
Flow Shop Scheduling Using a General
Approach for Differential Evolution

Frederico Gadelha Guimarães, Rodrigo César Pedrosa Silva,
Ricardo Sérgio Prado, Oriane Magela Neto, and Donald David Davendra

Abstract. This chapter presents a general framework of Differential Evolution algo-
rithm for combinatorial optimization problems. We define the differences between a
given pair of solutions in the differential mutation as a set of elementary movements
in the discrete search space. In this way, the search mechanism and self-adaptive
behavior of the differential evolution is preserved and generalized to combinatorial
problems. These ideas are then applied to n-job m-machine flow shop scheduling
in order to illustrate its application in an important problem in combinatorial opti-
mization. The method was applied to the 120 Taillard instances of the permutation
flow shop scheduling problem, and compared against the results obtained by other
metaheuristic algorithms in the literature. Although relying only on the differential
mutation and the local search performed on the best individual, dDE ranks fairly
well against more sophisticated metaheuristics. The results are promising and il-
lustrate the applicability of the proposed approach for combinatorial optimization
using differential evolution.

Frederico Gadelha Guimarães · Rodrigo César Pedrosa Silva · Oriane Magela Neto
Departamento de Engenharia Elétrica, Universidade Federal de Minas Gerais,
Belo Horizonte, Brazil
e-mail: fredericoguimaraes@ufmg.br,

rcpsilva@gmail.com,
oriane@dee.ufmg.br

Ricardo Sérgio Prado
Instituto Federal Minas Gerais, Ouro Preto, Brazil
e-mail: ricardo.prado@ifmg.edu.br

Donald David Davendra
Department of Computer Science, Faculty of Electrical Engineering and Computer Science,
VB-Technical University of Ostrava, Czech Republic
e-mail: donald.davendra@vsb.cz

I. Zelinka et al. (Eds.): Handbook of Optimization, ISRL 38, pp. 597–614.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

fredericoguimaraes@ufmg.br,
rcpsilva@gmail.com,
oriane@dee.ufmg.br
ricardo.prado@ifmg.edu.br
donald.davendra@vsb.cz

598 F.G. Guimarães et al.

1 Introduction

Scheduling is a very important task in production and manufacturing systems. In
addition to representing a practical problem faced on a daily basis in industry, it
is also an important theoretical challenge in computer science, since it is an NP-
hard combinatorial optimization problem [4, 12, 11]. The n-job, m-machine flow
shop scheduling problem (FSSP) is one of the most general job scheduling prob-
lems, representing nearly a quarter of manufacturing systems, assembly lines and
information service facilities nowadays [26].

Given its importance in industry and also from a scientific point of view, FSSP
has been studied by many reseachers and approached with a myriad of optimization
techniques, ranging from exact methods such as branch-and-bound to heuristic and
metaheuristics methods such as genetic algorithms, tabu search, differential evo-
lution, simulated annealing and others. For a comprehensive survey on FSSP, see
[16, 3].

Metaheuristics have been extensively applied to solve practical instances of dif-
ficult optimization problems. These methods can reach high quality solutions in an
effective and efficient way, i.e. within an acceptable computational budget. Evolu-
tionary algorithms, and genetic algorithms in particular, have been attracted a lot
of research in scheduling problems, maybe due to their parallel exploration of the
search space, and their potential to be implemented in parallel and be associated
with other heuristics such as local search methods [9]. For instance, [3] mentions
the genetic algorithm as the most used metaheuristic for scheduling problems.

Among the evolutionary techniques that can be applied to optimization, the dif-
ferential evolution (DE) algorithm has been showing a very good performance in
dealing with hard and complex optimization, being a powerful method for single
objective optimization [28, 27, 18], constrained problems [14, 13], and more re-
cently multi-objective problems as well, see [1, 17, 40, 5] just to cite a few. There
have been some research on the use of DE also for combinatorial problems such as
permutation job shop and flow shop problems [30, 25, 24, 22, 21].

The self-adaptive nature of the search mechanism of differential evolution is per-
haps responsible for the success of the method: in the first generations, when the
population is more diverse, the differences between pairs of individuals are varied
and diverse, leading to exploratory perturbations. As the population converges, these
differences reduce gradually, and similar values begin to appear at the same posi-
tions (or variables). The distribution of the population in the search space begins
to correlate with the problem landscape structure. The differences between pairs
of individuals in the population are used to bias the mutation, therefore identifying
“promising” perturbations. The diversity and the magnitude of these perturbations
tend to reduce during convergence, generally adapting itself to the characteristics of
the problem landscape. This behavior is easy to see in continuous domains and has
been shown elsewhere [29].

However, when dealing with combinatorial optimization problems, this behavior
is not that straightforward. When we resort to the concept of elementary moves in
the search space of combinatorial problems, which is the basis for any local search

Flow Shop Scheduling Using a General Approach for Differential Evolution 599

procedure, than this interpretation of the differential evolution becomes easier to
grasp. Suppose that the algorithm is able to define the differences between a given
pair of solutions as a set of elementary movements (or basic “jumps”) in the dis-
crete search space (the specific details about how this is done is not important for
the discussion here, this is explained further in this chapter). Assuming that this is
available, we can generalize the algorithm behavior to combinatorial problems.

