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Abstract. Seven up-to-date adaptive variants of differential evolution were com-
pared in six benchmark problems of two levels of dimension (D = 30 and D = 100).
The opposition-based optimization was also implemented to each adaptive variant
and compared in experiments. It was found that all the algorithms perform very re-
liably in the problems of D = 30, whereas their reliability rate in the problems of
D = 100 differs substantially among the test problems. Only two algorithms (JADE
and b6e6rl variant of competitive DE) operate with acceptable reliability in all the
problems. Considering the computational costs, the rank of the algorithms is dif-
ferent in various problems. When the average performance over all the problems
is taken into account, JADE was the most efficient and b6e6rl the most reliable.
The implementation of opposition-based optimization into adaptive variants of dif-
ferential evolution does not increase the reliability and its positive influence on the
efficiency is rare. Based on the results, recommendations to application of adaptive
algorithms are formed and the source code of the algorithms is available online.

1 Introduction

The search of the global extreme of an objective function occurs frequently in many
fields of human activities. Without loss of generality, the problem can be simply
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formed as minimization problem in a very clear form. The single-objective contin-
uous optimization problem is formed as follows:

The objective function to be minimized is f (x), x = (x1,x2, . . . ,xD) ∈ RD, the
feasible domain Ω is defined by specifying boundary constraints, which are lower
(a j) and upper (b j) limits of each component j, Ω = ∏D

j=1 [a j,b j], a j < b j, j =
1,2, . . . ,D . The global minimum point x∗ satisfying condition f (x∗)≤ f (x), ∀x∈Ω
is the solution of the problem. If needed, the global maximum of f (x) can be found
as the global minimum of g(x) =− f (x).

The problem is formulated clearly and the need to solve such a problem occurs
frequently in many areas. Natural demand is to find an acceptable approximation of
the global minimum point reliably and as quickly as possible. However, finding the
point x∗ is not an easy task. There is no deterministic algorithm solving this problem
in polynomial time [2] in general. Standard deterministic optimization algorithms
tend to stop the search in local minimum nearest to the input starting point. There-
fore, heuristic search is widely used in the global optimization. Such heuristics are
often inspired by the evolution in populations and they are called evolutionary al-
gorithms (EAs). Such algorithms are able to find an acceptable solution sufficiently
close to the global minimum point x∗ with reasonable computational costs, but effi-
ciency of the search is sensitive to the setting of their control parameters. Applica-
tion of them usually requires a time-consuming tuning of control parameters to the
problem in question.

Researchers have spent a great effort to develop adaptive or self-adaptive evolu-
tionary algorithms applicable without control-parameter tuning, i.e. such algorithms
that are almost control-parameter-free. In spite of the fact following from No Free
Lunch Theorem [28] (no search algorithm is superior to others for all possible opti-
mization problems) some self-adaptive algorithms performing well for a wide class
of problems were developed.

2 Differential Evolution Algorithm

Differential evolution (DE) was introduced by Storn and Price [21, 22] as a global
optimizer for continuous optimization problems with a real-value objective func-
tion. DE algorithm has become one of the most frequently evolutionary algorithms
used for solving the global optimization problems in recent years [14]. Like other
evolutionary algorithms, DE works with a population of individuals (NP points in
the feasible domain Ω), that are considered as candidates of solution. The population
is developing iteratively during the process by using evolutionary operators of se-
lection, mutation, and crossover. The basic scheme of DE is shown in a pseudo-code
in Algorithm 1.

The trial vector y is generated by crossover of two parent vectors, the current (tar-
get) vector xi and a mutant vector v. The mutant vector v is obtained by a mutation.
During last years many kinds of mutation have been proposed and tested. Here we
mention those kinds of mutation used in algorithms compared in this study. Sup-
pose that r1, r2, r3, r4, and r5 are five mutually distinct points taken randomly from
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Algorithm 1. Differential evolution
1: generate an initial population P = (x1,x2, . . . ,xNP), xi ∈Ω distributed uniformly
2: while stopping condition not reached do
3: for i = 1 to NP do
4: generate a trial vector y
5: if f (y)≤ f (xi) then
6: insert y into new generation Q
7: else
8: insert xi into new generation Q
9: end if

10: end for
11: P := Q
12: end while

population P, not coinciding with the current xi, F > 0 is a control parameter, and
rand(0,1) is an uniformly distributed random number between 0 and 1. The muta-
tion vector v can be generated as follows:

• rand/1
v = r1 +F (r2− r3) , (1)

• rand/2
v = r1 +F (r2− r3)+F (r4− r5) , (2)

• best/2
v = xbest +F (r1− r2)+F (r3− r4) , (3)

where xbest is the point with the minimum function value in the current popula-
tion.

• rand-to-best/2

v = r1 +F (xbest− r1)+F (r2− r3)+F (r4− r5) , (4)

• current-to-rand/1

y = xi + rand(0,1)× (r1− xi)+F (r2− r3) . (5)

Note that the current-to-rand/1 mutation generates a trial point y directly, because
(5) includes so called arithmetic crossover.

• randrl/1
v = rx

1 +F (r2− r3) , (6)

where the point rx
1 is not chosen randomly like in rand/1, but tournament best

among r1, r2, and r3, i.e. rx
1 = argmini∈{1,2,3} f (ri), as proposed in [8].

The crossover operator constructs the trial vector y from current individual xi and the
mutant vector v. Two types of crossover were proposed by founders of DE in [22].
Binomial crossover replaces the elements of vector xi using the following rule
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y j =

{
v j if Uj ≤ CR or j = l
xi j if Uj > CR and j �= l ,

(7)

where l is a randomly chosen integer from {1,2, . . . ,D}, and U1,U2, . . . ,UD are in-
dependent random variables uniformly distributed in [0, 1). CR ∈ [0,1] is a control
parameter influencing the number of elements to be exchanged by crossover. Eq. (7)
ensures that at least one element of xi is changed, even if CR = 0. The variant of
DE using mutation (1) and binomial crossover, in abbreviation DE/rand/1/bin, is the
most frequently used DE strategy in applications.

For exponential crossover (strategies with the exponential crossover are denoted
by DE/·/·/exp), the starting position of crossover is chosen randomly from 1, . . . ,D,
and L consecutive elements (counted in circular manner) are taken from the mutant
vector v. Probability of replacing the kth element in the sequence 1,2, . . . ,L, L≤D,
decreases exponentially with increasing k. L adjacent elements are changed in ex-
ponential variant, in binomial one the changed coordinates are dispersed randomly
over the coordinates 1,2, . . . ,D. While in binomial crossover the relation between
the probability of mutation and the CR is linear, in the exponential crossover this re-
lation is nonlinear and the deviation from linearity enlarges with increasing dimen-
sion of problem. Probability of mutation (pm) controls the number of exchanged
elements in crossover, pm×D is the mean value of mutant elements’ count used
in producing offsprings. Zaharie [29, 30] derived the relation between pm and CR
for exponential crossover. Her result can be rewritten in the form of polynomial
equation

CRD− D pm CR+ D pm− 1 = 0 . (8)

The value of CR for given value of pm ∈ (1/D,1) can be evaluated as the root of the
equation (8). The exponential crossover resembles two-point crossover in genetic
algorithms but the length of exchanged part is controlled by the parameter CR.

