Modularity in Genetic Programming

Martin Dostal

Abstract. This chapter provides a review of methods for automatic modularization
of programs evolved using genetic programming. We discuss several techniques
used to establishing modularity in program evolution, including highly randomized
techniques, techniques with beforehand specified structure of modules, techniques
with evolvable structure and techniques with heuristic identification of modules.
At first, simple techniques such as Encapsulation and Module Acquisition are dis-
cussed. The next two parts reviews Automatically Defined Functions and Automati-
cally Defined Functions with Architecture Altering Operations that enable to evolve
the structure of modules at the same time of evolving the modules itself. The fol-
lowing section is focused on Adaptive Representation through Learning, a technique
with heuristic-based identification of modules. Next, Hierarchical Genetic Program-
ming is described. Finally, establishing recursion and iteration, a code reuse tech-
nique closely related to modularization, is briefly surveyed.

1 Introduction

Genetic programming is a widely known method for automatic program synthe-
sis by evolutionary means [Ia, ]. The process of searching a program that solves
a given problem can be characterized as breeding candidate programs using evo-
Iutionary operations such as crossover, mutation and reproduction. Candidate pro-
grams are referred as individuals that constitute a population. Each individual is
evaluated using the so-called fitness function that assigns to the individual a num-
ber expressing how well the individual solves the problem. Individual evolution-
ary operations are used to modify existing or creating new individuals. Individuals
are reproduced to the new generation on the basis of fitness selection, so better fit
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individuals have higher chance to survive to the next generation of evolutionary
process than the less fit ones. The process continues repeatedly until a termina-
tion criterion is met. Typically, the termination criterion is represented by finding
an acceptable solution or exceeding a maximum allowed number of generations. A
flowchart of genetic programming is depicted on Fig. [l In this text we do not dis-
cuss the details on evolutionary operations since there are various textbooks such as
l6,[12, 14, [16] which provide a thorough description on this topic.

In genetic programming, programs can be represented in different ways such as
tree graphs or various textual representations ,]. In this chapter we will use
the tree representation and the corresponding textual representation based on Lisp
S-Expressions. Each tree node contains an atomic symbol, which depicts either a
function or a terminal symbol. Functions (of non-zero arguments) are contained in
non-terminating nodes, whose child nodes represent parameters passed to the func-
tion. Terminals, such as variables, numbers and constants are contained in terminal
nodes. Functions of zero arguments are also contained in terminal nodes, obviously.
Note that a tree can be easily transformed to S-expression, a representation of pro-
grams used by Lisp-like programming languages such as Common Lisp or Scheme.
S-expressions are atoms (for purposes of genetic programming, atoms are terminals
and function names) and lists composed of S-expressions. Lists represent function
calls and use the prefix notation. The first element of a list is treated as function
and the other elements as parameters. Fig. [2l depicts a tree representation of an indi-
vidual corresponding to (AND (OR (NOT A) B) (AND A (OR A B))) S-
expression.

Available functions constitute the so called Function set. The function set should
be small, but enough expressive and error-resistant. Error-resistance means that
every possible program based on the function and terminal set can be success-
fully evaluated. These properties are usually referred as universality, sufficiency
and closure [12]. For example, consider again the program depicted on Fig.[2l The
corresponding function set is equal to F = {AND,OR,NOT} and the terminal set
T = {a,B}. This function set is sufficient to express any possible boolean func-
tion. To summarize the overview on genetic programming, let us recapitulate the
preparatory steps for the use of genetic programming:

Define the set of terminals.

Define the set of functions.

Set the fitness measure.

Set the parameters for controlling the run, e.g., the number of generations, popu-
lation size, crossover and mutation probability.

5. Choose the termination criterion.

Ll s

In Genetic Programming, the search effort required to find a solution of the problem
is described by the I(M,i,z) number which is used as a measure of performance.
The I(M,i,z) number expresses the number of individuals that must be processed in
order to solve the problem with a certain specified probability (typically put 99%)
no later that in specified number of generations. Formula[Ildepicts the calculation of
the I(M,i,z) number. M is the size of population, i is the number of generations and
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R(z) is the number of independent runs of the experiment required to yield a success
with probability at least z. The calculation of R(z) is explained in FormulalZ2l P(M,i)
is experimentally observed cumulative probability of success of the experiment no
later than in generation i.

I(M,i,z) =M= (i+1)*R(z) (1)

B log(1 —z)
(O v ®

For example, put z = 0.99, M = 1500 and i = 100. Say, that P(M,i) will be equal
to 0.44. Then R(z) = 8 and thus I(M,i,z) = 1500* (1004 1) * 8 = 1212000, that is
1 212 000 individuals must be processed in order to obtain a solution of the problem
within 100 generations with probability 99%.

2 Modularity

In general, modularity is a concept of dividing a system into separate components
(or constituting a system from such components) that are interchangeable and often
also reusable. Modularity is widely utilized principle in nature as well as in arti-
ficial systems. In nature, the attributes of modularity can be found in construction
of cellular organisms that are, technically speaking, composed of smaller “standard-
ized” units, for instance. Modularity is also a fundamental principle used in artificial
systems including computer programming.

In programming, modularity represents a technique of composing a system of
smaller, independent program units. It enables a separation of concerns, in which
the whole problem is decomposed into small, logical parts that can be created and
verified separately. The separation of concerns is inherently natural for the human
thinking. This concept is often also referred as the divide and conquer maxim, com-
ing from politics and sociology. Use of modularity enables to reuse the modules
which improves the quality of code. The code is reusable, less redundant, better or-
ganized, shorter, more readable and thus better manageable. Modules itself are often
represented by functions (or another means to separate a portion of code, such as
procedures, subroutines or classes) or libraries, depending on particular program-
ming language.