Again, during the initial generations, when the population is more diverse, the
set of differences tend to have a high number of diverse movements in them affect-
ing many variables of the solutions. In this initial phase, the differential mutation
have an exploratory role in the algorithm, similarly to what happens in real valued
problems. As the population converges, some individuals with the same values in
some positions begin to appear, reducing the differences between the solutions used
to build the differential mutation, consequently reducing the magnitude of the muta-
tion. The set of differences identifies elements that vary in two given solutions, not
altering the common values identified so far, and capturing the elementary move-
ments related to undefined positions of the good schema identified so far. When
these differences are applied to a base solution, in the form of a sequence of move-
ments, it modifies those positions related to undefined positions identified in pairs
of solutions of the population. Therefore, the elements that vary in pairs of solutions
in the population, i.e. the differences between these solutions, are used to build and
to bias the perturbations applied to the base solution.

The size and diversity of the differences automatically decrease as the popula-
tion converges, presenting the same self-adaptive characteristic that makes DE such
a successful optimizer in continuous domains. The differential mutation operator
automatically changes its role from a global search operator to a local search one,
fine-tuning the high quality solutions in the population. As long a mechanism for
identifying differences in the context of combinatorial optimization is adequately
defined, the search mechanism of the differential evolution is preserved and the in-
terpretation of its behavior is still valid. In this chapter, we discuss ways to build
these differences, proposing a general framework for discrete differential evolution.
There have been some approaches in recent years for applying DE in discrete do-
mains [15, 21], some of them are reviewed in this chapter and contrasted with the
proposed approach. With the proposed approach to get the differences in a discrete
search space, like the ones originated in permutation-based combinatorial problems,
we preserve the search mechanism of DE to combinatorial problems. These ideas
are then applied to flow shop scheduling in order to illustrate its application in an
important problem in combinatorial optimization.

2 Differential Evolution

DE can be classified as a member of the broader class of population-based evolu-
tionary algorithms, thus inheriting much of the terminology and jargon of this class
of methods, though its main search mechanism, the differential mutation operation,
has no basis or inspiration on any biological process. Nevertheless, DE structure

600 F.G. Guimarães et al.

follows the overall structure of evolutionary algorithms, with the main operations of
selection, crossover, and mutation, applied to a population of candidate solutions of
a given optimization problem [27, 28, 29]. The selection for reproduction in DE is
similar to the one used in basic evolutionary programming, in which each individual
produces one and only one offspring at every generation. The offspring is generated
by performing crossover between the current individual and a mutant. The distin-
guishing feature in DE is that these mutants are produced by applying a perturbation
built with one or more difference vectors to a base solution. The way the perturba-
tion is built and the way the base vector is defined determines one of many variants
of the basic DE. Finally, survival selection in DE is a one-to-one greedy selection,
in which the offspring competes against the current solution for a place in the pop-
ulation of the next generation.

2.1 Overview

As many population-based metaheuristics, DE starts with a population of candidate
solutions randomly generated within the domain region of the problem. The idea
is to have as high a diversity as possible in the first generation. Over continuous
domains the domain region is usually described as:

X =
{
x ∈ R

n : xmin
k ≤ xk ≤ xmax

k , k = 1, . . . , N
}

(1)

where xmin
k and xmax

k are respectively the low and upper limits of each variable.
We adopt the notation xt,i,j for making reference to a given variable, such that

t = 1, . . . , G represents the generation counter; i = 1, . . . , P represents the index
of the individual in the population; and j = 1, . . . , N represents the variable index.
A given individual is represented by xt,i.

New individuals are generated by using the differential mutation. For each xt,i

in the population a corresponding mutant solution vt,i is generated. The mutation
is based on the differences between pairs of individuals randomly chosen from the
current population. These differential vectors are multiplied by a constant and added
to another point, called the base vector (or base solution), leading to the so-called
mutant vector:

vt,i = xbase +
d∑

k=1

FkΔxt,k = xbase +
d∑

k=1

Fk

(
xt,rk − xt,rk+d

)
(2)

where rk and rk+d represent random integers in the interval [1, P].
For instance, using only one difference vector in (2), we get:

vt,i = xbase + F (xt,r1 − xt,r2) (3)

whereas with d = 3, we have:

vt,i = xbase + F (xt,r1 − xt,r4) + F (xt,r2 − xt,r5) + F (xt,r3 − xt,r6) (4)

Flow Shop Scheduling Using a General Approach for Differential Evolution 601

There are a number of different ways of defining the base solution, which are listed
below:

• The most common way is to use another random solution from the population. In
this way, every individual has a probability 1/P of generating a mutant. In this
case, xbase = xt,r0 , with r0 representing a random index in [1, P].

• Another common approach is to use xbase = xt,best, i.e., the base solution is
simply the best solution in the population. Using the best solution as the base
vector in all differential mutation operations increases the selective pressure in
reproduction, contrasting to the lack of selective pressure of using a random base
solution. This strategy presents faster convergence in general, but an increased
probability of premature convergence in some problems.

• The mean of the current spatial distribution of the population is also another
option for the base solution. In this way we have xbase = xmean, such that:

xmean =
1

P

P∑

l=1

xt,l

• In order to reduce the selective pressure of using xt,best or xmean, one can use
as base vector a random point between xt,i and xt,best:

xbase = xt,i + λ (xt,best − xt,i)

or even a random point between xt,r0 and xt,best:

xbase = xt,r0 + λ (xt,best − xt,r0)

This form of selection of the base vector bias the generation of mutants towards
the best solution.

A trial vector ut,i is produced through recombination of xt,i and vt,i. In the basic
DE algorithm, the discrete recombination with probability CR is used. In this way,
F and CR represent the control parameters of the algorithm. Other recombination
operators can be used as well.

