisfiable in
polynomial time. ��

3 Linear-Time Algorithm for Bounded-Pathwidth Graphs

A tree decomposition of a directed graph G is a pair (T,W), where T is a tree and
W = (Wt : t ∈ V (T)) is a family of (not necessarily induced) directed subgraphs
of G such that

(i)
⋃

t∈V (T) V (Wt) = V (G), and every arc of G has both endpoints in some Wt,
and

(ii) For every v ∈ V (G), the set {t : v ∈ V (Wt)} induces a subtree of T .

The width of (T,W) is

max{|V (Wt)| − 1 : t ∈ V (T)},
and the treewidth of G is the minimum width of a tree decomposition of G. If
each t ∈ V (T) has degree at most 2, then (T,W) is called a path decomposition
of G. The pathwidth of a graph G, written pw(G), is the minimum width of a
path decomposition of G. For clarity we will refer to the vertices of T as the
nodes. Wt is called the bag of the decomposition corresponding to the node t.
Note that sometimes the bags are simply defined as subsets of vertices of G, but
here we assume that each bag also contains a subset of arcs of G. The value of
pathwidth is the same in either definition.

22 S. Alamdari and A. Mehrabian

In this section we present an algorithm that, given a DAG and a path decom-
position of width k, solves the DAG Partitioning problem optimally, and has
running time 2O(k2)n. The algorithm first chooses an arbitrary degree one node
of the decomposition as its root, and then (to simplify the main part) augments
the decomposition so that it has the following properties:

1. Every arc appears in exactly one bag, and every bag has at most one arc.
2. If a bag Wt has an arc, then the corresponding node t has a child t2. Let

t1 be the parent of t. Then Wt1 , Wt and Wt2 have the same vertex set, and
Wt1 and Wt2 do not have an arc.

3. If node t has a child t′, then the vertex sets of Wt and Wt′ differ by at most
one vertex. That is,

|(V (Wt) ∪ V (Wt′)) \ (V (Wt) ∩ V (Wt′))| ≤ 1.

4. The bags corresponding to the root and the (only) leaf of the decomposition
have empty vertex sets.

It is not hard to see that given a path decomposition with O(n) bags, it is
possible to augment it to a desired one with O(k2n) bags.

An important observation is that in a DAG G, if for every v ∈ V (G) there is a
unique sink s ∈ V (G) such that v has a directed path to s, then every connected
component of G has a unique sink. Hence, if C is any solution for the DAG
Partitioning problem for DAG G, then in G−C, to every vertex v is assigned a
unique sink s, which we will sometimes call “the sink” of v in this solution.

We use dynamic programming on the path decomposition. Let us define the
subproblems. Let H be a subgraph of G, and let X ⊆ V (H) be such that there
is no arc from V (G) \ V (H) to V (H) \ X or vice versa. Let G −H denote the
subgraph obtained from G by removing the arcs of H . Let P = {P1, . . . , Ps} be
a partition of X . Let F ⊆ X , and let D ⊆ X × X be a set of ordered pairs of
distinct elements of X that does not induce a cycle in X . One can build a DAG
H ′ from H by adding 2s vertices a1, . . . , as, b1, . . . , bs, and adding the arcs

{(ai, u) : u ∈ Pi, i = 1 . . . s}∪{(u, bi) : u ∈ Pi∩F , i = 1 . . . s}∪{(u, v) : (u, v) ∈ D}
with weight∞. The subproblem defined by (H,X ,P ,F ,D) is the DAG Partition-
ing problem on H ′. Informally speaking, this is the DAG Partitioning problem,
confined to H , with the following extra restrictions:

– Vertices in F should not have their sink in H .
– Vertices in the same element of P should have the same sink, and vertices

in different elements should have distinct sinks.

and the following assumptions about G−H :

– Vertex v ∈ X is in F if and only if v has a path in G − H to a sink, and
this sink is out of H . Note that by definition of the problem, in any solution
there is a many-to-one mapping from vertices to sinks. Therefore, we refer
to such a sink as the sink of v.

On a DAG Partitioning Problem 23

– For any pair {u, v} of vertices in X ∩ F , if u and v are in the same element
of P then their sink (which is in V (G) \ V (H)) is the same, otherwise their
sinks are distinct.

