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Preface

This volume contains the papers presented at the International Conference on
Model Transformation (ICMT 2012) held during May 28–29, 2012, in Prague,
Czech Republic.

Modeling is essential in reducing the complexity of software systems dur-
ing their development and maintenance. Model transformations are essential for
elevating models from documentation elements to first-class artifacts of the de-
velopment process. Model transformation includes model-to-text transformation
to generate code from models, text-to-model transformations to parse textual
artifacts to model representations, model extraction to derive higher-level mod-
els from legacy code, and model-to-model transformations to normalize, weave,
optimize, simulate and refactor models, as well as to translate between modeling
languages.

ICMT is the premier forum for contributions advancing the state of the art
in the field of model transformation and aims to bring together researchers from
all areas of model transformation. Model transformation encompasses a variety
of technical spaces, including modelware, grammarware, and XML-ware, a vari-
ety of transformation representations including graphs, trees, and DAGs, and a
variety of transformation paradigms including rule-based graph transformation,
term rewriting, and implementations in general-purpose programming languages.
The study of model transformation includes foundations, semantics, structuring
mechanisms, and properties (such as modularity, composability, and parame-
terization) of transformations, transformation languages, techniques, and tools.
To achieve an impact on software engineering practice, tools and methodologies
to integrate model transformation into existing development environments and
processes are required.

This was the fifth edition of the conference, and this year we accepted two
kinds of contributions: research and tool papers. We received 69 abstracts, of
which 56 materialized as full papers, and 16 research papers and 2 tool papers
were selected, with an acceptance rate of 32%. In addition to 18 contributed
papers, the program included an invited talk by James Terwilliger (Microsoft)
on a unifying theory for incremental bidirectional model transformation.

ICMT 2012 was made possible by the collaboration of many people. We were
supported by a great team. As Web Chair, Davide Di Ruscio kept the informa-
tion up to date on the conference website, and Jesús Sánchez-Cuadrado actively
publicized the conference, in his role of Publicity Chair. The Steering Committee
was very helpful and provided advice when we needed it. We thank the TOOLS
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teams headed by Bertrand Meyer for taking care of the organization of the
conference. Finally, we would like to thank all the members of the ICMT 2012
Program Committee for the tremendous effort they put into their reviews and
deliberations, and all the external reviewers for their invaluable contributions.
The submission and review process was managed using the EasyChair system.

March 2012 Zhenjiang Hu
Juan de Lara
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Jesús Sánchez Cuadrado

Translational Semantics of a Co-evolution Specific Language with the
EMF Transformation Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Dennis Wagelaar, Ludovico Iovino, Davide Di Ruscio, and
Alfonso Pierantonio

Towards Multi-level Aware Model Transformations . . . . . . . . . . . . . . . . . . . 208
Colin Atkinson, Ralph Gerbig, and Christian Tunjic

Pattern Matching

An Algorithm for Generating Model-Sensitive Search Plans for EMF
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
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How Clean Is Your Sandbox?
Towards a Unified Theoretical Framework

for Incremental Bidirectional Transformations

James F. Terwilliger1, Anthony Cleve2, and Carlo A. Curino3

1 Microsoft Corporation
2 PReCISE Research Center, University of Namur

3 Yahoo! Research

Abstract. Bidirectional transformations (bx) constitute an emerging mechanism
for maintaining the consistency of interdependent sources of information in soft-
ware systems. Researchers from many different communities have recently in-
vestigated the use of bxto solve a large variety of problems, including relational
view update, schema evolution, data exchange, database migration, and model
co-evolution, just to name a few. Each community leveraged and extended dif-
ferent theoretical frameworks and tailored their use for specific sub-problems.
Unfortunately, the question of how these approaches actually relate to and differ
from each other remains unanswered. This question should be addressed to re-
duce replicated efforts among and even within communities, enabling more effec-
tive collaboration and fostering cross-fertilization. To effectively move forward,
a systematization of these many theories and systems is now required. This paper
constitutes a first, humble yet concrete step towards a unified theoretical frame-
work for a tractable and relevant subset of bx approaches and tools. It identifies,
characterizes, and compares tools that allow the incremental definition of bidi-
rectional mappings between software artifacts. Identifying similarities between
such tools yields the possibility of developing practical tools with wide-ranging
applicability; identifying differences allows for potential new research directions,
applying the strengths of one tool to another whose strengths lie elsewhere.

1 Introduction

Data management has long been a key pillar of any information-technology infrastruc-
ture, but the advent of the web, social networks, business intelligence, digitalization
of health care, the explosion of sensor generated data, cloud computing, and the up-
coming explosion of data markets is significantly increasing the pressure to tackle the
many issues related to transforming data across data models, and schemas—few exam-
ples of such data transformations include information extraction, exchange, querying,
evolution, migration, provenance, etc.

Furthermore, software systems are increasingly large and complex, with various in-
terdependent artifacts employing different models and levels of abstraction. The com-
plexity of the problem scales from a simple two-body problem of an application and
its database to a full constellation of artifacts requiring synchronization. And, as those

Z. Hu and J. de Lara (Eds.): ICMT 2012, LNCS 7307, pp. 1–23, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 J.F. Terwilliger, A. Cleve, and C.A. Curino

artifacts evolve, one must also contend with different versions of each as well. Man-
aging the consistency of those artifacts and versions is at the heart of software system
development and evolution.

One solution to this consistency problem that has been widely studied is the bidirec-
tional transformation. The basic idea of a bidirectional transformation is simple: there
exist two models or schemas S and T (sometimes referred to a source and target model),
and a mapping between them M. The mapping serves as a bridge to allow operations
and data to flow between the two models, and must conform to bidirectional properties
that govern the quality of the synchronization between S and T . How the mapping M
operates, how it is specified, and what services it offers consumers of the target schema
T differ greatly depending on what technology is used to build M. However, regardless
of how M is built, it must ensure that any consumers of either S or T are able to access
their data with no surprises.

Bidirectional transformations have been studied for several decades now. Perhaps the
most widely known example is the updatable view [12], where a mapping is expressed
using SQL or some other relational language. In that time, many different bidirectional
tools have been created and evaluated, each developed according to its own require-
ments and supported scenarios. As a result, each tool may support different operations
and satisfy different formal properties. However, these tools have a tantalizing amount
of overlapping capabilities as well, which invites the question of whether a common
framework or formalism for incrementally-specified mappings could exist.

The problem of examining and unifying Bidirectional Mappings (abbreviated bx)
in general has begun to be explored. Through a collection of seminars and workshops,
researchers from four computer science disciplines (Programming Languages, Software
Engineering, Graph Transformation, and Databases) have been working on establishing
collaboration, common terminology and research directions in the bidirectional space.
The work began at a meeting in Tokyo in 2008 [11], and was continued at a seminar
at Dagstuhl in 2011 [23,24]. These two meetings primarily allowed the participants
to present the state of the art in bx in each discipline, and allowed for some initial
discussion and collaboration. Also, after the Dagstuhl meeting, workshops dedicated
to bidirectional transformations were set up at various venues. One such workshop,
itself entitled BX, was intended to start a series of workshops at conferences1. Another
workshop, entitled CSXW, was set more generally on coupled transformations and was
held in concert with the GTTSE summer school2.

These seminars and workshops have been fruitful in developing insights and collab-
oration amongst specific research projects across disciplines. However, the area of bxis
vast, and more workshops and meetings are planned as the space of possible research
collaborations is just beginning to be populated. Each bx tool has been developed in
its own sandboxed set of supported scenarios in which that particular tool can excel. In
this paper, we propose a concrete opportunity to align several specific research efforts
across disciplines — to explore outside the sandbox, if you will.

Over the past decade, a number of tools have been developed that one can use to
specify a bidirectional mapping incrementally. Using such a tool, one constructs a

1 http://www.program-transformation.org/BX12/
2 http://www.di.univaq.it/CSXW2011/

http://www.program-transformation.org/BX12/
http://www.di.univaq.it/CSXW2011/
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mapping between two models as a combination of elements from some set of map-
ping primitives with known properties. In practice, one will begin with one of the two
models and apply mapping primitives one at a time until one arrives at the other model.
Contrast this approach with a declaratively specified mapping, where one uses a lan-
guage like SQL or predicate calculus to specify the relationship between the models.
This incremental approach has been used frequently in software development tools like
Extract-Transform-Load (ETL) tools, which implies that one could use a similar ap-
proach to build a general-purpose tool for bidirectional mappings.

Our investigation into incremental bidirectional mappings proceeds as follows. First,
in Section 2, we introduce some criteria by which we can compare different incremental
tools. Next, in Section 3, we investigate and analyze a set of five incremental bx tools;
this set of tools is not intended to be comprehensive, but sufficiently representative to
illustrate typical scenarios currently addressed by such tools and to show that some
potential for unification already exists. Section 4 charts some new research directions
that we see as potentially useful consequences of our analysis. We conclude the paper
with some final thoughts about the state of the overarching discussion about bx.

2 An Initial Taxonomy

To better characterize the various incremental tools considered in this paper, we begin
with a brief taxonomy of several features and capabilities that such tools may exhibit.
This taxonomy is not intended to be complete, but rather a starting point for analysis
and discussion.

Information Capacity

When considering a bidirectional mapping tool, it is useful to consider whether the tool
can construct a mapping that alters the information capacity of the models on which it
operates. In particular, one can ask two basic questions:

Can a mapping decrease information capacity? If a mapping can decrease informa-
tion capacity, even if each source model state maps uniquely to a state of the target
model, the reverse may not be true. For such mappings, each target state can still be
translated uniquely into a source model state when combined with the “old” state of
the source model to be used as context. For instance, consider a source model state s
translated to target model state t, then updated to target model state t′. The new source
model state s′ can be computed as a function of t′ and s.
Can a mapping increase information capacity? A mapping may, for instance, add
new columns or tables or otherwise add new data capacity to a model’s structure. A
source model state applied as input to a capacity-increasing mapping may not be able
to map uniquely to a target model state. Because the target model in some tools is
virtual, there may not be a target model instance to provide additional context. Thus the
tool may need to provide alternative means for filling the empty capacity in the target.

Note that support for increasing capacity need not be correlated with support for de-
creasing capacity. Note also that a mapping tool that can neither increase nor decrease
the information capacity of models can only support bijective mappings. In other words,
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the mapping between two models may follow a strictly isomorphic relationship. Each
state of the target model maps uniquely to a state of the source model and vice versa.
This type of relationship has very nice functional properties, but is limited in its expres-
sive capabilities.

One orthogonal question to ask about a tool, when it supports alteration of information
capacity, is this:

Is a mapping’s operation strictly a functional dependency of its inputs? Consider a
case when a mapping between model S and target T has a relationship where no data
must ever be deleted from S but rather be “deprecated” to maintain audit trails. The
modeling of deprecated data includes the time and active user at the time of deprecation.
This mapping must turn all attempts to delete or update data into new records, and those
records must include environment data about the system time that cannot be inferred
from the data itself. Still, such a mapping must still must maintain correctness properties
with respect to how data appears in the target model, displaying the correct data and
omitting stale, deprecated items.

Concrete Versus Virtual State

Another major consideration in the construction of a mapping tool is the expected mode
of operation of the target model. In particular, the tool designer must decide whether
the target model states will be materialized or not. The answer to that question largely
determines the kinds of scenarios the tool will support.

Materialized Target State. In this scenario, the entire state of the source model is
transformed into its target-model counterpart according to the mapping. Effectively, the
mapping constructs an instance of the target model by applying a function to an instance
of the source model. Data retrieval from the target in this mode of operation is simple,
as one has a full concrete instance to work with.

With a concrete target state, updates against the target modify the state in place.
Propagating the update back to a source state consists of applying the reverse process
of the mapping to the modified target state.

Virtual Target State. In this scenario, one constructs a declarative query against the tar-
get model, and that query is translated into a corresponding query or set of instructions
against the source model, this is also referred to as query/update rewriting. Using this
paradigm, one typically does not ever have a complete instance of the target model, but
may have access to portions of it in case the complete instance is too large to reasonably
work with.

For updates against a virtual target state, one constructs an update expressed in terms
of a declarative statement against the target model. The typical INSERT, UPDATE, and
DELETE statements in SQL are examples of such statements.

Model Evolution

An orthogonal question to answer is how a tool expects to respond to the evolution
of either of its models. Such a scenario is commonplace over the many versions of
an application over its lifespan. Given an evolution to either the target model T or the
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source model S , all other artifacts in the system must reconcile themselves somehow.
For instance, consider a situation where a data-driven application interacts with a target
schema T , with database schema S and mapping M connecting them. The application
designer now makes changes to the application where new fields are required, old ones
are no longer needed, and some existing fields now employ a different data type. In this
situation, these changes induce a new target model T ′.

The central question in this circumstance is how M and S evolve to compensate, if
at all, to continue to have a working database backing the application. There are two
choices, centered around one question: Does the source model need to remain invariant?

Source-Invariant. In this case, one constructs a new mapping that connects the old
model T to the new model T ′, and then constructs a mapping from S to T ′ by composi-
tion, M′ ◦M. This scenario is common when dealing with legacy data sources that need
to remain unchanged to support older (and possibly numerous) versions of software.

Co-Evolution. Alternatively, one can construct a new mapping M′ and a new source
model S ′ such that M′ maps S ′ to T ′, and the relationship between S and S ′ is correct
with respect to some sense of consistency against the original model S and the changes
made to T . The tool must be clear what its notion of “consistency” is. Also, when
evolving model S into S ′, one must also consider the impact on any services that rely
on that model, in particular any data states that conform to S .

3 Incremental Transformation Languages

The five tools that we investigate in this section come from two disciplines of computer
science: programming languages and databases. They form a representative sample of
the design space in that they cover most of the options in Section 2.

3.1 Lenses

A lens is a mathematical abstraction centered around a pair of functions called get
and put. If a lens � is a transformation from model S to model T , then function get
describes how to get data from an instance of S to populate a state in T , while function
get describes how to put data back into the state of S [15].

Lenses were originally introduced as a programming language construct for building
bidirectional transformation programs over strings and tree structures. As an example,
one can use a lens to build a program that extracts log data from XML files into flat
structures, and allow updates to those structures to re-update the XML. Lenses were
also explored in the relational context, where one can use lenses to build an updatable
view over a database. Relational Lenses roughly correspond to relational algebra oper-
ators like selection, projection, and join, where each operator is adorned with an update
policy [3].

Background: Over time, different categories of lenses have been introduced to cover
different programming scenarios. The original formulation, now as a retronym called
either classical lenses or asymmetric lenses to disambiguate from newer forms, are an
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encapsulation of the idea of an updatable view. Functions get and put in a classical lens
have the following formulations:

get : S → T put : T × S → S

In short, function get translates a store state into a target state without any other context
required, while function put uses the original store state as context when translating an
updated target state back to a new store state. An alternative but equivalent formulation
is to consider the part of the store model S that is not relevant to function get, and call
this part of the model its complement C. Then:

get : S → T ×C put : T ×C → S

This formulation has some appealing symmetry to it, a symmetry that one can use
to extend the formalism to a scenario that is itself symmetric. A classical lens has a
directionality to it, with a target state and a store state. However, lenses can also be used
to synchronize two different models T and T ′, with the expectation that neither model
subsumes the other in information capacity. In a symmetric lens, the two functions are
allowed to each have a complement [22]:

putl : T ×C → T ′ ×C putr : T ′ ×C → T × C

where putl and putr are the two constituent functions, renamed as such in the literature
to reflect that neither model is “dominant” over the other. Also, the complement C spans
the unmapped portions of both models T and T ′, which provides some formal conve-
nience and an implementation simplification where a single storage point is required to
maintain the complement state.

The literature on lenses has described three different methods for constructing a lens.
First, one can construct a lens by using a domain-specific language whose primitives
are themselves lenses [15]. Such a combinator approach is similar to the other tools
listed in this paper. Second, one can use a standard language, restricted to a subset with
known properties, to define either the get or put function and automatically infer the
other one from the syntax of the defining expression for get [25]. For example, one can
use SQL to define views (the get function) that are updatable (the put function) if one is
limited to a syntactic subset of the language where the FROM clause only has one table
reference, there are no aggregates or set operations, and so forth. Finally, one can use
a standard language to define a get function and, without the syntactic restriction, infer
the put function based on evaluating the get function over a cleverly-selected set of
inputs [35]. A hybrid approach between the syntactic approach and the input analysis
approach has also been considered [36].

Formal Properties: Much of the formalism around lenses centers around the subset
that are both total and well-behaved. A total lens is one whose pair of functions are both
total on their inputs. A well-behaved lens must, in addition, satisfy two roundtripping
policies that match the same intuition as classical updatable views. First, there is the
intuition that, given a target state, if one pushes that state to the store and retrieves it
again, one always gets the original state as a result. Using the original formulation of a
classical lens, this property — also called “PutGet” — amounts to:

∀(t∈T )∀(s∈S )get(put(t, s)) = t
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Second, there is the intuition that, given a store state, if one applies a lens to it and
immediately pushes the result back, one gets back the original store state. This property
— also called “GetPut” — amounts to:

∀(s∈S ) put(get(s), s) = s

Analogs to these formulae exist for the symmetric case as well, corresponding to the
intuition that unaltered data can flow back and forth through the lens functions without
altering state.

Several proposals have been made for further formal properties for lenses. In partic-
ular, consider the “PutPut” rule:

∀(t,t′∈T )∀(s∈S ) put(t′, put(t, s)) = put(t′, s)

This rule states that the put function, when applied to a sequence of target states, will
always result in the store state that would have occurred if only the final target state was
applied. The intuition here is that for a lens that satisfied PutPut, the target state can be
updated incrementally or holistically and will yield the same result. The literature gives
several examples of lenses that satisfy PutPut, as well as many useful ones that do not;
as a result, well-behaved lenses that also satisfy PutPut are given their own category,
very well-behaved.

One notable additional flavor of lens, the quotient lens, relaxes the PutGet and GetPut
properties slightly:

∀(t∈T )∀(s∈S )get(put(t, s)) ≡T t

∀(s∈S ) put(get(s), s) ≡S s

A quotient lens treats bidirectionality as being relative to equivalence classes over the
underlying models [16]. These equivalence classes allow lenses to treat certain kinds
of differences in model states as being insignificant, such as the whitespace in XML
documents.

Bidirectional Characteristics: Different flavors of lenses have somewhat different char-
acteristics relative to their bidirectionality. In addition to the basic classical and symmet-
ric lenses, and whether a lens is merely well-behaved or very well-behaved, there have
been other categories of lenses introduced that play with adjusting the formal properties
to suit new scenarios. What follows is a characterization of many of those categories.

– Both classical and symmetric lenses are capable of decreasing information ca-
pacity.

– A classical lens is not capable of increasing information capacity, as it is only a
function of its source model input. A symmetric lens, however, is capable of in-
creasing information capacity through the means of a complement.

– Lenses are by their very construction functional with respect to the input states of
the source and target models.

– A lens retrieves data through its get function applied to the source state. It is there-
fore, by definition, based on materialized target states according to the taxonomy
of Section 2. A lens translates an update when the user updates a target state in
place, and the put function replaces the updated state back to a new source state.
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Some efforts have been made to adjust this basic mode of operation to be more
like a virtual state. For instance, an edit lens is a variant of a symmetric lens where
instead of translating states, the lens translates descriptions of updates tailored to
the structure of the underlying model [21]. A list structure would then support op-
erations that insert entries at the end, delete an entry at a given position, update an
entry at a given position, or reorder entries.

– A lens � from model S to model T does not have any built-in capabilities for han-
dling a case where S or T evolves. However, if one can construct a lens �′ from S (or
T ) to an evolved model S ′ (or T ′), and compose � with �′ to form a new lens from
S ′ to T (or S to T ′, respectively). In this way, lenses can support source-invariant
model evolution.

Note that the composed lens may need to be symmetric where the original lens
� did not. For instance, consider the case where one evolves the target model T to
add a new column. This new column would participate in the model complement
as it is unmapped.

3.2 Schema Modification Operators

Schema Modification Operators (SMO) and Integrity Constraint Modification Opera-
tors (ICMO), have been designed to provide a simple operational language for database
administrators to describe the evolution of a relational schema S 1 with integrity con-
straints IC1 into a new schema S 2 with integrity constraints IC2. The SMO/ICMO syn-
tax is heavily influenced by SQL, but each operator is atomic and unambiguous for
evolution purposes.

By design, SMOs provide structural transformations of the schema, that thanks to
careful handling of integrity constraints are guaranteed to be invertible (and thus infor-
mation preserving). ICMOs are responsible for integrity constraint manipulation, i.e.,
do not affect the schema structure, but modify its information capacity (thus they are
not trivially invertible, and not always information preserving). This division of respon-
sibilities manages complexity by handling structural changes and information-capacity
changes separately. The above property also provides a significant practical advantage:
SMOs can be inverted automatically, so the user is only required to specify an inverse
for ICMOs (more precisely for a subset of ICMOs).

This operational language is leveraged in [9,10,28,29] as a paradigm for interacting
with the user and capturing the intended evolution semantics. Each operator can then
be automatically translated into:

– An equivalent set of SQL statement capable of migrating the data from schema S 1

to schema S 2—thus accomplishing data migration functionalities.
– A logical mapping M based on Disjunctive Embedded Dependencies (DED) be-

tween schema S 1 and S 2—necessary for query/update rewriting.