This trial vector ut,i competes against the current solution xt,i based on their
objective function evaluations. If the trial solution is better or equal than the current
solution, it replaces the current solution, otherwise the current solution survives
while the trial one is eliminated, as described below:

xt+1,i =

{
ut,i if f(ut,i) ≤ f(xt,i)

xt,i otherwise
(5)

These variants of DE can be designated by the notation DE/base/d/rec, with
base identifying the form of selection of the base solution, d representing the num-
ber of difference vectors used in differential mutation, and rec identifying the kind
of recombination operator used to produce the offspring.

602 F.G. Guimarães et al.

For instance, the basic DE, or canonical DE, known as DE/rand/1/bin, em-
ploys a random base solution, one difference vector, and binomial recombination.
Other variants of this basic scheme are presented and discussed in [29, 10, 18, 6].
Table 1 summarizes some variants of DE with their respective notation.

Table 1 Some instances of the Differential Evolution algorithm.

Notation Differential mutation equation
DE/rand/1/bin vt,i = xt,r0 + F (xt,r1 − xt,r2)

DE/best/1/bin vt,i = xt,best + F (xt,r1 − xt,r2)

DE/mean/1/bin vt,i =
1
P

∑P
l=1 xt,l + F (xt,r1 − xt,r2)

DE/rand-to-best/1/bin vt,i = xt,r0 +λ (xt,best − xt,r0) +F (xt,r1 − xt,r2)

DE/current-to-best/1/bin vt,i = xt,i + λ (xt,best − xt,i) + F (xt,r1 − xt,r2)

DE/rand/2/bin vt,i = xt,r0 +F1 (xt,r1 − xt,r3)+F2 (xt,r2 − xt,r4)

3 A General Approach for Combinatorial Problems

In order to devise a DE-based algorithm for combinatorial optimization, the differ-
ence between two distinct solutions in the search space should be defined in a more
meaningful way. The key idea in this chapter is to define the difference between two
candidate solutions as a list of movements in the search space, as discussed next.

3.1 The Differential List of Movements

Local search heuristics in combinatorial optimization start with a complete solution,
obtained at random or using any constructive heuristic, and iteratively refine this so-
lution moving to another one in a neighborhood structure adequately defined for the
problem. The basis of any local search method is thus the concept of a neighborhood
structure:

Definition 1 (Neighborhood structure). Let S be the search space of a given prob-
lem and s a solution in S. A neighborhood structure is a set N (s) ⊂ S which
associates to every solution s ∈ S a solution s′ ∈ N (s). Therefore, N (s) denotes
the set of solutions s′ that can be obtained from s by using an elementary movement.

The transition from s to s′ is called a movement. These elementary movements
depend on the problem at hand and the representation of candidate solutions. For
permutation problems, this movement can be an insertion or swap operation, while
in graph structures, a basic movement can be the addition or remotion of edges.

Flow Shop Scheduling Using a General Approach for Differential Evolution 603

From the definition of neighborhood structure, comes the definition of a locally
optimal solution:

Definition 2 (Local optimal solution). A solution s∗ ∈ S is locally optimal (or
local minimum) with respect to N (s) ⊂ S iff ∀s′ ∈ N (s∗) we have f(s∗) ≤ f(s′).

We define the differences between pairs of individuals in differential mutation as
a set of elementary movements in the search space of the problem. Therefore, the
differential list of movements is built by finding the list of sequential movements
that lead one solution to another. The definition of the differential list of movements
(DLM), required for the proposed DE-based algorithm, is given below:

Definition 3 (List of movements). A differential list of movements Mj→i is a list
containing a sequence of valid movements mk such that the application of these
movements to a solution sj ∈ S leads to the solution si ∈ S.

In this way, the “difference” between two candidate solutions is defined as being
this list of movements:

Mj→i
.
= si � sj (6)

where � is a special binary minus operator that returns a list of movements Mj→i

that represents a path from sj towards si. This list, in some sense, captures the
differences between these two solutions.

The application of a list of movements to a given solution is defined as follows:

s′i = si ⊕Ma→b (7)

where the binary operator ⊕ receives a valid solution and a list of movements, re-
turning another solution.

Notice that with these definitions, the following relation is valid:

si = sj ⊕Mj→i = sj ⊕ (si � sj) (8)

The multiplication of the differential list of movements by a constant also needs to
be defined. We present the following definition:

Definition 4. The multiplication of the list of movements Mi→j by a constant F ∈
[0, 1], denoted as F ⊗ Mi→j , returns a list M ′

i→j with 	F × |Mi→j |
 randomly
chosen movements of Mi→j , at a random sequence, where |Mi→j | is the size of the
list.

Thus, the multiplication of the list of movements by a constant can be denoted,
using the special binary multiplication operator ⊗, by:

M ′
i→j = F ⊗Mi→j (9)

Using these definitions, one can write the mutant vector as:

604 F.G. Guimarães et al.

vt,i = xt,base ⊕ F ⊗ (xt,r1 � xt,r2) (10)

vt,i = xt,base ⊕ F ⊗Mr2→r1 (11)

vt,i = xt,base ⊕M ′
r2→r1 (12)

These operations represent the generalization of the differential mutation equation
(2) from continuous domains to combinatorial optimization problems.

