

Lecture Notes in Computer Science 7323
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Anthony Bonato Jeannette Janssen (Eds.)

Algorithms and Models
for the Web Graph

9th International Workshop, WAW 2012
Halifax, NS, Canada, June 22-23, 2012
Proceedings

13

Volume Editors

Anthony Bonato
Ryerson University
Department of Mathematics
Toronto, ON, M5B 2K3, Canada
E-mail: abonato@ryerson.ca

Jeannette Janssen
Dalhousie University
Department of Mathematics and Statistics
Halifax, NS, B3H 3J5, Canada
E-mail: janssen@mathstat.dal.ca

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-30540-5 e-ISBN 978-3-642-30541-2
DOI 10.1007/978-3-642-30541-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012937880

CR Subject Classification (1998): F.2, G.2, H.4, C.2, H.3, H.2.8, E.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume includes a selection of papers that were accepted to the 9th Work-
shop on Algorithms and Models for the Web Graph, WAW 2012, held at Dal-
housie University in June 2012. The 13 accepted papers address a number of
topics related to complex networks such as hypergraph coloring games and voter
models, algorithms for detecting nodes with large degrees, random Appolonian
networks, and a sublinear algorithm for Pagerank computations.

The last decade has seen intense growth in research on complex networks,
ranging from the Web graph, to on-line social networks, to protein–protein in-
teraction networks. Such research has been of great practical importance, and
has also pushed the frontiers in pure mathematics and graph theory. One of the
goals of the 2012 workshop was to present current research on the theory and
applications of complex networks. The papers presented in this volume should
stimulate new and exciting directions in research on complex networks.

We would like to thank the authors and reviewers for making the volume a
reality.

June 2012 Anthony Bonato
Jeannette Janssen

Table of Contents

Hypergraph Coloring Games and Voter Models . 1
Fan Chung and Alexander Tsiatas

On a DAG Partitioning Problem . 17
Soroush Alamdari and Abbas Mehrabian

Some Typical Properties of the Spatial Preferred Attachment Model 29
Colin Cooper, Alan Frieze, and Pawe�l Pra�lat

A Sublinear Time Algorithm for PageRank Computations 41
Christian Borgs, Michael Brautbar, Jennifer Chayes, and
Shang-Hua Teng

Quick Detection of Nodes with Large Degrees . 54
Konstantin Avrachenkov, Nelly Litvak, Marina Sokol, and
Don Towsley

Ranking and Sparsifying a Connection Graph . 66
Fan Chung and Wenbo Zhao

A Game-Theoretic Model of Attention in Social Networks 78
Ashish Goel and Farnaz Ronaghi

On Certain Properties of Random Apollonian Networks 93
Alan Frieze and Charalampos E. Tsourakakis

Mutual or Unrequited Love: Identifying Stable Clusters in Social
Networks with Uni- and Bi-directional Links . 113

Yanhua Li, Zhi-Li Zhang, and Jie Bao

Dynamic PageRank Using Evolving Teleportation . 126
Ryan A. Rossi and David F. Gleich

Multi-commodity Allocation for Dynamic Demands Using PageRank
Vectors . 138

Fan Chung, Paul Horn, and Jacob Hughes

VIII Table of Contents

Are We There Yet? When to Stop a Markov Chain while Generating
Random Graphs . 153

Jaideep Ray, Ali Pinar, and C. Seshadhri

A Fast Algorithm to Find All High Degree Vertices in Graphs with a
Power Law Degree Sequence . 165

Colin Cooper, Tomasz Radzik, and Yiannis Siantos

Author Index . 179

Hypergraph Coloring Games and Voter Models

Fan Chung and Alexander Tsiatas

Department of Computer Science and Engineering,
University of California, San Diego

{fan,atsiatas}@cs.ucsd.edu

Abstract. We analyze a network coloring game on hypergraphs which
can also describe a voter model. Each node represents a voter and is
colored according to its preferred candidate (or undecided). Each hyper-
edge is a subset of voters that can interact and influence one another.
In each round of the game, one hyperedge is chosen randomly, and the
voters in the hyperedge can change their colors according to some pre-
scribed probability distribution. We analyze this interaction model based
on random walks on the associated weighted, directed state graph. We
consider three scenarios — a memoryless game, a partially memoryless
game and the general game using the memoryless game for comparison
and analysis. Under certain ‘memoryless’ restrictions, we can use semi-
group spectral methods to explicitly determine the spectrum of the state
graph, and the random walk on the state graph converges to its station-
ary distribution in O(m log n) steps, where n is the number of voters and
m is the number of hyperedges. This can then be used to determine an
appropriate cut-off time for voting: we can estimate probabilities that
events occur within an error bound of ε by simulating the voting game
for O(log(1/ε)m log n) rounds. Next, we consider a partially memoryless
game whose associated random walk can be written as a linear combi-
nation of a memoryless random walk and another given random walk.
In such a setting, we provide bounds on the convergence time to the
stationary distribution, highlighting a tradeoff between the proportion
of memorylessness and the time required. To analyze the general inter-
action model, we will first construct a companion memoryless process
and then choose an appropriate damping constant β to build a partially
memoryless process. The partially memoryless process can serve as an
approximation of the actual interaction dynamics for determining the
cut-off time if the damping constant is appropriately chosen either by
using simulation or depending on the rules of interaction.

1 Introduction

We consider a network coloring game, motivated by human behavioral experi-
ments [14,16] conducted in a network setting. The network coloring game can
be formulated as the following interaction-based voter model:

A set of voters is modeled as the vertex set of a hypergraph H = (V,E). Each
hyperedge g ∈ E represents a small, possibly overlapping group representing so-
cial interactions and discussions (such as lunchtime hallway or office discussions,

A. Bonato and J. Janssen (Eds.): WAW 2012, LNCS 7323, pp. 1–16, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 F. Chung and A. Tsiatas

blog commentary, television viewership, and Web forums). At time t = 0, each
voter has a color representing an initial preference or is undecided. Then at each
time step, one hyperedge g is randomly selected according to some prescribed
probability distribution on E. After the voters in g interact with one another,
the voters’ preferences can change probabilistically. This process is repeated for
many rounds, and the coloring configuration of the voters evolves.

Many natural questions arise. Will the coloring configurations converge under
certain conditions? If the coloring patterns diverge or oscillate, what would be an
appropriate time frame to stop the model? When the model is run for some pre-
scribed number of rounds, how does the observed coloring configuration behave?
Can the observed coloring configuration be something other than ‘random’?What
is the stationary distribution of the observed coloring configuration, if it exists?

The behavioral experiments of Kearns et al. [11,12,14,15] were the original
motivation for our model. In these simulations, actual human agents were given
a common graph coloring task with varying monetary rewards for their timely
completion. This is a strategic component that is not necessarily built into our
interaction-based model, but the probability distributions for color change can
potentially be derived using game-theoretic analysis. The experiments allowed
agents differing “views” of information about the specific graph problem struc-
ture. Thus, agents only had limited information and could only make decisions
based on the color configurations of smaller subsets of nodes (but not just pairs).
This gives a compelling reason to model the voters as nodes of a hypergraph and
not a traditional graph where edges are limited to two endpoints.

These problems have been quite elusive in spite of extensive study either
by simulation [11,12,14,15] or by using various other proposed voter models
[7,10,18,19] for various types of networks [23]. The results vary widely with the
specific set of rules or dynamics and point to evidence of intrinsic difficulties
involved in this general voting model.

Although the general voting and coloring problems may be intractable to ana-
lyze tightly, we will consider several special cases that will help in evaluating the
more general case. The first is a special case of memoryless voter models. In a
memoryless votermodel, the voters do not consider their current preferences when
formulating new ones. Under these assumptions, we can show that the dynamics
of coloring configurations can be analyzed quite precisely in several aspects.

Our coloring game is played on a hypergraph where each hyperedge is formed
by a group to model multi-party simultaneous interaction. Although the coloring
configurations of the nodes in the hypergraph do not converge in general, we
can model the rounds of coloring games by conducting random walks on the
associated directed state graph which contains coloring configurations as nodes.
It turns out, for memoryless interactions, the spectrum of the state graph has
elegant expressions. Using the formula for the eigenvalues, we can determine the
rate of convergence for random walks on the state graph, which can then be used
for determining a cut-off time for the voting game.

The eigenvectors of the random walk on the state graph contain rich in-
formation. In particular, the stationary distribution, which is the eigenvector

Hypergraph Coloring Games and Voter Models 3

associated with eigenvalue 1, tells us the distribution of the observed coloring
configuration after the cut-off time. In contrast with undirected graphs, the sta-
tionary distribution a random walk on a directed graph does not always exist
and is not easy to determine, especially for state graphs with exponentially large
size. Even for simple hypergraphs H such as the path or cycle, the stationary
distribution for random walks on the state graph have complicated forms quite
different from the uniform distribution [6]. Nevertheless, we will show that for
events such as “red wins by at least 5% within an error bound ε” can be deter-
mined by simulating the voter model for O(log(1/ε)m logn) rounds, where m is
the number of hyperedges in H , provided that the hyperedges are always chosen
uniformly at random, and the interactions are memoryless.

Next, we proceed to consider the partially memoryless model for which, with
some probability β, the interaction process is memoryless and with probabil-
ity 1 − β, the process is not required to be memoryless. Specifically, a partially
memoryless voter model is one whose associated state-graph random walk can
be decomposed into two parts: P = βM + (1− β)P ′, where M is a memoryless
random walk and P ′ is any given random walk. Using results from the memory-
less case and also from general directed Laplacians [5], we can analyze partially
memoryless voter games as well.

The memoryless condition might seem to be too strict to be satisfied by real-
world social interactions, but it can still be of interest to serve as a type of
benchmark for the sake of comparison. In particular, the partially memoryless
case provides a natural framework for evaluating a more general interaction voter
process. For a given interaction voter process with its associated random walk
P , we can construct a corresponding memoryless process P ′ = βM + (1 − β)P
where M is a memoryless process. The determination of M depends on β and
simulation of P with the cut-off time depending on β. The details for choosing
β and M will be given later in Section 7.

Related Work

The coordination or consensus game has been extensively studied in evolutionary
network game theory [8,13,25]. In a set of controlled behavioral experiments, a
simple voting game [12] as well as a biased version [14] were simulated on a set
of small, constructed topologies. The rules varied, but involved small financial
rewards for success and differing amounts of information visibility. The results
showed that consensus was often reached within a certain timeframe, though
there were many cases of failure as well. It is desirable to further explain these
social network phenomena.

One method to analyze various consensus games is to use the standard voter
model [7,10], where one agent is selected randomly during each round, assuming
the vote of a randomly-selected neighbor. Some empirical work has shown that
its performance depends on network topology [22]. Several proofs have been given
[1,24] using coalescing random walks to show that the expected time to reach con-
sensus under the voter model isO(n3 logn), where n is the number of voters in the
network. For the biased voting game, this method takes exponential time [16], but

4 F. Chung and A. Tsiatas

it can be used as a subroutine for an algorithm converging in O(n8 logn) expected
time. However, elections in practice rarely end with a unanimous decision, and our
model reflects this truth.

Other recent work consider alternative dynamics for the voting game, in-
cluding Glauber dynamics [18] and pieces of “advice” [19] given to the voters.
These models also result in consensus, and the time required is related to graph-
theoretic quantities such as the tilted cutwidth, diameter, and broadcast time,
often difficult to compute or reason about. Some of these models assume that the
voters know approximate values for these quantities, which our model avoids.
These models again result in unanimous coordination, whereas our proposed
model is more likely to result in more realistic voting configurations.

The experiments of Kearns et al. [12,14] show that consensus is indeed not
always reached, especially for biased voting games. But not much has been said
thus far about the distribution of voting configurations should a true consensus
be unattainable.

Furthermore, nearly all work done on the network coordination game has
focused on pairwise relationships between voters. But voters often interact in
groups larger than two, and most of the models described so far have not taken
this possibility into account. Such interactions as town-hall debate, reader com-
ments on news articles, and dinner-table discussions can all possibly be consid-
ered in the framework of our hypergraph model.

A Summary of Our Results

We consider a variation on the voter model that takes into account multi-voter
interactions for the coordination game. Instead of limiting ourselves to pairwise
relationships between voters, we model the interaction network as a hypergraph
H = (V,E), where each of n vertices is a voter and each of m hyperedges
represents a group that can interact.

Our interaction model can be described as follows. At the beginning, all voters
have some initial views, voting for one of several candidates, or starting unde-
cided. In each round, one hyperedge g is selected randomly, and an interaction
Xg,τ takes place: the randomly selected hyperedge g changes its pattern to τ .
In the most general case, the probability of Xg,τ occurring can depend on the
current coloring configuration σ of H . We denote by p(g, σ, τ) the probability of
Xg,τ occurring when σ is the current coloring configuration on H , and for all σ,
it must be the case that

∑
g,τ p(g, σ, τ) = 1.

If the interactions are memoryless, then the probability of Xg,τ occurring is
constant across all voting configurations σ on H . In this case, we can omit σ and
denote by p(g, τ) the probability that Xg,τ occurs. When this probability only
has two parameters, it can be assumed that the interaction is memoryless. The
model is then simulated for some preset number of rounds.

While the game is taking place, the state can be described as a voting configu-
ration or coloring configuration of the voters among the candidates or undecided.
If there are r possible votes (including undecided), there are rn possible config-
urations, and we can construct a state graph H∗, where the vertices are coloring

Hypergraph Coloring Games and Voter Models 5

configurations, and a directed edge connects u to v if the state v is reachable
from u in one round of the interaction model. Thus, a simulation of the coloring
game using the interaction model can be completely described as a random walk
on the state graph H∗.

Let an event A ⊂ V (H∗) be a subset of the states in the state graph. These
events can represent numerous scenarios: for example, the states where more
than half of voters choose red, or the states which have a specific trend over some
subsets of the voters, representing a voting district or municipality. In general,
A can be any event of interest. We will show that for memoryless interactions,
we can estimate Pr[A] within a probabilistic error bound by using a sufficient
number of samplings, as long as A contains enough states.

Theorem 1. Let A be an event or subset of all possible coloring configurations
on a hypergraph H on n vertices and m edges. Suppose the interactions are
memoryless, the probability of selecting a hyperedge g in any given round is at
least 1/(αm) for some α, and for any set S ⊆ V (H) there are at least |S| edges
incident to vertices in H. The probability Pr[A] that A occurs at any cut-off time
after O(αm log n) rounds of simulation can be estimated within an error bound
of ε using O(α log(1/ε)m log(n)/Pr[A]) rounds of simulation.

Note that for the special case that the hyperedges are chosen uniformly at ran-
dom, the number of rounds of simulation for convergence is:

O(log(1/ε)m log(n)/Pr[A]).

The main tools that we use to prove the above theorem are sampling and fast
mixing of random walks on the state graph H∗ associated with memoryless
strategies. In particular, the spectrum of such random walks on the state graph
H∗ can be determined by using spectral techniques originating in the analysis
of card shuffling [3,4], self-organizing search [9], hyperplane arrangement [2] and
semigroup random walks as well as the recent work on edge flipping games in
graphs [6].

For the partially memoryless case, where the random walk P on the state
graph H∗ can be written as P = βM + (1− β)P ′ with memoryless M , we have
the following result showing a trade-off between the convergence time and β:

Theorem 2. Let A be an event or subset of all possible coloring configurations
on a hypergraph H on n vertices and m edges. Suppose the interactions are par-
tially memoryless with parameter β, the probability of selecting a hyperedge g in
any given round is at least 1/(αm) for some α, and for any set S ⊆ V (H) there
are at least |S| edges incident to vertices in H. The probability Pr[A] that A oc-
curs at any cut-off time after O(αm log n) rounds of simulation can be estimated

within an error bound of ε using O
(

α log 1
εm logn

β Pr[A]

)
rounds of simulation.

Finally, for the most general case, where the interactions are not memoryless
at all, it is well known to be very difficult to deal with [6]. This is because the
associated random walk can have exponentially small eigenvalues, and conver-
gence time can vary widely based on the specific dynamics. Nevertheless, we will

6 F. Chung and A. Tsiatas

show how to use insight from the memoryless and partially memoryless models
to reason about the general voter model. By choosing an appropriate damping
constant β and extracting the memoryless version of a given process, we can then
construct a partially memoryless process which can be used to approximate the
given interactive process.

2 The Voting Game on a Hypergraph as a Random Walk
on the Associated State Graph

We first describe the interaction model as a coloring game on a hypergraph
H = (V,E). The set V of nodes consists of all voters and each hyperedge g ∈ E
represents a group of voters who can interact with one another. For a hyperedge
g and coloring pattern τ on the voters in g, we let the interaction Xg,τ denote
one step of the model that moves a coloring configuration of V to another by
changing the color pattern to τ for voters in g.

The state graph H∗ is a weighted directed graph whose vertices are coloring
configurations of V (H). To distinguish from nodes in H , we sometimes call a
vertex in V (H∗) a state. There is a directed edge from a state u in H∗ to
another state v if there is a hyperedge g and a coloring pattern τ on g such that
the interaction Xg,τ moves u to v. The weight on the edge (u, v) is determined
by the probability that Xg,τ occurs during state u. We denote by p(g, u, τ)
the probability that, in state u, hyperedge g is selected and changes its color
configuration to τ .

Note that for any directed graph with weighted edges, we can define a typical
random walk with a transition from u to v occurring with probability
w(u, v)/

∑
z w(u, z). Therefore, the typical randomwalk associated with the state

graph H∗ simulates the evolving configurations in the voter interaction game.
Starting from a coloring configuration u, a sequence of interactions

Xg1,τ1Xg2,τ2 . . . Xgt,τt

induces a series of changes in the coloring configuration and can then be viewed
as a walk starting from u, traversing t directed edges on the state graph H∗.
This correspondence leads to the following lemma whose proof follows from the
Perron-Frobenius Theorem.

Lemma 1. The voter interaction game with interactions as described above does
not converge to an equilibrium in general. Instead, from any initial coloring
configuration, the resulting configuration after t rounds of simulation, is s with
probability approaching π(s), where π is the stationary distribution of the random
walk on the state graph H∗, as long as t is sufficiently large and H∗ is strongly
connected and aperiodic.

An interaction Xg,τ is said to be nontrivial if the associated probability p(g, σ, τ)
is nonzero. In the special case that all nontrivial strategies are consistent with
some coloring pattern τ (for example, all red), then the coloring configuration

Hypergraph Coloring Games and Voter Models 7

will reach an equilibrium. (Note that this is a special case where the interac-
tions are memoryless.) Suppose there is a state s for which all the nontrivial
interactions are of the form Xg,sg , where sg is simply the coloring configuration
of s restricted to nodes in g. If this is the case, then starting from any initial
configuration, the voting game will converge using standard coupon-collector
probabilistic arguments:

Lemma 2. In the voter interaction game, suppose there exists a coloring con-
figuration s such that all the nontrivial interactions are of the form Xg,sg , where
sg denotes the coloring pattern of s restricted to voters in g. Starting from any
initial configuration, the voting game converges to s after t rounds of simulation
with probability at least 1− e−c if

t ≥ log n+ c

minv∈V

∑
g∈E
g�v

p(g, sg)
,

where n is the number of voters and p(g, sg) is the probability associated with
the interaction. In the case that every vertex is incident to exactly d hyperedges
and each hyperedge is chosen with equal probability, the above inequality is just
t ≥ n(logn+ c).

For the remainder of this paper, we will assume that the given hypergraph
and interaction dynamics yield a state graph H∗ that is aperiodic and strongly
connected. We will refer to the stationary distribution π accordingly.

We remark that Lemma 1 reduces the voter interaction game to random
walks, and the rate of convergence depends on the eigenvalues of the directed
state graph. These values can be complex, and in the most general case, the
spectral gap can be exponentially small. Nevertheless, we will consider memo-
ryless interactions which allow us to have real eigenvalues for the state graph,
and we can use these techniques to derive some bounds for partially memoryless
interactions as well.

3 Memoryless Interactions and Semigroup Spectral
Graph Theory

For a random walk on the state graph H∗, we can describe a path in terms of
the interactions {Xg,τ} that take place to follow the path. Thus, it is convenient
to describe random walks as sequences of interactions. For a sequence S =
Xg1,τ1Xg2,τ2 . . .Xgt,τt and a state u, we say S = u if the interaction game ends
up in state u after following the path described by S. For two sequences, we say
S1 = S2 if both paths end at the same state.

We say the nontrivial interactions {Xg,τ} are memoryless if the probability
of performing it does not depend on the current state. An equivalent definition
is that for memoryless interactions, a repeated interaction Xg,τ means that ear-
lier occurrences have no effect. Namely, for any three sequences of interactions
S1, S2, S3 of any length, then

S1Xg,τS2Xg,τS3 = S1Xg,τS2S3.

8 F. Chung and A. Tsiatas

If the interaction strategies are memoryless, we can view them as members of a
special type of semigroup known as a left-regular band or LRB, first studied in the
1940’s [17,21]. An LRB is a semigroup where every element is idempotent, and for
any two elements x, y ∈ S, xyx = xy. We define the product of two interactions
Xg,τ and Xg′,τ ′ to be the two interactions in sequence. If the interactions are
memoryless, it is easy to see that the semigroup S generated by all nontrivial
interactions Xg,τ is a LRB. This allows us to apply techniques in [2,3,4,6] to the
voter interaction game. In particular, the associated random walk on the state
graph for memoryless interactions has a clean form:

Theorem 3. Suppose that the voter interaction game on a hypergraph H =
(V,E) in r colors has memoryless interactions Xg,τ for g ∈ E and coloring
patterns τ on g. If p(g, τ) is the probability of choosing g and coloring voters in
g with the coloring pattern τ , then the random walk on the associated state graph
H∗ has an eigenvalue λT for every subset T ⊆ V :

λT =
∑
g,τ
g⊆T

p(g, τ)

with multiplicity (r − 1)n−|T |.

For the specific case where the hyperedges are selected uniformly at random and
there are only two colors, we note that the eigenvalues have an even cleaner
form: for each subset T ⊆ V , there is an eigenvalue:

λT =
|{g ∈ E|g ⊆ T }|

m

with multiplicity 1.
To prove Theorem 3, we need to explore further properties of LRB semigroups.

The proof of the corollary follows from Theorem A in [6], and the theorem
follows by generalizing the techniques to r colors. But in order to use these
results, we must first interpret semigroup terminology in terms of the voter
interaction game. These details appear in the appendix, and further details about
the terminology can be found in [3].

4 The Cut-Off Time for Voter Interaction Games

Our methods also address some of the questions that arise in the recent human
network experiments of Kearns et al. [16]. The voters are given a hard deadline,
often arbitrarily set by various entities without justification. Furthermore, for
different stopping times, the outcome of the network experiments varied widely
from consensus to chaos. Using our interaction model and spectral techniques,
we will prove the following theorems about the interaction model’s convergence
properties, as well as a mathematical interpretation of the resulting voting con-
figuration after convergence is reached.

Hypergraph Coloring Games and Voter Models 9

For voter interaction games with memoryless interactions, we have the fol-
lowing theorem. The proof follows by using the spectrum of H∗ (derived in the
previous section) to bound the total variation distance between the random walk
and its stationary distribution after t steps:

Theorem 4. Suppose the interaction model is simulated on a hypergraph H =
(V,E) with |V | = n, and each voter in V is colored with one of r colors. If
the interactions are memoryless, then the total variation distance between the
random walk on the state graph H∗ denoted by the transition probability matrix
P after t rounds of simulation and its stationary distribution π is given by

∣∣∣∣P t − π
∣∣∣∣
TV

= max
A⊆V

max
y

∣∣∣∣∣∑
x∈A

P t(y, x)− π(x)

∣∣∣∣∣
≤
∑
T⊆H

λt
T (r − 1)n−|T |.

We remark that the above bound can be somewhat improved by restricting T to
be the co-maximal subsets, although asymptotically the bound is still the same.
Using this bound on the total variation distance, we can derive the convergence
time for the interaction model:

Theorem 5. On a hypergraph H = (V,E) with |V | = n, |E| = m, suppose
the voter interaction model is simulated with memoryless interactions, and the
probability of choosing a hyperedge g in any round is uniform over E. Suppose
for any set S of k voters, there are at least k hyperedges involving voters in S.
The random walk on the state graph H∗ converges to its stationary distribution
in O(m logn) steps.

To prove Theorem 5, we use the derived spectrum from Theorem 3 in our derived
bound on the total variation distance from Theorem 4. The algebraic details are
left for the appendix.

Theorems 4 and 5 imply a method for choosing a stopping point for the
interaction model: enough time for a desired level of convergence to a stationary
distribution π. This also indicates what the voting configuration among the
agents looks like at any time after it has converged: the votes are a random
sample from π from all the voting configurations in the state graph.

5 Estimating the Expected Value of a Given Event

Although estimating individual components of π can be computationally in-
tractable, for memoryless interactions, we can effectively use sampling to esti-
mate the probability of an event A, as long as the event has enough probability
mass. For a general π, it can be difficult to reason about its components, since it
contains exponentially many elements, corresponding to the state graph. Even
for simple graphs such as the path of length k, the exact stationary distribution

10 F. Chung and A. Tsiatas

on the state graph is quite complex [6]. Additionally, because most of the com-
ponents of π are exponentially small, even estimating π can be quite difficult.
But in practice, the exact stationary distribution is not of utmost importance.
Instead, it is much more revealing and tractable to reason about larger events
that capture a larger portion of π. We will use the following fact:

Theorem 6. ([20]). Let A be an event and π(A) =
∑

s∈A π(s) be the probability
that the outcome is in A. Let δ, ε ∈ (0, 1). Suppose that after N samplings, X is
the proportion of times the outcome was in A. Then

Pr[(1− δ)π(A) ≤ X ≤ (1 + δ)π(A)] ≤ 1− ε,

as long as N ≥ O
(

log(1/ε)
π(A)c(δ)

)
, where c(δ) only depends on δ.

We can use this to prove Theorem 1. Here, we consider the case where each
hyperedge is chosen with uniform probability 1/m, but the same argument will
hold using the looser 1/(αm) bound.

Proof. (for Theorem 1) For an event A, suppose we are given an initial state f
which we denote as a row vector indexed by states in V (H∗). For any integer
t, the coloring configuration we observe after t rounds of the voter interaction
model is in A with probability

Et[fA] =
∑
x∈A

fP t(x)

where P denotes the transition probability matrix of the random walk on H∗.
By combining Theorems 3 and 4, we have

|Et[A]− π(A)| ≤ max
y

∣∣∣∣∣∑
x∈A

P t(y, x)− π(x)

∣∣∣∣∣
=
∣∣∣∣P t − π

∣∣∣∣
TV

≤
∑
T⊆V

λt
T (r − 1)n−|T |.

For the case where each hyperedge is chosen with probability 1/m, where m is
the total number of hyperedges, we have

|Et[A]− π(A)| ≤ n2

(
1− 1

m

)t

≤ ε

if t > 2m(logn+ log(1/ε)).
Now we use Theorem 6, by breaking up the voter interaction game into N

phases where N = O
(

log(1/ε)
π(A)c(δ)

)
and each phase consists of t = O(m log n)

rounds. The proportion of phases where the outcome is in A satisfies:

Pr[(1− δ)π(A) < |X − π(A)|] < (1 + δ)π(A) ≥ 1− 2ε. (1)

Hypergraph Coloring Games and Voter Models 11

6 The Interaction Model with Partially Memoryless
Interactions

We say that a set of interactions is partially memoryless if the randomwalk on the
state graph H∗ can be decomposed into two parts, one of which is memoryless.
Specifically, if the random walk transition matrix is P , there is a β ∈ (0, 1) such
that we can write

P = βM + (1− β)P ′,

where the interactions described by M are memoryless and P ′ is another tran-
sition probability matrix without any restriction.

One way a partially memoryless interaction model can arise is if at each step,
the voters in the selected hyperedge interact memorylessly with some probability
β, allowing their actions to depend on the current step with probability 1 − β.
It is also possible that the transition probability matrix P ′ is not explicitly built
this way, but it can nevertheless be expressed as a partially memoryless model.
In this sense, the parameter β can be viewed as describing how memoryless the
model is, and its properties will depend on β:

Theorem 7. On a hypergraph H = (V,E) with |V | = n, |E| = m, suppose the
voter interaction model is simulated with partially memoryless interactions, and
the probability of choosing a hyperedge g in any round is uniform over E. Suppose
for any set S of k voters, there are at least k hyperedges involving voters in S.
The random walk on the state graph H∗ converges to its stationary distribution
in O(m logn

β) steps.

The partially memoryless structure allows us to use the results from the fully
memoryless case, with an additional factor of 1/β when analyzing the spectrum.
The details of the proof for Theorem 7 are left for the appendix. With this result,
we can prove Theorem 2. The proof follows by using the same techniques as the
proof for Theorem 1; we use Theorem 6 in the same manner. We have the same
bound as (1), but the number of rounds required in each phase is now given as
in Theorem 7 (Eq. (2)).

7 The General Interaction Model

Thus far, we have written about the interaction model with memoryless and
partially memoryless interactions. The general version of the interaction model
concerns interactions that all can depend on the current and previous states,
where the random walk on the state graph H∗ can be quite difficult to analyze.
The eigenvalues of the random walk can be real or complex, and exponentially
small [6]. With O(2n) states, computing the spectrum explicitly is too expensive
or infeasible. Nevertheless, we can use the previous memoryless and partially
memoryless models as a basis for comparison between a specific set of state-
dependent interactions and memorylessness in general.

In particular, for any general interaction voter game, we can build a com-
panion game which is partially memoryless with one scalar parameter β. Let M

12 F. Chung and A. Tsiatas

denote the transition probability matrix of the random walk on H∗. We wish to
construct a partially memoryless model

P ′ = βM + (1− β)P

where M is memoryless and can be constructed from P and β as follows: Instead
of simulating blindly, we will use Theorem 2 which provides an upper bound on
the convergence time to the stationary distribution for partially memoryless inter-
actions. If the companion model serves as an approximation for the actual voter
game, it is enough to simulate the more general model O(mβ logn) time. To con-
struct M , we collect a sample probability distribution: when a hyperedge g is se-
lected, keep track of the resulting coloring configurations. Then we can use these
samples to build a partially memoryless model: first select a hyperedge g, then
with probability β, randomly select one of the collected sample coloring configura-
tions on g. Note that once the samples have been collected, this step is memoryless.
With probability 1− β, we just use the original memory-dependent dynamics.

The problem of determining the appropriate value of β can be quite difficult
since the required length of time until convergence may be exponential. A feasible
heuristic approach is a combination of a series of iteration and simulation. Such
process also can be used to get a sense of how “memoryless” the more general
model really is. In other words, an alternative interpretation of the damping
constant β is just the ratio of the rate of convergence of the memoryless random
walk and the actual random walk. In general, the value of β can range from 1
to some exponentially small values, reflecting the fact that some models have
higher extent of memorylessness than others. So even though the general model
is notoriously difficult to reason about, we can still quantify its convergence time
empirically by comparing with the partially memoryless model.

To illustrate this comparative process, we consider a traditional voting game
on networks. We are given a graph G, and each node has a starting color. Then
at each time step, a node is randomly selected, and it takes the color of one of
its neighbors, selected uniformly at random. In our setting, there is a hyperedge
for every node v, consisting of v and its neighbors, and whenever it is chosen, v
changes color to one of its neighbors’ colors. It should be clear that these dynam-
ics are completely memory-dependent: the coloring configuration at time t + 1
always depends on the state at time t. But we can build a partially memoryless
process using the method described in the previous paragraph.

We demonstrate this method using Zachary’s karate network [26] as an ex-
ample graph. This graph has 34 nodes, and we initially assign one of 9 colors
randomly to each node. Two sample runs of the consensus game are shown in
Figs. 1a and 1b. Each row represents one node, and the colors change as time
moves from left to right.

We note that the state graph can be as large as 9(
34
2) nodes. The convergence

bound for a memoryless game of similar size is about O(m logn) steps with
n = 34 and m =

(
34
2

)
. This is comparable to the time limit of 1000 steps, if each

step is taken to be in the range of a fraction of a second. But in our simulations,
consensus may or may not be reached.

Hypergraph Coloring Games and Voter Models 13

In Fig. 1c, we give an illustration of a partially memoryless version of the
consensus game. Using only 100 rounds of simulation, we built the partially
memoryless version and simulated it for 1000 rounds. In practice, β can be chosen
empirically, by using binary search on (0, 1). For Fig. 1c, we chose β = 0.01. One
way to choose β is by iteratively adjusting β so that the proportion of cases that
achieve consensus reaches the range of what is to be expected.

In this paper, we have used a one-parameter family of partially memory-
less models to approximate a general voter game. Both the problems of finding
a deterministic way to choose the parameter β and to rigorously analyze the
sharpness of approximation remain open for future research.

(a) One simulation of the consensus game on Zachary’s karate network for
1000 steps.

(b) Another simulation of the consensus game on Zachary’s karate network
for 1000 steps.

(c) Simulation of the partially memoryless version of the consensus game on
Zachary’s karate network for 1000 steps, with β = 0.01 and 100 steps of
training.

Fig. 1. Simulations of the consensus game and its partially memoryless approximation

References

1. Aldous, D., Fill, J.A.: Reversible Markov chains and random walks on graphs
(preprint), http://www.stat.berkeley.edu/~aldous/RWG/book.html

2. Bidigare, T.P., Hanlon, P., Rockmore, D.N.: A combinatorial description of the
spectrum for the Tsetlin library and its generalization to hyperplane arrangements.
Duke Mathematical Journal 99(1), 135–174 (1999)

3. Brown, K.S.: Semigroups, rings, and Markov chains. Journal of Theoretical Prob-
ability 13(3), 837–938 (2000)

4. Brown, K.S., Diaconis, P.: Random walks and hyperplane arrangements. Annals
of Probability 26(4), 1813–1854 (1998)

http://www.stat.berkeley.edu/~aldous/RWG/book.html

14 F. Chung and A. Tsiatas

5. Chung, F.: Laplacians and the Cheeger inequality for directed graphs. Annals of
Combinatorics 9(1), 1–19 (2005)

6. Chung, F., Graham, R.: Edge flipping in graphs. Advances in Applied Mathemat-
ics 48(1), 37–63 (2012)

7. Clifford, P., Sudbury, A.: A model for spatial conflict. Biometrika 60(3), 581–588
(1973)

8. Ellison, G.: Learning, local interaction, and coordination. Econometrica 61(3),
1047–1071 (1993)

9. Fill, J.A.: An exact formula for the move-to-front rule for self-organizing lists.
Journal of Theoretical Probability 9(1), 113–160 (1996)

10. Holley, R.A., Liggett, T.M.: Ergodic theorems for weakly interacting infinite sys-
tems and the voter model. Annals of Probability 3(4), 643–663 (1975)

11. Judd, S., Kearns, M.: Behavioral experiments in networked trade. In: Proceedings
of the 9th ACM Conference on Electronic Commerce, pp. 150–159 (2008)

12. Judd, S., Kearns, M., Vorobeychik, Y.: Behavioral dynamics and influence in
networked coloring and consensus. Proceedings of the National Academy of Sci-
ences 107(34), 14978–14982 (2010)

13. Kandori, M., Mailath, G., Rob, R.: Learning, mutation, and long run equilibria in
games. Econometrica 61(1), 29–56 (1993)

14. Kearns, M., Judd, S., Tan, T., Wortman, J.: Behavioral experiments on biased
voting in networks. Proceedings of the National Academy of Sciences 106(5), 1347–
1352 (2009)

15. Kearns, M., Suri, S., Montfort, N.: An experimental study of the coloring problem
on human subject networks. Science 313(5788), 824–827 (2006)

16. Kearns, M., Tan, J.: Biased Voting and the Democratic Primary Problem. In:
Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 639–652.
Springer, Heidelberg (2008)

17. Klein-Barmen, F.: On a broader analysis of lattice theory. Mathematische
Zeitschrift 46(1), 472–480 (1940) (in German)

18. Montanari, A., Saberi, A.: Convergence to equilibrium in local interaction games.
In: Proceedings of the 50th IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 303–312 (2009)

19. Mossel, E., Schoenebeck, G.: Reaching consensus on social networks. In: Proceed-
ings of the First Symposium on Innovations in Computer Science (ICS), pp. 214–
229 (2010)

20. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(1995)

21. Schützenberger, M.-P.: On left-regular bands. Comptes Rendus de l’Académie des
Sciences 224, 777–778 (1947) (in French)

22. Suchecki, K., Egúıluz, V., San Miguel, M.: Voter model dynamics in complex net-
works: Role of dimensionality, disorder, and degree distribution. Physical Review
E 72, 1–8 (2005)

23. Tahbaz-Salehi, A., Jadbabaie, J.: Consensus over ergodic stationary graph pro-
cesses. IEEE Transactions on Automatic Control 55(1), 225–230 (2010)

24. Yildiz, M.E., Pagliari, A., Ozdaglar, A., Scaglione, A.: Voting models in random
networks. In: Proceedings of the Information Theory and Applications Workshop
(ITA), pp. 1–7 (2010)

25. Young, H.P.: The evolution of conventions. Econometrica 61(1), 57–84 (1993)
26. Zachary, W.W.: An information flow model for conflict and fission in small groups.

Journal of Anthropological Research 33(4), 452–473 (1977)

Hypergraph Coloring Games and Voter Models 15

A Semigroup Details for Proving Theorem 3

For our LRB semigroup S, there is a natural partial order defined by: x ≤ y ⇔
xy = y. In other words, x ≤ y if the interaction or sequence of interactions
represented by x is irrelevant after performing the sequence y. A semilattice
L(S) can be defined on S by considering the relation � on S as follows: y � x⇔
xy = x. The equivalence class under � which contains x is said to be the support
of x, denoted by supp(x), and for x, y ∈ S, supp(xy) = supp(x) ∪ supp(y). The
support of x can be interpreted as the set of vertices whose colors were affected
by the sequence of interactions given by x. The various elements of L(S) are
called the flats, and an element of S is said to be a chamber if its support is
maximal. Therefore, the chambers of S are simply sequences of interactions x
that affect the entire set of nodes V .

As given in [3,4,6], the eigenvalues of a random walk on chambers have an ele-
gant form. For each flat X ∈ L(S), there is an eigenvalue λX =

∑
x∈X wx. Here,

wx is the probability of selecting the semigroup member x. In the voter interac-
tion model, the chambers represent coloring configurations, and the probabilities
wx are simply the probabilities of choosing specific interactions. The flats are
simply subsets of V , and it becomes clear how the eigenvalues of the random walk
on H∗ are derived. For the multiplicities, we note from [6] that the multiplicity
of mX of λX satisfies ∑

Y �X

mY = cX ,

where cY is the cardinality of S≥Y = S≥y = {z ∈ S : z ≥ y}, where y is any
element with support Y . (The cardinality is independent of the choice of y.) It
can then be seen how the multiplicities in Theorem 3 were derived.

We note that these techniques as used in [6] were developed for an edge-
flipping game with two colors. The semigroup techniques used do generalize to
r colors, and the full proof for Theorem 3 can be derived in that manner.

B Proof of Theorem 5

Proof. Using Theorems 3 and 4:∣∣∣∣P t − π
∣∣∣∣
TV
≤
∑
T⊆H

λt
T (r − 1)n−|T |

=
∑
T⊆V

(|{g ∈ E|g ⊆ T }|
m

)t

(r − 1)n−|T |

≤
n∑

k=1

(
max|T |=k |{g ∈ E|g ⊆ T }|

m

)t(
n

k

)
(r − 1)n−k.

Here, we indexed the subsets T ⊆ V by their sizes.

16 F. Chung and A. Tsiatas

For any node set T of size k, we can upper-bound the number of hyperedges
contained within T . By using the fact that for any set T with |T | = k, there are
at least k hyperedges incident to nodes in T , we have:

∣∣∣∣P t − π
∣∣∣∣
TV
≤

n∑
k=1

(
1− k

m

)t(
n

k

)
2n−k

≤ n2

(
1− 1

m

)t

≤ e−c

since for f(k) =
(
1− k

m

)t (n
k

)
2n−k, we have f(k) ≥ f(k + 1) for k ≥ 1 and

t > 2m logn+ cn. The theorem is proved.

C Proof of Theorem 7

Proof. Because the random walk on H∗ is given by memoryless strategies, we
can write its transition matrix as βP1 + (1− β)P2 for memoryless P1. Theorem
3 allows us to analyze the eigenvalues of P1; we can use results from [5] to see
that P2 has all eigenvalues between 0 and 1. Thus, if λT is an eigenvalue of P1,
then there is a corresponding eigenvalue of P = βP1 + (1− β)P2 satisfying:

λ ≤ βλT + (1− β).

Using Theorem 4, we have:

|Et[A]− π(A)| ≤ max
y

∣∣∣∣∣∑
x∈A

P t(y, x) − π(x)

∣∣∣∣∣
=
∣∣∣∣P t − π

∣∣∣∣
TV

≤
∑
T⊆V

λt
T (r − 1)n−|T |

≤
n∑

k=1

(
1− βk

m

)t(
n

k

)
(r − 1)n−k

≤ n2

(
1− β

m

)t

≤ e−c

if

t ≥ 2m logn+ cn

β
. (2)

On a DAG Partitioning Problem

Soroush Alamdari1 and Abbas Mehrabian2

1 David R. Cheriton School of Computer Science
University of Waterloo
s26hosse@uwaterloo.ca

2 Department of Combinatorics and Optimization
University of Waterloo
amehrabi@uwaterloo.ca

Abstract. We study the following DAG Partitioning problem: given a
directed acyclic graph with arc weights, delete a set of arcs of minimum
total weight so that each of the resulting connected components has
exactly one sink. We prove that the problem is hard to approximate in
a strong sense: If P �= NP then for every fixed ε > 0, there is no (n1−ε)-
approximation algorithm, even if the input graph is restricted to have
unit weight arcs, maximum out-degree three, and two sinks. We also
present a polynomial time algorithm for solving the DAG Partitioning
problem in graphs with bounded pathwidth.

Keywords: DAG Partitioning, Inapproximability, Reduction, 3-SAT,
pathwidth, fixed parameter tractable.

1 Introduction

Tracking ideas and memes as they spread and evolve through the web has been
studied extensively in recent years. Adar, Zhang, Adamic, and Lukose [2] studied
the influence of blogs by analyzing the linking behavior of posts. They asked the
question of finding a single source for each topic and assigning a topic to each
post. Leskovec, Backstrom, and Kleinberg [9] formulated this question as the
following DAG Partitioning problem: Given a directed acyclic graph with arc
weights and n nodes, delete a set of arcs of minimum total weight so that each
of the resulting connected components has a single sink. Here a sink refers to
a vertex with no outgoing arc, and by connected components we mean weakly
connected components.

In the information retrieval literature, there is a large interest on analyzing
the spread of influence and topics throughout objects in the Web (see, e.g.,
[1,2,4,8,9,10]). Such objects can be blog posts, quotes by people, news headlines,
or almost anything that appears on the Web. An immediate question is to assign
a source of influence to each of these objects. We can model these objects by a
directed graph, in which the vertices represent the objects and the arcs, which
are weighted, represent traces of possible influence. These arcs can be extracted
from the Web using different methods, such as studying linkage structure or

A. Bonato and J. Janssen (Eds.): WAW 2012, LNCS 7323, pp. 17–28, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

18 S. Alamdari and A. Mehrabian

studying occurrences of similar phrases; in the latter case, the weight of an arc
is the degree of similarity between phrases. These objects influence each other in
an acyclic manner in reality, but this might not be the case in the retrieved graph
of influence. Yet, there are ways to find an acyclic subgraph of a given graph
without dramatically distorting the structure of the graph (see [3] for instance).
Once a directed acyclic graph is formed, the most natural way to assign a source
to the objects, seems to be the DAG Partitioning problem we study here.

Leskovec et al. [9] proved the NP-hardness of the DAG Partitioning problem,
by reducing the Multiway Cut problem to it (see [6] for the definition of the latter
problem). Their reduction converts an instance of the Multiway Cut Problem
with k terminals to an instance of the DAG Partitioning problem with k sinks.
The Multiway Cut problem can be solved efficiently for 2 terminals, and when
there are k terminals, a (32 − 1

k)-approximation algorithm is known [6]. Thus
one might expect similar approximation algorithms for the DAG Partitioning
problem as well. In section 2 we show that this is far from being true, and
even the simplest case of this problem is hard to approximate. Indeed, assuming
P
= NP , for every fixed ε > 0, there is no (n1−ε)-approximation algorithm for
the DAG Partitioning problem. It is a standard assumption to restrict the graph
to have vertices with only constant number of outgoing arcs, since it is true for
real instances of the problem. We show that our hardness result holds, even if
the input graph is restricted to have unit weights, maximum out-degree three,
and just two sinks. We use reduction from the 3-SAT problem.

The pathwidth of a directed graph is simply the pathwidth of its undirected
underlying graph. In section 3 we study the parameterized version of the prob-
lem, with pathwidth chosen as the parameter. We show that the problem is fixed
parameter tractable. More precisely, we present an algorithm that given a path
decomposition of the graph with width k, solves the DAG Partitioning problem
optimally and has running time 2O(k2)n. Thus, for graphs with bounded path-
width, the problem is solvable in linear time. We conclude with an open problem
in section 4.

2 The Hardness Result

For a directed acyclic graph D, a good cut is a subset C of arcs such that when
deleted from D, each of the resulting connected components has a single sink.
So the DAG Partitioning problem is just the problem of finding a good cut with
minimum weight. The size of an instance of a 3-SAT problem is simply the
number of clauses in the instance, and in the following we will assume that this
number is sufficiently large.

The basic construction we use is the following.

Definition. Let I be an instance of the 3-SAT problem, and M be a positive
integer. Arcs of weight M are called the heavy arcs, and the rest of the arcs are
called the light arcs. The directed graph D = D(I,M) is the following:

– There are four special vertices t, t′, f, f ′ in D, where (t′, t) and (f ′, f) are
heavy arcs.

On a DAG Partitioning Problem 19

– For each variable x of I, there are
• four vertices x, x, xt, xf ,
• two heavy arcs (t′, xt) and (f ′, xf), and
• eight arcs (xt, x), (xt, x), (x, t), (x, t), (xf , x), (xf , x), (x, f), and (x, f)
of weight one (see Figure 1).

– For each clause L = (a ∨ b ∨ c), there is
• a vertex L,
• a heavy arc (t′, L), and
• three arcs (L, a), (L, b), (L, c) of weight one (see Figure 2).

Note that a, b, c denote literals here, and a vertex is already associated with
each of them.

t′ f ′

xt xf

x x

t f

Fig. 1. The gadget corresponding to a variable: heavy arcs are dashed and light arcs
are solid.

t′

L

a b c

t f

Fig. 2. The gadget corresponding to a clause: heavy arcs are dashed and light arcs are
solid.

It is easy to verify that if I has size s > 3, then D(I,M) has at most 14s
vertices, 27s light arcs and 8s heavy arcs. Moreover, D(I,M) is acyclic and has
just two sinks t and f .

Lemma 1. The instance I is satisfiable if and only if D = D(I,M) has a good
cut that does not contain any heavy arcs.

Proof. (⇒) Consider a satisfying assignment of the variables. Build the subset
T of vertices of D as following: Put t, t′ in T . For each clause L, put L in T . For
each variable x, put xt in T . If x is true then put x in T , otherwise put x in T .
Do not put any other vertex in T .

20 S. Alamdari and A. Mehrabian

Let C be the set of arcs with exactly one endpoint in T . Then C does not
contain any heavy arcs. Deleting C results in a directed acyclic graph H with
two connected components, with one of them containing the sink t and the other
one containing the sink f . For each variable x, exactly one of x and x is in T ,
so none of xt and xf is a sink in H . If x is true, then (x, t), (x, f) are arcs in H ,
and if x is false, then (x, f), (x, t) are arcs in H , so none of x, x is a sink in H .
For each clause L = (a∨ b∨ c), at least one of a, b, c is in T , so L is not a sink in
H . Thus it can be verified that C is a good cut that does not contain any heavy
arcs.

(⇐) Let C be a good cut of minimum size that does not contain any heavy
arcs. Let H be the directed acyclic graph obtained from deleting C. We claim
that H has two connected components. First, it has at least two components as
t and f are sinks in H . If it has a third component (other than the components
containing t and f), then let r be a sink in the third component. Let e be an
arbitrary outgoing arc from r in G. Then C \ {e} is a good cut with a smaller
size that does not contain any heavy arcs, contradicting the choice of C. Hence
H has two connected components and so t and f are the only sinks in H . Denote
the components containing t and f by T and F , respectively.

For each variable x, if x ∈ T then let x be true, and let x be false otherwise.
Observe that:

– Since C has no heavy arcs, t′ ∈ T and f ′ ∈ F .
– For each variable x, we have xt ∈ T and xf ∈ F .
– Since for each variable x, none of xt or xf is a sink in H , exactly one of x, x

is in T and the other one is in F (see Figure 1).
– Since C has no heavy arc, for each clause L, vertex L is in T .
– As vertex L is not a sink in H , at least one of the vertices a, b, c is in T (see

Figure 2).

Therefore, this is a satisfying assignment, and the proof is complete. ��
Corollary 1. Let I be an instance of 3-SAT of size s, where s > 3. If I is
satisfiable then the optimal value of D(I,M) is at most 27s. Otherwise, the
optimal value of D(I,M) is at least M .

Now, we alter the construction so that we just have unit weights and out-degrees
at most 3.

Definition. Let I be an instance of the 3-SAT problem, and M be a posi-
tive integer. Note that the only arcs of non-unit weight, are those going out
from t′ and f ′. Also, the only vertices with out-degree more than three are
t′ and f ′. The directed graph D(I,M) is obtained from D(I,M) as follows.
For each heavy arc (t′, v), add M new vertices x1, x2, . . . , xM , and add the
arcs (x1, v), (x1, t), (x2, v), (x2, t), . . . , (xM , v), (xM , t). Perform the same proce-
dure for all heavy outgoing arcs from f ′. Finally, delete t′, f ′, and all adjacent
arcs.

Note that the directed graph D(I,M) has Θ(sM) vertices and Θ(sM) arcs,
and can be constructed in time polynomial in s and M . Moreover, it is acyclic

On a DAG Partitioning Problem 21

and all of its arcs have unit weights. Also, all vertices have out-degree at most
three. It is easy to check that Corollary 1 remains true for D(I,M).

Corollary 2. Let I be an instance of 3-SAT of size s, where s > 3. If I is
satisfiable then the optimal value of D(I,M) is at most 27s. Otherwise, the
optimal value of D(I,M) is at least M .

Definition. The Restricted DAG Partitioning problem is the following problem.
The input is a directed acyclic graph G with arc weights, such that the weight
of each arc is one, the out-degree of each vertex is at most three, and the graph
has exactly two sinks. The output is a set C of arcs of minimum total weight
such that each of the connected components of G− C has a single sink.

We are now ready to prove our hardness result.

Theorem 1. Assume that ε > 0 is fixed and there is a polynomial-time (n1−ε)-
approximation algorithm for the Restricted DAG Partitioning problem. Then the
3-SAT problem is in P.
Proof. Let I be an instance of 3-SAT of size s, where s > 3. Take M = Θ(s2/ε),
so that s2−ε = o(M ε), and construct the instanceD(I,M) of the Restricted DAG
Partitioning problem, which has size Θ(sM). Let w be the weight of the solution
found by the approximation algorithm. If I is satisfiable, then the optimal value
is O(s), so we would have w = O

(
s(sM)1−ε

)
= o(M). Otherwise, the optimal

value is at least M , so M ≤ w. Hence one can decide whether I is satisfiable in
polynomial time. ��

3 Linear-Time Algorithm for Bounded-Pathwidth Graphs

A tree decomposition of a directed graph G is a pair (T,W), where T is a tree and
W = (Wt : t ∈ V (T)) is a family of (not necessarily induced) directed subgraphs
of G such that

(i)
⋃

t∈V (T) V (Wt) = V (G), and every arc of G has both endpoints in some Wt,
and

(ii) For every v ∈ V (G), the set {t : v ∈ V (Wt)} induces a subtree of T .

The width of (T,W) is

max{|V (Wt)| − 1 : t ∈ V (T)},
and the treewidth of G is the minimum width of a tree decomposition of G. If
each t ∈ V (T) has degree at most 2, then (T,W) is called a path decomposition
of G. The pathwidth of a graph G, written pw(G), is the minimum width of a
path decomposition of G. For clarity we will refer to the vertices of T as the
nodes. Wt is called the bag of the decomposition corresponding to the node t.
Note that sometimes the bags are simply defined as subsets of vertices of G, but
here we assume that each bag also contains a subset of arcs of G. The value of
pathwidth is the same in either definition.

22 S. Alamdari and A. Mehrabian

In this section we present an algorithm that, given a DAG and a path decom-
position of width k, solves the DAG Partitioning problem optimally, and has
running time 2O(k2)n. The algorithm first chooses an arbitrary degree one node
of the decomposition as its root, and then (to simplify the main part) augments
the decomposition so that it has the following properties:

1. Every arc appears in exactly one bag, and every bag has at most one arc.
2. If a bag Wt has an arc, then the corresponding node t has a child t2. Let

t1 be the parent of t. Then Wt1 , Wt and Wt2 have the same vertex set, and
Wt1 and Wt2 do not have an arc.

3. If node t has a child t′, then the vertex sets of Wt and Wt′ differ by at most
one vertex. That is,

|(V (Wt) ∪ V (Wt′)) \ (V (Wt) ∩ V (Wt′))| ≤ 1.

4. The bags corresponding to the root and the (only) leaf of the decomposition
have empty vertex sets.

It is not hard to see that given a path decomposition with O(n) bags, it is
possible to augment it to a desired one with O(k2n) bags.

An important observation is that in a DAG G, if for every v ∈ V (G) there is a
unique sink s ∈ V (G) such that v has a directed path to s, then every connected
component of G has a unique sink. Hence, if C is any solution for the DAG
Partitioning problem for DAG G, then in G−C, to every vertex v is assigned a
unique sink s, which we will sometimes call “the sink” of v in this solution.

We use dynamic programming on the path decomposition. Let us define the
subproblems. Let H be a subgraph of G, and let X ⊆ V (H) be such that there
is no arc from V (G) \ V (H) to V (H) \ X or vice versa. Let G −H denote the
subgraph obtained from G by removing the arcs of H . Let P = {P1, . . . , Ps} be
a partition of X . Let F ⊆ X , and let D ⊆ X × X be a set of ordered pairs of
distinct elements of X that does not induce a cycle in X . One can build a DAG
H ′ from H by adding 2s vertices a1, . . . , as, b1, . . . , bs, and adding the arcs

{(ai, u) : u ∈ Pi, i = 1 . . . s}∪{(u, bi) : u ∈ Pi∩F , i = 1 . . . s}∪{(u, v) : (u, v) ∈ D}
with weight∞. The subproblem defined by (H,X ,P ,F ,D) is the DAG Partition-
ing problem on H ′. Informally speaking, this is the DAG Partitioning problem,
confined to H , with the following extra restrictions:

– Vertices in F should not have their sink in H .
– Vertices in the same element of P should have the same sink, and vertices

in different elements should have distinct sinks.

and the following assumptions about G−H :

– Vertex v ∈ X is in F if and only if v has a path in G − H to a sink, and
this sink is out of H . Note that by definition of the problem, in any solution
there is a many-to-one mapping from vertices to sinks. Therefore, we refer
to such a sink as the sink of v.

On a DAG Partitioning Problem 23

– For any pair {u, v} of vertices in X ∩ F , if u and v are in the same element
of P then their sink (which is in V (G) \ V (H)) is the same, otherwise their
sinks are distinct.

