
I. Zelinkaet al. (Eds.): Handbook of Optimization, ISRL 38, pp. 529–551.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

Accelerating Firewalls: Tools, Techniques
and Metrics for Optimizing Distributed
Enterprise Firewalls

Subrata Acharya*

The overall efficiency, reliability, and availability of firewalls are crucial in en-
forcing and administering security, especially when the network is under attack.
These challenges require new designs, architecture and algorithms to optimize
firewalls. Contrary to a list-based structure, a de-centralized (hierarchical) design
leads to efficient organization of rule-sets, thereby significantly increasing the per-
formance of the firewall. The objective is to transform the original list-based rule-
set into more efficient and manageable structures, in order to improve the perfor-
mance of firewalls. The main features of this approach are the hierarchical design,
rule-set transformation approaches, online traffic adaptation mechanisms, and a
strong reactive scheme to counter malicious attacks (e.g. Denial-of-Service (DoS)
attacks [1]).

1 Introduction

With the dynamic change in the network load, topology, and bandwidth demand,
firewalls are becoming a bottleneck. All these factors create a demand for more ef-
ficient, highly available, and reliable firewalls. Optimizing firewalls, however,
remains a challenge for network designers and administrators. A typical present
day firewall enforces its security policies via a set of multi-dimensional packet fil-
ters (rules). Optimization of this multi-dimensional structure has been proven to be
a NP hard [2, 3] problem. This has motivated the research community to focus on
various approaches to provide reliable and dependable firewall optimization me-
thods. In-spite of a strong focus towards an efficient design, the techniques used in
current literature are static, and fail to adapt to the dynamic traffic changes of the
network. The large number of security policies in enterprise networks poses the
most important challenge to traffic-aware firewall optimization. Furthermore, with

Subrata Acharya
Towson University, Towson, MD, USA

530 S. Acharya

the increased ability of current networks to process and forward traffic at extreme-
ly high speed, firewalls are becoming highly resource constrained. Thus, the main
objective of this chapter is to address the shortcomings of the current firewalls and
increase their ability to deal with dynamic changes in network load and topology,
particularly under attack conditions. In this chapter, the focus is on optimizing the
most widely used ‘list-based’ firewalls. To achieve this goal we propose a firewall
transformation framework aimed at creating hierarchical firewall optimization rule
subsets, to improve the operation and manageability of firewalls. The main chal-
lenge in the construction of these rule subsets is the need to maintain semantic
integrity of the policy set at each level of the hierarchy. The overall goal is to im-
prove the performance and manageability of such network systems.

The rest of the chapter is organized as follows: Section 1.2 introduces the Fire-
wall Transformation Framework. We introduce the theory of the transformation
approach in Section 1.3. We present details of the splitting approaches in Section
1.4. In Section 1.5 presents the architecture and implementation methodology de-
tails of the hierarchical firewall. We present the evaluation and results in Section
1.6. Finally, we conclude the chapter in Section 1.7.

2 Firewall Transformation Framework

In this section we introduce the Firewall Transformation Framework aimed at im-
proving the performance and manageability of firewalls. A software firewall
defines its security policies via a set of security policies or rules. These security
policies govern the filtering of network packets to and from the autonomous
system. In this chapter our aim is to improve the availability and good-put of fire-
walls by proposing transformative algorithms to the “list-based’’ firewall repre-
sentation into more manageable and performance efficient representations. Any
proposed transformation should preserve the semantic integrity of the original
firewall rule-set, in order that the Tier-1 ISP network administrator accepts and
registers to replace the original firewall rule-set with the transformation. Addition-
ally, the transformed firewall rule-set should reduce the operational cost of packet
filtering, in turn improving the efficiency and manageability of the firewall. The
Framework is defined formally as follows:

Let F represent the original “list-based” firewall rule-set. Let T (F) represent
the transformed firewall that preserves the properties and rules of the original
firewall rule-set F. We define the cost function, C (f), that represents the average
operational cost of operation of firewall f.

T (F) is an acceptable transformation of F iff:

− T (F) preserves the properties and rules of F (Semantic Integrity
property)

− C (T (F)) ≤ C (F) (Cost property)

We discuss details of these properties and prove the property for the Firewall
Transformation Approach in Section 1.3.

Accelerating Firewalls

3 Firewall Transfor

In this section we detail
formation Framework. A
transformation is to obta
preserves the “Semantic I
the following.

The firewall transform
ing the original “list-base
put firewall rule-set F is
before the transformatio
“semantic integrity” prop
state formally:

Let S (F) represent the
based firewall rule-set F.

Theorem 1.1: S (F) is an a

Proof: We prove the abov

Semantic integrity proper

Let there be at-least one r
et p is different than that
rule-set F on a given netw
transformed representatio
set is not equivalent to tha

The rules in the list-ba
vided into rule subsets ba
subsets in S (F) originate
sub-divided into rule sub
tions. This implies that no
tion process. This proves
in the original rule-set F,

Hence, there are no ru
an action different than
the semantic properties a
transformation.