Compared to other evolutionary algorithms (EAs), the differential evolution has a
very few control parameters. Except the size of population NP common for all EAs
it is the choice of mutation and crossover strategy, and pair of parameters F and
CR, controlling the mutation and crossover, respectively. However, the efficiency of
differential evolution is very sensitive to the control parameter setting of F and CR
values and partly also to the selection of a DE strategy. Suitable control-parameter
values for a specific problem may be found by trial-and-error tuning, but it requires
a lot of time.

Based on wide experimental results, there are some recommendations for the
setting of these parameters, see e.g. [6, 7, 14, 19, 22], but such recommendations
are not valid in general.

In order to avoid time-consuming parameter tuning in the applications of DE,
several new adaptive or self-adaptive modifications of DE were proposed, e.g. [3,
4, 9, 10, 12, 15, 16, 24, 25, 31, 32]. Moreover, the application of opposition-based
learning in DE is proposed in [17, 18] and it was found that it increases the per-
formance of non-adaptive DE variants. The up-to-date summary of the results in
DE research has been presented recently in the comprehensive papers by Das and
Suganthan [5] and by Neri and Tirronen [11].
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3 DE Variants in Experimental Comparison

Four self-adaptive DE variants (jDE [3], JADE [32], SaDE [15], and EPSDE [10])
are considered currently as the state-of-the-art DE variants and the performance of
novel DE variants is compared with these state-of-the-art DE variants in currently
appearing studies. These four DE variants are also included in our study along
with a variant of competitive DE [26] and two variants of DE based on compos-
ite trial vector generation strategies and control parameters that has been published
recently [27].

3.1 jDE

A simple and efficient adaptive DE variant (mostly called “jDE” in literature) was
proposed by Brest et al. [3]. It uses the DE/rand/1/bin with an evolutionary self-
adaptation of F and CR. The tuple of these control parameters is encoded with
each individual of the population and survives if an individual is successful, i.e. if it
generates such a trial vector which is inserted into next generation.

The values of F and CR are initialized randomly for each point in population
and survive with the individuals in the population, but they can be randomly mu-
tated in each generation with given probabilities τ1 and τ2. If the mutation condition
happens, new values of CR ∈ [0, 1] uniformly distributed, and F also distributed
uniformly in [Fl , Fu] are used in generating a trial vector and stored in the new pop-
ulation. Input parameters are set to Fl = 0.1, Fu = 0.9, τ1 = 0.1, and τ2 = 0.1 as
applied in [3].

3.2 SaDE

Differential evolution algorithm with strategy adaptation (SaDE) was introduced by
Qin and Suganthan in [16]. A more sophisticated and more efficient variant was
proposed later in [15] and it is used in our experimental comparison.

Four mutation strategies, namely rand/1/bin, rand/2/bin, rand-to-best/2/bin, and
current-to-rand/1, for creating new trial vectors are stored in a strategy pool. Initially
the probabilities of all the strategies are set to 1/4, i.e. all the strategies have the same
probability to be chosen. After the first LP generations, the probability of strategy
selection to generate a new trial vector is based on its success rate in previous LP
generations, the LP generations are used as a learning period. The calculation of
probability values is carried out as follows:

pk =
Sk

∑4
j=1 S j

, (9)

where
Sk =

succk

succk + failk
+ϕ , (10)
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succk is the cumulative count of the kth strategy success in previous LP generations.
Similarly, failk is the cumulative count of the kth strategy failure in generating a trial
vector during last LP generations. Note that succk + failk is the count of kth strategy
selection during the learning period. The value of ϕ = 0.01 is used to avoid the
possible null success rates. The values of pk are recalculated after each generation.

The strategy selection in SaDE is similar to the selection applied in competitive
DE as described in Subsection 3.5 but the evaluation of probability values is slightly
different as well as the length of the learning period which here is a constant given
as input parameter of the SaDE algorithm (set to recommended value LP = 50 in
our experiments).

The values of the parameter F are generated randomly for each trial vector from
a normal distribution with mean 0.5 and standard deviation 0.3, no adaptation of F
is used in this algorithm.

The values of the parameter CR are generated from the normal distributions
N(CRmk,0.1), where the parameters CRmk, k = 1,2,3,4, are the mean values of
the distributions, the standard deviation is equal 0.1 for all the strategies. Initial val-
ues of CRmk = 0.5 are used for all the strategies during the first LP generations and
applied to those target vectors to which the kth strategy is assigned. To adapt the
crossover rate CR, CRmemk vectors of length LP are used to store those CR values
generating trial vectors successfully entering the next generation within previous LP
generations. Then the values of CRmk, k = 1,2,3,4, are updated to be the median of
CRmemk after each generation.

3.3 JADE

JADE, introduced by Zhang and Sanderson in [32], is a new algorithm of adaptive
differential evolution. It extends the original DE concept with three different im-
provements - current-to-pbest mutation strategy, adaptive control of parameters F
and CR, and archive.

Current-to-best is one of the well-known mutation strategy used in various DE
algorithms. Greedy strategies like current-to-best are known for their fast conver-
gence as the best solution found so far is used in the evolutionary search. Due to the
resultant reduction of the population density, these strategies may also cause prob-
lems such as premature convergence. In JADE, current-to-pbest mutation strategy
with optional archive is used to provide fast convergence without losing reliability.
The current mutant vector v is generated in the following manner:

v = xi +F (xpbest− xi)+F (xr1− xr2) , (11)

where xpbest is randomly chosen from 100p % best individuals with input parameter
p ∈ (0,1]. Value of p ∈ [0.05,0.20] is recommended in [32], in our simulations we
used p = 0.05. The vector xr1 is randomly selected from P (r1 �= i), xr2 is randomly
selected from the union P

⋃
A of the current population P and the archive A. The

archive A is initialized as an empty set. In every generation, parent individuals re-
placed by better offspring individuals are put into the archive. After every generation
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the archive size is reduced to NP individuals by randomly dropping surplus individ-
uals. The trial vector y is generated from v and xi using the binomial crossover with
the control parameter CR.

Adaptation of parameters CR and F is carried out as follows. For each generation,
the crossover probability CR and the mutation factor F are independently generated
for each individual xi. The CR value is generated according to the normal distribu-
tion of mean μCR and standard deviation 0.1 and then truncated to [0,1]. The F value
is generated according to the Cauchy distribution with location factor μF and scale
parameter 0.1. Then it is truncated to 1 if F > 1 or regenerated if F < 0. During
every generation we keep SCR as the set of all successful CR’s in the generation and
SF as the set of all successful F’s in the generation. The μCR and μF parameters are
initialized to be 0.5 and updated at the end of each generation as

μCR← (1− c) μCR + c meanA(SCR) ,

μF ← (1− c) μF + c meanL(SF) ,
(12)

where c is an algorithm parameter, c ∈ [0,1] (we used c = 0.1), meanA is the arith-
metic mean, and meanL is the Lehmer mean, defined as

meanL(SF) =
∑F∈ SF

F2

∑F∈ SF
F

. (13)

3.4 EPSDE

In this adaptive DE variant [10], an ensemble of mutation strategies and parame-
ter values is applied. The mutation strategies and the values of control parameters
are chosen from pools. The combination of the strategies and the parameters in the
pools should have diverse characteristics, so that they can exhibit distinct perfor-
mance during different stages of evolution when dealing with a particular problem.
The triplet of strategy, F, CR is encoded along with each individual (vector) of pop-
ulation. At the beginning, the triplets are initialized randomly and then they develop
by evolution. If the target vector produces a successful trial vector entering the
next generation, its triplet (strategy, F, CR) survives with the trial vector for next
generation and the successful triplet is also stored in auxiliary memory. Otherwise,
the triplet (strategy, F, CR) is randomly re-initialized with a new mutation strategy
and associated parameters from the respective pools or from the stored successful
triplets with equal probability.

