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Abstract. This chapter deals with variational inclusions of the form 0 ∈
f(x) + g(x) + F (x) where f is a locally Lipschitz and subanalytic function,
g is a Lipschitz function, F is a set-valued map, acting all in R

n and n is a
positive integer. The study of the previous variational inclusion depends on
the properties of the function g. The behaviour as been examinated in differ-
ent cases : when g is the null function, when g possesses divided differences
and when g is not smooth and semismooth. We recall and give a summary of
some known methods and the last section is very original and is unpublished.
In this last section we combine a Newton type method (applied to f) with
a secant type method (applied to g) and we obtain superlinear convergence
to a solution of the variational inclusion. Our study in the present chapter is
in the context of subanalytic functions, which are semismooth functions and
the usual concept of derivative is replaced here by the the concept of Clarke’s
Jacobian.

1 Introduction

In this chapter, we present some methods for solving either variational inclu-
sions of the type 0 ∈ f(x) +F (x) where f is a function and F is a set-valued
map both defined on an open set of Rn, or perturbed problems of the form
0 ∈ f(x) + g(x) + F (x) where g is the perturbation function.

Variational inclusions were introduced by Robinson [49, 50] at the end of
the 70’s as an abstract model for various problems encountered in fields such
as mathematical programming, engineering [24], optimal control, economy
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(Nash and Walras equilibrium), transport theory... More precisely, Robinson
showed that complementary problems can be expressed by variational inclu-
sions using the normal cone to a set. The important role played by variational
inclusions in these topics led the researchers to improve the theory in relation
with these inclusions; the high number of publications in the two last decades
proves the interest showed in this area. A part of these works is devoted to
the extension to variational inclusions of well-known classical algorithms ex-
isting for solving equations. Some of these works are used in this paper, the
reader could also referred to ([1, 10, 11, 13, 14, 25, 26, 27, 28, 31]) for other
developments.

Thanks to Rademacher’s theorem [32], we know that Lipschitz functions
are almost always differentiable, but these functions can be nonsmooth in
some points. We can also underline the fact that in optimization the smooth-
ness of applications can be broken (in some points) by some functions like the
min or the max. Then it was quite natural to conceive algorithm taking into
account such points. Let us point out the work of Benadada [4] in which the
author gave a method for solving equations of the form f(x) = 0 when the
function f is convex, non necessarily differentiable. Recently Bolte, Daniilidis
and Lewis introduced an extension of Newton’s method for subanalytic and
locally Lipschitz functions [8]. The aim of this chapter is to present different
recent algorithms to solve some variational inclusions in the case where the
univoque part is subanalytic, not necessarily smooth. For all these algorithms
we give some convergence results. Let us notice that Newton’s method pro-
posed in this paper is different from the one proposed by Benadada because
we don’t need convexity. All the methods introduced in this paper use the
concept of regularity for set-valued maps (see [3, 23, 51, 52]).

For a better understanding, we organized the following development in
three parts. After the presentation made currently, in section 2, we recall
some results used further. The divided differences are given in Banach spaces,
although they can be defined on more general spaces. Let us notice that
continuity is sufficient to define divided differences and in the case where the
function is Frechet differentiable, Byelostotskij [12] used in 1962 the following
form:

[x0, y0, g] =

∫ 1

0

∇g(x0 + t(y0 − x0))dt.

Divided differences (see [2, 40]) have been used in various ways in numerical
analysis, interpolation method (see Example 1), the solving of equations of
the form F (x) = 0 by Hernandez and Rubio [33, 34, 35, 36] under Lipschitz
condition (Definition 3) or ω-condition (Definition 4). In Example 2, the func-
tion used admits divided differences even when it is not differentiable. In our
work, the divided differences are used in the secant-type method (Paragraph
4.2) where the perturbation function g admits first and second order divided
differences.
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Semialgebraic or semianalytic sets, and more generally, algebraic geome-
try, have been studied since the 50’s. Important works were supervised by
Lojasiewicz [43, 44, 45], Hironaka [37], Bochnak and al. [6], Bierstone and
Milman [5]. Lojasiewicz was the first to establish the so-called Lojasiewicz
inequality for a class of real analytic functions. This result was extended to
C1 subanalytic functions by Kurdyka and Parusinski in [41] and to C1 nons-
mmoth lower semicontinuous functions by Bolte, Daniilidis and Lewis in [7].
This inequality has also been used in order to obtain new results in partial
differential equations by Huang [38] and Lojasiewicz [42] and in nonconvex
optimization and in nonsmooth analysis. The Tarski-Seidenberg theorem en-
sures the stability of semialgebraic sets by projection and Gabrielov’s theo-
rem gives the stability of the complementary of subanalytic sets. These last
properties explain the interest to use semialgebraic and subanalytic sets and
functions. In Paragraph 2.2, we present some definitions, properties and ex-
amples of semianalytic and subanalytic sets and functions. We end this part
with a short collection of standard properties in set–valued analysis. Now this
theory is well elaborate and very complete books can be found on this topic.
Some authors like Aubin and Frankowska [3], Dontchev [23], Mordukhovich
[48], Rockafellar [52] gave very good contributions on this area.

In Section 3, we give a summary of a Newton type method introduced
in [15]. This work was inspired by Dontchev’s method [21]. Bolte, Daniilidis
and Lewis in [8], extend the Newton method for solving classical equations
for functions f which are subanalytic. Since almost all the methods used to
approximate solutions of variational inclusions were made in the case where
the function f is Frechet differentiable, here, following the work made in [8],
we extend the result obtained by Dontchev in [21] to variational inclusions
where the function is subanalytic non necessarily smooth. With the help of
the Aubin property, we obtain a sequence which is superlinearly convergent
to a solution of the variational inclusion.