53

rmation Approach

the theory behind the above-discussed Firewall Tran
As stated in the previous section, the objective of th
ain an “acceptable”, S (F), such that the transformatio
Integrity” and “Reduced Cost” properties as discussed i

mation is achieved by the process of “splitting” or divid
ed” firewall rule-set into groups of rule subsets. The in
s first sorted based on traffic characteristics (hit-coun
on is initiated. The resulting rule subsets preserve th
perties and rules of the original “list-based” rule-set. T

e Firewall Transformation approach of the original lis

acceptable transformation of F iff:

ve theorem via “proof by contradiction”.

rty:

rule r in S (F) such that the action of r on a network pack
t of F on p. This implies that the action of the firewa
work traffic is different from the action taken by the ne
on S (F). Thus, the semantics of the original firewall rule
at of the transformed rule-set.
ased rule-set are scanned in a sequential manner and d
ased on traffic characteristics. Hence, the rules in the ru
e from the rule-set F. The manner, in which the rules ar
-sets, does not add any new rule or cause any rule dele
o new rules are created or deleted due to the transform
that the rule r in S (F) must belong to some priority lev
which implies we arrive at a contradiction.

ules in the transformed firewall rule-sets S (F) that hav
one that is in the original rule-set F. This proves th

and the rules of the original rule-set are preserved aft

31

ns-
his
on
in

d-
n-

nt)
he
To

st-

k-
all
ew
e-

di-
ule
re
e-
a-

vel

ve
hat
er

532 S. Acharya

Cost property:

Let the operational cost of the original firewall rule-set and the transformed rule-
set be C (F) and C (S (F)), respectively. The focus of this research is on the most
widely used list-based firewalls. For our evaluation we have assumed that rule
matching is the most expensive operation. The operational cost of rule matching is
proportional to the number of rules in the rule-set1.

Let us assume for contradiction that C (F) > C (S (F)). For this assumption to
be true, there exists at-least one packet p such that it matches a rule r in the fire-
wall rule-set, where the cost of matching in the transformed firewall set is higher
than the cost of matching in the original rule-set. Let the operational cost of
processing the network packet p which matches rule r in the firewall rule-set F be
represented as x and that matches rule r in transformed firewall S (F) be y, where y
> x. Due to the list-based firewall operation, the only way y is greater than x, is if
the rank of r in S (F) is lower than the rank of r in F. Since, both the firewall rule-
sets are sorted by traffic characteristics (hit-count of incoming traffic), there exists
rule r′ in the firewall rule-subset S (F) that has higher hit-count than r and is lower
rank in the original rule-set F. Since, all the rules in F are sorted according to hit-
count information and there are no new rules created or deleted due to the trans-
formation process, we arrive at a contradiction.

Hence, we prove that the operational cost of firewall rule-sets S (F) is <= the
cost of the original rule-set F. In the worst case, the length of S (F) will be equal to
the length of F, which implies C (F) = S (F).

In the next section 1.4 we discuss the details of two Firewall transformation
approaches, namely, the Optimal and the Heuristic approach.

4 Firewall Splitting Approaches

4.1 Optimal Approach

The Optimal splitting approach is based on an A* search [4] strategy. Achieving
an optimal partition is possible since the cost can be calculated cumulatively for
any partition as it is fixed and does not vary with the tuple priority. The basic steps
of the Optimal Approach are depicted in Algorithm 1.

1 The result has been verified for Linux IPChains Firewall [3]

Accelerating Firewalls

Algorithm 1: Optimal Ap

The function g (n) dete
The function h (n), on the
unassigned tuples if place
the maximum cost of the
minate the computation o
filters do not improve on t

Another mechanism, w
search of the feasible opt
gered when the difference
ror percentage. This enab
solution at a much faster r

Even though a feasible
complexity is of the orde
of tuples becomes large
neck. Another shortcomin
can also become prohibit
dress these drawbacks a s
to a nearly optimal solut
number of tuples.

53

pproach for Rule-set Splitting

ermines the cost of the configuration in the current stat
e other hand, computes the optimal cost of the remainin
ed in either of the subsets. The function hmax(n) calculate
remaining tuples. This can be used as a guideline to te

of the filters if the cost benefit resulting from these ne
the gains of the previous configuration.
which is used to reduce the overhead incurred by th
timal solution, is to prune the search space. This is trig
e between hmax(n) and hmin(n) is lower than a specified e
bles the search to converge to filters of a nearly optim
rate.
e optimal solution can be obtained, the worst-case tim
r of 2N, where N is the number of tuples. As the numbe
searching for such a solution leads to a firewall bottle

ng of the optimal solution is that the memory requiremen
tive as the number of tuples becomes very large. To ad
set of heuristics are proposed. These heuristics converg
tion, while maintaining a time complexity linear in th

33

te.
ng
es

er-
ew

he
g-

er-
mal

me
er
e-
nt
d-
ge
he

534

4.2 Heuristic Appro

The heuristic solutions pr
mining a set of filters and
Each tuple of the list-bas
mance and effectiveness o
sets. As mentioned in [5]
are all disjoint from one a
other enables full flexibili
racteristics.