The following ensemble of strategies and values of control parameters are used
in the EPSDE algorithm described in [10]:

• pool of strategies is {best/2/bin, rand/1/bin, current-to-rand/1} ,
• pool of F values is {0.4,0.5,0.6,0.7,0.8,0.9} ,
• pool of CR values is {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9} .

The memory of the successful triplets has the length of LP, where LP is an input
parameter of the algorithm set up to LP = NP in our experiments.
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Thus, the adaptive features of EPSDE can be considered as a combination of mul-
tiple strategies used in SaDE [15], competitive DE (e.g. b6e6rl) [26], and CoDE [27]
with evolutionary approach to surviving the strategies successful in previous gener-
ation applied in jDE [3]. The advantage of EPSDE algorithm is its clear motivation
and simplicity.

3.5 Competitive DE

Adaptive DE with competition of different strategies (competitive DE) was in-
troduced in [24]. Any of H strategies in the pool can be chosen for the gen-
eration of a new trial point y. A strategy is selected randomly with probability
qh, h= 1,2, . . . ,H. At the start the values of probability are set uniformly, qh = 1/H,
and they are modified according to their success rates in the preceding steps of the
search process. The hth setting is considered successful if it generates such a trial
vector y satisfying f (y)≤ f (xi). Probability qh is evaluated as the relative frequency
according to

qh =
nh + n0

∑H
j=1(n j + n0)

, (14)

where nh is the current count of the hth setting successes, and n0 > 0 is an input pa-
rameter. The setting of n0 > 1 prevents from a dramatic change in qh by one random
successful use of the hth strategy. To avoid degeneration of the search process, the
current values of qh are reset to their starting values if any probability qh decreases
below some given limit δ , δ > 0. The input parameters controlling competition are
recommended to be set up to n0 = 2 and δ = 1/(5×H). These values are also used
in our study.

Several variants of competitive DE differing both in the pool of DE strategies
and in the set of control-parameters values were tested [25]. We use a variant of
competitive DE that appeared well-performing and robust in different benchmark
tests [26]. In this variant, denoted b6e6rl hereafter, 12 strategies are in competition
(H = 12), six of them using the binomial crossover, rest of them using the exponen-
tial crossover. The randrl/1 mutation (6) is applied in all the strategies, two different
values of control parameter F are used, F = 0.5 and F = 0.8. The binomial crossover
uses three different values of CR, CR∈ {0,0.5,1}. The values of CR for exponential
crossover are evaluated as the roots of the equation (8), three values of probability
pm are set up equidistantly in the interval (1/D,1). These 12 very different compet-
ing strategies (small and medium value of F , six very different crossover operators)
give a good chance for balancing exploration and exploitation in the different stages
of the search process.
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3.6 Composite Trial Vector Generation Strategies and Control
Parameters

Another algorithm used in the experiments is DE with composite trial vector genera-
tion strategies and control parameters, CoDE, presented recently by Wang et al. [27],
where CoDE algorithm was also compared with four adaptive DE variants (jDE,
SaDE, JADE, EPSDE) in the extensive benchmark tests [23]. The results showed
that CoDE is at least competitive with the algorithms in the comparison.

The CoDE combines three well-studied trial vector strategies with three con-
trol parameter settings in a random way to generate trial vectors. The strategies are
rand/1/bin, rand/2/bin, and current-to-rand/1 and all the three strategies are applied
when generating a new vector (line 4 in Algorithm 1). It results in having three off-
spring vectors and among them the vector with the least function value is used as
the trial vector. The values of control parameters F and CR are chosen randomly
from the parameter pool containing [F = 1.0, CR = 0.1], [F = 1.0, CR = 0.9], and
[F = 0.8, CR = 0.2].

After the first reading of [27] it was not quite clear if the binomial crossover
should be used after the current-to-rand/1 mutation like in [13] or no other crossover
is applied when this mutation is used because it includes so called arithmetic
crossover making this strategy rotation invariant. Two versions of this algorithm
were implemented, one with the binomial crossover (denoted “CoDE0” hereafter)
and the second one without the binomial crossover (denoted “CoDE1” hereafter).
The CoDE0 variant has appeared to be more efficient in preliminary experiments.
In electronic discussion with the first author of the paper [27] it was found that the
CoDE1 variant with small modifications was used in their experiments.

3.7 Opposition-Based DE

Application of opposition-based learning in stochastic optimization algorithms has
appeared recently [17, 18] and it is called opposition-based optimization (OBO).
Basic idea is to search for a solution not only within the individuals of the population
developed by evolutionary operators but also in the opposite part of the current
search space T . The opposite point to the point x∈ T , T = ∏D

j=1[l j,u j], l j < u j, j =
1,2, . . . ,D is defined as symmetric with respect to the center of T by

x̆ = l+u− x . (15)

The opposite population O of NP points to the population P according to rela-
tion (15) is generated occasionally, then the function values in the opposite points
are evaluated and from the set P∪O the NP fittest individuals are selected to the
new population.

At the start of the optimization, the space for searching an opposite population
is set to T = Ω = ∏D

j=1[a j,b j], a j < b j, j = 1,2, . . . ,D , i.e. the lower and upper
boundaries are l = a and u = b, respectively. The search space T for the opposite
points shrinks dynamically during the search process. If the current population P
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is a matrix of the size (NP×D), then lower and upper boundaries are evaluated as
l = min(P) and u = max(P) supposing the functions min(·) and max(·) give the
vectors of column minima and maxima, respectively. Thus, the current dynamically
shrinking search space for the opposite population can be written as

T =
D

∏
j=1

[l j,u j], j = 1,2, . . . ,D . (16)

The opposite population is generated after the initialization of the population for the
first time. During the search process, the opposite population is generated in ran-
domly selected generations if the condition of rand(0,1) < JR is satisfied, where
rand(0,1) is a random value from uniform distribution on [0,1) and JR (jumping
rate) is an input parameter of the algorithm. According to the results of experi-
ments in [17], the jumping rate should be usually set to a constant value in the range
[0.1, 0.4] and rather small values of the jumping rates are recommended for smaller
population sizes. The value of JR = 0.3 is used in our experiments.