– For every pair (u, v) ∈ X × X , we have (u, v) ∈ D if and only if there is a
(u, v)-path in G−H .

– For every pair (u, v) ∈ D, u and v are in the same element of P .

In general, there can be exponentially many subproblems. However, using the
path decomposition, one can choose a polynomial number of them, solving which
obtains the optimal solution for the main problem. Let t be a node of the
path decomposition, whose corresponding bag, Wt, does not have an arc. Let
Xt = V (Wt), let Ht be the subgraph of G formed by taking the union of the bag
Wt with all bags whose nodes are the descendants of t. Let P = {P1, . . . , Ps} be
a partition of Xt. Let F ⊆ Xt, and let D ⊆ Xt × Xt be a set of ordered pairs of
distinct elements of Xt that does not induce a cycle in Xt. The subproblem de-
fined by (t,P ,F ,D) is equivalent to the subproblem defined as (Ht,Xt,P ,F ,D)
above, and we denote its optimal values by OPT(t,P ,F ,D). Next we illustrate
an algorithm for calculating OPT(t,P ,F ,D) based on the optimal values found
for the descendants of t in the decomposition. But before doing so, let us define
some notation.

Let P = {P1, . . . , Ps} be a partition of a set X . For an element v /∈ X , P ∗ v
is the following family of partitions of X ∪ {v}:

P∗v = {{{v}, P1, P2, . . . , Ps}, {P1∪{v}, P2, . . . , Ps}, . . . , {P1, P2, . . . , Ps∪{v}}}.

For an element v ∈ X , P/v is the following partition of X \ {v}:

P/v = {P1 \ {v}, . . . , Ps \ {v}}.

For a set D of pair of vertices of G and a vertex v, D/v is obtained from D by
deleting all pairs in which v appears.

Theorem 2. Algorithm 1 calculates OPT(t,P ,F ,D) correctly in time O(k3);

therefore, the DAG Partitioning problem on G can be solved in time 2O(k2)n.

Proof. We prove correctness by induction. For any node t of the path decompo-
sition and any valid tuple (t,P ,F ,D), we show that the value of OPT(t,P ,F ,D)
is calculated correctly, assuming this has been the case for the child of t, if any.
The induction base is true since the bag corresponding to the unique leaf of the
path decomposition is an empty subgraph so its optimal value is 0 [lines 1-2].

Now, assume that t is not a leaf, and t′ is its unique child. Recall that Ht

is the subgraph of G formed by taking the union of the bag Wt with all bags
whose nodes are the descendants of t, and Ht′ is defined similarly. Let H = Ht,
X = V (Wt), H

′ = Ht′ and X ′ = V (Wt′). Recall that if P is a partition of X ,

24 S. Alamdari and A. Mehrabian

Algorithm 1. Calculate OPT(t,P ,F ,D)

1: if t has no child then
2: OPT(t,P ,F ,D) = 0
3: else
4: t′ ← the child of t
5: if V (Wt′) is V (Wt) ·∪{v} for some vertex v then
6: OPT(t,P ,F ,D) = min{OPT(t′,Q,F ,D) : Q ∈ P ∗ v}
7: else if V (Wt′) is V (Wt) \ {v} for some vertex v ∈ V (Wt) then
8: P ← the element of P containing v
9: if P = {v} then
10: OPT(t,P ,F ,D) = OPT(t′,P \ {{v}},F \ {v},D/v)
11: else if v ∈ F then
12: if there is a u ∈ P \ {v} with u ∈ F then
13: OPT(t,P ,F ,D) = OPT(t′,P/v,F \ {v},D/v)
14: else
15: OPT(t,P ,F ,D) =∞
16: end if
17: else if there is a u ∈ P \ {v} with (v, u) ∈ D then
18: OPT(t,P ,F ,D) = OPT(t′,P/v,F \ {v},D/v)
19: else
20: if for all u ∈ P \ {v} we have u /∈ F

and for some u ∈ P \ {v} we have (u, v) ∈ D then
21: OPT(t,P ,F ,D) = OPT(t′,P/v,F ∪ {u ∈ P \ {v} : (u, v) ∈ D},D/v)
22: else
23: OPT(t,P ,F ,D) =∞
24: end if
25: end if
26: else if Wt′ is Wt ∪ {(u, v)} for some arc (u, v) then
27: t′′ ← the child of t′

