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Jesús Sánchez Cuadrado

Universidad Autónoma de Madrid, Spain
jesus.sanchez.cuadrado@um.es

Abstract. Many model transformation languages of different nature
have been proposed during the last years, each one of them suitable for a
certain kind of transformation task. However, a complex transformation
problem may not fall into a single transformation category, making the
solution written in the chosen transformation language suboptimal, as
some concerns cannot be handled naturally.

To tackle this issue, we propose to define a model transformation
tool as a family of model transformation languages. Each member of
the family is a simple language intended to deal with a particular kind
of transformation task. In this paper we discuss the different issues in-
volved, such as design decisions, interoperability among languages, and
composability. We illustrate the paper with a transformation from UML
and OCL to Java, in which languages for pattern matching, mapping,
attribution and target-oriented transformations are used. Finally, the
approach is validated with a proof-of-concept implementation.

1 Introduction

Model transformation is one of the key elements in Model Driven Engineering
(MDE). Hence, in the last years a number of model transformation languages
of different nature have been proposed. As acknowledged by the classifications
of model transformation languages given in [4] and [13], each language provides
a series of features that make it more suitable to address a certain kind of
transformation problems. So far, two paths have been taken by transformation
language designers: a) keep the language focused or b) add more features to the
language in order to widen its scope. The first approach limits the applicability
of the language, while the second one tends to pollute the original design.

We have been working on an alternative design, in which a model transfor-
mation language is made up of smaller languages. Each language is focused on
a specific kind of transformation task, and altogether form a so-called family of
model transformation languages. In this way, a complex transformation prob-
lem could be split into smaller tasks using the most appropriate language for
each one of them, with the additional advantage of enhanced declarativeness
and intentionality, as languages are really tailored for the problem being solved.
Realizing this approach requires a way to make the languages interoperable, as

Z. Hu and J. de Lara (Eds.): ICMT 2012, LNCS 7307, pp. 176–191, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Towards a Family of Model Transformation Languages 177

well as composition mechanisms in order to specify how the results provided by
each language contribute to the global transformation result.

This paper reports the initial results of our work building a family of model
transformation languages, named Eclectic. We focus on two aspects: the main
design decisions which span all languages in the family, and language interoper-
ability and composability mechanisms which are the foundation of our approach.
To show the feasibility of the approach the paper is illustrated with a transfor-
mation from UML and OCL to Java, which is addressed using four languages of
Eclectic, for pattern matching, mapping, attribution and target-oriented trans-
formations. The paper also reports on a proof-of-concept implementation, which
includes textual editors and a compiler for the Java Virtual Machine (JVM),
that is freely available at [5]. The architecture of the tool is extensible so that it
would allow us to integrate domain specific transformation languages (DSTL).

Paper Organization. Section 2 explains the main design decisions, presents the
running example, and introduces four languages of Eclectic. Section 3 describes
the interoperability and composition mechanisms. Section 4 reviews some related
work. Section 5 gives some conclusions and outlines the future work.

2 Design of the Family

The design of a family of transformation languages must take into account two
main concerns: the design of the different languages that build it up, and how
to compose them which in turn will require making them interoperable.

In this section we will outline the design principles of Eclectic and illustrate
some of its member languages by means of a running example. Section 3 will
explain the interoperability and composability mechanisms for them.

2.1 Design Principles

The aim of our approach is to tame complex model transformations by promoting
intentionality. As a motivating example, ATL is well-known for being a simple,
declarative transformation language, but as the transformation problem at hand
moves away from being a mapping task, intentionality blurs. This is so because
non-declarative constructs such as lazy rules, imperative rules or complex navi-
gation code must be tangled with declarative code. Our design tries to solve this
issue by providing separate languages for different kinds of transformation task,
following a series of design principles:

– Few Features. The number of constructs of each language should be kept
as low as possible, including only those that are important to tackle the task
each language is intended to.