Thanks to the invertibility properties of SMOs, the above benefits are bidirectional.
The choice of DEDs to capture M (and its inverse M′) is based on the expressive-

ness of this language capable of covering all cases representable by SMOs and ICMOs.
Moreover, powerful theoretical results have been proven about soundness and com-
pleteness of the chase and back-chase algorithm [13] for DEDs.
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In PRISM++ [10] the chase-and-backchase algorithm is used to accomplish query
rewriting across SMO-based evolution steps, while new algorithms have been devised
to handle rewriting through ICMOs steps. The theory around chase-and-backchase is
extended to handle in a sound way rewritings of queries with negation. The problem
tackled is akin to view-update, and the combination of the SMO/ICMO language and
the algorithms provides a sound solution, for three practically very useful subclasses of
the general view-update problem. Decreasing information capacity is challenging for
data migration (there is information loss), but trivial for query and update rewriting (the
target schema has more stringent constraints, on the contrary increasing information
capacity is simple for data migration but makes query and update rewriting more chal-
lenging. The three sub-classes considered for cases in which the information capacity
of new schema S 2 is strictly larger than the one in S 1, the user can choose between three
semantics of the rewriting:

– If the data instance I2 under S 2 also (still) satisfies all constraints of S 1 queries
and updates can be executed on S 2, provided updates do not introduce new viola-
tions (this can be checked via queries as pre and post conditions), the query/update
rewriting fails otherwise.

– I2 violates the constraints of S 1, the scope of queries and updates is limited to the
portion of I2 that satisfy S 1 constraints, and we updates should not introduce or
remove constraints, the rewriting fails otherwise.

– I2 violates the constraints of S 1, but the user is ok with queries and updates operat-
ing with side effects on a less stringent schema S 2, all rewritings succeed but side
effects are not always revertible.

While SMO/ICMOs can be used to capture general mappings between relational
schemas, their design is mostly conducive to schema evolution scenarios, where the
user naturally thinks in terms of changes of the input schema. The underlying DED
framework on the contrary is rather general.

Bidirectional Characteristics: Relative to the questions and categories laid out in Sec-
tion 2, SMOs have the following properties:

– Sequences of SMOs/ICMOs can increase/decrease information capacity, in par-
ticular, ICMOs are responsible for modifying information capacity. Only the three
special cases defined above can be handled, this however cover the vast major-
ity of practical scenarios. The use of User Defined Functions in the SMOs can be
leveraged to embed a limited form of non-functional generation of new values,
however this is far from fully general.

– SMOs/ICMOs support virtual target state by chase-and-back-chase rewritings
(combined with dedicated algorithms for ICMO, updates and negation). SMOs /
ICMOs support a form of materialized target state for data migration, i.e., oper-
ators are translated into corresponding SQL scripts and data are physically moved
across schemas. This can be leveraged in other contexts if deemed necessary, how-
ever the virtual version is typically more efficient.

– In terms of model evolution, SMOs/ICMOs are focused on single schema and con-
cerned with its evolution. Thus PRISM++ allows a source-invariant form of evo-
lution by concatenating mappings.
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3.3 Channels

A channel [32] is a bidirectional transformation from S to T derived from the following
design requirements:

– The target model is virtual. Therefore, data retrieval is done through queries, and
updates are done through declarative statements.

– In addition to being able to update the data in the target model, one must be able to
evolve the target model T itself. For instance, one can add a new column to a table
in the target model, and the channel must propagate that change to a corresponding
change against the store model.

– The mapping from S to T must be surjective, both in terms of model states and
in terms of schema elements. Every state in the target model must map to at least
one store model state, and all data elements in the target model must be somehow
“backed” by elements in the store model.

Background: Channels are part of a larger framework called Guava designed to fa-
cilitate simplified development of applications with persistent database backing [31].
Using Guava, a developer implements a graphical application, from which Guava de-
rives a data model using the application’s data entry widgets and windows as a guide.
The channel is the tool that connects this implied data model — itself a target model,
since it represents the virtual state of the application — to a database.

Even though a channel can be considered to be an abstraction from a store model
S to a target model T , the specification is done in the reverse order, from T to S . The
specification order is due to the application-centric nature of the Guava framework; one
starts with the target model inferred from the graphical application, then applies one
transformation at a time until one arrives at the desired database schema (as shown in
Figure 1).

The application-driven nature of Guava also explains why schema translation is a
requirement for channels. Since in Guava, the target model is derived from an appli-
cation, when the application is modified (say, because a new textbox was added), the
target model will also be modified, which will induce changes through the channel to
the store model in turn.

Formal Properties: A channel is itself made up of discreet transformations. A channel
transformation (CT) is a 4-tuple of functions (S, I,Q,U) that operate on Schema, data
Instances, Queries, and Updates respectively. The S and I functions are never employed
in practice; they provide the semantic backbone for a CT, demonstrating how the CT
would operate if it were to function on fully materialized instances.

In practice, a channel operates much the same way as an updatable view in ordinary
relational database systems. The target model represents a virtual (non-physical) data
state, but the user can construct and execute declarative query and update statements
against it in exactly the same way as if it were a physical, stored state.

There are several key differences between channels and updatable views, though.
First, since all individual channel transformations are updatable, the target schema of
any channel is also updatable by composition. Second, an updatable view is typically
defined by a query, which returns only a single table; the target model of a channel
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Fig. 1. The basic operation of a channel with respect to queries and updates

may be a fully capable schema, including multiple tables, as well as primary key and
referential constraints. Finally, the only way to update the schema of a relational view
is to edit the underlying relational query. When using a channel, the user may evolve
a target schema directly. Such evolutions propagate through a channel and to the store
schema to evolve it in turn.

One evaluates the correctness of a CT based on three properties, loosely stated:

– If one runs a query q against what would be a fully materialized instance i of a
target model T , one will get the same result as if one runs Q(q) (the translated
query) against I(i) (the translated instance). This property establishes a correlation
between functions I and Q.

– Running a translated update against a translated schema is equivalent to running
the update first, then translating the result. This property establishes a correlation
between functions S and U.

– Given a query q and and update u, running Q(q) against the store model after run-
ning U(u) will give the same result as running q against the target model after
running u. This property establishes a correlation between functions S, Q, and U.

Put together, these three conditions formalize smooth function of an application. The
intuition is that if someone is using a database application and issues the same query
twice, they will get the same result, and if the application updates data or schema be-
tween queries, the new query result will have the correctly updated data.
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Bidirectional Characteristics: Relative to the questions and categories laid out in Sec-
tion 2, channels have the following properties when considered as a mapping from
source model to target model:

– A channel can decrease information capacity in some limited cases. The set of
CTs allowed by a channel fall into two categories. One category qualifies as fully
bidirectional and includes transformations like horizontal and vertical partitioning,
as well as pivoting. The second category supports transformations that are not
functionally dependent on inputs, and includes transformations that can add store
columns that track environment information, or “deprecates” rows rather than delet-
ing them or updating them. A CT in this second category can reduce information
capacity from source to target model.

– A channel cannot increase information capacity, a byproduct of the application-
based scenarios that channels support. The target model associated with an appli-
cation must be entirely backed by persistent storage.

– A channel supports a virtual target state. As mentioned earlier, the user interacts
with the target model using a query language, at the target model is strictly not
materialized. In the literature on channels, translation of updates is strictly speaking
done based on insert, update, and delete statements that key off of primary key
values. However, channels support a “looping” construct as well, which can be
used to support arbitrary update statements as well.

– A channel supports model co-evolution, where an incremental change to the target
model induces and incremental change to the store model.

3.4 DB-MAIN

Background: DB-MAIN is a programmable CASE environment that provides a large
transformational toolkit supporting such processes as database design, reverse engi-
neering, evolution and migration. It is based on the Generic Entity/Relationship (GER)
model [17] to represent data structures at all abstraction levels and according to all
popular modeling paradigms. The GER model includes, among others, the concepts
of schema, entity type, domain, attribute, relationship type, keys, as well as various
constraints. A GER schema is made up of specification constructs which can be, for
convenience, classified into the usual three abstraction levels, namely conceptual, logi-
cal and physical. The use of the GER as pivot model for schema representation allows
inter-model transformations to reduce to intra-model ones.

Formal Properties: DB-MAIN relies on a transformational approach, considering
most database engineering processes as chains of schema transformations. A schema
transformation consists in deriving a target schema S ′ from a source schema S by re-
placing construct C (possibly empty) in S with a new construct C′ (possibly empty) [18].
C (resp. C′) is empty when the transformation consists in adding (resp. removing) a con-
struct. More formally, a schema transformation Σ is a couple of mappings 〈T, t〉 such
that : C′ = T (C) and c′ = t(c), where c is any instance of C and c′ the corresponding
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instance of C′. Structural mapping T explains how to modify the schema while instance
mapping t states how to compute the instance set of C′ from instances of C.

Any transformation Σ can be given an inverse transformation Σ−1 = 〈T−1, t−1〉 such
that T−1(T (C)) = C. If, in addition, there also exists an instance mapping t−1 such that:
t−1(t(c)) = c, then Σ (and Σ−1) are said semantics-preserving or reversible. If 〈T−1, t−1〉
is also reversible, Σ and Σ−1 are called symmetrically reversible. Intuitively, if a schema
transformation is reversible, then the source schema can be replaced with the target one
without loss of information. Table 1 provides a semantic classification of the main GER
schema transformations, that can be semantics-increasing (S +), semantics-decreasing
(S −) or semantics-preserving (S =)3.

Table 1. Semantic classification of GER schema transformations

GER schema construct Semantic impact of construct transformation
S + S − S =

Entity type

add remove rename
convert to attribute
convert to rel. type
split/merge

Relationship type
add remove rename

convert to ent. type
convert to attribute

Role

create delete rename
increase max. card. decrease max. card.
decrease min. card. increase min. card.
add entity type remove entity type

Is-a relationship
add remove
change type change type

Attribute

add remove rename
increase max. card. decrease max. card. convert to ent. type
decrease min. card. increase min. card. aggregate
extend domain restrict domain disaggregate (if compound)
change type change type instantiate (if multi-valued)

concatenate (if multi-valued)

Identifier
add remove rename
add component remove component change type

Constraints
add remove rename
add component remove component
change type change type

Access key
add remove rename
add attribute remove attribute

Collection
add remove rename
add entity type remove entity type

The chain of transformations that are successively applied to a source schema S to
produce a target schema S ′ is used as a formal basis to specify/derive forward and
backward mappings between S and S ′. Such mappings can, in turn, be exploited to
develop and automate incremental, bi-directional approaches to:

1. Co-evolving conceptual schema, logical schema, physical schema and data [20];
2. Co-evolving database schemas and application programs [7,6];

3 A semantics-preserving (resp. -decreasing, -increasing) transformation is also called
information-capacity-preserving (resp. -decreasing, -increasing).



14 J.F. Terwilliger, A. Cleve, and C.A. Curino

Co-evolving conceptual schema, logical schema and data. The problem addressed in
this scenario can be summarized as follows: how must a change in a given schema
be propagated to the other level schemas and to the data instances? The DB-MAIN
approach assumes that the conceptual CS , logical LS , and physical schemas PS exist,
and that the transformational histories of the conceptual-to-logical (CL) and logical-to-
physical (LP) processes are available. Three evolution scenarios are then considered,
depending on the schema initially modified:

– Conceptual modifications typically translate evolutions in the functional require-
ments into conceptual schema change;

– Logical modifications do not modify the requirements but adapt their platform-
dependent implementation in the logical schema.

– Physical modifications aim at adapting the physical schema to new or evolving
technical requirements, like data access performance.

The problem addressed in the first scenario is the propagation of conceptual schema
modifications towards the logical, physical, and data layers, and to the revised histo-
ries. In the second scenario, the conceptual schema is kept unchanged, but the logical
design history CL must be updated and the modifications must be propagated in the
physical and data layers. In the third scenario, only the physical design history LP must
be updated.

Co-evolving database schemas and application programs. When modeling schema
evolutions as schema transformations, the schema-program co-evolution problem trans-
lates as follows. Given a semantics-preserving schema transformation Σ applicable to
data construct C, how can it be propagated to the database queries that select, create,
delete and update instances of construct C? The DB-MAIN approach consists in as-
sociating with structural mapping T of Σ, in addition to instance mapping t, a query
rewriting mapping stating how to adapt the related queries accordingly. In other words,
the concept of schema transformation is extended to the more general term of database
co-transformation, formally defined below.

Let S denote the set of all possible database schemas, D(S ) the set of all possible
database states complying with schema S , Q(S ) the set of all possible queries that can
be expressed on schema S , R(S ) the set of all possible results of reading queries on S .
A database query q expressed on a schema S is then defined as a function that takes
a database state d ∈ D(S ) as input, and returns a (possibly updated) database state
d′ ∈ D(S ) together with a (possibly empty) result r ∈ R(S )4.

A database co-transformationΦ = 〈T, td, tq〉 is a 3-tuple of transformations where:

– T transforms a schema S ∈ S;
– td transforms related data instances such that ∀d ∈ D(S ) : td(d) ∈ D(T (S ));
– tq transforms related queries, such that: ∀q ∈ Q(S ) : tq(q) ∈ Q(T (S )) : ∀d ∈ D(S ) :

tq(q)(td(d)) = td(q(d)).

4 Reading primitives typically leave the database state unchanged (d′ = d), in contrast with
modification primitives (create, delete, update) that do affect the database contents (d′ � d).
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We refer to [5] for a set of generic co-transformation rules corresponding to eleven
semantics-preserving schema transformations. Those generic rules have been used as
formal basis to develop automated support to (1) schema refactoring via program trans-
formation [7], (2) database platform migration via wrapper generation [19,8] and (3)
database design and evolution via conceptual data manipulation API (re)generation [6].

Bidirectional Characteristics: Following the considerations of Section 2, DB-MAIN
can be characterized as follows:

– In the context of inter-schema co-evolution, a GER schema transformation can de-
crease information capacity and, under particular conditions, still be correctly
propagated to the other schema levels and to the data instances. As far as the
schema-program co-evolution scenario is concerned, only information-capacity
preserving schema transformations are automatically supported by the DB-MAIN
co-transformational approach.

– The same holds for transformations that increase information capacity, which
can also be propagated to other schemas and to data, depending on the nature of the
relationships between the additional and pre-existing schema constructs.

– DB-MAIN mainly follows a virtual target state scenario, for both schema-schema
and schema-program co-evolution scenarios. When co-evolving a conceptual, a
logical and a physical schema, the only schema that is materialized is the phys-
ical schema, while the two other schemas can be considered higher-level virtual
views defined over it. Similarly, when propagating logical schema evolutions to
programs, the translated queries (or the generated APIs/wrappers) can be seen as a
means to virtually simulate the source logical schema on top of the target one.

– DB-MAIN supports model co-evolution processes, according to which incremen-
tal changes to a schema at a given abstraction level propagates, when possible, as
incremental changes to the other-level schemas, to the database contents and to the
program queries.

3.5 Both-as-View

Background: Both-as-View (BAV) is an approach to data integration that is based
on the use of reversible schema transformation sequences [26]. Data integration is
the process through which several databases, with their associated local schemas, are
integrated in order to form a single, virtual database, with a corresponding global
schema. In this context, BAV constitutes a unifying framework for Global-as-View
(GAV) and Local-as-View (LAV) approaches, while combining their respective ben-
efits. Using BAV, it is indeed possible to express the local schemas as views over the
global schema, and to process queries over the global schema by rewriting queries using
those views (as in LAV). Conversely, BAV allows the definition of the global schema as
a view over the local schemas, and to rewrite queries over the global schema into dis-
tributed queries over the local databases (as in GAV). Furthermore, a major advantage
of the BAV approach over GAV and LAV is that it readily supports the evolution of both
local and global schemas.
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Formal Properties: BAV relies on a general formal framework supporting schema
transformation and integration [30], which consists of (1) a low-level hypergraph-based
data model called HDM [4], and (2) a set of primitive schema transformations defined
for this model. HDM serves as a common model in terms of which higher-level data
models (e.g., relational, ER and UML) and their basic schema transformations can be
defined5.

The BAV approach, when applied to simple relational data models6, considers the
following set of primitive schema transformations:

– addRel(〈〈R, k1, ..., kn〉〉, q), which adds a new relation R to the schema with primary
key attributes k1, ..., kn, n ≥ 1. Query q expresses the set of primary key values (i.e.,
a set of n-tuples) belonging to the extent of the R in terms of the already existing
schema constructs.

– addAtt(〈〈R, a〉〉, c, q), that adds to an non-primary key attribute a to an existing
relation R in the schema. Parameter c is either null or notnull. Query q specifies the
extent of the relationship between the new attribute a and the primary key attributes
of R in terms of pre-existing schema constructs. This extent consists of a set of pairs.

– deleteRel(〈〈R, k1, ..., kn〉〉, q), that deletes from the schema relation R with primary
key attributes k1, ..., kn, under the condition that all its non-primary key attributes
have already been deleted. Query q indicates how the set of primary key values in
the extent of R can be restored from the remaining schema constructs.

– deleteAtt(〈〈R, a〉〉, c, q) allows to delete non-primary key attribute a of relation R
from the schema. Query q specifies the way the relationship between the primary
key attribute(s) of R can be restored from the remaining schema constructs.

Each of primitive schema transformation t described above has an automatically deriv-
able reverse transformation t−1, as shown in Table 2.

Table 2. Primitive schema transformations in BAV, and their respective reverse transformation

t : S → S ′ t−1 : S ′ → S

addRel(〈〈R, k1, ..., kn〉〉, q) deleteRel(〈〈R, k1, ..., kn〉〉, q)
addAtt(〈〈R, a〉〉, c, q) deleteAtt(〈〈R, a〉〉, c, q)
deleteRel(〈〈R, k1, ..., kn〉〉, q) addRel(〈〈R, k1, ..., kn〉〉, q)
deleteAtt(〈〈R, a〉〉, c, q) addAtt(〈〈R, a〉〉, c, q)

The symmetrically-reversible nature of those primitive transformations allows the
automatic, lossless translation of queries between schemas. For instance, let us assume
that a schema S is transformed into a schema S ′ through an addRel or an addAtt prim-
itive transformation. Translating a query Q over S into an equivalent query Q′ over S ′
simply consists in substituting occurrences of the deleted construct in Q by the query q

5 By contrast, the GER model of the DB-MAIN approach forms a unifying data model from
which each particular data model can be defined by selecting a particular subset of model
constructs.

6 This is only an example, the same approach is equally applicable to any other data model that
can be expressed on top of the HDM model.
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defined in the transformation. Sequences of primitive transformations are are handled
by successively applying such substitutions in order to obtain the final translated query
Q′. This query translation mechanism can be applied in order to obtain the derivation
of each global schema construct from the set of local schemas. These derivations can, in
turn, be substituted into any query expressed over the global schema in order to obtain
an equivalent query distributed over the local database schemas (GAV approach). Con-
versely, the very same translation scheme can be applied to obtain the derivation of all
local schema constructs from the global schema, based on which LAV query translation
can be provided.

In addition to the above primitive transformations, BAV also consider four schema
transformations that do not fully preserve information capacity. Two contracting trans-
formations, contractRel and contractAtt, behave in the same way as deleteRel and
deleteAtt, respectively, except that the associated query q may only partially recon-
struct the extent of the deleted schema construct.

Similarly, extending transformations extendRel and extendAtt are similar to addRel
and addAtt transformations, but they indicate that their accompanying query q may only
partially build the extent of the new schema construct. In the worst case, the query q
associated with a contract or an extend transformation may be void, which then means
that there is no information available on how to derive, even partially, the extent of the
deleted/new construct from the remaining/pre-existing schema constructs.

Based on similar derivation and translation mechanisms as those described above,
BAV provides immediate support to schema evolution, be it the evolution of the global
schema or the evolution of a local schema.

Global schema evolution. Let us suppose that n local schemas S 1, ..., S n have been
integrated into global schema S g, using the schema transformation sequence T . The
evolution of S g towards a new global schema S ′g can also be modeled as a sequence
of primitive schema transformations. Let us consider a single primitive transformation
step t. Then the new transformation from the local schemas to the S ′g becomes T ′ = T ; t,
obtained by suffixing t to T . Three cases are to be considered:

1. t is an add or a delete transformation, i.e., S g and S ′g are semantically equivalent,
and T ′ is already correct.

2. t is a contract transformation, i.e., information capacity has been decreased when
transforming S g into S ′g. This means that some local constructs may have no repre-
sentation in S ′g.

3. t is an extend transformation with a void accompanying query, then one needs to
examine the derivability of relationship between the new global construct and the
local schemas. If it is derivable, t has to be replaced in T ′ by a more informative
extend or add transformation.

Local schema evolution. A similar reasoning can be followed when a local schema S i

evolves to S ′i . The only difference is that it may also involve global schema change. If
T is the initial transformation sequence from S 1 ∪ ... ∪ S i ∪ ... ∪ S n to S g, generating
a new transformation sequence T ′ from S 1 ∪ ... ∪ S ′i ∪ ... ∪ S n to S g can be done by
prefixing the reverse of t to T , i.e., T ′ = t−1; T .
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1. If t is an add or a delete transformation, then S i and S ′i are semantically equivalent,
i.e., any information in S g derived from S i can also be derived from S ′i . So, T ′ is
already correct.