Depending on the cho
Greedy Heuristic are prop
highest priority tuples as
count-Hit count Heuristic
the initial filters is to assi
in order to arrive at a cos
described in Algorithm 2.

Algorithm 2: Hit count-H

The next variation of t
highest costing tuple and
tuples, which is at a maxim
calculated using the DIST
tic is referred to as the Hit

The third variant of the
assignment. This heuristi
mized algorithm is used
The selected set is then us

S. Achary

oach

roposed are local greedy search solutions aimed at dete
d splitting the list-based tuple set into two tuple subset
sed set is disjoint from the other. This aids the perfo
of the approach to split the tuples into smaller tuple sub
application of greedy scheme works best when the tuple

another. In other words, making tuples disjoint from eac
ity for tuple splitting and reordering based on traffic ch

oice of the initial filters, five different variations of th
posed. The first variation is to deterministically assign th
s the initial filters. This heuristic is referred to as H
c. The idea behind choosing the highest ranked tuples a
ign the highest costing tuples into different tuple subse
st balanced solution. The main steps of the algorithm ar

Hit count Heuristic

the Greedy Heuristic is to assign one initial filter as th
d the next initial filter as one amongst the rest of th
mum distance from the highest cost tuple. The distance

TANCE () function. This variation of the Greedy Heuri
t count-Max distance Heuristic.
e Greedy Heuristic uses a randomly selected initial filt
c is referred to as Random-Random Heuristic. A rando
to determine initial filters from a set of possible filter

sed to build the hierarchical structure.

ya

er-
ts.
or-
b-
es
ch
a-

he
he

Hit
as

ets
re

he
he
is

is-

er
o-
rs.

Accelerating Firewalls 535

The fourth variant of the Greedy Heuristic is to consider the distance between
all possible pairs of filters. The pair that contains the filters with maximum dis-
tance from each other is selected. This strategy has potential to split the tuples into
well-balanced sets. This heuristic is referred to the Max distance-Max distance
Heuristic. The complexity for all the above approaches is proportional to the
number of tuples in the initial tuple set.

The fifth variant of the Greedy Heuristic is the All Pair Heuristic. This variant
considers all possible pairs of tuples as initial filters. Using the method depicted in
Algorithm 2 we determine a split for each possible pair and then pick the split
with the least cost.

The results for All Pair Heuristic are not included as the heuristic never con-
verged to a solution due to the excessive overhead required to obtain the most cost
efficient configuration among all possible pairs of tuples. The time complexity of
this heuristic is of the order of N3, where N is the number of tuples. For large val-
ues of N, the computational cost of the heuristic becomes prohibitive.

4.3 Improvements to Rule-Set Splitting Approaches

As we discussed in the previous section, establishing near optimal rule splits di-
rectly affects the performance of the hierarchical filter in turn improving the oper-
ational cost of the firewall. The reason being the filter split governs the “re-splits”,
“re-promotions” and “re-orders” of the rules in the rule subsets, which helps to
incorporate traffic dynamics in the filter operation for a given firewall. The better
the split (based on the traffic characteristics) the more stable and balanced the
hierarchical firewall.

In this section our goal is to exploit the traffic characteristics further in order to
deter- mine the patterns in data which will aid the definition of better splits to ena-
ble hierarchical firewall optimization. In our analysis we conclude that the choice
of initial filters should be accurate and is a defining factor in the design of stable
rule split subsets. As discussed in Algorithm 2, consideration of a single criteria
(e.g. traffic volume/hit-count information) is insufficient to determine accurate
initial filters for the hierarchal rule split. We consider the patterns in the traffic in
order to aid the choice of the initial filters. This will necessarily affect the compu-
tation of better or closer to optimal rule-set splits (aiding better traffic filtering). In
the following subsection we present the clustering rule split approach to aid de-
centralized firewall optimization.

4.3.1 Clustering Rule Split

We determine the patterns in the traffic data via an exhaustive search algorithm to
output a group of clusters. The firewall administrator specifies the criteria for the
cluster organization. The criteria could be a single attribute (e.g. protocol:
TCP/UDP) or a combination of attributes. Such a search results in sets of clusters
based on the specified criteria. Since our problem deals with the design of two ini-
tial filters for the hierarchical split operation, we arrive at two cluster sets (groups)
based on the self-similar criteria as defined earlier. These self-similar clusters are
the precursors to the rule splitting approaches as discussed above.