– For every pair (u, v) ∈ X × X , we have (u, v) ∈ D if and only if there is a
(u, v)-path in G−H .

– For every pair (u, v) ∈ D, u and v are in the same element of P .
In general, there can be exponentially many subproblems. However, using the
path decomposition, one can choose a polynomial number of them, solving which
obtains the optimal solution for the main problem. Let t be a node of the
path decomposition, whose corresponding bag, Wt, does not have an arc. Let
Xt = V (Wt), let Ht be the subgraph of G formed by taking the union of the bag
Wt with all bags whose nodes are the descendants of t. Let P = {P1, . . . , Ps} be
a partition of Xt. Let F ⊆ Xt, and let D ⊆ Xt × Xt be a set of ordered pairs of
distinct elements of Xt that does not induce a cycle in Xt. The subproblem de-
fined by (t,P ,F ,D) is equivalent to the subproblem defined as (Ht,Xt,P ,F ,D)
above, and we denote its optimal values by OPT(t,P ,F ,D). Next we illustrate
an algorithm for calculating OPT(t,P ,F ,D) based on the optimal values found
for the descendants of t in the decomposition. But before doing so, let us define
some notation.

Let P = {P1, . . . , Ps} be a partition of a set X . For an element v /∈ X , P ∗ v
is the following family of partitions of X ∪ {v}:

P∗v = {{{v}, P1, P2, . . . , Ps}, {P1∪{v}, P2, . . . , Ps}, . . . , {P1, P2, . . . , Ps∪{v}}}.

For an element v ∈ X , P/v is the following partition of X \ {v}:

P/v = {P1 \ {v}, . . . , Ps \ {v}}.

For a set D of pair of vertices of G and a vertex v, D/v is obtained from D by
deleting all pairs in which v appears.

Theorem 2. Algorithm 1 calculates OPT(t,P ,F ,D) correctly in time O(k3);

therefore, the DAG Partitioning problem on G can be solved in time 2O(k2)n.

Proof. We prove correctness by induction. For any node t of the path decompo-
sition and any valid tuple (t,P ,F ,D), we show that the value of OPT(t,P ,F ,D)
is calculated correctly, assuming this has been the case for the child of t, if any.
The induction base is true since the bag corresponding to the unique leaf of the
path decomposition is an empty subgraph so its optimal value is 0 [lines 1-2].

Now, assume that t is not a leaf, and t′ is its unique child. Recall that Ht

is the subgraph of G formed by taking the union of the bag Wt with all bags
whose nodes are the descendants of t, and Ht′ is defined similarly. Let H = Ht,
X = V (Wt), H

′ = Ht′ and X ′ = V (Wt′). Recall that if P is a partition of X ,

24 S. Alamdari and A. Mehrabian

Algorithm 1. Calculate OPT(t,P ,F ,D)
1: if t has no child then
2: OPT(t,P ,F ,D) = 0
3: else
4: t′ ← the child of t
5: if V (Wt′) is V (Wt) ·∪{v} for some vertex v then
6: OPT(t,P ,F ,D) = min{OPT(t′,Q,F ,D) : Q ∈ P ∗ v}
7: else if V (Wt′) is V (Wt) \ {v} for some vertex v ∈ V (Wt) then
8: P ← the element of P containing v
9: if P = {v} then
10: OPT(t,P ,F ,D) = OPT(t′,P \ {{v}},F \ {v},D/v)
11: else if v ∈ F then
12: if there is a u ∈ P \ {v} with u ∈ F then
13: OPT(t,P ,F ,D) = OPT(t′,P/v,F \ {v},D/v)
14: else
15: OPT(t,P ,F ,D) = ∞
16: end if
17: else if there is a u ∈ P \ {v} with (v, u) ∈ D then
18: OPT(t,P ,F ,D) = OPT(t′,P/v,F \ {v},D/v)
19: else
20: if for all u ∈ P \ {v} we have u /∈ F

and for some u ∈ P \ {v} we have (u, v) ∈ D then
21: OPT(t,P ,F ,D) = OPT(t′,P/v,F ∪ {u ∈ P \ {v} : (u, v) ∈ D},D/v)
22: else
23: OPT(t,P ,F ,D) = ∞
24: end if
25: end if
26: else if Wt′ is Wt ∪ {(u, v)} for some arc (u, v) then
27: t′′ ← the child of t′

28: if u and v are in different elements of P then
29: OPT(t,P ,F ,D) = w(u, v) + OPT(t′′,P ,F ,D)
30: else
31: S ← {x ∈ V (Wt) : (x, u) ∈ D} ∪ {u}
32: T ← {y ∈ V (Wt) : (v, y) ∈ D} ∪ {v}
33: D′ ← D ∪ {(x, y) : x ∈ S, y ∈ T}
34: if v ∈ F then
35: F ′ ← F ∪ S
36: else
37: F ′ ← F
38: end if
39: OPT(t,P ,F ,D) = min {w(u, v) + OPT(t′′,P ,F ,D),OPT(t′′,P ,F ′,D′)}
40: end if
41: end if
42: end if

On a DAG Partitioning Problem 25

F ⊆ X and D ⊆ X × X , then (t,P ,F ,D) is the DAG Partitioning problem
confined to H with the following extra restrictions:

– Vertices in F should not have their sink in H ;
– Vertices in the same element of P should have the same sink, and vertices

in different elements should have distinct sinks;

and the following assumptions about G−H :

– Vertex v ∈ X is in F if and only if v has a path in G −H to its sink, and
the sink of v is out of H .

– For any pair {u, v} of vertices in X ∩ F , if u and v are in the same element
of P then their sink (which is in V (G) \ V (H)) is the same, otherwise their
sinks are distinct.

– For every pair (u, v) ∈ X × X , we have (u, v) ∈ D if and only if there is a
(u, v)-path in G−H .

– For every pair (u, v) ∈ D, u and v are in the same element of P .
Because of the augmentation of the path decomposition, the relation between
Wt and Wt′ is of one of the following three types.

Type 1: X ′ = X ·∪{v} (LINES 5-6) In this case H and H ′ are the same. Any
solution for (t′,P ′,F ,D) gives a solution with the same value for (t,P ,F ,D),
as long as the partitions P and P ′ are consistent. That is, P ′ should keep
the partitioning of X , and then either throw the new vertex v into one of the
elements of the partition, or put it in a new singleton element. Moreover, all
solutions for (t,P ,F ,D) are obtained this way. Hence [see lines 5-6]

OPT(t,P ,F ,D) = min{OPT(t′,Q,F ,D) : Q ∈ P ∗ v}.
Type 2: X = X ′ ·∪{v} (LINES 7-25) In this case H has an isolated vertex v

which H ′ does not have. Let P be the element of the partition containing v.
Four cases may happen:

(a) P is a singleton (LINES 9-10). First, assume that v ∈ F . So v has a
path in G−H to its sink, and its sink is in V (G) \ V (H). Also v is in a
different element of partition from any other vertex u ∈ X \ {v}, hence
the sinks of u and v are different. So to solve this subproblem, one just
needs to remove v and solve the resulting subproblem [see lines 9-10]:

OPT(t,P ,F ,D) = OPT(t′,P \ {{v}},F\{v},D/v).
Now, assume that v /∈ F . Therefore v does not have a path in G−H to
its sink. Note that the sink of v can not be in H ′ since P is a singleton
and v /∈ X ′. Thus v is a sink itself, so for any other vertex u ∈ X \ {v},
the sinks of u and v are different. So to solve this subproblem, again
one just needs to remove v and solve the resulting subproblem [see lines
9-10]:

OPT(t,P ,F ,D) = OPT(t′,P \ {{v}},F\{v},D/v).

26 S. Alamdari and A. Mehrabian

(b) P is not a singleton, and v ∈ F (LINES 11-16). In this case v has a path
in G−H to its sink, which is in V (G) \ V (H). First, assume that there
is no u ∈ P \{v} with u ∈ F . Then the sink of v is in V (G)\V (H) while
each vertex u ∈ P \ {v} has either its sink in V (H), or has no path to
its sink in G−H . Thus the subproblem is infeasible [see lines 14-15].

Now, assume that there is some u ∈ P \ {v} with u ∈ F . Then we
know that the sink of u and v is the same. Hence in any solution for
(t′,P/v,F \ {v},D/v), a vertex w ∈ X has the same sink as v, if and
only if it has the same sink as u, if and only if it is in P . Hence we have
[see lines 12-13]

OPT(t,P ,F ,D) = OPT(t′,P/v,F \ {v},D/v).
(c) P is not a singleton, v /∈ F , and there is a u ∈ P \ {v} with (v, u) ∈ D

(LINES 17-18). In any solution for (t′,P/v,F \ {v},D/v), the sink of v
is the same as the sink of u; thus a vertex w ∈ X has the same sink as
v, if and only if it has the same sink as u, if and only if it is in P . Hence
we have [see lines 17-18]

OPT(t,P ,F ,D) = OPT(t′,P/v,F \ {v},D/v).
(d) P is not a singleton, v /∈ F , and there is no u ∈ P \ {v} with (v, u) ∈ D

(LINES 19-25). Since v has no outgoing arc in H or G−H , it is a sink
in any solution for (t,P ,F ,D). However, if there is a u ∈ P \ {v} with
u ∈ F , then the sink of u is in V (G)\V (H), so the sink of u and the sink
of v are distinct, and the subproblem is infeasible. Otherwise, if there is
no u ∈ P \ {v} with (u, v) ∈ D, then for any u ∈ P \ {v}, the sink of u
will be in V (H) \ {v} while the sink of v is v, and again the subproblem
would be infeasible [see lines 20-24].

So, assume that for all u ∈ P \ {v} we have u /∈ F , and for some
u ∈ P \ {v} we have (u, v) ∈ D. In this case one can remove v and
solve the remaining subproblem. but it should be taken into account
that vertices u ∈ P \ {v} with (u, v) ∈ D have a path in G−H ′ to their
sink (which is v ∈ V (G) \ V (H ′)). Consequently [see lines 20-21],

OPT(t,P ,F ,D) = OPT(t′,P/v,F ∪ {u ∈ P \ {v} : (u, v) ∈ D},D/v).
Type 3: X = X ′ and Wt′ = Wt ∪ {(u, v)} (LINES 26-42) Let t′′ be the child

of t′, and let H ′′ = Ht′′ . Here H is the same as H ′′ ∪ (u, v). If u and v are in
distinct elements of P , then clearly the arc (u, v) should be in solution set
(the set of arcs that are cut), that is [see lines 28-29],

OPT(t,P ,F ,D) = w(u, v) + OPT(t′′,P ,F ,D).
Otherwise, one has the choice of putting the arc (u, v) in the solution set or
not. If not, then when reducing the subproblem to a smaller one correspond-
ing to H ′′, one should take into account the arc (u, v) which is not in H ′′.
Let

S = {x ∈ X : (x, u) ∈ D} ∪ {u}, T = {y ∈ X : (v, y) ∈ D} ∪ {v}.

On a DAG Partitioning Problem 27

Then for any (x, y) ∈ S ×T , the arc (u, v) creates an (x, y)-path in G−H ′′.
Thus when solving the subproblem corresponding to H ′′, the set

D′ = D ∪ {(x, y) : x ∈ S, y ∈ T }

is precisely the set of pairs (x, y) such that there is an (x, y)-path in G−H ′′

[lines 31-33]. Moreover, if v ∈ F , then any vertex in S has its sink in V (G) \
V (H) = V (G) \ V (H ′′), and a path to its sink in G−H ′′. Thus, letting

F ′ =
{F ∪ S v ∈ F
F v /∈ F ,

we have [see lines 34-39]

OPT(t,P ,F ,D) = min {w(u, v) + OPT(t′′,P ,F ,D),OPT(t′′,P ,F ′,D′)} ,

where the first term in the minimum corresponds to putting the arc (u, v)
in the solution, and the second term corresponds to not doing so.

Finally, we analyze the running time. First, observe that Algorithm 1 has running
time O(k3) given that the size of the bags is at most k + 1. Let x be the root
of the path decomposition. Note that the vertex set of Wx is empty, thus the
optimal value of the DAG Partitioning problem on G is simply OPT(x, ∅, ∅, ∅).
The total number of subproblems is 2O(k2)n, and each of them can be solved in
time O(k3) (provided the solutions to smaller subproblems have been calculated),

which gives a total running time of 2O(k2)n. ��

4 Concluding Remarks

We showed that even the simplest instances of the DAG Partitioning problem are
hard to approximate. Our result implies that the hardness arises from the global
structure of the graph, and not from the weight of the arcs, the number of sinks,
or the “local complexity” arising from a vertex with large out-degree. Thus,
when encountered with this problem, one should naturally try to use heuristics
that behave well in practice. This was the approach taken by the authors of [9].

We proved the problem is fixed parameter tractable, when the pathwidth
of the graph is chosen as the parameter. A natural question is, what is the
complexity if treewidth is chosen instead? It is known (see [7]) that a graph
with treewidth k, has pathwidth O(k logn), so our algorithm has running time

nO(k2 log n) on such a graph. Unfortunately our dynamic programming does not
work correctly on tree decompositions, but it might be possible to alter it and
come up with an algorithm with running time linear in n. Courcelle [5] proved
that any property of graphs definable in monadic second-order logic (MSO2) can
be decided in linear time on any class of graphs with bounded treewidth. So,
another approach may be to formulate this problem using monadic second-order
logic.

28 S. Alamdari and A. Mehrabian

References

1. Adar, E., Adamic, L.A.: Tracking information epidemics in blogspace. In: Proceed-
ings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence,
WI 2005, pp. 207–214. IEEE Computer Society, Washington, DC (2005),
http://dx.doi.org/10.1109/WI.2005.151

2. Adar, E., Zhang, L., Adamic, L.A., Lukose, R.M.: Implicit Structure and the Dy-
namics of Blogspace. In: WWW 2004 Workshop on the Weblogging Ecosystem:
Aggregation, Analysis and Dynamics. ACM Press, New York (2004)

3. Berger, B., Shor, P.W.: Approximation alogorithms for the maximum acyclic sub-
graph problem. In: Proceedings of the First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 1990, pp. 236–243. Society for Industrial and Applied
Mathematics, Philadelphia (1990),
http://dl.acm.org/citation.cfm?id=320176.320203

4. Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: Proceedings of the 23rd In-
ternational Conference on Machine Learning, ICML 2006, pp. 113–120. ACM, New
York (2006), http://doi.acm.org/10.1145/1143844.1143859

5. Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Inf. Comput. 85, 12–75 (1990),
http://dl.acm.org/citation.cfm?id=81253.81255

6. Călinescu, G., Karloff, H., Rabani, Y.: An improved approximation algorithm for
multiway cut. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory
of Computing, STOC 1998, pp. 48–52. ACM, New York (1998),
http://doi.acm.org/10.1145/276698.276711

7. Korach, E., Solel, N.: Tree-width, path-width, and cutwidth. Discrete Appl.
Math. 43, 97–101 (1993), http://dl.acm.org/citation.cfm?id=153610.153618

8. Kwon, Y.S., Kim, S.W., Park, S., Lim, S.H., Lee, J.B.: The information diffusion
model in the blog world. In: Proceedings of the 3rd Workshop on Social Network
Mining and Analysis, SNA-KDD 2009, pp. 4:1–4:9. ACM, New York (2009),
http://doi.acm.org/10.1145/1731011.1731015

9. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the
news cycle. In: Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD 2009, pp. 497–506. ACM, New
York (2009), http://doi.acm.org/10.1145/1557019.1557077

10. Leskovec, J., McGlohon, M., Faloutsos, C., Glance, N., Hurst, M.: Cascading be-
havior in large blog graphs: Patterns and a model. In: Society of Applied and
Industrial Mathematics: Data Mining, SDM 2007 (2007)

http://dx.doi.org/10.1109/WI.2005.151
http://dl.acm.org/citation.cfm?id=320176.320203
http://doi.acm.org/10.1145/1143844.1143859
http://dl.acm.org/citation.cfm?id=81253.81255
http://doi.acm.org/10.1145/276698.276711
http://dl.acm.org/citation.cfm?id=153610.153618
http://doi.acm.org/10.1145/1731011.1731015
http://doi.acm.org/10.1145/1557019.1557077

Some Typical Properties of the Spatial Preferred

Attachment Model

Colin Cooper1, Alan Frieze2, and Pawe�l Pra�lat3

1 Department of Computer Science, Kings College, University of London,
London WC2R 2LS, UK

2 Department of Mathematical Sciences, Carnegie Mellon University,
5000 Forbes Av., 15213, Pittsburgh, PA, U.S.A

3 Department of Mathematics, Ryerson University, Toronto, ON, Canada, M5B 2K3

Abstract. We investigate a stochastic model for complex networks,
based on a spatial embedding of the nodes, called the Spatial Preferred
Attachment (SPA) model. In the SPA model, nodes have spheres of in-
fluence of varying size, and new nodes may only link to a node if they
fall within its influence region. The spatial embedding of the nodes mod-
els the background knowledge or identity of the node, which influences
its link environment. In this paper, we focus on the (directed) diameter,
small separators, and the (weak) giant component of the model.

1 Introduction

Discrete random graph processes exhibiting power law properties have been stud-
ied by many authors and in many contexts. The study of such processes dates
back at least, to Yule [28] in 1924. Recent interest in preferential attachment
models follows from the work of Barabási and Albert [5] who observed a power
law degree sequence for a subgraph of the World Wide Web, and of Faloutsos,
Faloutsos and Faloutsos [14] who observed power law behaviour for the inter-
net graph. Many models of such process exist. For details see, for example, the
surveys [7,27] and the monographs [9,12].

In networked information spaces, vertices are not only defined by their link
environment, but also by the information entity they represent. More recently,
attempts have been made to model this alternative view of the vertices through
spatial models. In a spatial model, vertices are embedded in a metric space, and
link formation is influenced by the metric distance between vertices. The metric
space is meant to be like a feature space, so that the coordinates of a vertex in
this space represent the information associated with the vertex. For example, in
text mining, documents are commonly represented as vectors in a word space.
The metric is chosen so that metric distance represents similarity, i.e. vertices
whose information entities are closely related will be at a short distance from
each other in the metric space. A number of spatial models have been proposed
up to date [10,11,15,16,17,24]. We direct the reader to the recent survey for more
details [18].

A. Bonato and J. Janssen (Eds.): WAW 2012, LNCS 7323, pp. 29–40, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

30 C. Cooper, A. Frieze, and P. Pra�lat

In this paper, we focus on the Spatial Preferred Attachment (SPA) model,
proposed in [3,4]. The SPA model generates directed graphs according to the
following principle. Vertices are points in a given metric space. Each vertex v
has a sphere of influence. The volume of the sphere of influence of a vertex is a
function of its in-degree. A new vertex u can only link to an existing vertex v
if u falls inside the sphere of influence of v. In the latter case, u links to v with
probability p. The SPA model incorporates the principle of preferential attach-
ment, since vertices with a higher in-degree will have a larger sphere of influence.
We investigate the (directed) diameter, small separators, and the (weak) giant
component of the model.

2 The SPA Model

We start by giving a precise description of the SPA model, presenting some
known properties, and deriving some facts about the model, which we will need
to prove our results. In [3] (see also [4] for a proceeding version of this paper),
the model is defined for a variety of metric spaces S. In this paper, we let S be
the unit hypercube in Rm, equipped with the torus metric derived from any of
the Lp norms. This means that for any two points x and y in S,

d(x, y) = min
{||x− y + u||p : u ∈ {−1, 0, 1}m}.

The torus metric thus “wraps around” the boundaries of the unit square; this
metric was chosen to eliminate boundary effects.

The parameters of the model consist of the link probability p ∈ [0, 1], and
two positive constants A1 and A2, which, in order to avoid the resulting graph
becoming too dense, must be chosen so that pA1 < 1. The original model as
presented in [3] has a third parameter, A3, which is assumed to be zero here.
This causes no loss of generality, since all asymptotic results presented here are
unaffected by A3.

The SPA model generates stochastic sequences of graphs (Gt : t ≥ 0), where
Gt = (Vt, Et), and Vt ⊆ S. Let deg−(v, t) be the in-degree of vertex v in Gt, and
deg+(v, t) its out-degree. We define the sphere of influence S(v, t) of vertex v at
time t ≥ 1 to be the ball centered at v with volume |S(v, t)| defined as follows:

|S(v, t)| = A1deg
−(v, t) +A2

t
, (2.1)

or S(v, t) = S and |S(v, t)| = 1 if the right-hand-side of (2.1) is greater than 1.
The process begins at t = 0, with G0 being the null graph. Time-step t, t ≥ 1,

is defined to be the transition between Gt−1 and Gt. At the beginning of each
time-step t, a new vertex vt is chosen uniformly at random from S, and added
to Vt−1 to create Vt. Next, independently, for each vertex u ∈ Vt−1 such that
vt ∈ S(u, t − 1), a directed link (vt, u) is created with probability p. Thus, the
probability that a link (vt, u) is added in time-step t equals p |S(u, t− 1)|.

We say that an event holds asymptotically almost surely (a.a.s.) if the prob-
ability that it holds tends to one as t goes to infinity. It was shown in [3] that

Some Typical Properties of the Spatial Preferred Attachment Model 31

a.a.s. the SPA model produces graphs with a power law degree distribution,
with exponent 1 + 1/(pA1). Moreover, a precise expression for the probability
distribution of the in-degree of the individual vertex vi born at time i was given.
In [19] (see also [20]) the relationship between the link structure of graphs pro-
duced by the model and the relative positions of the vertices in the metric space
was analyzed. See Figure 1 for a drawing of a simulation of the SPA model.

Fig. 1. A simulation on the unit square with t = 5, 000 and p = A1 = A2 = 1

Now, let us discuss a few simple new facts about the model. Knowing the
expected in-degree of a node, given its age, will help us to analyze geometric
properties of the SPA Model. Let us note that the result for i � 1 was proved
in [19] (see (2.2)); we extend it here to all i ≥ 1 (see (2.3)). As before, let vi be
the node added at time i.

Theorem 1. Suppose that i = i(t)� 1 as t→∞. Then,

E(deg−(vi, t)) = (1 + o(1))
A2

A1

(
t

i

)pA1

− A2

A1
, (2.2)

E(|S(vi, t)|) = (1 + o(1))A2t
pA1−1i−pA1 .

Moreover, for all i ≥ 1,

E(deg−(vi, t)) ≤ eA2

A1

(
t

i

)pA1

− A2

A1
. (2.3)

E(|S(vi, t)|) ≤ (1 + o(1))eA2t
pA1−1i−pA1 .

Proof. In order to simplify calculations, we make the following substitution:

X(vi, t) = deg−(vi, t) +
A2

A1
. (2.4)

32 C. Cooper, A. Frieze, and P. Pra�lat

It follows from the definition of the process that

X(vi, t+ 1) =

{
X(vi, t) + 1, with probability pA1X(vi,t)

t

X(vi, t), otherwise.

Finding the conditional expectation,

E(X(vi, t+ 1) | X(vi, t)) = (X(vi, t) + 1)
pA1X(vi, t)

t
+X(vi, t)

(
1− pA1X(vi, t)

t

)
= X(vi, t)

(
1 +

pA1

t

)
.

Taking expectations again, we get

E(X(vi, t+ 1)) = E(X(vi, t))

(
1 +

pA1

t

)
.

Since all nodes start with in-degree zero,X(vi, i) =
A2

A1
. Note that, for 0 < x < 1,

log(1 + x) = x−O(x2). If i� 1, one can use this to get

E(X(vi, t)) =
A2

A1

t−1∏
j=i

(
1 +

pA1

j

)
= (1 + o(1))

A2

A1
exp

⎛⎝t−1∑
j=i

pA1

j

⎞⎠ ,

but in all cases i ≥ 1,

E(X(vi, t)) ≤ A2

A1
exp

⎛⎝t−1∑
j=i

pA1

j

⎞⎠ .

Therefore, when i� 1,

E(X(vi, t)) = (1 + o(1))
A2

A1
exp

(
pA1 log

(
t

i

))
= (1 + o(1))

A2

A1

(
t

i

)pA1

,

and (2.2) follows from (2.4) and (2.1). Moreover, for any i ≥ 1

E(X(vi, t)) ≤ A2

A1
exp

(
pA1

(
log

(
t

i

)
+ 1/i

))
≤ eA2

A1

(
t

i

)pA1

,

and (2.3) follows from (2.4) and (2.1) as before which completes the proof.

Another fact that we will need follows directly from the following result proved
in [19]. The degree of an individual vertex is not concentrated, due to varia-
tion happening shortly after birth. (That is, a.a.s. there are vertices that have
smaller/larger degrees than what we would expect.) However, provided that the
degree of the vertex at end time t is large enough (that is, is tending to infinity
faster than log t), sharp bounds on the degree of the vertex during most of the

Some Typical Properties of the Spatial Preferred Attachment Model 33

process were obtained. This is expressed in the following theorem. First, define
a injective function f : R→ R by

f(i) =
A2

A1

(
t

i

)pA1

,

so f(i) is the expected degree, at time t, of a vertex born at time i (up to a
factor of (1 + o(1))). Thus, f−1(k) is the birth time of a vertex of final degree
k, assuming the degree of the vertex is close to the expected value during its
lifetime. Hence, if a vertex of final degree k has behaviour close to its expected
degree, then

ta = f−1

(
A2k

A1a

)
will be the time when that vertex has degree a. Indeed, for a vertex born at time
f−1(k), the expected degree at time ta is equal to

A2

A1

(
ta

f−1(k)

)pA1

=
A2

A1

(
A2

A1

(
t

f−1(k)

)pA1
)
/

(
A2

A1

(
t

ta

)pA1
)

=
A2

A1
k/

(
A2k

A1a

)
= a.

Theorem 2 ([19]). Let ω = ω(t) be any function tending to infinity together
with t. The following statement holds a.a.s. for every vertex v for which
deg−(v, t) = k = k(t) ≥ ω log t. Let i = f−1(k), and let tk be

tk = f−1

(
A2k

A1ω log t

)
.

Then, for all values of s such that tk ≤ s ≤ t,

deg−(v, s) = (1 + o(1))
A2

A1

(s
i

)pA1

= (1 + o(1))k
(s
t

)pA1

. (2.5)

The theorem implies that once a given vertex accumulates ω log t neighbours,
the rest of the process (until time-step t) can be predicted with high probability;
in fact, a.a.s. we get a concentration around the expected value.

Now, with Theorem 2 in hand, we get immediately the following.

Theorem 3. Let ω = ω(t) is a function that goes to infinity together with t.
The following holds a.a.s. for every vertex vi added at time i. For all i ≤ s ≤ t
we have

deg−(vi, s) = O

(
(ω log t)

(s
i

)pA1
)
,

|S(vi, s)| = O

(
ω log t

i

)
,

34 C. Cooper, A. Frieze, and P. Pra�lat

Proof. For a contradiction suppose that k = deg−(vi, s) ≥ (2ω log t)(s/i)pA1 for
some value of s (i ≤ s ≤ t). Since k ≥ ω log t, Theorem 2 can be applied to get
that

deg−(vi, i) = (1 + o(1))
A2

A1

(
i

f−1(k)

)pA1

=(1+ o(1))
A2

A1

(
s

f−1(k)

)pA1 (s
i

)−pA1

= (1 + o(1))k
(s
i

)−pA1 ≥ (2 + o(1))ω log t,

which is clearly a contradiction (in fact, deg−(vi, i) = 0).

3 Directed Diameter

The small world property, introduced by Watts and Strogatz [29], is a central
notion in the study of complex networks (see also [22]). The small world property
demands a low diameter of O(log t), and a higher clustering coefficient than
found in a binomial random graph with the same number of nodes and same
average degree. Adamic et al. [1] provided an early study of a social network at
Stanford University, and found that the network has the small world property.
Similar results were found in [2] which studied Cyworld, MySpace, and Orkut,
and in [26] which examined data collected from Flickr, YouTube, LiveJournal,
and Orkut. Low diameter (of 6) and high clustering coefficient were reported
in the Twitter by both Java et al. [21] and Kwak et al. [23]. Many well-known
models for complex networks, including the preferential attachment model by
Barabási and Albert [5], have diameters growing at most logarithmically with
time. (In fact, in [8] Bollobás and Riordan showed that a.a.s. the diameter of the
preferential attachment model is asymptotic to log t/ log log t.)

Consider a graph Gt produced by the SPA model. For a given pair of vertices
vi, vj ∈ Vt (1 ≤ i < j ≤ t), let l(vi, vj) denote the length of the shortest directed
path from vj to vi if such a path exists, and let l(vi, vj) = 0 otherwise. The
directed diameter of a graph Gt is defined as

D(Gt) = max
1≤i<j≤t

l(vi, vj).

The next subsection (Subsection 3.1) is devoted to proving the following result:

Theorem 4. A.a.s. D(Gt) = O(log t).

In fact, we conjecture that this result is best possible; that is, the following holds:

Conjecture 1. A.a.s. D(Gt) = Θ(log t).

We will try to settle this down in the journal version of this paper. We mention
the approach we plan to use to solve it in the Subsection 3.2.

Some Typical Properties of the Spatial Preferred Attachment Model 35

3.1 Upper Bound

An O(log t) upper bound on the directed diameter is obtained as follows.

Theorem 5. Let C = 18max(A2, 1). With probability 1 − o(t−2) we have that
for any 1 ≤ i < j ≤ t, Gt does not contain a directed (vi, vj)-path of length at
least k∗ = C log t.

As there are at most t2 pairs vi, vj , the Theorem 4 will follow as well.

Proof. In order to simplify the notation, we use v to denote the vertex added
at step v ≤ t. Let vPu be a directed (v, u)-path of length given by vPu =
(v, tk−1, tk−2, . . . , t1, u), let t0 = u, tk = v.

Pr(vPu) =

k∏
i=1

p

(
A1 deg

−(ti−1, ti) +A2

ti

)
.

Let N(v, u, k) be the number of directed (v, u)-paths of length k, then

EN(v, u, k) =
∑

u<t1<···<tk−1<v

pkE

(
k∏

i=1

(
A1 deg

−(ti−1, ti) +A2

ti

))
.

However

E(deg−(ti, ti+1) | deg−(tj−1, tj) and (tj−1, tj) ∈ Et, j ≤ i) = E(deg−(ti, ti+1)).

We first consider the case where u tends to infinity together with t. From The-
orem 1 it follows that

E(deg−(ti−1, ti)) = (1 + o(1))
A2

A1

(
ti

ti−1

)pA1

− A2

A1
.

Thus

EN(v, u, k) =
∑

u<t1<···<tk−1<v

pk
k∏

i=1

1

ti

(
A1E(d

−(ti−1, ti)) +A2

)
=

∑
u<t1<···<tk−1<v

(1 + o(1))k(A2p)
k

k∏
i=1

1

ti

(
ti

ti−1

)pA1

= (1 + o(1))k(A2p)
k
(v
u

)pA1 1

v

∑
u<t1<···<tk−1<v

k−1∏
i=1

1

ti
.

However ∑
u<t1<···<tk−1<v

k−1∏
i=1

1

ti
≤ 1

(k − 1)!

(∑
u<s<v

1

s

)k−1

≤ 1

(k − 1)!
(log v/u+ 1/u)

k−1

≤
(
e(log v/u+ 1/u)

k − 1

)k−1

.

36 C. Cooper, A. Frieze, and P. Pra�lat

Let k∗ = C log t, where C = 18max(1, A2). Assuming t sufficiently large, and
recalling that pA1 < 1, we have

∑
k>k∗

EN(v, u, k) ≤ 2A2

∑
k>k∗

(
(1 + o(1))A2pe(log v/u+ 1/u)

k − 1

)k−1

≤ 2A2

(
(1 + o(1))A2e(log v/u+ 1/u)

C log t

)k∗
1

1− 3A2/C

= O(6−18 log t) = o(t−4).

The result follows for u tending to infinity. In the case where u is a constant,
it follows from Theorem 1 that a multiplicative correction of e can be used in
E(deg−(ti−1, ti)), leading to an error term of O(t−18 log 2) = o(t−4), as before.

3.2 Lower Bound

It follows from Theorem 1 that a vertex vi added at time i� 1 has the expected
degree of 1 at time

ti = (1 + o(1))

(
A1 +A2

A2

)1/pA1

i = Θ(i).

(Note that the constant in the Θ() notation does not depend on i.) Hence, the
path constructed by considering the first neighbours only is expected to have a
logarithmic length. However, such a path is not necessarily the shortest path.
In order to show that a path of the desired length that is also the shortest one
exists a.a.s., we plan to create a path that does not extend by joining to the
first in-neighbour of vi but instead we wait for a neighbour that is both far away
from vi and is in the desired direction. Since the spheres of influences are usually
shrinking, this should be enough to guarantee that no ‘shortcut’ in this path can
be created.

4 Small Separators

Let us note that there are some significant differences between graphs generated
by the preferential attachment model and those found in the real world. One
major difference is found in their expansion properties. Mihail, Papadimitriou,
and Saberi [25] showed that a.a.s. the preferential attachment model has conduc-
tance bounded below by a constant. On the other hand, Blandford, Blelloch and
Kash [6] found that some WWW related graphs have smaller separators than
the preferential attachment model predicts. This observation is consistent with
observations due to Estrada [13], who found that half of the real-world networks
he looked at were good expanders and the other half were not so good. In this
subsection, we show that the SPA model has small separators.

Some Typical Properties of the Spatial Preferred Attachment Model 37

Let us recall that Vt ⊆ S where S is the unit hypercube [0, 1]m. We use the
geometry of the model to obtain a sparse cut. Let

S′ =
{
s = (s1, s2, . . . , sm) ∈ S : s1 <

1

2

}
.

Let us partition the vertex set Vt as follows: V
′
t = Vt ∩ S′, V ′′

t = Vt ∩ (S \ S′) =
Vt \ V ′

t . The next theorem shows that this partition yields a sparse cut.

Theorem 6. A.a.s. the following holds |V ′
t | = (1+o(1))t/2, |V ′′

t | = (1+o(1))t/2,
and

|E(V ′
t , V

′′
t)| = O(tmax{1−1/m,pA1} log5 t) = o(t).

Proof. Clearly, we expect t/2 vertices in each set V ′
t and V ′′

t . The concentration
follows immediately from Chernoff bound. It remains to show that an upper
bound for the size of the cut holds a.a.s.

It follows from Theorem 3 (by taking ω = log t) that a.a.s. for every i ∈ [t]
the maximum sphere of influence of a vertex vi added at time i is O(i−1 log2 t)
(during the whole process). Since we aim for a result that holds a.a.s., we may
assume that this property holds for all i. Therefore, the maximum radius of
influence of vi is O((log2 t/i)1/m).

We will investigate how many edges are in the cut by counting (independently)
edges in this cut directed to vertices of similar age. For a given integer k such
that 0 ≤ k < log t, let

V (k) = {vi ∈ Vt : e
k ≤ i < min{ek+1, t}},

E(k) = {(vi, vj) ∈ Et : vi ∈ V (k) and i < j ≤ t}
C(k) = E(k) ∩ E(V ′

t , V
′′
t).

It is clear that {E(k) : 0 ≤ k < log t} is a partition of the edge set and so
{C(k) : 0 ≤ k < log t} is a partition of the cut E(V ′

t , V
′′
t). It remains to estimate

the size of C(k) for a given value of k.
Fix 0 ≤ k < log t, and let vi ∈ V (k). Note that the maximum radius of

influence of vi is O((e−k log2 t)1/m). Therefore, if there is an edge in the cut
directed to vi = (s1, s2, . . . , sm), then vi must fall into a strip within dis-
tance O((e−k log2 t)1/m) from the cutting hyperplane; that is, |s1 − 1/2| =
O((e−k log2 t)1/m). Since |V (k)| = O(ek), we get that

O((e−k log2 t)1/m) · |V (k)| = O(ek(1−1/m)(log t)2/m)

vertices of V (k) are expected to appear in this strip during the whole pro-
cess. Hence, it follows from Chernoff bound that with probability at least 1 −
exp(−Θ(log2 t)) there are O(ek(1−1/m) log2 t) vertices in this strip at the end
of the process. (Note that the exponent of log t has changed from 2/m to 2 in
order to guarantee the value at least log2 t which is required for a bound to
hold with the desired probability.) By Theorem 3 (again, by taking ω = log t),

38 C. Cooper, A. Frieze, and P. Pra�lat

a.a.s. all vertices introduced in this time period have (final) in-degree at most
(t/ek)pA1 log2 t, we get that

|C(k)| = O(ek(1−1/m) log2 t) · (t/ek)pA1 log2 t = O(tpA1ek(1−1/m−pA1) log4 t)

edges in the cut a.a.s.
Finally, we get that a.a.s.

|E(V ′
t , V

′′
t)| =

�log t�−1∑
k=0

|C(k)| =
�log t�−1∑

k=0

O(tpA1ek(1−1/m−pA1) log4 t)

≤
{
log t · O(tpA1t1−1/m−pA1 log4 t) = O(t1−1/m log5 t), if pA1 < 1− 1/m;

log t · O(tpA1 log4 t) = O(tpA1 log5 t), otherwise,

which finishes the proof.

5 Emergence of Giant Component

Let us note that all edges in Gt are from younger vertices to older ones; that
is, denoting by vi the vertex added at time i we get that if (vj , vi) ∈ Et, then
j > i. This implies that Gt has t strongly connected components, each of which
consists of one vertex.

On the other hand, it seems that investigating the size of the largest weak
connected component is a non-trivial task. Let Ĝt = (Vt, Êt) be the underlying
graph of Gt; that is, Ĝ is an undirected graph on the vertex set Vt and {vj , vi} ∈
Êt if and only if (vj , vi) ∈ Et. We wish to know the size of the largest component

in Ĝt.
One can show that the expected number of edges added at time t of the

process is deg+(vt, t) = pA2

1−pA1
. Therefore, if p > p1 := (A1 + A2)

−1, then the
expected out degree in Gt is larger than 1, and so is the expected degree in
Ĝt. By looking at the ‘branching factor’ of the breadth-first search process it is
natural to conjecture that a.a.s. there exists a giant component if p > p1. On the
other hand, if p < p1, then the expected out-degree in Gt is smaller than one, but
this fact does not in itself guarantee absence of the giant component in Ĝt. Is p1
the threshold we search for? If p < p2 := (A1 + 2A2)

−1, then deg+(vt, t) < 1/2
and so the average degree in Ĝt is smaller than one. Perhaps p2 is the threshold
for the giant component? Clearly, more sophisticated argument is required to
solve this problem and we will try to settle this down in the journal version of
this paper.

We performed a number of simulations to make a better prediction (see Fig-
ure 2). For a given set of parameters A1, A2, we performed a number of simula-
tions (p = i/100, 0 ≤ i < 1/A1). Unfortunately, it seems that t = 100, 000 is still
too small to observe a clear trend. However, based on these numerical results,
one can conjecture the following.

Conjecture 2. p3 := (2A1 + 2A2)
−1 is the threshold for the giant component.

Some Typical Properties of the Spatial Preferred Attachment Model 39

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A_1=1.0 A_2=1.0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A_1=1.0 A_2=3.0

(a) A1 = 1, A2 = 1 (b) A1 = 1, A2 = 3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

A_1=3.0 A_2=1.0

(c) A1 = 3, A2 = 1

Fig. 2. A simulation of the SPA model on the unit 2-dimensional torus with t =
100, 000. (The x-axis is p, y-axis is the fraction of vertices in the largest component of
Ĝt.)

References

1. Adamic, L.A., Buyukkokten, O., Adar, E.: A social network caught in the web.
First Monday 8 (2003)

2. Ahn, Y., Han, S., Kwak, H., Moon, S., Jeong, H.: Analysis of topological char-
acteristics of huge on-line social networking services. In: Proceedings of the 16th
International Conference on World Wide Web (2007)

3. Aiello, W., Bonato, A., Cooper, C., Janssen, J., Pra�lat, P.: A spatial web graph
model with local influence regions. Internet Mathematics 5, 175–196 (2009)

4. Aiello, W., Bonato, A., Cooper, C., Janssen, J., Pra�lat, P.: A Spatial Web Graph
Model with Local Influence Regions. In: Bonato, A., Chung, F.R.K. (eds.) WAW
2007. LNCS, vol. 4863, pp. 96–107. Springer, Heidelberg (2007)

5. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

6. Blandford, D., Blelloch, G.E., Kash, I.: Compact Representations of Separable
Graphs. In: Proc. of ACM/SIAM Symposium on Discrete Algorithms, pp. 679–688
(2003)

7. Bollobás, B., Riordan, O.: Mathematical results on scale-free graphs. In: Bornholdt,
S., Schuster, H. (eds.) Handbook of Graphs and Networks. Wiley-VCH, Berlin
(2002)

8. Bollobás, B., Riordan, O.: The diameter of a scale-free random graph. Combina-
torica 4, 5–34 (2004)

40 C. Cooper, A. Frieze, and P. Pra�lat

9. Bonato, A.: A course on the web graph. American Mathematical Society Graduate
Studies in Mathematics 89 (2008)

10. Bonato, A., Janssen, J., Pra�lat, P.: Geometric Protean Graphs. Internet Mathe-
matics 8, 2–28 (2012)

11. Bradonjic, M., Hagberg, A., Percus, A.G.: The structure of geographical threshold
graphs. Internet Mathematics 4, 113–139 (2009)

12. Chung, F.R.K., Lu, L.: Complex Graphs and Networks. American Mathematical
Society (2006)

13. Estrada, E.: Spectral scaling and good expansion properties in complex networks.
Europhysics Letters 73(4), 649–655 (2006)

14. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On Power-law Relationships of the
Internet Topology. In: SIGCOMM, pp. 251–262 (1999)

15. Flaxman, A., Frieze, A.M., Vera, J.: A geometric preferential attachment model of
networks. Internet Mathematics 3(2), 187–206 (2006)

16. Flaxman, A., Frieze, A.M., Vera, J.: A geometric preferential attachment model of
networks II. Internet Mathematics 4(1), 87–111 (2008)

17. Higham, D.J., Rasajski, M., Przulj, N.: Fitting a geometric graph to a protein-
protein interaction network. Bioinformatics 24(8), 1093–1099 (2008)

18. Janssen, J.: Spatial Models for Virtual Networks. In: Ferreira, F., Löwe, B., May-
ordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 201–210.
Springer, Heidelberg (2010)

19. Janssen, J., Pra�lat, P., Wilson, R.: Geometric Graph Properties of the Spatial
Preferred Attachment model (preprint)

20. Janssen, J., Pra�lat, P., Wilson, R.: Estimating node similarity from co-citation
in a spatial graph model. In: Proceedings of the 2010 ACM Symposium on Ap-
plied Computing–Special Track on Self-organizing Complex Systems, pp. 1329–
1333 (2010)

21. Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: understanding microblog-
ging usage and communities. In: Proceedings of the Joint 9th WEBKDD and 1st
SNA-KDD Workshop 2007 (2007)

22. Kleinberg, J.: The small-world phenomenon: An algorithmic perspective. In: Pro-
ceedings of the 32nd ACM Symposium on Theory of Computing (2000)

23. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news
media? In: Proceedings of the 19th International World Wide Web Conference
(2010)

24. Masuda, N., Miwa, M., Konno, N.: Geographical threshold graphs with small-world
and scale-free properties. Phys. Rev. E 71(3), 036108 (2005)

25. Mihail, M., Papadimitriou, C.H., Saberi, A.: On Certain Connectivity Properties
of the Internet Topology. In: Proc. IEEE Symposium on Foundations of Computer
Science, p. 28 (2003)

26. Mislove, A., Marcon, M., Gummadi, K., Druschel, P., Bhattacharjee, B.: Mea-
surement and analysis of on-line social networks. In: Proceedings of the 7th ACM
SIGCOMM Conference on Internet Measurement (2007)

27. Mitzenmacher, M.: A brief history of generative models for power law and lognor-
mal distributions. In: Proc. of the 39th Annual Allerton Conf. on Communication,
Control, and Computing, pp. 182–191 (2001)

28. Yule, G.: A mathematical theory of evolution based on the conclusions of Dr. J.C.
Willis. Philosophical Transactions of the Royal Society of London (Series B) 213,
21–87 (1924)

29. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Na-
ture 393, 440–442 (1998)

A Sublinear Time Algorithm for PageRank

Computations

Christian Borgs1, Michael Brautbar2, Jennifer Chayes1, and Shang-Hua Teng3

1 Microsoft Research New England, One Memorial Drive, Cambridge, MA 02142
{borgs,jchayes}@microsoft.com

2 Computer and Information Science Department, University of Pennsylvania,
3330 Walnut Street, Philadelphia, PA 19104

brautbar@cis.upenn.edu
3 Computer Science Department, University of Southern California,

941 Bloom Walk, Los Angeles, CA 90089
shanghua@usc.edu

Abstract. In a network, identifying all vertices whose PageRank is more
than a given threshold value Δ is a basic problem that has arisen in Web
and social network analyses. In this paper, we develop a nearly optimal,
sublinear time, randomized algorithm for a close variant of this problem.
When given a directed network G = (V,E), a threshold value Δ, and
a positive constant c > 3, with probability 1 − o(1), our algorithm will
return a subset S ⊆ V with the property that S contains all vertices of
PageRank at least Δ and no vertex with PageRank less than Δ/c. The
running time of our algorithm is always Õ(n

Δ
). In addition, our algorithm

can be efficiently implemented in various network access models includ-
ing the Jump and Crawl query model recently studied by [6], making it
suitable for dealing with large social and information networks.

As part of our analysis, we show that any algorithm for solving this
problem must have expected time complexity of Ω(n

Δ
). Thus, our algo-

rithm is optimal up to logarithmic factors. Our algorithm (for identify-
ing vertices with significant PageRank) applies a multi-scale sampling
scheme that uses a fast personalized PageRank estimator as its main
subroutine. For that, we develop a new local randomized algorithm for
approximating personalized PageRank which is more robust than the
earlier ones developed by Jeh and Widom [9] and by Andersen, Chung,
and Lang [2].

1 Introduction

A basic problem in network analysis is to identify the set of its vertices that
are “significant.” For example, the significant nodes in the web graph defined
by a query could provide the authoritative content in web search; they could
be the critical proteins in a protein interaction network; and they could be the
set of people (in a social network) most effective to seed the influence for online
advertising. As the networks become larger, we need more efficient algorithms
to identify these “significant” nodes.

A. Bonato and J. Janssen (Eds.): WAW 2012, LNCS 7323, pp. 41–53, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

42 C. Borgs et al.

1.1 Identifying Nodes with Significant PageRanks: Our Results

The meaning of ’significant’ vertices depend on the semantics of the network and
the applications. In this paper, we focus on a particular measure of significance
— the PageRanks of the vertices. PageRank was introduced by Page and Brin
in their seminal work for ranking webpages [11]. Mathematically, the PageRank
(with restart constant, also known as the teleportation constant, α) of a web-page
is proportional to the the probability that the page is visited by a random surfer
who explores the web using the following simple random walk: at each step, with
probability (1 − α) go to a random webpage linked to from the current page,
and with probability α, restarts the process from a randomly chosen page. For
reasons to be cleared shortly, we consider a normalization of the PageRank so
that the sum of the PageRank values over all vertices is equal to n, the number
of vertices in the network. In other words, suppose PageRank(u) denote the
PageRank of vertex u in the network G = (V,E). Then,∑

u∈V

PageRank(u) = n.

PageRank has been used by the Google search engine and has found applica-
tions in wide range of data analysis problems [4,7]. In this context, the problem
of identifying “significant” vertices could be illustrated by the following search
problem: Let Top PageRanks denote the problem of identifying all vertices
whose PageRanks in a network G = (V,E) are more than a given threshold
value 1 ≤ Δ ≤ |V |.

In this paper, we consider for the following close variant of Top PageRanks:

Significant PageRanks: Given a network G = (V,E), a threshold
value 1 ≤ Δ ≤ |V | and a positive constant c > 1, compute, with success
probability 1− o(1), a subset S ⊆ V with the property that S contains all
vertices of PageRank at least Δ and no vertex with PageRank less than
Δ/c.

We develop a nearly optimal, sublinear time randomized algorithm for Signif-
icant PageRanks for any fixed c > 3. The running time of our algorithm is
always Õ(n

Δ). We show that any algorithm for Significant PageRanks must
have time complexity of Ω(n

Δ). Thus, our algorithm is optimal up to logarithmic
factors. Our Significant PageRanks algorithm applies a multi-scale sampling
scheme that uses a fast personalized PageRank estimator (see below) as its main
subroutine.

1.2 Matrix Sampling and Personalized PageRank Approximation

While the PageRank of a vertex captures the importance of the vertex collec-
tively assigned by all vertices in the network, as pointed out by Haveliwala [8],
one can use the distributions of the following random walk to define the pairwise
contributions of significances: Given a teleportation probability α and a starting

A Sublinear Time Algorithm for PageRank Computations 43

vertex u in a network G = (V,E), at each step, with probability (1 − α) go
to a random neighboring vertex, and with probability α, restarts the process
from u. For v ∈ V , the probability that v is visited by this random process, de-
noted by PersonalizedPageRanku(v), is the u’s personal PageRank contribution
of significance to v. It is not hard to verify that

∀u ∈ V ,
∑
v∈V

PersonalizedPageRanku(v) = 1; and

∀v ∈ V , PageRank(v) =
∑
u∈V

PersonalizedPageRanku(v).

Personalized PageRanks has been widely used to describe personalized behavior
of web-users [11] as well as for designing good network clustering techniques
[2]. As a result, fast algorithms for computing or approximating personalized
PageRank can be very useful. One can approximate PageRanks and personalized
PageRanks by the power method [4], which involves costly matrix multiplications
for large scale networks. Applying effective truncation, Jeh and Widom [9] and
Andersen, Chung, and Lang [2] developed personalized PageRank approximation
algorithms that can find an ε-additive approximation in time proportional to the
product of ε−1 and the maximum in-degree in the graph.

Our sublinear-time algorithm for Significant PageRanks also requires fast
subroutines for estimating personalized PageRanks. It uses a multi-scale sam-
pling approach by selecting a set of precision parameters {ε1, ..., εh} where h
depends on n and Δ, εi = 1/2i. Then, for each i in range 1 ≤ i ≤ h, it com-
putes the εi-precise personalized PageRanks defined by a sample of Õ(εin/Δ)
vertices. For networks with constant maximum degrees, we can simply use the
Jeh-Widom or Andersen-Chung-Lang personalized PageRank approximation al-
gorithms in our multi-scale sampling scheme. However, for networks such as web
graphs and social networks that may have nodes with large degrees, these two
earlier algorithms are not robust enough for our purpose.

We develop a new local algorithm for approximating personalized PageRank
that satisfies the desirable robust property that the multi-scale sample scheme
requires. Given ρ, ε > 0 and a starting vertex u in a network G = (V,E), our
algorithm estimates each entry in the personalized PageRank vector,

PersonalizedPageRanku(.)

defined by u to a multiplicative factor of at most (1+ρ) plus an additive precision

error of at most ε 1. The time complexity of our algorithm is O(log(|V |) log(ε−1)
ερ2).

Our algorithm requires a careful simulation of random walks from the starting
node u to ensure that its complexity does not depends on the degree of any node.

Our algorithms can be efficiently implemented in various network querying
models assuming no direct global access to the network. In particular, our algo-
rithms can be efficiently implemented in the Jump and Crawl query model [6],

1 Formally, estimated value ˆval of val would have the property that (1− ρ) · val− ε ≤
v̂al ≤ (1 + ρ) · val + ε.

44 C. Borgs et al.

making the algorithm suitable for processing large social and information net-
works.

In particular, our sublinear algorithm for Significant PageRanks could be
used in Web search engines, which often need to build a core of web-pages to
be later used for web-search. It is desirable that pages in the core have high
PageRank values. These search engines usually apply crawling to discover new
significant pages and add them to the core. The property that our sublinear-
time algorithms have a natural implementation in the Jump and Crawl model
may make them useful in a search engine for selecting pages with high PageRank
values to update the current core by using them to replace the existing core pages
that have relatively low PageRank values. We anticipate that our algorithm for
Significant PageRanks will be useful for many other network analysis tasks.

1.3 Additional Related Work

For personalized PageRanks approximation, in addition to the work of [2, 4, 5,
9, 11], Andersen et al [1] developed a ’backward’ version of the local algorithm
of [2]. Their algorithm finds all nodes that contribute at least some fixed fraction
ρ to a page’s PageRank in time O(dmax-out/ρ) where dmax-out is the maximum
out-degree in the network. This algorithm can be used to provide some reliable
estimate to a node’s PageRank. For example, for a given k, in time Θ̃(k) it
can bound the total contribution from the k highest contributors to the node’s
PageRank. However, for networks with large dmax-out, its complexity may not
be sublinear.

As suggested in [1], one can view the entire set of personalized PageRanks
(defined by all vertices in a network) as an |V |×|V |matrix, which is referred to as
the PageRank matrix of the graph. In the PageRank matrix, each row represents
the personalized PageRanks from a particular vertex, and each column represents
the contributions to its PageRank from all vertices in the network. Note that
the sum of each row is 1 and the sum of the uth column is the PageRank of u.

In light of this, the problem of Significant PageRanks can be viewed
as a matrix sparsification or matrix approximation problem. There has been a
large body of work of finding a low complexity approximation to a matrix that
preserves some of its properties. Perhaps the most relevant one to our goal is a
low rank matrix approximation under the l2 matrix norm.

All current methods for finding such low rank approximations runs in time at
least linear in the size of the input matrix. See [10] for a survey of recent results.

Next, a linear time Monte Carlo based method to estimate PageRank of all
nodes is devised in [3]. The method is based on running constant number of
random walks from each of the nodes in the network.

Last, in the context of sublinear time graph algorithms, our research is re-
lated to the work of [12], in which sublinear time algorithms are presented for
estimating several quantities. Our implementation of the Jump and Crawl query
model can be viewed as a stringent type of the adjacency-list graph model used
in [12].

A Sublinear Time Algorithm for PageRank Computations 45

1.4 Organization

Section 2 contains the needed definitions and notations. Section 3 presents our
multi-scale sampling algorithm for Significant PageRanks. In section 4 we
provide a lower bound construction for Significant PageRanks. In Section
5 we give a robust local algorithm for approximating personalized PageRank
vectors.

2 Preliminaries

We consider a network which is defined as a directed graph G = (V,E) with
n nodes and m edges. Usually, a network is massive. Our algorithms access a
network using a rather natural implementation of the Jump-and-Crawl query
model of [6] developed for processing large social and information networks. The
Jump and Crawl model is concerned with informational complexity of nodes,
where each node access reveal its full list of adjacent neighbors at no extra
cost. Our algorithms shall be designed to work under the following compelling
implementation of the Jump-and-Crawl query model. We allow two types of
queries:

– Jump: A call to the Jump query needs no input and returns a uniformly at
random node from the network.

– RandomCrawl: A call to the RandomCrawl query requires a vertex v as
input. RandomCrawl(v) returns a uniformly at random out-neighbor of v.

Note for example, that the random surfer procedure used in the definition of
PageRank is itself a natural algorithm under our implementation of the Jump-
and-Crawl query model.

We now move to define personalized PageRank as well as PageRank. Mathe-
matically, the personalized PageRank vector of a node v is the stationary point
of the following equation:

PersonalizedPageRankv(·) = α1v + (1− α)PersonalizedPageRankv(·) ·D−1A,

where α is the teleportation probability, A is the adjacency matrix of the directed
network G = (V,E) so A(i, j) = 1 iff (i, j) ∈ E. In this notation, D is a diagonal
matrix with dout(v) at entry (v, v) and 1v is the indicator vector of v. We will
follow the standard [4] by assuming that each node has at least one out-link2.