– Orthogonality. Each language should only be useful for a few tasks, avoid-
ing redundancy with respect to the ones addressed by other languages. This
will facilitate users choosing a language for each particular task.
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– Simple Syntax. The fact that few features will be included in each language
will facilitate the definition of a simpler and cleaner syntax than complex
languages (e.g, no need for statement separators). In addition, syntax should
highlight those constructs that are the essence of each language, while “hid-
ing” constructs that are more accidental.

– Lightweight Type Information. The amount of type information should
be low. This can be achieved with type inference (which would be facilitated
because languages are simple) or by relying on dynamic typing. Our current
implementation uses dynamic typing, but we plan to support type inference.

– Eclecticism.As a major design principle, we believe that each style of model
transformation has its own value to tackle certain problems, so we do not
restrict Eclectic to the languages considered so far, but we are looking into
other possible languages, and we are willing to contributions in this sense.

2.2 Running Example

The rest of the paper will be illustrated with a transformation that takes a UML
model plus an OCL model with invariants and preconditions, and generates a
Java model. We have used the UML meta-model of the Eclipse UML2 plug-in,
an OCL meta-model based on the ATL implementation, and the Java meta-
metamodel of MoDisco. Figure 1 shows relevant excerpts of them.
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Fig. 1. Excerpts of the meta-models involved in the running example. They have been
slightly simplified for the sake of clarity (e.g., renamings, hierarchy flattening).

In this transformation (uml2java) there are several aspects to consider. The
mapping between UML class models and Java classes is more or less straight-
forward, except for some cases that requires detecting concrete patterns. On the
other hand, translating OCL expressions to Java can be (partially) done with
templates that generate pieces of Java code, but it requires computing type in-
formation for an accurate translation. Finally, we restrict UML models to use
single inheritance.

In the rest of the section the languages are briefly introduced by showing an
excerpt of the running example. The examples in this section do not consider lan-
guage composition, but it is added in the next one. In addition, the development
of the languages that compose Eclectic is being inspired by existing languages of



Towards a Family of Model Transformation Languages 179

different nature. Thus, we will briefly comment on related work as the languages
are explained, although more details are given in Section 4.

2.3 Mapping Language

Establishing correspondences among meta-model elements in order to fix het-
erogeneities between semantically equivalent meta-models is the kind of trans-
formation task that rule-based model-to-model transformation languages in the
style of declarative ATL can handle naturally. For our initial prototype we have
chosen to create a simplification of ATL, called SMaps.

Listing 1 shows an excerpt of the mapping between UML and Java using this
language. The input and output models are indicated between parenthesis in the
transformation header (line 1). This style is followed in the rest of the languages
of Eclectic. As can be seen, mappings among source and target metaclasses are
specified using from - to (lines 4 and 14), and they may include modifiers such as
linking (stating how to relate both target elements). Mappings between structural
features are specified using ←. We allow the same reference to be mapped more
than once if it is multivalued (lines 10-11).

Conversions between datatypes and explicit transformations are done with the
notion of converter. A converter is basically a function that is offered as a library
(line 2 performs the importation) or can be specified as a mapping between
datatypes (lines 20-23). It is implicitly invoked using the the convert modifier
(line 7 and 8). The rationale for this notation instead of plain function calls is
to enhance text clarity, so that the reader clearly identifies the left part and the
right part of mapping (i.e., with a function call the right part of the mapping
is “wrapped” into the actual parameters). In our implementation, libraries of
converters are provided as Java classes.

1 mapping struct(uml) −> (java)
2 uses java conventions
3

4 from uml!Class to cd: java!ClassDeclaration, cu : java!CompilationUnit
5 linking cd.originalCompilationUnit = cu
6

7 cd.name <− name convert java conventions.camelCase
8 cd.visilibity <− visibility convert mapVisibility
9

10 cd.bodyDeclaration <− ownedAttribute
11 cd.bodyDeclaration <− ownedOperation
12 end
13

14 from uml!Property to m: java!MethodDeclaration, ta: java!TypeAccess
15 linking get.typeAccess = ta
16 m.name <− name convert java conventions.getterName
17 ta.type <− type
18 end
19

20 converter mapVisibility: uml!Visibility −> String
21 #vk public −> ’public’
22 #vk private −> ’private’
23 end

Listing 1. Excerpt of the mapping from UML to Java
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The execution semantics is a mix between ATL and RubyTL. Mappings cor-
respond to ATL rules, and the ← construct is a form of ATL binding. However,
binding resolution works as in RubyTL, taking into account the conformance
relationship of both the source and the target element, but, so far, only the first
target element is resolved as in ATL.