536 S. Acharya

We then pick the initial filters one from each cluster group. We then follow the
rule splitting steps as discussed in Algorithm 2. The cluster groups act as a feed-
back to the rule splitting process in this step. Each rule during the splitting process
tries to be retained in its self-similar cluster group during the process of hierar-
chical filter set determination. Since the clustering of the rules are run offline; we
have the liberty to run the exhaustive search algorithm. The disjoint nature of the
rules in the rule-sets enables the clustering and rule splitting process in determin-
ing traffic balanced rule split sets.

4.3.2 Parallel A* Approach

In the next improvement, we propose a change in the Optimal splitting approach
presented above to aid faster splits and to enable the split of larger data sets. Pre-
viously we have proposed an variant of the A* search strategy to search for the de-
fining filters for each split set. The runtime for such an approach in worst case is
2N, where N is the number of initial rules in the linear rule-set. For rules greater
than 1000 Algorithm 1 did not terminate and hence did not produce the split sets
we required. To overcome this problem we incorporated parallelism in the A*
search [6] to enhance the splitting performance on larger data sets. We extended
the optimal search approach developed earlier to include parallelism. The chal-
lenge is to keep track of the various intermediate sub solutions. We used multiple
hashing mechanisms to store the locally optimal solutions to be used later to arrive
at the final optimal split subsets. The proposed parallel A* approach perform much
better and is able to arrive at rule splits for large data sets (nearly 10,000 rules).

4.3.3 Weighted Distance Function

The distance function as presented in Algorithm 2 is calculated by assigning equal
weights to all the dimensions of a packet filter. Our analysis concludes that this
assumption is not accurate. We propose that the distribution of the tuples amongst
the dimensions should determine the weights that the dimensions take and the
normalization should occur on them. We changed the present splitting approach of
finding the defining filter of a tuple by including a weighted distance function to
determine the weighted distance of a tuple from the defining filters. This approach
leads to more balanced splits. Results show that the split is about the improve
from a 30 : 70 split to a almost 45 : 55 split. This optimization aids to reduce the
worst-case packet matching time for the hierarchical firewall we designed.

5 Design Architecture and Methodology

In this section we presents the architectures and algorithms for a de-centralized
firewall optimization, OPTWALL [7]. As we have discussed earlier, contrary to a
list-based structure, a hierarchical design leads to efficient organization of rule-
sets, thereby increasing significantly the performance of the firewall. OPTWALL
uses a hierarchical approach to partition the original rule-set into mutually exclu-
sive subsets of rules to reduce the overhead of packet filtering.

Accelerating Firewalls

In OPTWALL, the pro
hierarchical structure. Th
vels of the hierarchy for
match between the attribu
icy, occurs. In this case, t
enforced. Alternatively, o
action can either be accep
reject, in which case the p
of the objective and basic

5.1 OPTWALL Des

Given a large rule-set of s
into ‘K’ mutually exclusiv
which represents a super
proach of the OPTWALL

− Reduce the cost o
processing time a

− Preserve the sema

Fig. 1 N rules into K partitio

53

cessing of a packet at a firewall starts at the root of th
he packet is subsequently forwarded to the remaining le
r further processing. Packet processing completes if
utes of the packet, as defined by the firewall security po
the action, defined by the corresponding firewall rule,
on a non-match, a default action is invoked. The defau
pt, in which case the packet is forwarded to destination, o
packet is dropped. In the following, a formal specificatio

operation of OPTWALL are discussed.

ign Goals

size ‘N’, the objective of OPTWALL is to partition this s
ve subsets. Each subset is associated with a unique filte
set of the associated policy subset. The hierarchical ap
architecture is driven by three main design goals:

of processing the firewall rule-set, defined as the averag
packet incurs before an action is enforced by the firewal

antics of the original rule-set, and

on problem

37

he
e-
a

ol-
is

ult
or
on

et
er,
p-

ge
ll,

538

− Maintain the o
change.

It is to be noted that in its
can be reduced to the ‘Clu
picts the process of partiti

To address the comple
ative approach to partitio
rarchy of mutually exclu
divided into two subsets a
set. The resulting subsets,
el of the hierarchy. This
subsets at the current leve
noted that this cost als
OPTWALL partitioning pr

Fig. 2 Basic operation of OP

5.2 Hierarchical Fir

In this section we will pr
design goals. We first de
subsets and their corresp
build the OPTWALL hier
this structure.

S. Achary

optimality of the rule-set as traffic patterns and rule-se

s general form the ‘K-partition’ problem is NP hard, as
ustering’ [8] or the ‘K-median’ problem [9]. Figure 1 d
ioning ‘N’ rules into ‘K’ subsets.
exity of the partitioning problem, OPTWALL uses an ite
n the original set of rules and produce a multi-level hie
sive, cost-balanced rule subsets. Initially, the rule-set
and filters, which covers the rules contained in each sub
, along with their corresponding filters, form the first lev
iterative process continues until further division of th

el of the hierarchy is no longer cost effective. It is to b
so includes the cost of determining the filters. Th
rocess is described in Figure 2.