In fact, standard genetic programming has no built-in support for establishing a
modular solution of a problem. It significantly limits the efficiency and, more im-
portantly, the scalability of a system for program synthesis. Actually, even simple
problems can often be solved with more efficiency when modularity is utilized prop-
erly. Without modules, each reusable portion of code must be evolved repeatedly at
the same time. It is analogous to writing a program in the all-at-the-same-time style
without decomposing a problem into subproblems. For instance, consider the even-
parity problem. It is a simple classification problem. A solution of the problem re-
turns True if an even number of inputs are True. Otherwise, it returns False. The truth
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table for the even-3-parity problem is depicted in Table[Il The even-parity problem
has been widely used as a benchmark problem for program synthesis systems. With
standard genetic programming, the problem scales poorly with increasing the num-
ber of inputs, see Table 2] whose first row depicts the computational effort required
to solve even-3, 4 and 5 problem. For the even parity problem it would be useful
to find and reuse a useful portion of code during the evolution in order to improve
the scalability and efficiency. For instance, with a function set composed of OR and
NOT functions, finding a module that computes the XOR function would be particu-
larly useful since a solution of the problem could be expressed as (XOR A (NOT
(XOR B C))). Most likely, solutions based on the original function set would
be more complex (e.g., (NOT (OR (NOT (OR A B)) (NOT (OR (NOT A)
(NOT B)))))) than using the function set with XOR function.

Table 1 The truth table for even-3-parity problem

A B C EP-3
FALSE FALSE FALSE TRUE
FALSE FALSE TRUE FALSE
FALSE TRUE FALSE FALSE
FALSE TRUE TRUE TRUE
TRUE FALSE FALSE FALSE
TRUE FALSE TRUE TRUE
TRUE TRUE FALSE TRUE
TRUE TRUE TRUE FALSE

Establishing a useful modularity lies in two closely related aspects: finding a
proper structure of modules (a number of modules, a number of arguments of each
module) and evolving a useful and reusable functionality of each module.

In most methods for modularization of genetic programming, modules are repre-
sented as functions that can be automatically discovered during the evolution pro-
cess. It means that the function set is also subject to evolution. In other words, we
search for a good representation language for the problem at the same time with
searching a solution of the problem since a small, yet expressive, language can
express the solution as a less complex program than in a representation not such
specific to the problem whose solution is being searched.

3 Encapsulation

In 1992, Koza [12] suggested a very basic technique to modularize the evolved code.
The idea behind the Encapsulation operator is to freeze a part of an individual’s
code into a new function which code can be then reused in other individuals in a
population.

The encapsulation begins with the selection of a promising individual using a
selection operation, e.g., roulette wheel selection. Next, a non-terminating node in
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the individual is selected at random. A subtree located at the selected node (the
root-node of the subtree is the selected node) is then replaced (encapsulated) by
the new function call. The function code corresponds to the encapsulated subtree.
The new encapsulated function has zero arguments since the code contains functions
and terminals from the general function and terminal set. Encapsulated functions are
named automatically using the letter “E” and a number in a successive order (e.g.,
“E0”, “E1”, “E2”, ...) and added immediately to the function set in order to be
reused in newly created individuals.

Since the encapsulated code (subtree) is moved from the individual to a new
function, it is not subject to evolution any further. In other words, once the module
is created, its code is frozen. To demonstrate Encapsulation on an example, consider
the following code and corresponding tree on Fig.

(AND (OR (NOT A) B)
(AND A (OR A B)))

Encapsulation

Fig. 2 A tree for (AND (OR (NOT A) B) (AND A (OR A B))) individual

The initial function set is equal to F = {AND, OR,NOT} and terminal set is equal to
T = {a,B}. The selection point has been chosen at random to the OR node on the
left branch of the tree. New function EO will be defined and added to the function
set and the encapsulated subtree will be replaced with the EO function call:

(DEFUN EO ()
(OR (NOT A) B))

Now, the function set will be equal to F = {AND, OR,NOT,E0} and the code of
the encapsulated individual is following:

(AND (EO)
(AND A (OR A B)))

Koza in his work [12] applied experimentally Encapsulation to the Boolean 6-
multiplexer problem. The probability of encapsulation was set to 20%, that is 200
of 1000 individuals in population of each generation were subject to encapsulation.
Koza compared the results obtained with- and without encapsulation operation using
the probability of success P(M,i), M = 1000. However, no substantial differences
in performance were found.
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EO Tree @

Fig. 3 Encapsulation on an individual

4 Module Acquisition

Angeline and Pollack iy proposed a modularization technique called “Module
Acquisiton” (MA). This technique is similar to Koza’s Encapsulation operator in
several aspects. First, the subtrees to define new modules are selected at random.
Second, modules are defined globally. Thirdly, modules are not subject to evolution.

Module acquisition introduces two additional operators to handle the modular-
ity: Compression and Expansion. Similarly to Encapsulation, Compression operator
defines a new function. A randomly selected subtree at given depth is used to define
a new function. Note that since a subtree of a given depth is taken, it may not be
necessarily the complete subtree as shown on Fig. @l Newly defined function will
take arguments p1, pa, ..., pn as required by functions at terminal nodes of the mod-
ule subtree. For instance, the compression of the subtree at Fig. @ will result in a
function of three arguments since AND requires two, and NOT requires one argu-
ment. New functions are named automatically and added to the function set. Thus,
modules are global and static.

