
Chapter 3
Factors Affecting Production of Outer
Membrane Vesicles

Abstract The production of outer membrane vesicles (OMVs) by Gram-negative
bacteria is influenced by many different factors. Pathogenic bacteria produce more
OMVs than the non-pathogenic ones and OMVs are also produced within the
infected hosts. The amount of OMVs produced under different growth conditions
varies, and the structure of LPS on the outer membrane significantly influences
OMV production. Bacteria treated with antibiotics such as gentamicin produce
numerous OMVs that are different from the native OMVs in structure and
chemical composition. Similarly, bacteria under stress also produce more OMVs.
Thus the OMVs are produced to favor the growth and survival of the parent
bacteria under challenging conditions.

Keywords Natural and unnatural OMVs � Pathogenic and non-pathogenic
bacteria � Growth conditions � LPS structure � Infected host � Antibiotic treatment
� Stress response

3.1 Natural and Unnatural OMVs

Outer membrane vesicles (OMVs) are produced by Gram-negative bacteria, in
general, during their active growth and not when they undergo lysis and death
(Chatterjee and Das 1966, 1967). In fact, the OMVs have been found to contain
newly synthesized proteins and are produced without concomitant bacterial lysis
(Ellis and Kuehn 2010; McBroom et al. 2006; Mug-Opstelten and Witholt 1978;
Zhou et al. 1998). However, OMVs or OMV-like particles have also been
produced by certain drastic treatments (detergent, antibiotics etc.) or during
abnormal or unbalanced growth in nutritionally deficient media or after artificial
treatment (sonication, etc.) of bacteria. These OMVs or better OMV-like particles
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are compositionally different from naturally produced OMVs and they mostly
contain materials leaking from bacteria undergoing lysis. It is proposed that these
OMVs be termed unnatural OMVs vis-à-vis the natural ones formed by bacteria
growing normally in a nutritionally rich culture medium or within the infected
host. Genetic studies by generating transposon insertion mutants of Escherichia
coli revealed that vesiculation or OMV production is not a consequence of
bacterial lysis or disintegration of the bacterial envelope and cannot be correlated
with membrane instability, and that vesiculation is a process important in the
growth of Gram-negative bacteria (McBroom et al. 2006). Accordingly, the
unnatural OMVs are discussed briefly as and when required for relevance only.

3.2 Pathogenic and Nonpathogenic Bacteria

OMVs are produced by both pathogenic and nonpathogenic species of Gram-
negative bacteria (Beveridge 1999; Chatterjee and Das 1966, 1967;
Kadurugamuwa and Beveridge 1997; Li et al. 1998; Mayrand and Grenier 1989).
The different bacterial species that have already been demonstrated to release
OMVs include E. coli (Gankema et al. 1980; Hoekstra et al. 1976), Shigella spp.
(Dutta et al. 2004; Kadurugamuwa and Beveridge 1999), Neisseria spp. (Devoe
and Gilchrist 1973; Dorward and Garon 1989; Dorward et al. 1989), Pseudomonas
aeruginosa (Kadurugamuwa and Beveridge 1995), Vibrio spp. (Chatterjee and Das
1966, 1967; Iwanaga and Naito 1979, 1980; Kondo et al. 1993), Helicobacter
pylori (Fiocca et al. 1999), Salmonella spp. (Vesy et al. 2000; Wai et al. 2003),
Brucella melitensis (Gamazo and Moriyon 1987), Bacteroides (including
Porphyromonas) spp. (Grenier and Mayrand 1987; Mayrand and Holt 1988; Zhou
et al. 1998), Borrelia burgdorferi (Shoberg and Thomas 1993), and Actinobacillus
actinomycetemcomitans (Nowotny et al. 1982). In general, pathogenic bacteria
produce more vesicles than the corresponding nonpathogenic ones (Lai et al. 1981;
Wai et al. 1995). In fact, Enterotoxigenic E. coli cells were found to produce
tenfold more vesicles than their corresponding nonpathogenic ones (Horstman and
Kuehn 2002). Similarly the pathogenic leukotoxic strains of A. actinomycetem-
comitans were shown to produce 25-fold more vesicles than their corresponding
nonpathogenic ones (Lai et al. 1981). E. coli strains bearing a mutation in hns, a
virulence regulatory factor, produced threefold more vesicles (Horstman and
Kuehn 2002). This evidence gives credence to the idea that vesicle production is
utilized by the pathogenic bacteria to disseminate virulence factors and gain better
survival in the host. Similarly, nonpathogenic bacteria can also take recourse to
vesicle production for improving survival by releasing different toxic compounds,
such as toluene, and by aiding in the release or removal of the attacking phages
(Kobayashi et al. 2000; Loeb 1974; Loeb and Kilner 1978).
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3.3 Bacterial Growth Conditions