2. If t is a contract transformation, i.e., information capacity has been decreased when
transforming S i into S ′i , i.e., it may be the case that S g now contains some con-
structs about which no information is derivable from any local schema. In this case,
those constructs must be removed from S g, and T ′ must be adapted accordingly.

3. If t is an extend transformation, then one needs to examine the derivability of rela-
tionship between the new local construct and S g. If it is derivable through a trans-
formation td, the latter must be appended to T ′. If it is not derivable, an extend
transformation, adding the new construct to S g, must be appended to T ′.

Bidirectional Characteristics: Considering the classification dimensions of Section 2,
the BAV method exposes the following properties:

– Some of the primitive schema transformations supported by BAV, in particular the
contract operators, actually decrease the information capacity of the schema.

– The extend schema transformations defined above can increase information ca-
pacity, and still allow to automatically derive an updated relationship between the
global and the local schemas. This mainly depends on the nature of the accompa-
nying query q.

– Developed in the context of data integration, BAV corresponds to a virtual target
state scenario, where the global schema is virtual and the local schemas represent
distributed store models.

– BAV also fits with the model co-evolution approach: incremental transformations
successively applied to the global or to the local schema propagate, automatically or
semi-automatically, as incremental adaptations of the inter-schema mappings and,
in some cases, of the global schema.

3.6 Discussion

Consider a simple case of a mapping M that translates a schema S with a single ta-
ble Person(id,salary,type) into schema T with two tables Sales(id,salary)
and Engineer(id,salary). Mapping M partitions the table Person according to the
value in field type, sending salespeople and engineers to the proper target table. This
mapping can be expressed in any of the five tools introduced above.

In lenses, one constructs M out of functions get and put as follows, using relational
algebra as the definition language and defining the functions one relation at a time:

getS ales = πid,salaryσtype=′ sales′Person

getEngineer = πid,salaryσtype=′engineer′Person

putPerson = (Sales × {′sales′}) ∪ (Engineer× {′engineer′})
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In PRISM, one constructs M out of a short sequence of SMOs7:

– partition table PERSON into SALES with type = ’sales’, ENGINEER
– drop column type from SALES
– drop column type from ENGINEER

In a channel, one constructs M as HMerge({S ales, Engineer}, Person, type), noting
that a channel is built in reverse order which is the reason for the operator being “merge”
instead of “partition”. HMerge handles the transformation that fills in the type column
during updates.

In DB-MAIN, the partitioning will be interpreted, at the conceptual level, as the
creation of two additional entity types S ales and Engineer, each defined as a subtype
of Person through an is-a relationship of type partition (disjointness and totality). Then
the logical design process is updated so that the new is-a relationship is transformed via
downward inheritance, and both attributes type are removed.

In BAV, one constructs M as a sequence of addRel and deleteRel operations as
follows:

– addRel(〈〈S ales, id〉〉, q1)
– addAtt(〈〈S ales, salary〉〉, notnull, q2)
– addRel(〈〈Engineer, id〉〉, q3)
– addAtt(〈〈Engineer, salary〉〉, notnull, q4)
– deleteAtt(〈〈Person, salary〉〉, notnull, q5)
– deleteAtt(〈〈Person, type〉〉, notnull, q6)
– deleteRel(〈〈Person, id〉〉, q7)

Accompanying queries q1, q2, q3 and q4 incrementally partition the data of relation
Person into relations S ales and Engineer. Accompanying queries q5, q6 and q7 merge
S ales and Engineer into Person.

This simple analysis shows that there is overlap between the tools mentioned here,
but also begins to show how they differ. One consideration that becomes immediately
apparent is the level of granularity in specification. For this specific example, one can
use a channel to express mapping M in a single step. However, a simple change to the
example — letting the tables SALES and ENGINEER retain the type column — would
make HMerge inappropriate to use, while allowing PRISM to now express the mapping
with a single operator.

Another point to note is that, in PRISM, the drop column SMO does not specify
what the value in the dropped column could or should be, and that the value is assumed
to be a labeled null or Skolem function in the operator’s inverse function [9], this is
handled more clearly with the introduction of ICMOs in PRISM++ [10], but still require
some manual intervention in the definition of inverses.

Contrast that feature with BAV, whose syntax for a deleteAttr or deleteRel opera-
tion requires that the user provide the means for replacing the value (one could use
the contract forms with a void argument to indicate that the value need not be recov-
ered). Further contrast those options with the HMerge channel transformation, which

7 In PRISM++ the same example would include ICMOs, which will force the type column to
be set to default, thus freeing the SMO steps from any information-capacity responsibility.
Inverting the ICMO would require manual intervention.



20 J.F. Terwilliger, A. Cleve, and C.A. Curino

holistically provides both transformation directions and thus prescribes that the value
for the missing column be filled in with the name of the table of origin.

These options demonstrate that these tools often trade atomicity for functionality or
vice versa. The HMerge channel transformation is the least atomic of all of the tools;
however, it is unclear whether the schema co-evolution and data update features of
channels would be possible if the transformation were broken into smaller parts. BAV
offers a more atomic approach, but requires the user to express more in the queries that
form the arguments to the operators.

4 Research Opportunities

Now that we have analyzed each of these five incremental bxtools, a natural question to
ask is, for each tool, what it would take for it to work seamlessly in the context of the
other tools’ core scenarios? More concretely:

– Can the definition of a lens be analyzed on extended in such a way that allows a
lens to support model co-evolution, or declarative integrity constraints?

– Can channels be extended to work in a way that more flexibly increases or decreases
information capacity?

– Can automatic specification tools (e.g., [25,35,36]) be used to write mappings in
BAV without needing to manually write queries?

Any attempt to unify the capabilities of these tools takes one step towards the construc-
tion of more general-purpose tools. Of course, there is no guarantee that these tools can
be unified, in which case concrete evidence as to why unification is not possible can
lead to a well-founded taxonomy of incremental bx tools.

Assuming that unification is possible in full or in part, there are other opportunities to
leverage the flexibility of incremental bx tools. For the rest of this section, we examine
one such case: data exchange mappings.

Data Exchange literature in the database field has centered around source-to-target
tuple-generating-dependencies (st-tgds), a subset of first-order predicate calculus, as
the formalism of choice for expressing mappings [1]. Such mappings are by their very
nature unidirectional, so several efforts have been made to examine how to invert them
to provide a measure of bidirectionality (e.g., [2]). However, many mappings have no
unique inverse, or an inverse that is highly lossy.

Both Data Exchange and symmetric lenses describe their motivating scenario simi-
larly: as synchronizing two data sources. In addition, if one examines st-tgds as a map-
ping language relative to the criteria in Section 2, however, one can see that they are
strikingly similar to lenses. A data exchange mapping with no existential quantifiers can
be information capacity decreasing but not increasing, like a classical lens; adding in
existential quantifiers allows it to increase capacity as well, like a symmetric lens. Data
transfer and operations in a data exchange setting assume materialized states (though in
theory, those states may include placeholders or labeled nulls, which complicate query
answering). And the schema evolution scenario in data exchange is a source-invariant
one, where model evolution is represented itself as a mapping, and that mapping is
composed with the original in some way to construct the new mapping [1,34,37].

Seeing this parallelism between Data Exchange and Lenses may be fruitful, espe-
cially for the Data Exchange field. For instance, the following might be possible:
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– In the same way that relational calculus expressions can be translated into relational
algebra, establish a set of operators that form a basis set for st-tgds. Whether a single
such basis set would exist is unknown, as different sets may have different desirable
properties, but each such set would need a conversion algorithm from st-tgds.

– Design the basis set of operators so that, like BAV and DB-MAIN, it can be parti-
tioned into those that increase, decrease, or preserve information capacity.

– For each operator in the basis set, author the operator as an edit (symmetric) lens to
allow for both information capacity increases and decreases.

– For each operator in the basis set, extend the set of allowable update operations on
either side of the lens to include arbitrary INSERT, UPDATE, and DELETE SQL
statements as in channels.

– For each operator in the basis set, allow primitive schema evolution operations
to propagate through it as in channels. Also, ensure that each primitive schema
evolution is itself reflected in the operator basis set, so that as in PRISM, one can
instead choose to append the evolution to the mapping rather than propagate it.

– For each operator that increases information capacity, allow the user to specify op-
tions as to how to populate that information capacity above and beyond the default
(as in channels — consider a case where an operator adds a column, but the user
chooses to populate that column with the current time).

– Whenever either model evolves as a result of model co-evolution, maintain an audit
trail of those evolutions as PRISM SMOs to maintain version compatibility.

As a result, one may end up constructing a tool similar to that of Clio [14], where
one can use a declarative language to specify data exchange mappings. However, one
would as a result able to construct a mapping where either endpoint is updatable declar-
atively, either endpoint is evolvable (and those evolutions can either propagate or work
in-place), model evolutions result in an audit trail that mitigates version dependencies,
users would have a wide variety of options for filling in missing data, and the mapping
would still have the same formal foundation that allows for deep analysis and poten-
tial for optimization. If one does not like using declarative languages for mappings,
one could instead use an Extract-Transform-Load-style tool [33] where one constructs
a mapping directly from composing the individual operations.

5 Conclusion

All bx tools differ in the particular level of genericity, usability, expressive power, au-
tomation, etc. they provide, and often are based on comparable yet different theoretical
backgrounds. For instance, channels or SMO choose a narrower target scenario and pro-
vide theoretically sound yet very usable solutions, while DB-MAIN opted for a broader
theoretical framework (e.g., providing very high flexibility in terms of the data model
they support). We believe this field is starting to mature, and it is now time to start think-
ing about a unification effort, capable of leveraging the flexibility of certain approaches,
and the usability of others.

As a potential first step, a proper conceptual mapping across theoretical backgrounds
can be of great use for future research efforts by providing a stronger foundation where
new research efforts can operate in a way that is more aware of the existing landscape.
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A more ambitious goal would be to form a truly unified theoretical foundation to
incremental bx.

Such a unification would not be sufficient, since it would obviously not magically
translate as a single generic and efficient tool to solve all problems in all possible sce-
narios. Such a unification would not be trivial to accomplish, since it will require a
huge collaborative effort, involving researchers from distinct communities, countries
and scientific cultures. However, such a unification would be desirable, both for bet-
ter addressing existing bidirectional scenarios and for tackling largely unexplored, yet
important scenarios. In the first case, the BAV approach constitutes a perfect exam-
ple of a new approach designed to combine the respective advantages of the LAV and
GAV approaches, which were initially seen as incompatible competitors in data inte-
gration. In the second case, new challenging problems are currently emerging that will
require a better understanding of the existing bx tools and of their differences (1) to
avoid reinventing the wheel forever, (2) to choose the adequate (combination of) tool(s)
to address a given (set of) scenario(s), and (3) to face the current limitations of each tool
in the context its own scenario(s).

In short, such a unified framework would greatly benefit to the entire research com-
munity, simultaneously acting as a structured survey of the field, as a systematic way
of identifying novel research directions, and as a means to foster collaboration between
several researchers or teams. This paper is not only a first humble step towards this
objective; it is also a call to arms.
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Abstract. Testers often use partial knowledge to build test models. This knowl-
edge comes from sources such as requirements, known faults, existing inputs, and
execution traces. In Model-Driven Engineering, test inputs are models executed
by model transformations. Modelers build them using partial knowledge while
meticulously satisfying several well-formedness rules imposed by the modelling
language. This manual process is tedious and language constraints can force users
to create complex models even for representing simple knowledge. In this paper,
we want to simplify the development of test models by presenting an integrated
methodology and semi-automated tool that allow users to build only small partial
test models directly representing their testing intent. We argue that partial models
are more readable and maintainable and can be automatically completed to full
input models while considering language constraints. We validate this approach
by evaluating the size and fault-detecting effectiveness of partial models com-
pared to traditionally-built test models. We show that they can detect the same
bugs/faults with a greatly reduced development effort.

1 Introduction

Model transformations are core components that automate important steps in Model-
Driven Engineering (MDE), such as refinement of input models, model simulation, re-
factoring for model improvement, aspect weaving into models, exogenous/endogenous
transformations of models, and the classical generation of code from models. Models
and transformations have a widespread development in academia and industry because
they are generic artifacts to represent complex data structures, constraints, and code
abstractions. However, there is little progress in techniques to test transformations [5].
Testing requires the specification of software artifacts called test models that aim to de-
tect faults in model transformations. Specifying test models manually is a tedious task,
complicated by the fact that they must conform to a modelling language’s specification
and numerous well-formedness rules. For instance, the specification of the UML con-
tains numerous inter-related concepts and well-formedness rules for its models such as
class diagrams, activity diagrams, and state machines. The issue becomes crucial when
a tester needs to create several hundred test models for a model transformation.

The knowledge to create test models can come from various sources. Usually some
tests have a direct correspondence with application requirements, others are conceived
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by imagining corner cases that can cause an error in a transformation. Several methods
exist to derive further testing knowledge. For instance, analyzing a model transforma-
tion can reveal locally used classes, properties and possibly some of their values or
bounds on values called a footprint [16]. Similarly, analyzing a localized fault via tech-
niques such as dynamic tainting [12] in a model transformation can reveal patterns in
the input modelling language that evoked the fault. Other sources include existing mod-
els via model slicing [7] and execution traces of a model transformation [3]. However,
most of this knowledge is incomplete or partial in the sense that it must be completed
and certified as a valid input test model that conforms to the well-formedness rules and
constraints of the modelling language. We face and rise to three challenges:

Challenge 1: How can we express partial knowledge in a modelling language? We call
the artifact containing this knowledge a partial model.

Challenge 2: How can we automatically complete a partial model?
Challenge 3: Are these automatically completed models effective in detecting the same

faults that a human-made model containing the partial knowledge detects?

In this paper, we provide a methodology to generate effective test models from partial
models and a semi-automated supporting tool [25]. The methodology to generate com-
plete test models from partial knowledge is divided into two phases. In the first phase,
we need to specify partial model(s) as required by Challenge 1. We propose to repre-
sent a partial model as a model conforming to a relaxed version of the original input
metamodel of the model transformation. The relaxed metamodel allows specification of
elements in a modelling language without obligatory references, containments, or gen-
eral constraints that were in the original metamodel. Our tool adopts the transformation
in [24] to generate a relaxed metamodel suitable to specify a partial model. In the sec-
ond phase, we automatically complete partial models by integrating our tool PRAMANA

[26] as required by Challenge 2. PRAMANA transforms the input metamodel to a base
constraint satisfaction problem Ab in Alloy [15]. In this paper, we re-write partial mod-
els as predicates in Alloy that are juxtaposed to Ab. We also specify finite bounds on the
satisfaction problem called the scope. The scoping strategy can be modified depending
on whether we would like to generate minimally sized or large test models. We solve
the constraint satisfaction problem in Alloy using a SAT solver to generate one or more
test models that complete the partial models and satisfy all well-formedness rules of
the input modelling language. If the partial model conflicts with a modelling language
constraint, which has higher priority, we do not generate a test model, but we give feed-
back to the tester about the partial model being invalid. Our approach is applicable to
transformations written using model transformation languages (e.g., ATL [17], Kermeta
[22]) or also general-purpose languages (e.g., Java).

Finally, we experimentally evaluate a case study, to tackle the last Challenge 3, but
also to show the benefits of our methodology in drastically reducing the manual aspects
of test specification in MDE. Our experimentation shows that a set of small partial mod-
els can detect all the faults that human-made complex models detect. We compare, by
using mutation analysis for model transformations [11] [21], the bug-detecting effec-
tiveness between a test set of completed partial models and human-made test models.
In our experiments, we employ the representative case study of transforming simplified
UML class diagram models to database (RDBMS) models called class2rdbms. Mutation
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analysis on this transformation reveals that a set of 14 concise partial models can detect
the same bugs as 8 complex man-made models. The 8 complete models contain more
than twice (231 vs. 109) the number of elements compared to partial models. It is also
important to note that the complete models were constructed meticulously to satisfy
well-formedness rules while the partial models contain loosely connected objects that
are automatically linked by our tool. The partial models are noise-free in the sense that
they illustrate the testing intent precisely without the clamor of well-formedness rules.
This result suggests that concise expression or extraction of partial knowledge for test-
ing is sufficient, comparatively effective, and less tedious than manually creating test
models hence solving Challenge 3 and promoting our approach.

The paper is organized as follows. In Section 2 we present the representative case
study for transformation testing. In Section 3 we present our integrated methodology
to generate complete test models from partial knowledge. In Section 4 we present our
experimental setup and results. In Section 5 we discuss related work. We conclude in
Section 6.

2 Case Study

In the paper, we consider the case study of transforming simplified UML Class Diagram
models to RDBMS models called class2rdbms. We briefly describe class2rdbms in this
section and discuss why it is a representative transformation to validate our approach.

For testing a model transformation, the user provides input models that conform
to the input metamodel MM (and possibly transformation pre-condition pre(MT )). In
Figure 1, we present the simplified UMLCD input metamodel for class2rdbms. The
concepts and relationships in the input metamodel are stored as an Ecore model [10]
(Figure 1 (a)). Part of all the invariants on the simplified UMLCD Ecore model, ex-
pressed in Object Constraint Language (OCL) [23], are shown in Figure 1 (b). The Ecore

Ecore Meta-model  

name: String

Classifier

name: String

Association

is_primary: Boolean
name: String

Attribute

is_persistent: Boolean

Class

PrimitiveDataType

ClassModel

type

1

classifier

*

dest1 src1

association
*

parent
0..1

1..* attrs

(a)

OCL Invariants
context Class  

 inv noCyclicInheritance: 
  not self.allParents()->includes(self) 

 inv uniqueAttributesName: 
  self.attrs->forAll(att1, att2 | 
   att1.name=att2.name implies att1=att2) 

context ClassModel  

 inv uniqueClassifierNames: 
  self.classifier->forAll(c1, c2 | 
   c1.name=c2.name implies c1=c2) 

 inv uniqueClassAssociationSourceName : 
  self.association->forAll(ass1, ass2 | 
   ass1.name=ass2.name implies  
   (ass1=ass2 or ass1.src != ass2.src)) 

(b)

Fig. 1. (a) Simplified UML Class Diagram Ecore Metamodel (b) OCL constraints on the MM
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model and the invariants together represent the true input metamodel for class2rdbms.
The OCL and Ecore are industry standards used to develop metamodels and specify
different invariants on them.

For this paper we use the Kermeta implementation of class2rdbms, provided in [21].
The transformation class2rdbms serves as a sufficient case study for several reasons.
The transformation is the benchmark proposed in the MTIP workshop at the MoDELS
2005 conference [6] to experiment and validate model transformation language features.
The input domain metamodel of simplified UMLCD covers all major metamodelling
concepts such as inheritance, composition, finite and infinite multiplicities. The con-
straints on the simplified UMLCD metamodel contain both first-order and higher-order
constraints. There also exists a constraint to test transitive closure properties on the in-
put model such as there must be no cyclic inheritance. The transformation exercises
most major model transformation operators such as navigation, creation, and filtering
(described in more detail in [21]) enabling us to test essential model transformation
features.

3 Methodology

We present a methodology to generate complete models from partial models, and the
supporting tool [25] we developed. We describe the process in three phases: 1) Partial
Model Specification, 2) Transformation to ALLOY, 3) Model Completion.

1) Partial Model Specification

A partial model is essentially a graph of elements such that: (1) The elements are in-
stances of classes in the modelling language metamodel MM (2) The partial model does
not need to conform to the language metamodel MM or its invariants expressed in a tex-
tual constraint language such as OCL. A complete model on the other hand contains all
the objects of the partial model and additional objects or property value assignments in
new/existing objects such that it conforms both to the metamodel and its invariants.

In the first phase, the user can specify partial models using an automatically-genera-
ted relaxed language. Given an input metamodel MM we generate a relaxed metamodel
MMr using a relaxation transformation as shown in Figure 2 (a). The transformation is
adopted from Ramos et al. [24]. The relaxed metamodel MMr allows the specification
of partial models that need not satisfy a number of constraints enforced by the original
metamodel MM. In Figure 2 (b), we show the relaxed metamodel derived from the sim-
ple class diagram metamodel shown in Figure 1 (a). The relaxed metamodel allows the
specification of partial models in a modelling language. For instance, in Figure 4(a), we
show a partial model specified using MMr. It is important to clarify that PObject acts as
a linking object to another metamodel that allows writing of patterns called model snip-
pets on the relaxed metamodel. for a pattern-matching framework.This pattern matching
metamodel from Ramos et al.[24] is not used in this paper and is hence not shown. It
is interesting to note that the partial model specified using MMr allows specification
of objects required for testing. For instance, we specify Class and Association without
the need to specify their containment in ClassModel. Similarly, a full specification of
all property values is not required. The only properties specified in the partial model
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Fig. 2. (a) Metamodel relaxation to help specifying a partial model (b) Relaxed metamodel MMr

are Class.is persistent, Association.src, Association.dest, and Class.parent. On the con-
trary, a model that conforms to MM, must satisfy the metamodel MM’s constraints and
its well-formedness rules such as no cyclic inheritance such as in Figure 1(a), (b). Us-
ing OCL [23] constraints is another way to specify partial models. However, it is more
complex for the tester to write an OCL constraint equivalent to a partial model: it is
based on the complete MM to navigate the model from its root to the constrained con-
cepts. For instance, whereas a partial model constrains one class to have its attribute
is attribute = true is made only with this class with only this attribute initialized,
the same constraint written in OCL is:

i n p u t . c l a s s i f i e r . s e l e c t ( c | c . o c l I s T y p e ( C l a s s ) ) . e x i s t s ( cs | cs . a t t r s . e x i s t s ( a | a . i s p r i m a r y = t r u e ) )

In our approach, the concepts in the partial model are those that are available in MM
but no one is mandatory.