New module created by the Compression operator according to the individual on
Fig. @ will have the following definition:

(DEFUN NEWMOD (P1 P2 P3)
(AND (NOT (AND P1 P2))
(OR B (NOT P3))))

The Expansion operator counterparts the Compression operator. A randomly se-
lected function call corresponding to a previously evolved module is reversely re-
placed by the original subtree. Once a module has been expanded in an individual,
it is subject to evolution again. Both operators are applied with a given probability.

5 Automatically Defined Functions

Automatically Defined Functions (ADF) were proposed by Koza and Rice in 1992
[@, ]. This approach is quite different from the above introduced Module Acqui-
sition and Encapsulation. Basically, Automatically Defined Functions are locally
defined modules in contrast to globally defined modules in previously discussed
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Fig. 4 Module Compression

approaches. The modules are contained within an individual, so that they cannot be
called by another individuals.

The second substantial difference lies in the structure of modules. In ADF, mod-
ules have a predefined structure in contrast to Module Acquisition and Encapsu-
lation where modules are chosen at random. Thus in Module Acquisition and En-
capsulation, modules may also have a different structure. When using ADF, the
experimenter must specify the number of automatically defined functions and the
number of arguments for each ADF during the preparatory steps. In fact, this is a
kind of additional knowledge about the problem which can significantly improve
the evolution process, when provided properly. To be clear on the structure, in ADF
the structure of modules is predefined and it is also common for all individuals.
However, the code of each particular ADF in each individual is specific.

When using ADF, the structure of an individual is divided into branches. Branches
are child nodes of the root node which contains the so called placeholder. The
placeholder is an operation which defines how many branches are defined in the
individual. The rightmost branch contains the individual’s code and is called result-
producing branch. Other branches represent the definitions of ADF’s, each branch
corresponding to one ADF. These branches are called function-defining branches,
see Fig.[3l The PROGN function acts as a placeholder.

A different structure of individuals makes it necessary to modify the crossover
operator. The crossover must be performed per branches, so that it is not possible to
combine the code from different branches, e.g., ADF0 and ADF1 or RPB and ADFO0.
The reason is obvious; individual branches have its own function sets and may also
use a different number of arguments.
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Fig. 5 The structure of an individual

5.1 Preparatory Steps:

1. Choose the number of function-defining branches.

2. Choose the arity of each branch.

3. Choose the function and terminal set for each branch.

4. Determine, if references between function-defining branches are allowed.

Since the experimenter specifies the function set for each ADF it is possible to
include also other ADF’s into the function set of a particular ADF. However, it must
be handled carefully since it may result in infinite loops. For example, consider an
ADFO with ADF1 in its function set and ADF1 with ADFO in its function set. It is
possible that ADF0 will call ADF1 in its body and ADF1 will call ADFO, which
would result in an infinite loop.

5.2 Example: Even-4-Parity Problem

For the even-4-parity problem we have chosen two automatically defined functions,
ADFO0 a ADF1. ADFO will take two arguments, ADF1 will take three arguments.

population size M = 4000

maximal number of generations = 51

fitness-cases: all possible combinations

fitness = 24 _ x, x is the number of correct outputs
termination criterion: fitness = 2*

function set for F = {AND, OR,NAND,NOR}
function set for RPB Fg = F U {ADFO0,ADF1}
terminal set 7 = {D0,D1,D2,D3}

function set for ADFO0: Fp = F

terminal set for ADF0: Ty = {ARG0,ARG1}
function set for ADF1: F| = F

terminal set for ADF1: 7} = {ARGO0,ARG1,ARG2}

Koza in [12] performed an experiment with the above described settings. For 168-
times repeated experiments there was a solution found in 93% of runs in less than
10 generations. It follows that I(M,i,z) = 4000 x (9 + 1) x 2 = 80 000.
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Example of a solution:

(PROGN (DEFUN ADFO (ARGO ARGl ARG2)
(VALUES
(OR (AND ARGO ARG1)
(AND (NOT ARGO) (NOT ARG1l)))))
(DEFUN ADF1 (ARGO ARG1)
(VALUES
(AND ARGO (AND (ARGl ARG2)))))
(VALUES
(ADFO (ADFO DO D1) (ADFO D2 D3))))

Fig. 6 An even-4-parity problem solution

Automatically defined functions, when the experimenter defines a promising struc-
ture of individuals (that is the number of function-defining branches and the num-
ber of arguments for each branch), can provide a substantial improvement over the
standard genetic programming. For instance, Koza in [@] compared the standard
genetic programming to genetic programming with utilization of ADF on even 3-
,4-, 5- parity problem and odd 5-parity problem. The obtained I(M,i,z) values are
summarized in Table Pl For details on the control parameters that Koza used see
[12]. Another comparison with a different setup of parameters has been performed
by Koza in [@] we summarize the results in Table[3]
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Table 2 Standard GP vs GP with ADF

system  ep-3 ep-4 ep-5 op-5
GP 80 000 1276 000 7 840 000 912 000
GP(ADF) 80 000 152 000 276 000

Table 3 Standard GP vs GP with ADF

system ep-3 ep-4 ep-5 ep-6
GP 96 000 384 000 6 528 000 70 176 000
GP(ADF) 64 000 176 000 464 000 1 344 000

6 Automatically Defined Functions with Architecture-Altering
Operations

When using Automatically Defined Functions, the experimenter must propose the
number of ADF’s and the number of arguments for each ADF. In other words, a
promising structure of the problem solution must be proposed in advance. Unfortu-
nately, for many problems this preparatory step is difficult since we may not know
how a solution of the problem could be structured. Ideally, a system for evolving
programs should require from the experimenter as few as possible information on
how to solve the problem.