With the aim reducing the cluttering of the transformation text, we have
decided to do without navigation language (e.g., OCL), so that model navigation
must be done in separate navigation modules.

As can be observed the language is intended neither to extract implicit infor-
mation or to perform one-to-many transformations (when the number of target
elements of a mapping is not known before hand). Instead, it is focused on
resolving structural heterogeneities between semantically equivalent models. In
this line, we expect to evolve SMaps by considering constructs in the style of the
Mapping Operators (MOPs) proposed in [23].

2.4 Target-Oriented Language

This language, called Tao, is intended to address transformations mainly driven
by the structure of the target model. This roughly corresponds to the style of
model-to-text template languages, where fixed pieces of text are parameterized
with expressions that fill in the holes. This kind of transformations usually has a
high-degree of nesting, thus a design decision has been to consider object syntax
as a way to specify large instantiation sequences (similar to QVT syntax).

Listing 2 generates a Java class from an OCL specification, with one method
per OCL invariant. Templates are specified with template, and take one or more
parameters, being polymorphic on the first parameter (e.g., lines 15 and 18). We
have chosen this syntax because we plan to experiment with multiple-dispatch
templates. The instantiation of a new object is specified with model!Metaclass

{ assignments }, where assignments initialize attributes and references. For

1 tao gen java(uml, ocl) −> (java)
2 uses java conventions, string
3

4 template mapProgram(p : ocl!Program)
5 java!ClassDeclaration {
6 name = p.name convert java conventions.camelCase, string.concat(”Check”)
7 bodyDeclarations = p.invariants to java!Method {
8 name = name
9 visibility = ”public”

10 expressions = p.body with mapExpression
11 }
12 }
13 end
14

15 template mapExpression(expr : ocl!NavigationExpr)
16 ...
17 end
18

19 template mapExpression(expr : ocl!LetExpr)
20 ...
21 end

Listing 2. Generator from OCL to Java
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example, line 6 sets the name of the Java class by combining two converters,
where the result of the first one is the input of the second one. Then, line 7
initializes bodyDeclarations by creating one method per invariant defined in the
OCL program. Finally, line 10 invokes mapExpression explicitly.

As can be seen, this language has only a few elements yet it simplifies a task
that is sometimes cumbersome. Please note that, although some constructs such
as object-syntax or template invocation resemble parts of QVT, there is the
important difference that we have avoided complex mechanisms, for instance
QVT Operational initialization rules.

Finally, it could be possible to consider template languages that use the syntax
of the target language (e.g., Java) to make the transformation text more fluent.
In fact, these kind of languages could be integrated in Eclectic as libraries con-
tributed by third-parties, acting as domain-specific transformation languages.

2.5 Attribute Computation

Attribute grammars are a well known technique for specifying how to compute
properties of language constructs, called attributes, by defining their values in
terms of the attribute values of related constructs [1]. Attribute computation
is defined by rules (or equations), and the attribution system is in charge of
performing the evaluation by associating attribute values to syntax tree nodes,
propagating values through the nodes as needed. Transformation problems that
require propagating values top-down or bottom-up are typically difficult to ex-
press with some transformation languages (e.g., ATL, TGGs). In QVT it is
possible to use when and where clauses to propagate values, but “propagation
code” gets tangled with mapping code.

In this way, a simple language for attribute computation has been defined.
It is called SAttr. It supports synthesized attributes that propagate information
bottom-up, and inherited attributes that propagate top-down. It also includes
a simple expression language, as the essence of this kind of transformations is
to perform computations based on previously computed values. An attribution
transformation is composed of attribution rules. Each attribution rule matches
an element of a given metaclass and computes attribute values. To this end,
there are two basic constructs: attribute initialization and attribute access. The
expr[attr]← right-part construct is used to initialize an attribute, and it has the ef-
fect of associating the value of right-part to attr for the element referred by expr. In
the case of synthesized attributes, self is used to refer to the element matched by
the rule. Similarly, attribute values can be accessed with the expr[attr] construct
(in this case using self[attr] to access an inherited attribute). Our implementation
schedules the execution according to the dependencies.