The opposition-based differential evolution (ODE) was studied in [17]. The
strategies DE/rand/1/bin, DE/rand/1/exp, DE/rand/2/bin, DE/rand/2/exp were ex-
perimentally compared in variants with and without OBO. It was found that ODE
variants performed the same or better than their DE counterparts in respect to the
number of objective function evaluations and the average reliability rate. It was also
found that ODE outperformed the DE variant, where the random points in the dy-
namically shrinking search space T were used instead of the opposite points.

To our best knowledge there is no evidence if the opposition-based optimization
might be helpful in adaptive DE variants. Hence the opposition-based optimization
was implemented to all the adaptive DE variants described above in Subsections 3.1-
3.6 and the performance of the corresponding algorithms with and without OBO was
also compared.

4 Benchmark Functions

Six well-known test functions [1, 14, 22] are used as benchmark for all the DE vari-
ants in comparison. Four of the following test functions in their original non-shifted
form have the global minimum point in the center of domain Ω, x∗ = (0,0, . . . ,0),
which makes the search of the solution easier for many stochastic algorithms. In this
study, they were used in their shifted versions. The shifted function is evaluated at
the point z = x−o, o ∈Ω, o �= (0,0, . . . ,0). The shift o is generated randomly from
the uniform D-dimensional distribution before each run.

• Shifted Ackley function - multimodal, separable:

f (z) =−20 exp
(
−0.02

√
1
D ∑D

j=1(x j− o j)2
)
− exp

(
1
D ∑D

j=1 cos2π(x j− o j)
)
+

+20+ exp(1) ,

x j ∈ [−30,30], f (z∗) = 0, x∗ = o.
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• Shifted first DeJong function (sphere model) - unimodal, separable, convex, easy
problem:

f (z) =
D

∑
j=1

(x j− o j)
2,

x j ∈ [−5.12,5.12], f (z∗) = 0, x∗ = o.
• Shifted Griewank function - multimodal, nonseparable:

f (z) =
D

∑
j=1

(x j− o j)
2

4000
−

D

∏
j=1

cos

(
(x j− o j)√

j

)
+ 1 ,

x j ∈ [−400,400], f (z∗) = 0, x∗ = o.
• Shifted Rastrigin function - multimodal, separable:

f (z) = 10D+
D

∑
j=1

[
(x j− o j)

2− 10cos(2π(x j− o j))
]
,

x j ∈ [−5.12,5.12], f (z∗) = 0, x∗ = o.
• Rosenbrock function (second DeJong function, banana valley) - multimodal for

D > 3 [20], nonseparable:

f (x) =
D−1

∑
j=1

[
100(x2

j − x j+1)
2 +(1− x j)

2] ,
x j ∈ [−2.048,2.048], f (x∗) = 0, x∗ = (1,1, . . . ,1).

• Schwefel function - multimodal, separable, the global minimum is distant from
the next best local minima:

f (x) = 418.98288727 D−
D

∑
j=1

x j sin(
√
| x j |) ,

x j ∈ [−500,500], f (x∗) .
= 0, x∗ = (s,s, . . . ,s), s

.
= 420.968746.

5 Experiments

Seven adaptive DE variants described above and their counterparts with the exten-
sion of opposition-based optimization were experimentally compared in six bench-
mark problems of two levels of dimension, D = 30 and D = 100. The DE variants
used in the experimental comparison are summarized in the following list:

jDE [3] One DE strategy (DE/rand/1/bin) with self-adaptation of F and CR.
Other control parameters are set to the values recommended by
authors of the algorithm, i.e. the ranges of F and CR values are
[0.1, 0.9] and [0, 1], respectively; mutation probabilities of F and
CR are set to τ1 = τ2 = 0.1.
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b6e6rl [26] Twelve strategies differing in the type of crossover or the values of
F and CR from the strategy pool compete to be selected for the gen-
eration of a new trial vector. The probability of a strategy selection
is proportional to the previous performance of the strategy. The ad-
ditional parameters controlling the competition are set to their rec-
ommended values, n0 = 2 and δ = 1/60.

SaDE [15] Mutation strategy and the parameter CR are self-adapted based on
their previous performance during last LP generations, F is gener-
ated randomly from the normal distribution with a mean and stan-
dard deviation of 0.5 and 0.3, respectively. The value of LP = 50 is
used in our experiments.

JADE [32] DE variant using a newly proposed current-to-pbest mutation with
external archive and self-adaptation of the values of F and CR. The
size of the archive is set to NP, xpbest is randomly chosen from
100p% best individuals, the value of p = 0.05 is used in our ex-
periments, the c = 0.1 is used for the F and CR adaptation.

EPSDE [10] Self-adaptive DE using an ensemble of mutation strategies and
parameter values. The triplet (strategy, F, CR) is encoded along
with each individual of the population. If the target vector pro-
duces a successful trial vector entering the next generation, its triplet
(strategy, F, CR) survives to next generation and the successful
triplet is also stored in auxiliary memory. Otherwise, the triplet
(strategy, F, CR) is randomly re-initialized from the respective
pools or from the stored successful triplets. The length of memory
with the successful triplets is set to LP = NP.

CoDE1 Composite DE variant described in the paper by Wang et al. [27].
Three mutation strategies with parameters assigned randomly from
respective pools are used in each attempt to generate an individual
for next generation. The best point of the triple is used as a new trial
point. No other adaptation is used.

CoDE0 Composite DE variant [27]. It differs from CoDE1 by the application
of the binomial crossover after the current-to-rand/1 mutation.

Each DE variant in this list has also its counterpart with opposition-based optimiza-
tion using the jumping rate set to JR = 0.3.

The DE variants could be considered almost control-parameter free because the
auxiliary control parameters specific to each variant are set to their recommended
values and used in all the problems. Thus, the size of the population and the stopping
condition are the only control parameters to be set up. The same size of population
was used for each DE variant, NP = 60. The stopping condition was defined the
same for all the DE variants in tests as well. In contrast to the stopping condition of
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the maximum allowed number of function evaluations frequently used in literature,
we formed a more realistic condition corresponding to practical optimization prob-
lems when we have no a priori knowledge on the appropriate computational costs.
In such cases, the search should be finished before reaching the maximum allowed
function evaluations if the difference in the worst and best individuals in population
is small. It indicates that the continuation of the search can hardly find a significantly
better solution. Thus, the stopping condition is defined in the form as it follows:

fmax− fmin < ε f OR nfe > D×maxevals, (17)

where fmax− fmin is the difference between the function values of the worst and the
best individual in the population, nfe is the current number of function evaluations,
ε f and maxevals are input parameters set up to ε f = 1× 10−6 and maxevals = 2×
104, respectively, in the experiments.

One hundred of independent runs were carried out for each test problem and
algorithm variant. The number of the function evaluations (nfe) and the minimum
function value in the final generation ( fmin) were recorded in each run. The solution
found in a run is considered acceptable if the minimum function value in the final
generation does not differ from the known correct solution of the test problem by
more than 1× 10−4 (applicable only in test problems with known function value
in the global minimum point). The reliability rate (R) of an algorithm in the solved
problem was then evaluated as the number of runs when fmin− f (x∗) < 1× 10−4,
which means that R is the percentage of runs finding an acceptable solution. If the
acceptable solution was found in a run, the number of the function evaluations
needed for it was recorded. Moreover, the number of the successful trial vectors
(i.e. satisfying the condition f (y)≤ f (xi) ) was also recorded in each run.