28: if u and v are in different elements of P then
29: OPT(t,P ,F ,D) = w(u, v) + OPT(t′′,P ,F ,D)
30: else
31: S ← {x ∈ V (Wt) : (x, u) ∈ D} ∪ {u}
32: T ← {y ∈ V (Wt) : (v, y) ∈ D} ∪ {v}
33: D′ ← D ∪ {(x, y) : x ∈ S, y ∈ T}
34: if v ∈ F then
35: F ′ ← F ∪ S
36: else
37: F ′ ← F
38: end if
39: OPT(t,P ,F ,D) = min {w(u, v) + OPT(t′′,P ,F ,D),OPT(t′′,P ,F ′,D′)}
40: end if
41: end if
42: end if

On a DAG Partitioning Problem 25

F ⊆ X and D ⊆ X × X , then (t,P ,F ,D) is the DAG Partitioning problem
confined to H with the following extra restrictions:

– Vertices in F should not have their sink in H ;
– Vertices in the same element of P should have the same sink, and vertices

in different elements should have distinct sinks;

and the following assumptions about G−H :

– Vertex v ∈ X is in F if and only if v has a path in G −H to its sink, and
the sink of v is out of H .

– For any pair {u, v} of vertices in X ∩ F , if u and v are in the same element
of P then their sink (which is in V (G) \ V (H)) is the same, otherwise their
sinks are distinct.

– For every pair (u, v) ∈ X × X , we have (u, v) ∈ D if and only if there is a
(u, v)-path in G−H .

– For every pair (u, v) ∈ D, u and v are in the same element of P .

Because of the augmentation of the path decomposition, the relation between
Wt and Wt′ is of one of the following three types.

Type 1: X ′ = X ·∪{v} (LINES 5-6) In this case H and H ′ are the same. Any
solution for (t′,P ′,F ,D) gives a solution with the same value for (t,P ,F ,D),
as long as the partitions P and P ′ are consistent. That is, P ′ should keep
the partitioning of X , and then either throw the new vertex v into one of the
elements of the partition, or put it in a new singleton element. Moreover, all
solutions for (t,P ,F ,D) are obtained this way. Hence [see lines 5-6]

OPT(t,P ,F ,D) = min{OPT(t′,Q,F ,D) : Q ∈ P ∗ v}.
Type 2: X = X ′ ·∪{v} (LINES 7-25) In this case H has an isolated vertex v

which H ′ does not have. Let P be the element of the partition containing v.
Four cases may happen:

(a) P is a singleton (LINES 9-10). First, assume that v ∈ F . So v has a
path in G−H to its sink, and its sink is in V (G) \ V (H). Also v is in a
different element of partition from any other vertex u ∈ X \ {v}, hence
the sinks of u and v are different. So to solve this subproblem, one just
needs to remove v and solve the resulting subproblem [see lines 9-10]:

OPT(t,P ,F ,D) = OPT(t′,P \ {{v}},F\{v},D/v).

Now, assume that v /∈ F . Therefore v does not have a path in G−H to
its sink. Note that the sink of v can not be in H ′ since P is a singleton
and v /∈ X ′. Thus v is a sink itself, so for any other vertex u ∈ X \ {v},
the sinks of u and v are different. So to solve this subproblem, again
one just needs to remove v and solve the resulting subproblem [see lines
9-10]:

OPT(t,P ,F ,D) = OPT(t′,P \ {{v}},F\{v},D/v).

26 S. Alamdari and A. Mehrabian

(b) P is not a singleton, and v ∈ F (LINES 11-16). In this case v has a path
in G−H to its sink, which is in V (G) \ V (H). First, assume that there
is no u ∈ P \{v} with u ∈ F . Then the sink of v is in V (G)\V (H) while
each vertex u ∈ P \ {v} has either its sink in V (H), or has no path to
its sink in G−H . Thus the subproblem is infeasible [see lines 14-15].

