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Accelerating Firewalls: Tools, Techniques  
and Metrics for Optimizing Distributed 
Enterprise Firewalls 

Subrata Acharya* 

The overall efficiency, reliability, and availability of firewalls are crucial in en-
forcing and administering security, especially when the network is under attack. 
These challenges require new designs, architecture and algorithms to optimize 
firewalls. Contrary to a list-based structure, a de-centralized (hierarchical) design 
leads to efficient organization of rule-sets, thereby significantly increasing the per-
formance of the firewall. The objective is to transform the original list-based rule-
set into more efficient and manageable structures, in order to improve the perfor-
mance of firewalls. The main features of this approach are the hierarchical design, 
rule-set transformation approaches, online traffic adaptation mechanisms, and a 
strong reactive scheme to counter malicious attacks (e.g. Denial-of-Service (DoS) 
attacks [1]).  

1   Introduction 

With the dynamic change in the network load, topology, and bandwidth demand, 
firewalls are becoming a bottleneck. All these factors create a demand for more ef-
ficient, highly available, and reliable firewalls. Optimizing firewalls, however, 
remains a challenge for network designers and administrators. A typical present 
day firewall enforces its security policies via a set of multi-dimensional packet fil-
ters (rules). Optimization of this multi-dimensional structure has been proven to be 
a NP hard [2, 3] problem. This has motivated the research community to focus on 
various approaches to provide reliable and dependable firewall optimization me-
thods. In-spite of a strong focus towards an efficient design, the techniques used in 
current literature are static, and fail to adapt to the dynamic traffic changes of the 
network. The large number of security policies in enterprise networks poses the 
most important challenge to traffic-aware firewall optimization. Furthermore, with 
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the increased ability of current networks to process and forward traffic at extreme-
ly high speed, firewalls are becoming highly resource constrained. Thus, the main 
objective of this chapter is to address the shortcomings of the current firewalls and 
increase their ability to deal with dynamic changes in network load and topology, 
particularly under attack conditions. In this chapter, the focus is on optimizing the 
most widely used ‘list-based’ firewalls. To achieve this goal we propose a firewall 
transformation framework aimed at creating hierarchical firewall optimization rule 
subsets, to improve the operation and manageability of firewalls. The main chal-
lenge in the construction of these rule subsets is the need to maintain semantic  
integrity of the policy set at each level of the hierarchy. The overall goal is to im-
prove the performance and manageability of such network systems. 

The rest of the chapter is organized as follows: Section 1.2 introduces the Fire-
wall Transformation Framework. We introduce the theory of the transformation 
approach in Section 1.3. We present details of the splitting approaches in Section 
1.4. In Section 1.5 presents the architecture and implementation methodology de-
tails of the hierarchical firewall. We present the evaluation and results in Section 
1.6. Finally, we conclude the chapter in Section 1.7. 

2   Firewall Transformation Framework 

In this section we introduce the Firewall Transformation Framework aimed at im-
proving the performance and manageability of firewalls. A software firewall  
defines its security policies via a set of security policies or rules. These security 
policies govern the filtering of network packets to and from the autonomous  
system. In this chapter our aim is to improve the availability and good-put of fire-
walls by proposing transformative algorithms to the “list-based’’ firewall repre-
sentation into more manageable and performance efficient representations. Any 
proposed transformation should preserve the semantic integrity of the original 
firewall rule-set, in order that the Tier-1 ISP network administrator accepts and 
registers to replace the original firewall rule-set with the transformation. Addition-
ally, the transformed firewall rule-set should reduce the operational cost of packet 
filtering, in turn improving the efficiency and manageability of the firewall. The 
Framework is defined formally as follows: 

Let F represent the original “list-based” firewall rule-set. Let T (F) represent 
the transformed firewall that preserves the properties and rules of the original 
firewall rule-set F. We define the cost function, C (f), that represents the average 
operational cost of operation of firewall f.  