Gram-negative bacteria growing (1) in liquid culture (Chatterjee and Das 1966,
1967; Wai et al. 1995), (2) on solid growth media (Tetz et al. 1990; Unal et al.
2010), (3) in biofilms (Schooling and Beveridge 2006; Unal et al. 2010; Yonezawa
et al. 2009), and (4) within hosts (Avakian et al. 1972; Fiocca et al. 1999; Galka
et al. 2008; Stephens et al. 1982) produce OMVs for various purposes. OMVs are
produced more actively during the exponential growth phase (Chatterjee and Das
1966, 1967) and during division at the site of division and elsewhere (Fig. 3.1)
(Chatterjee and Das 1967; Deatherage et al. 2009; Kuehn and Kesty 2005). During
the resting or stationary phase of growth, OMVs are not produced (Chatterjee and
Das 1967) or are produced in a very limited way (Bauman and Kuehn 2006;
Hoekstra et al. 1976). It may be that during the resting phase of bacterial
population growth, some individual bacteria may still remain in the logarithmic
phase and produce OMVs. This evidence is again consistent with the idea that
OMV production is an inherent property of the bacteria and is produced for some
purposes in favor of the actively growing parent bacteria.

Fig. 3.1 A dividing
V. cholerae cell, thin-
sectioned, stained with
potassium permanganate and
electron micrographed.
Saclike structures (SS) or
OMVs formed by the bulged-
out cell wall portion are
presumably ready to be
pinched off. Bar represents
0.1lm. From (Chatterjee and
Das 1967)
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3.4 Impact of LPS Structure

The structure of the antigenic LPS chains projecting outward from the bacterial
surface has a significant effect on the formation of OMVs. There are bacterial spp.
(e.g., P. aeruginosa strain PAO1) that express two types of LPS chains and
produce vesicles enriched in the highly charged and longer ‘‘B-band’’ form
(Beveridge et al. 1997; Kadurugamuwa and Beveridge 1995; Nguyen et al. 2003).
Such enrichment happens probably because charge–charge repulsion takes place in
the regions of the OM containing adjacent B-band LPS molecules leading to local
deformation and budding of the OM (Kadurugamuwa and Beveridge 1996; Li
et al. 1996). Thus, P. aeruginosa strain PAO1 was shown to produce more B-band
LPS and an increase in vesiculation when grown under oxygen stress conditions
(Sabra et al. 2003). Mutants of the Salmonella and P. aeruginosa strains having no
LPS O-antigen side chain produced more OMVs (Meadow et al. 1978; Smit et al.
1975). On the other hand, mutations in the core region of LPS were shown to be
associated with decreased expression of outer membrane proteins (OMPs) (Ames
et al. 1974; Schnaitman and Klena 1993; Smit et al. 1975). It was thus interpreted
that the vesiculation phenotypes produced in LPS core mutants were the result of
alteration in OMP composition and hence were the indirect effects (Meadow et al.
1978) of core mutation. A typical defense strategy of bacteria is to alter expression
of LPS O-antigen to evade the host response (Lerouge and Vanderleyden 2002;
Pier 2000). The presence and type of LPS O-antigen as well as the indirect effect
of oxygen stress on the LPS structure may influence the physical ability of the
membrane to bulge and initiate the formation of vesicles.

3.5 Vesicle Production Within the Infected Host

Gram-negative bacteria have been shown to produce OMVs while present within
the host system (Ellis and Kuehn 2010) and in a variety of environments. Presence
of antibiotics, availability of iron, LPS phenotype switching, and oxygen stress are
some of the factors the bacteria face within the infected host and these conditions
influence vesicle production there (Kuehn and Kesty 2005). Perhaps the earliest
evidence in this respect was produced by Avakyan and co-workers by electron
microscopy of the biopsied sections of small intestine mucosa in patients with
cholera (Avakian et al. 1972) and then by Halhoul and Colvin in their study on the
ultrastructure of plaque attached to human gingiva (Halhoul and Colvin 1975).
However, both the composition and production of vesicles within the host systems
depend on the environmental factors that the bacteria face within the host.