2) Transformation to ALLOY

In the second phase, we transform the original metamodel MM to Alloy [15]. We
integrate the tool PRAMANA presented in Sen et. al. [26], for the transformation in
[25]. PRAMANA first transforms a metamodel expressed in the Ecore format using
the transformation rules presented in [26] to ALLOY. Basically, classes in the input
metamodel are transformed to ALLOY signatures and implicit constraints such as in-
heritance, opposite properties, and multiplicity constraints are transformed to ALLOY

facts. Second, PRAMANA does not fully address the issue of transforming invariants and
pre-conditions expressed on metamodels in the industry standard OCL to ALLOY. The
automatic transformation of OCL to ALLOY presents a number of challenges that are
discussed in [1]. We do not claim that all OCL constraints can be manually/automati-
cally transformed to ALLOY for our approach to be applicable in the most general case.
The reason being that OCL and ALLOY were designed with different goals. OCL is
used mainly to query a model and check if certain invariants are satisfied.
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ALLOY facts and predicates on the other hand enforce constraints on a model. The
core of ALLOY is declarative and is based on first-order relational logic with quanti-
fiers while OCL includes higher-order logic and has imperative constructs to call op-
erations and messages making some parts of OCL overly expressive for the purpose of
finite-domain constraint solving. In our case study, we have been successful in manually
transforming all constraints on the simplified UMLCD metamodel to ALLOY from their
original OCL specifications. Can we fully automate this step? This question remains to
be answered in our approach. However, the manual transformation is a one time mental
effort for a fixed set of constraints.

The ALLOY model generated in the previous phase has to be extended with the infor-
mation coming from the partial test models. A partial model, such as in Figure 4 (a), is
manually re-written to an ALLOY predicate as shown in Figure 4 (b). For the translation
we navigate all objects of a certain type and put them together as an ALLOY predicate.
The predicate states that there exists three objects c1,c2,c3 of type Class such that they
are unequal, and only c1.is persistent =True. The Class objects c2 and c3 inherit from
c1. There exists also an Association object a1 such that its source a1.src is Class object
c2 and destination a1.dest is c3. The name properties of the Class objects c1,c2,c3 and
Association object a1 are not specified. They also do not contain a primary attribute
which is mandatory for the transformation class2rdbms. The partial model objects also
do not have to be contained in a ClassModel object. This process can be automated to
generate a concise and effective ALLOY predicate. For instance, in [28], the authors
have automated the transformation of partial models specified in a model editor. It can
also be improved to consider negative application conditions (false-positives) or bounds
on maximum/minimum of objects that can be specified in a partial model.

3) Model Completion

The final phase in our methodology is that of solving the translated ALLOY predicate
in the executable ALLOY model A f to obtain one or more complete models.

Model completion requires finite values such as the upper bound on the number of
objects of the classes in the MM, or the exact number of objects for each class, or a
mixture of upper bounds and exact number of objects for different classes. These val-
ues are called the scope. We call the approach to specify the scope the scoping strategy.
The default scoping strategy is the upper bound defined by the number of objects of
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        c1!=c2 and c2!=c3 and 
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Fig. 4. (a) Partial Model P3 (b) Re-written Alloy Predicate (c) Complete Model from P3

each type in the partial model. For objects that are not part of the partial model we
manually fine tune the scope to a minimum value such that a complete model can be
generated. The scope of the top-level container class (ClassModel in our case study)
is often exactly one. The scoping strategy is generated in the form of a ALLOY run
command that is finally inserted in the executable ALLOY model A f as shown in Figure
3. For example, the run command generated and fine-tuned for the partial model in
Figure 4 (a) is:

run p a r t i a l M o d e l f o r e x a c t l y 1 ClassModel , 4 i n t , 3 C l ass , 3 A t t r i b u t e , 1 P r i m i t i v e D a t a T y p e , 1 A s s o c i a t i o n

The above run command is manually fine-tuned for Attribute and PrimitiveDataType.
Fine-tuning is necessary in our case study since all Class objects require at least one
primary Attribute object.

The ALLOY model is transformed to a set of expressions in relational calculus by
the ALLOY analyzer. These expressions are then transformed to Conjunctive Normal
Form (CNF) [29] using KodKod. Finally, the CNF is solved using a SAT solver [19].
The low-level SAT solutions are transformed back to XMI models that conform the
initial metamodel. The resulting XMI models are validated by loading them into an
EMF model editor. The editor ensures both the satisfaction with respect to an Ecore
metamodel and OCL constraint checker. The use of an industrial tool helps ensure that
the input models contain objects of valid classes, and conform to all metamodel and
OCL constraints

There is always the option to either automatically/manually fine tune the scoping
strategy to generate big or concise complete models. For instance, in Figure 4 (c), we
show a concise complete model that we generate for the partial model in Figure 4 (a).
One or more non-isomorphic solutions can be generated by ALLOY by adding a sym-
metry breaking constraint for each new solution. The symmetry breaking constraints are
generated and added automatically by Alloy whenever a new solution is requested. This
in-turn allows us to generate several hundred different models that are non-isomorphic
if possible. All elements of the partial model are preserved in the complete test
models. Minimal number of objects are added so that all well-formedness rules
and other constraints are satisfied. In Table 1, we present the degree of automation
achieved in our tool.



Using Models of Partial Knowledge to Test Model Transformations 31

Table 1. Degree of automation in our tool

Aspect of Tool Degree of Automation
Metamodel to Alloy in PRAMANA automatic
OCL to Alloy manual
Metamodel to relaxed metamodel automatic
Partial Model Specification manual
Partial Model to Alloy Predicate currently manual/can be automated [28]
Solution Scoping default and manually tunable
Solving Alloy Model from API in PRAMANA automatic
XMI model instance from solution in PRAMANA automatic

4 Experiments

In this section we perform experiments to address two questions:

Q1 Can tests derived from partial models detect the same faults that human-made mod-
els detect?

Q2 Are partial models more concise than equivalently powerful human-made models?

The inputs to our experiments are (a) the simplified UMLCD input metamodel from
class2rdbms, (b) a set of well-formedness rules and class2rdbms pre-conditions in
OCL. The experimentation proceeds as follows:

1. A set of random faults are injected in the class2rdbms model transformation, using
a mutation tool;

2. A first modeler, aware of the previous mutations, develops a set of models that kills
all the injected faults;

3. A second modeler, aware of the mutations, develops a set of partial models to kill
all the injected faults, following our approach;

4. We measure the size of test models and compare the effectiveness of the two test
sets.

The two modelers are both experienced in testing and modeling. For our final evalua-
tion, we use a Macbook Pro Intel dual-core processor 2.7 GHz, 8 GB RAM to generate
complete models and perform the analysis.

4.1 Injecting Faults in the Model Transformation

Our experimental evaluation is based on the principles of mutation analysis [11]. Mu-
tation analysis involves creating a set of faulty versions or mutants of a program. A test
set must distinguish the correct program output from all the output of its mutants. In
practice, faults are modelled as a set of mutation operators where each operator repre-
sents a class of faults. A mutation operator is applied to the program under test to create
each mutant injecting a single fault. A mutant is killed when at least one test model
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Table 2. Partition of the class2rdbms mutants depending on the mutation operator applied

Mut. Oper. CFCA CFCD CFCP CACD CACA RSMA RSMD ROCC RSCC Total
# of Mutants 19 18 38 11 9 72 12 12 9 200

detects the pre-injected fault. It is detected when program output and mutant output are
different. A test set is relatively adequate if it kills all mutants of the original program.
A mutation score is associated to the test set to measure its effectiveness in terms of
percentage of the killed/revealed mutants.

To inject faults in our transformation, we use the mutation operators for model trans-
formations presented by Mottu et al. [21]. These mutation operators are based on three
abstract operations linked to the basic treatments in a model transformation: the naviga-
tion of the models through the relations between the classes, the filtering of collections
of objects, the creation and the modification of the elements of the output model. Using
this basis, Mottu et al. defined the following mutation operators:

Relation to the same class change (RSCC): The navigation of one association toward
a class is replaced with the navigation of another association to the same class.

Relation to another class change (ROCC): The navigation of an association toward a
class is replaced with the navigation of another association to another class.

Relation sequence modification with deletion (RSMD): This operator removes the
last step off from a navigation which successively navigates several relations.

Relation sequence modification with addition (RSMA): This operator does the op-
posite of RSMD, adding the navigation of a relation to an existing navigation.

Collection filtering change with perturbation (CFCP): The filtering criterion, which
could be on a property or the type of the classes filtered, is disturbed.

Collection filtering change with deletion (CFCD): This operator deletes a filter on a
collection; the mutant operation returns the collection it was supposed to filter.

Collection filtering change with addition (CFCA): This operator does the opposite
of CFCD. It uses a collection and processes an additional filtering on it.

Class compatible creation replacement (CCCR): The creation of an object is re-
placed by the creation of an instance of another class of the same inheritance tree.

Classes association creation deletion (CACD): This operator deletes the creation of
an association between two instances.

Classes association creation addition (CACA): This operator adds a useless creation
of a relation between two instances.

We apply all these operators on the class2rdbms model transformation. We identify
in the transformation code all the possible matches of the patterns described by each
operator. For each match we generate a new mutant. This way we produce two hun-
dred mutants from the class2rdbms model transformation with the partition indicated
in Table 2.
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Fig. 5. Human-made Test Model M1

In general not all injected mutants become faults, since the semantics of some of
them is equivalent to the correct program, and therefore they can never be detected. The
controlled experiments presented in this paper use mutants presented in our previous
work [21] where we have clearly identified mutants and equivalent mutants.

4.2 Building Manual Tests

A modeler manually designed a set of test models, by analyzing the 200 faults we in-
jected in class2rdbms as described earlier. The objective was to obtain a test set able
to kill all the mutants we generated. The resulting test set is composed by 8 models
conforming to the fully constrained UMLCD modelling domain (metamodel + well-
formedness rules + pre-conditions for class2rdbms). Together, the hand-made test mod-
els count 231 elements. We used mutation analysis to verify that these 8 human-made
models can kill all 194 mutants (excluding 6 equivalent mutants identified).

4.3 Building Partial Models

For the experimentation, we could have built the partial models from scratch (as it
normally happens) but we prefer to extract partial models from the manual models
derived in the previous phase. We need it to have a direct correspondence between
traditional models and partial models, that is useful in the evaluation. This does not
influence the global experimentation results: from scratch or from a traditional model,
the second modeler wants to kill one mutant. With both methods, only the mutant is
targeted. Additionally with our experimental approach, partial models contain elements
comparable with traditional models.

We incrementally derive our partial models from the 8 human-made models. Given
a reference human-made model (as shown in Figure 5) we extract a partial model
(in Figure 4 (a)). A partial model is extracted from a human-made model by keeping
only the useful elements to kill one target mutant. We use our methodology in Section
3 to automatically complete the partial model to get 10 test models. Second, we apply
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Table 3. Size Comparison Between Partial Models and Human-made Models

partial model P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

from reference model M1 M1 M1 M3 M5 M6 M3 M4 M7 M3 M4 M2 M1 M8 M1 M2 M3 M4 M5 M6 M7 M8

#ClassModel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

#Class 1 3 3 2 2 2 2 2 3 3 4 1 1 3 4 3 3 3 2 3 2 3

 #name attr. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 3 3 2 3 2 3

 #is_persistent attr. 1 3 1 2 0 0 2 0 0 3 1 0 1 1 4 3 3 3 2 3 2 3

 #parent relation 0 1 2 0 1 1 1 0 0 1 1 0 0 1 3 1 2 1 1 1 0 1

#Association 0 0 1 1 0 2 1 2 0 0 2 0 0 1 1 1 1 2 0 3 0 1

 #name attr 0 0 1 1 0 2 0 0 0 0 0 0 0 0 1 1 1 2 0 3 0 1

 #src relation 0 0 1 1 0 2 1 2 0 0 2 0 0 1 1 1 1 2 0 3 0 1

 #dest relation 0 0 0 0 0 0 1 2 0 0 2 0 0 1 1 1 1 2 0 3 0 1

#Attribute 1 0 0 0 2 0 0 0 2 1 0 1 1 0 4 3 3 3 2 3 3 2

 #is_primary attr. 1 0 0 0 0 0 0 0 2 1 0 1 1 0 4 3 3 3 2 3 3 2

 #name attr. 0 0 0 0 2 0 0 0 0 0 0 0 0 0 4 3 3 3 2 3 3 2

 #type relation 0 0 0 0 0 0 0 0 2 1 0 1 1 0 4 3 3 3 2 3 3 2

#PrimitiveDataType 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1

 #name attr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Total #concept 4 7 9 7 7 9 8 8 9 10 12 5 6 8 38 29 30 33 18 37 21 25

Total #concept per set 109 231of partial models: of models:

mutation analysis to obtain a score for the 10 complete test models if the partial model
is solvable. If the mutation score is not 100% we extract more partial models from the
set of complete models to kill live mutants. We repeat this process until test models
generated from partial models give a 100% mutation score.

For instance, to kill a mutant we extract a partial model P3 in Figure 4 (a) from the
human-made model M1 in Figure 5. The human-made model contains many concepts
(classes, classes’ attributes and relationships), it satisfies the invariants of the meta-
model and the pre-conditions of the model transformation under test class2rdbms. The
class on top of the partial model matches class B of the reference model, the class on
the left matches class D (both are persistent), the class on the right matches class C
(name, is persistent, attrs are not concerned with this matching), and the association of
the partial model matches association assoDC. Then the partial model P3 matches the
model M1. We notice that the completed model illustrated in Figure 4 (c) doesn’t match
the model M1 (both subclasses are persistent for instance).

We apply this iterative process to obtain 14 partial models that when completed give
a 100% mutation score. In Table 3, we list the partial models, the reference human-
made models they were extracted from, and the objects they contained. We notice that
partial models do not need specification of all attribute values. For instance, the partial
model P3 (Figure 4) has three classes but is persistent attribute is set to true for only one
of them (true or false or nothing in different partial models). Moreover, thanks to the
relaxed metamodel, we do not have to instantiate the root container class ClassModel
for the partial model. In the right hand side of Table 3, we describe the elements in the
8 human-made reference models. We do not list the abstract classes classifier since it is
never instantiated and the property attrs which is redundant for all models.

4.4 Test Sets Comparison

The set of 14 partial models is made of 109 elements while the set of reference models
contain 231 elements which is more than twice. We express less information in the
partial models, considering only testing information based on potential faults simulated
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Table 4. Summary of Mutation Analysis

Human‐made

model

Mutation 

Score

of the

model

Partial models

matching

the human‐made

model

Mutation Score

of the 

completed 

partial models

Mutant killed 

by model

also killed by 

completed 

partial models

Additional mutants

killed by the 

completed 

partial models

(% total #mutants)

M1 57.2% P2, P3, P13 87.1% 100% 29.9%

M2 57.2% P1, P12 28.9% 50.5% 0%

M3 49% P1, P4, P7, P10, P12 74.2% 89.3% 39.7%

M4 57.2% P1, P8, P11, P12 85.6% 98.2% 29.4%

M5 35.6% P1, P5, P12 39.7% 100% 4.1%

M6 61.3%
P1, P2, P4, P6, P8, 

P12, P13, P14
83% 100% 21.6%

M7 47.4% P1, P9, P12 56.2% 100% 8.8%

M8 58.2% P1, P12, P14 75.8% 100% 17.5%

8 models 100% 14 partial models 100% 100% 0%

in the mutants. We also need to specify fewer meta-classes and properties in partial
models. Our tool generates complete test models form partial models while satisfying
the metamodel specification, well-formedness rules, pre-conditions, and a finite scope.
In case a partial model violates a pre-condition the tester is notified such that he/she
can modify the partial model to satisfy the constraints. The concise size of a partial
model facilitates this process. From these results we deduce that creating partial models
is simpler compared to creating complete human-made models hence addressing Q2.

In a second experiment, in order to study the resilience in quality (in terms of muta-
tion score) irrespective of solver technology (Alloy and SAT in our case) in our method-
ology, we generate 100 complete models for 14 partial models giving rise to 1400 test
models.

A sample of a completed model is illustrated in Figure 4 (c) for a partial model in
Figure 4 (a). The time taken to generate a complete test model was almost instantaneous.
Setting up a problem in CNF for a SAT solver takes about 400 ms for our case study. The
scope to generate complete models is controlled such that the models are structurally
minimal. The integer scope was set to ±210, and the number of objects per class was
adjusted such that it either equals the number of objects in the partial model or the
scope is incremented such that a consistent solution is generated. For instance, all Class
objects require a primary Attribute object hence the number of Class and Attribute
objects were equal or the number of Attribute objects was higher if required by the
partial model.

We compute the mutation score of the human-made models and compare it to the
score obtained by completing partial models. The results of mutation analysis are sum-
marized in Table 4. The time taken for mutation analysis using 1400 models to detect
200 mutants was about 6 hours and 1 minute.

In Table 4, Column 1 lists the human-made models and column 3 lists the partial
models that match parts of the human-made models. In Column 2, we present the mu-
tation score obtained for a human-made model lets say Mx. In Column 4, we present
the mutation score obtained by the set of completed partial models that match Mx.
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For instance, M1 kills 57.2% of all mutants, while its set of completed partial models
from P2, P3, and P16 (3*100 completed models) kills 87.1% mutants. The column 5
lists the percentage of the mutants killed by reference human-made model that are also
killed by the completed models. In column 6, we also present the mutants additionally
killed by the completed partial models that were not killed by their reference human-
made model. The decomposition in different lines comparing each human-made model
with its partial models illustrates that (i) a partial model can match several models and
that (ii) a set of several partial models matching one model is more efficient than it. The
most important line is the last one where the results of the entire set of human-made
models and the entire set of completed partial models are the same : both 100 %. A
general conclusion is that both human-made models and completed partial models give
a 100% mutation score hence addressing question Q1. An in-depth analysis reveals
that for 6 human-made models among 8, more than 98% of the mutants killed by the
reference model are also killed by the completed partial models. The completed models
from P1, P12, P14 kill 89.3% of the mutants killed by M3. Only completed models
from P1, P12 have a lower score of 28.9% compared to the score of M2 viz. 57.2%.

Despite generating different solutions for the same partial model our mutation scores
remain consistent and comparable to human-made models. We illustrated that a set of
partial models has the same efficiency in revealing bugs than the set of human-made
models they match. It is not necessary to write complicated human-made models since
partial models have the same efficiency.

5 Related Work

The work in this paper integrates some contributions coming from previous work. In
[26] Sen et al. have introduced a tool CARTIER (now called PRAMANA) based on the
constraint solving system ALLOY to resolve the issue of generating models such that
constraints over both objects and properties are satisfied simultaneously. PRAMANA

does not integrate a way to translate existing models to ALLOY since it’s thought for
model synthesis, and does not have any support for partial models. In this work we are
able to apply PRAMANA to model completion by feeding it with a suitable translation of
the partial models. The idea of generating test models from partial knowledge developed
from our previous work in [28]. In [28], we present the idea of generating suggestions
to complete models in a domain-specific model editor. We qualify our approach using
our previous work [21], where we extend mutation analysis to MDE by developing
mutation operators for model transformation languages.

We explore two main areas of related work : specifying partial models and test model
synthesis.

The notion of a partial model in MDE has been previously developed for various
objectives. In [14], the authors present the notion of model fragments that are essentially
partial models with test coverage criteria. Similarly, in [24] the authors propose the
notion of model snippets. Model snippets are partial models that are specified on a
relaxed version of the original metamodel. In this paper, we use the notion of model
snippets to define partial models. In [20], the authors propose partial models as a way
to represent uncertainty and variation in an already available complete model. They use
ALLOY to generate variable complete models.
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The second area of related work is about model generation or using partial knowl-
edge to synthesize models for applications such as testing. Model generation is more
general and complex than generating integers, floats, strings, lists, or other standard
data structures such as those dealt with in the Korat tool of Chandra et al. [8]. Korat
is faster than ALLOY in generating data structures such as binary trees, lists, and heap
arrays from the Java Collections Framework but it does not consider the general case of
models which are arbitrarily constrained graphs of objects. The constraints on models
makes model generation a different problem than generating test suites for context-
free grammar-based software [18] which do not contain domain-specific constraints.
Models are complex graphs that must conform to an input meta-model specification, a
transformation pre-condition and additional knowledge such as a partial model to help
detect bugs. In [9], the authors present an automated generation technique for models
that conform only to the class diagram of a metamodel specification. A similar method-
ology using graph transformation rules is presented in [13]. Generated models in both
these approaches do not satisfy the constraints on the metamodel. In [27], we present
a method to generate models given partial models by transforming the metamodel and
partial model to a Constraint Logic Programming (CLP). We solve the resulting CLP to
give model(s) that conform to the input domain. However, the approach does not add
new objects to the model. We assume that the number and types of models in the partial
model is sufficient for obtaining complete models. The constraints in this system are
limited to first-order horn clause logic. Previous work exists in mapping UML to AL-
LOY for a similar purpose. The tool UML2Alloy [2] takes as input UML class models
with OCL constraints. The authors present a set of mappings between OCL collection
operations and their ALLOY equivalents.