T (F) is an acceptable transformation of F iff:  
 

− T (F) preserves the properties and rules of F  (Semantic Integrity 
property) 

− C (T (F)) ≤ C (F) (Cost property) 
 

We discuss details of these properties and prove the property for the Firewall 
Transformation Approach in Section 1.3. 
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Cost property: 

Let the operational cost of the original firewall rule-set and the transformed rule-
set be C (F) and C (S (F)), respectively. The focus of this research is on the most 
widely used list-based firewalls. For our evaluation we have assumed that rule 
matching is the most expensive operation. The operational cost of rule matching is 
proportional to the number of rules in the rule-set1. 

Let us assume for contradiction that C (F) > C (S (F)). For this assumption to 
be true, there exists at-least one packet p such that it matches a rule r in the fire-
wall rule-set, where the cost of matching in the transformed firewall set is higher 
than the cost of matching in the original rule-set. Let the operational cost of 
processing the network packet p which matches rule r in the firewall rule-set F be 
represented as x and that matches rule r in transformed firewall S (F) be y, where y 
> x. Due to the list-based firewall operation, the only way y is greater than x, is if 
the rank of r in S (F) is lower than the rank of r in F. Since, both the firewall rule-
sets are sorted by traffic characteristics (hit-count of incoming traffic), there exists 
rule r′ in the firewall rule-subset S (F) that has higher hit-count than r and is lower 
rank in the original rule-set F. Since, all the rules in F are sorted according to hit-
count information and there are no new rules created or deleted due to the trans-
formation process, we arrive at a contradiction. 

Hence, we prove that the operational cost of firewall rule-sets S (F) is <= the 
cost of the original rule-set F. In the worst case, the length of S (F) will be equal to 
the length of F, which implies C (F) = S (F). 

In the next section 1.4 we discuss the details of two Firewall transformation 
approaches, namely, the Optimal and the Heuristic approach. 

4   Firewall Splitting Approaches 

4.1   Optimal Approach 

The Optimal splitting approach is based on an A* search [4] strategy. Achieving 
an optimal partition is possible since the cost can be calculated cumulatively for 
any partition as it is fixed and does not vary with the tuple priority. The basic steps 
of the Optimal Approach are depicted in Algorithm 1. 

                                                           
1 The result has been verified for Linux IPChains Firewall [3] 
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The fourth variant of the Greedy Heuristic is to consider the distance between 
all possible pairs of filters. The pair that contains the filters with maximum dis-
tance from each other is selected. This strategy has potential to split the tuples into 
well-balanced sets. This heuristic is referred to the Max distance-Max distance 
Heuristic. The complexity for all the above approaches is proportional to the 
number of tuples in the initial tuple set. 

The fifth variant of the Greedy Heuristic is the All Pair Heuristic. This variant 
considers all possible pairs of tuples as initial filters. Using the method depicted in 
Algorithm 2 we determine a split for each possible pair and then pick the split 
with the least cost. 

The results for All Pair Heuristic are not included as the heuristic never con-
verged to a solution due to the excessive overhead required to obtain the most cost 
efficient configuration among all possible pairs of tuples. The time complexity of 
this heuristic is of the order of N3, where N is the number of tuples. For large val-
ues of N, the computational cost of the heuristic becomes prohibitive. 

4.3   Improvements to Rule-Set Splitting Approaches 

As we discussed in the previous section, establishing near optimal rule splits di-
rectly affects the performance of the hierarchical filter in turn improving the oper-
ational cost of the firewall. The reason being the filter split governs the “re-splits”, 
“re-promotions” and “re-orders” of the rules in the rule subsets, which helps to 
incorporate traffic dynamics in the filter operation for a given firewall. The better 
the split (based on the traffic characteristics) the more stable and balanced the 
hierarchical firewall. 

In this section our goal is to exploit the traffic characteristics further in order to 
deter- mine the patterns in data which will aid the definition of better splits to ena-
ble hierarchical firewall optimization. In our analysis we conclude that the choice 
of initial filters should be accurate and is a defining factor in the design of stable 
rule split subsets. As discussed in Algorithm 2, consideration of a single criteria 
(e.g. traffic volume/hit-count information) is insufficient to determine accurate  
initial filters for the hierarchal rule split. We consider the patterns in the traffic in 
order to aid the choice of the initial filters. This will necessarily affect the compu-
tation of better or closer to optimal rule-set splits (aiding better traffic filtering). In 
the following subsection we present the clustering rule split approach to aid de-
centralized firewall optimization. 