3.2 Example

Suppose the permutation solutions:

xt,r1 =
[
1 4 5 2 3 7 9 10 6 8

]

xt,r2 =
[
1 5 3 4 2 7 6 8 10 9

]

The list Mr2→r1 is built by iteratively finding elementary movements that make
xt,r2 closer to xr1 for a given neighborhood structure. For instance, considering a
neighborhood structure defined by swap movements, we get:

Mr2→r1 = (2, 4); (3, 4); (4, 5); (7, 10); (8, 9); (9, 10) (13)

where (i, j) means swapping the elements at positions i and j.
The reader can verify that by applying the movements in this list to the solution

xt,r2 we get xt,r1 . This list can be scaled by F and applied to the base solution

xt,base =
[
1 3 4 2 6 5 7 9 10 8

]

Assuming F = 0.6, we get

M ′
r2→r1 = (7, 10); (4, 5); (2, 4); (9, 10) (14)

In this way

vt,i = xt,base ⊕ F ⊗ (xt,r1 � xt,r2) (15)

vt,i = xt,base ⊕ F ⊗Mr2→r1 (16)

vt,i = xt,base ⊕M ′
r2→r1 (17)

vt,i =
[
1 2 3 6 4 5 8 9 10 7

]
(18)

3.3 Pseudocode

We conclude this section presenting the pseudocode of the proposed DE version for
combinatorial problems.

1. Initialize the population {xt,1, · · · ,xt,P };
2. For each i, . . . , P do:

Flow Shop Scheduling Using a General Approach for Differential Evolution 605

a. Select xt,base;
b. Build the differential list of movements:

Mr2→r1
.
= xt,r1 � xt,r2

c. Generate the mutant vector using:

vt,i = xt,base ⊕ F ⊗ (xt,r1 � xt,r2)

d. Apply local search operator to vt,i (optional);
e. Generate the trial solution ut,i performing recombination of xt,i and vt,i with

probability CR, otherwise, the trial solution is equal to the mutant solution;
f. Perform competition between the trial solution ut,i and the current solution

xt,i:

xt+1,i =

{
ut,i if f(ut,i) ≤ f(xt,i)

xt,i otherwise

3. If stopping criteria are met, stop and return the best solution, otherwise increment
t and go to step 2.

4 Previous Work

The DE algorithm is originally applicable to continuous optimization problems be-
cause its search mechanism is based on perturbations built with difference vectors.
However, when dealing with combinatorial optimization problems with symbolic
variables, these arithmetic operations are neither applicable nor meaningful. In this
section, permutation-based approaches for DE in the literature are reviewed.

4.1 The Permutation Matrix Approach

The permutation matrix (PM) approach was proposed by Price and Storn for the
differential mutation operator in the discrete domain [29]. A permutation matrix P
is a matrix that maps a permutation vector into another permutation vector. The per-
mutation matrix that maps an integer permutation vector xt,r2 into another integer
permutation vector xt,r1 is given by the relation:

xt,r1 = Pxt,r2 (19)

One can say that a permutation matrix P is a matrix that “leads” xt,r2 to xt,r1 ,
and, in the differential evolution method, this matrix is regarded as the “difference”
obtained from these two candidate solutions. The analogous equation for the differ-
ential mutation is given by:

vt,i = PF · xt,base (20)

606 F.G. Guimarães et al.

where PF is a modified permutation matrix, scaled by the parameter F , here with
the meaning of a probability, in order to perform a fraction of the permutation repre-
sented by the original permutation matrix P [29]. Therefore, the PM method applies
some swaps to the base vector xt,base, randomly selected from the set of permuta-
tions represented by P.

4.2 Adjacency Matrix Approach

The adjacency matrix (AM) approach is also presented in [29]. In this approach in-
teger permutations are encoded as an adjacency matrix. The “difference” between
two candidates solutions is a matrix Δr1,r2 given by the exclusive-OR (XOR) logi-
cal operation of the adjacency matrices associated with xt,r1 to xt,r2 :

Δr1,r2 = Ar1 XOR Ar2 (21)

This difference matrix is added to the adjacency matrix of the base solution. How-
ever, it is unlikely that valid adjacency matrices are obtained. In fact, many in-
valid solutions are produced, for this reason this approach requires suitable repair
operators.

4.3 Relative Position Indexing Approach

The relative position indexing (RPI) approach is adopted for the differential evolu-
tion in some works, see [30, 24], and is applicable for permutation-based problems
only. This approach transforms the elements of the integer permutation vector into
the floating-point interval [0, 1], applying the differential mutation directly using the
transformed values in the continuous domain. The resulting values are then con-
verted back into integer domain using relative position indexing, as described in
[15].

For instance, given three vectors, each one a permutation solution, randomly cho-
sen from the current population:

xt,r1 =
[
4 2 1 5 3

]
; xt,r2 =

[
1 3 4 5 2

]
; xt,r3 =

[
1 2 5 3 4

]

The transformation into floating-point values is achieved by dividing each element
of the vector by the largest one of them, in this case 5:

x̂t,r1 =
[
0.8 0.4 0.2 1.0 0.6

]

x̂t,r2 =
[
0.2 0.6 0.8 1.0 0.4

]

x̂t,r3 =
[
0.2 0.4 1.0 0.6 0.8

]

and applying equation (2) with F = 0.6, d = 1, the mutant vector is given by:

v̂t,i =
[
0.80 0.28 0.32 0.76 0.84

]

Flow Shop Scheduling Using a General Approach for Differential Evolution 607

In order to convert the mutant vector back into integer domain, using RPI, replace
the smallest floating-point value by the smallest integer value, and then replace the
next smallest floating-point value by the next integer value, and so on until all ele-
ments have been converted. Doing this procedure for the mutant vector above, we
obtain:

vt,i =
[
4 1 2 3 5

]

This approach always yields a feasible solution, except when two or more floating-
point values are the same. When such an event occurs, the trial vector must be
repaired or discarded.