To address this issue, Koza introduced , , ] the Architecture-altering op-
erations (ADF-aao) which enable to evolve the structure of individuals at the same
time of evolving the solution itself. Architecture-altering is composed of six op-
erations (Branch Duplication, Argument Duplication, Branch Creation, Argument
Creation, Branch Deletion, Argument Deletion), each handling a structure of an in-
dividual in some sense.

In the following parts we introduce individual architecture altering operations
including an example of application of the operation to a sample individual depicted
on Fig.[11

6.1 Branch Duplication

Branch Duplication (also called Subroutine Duplication) operates on a copy of se-
lected individual. The operation inserts a new function-defining branch in the indi-
vidual. The new function-defining branch is created by duplication of an existing
branch. The operation may also modify the code of the result-producing branch, but
preserves the program semantics. More precisely, the operation acts as follows:

1. Select an individual from the population probabilistically on the basis of fitness.
2. Make a copy of the individual. The individual will undergo the operation.
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Fig. 7 An individual with one function-defining branch

3. The individual should have at least one function-defining branch and less than a
maximal number of function-defining branches. Otherwise, abort the operation
and continue with the reproduction operation.

4. Select a function-defining branch in the individual.

5. Duplicate the selected branch in the individual and assign an unique name auto-
matically using the “ADF” sequence and a number in successive order. The new
branch has the same argument list and body as the duplicated one.

6. Update the function set with the newly defined branch.

7. Select randomly (with given probability) some nodes within the result-producing
branch that represent a call to the duplicated function-defining branch and replace
them with a call to the newly defined branch. Child nodes (arguments) remain
unchanged.

The Branch duplication operation has two control parameters: a probability of the
operation execution and a preestablished maximum number of function-defining
branches in the individual.

Although the operation itself preserves the individual’s program semantics, it
may be altered by subsequent application of recombination operators.

To demonstrate the operation consider the original program depicted in Fig.
and altered program in Fig [§] using the branch duplication. The ADFO function-
defining branch has been selected to create a new branch using the duplication op-
eration since it is the only function-defining branch available in the individual. New
branch named ADF1 is created from ADF 0. The next step is to replace some nodes
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@ I:l modified nodes

ADFO ADF1-new function-defining branch RPB

Fig. 8 Branch duplication example

representing a call to ADFO with ADF1. In this example the changed node is de-
picted with gray background.

6.2 Argument Duplication

The Argument Duplication operation duplicates one of the arguments present in a
function-defining branch of selected individual. The operation modifies some parts
of the individual. First, it modifies the argument list of the selected function-defining
branch. Second, the body of the selected function-defining branch is modified on
a probabilistic basis. Afterwards, the result-producing branch is modified in order
to update the calls to modified function-defining branch. However, the operation
preserves individual’s program semantics. The Argument Duplication operates in
the following way:

1. Select an individual from the population probabilistically on the basis of fitness.

2. The individual should have at least one function-defining branch with one argu-

ment at least. The branch must have a less than maximum number of arguments

established for the individual itself. Otherwise, abort the operation.

Randomly choose a function-defining branch of the selected individual.

Randomly choose an argument to be duplicated.

5. Add a new argument with unique name to the argument list of the picked branch
and update the terminal set for the individual.

Rl
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6. For each occurrence of the argument-being-duplicated in the function-defining
branch, replace randomly with a given probability the original argument with the
newly added one.

7. Update each occurrence of the picked function-defining branch in the individual.
That is, duplicate the subtree corresponding to the argument-to-be-duplicated in
order to increase the number of arguments applied to call the picked function-
defining branch by one.

The operator is controlled using the following parameters: a probability of executing
the operation, a maximum number of arguments for each function-defining branch.

Fig.Bldepicts an application of the operation on individual from Fig.[Z} Argument
ARG1 in the function-defining branch has been selected to duplicate. That is, new
argument ARG2 is inserted into the argument list and some occurrences of ARG1 in
the function-defining branch are replaced with ARG2. The next step is to modify the
result-producing branch. Each node representing a call to ADF0 must be updated
with a third parameter to be passed to ADFO0. Since the second parameter i.e., ARG1
of the function-defining branch has been duplicated, subtrees corresponding to sec-
ond parameter in each call to ADFO are duplicated and passed to ADFO0 as third
argument. Coincidentally, in both calls to ADFO in the result-producing branch, the
subtree to be duplicated as third argument is equal to D3.

modified or
inserted nodes

Fig. 9 Argument duplication example
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6.3 Branch Creation

The Branch Creation operation (also called Subroutine Creation) operates on one
selected individual. The operation creates a new function-defining branch by choos-
ing a subtree in one of the branches available in the selected individual. Although the
operation may significantly alter the individual’s code structure, it does not modify
the semantics. Branch creation operates in the following way:

1

2.

Select an individual from the population probabilistically on the basis of fitness.
The individual should have a less than maximum allowed number of function-
defining branches. Otherwise, abort the operation.

Randomly select one branch within the selected individual. It may be either one
of function-defining branches or the result-producing branch.

Randomly pick a node in the selected branch and begin traversing the subtree
below the picked node in a depth-first manner.

. For the currently visited node, choose one of the following steps on a random

basis:

a. Designate the current node as the root node for an argument subtree. No fur-
ther traversal will be performed on the subtree.
b. Continue traversal. That is, repeatedly apply (5).