4.3.1   Clustering Rule Split 

We determine the patterns in the traffic data via an exhaustive search algorithm to 
output a group of clusters. The firewall administrator specifies the criteria for the 
cluster organization. The criteria could be a single attribute (e.g. protocol: 
TCP/UDP) or a combination of attributes. Such a search results in sets of clusters 
based on the specified criteria. Since our problem deals with the design of two ini-
tial filters for the hierarchical split operation, we arrive at two cluster sets (groups) 
based on the self-similar criteria as defined earlier. These self-similar clusters are 
the precursors to the rule splitting approaches as discussed above. 
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We then pick the initial filters one from each cluster group. We then follow the 
rule splitting steps as discussed in Algorithm 2. The cluster groups act as a feed-
back to the rule splitting process in this step. Each rule during the splitting process 
tries to be retained in its self-similar cluster group during the process of hierar-
chical filter set determination. Since the clustering of the rules are run offline; we 
have the liberty to run the exhaustive search algorithm. The disjoint nature of the 
rules in the rule-sets enables the clustering and rule splitting process in determin-
ing traffic balanced rule split sets. 

4.3.2   Parallel A* Approach 

In the next improvement, we propose a change in the Optimal splitting approach 
presented above to aid faster splits and to enable the split of larger data sets. Pre-
viously we have proposed an variant of the A* search strategy to search for the de-
fining filters for each split set. The runtime for such an approach in worst case is 
2N, where N is the number of initial rules in the linear rule-set. For rules greater 
than 1000 Algorithm 1 did not terminate and hence did not produce the split sets 
we required. To overcome this problem we incorporated parallelism in the A* 
search [6] to enhance the splitting performance on larger data sets. We extended 
the optimal search approach developed earlier to include parallelism. The chal-
lenge is to keep track of the various intermediate sub solutions. We used multiple 
hashing mechanisms to store the locally optimal solutions to be used later to arrive 
at the final optimal split subsets. The proposed parallel A* approach perform much 
better and is able to arrive at rule splits for large data sets (nearly 10,000 rules). 

4.3.3   Weighted Distance Function 

The distance function as presented in Algorithm 2 is calculated by assigning equal 
weights to all the dimensions of a packet filter. Our analysis concludes that this 
assumption is not accurate. We propose that the distribution of the tuples amongst 
the dimensions should determine the weights that the dimensions take and the 
normalization should occur on them. We changed the present splitting approach of 
finding the defining filter of a tuple by including a weighted distance function to 
determine the weighted distance of a tuple from the defining filters. This approach 
leads to more balanced splits. Results show that the split is about the improve 
from a 30 : 70 split to a almost 45 : 55 split. This optimization aids to reduce the 
worst-case packet matching time for the hierarchical firewall we designed. 

5   Design Architecture and Methodology 

In this section we presents the architectures and algorithms for a de-centralized 
firewall optimization, OPTWALL [7]. As we have discussed earlier, contrary to a 
list-based structure, a hierarchical design leads to efficient organization of rule-
sets, thereby increasing significantly the performance of the firewall. OPTWALL 
uses a hierarchical approach to partition the original rule-set into mutually exclu-
sive subsets of rules to reduce the overhead of packet filtering. 
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5.2.1   Data Structure 

In order to process the rules, OPTWALL uses a hierarchical data structure in which 
the deepest level of the hierarchy contains the rule subsets and the intermediate le-
vels contain filters, which cover the rules included in those subsets. 

The design of the data structure must ensure that the operational cost is re-
duced. The design must also ensure that the semantic integrity of the original rule-
set is preserved. It is to be noted that the operational cost is determined by  
the deepest rule subset. Balancing the hierarchical structure in order to reduce the 
length of the deepest rule subset is, therefore, vital if the desire is to achieve the 
maximum reduction in processing cost. Furthermore, the data structure must be 
designed in such a way that the re-balancing process, in response to traffic 
changes, can be achieved with minimal overhead.  

Semantic integrity of the original rule-set can be achieved, during the rule-set 
partitioning process, by computing filters that represent accurately and completely 
the rule subsets. Furthermore, packet processing must follow the same semantics 
specified by the filters resulting from the partitioning process. If the rules are split 
and reordered, in order to optimize operational cost, the process of reinforcing the 
original rule semantics must be achieved with reduced overheard. 