Listing 3 shows a piece of transformation that associates type information to
the elements of the OCL abstract syntax model (it is partially inspired in the
OCL specification). In this example, the type of each sub-expression is propa-
gated from the leaves using the type synthesized attribute (line 2), while con-
textual type information is provided by the env inherited attribute (line 3, an
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immutable map that associates a variable declaration with its type). In line 7, the
type of a navigation expression (NavExpr) is gathered by getting the type of the
receptor object (self.source[type]), and then looking up the type of the navigated
feature (the feature operation is a helper defined in a navigation library). As
another example, to deal with let expressions, line 11 adds a variable declaration
to the inherited env, computing the variable type as the type of the initialization
expression (so performing weak type inference). Then, it is propagated as an
inherited attribute so that it is available for the body expressions. Note that,
in line 16 the env attribute is used to gather the type of a variable reference
that points to a variable declaration. Finally, even though it is not shown in this
example, it is possible to create target elements if needed by interoperating with
languages with this capacity, as is the case of Tao (see Section 3.2).

1 attribution typing(uml, ocl) −> ()
2 syn type : uml!Classifier
3 inh env : !Map
4

5 rule ocl!NavExp
6 receptor[env] <− self[env]
7 self[type] <− self.source[type].feature(self.name).type
8 end
9

10 rule ocl!LetExp
11 body[env] <− self[env].put(self.varDcl, self.init[type])
12 self[type] <− self.body[type]
13 end
14

15 rule ocl!VariableExp
16 self[type] <− self[env].get(self.variable)
17 end

Listing 3. Collecting type information from OCL expressions

Our current design only considers basic features of attribution systems. Other
systems such as Kiama or Silver implement more complex features, and we
want to explore which ones are more useful in a model transformation setting.
Nevertheless, in its current state, we have found this language particularly useful
to compile expression languages to a low-level representation (see Section 3.1).

2.6 Pattern Matching

The languages shown so far just match a single model element. In order to
address transformations where more complex patterns have to be found, we
have included a simple pattern matching language in the family, named SPat.

Here we just briefly introduce the language, by means of the example shown
in Listing 4, which is completed in the next section. The GettableProperty pattern
gathers all public UML Property whose owning class does not contain an operation
whose name would collide with the corresponding Java getter method. As can
be seen this language is in the style of Tefkat, although other styles such as the
one of VIATRA2 one could be possible. Interestingly, the getterName converter
can be reused as a function call (line 4).
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1 pattern GettableProperty
2 forall p: uml!Property [ p.visibility = #pk public ] and
3 not exists o: uml!Operation [ p.owner.includes(o) and p.name = java conventions.getterName(a.name) ]
4 end

Listing 4. Matching properties that do not collide with an existing “get”

In this section we have commented on four languages that illustrates the
design of Eclectic. They have have been presented without taking into account
how to make them work together. Next section discusses the issues involved.

3 Language Composition

Our design based on a family of model transformation languages allows us to
decompose a transformation problem into subproblems, where each subproblem
is tackled with the most appropriate language. However, this poses two main
concerns: language composition and interoperability.

In this context, composition is the ability of combining different languages to
achieve a common task, while interoperability is the ability of two or more com-
ponents (transformation languages in this case) to exchange information and to
use it. There are two types of transformation composition: internal and external.
Internal transformation composition refers to the composition of transformation
constructs of a single language, while external transformation composition must
take into account how to compose heterogeneous constructs belonging to differ-
ent languages. Indeed, in this setting we are dealing with external transformation
composition which requires interoperability.

3.1 Interoperability

Transformation language interoperability has been regarded as an important
topic in model transformation [10]. However, so far, only limited forms of inter-
operability has been achieved [22].