PTWALL

rewall Optimization Model

resent the processes used to achieve each of OPTWAL
escribe the multi-level data structure composed of ru
ponding filters. We then discuss the procedure used t
rarchical structure and the actions required to maintai

ya

ets

it
e-

er-
e-
is
b-
v-
he
be
he

LL
ule
to
in

Accelerating Firewalls 539

5.2.1 Data Structure

In order to process the rules, OPTWALL uses a hierarchical data structure in which
the deepest level of the hierarchy contains the rule subsets and the intermediate le-
vels contain filters, which cover the rules included in those subsets.

The design of the data structure must ensure that the operational cost is re-
duced. The design must also ensure that the semantic integrity of the original rule-
set is preserved. It is to be noted that the operational cost is determined by
the deepest rule subset. Balancing the hierarchical structure in order to reduce the
length of the deepest rule subset is, therefore, vital if the desire is to achieve the
maximum reduction in processing cost. Furthermore, the data structure must be
designed in such a way that the re-balancing process, in response to traffic
changes, can be achieved with minimal overhead.

Semantic integrity of the original rule-set can be achieved, during the rule-set
partitioning process, by computing filters that represent accurately and completely
the rule subsets. Furthermore, packet processing must follow the same semantics
specified by the filters resulting from the partitioning process. If the rules are split
and reordered, in order to optimize operational cost, the process of reinforcing the
original rule semantics must be achieved with reduced overheard.

5.2.2 Hierarchical Structure Building

The process of building the hierarchical structure described previously is accom-
plished using three basic stages:

− pre-processing,
− ordering, and
− splitting.

In the following, we discuss the basic operations carried out at each of these de-
sign stages.

The pre-processing stage takes the original list-based rule-set as its input and
produces an optimized rule-set. This optimized rule-set consists of fully disjoint
and concise rules, where all rule redundancies and dependencies are removed [10].
The fact that the rules in the rule set are mutually disjoint provides OPTWALL
with full flexibility to reorder the rules and divide them into rule subsets, without
violating the semantics of the original rule-set.

In the reordering stage, rules are reordered such that the highest cost rules are
moved to the top of the rule-set. As stated previously, the cost of a rule is based
upon the size of the rule and the amount of traffic processed by that rule, as indi-
cated by its hit-count. By reordering rules the overall cost of processing traffic is
reduced.

The goal of the splitting stage is to produce a partition of the original rule-set
into a set of mutually disjoint rule subsets. This process involves taking the pre-
processed rule-set and dividing it into rule subsets. Each rule subset is defined by

540 S. Acharya

a tuple, which covers all rules in the subset. All such covering tuples are disjoint
from one another. To partition the original rule-set, OPTWALL uses a multi-step
process, whereby it initially splits the original rule-set into two subsets. It then re-
cursively runs this splitting process on the subsets produced by the previous stage
to generate the next level of the hierarchical structure. This splitting process con-
tinues until the overall processing cost overshadows the benefit gained by further
splitting the current subsets. When this occurs, the splitting process terminates and
the previous level is selected as the feasible optimal depth of the hierarchical
structure.

The efficiency of the partitioning process strongly depends on the way the rule
subsets are produced at different levels of the hierarchy. Several strategies to pro-
duce feasible rule-set splitting can be used. These strategies are discussed in later
sections of this chapter.

The produced hierarchical structure is then converted to a series of IP-table rule
sub- sets. It is to be noted that most list based firewalls, such as Linux IPCHAINS
[4], support the ability to forward packets from one list to another for further
processing. Consequently, the OPTWALL hierarchical structure can be used to
augment the filtering capabilities of list-based firewalls.

5.2.3 Hierarchical Structure Maintenance

The hierarchical structure is built to reflect the current traffic pattern and rule-sets.
As the traffic pattern and rule sets change, the hierarchical structure must be up-
dated to maintain its balance. To detect changes, OPTWALL monitors the traffic
logs in real-time and adjusts the hit-counts. OPTWALL asserts that changes have
occurred if the difference between the old and updated hit-counts of any rule ex-
ceeds a predetermined threshold. This threshold, a tunable parameter, is deter-
mined based on the traffic characteristics and the policy set under consideration.

If the need to balance the hierarchical structure rises, OPTWALL uses the exist-
ing traffic logs to update the cost of rules in the rule subsets, including rules,
which have been added to reflect a new security policy. OPTWALL then uses
reordering, re-splitting, and promoting to reestablish the balance of a hierarchical
structure.

Re-ordering consists of re-prioritizing the rule subsets at the deepest level of
the hierarchical structure. This process is necessary to take into consideration the
impact of traffic variations on the hit-count of rules in a given rule-set. Re-
ordering is triggered when the difference between the current and previous hit-
counts of a given rule exceeds a preset threshold.