6 Conclusion

Manually creating test models that conform to heterogeneous sources of knowledge
such as a metamodel specification, well-formedness rules, and testing information is a
tedious and error-prone operation. Moreover the developed test models are often un-
readable, since their complexity obfuscates the testing intent.

In this paper, we present methodology based on models from partial knowledge to
simplify the development of effective test models. The emphasis in this paper is to
push towards the development of partial models by analyzing requirements, existing
test models [7], the transformation under test [16], or fault locations [12]. We provide a
semi-automated tool [25] to support the development of partial models and completing
them by automatic solving. We show that the specification of partial models is concise,
they can detect the same bugs that a human-made model can detect, and they precise
capture testing intent. We also perform experiments show that partial models are effec-
tive irrespective of the underlying solver (which is Alloy in this case). Different non-
isomorphic complete models obtained by solving a single partial model consistently
detect the bug the partial model was initially targeted to kill.

We believe our work reinforces a human-in-the-loop testing strategy that sits in be-
tween two prominent schools of thought: manual test case specification and automated
test generation. Partial models are an effective way to insert human testing knowledge
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or sophisticated analysis in a purely automated generation methodology. The approach
presented in the paper contains steps that are automated and those that are not. For in-
stance, the transformation of a partial model to ALLOY could be automated to a certain
degree. The scoping strategy can be improved using various heuristics to synthesize
a diverse set of complete models. We would also like to explore strategies to combine
mutually consistent partial models to generate a smaller set of complete test models. Fi-
nally, we would like to see the creation of industry-strength tools that allow convenient
ways to specify partial models with fully automated complete test model synthesis.
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Abstract. Testing model transformations poses several challenges,
among them the automatic generation of appropriate input test models
and the specification of oracle functions. Most approaches to the genera-
tion of input models ensure a certain level of source meta-model coverage,
whereas the oracle functions are frequently defined using query or graph
languages. Both tasks are usually performed independently regardless
their common purpose, and sometimes there is a gap between the prop-
erties exhibited by the generated input models and those demanded to
the transformations (as given by the oracles).

Recently, we proposed a formal specification language for the declara-
tive formulation of transformation properties (invariants, pre- and post-
conditions) from which we generated partial oracle functions that
facilitate testing of the transformations. Here we extend the usage of our
specification language for the automated generation of input test models
by constraint solving. The testing process becomes more intentional be-
cause the generated models ensure a certain coverage of the interesting
properties of the transformation. Moreover, we use the same specification
to consistently derive both the input test models and the oracle functions.

1 Introduction

Model transformations are the pillars of Model-Driven Engineering (MDE), and
therefore they should be developed using sound engineering principles to en-
sure their correctness [12]. However, most model transformation technologies
are nowadays centered on supporting the implementation phase, and few efforts
are directed to the specification of requirements, design or testing of transforma-
tions. As a consequence, transformations are frequently hacked, not engineered,
being hard to maintain, incorrect or buggy.

In order to alleviate this situation, we proposed in the past transML, a family
of modelling languages for the engineering of transformations using an MDE
approach [12]. transML provides support for the gathering of requirements, its
formal specification, the architectural, high- and low-level design, as well as the
specification of test scripts, which themselves are also models. An engine called
mtUnit is able to execute these test suites in an automated way.

transML includes a visual language with formal semantics called PaMoMo
(Pattern-based Model-to-Model Specification Language) [11] for the contract-
based specification of transformation requirements. In this way, the designer may
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specify requirements of the input models of a transformation (preconditions), ex-
pected properties of the output models (postconditions), as well as properties
that any pair of input/output models should satisfy (invariants). Similar to soft-
ware requirement specification languages like Z or Alloy, PaMoMo’s formal se-
mantics enables reasoning at the level of requirements, while being independent
of the particular transformation language used for the implementation.

In [11], we explored the use of PaMoMo for testing. In particular, we showed
how to automatically derive OCL partial oracle functions from PaMoMo spec-
ifications, and used these oracles to assert whether a particular implementation
satisfied a specification. Still, the transformation tester had the burden to: (a)
produce a reasonable set of input test models, (b) build a mtUnit script to ex-
ercise the transformation with the different input models, and (c) select the
partial oracle functions produced from the specification to assert whether the
tests passed or failed. In particular, the manual creation of input models is te-
dious and time-consuming, and it does not guarantee an appropriate coverage
of all requirements in the specification.

In this paper, we tackle these problems by deriving, from the transformation
specification, not only the oracle functions, but also a set of input test models
ensuring a certain level of coverage of the properties in the specification. These
input models are calculated using constraint solving techniques. Besides, a ded-
icated mtUnit test suite is generated for the automated testing of the transfor-
mation implementation using the generated input models and oracle functions.

While there are several approaches for the automated testing of transforma-
tions, ours is unique because our test models aim at testing the requirements
and properties of interest as given in a specification. Current approaches either
focus on producing input test models ensuring a certain coverage of the input
meta-model [7,21], or do not consider specification-based testing. Hence, our ap-
proach is directed to test the intention of the transformation. Moreover, the use
of the same specification to consistently derive both the input models for testing
and the oracle functions is also novel.

Paper organization: Section 2 reviews existing approaches to model transforma-
tion testing. Then, Section 3 sketches our proposal. Section 4 introduces our
specification language PaMoMo, whereas Section 5 describes our approach to
derive input test models with a certain level of specification coverage. We present
tool support in Section 6 and discuss some conclusions in Section 7.

2 State of the Art

There are three main challenges in model transformation testing [2]: the gener-
ation of input test models, the definition of test adequacy (or coverage) criteria,
and the construction of oracle functions.

Most works dealing with the generation of input test models consider only
the features of the input meta-model but not properties of the transformation
(i.e. they support black-box testing). For instance, in [7,21], the authors per-
form automatic generation of input test models based on the input meta-model
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and some coverage criteria (e.g. partitioning of attribute values and number of
classes). In [10], the generation of input test models must be hand-coded using
an imperative language with features for randomly choosing attribute values and
association ends. There are a few white-box testing approaches, like [15] where
the authors propose using all possible overlapping models of each pair of rules
in a transformation as input models for testing.

Regarding the third challenge, we distinguish between complete and partial
oracle functions. The former are defined by having the output models at hand.
For instance, the test cases for the C-SAW transformation languages [16] con-
sist of a source model and its expected output model. Partial oracle functions
express contracts that the input and output models of a transformation should
fulfil. Most proposals to partial oracle functions use OCL to specify the contracts
[6,10,18]. The approaches in [8,9] follow a similar philosophy to the xUnit frame-
work, and the oracle functions can be specified as OCL/EOL assertions. Finally,
some approaches permit the specification of partial oracle functions as graph
patterns or model fragments [1]. None of these approaches provide a mechanism
to assert the adequacy of the specified tests and automate their generation.

In conclusion, we observe that some transformation testing approaches pro-
vide automated test execution [8,9], but do not support the generation of input
models, and the oracle needs to be specified manually. Other works focus on the
automatic generation of input models [7,21], but without considering transfor-
mation properties. Finally, the works proposing contracts for specifying transfor-
mations do not use the contracts for input test generation. In this paper, we will
present our approach to specification-based transformation testing which auto-
mates the generation of the input test models, the oracle function and executable
test scripts from the same transformation specification.

It is worth noting that the idea of synthesizing both input test data and oracle
functions from a specification has been successfully applied to general software
testing, if we look at the broader scope of model-based testing. For instance, in
[3], the authors generate both artifacts for automated testing of Java programs
based on Java predicates from which all possible non-isomorphic inputs (up to
a certain size bound) are efficiently generated. This yields complete coverage of
the input state space. In our case, we aim at generating test models exhibiting
relevant properties; completemeta-model coverage (i.e. generating all meta-model
instances of a certain size) does not guarantee this, and may lead to the so-called
state explosion problem. The model-based testing approach in [23] uses symbolic
execution to generate unit tests ensuring a certain path coverage, i.e., it supports
white-box testing. In our case, we follow a black-box testing approach.

3 A Framework for Specification-Driven Testing

Fig. 1 shows the working scheme of our approach. First, the designer specifies the
requirements (i.e. the pre/postconditions and invariants) of the transformation
using our languagePaMoMo. The developer can use this specification as a guide
to implement the transformation using his favourite language (e.g. ATL [13],
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Fig. 1. Framework

ETL [14], etc.). Starting from the
specification, the transformation tester
can automatically generate a complete
test suite which can be directly used
to test the transformation implemen-
tation. This test suite comprises: (i)
an oracle function that encodes the in-
variants and postconditions in the spec-
ification as assertions [11]; (ii) a set
of input test models which enables the
testing of all requirements in the spec-
ification according to certain coverage
criteria; and (iii) a test script that au-
tomates the execution of the transfor-
mation for each test model, checks the
conformance of the result using the or-
acle function, and reports any detected
error using our mtUnit engine [12].

4 A Specification Language for Model Transformations

PaMoMo is a formal, pattern-based, declarative, bidirectional specification lan-
guage to describe, in an implementation-independent way, correctness require-
ments of the transformations and of their input and output models [11]. These
requirements may correspond to preconditions that the input models should
fulfil, postconditions that the output models should fulfil (beyond meta-model
constraints), as well as invariants of the transformation (i.e. requirements that
the output model resulting from a particular input model should satisfy).

Preconditions, postconditions and invariants are represented as graph pat-
terns, which can be positive to specify expected model fragments, or negative
to specify forbidden ones. They can have attached a logical formula stating ex-
tra conditions, typically (but not solely) constraining the attribute values in the
graph pattern. In this paper and in our prototype tool, these formulas are written
in OCL. Optionally, patterns can define one enabling condition and any number
of disabling conditions, to reduce the scope of the pattern to the locations where
the enabling condition is met, and the disabling conditions are not.

Formally, an invariant I = (C,Cen, {Cdis}) is made of a main constraint C,
an enabling condition Cen (which may be empty), and a set {Cdis} of disabling
conditions. The main constraint and conditions Cx = 〈Gs, Gt, α〉 are made of two
graphs typed by the source and target meta-models of the transformation, and
a formula α over their elements. A positive invariant holds on a pair of source
and target models if: (i) for each occurrence Occ of the source graph of the main
constraint C plus the enabling condition Cen, (ii) if there is no occurrence of the
disabling conditions {Cdis} in the context of Occ, (iii) then there is an occurrence
of the target graph of C in the context of Occ. If the invariant is negative, then
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Fig. 2. BPMN model (left) and equivalent Petri net (right)

we should not find an occurrence of the target graph of C in step (iii). Pre- and
postconditions have the same structure as invariants, but the target (source)
graph in preconditions (postconditions) is always empty. Their interpretation is
also different. A pre/postcondition holds if, for each occurrence of the enabling
condition, there is an occurrence of the main constraint for which no occurrence
of the disabling conditions is found. See [11] for a complete description of the
formal semantics of PaMoMo.

As a running example, we use PaMoMo to specify a transformation from
the Business Process Modeling Notation (BPMN) [4] to Petri nets. The goal is
to analyse BPMN models to detect deadlocks, incorrect termination conditions
or tasks that can never be completed. The left of Fig. 2 shows a BPMN model.
It specifies a flow initiated in a start event (the circle), and consisting in the
completion of different tasks (rounded rectangles). The diamonds in the model
are called parallel gateways, and split the execution in several parallel branches
(first gateway) which are later synchronized (second gateway). From this BPMN
model, our transformation should create a Petri net like the one to its right.

The left of Fig. 3 shows some transformation preconditions, expressing require-
ments that any input model should fulfil beyond its meta-model constraints1.
For instance, our transformation expects models with one start event from which
only one sequence flow goes out. This is formalised by the positive precondition
OneStartEvent (i.e. there must exist one start event with one outgoing flow in the
input model) and the negative precondition MultipleStartEvents (there cannot
be several start events). These conditions are not demanded by the BPMN meta-
model, which allows models with any number of start events, each one of them
with multiple outgoing flows, but are required by our transformation. The figure
shows another precondition, PathsForGateway, with an enabling condition. It
demands that each gateway (enabling condition) defines at least one input and
one output flows (main constraint). The precondition contains the abstract class
Gateway, becoming applicable to all concrete gateway types inheriting from it.

Postconditions express requirements of the output models, beyond their meta-
model constraints. The right of Fig. 3 shows some postconditions for the gener-
ated Petri nets, like the absence of unconnected places (UnconnectedPlaces), the
existence of input and output places for all transitions (ConnectedTransitions),
and the existence of a single place with one token and without input transitions
(InitialPlace and InitialMarking).

1 In this section, we use a graphical concrete syntax for the specification. In Section 6,
we will show an alternative textual syntax that is supported by our prototype tool.
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Fig. 3. Preconditions (left) and postconditions (right) of the transformation

Finally, Fig. 4 shows some invariants describing the transformation of tasks
and gateways. Tasks must be transformed into equally named places (Task1).
Since tasks can only have one outgoing flow, the corresponding places cannot be
connected to two output transitions (Task2). Each parallel gateway should be
transformed into a transition (ParallelGateway1), and the places for all incoming
tasks to the gateway should be input to the transition (ParallelGateway2). In-
variant ParallelGateway3 states that if a parallel gateway does not have a task t2
as input (disabling condition), then the place for t2 cannot be connected to the
transition (as the invariant is negative). There are similar invariants for the tasks
going out from a parallel gateway. The two remaining invariants state that ex-
clusive (also called choice) gateways should be transformed into an intermediate
place, plus one transition for each outgoing branch.

The use of a formal specification language like PaMoMo to specify trans-
formation properties has the following advantages: (i) it enables reasoning on
the transformation requirements before their implementation, as well as detect-
ing contradictions in the requirements early in the project; (ii) it provides a
high-level notation to specify pre/postconditions and invariants of the transfor-
mations; and (iii) it is possible to automate the generation of an oracle function
from the specification and use it for automated testing [11]. However, the chal-
lenge of generating appropriate input test models remains, as these have to be
built by hand, which is a tedious and error-prone task. Moreover, it is difficult to
ensure that the input test set will enable the testing of all relevant properties in
the specification. To solve this problem, next we present an approach to generate
input test models ensuring the coverage of a specification.

5 Specification-Driven Generation of Input Test Models

Our approach to specification-driven testing consists of the following steps: (1)
translation of the properties in the specification into a suitable format for model
finding, (2) selection of a level of specification coverage, resulting in a particular
strategy to build expressions that demand the satisfaction (or not) of a num-
ber of properties in the generated models, (3) use of a constraint solver to find
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Fig. 4. Invariants of the transformation

models satisfying concrete combinations of properties and the input meta-model
integrity constraints, and finally, (4) identification of the assertions that should
be checked after testing the transformation with a particular input model. In
the remaining of this section we present in detail this procedure.

5.1 Translation of Properties in the Specification

As a first step, we translate the specification into a language that allows au-
tomating the generation of models. In particular, we use OCL as target language
because we already had support to generate OCL assertions from our specifica-
tions [11], there are available solvers that find models satisfying a set of OCL
constraints [5], and we do not need to parse the OCL formulas in the properties
of the specification to a different language. Nonetheless, this is our particular op-
tion and the framework could be used with a different target language whenever
a translation from our specification language is provided.

Although a specification includes preconditions, postconditions and invari-
ants, only preconditions and invariants contain useful information for the input
model generation. Postconditions refer to properties of the output models and
are only used to generate oracle functions, but not input models.

An invariant expresses a property of the form: if certain source pattern ap-
pears in the input model, then certain target pattern should be present (or not)
in the output model. Thus, it is interesting to generate input models containing
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instances of the source pattern, to test whether transforming these models actu-
ally yields output models containing the target pattern. For this purpose, from
each PaMoMo invariant we generate an OCL expression which characterises
the source pattern of the invariant. Listing 1 shows a scheme of the generated
expression. It iterates on the objects of the source graph of the main constraint
(lines 1–3), and checks that there is no occurrence of the source graph of any
disabling condition (lines 4–7, this code is generated for each disabling condi-
tion). The function conditions corresponds to an OCL expression checking the
conditions that the traversed objects should fulfil, namely the existence of the
links specified in the invariant (oi.link->includes(oj)), inequalities for the objects
with same type (oi<>oj), and all terms in the invariant formula over elements of
the input domain only. The enabling condition of the invariants is ignored as we
do not want models where the invariant is satisfied vacuously due to the absence
of the enabling condition in the models. Moreover, if the invariant is negative,
the generated expression is the same (i.e. it is not preceded by the not particle)
because the source part of the invariant is still positive (if X appears then...).

o1.type::allInstances()−>exists(o1 | ...
oi.type::allInstances()−>exists(oi |
conditions(o1,...,oi)
< and not

oj.type::allInstances()−>exists(oj | ...
ok.type::allInstances()−>exists(ok |
conditions(o1,...,oi,oj,...,ok) >∗ ) ...)

Listing 1. OCL for invariants

< not >?
< o1.type::allInstances()−>forAll(o1 | ...

oi.type::allInstances()−>forAll(oi |
conditions(o1,...,oi)
implies >?
oj.type::allInstances()−>exists(oj | ...
ok.type::allInstances()−>exists(ok |
conditions(o1,...,oi,oj,...,ok)
< and not

ol.type::allInstances()−>exists(ol | ...
om.type::allInstances()−>exists(om |
conditions(o1,...,oi,oj,...,ok,ol,...,om) >∗ ...)

Listing 2. OCL for preconditions

As an example, from invariant ParallelGateway3 we generate the expression:

Task::allInstances()−>exists(t1 |
Task::allInstances()−>exists(t2 |
ParallelGateway::allInstances()−>exists(g |
t1.outgoing−>includes(g) and t1<>t2 and not t2.outgoing−>includes(g) )))

Frequently, specifications include invariants with same source and different tar-
get. For instance, Task1 and Task2 have both a task as source, whereas the for-
mer specifies how to translate a task correctly, the latter identifies an incorrect
translation. In this case, generating an input model containing a task enables the
testing of both invariants. Thus, from the set of generated OCL expressions, we
eliminate redundant source conditions (i.e. equal source in the main constraint
and disabling conditions). We do not eliminate subsumptions to allow for the
testing of models with different size and context conditions.

Finally, preconditions specify requirements of the input models of a transfor-
mation. A transformation is not demanded to work properly for input models
that do not satisfy these preconditions. The validity of the input models is hardly
ever done by the transformation, but by an external procedure, or otherwise it is
ensured by the transformation application context. Thus, we take the convention
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that all generated input models must fulfil all preconditions in the specification.
For this purpose, we generate an OCL constraint from each precondition, and
enforce their satisfaction in all generated input models by adding them to the
expressions used to generate them (see next subsection). The scheme of the gen-
erated OCL code is shown in Listing 2. The expression looks for all occurrences
of the enabling condition (lines 2–4), and demands that for each one of them
there is an occurrence of the main constraint (lines 6–8) satisfying the disabling
conditions (lines 9–10). If the precondition has no enabling condition the result-
ing expression is the same as the one for invariants, and if it is negative, the
generated expression is preceded by not.

5.2 Input Model Generation for Different Coverage Criteria

The model generation process is performed in two steps. First, we compose an
OCL expression for each input model to be generated, identifying the properties
that this model should fulfil. These expressions are built according to certain
specification coverage criteria. Then, we feed each expression, together with the
input meta-model and the OCL code generated from the preconditions, to a
constraint solver. The solver will try to find a valid input model satisfying the
given OCL expression, preconditions and meta-model integrity constraints. For a
particular expression, the solver may not find a model in the given scope, or due
to some inconsistency in the specification. In such a case, we can either widen
the search scope, or do not generate a model for that particular expression.

We identify seven levels of specification coverage for the generated test set,
with increasing degrees of exhaustivity: property, closed property, t-way, closed
t-way, combinatorial, closed combinatorial and exhaustive. The property, t-way
and exhaustive levels generate models enabling the testing of a number of in-
variants in the specification by combining their source models. The remaining
levels generate also models that do not contain occurrences of certain invariants.
In the following, we present in detail each one of them.

Property coverage. This is the least exhaustive level of coverage, appropriate
when the invariants in the specification are independent. It generates as
many input models as invariants in the specification, each one including at
least one occurrence of the source of an invariant. The rationale is to use
each generated model to test one property of the transformation, given by
one invariant in the specification. For this purpose, given a specification with
I = {I1, ..., In} invariants (with different source), we generate n expressions
of the form ocl(Ii). Each expression demands the existence of an occurrence
of the source of invariant Ii. As an example, Table 1 shows in the first column
the expressions generated from a specification with three invariants, where
each ix term represents the OCL code generated from the invariant x.