JVM

IDC Runtime lib.

SMap SAtt SPat ...

EMF

Fig. 2. Eclectic architecture

Figure 2 shows the architecture of our solution.
Our approach to interoperability is based on a
common intermediate language, called Intermedi-
ate Dependency Code (IDC), so that each member
of the family compiles down to it. IDC is com-
posed of a few basic instructions (some of them
specialized for model manipulation), which use a
simplified form of Static Single Assignment (SSA)
to represent data dependencies between instruc-
tions [3]. IDC does not force any particular transformation style (e.g., rule-based
transformations) as it does not provide any notion of rule, but lower-level mech-
anisms. IDC is compiled to the JVM, and it uses a runtime library to deal with
different modeling frameworks (we currently support EMF).
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The key element of IDC is its ability to schedule the execution of several trans-
formations based on their data-dependences using continuations. A continuation
reifies the concept of “the rest of the computation”, so that execution state of a
given program can be saved into a continuation and restored later. This concept
is supported in some programming languages, for instance Scheme or Scala [16].
Basically, we use continuations to enable a transformation execution to be sus-
pended until a required piece of data (provided by another transformation) is
available. This provides a means to integrate heterogeneous languages. Addi-
tionally, as all transformations run over the JVM, method-level interoperability
is also supported. Due to space reasons we do not give a full explanation of IDC,
but more details are given in [17].

3.2 Composition

Our strategy to tackle transformation composition has been to identify abstract
relationships among transformation constructs, and reify them in each language
as a composition mechanism. The definition of each composition mechanism has
two aspects: how one language publishes or makes available the data it handles,
and how another language requires and consumes this data.

Based on our experience with model transformations, and during the pro-
cess of building Eclectic, we have identified four types of composition: feeding a
transformation rule or a pattern with some value(s), resolving a reference from a
source element to a target element, decorating model elements with virtual prop-
erties or operations, and configuring transformation definitions for execution.

Please note that this list is not exclusive, but others means of composition
are possible, for instance inheritance, if one can make a transformation written
in one language be extended by of another one written in another language, as
proposed in [22]. In the following we discuss these forms of composition, showing
how they are integrated in Eclectic.

Feeding Transformation Constructs. Transformation constructs such as
transformation rules and patterns, are normally fed with model elements in order
to start processing them. Sometimes a rule embeds the pattern (e.g., ATL), while
sometimes both constructs are separated (e.g., VIATRA2). In any case, this can
be seen as an abstract relationship where the transformation engine feeds some
language construct with model elements (e.g., a pattern) or a transformation
construct feeds another transformation construct (e.g., a pattern feeding a rule).

Both SMap and SAttr use simple patterns based on the name of a metaclass
(i.e., model!Metaclass syntax) but if we want more complex patterns (such as the
one shown in Listing 4) we need to include in each language a way to specify
patterns or filter expressions. Hence, we would like a composition mechanism
that does not require to change these languages to refer to a pattern expressed
with SPat. Our solution has been to make the result of a pattern available as a
new type, that is instantiated for each match of the pattern. Listing 5 shows the
GettableProperty pattern, that uses the providing keyword to initialize the result
of the match (line 7). We have included the possibility of assigning self to some
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object, so that the result is referentially equal to such object (p in this case),
but extended with additional properties. Now, Listing 6 uses the pattern as if
it were a normal metaclass (line 5) but it is actually refering to the result of a
pattern, that may be the result of performing a complex search.

1 spat umlext(uml)
2

3 pattern GettableProperty
4 forall p: uml!Property [p.visibility= #pk public] and
5 not exists o: uml!Operation [ p.owner.includes(o) ...]
6

7 providing self = p,
8 self.isPublic = true
9 end

Listing 5. Publishing a pattern in SPat

smap struct(uml) −> (java)
uses java conventions
uses umlext

from umlext!GettableProperty to
get: java!MethodDeclaration,
ta: java!TypeAccess

// Same as as original transformation
end

Listing 6. Using a pattern in SMap

What is distinctive of this approach is that it separates patterns from rules
without requiring any special syntax, but there is a seamless integration making
a pattern result looks like a type. Likewise, recursive patterns in SPat are allowed
using the same strategy.