6 Results

Results of the algorithms without using OBO are presented in the following subsec-
tion including their thorough analysis. The basic characteristics of performance of
the algorithms using OBO are briefly presented in the next subsection together with
the statistical evaluation of the influence of OBO on the algorithms performance.
Selected additional characteristics of the search process are shown in the last sub-
section.

6.1 Performance of the Algorithms without OBO

Reliability rates (R) and mean values of the nfe of the tested DE variants without
OBO are shown for the problems with D = 30 and D = 100 in Tables 1 and 3, re-
spectively, the mean function values, the standard deviations, and minimum function
values found in 100 runs are depicted in Tables 2 and 4.

It is obvious from the results with basic characteristics of computational costs
and reliability of the search in Tables 1 and 3 that the performance of DE variants
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differs very substantially and the differences are problem-dependent. The CoDE1 is
excluded from next considerations because of its bad overall performance. It was not
able to find any acceptable solution before reaching the maximum nfe in half of the
test problems and its computational costs exceed the other algorithms several times
in the most of the problems. Hence it is hardly recommendable for applications
solving the real-world problems.

Table 1 Basic characteristics of performance, D = 30

Ackley Dejong1 Griewank Rastrigin Rosenbrock Schwefel
nfe R nfe R nfe R nfe R nfe R nfe R

jDE 57592 100 32559 100 43690 100 137343 98 377216 97 60093 99
b6e6rl 71297 100 37472 100 51934 100 73402 100 147185 100 64243 100
SaDE 34594 75 20947 100 28312 87 79901 100 241504 95 53004 100
JADE 75248 100 13470 100 22759 93 67801 100 76440 93 57994 77
EPSDE 44899 100 23818 100 32438 100 251678 100 163082 100 74555 99
CoDE1 338816 100 177328 100 275249 100 410113 100 600000 0 300561 100
CoDE0 91426 100 47670 100 68010 100 268062 100 359860 100 149849 100

Table 2 Function values found by DE variants - means, standard deviations, and minima
computed of 100 runs, D = 30

Ackley Dejong1 Griewank
mean sd min mean sd min mean sd min

jDE 1.21e-6 2.39e-7 5.13e-7 3.87e-7 1.03e-7 1.31e-7 3.99e-7 1.06e-7 1.71e-7
b6e6rl 1.67e-6 2.76e-7 1.01e-6 5.91e-7 1.36e-7 3.16e-7 5.93e-7 1.48e-7 2.08e-7
SaDE 1.04e-1 1.86e-1 7.90e-7 5.88e-7 1.52e-7 3.30e-7 1.67e-3 5.16e-3 1.14e-8
JADE 1.33e-6 2.30e-7 8.04e-7 4.78e-7 1.19e-7 2.40e-7 5.43e-4 2.00e-3 5.42e-20
EPSDE 1.33e-6 2.32e-7 7.97e-7 4.55e-7 1.06e-7 2.28e-7 4.53e-7 1.14e-7 2.61e-7
CoDE1 1.70e-6 2.73e-7 1.13e-6 6.31e-7 1.33e-7 3.37e-7 6.38e-7 1.17e-7 3.64e-7
CoDE0 1.26e-6 2.32e-7 6.50e-7 4.39e-7 1.03e-7 1.99e-7 4.36e-7 1.16e-7 2.10e-7

Rastrigin Rosenbrock Schwefel

jDE 1.99e-2 1.40e-1 1.84e-7 1.20e-1 6.83e-1 5.02e-8 1.18e+0 1.18e+1 1.69e-7
b6e6rl 5.84e-7 1.27e-7 2.83e-7 5.97e-7 1.66e-7 2.28e-7 5.94e-7 1.32e-7 3.25e-7
SaDE 4.80e-7 1.33e-7 1.79e-7 1.20e-1 6.83e-1 1.25e-6 4.68e-7 1.22e-7 2.45e-7
JADE 4.53e-7 1.34e-7 7.24e-8 2.79e-1 1.02e+0 3.80e-7 2.84e+1 5.36e+1 2.19e-7
EPSDE 4.49e-7 1.26e-7 1.32e-7 1.70e-6 8.58e-7 6.44e-7 1.18e+0 1.18e+1 2.10e-7
CoDE1 6.35e-7 1.23e-7 3.17e-7 1.21e+0 4.64e-1 4.96e-1 6.70e-7 1.33e-7 3.49e-7
CoDE0 4.09e-7 9.04e-8 2.23e-7 1.36e-6 4.49e-7 6.14e-7 4.47e-7 1.12e-7 2.34e-7

In the problems with D = 30, the remaining algorithms perform satisfactory with
minimum reliability rate R = 75%. They differ in convergence speed, JADE and
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Table 3 Basic characteristics of performance, D = 100

Ackley Dejong1 Griewank Rastrigin Rosenbrock Schwefel
nfe R nfe R nfe R nfe R nfe R nfe R

jDE 151353 100 89183 100 109712 99 1071669 92 2000040 0 233726 87
b6e6rl 258244 100 145163 100 178750 99 271464 100 910790 97 248053 98
SaDE 77723 0 70955 100 87292 70 322024 91 1885897 51 179603 100
JADE 232678 100 32883 100 41293 65 219513 100 518355 69 174830 54
EPSDE 102604 89 61112 100 76005 82 2000040 0 1548091 82 612686 98
CoDE1 2000040 0 1993438 100 2000040 0 2000040 0 2000040 0 2000040 0
CoDE0 207726 97 123364 100 152927 88 2000040 0 2000040 0 1873010 99

Table 4 Function values found by DE variants - means, standard deviations, and minima
computed of 100 runs, D = 100

Ackley Dejong1 Griewank
mean sd min mean sd min mean sd min

jDE 2.48e-6 3.45e-7 1.61e-6 9.63e-7 1.90e-7 6.59e-7 7.49e-5 7.40e-4 6.70e-7
b6e6rl 3.42e-6 5.21e-7 2.35e-6 1.31e-6 3.00e-7 5.90e-7 7.54e-5 7.40e-4 5.50e-7
SaDE 2.11e+0 4.84e-1 8.79e-1 3.48e-6 1.05e-6 1.78e-6 1.08e-2 3.02e-2 1.97e-6
JADE 4.45e-6 8.40e-7 3.02e-6 3.05e-6 8.72e-7 1.58e-6 7.46e-3 1.49e-2 1.79e-6
EPSDE 1.06e-1 3.05e-1 2.87e-6 2.01e-6 4.77e-7 1.23e-6 1.97e-3 4.46e-3 1.27e-6
CoDE1 3.85e-3 6.77e-4 2.56e-3 2.62e-6 5.78e-7 1.43e-6 2.98e-4 1.04e-4 1.45e-4
CoDE0 2.86e-2 1.64e-1 2.97e-6 1.98e-6 3.80e-7 1.21e-6 1.11e-3 3.14e-3 1.27e-6