The Section 4 is entirely devoted to the study of perturbed problems: we
firstly examine a method which is inspired by a work of Geoffroy and Pietrus
[29] where the perturbation function g is Lipschitz; an extended version of
this work has been published in [16]. We show the linear convergence of the
sequence obtained. To end this part, we focus on an original unpublished
secant type method. This last method has been studied by Geoffroy and
Pietrus [28] only in the case where the function f is smooth and here, our
contribution is to extend to the context of nonsmooth subanalytic functions.
It is easy to see that a variant of the previous method returns to a Newton-
type method as in [15] under some regularity conditions on some set-valued
map obtained after a modification of the original set-valued map.
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2 Preliminary Results

In this section, we collect different results concerning divided differences, sub-
analytic functions and the continuity of set-valued maps. We use the following
notations: in a metric space (Z, ρ), the distance from a point x to a set A is
denoted dist (x,A) = inf{ρ(x, y), y ∈ A}, the excess e from the set A to the
set C is given by e(A,C) = sup{dist (x,A), x ∈ C}; Br(x) stands for the
closed ball centered at x with radius r > 0 and the norm is denoted by ‖ . ‖.
In two spaces X and Y , L(X,Y ) denotes the space of linear operators actif
from X into Y , Λ : X ⇒ Y denotes a set–valued map from X to the subsets
of Y ; its graph is defined by graphΛ = {(x, y) ∈ X × Y, y ∈ Λ(x)} and its
inverse is defined by Λ−1(y) = {x ∈ X, y ∈ Λ(x)}.

2.1 Divided Differences

The concept of divided difference for an operator was used by authors in
many works; one can also take advantage of the development made in [40] on
this topic.

Definition 1. An operator [x0, y0, g] ∈ L(X,Y ) is called a divided difference
of first order of the function g : X → Y at the points x0 and y0 if both
following conditions are satisfied:

• (a) [x0, y0, g](y0 − x0) = g(y0)− g(x0) for x0 �= y0;
• (b) If g is Frechet differentiable at x0 ∈ X then we denote [x0, x0, g] =

∇g(x0).

Remark 1. The equality [x, y, g] = [y, x, g] is generally false in infinite dimen-
sional spaces when g is not Frechet differentiable, however it is true in the
direction y − x. In other words, one has [x, y, g](y − x) = [y, x, g](y − x) for
all x and y in a Banach space X .

Definition 2. An operator [x0, y0, z0, g] ∈ L(X,L(X,Y )) is called a divided
difference of second order of the function g : X → Y at the points x0, y0, z0
if both following conditions are satisfied:

• (a) [x0, y0, z0, g](z0−x0) = [y0, z0, g]−[x0, y0, g] for x0, y0 and z0 distincts;
• (b) If g admits a second order Frechet derivative at x0 ∈ X then we denote

[x0, x0, x0, g] =
∇2g(x0)

2
.

The following examples in the real case shows the importance of this operator.

Example 1. Isaac Newton 1 constructed an interpolation polynomial not using
the basis {1;x;x2; ...;xn} or the Lagrange basis {Li}, but the basic polyno-
mials {πi} defined by

1 Isaac Newton (1642-1727)
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πi(x) =

{
1, if i = 0

(x− x0)(x− x1)...(x − xi−1), if 1 ≤ i ≤ n.

The interpolation polynomial Pn of a function fonction f at the points
x0, x1, x2, ..., xn, is written Pn(x) = a0 π0(x)+a1 π1(x)+ ...+an πn(x) where
Pn(xj) = f(xj) for 0 ≤ j ≤ n, where aj = [x0, x1, ..., xj , f ]. With this no-
tation, the interpolation polynomial can be written Pn(x) = [x0, f ]π0(x) +
[x0, x1, f ]π1(x)+ ...+[x0, x1, ..., xn, f ]πn(x) where [x0, x1, ..., xn, f ] is defined

by [x0, x1, ..., xn, f ] =
[x1, ..., xn, f ]− [x0, x1, ..., xn−1, f ]

xn − x0
.

For example, considering the function f defined by f(x) = 2x, the interpola-
tion polynomial of f at the points −2,−1, 0, 1, 2 is

P4(x) =
1

4
+

1

4
(x+ 2) +

1

8
(x+ 2)(x+ 1) +

1

24
(x + 2)(x+ 1)x

1

96
(x+ 2)

(x+ 1)x(x − 1); thus we obtain 2
1
2 =

√
2 ≈ P4(

1
2 ) =

723
512 ≈ 1, 4142.

Example 2. [34] Let us consider the function f : R
2 → R defined for all

(x, y) ∈ R
2, f(x, y) = y2 + x− 7+

1

9
|y|. This function is not differentiable at

every points of R × {0}, but its admits divided differences everywhere. One
has

[u, v, f ] =
(
[u, v, f ]11, [u, v, f ]12

)

where

[u, v, f ]11 =
f(u1, v2)− f(v1, v2)

u1 − v1
, u1 �= v1.

[u, v, f ]12 =
f(u1, u2)− f(u1, v2)

u2 − v2
, u2 �= v2.

with the previous definition, we obtain

[u, v, f ] =
(
1,

u2
2 − v22

u2 − v2
+

1

9

|u2| − |v2|
u2 − v2

)

Remark 2. There exists some links between differentiability and divided dif-
ferences. One can show that if a function f : X → Y admits divided differ-
ences satisfying one of the following inequalities on an open set Ω ⊂ X ,

‖[x, y, f ]− [x, z, f ]‖ ≤ c0‖y − z‖
‖[y, x, f ]− [z, x, f ]‖ ≤ c1‖y − z‖ ∀x, y, z ∈ Ω

where c0 and c1 are positive constants, then f is Frechet differentiable on Ω
and if both inequalities are verified, the Frechet derivative∇f of f is Lipschitz
on Ω with constant c0 + c1 (see [2]). Let us note c the Lipschitz constant of
the first order divided differences on an open set Ω, then

‖∇f(x)−∇f(y)‖ ≤ c2‖y − x‖ where c2 = 2c
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and
‖[x, y, f ]−∇f(z)‖ ≤ c(‖x− z‖+ ‖y − z‖), ∀x, y, ∈ Ω.

Inversely, a function whose Frechet derivative is Lipschitz admits Lipschitz
divided differences.

In the litterature, different methods use divided differences which satisfy
Hölder or Lipschitz conditions, but sometimes, we can have more general
conditions like ω-conditioning.