Resolving References. Resolving a target element from a source element that
is pointed by a reference is a primary element of model-to-model transformation
languages. ATL, for instance, performs this task implicitly through a binding
construct (←). In this case, we need to resolve relationships established by dif-
ferent languages in their own manner.

We take inspiration from Tefkat’s tracking classes and the proposal of [12] for
our mechanism to make source-target correspondences available. In these works,
the underlying idea is to establish an interface between transformation rules by
means of an intermediate model (which can be considered a trace model, where a
tracking class is a type of trace link), so that there is a layer of indirection through
this model to refer to the data produced by another rule. We generalize this
mechanism to span several languages, making the intermediate model implicit.

In the case of SMap, the strategy is to tag each mapping, so that the set of
tags of a transformation is the interface of the transformation. From an external
program, a tag is as a new type of trace link that keeps a correspondence, and
the interface is the set of trace link types that can be instantiated by a given
transformation execution. Listing 7 shows how the SMap transformation uses a
tag (classifier in line 4) to make a mapping resolvable from other transformations.
Implicitly, a trace link called classifier is created, that has a source reference
pointing to a UML class, and two target references pointing to the cd and cu

elements (lines 5-6). Please note that in SMap a tag is not the same as a typical
rule name, since the same tag may be contributed by different mappings, for
instance the classifier tag applies both to mappings from UML classes to Java
classes as from UML primitive types to Java.

In SAttr, however, there is no need to explicitly set the interface with tags,
but it is automatically derived. In the example of Listing 3 the interface consists
of two trace links, one for each declared attribute, type and env. An external
transformation would refer to an attribute value as if it were a trace link.
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Transformations written in other languages, like Tao, may need to refer to
these trace links. To this end, the following syntax can be used:
transf!trace link(.target)? where transf is the name of a external transformation,
trace link is the name of the trace link that will be used to resolve the source
element to a target element, and target is the name of the target element to be
gathered (if not given the first target element is used).

Listing 8 shows how the gen java Tao transformation interoperates with SAttr
and SMap (struct and typing transformations). Line 6 shows how to obtain the
Java getter method that corresponds to a given UML property (the uml property

helper is part of a navigation library that links the OCL and UML models).
This mapping between properties and methods has been performed by the struct

transformation (Listing 7, lines 10-14). A more complex example is also shown
in line 12, where the UML type of a let expression that has been computed in
the typing transformation is gathered (expr[typ!type]), and from obtained type,
the corresponding Java is next obtained.

1 mapping struct (uml) −> (java)
2 uses java conventions
3

4 [classifier]
5 from uml!Class to cd: java!ClassDeclaration,
6 cu : java!CompilationUnit
7 ...
8 end
9

10 [ get ]
11 from uml!Property to
12 m: java!MethodDeclaration,
13 ta: java!TypeAccess
14 end

Listing 7. Tagging mappings

tao gen java(uml, ocl) −> (java)
uses typing, struct

template mapExpression(expr : ocl!NavExp)
java!MethodInvocation {
method = expr.uml property[struct!get]

}
end

template mapExpression(expr : ocl!LetExp)
java!VariableDeclarationExpression {
type = expr[typing!type][struct!classifier.cd]

}
end

Listing 8. Resolving references

Decorating Model Elements. The possibility of adding virtual properties
and operations (sometimes known as helpers) to model elements has been used
so far as a way to enable navigation libraries in model transformation lan-
guages [9][15][2]. Although we have not shown any example of this scenario,
Eclectic supports navigation libraries as well.

Nevertheless, we have also used this feature as a way to enable invocation of
Tao templates. The interface of a Tao transformation is just the set of rules seen
as operations, which return target elements. This form of interface is independent
of how these operations have been implemented (with Tao in this case), but
those transformations requiring explicit creation of elements simply invoke one
operation expecting one or more target elemens as a result.