5.2.2   Hierarchical Structure Building 

The process of building the hierarchical structure described previously is accom-
plished using three basic stages: 

 
− pre-processing, 
− ordering, and 
− splitting. 
 

In the following, we discuss the basic operations carried out at each of these de-
sign stages. 

The pre-processing stage takes the original list-based rule-set as its input and 
produces an optimized rule-set. This optimized rule-set consists of fully disjoint 
and concise rules, where all rule redundancies and dependencies are removed [10]. 
The fact that the rules in the rule set are mutually disjoint provides OPTWALL 
with full flexibility to reorder the rules and divide them into rule subsets, without 
violating the semantics of the original rule-set. 

In the reordering stage, rules are reordered such that the highest cost rules are 
moved to the top of the rule-set. As stated previously, the cost of a rule is based 
upon the size of the rule and the amount of traffic processed by that rule, as indi-
cated by its hit-count. By reordering rules the overall cost of processing traffic is 
reduced. 

The goal of the splitting stage is to produce a partition of the original rule-set 
into a set of mutually disjoint rule subsets. This process involves taking the pre-
processed rule-set and dividing it into rule subsets. Each rule subset is defined by  
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a tuple, which covers all rules in the subset. All such covering tuples are disjoint 
from one another. To partition the original rule-set, OPTWALL uses a multi-step 
process, whereby it initially splits the original rule-set into two subsets. It then re-
cursively runs this splitting process on the subsets produced by the previous stage 
to generate the next level of the hierarchical structure. This splitting process con-
tinues until the overall processing cost overshadows the benefit gained by further 
splitting the current subsets. When this occurs, the splitting process terminates and 
the previous level is selected as the feasible optimal depth of the hierarchical 
structure. 

The efficiency of the partitioning process strongly depends on the way the rule 
subsets are produced at different levels of the hierarchy. Several strategies to pro-
duce feasible rule-set splitting can be used. These strategies are discussed in later 
sections of this chapter. 

The produced hierarchical structure is then converted to a series of IP-table rule 
sub- sets. It is to be noted that most list based firewalls, such as Linux IPCHAINS 
[4], support the ability to forward packets from one list to another for further 
processing. Consequently, the OPTWALL hierarchical structure can be used to 
augment the filtering capabilities of list-based firewalls. 

5.2.3   Hierarchical Structure Maintenance 

The hierarchical structure is built to reflect the current traffic pattern and rule-sets. 
As the traffic pattern and rule sets change, the hierarchical structure must be up-
dated to maintain its balance. To detect changes, OPTWALL monitors the traffic 
logs in real-time and adjusts the hit-counts. OPTWALL asserts that changes have 
occurred if the difference between the old and updated hit-counts of any rule ex-
ceeds a predetermined threshold. This threshold, a tunable parameter, is deter-
mined based on the traffic characteristics and the policy set under consideration. 

If the need to balance the hierarchical structure rises, OPTWALL uses the exist-
ing traffic logs to update the cost of rules in the rule subsets, including rules, 
which have been added to reflect a new security policy. OPTWALL then uses 
reordering, re-splitting, and promoting to reestablish the balance of a hierarchical 
structure. 

Re-ordering consists of re-prioritizing the rule subsets at the deepest level of 
the hierarchical structure. This process is necessary to take into consideration the 
impact of traffic variations on the hit-count of rules in a given rule-set. Re-
ordering is triggered when the difference between the current and previous hit-
counts of a given rule exceeds a preset threshold. 

Re-splitting is invoked when a sub-hierarchical structure becomes out of bal-
ance, due to traffic variations. A sub-hierarchical structure is considered to be out-
of-balance if the average packet processing cost exceeds a predefined threshold. 
This process can occur at any level, including the root of the hierarchical structure. 
When sub-hierarchical structure is out of balance, splitting is applied to the  
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original rule subset that generated this sub-hierarchical structure. In some cases, it 
is not possible to produce a more balanced hierarchical structure, in which case the 
level is marked as currently optimal and the threshold for the intermediate levels 
are increased. 