Definition 3. A divided difference of a function g verifies a (ν − p)-Hölder
condition if there exists a constant ν such that for all x, z, u, v ∈ Ω ⊂ X

‖[x, z, g]− [u, v, g]‖ ≤ ν(‖x− u‖p + ‖z − v‖p)where p ∈ [0, 1] (1)

When p = 1 condition (1) is a Lipschitz condition.

Definition 4. A divided difference of a function g is ω-conditioned if it sat-
isfies

‖[x, z, g]− [u, v, g]‖ ≤ ω(‖x− u‖, ‖z − v‖) (2)

with x, z, u, v ∈ Ω ⊂ X and ω : R+×R+ → R+ is a continuous nondecreasing
function with respect to both variables.

Let us note that Hernandez and Rubio used condition (1) in [33] and
condition (2) in [34, 35, 36] to solve nonlinear equations.

2.2 Semianalytic and Subanalytic Sets and Functions

The following definitions, properties and examples come from Dedieu’s paper
[19], but the reader can also see other publications on real algebraic geome-
try and specifically on semianalytic and subanalytic sets and functions. For
example, one can find a full explanation of the mains properties in [5, 6, 8].

Definition 5. A subset X of R
n is semianalytic if for each a ∈ R

n there
exists a neighborhood U of a and real analytic functions fi,j on U such that

X ∩ U =

r⋃
i=1

si⋂
j=1

{x ∈ U |fi,j εi,j 0}

where εi,j ∈ {<,>,=}.
Remark 3. One say that X is semialgebraic when U = R

n and the fi,j are
polynomials.

Definition 6. A subset X of Rn is subanalytic if each point a ∈ R
n admits

a neighborhood U such that X ∩ U is a projection of a relatively compact
semianalytic set : there exists a semianalytic bounded set A in R

n+p such
that X ∩ U = Π(A) where Π : Rn+p → R

n is the projection.
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Definition 7. Let X be a subset of Rn. A function f : X → R
m is semian-

alytic (resp. subanalytic) if its graph is semianalytic (resp. subanalytic).

The class of semianalytic or algebraic sets is not stable under projection con-
trary to the class of semialgebraic or subanalytic sets (Tarsky-Seidenberg
principle). Both the last class possesses interesting property of stability for
elementary set operations (finite union, finite intersection, set difference);
the closure, the interior and the connected components of a semianalytic set
are semianalytic. The same properties hold for subanalytic sets. Unfortu-
nately, the image of a bounded semianalytic set by a semianalytic function is
not necessarily semianalytic (see [5]). Consequently, the class of semianalytic
functions is not stable under algebraic operations (sum, product, composition
see [43]), subanalytic functions have been introduced for this reason.

Example 3. ( semianalytic sets and functions).

1. A semialgebraic set (resp. function) is semianalytic;
2. If f is a real semianalytic function, then the sets {f(x) ≤ 0}, {f(x) < 0}

and {f(x) = 0} are semianalytic;
3. A piecewise function defined on a semianalytic partition (finite union of

points and open intervals, bounded or not) of R is semianalytic.

If X is a subanalytic and relatively compact set, the image of X by a sub-
analytic function is subanalytic (see [5]). Moreover if f and g are subanalytic
continuous functions defined on a compact subanalytic set K then f + g is
subanalytic.

Example 4. There are interesting examples of subanalytic functions in rela-
tion with optimization.

1. If X is a closed subanalytic set of R
n, the distance function

d(x,X) = min
y∈X

|x− y| is subanalytic.
2. The supremum of a finite family of subanalytic continuous functions is

subanalytic.
3. Let X and T be subanalytic subsets of Rn and R

m where T is compact,
if f : X × T → R is subanalytic and continuous then g(x) = min

y∈T
f(x, y) is

subanalytic.

For other examples and properties of semianalytic or subanalytic functions
the reader can refer to [5] and [19].

In 1975, Clarke was the first to introduce the concept of generalized gradi-
ent (usually called now Clarke Jacobian) for a locally Lipschitz function. The
generalized gradient is reduced to the gradient if the function is continuous
differentiable, and to the subdifferential in convex analysis.

Thanks to [8], we know that every subanalytic locally Lipschitz function
f admits directional derivatives (see [18]) which allow us to have estimates
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on the error occurred when the function is not Frechet differentiable, and
moreover we have:

Proposition 1. [8] If f : X ⊂ R
n → R

n is a subanalytic locally Lipschitz
mapping then for all x ∈ X

||f(x+ d)− f(x)− f ′(x; d)|| = ox(||d||).

Definition 8. Let f : Rn → R
m be a locally Lipschitz continuous function.

The limiting Jacobian of f at x ∈ R
n is defined as

∂f(x) = {A ∈ L(Rn,Rm) : ∃uk ∈ D; f ′(uk) → A, k → +∞}

where D denotes the points of differentiability of f .

Definition 9. [18] The Clarke Jacobian of f at x ∈ R
n denoted ∂◦f(x) is a

nonempty subset of X∗ (which is the topological dual of X) defined by

∂◦f(x) = {ξ ∈ X∗ | f◦(x, v) ≥< ξ, v > for all v ∈ X}.

It is also the closed convex hull of ∂f(x).

For all ξ ∈ ∂◦f(x̄), we set

‖ξ‖∗ = sup
‖v‖≤1

{< ξ, v > | v ∈ X}.

We have the following property:

Proposition 2. [18]
Let f be a Lipschitz function at x ∈ X with constant K.
(a) ∂◦f(x) is a convex compact subset of X∗ and ‖ξ‖∗ ≤ K for all ξ ∈ ∂◦f(x).
(b) For all v ∈ X, f◦(x, v) = max{< ξ, v > | ξ ∈ ∂◦f(x)}.
There is an important and useful result for studying convergence of sequences
coming from classical method on subanalytic context. The result has been
obtained by Bolte, Daniilidis and Lewis in [8].