4.4 Largest Order Value Approach

The largest order value (LOV) approach is based on random key representation. The
method also operates on real-valued vectors, using LOV to convert an individual into
a permutation vector πππ. The conversion procedure begins by ranking all elements in
xt,i by descending order, obtaining the rank vector

φφφi =
[
φi,1 φi,2 . . . φi,N

]

Then assign πt,i,φi,k
= k for k = 1, . . . , N . For instance, consider the real-valued

vector
xt,i =

[
1.36 3.85 2.55 0.63 0.51

]

The rank vector is given by:

φφφi =
[
3 1 2 4 5

]

since 3.85 is the largest value, φi,2 = 1, and 0.51 is the smallest value, thus φi,5 = 5.
Varying k from 1 to N , we get:

πt,i,φi,1 = πt,i,3 = 1;

πt,i,φi,2 = πt,i,1 = 2;

πt,i,φi,3 = πt,i,2 = 3;

πt,i,φi,4 = πt,i,4 = 4;

πt,i,φi,5 = πt,i,5 = 5;

Therefore
πππt,i =

[
2 3 1 4 5

]

4.5 Forward Backward Transformation Approach

The forward backward transformation (FBT) approach, presented in [22, 20, 21],
also transforms a given permutation vector into the floating-point domain, using the

608 F.G. Guimarães et al.

forward transformation given by:

x̂t,i = −1 + αxt,i (22)

where α is a small number. In [21], the author suggests the ratio α = 500/999.
The differential mutation equation given by (2) is applied using the transformed

values, and the result is converted into integer values using the backward transfor-
mation given by:

xt,i = round

[
1

α
(1 + x̂t,i)

]
(23)

Although the backward transformation effectively produces integer vectors, it usu-
ally generates some invalid solutions, i.e., integer vectors that do not represent valid
permutations. The invalid solutions must be repaired using suitable repairing meth-
ods, see [21] for a description of some repairing methods that can be used.

4.6 Discussion

Evolutionary algorithms are recognized as very general and robust optimization
methods, in the sense that they are in principle applicable to a wide range of op-
timization problems without requiring strong premises about the problem. Provided
that a suitable representation for the candidate solutions of the problem and oper-
ators for this representation are designed, one can apply the designed evolutionary
algorithm to solve the problem. This class of methods are viewed as general-purpose
tools, but they require at least one premise for functioning properly and efficiently
in a given problem, that principle known as weak locality:

Definition 5 (Weak locality). The value of the objective function at a given point is
correlated to the values of the objective function at points within its vicinity.

The weak locality is even more important in DE, since small differences translate
into small perturbations applied to the base vector, and therefore a more localized
search. The methods reviewed in this section that are based on mapping floating
point values to integer values can violate this principle, making the optimization
problem harder for the differential evolution algorithm. As an example, consider the
RPI method and the vector

x̂base =
[
0.80 0.28 0.32 0.76 0.84

]

It is possible to define a small perturbation in the continuous domain that would
cause a great change in the permutation domain, for instance:

x̂base =

⎡

⎢
⎢
⎢
⎢
⎣

0.80
0.28
0.32
0.76
0.84

⎤

⎥
⎥
⎥
⎥
⎦
+

⎡

⎢
⎢
⎢
⎢
⎣

0.03
0.02
−0.03
0.05
−0.04

⎤

⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎣

0.83
0.30
0.29
0.81
0.80

⎤

⎥
⎥
⎥
⎥
⎦

Flow Shop Scheduling Using a General Approach for Differential Evolution 609

The base solution represents the permutation
[
4 1 2 3 5

]
, whereas after the appli-

cation of a small perturbation we get the permutation
[
5 2 1 4 3

]
, which is a very

different permutation. Thus close solutions in the continuous domain might be dis-
tant in the permutation search space, which is detrimental to the self-adaptive nature
of the differential mutation. It is possible to design similar examples for all the map-
ping approaches, namely, RPI, LOV and FBT methods.

Additionally, mapping approaches in practice reduce the differential mutation
operator to a shuffling operator, not taking advantage of the good characteristics
that this operator presents in continuous domains.

Finally, the adjacency and permutation matrices have other drawbacks. The AM
approach can generate many invalid solutions, requiring suitable and carefully de-
signed repairing methods. The PM method can be viewed as a particular case of
the proposed approach using a movement list. In fact, the movement list using swap
movements is equivalent to the permutation matrix, only using an alternate data
structure. However, PM method is applicable only to permutation problems, while
the movement list can be generalized to other contexts.

In summary, we remark the following advantages of the proposed approach:

• it does not require any repairing operators;
• it is general and applicable to other combinatorial optimization problems, for

instance the PM approach can be seen as a special case of the proposed approach;
• it is flexible, since it can employ different movements for specific problems;
• it preserves the search mechanism and principles of DE for discrete domains;
• it forms a general and unifying framework for DE in combinatorial optimization;

5 Flow Shop Scheduling

5.1 Problem Statement

In the permutation FSSP (PFSSP), solutions are represented by the permutation of n
jobs, i.e., πππt,i =

[
πt,i,1, πt,i,2, ..., πt,i,n

]
and each job will be sequenced through

m machines. Jobs, once initiated, can not be interrupted (without preemption). Thus,
given the processing time pjk for the job j ∈ {1, 2, ..., n} on the machine k ∈
{1, 2, ...,m}, the PFSSP can be stated as follows:

Definition 6 (Statement of the PFSSP). Find the best permutation of n jobs πππ∗ =[
π∗
1 , π

∗
2 , ..., π

∗
n

]
to be processed on m machines that minimizes the makespan.