Then, one can define the RageRank vector as

PageRank(·) =
∑
v∈V

PersonalizedPageRankv(·)

Note that in this definition, the sum of the all PageRank values is equal to n.
Following [1], we define a matrix PPR (short for personalized PageRank) to

be the n× n matrix, whose vth row is PersonalizedPageRankv(·).
Unless stated otherwise, for any x, log(x) would mean log2(x).

2 Otherwise, as commonly done [4], consider that node as having out links into all
nodes in the network.

46 C. Borgs et al.

3 Multi-scale Matrix Sampling and Approximation of
PageRank

In this section, we present our nearly optimal, sublinear time algorithm for Sig-
nificant PageRanks. Recall that

Significant PageRanks: Given a network G = (V,E), a threshold
value 1 ≤ Δ ≤ |V | and a positive constant c > 1, compute, with probabil-
ity 1−o(1), a subset S ⊆ V with the property that S contains all vertices
of PageRank at least Δ and no vertex with PageRank less than Δ/c.

Note that the PageRank value of each vertex is at least α and at most n. In-
strumental to our algorithm, we present a multi-scale algorithm for sampling the
PageRank matrix PPR that achieves, for any fixed c > 3, the following goals:
The algorithm makes Õ(n

Δ) total queries and updates, and with high probability,

1. For each vertex with PageRank value at least Δ, the sum of the sampled
entries of of the column corresponding to the vertex will provide a quality
estimate to the PageRank value of that vertex.

2. The algorithm does not return any vertex whose PageRank value is less than
Δ/c.

In our algorithm, we will use a new local algorithm ApproxRow for person-
alized PageRank approximation. Algorithm ApproxRow takes three input pa-
rameters: v ∈ V , an additive error factor ε ∈ (0, 1) and a multiplicative factor
ρ ∈ (0, 1). It returns an approximation to PersonalizedPageRankv(·) such that
for every PPR(v, j) > ε, it returns a non-negative estimated value between
(1 − ρ)PPR(v, j) − ε to (1 + ρ)PPR(v, j) + ε. The running time of ApproxRow

is essentially O(log(n) log(ε
−1)

ερ2). ApproxRow and its analysis will be presented in
Section 5.

We start with some high-level idea of our multi-scale sampling algorithm. To
assist our exposition, we will present our algorithm and its analysis for c = 6.
Both are easily extended to any other constant value c > 3. Our algorithm will
use O(log n) precision scales: εt = 2−t for 0 ≤ t ≤ log(4nΔ). We conceptually di-
vide each column of the PPR matrix into chunks, where the chunk corresponding
to εt contains its entries with values between εt to 2εt. Thus, we ignore all entries
in the PPR matrix column of value less than Δ

4n , the finest scale. Note that en-

tries with value at most Δ
4n can contribute to at most a quarter to the PageRank

of a vertex whose PageRank value is least Δ.
If the sum of a chunk’s entries is at least Δ/(2 log(n)), we will refer to it

as a heavy chunk. The central idea of our algorithm is to efficiently generate
robust estimates of the sums for all heavy chunks, as we shall show that it is
also sufficient to only provide estimates to heavy chunks.

As the entries in each chunk are within a factor of 2 of each other, we then
reduce the task of estimating the sum in a chunk to the problem of approximately
counting the size of the chunk. Then conceptually, we estimate the size of each
heavy chunk at scale εt by taking Õ(εt4n/Δ) random entries from its column

A Sublinear Time Algorithm for PageRank Computations 47

and counting the numbers of samples in this chunk. The challenge we need to
overcome is to efficiently sample all heavy chunks at a scale simultaneously.

This is where we will use our local PageRank approximation algorithm Ap-

proxRow, which in O(log(n) log(ε
−1)

ε) time when given a vertex v, returns robust
estimates to all entries of values at least ε in v’s row in the PPR matrix. To
achieve Õ(n/Δ) queries and running time, we call ApproxRow Θ̃(n

Δεt) times at
scale εt, and we will show that it is sufficient to sample this much (or little).

In the last step of the algorithm, for each node j, we will simply sum up over
all scales εt, its estimated values weighted by a normalizing factor Δ

εt2 log2(n)
.

Then the algorithm will output only those j’s where the sum is at least Δ
4 and

their estimated PageRank values.
A detailed pseudo-code of our algorithm, ApproximatePageRank, is given

below.

Algorithm 1. ApproximatePageRank

Require: PageRank threshold Δ, a network G = (V,E) on n nodes accessible only by
Jump and RandomCrawl queries.
// First-Part //

1: Initialize a binary search tree, ChunkTree, indexed lexicographically by a two-tuple
key (nodeID, ε).

2: for t = 0 to log(n
4Δ

) do
3: Set the additive error εt = 2−t.
4: for (n

Δ
εt4 log

2(n)) times do
5: Jump to a random node, call it v.
6: Call list = ApproxRow(v, εt

2
, 1
2
) and update the chunk size estimate affiliated

vertices in list as the following:
7: for each pair (nodeID, εt) in the list do
8: if there exists an entry e with key (nodeID, εt) in ChunkTree then
9: Update entry e’s value by adding 1 to its current value.
10: else
11: Create an entry in ChunkTree with key (nodeID, εt) and value 1.
12: end if
13: end for
14: end for (at scale εt).
15: end for (for all scales)

// Second-Part //
16: Initialize a final tree, called TreeofPageRankValues, indexed by key (nodeID).
17: for all elements (chunks) in ChunkTree that all belong to same node i (namely,

have i as the first part of their key) do
18: if chunk has value, val, at least 1

2
log(n) then

19: Let ε be the second part of the chunk’s key.
20: Add Δ

2ε log2(n)
to the entry indexed by (i) in TreeofPageRankValues.

21: end if
22: Output all elements in TreeofPageRankValues with at least Δ/4
23: end for

48 C. Borgs et al.

In the proofs for the following two theorems, we will analyze the performance
of this algorithm. Note that we will ignore the dependence of the running time on
α as for all standard PageRank computations, it is taken to be a fixed constant
independent of input size [4].

Theorem 1 (Complexity of ApproximatePageRank). The runtime of al-
gorithm ApproximatePageRank is upper bounded by Õ(n/Δ).

Proof. The algorithm uses O(log(n/Δ)) scales. In First-Part of the algorithm,
for scale εt, it makes n

Δεt4 log
2(n) Jump queries and for each query it runs

ApproxRow(v, εt/2, 1/2), where v represents the random vertex returned by the

query. ApproxRow then has a runtime of O(
log(n) log(ε−1

t)
εt

). Thus, the total run-

time complexity is Õ(n
Δ) as the finest scale is Δ/n and there are at most logn

scales. In addition to the time spent on querying the network, the algorithm
takes Θ(log(n)) per step overhead for each access/update in its data structure.

In Second-Part of the algorithm, it makes no new queries. As there are only
Õ(n/Δ) items in the data structure ChunkTree and then TreeofPageRankValues,
the complexity of this summation part is Õ(n/Δ). The last step of outputting
all nodes in the tree with value bigger than a threshold can easily be done in
linear time in the size of the tree, which is Õ(n/Δ). ��
Theorem 2 (Correctness of ApproximatePageRank). Given Δ and con-
stant c > 3, ApproximatePageRank outputs, with probability 1 − o(1), all nodes
with PageRank at least Δ but no node with PageRank smaller than3 Δ/c.

Proof. For v ∈ V , let (pv1 , p
v
2, . . . , p

v
n) be v’s column in the PPR matrix. Let

ChunkSet(v, ε) = {i : ε ≤ pvi < 2ε}, ChunkSize(v, ε) = |ChunkSet(v, ε)|, and
ChunkSum(v, ε) =

∑n
i=1 {pvi : ε ≤ pvi < 2ε}.

Recall a chunk is heavy is its chunksum Δ/log(n). We now prove that at the
end of First-Part in Algorithm ApproximatePageRank, all heavy chunks are well
approximated.

To focus on the essence of the proof for multi-scale matrix sampling, we first
assume that all the values returned by ApproxRow are exact (with no error at
all). We call this assumption, the perfect row approximation assumption. We will
later show that when removing this assumption the approximation scheme would
only be affected by a multiplicative factor of three, namely the effective value of
c in Significant PageRanks would be one third its value under perfect row
approximations.

Lemma 1 (key lemma). Let εt = 2−t, for 1 ≤ t ≤ n
4Δ . The following holds

with probability 1− o(1):

– If ChunkSum(v, εt) ≥ Δ
2 log(n) then at the end of First-Part in the algorithm

the entry in ChunkTree with key (v, εt), namely the algorithm’s approxima-

tion of ChunkSize(v, εt), is at least log n/2 and is between ChunkSize(v,εt)
Δ ·

εt2 log
2(n) to ChunkSize(v,εt)

Δ · εt8 log2(n).
3 Again for exposition, we present our algorithm and its analysis for c = 6. We later
show that the theorem on a slightly modified algorithm holds for any constant c > 3.

A Sublinear Time Algorithm for PageRank Computations 49

– If ChunkSum(v, εt) ≤ Δ
4 log(n) then at the end of First-Part in the algorithm

the entry in ChunkTree with key (v, εt), namely the algorithm’s approxima-

tion of ChunkSize(v, εt), is smaller than log(n)
2 .

Proof. Note that 1
2εt

ChunkSum(v, εt) ≤ ChunkSize(v, εt) ≤ 1
εt
ChunkSum(v, εt).

So, if ChunkSum(v, εt) ≥ Δ
2 log(n) then ChunkSize(v, εt)/n ≥ Δ/(4εtn logn).

Thus, when sampling 4εtn log2(n)/Δ random rows (as in line 5 of the algo-
rithm), the expected number of entries in the chunk that ApproxRow discovers
is at least ChunkSize(v, εt)εt4 log

2(n)/Δ ≥ log(n). By a standard multiplicative
Chernoff bound (see appendix), with probability 1− o(1), after multiplying the
count by Δ/(2εt log

2 n), we can approximate ChunkSize(v, εt) within a multi-
plicative factor of 2. Moreover, if ChunkSum(v, εt) ≤ Δ

4 log(n) then, its estimated

value is at most twice its value, namely smaller than log(n)
2 . ��

Lemma 2. The following holds with probability 1 − o(1) under the perfect row
approximation assumption:

– If PageRank(v) ≥ Δ, then the algorithm will output v and will estimate its
PageRank value to a value between PageRank(v)/4 to 2PageRank(v).

– If PageRank(v) < Δ/8, then the algorithm will not output v.
– If Δ/8 ≤ PageRank(v) < Δ, then the algorithm might output v. If v is

outputted, then its estimated PageRank value is between PageRank(v)/16 to
2PageRank(v).

Proof. By lemma 1, that the sums of each heavy chunk are well estimated to
within a multiplicative factor of 2.

Since there are at most logn chunks in column, the contribution from all
non-heavy chunks is at most logn(Δ/(2 logn)) = Δ/2. Thus, if v’s PageRank
is at least Δ, then the contribution from its heavy chunks is at least Δ/2. Con-
sequently, and the algorithm’s approximation to v’s PageRank will be at least
Δ/4 and at most 2Δ, and this vertex will be outputted.

We can similarly establish the other two cases as stated in the lemma. ��
We now turn to discuss the effect of having only approximate values computed
in ApproxRow calls on the guarantees of ApproxmatePageRank.

Lemma 3. Given parameters 0 < ε, ρ < 1, removing the perfect row approxi-
mation assumption changes the approximation constant c by at most 3 times its
value as well as changes the estimated PageRank values computed by Approxi-
matePageRank to be at most three times their value.

Proof. The PPR matrix is effectively computed using calls to ApproxRow by
the algorithm.

Given ε > 0, consider an element ε ≤ PPR(v, j) ≤ 2ε for some nodes v, j. There
are two sources for having this element estimator differ from it real value. First,
ApproxRow (with parameters ε = ε/2 and ρ = 1/2) computes approximate val-
ues so the estimated value is between (1− ρ− 1/4) its real value to (1 + ρ+ 1/4)

50 C. Borgs et al.

(we could put the additive ε/4 error in the multiplicative approximation factor
since ε ≤ PPR(v, j) ≤ 2ε). In particular, in the algorithm we pick ρ = 1/2. How-
ever, one could replace both ρ and ε with smaller values to get an approximation
that gets closer to the true value: Replacing ρ by k1ρ and ε by k2ε for any inte-

gral k1, k2 would increase the total runtime by only a factor of k21k2
log (k2)
log(ε−1) . The

second source why the estimator differs from its true value is double counting.
An element with a true value between ε/2 to ε as well as one with a true value
between 2ε to 4ε could appear in a realization as an element with a value be-
tween ε to 2ε. However (by applying Chernoff bound), elements with true value
smaller than ε/2 as well as those with value bigger than 4ε would not appear as
such. Thus due to double counting the sum of elements in each column can be
at most three times its real value. If we denote the PageRank of node j by Δ(j)
and the value it gets from the realized column values by Δ′(j) then,

(1− k1ρ− k2/2)Δ(j) ≤ Δ′(j) ≤ 3(1 + k1ρ+ k2/2)Δ(j).

In particular, algorithm ApproximatePageRank uses ρ = 1
2 , k1 = 1 and k2 = 1

2
which gives

1

4
Δ(j) ≤ Δ′(j) < 6Δ(j).

��
This ends the proof of Theorem 2. ��

4 Lower Bound Construction for PageRank
Approximations

We now turn to prove a corresponding lower bound for PageRank approxima-
tions.

The lower bound construction will show that, any algorithm, making less than
Ω(n

Δ) Jump and Crawl queries, will fail, with constant probability, to find any
node with PageRank at least Δ on the graph. This holds true for any type
of implementation of a Crawl query (including the RandomCrawl one). Given
positive integers n and Δ < n

2 − 1, we construct an undirected graph on n nodes
made of a path subgraph on n− d − 1 nodes and an isolated star subgraph on
d + 1 nodes, where d = 2Δ. See figure 1 for an illustration. Fix 0 < α < 1, the
teleportation probability. By solving the PageRank equations it is not hard to
check that each node on the path subgraph has PageRank value of 1, the hub
of the subgraph has PageRank d

2 + 1
2(1−α) and each leaf of the star subgraph

has PageRank of 1
d(d+ 1− d

2 − 1
2(1−α)) ≤ 1

2 + 1
d . As Δ = d

2 , the only node with

PageRank at least Δ is the hub of the star subgraph. However, for any ε > 0,
in order to find any node that belongs to the star subgraph one needs to make,
with probability at least 1− 1

e − ε, at least n
d = Ω(n

Δ) Jump queries.

A Sublinear Time Algorithm for PageRank Computations 51

Fig. 1. An example illustrating the path-star graph of the lower bound construction
for PageRank computations

5 Local Robust Computation of Personalized PageRank

We now describe a method, ApproxRow, based only on local computations that
approximates a node’s personalized PageRank vector. The pseudo-code is given
on the next page.

Theorem 3 (Complexity of ApproxRow). For any node v and values 0 <

ε, ρ < 1, the runtime of ApproxRow(v, ε, ρ) is upper bounded by O(log(n) log(ε
−1)

ερ2 log2(
1

1−α)
).

Proof. The algorithm performs 1
ερ2 · 16 log(n) rounds where at each round it

simulates a random walk with termination probability of α for at most length
steps. Each step is simulated by taking a Jump (’termination’ step) with proba-
bility α and taking a RandomCrawl step with probability 1− α. Thus the total

number of queries used is 16 log(n)
ερ2 · log 1

(1−α)
(3ε) = O(log(n) log(ε

−1)

ερ2 log2(
1

1−α)
). ��

Theorem 4 (Correctness of ApproxRow). For any node v and values 0 <
ε, ρ < 1, with probability of at least 1 − Θ(1

n2), ApproxRow(v, ε, ρ) computes a
list l with the following properties:

– Every node j that is outputted in the list l has an estimated value which is
non-negative and lies between (1− ρ)PPR(v, j)− ε

4 to (1 + ρ)PPR(v, j).
– Every node not in the list l has PPR(v, j) ≤ ε/2.

Proof. We start with an observation. The personalized PageRank contribution
from a node v to node j is exactly the probability that a random walk that starts
at v, and at each time step terminates with probability α, and with probability
1 − α moves to a random out-link of the node it is currently at, was at node
j one step before termination. Define 1v to be the indicator vector of v. The
proof of the observation follows from a series of algebraic manipulations on the
definition of the PersonalizedPageRankVector of v:

PersonalizedPageRankv(·) = α1v + (1− α)PersonalizedPageRankv(·) ·D−1A.

52 C. Borgs et al.

Algorithm 2. ApproxRow

Require: A node v in G = (V,E), additive error parameter 0 < ε < 1, multiplicative
approximation parameter 0 < ρ < 1, teleportation probability 0 < α < 1.

1: Initialize a binary search tree NodeCountTree where the key is a node’s identity.
2: Set length = log 1

(1−α)
(4
ε
).

3: Set r = 1
ερ2

· 16 log(n).
4: for r times do
5: Run one realization of a random walk with restart probability α: the walk starts

at v and at each time makes, with probability α a ’termination’ step by returning
to v and terminating, and with probability 1−α a RandomCrawl step. The walk
is artificially stopped after length steps if it has not terminated already.

6: if the walk visited a node u just before making a termination step then
7: Add 1 to the count stored at u’s entry in NodeCountTree.
8: end if
9: Output all nodes in NodeCountTree together with their average count (over the

r rounds).
10: end for

Solving the system gives PersonalizedPageRankv(·) = α1v(I−(1−α)D−1A)−1 =
α1v

∑∞
i=0 ((1 − α)D−1A)i. This last equation makes the observation clear.

Given a node j, denote by pk(v, j) the contribution to v’s Personalized PageR-
ank vector from walks that are of length at most k. By the above observation,
pk(v, j) = α1v

∑k
i=0 ((1 − α)D−1A)i.

We ask how much is contributed to j’s entry in the Personalized PageRank
vector of v from walks of length bigger or equal to k. The contribution is at most
(1 − α)k since the walk needs to survive at least k consecutive steps. Taking
(1 − α)k ≤ ε

4 will guarantee that at most ε
4 is lost by only considering walks of

length smaller than k, namely: PPR(v, j)− ε
4 ≤ pk(v, j) ≤ PPR(v, j).

For that it suffices to take k = log 1
(1−α)

(4ε). This is exactly length, the length

of each walk the algorithm simulates, is set to.
Next, the algorithm provide a estimate of pk(v, j) by realizing walks of length

at most k. The algorithm does so by taking the average count over 1
ερ2 ·16 log(n)

trials. Denote the algorithm’s output by p̂k(v, j). Then, if pk(v, j) ≥ ε
4 , by the

multiplicative Chernoff bound, Pr(p̂k(v, j) > (1 + ρ)pk(v, j)) ≤ exp(−2 log(n))
and Pr(p̂k(v, j) < (1− ρ)pk(v, j)) ≤ exp(−2 log(n)).

We can conclude that (1− ρ)(PPR(v, j)− ε
4) ≤ p̂k(v, j) ≤ (1 + ρ)PPR(v, j).

In particular, nodes with PPR(v, j) > ε will be estimated to a positive value
and outputted as claimed.

Similarly, if pk(v, j) ≤ ε
4 then by the multiplicative Chernoff bound,

Pr(p̂k(v, j) >
ε
2) ≤ exp(−2 log(n)). In this case we conclude that p̂k(v, j) ≤ ε

2 .
Also, PPR(v, j) ≤ ε

4 + ε
4 ≤ ε

2 so |PPR(v, j)− p̂k(v, j)| ≤ ε
2 . ��

Acknowledgments. We thank Brendan Lucier, Elchanan Mossel and Eugene
Vorobeychik for their suggestions and the anonymous reviewers for their helpful
comments.

A Sublinear Time Algorithm for PageRank Computations 53

References

1. Andersen, R., Borgs, C., Chayes, J.T., Hopcroft, J.E., Mirrokni, V.S., Teng, S.-H.:
Local computation of pagerank contributions. Internet Mathematics 5(1), 23–45
(2008)

2. Andersen, R., Chung, F.R.K., Lang, K.J.: Local graph partitioning using pagerank
vectors. In: FOCS, pp. 475–486 (2006)

3. Avrachenkov, K., Litvak, N., Nemirovsky, D., Osipova, N.: Monte carlo methods
in pagerank computation: When one iteration is sufficient. SIAM Journal on Nu-
merical Analysis 45 (2007)

4. Berkhin, P.: Survey: A survey on pagerank computing. Internet Mathematics 2(1)
(2005)

5. Berkhin, P.: Bookmark-coloring approach to personalized pagerank computing.
Internet Mathematics 3(1) (2006)

6. Brautbar, M., Kearns, M.: Local algorithms for finding interesting individuals in
large networks. In: ICS, pp. 188–199 (2010)

7. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer Networks 30(1-7), 107–117 (1998)

8. Haveliwala, T.H.: Topic-sensitive pagerank: A context-sensitive ranking algorithm
for web search. Trans. Knowl. Data Eng. 15(4), 784–796 (2003)

9. Jeh, G., Widom, J.: Scaling personalized web search. In: WWW, pp. 271–279 (2003)
10. Kannan, R.: Spectral methods for matrices and tensors. In: STOC, pp. 1–12 (2010)
11. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:

Bringing order to the web. Stanford University (1998)
12. Rubinfeld, R., Shapira, A.: Sublinear time algorithms. SIAM Journal on Discrete

Math. 25, 1562–1588 (2011)

Appendix: Concentration Bounds

Lemma 4 (multiplicative Chernoff bound). Let Xi be i.i.d. Bernoulli ran-
dom variables with expectation μ each. Define X =

∑n
i=1 Xi. Then,

– For 0 < λ < 1, P r[X < (1 − λ)μn] < exp(−μnλ2/2).
– For 0 < λ < 1, P r[X > (1 + λ)μn] < exp(−μnλ2/4).
– For λ ≥ 1, P r[X > (1 + λ)μn] < exp(−μnλ/2).

Quick Detection of Nodes with Large Degrees�

Konstantin Avrachenkov1, Nelly Litvak2, Marina Sokol1, and Don Towsley3

1 INRIA, 2004 Route des Lucioles, Sophia-Antipolis, France
2 University of Twente, The Netherlands

3 University of Massachusetts Amherst, USA

Abstract. Our goal is to quickly find top k lists of nodes with the
largest degrees in large complex networks. If the adjacency list of the
network is known (not often the case in complex networks), a determin-
istic algorithm to find the top k list of nodes with the largest degrees
requires an average complexity of O(n), where n is the number of nodes
in the network. Even this modest complexity can be very high for large
complex networks. We propose to use the random walk based method.
We show theoretically and by numerical experiments that for large net-
works the random walk method finds good quality top lists of nodes with
high probability and with computational savings of orders of magnitude.
We also propose stopping criteria for the random walk method which
requires very little knowledge about the structure of the network.

1 Introduction

We are interested in quickly detecting nodes with large degrees in very large net-
works. Firstly, node degree is one of centrality measures used for the analysis of
complex networks. Secondly, large degree nodes can serve as proxies for central
nodes corresponding to the other centrality measures as betweenness centrality
or closeness centrality [8,9]. In the present work we restrict ourself to undirected
networks or symmetrized versions of directed networks. In particular, this as-
sumption is well justified in social networks. Typically, friendship or acquain-
tance is a symmetric relation. If the adjacency list of the network is known (not
often the case in complex networks), a deterministic algorithm to find the top
k list of nodes with the largest degrees requires an average complexity of O(n),
where n is the number of nodes in the network. We assume that the degree is
available when accessing a node (if this is not the case, the complexity should be
counted in terms of links). However, even linear complexity can be very high for
very large, possibly varying, complex networks. In the present work we suggest
using random walk based methods for detecting a small number of nodes with
the largest degree. The main idea is that the random walk very quickly comes
across large degree nodes. In our numerical experiments random walks outper-
form the standard deterministic algorithms by orders of magnitude in terms of

� This research was sponsored by INRIA Alcatel-Lucent Joint Lab, by the NSF under
CNS-1065133, and the U.S. Army Research Laboratory under Cooperative Agree-
ment W911NF-09-2-0053.

A. Bonato and J. Janssen (Eds.): WAW 2012, LNCS 7323, pp. 54–65, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Quick Detection of Nodes with Large Degrees 55

computational complexity. For instance, in our experiments with the web graph
of the UK domain (about 18 500 000 nodes) the random walk method spends
on average only about 5 400 steps to detect the largest degree node. Potential
memory savings are also significant since the method does not require knowledge
of the entire network. In many practical applications we do not need a complete
ordering of the nodes and even can tolerate some errors in the top list of nodes.
We observe that the random walk method obtains many nodes in the top list
correctly and even those nodes that are erroneously placed in the top list have
large degrees. Therefore, as typically happens in randomized algorithms [12,13],
we trade off exact results for very good approximate results or for exact results
with high probability and gain significantly in computational efficiency.

The paper is organized as follows: in the next section we introduce our basic
random walk with uniform jumps and demonstrate that it is able to quickly find
large degree nodes. Then, in Section 3 using configuration model we provide an
estimate for the necessary number of steps for the random walk. In Section 4 we
propose stopping criteria that use very little information about the network. In
Section 5 we show the benefits of allowing few erroneous elements in the top k
list. Finally, we conclude the paper in Section 6.

2 Random Walk with Uniform Jumps

Let us consider a random walk with uniform jumps which serves as a basic algo-
rithm for quick detection of large degree nodes. The random walk with uniform
jumps is described by the following transition probabilities [1]

pij =

{
α/n+1
di+α , if i has a link to j,
α/n
di+α , if i does not have a link to j,

(1)

where di is the degree of node i. The random walk with uniform jumps can
be regarded as a random walk on a modified graph where all the nodes in the
graph are connected by artificial edges with a weight α/n. The parameter α
controls the rate of jumps. Introduction of jumps helps in a number of ways.
As was shown in [1], it reduces the mixing time to stationarity. It also solves a
problem encountered by a random walk on a graph consisting of two or more
components, namely the inability to visit all nodes. The random walk with jumps
also reduces the variance of the network function estimator [1]. This random walk
resembles the PageRank random walk. However, unlike the PageRank random
walk, the introduced random walk is reversible. One important consequence of
the reversibility of the random walk is that its stationary distribution is given
by a simple formula

πi(α) =
di + α

2|E|+ nα
∀i ∈ V, (2)

from which the stationary distribution of the unperturbed random walk can eas-
ily be retrieved. We observe that the modification preserves the monotonicity of

56 K. Avrachenkov et al.

the stationary distribution with respect to the node degree, which is particularly
important for our application.

We illustrate on several network examples how the random walk helps us
quickly detect large degree nodes. We consider as examples one synthetic network
generated by the preferential attachment rule and two natural large networks.
The Preferential Attachment (PA) network combines 100 000 nodes. It has been
generated according to the generalized preferential attachment mechanism [6].
The average degree of the PA network is two and the power law exponent is 2.5.
The first natural example is the symmetrized web graph of the whole UK domain
crawled in 2002 [4]. The UK network has 18 520 486 nodes and its average degree
is 28.6. The second natural example is the network of co-authorships of DBLP
[5]. Each node represents an author and each link represents a co-authorship of
at least one article. The DBLP network has 986 324 nodes and its average degree
is 6.8.

We carry out the following experiment: we initialize the random walk (1) at
a node chosen according to the uniform distribution and continue the random
walk until we hit the largest degree node. The largest degrees for the PA, UK and
DBLP networks are 138, 194 955, and 979, respectively. For the PA network we
have made 10 000 experiments and for the UK and DBLP networks we performed
1 000 experiments (these networks were too large to perform more experiments).

In Figue 1 we plot the histograms of hitting times for the PA network. The
first remarkable observation is that when α = 0 (no restart) the average hitting
time, which is equal to 123 000 steps, is nearly three orders of magnitude larger
than 3 720, the hitting time when α = 2. The second remarkable observation is
that 3 720 is of the same order of magnitude as the value 1/πmax(α) = (2|E|+
nα)/(dmax + α) = 2 857, which corresponds to the average return time to the
largest degree node in the random walk with jumps.

We were not able to collect a representative number of experiments for the
UK and DBLP networks when α = 0. The reason for this is that the random
walk gets stuck either in disconected or weakly connected components of the
networks. For the UK network we were able to make 1 000 experiments with

0 0.5 1 1.5 2 2.5

x 10
6

0

2000

4000

6000

8000

10000

(a) α = 0

0 1 2 3 4

x 10
4

0

1000

2000

3000

4000

5000

6000

(b) α = 2

Fig. 1. Histograms of hitting times in the PA network

Quick Detection of Nodes with Large Degrees 57

α = 0.001 and obtain the average hitting time 30 750. Whereas if we take α =
28.6 for the UK network, we obtain the average hitting time 5 800. Note that
the expected return time to the largest degree node in the UK network is given
by 1/πmax(α) = (2|E| + nα)/(dmax + α) = 5 432. For the DBLP graph we
conducted 1 000 experiments with α = 0.00001 and obtained an average hitting
time of 41 131. Whereas if we take α = 6.8, we obtain an average hitting time
of 14 200. The expected return time to the largest degree node in the DBLP
network is given by 1/πmax(α) = (2|E| + nα)/(dmax + α) = 13 607. The two
natural network examples confirm our guess that the average hitting time for
the largest degree node is fairly close to the average return time to the largest
degree node. Let us also confirm our guess with asymptotic analysis.

Theorem 1. Without loss of generality, index the nodes such that node 1 has
the largest degree, (1, i) ∈ E, i = 2, ..., s, s = d1 + 1, and let ν denote the initial
distribution of the random walk with jumps. Then, the expected hitting time to
node 1 starting from any initial distribution is given by

Eν [T1] =

∑n
i=2 di + (n− 1)α

d1 + 2α(1 − 1/n)
+ o

(
min

i=2,...,s
{(di + α), n}

)
, (3)

Proof: The expected hitting time from distribution ν to node 1 is given by the
formula

Eν [T1] = ν[I − P−1]
−11, (4)

where P−1 is a taboo probability matrix (i.e., matrix P with the 1-st row and
1-st column removed). The matrix P−1 is substochastic but is very close to
stochastic. Let us represent it as a stochastic matrix minus some perturbation
term:

P−1 = P̃ − εQ = P̃ −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1+2α/n
d2+α 0 0

0
. . .

1+2α/n
ds+α

2α/n
ds+1+α

. . . 0

0 0 2α/n
dn+α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We add missing probability mass to the diagonal of P̃ , which corresponds to
an increase in the weights for self-loops. The matrix P̃ represents a reversible
Markov chain with the stationary distribution

π̃j =
dj + α∑n

i=2 di + (n− 1)α
.

Now we can use the following result from the perturbation theory (see Lemma 1
in [2]):

[I − P̃ + εQ]−1 =
1π̃

π̃(εQ)1
+X0 + εX1 + ... , (5)

58 K. Avrachenkov et al.

where π̃ is the stationary distribution of the stochastic matrix P̃ . In our case, the
quantity maxi=2,...,s{1/(di+α), 1/n} will play the role of ε. We apply the series
(5) to approximate the expected hitting time. Towards this goal, we calculate

π̃(εQ)1 =

n∑
j=2

π̃jεqjj

=

s∑
j=2

dj + α∑n
i=2 di + (n− 1)α

1 + 2α/n

dj + α
+

n∑
j=s+1

dj + α∑n
i=2 di + (n− 1)α

2α/n

dj + α

=
d1(1 + 2α/n) + (n− d1 − 1)(2α/n)∑n

i=2 di + (n− 1)α
=

d1 + 2α(1− 1/n)∑n
i=2 di + (n− 1)α

.

Observing that ν1π̃1 = 1, we obtain (3). ��
Indeed, the asymptotic expression (3) is very close to (2|E|+nα)/(d1+α), which
is the expected return time to node 1.

Based on the notion of the hitting time we propose an efficient method for
quick detection of the top k list of largest degree nodes. The algorithm main-
tains a top k candidate list. Note that once one of the k nodes with the largest
degrees appears in this candidate list, it remains there subsequently. Thus, we
are interested in hitting events. We propose the following algorithm for detecting
the top k list of largest degree nodes.

Algorithm 1. Random walk with jumps and candidate list

1. Set k, α and m.
2. Execute a random walk step according to (1). If it is the first step, start from

the uniform distribution.
3. Check if the current node has a larger degree than one of the nodes in the

current top k candidate list. If it is the case, insert the new node in the top-k
candidate list and remove the worst node out of the list.

4. If the number of random walk steps is less than m, return to Step 2 of the
algorithm. Stop, otherwise.

The value of parameter α is not crucial. In our experiments, we have observed
that as long as the value of α is neither too small nor not too big, the algorithm
performs well. A good option for the choice of α is a value slightly smaller than
the average node degree. Let us explain this choice by calculating a probability
of jump in the steady state

n∑
j=1

πj(α)
α

dj + α
=

n∑
j=1

dj + α

2|E|+ nα

α

dj + α
=

nα

2|E|+ nα
=

α

2|E|/n+ α
.

If α is equal to 2|E|/n, the average degree, the random walk will jump in the
steady state on average every two steps. Thus, if we set α to the average degree
or to a slightly smaller value, on one hand the random walk will quickly converge

Quick Detection of Nodes with Large Degrees 59

to the steady state and on the other hand we will not sample too much from the
uniform distribution.

The number of random walk steps, m, is a crucial parameter. Our experi-
ments indicate that we obtain a top k list with many correct elements with high
probability if we take the number of random walk steps to be twice or thrice as
large as the expected hitting time of the nodes in the top k list. From Theorem 1
we know that the hitting time of the large degree node is related to the value
of the node’s degree. Thus, the problem of choosing m reduces to the problem
of estimating the values of the largest degrees. We address this problem in the
following section.

3 Estimating the Largest Degrees in the Configuration
Network Model

The estimations for the values of the largest degrees can be derived in the con-
figuration network model [7] with a power law degree distribution. In some ap-
plications the knowledge of the power law parameters might be available to us.
For instance, it is known that web graphs have power law degree distribution
and we know typical ranges for the power law parameters.

We assume that the node degrees D1, . . . , Dn are i.i.d. random variables with
a power law distribution F and finite expectation E[D]. Let us determine the
number of links contained in the top k nodes. Denote

F (x) = P [D ≤ x], F̄ (x) = 1− F (x), x ≥ 0.

Further let D(1) ≥ . . . ≥ D(n) be the order statistics of D1, . . . , Dn. Under the
assumption that Dj ’s obey a power law, we use the results from the extreme
value theory as presented in [11], to state that there exist sequences of constants
(an) and (bn) and a constant δ such that

lim
n→∞nF̄ (anx+ bn) = (1 + δx)−1/δ . (6)

This implies the following approximation for high quantiles of F , with exceedance
probability close to zero [11]:

xp ≈ an
(pn)−δ − 1

δ
+ bn.

For the jth largest degree, where j = 2, . . . , k, the estimated exceedance proba-
bility equals (j−1)/n, and thus we can use the quantile x(j−1)/n to approximate
the degree D(j) of this node:

D(j) ≈ an
(j − 1)−δ − 1

δ
+ bn. (7)

The sequences (an) and (bn) are easy to find for a given shape of the tail of F .
Below we derive the corresponding results for the commonly accepted Pareto
tail distribution of D, that is,

F̄ (t) = Cx−γ for x > x′, (8)

60 K. Avrachenkov et al.

where γ > 1 and x′ is a fixed sufficiently large number so that the power law
degree distribution is observed for nodes with degree larger than x′. In that case
we have

lim
n→∞

nF̄ (anx+bn) = lim
n→∞

nC(anx+bn)
−γ = lim

n→∞
(C−1/γn−1/γanx+C−1/γn−1/γbn)

−γ ,

which directly gives (6) with

δ = 1/γ, an = δCδnδ, bn = Cδnδ. (9)

Substituting (9) into (7) we obtain the following prediction for D(j), j = 2, . . . , k,
in the case of the Pareto tail of the degree distribution:

D(j) ≈ n1/γ [C1/γ(j − 1)−1/γ − C1/γ + 1]. (10)

It remains to find an approximation for D(1), the maximal degree in the graph.
From the extreme value theory it is well known that if D1, . . . , Dn obey a power
law then

lim
n→∞P

(
D(1) − bn

an
≤ x

)
= Hδ(x) = exp(−(1 + δx)−1/δ),

where, for Pareto tail, an, bn and δ are defined in (9). Thus, as an approximation
for the maximal node degree we can choose anx + bn where x can be chosen
as either an expectation, a median or a mode of Hδ(x). If we choose the mode,
((1 + δ)−δ − 1)/δ, then we obtain an approximation, which is smaller than the
one for the 2nd largest degree. Further, the expectation (Γ (1− δ)− 1)/δ is very
sensitive to the value of δ = 1/γ, especially when γ is close to one, which is often
the case in complex networks. Besides, the parameter γ is hard to estimate with
high precision. Thus, we choose the median (log(2))−δ − 1)/δ, which yields

D(1) ≈ an
(log(2))−δ − 1

δ
+ bn = n1/γ [C1/γ(log(2))−1/γ − C1/γ + 1]. (11)

For instance, in the PA network γ = 2.5 and C = 3.7, which gives according to
(11) D(1) ≈ 127. (This is a good prediction even though the PA network is not
generated according to the configuration model. We also note that even though
the extremum distribution in the preferential attachment model is different from
that of the configuration model their ranges seem to be very close [10].) This in
turn suggests that for the PA network m should be chosen in the range 6 000-
18 000 if α = 2. As we can see from Figure 2 this is indeed a good range for the
number of random walk steps. In the UK network γ = 1.7 and C = 90, which
gives D(1) ≈ 82 805 and suggests a range of 20 000-30000 for m if α = 28.6.
Figure 3 confirms that this is a good choice. The degree distribution of the DBLP
network does not follow a power law so we cannot apply the above reasoning to
it.

Quick Detection of Nodes with Large Degrees 61

4 Stopping Criteria

Suppose now that we do not have any information about the range for the
largest k degrees. In this section we design stopping criteria that do not require
knowledge about the structure of the network. As we shall see, knowledge of the
order of magnitude of the average degree might help, but this knowledge is not
imperative for a practical implementation of the algorithm.

Let us now assume that node j can be sampled independently with probability
πj(α) as in (2). There are at least two ways to achieve this practically. The first
approach is to run the random walk for a significant number of steps until it
reaches the stationary distribution. If one chooses α reasonably large, say the
same order of magnitude as the average degree, then the mixing time becomes
quite small [1] and we can be sure to reach the stationary distribution in a small
number of steps. Then, the last step of a run of the random walk will produce
an i.i.d. sample from a distribution very close to (2). The second approach is
to run the random walk uninterruptedly, also with a significant value of α, and
then perform Bernoulli sampling with probability q after a small initial transient
phase. If q is not too large, we shall have nearly independent samples following
the stationary distribution (2). In our experiment, q ∈ [0.2, 0.5] gives good results
when α has the same order of magnitude as the average degree.

We now estimate the probability of detecting correctly the top k list of nodes
after m i.i.d. samples from (2). Denote by Xi the number of hits at node i after
m i.i.d. samples. We note that if we use the second approach to generate i.i.d.
samples, we spend approximately m/q steps of the random walk. We correctly
detect the top k list with the probability given by the multinomial distribution

P [X1 ≥ 1, ..., Xk ≥ 1] =

∑
i1≥1,...,i1≥1

m!

i1! · · · ik!(m− i1 − ...− ik)!
πi1
1 · · ·πik

k (1−
k∑

i=1

πi)
m−i1−...−ik

but it is not feasible for any realistic computations. Therefore, we propose to use
the Poisson approximation. Let Yj , j = 1, ..., n be independent Poisson random
variables with means πjm. That is, the random variable Yj has the following
probability mass function P [Yj = r] = e−mπj (mπj)

r/r!. It is convenient to work
with the complementary event of not detecting correctly the top k list. Then,
we have

P [{X1 = 0} ∪ ... ∪ {Xk = 0}] ≤ 2P [{Y1 = 0} ∪ ... ∪ {Yk = 0}]

= 2(1− P [{Y1 ≥ 1} ∩ ... ∩ {Yk ≥ 1}]) = 2(1−
k∏

j=1

P [{Yj ≥ 1}])

= 2(1−
k∏

j=1

(1− P [{Yj = 0}])) = 2(1−
k∏

j=1

(1− e−mπj)) =: a, (12)

62 K. Avrachenkov et al.

where the first inequality follows from [12, Thm 5.10]. In fact, in our numerical
experiments we observed that the factor 2 in the first inequality is very con-
servative. For large values of m, the Poisson bound works very well as proper
approximation.

For example, if we would like to obtain the top 10 list with at most 10%
probability of error, we need to have on average 4.5 hits per each top element.
This can be used to design the stopping criteria for our random walk algorithm.
Let ā ∈ (0, 1) be the admissible probability of an error in the top k list. Now the
idea is to stop the algorithm after m steps when the estimated value of a for the
first time is lower than the critical number ā. Clearly,

âm = 2(1−
k∏

j=1

(1 − e−Xj))

is the maximum likelihood estimator for a, so we would like to choose m such
that âm ≤ ā. The problem, however, is that we do not know which Xj’s are
the realisations of the number of visits to the top k nodes. Then let Xj1 , ..., Xjk

be the number of hits to the current elements in the top k candidate list and
consider the estimator

âm,0 = 2(1−
k∏

i=1

(1− e−Xji)),

which is the maximum likelihood estimator of the quantity

2(1−
k∏

i=1

(1− e−mπji)) ≥ a.

(Here πji is a stationary probability of the node with the score Xji , i = 1, . . . , k).
The estimator âm,0 is computed without knowledge of the top k nodes or their
degrees, and it is an estimator of an upper bound of the estimated probability
that there are errors in the top k list. This leads to the following stopping rule.

Stopping rule 0. Stop at m = m0, where

m0 = argmin{m : âm,0 ≤ ā}.
The above stopping criterion can be simplified even further to avoid computation
of âm,0. Since

âm,1 := 2(1− (1− e−Xjk)k) ≥ âm,0 ≥ â,

where Xjk is the number of hits of the worst element in the candidate list. The
inequality âm ≤ ā is guaranteed if âm,1 ≤ ā. This leads to the following stopping
rule for the random walk algorithm.

Stopping rule 1. Compute x0 = argmin{x ∈ N : (1 − e−x)k ≥ 1 − ā/2.} Stop
at

m1 = argmin{m : Xjk = x0}.

Quick Detection of Nodes with Large Degrees 63

We have observed in our numerical experiments that we obtain the best trade
off between the number of steps of the random walk and the accuracy if we
take α around the average degree and the sampling probability q around 0.5.
Specifically, if we take ā/2 = 0.15 (x0 = 4) in Stopping rule 1 for top 10 list,
we obtain 87% accuracy for an average of 47 000 random walk steps for the
PA network; 92% accuracy for an average of 174 468 random walk steps for the
DBLP network; and 94% accuracy for an average of 247 166 random walk steps
for the UK network. We have averaged over 1000 experiments to obtain tight
confidence intervals.

5 Relaxation of Top k Lists

In the stopping criteria of the previous section we have strived to detect all
nodes in the top k list. This costs us a lot of steps of the random walk. We
can significantly gain in performance by relaxing this strict requirement. For
instance, we could just ask for list of k nodes that contains 80% of top k nodes
[3]. This way we can take an advantage of a generic 80/20 rule that 80% of result
can be achieved with 20% of effort.

Let us calculate the expected number of top k elements observed in the can-
didate list up to trial m. Define by Xj the number of times we have observed
node j after m trials and

Hj =

{
1, node j has been observed at least once,
0, node j has not been observed.

Assuming we sample in i.i.d. fashion from the distribution (2), we can write

E[
k∑

j=1

Hj]=
k∑

j=1

E[Hj]=
k∑

j=1

P [Xj ≥ 1]=
k∑

j=1

(1−P [Xj = 0]) =
k∑

j=1

(1−(1−πj)
m).

(13)

In Figure 2 we plot E[
∑k

j=1 Hj] (the curve “I.I.D. sample”) as a function of
m for k = 10 for the PA network with α = 0 and α = 2. In Figure 3 we plot
E[
∑k

j=1 Hj] as a function of m for k = 10 for the UK network with α = 0.001
and α = 28.6. The results for the UK and DBLP networks are similar in spirit.

Here again we can use the Poisson approximation

E[
k∑

j=1

Hj] ≈
k∑

j=1

(1− e−mπj).

In fact, the Poisson approximation is so good that if we plot it on Figures 2 and 3,
it nearly covers exactly the curves labeled “I.I.D. sample”, which correspond to
the exact formula (13). Similarly to the previous section, we can propose stopping
criteria based on the Poisson approximation. Denote

bm =

k∑
i=1

(1− e−Xji).

64 K. Avrachenkov et al.

0 0.5 1 1.5 2

x 10
4

0

2

4

6

8

10

m

Random Walk
I.I.D. sample

(a) α = 0

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5

6

7

8

9

10

m

Random Walk
I.I.D. sample

(b) α = 2

Fig. 2. Average number of correctly detected elements in top-10 for PA

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5

6

7

8

9

m

Random Walk
I.I.D. sample

(a) α = 0.001

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5

6

7

m

Random Walk
I.I.D. sample

(b) α = 28.6

Fig. 3. Average number of correctly detected elements in top-10 for UK

Stopping rule 2. Stop at m = m2, where

m2 = argmin{m : bm ≥ b̄}.

Now if we take b̄ = 7 in Stopping rule 2 for top-10 list, we obtain on average 8.89
correct elements for an average of 16 725 random walk steps for the PA network;
we obtain on average 9.28 correct elements for an average of 66 860 random walk
steps for the DBLP network; and we obtain on average 9.22 correct elements for
an average of 65 802 random walk steps for the UK network. (We have averaged
over 1000 experiments for each network.) This makes for the UK network the
gain of more than two orders of magnitude in computational complexity with
respect to the deterministic algorithm.

6 Conclusions and Future Research

We have proposed the random walk method with the candidate list for quick
detection of largest degree nodes. We have also supplied stopping criteria which

Quick Detection of Nodes with Large Degrees 65

do not require knowledge of the graph structure. In the case of large networks,
our algorithm finds top k list of largest degree nodes with few mistakes with the
running time orders of magnitude faster than the deterministic algorithms. In
future research we plan to obtain estimates for the required number of steps for
various types of complex networks.

References

1. Avrachenkov, K., Ribeiro, B., Towsley, D.: Improving Random Walk Estimation
Accuracy with Uniform Restarts. In: Kumar, R., Sivakumar, D. (eds.) WAW 2010.
LNCS, vol. 6516, pp. 98–109. Springer, Heidelberg (2010)

2. Avrachenkov, K., Borkar, V., Nemirovsky, D.: Quasi-stationary distributions as
centrality measures for the giant strongly connected component of a reducible
graph. Journal of Comp. and Appl. Mathematics 234, 3075–3090 (2010)

3. Avrachenkov, K., Litvak, N., Nemirovsky, D., Smirnova, E., Sokol, M.: Quick De-
tection of Top-k Personalized PageRank Lists. In: Frieze, A., Horn, P., Pra�lat, P.
(eds.) WAW 2011. LNCS, vol. 6732, pp. 50–61. Springer, Heidelberg (2011)

4. Boldi, P., Vigna, S.: The WebGraph framework I: Compression techniques. In:
Proceedings of WWW 2004 (2004)

5. Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propagation: A multires-
olution coordinate-free ordering for compressing social networks. In: Proceedings
of WWW 2011 (2011)

6. Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Structure of growing net-
works: Exact solution of the Barabasi-Albert model. Phys. Rev. Lett. 85, 4633–4636
(2000)

7. van der Hofstad, R.: Random graphs and complex networks. Lecture Notes (2009),
http://www.win.tue.nl/rhofstad/NotesRGCN.pdf

8. Lim, Y., Menasche, D.S., Ribeiro, B., Towsley, D., Basu, P.: Online estimating the
k central nodes of a network. In: Proceedings of IEEE NSW 2011 (2011)

9. Maiya, A.S., Berger-Wolf, T.Y.: Online Sampling of High Centrality Individuals in
Social Networks. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD
2010, Part I. LNCS, vol. 6118, pp. 91–98. Springer, Heidelberg (2010)

10. Moreira, A.A., Andrade Jr., J.S., Amaral, L.A.N.: Extremum statistics in scale-free
network models. Phys. Rev. Lett. 89, 268703, 4 pages (2002)

11. Matthys, G., Beirlant, J.: Estimating the extreme value index and high quantiles
with exponential regression models. Statistica Sinica 13(3), 853–880 (2003)

12. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press (2005)

13. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(1995)

http://www.win.tue.nl/rhofstad/NotesRGCN.pdf

Ranking and Sparsifying a Connection Graph

Fan Chung1,2 and Wenbo Zhao2

1 Department of Mathematics
2 Department of Computer Science and Engineering

University of California, San Diego
La Jolla, CA 92093, USA
{fan,w3zhao}@ucsd.edu

Abstract. Many problems arising in dealing with high-dimensional data
sets involve connection graphs in which each edge is associated with both
an edge weight and a d-dimensional linear transformation. We consider
vectorized versions of the PageRank and effective resistance which can
be used as basic tools for organizing and analyzing complex data sets.
For example, the generalized PageRank and effective resistance can be
utilized to derive and modify diffusion distances for vector diffusion maps
in data and image processing. Furthermore, the edge ranking of the con-
nection graphs determined by the vectorized PageRank and effective re-
sistance are an essential part of sparsification algorithms which simplify
and preserve the global structure of connection graphs.

1 Introduction

In this paper, we consider a generalization of graphs, called connection graphs,
in which each edge of the graph is associated with a weight and also a “rotation”
(which is a linear orthogonal transformation acting on a d-dimensional vector
space for some positive integer d). The adjacency matrix and the discrete Laplace
operator are acting on the space of vector-valued functions (instead of the usual
real-valued functions) and therefore can be represented by matrices of size dn×dn
where n is the number of vertices in the graph.

Connection graphs arise in numerous applications, in particular for data and
image processing involving high-dimensional data sets. To quantify the affini-
ties between two data points, it is often not enough to use only a scalar edge
weight. For example, if the high-dimensional data set can be represented or ap-
proximated by a low-dimensional manifold, the patterns associated with nearby
data points are likely to related by certain rotations [29]. There are many recent
developments of related research in cryo-electron microscopy [15,28], angular
synchronization of eigenvectors [11,27] and vector diffusion maps [29]. In many
areas of machine learning, high-dimensional data points in general can be treated
by various methods, such as the Principle Component Analysis [18], to reduce
vectors into some low-dimensional space and then use the connection graph with
rotations on edges to provide the additional information for proximity. In com-
puter vision, there has been a great deal of recent work dealing with trillions

A. Bonato and J. Janssen (Eds.): WAW 2012, LNCS 7323, pp. 66–77, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Ranking and Sparsifying a Connection Graph 67

of photos that are now available on the web [2]. Feature matching techniques
[24] can be used to derive vectors associated with the images. Then informa-
tion networks of photos can be built which are exactly connection graphs with
rotations corresponding to the angles and positions of the cameras in use. The
use of connection graphs can be further traced to earlier work in graph gauge
theory for computing the vibrational spectra of molecules and examining the
spins associated with vibrations [9].

Many information networks arising from massive data sets exhibit the small
world phenomenon. Consequently the usual graph distance is no longer very
useful. It is crucial to have the appropriate metric for expressing the proximity
between two vertices. Previously, various notions of diffusion distances have been
defined [29] and used for manifold learning and dimension reduction. Here we
consider two basic notions, the connection PageRank and the connection resis-
tance, (which are generalizations of the usual PageRank and effective resistance).
Both the connection PageRank and connection resistance can then be used to
define correlations between vertices in the connection graph. To illustrate the us-
age of both metrics, we derive edge ranking using the connection PageRank and
the connection resistance. In the applications to cryo-electron microscopy, the
edge ranking can help eliminate the superfluous or erroneous edges that appear
because of various “noises”.

The notion of PageRank was first introduced by Brin and Page [7] in 1998 for
Google’s Web search algorithms. Although the PageRank was originally designed
for the Web graph, the concepts work well for any graph for quantifying the cor-
relations of pairs of vertices (or pairs of subsets) in any given graph. There are
very efficient and robust algorithms for computing and approximating PageR-
ank [3,6,17]. In this paper, we further generalize the PageRank for connection
graphs and give efficient and sharp approximation algorithms for computing the
connection PageRank.

The effective resistance plays a major role in electrical network theory and can
be traced back to the classical work of Kirchhoff [22]. Here we consider a general-
ized version of effective resistance for the connection graphs. To illustrate the us-
age of connection resistance, we examine a basic problem on graph sparsification.
Graph sparsification was first introduced by Benczúr and Karger [5,19,20,21] for
approximately solving various network design problems. The heart of the graph
sparsification algorithms is the sampling technique for randomly selecting edges.
The goal is to approximate a given graph G on n vertices by a sparse graph G̃,
called a sparsifier, with fewer edges on the same set of vertices such that every cut
in the sparsifier G̃ has its size within a factor (1±ε) of the size of the correspond-
ing cut in G for some constant ε. Spielman and Teng [30] constructed a spectral
sparsifier with O(n logc n) edges for some large constant c. In [33], Spielman
and Srivastava gave a different sampling scheme using the effective resistances
to construct an improved spectral sparsifier with only O(n log n) edges. In this
paper, we will construct the connection sparsifer using the weighted connection
resistance.

68 F. Chung and W. Zhao

A Summary of the Results
Our results can be summarized as follows:

– We give definitions for the connection graph and the connection Laplacian
in Section 2. In particular, we discuss the notion of “consistency” in a con-
nection graph (which is considered to be the ideal situation for various ap-
plications). We give a characterization for a consistent connection graph by
using the eigenvalues of the connection Laplacian.

– We introduce the connection PageRank in Section 3. We give two efficient
approximation algorithms for computing the connection PageRank vectors.
The two algorithms provide somewhat different approximation guarantees.
For ranking edges, we require the approximation to be sharp with error
bounds of order log(1/ε) so that the bounds will still be effective when the

ε is taken to be in the range of Õ
(
1/n2

)
, for example.

– We define the connection resistance in Section 4 and then examine various
properties of the connection resistance.

– We use the connection resistance to give an edge ranking algorithm and a
sparsification algorithm for connection graphs in Section 5.

2 Preliminaries

For positive integers m,n and d, we consider a family of matrices, denoted by
F(m,n, d;R) consisting of all md× nd matrices with real-valued entries. A ma-
trix in F(m,n, d;R) can also be viewed as a m × n matrix whose entries are
represented by d × d blocks. A rotation is a matrix that is used to perform a
rotation in Euclidean space. Namely, a rotation O is a square matrix, with real
entries, satisfying OT = O−1 and det(O) = 1. All rotation matrices of size d× d
are known to form the special orthogonal group SO (d). It is easy to check that
all eigenvalues of a rotation O are of norm 1. Furthermore, a rotation O ∈ SO (d)
with d odd has an eigenvalue 1 (see [14]).