Listing 9 shows a piece of an SMap transformation that invokes the
mapPrecondition operation to generate an assert expression from an operation
precondition (lines 9-10). From the point of view of SMap, Tao templates are
converters. This means that at the SMap level the way to use languages that
require explicit rule invocation is through a converter.

The SAttr language is also allowed to use Tao transformations. This is im-
portant as SAttr does not have any construct to create new elements. As we
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explained, SAttr provides a simple expression language, so we just rely on nor-
mal method calls as the composition mechanism.

Configuring Transformation Definitions. The mechanisms discussed so far
allow us to use the results produced by a transformation in another one written in
a different language. To this end, the uses keyword establishes a dependency with
an external transformation. However, we still need to configure the composite
transformation which consists of the smaller transformation programs. We also
would like to consider the configuration of transformation chains (i.e., feeding a
transformation with the output of another).

We have devised a simple language to specify composite transformation pro-
grams and transformation chains. It basically treats transformations as functions
with zero or more parameters, and with zero or more result models. There is a
special construct, composite, which performs all the necessary plumbing, at the
IDC level, to schedule two or more transformations to be executed together as a
unit. Listing 10 shows the complete transformation chain for the UML2Java ex-
ample. First of all, a new composite transformation (uml2java si, lines 2-7), which
uses the four transformations previously presented, is defined. When the same
model name is used as output (lines 3-4) it means that both transformations
contribute to it. If a transformation program has no output models, it is indi-
cated using an underscore (lines 5-7). Note that we use the term transformation
to refer to a piece of program that just contributes to a global result, although
it does not perform any actual transformation (e.g., umlext that find patterns).

The composite transformation uml2java si, however, does deal with multiple
inheritance, so the first step in the chain would be to rewrite the UML model
to remove multiple inheritance (e.g., introducing interfaces). Line 9 invokes the
rewriting transformation, remove multiple obtaining a UML model with only single
inheritance (uml sing inh)1. Afterwards, the composite transformation is invoked
normally (line 12), obtaining the target model. Please note that our composi-
tion mechanism is able of dealing with transformations that depend on one an-
other. This is possible because our engine is based on continuations as explained in
Section 3.1.

1 mapping struct (uml) −> (java)
2 uses gen java
3

4 from uml!Operation to m: java!Method
5 m.name <− name
6 // The mapPrecondition template will create
7 // a java!MethodInvocation to assert the
8 // precondition (if it exists)
9 m.bodyDeclaration <− m.pre

10 convert gen java.mapPrecondition
11 end

Listing 9. Invoking a template from
SMap

1 chain uml2java(uml, ocl) −> (java)
2 composite uml2java si(uml, ocl) −> (java)
3 java = struct(uml)
4 java = gen java(uml, ocl)
5 = typing(uml, ocl)
6 = umlext(uml)
7 end
8

9 uml single inh = remove multiple(uml)
10 java = uml2java si(uml single inh, ocl)
11 end

Listing 10. Configuring UML2Java

1 We have not implemented an in-place language in Eclectic yet, but it can be simulated
with a copy transformation.
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The task of writing transformation chains has been typically addressed with
build scripts or Java programs. In our case, this language simplify writing trans-
formation chains considering transformations as functions with a number of in-
put/output models (in the style of MCC [11]). Besides, it provides facilities to
compose transformations, and we are working on giving support to higher-order
transformations.

4 Related Work

The notion of family of languages has been used both to refer to independent
DSLs that share common implementation artefacts [7][21] and to refer to a set
of related languages that must be composed to achieve a common goal [18].
For instance, UML [14] can be considered as a family of related modeling lan-
guages, each one intended to address some concern (e.g., structure, behaviour,
deployment) of object-oriented modeling, which share a common core.