Closed property coverage. This criterion extends the previous one by gener-
ating additional models that do not contain occurrences of the source of some
invariant in the specification. The goal is checking whether the transforma-
tion under test handles properly the absence of certain patterns in the input
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models. These limit cases, usually due to underspecifications, frequently lead
to errors in the final implementations, yielding malformed output models.
Thus, given a specification with I = {I1, ..., In} invariants, we also gener-
ate n additional expressions of the form not ocl(Ii). The second column of
Table 1 shows the generated expressions assuming three invariants.

Interestingly, any model that does not contain the source of an invariant
will satisfy the invariant vacuously, as an invariant states the consequences
of having some pattern in the source model, but not the consequences of
its absence. Nonetheless, the input models generated in this way are still
interesting because their transformation have to yield valid target models
satisfying the rest of invariants and postconditions in the specification as
well as the target meta-model integrity constraints.

Finally, this coverage criterion is also indicated for specifications that use
a closed world assumption (i.e. any property not included in the specifica-
tion is false) by generating models which potentially may not belong to the
input language according to the specification. Currently, PaMoMo does not
support a closed world semantics.

t-way coverage. Most faults in software systems are due to the interactions of
several factors or properties. Based on this observation, t-wise testing [22]
consists of the generation of test cases for all possible combinations of t
properties in the system under test. Pairwise testing is a particular case of
this kind of testing for t = 2 (i.e. the generation of test cases for pairs of
properties) which yields smaller test suites than exhaustive generation yet
being able to find many errors. In our case, we are interested in detecting er-
rors coming from an incorrect implementation of the combination of several
requirements in a specification. These errors are frequent when each require-
ment is implemented as a rule or relation that interacts with other rules in
the transformation, e.g. through explicit invocation.

In this case, given a specification with I = {I1, ..., In} invariants, we
generate an expression of the form ocl(Ij) and ... and ocl (Ik) for each t-tuple
of invariants in the specification, demanding the existence of an occurrence
of the source part of each invariant in the tuple. In the limit, 1-way testing

Table 1. Expressions generated from a specification with 3 invariants. The terms i1,
i2 and i3 represent the OCL code generated from the invariants in the specification.

closed closed closed exhaustive
property property 2-way 2-way combinatorial combinatorial (for i1, i2)

i1 i1 i1 and i2 i1 and i2 i1 i1 -
i2 i2 i1 and i3 i1 and i3 i2 i2 i1
i3 i3 i2 and i3 i2 and i3 i3 i3 i2

not i1 not i1 i1 and i2 i1 and i2 not i1
not i2 not i2 i1 and i3 i1 and i3 not i2
not i3 not i3 i2 and i3 i2 and i3 i1 and i2

i1 and i2 and i3 i1 and i2 and i3 i1 and not i2
not i1 not i1 and i2
not i2 not i1 and not i2
not i3
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1 2+
(a) (b)

1 2+
(c)

Fig. 5. Generated models for the OCL expressions: (a) ocl(Task1) and ocl(Parallel-
Gateway3); (b) ocl(ParallelGateway1) and not ocl(ParallelGateway3); (c) ocl(Parallel-
Gateway1) and not ocl(ParallelGateway3), with failure due to disabling condition

is equivalent to property coverage. Table 1 shows the expressions generated
for pairwise (i.e. 2-way) testing.

As an example, Fig. 5(a) shows a model generated for pairwise testing,
considering the properties Task1 and ParallelGateway3. The model contains
two tasks, the first one is input to the gateway, and the second one not
(as required by the disabling condition of the second invariant). The solver
introduces a start event which does not appear in any of the invariants, as it
is required by precondition OneStartEvent. Moreover, the tasks in the two
invariants are not required to be different in the generated model, hence we
obtain a model with two tasks instead of three.

In the MDE community, pairwise testing is being successfully used for
software product line testing [19,20], considering pairs of features in a feature
model. In our case there are additional challenges, because our specifications
do not explicitly encode dependencies between their requirements, and the
model generation procedure has to consider the constraints given by the
input meta-model and preconditions.

Closed t-way coverage. As discussed previously, sometimes it is desirable to
test also that the input models that do not contain occurrences of the source
of invariants are handled correctly. Hence, in this criteria we generate the
same models as in t-way coverage, as well as models generated from expres-
sions of the form not ocl(Ii), as Table 1 shows for t=2.

Combinatorial coverage. It generates all models for 1-way, 2-way, ... t-way
coverage, where t is the number of invariants in the specification. Thus, here
we consider all combinations of properties, including all of them simultane-
ously (t-way case). A total of 2n − 1 models are generated (see Table 1).

Closed combinatorial coverage. It generates the same models as in combi-
natorial coverage, and a model from each negated invariant (see Table 1).

Exhaustive coverage. This is the most exhaustive level of coverage, generat-
ing models for all combinations of the occurrence or absence of the source
of the invariants in a specification, or their obliteration. For this purpose
it generates different OCL expressions where the existence of the source of
each invariant can be either mandatory (ocl(Ii)), forbidden (not ocl(Ij)) or
ignored (i.e. the invariant is not taken into account). This yields a number of
3n potential models. The last column of Table 1 shows the OCL expressions
for a specification with two invariants.

As an example, Fig. 5(b) shows a model generated for the OCL expres-
sion ocl(ParallelGateway1) and not ocl(ParallelGateway3). In particular,
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invariant ParallelGateway3 is not satisfied in the model as there is no occur-
rence of its main constraint (i.e. there are not two different tasks).

For a more exhaustive coverage we can enforce the absence of a property
in the generated models in several ways. Up to now, this was achieved by
negating the source of the invariant (not ocl(Ij)). However, there are different
ways in which we can “disable” the testing of a particular invariant: either
because there is no occurrence of the source of its main constraint, or because
there are occurrences of the main constraint but these do not satisfy some
disabling condition. Thus, we generate an OCL expression for each way to
disable the property (the source of the main constraint of the invariant is not
found, or it is found but it does not fulfil some disabling condition). Fig. 5(c)
shows a model used to test invariant ParallelGateway1 and the absence of
ParallelGateway3, the latter due to the occurrence of its disabling condition
(both tasks are input to the gateway).

Altogether, this coverage uses a brute-force approach to the generation
of test models. Unfortunately, many of the generated OCL expressions are
unsatisfiable because they contain contradicting requirements. For instance,
the expression ocl(ParallelGateway2) and not ocl(ParallelGateway1) has
no solution because it looks for an input model with two tasks connected to a
gateway (first invariant), and simultaneously forbids having tasks connected
to gateways (negation of the second invariant). The problem is that the
negated invariant is included in the required one. Given that the generation of
models using constraint solving is time-consuming, it is advisable to discard
unsatisfiable expressions prior to model generation. Thus, if the source of one
invariant is included in another one, no expression requiring the invariant
with bigger source and negating the other should be considered.

Finally, it is for us an open question whether such a deep degree of ex-
haustivity is worth for certain kinds of specifications, or whether it is more
effective to use less exhaustive types of coverage as the previous ones, en-
riched with heuristics that allow for the generation of bigger sets of test
input models (for instance, generating several models from the same OCL
expression, or demanding more than one occurrence of the invariants).

Regardless the chosen level of coverage, there are some configurable aspects (or
heuristics) in the model generation process, which may affect the size and number
of generated models. For example, when looking for models aimed at testing
several invariants with non-empty intersection, different levels of overlapping
between them can be considered, ranging from non-overlapping (the source of the
invariants is taken to be disjoint) to a maximal overlap. Second, for specifications
with a high number of requirements or for exhaustive testing, we can minimise
the size of the generated test set by skipping the generation of a model for a
particular combination of properties if this combination is already present in a
model previously generated.

Finally, as the reader may have noticed, the solver may yield the same model
for the resolution of two different OCL expressions. For instance, if the input
meta-model for our running example requires exclusive gateways to have at least
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two output tasks, then the solver will always try to complete the source model
in invariant ExclusiveGateway1 with a new task connected to the gateway, i.e.,
it will try to find a model like the one in invariant ExclusiveGateway2. Thus, the
expressions ocl(ExclusiveGateway1) and ocl(ExclusiveGateway2) are likely to
produce the same input model. At this point, we can simply remove one of the
generated input models from the test set and continue processing the next OCL
expression, as the model enables the testing of both invariants.

5.3 Linking Input Models and Oracles

As a final step, we automatically generate an mtUnit script – another language
in our transML family of languages [12] – to automate the testing of the trans-
formation using the generated models. The script includes a test case for each
invariant and postcondition in the specification, defining the input models to be
used in the test case, and the oracle function checking the particular invariant
or postcondition. By default, all generated models are added to all test cases.
However, if a model was generated from an expression that negated an invariant,
then it is not added to the test case for that invariant, as we already know that
such a model satisfies the invariant vacuously. This allows for a more efficient
testing process, as a given oracle function will not be checked in any model for
which we already know that the oracle function will always hold.

Altogether, the generation of input models, oracle functions and scripts is
done automatically from the same specification. This has the advantage that the
transformation tester does not need to build them separately by hand, identify
the oracle functions to be used for each input model, and build a script to execute
the test. More importantly, being generated from the same specification, both
the models and the oracle functions will work together to validate the same
properties of interest: the models will enable the testing of these properties, and
the oracle functions will check their satisfaction.

The right of Fig. 6 shows an excerpt of the mtUnit script generated from
our specification example, using the property coverage level. Lines 4–17 in the
upper window contain the definition of the test case generated from the invariant
ParallelGateway1. For space constraints, the figure only shows two of the input
models for this test case (lines 5–6). Below, the figure partially shows the result
of running the test.

6 Tool Support

The presented framework is supported by an Eclipse, EMF-based prototype
tool which allows building PaMoMo specifications using a textual editor, and
automates the generation of input models and mtUnit test scripts for them. The
left of Fig. 6 shows part of our specification example using the textual editor,
in particular the definition of the invariants ParallelGateway1 (lines 4–12) and
ParallelGateway3 (lines 14–31). The generation of the test suite and input models
from this specification is push-button. In our case, it yields the mtUnit file that
is partially shown to the right of the figure, in the upper right window. The first



Specification-Driven Test Generation for Model Transformations 53

two lines declare the file with the transformation to be tested (either ATL or
ETL) and the source and target meta-models. Lines 4–17 correspond to the test
case for the ParallelGateway1 invariant (for brevity we only show two of its input
test models in lines 5–6). Executing the test suite will run the transformation
for each input model and report whether the result verifies the assertions in the
different test cases (see lower right window in Fig. 6).

Fig. 6. Tool support for PaMoMo specifications (left) and testing (right)

In the back-end, we are using the UMLtoCSP constraint solver [5] for model
finding. UMLtoCSP receives an Ecore meta-model and a file with OCL invari-
ants, and generates a “.dot” file with a model that satisfies the meta-model
integrity constraints and the OCL invariants. Then, we parse this file into an
EMF-conformant representation for its use in mtUnit. Currently, we do not pro-
vide support for model generation heuristics like different overlapping degrees or
detection of redundant models.

7 Discussion and Lines of Future Work

As discussed in Section 2, most black-box testing approaches use meta-model
coverage criteria to ensure that the generated input models will include, alto-
gether, instances of all classes and associations in the meta-model, and extreme
values for the attributes. However, it is difficult to ensure that the generated
models will include certain structures enabling the testing of relevant transfor-
mation properties, whereas unimportant class instances or model fragments may
appear repeatedly in the generated models.

In contrast, the presented specification-driven approach aims at testing the
intention of the transformation, and ensures that the generated models will allow
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testing transformation properties of interest. In this sense, the quality of the gen-
erated test set highly relies on how complete a specification is. If a specification
only covers part of the transformation requirements, then the generated models
may not enable the testing of the underspecified parts. For instance, our running
example does not include invariants over the EndEvent BPMN class, and there-
fore the generated test models may not include instances of this type, leaving its
transformation untested. Thus, we foresee complementing our techniques with
additional coverage criteria, also meta-model based.

Finally, the models we generate with our technique tend to be small. This
has the advantage that the test models remain intentional: they are generated
for testing a particular combination of transformation invariants, which will be
checked by the oracle function more efficiently.

We are currently conducting some experiments of our approach with promis-
ing results. For the specification in this paper, we have implemented an ATL
transformation of 120 lines of code, and performed pairwise testing. To test
the effectiveness of the generated test set, we manually created 40 mutants of
this transformation by injecting faults that followed the systematic classification
in [17] (i.e. navigation, filtering and creation mutations), and then used the test
set on the transformation mutants. The test discovered the faults in 28 out of
the 40 mutants, which gives a mutation score (or effectiveness) of 70% (28/40).

Starting from the results in this and subsequent experiments, in the future
we plan to investigate the effectiveness of our generated input models to detect
transformation failures. This is called vigilance, which is the degree in which
contracts can detect faults in the running system. A relevant question is the level
of detail required in contracts to find a significant number of failures and obtain
high vigilance. Another interesting issue is whether the size of the generated
input test models has an influence on the effectiveness of the test set. In order to
obtain “bigger” test models, we are considering (a) the possibility of including
extra constraints, stating that e.g., models should have a certain number of
instances of each class, and (b) extending the coverage criteria to allow several
instances of the same invariant. Regarding tool support, the most critical factor
is the constraint solver, which is time-costly, and therefore we are currently
working towards a domain-specific constraint solver for models.
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Abstract. As the complexity of MDE artefacts grows, there is an in-
creasing need to rely on precise and abstract mechanisms that allow
system architects to reason about the systems they design, and to test
their individual components. In particular, assigning types to models
and model transformations is needed for realizing many key MDE activ-
ities. This paper presents a light-weight approach to type model trans-
formations using tracts. Advantages and limitations of the proposal are
discussed, as well as the applicability of the proposal in several settings.

1 Introduction

Types are essential in Model-Driven Engineering (MDE) for understanding, man-
aging and manipulating all artefacts involved in the analysis, design, develop-
ment, operation and evolution of software systems. In particular, assigning types
to models and to model transformations (i.e., typing them) is required for char-
acterizing, in a precise and abstract manner, the operations we can perform
on them, their valid inputs and outputs, and how they behave. Types are also
very useful for ensuring their error-free composition, their safe replaceability by
newer versions or by other artefacts, and for checking that a given instance or
implementation is correct—by checking that it conforms to the appropriate type.

Typing models is something that the MDE community has already addressed.
In a nutshell, the type of a model is essentially its metamodel (modulo its in-
ternal packaging structure) [1]. Then, the notion of model subtyping (i.e., safe
replaceability) becomes easy to define [2, 3] and to check by tools [2].

However, the situation is not so bright for model transformations, mainly
because of their dual nature: they can be considered to be both models and
operations. Thus, the community must come up with new ideas and approaches
for transformation typing. As models they can be naturally typed by the meta-
model of their modeling language (e.g., QVT or ATL). However, typing them as
operations is not easy. In general, specifying the type of any software artefact
that exhibits behaviour (be it a function, operation, object, component, or a
model transformation) is far from a trivial task, specially when its behaviour is
rather complex. Furthermore, manipulating and reasoning about these kinds of
behavioural types tend to be rather cumbersome and computationally expensive:
normally these types try to capture the full behaviour of the artefact of inter-
est independently from any context of use and require heavyweight reasoning
techniques and tools, such as theorem provers.
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In this paper we discuss central ideas building the cornerstones of a light-
weight and modular approach to model transformation typing, using Tracts.
Tracts were introduced in [4] as a specification and black-box testing mechanism
for model transformations. Thus every model transformation can be specified
by means of a set of tracts, each one covering a particular scenario or context
of use—which is defined in terms of particular input and output models and
how they should be related by the transformation. In this way, tracts allow
partitioning the full input space of the transformation into smaller, more focused
behavioural units, and to define specific tests for them. This approach to typing
provides a form of “Duck typing” [5]. Basically, what we do with the tracts is
to identify the scenarios of interest to the user of the transformation (each one
defined by a tract) and check whether the transformation behaves as expected
in these scenarios. Another characteristic of our proposal is that we not require
complete proofs, just to check that the transformation works for the tract test
suites, hence providing a light-weight form of verification.

The organization of this paper is as follows. After this introduction, Section 2
presents model transformations, discussing the problem of model transformation
typing, the issues of current approaches, and a frame which we use for formaliz-
ing model transformations. Then, Section 3 briefly presents Tracts, introducing
its main characteristics and constituent elements. Section 4 describes our ideas
underlying a light-weight approach to model transformation typing using sets of
tracts, and discusses the kinds of analysis that are possible with our proposal,
how to conduct them, as well as its current advantages and limitations. Finally,
Section 5 compares our work to other related proposals and Section 6 draws the
final conclusions and outlines some lines for future work.

2 Typing in MDE

2.1 Typing Models

Model types are useful in many MDE activities. For example, model types are
needed for describing the signature (i.e., input and output parameters) of model
operations and services, which in MDE are defined in terms of their metamodels.
Thus, to perform an operation or a transformation on a model (conforming to
a metamodel) we need to check first if it is a valid input for the operation.
This situation is even more justified if modeling tools need to be connected, or
for chaining several model transformations together. For connecting them, it is
essential to check the type substitutability between the output of a service and
the input of another, in such a way that type safety is guaranteed.

In our context, the type of a model is essentially its metamodel (modulo its
internal packaging structure) [3]. Then we can consider that every metamodel
M defines a collection of models RM with the models that conform to M .

Let M andM ′ be metamodels (which can be considered as types for the sets of
models that conform to them). We say thatM ′ extends M (denoted byM ′ <: M )
iff RM ⊆ RM ′ . In other words, M ′ <: M implies that all models that conform
to M also conform to M ′. This is the equivalent operation to object subtyping in
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object-oriented type systems [6], and therefore it also implies safe replaceability.
This operator is also similar to the matching operator (<#) defined in [7, 3],
although matching is in general weaker than subtyping.

For example, consider a metamodel SM to describe simple states machines,
and another metamodel Composite-SM that adds to SM the possibility of allowing
composite states [3]. Metamodel Composite-SM extends SM because every simple
state machine can be considered as a particular case of composite state machine.
Similarly, we could say that data type Int extends Nat, i.e., Int <: Nat because
every value of Nat is a valid value of Int.

Intuitively, M ′ <: M if: M ′ contains all classes and relationships in M ; all
attributes of M classes are present in the corresponding M ′ classes; and M ′

imposes the same or even stronger constraints to M elements than those that M
imposes (including cardinality constraints). For a more complete definition we
refer the reader to [2]. Note as well that the <: operator defines a partial order :
It is Reflexive (M <: M ), Transitive (M ′ <: M ∧M ′′ <: M ′ ⇒ M ′′ <: M ) and
Asymmetric (M ′ <: M ∧M <: M ′ ⇒ M = M ′). It is partial because not any
two metamodels can be related by this relation (e.g., the metamodels of simple
state machines and of sequence charts).

2.2 Typing Model Transformations

Model transformation (MT) type systems are helpful in many situations. For
example, they can be used to check that a transformation can be chained (or
composed) with others, check that their behaviour is correct (w.r.t. its type),
rule out transformations that would produce models that are not proper instance
of their metamodels, identify useless transformations (e.g., that navigate never
existing paths in a model), etc.

MT typing is not as easy to define as model typing because of the intrinsic
“behavioural” aspects of model transformations, i.e., the way they transform
model elements from the source metamodel into model elements of the target
metamodel. We need to realize that model transformations comprise two differ-
ent aspects: structure and behaviour. The former aspect defines the structural
relation that should hold between source and target models, whilst the latter
specifies how the specific source model elements are transformed into target
model elements.

This intrinsic duality needs to be especially taken into account when reasoning
about MT subtyping (or extensibility), which in our context has to do with safe
replaceability. Replaceability refers to the ability of a software entity to substitute
another, in such way that the change is transparent to external clients [8]. In the
realm of model transformations, we say that transformation T ′ extends another
model transformation T (and write T ′ <: T ) if T ′ behaves as T with all valid
input models of T . In other words, we will say that T ′ <: T iff T ′ can safely
replace T without being noticed by the clients of T .

We can identify at least three kinds of types for model transformations. In
the first place we have the language type. The fact that model transformations
are also models [9] provides one (naive) approximation to the problem of typing
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transformations, by which the type of a MT is the metamodel of the language
in which it is written (e.g, QVT or ATL). For example, the metamodel of QVT
defines the set of all transformations written in that language.

Secondly, we have the structural type, defined by the fact that model transfor-
mations can be considered as operations, and therefore can be typed by the types
of their input and output metamodels, as proposed in [10]. Then, if T : M → N
is a transformation, its structural type is M → N . With this, MT structural
subtyping becomes similar to traditional subtyping of functions defined in type
theory, which relies only on the contravariance of argument types and covariance
of the return type.

More precisely, let T : M → N and T ′ : M ′ → N ′ be two transformations.
We say that T ′ extends (or can structurally substitute) T (T ′ <:s T ) iff (M ′ <:
M )∧(N <: N ′). But again, this approach to typing model transformations is not
sufficient [6]. It is like typing functions by their input and output parameters, or
typing operations by their signatures. For instance, functions

√
x : Nat → Nat

and x 2 : Nat → Nat become indistinguishable if we use this approach.
This is the reason for having to consider the behavioural type of a transfor-

mation T for defining it properly. In the most general case such a type needs
to define how every valid input model is transformed into a valid output model.
This can be specified in terms of a set S of (source) constraints that defines
the valid input models for T , a set T of (target) constraints that defines the
valid output models, and a set R of (source-target) constraints that describe
how individual source and target models should be related.