2.1 The Connection Laplacian

Suppose G = (V,E,w) is an undirected graph with vertex set V , edge set E and
edge weights wuv = wvu > 0 for edges (u, v) in E. Suppose each oriented edge
(u, v) is associated with a rotation matrix Ouv ∈ SO (d) satisfying OuvOvu =
Id×d. Let O denote the set of rotations associated with all oriented edges in G.
The connection graph, denoted by G = (V,E,O,w), has G as the underlying
graph. The connection matrix A of G is defined by:

A(u, v) =

{
wuvOuv if(u, v) ∈ E,

0d×d if(u, v)
∈ E

where 0d×d is the zero matrix of size d × d. In other words, for |V | = n, we
view A ∈ F(n, n, d;R) as a block matrix where each block is either a d × d

Ranking and Sparsifying a Connection Graph 69

rotation matrix Ouv multiplied by a scalar weight wuv, or a d × d zero matrix.
The matrix A is symmetric as OT

uv = Ovu and wuv = wvu. The diagonal matrix
D ∈ F(n, n, d;R) is defined by the diagonal blocks D(u, u) = duId×d for u ∈ V .
Here du is the weighted degree of u in G, i.e., du =

∑
(u,v)∈E wuv.

The connection Laplacian L ∈ F(n, n, d;R) of a graph G is the block matrix
L = D − A. Recall that for any orientation of edges of the underlying graph
G on n vertices and m edges, the combinatorial Laplacian L can be written as
L = BTWB where W is a m×m diagonal matrix with We,e = we, and B is the
edge-vertex incident matrix of size m× n such that B(e, v) = 1 if v is e’s head;
B(e, v) = −1 if v is e’s tail; and B(e, v) = 0 otherwise. A useful observation for
the connection Laplacian is the fact that it can be written in a similar form. Let
B ∈ F(m,n, d;R) be the block matrix given by

B(e, v) =

⎧⎪⎨⎪⎩
Ouv v is e’s head,

−Id×d v is e’s tail,

0d×d otherwise.

Also, let the block matrix W ∈ F(m,m, d;R) denote a diagonal block matrix
given by W(e, e) = weId×d. Then, we have the following useful lemma whose
proof is omitted here.

Lemma 1. (i) For any orientation of edges on graph G, the connection Lapla-
cian of G can be written as L = BTWB. (ii) For any function f : V → Rd, we
have

fLfT =
∑

(u,v)∈E

wuv ‖f(u)− f(v)Ouv‖22 (1)

where f(v) here is regarded as a row vector of dimension d. (iii) L has a complete
set of real eigenfunctions φ1, φ2, . . . , φnd and corresponding real eigenvalues 0 ≤
λ1 ≤ λ2 ≤ . . . ≤ λnd. Furthermore, λi = 0 if and only if φi(u)Ovu = φi(v) for
all (u, v) ∈ E.

2.2 The Consistency of a Connection Graph

For a connection graph G = (V,E,O,w), we say G is consistent if for any cycle
c = (v1, v2, . . . , vk, v1) the product of rotations along the cycle is the identity

matrix, i.e. Ovkv1

∏k−1
i=1 Ovivi+1 = Id×d. In other words, for any two vertices u

and v, the products of rotations along different paths from u to v are the same.
In the following theorem, we give a characterization for a consistent connection
graph by using the eigenvalues of the connection Laplacian.

Theorem 1. Suppose a connected graph G is the underlying graph of a con-
nection graph G. Then G is consistent if and only if the eigenvalues of L are d
copies of eigenvalues of L where L is the connection Laplacian of G, L is the
combinatorial Laplacian of G and d is the dimension of rotations.

70 F. Chung and W. Zhao

Proof. (=⇒). For a fixed vertex u ∈ V and an arbitrary d-dimensional vector

x̂, we can define a function f̂ : V → Rd, by defining f̂(u) = x̂ initially. Then

we assign f̂(v) = f̂(u)Ovu for all the neighbors v of u. Since G is connected
and G is consistent, we can continue the assigning process to all neighboring
vertices without any conflict until all vertices are assigned. The resulting function

f̂ : V → Rd satisfies f̂Lf̂T =
∑

(u,v)∈E wuv

∥∥∥f̂(u)− f̂(v)Ouv

∥∥∥2
2
= 0. Therefore

L has an eigenspace of dimension d for the eigenvalue 0, and it has d orthogonal
eigenfunctions f̂1, . . . , f̂d corresponding to eigenvalues 0.

Now, let us consider the underlying graph G. Let fi : V → R denote the
eigenfunctions of L corresponding to the eigenvalue λi for i ∈ [n] respectively.
Our proof of this direction follows directly from the following claim whose proof
is omitted here.

Claim. Functions fi ⊗ f̂k : V → Rd for i ∈ [n], k ∈ [d] are the orthogonal

eigenfunctions of L corresponding to eigenvalue λi where fi⊗ f̂k(v) = fi(v)f̂k(v).

(⇐=). Suppose f̂1, . . . , f̂d are d orthogonal eigenfunctions of L corresponding
to the eigenvalue 0. Equation (1) implies that for any pair of vertices u, v ∈
V joined by a path P = (u = v1, v2, . . . , vk), we have, for all j = 1, . . . , d,

f̂j(u)
∏k−1

i=1 Ovivi+1 = f̂j(v). Furthermore, for two adjacent vertices u and v, we
have

〈f̂i(u), f̂j(u)〉 =〈f̂i(u)Ouv, , f̂j(u)Ouv〉 = 〈f̂i(v), f̂j(v)〉

Therefore, f̂1(v), . . . , f̂d(v) must form an orthogonal basis of Rd for all v ∈ V .
Now, suppose that for two vertices u and v there are two different paths from u to
v such that the products, denoted byΠ1 andΠ2, of rotations along the two paths
are different. There must be a vector g(u) ∈ Rd such that g(u)Π1
= g(u)Π2.

However, f̂1(v), . . . , f̂d(v) form a orthogonal basis of Rd and f̂i(u)Π1 = f̂i(v) =

f̂i(u)Π2 for 1 ≤ i ≤ d. This is impossible. The theorem is proved. ��

2.3 Random Walks on a Connection Graph

Consider the underlying graph G of a connection graph G = (V,E,O,w). A
random walk on G is defined by the transition probability matrix P where Puv =
wuv/du denotes the probability of moving to a neighbor v at a vertex u. We can
write P = D−1A, where A is the weighted adjacency matrix of G and D is the
diagonal matrix of weighted degree.

In a similar way, we can define a random walk on the connection graph G

by setting the transition probability matrix P = D−1A. While P acts on the
space of real-valued functions, P acts on the space of vector-valued functions
f : V → Rd.

Theorem 2. Suppose G is consistent. Then for any positive integer t, any vertex
u ∈ V and any function ŝ : V → Rd satisfying ‖ŝ(v)‖2 = 0 for all v ∈ V \{u},
we have ‖ŝ(u)‖2 =

∑
v ‖ŝ P

t(v)‖2 .

Ranking and Sparsifying a Connection Graph 71

Proof. The proof of this theorem is straightforward from the assumption that G
is consistent. For p̂ = ŝ Pt, note that p̂(v) is the summation of all d dimensional
vectors resulted from rotating ŝ(u) via rotations along all possible paths of length
t from u to v. Since G is consistent, the rotated vectors arrive at v via different
paths are positive multiples of the same vector. Also the rotations maintain the

2-norm of vectors. Thus,
‖p̂(v)‖2

‖ŝ(u)‖2
is simply the probability that a random walk in

G arriving at v from u after t steps. The theorem follows. ��

3 PageRank Vectors in a Connection Graph

The PageRank vector is based on random walks. Here we consider a lazy walk
on G with the transition probability matrix Z = I+P

2 . In [3], a PageRank vector
prα,s is defined by a recurrence relation involving a seed vector s (as a probability
distribution) and a positive jumping constant α < 1 (or transportation constant).
Namely, prα,s = αs+ prα,s(1− α)Z.

For the connection graph G, the PageRank vector p̂rα,ŝ : V → Rd is defined

by the same recurrence relation involving a seed vector ŝ : V → Rd and a
positive jumping constant α < 1:

p̂rα,ŝ = αŝ+ (1− α)p̂rα,ŝZ

where Z = 1
2 (Ind×nd + P) is the transition probability matrix of a lazy random

walk on G. An alternative definition of the PageRank vector is the following
geometric sum of random walks:

p̂rα,ŝ = α

∞∑
t=0

(1− α)
t
ŝ Z

t = αŝ+ (1− α)p̂rα,ŝZ. (2)

By Theorem 2 and Equation (2), we here state the following useful fact concern-
ing PageRank vectors for a consistent connection graph.

Proposition 1. Suppose that a connection graph G is consistent. Then for any
u ∈ V , α ∈ (0, 1) and any function ŝ : V → Rd satisfying ‖ŝ(u)‖2 = 1 and ŝ(v) =
0 for v
= u, we have

∥∥p̂rα,ŝ(v)∥∥2 = prα,χu
(v). In particular,

∑
v∈V

∥∥p̂rα,ŝ(v)∥∥2 =
‖prα,χu

‖1 = 1.

We will call such a PageRank vector p̂rα,ŝ a connection PageRank vector on
u. To compute a connection PageRank, we need the following subroutine called
Push and Lemma 2 for proving Theorem 3.

Lemma 2. Let p̂′ and r̂′ denote the resulting vectors after performing operation
Push(u) with p̂ and r̂. Then p̂′ + p̂rα,r̂′ = p̂+ p̂rα,r̂.

Theorem 3. For a vector s with
∑

v∈V ‖ŝ(v)‖2 ≤ 1, and a constant 0 < ε < 1,
the algorithm ApproximatePR(ŝ, α, ε) computes an approximate PageRank vector

p̂ = p̂rα,ŝ−r̂ such that the residual vector r̂ satisfies
‖r̂(v)‖2

dv
≤ ε, for all v ∈ V

and
∑

v:‖p̂(v)‖2>0 dv ≤ 1
εα . The running time for the algorithm is O(d

2

εα).

72 F. Chung and W. Zhao

Push(u, α) :

Let p̂′ = p̂ and r̂′ = r̂, except for these changes:
1. Let p̂′(u) = p̂(u) + αr̂(u) and r̂′(u) = 1−α

2
r̂(u).

2. For each vertex v such that (u, v) ∈ E: r̂′(v) = r̂(v) + (1−α)wuv

2du
r̂(u) Ouv.

(p̂, r̂) = ApproximatePR(ŝ, α, ε)

1. Let p̂(v) = 0 and r̂(v) = ŝ(v) for all v ∈ V .
2. While ‖r̂(u)‖2 ≥ εdu for some vertex u:

Pick any vertex u where ‖r̂(u)‖2 ≥ εdu and apply operation Push(u, α).
3. Return p̂ and r̂.

Theorem 4. For constants 0 < ε, α < 1, and a seed vector ŝ with
∑

v ‖ŝ(v)‖2 ≤
1, the algorithm SharpApproximatePR(ŝ, α, ε) computes approximate PageRank

vector p̂ = p̂rα,ŝ−r̂ such that the residual vector r̂ satisfies maxv
‖r̂(v)‖2

dv
≤ ε and

the running time is O(md2 log(1/ε)
α).

Proof. The algorithm returns an approximate PageRank vector p̂ = p̂rα,ŝ−r̂

when the residual vector satisfies that maxv
‖r̂(v)‖2

dv
≤ ε.

To bound the running time, we examine one fixed round of while-loop in the
second step. Let T denote the total number of Push operations performed by
ApproximatePR and let di denote the degree of the vertex involved in the ith Push
operation. When the ith Push operation was performed, the quantity

∑
v ‖r̂(v)‖2

decreases at least by the amount αξdi. Since at the beginning of each while-loop∑
v ‖r̂(v)‖2 is at most 2ξ

∑
v∈V d(v) = 2mξ, we have ξα

∑T
i=1 di ≤ 2mξ, which

implies that
∑T

i=1 di ≤ 2m
α . Since there are at most log(1ε) rounds in the second

step, the total running time is bounded by O(md2 log(1/ε)
α). ��

(p̂, r̂) = SharpApproximatePR(ŝ, α, ε)

1. Let ξ = 1, r̂ = ŝ and p̂ = 0.
2. While ξ > ε:

a. Set ξ = ξ
2
.

b. Let p̂′ and r̂′ be the output of ApproximatePR(r̂, α, ξ).
c. Let p̂ = p̂+ p̂′ and r̂ = r̂′.

3. Return p̂ and r̂.

Ranking and Sparsifying a Connection Graph 73

4 The Connection Resistance

Motivated by the definition of effective resistance in electrical network theory,
we consider the following block matrix Ψ = BL

+
G
BT ∈ F(m,m, d;R) where L+

is the pseudo-inverse of L. Note that for a matrix M , the pseudo-inverse of M
is defined as the unique matrix M+ satisfying the following four criteria [14,25]:
(i) MM+M = M ; (ii) M+MM+ = M+; (iii) (MM+)∗ = (MM+); and (iv)
(M+M)∗ = M+M .

We define the connection resistance Reff(e) as Reff(v, u) = ‖Ψ(e, e)‖2. Note
that block Ψ(e, e) is a d × d matrix. If d = 1 or all orthogonal transformations
are identity transformation, i.e. Ouv = Id×d for all (u, v) ∈ E, then it can
be shown that Reff(u, v) is reduced to the usual effective resistance Reff(u, v)
of the underlying graph G. In general, the connection resistance between the
endpoints of an edge e = (u, v) is not necessarily equal to its effective resistance
in the underlying graph G. We will investigate the relation between the effective
resistance in the underlying graphs and connection resistance for some family of
connection graphs.

We consider the connection graph whose underlying graph G is a tree. Our
first observation is the following Lemma.

Lemma 3. Suppose G is a connection graph whose underlying graph G is a tree.
The rotation matrices between u and v are Ouv ∈ O (d) for (u, v) ∈ E. Let L be
the connection Laplacian of G and L be the Laplacian of G respectively. Then
for two vertices u and v joined by a path, denoted by (v1 = u, v1, . . . , vk = v),
we have

L
+(u, v) =

{
L+(u, v)

∏k−1
i=1 Ovi,vi+1 u
= v,

L+(u, v) Id×d u = v.

By using the above lemma, we examine the relation between the connection
resistance and the effective resistance by the following theorem and give one of
its application by Corollary 1. The proof will be included in the full paper.

Theorem 5. Suppose G is a connection graph whose underlying graph is a tree.
If all rotations Ouv ∈ SO (d) for some odd number d. Then for any edge (u, v)
satisfying L+

u,v ≤ 0, we have Reff(u, v) = Reff(u, v).

Corollary 1. For any uniform weighted path on vertices v1, v2, . . . , vn with ro-
tation matrices Ovivi+1 ∈ SO (d) for 1 ≤ i < n and some odd number d, then
Reff(v1, vn) = Reff(v1, vn).

5 Ranking Edges by Using the Connection Resistance

A central part of a graph sparsification algorithm is the sampling technique for
selecting edges. It is crucial to choose the appropriate probabilistic distribution
which can lead to a sparsifier preserving every cut in the original graph. The
following algorithm Sample is a generic sampling algorithm for a graph sparsifi-
cation problem. We will sample edges using the distribution proportional to the
weighted connection resistances.

74 F. Chung and W. Zhao

(G̃ = (V, Ẽ, O, w̃)) = Sample(G = (V,E,O,w), p′, q)

1. For every edge e ∈ E, set pe proportional to p′e.
2. Choose a random edge e of G with probability pe, and add e to G̃ with edge

weight w̃e = we
qpe

. Take q samples independently with replacement, summing
weights if an edge is chosen more than once.

3. Return G̃.

Theorem 6. For a given connection graph G and some positive ξ > 0, we

consider G̃ = Sample(G, p′, q), where p′e = weReff(e) and q = 4nd log(nd) log(1/ξ)
ε2 .

Suppose G and G̃ have connection Laplacian LG and L
G̃
respectively. Then with

probability at least ξ, for any function ∀f : V → Rd, we have

(1− ε)fLGf
T ≤ fL

G̃
fT ≤ (1 + ε)fLGf

T . (3)

Before proving Theorem 6, we need the following two lemmas, in particular
concerning the matrix Λ = W

1/2BL
+
G
BTW

1/2. We omit their proofs here.

Lemma 4. (i) Λ is a projection matrix, i.e. Λ2 = Λ. (ii) The eigenvalues of Λ
are 1 with multiplicity at most nd and 0 otherwise. (iii) Λ(e, e) = Λ(·, e)TΛ(·, e).
To show that G̃ = (V, Ẽ, O, w̃) is a good sparsifier for G satisfying (3), we need to
show that the quadratic forms fL

G̃
fT and fLGf

T are close. By applying similar
methods as in [33], we reduce the problem of preserving fLGf

T to that of gΛgT

for some function g. We consider the diagonal matrix S ∈ F(m,m, d;R), where
the diagonal blocks are scalar matrices given by S(e, e) = w̃e

we
Id×d = Ne

qpe
Id×d and

Ne is the number of times an edge e is sampled.

Lemma 5. Suppose S is a nonnegative diagonal matrix such that ‖ΛSΛ− ΛΛ‖2
≤ ε. Then, ∀f : V → Rd, (1− ε)fLGf

T ≤ fL
G̃
fT ≤ (1 + ε)fLGf

T .

We also require the following concentration inequality in order to prove our
main theorems. Previously, various matrix concentration inequalities have been
derived by many authors including Achiloptas [1], Cristofies-Markström [10],
Recht [26], and Tropp [34]. Here we will use the simple version that is proved in
[8].

Theorem 7. Let Xi be independent random symmetric k×k matrices, Xi ≥ 0,
‖Xi‖2 ≤M for all i a.s. Then for every ε ∈ (0, 1) we have

Pr

[∥∥∥∥∥∑
i

Xi −E

[∑
i

Xi

]∥∥∥∥∥
2

> ε
∑
i

‖E [Xi]‖2
]
≤ k exp

(
− ε2

∑
i ‖E [Xi]‖2
4M

)
.

Proof (of Theorem 6). Our algorithm samples edges from G independently with
replacements, with probabilities pe proportional to weReff(e). Note that sampling
q edges from G corresponds to sampling q columns from Λ. So we can write

ΛSΛ =
∑
e

Λ(·, e)S(e, e)Λ(·, e)T =
∑
e

Ne

qpe
Λ(·, e)Λ(·, e)T =

1

q

q∑
i=1

yiy
T
i

Ranking and Sparsifying a Connection Graph 75

for block matrices y1, . . . , yq ∈ Rnd×d drawn independently with replacements
from the distribution y = 1√

pe
Λ(·, e) with probability pe. Now, we can apply

Theorem 7. The expectation of yyT is given by E
[
yyT
]
=
∑

e pe
1
pe
Λ(·, e)Λ(·, e)T

= Λ which implies that
∥∥E [yyT]∥∥

2
= ‖Λ‖2 = 1. We also have a bound on the

norm of yiy
T
i :
∥∥yiyTi ∥∥2 ≤ maxe

(‖Λ(·,e)TΛ(·,e)‖
2

pe

)
= maxe

(
weReff(e)

pe

)
. Since the

probability pe is proportional to weReff(e), i.e. pe = weReff(e)∑
e weReff(e)

=
‖Λ(e,e)‖2∑
e‖Λ(e,e)‖2

,

we have
∥∥yiyTi ∥∥2 ≤∑e ‖Λ(e, e)‖2 ≤

∑
e Tr (Λ(e, e)) = Tr (Λ) ≤ nd. To complete

the proof, by setting q = 4nd log(nd) log(1/ξ)
ε2 and the fact that dimension of yyT is

nd, we have

Pr

[∥∥∥∥∥1q
q∑

i=1

yiy
T
i −E

[
yyT
]∥∥∥∥∥

2

> ε

]
≤ nd exp

(
− ε2

∑q
i=1

∥∥E [yiyTi]∥∥2
4nd

)

≤ nd exp

(
− ε2q

4nd

)
≤ ξ

for some constant 0 < ξ < 1. Thus, the theorem follows. ��

The oversampling Theorem in [23] can be modified and stated as follows.

Theorem 8 (Oversampling). For a given connection graph G and some posi-

tive ξ > 0, we consider G̃ = Sample(G, p′, q), where p′e = weReff(e), t =
∑

e∈E p′e
and q = 4t log(t) log(1/ξ)

ε2 . Suppose G and G̃ have connection Laplacian LG and
L
G̃

respectively. Then with probability at least ξ, for all f : V → Rd, we have
(1− ε)fLGf

T ≤ fL
G̃
fT ≤ (1 + ε)fLGf

T .

Now let us consider a variation of the connection resistance denoted by Reff(e) =
Tr (Ψ(e, e)). Clearly, we have Reff(e) = Tr (Ψ(e, e)) ≥ ‖Ψ(e, e)‖2 = Reff(e) and∑

eweReff(e) =
∑

eTr (Λ(e, e)) = Tr (Λ) ≤ nd. Using Theorem 8, we have the
following.

Corollary 2. For a given connection graph G and some positive ξ > 0, we

consider G̃ = Sample(G, p′, q), where p′e = weReff(e) and q = 4nd log(nd) log(1/ξ)
ε2 .

Suppose G and G̃ = Sample(G, p′, q) have connection Laplacian LG and L
G̃

respectively. Then with probability at least ξ, for all f : V → Rd, we have
(1− ε)fLGf

T ≤ fL
G̃
fT ≤ (1 + ε)fLGf

T .

References

1. Achlioptas, D.: Database-friendly random projections. In: Proceedings of the 20th
ACM Symposium on Principles of Database Systems, pp. 274–281 (2001)

2. Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in
a Day. In: Proceedings of the 12th IEEE International Conference on Computer
Vision, pp. 72–79 (2009)

76 F. Chung and W. Zhao

3. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vec-
tors. In: Proceedings of the 47th IEEE Symposium on Founation of Computer
Science, pp. 475–486 (2006)

4. Anderson, G.W., Guionnet, A., Zeitouni, O.: An introduction to random matrices.
Cambridge University Press (2010)

5. Benczúr, A.A., Karger, D.R.: Approximating s-t minimum cuts in Õ(n2) time. In:
Proceedings of the 28th ACM Symposium on Theory of Computing, pp. 47–55
(1996)

6. Berkhin, P.: Bookmark-coloring approach to personalized pagerank computing.
Internet Mathematics 3, 41–62 (2006)

7. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)

8. Chung, F., Radcliffe, M.: On the spectra of general random graphs. Electronic
Journal of Combinatorics 18(1), 215–229 (2011)

9. Chung, F., Sternberg, S.: Laplacian and vibrational spectra for homogeneous
graphs. J. Graph Theory 16, 605–627 (1992)

10. Cristofides, D., Markström, K.: Expansion properties of random Cayley graphs
and vertex transitive graphs via matrix martingales. Random Structures Algo-
rithms 32(8), 88–100 (2008)

11. Cucuringu, M., Lipman, Y., Singer, A.: Sensor network localization by eigenvector
synchronization over the Euclidean group. ACM Transactions on Sensor Networks
(in press)

12. Firat, A., Chatterjee, S., Yilmaz, M.: Genetic clustering of social networks us-
ing random walks. Computational Statistics and Data Analysis 51(12), 6285–6294
(2007)

13. Fouss, F., Pirotte, A., Renders, J.-M., Saerens, M.: Random-walk computation of
similarities between nodes of a graph with application to collaborative recommen-
dation. Knowledge and Data Engineering 19(3), 355–369 (2007)

14. Golub, G.H., Van Loan, C.F.: Matrix computations, 3rd edn., pp. 257–258. Johns
Hopkins, Baltimore (1996)

15. Hadani, R., Singer, A.: Representation theoretic patterns in three dimensional cryo-
electron microscopy I - the intrinsic reconstitution algorithm. Annals of Mathemat-
ics 174(2), 1219–1241 (2011)

16. Herbster, M., Pontil, M., Rojas, S.: Fast Prediction on a Tree. In: Proceedings of
the Neural Information Processing Systems Foundation, pp. 657–664 (2008)

17. Jeh, G., Widom, J.: Scaling personalized web search. In: Proceedings of the 12th
World Wide Web Conference WWW, pp. 271–279 (2003)

18. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer Series in Statistics
(2002)

19. Karger, D.R.: Random sampling in cut, flow, and network design problems. Math-
ematics of Operations Research 24(2), 383–413 (1999)

20. Karger, D.R.: Using randomized sparsification to approximate minimum cuts. In:
Proceedings of the 15th ACM Symposium on Discrete Algorithms, pp. 424–432
(1994)

21. Karger, D.R.: Minimum cuts in near-linear time. Journal of the ACM 47(1), 46–76
(2000)

22. Kirchhoff, F.: Über die Auflösung der Gleichungen, auf welche man bei der Un-
tersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys.
Chem. 72, 497–508 (1847)

Ranking and Sparsifying a Connection Graph 77

23. Koutis, I., Miller, G.L., Peng, R.: Approaching Optimality for Solving SDD Linear
Systems. In: Proceedings of 51st IEEE Symposium on Foundations of Computer
Science, pp. 235–244 (2010)

24. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings
of the 7th IEEE International Conference on Computer Vision, pp. 1150–1157
(1999)

25. Penrose, R.: A generalized inverse for matrices. Cambridge Philosophical Soci-
ety 51, 406–413 (1955)

26. Recht, B.: Simpler approach to matrix completion. Journal of Machine Learning
Research (to appear)

27. Singer, A.: Angular synchronization by eigenvectors and semidefinite programming.
Applied and Computational Harmonic Analysis 30(1), 20–36 (2011)

28. Singer, A., Zhao, Z., Shkolnisky, Y., Hadani, R.: Viewing angle classification of
cryo-electron microscopy images using eigenvectors. SIAM Journal on Imaging Sci-
ences 4(2), 723–759 (2011)

29. Singer, A., Wu, H.-T.: Vector Diffusion Maps and the Connection Laplacian. Com-
munications on Pure and Applied Mathematics (to appear)

30. Spielman, D.A., Teng, S.-H.: Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In: Proceedings of the 36th ACM
Symposium on Theory of Computing, pp. 81–90 (2004)

31. Spielman, D.A., Teng, S.-H.: Nearly-linear time algorithms for preconditioning and
solving symmetric, diagonally dominant linear systems (2006),
http://www.arxiv.org/abs/cs.NA/0607105

32. Spielman, D.A., Teng, S.-H.: Spectral Sparsification of Graphs (2010),
http://arxiv.org/abs/0808.4134

33. Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. In:
Proceedings of 40th ACM Symposium on Theory of Computing, pp. 563–568 (2008)

34. Tropp, J.: User-Friendly Tail Bounds for Sums of Random Matrices,
http://arxiv.org/abs/1004.4389

35. Vu, V.: Spectral norm of random matrices. Combinatorica 27(6), 721–736 (2007)
36. Wigderson, A., Xiao, D.: Derandomizing the Ahlswede-Winter matrix-valued Cher-

noff bound using pessimistic estimators, and applications. Theory of Comput-
ing 4(1), 53–76 (2008)

http://www.arxiv.org/abs/cs.NA/0607105
http://arxiv.org/abs/0808.4134
http://arxiv.org/abs/1004.4389

A Game-Theoretic Model of Attention

in Social Networks

Ashish Goel� and Farnaz Ronaghi��

Department of Management Science and Engineering
Stanford University, Stanford, CA
{ashishg,farnaaz}@stanford.edu

Abstract. Wemodel the economics of producing content in online social
networks such as Facebook and Twitter. We propose a game-theoretic
model within which we quantify inefficiencies from contributions by
strategic users in online environments. Attention and information are
assumed to be the main motivation for user contributions. We treat at-
tention as a mechanism for sharing the profit from consuming infor-
mation and introduce a general framework for analyzing dynamics of
contributions in online environments. We analyze the proposed model
and identify conditions for existence and efficient computation of pure-
strategy Nash equilibrium.

We prove a bicriteria bound on the price of anarchy; in particular we
show that the social welfare from central control over level of contribu-
tion by users is no larger than the social welfare from strategic agents
with twice as large consumption utilities. We then construct and analyze
a family of production games that have an arbitrarily large price of anar-
chy. We also prove non-robustness of the price of anarchy for a particular
instance of the introduced family, establishing a distinction between the
games studied here and network congestion games.

1 Introduction

Social networking websites allow users to sign up and keep in touch with others
by friending them. Users are allowed to post short status updates, photos, videos
and links depending on the social network. Despite the differences between these
networks, one feature is common to many of them: Users see a linear news feed
reflecting a chronologically sorted ordering of posts from friends whenever she
logs into each of these sites [1]. Given that the main advantage of these sites
is the convenience of getting a quick update, the balance of information from
friends in the feed becomes important in determining the value the user will gain
from the update [1].

� This research was supported in part by grant 0904325. Part of the research was also
sponsored by the Army Research Laboratory and was accomplished under Cooper-
ative Agreement Number W911NF-09-2-0053.

�� This research was supported by a Stanford Engineering Fellowship.

A. Bonato and J. Janssen (Eds.): WAW 2012, LNCS 7323, pp. 78–92, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Game-Theoretic Model of Attention in Social Networks 79

A user’s news feed can easily get flooded by contributions from an active friend
who attracts most of the attention in a social cluster. It has been observed that
there is a strong correlation between lack of attention and a user’s decision to
stop contributing; also, the more a user contributes the more attention she tends
to receive. Getting attention paid to one’s contributions is a form of value [2] and
users are willing to forsake financial gain for it [5]. Attention was also shown to
spur further contributions in video sharing [6] and blogging [9]; moreover it was
introduced as the main ingredient in successful peer production websites [16].
Taking attention and information as the foremost motivation for user activity
in social networks, high participation from a subset of friends of user u makes
u’s attention a scarce resource for other friends of u, which in turn can make
these other friends less likely to contribute and hence get even less attention. We
model this dynamics of user contributions in online social networks in a game-
theoretic setting and quantify the inefficiencies from strategic user participation.

Our Contributions.Our main contribution is proposing and analyzing a game-
theoretic model of user participation in online social networks. We refer to the
proposed model by ”the general production game“ throughout the paper. The
main elements of our model are users that choose the level/quality of their con-
tributions. Updates from a user are viewed as a bundle in her friends’ news
feed, ignoring the order in which information arrives. We assume that the net-
work structure is fixed. Users are strategic in selecting their level of contribution
but they are not strategic in selecting what information or how much informa-
tion they consume. They are assumed to be utility-maximizing agents who de-
rive utility from attention and information simultaneously. Moreover they incur
a non-negative cost for producing content. Producing more information needs
more effort and there is no cost for inaction. Users prefer more information to
less but they have limited attention capacity so their utility from consumption
has diminishing returns. We formalize these assumptions in section 2 and refer
to them as ”general assumptions“ throughout the paper.

While users consume content, they pay attention to those who generated it. In
other words, users share the profit from consuming information with those who
produced it in the first place. We introduce a general utility scheme and analyze
three instances of it: Proportional, Incremental, and Shapley utility models. The
proportional utility model splits user utility from consumption among friends
proportional to their contribution. The incremental utility model regards the
marginal consumption utility from a user’s contribution as the attention she
receives. The Shapley utility is similar to the incremental utility; however the
incremental utility from a user’s information is computed with respect to only
the information from “earlier” users in a random permutation [14].

We observe that under general assumptions, a unique pure-strategy Nash
equilibrium exists for our proposed game and is characterized via the Karush
Kuhn Tucker(KKT) conditions. Our main result states necessary conditions such
that the social welfare from central control over user production, obligating users
to act according to social interest, is no greater than the social welfare from

80 A. Goel and F. Ronaghi

strategic production when users have twice as large consumption utilities. We
have proved that under general assumption both Shapley and incremental utility
models satisfy this necessary conditions. Our results suggest that improvements
in user experience, such as ease of information discovery and spam detection, can
compensate for inefficiencies from strategic behavior in online environments. We
also analyze the proposed game for simple interesting cases in section 4.2 and
show that the price of anarchy can be arbitrarily large regardless of the number
of agents and network structure.

Our main result is similar to the bicriteria bound for network congestion games
presented in [13], and superficially, it might seem that earlier proof techniques
should directly imply our results. However, both atomic and non-atomic network
congestion games are proved to have a “robust pure Nash price of anarchy” in
the sense of [12]. We show (in section 5) that one particular instance of our pro-
posed production game does not admit a ”robust price of anarchy“, establishing
a distinction between the proposed game and network congestion games.

Related Work. Attention affects the propagation of information in social net-
works, determining the effectiveness of advertising and viral marketing. Many
different approaches have been taken to study attention, including empirical
studies of dynamics of attention [16,15], empirical and game-theoretic analy-
sis of the impact of attention in marketing [1,8], and studies on the impact of
attention(exposure) in high-quality user-generated content [4,7].

Wu et al. [15] study dynamics of collective attention for a piece of story
on digg.com, and they propose a stochastic model that predicts the amount
of attention a story gets by incorporating novelty of the story as a decaying
factor. In a follow-up paper [16], the authors study feedback loops of attention
in peer production websites such as youtube and digg.com. They empirically
show a strong correlation between lack of attention and users’ decision to stop
contributing.

Borgs et al. [1] address the asymmetry of online relationships in social
networks such as Facebook and Twitter. They model the social network as a
complete bi-partite graph where users are either producers or consumers of in-
formation, and edges of the graph have non-negative weights that represent the
quality of updates from a particular producer (in their setting, an advertiser)
to a particular consumer. Users receive update at a rate chosen by advertisers
and can adopt two types of behavior in response to an excessively high rate:
unfollowing and disengagement. They study the set of ties that are realized and
stabilized over time in the followership and engagement models.

Ghosh et al. [4] study the problem of high-quality user generated content in
online crowd-sourcing websites. They propose a game-theoretic model that in-
corporates the quality of content and study mechanisms of splitting attention
(exposure time) to incentivize high-quality content and maximize user partici-
pation. They independently propose a proportional model for splitting the ex-
posure time among contributions, and show that the proportional mechanism
elicits both high quality and high participation in equilibrium.

A Game-Theoretic Model of Attention in Social Networks 81

Unlike previous work, we directly model attention as a scarce resource, as well
as the cost of creating new and useful pieces of information. Attention is shown
to be the foremost motivator in peer production websites such as digg.com and
YouTube [16]; it is also one of the main motivators in online social networks
such as Facebook and Twitter. Information and attention are duals in social
networks hence, instead of modeling information and attention as two separate
entities, we model attention as a mechanism for sharing the profit from con-
suming information. We propose a model in which all agents are strategic and
derive utility simultaneously from consuming and producing information. Agents
are connected to one another in either a symmetric or asymmetric network, i.e.
we don’t make any assumptions on network structure. Also we can re-interpret
the only decision variable in our model from level of contributions to quality of
contributions or rate of updates and our results remain valid.

2 Model

Every user as a member of the social network has friendship relations with at
least one other user. User a produces xa units of information which appear on her
friends’ feed. She perceives ya :=

∑
b∼a qbaxb units of information from her feed

where b ∼ a means a is a friend of b and qba represents a’s interest in b’s updates.
User a pays attention to user b when she consumes the information produced by
her. We model such exchange of attention and information between users of a
social network in a utilitarian framework where every user a incurs an increasing
cost ca(xa) for producing information and derives increasing utility fa(ya) from
consuming it. Users also derive positive utility from receiving attention. We
denote the amount of attention user a receives from her friend b by ta,b(x). So
an arbitrary agent a derives

ua(x) = fa(ya)− ca(xa) + ta(x) (1)

utility from her network of friends where ta(x) =
∑

b∼a ta,b(x) and x represents
the strategy vector.

We analyze the proposed utility scheme and state conditions under which
our bicriteria bound holds. We make three general assumptions throughout the
paper. First, we assume that consumption utility fa(ya) is a differentiable, con-
cave, and increasing function for every agent and fa(0) = 0. Second, we assume
that production cost ca(xa) is a differentiable, increasing, and strictly convex
function for all agents and ca(0) = 0. Third, we assume ta,b(x) is increasing in
xa and ta,b(0,x−a) = 0 where x−a is the strategy vector including production
level for all users except for user a. We also study three particular instances of
our general model denoted by incremental utility, Shapley utility, and propor-
tional utility. Each instance corresponds to a different method of splitting user
attention among friends in online environments.

82 A. Goel and F. Ronaghi

Incremental utility models the amount of attention a user receives by the sum
of consumption utility margins she imposes on her friends in the social network.
Formally, the incremental utility models the attention user a receives by

ta(x) =
∑
b∼a

fb(yb)− fb(yb − qabxa). (2)

Shapely utility implements the Shapley cost sharing scheme as a profit sharing
mechanism to split the profit from consuming information among those who
originally created it. Shapley mechanism assigns

ta(x) =
∑
b∼a

∑
σ∈SN(b)

1

db!
fb(

σ−1(a)∑
i=1

qσ(i)bxσ(i))− fb(

σ−1(a)−1∑
i=1

qσ(i)bxσ(i)) (3)

units of utility from attention to every user a, where SN(b) denotes the set of
all permutations of b’s friends; N(b) is the set of b’s friends and db = |N(b)|.
Marginal profit terms inside the second sum are known as ordered marginals.
The Shapley value is defined as the expectation of ordered marginals over a
uniform distribution on all arrival permutations [14]. Shapley utility arises as
a natural attention sharing mechanism when incoming updates are shown at
random order in the feed provided to users.

Proportional utility is an alternate way of splitting user attention among
friends in a social network. The amount of attention a user receives is modeled
as the weighted sum of friends’ consumption utilities where the weights are equal
to the proportion of the user’s contribution. Formally, the amount of attention
a user receives in the network is

ta(x) =
∑
b∼a

qabxa

yb
fb(yb). (4)

Friends with more high quality updates receive more attention in the propor-
tional mechanism. Similar to the Shapley utility, proportional mechanism arises
as a natural profit sharing scheme when updates are viewed in a random or-
der. Position bios is a well-established phenomenon in online social networks;
items shown higher in user’s update feed have a higher probability of receiving
actions. We ignore the impacts of position bios on the distribution of attention
throughout the paper.

3 Existence and Computability of Nash Equilibrium

We determine sufficient conditions such that our general utility model admits
pure-strategy Nash equilibrium. Moreover we identify exact potential functions
for incremental and Shapley utility models; existence of exact potential functions
implies convergence of the natural Nash dynamics to a pure-strategy equilibrium.

Strategy vector x is a pure Nash equilibrium if every player a chooses her
strategy xa to maximize ua(xa,x−a). Rosen’s theorem [10] for concave n-player
non-cooperative games establishes existence of a unique pure Nash equilibrium
and KKT conditions characterize it.

A Game-Theoretic Model of Attention in Social Networks 83

Proposition 3.1. Our proposed general production game admits a unique pure-
strategy Nash equilibrium if

|∂2ta(x)
∂x2

a
− ∂2ca(xa)

∂x2
a
| > ε for constant ε > 0, and general assumptions hold. Strategy

vector x is a Nash equilibrium strategy if and only if for every player a,

xa(
∂ta(x)

∂xa
− ∂ca(xa)

∂xa
) = 0. (5)

Proof. General assumptions guarantee strict concavity of the utility function
for very player a. The strategy space can be reduced to a convex and compact

set; since |∂2ta(x)
∂x2

a
− ∂2ca(xa)

∂x2
a
| > ε we can define upper bounds on values of xa.

We can apply Rosen’s theorem for concave n-player noncooperative games with
convex and compact strategy space [10] to conclude existence of Nash equilibria
for proposed utility game.

At Nash equilibrium every player solves the following optimization problem:

Maximize fa(ya)− ca(xa) + ta(x)

Subject to: xa ≥ 0.

KKT conditions, stated in (5), determine necessary and sufficient conditions for
optimality. ��

Although proposition 3.1 proves existence of Nash equilibrium for the proposed
production game, it fails to establish Nash equilibrium as naturally arising from
user behavior in online social networks. Proposition 3.2 identifies exact potential
functions for incremental and Shapley utility models. Existence of exact potential
functions alludes that the natural Nash Dynamics, in which players iteratively
play best response; converges to a pure Nash Equilibrium for the game although
convergence might take exponential time [11].

Proposition 3.2. The Incremental utility and Shapley utility games admit an
exact potential function defined correspondingly as

ΦI(x) =
∑
a

{fa(ya)− ca(xa)} , (6)

and

ΦS(x) =
∑
a

−ca(xa) +
∑

S⊆N(a),s=|S|

1

s
(
da

s

)fa(∑
c∈s

qcaxc). (7)

Proof. Similar to the proof statement we use a superscript of I to denote the
incremental model and a superscript of S to denote the Shapley utility model.
It is easy to observe that

uI
a(x

′
a,x−a)− uI

a(x) = ΦI(x′
a,x−a)− ΦI(x),

so by definition ΦI(x) is an exact potential function for the incremental game.

84 A. Goel and F. Ronaghi

User Shapley utility uS
a (xa) can be rewritten as

uS
a (x) = fa(ya)−ca(xa)+

∑
b∼a

∑
S⊆N(b),s=|S|

1

s
(
db

s

){fb(∑
c∈S

qcbxc)−fb(
∑

c∈S,c �=a

qcbxc)}.

(8)
Consider a function of the form

ΦS(x) =
∑
a

−ca(xa) +
∑

S⊆N(a),s=|S|
κa,sfa(

∑
c∈S

qcaxc)

with κa,s = 1

s(das)
. This is an exact potential function for the Shapley utility

game; if user a switches strategies from xa to x′
a, then for all of a’s friends the

consumption utility fb(
∑

c∈S qcbxc) changes in all subsets containing a and the
change in potential function is equal to the change in agent a’s utility given in
(8). ��

While we have not proved convergence bounds with best-response dynamics
observe that under general assumptions proposed potential functions are strictly
concave; hence the unique Nash equilibrium of the incremental and Shapley
utility games can be computed in polynomial time.

We prove a bicriteria bound on the price of anarchy in the rest of the paper.
We state conditions under which such bounds hold for the general production
games, and apply our bounds to the Shapley and incremental utility models.

4 Analysis of the Price of Anarchy

Price of anarchy quantifies the degradation in the efficiency of a game due to
strategic behavior of participating players [13]. The pure Nash price of anarchy
is defined as the ratio of the welfare for the worst pure Nash equilibrium and the
optimum welfare where the welfare function W (x) is defined as the total utility
of all agents. The optimum welfare refers to a setting where a central author-
ity obligates users to behave according to the socially-optimal strategy vector
x∗ = argmaxxW (x). We derive a bicriteria bound on the price of anarchy that
compares W (x∗) with equilibrium welfare in an augmented social network. We
prove that inefficiencies from players’ strategic behavior can be compensated by
”doubling“ the happiness function. In section 4.2, we analyze the price of anar-
chy for the simplest class of production games without augmentation. We show
that the price of anarchy can be arbitararily big even theough these production
games have linear happiness and polynomial cost functions.

4.1 A Bicriteria Bound on the Price of Anarchy

We derive a bicriteria bound on the price of anarchy for the proposed general
production game. We compare the optimal social welfare in an online environ-
ment against the equilibrium welfare in an augmented environment, where the

A Game-Theoretic Model of Attention in Social Networks 85

happiness function is twice as large. We show that the equilibrium welfare in this
augmented version is at least as large as the optimal welfare for the original social
network. Our result relies on the existence of an exact potential function; it also
requires correctness of certain inequalities. We show that both these inequalities
hold for Shapley and incremental utility models.

This section requires a more detailed notation since we work with two utility
models simultaneously. We introduce the notation first and then state our result
formally. Define ga(x) = 2fa(x) for all agents a, Wg(x) denotes the social welfare
for the general production game with consumption utilities ga(x); similarlyW (x)
denotes the social welfare for the general production game with consumption
utilities fa(x). We differentiate between the incremental and the Shapley utility
models with a superscript of I for the former and superscript of S for the latter.
We distinguish the social optimum from the Nash equilibrium by a superscript
of ∗ for social optimum and a superscript of e for the Nash equilibrium. For
example, xI,e represents the equilibrium strategy vector for the incremental
game where consumption utility for all agents a is equal to fa(x) and xI,∗

g denotes
the socially optimal strategy for the same game where consumption utility for
all agents a is ga(x).

We first state our main result in theorem 4.1; our result compares equilibrium
social welfare in an augmented social network against the social optimum in the
original one. We consider improved user experience as the source of augmentation
in the social network and model it by defining a new happiness function ga(x) =
2fa(x). We next show that our result holds for the Shapley and incremental
utility models in propositions 4.3 and 4.2.

Theorem 4.1. Let xe
g denote the equilibrium of a general production game with

happiness function ga(x) = 2fa(x) then Wg(x
e
g) ≥W (x∗) if:

1. the general assumptions hold,

2. ∀a, |∂2ta(x)
∂x2

a
− ∂2ca(xa)

∂x2
a
| > ε for constant ε > 0,

3. the game admits an exact potential function φ(x), and
4. for all valid strategy vectors x, Wg(x) ≥ φg(x) and φg(x) ≥W (x).

Proof. We would like to show that Wg(x
e
g) ≥W (x∗). Assumptions one and two

guarantee existence of a unique pure-strategy equilibrium xe
g. We instantiate

assumption four with x = xe
g so Wg(x

e
g) ≥ φg(xg). The equilibrium strategy

xg maximizes φg(x) because φg(x) is an exact potential function for the gen-
eral production game, so φg(x

e
g) ≥ φg(x

∗). We can instantiate assumption four
once more with x = x∗, obtaining φg(x

∗) ≥W (x∗) which concludes the proof. ��

Our bicriteria bound suggests that any inefficiency from user strategic behavior
in an online environment can be compensated by improvements in user experi-
ence. Every different choice of ta(x) corresponds to a different attention shar-
ing mechanism. Not all attention sharing mechanisms admit an exact potential
function, e.g. the proportional production game. We identified exact potential
functions for the incremental and Shapley utility models in proposition 3.2; we
only need to prove that assumption four from theorem 4.1 holds.

86 A. Goel and F. Ronaghi

Proposition 4.2. Under general assumptions, W I
g (x) ≥ φI

g(x) and φI
g(x) ≥

W I(x) for all valid strategy vectors x.

Proof. The potential function for the incremental utility game is given according
to (6) and

W I(x) =
∑
a

{
fa(ya)− ca(xa) +

∑
b∼a

fb(yb)− fb(yb − qabxa)

}
. (9)

Since fa(x) is increasing,
∑

a

∑
b∼a {fb(yb)− fb(yb − qabxa)} ≥ 0, thus W I

g (x) ≥
φI
g(x).

Two observations prove the second part of the proposition. First, W I(x) can
be expanded and rewritten as:

W (x) =
∑
a

{
fa(ya)− ca(xa) +

∑
b∼a

fa(ya)− fa(ya − qbaxb)

}

Second, since fa(x) is concave and increasing and ya =
∑

b∼a qbaxb;

fa(ya) ≥
∑
b∼a

fa(ya)− fa(ya − qbaxb).

So φI
g(x) ≥W I(x). ��

Similarly we use concavity of user happiness function to show that assumption
four also holds for the Shapley utility game.

Proposition 4.3. Under general assumption, WS
g (x) ≥ φS

g (x) and φS
g (x) ≥

WS(x) for all valid strategy vectors x.

Proof. The social welfare function for Shapley utility game with consumption
utility ga(x) is

W S
g (x) =

∑
a

ga(ya)− ca(xa)+
∑
b∼a

∑
S⊆N(b),s=|S|

1

s
(
db
s

){gb(∑
c∈S

qcbxc)−gb(
∑

c∈S,c
=a

qcbxc)}

(10)

and

ΦS
g (x) =

∑
a

−ca(xa) +
∑

S⊆N(a),s=|S|

1

s
(
da

s

)ga(∑
c∈S

qcaxc).

Note that ga(
∑

c∈s qcaxc) ≤ ga(ya) since ga(x) is an increasing function so

ΦS
g (x) ≤

∑
a

−ca(xa) +
∑

S⊆N(a),s=|S|

1

s
(
da

s

)ga(ya). (11)

A Game-Theoretic Model of Attention in Social Networks 87

The second term in (11) is equal to ga(ya) and the last term in (10) is positive,
thus WS

g (x) ≥ ΦS
g (x).

We next show ΦS
g (x) ≥WS(x). We first expand and rewrite WS(x) as

W S(x) =
∑
a

fa(ya)−ca(xa)+
∑

S⊆N(a),s=|S|

1

s
(
da
s

) ∑
b∈S

{fa(
∑
c∈S

qcaxc)−fa(
∑

c∈S,c
=b

qcaxc)}.

(12)

Since fa(x) is concave and increasing∑
b∈S

{fa(
∑
c∈S

qcaxc)− fa(
∑

c∈S,c �=b

qcaxc)} ≤ fa(
∑
c∈S

qcaxc).

This is sufficient to show that

fa(ya) ≤
∑

S⊆N(a),s=|S|

1

s
(
da

s

)fa(∑
c∈S

qcaxc). (13)

One can expand the right hand side (RHS) summation in (13) and rewrite it
using the size of subsets as the summation variable as follows

RHS =

da∑
s=1

∑
S⊆N(a),|S|=s

1

s
(
da

s

)fa(∑
c∈S

qcaxc).

We prove (13) using a simple procedure.

1. Among all subsets with original size s, choose the set S∗ with the smallest
value of fa(

∑
c∈S qcaxc),

2. Choose an arbitrary element xm from S∗,
3. Remove xm from S∗,
4. Choose an arbitrary subset S′ such that xm /∈ S′,
5. Add xm to S′,
6. Repeat the procedure until all sets have the same value of fa(

∑
c∈S qcaxc).

The total sum in RHS decreases throughout the procedure so

1

da
fa(ya) ≤

∑
S⊆N(a),|S|=s

1

s
(
da

s

)fa(∑
c∈S

qcaxc). (14)

All remaining subsets evaluate to fa(ya) and there are
(
da−1
s−1

)
such subsets after

all iterations are over. Summing (14) over all players a shows that (13) holds
and ΦS

g (x) ≥WS(x). ��

We showed that the social welfare induced by central control for incremental and
Shapley utility models is no larger than the social welfare under strategic contri-
bution when users have twice as large consumption utilities. Although our result
does not attribute inefficiencies from user strategic behavior to lack of attention
or excessive information, it indicates that improvements in user experience such
as spam reduction, easy exploration and improved information discovery com-
pensate for either of the existing inefficiencies from strategic behavior in online
environments.

88 A. Goel and F. Ronaghi

4.2 Simple Games with Unbounded Price of Anarchy

Our bicriteria bound does not exactly quantify the price of anarchy. Although
the social gain from central control can be compensated by improvements in
user experience, the degradation from strategic behavior can be still unbounded.
We introduce a family of general production games that have an arbitrarily
large price of anarchy. We consider agents with linear consumption utilities and
convex polynomial cost functions. It is worthwhile to note that the incremental,
proportional and, Shapley utility functions are equal.

We investigate a family of production games parameterized by γ and a set
{αa} of marginal consumption utilities. Agents have linear consumption utility
fa(y) = αay, αa > 0. Moreover, they have polynomial cost functions ca(x) =
1
γx

γ , γ > 1. Regardless of network structure the optimal and equilibrium strategy
vectors can be characterized via FOC, so we can exactly quantify the price of
anarchy.

Theorem 4.4. Regardless of the network structure, the price of anarchy for the
family of production games defined by cost function ca(x) = 1

γx
γ and utility

functions fa(y) = αay, is equal to (2γ−1
γ−1)2

γ
1−γ when γ > 1 and αa > 0.

Proof. The utility function for every player a is ua(x) = αaya − ca(xa) +
βaxa where βa =

∑
b∼a qbaαb and the social welfare function is W (x) =∑

a {2βaxa − ca(xa)}. It is easy to observe that the social welfare and agent
utility functions are strictly concave so the first-order optimality conditions char-
acterize the pure Nash equilibrium strategy, x, and the optimum strategy, x∗,
as

xa = β
1

γ−1
a ,

x∗
a = (2βa)

1
γ−1 .

Therefore the social welfare at pure Nash equilibrium W (x) = 2γ−1
γ

∑
a β

γ
γ−1
a

and the optimal social welfare W (x∗) = γ−1
γ 2

γ
γ−1
∑

a β
γ

γ−1
a . The pure-Nash

price of anarchy is defined as the ratio of the pure Nash equilibrium social
welfare divided by the optimum social welfare and is equal to (2γ−1

γ−1)2
γ

1−γ . ��

Exact analysis of the price of anarchy provides us with more predictive power
over the existing inefficiencies due to strategic behavior. We now distinguish
games from the introduced family with an arbitrarily large and an arbitrarily
close-to-one price of anarchy.

Corollary 4.5. Regardless of network structure, the price of anarchy for the
family of production games defined by cost function ca(x) = 1

γx
γ and utility

functions fa(y) = αay, αa > 0 can be arbitrarily large when γ gets arbitrarily
close to one and the price of anarchy can be arbitrarily close to one when γ gets
arbitrarily large.

A Game-Theoretic Model of Attention in Social Networks 89

Corollary 4.5 identifies utility games with almost linear cost functions and linear
consumption utilities as instances with unbounded price of anarchy. It also iden-
tifies utility games, that have polynomial cost with large coefficient and linear
consumption utilities, as instances with almost no inefficiencies from strategic
behavior. Non-existence of inefficiencies from strategic behavior in the latter ex-
ample is mainly due to infinitesimal production at the pure Nash equilibrium
and the social optimum for all users.

5 Robust Analysis of the Price of Anarchy

Smooth analysis of games with sum objectives identifies a sufficient condition for
an upper bound on the price of anarchy of pure Nash equilibria and encodes a
canonical proof template for deriving such bounds [12]. Canonical bounds extend
automatically to more general notions of equilibria such as mixed Nash equilib-
rium, correlated equilibrium and no-regret sequences. A utility maximization
game is (λ, μ)-smooth if for every two outcomes x and x∗,∑

a

ua(x
∗
a,x−a) ≥ λW (x∗)− μW (x). (15)

Roughgarden [12] defines robust price of anarchy as the best lower bound on the
price of anarchy that is provable using a smoothness argument. The robust price
of anarchy for a utility maximization game is

sup

{
λ

1 + μ
: (λ, μ) s.t. game is (λ, μ)-smooth

}
. (16)

Congestion games with cost functions restricted to a fixed set are proved to
be tight; meaning that the canonical price of anarchy is also robust. In par-
ticular network routing games are (λ, μ)-smooth with robust price of anarchy
of 4

3 for non-atomic flows and a price of anarchy of 5
2 for atomic flows. We

focus on production games with linear consumption utility and quadratic cost
functions(γ = 2). Theorem 4.4 quantifies price of anarchy of 3

4 for this class of
games. On the other hand, we show that the robust price of anarchy for the
same class of games is at most 0.098, meaning that the robust price of anarchy
is not tight which is a strong distinction between production games and network
congestion games.

Theorem 5.1. Robust price of anarchy for a production game with consumption
utilities fa(y) = αay, α > 0 and production cost ca(x) = 0.5x2 is at most 0.098.

Proof. Agent utility for the proposed family of games is

ua(x) = αaya − x2
a

2
+ βaxa, (17)

where βa =
∑

b∼a qbaαb. Also the social welfare function can be summarized into

W (x) =
∑
a

{
2βaxa − x2

a

2

}
. (18)

90 A. Goel and F. Ronaghi

Consider two strategy vectors x and x∗ where for all users a, xa = dβa and
x∗
a = cβa for constants c and d (c
= d). Smoothness conditions in (15) can be

written for x and x∗ as∑
a

(d+ c− c2

2
)β2

a ≥
∑
a

(2λc− λ
c2

2
− 2μd+ μ

d2

2
)β2

a.