Proposition 3. [8] Let f : Rn → R
n be locally Lipschitz and subanalytic,

there exists a positive rational number γ such that:

‖f(y)− f(x)−Δ(y)(y − x)‖ ≤ Cx‖y − x‖1+γ (3)

where y is close to x, Δ(y) is any element of ∂◦f(y) and Cx is a positive
constant.

Remark 4. The previous result is due to the fact that the subanalytic function
t → ox(t) in Proposition 1 admits a Puiseux development; so there exists a
constant c > 0, a real number ε > 0 and a rational number γ > 0 such that
||f(x+ d)− f(x)− f ′(x; d)|| = c||d||γ whenever ||d|| ≤ ε (see [8]).
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2.3 Pseudo-Lipschitz Maps

The pseudo-Lipschitz property, also called “Aubin property” or “Lipschitz-
like property”, has been introduced by J.-P. Aubin as a concept of continuity
for set–valued maps. This property of F is equivalent to the metric regularity
of F−1. Characterizations of the pseudo-Lipschitz property are also obtained
by Rockafellar [51, 52] using the Lipschitz continuity of the distance function
dist (y, F (x)) around (x0, y0) and by Mordukhovich in [46, 47, 48] using the
concept of coderivative of multifunctions. Lately, Dontchev, Quincampoix
and Zlateva gave in [22] a derivative criterion of metric regularity of set–
valued mappings based on some works of Aubin and co-authors. Pseudo-
Lipschitz maps allow to treat ill-posed problems, when there is no uniqueness
of solutions. More details, applications and other interesting results in relation
with this concept can be found in [3, 20, 23].

Definition 10. A set–valued map F is pseudo-Lipschitz around (x0, y0) ∈
graphF with constant M if there exists constants a and b such that

sup
z∈F (y′)∩Ba(y0)

dist (z, F (y′′)) ≤ M ‖ y′ − y′′ ‖, for all y′ and y′′ in Bb(x0).

(4)

Using the excess, the inequality (4) can be replaced by the following
e(F (y′)∩Ba(y0), F (y′′)) ≤ M ‖ y′−y′′ ‖, for all y′ and y′′ in Bb(x0). (5)

Furthermore, we use the concept of metric regularity which definition is:

Definition 11. A set-valued map F : X ⇒ Y is metrically regular around
(x0, y0) ∈ graphF if there exists constants a, b and κ such that

dist(x, F−1(y)) ≤ κ dist(y, F (x)), ∀x ∈ Ba(x0), y ∈ Bb(y0). (6)

The regularity modulus of F denoted by RegF (x0, y0) is the infimum of all
the values of κ for which (6) holds.

The result which follows is a generalization of a fixed point theorem in
Ioffe-Tikhomirov [39] where in (b), the excess e is replaced by the Haussdorf
distance. Its proof is given in [20] employing the standard iterative concept
for contracting mapping.

Lemma 1. Let (Z, ρ) be a complete metric space, let φ be a set–valued map
from Z into the closed subsets of Z, let η0 ∈ Z and let r and λ be such that
0 ≤ λ < 1 and
(a) dist (η0, φ(η0)) ≤ r(1 − λ),
(b) e(φ(x1) ∩Br(η0), φ(x2)) ≤ λ ρ(x1, x2), ∀x1, x2 ∈ Br(η0),
then φ has a fixed–point in Br(η0). That is, there exists x ∈ Br(η0) such that
x ∈ φ(x). If φ is single–valued, then x is the unique fixed point of φ in Br(η0).

Proposition 4. [48] Let F : X ⇒ Y be a set-valued map and (x0, y0) ∈
graphF . F is metrically regular around (x0, y0) with constant κ if and only
if F−1 is pseudo-Lipschitz around (y0, x0) with the same constant κ.
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In the continuation of this work, the distance ρ in Lemma 1 is replaced by
the norm.

3 A Newton-Type Method

3.1 Description of the Method and Assumptions

Newton’s method is known to be one of the most powerfull and usefull meth-
ods in optimization and related area of solving nonlinear equations and the
number of publications developing either this method or some variants is
impressive. In order to solve different problems in optimization for exam-
ple, Newton’s method is sometimes extended to the context of variational
inclusions and the number of contributions in this area in the last decade is
very important. Dontchev, with a partial linearization of the univoque part
f of the variational inclusion, examined a newton-type method in [21] and he
showed that when the Frechet derivative ∇f of f is Lipschitz, the sequence
is quadratically convergent. Let us notice that interesting contributions have
also been given by Bonnans in [9] in the case of semistable or hemistable so-
lutions. The method we propose in this paragraph is inspired by Dontchev’s
work and we only give some elements of the whole work devoted to this
subject in [15].

This study concerns variational inclusions of the type

0 ∈ f(x) + F (x) (7)

where f is a function defined on R
n, F : Rn ⇒ R

n is a set-valued map.

To approximate x∗ a solution of (7), we consider the method:

0 ∈ f(xk)+Δf(xk)(xk+1−xk)+F (xk+1) where Δf(xk) ∈ ∂◦f(xk) (8)

and we prove both existence and convergence of the sequence (8) which is a
Newton-type sequence, replacing in the classic sequence ∇f(xk) by Δf(xk)
where Δf(xk) ∈ ∂◦f(xk).

We make the following assumptions on a neighborhood Ω of x∗:

• (H1) f : Rn → R
n is a locally Lipschitz subanalytic function;

Remark 5. From Proposition 2 and the previous assumption, it is easy to
see that there exists K1 > 0 such that for all x ∈ Ω, ∀Δf(x) ∈ ∂◦f(x),
|Δf(x)| ≤ K1.