Now, assume that there is some u ∈ P \ {v} with u ∈ F . Then we
know that the sink of u and v is the same. Hence in any solution for
(t′,P/v,F \ {v},D/v), a vertex w ∈ X has the same sink as v, if and
only if it has the same sink as u, if and only if it is in P . Hence we have
[see lines 12-13]

OPT(t,P ,F ,D) = OPT(t′,P/v,F \ {v},D/v).

(c) P is not a singleton, v /∈ F , and there is a u ∈ P \ {v} with (v, u) ∈ D
(LINES 17-18). In any solution for (t′,P/v,F \ {v},D/v), the sink of v
is the same as the sink of u; thus a vertex w ∈ X has the same sink as
v, if and only if it has the same sink as u, if and only if it is in P . Hence
we have [see lines 17-18]

OPT(t,P ,F ,D) = OPT(t′,P/v,F \ {v},D/v).

(d) P is not a singleton, v /∈ F , and there is no u ∈ P \ {v} with (v, u) ∈ D
(LINES 19-25). Since v has no outgoing arc in H or G−H , it is a sink
in any solution for (t,P ,F ,D). However, if there is a u ∈ P \ {v} with
u ∈ F , then the sink of u is in V (G)\V (H), so the sink of u and the sink
of v are distinct, and the subproblem is infeasible. Otherwise, if there is
no u ∈ P \ {v} with (u, v) ∈ D, then for any u ∈ P \ {v}, the sink of u
will be in V (H) \ {v} while the sink of v is v, and again the subproblem
would be infeasible [see lines 20-24].

So, assume that for all u ∈ P \ {v} we have u /∈ F , and for some
u ∈ P \ {v} we have (u, v) ∈ D. In this case one can remove v and
solve the remaining subproblem. but it should be taken into account
that vertices u ∈ P \ {v} with (u, v) ∈ D have a path in G−H ′ to their
sink (which is v ∈ V (G) \ V (H ′)). Consequently [see lines 20-21],

OPT(t,P ,F ,D) = OPT(t′,P/v,F ∪ {u ∈ P \ {v} : (u, v) ∈ D},D/v).

Type 3: X = X ′ and Wt′ = Wt ∪ {(u, v)} (LINES 26-42) Let t′′ be the child
of t′, and let H ′′ = Ht′′ . Here H is the same as H ′′ ∪ (u, v). If u and v are in
distinct elements of P , then clearly the arc (u, v) should be in solution set
(the set of arcs that are cut), that is [see lines 28-29],

OPT(t,P ,F ,D) = w(u, v) + OPT(t′′,P ,F ,D).

Otherwise, one has the choice of putting the arc (u, v) in the solution set or
not. If not, then when reducing the subproblem to a smaller one correspond-
ing to H ′′, one should take into account the arc (u, v) which is not in H ′′.
Let

S = {x ∈ X : (x, u) ∈ D} ∪ {u}, T = {y ∈ X : (v, y) ∈ D} ∪ {v}.

On a DAG Partitioning Problem 27

Then for any (x, y) ∈ S ×T , the arc (u, v) creates an (x, y)-path in G−H ′′.
Thus when solving the subproblem corresponding to H ′′, the set

D′ = D ∪ {(x, y) : x ∈ S, y ∈ T }

is precisely the set of pairs (x, y) such that there is an (x, y)-path in G−H ′′

[lines 31-33]. Moreover, if v ∈ F , then any vertex in S has its sink in V (G) \
V (H) = V (G) \ V (H ′′), and a path to its sink in G−H ′′. Thus, letting

F ′ =
{F ∪ S v ∈ F
F v /∈ F ,

we have [see lines 34-39]

OPT(t,P ,F ,D) = min {w(u, v) + OPT(t′′,P ,F ,D),OPT(t′′,P ,F ′,D′)} ,

where the first term in the minimum corresponds to putting the arc (u, v)
in the solution, and the second term corresponds to not doing so.

Finally, we analyze the running time. First, observe that Algorithm 1 has running
time O(k3) given that the size of the bags is at most k + 1. Let x be the root
of the path decomposition. Note that the vertex set of Wx is empty, thus the
optimal value of the DAG Partitioning problem on G is simply OPT(x, ∅, ∅, ∅).
The total number of subproblems is 2O(k2)n, and each of them can be solved in
time O(k3) (provided the solutions to smaller subproblems have been calculated),

which gives a total running time of 2O(k2)n. ��

4 Concluding Remarks

We showed that even the simplest instances of the DAG Partitioning problem are
hard to approximate. Our result implies that the hardness arises from the global
structure of the graph, and not from the weight of the arcs, the number of sinks,
or the “local complexity” arising from a vertex with large out-degree. Thus,
when encountered with this problem, one should naturally try to use heuristics
that behave well in practice. This was the approach taken by the authors of [9].