So (λ, μ)-smoothness requires

d+ c− c2

2
≥ 2λc− λ

c2

2
− 2μd+ μ

d2

2
. (19)

Robust price of anarchy is defined as the supremum of λ
1+μ over all pairs

of (λ, μ) for which the smoothness conditions hold. Equation (19) requires

μ ≥ 2λc−λ c2

2 −d−c+ c2

2

2d−d2

2

where 2d− d2

2 > 0. Supremum of λ
1+μ takes place at the

smallest value of μ, so we can set

μ =
2λc− λ c2

2 − d− c+ c2

2

2d− d2

2

. (20)

After substituting μ from (20), the canonical price of anarchy bound from (15)
will be equal to

(2d− d2

2)λ

(2c− c2

2)λ + 2d− d2

2 − d− c− c2

2 .
(21)

Equation (21) is a hyperbolic function in λ and its supremum is equal to

4d− d2

4c− c2
(22)

when 2c− c2

2 > 0 and 2d − d2

2 − d − c − c2

2 > 0. Our choice of values for c
and d that satisfy above inequalities determines an upper bound on the robust
price of anarchy. Values c = 2.2 and d = 0.1 generate an upper bound of 0.098
for robust price of anarchy using (22) and satisfy above inequalities with valid
values for λ and μ. ��
Theorem 5.1 shows that the robust price of anarchy is not equal to the pure-
Nash price of anarchy so any bound from the canonical analysis of the game is
not tight. This is in contrast with Roughgarden’s result about network routing
games where canonical bounds are tight even for the smallest class of equilibria,
i.e. pure Nash equilibria [12]. Theorem 5.1 does not prove smoothness of the
production game but in a sense it shows that canonical analysis and robust
price of anarchy are not the right tool for analyzing proposed production games.
Although our bicriteria bound is very similar to that of Tardos et al. in [13], but
theorem 5.1 proves a strong distinction between routing games and the games
studies in this paper.

A Game-Theoretic Model of Attention in Social Networks 91

6 Discussion

We introduced a game-theoretic framework to analyze inefficiencies from strate-
gic behavior in online social networks. We proved that the degradation in effi-
ciency of the proposed game resulting from strategic user participation can be
compensated by improvements in the online environment.

Although we are unable to give a closed-form solution for the pure-equilibrium
strategy in the general production game, we can characterize a closed-form so-
lution in d-regular graphs. We are also able to find the pure-strategy Nash equi-
librium numerically in general networks. Equilibrium utility is higher for larger
values of d in a d-regular graph. Our numerical analysis on several random net-
works shows that the equilibrium utility, the utility from attention, and the
utility from information are significantly correlated with the number of friends a
user has in the social network. There are a number of interesting directions for fu-
ture work within the proposed framework; we conclude this paper by explaining
some of these directions.

A natural direction to explore is to study the proposed general production
game as a network formation game where strategic players can add and drop
links in the social network. Because the proposed general production game does
not include any cost for information overload, dense network structures are more
likely to form. Empirical evidence indicates that users appreciate new informa-
tion less as they consume more information. We implicitly incorporate cost of
information overload by modeling user happiness as a concave function. An in-
teresting direction is to model an explicit cost for information overload. Our
preliminary results show that unfortunately our bicriteria bound on the price of
anarchy does not hold in this setting.

Different mechanisms of viewing information on user’s news feed in online
social networks can be modeled as a different attention sharing mechanism
within our general production framework. An interesting future direction is to
compare available attention sharing schemes e.g. chronological sorting, collab-
orative filtering, and etc in the proposed game-theoretic framework. This is
very similar to the mechanism-design approach that Ghosh et al have taken [4][3].

Acknowledgements. We are thankful to Amin Saberi and anonymous
reviewers for helpful comments.

References

1. Borgs, C., Chayes, J., Karrer, B., Meeder, B., Ravi, R., Reagans, R., Sayedi, A.:
Game-Theoretic Models of Information Overload in Social Networks. In: Kumar,
R., Sivakumar, D. (eds.) WAW 2010. LNCS, vol. 6516, pp. 146–161. Springer,
Heidelberg (2010)

2. Franck, G.: Essays on Science and Society: Scientific Communication–A Vanity
Fair? Science 286(5437), 53–55 (1999)

3. Ghosh, A., Hummel, P.: A game-theoretic analysis of rank-order mechanisms for
user-generated content. In: Proceedings of the 12th ACM Conference on Electronic
Commerce, EC 2011, pp. 189–198. ACM, New York (2011)

92 A. Goel and F. Ronaghi

4. Ghosh, A., McAfee, P.: Incentivizing high-quality user-generated content. In: Pro-
ceedings of the 20th International Conference on World Wide Web, WWW 2011,
pp. 137–146. ACM, New York (2011)

5. Huberman, B.A., Loch, C.H., ÖNçüler, A.: Status As a Valued Resource. Social
Psychology Quarterly 67(1), 103–114 (2004)

6. Huberman, B.A., Romero, D.M., Wu, F.: Crowdsourcing, attention and produc-
tivity. J. Inf. Sci. 35, 758–765 (2009)

7. Jain, S., Chen, Y., Parkes, D.C.: Designing incentives for online question and an-
swer forums. In: Proceedings of the 10th ACM Conference on Electronic Commerce,
EC 2009, pp. 129–138. ACM, New York (2009)

8. Leskovec, J., Adamic, L., Huberman, B.: The dynamics of viral marketing. In:
Proceedings of the 7th ACM Conference on Electronic Commerce, EC 2006, pp.
228–237. ACM Press (2005)

9. Miura, A., Yamashita, K.: Psychological and Social Influences on Blog Writing: An
Online Survey of Blog Authors in Japan. Journal of Computer-Mediated Commu-
nication 12(4), 1452–1471 (2007)

10. Rosen, J.B.: Existence and Uniqueness of Equilibrium Points for Concave N-Person
Games. Econometrica 33(3), 520–534 (1965)

11. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Inter-
national Journal of Game Theory 2(1), 65–67 (1973)

12. Roughgarden, T.: Intrinsic robustness of the price of anarchy. In: Proceedings of the
41st Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 513–522.
ACM, New York (2009)

13. Roughgarden, T., Tardos, E.: How bad is selfish routing? In: Proceedings of the
41st Annual Symposium on Foundations of Computer Science, pp. 93–102. IEEE
Computer Society, Washington, DC (2000)

14. Shapley, L.S.: A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds.)
Contributions to the Theory of Games, Volume II. Annals of Mathematics Studies,
vol. 28, pp. 307–317. Princeton University Press, Princeton (1953)

15. Wu, F., Huberman, B.A.: Novelty and collective attention. Technical report, Pro-
ceedings of National Academy of Sciences (2007)

16. Wu, F., Wilkinson, D.M., Huberman, B.A.: Feedback loops of attention in peer
production. In: Proceedings of the 2009 International Conference on Computational
Science and Engineering, vol. 4, pp. 409–415. IEEE Computer Society, Washington,
DC (2009)

On Certain Properties of Random Apollonian Networks

Alan Frieze and Charalampos E. Tsourakakis

Department of Mathematical Sciences, Carnegie Mellon University, USA
af1p@random.math.cmu.edu, ctsourak@math.cmu.edu

Abstract. In this work we analyze fundamental properties of Random Apollo-
nian Networks [34,35], a popular random graph model which generates planar
graphs with power law properties. Specifically, we analyze (a) the degree distri-
bution, (b) the k largest degrees, (c) the k largest eigenvalues and (d) the diameter,
where k is a constant.

1 Introduction

Due to the surge of interest in social networks, the Web graph, the Internet,
biological networks and many other types of networks, a large amount of research has
focused on modeling real-world networks in recent years. Existing well-known mod-
els include the preferential attachment model [7], Kronecker graphs [28], the Cooper-
Frieze model [16], the Aiello-Chung-Lu model [1], protean graphs [31] and the
Fabrikant-Koutsoupias-Papadimitriou model [21]. In this work we focus on Random
Apollonian Networks (RANs), a popular random graph model for generating planar
graphs with power law properties [35]. Before we state our main results we briefly
describe the model.

Model: An example of a RAN is shown in Figure 1. At time t = 1 the RAN is shown in
Figure 1a. At each step t ≥ 2 a face F is chosen uniformly at random among the faces
of Gt. Let i, j, k be the vertices of F . We add a new vertex inside F and we connect
it to i, j, k. Higher dimensional RANs also exist where instead of triangles we have
k-simplexes k ≥ 3, see [34]. It is easy to see that the number of vertices nt, edges mt

and faces Ft at time t ≥ 1 in a RAN Gt satisfy:

nt = t+ 3, mt = 3t+ 3, Ft = 2t+ 1.

Note that a RAN is a maximal planar graph since for any planar graph mt ≤ 3nt− 6 ≤
3t+ 3.

Surprisingly, despite the popularity of the model various important properties have
been analyzed experimentally and heuristically with lack of rigor. In this work, we prove
the following theorems using existing techniques [3,22,29].

Theorem 1 (Degree Sequence)
Let Zk(t) denote the number of vertices of degree k at time t, k ≥ 3. For t sufficiently
large and for any k ≥ 3 there exists a constant bk depending on k such that

|E [Zk(t)]− bkt| ≤ K, where K = 3.6.

A. Bonato and J. Janssen (Eds.): WAW 2012, LNCS 7323, pp. 93–112, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

94 A. Frieze, C.E. Tsourakakis

Furthermore, for any λ > 0

Pr [|Zk(t)− E [Zk(t)] | ≥ λ] ≤ e−
λ2

72t . (1)

For previous weaker results on the degree sequence see [33,35]. An immediate corollary
which proves strong concentration of Zk(t) around its expectation is obtained from
Theorem 1 and a union bound by setting λ = 10

√
t log t. Specifically:

Corollary 1. For all possible degrees k

Pr
[
|Zk(t)− E [Zk(t)] | ≥ 10

√
t log t

]
= o(1).

The next theorem provides insight into the asymptotic growth of the highest degrees of
RANs and is crucial in proving Theorem 3.

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 100

Fig. 1. Snapshots of a Random Apollonian Network (RAN) at: (a) t = 1 (b) t = 2 (c) t = 3 (d)
t = 100

Theorem 2 (Highest Degrees). Let Δ1 ≥ Δ2 ≥ . . . ≥ Δk be the k highest degrees
of the RAN Gt at time t where k is a fixed positive integer. Also, let f(t) be a function
such that f(t)→ +∞ as t→ +∞. Then whp1

t1/2

f(t)
≤ Δ1 ≤ t1/2f(t)

and for i = 2, . . . , k

t1/2

f(t)
≤ Δi ≤ Δi−1 − t1/2

f(t)
.

The growing function f(t) cannot be removed, see [22]. Using Theorem 2 and the
technique of Mihail and Papadimitriou [29] we show how the top eigenvalues of the
adjacency matrix representation of a RAN grow asymptotically as t→ +∞ whp.

Theorem 3 (Largest Eigenvalues). Let k be a fixed positive integer. Also, let λ1 ≥
λ2 ≥ . . . ≥ λk be the largest k eigenvalues of the adjacency matrix of Gt. Then
whp λi = (1± o(1))

√
Δi.

1 An event At holds with high probability (whp) if lim
t→+∞

Pr [At] = 1.

On Certain Properties of Random Apollonian Networks 95

Also, we show the following refined upper bound for the asymptotic growth of the
diameter.

Theorem 4 (Diameter). The diameter d(Gt) of Gt satisfies in probability d(Gt) ≤
ρ log t where 1

ρ = η is the unique solution greater than 1 of the equation η−1− log η =
log 3.

The outline of the paper is as follows: in Section 2 we present briefly related work and
technical preliminaries needed for our analysis. We prove Theorems 1, 2, 3 and 4 in
Sections 3, 4, 5 and 6 respectively. Unavoidably due to the space constraint we have
included for completeness reasons the proofs of certain lemmas which are omitted from
the main part of our paper in the Appendix 8. In Section 7 we investigate another prop-
erty of the model. Finally, in Section 8 we conclude by suggesting few open problems.

2 Related Work

Apollonius of Perga was a Greek geometer and astronomer noted for his writings on
conic sections. He introduced the problem of space filling packing of spheres whose
classical solution, the so-called Apollonian packing [25], exhibits a power law behav-
ior. Specifically, the circle size distribution follows a power law with exponent around
1.3 [11]. Apollonian Networks (ANs) were introduced in [4] and independently in [20].
Zhou et al. [35] introduced Random Apollonian Networks (RANs). Their degree se-
quence was analyzed inaccurately in [35] (see comment in [33]) and subsequently using
physicist’s methodology in [33]. Eigenvalues of RANs have been studied only exper-
imentally [5]. Concerning the diameter of RNAs it has been shown to grow logarith-
mically [35] using heuristic arguments (see for instance equation B6, Appendix B in
[35]). RANs are planar 3-trees, a special case of random k-trees [27]. Cooper and Ue-
hara [17] and Gao [23] analyzed the degree distribution of random k-trees, a closely
related model to RANs. In RANs –in contrast to random k-trees– the random k clique
chosen at each step has never previously been selected. For example, in the two dimen-
sional RAN any chosen face is being subdivided into three new faces by connecting
the incoming vertex to the vertices of the boundary. Random k-trees due to their power
law properties have been proposed as a model for complex networks, see, e.g., [17,24]
and references therein. Recently, a variant of k-trees, namely ordered increasing k-trees
has been proposed and analyzed in [30]. Closely related to RANs but not the same are
random Apollonian network structures which have been analyzed by Darrasse, Soria et
al. [8,18,19].

Bollobás, Riordan, Spencer and Tusnády [10] proved rigorously the power law dis-
tribution of the Barabási-Albert model [7]. Chung, Lu, Vu [15] Flaxman, Frieze, Fenner
[22] and Mihail, Papadimitriou [29] have proved rigorous results for eigenvalue related
properties of real-world graphs using various random graph models. In Section 3 we
invoke the following useful lemma.

Lemma 1 (Lemma 3.1, [14]). Suppose that a sequence {at} satisfies the recurrence

at+1 = (1− bt
t+ t1

)at + ct

96 A. Frieze, C.E. Tsourakakis

for t ≥ t0. Furthermore suppose lim
t→+∞ bt = b > 0 and lim

t→+∞ ct = c. Then lim
t→+∞

at
t

exists and

lim
t→+∞

at
t

=
c

1 + b
.

In Section 3 we also use the Azuma-Hoeffding inequality [6,26].

Lemma 2 (Azuma-Hoeffding inequality). Let λ > 0. Also, let (Xt)
n
t=0 be a martin-

gale with |Xt+1 −Xt| ≤ c for t = 0, . . . , n− 1.Then:

Pr [|Xn −X0| ≥ λ] ≤ exp
(
− λ2

2c2n

)
.

3 Proof of Theorem 1

We decompose our proof in a sequence of Lemmas. For brevity let Nk(t) = E [Zk(t)],
k ≥ 3. Also, let dv(t) be the degree of vertex v at time t and 1(dv(t) = k) be an
indicator variable which equals 1 if dv(t) = k, otherwise 0. Then, for any k ≥ 3 we can
express the expected number Nk(t) of vertices of degree k as a sum of expectations of
indicator variables:

Nk(t) =
∑
v

E [1(dv(t) = k)] . (2)

We distinguish two cases in the following.

• CASE 1: k = 3:

Observe that a vertex of degree 3 is created only by an insertion of a new vertex. The
expectation N3(t) satisfies the following recurrence2

N3(t+ 1) = N3(t) + 1− 3N3(t)

2t+ 1
. (3)

The basis for Recurrence (3) is N3(1) = 4. We prove the following lemma which shows

that lim
t→+∞

N3(t)

t
=

2

5
.

Lemma 3. N3(t) satisfies the following inequality:

|N3(t)− 2

5
t| ≤ K, where K = 3.6 (4)

2 The three initial vertices participate in one less face than their degree. However, this leaves our
results unchanged.

On Certain Properties of Random Apollonian Networks 97

Proof. We use induction. Assume that N3(t) =
2
5 t + e3(t), where e3(t) stands for the

error term. We wish to prove that for all t, |e3(t)| ≤ K . The result trivially holds for
t = 1. We also see that for t = 1 inequality (4) is tight. Assume the result holds for
some t. We show it holds for t+ 1.

N3(t+ 1) = N3(t) + 1− 3N3(t)

2t+ 1
⇒

e3(t+ 1) = e3(t) +
3

5
− 6t+ 15e3(t)

10t+ 5
= e3(t)

(
1− 3

2t+ 1

)
+

3

5(2t+ 1)
⇒

|e3(t+ 1)| ≤ K(1− 3

2t+ 1
) +

3

5(2t+ 1)
≤ K

Therefore inductively Inequality (4) holds for all t ≥ 1. �

• CASE 2: k ≥ 4:

For k ≥ 4 the following holds:

E [1(dv(t+ 1) = k)] = E [1(dv(t) = k)] (1− k

2t + 1
) + E [1(dv(t) = k − 1)]

k − 1

2t+ 1
(5)

Therefore, we can rewrite Equation (2) for k ≥ 4 as follows:

Nk(t+ 1) = Nk(t)(1 − k

2t+ 1
) +Nk−1(t)

k − 1

2t+ 1
(6)

Lemma 4. For any k ≥ 3, the limit lim
t→+∞

Nk(t)

t
exists. Specifically, let

bk = lim
t→+∞

Nk(t)

t
. Then, b3 = 2

5 , b4 = 1
5 , b5 = 4

35 and for k ≥ 6 bk = 24
k(k+1)(k+2) .

Furthermore, for all k ≥ 3

|Nk(t)− bkt| ≤ K, where K = 3.6. (7)

Proof. For k = 3 the result holds by Lemma 3 and specifically b3 = 2
5 . Assume the

result holds for some k. We show that it holds for k + 1 too. Rewrite Recursion (6) as:
Nk(t + 1) = (1 − bt

t+t1
)Nk(t) + ct where bt = k/2, t1 = 1/2, ct = Nk−1(t)

k−1
2t+1 .

Clearly lim
t→+∞ bt = k/2 > 0 and lim

t→+∞ ct = lim
t→+∞ bk−1t

k − 1

2t+ 1
= bk−1(k − 1)/2.

Hence by Lemma 1:

lim
t→+∞

Nk(t)

t
=

(k − 1)bk−1/2

1 + k/2
= bk−1

k − 1

k + 2
.

Since b3 = 2
5 we obtain that b4 = 1

5 , b5 = 4
35 for any k ≥ 6, bk = 24

k(k+1)(k+2) .
This shows that the degree sequence of RANs follows a power law distribution with
exponent 3.

98 A. Frieze, C.E. Tsourakakis

Now we prove Inequality (7). The case k = 3 was proved in Lemma 3. Let ek(t) =
Nk(t)−bkt. Assume the result holds for some k ≥ 3, i.e., |ek(t)| ≤ K where K = 3.6.
We show it holds for k + 1 too. Substituting in Recurrence (2) and using the fact that
bk−1(k − 1) = bk(k + 2) we obtain the following:

ek(t+ 1) = ek(t) +
k − 1

2t+ 1
ek−1(t)− k

2t+ 1
ek(t)⇒

|ek(t+ 1)| ≤ |(1− k

2t+ 1
)ek(t)|+ | k − 1

2t+ 1
ek−1(t)| ≤ K(1− 1

2t+ 1
) ≤ K

Hence by induction, Inequality (7) holds for all k ≥ 3. �

Using integration and a first moment argument, it can be seen that Lemma 4 agrees
with Theorem 2 where it is shown that the maximum degree is ≈ t1/2. (While bk =
O(k−3) suggests a maximum degree of order t1/3, summing bk over k ≥ K suggests a
maximum degree of order t1/2).

Finally, the next Lemma proves the concentration of Zk(t) around its expected value
for k ≥ 3. This lemma applies Lemma 2 and completes the proof of Theorem 1.

Lemma 5. Let λ > 0. For k ≥ 3

Pr [|Zk(t)− E [Zk(t)] | ≥ λ] ≤ e−
λ2

72t . (8)

Proof. Let (Ω,F ,P) be the probability space induced by the construction of a RAN af-
ter t insertions. Fix k, where k ≥ 3, and let (Xi)i∈{0,1,...,t} be the martingale sequence
defined byXi = E [Zk(t)|Fi], whereF0 = {∅, Ω} andFi is the σ-algebra generated by
the RAN process after i steps. Notice X0 = E [Zk(t)|{∅, Ω}] = Nk(t), Xt = Zk(t).
We show that |Xi+1 − Xi| ≤ 6 for i = 0, . . . , t − 1. Let Pj = (Y1, . . . , Yj−1, Yj),
P ′
j = (Y1, . . . , Yj−1, Y

′
j) be two sequences of face choices differing only at time j.

Also, let P̄ , P̄ ′ continue from Pj , P
′
j until t. We call the faces Yj , Y

′
j special with re-

spect to P̄ , P̄ ′. We define a measure preserving map P̄ �→ P̄ ′ in the following way: for
every choice of a non-special face in process P̄ at time l we make the same face choice
in P̄ ′ at time l. For every choice of a face inside the special face Yj in process P̄ we
make an isomorphic (w.r.t., e.g., clockwise order and depth) choice of a face inside the
special face Y ′

j in process P̄ ′. Since the number of vertices of degree k can change by
at most 6, i.e., the (at most) 6 vertices involved in the two faces Yj , Y

′
j the following

holds:

|E [Zk(t)|P]− E [Zk(t)|P ′] | ≤ 6.

Furthermore, this holds for any Pj , P
′
j . We deduce that Xi−1 is a weighted mean of

values, whose pairwise differences are all at most 6. Thus, the distance of the mean
Xi−1 is at most 6 from each of these values. Hence, for any one step refinement |Xi+1−
Xi| ≤ 6 ∀i ∈ {0, . . . , t− 1}. By applying the Azuma-Hoeffding inequality as stated in
Lemma 2 we obtain

Pr [|Zk(t)− E [Zk(t)] | ≥ λ] ≤ 2e−
λ2

72t . (9)

�

On Certain Properties of Random Apollonian Networks 99

4 Proof of Theorem 2

We decompose the proof of Theorem 2 into several lemmas which we prove in the
following. Specifically, the proof follows directly from Lemmas 7, 8, 9, 10, 11. We
partition the vertices into three sets: those added before t0, between t0 and t1 and after
t1 where t0 = log log log (f(t)) and t1 = log log (f(t)). Recall that f(t) is a function
such that lim

t→+∞ f(t) = +∞. We define a supernode to be a collection of vertices and

the degree of the supernode the sum of the degrees of its vertices.

Lemma 6. Let dt(s) denote the degree of vertex s at time t. and let a(k) = a(a +
1) . . . (a+ k − 1) denote the rising factorial function. Then, for any positive integer k

E

[
dt(s)

(k)
]
≤ (k + 2)!

2

(2t
s

) k
2 . (10)

Proof. See Appendix. �
Lemma 7. The degree Xt of the supernode Vt0 of vertices added before time t0 is at

least t1/40

√
t whp.

Proof. We consider a modified process Y coupled with the RAN process, see also Fig-
ure 2. Specifically, let Yt be the modified degree of the supernode in the modified pro-
cess Y which is defined as follows: for any type of insertion in the original RAN pro-
cess –note there exist three types of insertions with respect to how the degree Xt of the
supernode (black circle) gets affected, see also Figure 2– Yt increases by 1. We also
define Xt0 = Yt0 . Note that Xt ≥ Yt for all t ≥ t0. Let d0 = Xt0 = Yt0 = 6t0 +6 and
p∗ = Pr [Yt = d0 + r|Yt0 = d0].
The following technical claim is proved in an appendix.

Claim (1)

p∗ ≤
(
d0 + r − 1

d0 − 1

)(2t0 + 3

2t+ 1

)d0/2

e
3
2+t0− d0

2 + 2r
3
√

t

Let A1 denote the event that the supernode consisting of the first t0 vertices has degree
Yt in the modified process Y less than t

1/4
0

√
t. Note that since {Xt ≤ t

1/4
0

√
t} ⊆ {Yt ≤

t
1/4
0

√
t} it suffices to prove that Pr

[
Yt ≤ t

1/4
0

√
t
]
= o(1). Using Claim (1) we obtain

Pr [A1] ≤
t
1/4
0

√
t−(6t0+6)∑
r=0

(
r + 6t0 + 5

6t0 + 5

)(2t0 + 3

2t+ 1

)3t0+3

e−
3
2−2t0+

2t
1/4
0
3

≤ t
1/4
0 t1/2

(
t
1/4
0 t1/2

)6t0+5

(6t0 + 5)!

(2t0 + 3

2t+ 1

)3t0+3

e−
3
2−2t0+

2t
1/4
0
3

≤
(t

2t+ 1

)3t0+3 t
3t0/2+3/2
0 (2t0 + 3)3t0+3

(6t0 + 5)6t0+5
e4t0+7/2+2/3t

1/4
0

≤ 2−(3t0+3) e
4t0+7/2+2/3t

1/4
0

(6t0 + 5)
3
2 t0+

1
2

= o(1).

�

100 A. Frieze, C.E. Tsourakakis

Fig. 2. Coupling used in Lemma 7

Lemma 8. No vertex added after t1 has degree exceeding t−2
0 t1/2 whp.

Proof. Let A2 denote the event that some vertex added after t1 has degree exceeding
t−2
0 t1/2. We use a union bound, a third moment argument and Lemma 6 to prove that
Pr [A2] = o(1). Specifically

Pr [A2] ≤
t∑

s=t1

Pr
[
dt(s) ≥ t−2

0 t1/2
]
=

t∑
s=t1

Pr
[
dt(s)

(3) ≥ (t−2
0 t1/2)(3)

]
≤ t60t

−3/2
t∑

s=t1

E

[
dt(s)

(3)
]
≤ 5!

√
2t60

t∑
s=t1

s−3/2 ≤ 5!2
√
2t60t

−1/2
1 = o(1).

�

Lemma 9. No vertex added before t1 has degree exceeding t
1/6
0 t1/2 whp.

Proof. Let A3 denote the event that some vertex added before t1 has degree exceeding
t
1/6
0 t1/2. We use again a third moment argument and Lemma 6 to prove that Pr [A3] =
o(1).

Pr [A3] ≤
t1∑
s=1

Pr
[
dt(s) ≥ t

1/6
0 t1/2

]
=

t1∑
s=1

Pr
[
dt(s)

(3) ≥ (t
1/6
0 t1/2)(3)

]
≤ t

−1/2
0 t−3/2

t1∑
s=1

E

[
dt(s)

(3)
]
≤ t

−1/2
0 t−3/2

t1∑
s=1

5!
√
2
t3/2

s3/2

≤ 5!
√
2ζ(3/2)t

−1/2
0 = o(1)

where ζ(3/2) =
∑+∞

s=1 s
−3/2 ≈ 2.612. �

On Certain Properties of Random Apollonian Networks 101

Lemma 10. The k highest degrees are added before t1 and have degree Δi bounded
by t−1

0 t1/2 ≤ Δi ≤ t
1/6
0 t1/2 whp.

Proof. For the upper bound it suffices to show that Δ1 ≤ t
1/6
0 t1/2. This follows imme-

diately by Lemmas 8 and 9. The lower bound follows directly from Lemmas 7, 8 and 9.
Assume that at most k − 1 vertices added before t1 have degree exceeding the lower
bound t−1

0 t1/2. Then the total degree of the supernode formed by the first t0 vertices is

O(t
1/6
0

√
t). This contradicts Lemma 7. Finally, since each vertex s ≥ t1 has degree at

most t−2
0

√
t� t−1

0 t1/2 the k highest degree vertices are added before t1 whp. �

The proof of Theorem 2 is completed with the following lemma whose proof is included
in Appendix 8

Lemma 11. The k highest degrees satisfy Δi ≤ Δi−1 −
√
t

f(t) whp.

5 Proof of Theorem 3

Having computed the highest degrees of a RAN in Section 4, eigenvalues are computed
by adapting existing techniques [15,22,29]. We decompose the proof of Theorem 3 in
Lemmas 12, 13, 14, 15. Specifically, in Lemmas 12, 13 we bound the degrees and co-
degrees respectively. Having these bounds, we decompose the graph into a star forest
and show in Lemmas 14 and 15 that its largest eigenvalues, which are (1 ± o(1))

√
Δi,

dominate the eigenvalues of the remaining graph. This technique was pioneered by
Mihail and Papadimitriou [29].

We partition the vertices into three set S1, S2, S3. Specifically, let Si be the set of
vertices added after time ti−1 and at or before time ti where

t0 = 0, t1 = t1/8, t2 = t9/16, t3 = t.

In the following we use the recursive variational characterization of eigenvalues [13].
Specifically, let AG denote the adjacency matrix of a simple, undirected graph G and
let λi(G) denote the i-th largest eigenvalue of AG. Then

λi(G) = min
S

max
x∈S,x �=0

xTAGx

xTx

where S ranges over all (n− i + 1) dimensional subspaces of Rn.

Lemma 12. For any ε > 0 and any f(t) with f(t) → +∞ as t → +∞ the following

holds whp: for all s with f(t) ≤ s ≤ t, for all vertices r ≤ s, then ds(r) ≤ s
1
2+εr−

1
2 .

Proof. Set q =
⌈
4
ε

⌉
. We use Lemma 6, a union bound and Markov’s inequality to

obtain:

102 A. Frieze, C.E. Tsourakakis

Pr

⎡⎣ t⋃
s=f(t)

s⋃
r=1

{ds(r) ≥ s1/2+εr−1/2}
⎤⎦ ≤

t∑
s=f(t)

s∑
r=1

Pr
[
ds(r)

(q) ≥ (s1/2+εr−1/2)(q)
]

≤
t∑

s=f(t)

s∑
r=1

Pr
[
ds(r)

(q) ≥ (s−(q/2+qε)rq/2)
]

≤
t∑

s=f(t)

s∑
r=1

(q + 2)!

2

(2s
r

)q/2

s−q/2s−qεrq/2

=
(q + 2)!

2
2q/2

t∑
s=f(t)

s1−qε

≤ (q + 2)!

2
2q/2

∫ t

f(t)−1

x1−qε dx

≤ (q + 2)!

2(qε− 2)
2q/2(f(t)− 1)2−qε = o(1).

�

Lemma 13. Let S′
3 be the set of vertices in S3 which are adjacent to more than one

vertex of S1. Then |S′
3| ≤ t1/6 whp.

Proof. First, observe that when vertex s is inserted it becomes adjacent to more than
one vertex of S1 if the face chosen by s has at least two vertices in S1. We call the latter
propertyA and we write s ∈ A when s satisfies it. At time t1 there exist 2t1 + 1 faces
total, which consist of faces whose three vertices are all from S1. At time s ≥ t2 there
can be at most 6t1 + 3 faces with at least two vertices in S1 since each of the original
2t1+1 faces can give rise to at most 3 new faces with at least two vertices in s1. Consider
a vertex s ∈ S3, i.e., s ≥ t2. By the above argument, Pr [|N(s) ∩ S1| ≥ 2] ≤ 6t1+3

2t+1 .

Writing |S′
3| as a sum of indicator variables, i.e., |S′

3| =
∑t

s=t2
I(s ∈ A) and taking

the expectation we obtain

E [|S′
3|] ≤

t∑
s=t2

6t1 + 3

2t+ 1
≤ (6t1 + 3)

∫ t

t2

(2x+ 1)−1 dx

≤ (3t
1
8 + 3

2) ln
2t+ 1

2t2 + 1
= o(t1/7)

By Markov’s inequality:

Pr
[
|S′

3| ≥ t1/6
]
≤ E [|S′

3|]
t1/6

= o(1).

Therefore, we conclude that |S′
3| ≤ t1/6 whp. �

Lemma 14. Let F ⊆ G be the star forest consisting of edges between S1 and S3−S′
3.

Let Δ1 ≥ Δ2 ≥ . . . ≥ Δk denote the k highest degrees of G. Then λi(F) = (1 −
o(1))

√
Δi whp.

On Certain Properties of Random Apollonian Networks 103

Proof. It suffices to show that Δi(F) = (1 − o(1))Δi(G) for i = 1, . . . , k. Note
that since the k highest vertices are inserted before t1 whp, the edges they lose are
the edges between S1 and the ones incident to S′

3 and S2 and we know how to bound
the cardinalities of all these sets. Specifically by Lemma 13 |S′

3| ≤ t1/6 whp and by

Theorem 2 the maximum degree in Gt1 , Gt2 is less than t
1/2+ε1
1 = t1/8, t1/2+ε2

2 =

t5/16 for ε1 = 1/16, ε2 = 1/32 respectively whp. Also by Theorem 2, Δi(G) ≥
√
t

log t .
Hence, we obtain

Δi(F) ≥ Δi(G) − t1/8 − t5/16 − t1/6 = (1 − o(1))Δi(G).

�
To complete the proof of Theorem 3 it suffices to prove that λ1(H) is o(λk(F)) where
H = G − F . We prove this in the following lemma. The proof is based on bounding
maximum degree of appropriately defined subgraphs using Lemma 12 and standard
inequalities from spectral graph theory [13].

Lemma 15. λ1(H) = o(t1/4) whp.

Proof. From Gershgorin’s theorem [32] the maximum eigenvalue of any graph is
bounded by the maximum degree. We bound the eigenvalues of H by bounding the
maximum eigenvalues of six different induced subgraphs. Specifically, let Hi = H [Si],
Hij = H(Si, Sj) where H [S] is the subgraph induced by the vertex set S and H(S, T)
is the subgraph containing only edges with one vertex is S and other in T . We use
Lemma 14 to bound λ1(H(S1, S3)) and Lemma 13 for the other eigenvalues. We set
ε = 1/64.

λ1(H1) ≤ Δ1(H1) ≤ t
1/2+ε
1 = t33/512.

λ1(H2) ≤ Δ1(H2) ≤ t
1/2+ε
2 t

−1/2
1 = t233/1024.

λ1(H3) ≤ Δ1(H3) ≤ t
1/2+ε
3 t

−1/2
2 = t15/64.

λ1(H12) ≤ Δ1(H12) ≤ t
1/2+ε
2 = t297/1024.

λ1(H23) ≤ Δ1(H23) ≤ t
1/2+ε
3 t

−1/2
1 = t29/64.

λ1(H13) ≤ Δ1(H13) ≤ t1/6.

Therefore whp we obtain

λ1(H) ≤
3∑

i=1

λ1(Hi) +
∑
i<j

λ1(Hi,j) = o(t1/4).

�

6 Proof of Theorem 4

Before we give the proof of Theorem 4, we give a simple proof that the diameter of a
RAN is O(log t) whp.

104 A. Frieze, C.E. Tsourakakis

Fig. 3. An instance of the process for t = 2. Each face is labeled with its depth.

We begin with a necessary definition for the proof of Claim (2). We define the depth
of a face recursively. Initially, we have three faces, see Figure 1a, whose depth equals
1. For each new face β created by picking a face γ, we have depth(β) = depth(γ)+ 1.
An example is shown in Figure 3, where each face is labeled with its corresponding
depth.

Claim (2). The diameter d(Gt) satisfies d(Gt) = O(log t) whp.

Proof. A simple but key observation is that if k∗ is the maximum depth of a face then
d(Gt) = O(k∗). Hence, we need to upper bound the depth of a given face after t rounds.
Let Ft(k) be the number of faces of depth k at time t, then:

E [Ft(k)]=
∑

1≤t1<t2<...<tk≤t

k∏
j=1

1

2tj + 1
≤ 1

k!
(

t∑
j=1

1

2j + 1
)k ≤ 1

k!
(
1

2
log t)k ≤ (

e log t

2k
)k+1

By the first moment method we obtain k∗ = O(log t) whp and by our observation
d(Gt) = O(log t) whp. �

Fig. 4. RANs as random ternary trees

The depth of a face can be formalized via a bijection between random ternary trees
and RANs. Using this bijection we prove Theorem 4 which gives a refined upper bound
on the asymptotic growth of the diameter.

On Certain Properties of Random Apollonian Networks 105

Proof. Consider the random process which starts with a single vertex tree and at every
step picks a random leaf and adds three children to it. Let T be the resulting tree after
t steps. There exists a natural bijection between the RAN process and this process, see
[18] and also Figure 4. The depth of T in probability is ρ

2 log t where 1
ρ = η is the

unique solution greater than 1 of the equation η − 1 − log η = log 3, see Broutin and
Devroye [12], pp. 284-285. Note that the diameter d(Gt) is at most twice the height of
the tree and hence the result follows. �

The above observation, i.e., the bijection between RANs and random ternary trees can-
not be used to lower bound the diameter. A counterexample is shown in Figure 5 where
the height of the random ternary tree can be made arbitrarily large but the diameter is 2.
Albenque and Marckert proved in [2] that if v, u are two i.i.d. uniformly random inter-
nal vertices, i.e., v, u ≥ 4, then the distance d(u, v) tends to 6

11 logn with probability
1 as the number of vertices n of the RAN grows to infinity. However, an exact expres-
sion of the asymptotic growth of the diameter to the best of our knowledge remains an
open problem. Finally, it is worth mentioning that the diameter of the RAN grows faster
asymptotically than the diameter of the classic preferential attachment model [7] which
whp grows as log t

log log t , see Bollobás and Riordan [9].

Fig. 5. The height of the random ternary tree cannot be used to lower bound the diameter. The
height of the random ternary tree can be arbitrarily large but the diameter is 2.

7 Waiting Times

Consider the three initial faces of Figure 1a. Let’s call the face which receives the first
vertex A and the other two faces B,C. Let X equal the number of steps until a new
vertex picks face B or C. Clearly, X ∈ {1, 2, . . .}. What is the expectation E [X]? For
any t ≥ 1

Pr [X > t] =
t∏

j=1

3 + 2(j − 1)

5 + 2(j − 1)
=

3

2t+ 3
.

Using now the fact that E [X] =

+∞∑
t=1

Pr [X ≥ t] = 1 +

+∞∑
t=1

Pr [X > t] we obtain that

E [X] = +∞.

106 A. Frieze, C.E. Tsourakakis

8 Open Problems

We propose three open problems for future work. The first concerns the diameter.
Specifically, as we mentioned also earlier, an interesting problem is to find an exact
asymptotic expression for the diameter of RAN.

Conductance: We conjecture that the conductance of a RAN is Θ
(

1√
t

)
whp. Figure 6

shows that Φ(Gt) ≤ 1√
t
.

Hamiltonicity and Longest Path: We conjecture that whp a RAN is not Hamiltonian
but the length of the longest path is Ω(n).

Fig. 6. By the pigeonhole principle, one of the three initial faces receives Θ(t) vertices. Using
Theorem 2 it is not hard to see that the encircled set of vertices S has conductance φ(S) ≈

√
t

t
=

1√
t

whp.

Acknowledgements. Research supported by NSF Grant No. CCF-1013110. We would
like to thank Luc Devroye and Alexis Darrasse for pointing out references [12] and
[2,30] respectively.

References

1. Aiello, W., Chung, F., Lu, L.: A random graph model for power law graphs. Experimental
Mathemathics 10(1), 53–66 (2001)

2. Albenque, M., Marckert, J.F.: Some families of increasing planar maps. Electronic Journal
of Probability 13, 1624–1671

3. Alon, N., Spencer, J.: The Probabilistic Method. Wiley-Interscience (2008)
4. Andrade, J.S., Herrmann, H.J., Andrade, R.F.S., da Silva, L.R.: Apollonian networks: simul-

taneously scale-free, small world Euclidean, space filling, and with matching graphs. Phys.
Rev. Lett. 94, 018702 (2005)

5. Andrade, R.F.S., Miranda, J.G.V.: Spectral Properties of the Apollonian Network. Physica
A 356 (2005)

6. Azuma, K.: Weighted sums of certain dependent variables. Tohoku Math. J 3, 357–367
(1967)

7. Barabási, A., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509–512
(1999)

8. Bodini, O., Darrasse, A., Soria, M.: Distances in random Apollonian network structures
Arxiv, http://arxiv.org/abs/0712.2129

9. Bollobás, B., Riordan, O.: The Diameter of a Scale-Free Random Graph. Combinatorica
(2002)

http://arxiv.org/abs/0712.2129

On Certain Properties of Random Apollonian Networks 107

10. Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The Degree Sequence of a Scale Free
Random Graph Process. Random Struct. Algorithms 18(3), 279–290 (2001)

11. Boyd, D.W.: The Sequence of Radii of the Apollonian Packing. Mathematics of Computa-
tion 19, 249–254 (1982)

12. Broutin, N., Devroye, L.: Large Deviations for the Weighted Height of an Extended Class of
Trees. Algorithmica 46, 271–297 (2006)

13. Chung Graham, F.: Spectral Graph Theory. American Mathematical Society (1997)
14. Chung Graham, F., Lu, L.: Complex Graphs and Networks, (107). American Mathematical

Society (2006)
15. Chung, F., Lu, L., Vu, V.H.: Spectra of random graphs with given expected degrees. Proceed-

ings of the National Academy of Sciences of the United States of America 100, 6313–6318
16. Cooper, C., Frieze, A.: A general model of web graphs. Random Structures & Algo-

rithms 22(3), 311–335 (2003)
17. Cooper, C., Uehara, R.: Scale Free Properties of random k-trees. Mathematics in Computer

Science 3(4), 489–496 (2010)
18. Darrasse, A., Soria, M.: Degree distribution of random Apollonian network structures and

Boltzmann sampling. In: 2007 Conference on Analysis of Algorithms, AofA 2007, DMTCS
Proceedings (2007)

19. Darrasse, A., Hwang, H.-K., Bodini, O., Soria, M.: The connectivity-profile of random in-
creasing k-trees, Arxiv, http://arxiv.org/abs/0910.3639

20. Doye, J.P.K., Massen, C.P.: Self-similar disk packings as model spatial scale-free networks.
Phys. Rev. E 71, 016128 (2005)

21. Fabrikant, A., Koutsoupias, E., Papadimitriou, C.: Heuristically Optimized Trade-Offs: A
New Paradigm for Power Laws in the Internet. In: Widmayer, P., Triguero, F., Morales, R.,
Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 110–122.
Springer, Heidelberg (2002)

22. Flaxman, A., Frieze, A., Fenner, T.: High Degree Vertices and Eigenvalues in the Preferential
Attachment Graph. Internet Mathematics 2(1) (2005)

23. Gao, Y.: The degree distribution of random k-trees. Theoretical Computer Science 410(8-10)
(2009)

24. Gao, Y., Hobson, C.: Random k-tree as a model for complex networks. In: Workshop on
Algorithms and Models for the Web-Graph, WAW (2006)

25. Graham, R.L., Lagarias, J.C., Mallows, C.L., Wilks, A.R., Yan, C.H.: Apollonian Circle
Packings: Number Theory. J. Number Theory 100(1), 1–45, MR1971245

26. Hoeffding, W.: Probability inequalities for sumes of bounded random variables. J. Amer.
Statist. Assoc. 58, 13–30 (1963)

27. Kloks, T.: Treewidth: Computations and Approximations. Springer (1994)
28. Leskovec, J., Faloutsos, C.: Scalable modeling of real graphs using Kronecker multiplication.

In: Machine Learning Proceedings of the Twenty-Fourth International Conference (ICML
2007), Corvalis, Oregon, USA, June 20-24 (2007)

29. Mihail, M., Papadimitriou, C.: On the Eigenvalue Power Law. In: Rolim, J.D.P., Vadhan, S.P.
(eds.) RANDOM 2002. LNCS, vol. 2483, pp. 254–262. Springer, Heidelberg (2002)

30. Panholzer, A., Seitz, G.: Ordered increasing k-trees: Introduction and analysis of a preferen-
tial attachment network model. In: DMTCS Proc., AofA 2010, pp. 549–564 (2010)

31. Pralat, P., Wormald, N.: Growing Protean Graphs. Internet Mathematics 4(1), 1–16 (2007)
32. Strang, G.: Linear Algebra and Its Applications. Brooks Cole (2005)
33. Wu, Z.-X., Xu, X.-J., Wang, Y.-H.: Comment on “Maximal planar networks with large clus-

tering coefficient and power-law degree distribution”. Physical Review, E 73, 058101 (2006)
34. Zhang, Z.Z., Comellas, F., Fertin, G., Rong, L.L.: High dimensional Apollonian networks,

ArXiv, http://arxiv.org/abs/cond-mat/0503316
35. Zhou, T., Yan, G., Wang, B.H.: Maximal planar networks with large clustering coefficient

and power-law degree distribution. Phys. Rev. E 71, 046141 (2005)

http://arxiv.org/abs/0910.3639
http://arxiv.org/abs/cond-mat/0503316

108 A. Frieze, C.E. Tsourakakis

Appendix

Proof of Lemma 6

Proof. As we mentioned in the proof of Theorem 1 the three initial vertices 1, 2, 3
have one less face than their degree whereas all other vertices have degree equal to the
number of faces surrounding them. In this proof we treat both cases but we omit it in
all other proofs.
• CASE 1: s ≥ 4

Note that ds(s) = 3. By conditioning successively we obtain

E

[
dt(s)

(k)
]
= E

[
E

[
dt(s)

(k)|dt−1(s)
]]

= E

[
(dt−1(s))

(k)
(
1− dt−1(s)

2t− 1

)
+ (dt−1(s) + 1)(k)

dt−1(s)

2t− 1

]
= E

[
(dt−1(s))

(k)
(
1− dt−1(s)

2t− 1

)
+ (dt−1(s))

(k) dt−1(s) + k

dt−1(s)

dt−1(s)

2t− 1

]
= E

[
(dt−1(s))

(k)
] (

1 +
k

2t− 1

)
= ... = 3(k)

t∏
t′=s+1

(1 +
k

2t′ − 1
)

≤ 3(k) exp
(t∑

t′=s+1

k

2t′ − 1

)
≤ 3(k) exp

(
k

∫ t

s

dx

2x− 1

)
≤ (k + 2)!

2
exp
(

k
2 log

t− 1/2

s− 1/2

)
≤ (k + 2)!

2

(2t
s

) k
2

.

• CASE 2: s ∈ {1, 2, 3}

Note that initially the degree of any such vertex is 2. For any k ≥ 0

E

[
dt(s)

(k)
]
= E

[
E

[
dt(s)

(k)|dt−1(s)
]]

= E

[
(dt−1(s))

(k)
(
1− dt−1(s)− 1

2t− 1

)
+ (dt−1(s) + 1)(k)

dt−1(s)− 1

2t− 1

]
= E

[
(dt−1(s))

(k)
(
1 +

k

2t− 1

)− (dt−1(s))
(k) k

(2t− 1)dt−1(s)

]
≤ E

[
(dt−1(s))

(k)
] (

1 +
k

2t− 1

) ≤ . . . ≤ (k + 2)!

2

(2t
s

) k
2 .

�

Proof of Claim (1)

Proof. Let τ = (t0 ≡ τ0, τ1, . . . , τr︸ ︷︷ ︸
insertion times

, τr+1 ≡ t) be a vector denoting that Yt increases

by 1 at τi for i = 1, . . . , r. We upper bound the probability pτ of this event in the

On Certain Properties of Random Apollonian Networks 109

following.Note that we consider the case where the vertices have same degree as the
number of faces around them. As we mentioned earlier, the other case is analyzed in
exactly the same way, modulo a negligible error term.

pτ =

[
r∏

k=1

d0 + k − 1

2τk + 1

][
r∏

k=0

τk+1−1∏
j=τk+1

(
1− d0 + k

2j + 1

)]

= d0(d0 + 1) . . . (d0 + r − 1)

[
r∏

k=1

1

2τk + 1

]
exp

(
r∑

k=0

τk+1−1∑
j=τk+1

log
(
1− d0 + k

2j + 1

))

=
(d0 + r − 1)!

(d0 − 1)!

[
r∏

k=1

1

2τk + 1

]
exp

(
r∑

k=0

τk+1−1∑
j=τk+1

log
(
1− d0 + k

2j + 1

))

Consider now the inner sum which we upper bound using an integral:

τk+1−1∑

j=τk+1

log
(
1− d0 + k

2j + 1

)
≤

∫ τk+1

τk+1
log

(
1− d0 + k

2x+ 1

)
dx

≤ −(
τk+1 + 1

2

)
log (2τk+1 + 1)+

2τk+1 + 1− (d0 + k)

2
log (2τk+1 + 1− (d0 + k))+

(
τk + 3

2

)
log (2τk + 3) − 2τk + 3− (d0 + k)

2
log (2τk + 3− (d0 + k))

since

∫
log

(
1− d0 + k

2x+ 1

)
= −(

x+ 1
2

)
log (2x+ 1) +

2x+ 1− (d0 + k)

2
log (2x+ 1− (d0 + k))

Hence we obtain
∑r

k=0

∑τk+1−1
j=τk+1 log

(
1− d0+k

2j+1

)
≤ A+

∑r
k=1 Bk where

A =
(
τ0 +

3
2

)
log (2τ0 + 3)− 2τ0 + 3− d0

2
log (2τ0 + 3− d0)

− (τr+1 +
1
2

)
log (2τr+1 + 1) +

2τr+1 + 1− (d0 + r)

2
log (2τr+1 + 1− (d0 + r))

and

Bk =
(
τk + 3

2

)
log (2τk + 3) − 2τk + 3− (d0 + k)

2
log (2τk + 3− (d0 + k))

− (
τk + 1

2

)
log (2τk + 1) +

2τk + 1− (d0 + k − 1)

2
log (2τk + 1− (d0 + k − 1)).

We first upper bound the quantities Bk for k = 1, . . . , r. By rearranging terms and
using the identity log (1 + x) ≤ x we obtain

110 A. Frieze, C.E. Tsourakakis

Bk =
(
τk + 1

2

)
log

(
1 +

1

τk + 1
2

)
+ log (2τk + 3)

− 1

2
log

(
2τk + 3− (d0 + k)

)− 2τk + 2− (d0 + k)

2
log

(
1 +

1

2τk + 2− (d0 + k)

)
.

≤ 1

2
+

1

2
log

(
2τk + 3

)− 1

2
log

(
1− d0 + k

2τk + 3

)
First we rearrange terms and then we bound the term eA by using the inequality
e−x−x2/2 ≥ 1− x which is valid for 0 < x < 1:

A = −(
τ0 + 3

2

)
log

(
1 − d0

2τ0 + 3

)
+

(
τr+1 + 1

2

)
log

(
1 − d0 + r

2τr+1 + 1

)
+

d0

2
log

(
2τ0 + 3 − d0

)
− d0 + r

2
log

(
2τr+1 + 1 − (d0 + r)

)
. ⇒

e
A

=
(
1 − d0

2τ0 + 3

)−(τ0+ 3
2
)(

1 − d0 + r

2τr+1 + 1

)τr+1+1
2 (2τ0 + 3 − d0)

d0
2 (2τr+1 + 1 − (d0 + r))

− d0+r
2

=

(
2τ0 + 3

2τr+1 + 1

)d0/2
(2τr+1 + 1)

−r/2
(
1 − d0

2τ0 + 3

)−(τ0+3
2
)+

d0
2

(
1 − d0 + r

2τr+1 + 1

)τr+1+1
2
− d0+r

2

≤
(

2t0 + 3

2t + 1

)d0/2

(2t + 1)
−r/2

(
1 − d0

2τ0 + 3

)−(τ0+ 3
2
)+

d0
2

e

(
− d0+r

2t+1
−
(
− d0+r

2t+1

)2
/2

)
(t+1/2− d0+r

2
)

=

(
2t0 + 3

2t + 1

)d0/2

(2t + 1)
−r/2

(
1 − d0

2τ0 + 3

)−(τ0+3
2
)+

d0
2

e
− d0+r

2
+

(d0+r)2

8t+4
+

(d0+r)3

4(2t+1)2

Now we upper bound the term exp
(
A+

∑r
k=1 Bk

)
using the above upper bounds:

eA+
∑r

k=1 Bk ≤ eAer/2
r∏

i=1

√
2τk + 3

1− d0+k
2τk+3

≤
(
1− d0

2τ0 + 3

)−(τ0+
3
2)+

d0

2
e
−d0

2 +
(d0+r)2

8t+4 +
(d0+r)3

4(2t+1)2

(
2t0 + 3

2t+ 1

)d0/2

×

(2t+ 1)−r/2
r∏

i=1

√
2τk + 3

1− d0+k
2τk+3

Using the above upper bound we get that

pτ ≤ C(r, d0, t0, t)

r∏
k=1

[
(2τk + 3− (d0 + k))−1/2

(
1 +

1

τk + 1/2

)]
where

C(r, d0, t0, t)=
(d0 + r − 1)!

(d0 − 1)!

(
1−

d0

2τ0 + 3

)−(τ0+ 3
2
)+

d0
2 e

− d0
2

+
(d0+r)2

8t+4
+

(d0+r)3

4(2t+1)2
(2t0 + 3

2t + 1

)d0/2
(2t+1)

−r/2

We need to sum over all possible insertion times to bound the probability of interest p∗.
We set τ ′k ← τk − "d0+k

2 # for k = 1, . . . , r. For d = o(
√
t) and r = o(t2/3) we obtain:

On Certain Properties of Random Apollonian Networks 111

p∗ ≤ C(r, d0, t0, t)
∑

t0+1≤τ1<..<τr≤t

r∏
k=1

[
(2τk + 3− (d0 + k))−1/2

(
1 +

1

τk + 1/2

)]

≤ C(r, d0, t0, t)
∑

t0−�d0
2

�+1≤τ ′
1≤..≤τ ′

r≤t−�d0+r
2

�

r∏
k=1

[
(2τ ′k + 3)−1/2

(
1 +

1

τ ′k + d0+k
2

+ 1/2

)]

≤ C(r, d0, t0, t)

r!

(t−�d0+r
2

�∑
t0−� d0

2
�

(2τ ′k + 3)−1/2 + 1√
2
(τ ′k + 3/2)−3/2

)r

≤ C(r, d0, t0, t)

r!

(∫ t− d+r
2

0

[
(2x+ 3)−1/2 + 1√

2
(x+ 3/2)−3/2

]
dx

)r

≤ C(r, d0, t0, t)

r!

(√
2t+ 3− (d0 + r) + 2/3

)r

≤ C(r, d0, t0, t)

r!
(2t)r/2e−

r
2

d0+r−3
2t e

2r
3
√

2t−(d0+r)+3

≤
(d0 + r − 1

d0 − 1

)(2t0 + 3

2t + 1

)d0/2[(1− d0

2t0 + 3

)−(1− d0
2t0+3

)
]t0+3/2

×
(2t

2t+ 1

)r/2
exp

(
− d0

2
+

(d0 + r)2

8t+ 4
+

(d0 + r)3

4(2t + 1)2
− r(d0 + r − 3)

4t
+

2r

3
√

2t+ 3− (d0 + r)

)

By removing the o(1) terms in the exponential and using the fact that x−x ≤ e we
obtain the following bound on the probability p∗.

p∗ ≤
(
d0 + r − 1

d0 − 1

)(2t0 + 3

2t+ 1

)d0/2

e
3
2+t0−d0

2 + 2r
3
√

t .

�

Lemma 11

Proof. LetA4 denote the event that there are two vertices among the first t1 with degree
t−1
0 t1/2 and within

√
t

f(t) of each other. By the definition of conditional probability and
Lemma 8

Pr [A4] = Pr
[A4|Ā3

]
Pr
[Ā3

]
+Pr [A4|A3]Pr [A3] ≤ Pr

[A4|Ā3

]
+ o(1)

it suffices to show that Pr
[A4|Ā3

]
= o(1). Note that by a simple union bound

Pr [A4] ≤
∑

1≤s1<s2≤t1

√
t

f(t)∑
l=−

√
t

f(t)

pl,s1,s2 = O
(
t21

√
t

f(t)
max pl,s1,s2

)

where pl,s1,s2 = Pr
[
dt(s1)− dt(s2) = l|Ā3

]
.

112 A. Frieze, C.E. Tsourakakis

We consider two cases and we show that in both cases max pl,s1,s2 = o(f(t)

t21
√
t
).