Let C(πj ,m) denote the completion time of the job πj on the machine m. Given
the job permutation πππ, the calculation of completion time for the n-job m-machine
problem is given as follows.

610 F.G. Guimarães et al.

C(π1, 1) = pπ1,1 (24)

C(πj , 1) = C(πj−1, 1) + pπj ,1, j = 2, . . . , n (25)

C(π1, k) = C(π1, k − 1) + pπ1,k, k = 2, . . . ,m (26)

C(πj , k)=max
{
C(πj−1, k), C(πj , k−1) + pπj ,k

}
, j = 2, . . . , n, k = 2, . . . ,m

(27)

Therefore, the makespan of a permutation πππ can be formally defined as the comple-
tion time of the last job πn on the last machine m, i.e., Cmax(πππ) = C(πn,m). The
PFSSP with the makespan criterion corresponds to finding a permutation πππ∗ in the
set of all permutations Π such that:

Cmax(πππ
∗) ≤ C(πn,m), ∀πππ ∈ Π (28)

5.2 Experimental Setup

The dDE algorithm was coded in Visual C++ and executed on an Intel Celeron
2.13GHz PC. It was applied to the 120 instances of Taillard [37] ranging from 20
jobs with 5 machines to 500 jobs with 20 machines. Regarding the parameters, the
population size is fixed in 10 individuals, consistent with [25] and a pool with three
fixed parameter settings is used. Each time an individual goes through the variation
phase (mutation and crossover), one of the combinations is selected randomly. The
three combinations are:

1. [F = 1, CR = 0.1];
2. [F = 1, CR = 0.9];
3. [F = 0.8, CR = 0.2].

This strategy for choosing control parameters was proposed by [38] and has shown
good performance in a number of test functions. The initial population is gener-
ated randomly. The crossover operator used was the one proposed in [8], known as
ordered crossover (OX). In order to give a wider variety of movements to the al-
gorithm, two different mutation strategies were employed in the experiments. The
DE/rand/1 strategy is performed with probability 0.8 and DE/best/1 with
probability 0.2. With this setting no effort has been devoted to adjusting dDE pa-
rameters.

Here it was also employed the referenced local search (RLS), see [25], applied
to the best individual at each generation. In the case of the best individual being the
same one in the previous generation, a random individual is chosen to go through
local search.

To perform a comparisson of dDE with some other best performing algorithms
from the literature, we adopt the results reported in [34] and [25]. In [34] the authors
have proposed the algorithms IG RS and IG RSLS and have implemented NEHT
[36], GA RMA [33], SA OP [23], SPIRIT [39], HGA RMA [33], GA CHEN [7],
GA REEV [32], GA MIT [19], ILS [35], GA AA [2], M-MMAS and PACO from
[31]. In [25] the authors have proposed and implemented the DDERLS algorithm.

Flow Shop Scheduling Using a General Approach for Differential Evolution 611

The results are reported in terms of the average relative percentage deviation,
which is computed as follows:

Δavg =
1

R

R∑

i=1

(
(Hi −Href)× 100

Href

)
(29)

where R is the number of runs conducted for each problem instance (R = 5, consis-
tent with [34] and [25]), Hi is the makespan generated by one of the R replications
of the metaheuristic algorithm and Href is the bound value provided by [37].

The stop criteria was set to n×(m/2)×t, where t is a time in ms. [34] have used
a PC with a Athlon XP 1600+ processor (1.4GHz) and t = 60ms. [25] have used a
Intel Pentium IV 3.0GHz and t = 30ms. Considering the differences between the
processors, taking t = 40ms for dDE would be reasonable for comparison with the
results of other authors. Table 5.2 summarizes the results.

Table 2 Average relative percentage deviation over the optimal solution value or the best
known upper bound for Taillard instances when the algorithms are evaluated with the termina-
tion criterion set as n×(m/2)×60ms, except for dDE where it was set as n×(m/2)×40ms
and DDERLS where it was set as n× (m/2)× 30ms.

n × m NEHT GA RMA HGA RMA SA OP SPIRIT GA CHEN GA REEV GA MIT
20 × 5 3.35 0.26 0.04 1.09 4.33 4.15 0.62 0.8
20 × 10 5.02 0.73 0.13 2.63 6.07 5.18 2.04 2.14
20 × 20 3.73 0.43 0.09 2.38 4.44 4.26 1.32 1.75
50 × 5 0.84 0.07 0.02 0.52 2.19 2.03 0.21 0.3
50 × 10 5.12 1.71 0.72 3.51 6.04 6.54 2.06 3.55
50 × 20 6.26 2.74 1.28 4.52 7.63 7.74 3.56 5.09
100 × 5 0.46 0.07 0.02 0.3 1.06 1.35 0.17 0.27
100 ×10 2.13 0.62 0.29 1.48 3.01 3.8 0.85 1.63
100 ×20 5.23 2.75 1.66 4.63 6.74 8.15 3.41 4.87
200 ×10 1.43 0.43 0.2 1.01 2.07 2.76 0.55 1.14
200 ×20 4.41 2.31 1.48 3.81 4.97 7.24 2.84 4.18
500 ×20 2.24 1.4 0.96 2.52 12.58 4.72 1.66 3.34
Average 3.19 1.25 0.67 2.47 5.07 4.86 1.66 2.61