Re-splitting is invoked when a sub-hierarchical structure becomes out of bal-
ance, due to traffic variations. A sub-hierarchical structure is considered to be out-
of-balance if the average packet processing cost exceeds a predefined threshold.
This process can occur at any level, including the root of the hierarchical structure.
When sub-hierarchical structure is out of balance, splitting is applied to the

Accelerating Firewalls 541

original rule subset that generated this sub-hierarchical structure. In some cases, it
is not possible to produce a more balanced hierarchical structure, in which case the
level is marked as currently optimal and the threshold for the intermediate levels
are increased.

Promoting aims at reducing the overhead of packet processing at different le-
vels of the hierarchy. The need for rule promotion occurs when a single rule hit-
count increases dramatically and exceeds its predefined threshold. This scenario is
likely to occur during anomalous traffic behavior, typically observed during Deni-
al-of-Service (DoS) attacks. To mitigate the impact of DoS attacks and drastically
reduce the cost of processing traffic generated by these attacks, the rule is pro-
moted to a level above the filters. Depending on the rule’s priority, promotion may
continue recursively until it reaches its appropriate priority level. In the extreme
case, the rule may be moved all the way up to the root of the hierarchical structure.
This promotion is temporary and the rule is not removed from the rule subsets.
The reason behind the temporary promotion stems from the transitory nature of
DoS attacks. Once the traffic has returned to its normal levels, the promoted rule
can be removed from the higher levels.

The automatic interaction between the levels (parent-child modules) of
OPTWALL is illustrated in Figure 3. Each level, starting from the root, acts as a
central authority to a lower level in the hierarchy.

The efficiency of the splitting process, in terms of packet processing overhead,
strongly impacts the performance of the firewall. We first describe the splitting
process and discuss various solutions proposed for splitting the rule-set. We define
a tuple, as a rule with single attribute value. We will use the tuple set as the input
to our splitting process.

The outputs of the splitting operation are two filters and their corresponding
tuple subsets. The filters and tuple subsets are semantically similar to that of a sin-
gle list-based tuple set.

The process of splitting relies upon three basic functions:

− MATCH (),
− DISTANCE (), and
− WIDEN ()

All three functions are available on the filter object and all accept a single argu-
ment of a tuple.

The MATCH () function checks to see if a tuple is covered by the filter. The
source and destination IP addresses are compared to the range specified in the fil-
ter. Similarly the port number is compared to the port range specified in the filter.
The protocol type is matched to a list of protocol types the filter evaluates upon.
This function returns true if the tuple matches the tuple and false otherwise.

542

Fig. 3 OPTWALL Architect

S. Achary

ture

ya

Accelerating Firewalls 543

The DISTANCE ()function calculates the distance between a given tuple and
the filter. If the filter matches the tuple then the value returned by this function is
0. Otherwise, this function returns a positive number between 0 and 1. The dis-
tance is based on the entire tuple.

The numerical value between two IP addresses represents the distance between
them. If the IP addresses represent ranges, the distance function based on the dis-
tance between the two farthest points within the ranges is calculated. A similar
procedure is used to calculate the distance between ports or port ranges. The pro-
tocol distance is set to 0 if the protocol already exists in the protocol list for the fil-
ter. Otherwise the distance is set to 1. All the distances are then normalized to the
maximum values of their respective fields. The summation of this normalized val-
ues are then weighted and re-normalized to produce a value between 0 or 1.

The WIDEN() function is used to expand a filter such that it matches the given
tuple. This is achieved by expanding the IP range, port range, and protocols. A
function calculates the cost of the tuple based on traffic characteristics and other
tuple properties.

The driver of the splitting process is the search for a set of filters, which covers
the hierarchical structure without violating the semantic integrity of the original
rule-set, aiming at improving the operational cost of the firewall. Ideally, optimal
splitting ensures that, at the end of the partitioning process, all subsets have equal
cost. Consequently, when an optimal split is achieved, the average processing cost
of each packet is reduced by half of its original cost. An optimal strategy for per-
forming a cost-balanced split of the original set of rules is to use two sub-lists and
alternatively place the rules in each list, starting with the highest cost rule, until
the set of rules is exhausted. While this strategy is optimal, it is not always feasi-
ble. This due to the fact that each rule subset produced at each stage of the split-
ting process must have a mutually disjoint set of filters. Computing such filters
may not be always achievable.

In the next section we present the detailed evaluation study of the proposed
OPTWALL implementation.

6 Evaluation

In this section we describe the experiments and evaluations to validate the Hierar-
chical Firewall Optimization approach. We perform our validations by improving
on the widely used open source firewall, Linux IPCHAINS. The data used for our
experiments is emulated data from a large Tier-1 ISP. Our choice of firewall is
representative of list-based firewall, which is the focus of this research.

544

Fig. 4 Experimental Setup

The experimental setup
a machine acting as a fir
The machines used for o
running Ubuntu Linux op
ensure that there are no o
experimental setup.