Rastrigin Rosenbrock Schwefel

jDE 7.96e-2 2.71e-1 5.56e-7 2.02e+1 1.39e+1 6.82e+0 1.90e+1 5.51e+1 5.14e-7
b6e6rl 1.38e-6 2.62e-7 7.30e-7 1.20e-1 6.83e-1 7.93e-7 2.37e+0 1.67e+1 7.08e-7
SaDE 2.59e-1 1.47e+0 1.41e-6 1.11e+0 4.54e+0 2.35e-5 1.18e+0 1.18e+1 1.79e-6
JADE 1.77e-6 3.39e-7 1.07e-6 1.51e+0 9.91e+0 8.59e-6 6.28e+1 7.61e+1 1.23e-6
EPSDE 2.75e+2 1.38e+1 2.45e+2 1.99e-1 8.73e-1 5.88e-6 2.37e+0 1.67e+1 8.75e-7
CoDE1 1.82e+2 1.13e+1 1.59e+2 6.24e+2 6.78e+1 4.92e+2 3.42e+2 3.33e+2 4.54e+1
CoDE0 1.43e+2 8.83e+0 1.17e+2 1.77e+1 2.90e+0 1.08e+1 4.50e-5 4.30e-4 1.13e-6

SaDE exhibit the least computational costs but their reliability rates are a bit lower
compared to the other algorithms.

In the problems with D = 100, only two algorithms (JADE and b6e6rl) were able
to find acceptable solutions for all six problems, while the other algorithms failed at
least in one problem, SaDE suffered from premature convergence in Ackley problem
and Rosenbrock problem appeared too hard for two algorithms as well as Rastrigin
problem. Concerning convergence speed, some algorithms outperformed JADE and
b6e6rl in a particular problem.
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Table 5 Basic characteristics of performance – average of all the problems

D = 30 D = 100
Alg ave nfe rankn f e ave R rankR ave nfe rankn f e ave R rankR

jDE 118082 5 99.0 4 609281 4 79.7 3
b6e6rl 74256 2 100.0 1 335411 2 99.0 1
SaDE 76377 3 92.8 6 437249 3 68.7 5
JADE 52285 1 93.8 5 203259 1 81.3 2
EPSDE 98412 4 99.8 3 733423 5 75.2 4
CoDE1 350345 7 83.3 7 1998940 7 16.7 7
CoDE0 164146 6 100.0 1 1059518 6 64.0 6

An insight to overall performance of the algorithms with respect to both the com-
putational costs and the reliability rate is provided in Table 5, where the averaged
values of the nfe and R are shown along with their ranks. Concerning the reliability
rates, CoDE0 and b6e6rl search for an acceptable solution with R = 100% in the
problems of D = 30 while the least average computational costs are achieved by
JADE (followed by b6e6rl and SaDE). In the problems of D = 100, JADE is the
best performing with respect to convergence speed followed by b6e6rl while they
exchange their ranks when the reliability is taken into account.

In order to illustrate the differences among the algorithms in computational costs
needed to reach the stopping condition and their variability, the boxplots of nfe are
depicted in Figure 1 for the D = 30 and in Figure 2 for the D = 100, where only
the runs that found an acceptable solution with respect to f (x) (a solution with
fmin < 0.0001 in the final generation) are taken into account and CoDE1 is excluded.

The boxplots of the computational costs in Figures 1 and 2 provide us the results
of successful runs of the algorithm in a given test problem. They indicate both the
location and the variability. Thus we are able to see that e.g. jDE and b6e6rl solve
Griewank problem of D = 30 with almost constant computational costs in all runs
while the JADE and CoDE0 sometimes need nfe much higher than their medians of
nfe.

The convergence speed of the algorithms can differ very significantly and the
boxplots in Figures 1 and 2 show it in a very illustrative way. As expected due to
the results of No Free Lunch Theorem [28], no algorithm is the fastest in all the
test problems. Differences among the algorithms can be very significant like e.g.
in Griewank problem of D = 100 or negligible like e.g. in Schwefel problem of
D = 100, where four algorithms exhibit almost the same performance.
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Fig. 1 Boxplots of nfe (only the runs that found an acceptable solution included), D = 30
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Fig. 2 Boxplots of nfe (only the runs that found an acceptable solution included), D = 100
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6.2 Influence of Opposition-Based Optimization

The results of the DE variants with the application of opposition-based optimization
are presented in this section. Reliability rates (R) and mean values of the nfe of the
tested DE variants with OBO are shown for the problems with D = 30 and D = 100
in Tables 6 and 7, respectively.

The results with basic characteristics of computational costs and reliability rates
in Tables 6 and 7 show similar differences in the performance of DE variants like
the results of variants without OBO presented in Subsection 6.1. It can be seen at
first look that the reliability rates of the variants with OBO are a bit lower, especially
for the problems of D = 100.

Table 6 Basic characteristics of performance when OBO is applied, D = 30

Ackley Dejong1 Griewank Rastrigin Rosenbrock Schwefel
nfe R nfe R nfe R nfe R nfe R nfe R

jDE 56056 99 31337 100 43106 100 121412 19 600016 0 62975 78
b6e6rl 79026 100 41469 100 57994 95 120531 100 159046 100 81597 100
SaDE 37640 63 23475 100 32007 81 96847 57 255433 100 66649 95
JADE 97078 100 13978 100 21624 95 78221 100 83706 99 65660 93
EPSDE 36601 100 19411 100 29497 95 299707 99 403434 95 84043 99
CoDE1 264830 100 139135 100 207124 99 320071 99 600075 1 240045 100
CoDE0 77859 100 42079 100 60108 96 224456 92 392964 100 131050 99

Table 7 Basic characteristics of performance when OBO is applied, D = 100

Ackley Dejong1 Griewank Rastrigin Rosenbrock Schwefel
nfe R nfe R nfe R nfe R nfe R nfe R

jDE 151468 100 88592 100 109041 93 397891 0 2000053 0 214507 0
b6e6rl 218836 100 126343 100 158042 100 446792 25 899411 94 313928 40
SaDE 88534 1 75128 100 94835 63 281090 0 2000054 0 191269 0
JADE 303122 100 36572 100 46352 65 280138 99 622931 58 221369 66
EPSDE 77633 14 59054 100 74415 60 2000053 0 2000055 0 771732 97
CoDE1 1331498 100 755426 100 945675 100 2000118 0 2000112 0 1469938 56
CoDE0 172693 99 98936 100 126921 90 1317748 0 2000119 0 656868 34

The influence of applying the opposition-based optimization into adaptive DE
variants was also compared statistically. The agreement of the computational costs
measured by the number of the function evaluations was tested by the Wilcoxon
two-sample (sum of ranks) test. The agreement in reliability rates was tested by
the Fisher exact test for 2-by-2 contingency table. The results of two-tail tests are
considered in all the comparisons. In the tables with the results of the statistical
tests, the symbol “+” means better performance of DE variant with opposition-
based optimization, and the symbol “−” worse performance of this DE variant. The
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corresponding cell of the table is left empty if no significant difference is detected
at the level of α = 0.05.