n × m ILS GA AA M-MMAS PACO IG RS IG RS LS DDE RLS dDE
20 × 5 0.49 0.94 0.04 0.21 0.04 0.04 0.04 0.29
20 × 10 0.59 1.54 0.15 0.37 0.25 0.06 0.01 1.45
20 × 20 0.36 1.43 0.06 0.24 0.21 0.03 0.02 1.03
50 × 5 0.2 0.36 0.03 0.01 0.04 0 0 0.13
50 × 10 1.48 3.72 1.4 0.85 1.06 0.56 0.45 1.89
50 × 20 2.2 4.69 2.18 1.59 1.82 0.94 0.66 3.03
100 × 5 0.18 0.32 0.04 0.03 0.05 0.01 0 0.12
100 ×10 0.68 1.72 0.47 0.27 0.39 0.2 0.15 0.74
100 ×20 2.55 4.91 2.59 2.09 2.04 1.3 0.98 3.70
200 ×10 0.56 1.27 0.23 0.27 0.34 0.12 0.07 0.61
200 ×20 2.24 4.21 2.26 1.92 1.99 1.26 0.99 3.58
500 ×20 1.25 2.23 1.15 1.09 1.13 0.78 0.49 2.88
Average 1.17 2.28 1.04 0.84 0.91 0.52 0.38 1.77

612 F.G. Guimarães et al.

5.3 Discussion

Comparing the averages obtained by the sixteen algorithms the dDE occupies the
10th position. The relative percentage deviation generated by dDE (1.77%) was
lower then those generated by GA AA (2.28%), SA OP (2.47%), GA MIT (2.61%),
NEHT (3.19%), GA CHEN (4.86%) and SPIRIT (5.07%). Despite of this result
obtained by dDE, it can be considered competitive when compared to GA RMA
(1.25%), GA REEV (1.66%) and ILS (1.17%), which have already been shown to
be fairly good algorithms in the literature [25].

The best performing algorithms in this experiment were M-MMAS (1.04%),
PACO (0.84%), IG RS (0.91%), IG RSLS (0.52%) and DDERLS (0.38%). M-
MMAS and PACO are two ant colony algorithms, IG RS and IG RSLS are iterated
greedy algorithms and DDERLS is another discrete version of Differential Evolu-
tion.

Regardless of the 10th place, the dDE algorithm presented here can still be con-
sidered a promising and competitive tool for PFSSP. It is important to remark that
dDE is a general approach and no effort was spent on setting its parameters. Re-
garding the five best performing algorithms, they all rely in some way on the NEH
initialization heuristic, which was not adopted in dDE and could have benefited
the dDE as well. The differential evolution used here is relatively simple, in con-
trast to other methods. There is a number of sophisticated techniques such as self-
adaptation, re-initialization and path-relinking that could be easily implemented in
the dDE framework in order to improve its performance.

6 Conclusion

This chapter has presented a general framework of Differential Evolution for com-
binatorial optimization problems. The proposed approach is based on defining the
differences between pairs of individuals as a list of elementary movements in the
discrete search space. This approach is general and can be used in principle for
other combinatorial problems and for different kinds of neighborhood structures.
The method was applied to the 120 Taillard instances of the PFSSP, and compared
against the results obtained by other metaheuristic algorithms in the literature. Al-
though relying only on the differential mutation and the local search performed on
the best individual, dDE ranks fairly well against more sophisticated metaheuristics.
The results are promising and illustrate the applicability of the proposed approach
for combinatorial optimization using differential evolution.

References

1. Abbass, H.A., Sarkar, R., Newton, C.: A pareto differential evolution approach to vector
optimisation problems. In: Proceedings of the IEEE Congress on Evolutionary Compu-
tation, CEC, pp. 971–978. IEEE Press (2001)

Flow Shop Scheduling Using a General Approach for Differential Evolution 613

2. Aldowaisan, T., Allahverdi, A.: New heuristics for no-wait flowshops to minimize
makespan. Computers & Operational Research 30, 1219–1231 (2003)

3. Allahverdi, A., Ng, C.T., Cheng, T.C.E., Kovalyov, M.Y.: A survey of scheduling prob-
lems with setup times or costs. European Journal of Operational Research 187(3),
985–1032 (2008)

4. Baker, K.R.: Introduction to Sequencing and Scheduling. Wiley, New York (1974)
5. Batista, L.S., Guimarães, F.G., Ramı́rez, J.A.: A differential mutation operator for the

archive population of multi-objective evolutionary algorithms. In: Proceedings of the
IEEE Congress on Evolutionary Computation, CEC, pp. 1108–1115. IEEE Press (2009)

6. Chakraborty, U.K. (ed.): Advances in Differential Evolution. SCI, vol. 143. Springer,
Heidelberg (2008)

7. Chen, C.-L., Vempati, V.S., Aljaber, N.: An application of genetic algorithms for flow
shop problems. European Journal of Operational Research 80(2), 389–396 (1995)

8. Davis, L.: Job shop scheduling with genetic algorithms. In: Proceedings of the 1st Inter-
national Conference on Genetic Algorithms, pp. 136–140. L. Erlbaum Associates Inc.,
Hillsdale (1985)

9. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Natural Computing
Series. Springer (2003)

10. Feoktistov, V.: Differential Evolution: In Search of Solutions. Springer Optimization and
Its Applications, 1st edn. Springer (October 2006)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman (1979)

12. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop schedul-
ing. Mathematics of Operations Research 1, 117–129 (1976)