H. pylori are known to colonize the stomach and cause peptic ulcer and even
cancer. These colonizing bacteria were shown by electron microscopy to produce
vesicles that bind to gastric cells (Fiocca et al. 1999; Keenan et al. 2000; Keenan
and Allardyce 2000). These bacteria experience different levels of iron within the
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host. These vesicles contained the vacuolating cytotoxin, VacA, and they were
very similar to those produced by H. pylori in vitro (Fiocca et al. 1999; Keenan
et al. 2000). It was shown that the vesicles derived from H. pylori were in contact
with the intestinal epithelial cells (Fiocca et al. 1999; Heczko et al. 2000; Keenan
et al. 2000). However, growth of these bacteria in iron-limiting conditions reduces
VacA and increases the concentration of proteases within the vesicles while
maintaining at the same time the vesicle production level (Keenan and Allardyce
2000). The OMVs from a highly vesiculating strain of Neisseria meningitidis
causing a fatal septic infection in humans were the causative factors of a high level
of endotoxins in the cells (Namork and Brandtzaeg 2002). Mouse fibroblast cells
infected with Chlamydia trachomatis or Chlamydia psittaci were shown to contain
vesicles (Stirling and Richmond 1980). When the B. burgdorferi isolate (causative
factor of Lyme disease) was incubated with human skin for about 24 h, vesicles
could be detected after the organisms invaded the dermis (Beermann et al. 2000).

Different fluids isolated from the infected hosts also contained vesicles. This
indicated that the vesicles could migrate to sites at a distance from the point of
infection. N. meningitidis along with the vesicles they released were found in the
cerebrospinal fluid from a patient with meningitis and blood from a patient who
died from meningitis (Bjerre et al. 2000; Brandtzaeg et al. 1992; Craven et al.
1980; Namork and Brandtzaeg 2002; Stephens et al. 1982). Similarly, vesiculating
Borrelia and free vesicles were detected in the blood and urine of B. burgdorferi-
infected mice and also ticks (Dorward et al. 1991). Also, Salmonella typhimurium
organisms were shown to produce vesicles when growing intracellularly and also
in the in vitro culture fluid (Bergman et al. 2005; Garcia-del Portillo et al. 1997;
Vesy et al. 2000).

These findings strongly support the idea that vesicle production takes place
within an infected host and that the vesicles are found surrounding the parent
bacteria and/or in contact with the host cells. They are also available in different
fluids collected from the infected patients. The vesicle production within the
infected host is thus an inherent property of the bacteria. But to what extent these
vesicles are directly responsible for spreading infection within the host by acting in
‘‘self-defense’’ or by killing the host or other co-colonizing bacterial cells and if
this is true, whether they can be targeted or selectively destroyed to save the
patient remains an important subject for further studies.

3.6 Antibiotic Treatment and Vesicle Formation

Treatment of bacteria with antibiotics often leads to unnatural vesicle production.
Several aspects of vesiculation were shown to be affected by antibiotic treatment
and the response differed with the antibiotic. Of the different antibiotics available,
gentamicin in particular has been studied in detail. P. aeruginosa on treatment
with gentamicin produces at least three fold more vesicles and the structure of
these vesicles is significantly different from those produced by the same bacteria
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under normal growth conditions (Kadurugamuwa and Beveridge 1998). The
gentamicin-induced vesicles serve an important purpose, that is, they fuse to host
cells infected by pathogenic bacteria, deliver the antibiotic, gentamicin, in the
cytosol and thereby kill the intracellular bacteria (Kadurugamuwa and Beveridge
1998). The gentamicin-induced vesicles are larger in size vis-à-vis those produced
by normally growing bacteria and contain in addition to the OM and periplasmic
components, some components of the IM and the cytosol (Kadurugamuwa and
Beveridge 1995). In addition, the gentamicin-induced vesicles of P. aeruginosa are
not enriched in the B-band LPS that are found in native vesicles. Although the
gentamicin-induced vesicles appear to be produced by a different mechanism, they
served the purpose of elucidating the fusogenic capacity of the vesicles and their
ability to interact with neighboring cells. The gentamicin-induced P. aeruginosa
vesicles were also bacteriolytic, a mechanism that helped the bacteria in securing a
niche in a competitive microbial environment (Kadurugamuwa and Beveridge
1996; Allan and Beveridge 2003). In Shigella dysenteriae, treatment with mito-
mycin C caused production of Shiga toxin and also increased production of OMVs
of greater sizes and toxicity (Dutta et al. 2004). Treatment with some other
antibiotics produced different responses (Dutta et al. 2004). Treatment with the
antibiotics, fosfomycin, ciprofloxacin, and norfloxacin, did not have any signifi-
cant effect on vesicle production or toxicity (Kuehn and Kesty 2005).