Insert new function-defining branch into the individual. Assign a unique name
to the new branch. The branch will take the same number of arguments as the
number of designated nodes during the traversal. The body of new branch is con-
stituted using a modified copy of the subtree starting at the node picked in step
(4) of this algorithm. The modification of the copied subtree is performed on
nodes designated during the traversal. Designated nodes (and thus also the corre-
sponding subtrees, if present) are replaced by the corresponding local arguments
of the newly defined function-defining branch. It finishes the constitution of a
new body of the newly defined function-defining branch.

Replace the subtree used to create the new branch with the node containing the
name of the new function-defining branch. The new node will have the same par-
ent as the root node of the subtree. In other words, the subtree used to constitute
the new module is replaced with the call to such module. In the next step, the
corresponding parameters are assigned to the new branch call.

For each node in the subtree below the node designated during the traversal,
use the designated node and the subtree below as a parameter used to the new
function-defining branch call. This step finishes the modification of a branch used
to create a new module.

The terminal set of the new branch is equal to the terminal set of the branch
selected in step (3) minus arguments replaced in the newly defined branch by
local arguments, plus those local arguments. Function set of the selected branch
is updated with the newly defined branch name. The function set of branches that
include the selected branch is updated with the newly defined branch name.
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The operator is controlled using the following parameters: a probability of executing
the operation and the maximum number of function-defining branches. Koza in his
work [@] on page 97 introduces some other control parameters, such as minimum
and maximum number of arguments of function-defining branches and maximum
size of a branch. However, no details on how the Subroutine creation operation
handles these parameters are provided.

To illustrate the operation, we perform branch creation on an individual depicted
on Fig.[7l We deliberately selected the AND node in the result-producing branch as a
starting node for new branch. Then we performed the subtree traversal staring at the
selected node. The subtree and designated nodes are depicted on Fig[10; the subtree
is enclosed in a dashed cloud area and the designated nodes are depicted with gray
background. Designated nodes in the subtree are replaced by new local arguments
for the new branch, namely ARG0, ARG1 and ARG2. Now, the subtree can be used to
define the body of a new function-defining branch as shown on Fig.[I1l The result-
producing branch must be updated now. The subtree used to create new branch is
replaced by a call to the newly defined branch, that is ADF1. Parent node to ADF1
is equal to the parent node of the subtree’s root node. Corresponding parameters
are passed to ADF1, that is (NOT D1) for first argument, (NOT D1) for second
argument and D3 as third argument.

| asubtree used to
| create a new

'} function-defining
branch ___-.

i
i

l:l nodes designated |

° during the traversal i
i

Fig. 10 Branch creation example: first phase
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Fig. 11 Branch creation example: second phase

6.4 Argument Creation

The Argument creation adds a new argument into a selected function-defining
branch. The new argument is used to replace a subtree within the selected function-
defining branch. Other branches are modified in order to call the modified function-
defining branch appropriately. Thus, the operator preserves the individual’s program
semantics as the most other architecture altering operators do. The operator acts as
follows:

1.
. Select a function-defining branch within the selected individual.

Select an individual from the population probabilistically on the basis of fitness.

Insert a uniquely named new argument to the argument list of the selected
function-defining branch.

Select a node from the function-defining branch. The node (if represents a func-
tion) must have a less than maximum allowed number of arguments established
for the problem.

Replace the subtree starting at the selected node with node representing the new
argument. The replaced subtree will be used to modify branches that call the
to-be-modified-function-defining branch.

Add an additional parameter to each call of the function-defining branch selected
in step 2. A modified subtree obtained in the previous step will be passed as
new parameter. The modification of the subtree is done on local variables used in
the function-defining branch since these may not be available in other branches.
Such local variables are replaced with corresponding parameters (that is nodes
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or subtrees) passed to the call of the to-be-modified-function-defining branch.
By corresponding parameters we mean parameters of the same order, e.g., first
argument, second argument etc.

7. The terminal set of the selected function-defining branch is enlarged with the
newly created argument. The arity of the branch is incremented.

The operator is controlled using the following parameters: a probability of execut-
ing the operation and a maximum number of arguments for each function-defining
branch.

a subtree from ADFO to be @ @

modified and inserted into
RPB RPB

Fig. 12 Argument creation example

To demonstrate the operation we provide an example on Fig. [12] that depicts the
application of the operator on a program shown on Fig. [/l The program contains
only one function-defining brach, so that the operation will be performed on that
branch. The original branch contains two arguments, namely ARGO and ARG1. New
argument ARG2 will be inserted into the function-defining branch. Now we select a
node for replacing the corresponding subtree with ARG2. We deliberately selected
the AND node, the second argument of OR. The corresponding subtree is depicted
on Fig. in a dashed cloud area. The subtree in the function-defining branch is
replaced with a new node for the new argument ARG2.

The next step is to modify the branches that call the function-defining branch be-
ing modified. Function ADFO0 is called from the result-producing branch only. Each
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call of the ADFO0 in the result-producing branch must be updated with the new ar-
gument since one argument (i.e., ARG2) has been added. The selected subtree from
the function-defining branch will be modified and passed as third argument to calls
of ADF 0. The modification of the subtree is performed as follows; the original argu-
ments used in the subtree, that is ARGO and ARG1 will be replaced by correspond-
ing arguments used to call ADFO in the result-producing branch. That is, the first
parameter of the function-defining branch will be replaced by the first parameter of
the ADFO in the result-producing branch and so on. Precisely, for the subtree used
as third argument to ADFO that is present on the left part of the result-producing
branch: ARGO will be replaced by (NOT D1), the first argument passed to the
ADFO0, and ARG1 will be replaced by D3 since it is the second parameter passed to
ADFO0. For the second occurrence of ADFO in the result-producing branch: ARGO
will be replaced with D2 and ARG1 will be replaced with D3.