In other words,S defines the preconditions that must hold for all input models
of the transformation; T defines the postconditions that must hold for the output
models that the transformation produces; and R defines conditions that should
hold relating the individual source and target models. To express this, if C [[m]]
means that a model m satisfies a constraint C (which is nothing but a logic
predicate), then the behavioural type of a model transformation T : M → N is
a triplet (S,T,R) such that: ∀m ∈ RM •S[[m]] ⇒ T[[T (m)]] ∧R[[(m,T (m))]].

To formally express behavioural subtyping, let T : M → N and T ′ : M ′ → N ′

two model transformations, for which T ′ <:s T (structural subtyping should be
a requirement for behavioural subtyping), and let (S,T,R) and (S′,T′,R′) be
the specification of the behavioural types of T and T ′, respectively. Then, T ′

can behaviourally substitute T (T ′ <: T ) iff (S ⇒ S′) ∧ (T′ ⇒ T) ∧ (R′ ⇒ R).
This is similar to Liskov’s substitutability principle [6], which states that if

S is a subtype of T (S <: T ) , then objects of type T in a program may be
replaced with objects of type S without altering any of the desirable properties
of that program (e.g., correctness). Liskov’s principle imposes some standard
requirements on signatures (adopted later in contract-based design [11]): con-
travariance of method arguments in the subtype; covariance of return types in
the subtype; preconditions cannot be strengthened in a subtype; postconditions
cannot be weakened in a subtype; and finally, invariants of the supertype must
be preserved in a subtype.
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Fig. 1. Concepts in a Tract [4]

Although this definition of Model Transformation subtyping is appropriate
from a theoretical point of view, it is not easy to check in practice without
the aid of heavyweight tools such as theorem provers. Nevertheless, the given
formulation admits one interesting way to check whether a model transformation
T ′ can replace another one T , for which we know the behavioural type (S,T,R).
It is enough to check that T ′ conforms to that type, i.e., ∀m ∈ RM •S[[m]] ⇒
T[[T ′(m)]] ∧R[[(m,T ′(m))]].

Using this notion of behavioural subtyping for model transformations we can
search for a required transformation in a repository of transformations (such
as http://www.eclipse.org/m2m/atl/atlTransformations/), or check that
a given transformation can easily replace (or implement) another one, or that
a given implementation of a model transformation conforms to its type (i.e., is
correct w.r.t. its expected usage).

3 Tracts

One of the problems of the previous specification of MT behavioural type lies in
its complexity. The specifications of an MT type can become monstrously large
as far as the transformation is not trivial (even far more complex than the trans-
formation itself). The reasons are, among others, the lack of modularity, having
to deal with too many details at the same time, and excessive size. Because
the type specifications try to capture all the model transformation behaviour
in one huge set of constraints, they become hard to write, debug and maintain.
In addition, checking the conformance of MT implementations and conducting
other tests over these specifications become quite cumbersome, complex, and
computationally prohibitive tasks.

In order to deal with the problems, we propose the use of tracts. They pro-
vide modular pieces of specification, each one focusing on a particular scenario.
They have the structure of a behavioural type, plus a test suite that allows
operationalizing the conformance tests. We do not provide the full behavioural
specification of a model transformation, but just a set of tracts that defines how
the transformation should behave in certain particular scenarios (or use cases)
which are the ones of interest to the user. We do not care how the transformation

http://www.eclipse.org/m2m/atl/atlTransformations/
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Fig. 2. Building Blocks of a Tract [4]

works in the rest of the cases. In this respect, this approach to typing is a form
of “Duck typing”: “If it looks like a duck, swims like a duck, and quacks like a
duck, then it probably is a duck” [5].

In a nutshell, a tract defines a set of constraints on the source and target
metamodels, a set of source-target constraints, and a tract test suite, i.e., a col-
lection of source models satisfying the source constraints. Such constraints serve
as “contracts” (in the sense of contract-based design [11]) for the transformation
in some particular scenarios, and are expressed by means of OCL invariants.
Tracts are composed by conjunction, similarly to the modular specification of
an operation using several pre- and postconditions, each one defining a specific
situation or use case of the operation.

Assume a source model m being an element of the test suite and satisfying
the metamodel source and the tract source constraints is given. Then, the tract
essentially requires that the result T (m) of applying transformation T satisfies
the target metamodel and the target tract constraints and the pair (m,T (m))
satisfies the source-target tract constraints. The source-target tract constraints
are crucial insofar that they can establish a correspondence between a source
element and a target element in a declarative way by means of a formula. In
technical terms, a source tract constraint is basically an OCL expression with
free variables over source elements, a target tract constraint has free variables
over target elements, and a source-target tract constraint possesses free variables
over source and target elements.

In Fig. 2 we have displayed the central ingredients of our approach for trans-
formation testing: a source and target metamodel, the transformation T under
study, and a transformation contract, for short tract, which consists of a tract
test suite and tract constraints. The test suite and its transformation result are
shown with dashed lines and the different tract constraints with thick lines. Five
different kinds of constraints are present: the source and target class diagrams
are restricted by source and target metamodels constraints, and the tract im-
poses source, target, and source-target tract constraints. Such constraints are
expressed by means of OCL invariants. The context of these invariants is a class
representing a transformation contract, a so-called tract class. An example of a
tract class called 2S1T-Tract is shown later in this section.
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Fig. 3. Source and Target Metamodels of transformation SM2T

In Fig. 2, the rectangles indicate possible overlap (resp. disjointness) of source
and target models. Basically, the tract — consisting of the test suite and the
three kinds of constraints — checks for the correctness of the transformation in
the sense that correct source models from the test suite are transformed into
correct target models, i.e., our approach checks that in Fig. 2 the grey source
section is transformed into the grey target section. In general, there can be more
than one tract for a single transformation because particular source models are
constructed in the test suite which then induce particular tract constraints. We
show the dashed rectangles with the test suites not necessarily inside source/tar-
get tract constraint rectangles in order to allow, e.g., the definition of negative
tests for the transformation.

To test a transformation T against a tract t , the input test suite models can be
automatically generated using languages like ASSL [12], and then transformed
into their corresponding target models. These models can also be automatically
checked with the USE tool [13] against the constraints defined for the transforma-
tion. The checking process can be automated, allowing the model transformation
tester to process a large number of models in a mechanical way.

Although this approach to testing does not guarantee full correctness, it pro-
vides very interesting benefits. In particular, it can be useful for identifying bugs
in a cost-effective manner. Moreover, it allows dealing with industrial-size trans-
formations without having to transform them into any other formalism or to
abstract away from any of its features. Furthermore, tracts provide a modular
approach to specification and testing, enabling the partition of the full input
space of the transformation into smaller, more focused behavioural units, and
to define precise specifications for them. These are important advantages over
other approaches that prove full correctness but at a higher computational cost.

For illustration purposes, let us consider a model transformation SM2T between
simple state machines and a lookup table that lists the events and their asso-
ciated transitions [3]. The source and target metamodels of this transformation
are shown in Figure 3. In this case, we want only one lookup table to be built,
whose entries are all the events of all the state machines in the source model. In
addition to the (multiplicity) constraints shown in these class diagrams, we need
to add uniqueness on names of the state machines, and uniqueness of names of
states within the same state machine:
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Fig. 4. Test suites samples for the 6 tracts defined for model transformation SM2T

context StateMachine inv uniqueNames :
s e l f . state−>isUnique ( name ) and
StateMachine . allInstances−>isUnique ( name )

To specify the SM2T transformation we can define the following six tracts,
whose test suite models are illustrated in Figure 4 (literals SM1...SM6 represent
the names of the state machines):

– 1S0T: state machines with single states and no transitions.
– 2S1T: state machines with two states and one transition between them.
– 2S2T: state machines with two states and two transition between them.
– 1S1T: state machines with single states and one transition.
– 3S3T: state machines with three states and three transitions, forming a cycle.
– 3S9T: state machines with three states and 9 transitions (see Figure 4).

Let us show here one of these tracts, 2S1T, for illustration purposes. The rest
follow similar patters. In the first place, the tract source constraint that specifies
the source models is defined by OCL invariant SCR 2S1T:

context 2S1T−Tract
inv SCR_2S1T :

StateMachine . allInstances−>forAll ( sm |
( sm . state−>s ize ( ) = 2) and ( sm . transition−>s ize ( ) = 1)
( sm . transition . src <> sm . transition . tgt )

We need to decide what the transformation should do when these models are
used as input models. There is no restriction on the kinds of entries that can be
produced in the lookup table, but we need to state that only one lookup table
is produced. This is expressed by the following OCL constraint:

context 2S1T−Tract
inv TRG_2S1T : LookUpTable . allInstances−>s ize ( ) = 1

Regarding the source-target constraints, given that every state machine has only
one transition, there should be one change in the lookup table for every state
machine, and the attributes should match with the events and states related
by the corresponding transition in the state machine. This is expressed by the
following source-target constraint:
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context 2S1T−Tract
inv SRC_TRG_2S1T :

StateMachine . allInstances−>s ize ( ) = LookUpTable . change−>s ize ( ) and
LookUpTable . change−>forAll ( c |

StateMachine . allInstances−>one ( sm | ( sm . name = c . sm ) and
( sm . transition . src−>col lect ( name ) = c . fromState . asSet ( ) ) and
( sm . transition . tgt−>col lect ( name ) = c . toState . asSet ( ) ) and
( sm . transition . event = c . event . name ) )

Finally, the test suite for this tract is defined by an ASSL procedure that gen-
erates the input models (not shown here for space reasons).

4 Model Transformation Typing Using Tracts

Let us explain how (sub-)typing works for tracts. A tract is responsible for
specifying how to transform a source model into a target model.

In Fig. 5 we see that TractG transforms metamodel SourceG into metamodel
TargetG. ‘G’ and ‘S’ stand for ‘general’ (resp. ‘specific’). SourceS is a specializa-
tion of SourceG in the the sense that it extends SourceG by adding new elements
(classes, attributes, associations) and possibly more restricting constraints.

Analogously this is the case

Fig. 5. Tract subtyping

for TargetS. TractS is a
specialization of TractG and
inherits from TractG its con-
necting associations. Constra-
ints must guarantee that tract
TractS connects SourceS and

TargetS elements. Both, TractG and TractS are established with a test suite
generating a set of SourceG models (resp. a set of SourceS models).

4.1 Tract Typing by Example

Fig. 6 shows an example for tract subtyping, using a different case study. The
first source metamodel is the plain Entity-Relationship (ER) model with entities,
relationships and attributes only. An ER model is identified by an object of
class ErSchema. The second source metamodel is a specialization of the Entity-
Relationship model which adds cardinality constraints for the relationship ends.
Objects of class ErSchemaC are associated with ER models which additionally
possess cardinality constraints.

The first target metamodel is the relational data model allowing primary keys
to be specified for relational schemas. Objects of class RelDBSchema identify
relational database schemas with primary keys. The second target metamodel
describes relational database schemas with primary keys and additional foreign
keys. The upper part of the diagram shows the principal structure with respective
source and target as well as general and special elements. The lower part shows
the details. Please note that the four source and target metamodels have a
common part, namely the class Attribute.
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Fig. 6. An example of tract subtyping

It would also be possible to have disjoint source and target models by in-
troducing classes ErAttribute and ErDataType for the ER model as well as
RelAttribute and RelDataType for the relational model. The association class
ForeignKey belongs exclusively to the relational database metamodel with for-
eign keys. This could be made explicit by establishing a component relationship,
a black diamond, from class RelDBSchemaFK to ForeignKey. The central class
Tract specifies the transformation contract and has access, through associations,
to both the source and target metamodel. Tract subtyping is expressed through
the fact that class TractC2FK is a subtype of class Tract.

The scenario Town-liesIn-Country depicted in Fig. 7 shows informally what
will be represented further down as a formal instantiation of the metamodels.
Three transformations are shown. The first one ER 2 Rel transforms a plain ER
schema (without cardinalities) into a relational database schema with primary
keys only. The second one ERC 2 Rel goes from an ER schema with cardinalities
into a relational database schema with only primary keys. The third transforma-
tion ERC 2 RelFK takes the ER schema with cardinalities and yields a relational
database schema with primary keys and foreign keys. Please note that the three
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Fig. 7. Town-liesIn-Country scenario

relational database schemas can be distinguished by their use of primary keys
and foreign keys.

The informal scenario Town-liesIn-Country is formally presented in Fig. 8
with object diagrams instantiating the metamodel class diagrams. The most
interesting parts which handle the primary and foreign keys are pictured in a
white-on-black style. Please pay attention to the typing of the source, target, and
tract objects which are different in each of the three cases and which formally
reflect the chosen names of the transformations (trafo GG, trafo SG, trafo SS).

As shown in Fig. 9, in the ER and relational database metamodel exam-
ple we see three different transformations: trafo GG, trafo SS, and trafo SG.
trafo GG and trafo SS are the transformations directly obtained from the re-
spective tracts. Another transformation is trafo SG, which takes SourceS mod-
els, builds TargetG models and checks them against the TargetG constraints.
As shown in the right lower part, the example transformations trafo SS and
trafo SG are subtypes of trafo GG.

4.2 Working with Tract Types

As mentioned above, the type of a model transformationT is specified in terms of
a set of tracts {t1, t2, . . . , tn}. This section briefly discusses the kinds of analysis
that can be conducted with tracts, as well as the pros and cons of our proposal.

Correctness of a MT Implementation. The first thing we can do is to check
whether a given transformation behaves as expected, i.e., its implementation is
correct w.r.t. a specification. In our approach, this is just checking that a given
transformation conforms to a type. For example, a developer can come up with
an ATL [14] model transformation that implements the SM2T specification, and
we need to test whether such MT is correct. This was the original intention of
Tracts, and such a testing process is fully described in [4].
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Fig. 9. Relationship between Example Transformations

Safe Substitutability of Model Transformations.Now, given another model
transformation T ′, how do we decide if T ′ can safely substitute T (T ′ <: T )?
In our approach, it is a matter of testing that T ′ satisfies all T tracts, which
can be checked in an automated way [4]. This is a two step process: first of all
a number of input models is automatically generated and then for each of these
models we can check whether the transformation fulfills the associated tract. We
will not get 100% assurance that T ′ <: T for all possible models, but we will be
able to know that at least it will work in all scenarios that we have identified as
relevant for us with the tracts, and for the test suites of interest.

Incrementality of Transformation Development. The ERC 2 RelFK exam-
ple uses an incremental methodology for transformation development. Source
and target metamodels are extended by subtyping through small increments
which are accompanied by corresponding tracts including test suites. The tract
test suites can give direct feedback on the correctness of the increment.

Declarative vs. Imperative Tracts. Tracts may have a descriptive nature
when only the relationship between source and target elements is characterized.
Tracts may also be described in an operational way when the tract includes
operations that map source elements to target elements. Operational tracts may
be understood as implementations of descriptive ones and their correctness can
be checked against the descriptive tract by employing the descriptive test suite
for the operational tract.

Pros and Cons. In general, we have found that typing model transformations
using tracts provides interesting advantages, such as modularity, usability, and
cost-effectiveness, but at the cost of sacrificing completeness and full verification.
Furthermore, having a high-level specification of what the transformation should
do at the tract level (independently of how it actually implements it) becomes
beneficial because both descriptions provide two complementary views (spec-
ifications) of the behaviour of the transformation. Then, during the checking
process the tract specifications and the code help testing each other: we believe
in an incremental and iterative approach to model transformation testing, where
tracts are progressively specified and the transformation checked against them.
The errors found during the testing process are carefully analyzed and either the
tract or the transformation refined accordingly.
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5 Related Work

There are several kinds of contributions that can be related to our work. In the
first place we have the works that define contracts for model transformations,
using different notations. One of the earlier works [15] introduces the concept of
“transformation contract” in a similar way to ours—although without incorpo-
rating test suites. However, the authors propose to specify contracts by means of
OCL operations, which causes many technical problems for writing contracts—
as the own authors discuss in their paper. Besides, they do not discuss any
practical way of using their contract specifications for model testing. The work
in [16] also proposes OCL for defining transformation contracts, although in their
paper they just provide a general view of what they think that could be done
with model transformation contracts, but without delving into the details about
how to achieve it. Finally, Poernomo [17] defines a similar proposal in spirit, but
using constructive type theory instead of first-order logic.

Another proposal defines the type of a model transformation in terms of its
input and output metamodels [10]. However, as mentioned in the introduction,
such a structural type is not enough for capturing all relevant aspects: behaviour
should also be taken into account. The work in [18] utilizes transformation types
in an XML context.

The proposal presented in [19] is also of interest. The authors show how to de-
rive some invariant-based verification properties that should be preserved by the
transformation (which are similar to our tracts) by analysing the internal rules that
compose a transformation. Although they follow a white-box approach to model
transformation testing, it could probably be combined with ours if their approach
could help us identify some more tracts for a transformation written in any of the
languages they deal with (TGG and QVT). In this sense, we fully agree with one
of the reviewer’s suggestions about the interest to investigate the implications of
the similarity between the tracts and these languages’ transformation rules: when
using tracts with these kinds of model transformations, is it a matter of typing us-
ing the existing rules, or is it necessary to have separate rules for implementation
and specification, and if so, how structurally distinct should they be?

Furthermore, our idea of modularizing the specifications into smaller units
could be transferred to other techniques apart from Tracts, e.g., to the invariant-
based verification properties presented in [19] or to existing contract-based ap-
proaches [15, 16].

Another group of works (see, e.g., [20–24]) also use a white-box approach
to model-transformation specification and testing, aiming at fully validating the
behaviour of the transformation (including other properties such as confluence of
the rules, termination, etc.) using formal methods and their associated toolkits—
which include, e.g., Alloy, Maude, or graph rewriting techniques. Although more
powerful than our approach from a theoretical perspective, their computational
complexity generally makes them inappropriate for testing large model transfor-
mations. In addition, the drawback of a white-box approach is that it is tightly
coupled to the transformation language and thus it would need to be adapted
or completely redefined for another transformation language [25].
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6 Conclusions

As MDE is becoming more widely applied and adopted, larger transformations
are being developed, with thousands of lines of code. This makes them error-
prone and brittle, becoming hard to understand, develop, debug, maintain and
reuse. In fact, model transformations, like any other Software Engineering arte-
fact, must be systematically designed and implemented [26]. The need to have
effective mechanisms for specifying and properly testing them is now critical.

In this paper we have developed central ideas using Tracts for Model Trans-
formation typing, and discussed benefits and limitations of this approach.

There are several lines of work that we plan to address next. For instance, we
would like to study how to choose the tracts that compose the type of a model
transformation, to ensure enough coverage and completeness. In this respect,
we plan to investigate how to improve our proposal by incorporating some of
the existing works on the effective generation of input test cases. We also plan
to improve the current tool support for tracts, incorporating the creation and
maintenance of libraries of tracts. Finally, larger case studies will be carried out
in order to stress the applicability of our approach and to obtain more extensive
feedback.
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1. Steel, J., Jézéquel, J.-M.: Model Typing for Improving Reuse in Model-Driven
Engineering. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713,
pp. 84–96. Springer, Heidelberg (2005)

2. Romero, J.R., Rivera, J.E., Durán, F., Vallecillo, A.: Formal and tool support for
model driven engineering with Maude. Journal of Object Technology 6(9), 187–207
(2007)
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Abstract. Correctness of model transformations is a prerequisite for
generating correct implementations from models. Given refining model
transformations that preserve desirable properties, models can be trans-
formed into correct-by-construction implementations. However, proving
that model transformations preserve properties is far from trivial. There-
fore, we aim for simple correctness proofs by designing model transfor-
mations that are as fine-grained as possible. Furthermore, we advocate
the reuse of model transformations to reduce the number of proofs. For
a simple domain-specific language, SLCO, we define a formal framework
to reason about the correctness, reusability, and composition of the fine-
grained model transformations used to transform a given model to three
target languages: NQC, Promela and POOSL. The correctness criterion
induces that the original model and the resulting model obtained after a
proper sequence of transformations have the same observable behavior.

1 Introduction

Domain-specific modeling languages (DSMLs) and model transformations are
the key concepts in model driven engineering [16]. A DSML enables domain
experts, through appropriate notations and abstractions, to develop models using
concepts in their own domain. DSML models can be transformed into models in
other languages using model transformations.

Model transformations can be used, for example, to transform DSML models
to languages suited for validation, execution, testing, and visualization. In such
cases, they should not hamper the quality or change the behavior of the source
model; the requirements and properties modeled initially have to be propagated
to the target implementation through (sequences of) transformations. In general,
the target implementation is more complex, due to added implementation details.
The increased complexity makes analysis of the quality more difficult, more time
consuming, and in some cases even impossible [2]. The source model, however,
is relatively small, so its properties can be inspected and validated. To check
preservation of quality, one can analyze all or some of the intermediate models,
but this means that a large portion of the analysis has to be duplicated. In
addition, this procedure has to be repeated for every new model, even if only
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small changes to the model have been made. The efficient and general solution
to this problem is to prove property preservation per transformation, and to
localize the proof only on the changes induced by the transformation. In this
paper, we present an approach that provides such a solution.