There are two types o
namely, the worst case an
traffic is composed of a s
This assures that the pack
emulated traffic is generat
tionally instantiating them
firewall operation. The w
mance of OPTWALL in co
formance at worst case is
the overall CPU utilizatio
from 25% to 100% utiliz
proach is used to determin

6.1 Evaluation Resu

The following subsection
the OPTWALL approach.

S. Achary

p for the evaluation of the proposed approach consists o
ewall and another generating traffic and collecting log

our evaluation are AMDAthlontm 64 bit Processor 3000
perating system. The machines are isolated for testing t
other variants. Figure 4 shows the block diagram of th

of traffic characterizations used to evaluate OPTWALL
nd the emulated case behavior. In the worst case scenari
single packet type that does not match any of the tuple
ket will be filtered only by the default action tuple. Th
ted by creating packets that match each tuple and propo

m to a traffic trace similar to that of a large Tier-1 ISP
worst case traces are used to study the worst case perfo

omparison to the baseline case, a list-based firewall. Pe
determined by using constant traffic rates and measurin

on. Traffic rates are determined by loading the fire- wa
zation with the installed list-based rule-set. A similar ap
ne the load for the emulated traffic evaluations.

ults

discusses the various results highlighting the potential o

ya

of
gs.
0+
to
he

L,
o,

es.
he
or-
P’s
or-
er-
ng
all
p-

of

Accelerating Firewalls

6.1.1 Hierarchical Mod

This study is performed to
fect on efficient firewall op
rarchy depends on the tup
traffic. For our evaluation
proach used to determine
periments are conducted o
heuristic amongst all the s
of nearly 5,000 tuples, load
Heuristic for our evaluatio
posed OPTWALL framewo
harm than good. The resul
ber of re-splits and the gain

Fig. 5 Hierarchical vs. List-b

6.1.2 Worst case Perfo

The next study performed
of the firewall. A worst ca
the system requires proce
match the last tuple, whi
evaluations. The results
tuples. Due to the memo

54

del Evaluation

o evaluate the potential of the hierarchical design and its e
ptimization w.r.t. a list-based design. The extent of the hi

ple set size, the traffic characteristics and the variability
we fixed the tuple size, load applied and the splitting ap

the benefit from the proposed hierarchical design. The ex
on a heavily loaded system and using the best performin
olutions proposed earlier in the chapter. We use a tuple s
d of 1,440 packets/sec and the Max Distance-Max Distanc
ons. Results as in Figure 5 shows the potential of the pro
ork. It is to be noted that after a point, re-splits cause mo
lts depict a way to arrive at a sweet spot between the num
n to due the hierarchical design.

based performance

ormance Evaluation

d is to deter- mine the worst case packet processing co
ase packet processing occurs when every packet enterin
essing of the entire tuple subset. This means that it wi
ich is default deny. We used various tuple sizes for ou
are for a typical large tuple set, consisting of 60,00

ory limitation of using the Optimal Approach, we use

45

ef-
e-
in
p-
x-
ng
set
ce
o-
re

m-

ost
ng
ill
ur
00

a

546

pruned approach, ∼A* A
strate that the ∼A* Appr
best in comparison to the
ters output by the ∼A* Ap
approaches.

Fig. 6 Performance evaluatio

Fig. 7 Emulated traffic perfo

S. Achary

Approach for our evaluation. Results in Figure 6 demon
roach and Max distance-Max distance Heuristic perfor
e base- line list-based approach. It is to be noted that fi
pproach perform better traffic filtering than the heuristic

on (Worst case – 60,000 tuples)

ormance evaluation

ya

n-
m
il-
cs

Accelerating Firewalls

6.1.3 Emulated Traffic

The next study is to deter
fic applied follows the no
of the proposed scheme.
and in the emulated case
any gain on the emulated
more anomalous traffic
OPTWALL can deal with
anomalous traffic.

6.1.4 Handling Attacks

The aim of this study is t
traffic fluctuations. Since
predictable, it can cause a
8 illustrates an instance of

Fig. 8 Default deny rule hits

To test the performanc
attack and increasing the
000. Figure 9 shows the
changes and hence aiding

54

Performance Evaluation

mine the CPU consumption of the firewall when the tra
ormal traffic trace. Results as in Figure 7 show the benef

The CPU improvement in the worst case is about 35%
is about 14%. Since, the CPU consumption is additiv

d case can be translated as a capacity for dealing wit
that can be handled by the firewall. In other word
a larger predicted traffic volume and also a much large

s Evaluation

to test the strength of OPTWALL in handling attacks an
the hit-counts for default action tuples are large and un

a huge bottleneck to the entire firewall operation. Figur
f a large hit-count for a default action tuple.

e of OPTWALL in handling such attacks we emulated th
hit-count of a certain default action tuple from 0 ∼ 10
competence of OPTWALL in countering dynamic traff
 the steady maintenance of firewall operation.