• (H2) F is a set-valued map from R
n to the subsets of Rn with closed

graph and for all Δf(x∗) ∈ ∂◦f(x∗), the application [f(x∗) +Δf(x∗)(. −
x∗) + F (.)]−1 is pseudo-Lipschitz around (0, x∗) with constants a, b and
modulus L which satisfies 2LK1 < 1.
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We also define the following functions and set–valued maps:

Λk(x) = f(xk) +Δf(xk)(x − xk), (9)

Λx∗(x) = f(x∗) +Δf(x∗)(x− x∗), (10)

Q(x) = Λx∗(x) + F (x) (11)

And
Ψk(x) = Q−1(Λx∗(x)− Λk(x)). (12)

Let us note that x1 is a solution of (8) for x0 when x1 is a fixed point for the
set-valued map Ψ0. So for the construction of the sequence (xk), starting from
an initial value x0 in a neighborhood of a solution x∗ of (7), by application of
Lemma 1, we show that the map Ψ0 possesses a fixed point x1. By induction,
from a current iterate xk done by (8) and a function Ψk defined by (12),
applying Lemma 1, we obtain next iterate xk+1 which is a fixed point of Ψk.

3.2 Convergence Results

The main result we obtained states as follows:

Theorem 1. Let x∗ a solution of (7), f a function which admits directional
derivatives and satisfies (H1), F : Rn ⇒ R

n a set–valued map which satisfies

(H2); there exists a positive constant C∗ such that for all C >
LC∗

1− 2LK1
, one

can find δ > 0 such that for every starting point x0 ∈ Bδ(x
∗), there exists a

sequence (xk)k≥0 defined by (7) which satisfies:
‖xk+1 − x∗‖ ≤ C‖xk − x∗‖1+γ . (13)

where γ is a rational positive number.

To prove Theorem 1, we firstly prove the existence of the iterate x1 which is
a fixed point of Ψ0 (Proposition 5); then we justify that the same arguments
hold for a current iterate xk and a set-valued map Ψk, which complete the
proof.

Proposition 5. Under the assumptions of Theorem 1, there exists δ > 0
such that for all x0 ∈ Bδ(x

∗) and x0 �= x∗, the map Ψ0 admits a fixed point
x1 ∈ Bδ(x

∗).

Proof. In this part we just give the main ideas of the proof . We show that
both assertions (a) and (b) of Lemma 1 are satisfied.
Proposition 3 furnishes constants Cx in inequality (3); C∗ is the biggest value
of these constants when x ∈ Ω.
The assumption (H2) gives the constants a and b. Fix δ > 0 such that
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δ < min

{
a; 1+γ

√
b

2C∗
;

b

4K1

}
. (14)

As we generally don’t know how to choose the initial value x0 to ensure the
convergence of the sequence, inequality (14) play an important role because it
contains all the conditions to be sure that the process converges, (all iterates
belong to a ball centered at x∗ and each iterate is closer to the solution than
the previous).

From the definition of the excess e, we have

dist(x∗, Ψ0(x
∗)) ≤ e(Q−1(0) ∩Bδ(x

∗), Q−1{Λx∗(x∗)− Λ0(x
∗)}).

Since ‖Λx∗(x∗)− Λ0(x
∗)‖ = ‖f(x0)− f(x∗)−Δf(x0)(x0 − x∗)‖,

‖Λx∗(x∗)−Λ0(x
∗)‖ ≤ C∗‖x0−x∗‖1+γ and with Proposition 3, thanks to the

pseudo-lipschitzness of Q−1, using (14), we know that Λx∗(x∗) − Λ0(x
∗) ∈

Bb(0) and

dist(x∗, Ψ0(x
∗)) ≤ LC∗‖x0 − x∗‖1+γ . (15)

By setting r = r0 = C‖x0 − x∗‖1+γ , since C >
LC∗

1− 2LK1
, one can find

λ ∈]2LK1, 1[ such that C(1 − λ) > LC∗ so that assertion (a) in Lemma 1 is
satisfied and the above choice of r0 implies that r0 < δ < a.

To show condition (b), we must check that when x ∈ Bδ(x
∗), Λx∗(x)−Λ0(x) ∈

Bb(0).
Since

‖Λx∗(x)−Λ0(x)‖ ≤ ‖f(x0)−f(x∗)−Δf(x0)(x0−x∗)‖+‖(Δf(x0)−Δf(x∗))(x−x∗)‖.
(16)

Using Proposition 3, inequality (16) we obtain

‖Λx∗(x)− Λ0(x)‖ ≤ C∗ ‖x0 − x∗‖1+γ + 2K1‖x− x∗‖
and with inequality (14) the result expected is given.
It follows that, for all x′, x′′ ∈ Br0(x

∗),

e(Ψ0(x
′) ∩ Br0 (x

∗), Ψ0(x
′′)) ≤ L‖Λx∗ (x′)− Λ0(x

′)− Λx∗(x′′) + Λ0(x
′′)‖

−f(x∗)−Δf(x∗)(x′′ − x∗) + f(x0) +Δf(x0)(x
′′ − x0)‖.

The fact that λ ∈]2LK1, 1[ shows that condition (b) of Lemma 1 is satisfied.
Then there exists x1 ∈ Br0(x

∗), fixed-point of Ψ0, and x1 verifies inequality
(13).

Coming back to the proof of Theorem 1, proceeding by induction, suppose
that xk ∈ Brk−1

(x∗), keeping η0 = x∗ and rk = C‖xk − x∗‖1+γ , we obtain
the existence of a fixed-point xk+1 ∈ Brk(x

∗) for Ψk; that implies
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‖xk+1 − x∗‖ ≤ C‖xk − x∗‖1+γ .

Then, the convergence of (xk)k≥0 to x∗ is superlinear.

4 The Study of Perturbed Problems

In this part, we are concerned by problems of the form

0 ∈ f(x) + g(x) + F (x) (17)

where f and g are functions defined on R
n, F : Rn ⇒ R

n is a set-valued map;
in this model g stands for the perturbation function. Let us remark that the
problem (17) can be considered as a perturbed problem associated to (7).

Various methods proposed to solve (17) use a combination of two different
methods for f and g. They are chosen in relation with the properties of both
functions. The function f is still subanalytic and locally lipschitz around x∗

and in this part we develop two methods: the first is an iterative method
where the function g is lipschitz and the second is a secant type method
where the function g admits first and second order divided differences. The
first method is the subject of a published paper (see [16]) and it follows a
work done by Geoffroy et Piétrus [29] in the case where the function f is
Frechet differentiable. The second method is an original unpublished method
which mixes a Newton type method for f and a secant method for g.