13. Gong, W., Cai, Z.: A multiobjective differential evolution algorithm for constrained op-
timization. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC,
pp. 181–188. IEEE Press (June 2008)

14. Kim, H.-K., Chong, J.-K., Park, K.-Y., Lowther, D.A.: Differential evolution strategy for
constrained global optimization and application to practical engineering problems. IEEE
Transactions on Magnetics 43(4), 1565–1568 (2007)

15. Lichtblau, D.: Relative position indexing approach. In: Onwubolu, G.C., Davendra, D.
(eds.) Differential Evolution: A Handbook for Global Permutation-Based Combinatorial
Optimization. SCI, vol. 175, ch. 4, pp. 81–120. Springer (2009)

16. Linn, R., Zhang, W.: Hybrid flow shop scheduling: a survey. Computers & Industrial
Engineering 37(1-2), 57–61 (1999)

17. Madavan, N.K.: Multiobjective optimization using a Pareto differential evolution ap-
proach. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC,
vol. 2, pp. 1145–1150. IEEE Press (May 2002)

18. Mezura-Montes, E., Velazquez-Reyes, J., Coello Coello, C.A.: A comparative study of
differential evolution variants for global optimization. In: Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation, GECCO, pp. 485–492. ACM
(2006)

19. Murata, T., Ishibuchi, H., Tanaka, H.: Genetic algorithms for flowshop scheduling prob-
lems. Computers & Industrial Engineering 30, 1061–1071 (1996)

20. Onwubolu, G.C.: Design of hybrid differential evolution and group method of data
handling networks for modeling and prediction. Information Sciences 178, 3616–3634
(2008)

21. Onwubolu, G.C., Davendra, D. (eds.): Differential Evolution: A Handbook for Global
Permutation-Based Combinatorial Optimization. SCI, vol. 175. Springer (2009)

614 F.G. Guimarães et al.

22. Onwubolu, G.C., Davendra, D.: Scheduling flow shops using differential evolution algo-
rithm. European Journal of Operational Research 171(2), 674–692 (2006)

23. Osman, I.H., Potts, C.N.: Simulated annealing for permutation flow-shop scheduling.
Omega 17(6), 551–557 (1989)

24. Pan, Q.K., Wang, L., Qian, B.: A novel differential evolution algorithm for bi-criteria
no-wait flow shop scheduling problem. Computers & Operations Research 36(8), 2498–
2511 (2009)

25. Pan, Q.-K., Tasgetiren, M.F., Liang, Y.-C.: A discrete differential evolution algorithm for
the permutation flowshop scheduling problem. Computers & Industrial Engineering 55,
795–816 (2008)

26. Pinedo, M.: Scheduling: Theory, Algorithms and Systems. Prentice-Hall (2002)
27. Price, K.V.: An introduction to differential evolution. In: Corne, D., Dorigo, M., Glover,

F. (eds.) New Ideas in Optimisation. Advanced Topics in Computer Science, pp. 79–108.
McGraw-Hill (1999)

28. Price, K.V., Storn, R.M.: Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization 11(4),
341–359 (1997)

29. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach
to Global Optimization, 1st edn. Natural Computing Series. Springer (December 2005)

30. Qian, B., Wang, L., Hu, R., Wang, W.-L., Huang, D.-X., Wang, X.: A hybrid differential
evolution method for permutation flow-shop scheduling. The International Journal of
Advanced Manufacturing Technology 38, 757–777 (2008)

31. Rajendran, C., Ziegler, H.: Ant-colony algorithms for permutation flowshop schedul-
ing to minimize makespan/total flowtime of jobs. European Journal of Operational Re-
search 155(2), 426–438 (2004)

32. Reeves, C.R.: A genetic algorithm for flowshop sequencing. Computers & Operational
Research 22, 5–13 (1995)

33. Ruiz, R., Maroto, C., Alcaraz, J.: Two new robust genetic algorithms for the flowshop
scheduling problem. Omega 34(5), 461–476 (2006)

34. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem. European Journal of Operational Research 177, 2033–
2049 (2007)

35. Stützle, T.: Applying iterated local search to the permutation flow shop problem. Tech-
nical report, AIDA-98-04, FG Intellektik, FB Informatik, TU Darmstadt (1998)

36. Taillard, E.: Some efficient heuristic methods for the flow shop sequencing problem.
European Journal of Operational Research 47(1), 65–74 (1990)

37. Taillard, E.: Benchmarks for basic scheduling problems. European Journal Of Opera-
tional Research 64(2), 278–285 (1993)

38. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector gener-
ation strategies and control parameters. IEEE Transactions on Evolutionary Computa-
tion 15(1), 55–66 (2011)

39. Widmer, M., Hertz, A.: A new heuristic method for the flow shop sequencing problem.
European Journal of Operational Research 41(2), 186–193 (1989)

40. Xue, F., Sanderson, A.C., Graves, R.J.: Pareto-based multi-objective differential evolu-
tion. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC, vol. 2,
pp. 862–869. IEEE Press (2003)

	Flow Shop Scheduling Using a General Approach for Differential Evolution

	Introduction
	Differential Evolution
	Overview

	A General Approach for Combinatorial Problems
	The Differential List of Movements
	Example
	Pseudocode

	Previous Work
	The Permutation Matrix Approach
	Adjacency Matrix Approach
	Relative Position Indexing Approach
	Largest Order Value Approach
	Forward Backward Transformation Approach
	Discussion

	Flow Shop Scheduling
	Problem Statement
	Experimental Setup
	Discussion

	Conclusion
	References