• CASE 1 (s1, s2) /∈ E(Gt):

Note that at time t1 there exist mt1 = 3t1 + 3 < 4t1 edges in Gt1 .

pl,s1,s2 ≤
t
1/6
0 t1/2∑

r=t−1
0 t1/2

4t1∑
d1,d2=3

Pr [dt(s1) = r ∧ dt(s2) = r − l|dt1(s1) = d1, dt1(s2) = d2]

(2)

≤ t
1/6
0 t1/2

4t1∑
d1,d2=3

(
2t

1/6
0 t1/2

d1 − 1

)(
2t

1/6
0 t1/2

d2 − 1

)(2t0 + 3

2t+ 1

)(d1+d2)/2

e
3
2
+t1+

2t
1/6
0
3 (3)

≤ t
1/6
0 t1/2

4t1∑
d1,d2=3

(2t
1/6
0 t1/2)d1+d2−2

(2t0 + 3

2t+ 1

)(d1+d2)/2

e2t1

≤ t
1/6
0 t1/2e2t1 t21(2t

1/6
0 t1/2)8t1−2

(2t0 + 3

2t+ 1

)4t1

= t
4t1/3+1/6
0 t−1/2e2t1t212

8t1 (2t0 + 3)4t1
(t

2t+ 1

)4t1

= o
(f(t)

t21
√
t

)

Note that we omitted the tedious calculation justifying the transition from (2) to (3)
since calculating the upper bound of the joint probability distribution is very similar to
the calculation of Lemma 7.

• CASE 2 (s1, s2) ∈ E(Gt) :

Notice that in any case (s1, s2) share at most two faces (which may change over time).
Note that the two connected vertices s1, s2 share a common face only if s1, s2 ∈
{1, 2, 3}3. Consider the following modified process Y ′: whenever an incoming vertex
“picks” one of the two common faces we don’t insert it. We choose two other faces
which are not common to s1, s2 and add one vertex in each of those. Notice that the
number of faces increases by 1 for both s1, s2 as in the original process and the dif-
ference of the degrees remains the same. An algebraic manipulation similar to Case 1
gives the desired result. �

3 We analyze the case where s1, s2 ≥ 4. The other case is treated in the same manner.

Mutual or Unrequited Love: Identifying Stable Clusters
in Social Networks with Uni- and Bi-directional Links

Yanhua Li�, Zhi-Li Zhang, and Jie Bao

University of Minnesota, Twin Cities
{yanhua,zhzhang,baojie}@cs.umn.edu

Abstract. Many social networks, e.g., Slashdot and Twitter, can be represented
as directed graphs (digraphs) with two types of links between entities: mutual (bi-
directional) and one-way (uni-directional) connections. Social science theories
reveal that mutual connections are more stable than one-way connections, and
one-way connections exhibit various tendencies to become mutual connections.
It is therefore important to take such tendencies into account when performing
clustering of social networks with both mutual and one-way connections.

In this paper, we utilize the dyadic methods to analyze social networks, and
develop a generalized mutuality tendency theory to capture the tendencies of
those node pairs which tend to establish mutual connections more frequently than
those occur by chance. Using these results, we develop a mutuality-tendency-
aware spectral clustering algorithm to identify more stable clusters by maxi-
mizing the within-cluster mutuality tendency and minimizing the cross-cluster
mutuality tendency. Extensive simulation results on synthetic datasets as well as
real online social network datasets such as Slashdot, demonstrate that our pro-
posed mutuality-tendency-aware spectral clustering algorithm extracts more sta-
ble social community structures than traditional spectral clustering methods.

1 Introduction

Graph models are widely utilized to represent relations among entities in social net-
works. Especially, many online social networks, e.g., Slashdot and Twitter, where the
users’ social relationships are represented as directed edges in directed graphs (or in
short, digraphs). Entity connections in a digraph can be categorized into two types,
namely, bi-directional links (mutual connections) and uni-directional links (one-way
connections). Social theories [28] and online social network analysis [2, 6, 28] have
revealed that various types of connections exhibit different stabilities, where mutual
connections are more stable than one-way connections. In other words, mutual connec-
tions are the source of social cohesion [3, 4] that, if two individuals mutually attend to
one another, then the bond is reinforced in each direction.

Studying the social network structure and properties of social ties have been an ac-
tive area of research. Clustering and identifying social structures in social networks is an
especially important problem [8, 17, 24] that has wide applications, for instance, com-
munity detection and friend recommendation in social networks. Existing clustering

� The work is supported in part by the NSF grants CNS-0905037, CNS-1017647 and the DTRA
Grant HDTRA1-09-1-0050.

A. Bonato and J. Janssen (Eds.): WAW 2012, LNCS 7323, pp. 113–125, 2012.
© Springer-Verlag Berlin Heidelberg 2012

114 Y. Li, Z.-L. Zhang, and J. Bao

Fig. 1. An example network

methods [21, 29] are originally developed for undirected graphs, based on the classical
spectral clustering theory. Several recent studies (see, e.g., [10, 21, 27, 29]) extend the
spectral clustering method to digraphs, by first converting the underlying digraphs to
undirected graphs via some form of symmetrization, and then apply spectral clustering
to the resulting symmetrized (undirected) graphs. However, all these methods have two
common drawbacks, which prevent them from obtaining stable clusters with more mu-
tual connections. First, these methods do not explicitly distinguish between mutual and
one-way connections commonly occurring in many social networks, treating them es-
sentially as the same and therefore ignoring the different social relations and interpreta-
tions these two types of connections represent (see Section 2 for more details). Second,
by simply minimizing the total cross-cluster links (that are symmetrized in some fash-
ion), these methods do not explicitly account for the potential tendencies of node pairs
to become mutually connected. As a simple example, Fig. 1 shows two groups of peo-
ple in a network, where people in the same group tend to have more mutual (stable)
connections, and people across two groups have more one-way (unstable) connections.
When using the traditional spectral clustering method, as shown in Fig. 1(a), group B
will be partitioned into two clusters, due to its strict rule of minimizing the total num-
ber of across cluster edges. On the other hand, the correct partition should be done as
shown in Fig. 1(b), where the majority of mutual (stable) connections are placed within
clusters, and one-way (unstable) connections are placed across clusters.

In this paper, we propose and develop a stable social cluster detection algorithm that
takes into account the tendencies of node pairs whether to form mutual (thus stable)
connections or not, which can result in more stable cluster structures. To tackle this
clustering problem, we need to answer the following questions: 1) how to track and
evaluate the tendencies of node pairs to become mutual (stable) relations? and 2) how
to cluster the entities in social networks by accounting for their mutuality tendencies so
as to extract more stable clustering structures?

To address these questions, we utilize dyadic methods to analyze social networks,
and develop a generalized mutuality tendency theory which better captures the tenden-
cies of node pairs that tend to establish mutual connections more frequently than those
occur by chance. Using these results, we develop a mutuality-tendency-aware spectral
clustering algorithm to detect more stable clusters by maximizing the within-cluster
mutuality tendency and minimizing the cross-cluster mutuality tendency. Our contribu-
tions are summarized as follows.

Mutual or Unrequited Love 115

$Motivated by the social science mutuality tendency theory, we establish a new cluster-
based mutuality tendency theory. It yields a symmetrized mutuality tendency for each
node pair, that measures the strength of social ties in (or across) clusters (Sec 3).
$ Based on our theory, we develop a mutuality-tendency-aware spectral clustering algo-
rithm that partitions the social graphs into stable clusters, by maximizing within-cluster
mutuality tendencies and minimizing across-cluster mutuality tendencies (Sec 4).
$ The experimental results – based on both social network structures of synthetical
and real social network datasets – confirm that our clustering algorithm generates more
stable clusters than the traditional spectral clustering algorithms (Sec 5).

2 Preliminaries, Related Work and Problem Definition

In this section, we first introduce the existing dyadic analysis methods in the social the-
ory literature for analyzing and characterizing social network mutual connections and
one-way connections. We then present the classic spectral clustering theory which was
developed for undirected graphs, and briefly survey some related works which apply
this theory to digraphs through symmetrization. We end the section with the problem
definition, namely, how to identify stable clusters in social networks by taking into
account mutuality tendencies of mutual and one-way connections.

2.1 Dyadic Analysis and Mutuality Tendency

Given a social network with both uni- and bi-directional links, such a network can be
represented as a (simple) digraph G = (V,E) with |V | = n nodes. Let A be the
standard adjacency matrix of the digraph, where Aij = 1 if the directed edge i → j is
present, and Aij = 0 otherwise. Social scientists commonly view the social network G
as a collection of dyads [28], where a dyad is an unordered pair of nodes and directed
edges between two nodes in the pair. Denote a dyad as Dyij = (Aij , Aji), for i < j.
Since dyad is an unordered notion, we have in total Nd = n(n − 1)/2 dyads in G.
Hence, there are only three possible isomorphism dyads. The first type of dyads is
mutual relationship, where both directional edges i → j and j → i are present. The
second type of dyads is one-way relationship, where either i→ j or j → i is present, but
not both. The last type of dyads is null relationship, where no edges show up between
i and j. Let m, b, and u denote the number of mutual, one-way, and null dyads in the
network. Clearly, m+ b+ u = n(n− 1)/2.

Interpretations of Dyads. Social scientists have observed that mutual social relations
and one-way relations in social networks typically exhibit different stabilities, namely,
mutual relations are more stable than one-way relations [28]. Hence in the social science
literature, one prevalent interpretation of dyadic relations in social networks are the
following: mutual dyads are considered as stable connections between two nodes and
null relation dyads represent no relations; the one-way dyads [1,5,16,18,20] are viewed
as an intermediate state of relations, which are in transition to more stable equilibrium
states of reciprocity (mutual or no relation). Several recent empirical studies [6, 9] of
online social networks have further revealed and confirmed that mutual social relations
are more stable relations than one-way connections.

116 Y. Li, Z.-L. Zhang, and J. Bao

Measuring Mutuality Tendency. The notion of mutuality tendency has been intro-
duced in the social science literature (see, e.g., [7, 28]) to measure the tendency for a
node pair to establish mutual connections. For any dyad between i and j in a digraph
G, if i places a link to j, ρij represents the tendency that j will reciprocate to i more
frequently than would occur by chance. Let Xij denote the random variable that repre-
sents whether or not node i places a directed edge to node j. There are only two possible
events (i.e., Xij takes two possible values): Xij = 1, representing the edge is present; or
Xij = 0, the edge is not present. Let Xij (resp. X̄ij) denote the event {Xij = 1} (resp.
{Xij = 0}). Then the probability of the event Xij occurring is P (Xij). The probability
that i places a directed edge to j and j reciprocates back (i.e., node i and node j are
mutually connected) is thus given by P (Xij , Xji) = P (Xij)P (Xji|Xij). Wofle [28]
introduces the following measure of mutuality tendency in terms of the conditional
probability P (Xji|Xij) as follows:

P (Xji|Xij) = P (Xji) + ρijP (X̄ji) =
P (Xij , Xji)

P (Xij)
, (1)

where −∞ < ρij ≤ 1 ensures 0 ≤ P (Xji) + ρP (X̄ji) ≤ 1 to hold. Like many
indices used in statistics, −∞ < ρ ≤ 1 is dimensionless and easy to interpret, since
it uses 0 and 1 as benchmarks, representing no tendency and maximum tendency for
reciprocation. From eq.(1), the joint distribution P (Xij , Xji) in eq.(1) can be measured
by the observed graph, namely, either P (Xij , Xji) = P (ω)(Xij , Xji) = 1, when i and
j have mutual connection, or P (Xij , Xji) = P (ω)(Xij , Xji) = 0, otherwise, where
the superscript ω indicates that the probability is obtained from the observed graph.
On the other hand, the distribution for each individual edge is measured by P (Xij) =
P (μ)(Xij) =

di

|V |−1 , where di is the out-going degree of node i. P (μ)(Xij) represents
the probability of edge i → j being generated under a random graph model, denoted
by the superscript μ, with edges randomly generated while preserving the out-degrees.
Hence, the tendency ρ is obtained by implicitly comparing the observed graph with a
reference random digraph model.

Limitations of Wolfe’s Mutuality Tendency Measure for Stable Social Structure
Clustering. Although the node pair in a dyad is unordered (i.e., the two nodes are
treated “symmetrically” in terms of dyadic relations), Wolfe’s measure of mutual ten-
dency is in fact asymmetric. This can be easily seen through the following derivation.
By definition,

ρji
ρij

=
P (Xji)P (X̄ij)

P (Xij)P (X̄ji)
=

P (Xji)− P (Xij)P (Xji)

P (Xij)− P (Xij)P (Xji)

We see that ρij = ρji if and only if P (Xij) = P (Xji) holds. Hence, given an arbitrary
dyad in a social network Wolfe’s measure of mutuality tendency of the node pair is
asymmetric – in a sense that it is a node-specific measure of mutuality tendency. It
does not provide a measure of mutuality tendency of the (unordered) node pair viewed
together. In Section 3, we will introduce a new measure of mutuality tendency that is
symmetric and captures the tendency of a node pair in a dyadic relation to establish
mutual connection. This measure of mutuality tendency can be applied to clusters and

Mutual or Unrequited Love 117

a whole network in a straightforward fashion, and leads us to develop a mutuality-
tendency-aware spectral clustering algorithm.

2.2 Spectral Clustering Theory and Extensions to Digraphs via Symmetrization

Spectral clustering methods (see, e.g., [15, 22, 26, 27, 29]) are originally developed for
clustering data with symmetric relations, namely, data that can be represented as undi-
rected graphs, where each relation (edge) between two entities, Aij = Aji, represents
their similarity. The goal is to partition the graph such that entities within each cluster
are more similar to each other than those across clusters. This is done by minimizing
the total weight of cross-cluster edges. Especially, [12] provides a systematic study
on comparing a wide range of undirected graph based clustering algorithms using real
large datasets, which gives a nice guideline of how to select clustering algorithms based
on the underlying networks and the targeting objectives.

When relations between entities are asymmetric, or the underlying graph is directed,
spectral clustering cannot be directly applied, as the notion of (semi-)definiteness is
only defined for symmetric matrices. Several recent studies (see, e.g., [10, 21, 27, 29])
all attempt to circumvent this difficulty by first converting the underlying digraphs to
undirected graphs via some form of symmetrization, and then apply spectral cluster-
ing to the resulting symmetrized (undirected) graphs. For example, the authors in [21]
discuss several symmetrization methods, including the symmetrized adjacency matrix
Ā = (A+AT)/2, the bibliographic coupling matrix AAT and the co-citation strength
matrix ATA, and so forth. Symmetrization can also be done through a random walk
on the underlying graph, where P = D−1A is the probability transition matrix and
D = diag[douti] is a diagonal matrix of node out-degrees. For example, taking the ob-
jective function as the random walk flow circulation matrix Fπ = ΠP , where Π is
the diagonal stationary distribution matrix, we have the symmetrized Laplacian of the
circulation matrix as L̄ = (L̃+ L̃T)/2, where L̃ is the (asymmetric) digraph Laplacian
matrix [13]. Then the classical spectral clustering algorithm can then be applied using
L̄ which is symmetric and semi-definite. Zhou and et al [27, 29] use this type of sym-
metrization to perform clustering on digraphs. Moreover, Leicht and Newman [10] pro-
pose the digraph modularity matrix Q = [Qij], which captures the difference between
the observed digraph and the hypothetical random graph with edges randomly generated
by preserving the in- and out-degrees of nodes, namely, Qij = Aij−douti dinj /m. Then,
if the sum of edge modularities in a cluster S is large, nodes in S are well connected,
since the edges in S tend to appear with higher probabilities than occur by chance. How-
ever, Q by definition is asymmetric, where [10] uses the symmetrized Q̄ = (Q+QT)/2
as objective to perform spectral clustering method. Essentially, the edge modularity cap-
tures how an individual edge appears more frequently than that happens by chance, thus
the modularity based clustering method tends to group those nodes with more connec-
tions than expected together, which like all other clustering methods presented above
completely ignores the distinction between mutual and one-way connections.

Problem Definition. In this paper we want to solve the following clustering problem in
social networks with bi- and uni-directional links: Given a directed (social) graph where
mutual connections represent more stable relations and one-way connections represent
intermediate transferring states, how can we account for mutual tendencies of dyadic

118 Y. Li, Z.-L. Zhang, and J. Bao

relations and cluster the entities in such a way that nodes within each cluster have
maximized mutuality tendencies to establish mutual connections, while across clusters,
nodes have minimized tendencies to establish mutual connections? The clusters (rep-
resenting social structures or communities) identified and extracted thereof will hence
likely be more stable.

3 Cluster-Based Mutuality Tendency Theory

Inspired by Wolfe’s study in [28], we propose a new measure of mutuality tendency
for dyads that can be generalized to groups of nodes (clusters), and develop a mutuality
tendency theory for characterizing the strength of social ties within a cluster (network
structure) as well as across clusters in an asymmetric social graph. This theory lays the
theoretical foundation for the network structure classification and community detection
algorithms we will develop in section 4.

Let Xij denote the random variable that represents whether or not node i places a
directed edge to node j. There are only two possible events (i.e., Xij takes two pos-
sible values): Xij = 1, representing the edge is present; or Xij = 0, the edge is not
present. Let Xij (resp. X̄ij) denote the event {Xij = 1} (resp. {Xij = 0}). Given an
observed (asymmetric) social graph G, to capture the mutuality tendency of dyads in
this graph, we compare it with a hypothetical, random (social) graph, denoted as G(μ),
where links (dyadic relations) are generated randomly (i.e., by chance) in such a man-
ner that the (out-)degree di of each node i in G(μ) is the same as that in the observed
social graph G. Under this random social graph model, the probability of the event Xij

occurring is P (μ)(Xij) =
di

|V |−1 ; namely, i places a (directed) link to node j randomly
or by chance (the superscript μ indicates the probability distribution of link generations
under the random social graph model). The probability that i places a directed edge
to j and j reciprocates back (i.e., node i and node j are mutually connected) is thus
given by P (μ)(Xij , Xji) = P (μ)(Xij)P

(μ)(Xji|Xij) = P (μ)(Xij)P
(μ)(Xji), since

Xij and Xji are independent under the random social graph model. On the observed
social graph, denote P (ω)(Xij , Xji) to represent the event whether there is a mutual
connection (symmetric link) between node i and node j, i.e., P (ω)(Xij , Xji) = 1, if
the dyad Dyij is a mutual dyad in the observed social graph, and P (ω)(Xij , Xji) = 0,
otherwise. We define the mutuality tendency of dyad Dyij as follows:

θij : = P (ω)(Xij , Xji)− P (μ)(Xij , Xji) = P (ω)(Xij , Xji)− P (μ)(Xij)P
(μ)(Xji),

(2)

which captures how the node pair i and j establish a mutual dyad more frequently than
would occur by chance.

This definition of mutuality tendency is a symmetric measure for dyad Dyij , i.e.,
θij = θji. In addition, it is shown that θij ∈ [−1, 1]. We remark that θij = 0 indicates
that if node i places a directed link to node j, the tendency that node j will reciprocate
back to node i is no more likely than would occur by chance; the same holds true if
node j places a directed link to node i instead. On the other hand, θij > 0 indicates
that if node i (resp. node j) places a directed link to node j (resp. node i), node j (resp.
node i) will more likely than by chance to reciprocate. In particular, with θij = 1, node

Mutual or Unrequited Love 119

j (resp. node i) will almost surely reciprocate. In contrast, θij < 0 indicates that if node
i (resp. node j) places a directed link to node j (resp. node i), node j (resp. node i) will
tend not to reciprocate back to node i (resp. node j). In particular, with θij = −1, node
j (resp. node i) will almost surely not reciprocate back. Hence θij provides a measure
of strength of social ties between node i and j: θij > 0 suggests that the dyadic relation
between node i and j is stronger, having a higher tendency (than by chance) to become
mutual; whereas θij < 0 suggests that node i and j have weaker social ties, and their
dyadic relation is likely to remain asymmetric or eventually disappear.

Mutuality Tendency of Clusters. The mutuality tendency measure for dyads defined
in eq.(2) can be easily generalized for an arbitrary cluster (a subgraph) in an observed
social graph, S ⊆ G. We define the mutuality tendency of a cluster S, ΘS , as follows:

ΘS :=
∑

i∼j;i,j∈S

P (ω)(Xij , Xji)−
∑

i∼j;i,j∈S

P (μ)(Xij)P
(μ)(Xji), (3)

where the subscript i ∼ j : i, j ∈ S means that the summation accounts for all (un-
ordered) dyads, and i, j are both in S. Denote the second term in eq.(3) as m(μ)

S , and the
(out-degree) volume of the cluster S as dS :=

∑
i∈S di. As P (μ)(Xij) = di/(|V | − 1)

and P (μ)(Xji) = dj/(|V | − 1),

m
(μ)
S =

∑
i∼j;i,j∈S

didj
(|V | − 1)2

=
d2S −

∑
i∈S d2i

2(|V | − 1)2
, (4)

which represents the expected number of mutual connections among nodes in S under
the random social graph model. Given the cluster S in the observed social graph G,
define m

(ω)
S :=

∑
i∼j;i,j∈S P (ω)(Xij , Xji), namely, m(ω)

S represents the number of
(observed) mutual connections among nodes in the cluster S in the observed social
graph G. The mutual tendency of cluster S defined in eq.(3) is therefore exactly ΘS =

m
(ω)
S −m

(μ)
S .

Hence ΘS provides a measure of strength of (likely mutual) social ties among nodes
in a cluster: ΘS > 0 suggests that there are more mutual connections among nodes
in S than would occur by chance; whereas ΘS < 0 suggests that there are fewer mu-
tual connections among nodes in S than would occur by chance. Using ΘS , we can
therefore quantify and detect clusters of nodes (network structures or communities)
that have strong social ties. In particular, when S = G, ΘG characterizes the mutual-
ity tendency for the entire digraph G, i.e., ΘG = m

(ω)
G − m

(μ)
G =

∑
i∼j θij , where

m
(ω)
G :=

∑
i∼j P

(ω)(Xij , Xji) represents the number of (observed) mutual dyads
among nodes in the observed social graph G, and

m
(μ)
G =

∑
i∼j

didj
(|V | − 1)2

=
d2 −∑i∈V d2i
2(|V | − 1)2

, (5)

represents the expected number of mutual dyads among nodes in G under the random
social graph model. Likewise, given a bipartition (S, S̄) of G, we define the cross-
cluster mutuality tendency as

120 Y. Li, Z.-L. Zhang, and J. Bao

Θ∂S :=
∑

i∈S∼j∈S̄

(P (ω)(XijXji)− P (μ)(Xij)P
(μ)(Xji)) (6)

Denote the second quantity in eq.(6) as m(μ)
S ,

m
(μ)
∂S =

∑
i∈S∼j∈S̄

didj
(|V | − 1)2

=
dSdS̄

(|V | − 1)2
(7)

which represents the expected number of mutual connections among nodes across S and
S̄ under the random social graph model. Define m

(ω)
∂S :=

∑
i∈S∼j∈S̄ P (ω)(Xij , Xji)

representing the number of (observed) mutual connections among nodes across clusters
S and S̄ in the observed social graph G. The mutuality tendency across cluster S and S̄

defined in eq.(6) is therefore exactly Θ∂S = m
(ω)
∂S −m

(μ)
∂S .

The mutuality tendency theory outlined above accounts for different interpretations
and roles mutual and one-way connections represent and play in asymmetric social
graphs, with the emphasis in particular on the importance of mutual connections in
forming and developing stable social structures/communities with strong social ties.
In the next section, we will show how we can apply this mutuality tendency theory
for detecting and clustering stable network structures and communities in asymmetric
social graphs.

4 Mutuality-Tendency-Aware Spectral Clustering Algorithm

In this section, we establish the basic theory and algorithm for solving the mutuality-
tendency-aware clustering problem. Due to the space limitation, some proofs are dele-
gated to the technical report [14].

Without loss of generality, we consider only simple (unweighted) digraphs G =
(V,E) (i.e., the adjacency matrix A is a 0-1 matrix). Define the mutual connection
matrix M := min(A,AT), which expresses all the mutual connections with unit weight
1. In other words, if node i and node j are mutually connected (with bidirectional links),
Mij = Mji = 1, otherwise, Mij = Mji = 0. Hence, we have Mij = P (ω)(Xij , Xji),
representing the event whether there is a mutual connection (symmetric link) between
node i and node j, i.e., in the dyad Dyij in the observed social graph. In addition, let
δij be the Kronecker delta symbol, i.e., δij = 1 if i = j, and δij = 0 otherwise. Then,
we define matrix

M̄ =
ddT − diag[d2]
(|V | − 1)2

with d as the out-going degree vector, where each entry

M̄ij =
didj − δijd

2
i

(|V | − 1)2
=

{
didj

(|V |−1)2 if i
= j

0 if i = j
(8)

represents the probability that two nodes i and j independently place two unidirectional
links to each other to form a mutual dyad. Hence, M̄ij = P (μ)(Xij)P

(μ)(Xji) repre-
sents the probability of node pair i and j to establish a mutual connection under random

Mutual or Unrequited Love 121

graph model with edges randomly generated by preserving the node out-degrees. We
denote T = M − M̄ as the mutuality tendency matrix, with each entry

Tij = P (ω)(Xij , Xji)− P (μ)(Xij)P
(μ)(Xji) = θij (9)

as the individual dyad mutuality tendency.

Mutuality Tendency Lapacian. T is symmetric and those entries associated with non-
mutual dyads are negative, representing less mutuality tendencies to establish mutual
connections than those occur by chance. Define the mutuality tendency Laplacian ma-
trix as

LT = DT − T (10)

where DT = diag[dT (i)] is the diagonal degree matrix of T , with dT (i) =
∑

j Tij . We
have the following theorem presenting several properties of LT .

Theorem 1. The mutuality tendency Laplacian matrix LT as defined in eq.(10) has the
following properties

– Given a column vector x ∈ R|V |, the bilinear form xTLTx satisfies

xTLTx =
∑
i∼j

Tij(xi − xj)
2. (11)

– LT is symmetric and in general indefinite. In addition,LT has one eigenvalue equal
to 0, with corresponding eigenvector as 1 = [1, · · · , 1]T .

Mutuality Tendency Ratio Cut Function. For a digraph G = (V,E), and a partition
V = (S, S̄) on G, we define the mutuality tendency ratio cut function as follows.

TRCut(S, S̄) = Θ∂S

(
1

|S| +
1

|S̄|
)
, (12)

which represents the overall mutuality tendency across clusters balanced by the “sizes”
of the clusters. Then, the clustering problem is formulated as a minimization problem
with K = 2 clusters. (More general cases with |V | ≥ K > 2 will be discussed in the
next subsection.)

min
S

TRCut(S, S̄) (13)

Since Θ∂S = ΘG − (ΘS +ΘS̄) holds true, we have

TRCut(S, S̄) = (ΘG − (ΘS +ΘS̄))

(
1

|S| +
1

|S̄|
)
.

For a given graph G, the graph mutuality tendency ΘG is a constant, the minimization
problem in eq.(13) is equivalent to the following maximization problem:

max
S

{
(ΘS +ΘS̄ −ΘG)

(
1

|S| +
1

|S̄|
)}

. (14)

122 Y. Li, Z.-L. Zhang, and J. Bao

Hence, minimizing the cross-cluster mutuality tendency is equivalent to maximize the
within-cluster mutuality tendency. Using the results presented in Theorem 1, we prove
the following theorem which provides the solution to the above mutuality tendency
optimization problem.

Theorem 2. Given the tendency Laplacian matrix LT = DT − T , the signs of the
eigenvector of LT corresponding to the smallest non-zero eigenvalue indicate the opti-
mal solution (S, S̄) to the optimization problem eq.(13).

Moreover, the mutuality-tendency-aware spectral clustering can be easily generalized
for the case of K > 2 (See more details in [14]).

Choice of K . We choose K , i.e., the total number of clusters, using the eigengap heuris-
tic [25]. Theorem 1 shows that LT has all real eigenvalues. Denote the eigenvalues of
LT in an increasing order, i.e., λ1 ≤ · · · ≤ λn, The index of the largest eigengap,
namely, K := argmax2≤K≤n(g(K)), where g(K) = λK − λK−1, K = 2, · · · , n,
indicates how many clusters there are in the network.

5 Evaluations
In this section, we evaluate the performance of the mutuality-tendency-aware spectral
clustering method by comparing it with various symmetrization methods based digraph
spectral clustering algorithms. We only present the comparison results for the adjacency
matrix symmetrization method, with objective matrix as Ā = (A + AT)/2. For other
settings, we obtained similar results and omit them here, due to the space limitation.
We will 1) first test the performances using synthetic datasets, and then 2) apply our
method to real online network datasets, e.g., Slashdot social network, and discover sta-
ble clusters with respect to mutual and one-way connections.

Synthetic Datasets. We first consider synthetic datasets designed specifically to test the
performance of our mutuality-tendency-awarespectral clustering method. We randomly
generate a network with 1200 nodes and K = 3 clusters, that contain 500, 400 and
300 nodes, respectively. There are 54675 directional edges, among which 27336 edges
are bidirectional and 27339 edges are unidirectional. We are randomly placed 90.02%
of the bidirectional edges in clusters, and 89.6% of the unidirectional edges across
clusters. Fig. 2(i)-(iii) show that traditional spectral clustering algorithm detects clusters
with 661, 538 and 1 entities, respectively, while our method identify correct clusters
(See Fig. 3(i)-(iii)).

Real Social Networks. In the second set of simulations, we applied our mutuality-
tendency-aware spectral clustering algorithm to several real social network datasets,
e.g., Slashdot [23], Epinions [19], and email communication network [11] datasets, and
compare with various symmetrization methods based digraph clustering algorithms,
such as A = (A + AT)/2, AAT and Fπ = ΠP . Here we only show the compari-
son results with adjacency matrix symmetrization based digraph spectral clustering on
Slashdot dataset. All other settings lead to similar results and we omit them here.

Slashdot is a technology-related news website founded in 1997. Users can submit
stories and it allows other users to comment on them. In 2002, Slashdot introduced

Mutual or Unrequited Love 123

Fig. 2. (i)All edges, (ii)Bidirectional edges,
(iii)Unidirectional edges (Traditional spectral
clustering method in synthetic dataset)

Fig. 3. (i)All edges, (ii)Bidirectional edges,
(iii)Unidirectional edges (Tendency aware
spectral clustering in synthetic dataset)

Fig. 4. (i)All edges, (ii)Bidirectional edges,
(iii)Unidirectional edges (Traditional spectral
clustering method in Slashdot dataset)

Fig. 5. (i)All edges, (ii)Bidirectional edges,
(iii)Unidirectional edges (Tendency aware
spectral clustering in Slashdot dataset)

the Slashdot Zoo feature which allows users to tag each other as friends or foes. The
network data we used is the Slashdot social relation network, where a directed edge
from i to j indicates an interest from i to j’s stories (or topics). Hence, two people
with mutual connections thus share some common interests, while one-way connections
infer that one is interested in the other’s posts, but the interests are not reciprocated
back. The Slashdot social network data was collected and released by Leskovec [23] in
November 2008.

The statistics1 are shown in Table 1. It shows that the largest strongly connected
component (SCC) include about 70355 nodes. Then, we remove those nodes with very
low in-degrees and out-degrees, say no more than or equal to 2. By finding the largest
strongly connected component of the remaining graph, we extract a “core” of the net-
work with 10131 nodes and 197378 edges, among which there are 21404 unidirectional
edges and 175974 bidirectional edges, respectively. In our evaluations, we observe that
there is a large “core” of the network, and all other users are attached to this core net-
work. In our study, we are interested in extracting the community structure from the
“core” network. When applying our spectral clustering algorithm to the “core” net-
work, two clusters with 8892 and 1239 nodes are detected (shown in Fig.5(i)-(iii)).
In our result, a large portion (about 35.04%) of cross-cluster edges are unidirectional
edges which in turn yield lower mutuality tendency across clusters. On the other hand,
when using the traditional symmetrized Ā = (A + AT)/2, two clusters with 9640
and 491 nodes are extracted instead (shown in Fig.4(i)-(iii)). We can see that the clus-
tering result obtained using the traditional spectral clustering method has only around
5.75% of the total edges across clusters as unidirectional edges, which boost up the
mutuality tendency across clusters. However, in our clustering result, we have more
unidirectional edges placed across clusters, which decreases the mutuality tendency

1 Here, the total number of edges is smaller than that is shown on the website [23], because we
do not count for those selfloops.

124 Y. Li, Z.-L. Zhang, and J. Bao

Table 1. Statistics of Slashdot Dataset (U-edge: Unidirectional edge, B-edge: Bidirectional edge)

Nodes 77360 Nodes in largest SCC 70355 Nodes in the “core” component 10131

Edges 828161 Edges in largest SCC 818310 Edges in the “core” component 197378

U-edges 110199 U-edges in largest SCC 100930 U-edges in the “core” component 21404

B-edges 717962 B-edges in largest SCC 717380 B-edges in the “core” component 175974

Table 2. Ave. mutuality tendency comparison on Slashdot dataset

. θG θS1 θS2 θ∂S
Mutuality tendency aware clustering 0.0017 0.0049 0.0028 0.00033
Traditional clustering 0.0017 0.0018 0.0021 0.00070

across clusters. From Fig. 5(i), we can clearly see that we have unidirectional (red)
edges dominating the cross-cluster parts. Moreover, Table 2 shows the average mutual-
ity tendency comparison between different clustering methods, where we can see that
the mutuality-tendency-aware spectral clustering algorithm can group nodes together
with higher within-cluster tendencies than that of traditional spectral clustering.

References

1. Berscheid, E., Regan, P.: The psychology of interpersonal relationships. Pearson Prentice
Hall (2005)

2. DeScioli, P., Kurzban, R., Koch, E., Liben-Nowell, D.: Best friends: Alliances, friend rank-
ing, and the myspace social network. Perspectives on Psychological Science 6(1), 6–8 (2011)

3. Golder, S., Yardi, S., Marwick, A.: A structural approach to contact recommendations in
online social networks. In: Workshop on Search in Social Media, SSM (2009)

4. Gouldner, A.: The norm of reciprocity: A preliminary statement. American Sociological Re-
view, 161–178 (1960)

5. Heider, F.: Attitudes and cognitive organization. Journal of Psychology 21(1), 107–112
(1946)

6. Jamali, M., Haffari, G., Ester, M.: Modeling the temporal dynamics of social rating networks
using bidirectional effects of social relations and rating patterns. In: WWW (2011)

7. Katz, L., Powell, J.: Measurement of the tendency toward reciprocation of choice. Sociome-
try 18(4), 403–409 (1955)

8. Kurucz, M., Benczur, A., Csalogany, K., Lukacs, L.: Spectral clustering in telephone call
graphs. In: WebKDD (2007)

9. Kwak, H., Chun, H., Moon, S.: Fragile online relationship: A first look at unfollow dynamics
in twitter. In: CHI (2011)

10. Leicht, E., Newman, M.: Community structure in directed networks. Physical Review Let-
ters 100(11), 118703 (2008)

11. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and shrinking di-
ameters. ACM Transactions on Knowledge Discovery from Data (TKDD) 1(1), 1–41 (2007)

12. Leskovec, J., Lang, K., Mahoney, M.: Empirical comparison of algorithms for network com-
munity detection. In: WWW (2010)

13. Li, Y., Zhang, Z.-L.: Random Walks on Digraphs, the Generalized Digraph Laplacian and the
Degree of Asymmetry. In: Kumar, R., Sivakumar, D. (eds.) WAW 2010. LNCS, vol. 6516,
pp. 74–85. Springer, Heidelberg (2010)

Mutual or Unrequited Love 125

14. Li, Y., Zhang, Z.-L., Bao, J.: Mutual or unrequited love: Identifying stable clusters in social
networks with uni- and bi-directional links. Arxiv preprint arXiv:1203.5474 (March 2012)

15. Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17, 395–416 (2007)
16. Miller, H., Geller, D.: Structural balance in dyads. Journal of Personality and Social Psychol-

ogy 21(2), 135 (1972)
17. Mishra, N., Schreiber, R., Stanton, I., Tarjan, R.E.: Clustering Social Networks. In: Bonato,

A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp. 56–67. Springer, Heidelberg
(2007)

18. Price, K., Harburg, E., Newcomb, T.: Psychological balance in situations of negative inter-
personal attitudes. Journal of Personality and Social Psychology 3(3), 265 (1966)

19. Richardson, M., Agrawal, R., Domingos, P.: Trust Management for the Semantic Web. In:
Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 351–368.
Springer, Heidelberg (2003)

20. Roudrigues, A.: Effects of balance, positivity, and agreement in triadic social relations. Jour-
nal of Personality and Social Psychology 5(4), 472 (1967)

21. Satuluri, V., Parthasarathy, S.: Symmetrizations for clustering directed graphs. In:
EDBT/ICDT (2011)

22. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach.
Intell. 22(8), 888–905 (2000)

23. Slashdot. dataset,
http://snap.stanford.edu/data/soc-Slashdot0811.html

24. Smyth, S.: A spectral clustering approach to finding communities in graphs. In: SDM (2005)
25. von Luxburg, U.: A tutorial on spectral clustering. Technical Report No.TR-149, Max Planck

Institute for Biological Cybernetics (2006)
26. Wang, X., Davidson, I.: Flexible constrained spectral clustering. In: KDD 2010, pp. 563–572

(2010)
27. Weston, J., Leslie, C.S., Ie, E., Zhou, D., Elisseeff, A., Noble, W.S.: Semi-supervised protein

classification using cluster kernels. Bioinformatics 21(15), 3241–3247 (2005)
28. Wolfe, A.: Social network analysis: Methods and applications. American Ethnologist 24(1),

219–220 (1997)
29. Zhou, D., Huang, J., Schölkopf, B.: Learning from labeled and unlabeled data on a directed

graph. In: ICML (2005)

http://snap.stanford.edu/data/soc-Slashdot0811.html

Dynamic PageRank Using

Evolving Teleportation

Ryan A. Rossi and David F. Gleich

Purdue University
Department of Computer Science

305 N. University St., West Lafayette, IN 47906
{rrossi,dgleich}@purdue.edu

Abstract. The importance of nodes in a network constantly fluctuates
based on changes in the network structure as well as changes in external
interest. We propose an evolving teleportation adaptation of the PageR-
ank method to capture how changes in external interest influence the
importance of a node. This framework seamlessly generalizes PageRank
because the importance of a node will converge to the PageRank values if
the external influence stops changing. We demonstrate the effectiveness
of the evolving teleportation on the Wikipedia graph and the Twitter
social network. The external interest is given by the number of hourly
visitors to each page and the number of monthly tweets for each user.

1 Introduction

Finding important nodes in a graph is a key task in a variety of applications:
search engines [24,18], network science [17,8,14], and bioinformatics [27,22],
among many others. By and large, these are global measures of node impor-
tance and one of the most well-studied measures is PageRank [24,20].

PageRank computes the importance of each node in a directed graph under
a random surfer model. When at a node, the random surfer can either:

1. transition to a new node from the set of out-edges, or
2. do something else (e.g., execute a search query, use a bookmark).

The probability that the surfer performs the first action is known as the damp-
ing parameter in PageRank. We use α to denote the damping parameter. The
second action is called teleporting and is modeled by the surfer picking a node
at random according to a distribution called the teleportation distribution vec-
tor or personalization vector. These choices only depend on the current node
and, consequently, define a Markov chain. This PageRank Markov chain always
has a unique stationary distribution for any 0 ≤ α < 1. The importance of a
node is proportional to its stationary distribution in this Markov chain. Thus,
the computation is governed by the graph, a teleportation parameter α, and a
teleportation distribution vector.

The PageRank score is a simple model for the importance of a node in a
graph, and there are many variations that may yield more useful scores (for in-
stance [21] models a random walk with a back button). A common complaint

A. Bonato and J. Janssen (Eds.): WAW 2012, LNCS 7323, pp. 126–137, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Dynamic PageRank Using Evolving Teleportation 127

about PageRank models is that they are only defined for static graphs. Moti-
vated by the idea of studying PageRank with dynamic graphs, we formulate a
dynamic PageRank model for a static graph with a time-dependent, or evolving,
teleportation vector. Intuitively, the teleportation distribution changes based on
human dynamics such as recent news and seasonal preferences. For example, in
our forthcoming experiments (Section 6), the time-dependent vector is the num-
ber of hourly page visits for each page from Wikipedia. We derive the model
and algorithms for this dynamic version of PageRank in Section 4. The resulting
algorithms scale to large graphs. Moreover, we show that the new model is a
generalization of PageRank in the sense that if the time-dependent vector stops
changing then our dynamic score vector converges to the standard PageRank
score.

We make our code and data available in the spirit of reproducible research:
http://www.cs.purdue.edu/homes/dgleich/codes/dynsyspr-waw

2 PageRank Notation

In order to place our work in context, we first introduce some notation. Let A
be the adjacency matrix for a graph where Ai,j denotes an edges from node i
to node j. In order to avoid a proliferation of transposes, we define P as the
transposed transition matrix for a random-walk on a graph:

Pj,i = probability of transitioning from node i to node j.

Hence, the matrix P is column-stochastic instead of row-stochastic, which is the
standard in probability theory. Throughout this manuscript, we utilize uniform
random-walks on a graph, in which case P = ATD−1 where D is a diagonal
matrix with the degree of each node on the diagonal. However, none of the theory
is restricted to this type of random walk and any column-stochastic matrix will
do. The PageRank vector x is the solution of the linear system:

(I− αP)x = (1 − α)v

for any 0 ≤ α < 1 and any teleportation distribution vector v such that vi ≥ 0
and

∑
vi = 1. Table 1 summarizes these notation conventions, and has a few

other elements that will be discussed in the forthcoming sections.

3 Dynamic and Evolving Rankings

The PageRank literature is vast, and we now survey some of the other ideas
related to incorporating graph dynamics into a PageRank vector, more general
models for studying dynamic graphs, and updating PageRank vectors.

Our proposed method is related to changing the teleportation vector in the
power method as its being computed. Bianchini et al. [5] noted that the power
method would still converge if either the graph or the vector v changed dur-
ing the method, albeit to a new solution given by the new vector or graph.

http://www.cs.purdue.edu/homes/dgleich/codes/dynsyspr-waw

128 R.A. Rossi and D.F. Gleich

Table 1. Summary of notation. Matrices are bold, upright roman letters; vectors are
bold, lowercase roman letters; and scalars are unbolded roman or greek letters.

n number of nodes in a graph
e the vector of all ones
P column stochastic matrix
α damping parameter in PageRank
v teleportation distribution vector
x solution to the PageRank computation

v(t) a teleportation distribution vector at time t
x(t) solution to the Dynamic PageRank computation for time t

θ decay parameter for time-series smoothing

Our method capitalizes on a closely related idea and we utilize the intermedi-
ate quantities explicitly. Another related idea is the Online Page Importance
Computation (OPIC) [1], which integrates a PageRank-like computation with a
crawling process. The method does nothing special if a node has changed when it
is crawled again. A more detailed study of how PageRank values evolve during a
web-crawl was done by Boldi et al. [7]. Other work has approximated PageRank
on graph streams [11].

Outside of the context of web-ranking, O’Madadhain and Smyth propose
EventRank [23], a method of ranking nodes in dynamic graphs, that uses the
PageRank propagation equations for a sequence of graphs. We utilize the same
idea but place it within the context of a dynamical system.

While we described PageRank in terms of a random-surfer model above, an-
other characterization of PageRank is that it is a sum of damped transitions:

x = (1− α)
∞∑
k=0

(αP)kv.

These transitions are a type of probabilistic walk and Grindrod et al. [16] intro-
duced the related notion of dynamic walks for dynamic graphs.

In the context of popularity dynamics [25], our method captures how changes
in external interest influence the popularity of nodes and the nodes linked to
these nodes in an implicit fashion. Our work is also related to modeling human
dynamics, namely, how humans change their behavior when exposed to rapidly
changing or unfamiliar conditions [3]. In one instance, our method shows the
important topics and ideas relevant to humans before and after one of the largest
Australian Earthquakes.

In closing, we wish to note that our proposed method does not involve updat-
ing the PageRank vector, a related problem which has received considerable at-
tention [9,19]. Nor is it related to tensor methods for dynamic graph data [26,12].

Dynamic PageRank Using Evolving Teleportation 129

4 PageRank with Dynamic Teleportation

In order to incorporate dynamics into PageRank, we reformulate a standard
PageRank algorithm in terms of changes to the PageRank values for each page.
This step allows us to state PageRank as a dynamical system, in which case we
can easily incorporate changes into the vector.

The standard PageRank algorithm is the classical Richardson iteration:

x(k+1) = αPx(k) + (1− α)v.

(Note that this iteration is identical to the power method for the PageRank
Markov chain.) By rearranging this equation into a difference form, we have

Δx(k) = x(k+1) − x(k) = αPx(k) + (1− α)v − x(k) = (1− α)v − (I− αP)x(k).

Thus, changes in the PageRank values at a node evolve based on the value
(1−α)v−(I−αP)x(k). We reinterpret this update as a continuous time dynamical
system:

x′(t) = (1− α)v − (I− αP)x(t). (1)

Other iterative methods also give rise to related dynamical systems, as utilized
by [13] for studying eigenvalue solvers.

In the dynamic teleportation model, v is no longer fixed, but is instead a
function of time v(t):

x′(t) = (1 − α)v(t)− (I− αP)x(t). (2)

Note that this means the PageRank values x(t) may not “settle” or converge.
We see this as a feature of the new model as we plan to utilize information from
the evolution and changes in the PageRank values.

Standard texts on dynamical system show that the solution x(t) is:

x(t) = exp[−(I− αP)t]x(0) + (1− α)

∫ t

0

exp[−(I− αP)(t− τ)]v(τ) dτ.

If v(t) = v is constant with respect to time, then∫ t

0

exp[−(I−αP)(t− τ)]v(τ) dτ = (I−αP)−1v− exp[−(I−αP)t](I−αP)−1v.

Hence, for constant v(t):

x(t) = exp[−(I− αP)t](x(0)− x) + x,

where x is the solution to static PageRank: (I − αP)x = (1 − α)v. Because all
the eigenvalues of −(I − αP) < 0, the matrix exponential terms disappear in a
sufficiently long time horizon. Thus, when v(t) = v, nothing has changed. We
recover the original PageRank vector x as the steady-state solution:

lim
t→∞x(t) = x the PageRank vector.

This derivation shows that dynamic teleportation PageRank is a generalization
of the PageRank vector.

130 R.A. Rossi and D.F. Gleich

Require:
a graph G = (V,E) and a procedure to compute Px for this graph
a maximum time tmax

a function to return v(t) for any 0 ≤ t ≤ tmax

a damping parameter α
a time-step h

Ensure: X where the kth column of X is x(0 + kh) for all 1 ≤ k ≤ tmax/h (or any
desired subset of these values)

t ← 0; k = 1
x(0) ← v(0) (or any other desired initial condition)
while t ≤ tmax − h do

x(t+ h) ← x(t) + h [(1− α)v(t)− (I− αP)x(t)]
X(:, k) ← x(t+ h)
t ← t+ h; k ← k + 1

end while

Fig. 1. In order to compute a sequence of dynamic teleportation PageRank values, we
utilize a forward Euler method for the dynamical system: x′(t) = (1 − α)v(t) − (I −
αP)x(t). The resulting procedure looks remarkably similar to the standard Richardson
iteration to compute a PageRank vector. A key difference is that there is no notion of
convergence.

4.1 Algorithms

In order to compute the time-sequence of PageRank values x(t), we can evolve
the dynamical system (1) using any standard method, for instance a forward
Euler or a Runge-Kutta method. At the moment, we only use the forward Euler
method for simplicity. This method lacks high accuracy, but is fast and straight-
forward. Forward Euler approximates the derivative with a first order Taylor
approximation:

x′(t) ≈ x(t+ h)− x(t)

h
,

and then uses that approximation to estimate the value at a short time-step in
the future:

x(t+ h) = x(t) + h [(1− α)v(t)− (I− αP)x(t)] .

Note that if h = 1 and v(t) = v for all t, then this update becomes the original
Richardson iteration. A summary of this derivation as a formal algorithm to
compute a dynamic teleportation PageRank time series is given by Figure 1.

4.2 Discussion of the Algorithm & Practical Issues

First, the algorithm we propose easily scales to large networks. This isn’t sur-
prising given its close relationship to the Richardson method for PageRank. The
major expense is the set of tmax/h matrix-vector products with P – all of the
other work is linear in the number of nodes. It could also be used in a distributed
setting if any distributed matrix-vector product is available.

Dynamic PageRank Using Evolving Teleportation 131

In one sense, the forward Euler method is simply running a power method, but
changing the vector v at every iteration. However, we derived this method based
on evolving (2). Thus, by studying the relationship between (2) and the algorithm
in Figure 1, we can understand the underlying problem solved by changing the
teleportation vector while running the power method. Consequently, we gain
additional flexibility in adapting (2) to problems.

Thus far, we also have not discussed how to set v(t) beyond the brief allusion
at the beginning that the dynamic teleportation will be based on Wikipedia
pageviews. When we apply the dynamic teleportation PageRank model, we need
to pick a relationship between the time-scale of the dynamical system (2) and
the time-scale in the underlying application. For instance, does x(1) correspond
to the PageRank values after a second, an hour, a day? There is no “correct”
answer and the relationship has implications on the final model.

Suppose that we set α = 0.85, h = 1, and that t = 1 is a minute of time in
the application. If we have hourly data on Wikipedia pageviews, then the above
algorithm will compute 60 iterations of the power-method between each hour. If
we further use the incredibly simple model that v(t) changes each hour as we get
new data, then the forward Euler method is essentially equivalent to running the
power-method to convergence after v changes on the hour. (They are essentially
equivalent in the sense that PageRank will have converged to a 1-norm error of
10−4 in about 60 iterations.) If, instead, we set α = 0.85, h = 1, and t = 1 to be
20 minutes of time in the application, then we will do 3 iterations of the power
method after each hourly change.

In the preceding discussion of the algorithm, we hypothesized that v(t) changes
at fixed intervals based on incoming data. A better idea is to smooth out these
“jumps” using an exponentially weighted moving average. We plan to investigate
this in the future.

4.3 Ranking from Time-Series

The above equations provide a time-series of dynamic PageRank vectors for
the nodes, denoted formally as x(t), 0 ≤ t ≤ tmax. Most applications, however,
want a single score, or small set of scores, to characterize the importance of a
node. We now discuss a few ways in which these time series give rise to scores.
Reference [23] used similar ideas to extract a single score from a time-series.

Transient Rank. We call the instantaneous values of x(t) a node’s transient rank.
This score gives the importance of a node at a particular time.

Summary & Cumulative Rank. Any summary function s of the time series, such
as the integral, average, minimum, maximum, variance, is a single score that
encompasses the entire interval [0, tmax]. We utilize the cumulative rank in the
forthcoming experiments:

c =

∫ tmax

0

x(t) dt ≈ hXe.

132 R.A. Rossi and D.F. Gleich

Difference Rank. A node’s difference rank is the difference between its maximum
and minimum rank over all time:

d = max
t

[x(t)]−min
t
[x(t)].

Nodes with high difference rank should reflect important events that occurred
within the range [0, tmax]. The underlying intuition is that normal nodes are the
pages where the Dynamic PageRanks do not change much. While the pages that
have large differences in their time-series of PageRanks are topics or news that
went viral or becomes popular over time. See Section 6 for more details and
Figure 3 for examples such as Rihanna, PricewaterhouseCoopers, Watchmen,
and American Idol (season 8).

Having a variety of different scores derived from the same data frequently
helps when using these scores as features in a prediction or learning task [4,10].

4.4 Clustering the Time-Series

After applying our forward Euler based algorithm, we have sampled an approxi-
mation of this time-series: X = {x(hk) : k = 1, . . . , tmax/h}. By clustering these
discrete time-series, we can automatically discover patterns such as increasing
or decreasing trends, periodic bursts at certain times of the year, and their ilk.
Our initial experiments were promising but were omitted due to space.

5 Datasets

In both of the following experiments, we set h = 1, and t = 5 to represent one
period of data – one hour for Wikipedia and one month for Twitter – so that we
do 5 iterations of the forward Euler method before incorporating the new data.
In each period v(t) is normalized to sum to 1, but is otherwise unchanged.

Wikipedia Article Graph and Hourly Pageviews. Wikipedia provides access to
copies of its database [28]. We downloaded a copy of its database on March 6th,
2009 and extracted an article-by-article link graph, where an article is a page
in the main Wikipedia namespace, a category page, or a portal page. All other
pages and links were removed. See [15] for more information.

Wikipedia also provides hourly pageviews for each page [29]. These are the
number of times a page was viewed for a given hour. These are not unique
visits. We downloaded the raw page counts and matched the corresponding page
counts to the pages in the Wikipedia graph. We used the page counts starting
from March 6, 2009 and moving forward in time.

As an aside, let us note that vertex degrees and cumulated pageviews are un-
correlated with a correlation coefficient of 0.02, indicating that using pageviews
will not reinforce any degree bias in the dynamic ranks. In fact, pages with a
large number of pageviews may not have high in-degree at all, which provides
evidence that pages with large in-degree are not always visited more frequently.

Dynamic PageRank Using Evolving Teleportation 133

Twitter Social Network and Monthly Tweet Rates. We use a follower graph
generated by starting with a few seed users and crawling follows links from 2008.
We extract the user tweets over time from 2008− 2009. A tweet is represented
as a tuple 〈user, time, tweet〉. Using the set of tweets, we construct a sequence
of vectors to represents the number of tweets for a given month.

Table 2. Dataset Properties. The pageviews or tweets is denoted as p.

Dataset Nodes Edges tmax Period Average pi Max pi

wikipedia 4,143,840 72,718,664 20 hours 1.3225 334,650
twitter 465,022 835,424 6 months 0.5569 1056

6 Empirical Results

In this section, we demonstrate the effectiveness of Dynamic PageRank as a
method for automatically adapting page importance based on graph structure
and external influence by showing that it provides different insights (§6.1), finds
interesting pages (§6.2), and helps predict pageviews (§6.3).

6.1 Ranking from Time-Series

We first use the intersection similarity measure to evaluate the rankings [6].
Given two vectors x and y, the intersection similarity metric at k is the average
symmetric difference over the top-j sets for each j ≤ k. If Xk and Yk are the top-

k sets for x and y, then isimk(x,y) =
1
k

∑k
j=1

|XjΔYj |
2j , where Δ is the symmetric

set-difference operation. Identical vectors have an intersection similarity of 0.
For the Wikipedia graph, Figure 2 shows the similarity profile comparing

d (from §4.3) to static PageRank, degree, cumulative pageviews pc, maximum
pageviews difference pd, and two other Dynamic PageRank vectors: transient
x(tmax) and cumulative c. The figure suggests that Dynamic PageRank is differ-
ent from the other measures, even for small values of k. In particular, combining
the external influence with the graph appears to produce something new.

6.2 Top Dynamic Ranks

Figure 3 shows the time-series of the top 100 pages by the difference measure.
Many of these pages reveal the ability of Dynamic PageRank to mesh the network
structure with changes in external interest. This became immediately clear after
reviewing significant events from this time period. We find pages related to an
Australian earthquake (40, 72, 70), a just released movie “Watchmen” (94, 39,
99), a famous musician that died (2, 95, 68), recent “American Idol” gossip
(32, 96, 56), a remembrance of Eve Carson from a contestant on “American
Idol” (80, 88, 27), news about the murder of a Harry Potter actor (77), and the

134 R.A. Rossi and D.F. Gleich

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

In
te

rs
ec

tio
n

S
im

ila
rit

y

Dynamic−PR (Cumulative)
Dynamic−PR (Transient)
Static PageRank
Degree
Pageviews (Cumulative)
Pageviews (Difference)

Fig. 2. Intersection similarity between Dynamic PageRank’s difference ranking d and
the other ranking vectors. To more appropriately see the differences, we zoom in on
the top 105 nodes. See the discussion in the text.