Let us precise that these methods are derived from contributions of Cati-
nas, Tetsuro and Xiaojun (see [17, 53, 54]) in the context of solving equations.

4.1 An Iterative Method in the Lipschitz Case

To solve variational inclusion(17), we introduce the sequence:

0 ∈ f(xk)+g(xk)+Δf(xk)(xk+1−xk)+F (xk+1) with Δf(xk) ∈ ∂◦f(xk)
(18)

Let us note that if (xk) converge to x∗, then x∗ is solution of (17).

For all x, y ∈ R
n, we set A(x, y), the following set-valued map

A(x, y) = f(y) +Δf(y)(x − y) + g(y) + F (x). (19)

For all k ∈ N, the map Rk : Rn → R
n is defined by:

Rk(x) = f(x∗)+Δf(x∗)(x−x∗)+g(x∗)−f(xk)−Δf(xk)(x−xk)−g(xk) (20)

and Ψk : Rn ⇒ R
n is defined by :
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Ψk(x) = A(., x∗)−1[Rk(x)] (21)

We make the assumptions valid in a neighborhood Ω de x∗:

• (H11) f : Rn → R
n is a subanalytic and locally Lipschitz function;

• (H12) g is a Lipschitz function with constant K2;
• (H13) A(., x∗)−1 is pseudo-Lipschitz around (0, x∗) with constant L

and we have 2LK1 < 1 (where K1 is the constant in Remark 5).

The main result obtained is:

Theorem 2. Let x∗ be a solution of (17); suppose that assumptions (H11)-
(H13) are satisfied, then there exists a constant C∗ such that for all
L(C∗ +K2)

1− 2LK1
< C < 1, one can find δ > 0 such that for all initial value

x0 ∈ Bδ(x
∗) (x0 �= x∗), there exists a sequence (xk)k≥0 defined by (20)

verifying:
‖xk+1 − x∗‖ ≤ C‖xk − x∗‖. (22)

Remark 6. This theorem gives an order of convergence less interesting than
Newton’s method. Indeed we can observe that the lack of regularity of the
perturbation function affects a lot the order of convergence.

To prove Theorem 2, we follow the same scheme used for the proof of
Theorem 1 and firstly prove this result:

Proposition 6. Under assumptions of Theorem 2, there exists δ > 0 such
that for all x0 ∈ Bδ(x

∗) (x0 �= x∗), the set-valued map Ψ0 admits a fixed point
x1 ∈ Bδ(x

∗).

Proof. The entire proof of the above theorem is given in [16], here we just
give the important steps.
Assumption (H13) give the positive real numbers a, b and L such that:

e(A(., x∗)−1(y′) ∩Ba(x
∗), A(., x∗)−1(y′′)) ≤ L‖y′ − y′′‖, ∀y′, y′′ ∈ Bb(0)

(23)
Let C∗ be as defined in Paragraph 3.2. Fix δ > 0 such that

δ < min
{
a,

a

C
,

b

K2 + 3C∗

}
. (24)

Let us apply Lemma 1.
The definition of the excess allow us to write:

dist(x∗, Ψ0(x
∗)) ≤ e(A(., x∗)−1(0) ∩Bδ(x

∗), A(., x∗)−1[R0(x
∗)]). (25)

For all x0 �= x∗ in Bδ(x
∗), we have:

‖R0(x
∗)‖ = ‖f(x∗) + g(x∗)− f(x0) +Δf(x0)(x0 − x∗)− g(x0)‖

≤ ‖f(x0)− f(x∗)−Δf(x0)(x0 − x∗)‖+ ‖g(x∗)− g(x0)‖.
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Thanks to Proposition 3 and assumption (H12),

‖R0(x
∗)‖ ≤ C∗‖x0 − x∗‖1+γ +K2‖x∗ − x0‖. (26)

For δ small enough,

‖R0(x
∗)‖ ≤ δ(C∗ +K2).

and we obtain ‖R0(x
∗)‖ < b, with the use of (24).

From (25) and (26), we deduce

dist(x∗, Ψ0(x
∗)) ≤ L‖R0(x

∗)‖

and
dist(x∗, Ψ0(x

∗)) ≤ L(C∗ +K2)‖x∗ − x0‖. (27)

Setting r = r0 = C‖x0 − x∗‖, since 1 > C >
L(C∗ +K2)

1− 2LK1
, one can find

λ ∈ [2LK1, 1[ such that C(1−λ) > L(C∗+K2), and condition (a) in Lemma
1 is fulfilled and r0 < a.

Let x ∈ Bδ(x
∗) and denote by R0(x) the quantity f(x∗) + Δf(x∗)(x −

x∗) + g(x∗)− f(x0)−Δf(x0)(x− x0)− g(x0).

‖R0(x)‖ ≤ ‖g(x∗)− g(x0)‖ + ‖f(x0)− f(x)−Δf(x0)(x0 − x)‖
+‖f(x∗)− f(x)−Δf(x∗)(x∗ − x)‖

≤ K2‖x∗ − x0‖+ C∗(‖x− x0‖1+γ + ‖x− x∗‖1+γ).

for δ small enough, ‖R0(x)‖ ≤ (K2 + 3C∗)δ, which implies, with (24) that
‖R0(x)‖ < b. One can deduce that for all x ∈ Bδ(x

∗), R0(x) ∈ Bb(0); taking
x′, x′′ ∈ Br0(x

∗), we have the following inequality satisfied by the excess:

e(Ψ0(x
′) ∩Br0(x

∗), Ψ0(x
′′)) ≤ e(Ψ0(x

′) ∩Bδ(x
∗), Ψ0(x

′′))

e(Ψ0(x
′) ∩Bδ(x

∗), Ψ0(x
′′)) ≤ L ‖R0(x

′)−R0(x
′′)‖

≤ L ‖Δf(x∗)(x′ − x′′)−Δf(x0)(x
′ − x′′)‖

≤ 2LK1 ‖x′ − x′′‖
≤ λ ‖x′ − x′′‖.