In the context of model transformations there are some examples of fami-
lies of languages. First of all, the QVT architecture is similar to our proposal.
However, there is a significant difference, as we advocate for simple languages,
while QVT Relational and Operational are complex languages. Epsilon [6] is a
family of model management languages, where each language is intended for a
model management task, such as validation, migration or model transformation.
There is a base language, EOL, that is common to all of them. These languages,
however, work independently, and they are composed by means of ANT scripts
that feed one language with the ouput of another. TransML [8] is a family of
languages for modeling model transformations. It is organized as a stack, with
lower languages refinining the upper ones. Finally, ATL has two basic execution
modes: normal mode that corresponds to model-to-model transformations, and
refining mode that corresponds to in-place transformations, thus ATL can be
considered as a family with two languages.

In the context of program transformation, Kiama [19] is a Scala library for
language processing that provides several internal languages for describing at-
tribute grammars, tree rewriting, abstract state machines, and pretty printing.

Composition of heterogeneous rule-based transformation languages is studied
in [22], where a common virtual machine, called EMFTVM, is used to implement
ATL and a rewriting language. Our approach is also based on an intermediate
language, but with different characteristics. EMFTVM provides a common no-
tion of module and transformation rules, which enables a common semantics for
module import and rule inheritance. In our case, the intermediate language pro-
vides more general composition services (see Section 3), so that each language
of Eclectic is allowed to have its own semantics. For instance, this would allow
us to integrate a purely imperative language in the family (i.e., with no rules).

Creating chains of model transformations is a widely used technique to split
complex transformation problems [20][11]. In these chains the input of one trans-
formation is just fed with the output of a previous one, which has the disadvan-
tage that the transformation execution context is lost so actual interoperability
is not possible (unless complex architectures are used [24]).
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5 Assessment and Future Work

In this paper we have presented a family of model transformation languages,
called Eclectic. Our aim is to address complex transformation problems by split-
ting them into smaller problems that can be solved with simple languages. How-
ever, this requires a careful design of the different languages as well as taking
into consideration interoperability and composability issues. Here, we have pre-
sented the design and composition mechanisms of Eclectic, which have been illus-
trated by means of a running example. Besides, the feasibility of the approach
is demonstrated by means of an proof-of-concept implementation available at
http://sanchezcuadrado.es/projects/eclectic.

As a summary, Table 1 relates the languages and the composition mecha-
nisms presented in this paper. An entry with Use means that a language can
interoperate with another language that has an entry with Enable for the same
composition mechanism. For instance, all languages (except Chain) are able to
invoke operations that decorate models elements, but Tao is the only language
that currently decorates models. The SPat/Decorating entry is special because
in this language only methods without side-effects are allowed, which means that
it could interoperate with a navigation library but not with a Tao program.

Table 1. Summary of mechanisms and languages

Feeding Resolving Decorating Composing
Mapping (SMap) Use Use, Enable Use Enable
Attribution (SAttr) Use Use, Enable Use Enable
Target-oriented (Tao) - Use Use, Enable Enable
Pattern Maching (SPat) Use,Enable Use Use* Enable
Configuration (SChain) - - - Use, Enable

As can be observed in the table, an important aspect of our design is that
languages are loosely coupled, so that it is possible to evolve members of the fam-
ily without affecting the other languages. In fact, new languages could be added
seamlessly. This is particularly important to enable interoperability with domain-
specific transformation languages (DSTL). We envision an scenario where part
of a complex transformation is written with Eclectic, and it is completed and
extended by means of a DSTL that addresses variable parts.

In principle, one possible drawback of this approach is learning facility. How-
ever, we have tried to keep the languages small and with a similar syntax so
that one can learn how to use them just looking a few examples. In addition,
we believe that this approach enhances intentionality of the transformation text,
which favours comprehensibility.

One concern that we would like to address is the fragmentation of the trans-
formation code. Being languages with few features, sometimes one has to rely on
other languages to perform simple operations. Thus, further evaluation is needed
to assess the real possibilities of the approach. One such evaluation would be to
apply Eclectic to transform other UML models apart from the class diagram,
testing the transformations with large models to benchmark the performance of
our engine.

http://sanchezcuadrado.es/projects/eclectic
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Finally, we have presented several proof-of-concept components of Eclectic,
but further experiments are need to find out simpler and even more compact
constructs. Additionally, we are looking into how to integrate other transforma-
tion styles such as in-place and bidirectional transformations.
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