We proved the problem is fixed parameter tractable, when the pathwidth
of the graph is chosen as the parameter. A natural question is, what is the
complexity if treewidth is chosen instead? It is known (see [7]) that a graph
with treewidth k, has pathwidth O(k logn), so our algorithm has running time

nO(k2 log n) on such a graph. Unfortunately our dynamic programming does not
work correctly on tree decompositions, but it might be possible to alter it and
come up with an algorithm with running time linear in n. Courcelle [5] proved
that any property of graphs definable in monadic second-order logic (MSO2) can
be decided in linear time on any class of graphs with bounded treewidth. So,
another approach may be to formulate this problem using monadic second-order
logic.

28 S. Alamdari and A. Mehrabian

References

1. Adar, E., Adamic, L.A.: Tracking information epidemics in blogspace. In: Proceed-
ings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence,
WI 2005, pp. 207–214. IEEE Computer Society, Washington, DC (2005),
http://dx.doi.org/10.1109/WI.2005.151

2. Adar, E., Zhang, L., Adamic, L.A., Lukose, R.M.: Implicit Structure and the Dy-
namics of Blogspace. In: WWW 2004 Workshop on the Weblogging Ecosystem:
Aggregation, Analysis and Dynamics. ACM Press, New York (2004)

3. Berger, B., Shor, P.W.: Approximation alogorithms for the maximum acyclic sub-
graph problem. In: Proceedings of the First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 1990, pp. 236–243. Society for Industrial and Applied
Mathematics, Philadelphia (1990),
http://dl.acm.org/citation.cfm?id=320176.320203

4. Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: Proceedings of the 23rd In-
ternational Conference on Machine Learning, ICML 2006, pp. 113–120. ACM, New
York (2006), http://doi.acm.org/10.1145/1143844.1143859

5. Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Inf. Comput. 85, 12–75 (1990),
http://dl.acm.org/citation.cfm?id=81253.81255

6. Călinescu, G., Karloff, H., Rabani, Y.: An improved approximation algorithm for
multiway cut. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory
of Computing, STOC 1998, pp. 48–52. ACM, New York (1998),
http://doi.acm.org/10.1145/276698.276711

7. Korach, E., Solel, N.: Tree-width, path-width, and cutwidth. Discrete Appl.
Math. 43, 97–101 (1993), http://dl.acm.org/citation.cfm?id=153610.153618

8. Kwon, Y.S., Kim, S.W., Park, S., Lim, S.H., Lee, J.B.: The information diffusion
model in the blog world. In: Proceedings of the 3rd Workshop on Social Network
Mining and Analysis, SNA-KDD 2009, pp. 4:1–4:9. ACM, New York (2009),
http://doi.acm.org/10.1145/1731011.1731015

9. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the
news cycle. In: Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD 2009, pp. 497–506. ACM, New
York (2009), http://doi.acm.org/10.1145/1557019.1557077

10. Leskovec, J., McGlohon, M., Faloutsos, C., Glance, N., Hurst, M.: Cascading be-
havior in large blog graphs: Patterns and a model. In: Society of Applied and
Industrial Mathematics: Data Mining, SDM 2007 (2007)

http://dx.doi.org/10.1109/WI.2005.151
http://dl.acm.org/citation.cfm?id=320176.320203
http://doi.acm.org/10.1145/1143844.1143859
http://dl.acm.org/citation.cfm?id=81253.81255
http://doi.acm.org/10.1145/276698.276711
http://dl.acm.org/citation.cfm?id=153610.153618
http://doi.acm.org/10.1145/1731011.1731015
http://doi.acm.org/10.1145/1557019.1557077

	On a DAG Partitioning Problem
	Introduction
	The Hardness Result
	Linear-Time Algorithm for Bounded-Pathwidth Graphs
	Concluding Remarks
	References