So condition (b) of Lemma 1 holds.

We conclude the existence of x1 ∈ Br0(x
∗), fixed point of Ψ0, which verifies

inequality (22).
To end the proof of Theorem 2, we proceed by induction, as in the previous

case.
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4.2 A Secant-Type Method

In this section, we propose a new method to approximate a solution of (17)
when the perturbed function g admits first and second order divided differ-
ences; this method is inspired by a work of Geoffroy and Piétrus [28].

We associate to (17) the sequence

0 ∈ f(xk) + g(xk) + (Δf(xk) + [xk−1, xk, g])(xk+1 − xk) + F (xk+1)(28)

Δf(xk) ∈ ∂◦f(xk)

If Δf is replaced by ∇f , we obtain the method introduced by Geoffroy and
Piétrus in [28]. In their paper, they obtained a superlinear convergence of
the method (28) when f is differentiable around x∗, g is differentiable at
x∗ and admits first and second order divided differences. The method (28)
reduces to the Newton type method studied in [15] when f is subanalytic and
g = 0. Let us notice that Catinas [17] has yet used this method for solving
nonlinear equations and some recent contributions for variational inclusions
on this topic have been given in [30]. We prove that the convergence of the
sequence defined by (28) is superlinear, then we present two variants of this
method.

4.2.1 Assumptions and Convergence Analysis

We make the following assumptions on a neighborhood Ω ⊂ R
n of x∗:

• (H21) f : Rn → R
n is locally Lipschitz and subanalytic,

• (H22) g is differentiable at x∗,
• (H23) ∃K2 > 0, ∀x, y and z ∈ Ω, ‖[x, y, z, g]‖ ≤ K2,
• (H24) F : R

n ⇒ R
n is a set-valued map with closed graph, and

∀Δf(x∗) ∈ ∂◦f(x∗), the set-valued map [f(x∗)+g(.)+Δf(x∗)(.−x∗)+F (.)]
is metrically regular around (x∗, 0) with constant L such that 2L(2K2 +
K1) < 1 (where K1 is the constant in Remark 5).

Remark 7. Using [20], we can show that the metric regularity of the set-
valued map [f(x∗) + g(.) +Δf(x∗)(.− x∗) + F (.)] is equivalent to the one of
[f(.) + g(.) + F (.)], but the constants of metric regularity are not the same.

We also define the the function Zk and the set-valued maps P and Ψk by:

P (x) = f(x∗) + g(x) +Δf(x∗)(x− x∗) + F (x) (29)

For all k ≥ 1

Zk(x) = f(x∗) + g(x) +Δf(x∗)(x− x∗)− f(xk)− g(xk)

−(Δf(xk) + [xk−1, xk, g])(x− xk) (30)

Ψk(x) = P−1(Zk(x)). (31)



Some Results on Subanalytic Variational Inclusions 67

Now, we establish our principal result.

Theorem 3. Let x∗ be a solution of (17), and suppose that (H21)-(H24)
are satisfied. Then there exists a positive constant C∗ such that for all C >

L (C∗ +K2)

1− 2L(2K2 +K1)
, one can find δ > 0 such that for every starting points

x0, x1 ∈ Bδ(x
∗) (with x0 �= x∗, x1 �= x∗), there exists a sequence (xk)k≥0

defined by (28) which satisfies:

‖xk+1 − x∗ ‖≤ C ‖ xk − x∗ ‖ max{‖xk − x∗‖γ , ‖xk−1 − x∗‖} (32)

where γ is a rational positive number.

We firstly prove the two following lemma and proposition:

Lemma 2. Under the assumptions of Theorem 3, the map P−1, inverse of
P given by (29) is pseudo-Lipschitz around (0, x∗).

Proof. Using assumption (H24) and Proposition 4, since P is metrically reg-
ular around (x∗, 0) with constant L, then P−1 is pseudo-Lipschitz around
(0, x∗) with the same constant.

Proposition 7. Under the assumptions of Theorem 3, there exists δ > 0
such that for all x0, x1 ∈ Bδ(x

∗) (with x0 �= x∗ and x1 �= x∗), the map Ψ1

admits a fixed point x2 ∈ Bδ(x
∗).

Proof. For the proof of this proposition, we prove that both assertions (a)
and (b) of Lemma 1 hold.

C∗ is the constant Cx in Paragraph 3.2. Since P−1 is pseudo-Lipschitz
around (0, x∗), there exist constants a and b such that

e(P−1(y′) ∩Ba(x
∗), P−1(y′′)) ≤ L ‖ y′ − y′′ ‖, for all y′ and y′′ in Bb(0)

(33)
and choose δ > 0 verifying

δ < min

{
a,

√
b

8K2
, 1+γ

√
b

2C∗(1 + 21+γ)
,
1

C
,

γ

√
1

C

}
. (34)

From the definition of the excess e, we have

dist(x∗, Ψ1(x
∗)) ≤ e(P−1(0) ∩Bδ(x

∗), Ψ1(x
∗)). (35)

For all x0, x1 in Bδ(x
∗) (such that x0 �= x∗ andx1 �= x∗), we have

‖Z1(x
∗)‖ = ‖f(x∗) + g(x∗)− f(x1)− g(x1)− (Δf(x1) + [x0, x1, g])(x

∗ − x1)‖
≤ ‖f(x∗)− f(x1)−Δf(x1)(x

∗ − x1)‖
+‖g(x∗)− g(x1)− [x0, x1, g](x

∗ − x1)‖.
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Using Definition 1,

‖Z1(x
∗)‖ ≤ ‖f(x1)−f(x∗)−Δf(x1)(x1−x∗)‖+‖([x1, x

∗, g]− [x0, x1, g])(x
∗−x1)‖.