Skittles social media mishap (87). These results demonstrate the effectiveness
of the Dynamic PageRank to identify interesting pages that pertain to external
interest. The influence of the graph results in the promotion of pages such as
Richter magnitude (72). That page was not in the top 200 from pageviews.

In another study, omitted due to space, we performed a clustering of these
time-series to identify pages with similar trends. For instance, pages such as
Watchmen (37) and Rorschach (94) share strikingly similar patterns. These pat-
terns indicate the page that became important first and the amount of traffic or
popularity that diffused over time.

6.3 Predicting Future Pageviews & Tweets

We conclude by studying how well the dynamic PageRank values predict future
pageviews. Formally, given a lagged time-series [2], the goal is to predict the
future value pt+1 (actual pageviews or number of tweets). This type of temporal
prediction task has many applications, such as actively adapting caches in large
database systems, or dynamically recommending pages.

We performed one-step ahead predictions (t+1) using linear regression. That
is, we learn a model of the form:[

f̄(t− 1; θ) f̄(t− 2; θ) . . . f̄(t− w; θ)
]
b ≈ p(t)

where w is the window-size, and f̄(·; θ) is an exponentially damped moving aver-
age computed from either pageviews, dynamic PageRanks, or both. Using this

Dynamic PageRank Using Evolving Teleportation 135

1 MainPage 2 FrancisMag 3 Search 4 Pricewater 5 UnitedStat 6 Protectedr 7 administra 8 Wikipedia 9 Glycoprote 10 Duckworth−

11 501(c) 12 Searching 13 Contents 14 Politics 15 Non−profit 16 Science 17 History 18 Society 19 Technology 20 Geography

21 Maintopicc 22 Featuredco 23 administra 24 Contents/Q 25 Freeconten 26 Encycloped 27 AmericanId 28 UnitedKing 29 Mathematic 30 Biography

31 Arts 32 AmericanId 33 Englishlan 34 adminship 35 Fundamenta 36 England 37 Watchmen 38 featuredco 39 Watchmen(f 40 Earthquake

41 India 42 Sciencepor 43 Redirects 44 Articles 45 Wikipedia 46 protectedp 47 QuestCrew 48 Wiki 49 Associatio 50 Raceandeth

51 Greygoo 52 pageprotec 53 Rihanna 54 Listofbasi 55 Sciencepor 56 KaraDioGua 57 TheBeatles 58 Technology 59 London 60 Football(s

61 Science 62 Gackt 63 Teleprompt 64 Technology 65 Society 66 Outlineofs 67 ER(TVserie 68 Philippine 69 NewYorkCit 70 Australia

71 Madonna(en 72 Richtermag 73 Tobaccoadv 74 Geography 75 California 76 Constantin 77 RobKnox 78 LosAngeles 79 Canada 80 MurderofEv

81 Livingpeop 82 Mathematic 83 Societypor 84 functionar 85 March6 86 Day26 87 Skittles(c 88 EveCarson 89 Redirectsf 90 U2

91 Categories 92 Germany 93 MediaWiki 94 Rorschach(95 EatBulaga! 96 PaulaAbdul 97 Daylightsa 98 NewYork 99 Characters 100 Scotland

Fig. 3. The top-100 Wikipedia pages that fluctuate the most as determined by the
difference ranking from our Dynamic PageRank approach. The x-axis represents time
(in hours) while the y-axis represents the Dynamic PageRank value. The blue line
represents Dynamic PageRank and the red line represents the hourly pageviews. There
exist many interesting time-series patterns such as spikes (40), cyclic/seasonality trends
(16-20), and increasing/decreasing trends (39 and 77), among many others. Further
analysis and anecdotal evidence was removed due to space.

average is a standard forecasting technique. Specifically, the exponentially
damped moving average of a time-series feature f(t) is:

f̄(t; θ) = θf(t)︸ ︷︷ ︸
new data

+(1− θ)f̄(t− 1; θ)︸ ︷︷ ︸
old data

.

The exponential factor was θ = 0.3 for Twitter and θ = 0.7 for Wikipedia. Due
to the scarcity of the data, we used 0.3 for Twitter since this choice weights past
observations more heavily. In the future, we plan to use cross-validation. After
fitting, the model predicts p(t + 1) as

[
f̄(t; θ) f̄ (t− 1; θ) · · · f̄(t− w + 1; θ)

]
b.

To measure the error, we use symmetric Mean Absolute Percentage Error (or
sMAPE) [2].

We study two models.

Base Model. This model uses only the time-series of pageviews or tweet-rates to
predict the future pageviews or number of tweets.

Dynamic PageRank Model. This model uses both the Dynamic PageRank time-
series and pageviews to predict the future pageviews.

We evaluate these models for prediction on stationary and non-stationary
time-series. Informally, a time-series is weakly stationary if it has properties

136 R.A. Rossi and D.F. Gleich

(mean and covariance) similar to that of the time-shifted time-series. We con-
sider the top and bottom 1000 nodes from the difference ranking as nodes that
are approximately non-stationary (volatile) and stationary (stable), respectively.
Table 3 compares the predictions of the models across time for non-stationary
and stationary prediction tasks. Our findings indicate that the Dynamic PageR-
ank time-series provides valuable information for forecasting future pageviews.

Table 3. Average SMAPE over all nodes for the two models (lower is better). We
also measure the performance of the models for predicting highly volatile nodes (non-
stationary) and nodes with relatively stable behavior (stationary). In all cases, the
Dynamic PageRank model is more accurate than the base model.

Dataset Forecasting Dynamic PageRank Base Model

wikipedia Non-stationary 0.4349 0.5028
Stationary 0.3672 0.4373

twitter Non-stationary 0.4852 1.2333
Stationary 0.6690 0.9180

7 Conclusion

We proposed an evolving teleportation adaptation of the PageRank method to
capture how changes in external interest influence the importance of a node.
This proposal lets us treat PageRank as a dynamical system and seamlessly
incorporate changes in the teleportation vector. Furthermore, we demonstrated
the utility of using Dynamic PageRank for predicting pageviews. In future work,
we hope to include dynamic and evolving graphs into this framework as well.

References

1. Abiteboul, S., Preda, M., Cobena, G.: Adaptive on-line page importance computa-
tion. In: WWW, pp. 280–290. ACM (2003)

2. Ahmed, N., Atiya, A., El Gayar, N., El-Shishiny, H.: An empirical comparison of
machine learning models for time series forecasting. Econ. Rev. 29(5-6), 594–621
(2010)

3. Bagrow, J., Wang, D., Barabási, A.: Collective response of human populations to
large-scale emergencies. PloS one 6(3), e17680 (2011)

4. Becchetti, L., Castillo, C., Donato, D., Baeza-Yates, R., Leonardi, S.: Link analysis
for web spam detection. ACM Trans. Web 2(1), 1–42 (2008)

5. Bianchini, M., Gori, M., Scarselli, F.: Inside PageRank. ACM Transactions on
Internet Technologies 5(1), 92–128 (2005)

6. Boldi, P.: TotalRank: Ranking without damping. In: WWW, pp. 898–899 (2005)
7. Boldi, P., Santini, M., Vigna, S.: Paradoxical effects in PageRank incremental com-

putations. Internet Mathematics 2(2), 387–404 (2005)
8. Bonacich, P.: Power and centrality: A family of measures. American Journal of

Sociology, 1170–1182 (1987)

Dynamic PageRank Using Evolving Teleportation 137

9. Chien, S., Dwork, C., Kumar, R., Simon, D., Sivakumar, D.: Link evolution: Anal-
ysis and algorithms. Internet Mathematics 1(3), 277–304 (2004)

10. Constantine, P., Gleich, D.: Random alpha PageRank. Internet Mathematics 6(2),
189–236 (2009)

11. Das Sarma, A., Gollapudi, S., Panigrahy, R.: Estimating PageRank on graph
streams. In: SIGMOD, pp. 69–78. ACM (2008)

12. Dunlavy, D.M., Kolda, T.G., Acar, E.: Temporal link prediction using matrix and
tensor factorizations. TKDD 5(2), 10:1–10:27 (2011)

13. Embree, M., Lehoucq, R.B.: Dynamical systems and non-hermitian iterative eigen-
solvers. SIAM Journal on Numerical Analysis 47(2), 1445–1473 (2009)

14. Freeman, L.: Centrality in social networks conceptual clarification. Social Net-
works 1(3), 215–239 (1979)

15. Gleich, D., Glynn, P., Golub, G., Greif, C.: Three results on the PageRank vector:
eigenstructure, sensitivity, and the derivative. In: Web Information Retrieval and
Linear Algebra Algorithms (2007)

16. Grindrod, P., Parsons, M., Higham, D., Estrada, E.: Communicability across evolv-
ing networks. Physical Review E 83(4), 046120 (2011)

17. Katz, L.: A new status index derived from sociometric analysis. Psychome-
trika 18(1), 39–43 (1953)

18. Kleinberg, J.: Authoritative sources in a hyperlinked environment. Journal of the
ACM (JACM) 46(5), 604–632 (1999)

19. Langville, A.N., Meyer, C.D.: Updating PageRank with iterative aggregation. In:
WWW, pp. 392–393 (2004)

20. Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of
Search Engine Rankings. Princeton University Press (2006)

21. Mathieu, F., Bouklit, M.: The effect of the back button in a random walk: appli-
cation for PageRank. In: WWW, pp. 370–371 (2004)

22. Morrison, J.L., Breitling, R., Higham, D.J., Gilbert, D.R.: GeneRank: using search
engine technology for the analysis of microarray experiments. BMC Bioinformat-
ics 6(1), 233 (2005)

23. O’Madadhain, J., Smyth, P.: Eventrank: A framework for ranking time-varying
networks. In: LinkKDD, pp. 9–16. ACM (2005)

24. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
Bringing order to the web (1998)

25. Ratkiewicz, J., Fortunato, S., Flammini, A., Menczer, F., Vespignani, A.: Char-
acterizing and modeling the dynamics of online popularity. Physical Review Let-
ters 105(15), 158701 (2010)

26. Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: dynamic tensor anal-
ysis. In: SIGKDD, KDD 2006, pp. 374–383. ACM, New York (2006)

27. Suzuki, Y., et al.: Identification and characterization of the potential promoter
regions of 1031 kinds of human genes. Genome Research 11(5), 677–684 (2001)

28. Various. Wikipedia database dump, Version from (March 6, 2009),
http://en.wikipedia.org/wiki/Wikipedia:Database_download

29. Various. Wikipedia pageviews (2011),
http://dumps.wikimedia.org/other/pagecounts-raw/
(accessed in 2011)

http://en.wikipedia.org/wiki/Wikipedia:Database_download
http://dumps.wikimedia.org/other/pagecounts-raw/

Multi-commodity Allocation for Dynamic

Demands Using PageRank Vectors

Fan Chung1, Paul Horn2, and Jacob Hughes1

1 University of California, San Diego
2 Harvard University

Abstract. We consider a variant of the contact process concerning
multi-commodity allocation on networks. In this process, the demands
for several types of commodities are initially given at some specified ver-
tices and then the demands spread interactively on a contact graph. To
allocate supplies in such a dynamic setting, we use a modified version of
PageRank vectors, called Kronecker PageRank, to identify vertices for
shipping supplies. We analyze both the situation that the demand distri-
bution evolves mostly in clusters around the initial vertices and the case
that the demands spread to the whole network. We establish sharp upper
bounds for the probability that the demands are satisfied as a function
of PageRank vectors.

1 Introduction

Efficient allocation of resources to meet changing demands is a task arising in
numerous applications. For example, institutions such as governments or corpo-
rations respond to the needs of a populace, and wish to meet the demands within
allowed expenditure of resources. In some cases where demand spreads, one has
to be able to act before demand becomes unmanageable. In the case of an epi-
demic, for instance, one desires to find a way to distribute medicine so that the
disease will be contained. Such problems have been studied in several contexts
using the contact process model [9], [7], [2], [11], [5]. In [5], it was demonstrated
how to use PageRank vectors to both restrict the number of nodes inoculated
and to provide certain containment guarantees.

In this paper, we study a variant of the classical contact process, a continuous
time Markov process on a contact graph. In our scenario, vertices in the graph
each have varying levels of demand for multiple commodities. Demand at a vertex
propagates to its neighbors at a rate depending on the current demand. Our
model allows for interactions between different commodities; demand for one
commodity may influence demand for another. This fits many scenarios that
arise, for instance demand for iPhones may accelerate the demand for iPads.
As another example, demand at a node can might be viewed as a measure of
discontent with the current supply of a resource. It is natural for an unhappy
node to create unrest in its neighbors. As the modified contact process continues,
demands at a vertex are increased at a rate based on the demands at neighboring
vertices. There are also decreased at a satisfaction rate, which can be thought

A. Bonato and J. Janssen (Eds.): WAW 2012, LNCS 7323, pp. 138–152, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Multi-commodity Allocation for Dynamic Demands 139

of as a frequency of shipments. Demand spreads at rates which are a linear
combination of demands from neighboring vertices. These rates are encapsulated
in a spread matrix, B, roughly analogous to the infectivity parameter in the
classical contact process. The goal of this paper is to find satisfaction rates,
dependent on the spread matrix B and the geometry of the contact graph which
ensure that eventually all vertices have no demand and the process dies out. Our
process will be defined, in detail, in Section 2.

To satisfy the demands which evolve according to our model as defined in
Section 2, the goal is to ship commodities and supply vertices with unsatisfied
demands in an efficient way. The model here differs somewhat from typical re-
source allocation problems in the sense that we do not specify the location of the
“warehouses” for the supply. We will not be concerned with either the sources
of the supply or the detailed incremental costs of shipping supply. Instead, our
goal is to identify how often to ship each commodity to a particular vertex, in
order to contain and satisfy demands, given an initial seed set. The reader is
referred to [4] for the usual resource allocation problem.

Contact graphs of interest take many forms: Cities and countries exert trade
pressure on neighboring cities and countries. Communication on the internet can
also spread demand for products, or discontent leading to a revolution. Instead
of studying this problem on particular models for these contact graphs, we study
the problem on arbitrary finite graphs. Two schemes of making shipments are
considered. First is a global solution which involves “scheduling shipments” to
all vertices in the graph, and ensures that all demand is satisfied in O(log n)
time, with high probability and regardless of the initial demand. This is made
precise in Theorem 1 once the model is formally defined. The next scheme is
a local solution, in the sense that shipments are scheduled to only a subset of
vertices which contain the initial demand. In particular, when the contact graph
has some clustering structure we are interested in subsets so that the demand
within the subset is satisfied quickly (in O(log n) time) and demands reach a
vertex not receiving shipments with low probability. Precise results to this end
are given in Section 5.

This latter scheme relies on understanding the geometry of the particular
contact graph being studied. Our scheme uses PageRank to identify important
vertices and to bound the probability that demand in our process leaves a set.
We also introduce a variant of PageRank, which we call Kronecker PageRank
and is introduced in Section 3, which provides sharper bounds by better utilizing
the structure of the spread matrix B as well as the geometry of the graph in its
estimates. Our analysis provides a tradeoff in the following sense: we may use
PageRank estimates to identify a set of vertices containing the initial demand
which are important to ship to or we may use our PageRank estimates to give
a guarantee on the escape probability of leaving a particular set of our choos-
ing. Precise results to this end are given in Theorems 3 and 4, using standard
PageRank and Kronecker PageRank respectively.

140 F. Chung, P. Horn, and J. Hughes

2 Preliminaries and the Demand Model

We model demand spreading within an undirected simple graph, G = (V,E). We
write this v ∼ w when v and w are adjacent. For each vertex v ∈ V , let dv be the
degree of v, which is the number of neighbors of v. While not strictly necessary,
we assume that there is a self loop at each vertex. In this case, dv includes v
in the count of neighbors and hence the loop counts as 1 towards the degree.
We let n = |V |, the number of nodes of G. An exponential random variable
with parameter λ has probability density function given by f(x) = λe−λx for
x ≥ 0, and 0 for x < 0. This distribution will be denoted Exp(λ). One important
property of exponential random variables is the memoryless property: if X is an
exponential random variable then for any constants a, b > 0,

P(X > a+ b|X > a) = P(X > b).

If X and Y are independent and X ∼ Exp(λ1), Y ∼ Exp(λ2) then min{X,Y } ∼
Exp(λ1+λ2). A Poisson point process at rate λ is a sequence of random variables
{Xi}∞i=1 so that X1 and Xi −Xi−1, for i ≥ 2, has distribution Exp(λ).

Before we describe our model, let us briefly recall the contact process on
a graph G, which we denote CP (T, β,σ, G). In the contact process (see for
example [2] or [5]), a disease initially infects a set T ⊆ V (G). The disease has
an infectivity parameter, β, and each vertex has a certain amount of “medicine”
σv. An infected vertex v infects its neighbor u at times given by a Poisson
point process {Xuv} at rate β, and each infected vertex is cured at times given
by a Poisson point process at rate σv. In the most frequently studied case, σ
is constant and the host graph is an infinite graph. The process ends when all
vertices are cured, and the basic problem is to determine under which conditions
on σ, and β the process ends almost surely. In the case of finite graphs, if σv > 0
for every vertex, it is easy to observe that the process ends a.s., so the problem
becomes determining how fast the process ends.

The k−commodity dynamic demand model on a graph G is a variant of the
contact process, DD(τ (0), B,σ, G,N). In this situation, B is a real valued k×k-
matrix (not assumed to be symmetric, or even non-negative), which we call the
spread matrix. The supply function is σ : V → Rk, and τ (0) : V → Nk is the
initial demand. The state of the process at time t is given by τ (t) : V → R

k,
which gives the demands for each vertex at time t. We use τ v(t) ∈ Nk to denote
the demand at vertex v at time t, and τ jv (t) ∈ N to denote the demand for
commodity j at time t. A node v is said to be satisfied at time t if τ v(t) = 0,
and unsatisfied otherwise. N ∈ N serves as a uniform bound for the maximum
demand for any resource at any point (for instance, it could be the population of
a city, if a vertex is a city.) The existence of N is simply to ensure integrability
of some random variables. In the case of the contact process, N = 1.

The spread matrix B = [βij] describes how the demand for one commodity
influences demands for other commodities. The i, j entry of B, βij , determines

Multi-commodity Allocation for Dynamic Demands 141

the spread rate of the demand for commodity j that is caused by demand for
commodity i. In particular, we can describe the rate of spread events as follows. If
v is a node that is unsatisfied at time t, and w an adjacent vertex, then there are
spread events from v to w with rates max{τv(t)B, 0}. That is the rate at which
τ jw increases due to the demand at v is given by max{∑i τ

i
v(t)βij , 0}. Here, when

we say an event occurs with rate λ, we mean that the elapsed time until that
event takes place is distributed as Exp(λ). Because the minimum of exponential
random variables is itself an exponential random variable, we can capture the
total spreading rates in a condensed form. We define the rate function at time
t, ρ(t) : V → Rk, by

ρv =
∑
w∼v

τw(t)B = (τ (t)(A⊗B))v ,

where τ (t) is viewed as a vector with indices indexed by V × k. ρiv(t) is the rate
at which τ iv is increasing at time t. Any spread events that would raise τ iv above
N are ignored.

Supply events occur with rates given by τ (t)Diag(σ), independently of any
neighboring supply events. That is, the time until τ iv is decreased by 1 is dis-
tributed as Exp(σi

vτ
i
v).

We briefly give a construction of the process, to show it is well-defined. Let−→
E denote the set of ordered edges; that is, ordered pairs that are edges in
the graph, so that uv and vu are distinct. We run independent Poisson point
processes {Xj,ρ

e }
e∈−→

E (G),j∈[k],ρ∈[N]k
so that Xj,ρ

e is at rate max{0, [τ vB]j} and

independent Poisson point processes {X i,n
v }v∈V (G),i∈[k],n∈[N] so that X i,n

v is at
rate nσi

v. Then these finitely many point processes can easily be seen to define
the entire process; a spread event of type j from a vertex v to a vertex u which
is currently in state ρ is controlled by the point process Xj,ρ

vu with satisfaction
events handled similarly.

Such a formulation is that it gives an easy coupling between processes that
shows that if B′ ≤ B pointwise, the stochastic process DD(τ (0), B,σ, G,N)
stochastically dominates DD(τ (0), B′,σ, G,N). That is, in the coupling the de-
mands in the B process are always at least those in the B′ process. This is
accomplished by noting that the rates ρB ≥ ρB′ pointwise for all ρ ∈ Nk.
We thus take point processes Y j,ρ

e at rate [ρB − ρB′]i. If the point processes
{Xj,ρ

e } and {X i,n
v } are used to determine DD(τ (0), B,σ, G,N), then the point

processes {Xj,ρ
e ∪Y j,ρ

e } and {X i,n
v } are used to determine DD(τ (0), B′,σ, G,N).

In particular, this allows us to replace B with B′, where B′
ij = max{Bij , 0},

and conclusions about the extinction of the B′ process still hold for B. Fur-
thermore, this turns out not to be entirely unreasonable. One hopes that the
negative entries in B would afford better bounds on the extinction time, but in
many cases with negative entries in B extinctions of some demand types mean
that the process is eventually run in a non-negative case. In light of this, we will
assume for the rest of this paper that B is non-negative for convenience.

142 F. Chung, P. Horn, and J. Hughes

Given an initial demand τ (0) and spread matrix B, our goal is to find a supply
function σ such that demand is satisfied. Ideally we would like to do this with
small supply rates. Furthermore, the supply rates should only depend on the
contact graph G, the spread matrix B, and the initial demand τ (0), but not on
t or τ (t).

Because we take B to be an arbitrary positive k × k matrix, we will at times
need to use various matrix norms in order to understand the process. For a square
matrix B, there are many different matrix norms that can be used (see [8]). We
will use the following notation for the following norms:

1. ||B||1 =
∑

i,j |aij | is the �1 norm.
2. |||B|||1 = maxj

∑
i |aij | is the maximum column sum norm.

3. |||B|||∞ = maxi
∑

j |aij | is the maximum row sum norm.

4. |||B|||2 = max{√λ|λ is an eigenvalue of A∗A} is the spectral norm.

3 PageRank and Kronecker PageRank

The notion of PageRank was first introduced by Brin and Page [3] in 1998 for
Google’s search algorithms. Although PageRank was originally used for the Web
graph, it is well defined on any finite graph G. The basis of PageRank is random
walks on graphs. A walk is a sequence of vertices (v0, v1, ..., vk) where vi ∼ vi+1.
A simple random walk of length k is a sequence of random variables (x0, ..., xk)
where the starting vertex x0 is chosen according to some distribution, and

P(xi+1 = v|xi) =

{ 1
dxi

if xi ∼ v

0 if xi � v
.

Let D be the diagonal degree matrix with entries Dvv = dv, and let A be the
adjacency matrix with entries

Avw =

{
1 if v ∼ w
0 if otherwise.

Then the transition probability matrix for a random walk on G is given by
W = D−1A.

We will mainly use a modified version of the PageRank, called personalized
PageRank. Personalized PageRank has two parameters, a jumping constant α ∈
[0, 1] and a seed s which is some probability distribution on the vertex set V of
G.

The personalized PageRank vector pr(α, s) for jumping constant α and the
seed distribution s on V is given by

pr(α, s) = α

∞∑
�=0

(1 − α)�sW �.

Multi-commodity Allocation for Dynamic Demands 143

Note that here we view s as a row vector, which is our convention for all
vectors throughout this paper. We note that the PageRank vector is also the
solution to the recurrence relation

pr(α, s) = αs+ (1 − α)pr(α, s)W.

The original definition of PageRank [3] is the special case where s is the uniform
distribution over all the vertices.

For a subset of vertices H ⊂ V , the volume of H is the sum of degrees of the
vertices of H . The Cheeger Ratio of H, h(H), measures the cut between H and
H̄ via the relationship

h(H) =
e(H, H̄)

min{vol(H), vol(H̄)} .

The α−core of a subset H is the set of vertices

Cα =

{
v ∈ H |pr(α, 1v)1H ≥ 1− h

α

}
.

Personalized PageRank naturally gives bounds on the probability that demands
leave a given set in the k-commodity dynamic demand model. These bounds
lose some of the structure of the process given by B, however. In order to better
understand the process and get tighter bounds, we will use generalization of the
personalized PageRank vector, the Kronecker PageRank vector.

If B is an k × k matrix, and A an n× n matrix, then the Kronecker product
A⊗B is the nk × nk block matrix

A⊗B =

⎛⎜⎝ a11B · · · a1nB
...

. . .
...

an1B · · · annB

⎞⎟⎠
With this, we can define Kronecker PageRank.

Definition 1 (Kronecker PageRank). Let B be a square k × k matrix with
spectral radius strictly less than 1, and W be the transition matrix for a random
walk on a graph G. Let s be a non-negative vector in Rk×|V |. The Kronecker
PageRank vector with parameters B and s is defined as

Kpr(B, s) =

∞∑
�=0

s(W ⊗B)� =

∞∑
l=0

s(W � ⊗B�)

Requiring the spectral radius of B less than 1 is necessary to ensure convergence
of the infinite sum, as the spectrum of W ⊗ B is the product of the spectra of
W and B. Since the eigenvalues of W have absolute value at most 1, the sum
will converge.

144 F. Chung, P. Horn, and J. Hughes

We note that in the case where B is a 1 × 1 matrix B = β < 1 and s is a
probability distribution, then we have the relationship

Kpr(B, s) =

∞∑
l=0

s(W ⊗ β)l =

∞∑
l=0

sβlW l =
1

1− β
pr(1− β, s),

so the Kronecker PageRank is a natural extension of personalized PageRank. We
will see in Theorem 4 that the Kronecker PageRank will arise naturally in our
analysis in Section 3, and give better bounds than those that will be afforded by
standard PageRank by incorporating the spread matrix.

4 Global Analysis: Supplying Every Vertex

Here we show that if supply rates are above a certain threshold, then with
probability approaching 1 demands will be satisfied. Recall that B is a non-
negative real valued k × k matrix, and σ is the vector of supply rates for the
process DD(τ (0), B,σ, G,N).

Theorem 1. Consider the k−commodity demand model on a graph G with n
vertices parameterized by spread matrix B = [βij]. Let X(t) = ||τ (t)||1, the
total amount of demand at time t. If the supply rates to each vertex v are σi

v >

dv

(∑
j
βij+βji

2

)
+ δ for δ > 0 then with probability 1− ε all vertices are satisfied

at time t for all

t >
1

δ

(
1

2
log(nk) + log(X(0)) + log

(
1

ε

))
.

Proof
We begin by considering the quantity ∂

∂tE[τ (t)]. From the discussion in Section 2,
we know that demand is increasing with rates given by ρ(t) = τ (t) (A⊗B), but
also demand decreases proportionally to the supply rates and current demand.
Indeed, let S = diag(σ), the diagonal nk × nk matrix with entries given by the
supply vector. Then demand decreases at each vertex according to rates given
by the supply rate vector τ (t)S.

It is not difficult to encapsulate all of the above information in the simple
expression

∂

∂t
E[τ (t)] = E[ρ(t)− τ (t)S] = E[τ (t)](A ⊗B − S). (1)

A detailed proof of (1) is left to the appendix for space reasons.
Solving the matrix differential equation with initial condition E[τ (0)] = τ (0)

yields
E[τ (t)] = τ (0)et(A⊗B−S). (2)

Multi-commodity Allocation for Dynamic Demands 145

Let Q = A ⊗ B − S. Then by [6], |||etQ|||2 ≤ etν , where ν is the largest

eigenvalue of Q+Q∗

2 . We note that Q+Q∗

2 = A⊗ (B+B∗
2)−S, which has diagonal

terms βii − σi
v, ranging over all values of v and i. By the Gershgorin Circle

Theorem, the eigenvalues of Q+Q∗
2 are contained in the intervals⎡⎣−(dv − 2)βii − dv

⎛⎝∑
j �=i

βij + βji

2

⎞⎠− σi
v, dv

⎛⎝∑
j

βij + βji

2

⎞⎠− σi
v

⎤⎦ .
Since σi

v > dv

(∑
j

βij+βji

2

)
+ δ all the eigenvalues of Q+Q∗

2 are less than −δ.
Therefore

E[X(t)] = ||τ(0)et(A⊗B−S)||1 ≤
√
nk||τ(0)et(A⊗B−S)||2

≤
√
nk||τ(0)||2|||et(A⊗B−S)|||2 ≤

√
nk||τ(0)||1etν

≤
√
nkX(0)e−tδ

Thus Markov’s inequality gives that
P(X(t) > 0) < ε if t > 1

δ

(
1
2 log(nk) + log(X(0)) + log

(
1
ε

))
. �

We note that this approach works for all initial distributions τ (0), and on any
graph G. In particular, it is agnostic to the shape of the graph. This indicates
that in many situations this approach may be overkill and that we could have
used smaller supply rates. In the next section, we analyze the process more
carefully and give conditions that depend on the initial distribution of demand
and the geometry of the underlying contact graph.

5 Local Analysis: Supplying a Small Subset

For the remainder of the discussion, it is convenient to introduce reformulation
of the model that takes advantage of the fact that demands take on integer
values. Rather than view demands as a function τ : V → Nk, we view demands
as discrete objects sitting on each node. Borrowing language from chip-firing
games on graphs (see, for example, [10]) we view units of the demand as chips
located on vertices of the graph. For example, if k = 7 then for a vertex v
with τ v(t) = (0, 1, 2, 0, 2, 0, 3) then we would say that at time t there was 1 2-
chip, 2 3-chips, 2 5-chips, and 3 7-chips at vertex v, corresponding to 1 “unit of
demand” for commodity 2, etc. Unlike in classical chip-firing games, the number
of chips is not static, and the process is continuous time. We restate the possible
transitions in terms of demand chips. For an i−chip at vertex v, there are two
types of transition events:

– For each vertex w ∼ v and each j = 1, ..., �, a j−chip is added at w at rate
βij . When this occurs we say that the new j−chip is created by the i−chip.

– The i−chip itself is removed with rate σi
v.

146 F. Chung, P. Horn, and J. Hughes

Due to the properties of exponential random variables, the rates add linearly,
and the model is equivalent to the original description discussed in Section 2.
The main advantage of this reformulation is the ability to trace back the history
of a chip. If there is a chip c at vertex v at time t, then either c existed at time
t = 0, or there is a sequence of � chips (c0, ..., c� = c) located at vertices along a
walk π = (v0, v1, ..., v� = v) with the following properties:

1. c0 existed at t = 0
2. cr is created by cr−1 for r = 1, ..., �.

We allow π to have repeated vertices to allow for the case where demand created
more demand at the same vertex. If a chip c exists at time 0, we refer to it as
an initial chip.

For a path π = (v0, v1, ..., v�) and a chip c0 located at v0, we define the event
Sπ,c0 to be the event there is a sequence ofm chips (c0, ..., c�) located respectively
at (v0, v1, ..., v�) and cr is created by cr−1 for r = 1, ..., �.

It is important to note that Sπ,c0 occurring does not imply that there is any
demand at v� at time t because it could be satisfied sometime before t. However,
if there is a demand at v� at time t, then Sπ,c must have occurred for some initial
chip c at vertex v0 and some walk π from v0 to v�.

We begin by relating P(Sπ,c0) to the length of the walk π. Inspired by Theorem
1 we make the assumption that supply rates are proportional to the degree of
the vertices. That is, we assume that σi

v > μi(dv) for all v for constants μi > 0.

Lemma 2. Let M = diag(μ1, ..., μk), B̂ = M−1B and ζ = min{|||B̂|||1, |||B̂|||∞}
Then for any chip c0 located at v0 and any walk π = (v0, ..., v�) of length �,

P(Sπ,c0) ≤ kζ�
�∏

j=0

1

dvj

Proof
Let Sr denote the event that a chip cr at vr creates a chip at vr+1. If cr is an
i−chip, then for it to create any chip at vr+1 a spread event must occur before
cr is removed. The time until cr creates a j−chip at vr+1 is an exponential
random variable with rate βij . Since the time until cr is removed is given by

Exp(σi
v), the probability of cr creating a j−chip is

βij

βij+σi
v
≤ βij

σi
v
<

βij

μidvr
. Thus

P(Sr) <
∑

i,j
βij

μidvr
= 1

dvr
1B̂1∗.

For a walk π of length �, we want to consider the intermediate steps more
carefully. Since there are � transitions that occur, we can use the same reasoning
as above to obtain the bound

P(Sπ,c) <

�∏
r=0

1

dvr
1B̂�1∗ =

�∏
r=0

1

dvr
||B̂�||1 ≤ k

�∏
r=0

1

dvr
|||B̂�|||1 ≤ k

�∏
r=0

1

dvr
|||B̂|||�1.

The factor of k that appears in the final lines above is just a consequence of
switching from the vector 1-norm ||B̂�||1 to maximum column sum norm |||B̂�|||1
(see [8]).

Multi-commodity Allocation for Dynamic Demands 147

We could have just as easily switched to the maximum row sum norm and
obtained the term k|||B̂|||�∞, and so it follows that

P(Sπ,c) < min{k
�∏

r=0

1

dvr
|||B̂|||�1, k

�∏
r=0

1

dvr
|||B̂|||�∞} = kζ�

�∏
j=0

1

dvj
.

�
We note that the use of ζ = min{|||B̂|||1, |||B̂|||∞} in Lemma 2 reflects the
difficulty in working with arbitrary spread matrices B. For certain classes of
spread matrices (e.g. if B is symmetric or diagonalizable) it is possible to obtain
tighter bounds. Lemma 2 will be allow us to obtain a bound using PageRank,
but note that our use of matrix norms ignores some of the structure of the spread
matrix B. Following the proof of Theorem 3 below, a more careful analysis fully
using the structure of the spread matrix B will lead naturally to use of Kronecker
PageRank, which we explore in Theorem 4.

Theorem 3. Suppose that initial demand is contained in S ⊂ H ⊂ V with and
each vertex v ∈ H has supply rates σi

v > μidv, and σi
w = 0 for w ∈ H̄. Let

M = diag(μ1, ..., μk), B̂ = M−1B and ζ = min{|||B̂|||1, |||B̂|||∞}. Let x(t) be
defined by xv(t) =

∑
i τ

i
v(t), and X(t) = ||τ (t)||1. Let EH denote the event that

demands spread outside the set H. Then

1. P(EH) ≤ X(0)
ζ pr

(
1− ζ, τ(0)

X(0)

)
1∗̄
H

2. If S in the (1 − ζ) core of H, then P(EH) ≤ 2X(0)h(H)
ζ(1−ζ) , where h(H) is the

Cheeger ratio of H.

Proof. Let P� denote the set of all paths of length � from an initial chip in S to
H̄ such that the first k−1 steps are in H . Let P =

⋃∞
l=1 P�. The key observation

is that if w ∈ H̄ ever has demand, then Sπ,c must have occurred for some initial
chip c and path π from the location of c to w. Thus we can use the union bound
to get that∑

π∈P

P(Sπ,c) ≤
∑
�

∑
(π,c)∈P�

P(Sπ,c)

≤
∑
�

∑
v0∈S

∑
c at v0

∑
v�∈H̄

∑
π=(v0,...,v�)∈P�

P(Sπ,c)

≤
∑
�

∑
v0∈S

∑
c at v0

∑
v�∈H̄

∑
π=(v0,...,v�)∈P�

ζ�
�∏

r=0

1

dvr

=
∑
�

x(0)ζ�(D−1A)�1∗̄H

=
∑
�

x(0)ζ�W �1∗̄H =
X(0)

ζ
pr
(
1− ζ,

x

X(0)

)
1∗̄H .

148 F. Chung, P. Horn, and J. Hughes

proving the first statement. The second statement follows the same proof as
Theorem 3.2 of [5]. �

Finally we show how Kronecker PageRank arises in a natural way as the bound
of the escape probability of this process.

Theorem 4. Suppose that the initial demand is contained in S ⊂ H ⊂ V with
and each vertex v ∈ H has supply rates σi

v ≥ μidv. Let M = diag(μ1, ..., μk),
B̂ = M−1B and ζ = ||B̂||1. Let X(t) = ||τ (t)||1, the total amount of demands at
time t. Let EH denote the event that demands spread outside the set H. Then EH
can be bounded above using the Kronecker PageRank vector via the relationship:

P(EH) ≤ X(0)Kpr

(
B̂,

τ(0)

X(0)

)
1H̄

Proof. Let f be a vector indicator function of commodity type on chips, that is
f(c) = ei if c is an i−chip, where ei denotes the ith standard basis vector for
Rk. Let C0 denote the set of initial chips. By the same methods that were used
in the proof of Lemma 2, we can bound the probability that demand originating
from c ever spreads along a path π = (v0, v1, ..., v�) by the sum

P(Sπ,c) ≤ f(c)B̂�1∗
�∏

r=0

1

dvr

Therefore using the same technique as in the proof of Theorem 3 we obtain the
bound∑
π∈P

P(Sπ,c) ≤
∑
�

∑
u∈S

∑
π∈B�

P(Sπ,u) ≤
∑
�

∑
c∈C0

∑
v�∈H̄

∑
π=(v0,...,v�)∈P�

P(Sπ,u)

≤
∑
�

∑
c∈C0

∑
v�∈H̄

∑
π=(v0,...,v�)∈P�

f(c)B̂�1∗
�∏

r=0

1

dvr
=

∑
�

τ (0)(D−1A⊗ B̂)�1H̄

=
∑
�

τ (0)(W ⊗ B̂)�1H̄ = X(0)Kpr(B̂,
τ (0)

X(0)
)1H̄

�
On the event of non-escape, we would like to guarantee that all demand is
satisfied quickly. To make this precise, let St denote the event that all of the
vertices are satisfied at time t. In order to complete the analysis of the local
case, we would like to bound P(St|EH), where EH is as in Theorems 3 and 4.
Such a bound is not immediately given by Theorem 1. To derive a bound on
P(St|EH), consider running a modified ‘Dirichlet’ process which is identical to
the standard process with the same supply rates, except demand leaving H
is ignored. Let S ′

t denote the event that in Dirichlet process, all of the events
are satisfied at time t then P(S ′

t) can be bounded directly by Theorem 1 as
this Dirichlet process restricted to vertices in H is the standard process on H .
Furthermore P(St ∩ EH) ≤ P(S ′

t). Therefore

P(St|EH) =
P(St ∩ EH)

P(EH)
≤ P(S ′

t)

P(EH)
.

Multi-commodity Allocation for Dynamic Demands 149

Combining this observation along with Theorems 3 and 4, yields that the prob-
ability of escape from H is bounded and if the process does not escape from H
it dies quickly.

Theorems 3 and 4 can be used in two different ways. As stated, they provide a
way to bound the probability demands escape from a given subset. However, they
can be also used to construct such a bounding subset. For example, given initial
demand τ (0) contained in an initial set of vertices S ⊂ V , we can algorithmically
construct H such that demand stays in H with probability 1 − ε by iteratively
selecting vertices with the highest (Kroneceker) PageRank.

6 An Example

An immediate question is whether anything is actually gained by the introduc-
tion of Kronecker PageRank. Suppose we have a spread matrix B, and some
initial demand on a graph G. We wish to identify a subset of vertices H ⊂ G
to make shipments to so that the escape probability is at most ε. We may use
either Theorem 3 or Theorem 4 to identify such a set. The bound afforded by
Theorem 4 is clearly sharper than the bound in Theorem 3 as the structure of
the spread matrix B is taken into account, but it is not guaranteed that the
identified set is actually smaller. In many cases it actually is, though depending
on B it may not be significantly smaller.

To illustruate, we give a simple example calculation on synthetic data. Our
graph G is an instance of the following random process, which is designed to
create a graph which contains tighter clusters that are slightly more sparsely
connected to neighboring clusters: We begin with a cycle on 20 vertices. Each
vertex is then replaced by an instance of the random graphG20,.3, that is a graph
20 vertices and each edge existing independently with probability .3. Inter-cluster
edges are then created between vertices in neighboring clusters with probability
.05.

We consider the case where k = 4, and

B =

⎛⎜⎜⎝
.8 .4 .3 .2
.2 .7 .2 .1
.1 .2 .9 .3
.4 .2 .3 .6

⎞⎟⎟⎠ .

The initial demand is given by τ (0) = {2, 1, 2, 0, 0, 1, 0, 0, ..., 0}. In addition we
assume μi = 2, and ζ = .85.

We demonstrate the difference between Theorems 3 and 4 in the following
way. The figure below shows the graph G. The demands start in the large out-
lined vertices and spread outward from there. Theorem 4 states that with 95%
probability, demands stay in the circular vertices. Theorem 3 states that with
95% probability, demands stay in the diamond and circular vertices. This small
example illustrates how the Kronecker PageRank can be used to obtain improved
results.

150 F. Chung, P. Horn, and J. Hughes

References

1. Andersen, R., Chung, F., Lang, K.: Local Partitioning for Directed Graphs Using
PageRank. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp.
166–178. Springer, Heidelberg (2007)

2. Borgs, C., Chayes, J., Ganesh, A., Saberi, A.: How to distribute antidote to control
epidemics. Random Structures & Algorithms 37, 204–222 (2010)

3. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems 30, 107–117 (1998)

4. Chevaleyre, Y., Dunne, P., Endriss, U., Lang, J., Lemaitre, M., Maudet, N., Pad-
get, J., Phelps, S., Rodriguez-Aguilar, J., Sousa, P.: Issues in multiagent resource
allocation. Informatica (2006)

5. Chung, F., Horn, P., Tsiatas, A.: Distributing antidote using PageRank vectors.
Internet Mathematics 6, 237–254 (2009)

6. Dahlquist, G.: Stability and error bounds in the numerical integration of ordinary
differential equations. Kungl. Tekn. Högsk. Handl. Stockholm. (130), 87 (1959)

7. Ganesh, A., Massoulie, L., Towsley, D.: The effect of network topology on the
spread of epidemics, vol. 2, pp. 1455–1466. IEEE (2005)

8. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press (1990)
9. Kiss, I.Z., Green, D.M., Kao, R.R.: Infectious disease control using contact tracing

in random and scale-free networks. Journal of the Royal Society, Interface / the
Royal Society 3, 55–62 (2006), PMID: 16849217

10. Merino, C.: The chip-firing game. Discrete Mathematics 302, 188–210 (2005)
11. Newman, M.: Spread of epidemic disease on networks. Physical Review E 66 (2002)

7 Appendix

In this section we establish the differential equation used in the proof of Theorem
1, namely:

Multi-commodity Allocation for Dynamic Demands 151

Lemma 5. If τ (t) denotes the demand vector at time t, A is the adjacency
matrix of G, B denotes the spread matrix and S = diag(σ) denotes the supply
matrix, then

∂

∂t
E[τ (t)] = E[τ (t)](A ⊗B − S).

The key of Lemma 5 are the following two well known and simple facts con-
cerning exponentially distributed random variables. We use the notation f(h) =
Oh→0(g(h)) to indicate that f(h) ≤ Cġ(h) for h sufficiently small.

Lemma 6. Suppose X is an exponentially distributed waiting time with rate λ,
then

P(X < h) = λh+Oh→0(h
2).

An immediate corollary is

Lemma 7. SupposeX, Y are independent exponentially distributed waiting times
with rates λ1, λ2. Then

P(X,Y < h) = Oh→0(h
2).

Proof of Lemma 5.
Fix a vertex v and commodity i. We will show that

∂

∂t
E
[
τ i
v(t)] = [E[τ (t)](A ⊗B − S)

]i
v
,

Since this holds for all v, and i the result will follow.
To do this, we compute the derivative by the definition, that is we compute

lim
h→0

E[τ i
v(t)− τ i

v(t+ h)]

h
.

To do this, consider the conditional expectation, E[τ i
v(t)− τ i

v(t+ h)|τ (t)]. Note
that by Lemma 7, then probability that two independent events (either two
spread events, or two satisfy events or a spread and a satisfy event) occur is
Oh→0(h

2). On the other hand, given a neighbor u of v, and a commodity j, the
probability of a spread event originating from this neighbor and commodity in
time (t, t + h) is exactly Bjiτ

j
u(t)h + Oh→0(h

2). Likewise, the probability of a
satisfaction event in this time is τ iv(t)σ

i
vh+ Oh→0(h

2). Linearity of expectation
yields

E[τ i
v(t)− τ i

v(t+ h)|τ (t)] = E[τ (t)(A⊗B − S)h+Oh→0(h
2)|τ (t)]

= τ (t)(A ⊗B − S)h+Oh→0(h
2)|τ (t).

In particular, note that the Oh→0(h
2) term means that there is a (large) constant

C = C(τ(t), A,B), so that Oh→0(h
2) ≤ C · h2 for h ≤ 1. Note that due to our

conditioning this constant depends on τ(t), but critically not on h. Note that
this constant is σ(τ(t))-measurable.

152 F. Chung, P. Horn, and J. Hughes

By the tower property of conditional expectation,

lim
h→0

E[τ i
v(t)− τ i

v(t+ h)]

h
= lim

h→0

E[E[τ i
v(t)− τ i

v(t+ h)|τ (0)]]
h

.

= lim
h→0

E[τ (t)(A ⊗B − S)h] + E[E[Oh→0(h
2)|τ (t)]]

h

= τ (t)(A⊗B − S) + lim
h→0

E[Oh→0(h)].

It suffices to show that

lim
h→0

∣∣∣E[Oh→0(h)]
∣∣∣ ≤ lim

h→0
E[
∣∣Oh→0(h)

∣∣] = 0.

But recall that the Oh→0(h) term is bounded by C(τ (t), A,B) · h for h ≤ 1.
Thus it is enough to show that

lim
h→0

E[|C(τ (t), A,B)h|] = 0.

This follows from the monotone convergence theorem, so long as

lim
h→0

E[|C(τ (t), A,B)|] <∞.

To complete the proof we note that we can give an upper bound on C(τ (t), A,B)
in terms of ||τ (t)||1, n and max{bij}. Indeed, the rates of the active point pro-
cesses are at most ||τ (t)||1 max{bi,j}; and thus the probability that any pair of
point processes both have events in the period (t, t+ h) is bounded by

C(τ (t), A,B)h ≤ C||τ (t)||21 max{bi,j}2n2h.

But ||τ (t)||1 << n ·N · k, where n = |G|, k is the number of demands and N is
our uniform upper bound for the demand at a point (indeed, this is the precisely
the motivation for such a bound.) �

Are We There Yet? When to Stop a Markov

Chain while Generating Random Graphs�

Jaideep Ray, Ali Pinar, and C. Seshadhri��

Sandia National Laboratories, Livermore, CA 94550
{jairay,apinar,scomand}@sandia.gov

Abstract. Markov chains are convenient means of generating realiza-
tions of networks with a given (joint or otherwise) degree distribution,
since they simply require a procedure for rewiring edges. The major chal-
lenge is to find the right number of steps to run such a chain, so that
we generate truly independent samples. Theoretical bounds for mixing
times of these Markov chains are too large to be practically useful. Prac-
titioners have no useful guide for choosing the length, and tend to pick
numbers fairly arbitrarily. We give a principled mathematical argument
showing that it suffices for the length to be proportional to the number
of desired number of edges. We also prescribe a method for choosing
this proportionality constant. We run a series of experiments showing
that the distributions of common graph properties converge in this time,
providing empirical evidence for our claims.

Keywords: graph generation, Markov chain Monte Carlo, independent
samples.

1 Introduction

Degree distributions (DD) and joint degree distributions (JDD) are some of the
most fundamental properties of real world networks. The degree distribution of
an undirected graph G is a vector f , where f(d) is the number of vertices of
degree d. The joint degree distribution is an n × n matrix J, where the entry
J(i, j) is the number of edges between vertices of degree i and degree j. The
landmark paper [1] observing heavy-tailed degree distributions in real networks
forms the basis of much research on these graphs. Notions like assortativity [2],
that are captured by the joint degree distribution, are an important metric used
to understand these networks. To gain deeper understanding of these graph
properties, we often perform experiments trying to understand how the degree

� This work was funded by the Applied Mathematics Program at the U.S. Depart-
ment of Energy and performed at Sandia National Laboratories, a multiprogram
laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the United States Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

�� This author was supported by an Early-Career award from the Laboratory Directed
Research & Development (LDRD) program at Sandia National Laboratories.

A. Bonato and J. Janssen (Eds.): WAW 2012, LNCS 7323, pp. 153–164, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

154 J. Ray, A. Pinar, and C. Seshadhri

distribution affects other graph properties. For example, is assortativity corre-
lated with the clustering coefficient [3]? A key ingredient to performing these
studies is generating uniform random graphs with a prescribed (joint) DD.

Markov chain Monte Carlo (MCMC) methods are a common means of doing
this [4,5,6,7,8]. We start with a given graph with a specified DD (or JDD [8]);
it is often a real graph whose properties we are studying. There is a simple and
standard procedure that performs a random edge swap preserving the DD [4,9,10]
(or JDD [8]). This gives a Markov chain on the space of graphs with the given
DD (JDD), and we take many steps to generate a sample. But how many steps
should we take to generate a uniform random sample?

If a bound on the mixing time of this chain is known, then that gives a
convenient bound on the number of steps to take. For the DD and JDD Markov
chains1, theoretical bounds have been given [4]. These are of the form O(n6),
where n is number of vertices of the graph. Even for a moderate size of n ≈ 1000,
this is quite useless in practice. Empirically, the number of steps is usually chosen
quite arbitrarily. Since this sampling can often form the basis of experiments, this
is quite dangerous. If a Markov chain has not mixed properly, samples generated
may be highly correlated and conclusions drawn from them can be erroneous.

1.1 Results

The primary goal of this paper is to bridge this gap between theory and practice.
Our results hold for both DD and JDD Markov chains. The results for JDD are
more involved and interesting, so only they are presented in this paper. We
give a mathematically principled argument showing that to generate a graph
with |E| edges, it suffices to run the Markov chain O(|E|) steps. The constant
hidden in the big-Oh depends on a desired accuracy. Our experiments show that
10|E| − 30|E| steps are enough for the purpose of ascertaining various graph
properties.

1. Theoretical results: Mathematically, this range is achieved by approximat-
ing the behavior of the entire Markov chain by a set of coupled 2-state Markov
chains, one for each pair of vertices. This is a heuristic approximation in case
of JDD (but for DD, this is a provable equivalence.) The mixing time of these
2-state chains can be directly bounded by O(|E|) (where the constant is a stan-
dard dependence on the desired accuracy). This means that in O(|E|) steps,
while we may not be able to assert total mixing, each edge appears as if we are
in the uniform distribution. Observe that this is certainly a necessary condition
for total mixing.

2. Empirical results: This is in two parts. First, we give empirical evidence
that our predicted length works in practice. It is quite difficult to directly ascer-
tain that a given sample is truly uniform random [11]. So, for a given length �,
we generate a number of sample graphs, each with a separate �-length walk, and
plot the distribution of a common graph parameter (say, clustering coefficient).
We observe that for � > 10|E|, these distributions converge and do not change

1 These bounds only hold when the graph generated is not necessarily simple.

Independent Graph Generation 155

further. On the other hand, when � is only |E|, the distribution is very far from
reaching convergence. Our predictions clearly match the experiments. Next, we
justify the approximation of the Markov chain on the space of graphs as a set of
coupled 2-state chains. We look at the behavior of an individual edge over a very
long walk in the overall Markov chain, i.e., a long binary time-series with 0/1
indicating the absence/presence of an edge at each step of the Markov chain. If
our approximations are correct, then thinning this series by a factor of O(|E|)
should lead to a sequence of practically independent samples. We run statistical
tests to show that this really does happen.

Our idea is similar to Sokal’s method [12] for deciding the “sufficiency” of
samples obtained from MCMC based on autocorrelation. The idea of Sokal, as
adopted by Stanton and Pinar [8], was to look at the individual edges as a binary
time-series. They then compute the autocorrelation, at different lags, which can
be thought of as a measure of how long it takes for the time-series to become
uncorrelated. It is suggested to keep walking (in the Markov chain) until all
auto-correlations are below a prescribed threshold. However, Sokal’s method has
two major practical drawbacks - (1) the autocorrelation analysis is performed
for all the edges (n2 in number for a graph with n vertices) that might appear
in the MCMC chain and (2) one has to choose a autocorrelation threshold, for
which there are no guidelines. In contrast, our method estimates the number of
Markov chain steps with a closed-form expression.

2 Theoretical Analysis

We first describe the Stanton and Pinar Markov chain for preserving the joint
degree distribution [8]. This is analogous to the degree distribution preserving
chain [4,7]. These methods are quite standard and come with schemes to generate
a specific graph with a given DD or JDD.

Consider an undirected graph G = (V,E), where |V | = n and |E| = m. As
mentioned earlier, the joint degree distribution is an n×n matrix J, where J(i, j)
is the number of edges between vertices of degree i and degree j. We will also
use the degree distribution f , where the coordinate f(d) the number of vertices
of degree d.

The process of generating a new graph, from an older one, by swapping edges,
is called “rewiring”. The rewiring is done as follows. We use dv to denote the
degree of v. The process is depicted in Fig. 1. This may lead to self-loops and
parallel edges, and there are methods of dealing with this. We will not get into
those details, and refer the reader to [8]. Note that every vertex maintains its
degree, and the joint degree distribution is always preserved. We also maintain
lists of nodes and edges indexed by their degree, so that for a specified degree d,
a uniform random edge incident to a degree d vertex can be located. The steps
are:

– Pick a uniform random endpoint. This is done by choosing a uniform ran-
dom edge and choosing each endpoint with probability 1/2. Suppose we choose
endpoint u1 incident to edge (u1, v). dv is arbitrary. See Fig. 1.

156 J. Ray, A. Pinar, and C. Seshadhri

– Choose a uniform random edge with an endpoint of degree du1 . Let this
edge be (u2, w). dw is arbitrary.

– Swap edges (u1, v) and (u2, w). This adds edges (u1, w) and (u2, v) and
removes (u1, v) and (u2, w).
Details of the rewiring scheme and a Markov chain driving it to generate (cor-
related) graph samples e.g., discussions of ergodicity etc., can be found in [8].

Fig. 1. The swapping operation for the Markov chain algorithm

2.1 Approximation by Many 2-State Markov Chains

Consider a fixed pair of labeled vertices (u, v). Let us try to understand the prob-
ability that this edge appears or disappears. Based on this, we can approximate
the behavior of the pair (u, v) as a Markov chain. We start with a simple yet
important claim.

Claim. Suppose at some stage in the Markov chain, the edge (u, v) is present.
The probability that it is removed in the next step is

1

m
+

f(du)du + f(dv)dv − du − dv
2m2

. (1)

Proof. The swapping procedure picks two edges, which we shall refer to as e (the
first edge) and e′ (the second edge). If e is chosen to be (u, v), then (u, v) will
definitely be swapped out. The probability of this is 1/m. On the other hand, e
may not be (u, v) but e′ could be (u, v). If the random endpoint of e chosen has
degree du (and is not u), then we might choose e′ to be (u, v). The total number
of edges incident to degree du vertices (but not u) is (f(du)− 1)du. Any of these
edges is a potential candidate for e. Hence, the probability of choosing e with
this property, and then e′ = (u, v) is

(f(du)− 1)du
2m

× 1

m
=

(f(du)− 1)du
2m2

Independent Graph Generation 157

We could also choose the random endpoint to have degree dv. So the total
probability of choosing e′ = (u, v) is

f(du)du + f(dv)dv − du − dv
2m2

.

The total probability that (u, v) is swapped out is

1

m
+

f(du)du + f(dv)dv − du − dv
2m2

.