The comparison of the number of function evaluations by Wilcoxon test is pre-
sented in Table 8 for D = 30 and in Table 9 for D = 100, along with the relative
changes (in %) of the number of function evaluations due to the application of OBO
in the columns labeled by Δnfe. The relative change is evaluated as follows:

Δnfe =
nfeOBO− nfenoOBO

nfenoOBO
× 100 , (18)

where nfeOBO and nfenoOBO are the average numbers of function evaluations with
and without OBO, respectively. Note that the negative value of Δnfe means better
convergence (with respect to average nfe) of the variant with OBO and therefore, an
increase of the performance.

Table 8 Relative change of nfe (in %) due to OBO and its significance by Wilcoxon test,
D = 30

Ackley Dejong1 Griewank Rastrigin Rosenbrock Schwefel
Δnfe Wilcox Δnfe Wilcox Δnfe Wilcox Δnfe Wilcox Δnfe Wilcox Δnfe Wilcox

jDE −3 + −4 + −1 + −12 + 59 − 5 −
b6e6rl 11 − 11 − 12 − 64 − 8 − 27 −
SaDE 9 − 12 − 13 − 21 − 6 − 26 −
JADE 29 − 4 − −5 − 15 − 10 − 13 −
EPSDE −18 + −19 + −9 + 19 − 147 − 13 −
CoDE1 −22 + −22 + −25 + −22 + 0 −20 +
CoDE0 −15 + −12 + −12 + −16 + 9 − −13 +

Table 9 Relative change of nfe (in %) due to OBO and its significance by Wilcoxon test,
D = 100

Ackley Dejong1 Griewank Rastrigin Rosenbrock Schwefel
Δnfe Wilcox Δnfe Wilcox Δnfe Wilcox Δnfe Wilcox Δnfe Wilcox Δnfe Wilcox

jDE 0.1 −0.7 + −0.6 −63 + 0 −8 +
b6e6rl −15 + −13 + −12 + 65 − −1 + 27 −
SaDE 14 − 6 − 9 − −13 + 6 − 6 −
JADE 30 − 11 − 12 − 28 − 20 − 27 −
EPSDE −24 + −3 + −2 + 0 29 − 26 −
CoDE1 −33 + −62 + −53 + 0 0 −27 +
CoDE0 −17 + −20 + −17 + −34 + 0 −65 +

The influence of OBO on the computational costs was detected frequently but it
appears both in the positive and the negative way. For the problems of D = 30, the
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application of OBO leads to significant decrease of nfe in 17 out of the 42 cases and
to significant increase of nfe in 24 cases. Significant increase of nfe was detected in
15 cases, significant decrease in 20 cases for the problems of D = 100. Moreover,
some differences in nfe were found statistically significant even in the cases where
the relative change Δnfe is negligible from practical point of view, i.e. |Δnfe| ≤ 1%.

The comparison of the reliability rates by Fisher test is shown in Table 10 for D=
30 and in Table 11 for D= 100, where the differences in the values of R achieved due
to the OBO are also presented in the columns labeled ΔR. The results in Tables 10
and 11 indicate that the influence of OBO on the reliability rate is not very strong.
No significant change in the reliability was observed in 36 cases out of 42 for the
problems of D = 30 and in 28 cases out of 42 for the problems of D = 100. Positive
influence was found only in 4 cases (3 out of them in the worst performing CoDE1,
see Table 11) and negative one in 16 cases out of the total 84 cases.

Table 10 Differences of R due to OBO and significance of changes by Fisher test, D = 30

Ackley Dejong1 Griewank Rastrigin Rosenbrock Schwefel
ΔR Fisher ΔR Fisher ΔR Fisher ΔR Fisher ΔR Fisher ΔR Fisher

jDE −1 0 0 −79 − −97 − −21 −
b6e6rl 0 0 −5 0 0 0
SaDE −12 0 −6 −43 − 5 −5
JADE 0 0 2 0 6 16 +
EPSDE 0 0 −5 −1 −5 0
CoDE1 0 0 −1 −1 1 0
CoDE0 0 0 −4 −8 − 0 −1

Table 11 Differences of R due to OBO and significance of changes by Fisher test, D = 100

Ackley Dejong1 Griewank Rastrigin Rosenbrock Schwefel
ΔR Fisher ΔR Fisher ΔR Fisher ΔR Fisher ΔR Fisher ΔR Fisher

jDE 0 0 −6 −92 − 0 −87 −
b6e6rl 0 0 1 −75 − −3 −58 −
SaDE 1 0 −7 −91 − −51 − −100 −
JADE 0 0 0 −1 −11 12
EPSDE −75 − 0 −22 − 0 −82 − 1
CoDE1 100 + 0 100 + 0 0 56 +
CoDE0 2 0 2 0 0 −65 −

We can conclude that the application of OBO to adaptive versions of differential
evolution does not bring such benefit as it was reported in the case of standard DE
variants [17]. The usage of OBO in adaptive DE variants increases the reliability
rate rarely. Convergence rate is increased by OBO sometimes, on other hand the
OBO causes deterioration of the convergence in a part of the test problems.
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6.3 Other Characteristics of Search Process

The rate of the successful trial-vector generation (i.e. the proportion of the trial
vectors satisfying the condition f (y)≤ f (xi) ) is a useful characteristic of the search
process. It is apparent that a high value of the rate leads to fast convergence but
with the risk of premature convergence without finding the region of the global
minimum due to the loss of the explorative ability. Vice versa, very low rate of
the generating of successful trial vectors causes slow convergence or stagnation of
the search process. The average rate values of the successful trial-vector generation
expressed in percent of nfe are presented in Tables 12 and 13 for the problems of
D= 30 and D= 100, respectively. In order not to overload the reader by other tables,
we present only the results of the algorithms without OBO in this section.

Table 12 Average rate values of the generating of successful trial vectors expressed in per-
cent of nfe, D = 30

Ackley Dejong1 Griewank Rastrigin Rosenbrock Schwefel

jDE 25 26 25 9 13 19
b6e6rl 28 30 29 22 27 25
SaDE 32 35 34 16 35 23
JADE 23 51 47 22 45 27
EPSDE 25 28 27 4 24 13
CoDE1 6 7 6 4 3 5
CoDE0 16 18 16 4 17 8

Table 13 Average rate values of the generating of successful trial vectors expressed in per-
cent of nfe, D = 100

Ackley Dejong1 Griewank Rastrigin Rosenbrock Schwefel

jDE 19 19 19 3 15 10
b6e6rl 26 26 26 20 27 23
SaDE 33 36 36 35 37 21
JADE 18 58 58 19 52 23
EPSDE 25 26 25 0 24 4
CoDE1 2 2 2 0 0 1
CoDE0 16 17 17 0 17 2

The rate of the successful trial vectors generations is highly negatively correlated
with nfe, the value of Pearson correlation coefficient is −0.65 for the problems of
D = 30 and −0.59 for the problems of D = 100, the both values of the correlation
coefficient are significantly different from zero, p < 5×10−7 and the null hypothe-
ses on the zero correlation are rejected at any reasonable level of significance. Hence
to follow up the current values of this rate could be helpful for the decision on the
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efficiency of an algorithm in a certain problem. The low values of the average rate
of four algorithms in Rastrigin problem of D = 30 explain their high computational
costs needed for reaching the stopping condition.