Therefore, with the help of Definition 2, Proposition 3 and assumption (H23),
we obtain

‖f(x1)− f(x∗)−Δf(x1)(x1 − x∗)‖ ≤ C∗‖x1 − x∗‖1+γ (36)

and,

‖([x1, x
∗, g]−[x0, x1, g])(x

∗−x1)‖ ≤ ‖[x0, x1, x
∗, g]‖‖x1−x∗‖‖x0−x∗‖. (37)

Consequently,

‖Z1(x
∗)‖ ≤ C∗‖x1 − x∗‖1+γ +K2 ‖x1 − x∗‖ ‖x0 − x∗‖

which implies, according to (34), ‖Z1(x
∗)‖ < b.

With (33), we have

e(P−1(0) ∩Bδ(x
∗), Ψ1(x

∗)) = e(P−1(0) ∩Bδ(x
∗), P−1[Z1(x

∗)])
≤ L(C∗‖x1 − x∗‖1+γ +K2 ‖x1 − x∗‖ ‖x0 − x∗‖)

and, with (35), we obtain

dist(x∗, Ψ1(x
∗)) ≤ L (C∗ +K2)‖x1 − x∗‖ max{‖x1 − x∗‖γ , ‖x0 − x∗‖}. (38)

By setting η = x∗ and r = r1 = C‖x1 − x∗‖ max{‖x1 − x∗‖γ , ‖x0 − x∗‖},
since C >

L (C∗ +K2)

1− 2L(2K2 +K1)
, one can find λ ∈]2L(2K2 +K1), 1[ such that

C(1 − λ) > L(C∗ + K2) so that the assertion (a) in Lemma 1 is satisfied,
moreover, we have r1 < a.

Let us show that condition (b) is also satisfied. For x ∈ Bδ(x
∗), we have

‖Z1(x)‖ ≤ ‖f(x∗) + g(x) +Δf(x∗)(x− x∗)− f(x1)− g(x1)

−(Δf(x1) + [x0, x1, g])(x− x1)‖
≤ ‖−f(x) + f(x∗)+Δf(x∗)(x− x∗)‖+‖g(x)− g(x1)− [x0, x1, g](x− x1)‖

+‖f(x)− f(x1)−Δf(x1)(x− x1)‖.
Thanks to Definition 2, Proposition 3 and (H23), it follows

‖Z1(x)‖ ≤ C∗(‖x− x∗‖1+γ + ‖x− x1‖1+γ)

+‖[x0, x1, x, g]‖ ‖x− x0‖ ‖x− x1‖
≤ C∗(‖x− x∗‖1+γ + ‖x− x1‖1+γ) +K2 ‖x− x0‖ ‖x− x1‖

which implies ‖Z1(x)‖ ≤ C∗(1 + 21+γ) δ1+γ + 4K2 δ
2. According to (34),

‖Z1(x)‖ < b. We proved that if x ∈ Bδ(x
∗), then Z1(x) ∈ Bb(0).
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It follows that , for all x′, x′′ ∈ Br0(x
∗),

e(Ψ1(x
′) ∩ Br1(x

∗), Ψ1(x
′′)) ≤ e(Φ1(x

′) ∩ Bδ(x
∗), Φ1(x

′′))

≤ L ‖Z1(x
′)− Z1(x

′′)‖
≤ L ‖g(x′)− g(x′′)− [x0, x1, g])(x

′ − x′′)‖
+L ‖(Δf(x∗)−Δf(x1))(x

′ − x′′)‖
≤ L ‖([x′, x′′, g]− [x0, x1, g])(x

′ − x′′)‖
+L (‖Δf(x∗)‖+ ‖Δf(x1)‖) ‖x′ − x′′‖

≤ L ‖[x1, x
′′, x′, g](x′−x1) + [x0, x1, x

′′, g](x′′−x0)‖‖x′−x′′‖
+L (‖Δf(x∗)‖+ ‖Δf(x1)‖) ‖x′ − x′′‖

≤ 2L(2K2δ +K1) ‖x′ − x′′‖

and for δ small enough,

e(Ψ1(x
′) ∩Br1(x

∗), Ψ1(x
′′)) ≤ λ‖x′ − x′′‖.

Thus, the condition (b) of Lemma 1 is satisfied.

We conclude to the existence of x2 ∈ Br1(x
∗), a fixed-point of Ψ1 which

satisfies inequality (32). Proceeding by induction, we suppose that xk ∈
Brk−1

(x∗), keeping η0 = x∗ and rk = C‖xk − x∗‖ max{‖xk − x∗‖γ , ‖xk−1 −
x∗‖} and we obtain the existence of a fixed-point xk+1 ∈ Brk(x

∗) for Ψk so
that xk+1 satisfies (32), that achieves the proof of Theorem 3.

4.2.2 Some Variants of the Secant Method

The first variant consists in replacing xk−1 by x0 in (28). We obtain

0 ∈ f(xk) + g(xk) + (Δf(xk) + [x0, xk, g])(xk+1 − xk) + F (xk+1) (39)

Δf(xk) ∈ ∂◦f(xk)

and we can show the following estimates :

‖xk+1 − x∗ ‖≤ C ‖ xk − x∗ ‖ max{‖xk − x∗‖γ , ‖x0 − x∗‖} (40)

This regula-falsi type method is superlinearly convergent; but in this case the
convergence of the sequence is slower than the convergence of the previous
method because the upper bound in (40) involves xk and x0 instead of xk

and xk−1.

For the second variant, we replace xk−1 by xk+1 in (28) and we obtain the
sequence

0 ∈ f(xk) +Δf(xk)(xk+1 − xk) + g(xk+1) + F (xk+1) (41)

Δf(xk) ∈ ∂◦f(xk)
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Setting G = f + F , this method is a Newton type one (see [15]) for solving
the variational inclusion (7) where the set-valued map F is replaced by G.
Let us note that in this case, assumption (H23) is not necessary.

5 Conclusion

In this chapter, we gave different algorithms for variational inclusions in the
context of subanalytic functions. Here, the main property used in order to
obtain existence of convergent sequences is the metric regularity and a fixed
point theorem for set-valued maps. The convergence obtained is local and we
think that it may be possible to add another conditions to find a semilocal
convergence. It is also possible to obtain similar results using properties more
directly associated to the solutions and to obtain interesting numerical results
in the case where the set-valed F is a cone, this is the aim of a forthcoming
work.
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