47

af-
fit
%

ve,
th

ds,
er

nd
n-
re

he
00,
fic

548

Fig. 9 Countering DoS attack

Fig. 10 Sensitivity analys

S. Achary

ks

is

ya

Accelerating Firewalls

6.1.5 Sensitivity Analys

The final study is aimed
analysis is performed for
tails a comparative study
heuristic solution and the
ly loaded firewall operati
ristic solutions are best su

6.1.6 Improved Rule Sp

In this study we evaluate
proach presented in Sect
emulated case operation
and 7000 packets/second
voke the best performing
compassing filters from t
20 runs of the experiment
ious approaches are repre
demonstrate the benefit o
cost of firewall.

Fig. 11 Weighted split perfo

54

sis Evaluation

at sensitivity analysis of the proposed approaches. Th
tuple sizes varying from 0 - 1000 tuples. Figure 10 d

y between the baseline list-based, the best per- formin∼A* approach. The evaluation is conducted for a heav
on. From the results we conclude that the proposed heu

uited for hierarchical firewall optimization.

plitting

e the benefit of the improved traffic-aware splitting ap
tion 1.4.3. The evaluation is for the worst case and th
of the firewall. The traffic load is 2000 packets/secon
for worst case and emulated case, respectively. We in

g Max-distance-Max-distance heuristic to determine en
the resulting cluster groups. The result is averaged ove
t. The Y-axis represents the CPU-Utilization and the va
esented in the X-axis. Results in Figure 11 and Figure 1
of the proposed approach in improving the operation

rmance – Worst case

49

he
e-
ng
vi-
u-

p-
he
nd
n-
n-
er

ar-
12
nal

550

Fig. 12 Weighted split perfo

7 Conclusion

This chapter introduces a
mation approaches aimed
centralized firewall opera
the OPTWALL toolset. OP
ous splitting processes to
study the performance of
eration. We also introdu
mechanism to deal with s
and tool is flexible to be u
believe this research pres
wall optimization. Results
ing the performance of de

References

[1] Denial of Service, htt
[2] Lakshman, T.V., Stidi

cient multi-dimensiona
(1998)

[3] Srinivasan, V., Suri, S
In: Proceedings of SIG

[4] Linux ipchains, http

S. Achary

rmance – Emulated case

a novel firewall transformation framework and transfo
d at improving the performance and manageability of de
ation. We introduce a hierarchical splitting approach v
PTWALL helps to achieve the maximum benefit via var
arrive at feasible optimal and near optimal solutions. W

f OPTWALL both for worst case and normal firewall op
uce a novel adaptive anomaly detection/countermeasur
short term and long-term anomalies. Our proposed mod
used in different firewall environments and data sets. W
ents the design of a complete optimizing toolkit for fire
s demonstrate that the proposed approach aids in improv
e-centralized firewall operation.

tp://www.cert.org/homeusers/dos.html
alis, D.: High-speed policy-based packet forwarding using eff
al range matching. In: Proceedings of SIGCOMM. ACM Pre

S., Varghese, G.: Packet classification using tuple space searc
GCOMM. ACM Press (1999)
://people.netfilter.org/rusty/ipchains

ya

or-
e-

via
ri-

We
p-
re

del
We

e-
v-

fi-
ess

ch.

Accelerating Firewalls 551

[5] Hamed, H., Al-Shaer, E.: Dynamic rule-ordering optimization for high-speed firewall
filtering. In: ASIACCS (2006)

[6] A* Search Algorithm, http://en.wikipedia.org/wiki/A*_algorithm
[7] Acharya, S., Abliz, M., Mills, B., Greenberg, A., Znati, T., Ge, Z., Wang, J.: Optwall:

A hierarchical traffic-aware firewall. In: 14th Annual Network and Distributed Sys-
tem Security Symposium, San Diego, CA (February 2007)

[8] Brucker, P.: On the complexity of clustering problems. In: Optimization and Opera-
tions Research, pp. 45–54. Springer (1977, 1997)

[9] Charikar, M., Guha, S., Tardos, Shmoys, D.B.: A constant-factor approximation algo-
rithm for the k-median problem. In: ACM Symposium on Theory of Computing
(1999)

[10] Acharya, S., Wang, J., Ge, Z., Znati, T., Greenberg, A.: Traffic-aware firewall opti-
mization strategies. In: IEEE International Conference on Communications, Istanbul,
Turkey (June 2006)

	Accelerating Firewalls: Tools, Techniques and Metrics for Optimizing Distributed Enterprise Firewalls
	Introduction
	Firewall Transformation Framework
	Firewall Transformation Approach
	Firewall Splitting Approaches
	Optimal Approach
	Heuristic Approach
	Improvements to Rule-Set Splitting Approaches

	Design Architecture and Methodology
	OPTWALL Design Goals
	Hierarchical Firewall Optimization Model

	Evaluation
	Evaluation Results

	Conclusion
	References