6.5 Branch Deletion

Branch deletion removes one of the function-defining branches in the selected indi-
vidual. Each subtree starting with the node corresponding to a call of the removed
function-defining branch must be replaced with another subtree. Basically, one of
the following methods is applied:

1. Consolidation: the subtree is replaced with a call to another function-defining
branch. Note that this operation often does not preserve the semantics of the
individual.

2. Regeneration: the subtree is replaced with a new, randomly generated subtree.
Regeneration obviously almost never preserves the semantics of the individual.

3. Substitution (Koza calls this operation “Macro expansion”): the subtree is re-
placed with the body of function-defining branch being deleted. Local arguments
of the function-defining branch are replaced with the arguments passed to the call
of the function-defining branch to be deleted. Thus, the operation preserves the
program semantics.

The operation is controlled with the probability of subroutine deletion. There is also
a minimum number of branches parameter that affects the applicability of subroutine
deletion.

6.6 Argument Deletion

Argument deletion removes an argument from the selected function-defining branch.
Each subtree corresponding to the parameter being removed in branches that call the
function-defining branch under argument deletion is removed. The node represent-
ing the argument to be removed from the function-defining branch is resolved using
one of the following methods:
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1. Consolidation: the node representing the argument under deletion is replaced by a
node representing another argument. This operation thus almost never preserves
the semantics of the individual.

2. Regeneration: the node is replaced with a new, randomly generated subtree. Ob-
viously, this operation almost never preserves the semantics of the individual.

3. Substitution (Koza calls this operation “Macro expansion”). Before we explain
how the substitution operates, note that the operation preserves the program se-
mantics.

The first step is to delete the selected argument from the argument list of the
picked branch. In the second step, we create as many copies of the branch under
argument deletion as there are invocations in that branch in the individual (al-
though Koza does not state that explicitly, the original branch could be removed
obviously).

For instance, if the result-producing branch calls the branch under argument dele-
tion three times and another function-defining branch (i.e., different than the one
under the argument deletion) calls the branch two times, five copies will be made
in total.

Each copy of the branch has assigned a unique name. The third step is to replace
each invocation of the branch under deletion with an invocation of one of the
copies created in the previous step. The fourth step is to remove the subtree (the
subtree represents a parameter passed to a function invocation) corresponding to
the argument under deletion that appears in the invocation of the corresponding
copy of the branch under argument deletion. In other words, we are modifying a
branch that calls the branch under the argument deletion. The removed subtree is
used to replace the nodes representing the deleted argument in the corresponding
copy of the branch under the argument deletion. This step is repeated for every
invocation of a particular copy of the branch under deletion. The operation has
one potential disadvantage; it rapidly increases the redundancy of the individual’s
code since we must create a copy of the branch under argument deletion for each
invocation of the branch in the individual.

The operation is controlled with the probability of argument deletion. There is
also a minimum number of arguments parameter that affects the applicability of
argument deletion.

Fig. [[3] demonstrates an application of the argument deletion operation by substi-
tution on an individual depicted on Fig.[7l Original function-defining branch is re-
moved and two copies, ADF1 and ADF2 are created. Argument ARGO has been
chosen as argument to be deleted, so that ADF1 and also ADF2 takes only one ar-
gument, namely ARG1. In the next, we have to replace the calls to ADFO0 by a call
to ADF1 and ADF2, respectively. For the call to ADF1 we have to remove the first
parameter, that is (NOT D1) from the result-producing branch and replace all oc-
currences of ARGO in ADF1 with (NOT D1). Analogously, for the call to ADF2
we have to remove D2, the first parameter passed to the function call, from the
result-producing branch and replace all occurrences of ARGO in ADF2 with D2.
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Fig. 13 Argument deletion example

7 Adaptive Representation through Learning

Adaptive Representation Through Learning (ARL) , , ] has been proposed
by Rosca and Ballard as an extension and modification of their earlier introduced
modularization method called Adaptive Representation (AR) [22]. Both AR and
ARL heuristically discover promising parts in individuals and define those as new
modules. Modules are represented as globally defined functions in contrast to ADF
and ADF with Architecture-altering operations where modules are defined locally
within individuals. In ARL, the structure of modules is not predefined and modules
are not subject to evolution. However, some modules may be deleted or some new
modules defined during the evolution.

The most important part of ARL is the identification of promising code in the in-
dividuals. A part (i.e., a subtree in tree-based representation) is considered promis-
ing if it has a small height (e.g., usually between 3 and 5), high differential fitness
and high block activation.

Differential fitness is the difference in fitness between the individual and its least
fit parent. In other words, individuals with highest improvement over its parents are
preferred since those individuals presumably contain useful pieces of code. Note
that authors of ARL suppose that only a small fraction of population has the differ-
ential fitness greater than zero.

Block activation is the number of evaluations (executions) of the root node of a
subtree (called a block in ARL) within the individual. Highly active blocks (that is
blocks with high number of activations of the root node and non-zero, or greater
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than a minimum percentage, activations of every other node in the block) of a small
height (usually between 3 and 5) are considered salient and further transformed to
new modules. During the constitution of a new module from a salient block, a ran-
dom subset of terminals is replaced by new, local terminals (that is local variables)
within the block. The process of a module discovery and subsequent constitution of
a module can be summarized as follows:

1. Select individuals with highest positive differential fitness.

2. For each selected individual assign to each node the number of activations in the
evaluation of fitness.

3. Create a set of candidate blocks (subtrees) by selecting blocks of small height
and high activation.

4. Remove all blocks that contain inactive nodes.

5. For each candidate block do:

a. Determine the terminal subset.

b. Create new module with parameters corresponding to a random subset of ter-
minals present in the candidate block.

c. Duplicate the individual with the highest differential fitness.

d. Replace the candidate block within the individual with a call to newly defined
module.