��
While this claim may look fairly innocuous, it makes a very strong observation.
When edge (u, v) is present, the probability that it is swapped out only depends
on the values du, dv, f(du), f(dv). These values are the same regardless of where
we are in the Markov chain, because we always preserve the degree distribution!
Hence, this satisfies the Markov property, and the probability is independent of
the graph itself. But what about the probability that (u, v) becomes an edge?

This is unfortunately not truly Markovian, since it could depend on the re-
mainder of the graph. Nonetheless, this dependence appears to be fairly weak.
We can obtain a Markovian estimate for this probability with a simple heuristic.
We guess the number of edges incident to vertex v that are also incident to a
degree d vertex (for some d). Clearly, this number depends on the graph struc-
ture, but we can approximate it based on the JDD. The number of edges from
degree d to degree dv vertices is J(d, dv). Of these, the average number of edges
incident to a fixed vertex of degree dv is J(d, dv)/f(dv). We shall approximate
the number of edges incident to v with the other endpoint of degree d by this
quantity.

Claim. Assume the heuristic approximation above. If at any stage of the Markov
chain, the edge (u, v) is not present, the probability that edge (u, v) appears is
given by

J(du, dv)

2m2

(
du

f(dv)
+

dv
f(du)

)
(2)

We omit the proof for this claim due space limitations; however, it is available
in [13].

We now focus on the presence or absence of the edge (u, v) as we walk through
the Markov chain. Based on the claims above, this can be thought of as a 2-state
Markov chain (state 0 meaning no edge, and state 1 meaning presence of edge).
The transition matrix Tu,v for this chain is

Tu,v =

(
1− αu,v αu,v

βu,v 1− βu,v

)
, (3)

where αu,v (resp. βu,v) is the probability that (u, v) appears (resp. disappears).
These probabilities are given by Eq. 2 and Eq. 1 respectively. We will denote
this Markov chain by Mu,v and the stationary distribution of it by πu,v. The

158 J. Ray, A. Pinar, and C. Seshadhri

eigenvalues of this transition matrix are 1 and 1− (αu,v + βu,v). The important
observation is that the second eigenvalue is at most 1− 1/m, by Eq. 1. The next
claim follows from standard Markov chain arguments.

Claim. Set N = m ln(1/ε). Let the final distribution after running Mu,v for N
steps be p. Then ‖p− πu,v‖ < ε.

Observe that πu,v represents the probability of presence/absence edge (u, v) in
the overall stationary distribution of the entire Markov chain. This claim implies
that in N = m ln(1/ε) steps, we are very close to the stationary distribution for
each edge. This bound is independent of the edge. So each edge behaves like it
should in the stationary distribution (as far as the overall graph is concerned,
we cannot make a stronger claim).

Proof. Denote the unit eigenvectors of T, corresponding to the eigenvalues 1 and
1− (αu,v + βu,v), as e1 and e2. Since these αu,v + βu,v > 0, these form a basis.
The initial state can be expressed as v = c1e1 + c2e2. After N applications of
the transition matrix we get

p = TNv = c1T
Ne1 + c2T

Ne2 = c1e1 + c2 (1− (αu,v + βu,v))
N e2.

Since 1 − (αu,v + βu,v) < 1, the second term decays with N and c1e1 is the
stationary distribution πu,v. For convenience, set γ = αu,v + βu,v. The key
observation is that γ ≥ 1/m, by Eq. 1. Hence,

N = m ln(1/ε) ≥ ln(1/ε)/γ. (4)

We can bound the norm of the difference p− πu,v as

‖p−πu,v‖ = ‖(1−γ)Nc2e2‖2 ≤ (1−γ)ln(1/ε)/γc2‖e2‖2 ≤ exp(− ln(1/ε)) = ε (5)

��

3 Verifying the Edge-By-Edge Convergence

The expression for N , as derived in Section 2.1, is based on a heuristic and has
to be verified. In addition, the expression is derived strictly applicable to an
edge, and it is unlikely that after N steps, all edges will become decorrelated.
The residual number of partially correlated edges and their effect on graphical
metrics have to be quantified.

Below we construct a purely data-driven, non-parametric test for the indepen-
dence of a edge, in a Markov chain of graphs. Any specified edge in a Markov
chain of graphs traces a binary time-series {Zt}, indicating the presence/absence
of the edge at each step of the chain. Assume that the chain is very long, i.e.,
it takes K � N steps. The time-series so formed will be auto-correlated, as
observed by Stanton and Pinar [8]. However, if the time-series is thinned by a
factor k (i.e., we retain every kth element to obtain {Zk

t }, the k−thinned chain),

Independent Graph Generation 159

the auto-correlation of {Zk
t } will decay and it will begin to resemble indepen-

dent draws from a distribution. If Eq. 4 is correct, then k = N should yield a
time-series that resembles independent draws more than a first-order Markov
process. Resemblance to either process is established by fitting an independent
and first-order Markov process models to the thinned data and computing the
log-likelihood. This forms the basis of our test. While this technique has been ap-
plied in other domains [14,15], this paper is the first application of this technique
to graphs.

Consider the chain {Zk
t }. We count the number, xij , of the (i, j), i, j ∈ (0, 1)

transitions in it. xij are used to populate X , a 2× 2 contingency table. Dividing
each entry by the length of thinned chain K/k−1 provides us with the empirical
probabilities pij of observing an (i, j) transition in {Zk

t }. Let p̂ij and x̂ij =
(K/k − 1)p̂ij be the predictions of the probabilities and expected values of the
table entries provided by a model. In such a case, the goodness-of-fit of the model
is provided by a likelihood ratio statistic (called the G2-statistic; Chapter 4.2
in [16]) and a Bayesian Information Criterion (BIC) score

G2 = −2
i=1∑
i=0

i=1∑
i=0

xij log

(
x̂ij

xij

)
, BIC = G2 + q log

(
K

k
− 1,

)
(6)

where q is the number of parameters in the model used to fit the table data.
Typically log-linear models are used for the purpose (Chapter 2.2.3 in [16]);
the log-linear models for table entries generated by independent sampling and a
first-order Markov process are

log(p
(I)
ij) = u(I)+u

(I)
1,(i)+u

(I)
2,(j) and log(p

(M)
ij) = u(M)+u

(M)
1,(i)+u

(M)
2,(j)+u

(M)
12,(ij),

(7)
where superscripts I,M indicate an independent and Markov process respec-

tively. The maximum likelihood estimates (MLE) of the model parameters (u
(W)
b,(c))

are available in closed form (Chapters 2.2.3 and 3.1.2 in [16]; also [13]). We com-
pare the fits of the two models thus: ΔBIC = BIC(I) − BIC(M). Large BIC
values indicate a bad fit. A negative ΔBIC indicates that an independent model
fits better than a Markov model.

This test is applied as follows. We construct a thinned binary time-series
{Zk

t } for k = N for each of the edges. The ΔBIC is computed and edges with
negative ΔBIC are deemed to have become independent after N steps of the
Markov chain.

4 Tests with Real Graphs

In this section, we estimate an ε for Eq. 4 within the context of a set of graphical
metrics. We also verify that N steps of the Markov chain results in independent
edge instances. All tests are done with four real networks - the neural network
of C. Elegans [17] (referred to as “C. Elegans”), the power grid of the West-
ern states of US [17] (called “Power”), co-authorship graph of network science

160 J. Ray, A. Pinar, and C. Seshadhri

Table 1. Characteristics of the graphs used in this paper. (|V |, |E|) are the numbers
of vertices and edges in the graph and G-R statistic is the Gelman-Rubin diagnostic.

Graph name (|V |, |E|) G-R diagnostic

C. Elegans (297, 4296) 1.05

Netscience (1461, 5484) 1.02

Power (4941, 13188) 1.006

soc-Epinions1 (75879, 405740) 1.06

researchers [18] (referred to as “Netscience”) and a 75,000 vertex graph of the
social network at Epinions.com [19] (“soc-Epinions1”). Their details are in Ta-
ble 1. The first three were obtained from [20] while the fourth was downloaded
from [21]. All the graphs were converted to undirected graphs by symmetrizing
the edges.

In Fig. 2 we investigate the impact of ε in Eq. 4. We generate 1000 samples by
running the Markov chain for 1|E|, 5|E|, 10|E| and 15|E| steps, corresponding
to ε = 0.37, 6.7× 10−3, 4.5× 10−5 and 3.06× 10−7. The Markov chain is started
using the first three networks listed in Table 1. We calculate the global clustering
coefficient, the graph diameter and the maximum eigenvalue for each graph and
plot their distributions in Fig. 2. We find that for all three, ε < 5 × 10−3 leads
to distributions which are very close. We will proceed with ε = 4.5 × 10−5 i.e.,
we will mix the Markov chain 10|E| times before extracting a sample.

We next calculate the fraction of edges that are deemed independent by the
test described in Section 3. We run the Markov chain for K = 1000N steps
and construct the binary time-series {Zt} for all the edges. Thinned time-series
{Zk

t }, k = N are constructed for N = {1, 5, 10, . . .30}|E| and each time-series
tested for independence. In Fig. 3, we plot the fraction of edges deemed indepen-
dent as a function of N/|E|, for “C. Elegans”, “Netscience” and “Power”. We
see that by N = 10|E|, more than 95% of the edges test independent, explaining
the convergence of the distributions observed in Fig. 2.

The test of independence described in Section 3 can also be used to construct
an ensemble of independent graphs, by running a very long Markov chain, and
thinning by k∗ > N , the thinning factor that renders all edges independent.
Comparisions with graphs generated using N = 10|E| are in [13], and the dis-
tributions are found to be very similar. Thus empirically, we find that a Markov
chain, run for 10|E| steps generates independent, uniformly distributed graphs.

We now address a large graph (soc-Epinions1), where potentially |V |2 distinct
edges might be realized during a Markov chain. While N = 10|E| might render a
large fraction of edges independent, there may still be a significant number (not
fraction) of edges that are still correlated with the starting graph. Since certain
graphical metrics, like diameter, can be quite sensitive to edges, we check whether
a more stringent N is required for large graphs.

Independent Graph Generation 161

0.09 0.1 0.11 0.12
0

100

200

300

Global clustering coefficient

D
en

si
ty

2 4 6 8
0

0.2

0.4

0.6

0.8

Diameter

D
en

si
ty

23.4 23.6 23.8
0

5

10

15

Max. Eigenvalue

D
en

si
ty

0.12 0.14 0.16 0.18 0.2
0

100

200

300

Global clustering coefficient

D
en

si
ty

0 50 100
0

0.05

0.1

0.15

0.2

Diameter

D
en

si
ty

ε = 0.37
ε = 6.7e−3
ε = 4.5e−5
ε = 3.1e−7

16.5 17 17.5
0

5

10

15

20

Max. Eigenvalue

D
en

si
ty

0.005 0.01 0.015 0.02
0

500

1000

Global clustering coefficient

D
en

si
ty

0 20 40 60
0

0.05

0.1

0.15

0.2

Diameter

D
en

si
ty

4.5 5 5.5 6
0

5

10

Max. Eigenvalue

D
en

si
ty

Fig. 2. Plots of the distributions of the global clustering coefficient, the graph diameter
and the max eigenvalue of the graph Laplacian for “C. Elegans” (left), “Netscience”
(middle) and “Power” (right), evaluated after 1|E|, 5|E|, 10|E| and 15|E| iterations of
the Markov chain (green, blue, black and red lines respectively). The corresponding
values of ε are in the legend. We see that the distributions converge at ε ∼ 1.0−5.

We generate an ensemble of 1000 graphs, starting from soc-Epinions1, using
N = 30|E|. We also run a long Markov chain (K = 210, 000|E|), and compute
the thinning factor k required to render each of the edges independent. Due to
the large number of edges realized during the Markov chain, this was calculated
for only 0.1|E| (40,574) edges, chosen randomly from all the distinct edges that
are realized by the Markov chain. In Fig. 4 (left) we plot the distribution of k
obtained from the 40,574 sampled edges. We see that most of the k lie between
10|E| and 100|E|; edges with thinning factors outside that range are about two
orders of magnitude less abundant. The largest thinning factor identified was k =
720|E|. In Fig. 4 (right) we plot the distribution of diameter obtained using N =
30|E|, and compare against the distributions obtained from the long run using
thinning factors k = 5N, 9N, and 13N . We see small differences in distributions;
for practical purposes, N = 30|E| results in a converged distribution.

Finally, we address the question whether the results presented so far are in-
dependent of the starting graph. We generate two starting points by march-
ing a Markov chain (initialized by a real network) for N = 10, 000|E| steps.

162 J. Ray, A. Pinar, and C. Seshadhri

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

N/|E|

F
ra

ct
io

n
of

 in
de

pe
nd

en
t e

dg
es

C. Elegans

Netscience

Power

Fig. 3. Fraction of edges testing independent, for “C. Elegans”, “Netscience” and
“Power” for various values of N . We see that N = 10|E| ensures that at least 95%
of the edges become independent.

0 100 200 300 400 500 600 700 800
10

0

10
1

10
2

10
3

10
4

10
5

Normalized thinning factor k/|E|

F
re

qu
en

cy

5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Diameter

D
en

si
ty

N = 30|E|
k = 5N
k = 9N
k = 13N

Fig. 4. Left: The normalized thinning factor k/|E| for the soc-Epinions1 graph, as
calculated for the 40,574 sampled edges. We see that the most thinning factors are lie
in (10|E|, 100|E|). Right: Plot of the graph diameter and distribution generated using
N = 30|E| as well as a long Markov chain with thinning factor k equal to various
multiples of N . We see that the distributions are very similar.

We initialize 3 concurrent Markov chains with these graphs, and calculate the
Gelman-Rubin (G-R) diagnostic [22] using the binary edge time-series. Values
of the diagnostic between 1 and 1.1 indicate that the states of the concurrent
Markov chain are not dependent on the starting location. We performed this test
for all 4 graphs; the corresponding G-R diagnostics are tabulated in Table 1.

Independent Graph Generation 163

5 Conclusions

We have developed a method that allows one to generate a set of independent
realizations of graphs with a prescribed joint degree distribution. The graphs are
generated using a MCMC approach, employing the algorithm described in [8] as
the “rewiring” mechanism. Our method involves running the Markov chain for N
steps before extracting a graph realization; the Markov chain is run repeatedly
to generate samples. We developed a model (and a closed-form expression) to
estimate N that allows the 2-state Markov chain of an edge to converge to its
stationary distribution. This is a necessary condition for how long a Markov chain
on the space of graphs has to be run before an independent graph realization can
be extracted from it. We find that 10|E| − 30|E| steps are sufficient to generate
samples of graphs that provide converged distributions of graphical metrics like
clustering coefficients, diameter and maximum eigenvalue of the graph Laplacian.

We verified our model (for N) by constructing a non-parametric test for the
independence of each edge. It is not dependent on any heuristics or graphical
properties. It uses the time-series of the occurrence/non-occurrence of edges,
thins them by N and fits a first-order Markov and an independent sampling
model to the thinned time-series. Their BICs are used to perform model selection
i.e., to decide whether the thinned chain resembles draws from an independent
more than a first-order Markov process. The method is not new, but does not
seem to have been used in the generation of independent graphs.

Finally, we repeated our tests with concurrent Markov chains, initialized with
dispersed starting graphs. We employed the Gelman-Rubin diagnostic to verify
that our tests were not being driven by the starting points of the Markov chain.

While this work enables the generation of independent graphs, including large
ones, it has only been demonstrated on graphs where the JDD is preserved.
Extending our method to the generation of independent graphs when some other
graph property is held constant is currently under investigation.

Acknowledgments. We would like to thank Tamara G. Kolda for many helpful
discussions.

References

1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Sci-
ence 286(5349), 509–512 (1999)

2. Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89, 208701
(2002)

3. Holme, P., Zhao, J.: Exploring the assortativity-clustering space of a network’s
degree sequence. Phys. Rev. E 75, 046111 (2007)

4. Kannan, R., Tetali, P., Vempala, S.: Simple markov-chain algorithms for generat-
ing bipartite graphs and tournaments. Random Struct. Algorithms 14(4), 293–308
(1999)

5. Jerrum, M., Sinclair, A.: Fast uniform generation of regular graphs. Theor. Com-
put. Sci. 73(1), 91–100 (1990)

164 J. Ray, A. Pinar, and C. Seshadhri

6. Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm
for the permanent of a matrix with nonnegative entries. J. ACM 51(4), 671–697
(2004)

7. Gkantsidis, C., Mihail, M., Zegura, E.W.: The Markov chain simulation method for
generating connected power law random graphs. In: ALENEX, pp. 16–25 (2003)

8. Stanton, I., Pinar, A.: Constructing and sampling graphs with a prescribed joint
degree distribution using Markov chains. ACM Journal of Experimental Algorith-
mics (to appear)

9. Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcrip-
tional regulation network of escherichia coli. Nature Genetics 31, 64–68 (2002)

10. Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks.
Science 296(5569), 910–913 (2002)

11. Adams, S.: Dilbert: Random number generator (2001),
http://search.dilbert.com/comic/RandomNumberGenerator

12. Sokal, A.: Monte Carlo methods in statistical mechanics: Foundations and new
algorithms (1996)

13. Ray, J., Pinar, A., Seshadhri, C.: Are we there yet? when to stop a markov chain
while generating random graphs. CoRR abs/1202.3473 (2012)

14. Raftery, A., Lewis, S.M.: Implementing MCMC. In: Gilks, W.R., Richardson, S.,
Spiegelhalter, D.J. (eds.) Markov Chain Monte Carlo in Practice, pp. 115–130.
Chapman and Hall (1996)

15. Raftery, A.E., Lewis, S.M.: How many iterations in the Gibbs sampler? In:
Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (eds.) Bayesian Statis-
tics, vol. 4, pp. 765–766. Oxford University Press (1992)

16. Bishop, Y.M., Fienberg, S.E., Holland, P.W.: Discrete multivariate analysis: The-
ory and practice. Springer, New York (2007)

17. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Na-
ture 393, 440–442 (1998)

18. Newman, M.E.J.: Finding community structure in networks using the eigenvectors
of matrices. Phys. Rev. E 74, 036104 (2006)

19. Richardson, M., Agrawal, R., Domingos, P.: Trust Management for the Semantic
Web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870,
pp. 351–368. Springer, Heidelberg (2003), doi:10.1007/978-3-540-39718-2 23

20. Newman, M.E.J.: Prof. M. E. J. Newman’s collection of graphs at University of
Michigan, http://www-personal.umich.edu/~mejn/netdata/

21. Stanford Network Analysis Platform Collection of Graphs: The Epinions social
network from the Stanford Network Analysis Platform collection,
http://snap.stanford.edu/data/soc-Epinions1.html

22. Gelman, A., Rubin, D.B.: Inference from iterative simulation using multiple se-
quences. Statistical Science 7, 457–472 (1992)

http://search.dilbert.com/comic/RandomNumberGenerator
http://www-personal.umich.edu/~mejn/netdata/
http://snap.stanford.edu/data/soc-Epinions1.html

A Fast Algorithm to Find All High Degree

Vertices in Graphs with a Power Law Degree
Sequence

Colin Cooper, Tomasz Radzik, and Yiannis Siantos

Department of Informatics, King’s College London, UK

Abstract. We develop a fast method for finding all high degree vertices
of a connected graph with a power law degree sequence. The method
uses a biassed random walk, where the bias is a function of the power
law c of the degree sequence.

Let G(t) be a t-vertex graph, with degree sequence power law c ≥ 3
generated by a generalized preferential attachment process which adds
m edges at each step. Let Sa be the set of all vertices of degree at least
ta in G(t). We analyze a biassed random walk which makes transitions
along undirected edges {x, y} proportional to (d(x)d(y))b, where d(x) is
the degree of vertex x and b > 0 is a constant parameter. Choosing the
parameter b = (c− 1)(c− 2)/(2c− 3), the random walk discovers the set

Sa completely in Õ(t1−2ab(1−ε)) steps with high probability. The error
parameter ε depends on c, a and m. We use the notation Õ(x) to mean
O(x logk x) for some constant k > 0.

The cover time of the entire graph G(t) by the biassed walk is Õ(t).
Thus the expected time to discover all vertices by the biassed walk is not
much higher than in the case of a simple random walk Θ(t log t).

The standard preferential attachment process generates graphs with
power law c = 3. Choosing search parameter b = 2/3 is appropriate for
such graphs. We conduct experimental tests on a preferential attachment
graph, and on a sample of the underlying graph of the www with power
law c ∼ 3 which support the claimed property.

1 Introduction

Many large networks have a heavy tailed degree sequence. Thus, although the
majority of the vertices have constant degree, a very distinct minority have
very large degrees. This particular property is the significant defining feature of
such graphs. A log-log plot of the degree sequence breaks naturally into three
parts. The lower range (small constant degree) where there may be curvature,
as the power law approximation is incorrect. The middle range, of large but well
represented vertex degrees, which give the characteristic straight line log-log plot
of the power law coefficient. In the upper tail, where the sequence is far from
concentrated, the plot is a spiky mess. See for example Figure 1 (the degree
sequence of a simulated preferential attachment graph with m = 4 edges added

A. Bonato and J. Janssen (Eds.): WAW 2012, LNCS 7323, pp. 165–178, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

166 C. Cooper, T. Radzik, and Y. Siantos

at each step) and Figure 3 (the degree sequence of the underlying graph of a
sample of the www). In both cases the x-axis is a = log d/ log t, where d is
vertex degree, and t is the size of the graph.

In our work we focus on sampling the higher degree vertices, in both the mid-
dle range and upper tail. Our aim is to find all these vertices, and we propose
a provably efficient method of obtaining those vertices in sub-linear time using
a weighted random walk. One reason for finding all the higher degree vertices
is that the upper tail is not concentrated, so no sub-sample will be represen-
tative. We consider a weighted random walk because, as there are few vertices
even in the middle range, a simple random walk may take too long to obtain
a statistically significant sample. Coupled with this is the impression that in
many networks, for example the www, it is the high degree vertices which are
important, both as hubs and authorities, and for pagerank calculations.

Previous work on efficient sampling of network characteristics arises in many
areas. In the context of search engine design, studies in optimally sampling the
URL crawl frontier to rapidly sample (e.g.) high pagerank vertices, based on
knowledge of vertex degree in the current sample, can be found in e.g. [3].

Within the random graph community, traceroute sampling was used to esti-
mate cumulate degree distributions; and methods of removing the high degree
bias from this process were studied in e.g. [1], [10]. Another approach, analysed
in [6], is the jump and crawl method to find (e.g.) all very high degree vertices.
The method uses a mixture of uniform sampling followed by inspection of the
neighboring vertices, in a time sub-linear in the network size.

In the context of online social networks, exploration often focused on how to
discover the entire network more efficiently. Until recently this was feasible for
many real world networks, before they exploded to their current size. It is no
longer feasible to get a consistent snapshot of the Facebook network for exam-
ple. (According to the Facebook statistics page at www.facebook.com/press/
info.php?statistics, retrieved on 2 June 2011, there were over 500 million
active users, and around 36 billion links.)

Methods based on random walks are commonly used for graph searching and
crawling. Stutzbach et al [14] compare the performance of breadth first search
(BFS) with a simple random walk and a Metropolis Hastings random walk on
various classes of random graphs as a basis for sampling the degree distribution
of the underlying networks. The purpose of the investigation was to sample from
dynamic Peer-To-Peer (P2P) networks. In a related study Gjoka et al [11] made
extensive use of the these methods to collect a sample of Facebook users. As
simple random walks are degree biassed they used a re-weighting technique to
unbias the sampled degree sequence output by the random walk. This is referred
to as a re-weighted random walk in [11]. In both the above cases it was shown
the bias could be removed dynamically by using a suitable Metropolis-Hastings
random walk.

A simple way to generate a graph with a power law degree sequence is to use
the preferential attachment method described by Albert and Barabási [4]. In
this model, the graph G(t) = G(m, t) is obtained from G(t− 1) by adding a new

A Fast Algorithm to Find All High Degree Vertices in Graphs 167

vertex vt with m edges between vt and G(t−1). The end points of these edges are
chosen preferentially, that is to say proportional to the existing degree of vertices
in G(t−1). Thus the probability p(x, t) that vertex x ∈ G(t−1) is chosen as the
end point of a given edge is equal to p(x, t) = d(x, t − 1)/(2m(t− 1)), and this
choice is made independently for each of the m edges added. A model generated
in this way has a power law of c = 3 for the degree sequence, irrespective of the
number of edges m ≥ 1 added at each step. For a graph constructed in this way,
the expected degree at step t of the vertex added at step s isEd(s, t) ∼ m(t/s)1/2.

The preferential attachment model was refined by Bollobas et al [5] who in-
troduced the scale free model to make detailed calculations of degree sequence.
The model was generalized by many authors, including the web-graph model
of Cooper and Frieze [8]. The web-graph model is more general, and allows the
number of edges added at each step to vary, for edges from new vertices to choose
their end points preferentially or uniformly at random, and for insertion of edges
between existing vertices. By varying these parameters, preferential attachment
graphs with degree sequences exhibiting power laws c in the interval (2,∞) are
obtained.

The power law c for preferential attachment graphs and web-graphs can be
written explicitly as

c = 1 + 1/η, (1)

where η is the expected proportion of edge end points added preferentially
(see [7]). For example in the standard preferential attachment process (e.g. the
Barabási and Albert model), η = 1/2, as each new edge chooses an existing
neighbour vertex preferentially; thus explaining the power law of 3 for this model.

In the simplest case, to form G(t), a new vertex vt is added at each step t
with m edges directed towards the existing graph G(t). Each edge chooses its
terminal vertex either by preferential attachment or uniformly at random with
some probability mixture p or 1 − p. This generates a power law c ≥ 3. We
refer to this generalized process as G(c,m, t). For this example, the parameter
η = p/2 depends on the proportion p of edge end points chosen preferentially
(as opposed to uniformly at random). The parameter η in (1) occurs in process
models, in the expression for the expected degree of a vertex. Let d(s, t) denote
the degree at step t of the vertex vs added at step s. The expected value of d(s, t)
is given by

Ed(s, t) ∼ m

(
t

s

)η

. (2)

Thus, in the preferential attachment model of [4], Ed(s, t) ∼ m(t/s)1/2.
Generalizing this, we consider arbitrary multi-graphs G(t) on t vertices which,

have the following properties, which we call pseudo-preferential.
(i) When the vertices are relabeled s = 1, ..., t by sorting on vertex degree in
descending order, G(t) has a degree sequence which satisfies(

t

s

)η(1−ε)

≤ d(s) ≤
(
t

s

)η

log2 t, (3)

for some ε > 0 and 0 < η < 1, and for some range of s ≥ 1.

168 C. Cooper, T. Radzik, and Y. Siantos

(ii) For all vertices s in the sorted order, s has at most m edges to vertices σ ≤ s.

Our particular aim is, given a > 0, to find all vertices v ∈ V (t) of degree
d(v) ≥ ta. Denote by Sa the set of vertices of G(t) of degree d(v) ≥ ta. For the

following reason, we will assume a < η. The maximum degree in (3) is Õ(tη), and,
from (2), this is also the maximum expected degree in preferential attachment

graphs (η = 1/2) and web-graphs (0 < η < 1). We use the notation Õ(f(t))
as shorthand for O(f(t) logk t) where t is the size of G(t) and k is a positive
constant.

We say a random walk is seeded if the walk starts from some vertex s of S. In
the context of searching networks such as Facebook, Twitter or the WWW it is
not unreasonable to suppose we know some high degree vertex without supposing
we know all of them. Experimentally, we found the seeding condition was not
necessary, but a general analysis without this condition would require notions of
mixing time and stationarity which our analysis avoids. The following theorem
holds for any network with the pseudo-preferential properties given above.

Theorem 1. Let G(t) be a pseudo-preferential graph with degree sequence sat-
isfying (3). Let Sa = {v : d(v) ≥ ta} be connected with diameter Diam(Sa). Let
b = (1− η)/(η(2 − η(1 − ε)).

A biassed seeded random walk with transition probability along edge {x, y}
proportional to (d(x)d(y))

b
, finds all vertices in G(t) of degree at least ta in

Õ(Diam(Sa)× t1−2ab(1−ε)) steps, With High Probability (whp).

The cover time of the graph G(t) by this biassed walk is Õ(tDiam(G(t))).

In reality the degree sequence (3) of graph G(t) is unknown, but η can be esti-
mated as η = 1/(c− 1) from the power law c of the degree sequence. Optimisti-
cally setting ε = 0 then gives a value b for the search algorithm. Its also fair to
say that, experimentally, we found putting b = 1/2 in the biassed random walk
was effective a variety of real networks with a power law degree sequence.

We next give a general result for web-graphs G(c,m, t), which is also valid for
related models such as scale free graphs. For the class of graphs G(c,m, t), the
lower bound on the degree of vertex s becomes less concentrated as s tends to t,
so that the value of ε we must choose for our lower bound in (3) increases with
s. Thus, as the vertex degree ta decreases, the upper bound on the algorithm
runtime increases in a way which depends on a, c,m. As long as we incorporate
this dependence, Theorem 2 says that if we search G(c,m, t) using a random
walk with a bias b proportional to the power law c then, (i) we can find all high
degree vertices quickly, and (ii) the time to discover all vertices is of about the
same order as for a simple random walk.

Theorem 2. Let c ≥ 3, and let m ≥ 2. Let a < 1/(c−1), and let ε = (1+1/a−
c)/m.
Let b = (c−1)(c−2)/(2c−3). For c ≥ 3, whp we can find all vertices in G(c,m, t)

of degree at least ta in Õ(t1−2ab(1−ε)) steps, using a biassed seeded random walk
with transition probability along edge {x, y} proportional to (d(x)d(y))b.

The cover time of the graph G(c,m, t) by this biassed walk is Õ(t).

A Fast Algorithm to Find All High Degree Vertices in Graphs 169

The maximum degree of G(c,m, t) is Õ(tη) whp, where η = 1/(c− 1) which
explains the bound on a given above. Using this, a t1−2ab run time can be re-
packaged as follows. Let a = θη for 0 < θ < 1, then 2ab = θ(1 − 1/(2c− 3)).

2 Properties of the Web-Graph Process

The actual value of d(s, t) is not concentrated around Ed(s, t) in the lower tail,
but the following inequality is adequate for our proof.

Lemma 1. Given G(c,m, t) and a, ε and suppose m > (1/ε)(1/a− 1/η).

With high probability for all vertices s, such that Ed(s, t) ≥ ta, we have that

d(s, t) ≥ (ts)η(1−ε)
. For all s ≥ log2 t, d(s, t) ≤ (ts)η log2 t.

For proof of Lemma 1 see Appendix. We also need lower tail concentration for
large sets of vertices.

Lemma 2. Let d([s], t) denote the total degree at step t ≥ s of the set [s] =
{1, ..., s}. Let K > 1. Then

Pr

(
d([s], t) ≤ 2ms

K

(
t

s

)η)
= O(s−mK).

The upshot of this, is that all vertices added after step v = s log2/η+1 t have
degree d(v, t) = o ((t/s)η) whp. This observation forms the basis of our sub-
linear algorithm. For proof of Lemma 2 see Appendix.

Another piece of the puzzle we will need, is that whp web-graphs have diam-
eter

Diam(G(c,m, t)) = O(log t) (4)

Crude proofs of this can be made for the web-graph model based on expansion
properties of the graph. For example, in the preferential attachment graph (η =
1/2, c = 3) when vertex t is added to G(m, t) the probability that t does not
select at least one neighbour in G(t/2) is at most(

1− 2m(t/2)

2mt

)m

=

(
1

2

)m

.

Thus Diam(G(m, t)) = O(log t) by a ’tracing backwards stochastically’ argu-
ment.

3 Biassed Random Walks

Let G = (V,E) be a connected undirected graph. A random walk Wu, u ∈ V ,
on G is a Markov chain X0 = u,X1, . . . , Xt, . . . on the vertices V associated to
a particle that moves from vertex to vertex according to a transition rule. The

170 C. Cooper, T. Radzik, and Y. Siantos

probability of a transition from vertex i to vertex j is p(i, j) if {i, j} ∈ E, and 0
otherwise.

Let d(v) = d(v, t) be the degree of vertex v ∈ G(t), and let N(v) denote the
neighbours of v in this graph. The basis of our algorithm is a degree-biassed
random walk, with transition probability p(u, v) given by

p(u, v) =
(d(v))b∑

w∈N(u)(d(w))
b
, (5)

where b > 0 constant. The value of b we will choose in our proof is optimized
to depend on η. Thus for Theorem 2, using (1), the value of b can be expressed
directly as a function of the degree sequence power law c.

The easiest way to reason about biassed random walks, is to give each edge e a
weight w(e), so that transitions along edges are made proportional to this weight.
In the case above the weight of the edge e = (u, v) is given by w(e) = (d(u)d(v))b

so that the transition probability (5) is now written as

p(u, v) =
(d(u)d(v))b∑

w∈N(u)(d(u)d(w))
b
. (6)

The inspiration for the degree biassed walk above, comes from the β-walks of
Ikeda, Kubo, Okumoto and Yamashita [12] which use an edge weight w(x, y) =
1/(d(x)d(y))β to favor low degree vertices. When β = 1/2 this gives an improved
worst case bound of O(n2 logn) for the cover time of connected n-vertex graphs.

We next note some facts about weighted random walks, which can be found
in Aldous and Fill [2] or Lovasz [13]. The weight w(e) of an edge e has the
meaning of conductance in electrical networks, and the resistance r(e) of e is
given by r(e) = 1/w(e). The commute time K(u, v) between vertices u and v,
is the expected number of steps taken to travel from u to v and back to u. The
commute time for a weighted walk is given by

K(u, v) = w(G)Reff(u, v). (7)

Here w(G) = 2
∑

e∈E w(e) and Reff(u, v) is the effective resistance between u
and v, when G is taken as an electrical network with edge e having resistance
r(e). For our proof we do not need to calculate Reff(u, v) very precisely, but
rather note that if uPv is any path between u and v then

Reff(u, v) ≤
∑

e∈uPv

r(e).

For u ∈ V , and a subset of vertices S ⊆ V , let Cu(S) be the expected time
taken for Wu to visit every vertex of G. The cover time CS of S is defined as
CS = maxu∈V Cu(S). We define a walk as seeded if it starts in S. The seeded
cover time CS

∗ of S as CS
∗ = maxu∈S Cu(S). For a random walk starting in a

set S, the cover time of S satisfies the following Matthews bound

C∗
S ≤ max

u,v∈S
H(u, v) log |S|. (8)

A Fast Algorithm to Find All High Degree Vertices in Graphs 171

For u
= v, the variable H(u, v) is the expected time to reach v starting from u
(the hitting time). The commute time K(u, v) is given by K(u, v) = H(u, v) +
H(v, u), so K(u, v) > H(u, v).

4 Proof of Theorems 1 and 2

We apply the Matthews bound (8). Clearly log |Sa| ≤ log t. It remains to find

max
u,v∈S

H(u, v) ≤ max
u,v∈S

K(u, v).

To calculate K(u, v) in (7), we first need to bound w(G)

Lemma 3. By choosing

b =
1− η

η(2 − η(1− ε′))
,

where ε′ = ε for Theorem 1, and ε′ = 0 for Theorem 2, it follows that w(G) =

O(t log4b+1 t) = Õ(t)

Proof
We define a graph G∗ on vertices 1, 2, . . . , t which has the same degree sequence
as graph G, and is built in a similar iterative process: for each v = t0, t0 +
1, . . . , t, addm edges from vertex v to some earlier vertices. In graph G, edges are
selected according to a random preferential process, while in graph G∗ according
to the deterministic process which greedily fills the in-degrees of vertices, giving
preference to the older vertices. In both graphs, if (x, y) is a directed edge, then
y < x (the edges point from x towards the earlier vertex y).

Assume b > 0 and define

d̄(v) =

(
t

v

)η

,

w̄(G) = 2
∑

{x,y}∈E(G)

(
d̄(x)d̄(y)

)b ≥ w(G) log−4b t.

Graph G∗ is obtained from G by repeatedly swapping edges. Whenever there
is a pair of edges (x, y), (u, v) such that x < u but y > v, then replace them
with edges (x, v) and (u, y). If A > B and C > D then (A −B)(C −D) > 0 so
AC +BD > AD +BC. Thus each swap increases w̄(G) because

(d̄(x))b > (d̄(u))b and (d̄(y))b < (d̄(v))b

implies

(d̄(x))b(d̄(v))b + (d̄(u))b(d̄(y))b > (d̄(x))b(d̄(y))b + (d̄(u))b(d̄(v))b.

172 C. Cooper, T. Radzik, and Y. Siantos

Therefore, w̄(G∗) ≥ w̄(G). By construction, a vertex v in G∗ has incoming edges
originating from vertices first(v), first(v) + 1, . . . , last(v). Thus we have

w̄(G∗) = 2
∑

{y,x}∈E(G∗)

(
d̄(x)d̄(y)

)b
= 2

t∑
x=1

last(x)∑
y=first(x)

(
d̄(x)d̄(y)

)b
≤ 2

t∑
x=1

d(x)
(
d̄(x)d̄(first(x))

)b
≤ 2

t∑
x=1

(
d̄(x)

)1+b (
d̄(first(x))

)b
. (9)

Now we calculate first(x). The m(first(x) − 1) edges outgoing from vertices
1, 2, . . . , first(x)− 1 fully fill the in-degrees of vertices 1, 2, . . . , x− 1, so

m · first(x) = 1 +

x−1∑
z=1

(d(z)−m).

Let C be some generic constant whose value can vary. For Theorem 1 choosing
ε′ = ε, (deterministic case),

x−1∑
z=1

d(z) ≥
x−1∑
z=1

(
t

z

)η(1−ε)

= Ctη(1−ε′)x1−η(1−ε′).

For Theorem 2 (web-graph case), choosing ε′ = 0 we have from Lemma 2 that

x−1∑
z=1

d(z) ≥ mx

(
t

x

)η

.

Thus

d̄(first(x)) ≤ C

(
t

tη(1−ε′)x1−η(1−ε′)

)η

= C

(
t

x

)η(1−η(1−ε′))

. (10)

Using (10) in (9), we get

w̄(G∗) ≤ C

t∑
x=1

(
t

x

)η(1+b)(
t

x

)bη(1−η(1−ε′))

= C

t∑
x=1

(
t

x

)η(1+b(2−η(1−ε′)))

. (11)

Choosing
η(1 + b(2− η(1− ε′))) = 1, (12)

A Fast Algorithm to Find All High Degree Vertices in Graphs 173

the sum in (11) is O(t log t) and we have

w(G) ≤ log4b w̄(G) ≤ log4b w̄(G∗) = O(t log4b+1 t). (13)

�

Details Specific to Theorem 1. The set Sa is connected with diameter
Diam(Sa) is as specified. Let Δ(a) = Diam(Sa), then for any u, v ∈ Sa there is
a path uPv of length O(Δ(a)) from u to v in G(t) contained in Sa, and thus
consisting of vertices w of degree d(w, t) ≥ (t/s)η(1−ε) = d∗. Thus all edges of
this path have resistance at most 1/(d(x)d(y))b ≤ 1/(d∗)2b.

Details Specific to Theorem 2. Suppose we want to find all vertices of degree
at least ta for some a > 0 in G(t) ≡ G(c,m, t). Let Sa = {v : d(v, t) ≥ ta}. Recall
that G(t) is generated by a process of attaching vt to G(t−1). At what steps were
the vertices v ∈ Sa added to G(t)? The expected degree of v at step t is given
by (2) i.e. Ed(v, t) = (1 + o(1))m(t/v)η. This function is monotone decreasing
with increasing v. Let σ be given by

ta =

(
t

σ

)η

which implies σ = t1−a/η. (14)

Let s = σ · log2/η+1 t, then using (3) all vertices added at steps w ≥ s have
d(w, t) = o(ta). On the other hand, using (3) again, all vertices v added at steps
1, ..., s have degree d(v, t) ≥ (t/s)η(1−ε).

For Theorem 2 let Δ(a) = Diam(G(s)) where s is as defined above. Because
Diam(G(s)) = O(log s), (see (4)), we know that for any u, v ∈ Sa there is a path
uPv of length O(log t) from u to v in G(t) contained in G(s), and thus consisting
of vertices w of degree d(w, t) ≥ (t/s)η(1−ε) = d∗. Thus all edges of this path
have resistance at most 1/(d(x)d(y))b ≤ 1/(d∗)2b.

Proof of Theorems 1 and 2. From (3), d∗ satisfies

d∗ ≥
(

t

t1−a/η log1+2/η t

)η(1−ε)

≥ ta(1−ε)

log3 t
.

By the discussion above,

Reff(u, v) ≤
∑

e∈uPv

r(e) = O

(
Δ(a)

d∗

)
.

Using (7), and the value of d∗, we have

K(u, v) ≤ K∗ = Õ(Δ(a)t1−2ba(1−ε)).

The bound in Theorem 2 on finding all vertices of degree at least ta is now
obtained as follows. The Matthews bound (8) gives the (expected) cover time
C∗

Sa
= O(K∗ log t). Apply the Markov inequality (Pr(X > A ·EX) ≤ 1/A), with

174 C. Cooper, T. Radzik, and Y. Siantos

EX = C∗
Sa
, and A = log t to give a whp result, that all vertices of degree at

least ta can be found in time

T (a) = Õ(t1−2ba(1−ε)).

For preferential attachment graphs η = 1/2, and (12) gives b = 2/3, and the
time T (a) is

Õ(t1−(4/3)a(1−ε)).

Finally we establish the cover time of the graph G(t). This is done by using (8)
with S = V (t) the vertex set of G(t), i.e.

CV (t) ≤ max
u,v∈V (t)

H(u, v) log t. (15)

We bound H(u, v) by (7) as usual. The resistance r(e) of any edge e = {x, y} is

r(e) =
1

(d(x)d(y))b
≤ 1

m2b
= O(1).

Let the diameter of G(t) be Diam(G) which is specified for Theorem 1 and is
O(log t) (whp) for Theorem 2. Thus Reff(u, v) = O(Diam(G)), since the effective
resistance between u and v is at most the resistance of a shortest path between
u and v. This and (13) give K(u, v) = Õ(tDiam(G)). Thus the cover time of the

graph G(t) is Õ(tDiam(G)).

5 Experimental Results

Theorem 2 gives an encouraging upper bound of the order of around t1−(4/3)a

for a biassed random walk to the cover all vertices of degree at least ta in the
t-vertex preferential attachment graph G(3,m, t). Our experiments, summarized
in Figure 2, suggest that the actual bound is stronger than this. The experiments
were made on G(m, t) with m = 4, and t = 5×106 vertices. The degree distribu-
tion of this graphs is given in Figure 1, with both axes in logarithmic scale. More
precisely, the x-axis is the exponent a in the degree d = ta, i.e. x = log d/ log t,
while the y-axis is the frequency of the vertices of degree ta.

In Figure 2, plot SRW shows the average cover time τ(a) of all vertices of
degree at least ta by the simple random walk (the uniform transition probabili-
ties). Plot WRW shows the average cover times by the biassed random walk with
b = 1/2, and b = 2/3. The plots are an average of 9 runs (each) of the random
walks. Both axes are in logarithmic scale. The y-axis is y = (log τ(a))/ log t.
There are also three reference lines drawn in Figure 2. These lines have slopes
−a, −4a/3 and −2a, and are included for visual inspection only. To calculate
the speed up, given x = a, read off the y(a)-values yS , yW . The speed up is
tyS−yW , where t = 5 × 106. In the upper tail the weighted walks is about 10
times faster. Curiously, the improvement does not seem sensitive to the precise
value of b.

A Fast Algorithm to Find All High Degree Vertices in Graphs 175

Fig. 1. Degree distribution of a realization
of G(c,m, t), c = 3,m = 4, t = 5× 106

Fig. 2. Cover time of vertices of degree at
least ta in G(3, 4, 5×106) as a function of a

Fig. 3. Degree distribution of sample of
size 8.7×105 of GW , the underlying graph
of the www

Fig. 4. Cover time of vertices of degree at
least ta in GW as a function of a

The cover time CG of a simple random walk on G(m, t) is known and has
value CG ∼ (2m/(m − 1))t log t, see [9]. The intercept of the y-axis predicted
by this is yC = logCG/ log t, which when m = 4 and t = 5 × 106 is yC = 1.29
This agrees well with the experimental intercept of 1.24, and helps confirm the
accuracy of our simulations.

Our experimental results for Theorem 1 are less clear cut, but still
encouraging. Figure 3 gives the degree distribution of the underly-
ing graph of the WWW, on t = 8.7 × 105 vertices obtained from
http://snap.stanford.edu/data/web-Google.html. The power law exponent

176 C. Cooper, T. Radzik, and Y. Siantos

is approximately c = 3, and it was crawled using a weight of b = 2/3. Figure
4, shows the results obtained by averaging 25 runs of the simple and weighted
random walks. The weighted walk is generally about 4 times faster for a > 0.43.

References

1. Achlioptas, D., Clauset, A., Kempe, D., Moore, C.: On the bias of traceroute
sampling: or, power-law degree distributions in regular graphs. J. ACM 56(4) (2009)

2. Aldous, D., Fill, J.A.: Reversible Markov chains and random walks on graphs
(1995), http://stat-www.berkeley.edu/pub/users/aldous/RWG/book.html

3. Baeza-Yates, R., Castillo, C., Marin, M., Rodriguez, A.: Crawling a country: Better
strategies than breadth-first for web page ordering. In: Proc. 14th International
Conference on World Wide Web, pp. 864–872. ACM Press (2005)

4. Barabási, A., Albert, R.: Emergence of scaling in random networks. Sci-
ence 286(5439), 509–512 (1999)

5. Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a
scale-free random graph process. Random Structures and Algorithms 18, 279–290
(2001)

6. Brautbar, M., Kearns, M.: Local algorithms for finding interesting individuals in
large networks. In: Proceedings of ICS 2010, pp. 188–199 (2010)

7. Cooper, C.: The age specific degree distribution of web-graphs. Combinatorics
Probability and Computing 15, 637–661 (2006)

8. Cooper, C., Frieze, A.: A general model web graphs. Random Structures and Al-
gorithms 22(3), 311–335 (2003)

9. Cooper, C., Frieze, A.: The cover time of the preferential attachment graphs. Jour-
nal of Combinatorial Theory B(97), 269–290 (2007)

10. Flaxman, A.D., Vera, J.: Bias Reduction in Traceroute Sampling – Towards a More
Accurate Map of the Internet. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007.
LNCS, vol. 4863, pp. 1–15. Springer, Heidelberg (2007)

11. Gjoka, M., Kurant, M., Butts, C.T., Markopoulou, A.: A walk in Facebook: Uni-
form sampling of users in online social networks. CoRR, abs/0906.0060 (2009)

12. Ikeda, S., Kubo, I., Okumoto, N., Yamashita, M.: Impact of Local Topological
Information on Random Walks on Finite Graphs. In: Baeten, J.C.M., Lenstra,
J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, Springer,
Heidelberg (2003)

13. Lovász, L.: Random walks on graphs: A survey. Bolyai Society Mathematical Stud-
ies 2, 353–397 (1996)

14. Stutzbach, D., Rejaie, R., Duffield, N.G., Sen, S., Willinger, W.: On unbiased
sampling for unstructured peer-to-peer networks. In: Proceedings of the 6th ACM
SIGCOMM Conference on Internet Measurement IMC 2006, pp. 27–40 (2006)

Appendix

Lemma 1 Given G(c,m, t) and a, ε and suppose m > (1/ε)(1/a− 1/η).
With high probability for all vertices s, such that Ed(s, t) ≥ ta, we have that

d(s, t) ≥ (ts)η(1−ε)
. For all s ≥ log2 t, d(s, t) ≤ (ts)η log2 t.

http://stat-www.berkeley.edu/pub/users/aldous/RWG/book.html

A Fast Algorithm to Find All High Degree Vertices in Graphs 177

Proof . The upper bound on d(s, t) is given in [7], as is the following degree
distribution. For m ≥ 2, the distribution of d(s, t) is given by

Pr(d(s, t) = m+ � | d(s, s) = m) ≤ C

(
m+ �− 1

�

)(s
t

)ηm (
1−
(s
t

)η)�
.

Thus, crudely

Pr(d(s, t) ≤ �) ≤ C�m
(s
t

)ηm
.

Inserting � =
(
t
s

)η(1−ε)
, and choosing s = t1−a/η, we find the expected number

of vertices 1 ≤ v ≤ s not satisfying the lower bound is of order

s
(s
t

)mεη

= t(1−a/η)(1+mεη) = o(1),

provided

m >
1

ε

(
1

a
− 1

η

)
.

�

Lemma 2. Let d([s], t) denote degree of [s] = {1, ..., s} at step t. Let K > 1.
Then

Pr

(
d([s], t) ≤ 2ms

K

(
t

s

)η)
= O(s−mK).

Proof . We give the proof for η = 1/2 (preferential attachment), the general
proof is similar.

Let Zt = d([s], t). Then Zt = Xt + Zt−1 where Zs = 2ms and Xt ∼
Bin(m,Zt−1/(2m(t− 1))). Also, EZt ∼ 2ms(t/s)1/2. Given h, ct, A > 0,

Pr(Zt < A) = Pr(e−hZt/ct > e−hA/ct).

Let p = Zt−1/(2m(t− 1)), then

E(e−hXt/ct) =(1 − p+ pe−h/ct)m

≤e− h
ct

(1−h/ct)
Zt−1
2(t−1) ,

by using e−x ≤ 1 − x + x2. Let cs = 1, ct = (1 + 1/(2(t − 1)))ct−1 so that
ct ∼ (t/s)1/2. We will choose h = o(1) (see below). Iterating the expression
Zt = Xt + Zt−1, gives

E(e−hZt/ct) ≤e−h
Zt−1
ct−1

1+(1−h/ct)/(2(t−1))
1+1/(2(t−1))

=e−h′Zt−1/ct−1 ,

where
h(1−O(h/tct)) ≤ h′ ≤ h,

178 C. Cooper, T. Radzik, and Y. Siantos

and
E(e−hZs/cs) = e−h2ms.

All in all,

E(e−hZt/ct) ≤ E
(
e−hZs

cs

∏t−1
j=s(1−O(h/(jcj)))

)
= e−h2ms(1−O(h)).

Choosing A = EZt/K
′ and applying the Markov inequality that Pr(Y ≥ A) ≤

E(Y)/A with Y = e−hZt/ct , we have

Pr(Zt ≤ EZt/K
′) ≤ e−h2ms(1−1/K′−O(h)) = O(s−mK),

on choosing h = (K log s)/s = o(1). �

Author Index

Alamdari, Soroush 17
Avrachenkov, Konstantin 54

Bao, Jie 113
Borgs, Christian 41
Brautbar, Michael 41

Chayes, Jennifer 41
Chung, Fan 1, 66, 138
Cooper, Colin 29, 165

Frieze, Alan 29, 93

Gleich, David F. 126
Goel, Ashish 78

Horn, Paul 138
Hughes, Jacob 138

Li, Yanhua 113
Litvak, Nelly 54

Mehrabian, Abbas 17

Pinar, Ali 153
Pra�lat, Pawe�l 29

Radzik, Tomasz 165
Ray, Jaideep 153
Ronaghi, Farnaz 78
Rossi, Ryan A. 126

Seshadhri, C. 153
Siantos, Yiannis 165
Sokol, Marina 54

Teng, Shang-Hua 41
Towsley, Don 54
Tsiatas, Alexander 1
Tsourakakis, Charalampos E. 93

Zhang, Zhi-Li 113
Zhao, Wenbo 66

	Title
	Preface
	Table of Contents
	Hypergraph Coloring Games and Voter Models
	Introduction
	The Voting Game on a Hypergraph as a Random Walk on the Associated State Graph
	Memoryless Interactions and Semigroup Spectral Graph Theory
	The Cut-Off Time for Voter Interaction Games
	Estimating the Expected Value of a Given Event
	The Interaction Model with Partially Memoryless Interactions
	The General Interaction Model
	References
	Semigroup Details for Proving Theorem 3
	Proof of Theorem 5
	Proof of Theorem 7

	On a DAG Partitioning Problem
	Introduction
	The Hardness Result
	Linear-Time Algorithm for Bounded-Pathwidth Graphs
	Concluding Remarks
	References

	Some Typical Properties of the Spatial Preferred Attachment Model
	Introduction
	The SPA Model
	Directed Diameter
	Upper Bound
	Lower Bound

	Small Separators
	Emergence of Giant Component
	References

	A Sublinear Time Algorithm for PageRank Computations
	Introduction
	Identifying Nodes with Significant PageRanks: Our Results
	Matrix Sampling and Personalized PageRank Approximation
	Additional Related Work
	Organization

	Preliminaries
	Multi-scale Matrix Sampling and Approximation of PageRank
	Lower Bound Construction for PageRank Approximations
	Local Robust Computation of Personalized PageRank
	References

	Quick Detection of Nodes with Large Degrees
	Introduction
	Random Walk with Uniform Jumps
	Estimating the Largest Degrees in the Configuration Network Model
	Stopping Criteria
	Relaxation of Top k Lists
	Conclusions and Future Research
	References

	Ranking and Sparsifying a Connection Graph
	Introduction
	Preliminaries
	The Connection Laplacian
	The Consistency of a Connection Graph
	Random Walks on a Connection Graph

	PageRank Vectors in a Connection Graph
	The Connection Resistance
	Ranking Edges by Using the Connection Resistance
	References

	A Game-Theoretic Model of Attention in Social Networks
	Introduction
	Model
	Existence and Computability of Nash Equilibrium
	Analysis of the Price of Anarchy
	A Bicriteria Bound on the Price of Anarchy
	Simple Games with Unbounded Price of Anarchy

	Robust Analysis of the Price of Anarchy
	Discussion
	References

	On Certain Properties of Random Apollonian Networks
	Introduction
	Related Work
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Waiting Times
	Open Problems
	References
	Appendix

	Mutual or Unrequited Love: Identifying Stable Clusters in Social Networks with Uni- and Bi-directional Links
	Introduction
	Preliminaries, Related Work and Problem Definition
	Dyadic Analysis and Mutuality Tendency
	Spectral Clustering Theory and Extensions to Digraphs via Symmetrization

	Cluster-Based Mutuality Tendency Theory
	Mutuality-Tendency-Aware Spectral Clustering Algorithm
	Evaluations
	References

	Dynamic PageRank Using Evolving Teleportation
	Introduction
	PageRank Notation
	Dynamic and Evolving Rankings
	PageRank with Dynamic Teleportation
	Algorithms
	Discussion of the Algorithm & Practical Issues
	Ranking from Time-Series
	Clustering the Time-Series

	Datasets
	Empirical Results
	Ranking from Time-Series
	Top Dynamic Ranks
	Predicting Future Pageviews & Tweets

	Conclusion
	References

	Multi-commodity Allocation for Dynamic Demands Using PageRank Vectors
	Introduction
	Preliminaries and the Demand Model
	PageRank and Kronecker PageRank
	Global Analysis: Supplying Every Vertex
	Local Analysis: Supplying a Small Subset
	An Example
	References
	Appendix
	Appendix

	Are We There Yet? When to Stop a Markov Chain while Generating Random Graphs
	Introduction
	Results

	Theoretical Analysis
	Approximation by Many 2-State Markov Chains

	Verifying the Edge-By-Edge Convergence
	Tests with Real Graphs
	Conclusions
	References

	Fast Algorithm to Find All High Degree Vertices in Graphs with a Power Law Degree Sequence
	Introduction
	Properties of the Web-Graph Process
	Biassed Random Walks
	Proof of Theorems 1 and 2
	Experimental Results
	References
	Appendix

	Author Index