Promoting aims at reducing the overhead of packet processing at different le-
vels of the hierarchy. The need for rule promotion occurs when a single rule hit-
count increases dramatically and exceeds its predefined threshold. This scenario is 
likely to occur during anomalous traffic behavior, typically observed during Deni-
al-of-Service (DoS) attacks. To mitigate the impact of DoS attacks and drastically 
reduce the cost of processing traffic generated by these attacks, the rule is pro-
moted to a level above the filters. Depending on the rule’s priority, promotion may 
continue recursively until it reaches its appropriate priority level. In the extreme 
case, the rule may be moved all the way up to the root of the hierarchical structure. 
This promotion is temporary and the rule is not removed from the rule subsets. 
The reason behind the temporary promotion stems from the transitory nature of 
DoS attacks. Once the traffic has returned to its normal levels, the promoted rule 
can be removed from the higher levels. 

The automatic interaction between the levels (parent-child modules) of 
OPTWALL is illustrated in Figure 3. Each level, starting from the root, acts as a 
central authority to a lower level in the hierarchy. 

The efficiency of the splitting process, in terms of packet processing overhead, 
strongly impacts the performance of the firewall. We first describe the splitting 
process and discuss various solutions proposed for splitting the rule-set. We define 
a tuple, as a rule with single attribute value. We will use the tuple set as the input 
to our splitting process. 

The outputs of the splitting operation are two filters and their corresponding 
tuple subsets. The filters and tuple subsets are semantically similar to that of a sin-
gle list-based tuple set.  

The process of splitting relies upon three basic functions: 
 
− MATCH ( ),  
− DISTANCE ( ), and 
− WIDEN ( ) 

 
All three functions are available on the filter object and all accept a single argu-
ment of a tuple. 

The MATCH ( ) function checks to see if a tuple is covered by the filter. The 
source and destination IP addresses are compared to the range specified in the fil-
ter. Similarly the port number is compared to the port range specified in the filter. 
The protocol type is matched to a list of protocol types the filter evaluates upon. 
This function returns true if the tuple matches the tuple and false otherwise. 
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The DISTANCE ( )function calculates the distance between a given tuple and 
the filter. If the filter matches the tuple then the value returned by this function is 
0. Otherwise, this function returns a positive number between 0 and 1. The dis-
tance is based on the entire tuple. 

The numerical value between two IP addresses represents the distance between 
them. If the IP addresses represent ranges, the distance function based on the dis-
tance between the two farthest points within the ranges is calculated. A similar 
procedure is used to calculate the distance between ports or port ranges. The pro-
tocol distance is set to 0 if the protocol already exists in the protocol list for the fil-
ter. Otherwise the distance is set to 1. All the distances are then normalized to the 
maximum values of their respective fields. The summation of this normalized val-
ues are then weighted and re-normalized to produce a value between 0 or 1. 

The WIDEN( ) function is used to expand a filter such that it matches the given 
tuple. This is achieved by expanding the IP range, port range, and protocols. A 
function calculates the cost of the tuple based on traffic characteristics and other 
tuple properties. 

The driver of the splitting process is the search for a set of filters, which covers 
the hierarchical structure without violating the semantic integrity of the original 
rule-set, aiming at improving the operational cost of the firewall. Ideally, optimal 
splitting ensures that, at the end of the partitioning process, all subsets have equal 
cost. Consequently, when an optimal split is achieved, the average processing cost 
of each packet is reduced by half of its original cost. An optimal strategy for per-
forming a cost-balanced split of the original set of rules is to use two sub-lists and 
alternatively place the rules in each list, starting with the highest cost rule, until 
the set of rules is exhausted. While this strategy is optimal, it is not always feasi-
ble. This due to the fact that each rule subset produced at each stage of the split-
ting process must have a mutually disjoint set of filters. Computing such filters 
may not be always achievable. 

In the next section we present the detailed evaluation study of the proposed 
OPTWALL implementation. 

6   Evaluation 

In this section we describe the experiments and evaluations to validate the Hierar-
chical Firewall Optimization approach. We perform our validations by improving 
on the widely used open source firewall, Linux IPCHAINS. The data used for our 
experiments is emulated data from a large Tier-1 ISP. Our choice of firewall is 
representative of list-based firewall, which is the focus of this research. 
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