3.7 Stress Response and OMV Production

Envelope stress is produced by several factors including impairment of protein
folding in the periplasm. Increased production of OMVs is a significant one among
different modes of bacterial stress response. There are several mechanisms of
invoking stress responses by Gram-negative bacteria facing different stressors
(Raivio 2005). The rE is one of the different stress response pathways and is
activated by events or mutations that lead to alterations in OMP biogenesis
including misfolding of proteins in the periplasm. Protein misfolding in the
periplasm leads to the activation of several events: (1) the membrane-bound
antisigma factor, RseA, is cleaved by the protease, DegS; (2) normally another
periplasmic regulatory molecule, RseB, protects RseA from cleavage in the
absence of inducing signals; (3) the degradation of RseA leads to the release of rE

into the cytoplasm and the transcriptional activation of a set of genes that include
many involved in OMP and outer-membrane biogenesis (Raivio 2005). Two of the
genes, degS and rseA, code for stress signal transmitters in the rE stress-response
pathway, and another gene, degP, codes for a downstream effector. Activity of rE

is essential under both stress and nonstress conditions, and in addition to its role in
monitoring and maintaining OMPs in the face of adverse conditions, rE plays other
key physiological roles (De Las Penas et al. 1997). The Cpx is another envelope
stress-response pathway that appears to maintain envelope protein folding status
in the presence of adverse conditions (Raivio 2005). McBroom et al. (2006)
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revealed that vesiculation levels were altered by mutation of an envelope stress-
response pathway. Some disruption of genes in this pathway was known to result in
low rE activity, whereas others caused no change or even hyperactivation of the rE

response (Alba and Gross 2004). Interestingly, all the rE pathway mutants of
E. coli obtained by McBroom et al. (2006) caused increased vesiculation. The
authors proposed that impairment and hyperactivation of the rE pathway perhaps
resulted in accumulation of materials in the cell envelope, which induced height-
ened vesiculation. They studied the relation between vesiculation and activation of
the rE pathway and thought that vesiculation under stressing conditions possibly
occurred via a mechanism that differed from the typical vesiculation process.

McBroom and Kuehn presented data that revealed another novel stress response
mechanism of Gram-negative bacteria, the release of outer membrane vesicles
(McBroom and Kuehn 2007). By using an elegant genetic method (transposon
mutagenesis screen) and several E. coli mutants, they showed that vesicle
production is not directly correlated with rE pathway activity; that is there are
other means of regulating the vesiculation level. The significant findings of their
study include: (1) vesiculation increases in response to impairment of the
rE pathway, (2) vesiculation is regulated by the level of protein accumulation in
the envelope periplasm, (3) mutations that cause increased vesiculation improve
bacterial survival under stress including accumulation of toxic misfolded proteins,
(4) vesiculation is a distinctly independent stress response, (5) vesiculation does
not involve any significant loss of membrane integrity, and (6) the vesiculation
process can act to selectively eliminate unwanted materials such as misfolded
proteins in the periplasm.

Involvement of a different entity in the process of OMV formation was
presented (Song et al. 2008). A small noncoding s-RNA gene, vrrA, was
discovered in V. cholerae O1 strain A1552. The corresponding VrrA RNA
(140 nt) was found to repress the ompA translation. It was shown that the
expression of the vrrA gene required the membrane stress factor rE, suggesting
that vrrA acted on ompA in response to periplasmic protein-folding stress. The
OmpA levels were again found to correlate inversely with the number of OMVs
produced and that VrrA increased OMV production comparable to loss of OmpA.
VrrA was thus shown to control OMV production. It was proposed that VrrA acted
as a regulator mediating rE related stress.
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