Rosca in [20] states that the use of modularity increases the diversity in a population
in comparison to standard genetic programming. In ARL, modules can be dynami-
cally created as well as removed during the evolution process. New modules can be
defined either:

1. In each generation. However, the subroutine discovery process can be too com-
putationally intensive to be effectively performed in each generation. Also, there
may be a slow progress in early generations or between a small number of con-
secutive generations.

2. On the basis of epochs. An epoch is a period of consecutive generations through-
out which the system operated with a fixed representation.

3. On the basis of decreasing a population diversity. The diversity is measured us-
ing a population entropy. Individuals in a population are categorized into classes
according to certain properties or behavior, the number of individuals in each
class is determined. The diversity is then computed using Shannon’s information
entropy, see , ] for details.

Modules can also be deleted during the evolution process as we stated above. This
is done using the evaluation of module usefulness, where modules of low useful-
ness are deleted. The usefulness of a module is determined by the average fitness
of all individuals that have called the module over a fixed “time window” of past
generations.

Rosca and Ballard compared ARL to standard genetic programming and genetic
programming with ADF on the PacMan problem ] and showed the advantages
of ARL over the standard GP and GP with ADFs. Dessi et al. analyzed ARL and
proposed several improvements, see [@] for more detail.
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8 Hierarchical Genetic Programming

Hierarchical Genetic Programming (hGP) 5] is a method for local, context-sensitive
modularization of individuals in population. The basic idea behind the hGP is to
recursively identify valuable subtrees in individuals. New modules are constituted
from promising subtrees of existing modules. Thus, modules are organized hierar-
chically, see Fig.[[4for an instance of individual with two hierarchical modules. The
aim behind this approach is to enable evolution at different speed on each level of
hierarchy. The lower in the hierarchy a module is located, the slower it is enabled to
evolve. Authors of hGP consider lower level modules as more fundamental for the
problem solution thus their evolution should be slower that in higher level modules.

module at

Fig. 14 Hierarchical modules within an individual

In fact, the hGP operates with modularity on a structural level only; it provides a
hierarchy within an individual with different speed of evolution on particular levels
of hierarchy. But this also means that hGP does not provide the main objective
of modularization: a code reuse. In hGP, a module can not be used repeatedly as
it is possible in another approaches. Modules in hGP are local to the individual.
Thus, the recombination operators perform on the same levels in a hierarchy within
individuals similarly to structure preserving crossover in genetic programming with
ADF [14].

Modules are discovered in an individual using a searching of valuable subtrees
inside. The analyzed subtree is replaced either with a constant value or a randomly
generated subtree. The original and modified individual (i.e., a copy of individual
with modified subtree under the analysis) are compared on the basis of fitness to
discover the usefulness of the subtree within the individual.

Banzhaf et al. 9] reported promising results on even parity problem in compari-
son to standard genetic programming.
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9 Recursion and Iteration

Recursion and iteration represent another important kind of code reuse. In this sec-
tion we provide a brief outline of the present approaches including references to
relevant literature. Obviously, repetitive code execution is essential for establishing
a general solution of many problems. For instance, the even parity problem can be
solved with standard genetic programming for a given number of input arguments
(at least theoretically, owing to exhaustive search space for higher number of in-
put arguments); however, a general solution for any number of input arguments is
not feasible in GP without extending the system with a support to repetitive code
execution.

Koza proposed proposed language elements for establishing iteration in evolved
programs, such as Automatically Defined Iterations (ADI) and Automatically De-
fined Loops (ADL) [16]. These elements provide some predefined types of iteration
similarly as programming languages provide iteration statements, such as FOR or
DO WHILE loop.

More attention has been paid to establishing a repetitive code execution using re-
cursion. With recursion it is not required to have special language elements for repet-
itive code reuse which could be an advantage for designing a system for evolution
of programs. To establish recursive definitions it is required no more than enabling
the appearance of call(s) to function itself within its body. Note also that recursion is
a general concept that enables definition of any possible repetitive code execution.
However, a recursive function must have correctly defined both the terminating con-
dition(s) and recursive call(s) in order to not result in an infinite loop. The possibility
of creating non-terminating programs introduces several challenges for automatic
program synthesis. First, determining whether the program is non-terminating can
be handled in some special cases only since it is an undecidable problem. Second
issue is handling non-terminating programs. Even a non-terminating program may
contain useful parts, so that the problem is how to reflect the program quality in
fitness. Third challenge is measuring recursion semantics of evolved programs.

A promising approach to establish recursion in evolved programs is the utilization
of the so called implicit recursion, a technique known from functional programming
languages. In general, implicit recursion is a function that contains some type of
recursion and that can be parametrized by another functions to provide a particular
computation. In other words, implicitly recursive functions provide an abstracted
“skeleton” of certain kind of recursion. The main advantage is that implicit recursion
always terminates. Those implicit recursions thus can be a part of a function set. Yu
in [26, ] experimented with implicit recursions from functional programming with
promising results. Dostdl experimented with the so called ARF functions [é, ]
that represent a different, more general, types of implicit recursion than used by Yu.
ARF functions showed promising results in evolving recursive solutions to some
problems such as even-n-parity problem or a simple arithmetic based on Church’s
numerals ].