Another characteristic of the search process is the proportion of nfe needed to
find an acceptable solution of the problem by an algorithm. The solution found in
a run is considered acceptable in these tests if the minimum function value in the
final generation does not differ from the known correct solution of the test problem
by more than 1×10−4. In Tables 14 and 15, the average percentage of nfe required
to find an acceptable solution is presented. If no acceptable solution of the problem
is found by an algorithm, the corresponding cell is empty.

Table 14 Average percentage of nfe required to find an acceptable solution, D = 30

Ackley Dejong1 Griewank Rastrigin Rosenbrock Schwefel

jDE 74 71 79 93 91 84
b6e6rl 77 72 80 86 92 84
SaDE 76 75 80 92 95 88
JADE 85 73 75 89 94 87
EPSDE 76 72 80 97 93 91
CoDE1 76 71 81 87 83
CoDE0 77 73 81 95 94 91

Table 15 Average percentage of nfe required to find an acceptable solution, D = 100

Ackley Dejong1 Griewank Rastrigin Rosenbrock Schwefel

jDE 78 77 81 98 91
b6e6rl 80 77 82 88 96 87
SaDE 69 82 86 96 99 92
JADE 95 81 85 96 98 96
EPSDE 82 80 84 99 98
CoDE1 78
CoDE0 82 80 84 99

The proportions of nfe needed to find an acceptable solution vary both with re-
spect to the algorithms and the functions. The values of the proportion are lower for
easy problems like Ackley and Dejong1, where all the algorithms are able to find
an acceptable solution in about 3/4 of nfe. For hard Rosenbrock problem, they need
more than 90 % but once an acceptable solution is found, the whole population is
concentrated to the global minimum very quickly.
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7 Source Codes of DE Algorithms

Source code of the algorithms tested in this study is available online1. The adap-
tive DE variants were implemented by the authors of this chapter according to their
descriptions in the journal papers cited in Section 5. All the algorithms are imple-
mented in Matlab except JADE which is written in C. The versions of the algorithms
used in test problems are provided. Hence the codes have some parts to follow up
some characteristics of the search process used in comparison of the algorithms in
benchmark problems but these are not necessary in real-world applications. Never-
theless, these parts of codes and the corresponding input/output parameters do not
prevent from the use of the implemented algorithms to other problems. Examples
of calling the functions (modules) implementing the adaptive DE variants are also
provided for each algorithm, including the settings the auxiliary input parameters
controlling the adaptation to their recommended values used in these experiments.

8 Recommendations for Applications

The adaptive DE variants described above are easy to apply in the solution of the
real-world optimization problem. The users need to implement their objective func-
tion, define the stopping condition (usually to set up the values of ε f and maxevals
in (17) is sufficient), and set up the size of the population. In the case of adaptive
DE variants, the population size can be smaller than the values recommended for
non-adaptive DE strategies. In this study, the population size was set to NP = 60 for
all the test problems both of D = 30 and D = 100, which appears reasonable.

When solving a real-world optimization problem without a priori knowledge
about the property of the objective function, the recommendations bellow should
be followed.

1. Form the stopping condition (17) by setting its input parameters. The value of ε f

depends on the problem to be solved, usually ε f ≤ 1× 10−6 is reasonable. If it
is known a priori that f (x)> 0, ∀x ∈Ω, the stopping condition can be formed in
the term of the relative difference:

fmax− fmin

fmin
< ε f .

The value of maxevals in the range of [1× 104, 1× 105] seems to be sufficient
for adaptive DE variants.

2. Set up the size of population. A proper value of NP depends on the dimension of
the problem. When adaptive DE variants are used, a good choice is NP≥ 20 for
the problems of small dimension and 50≤ NP≤ 3×D for the high-dimensional
problems.

3. Do not rely on the result obtained by one algorithm! No heuristic search can
guarantee that a good approximation of the global minimum is found in the

1 http://www1.osu.cz/˜tvrdik/down/global_optimization.html

http://www1.osu.cz/~tvrdik/down/global_ optimization.html
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finite number of search steps. Hence the application of several adaptive variants
is recommendable when solving a problem without any a priori knowledge. If the
results found by the used variants do not differ significantly, they can be consid-
ered as a good approximation of the global minimum. Otherwise, a variant giving
the best results should be applied in several repetitions. The solution found can
be considered acceptable if the results obtained from the repetitions agree. If the
agreement of the repeated results is not achieved, the whole procedure should be
restarted with a new setting of its input parameters, e.g. the increase of NP twice
might be helpful in such a case and the procedure continues by step 3.

The recommendations formed above can be implemented into a computer program
and applied automatically if a reliable solution of the problem is needed. The fast
convergence of adaptive DE variants enables the application of several algorithms
in the solution of a problem with a smaller effort and lower computational costs than
the trial-and-error control parameter tuning usually needed in the application of a
non-adaptive DE variant.

9 Conclusion

Seven state-of-the-art adaptive variants of differential evolution were tested in
benchmark problems of two levels of dimension. Moreover, the versions of all the al-
gorithms with the implementation of opposition-based optimization were also tested
in the same benchmark problems and the performance of the corresponding algo-
rithms was compared statistically.

The adaptive DE variants except CoDE1 searched for the minimum with high
reliability in the problems of D = 30. Their minimum reliability rate is 75 % if
CoDE1 failing in Rosenbrock problem is omitted. In the problems of D = 100,
the values of the reliability rate are more dispersed. Each DE variant except JADE
and b6e6rl failed completely in the search of an acceptable solution at least in one
test problem. The most reliable DE variant is b6e6rl with the reliability rate of
99 %. It might be caused by the employing of the exponential crossover in a part
of competing strategies as it is considered to be beneficial for the reliability of the
algorithm in the solution of non-separable problems. Note that among the tested DE
variants, the exponential crossover is used only in b6e6rl.

Considering the efficiency of the algorithms, an algorithm outperforming
others in a certain problem can be found but the rank of the algorithm is problem-
dependent. This observation was expected because it is in accordance with the
results of No Free Lunch theorem [28]. Moreover, higher convergence rate of the al-
gorithm is often paid by lower reliability of the search, if the algorithm is too greedy
for a given problem. According to average computational costs, JADE was the most
efficient algorithm in the problems of dimension either D = 30 or D = 100.

The implementation of the opposition-based optimization into adaptive DE vari-
ants does not bring the effect that could be expected based on the results achieved
in non-adaptive DE [17]. Implementation of OBO increases the reliability very
rarely and its influence on the efficiency is questionable. The opposition-based
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optimization is sometimes profitable but sometimes very disadvantageous and the
count of drawbacks is comparable or even higher than the count of benefits. Possible
explanation of the results may be in the balanced exploitation and exploration of the
search in adaptive DE variants.

Based on the results of the experiments and conclusions in literature, the recom-
mendations for real-world applications of adaptive DE are formed and the source
codes of adaptive DE algorithms are also made available to potential users. The
adaptive DE variants tested in this study do not require to set up the F and CR pa-
rameters that are crucial for the performance of standard DE in a given optimization
problem. Thus, using adaptive DE variants provide the solution less time-consuming
and more comfortable.
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