To demonstrate the idea behind implicit recursion, consider two following exam-
ples of a recursive function. First, a program on Fig. [15l appends two lists. Second,
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a program on Fig. computes the even-n-parity problem (the examples require
some basic understandings of Lisp-like languages, see [9] for details). Although
both these programs compute different problems, their code is very similar in the
structure including the termination condition and recursive call.

(LABEL APPEND
(LAMBDA (A B)
(IF A
(CONS (CAR A) (APPEND (CDR A) B))
B)))

(APPEND ' (NIL NTIL) ’(NIL NIL NIL)) => (NIL NIL NIL NIL NIL)

Fig. 15 A solution of the append problem using recursion

(LABEL EP-N
(LAMBDA (A B)

(IF A
(XOR (CAR A) (EP-N (CDR A) B))
B)))
(EP-N ’ (NIL NIL NIL T T NIL) ‘()) => T

Fig. 16 A solution of the even-n-parity problem using recursion

Both these problems could be defined effectively using a function that implic-
itly abstracts the type of recursion used in both programs. This can be done using
the well know FOLDR function, see Fig.[[7l The FOLDR function takes three ar-
guments: a function, a list and a value called ferminator. The function is initially
called with the rightmost item of the list and terminator. In the subsequent applica-
tions of FOLDR, the function is applied to another elements of list traversed from
right to left and the result obtained from previous application of the function. For
example: (FOLDR + ' (1 2 3) 10) yields the following computation: (+ 1
(+ 2 (+ 3 10))) => 16. Using FOLDR, both APPEND and EP-N could be
defined effectively as shown on Fig. Thanks to the same type of recursion, both
definitions are different only in the first argument passed to FOLDR.

(LABEL FOLDR
(LAMBDA (F A B)
(IF A (F (CAR A) (FOLDR F (CDR A) B)) B)))

Fig. 17 Implicit recursion using FOLDR
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(LABEL EP-N
(LAMBDA (A B)
(FOLDR XOR A B))))

(LABEL APPEND
(LAMBDA (A B)
(FOLDR CONS A B))))

(EP-N ' (NIL NIL NIL T T NIL) ’()) => T
(APPEND ‘ (NIL NIL) ’(NIL NIL NIL)) => (NIL NIL NIL NIL NIL)

Fig. 18 APPEND and EP-N defined using implicit recursion

10 Conclusion

The above discussed methods are more or less different from each other in a variety
of viewpoints.

Modularization methods approach modularity from different standpoints. Less
complex methods, such as Encapsulation or Hierarchical Genetic Programming, are
more or less “graph” or “individual” oriented than the other methods which ap-
proaches modularity from the programmatic standpoint. The main motivation in
“graph” oriented methods is to separate a promising part of an individual in order
to preserve it from evolution (this is the case for Encapsulation) or to provide a
different conditions for evolution (hGP). Note that in these methods modules lack
an important feature of modularity—a module reuse which is obviously a limita-
tion. Methods such as Module Acquisition, Automatically Defined Functions and
Adaptive Representation Through Learning are primarily motivated by code reuse.
Promising code is transformed to new modules that can be reused (also repeatedly)
in individuals’ programs. Modules are usually represented as functions that extends
the representation language of a problem, thus not only individuals but also the rep-
resentation is subject to evolution. In other words, we also search an appropriate
representation that will enable to express a solution of the problem as a simpler and
shorter program.

Modules may either be defined locally or globally. Local modules can be used
by corresponding individual only, whereas global modules can be used by any indi-
vidual in a population. With local modules each individual have its own definition
of modules. Local modules are used by ADF, whereas MA and ARL uses globally
defined modules.

Evolvability of modules is also an important property of program synthesis sys-
tems with modularity. In Encapsulation, MA and ARL are modules, once cre-
ated, static and thus not subject to evolution, whereas with ADF or hGP mod-
ules can be evolved simultaneously with the evolution of individuals. Note that the
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conditions for evolving modules are usually substantially different from the condi-
tions for individuals.

Another difference lies in the identification of modules. New modules can either
be identified heuristically or at random. Random identification of modules is used
by Encapsulation and MA whereas ARL and hGP identifies modules on the basis of
fitness. A sophisticated method based on differential fitness and block activation is
used by ARL.

An important property is also the structure of modules. The structure may ei-
ther be predefined (ADF), or it may be inferred from the identified code used to
constitute a module (MA, ARL). In ADF with Architecture altering operations, the
module structure can be altered during the evolution using architecture altering op-
erations. These operations allow for adding/removing a module or adding/removing
an argument of a module.

An evaluation and comparison of the above presented methods on the basis of
performance should be interesting. Although the authors of individual methods usu-
ally provide some basic evaluations and comparisons, there is a considerable lack
of a general and profound comparative analyses that could objectively compare the
methods for modularization. However, such a comparison would be quite extensive
and laborious since genetic programming itself as well as the particular modulariza-
tion methods are customized by a plenty of control parameters that could drastically
affect the performance. Koza compared ADF to standard GP (14] and ADF to ADF
with Architecture altering operations (16] with promising results. Banzhaf et al.
compared a constrained version of hGP to standard genetic programming on several
symbolic regression problems including even-5 and -7 parity problem. Reportedly

1, hGP outperformed standard genetic programming. Rosca and Ballard compared
ARL to standard genetic programming and genetic programming with ADF on the
PacMan problem [@] and showed the advantages of ARL over the standard genetic
programming and genetic programming with Automatically defined functions.

Modularity is in [IE] referred as one of the open problems in genetic program-
ming. Since there is a considerable research interest into evolutionary program
synthesis, we believe in remarkable progress in methods and techniques to mod-
ularization in future.
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