Our approach is demonstrated on a small but non-trivial DSML. The Simple
Language of Communicating Objects (SLCO) [1] is a DSML for the specifica-
tion of systems consisting of objects that operate in parallel and communicate
with each other. In SLCO, such systems can be specified on various levels of
abstraction. From a given SLCO model on a high level of abstraction, different
compositions of fine-grained model transformations are used to generate NQC [5]
models for execution on Lego Mindstorms controllers, POOSL [17] models for
simulation, and Promela models for formal verification using the model checker
SPIN [12]. The part of SLCO used for the specification of high-level models and
the three target languages have different properties, and therefore, several se-
mantic gaps need to be bridged [3]. Each of these gaps is bridged by one or more
model transformations that add implementation details to the original SLCO
model, resulting in a refined SLCO model that is closer to one of the target
languages. To improve the reusability of these transformations, and to deal with
only one language for the majority of the correctness proofs, we only use endoge-
nous transformations for the refinement of models, instead of exogenous ones. To
be able to use endogenous transformations for refinement, we extended SLCO
with constructs to specify systems on a lower level of abstraction too.

Fig. 1. Sequences of fine-grained transformations for three target languages

Figure 1 depicts a number of composed model transformations that transform
an SLCO model to various target languages. The arrows inside the dashed shape
depict endogenous transformations that transform SLCO models into more re-
fined SLCO models. Each of the endogenous transformations leads to a model
with observationally equivalent behavior. The arrows across the border of the
dashed shape depict exogenous transformations. Because the semantic gaps be-
tween SLCO and the target languages are bridged completely by the endogenous
transformations, these exogenous transformations are straightforward transla-
tions of SLCO constructs into equivalent constructs in the target languages. By
developing endogenous transformations that are as fine-grained as possible, we
improve their reusability within transformation sequences, aim for straightfor-
ward correctness proofs, and reduce the number of these proofs.

In this paper, we discuss how the transformations of SLCO models to the
three target languages are decomposed into sequences of fine-grained transfor-
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mations, and the way these are composed and reused within sequences. Fur-
thermore, we describe a formal framework for SLCO used to reason about the
correctness of model transformations. First, the formal Structural Operational
Semantics (SOS) [14] of SLCO is defined, which generates a Labeled Transition
System (LTS) representation of the dynamics of an SLCO model. Second, for
each transformation, a (behavioral) equivalence relation is established between
the behavior of an SLCO model before and after transformation. Finally, we
prove that the transformations preserve the corresponding equivalence relation.

The benefits of this approach are manyfold. The correctness of the aforemen-
tioned model transformations is proven in general, not only for particular model
instances. The use of SOS and the behavioral equivalence relations allows us
to focus only on the part of a model affected by a transformation when rea-
soning about the correctness of this transformation. Here, additional benefits of
fine-grained transformations [2] are evident, since they allow for rather straight-
forward proofs. Furthermore, the constraints on input models required for some
of the transformations, detected earlier during experimental work, can now be
formally shown necessary for the correctness of the transformations, which shows
that the sequences of transformations used to generate code are well composed.

Structure of the paper. In Section 2, the SLCO language is briefly presented.
In Section 3, model transformations and the way they are reused are described.
The correctness criterion and the proof of one of the transformations are given
in Section 4, as well as the formal semantics of SLCO, required for the proof.
Section 5 discusses the related work and Section 6 concludes the paper.

2 The Simple Language of Communicating Objects

The Simple Language of Communicating Objects (SLCO) provides constructs for
specifying systems consisting of objects that operate in parallel and communicate
with each other. In this section, we describe the basic notions and syntax of
SLCO. The formal semantics of SLCO are discussed in Section 4.1.

An SLCO model consists of classes, objects, and channels, as indicated by the
syntax definition in Figure 2. Objects are instances of classes and communicate
with each other via channels. A class describes the structure and behavior of its
instances. Ports and variables define the structure, and state machines describe
the behavior of the objects that are defined as instances of the class. Ports are
used to connect channels to objects. Channels connect the objects of a model and
describe how they communicate. They can be bidirectional or unidirectional, and
used for synchronous or asynchronous communication. Synchronous channels are
lossless, whereas asynchronous channels are either lossless or lossy.

A state machine consists of variables, a finite set of states, and transitions
between states. Each state machine has a designated initial state and a set of
final states. A transition has a source, a target state, and possibly a statement. A
statement is either a boolean expression, an assignment, a signal sending state-
ment, a delay, or a conditional signal reception. A boolean expression represents
a statement that blocks the execution of the transition until the expression eval-
uates to true. A transition with a delay is enabled after a specified amount of
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model ::= mn class∗ obj ∗ chan∗

class ::= cn var∗ pn∗ sm∗

obj ::= on “ : ” cn
chan ::= uchan | bichan
uchan ::= chn “(” type∗ “)” chtype “from” on “.” pn “to” on ′ “.” pn ′

bichan ::= chn “(” type∗ “)” chtype “between” on “.” pn “and” on ′ “.” pn ′

type ::= “Boolean” | “Integer” | “String”
chtype ::= “sync” | “async lossless” | “async lossy”
var ::= “Boolean” bvn [“ = ” bc] | “Integer” ivn [“ = ” ic]

| “String” svn [“ = ” sc]

Fig. 2. Syntax of SLCO models

time has passed since entering its source state. A transition with a conditional
signal reception is enabled if a signal is received via the indicated port and the
boolean condition of the statement holds. It is allowed to refer to arguments of
the signal just being received in the condition of a conditional signal reception.
For convenience, a condition that is always true can be omitted. Besides its
local variables, a state machine may use the variables of the class it belongs to
as global variables. The syntax of state machines and their constituents is given
in Figure 3, where be, ie, and se denote boolean, integer, and string expressions,
respectively, and e denotes arbitrary expressions.

sm ::= smn var∗ states trans∗

states ::= “initial” sn sn∗ [“final” sn+]
trans ::= tn “from” sn “to” sn ′ [stat ]
stat ::= send | assign | rec | del | be
send ::= “send” sgn “(” e∗ “)” “to” pn
assign ::= bvn “ :=” be | ivn“ : =”ie | svn“ :=”se
rec ::= “receive” sgn “(” vn∗ “|” be “)” “from” pn
del ::= “after” nc “ms”

Fig. 3. Syntax of SLCO state machines

Figures 4 and 5 show a simple example of an SLCO model. In the example,
for the sake of readability, we use the graphical representation of SLCO mod-
els [4]. Figure 4 shows the communication diagram of the model. It shows the
two objects in the model: p, an instance of class P , and q, an instance of Q . Ob-
ject p has ports P1 , P2 , and P3 , connecting it to channels c1 , c2 , and c3 , and
object q has ports Q1 , Q2 , and Q3 , connecting it to the same channels. Thus,
objects p and q can communicate over three channels: a synchronous channel c1 ,
an asynchronous, lossy channel c2 , and an asynchronous, lossless channel c3 .

Figure 5 describes the behavior of the objects. The left state machine specifies
the behavior of object p and the right one specifies the behavior of object q. The
figure specifies the following communication between p and q, which gives the
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Fig. 4. Objects, ports, and channels in
SLCO

Fig. 5. Two SLCO state machines

behavior of the model in total. The two objects first communicate synchronously
over channel c1 , after which q repeatedly sends signals to p over the lossy chan-
nel c2 . When p has received at least two of these signals, it can send signals over
channel c3 , or terminate. After receiving such a signal, q terminates as well.

3 SLCO Model Transformations

DMSLs allow designers to reason at a high level of abstraction, and therefore,
DSML models do not include many implementation details. The main goal of
model transformations is to add more details to the model, thus bringing it closer
to its implementation. To generate code (e.g. an NQC executable) from an SLCO
model, a number of fine-grained, endogenous model transformations have been
designed and implemented. By design, each model transformation transforms
only a specific small part of the input model, because small transformations can
be easily applied, composed, implemented, and analyzed. We have composed
sequences of transformations for several target languages. Our correctness crite-
rion guarantees that every intermediate model, including the last model in the
sequence, has the same properties as the source model. Furthermore, the trans-
formations are designed and composed such that the very last SLCO model in
the chain contains all implementation details.

3.1 Reusability of SLCO Model Transformations

Table 1 lists eleven of thirteen endogenous model transformations that are de-
fined to refine SLCO models. The other two transformations deal with time
and are not discussed in this paper. Earlier work describes some of the model
transformations in more detail [2]. There are two ways in which these transfor-
mations can be reused. First, a model transformation can be applied multiple
times within the same sequence of transformations, as indicated in the second
column of Table 1. In practise, the most reused model transformations are the
Clone Classes transformation, which can be used to clone certain classes, and
the Remove Classes transformation, which can be used to remove all classes that
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have no instances. They ensure that models adhere to the constraints imposed
by most of the other transformations, and are therefore crucial for the successful
composition of transformations. Second, a model transformation can be applied
in multiple sequences leading to different target languages, as indicated in the
third column. This type of reuse is less common, but supporting other target lan-
guages with similar semantic gaps would automatically lead to more reuse. The
fourth column is discussed in Section 4. It shows the number of proof obligations
that must be handled to prove the correctness of each transformation.

Table 1. Endogenous model transformations

Reused within Reused for different Number of proof
Transformation Name sequences target languages obligations
Bidirectional to Unidirectional no yes 1
Clone Classes yes yes 1
Exclusive Channels yes no 1
Identify Channels no no 1
Lossless to Lossy no no 74
Merge Channels no no 1
Merge Objects yes no 13
Names to Arguments no no 1
Remove Classes yes yes 1
Strings to Integer yes no 1
Synchronous to Asynchronous no no 4 and 34

It is not possible to consider all transformations from Table 1. Instead, we
select the two variants of the Synchronous to Asynchronous transformation. The
difference in complexity of these two transformations illustrates that the more
generic transformations are, the more they need involved protocols for handling
the introduced changes. One should search for the strongest possible constraints
on the input models for such a transformation [2]. These constraints shall be
realized in separate transformation steps that precede the more complex one in
the transformation chain. This way, many unnecessary details are moved away
from the core part of the transformation. The simple variant of the Synchronous
to Asynchronous transformation also described below, although simple, is still
complex enough to illustrate all the details of our approach.

3.2 Synchronous to Asynchronous Transformation

Synchronous communication is a typical example of a construct at a high level of
abstraction that is often present in formal modeling languages. General-purpose
programming languages, however, do not offer this concept. Synchronization
should be realized with asynchronous interaction by correctly defined model
transformations built around a properly defined communication protocol. While
SLCO allows for synchronous communication, the communication between pro-
cesses in NQC can be only asynchronous.
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We defined two different transformations, T S
s2a and T G

s2a , to replace a syn-
chronous by an asynchronous channel. As expected, this change requires and
triggers further changes of the related classes, state machines, and transitions,
to keep the observable behavior intact. T S

s2a applies to restricted models, but is
simple and does not greatly increase the complexity of the produced model. In
contrast to T S

s2a , T G
s2a can be applied to any SLCO model, but as a more com-

plex protocol is introduced by the transformation, it adds more complexity to
the produced model, and this matters in practice. Both transformations require
the following constraints to hold for their input: 1) the objects that communicate
via the synchronous channel are the only instances of their classes, and 2) only
a single pair of state machines from the two classes communicate over the chan-
nel. We stress, however, that this does not limit their applicability. By means
of the Exclusive Channels and Clone Classes transformations, any SLCO model
can be transformed into a model that meets these constraints. Thus, instead of
having more complicated transformations that first change models to meet these
constraints, and then replace synchronous communication by asynchronous com-
munication, we opt for sequences of fine-grained transformations that have the
same effect. The fact that the constraints hold can be used in the correctness
proof of T S

s2a and T G
s2a , which greatly simplifies these proofs.

For the rest of the section, assume that in the model m, the synchronous
channel chs = chn() sync from on1 .pn1 to on2 .pn2 is to be transformed into
an asynchronous one. Let object oi with name oni be an instance of class cli
with name cni in model m, for i = 1, 2. We also assume, as explained above,
that oi is the only instance of cli , and that state machine smi is the only state
machine in cli that uses channel chs , for i = 1, 2. Furthermore, we use trs =
tns from ss1 to ss2 send sgn() to pn1 to denote a transition of sm1 of cl1 that
sends signals over chs , and trr = tnr from sr1 to sr2 receive sgn() from pn2

to denote a transition of sm2 of cl2 that receives signals over chs . Due to the
uniqueness of the channel name and the previously mentioned assumption, the
transformation of the channel chs induces a transformation of the classes cl1 and
cl2 only. We show only the transformation of signals without arguments, but an
extension to general signals is straightforward.

Simple Transformation. Transformation T S
s2a modifies state machines by re-

placing some of their transitions. No essential changes are made to the other
structures of a model. It is only applicable if, for every transition trs , there is
no other transition with the same source state. For every transition trs of sm1 ,
and for every transition trr in sm2 , we define

T S
s2a(trs , pn1 ) = 〈 ssnw , tn1

s from ss1 to ssnw send ssgn() to pn1

tn2
s from ssnw to ss2 receive asgn() from pn1 〉

T S
s2a(trr , pn2 ) = 〈 srnw , tn1

r from sr1 to srnw receive ssgn() from pn2

tn2
r from srnw to sr2 send asgn() to pn2 〉,

where ssnw and srnw are fresh state names, tn1
s , tn2

s , tn1
r , and tn2

r are fresh
transition names, ssgn ≡ “s_” + sgn, and asgn ≡ “a_” + sgn. In the
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Fig. 6. Application of T S
s2a

Fig. 7. A reader state machine Fig. 8. Application of T G
s2a

transformed model, the new states are added to the appropriate state machines,
and the transitions trs and trr are replaced by the newly generated transitions.
Applying T S

s2a to the transitions concerning signal S of Figure 5 leads to the
states and transitions of Figure 6.

General Transformation. Transformation T G
s2a is more general than T S

s2a , due to
which it adds more complexity to the produced model. In this case, also classes
are transformed, and new state machines are created. The restrictions we had
on T S

s2a are removed, thus T G
s2a can be applied to any trs of sm1 and any trr of

sm2 as defined above. Transformation T G
s2a on transitions is defined as

T G
s2a(trs , pn1 , vc1 ) = 〈ss3 ss4 ss5 ss6 ss7 , ts1 from ss1 to ss3 vc1 == 0
ts2 from ss3 to ss4 send sgn(1 ) to pn1 ts3 from ss4 to ss5 vc1 == 2
ts4 from ss5 to ss6 send sgn(3 ) to pn1 ts5 from ss6 to ss2 vc1 == 0
ts6 from ss7 to ss1 send sgn(4 ) to pn1 ts7 from ss4 to ss7 vc1 := 2 〉

T G
s2a(trr , pn2 , vc2 ) = 〈sr3 sr4 sr5 sr6 sr7 , tr1 from sr1 to sr3 vc2 == 1
tr2 from sr3 to sr4 send sgn(2 ) to pn2 tr3 from sr4 to sr5 vc2 == 3
tr4 from sr5 to sr2 send sgn(0 ) to pn2 tr5 from sr4 to sr1 vc2 == 4
tr6 from sr7 to sr1 send sgn(0 ) to pn2 tr7 from sr6 to sr7 vc2 := 3
tr8 from sr1 to sr6 vc2 == 4 〉,

where ssj and srj , and tsj and trk are fresh state and transition names, for j =
3, . . . , 7 and k = 3, . . . , 8. Variables vc1 and vc2 are discussed below. Apply-
ing T G

s2a to the transitions concerning signal S of Figure 5 leads to the states
and transitions of Figure 8.

In the transformed model, the new states are added to the appropriate state
machines, and transitions trs and trr are replaced by the new transitions. Ad-
ditionally, a fresh integer variable vci and a state machine readeri are added to
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the classes cli , for i = 1, 2. Let TrG
i be the sets of all trs and trr -like transitions

of smi, for i = 1, 2, Sgn1 the set of all signal names occurring in the sending
statements of transitions in TrG

1 , and Sgn2 the set of all signal names occurring
in the reception statements of transitions in TrG

2 . State machine readeri is a
result of applying function Rsm, defined as

Rsm(pni , vci ,Sgni) = readeri initial initi
[tsgni from initi to initi receive sgn(vci) from pni | sgn ∈ Sgni ],

where readeri is a fresh state machine name, initi is a fresh state name, and
tsgn ≡ “t_” + sgn. As defined, Rsm has a transition for every sgn from Sgni .
Figure 7 shows this state machine for object p of Figure 5.

4 Correctness of Model Transformations

To reason about the correctness of model transformations, several dimensions
have to be put together: 1) a description of the behavior of models, 2) definitions
of model transformations, 3) the possibility to check the correctness criteria, for
instance by comparing the behavior of models, and 4) the possibility to rea-
son at the general language level rather than at the level of model instances. A
sufficiently expressive and flexible formalism has to be used to cover all these
aspects. We decided to use Labeled Transition Systems (LTSs) [14] as the un-
derlying formalism to reason about the SLCO model transformations for several
reasons. The LTS formalism is well-established and often used to describe system
dynamics. Different equivalence relations between LTSs have been defined and
used for comparison of behaviors. Since the SLCO transformations are defined as
functions on SLCO models, we make use of such an equivalence relation later in
this section for comparison of original and transformed models. Furthermore, in
our earlier work, an executable prototype of the semantics of SLCO [4] is used to
describe the behavior of models as LTSs. As the present work is largely inspired
by and is a generalization of this prototype, it was quite natural to use the same
formalism for the formal semantics of SLCO and utilize the gained experience.

To generate an LTS representation of the behavior of a given model, we first
formally define the dynamic semantics of SLCO in the form of structural opera-
tional semantics [14]. Then, reasoning at the level of LTS-representations of the
behaviors, we define our criterion for correctness of model transformations. The
SLCO formal semantics is necessary for the correctness proofs.

In the sequel, we use the following conventions and notation. If lt is a list,
we abuse the notation and write lt for the set of elements of lt. Thus, we write
elt ∈ lt for “there is an element elt in list lt”. A number of functions are defined
and used. f [a/x] denotes the update of function f by f(x) = a. We also use the
short-hand notation f [a∗/x∗] for the updated values for the arguments in the
list x∗ with the corresponding values from the list a∗. If a given expression e
evaluates to constant expressions ce with respect to evaluation functions V1 and
V2, we write 〈e, V1, V2〉 = ce, and 〈e∗, V1, V2〉 = ce∗ for a list of expressions e∗. D

denotes the domain of all integer, boolean, and string values.
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4.1 Operational Semantics of SLCO

The formal semantics of SLCO is given in the form of Structural Operational
Semantics (SOS) [14]. For an arbitrary model m, the SOS generates the complete
behavior of the model in the form of an LTS. An LTS is a tuple (S, Λ,→, i),
where S is a set of configuration, Λ is a set of labels, →⊆ S ×Λ×S is a ternary
relation of labeled transitions, and i ∈ S is the initial configuration. In our case,
for an SLCO model m = mn obj ∗ class∗ chan∗, with Var the set of all variables
occurring in m, SM the set of all state machines of m, and States the set of all
states of these state machines, the configurations of the LTS generated for m are
tuples 〈m,SOSMS ,VOS ,VOSMS ,B〉, where SOSMS : obj ∗ �→ (SM �→ States) is
a function that indicates current states of the state machines of the objects in
m, VOS : obj ∗ �→ (Var �→ D) is an evaluation function that assigns values to
the (global) variables of the objects in m, VOSMS : obj ∗ �→ (SM �→ (Var �→ D))
is an evaluation function that assigns concrete values to the (local) variables
of the state machines of the objects of model m, and B : chan∗ × obj ∗ ×
obj ∗ �→ (Signals × CE∗) ∪ {nil} represents the content of the one-place buffers
corresponding to the asynchronous channels in m. The content of a buffer can
be nil, denoting an empty buffer, or a tuple consisting of a signal name and
a list of constant expressions. Two buffers are associated to each bidirectional
asynchronous channel, one for each direction.

For the LTS of m, LTS (m) in short, the initial configuration conforms to the
following constraints: 1) all the buffers assigned to asynchronous channels are
initialized to nil, 2) all the state machines are in their initial state, and 3) all
variables are initialized to values respecting their types.

A transition label can be ε, meaning that no statement is executed by this
transition, vn : = ce, representing an assignment, sgn(ce∗), representing syn-
chronous communication, or receiving sgn(ce∗) or sending sgn(ce∗), for a
signal name sgn ∈ Signals, representing asynchronous communication. The
transitions of LTS (m) are obtained as the least relation deduced from the SOS
rules. Due to the space limitations, we give only a subset of the rules used in the
correctness proof of the selected transformation given in this section.

The overall behavior of a model is defined by the behavior of its compos-
ite elements, the objects and the channels. The activities that the objects can
execute and the way they interact via the channels determine the dynamics of
the model, as captured by the SOS rules in Figures 11 and 12. The contributed
activities of an object are deduced from the specification of its class, shown in
Figure 11. At the most elementary level of the structure, the activities within
a class are derived from the transitions specified for each state machine of the
class, as shown in Figures 9 and 10.

Figure 9 shows some of the SOS rules which turn a single SLCO symbolic
transition into a behavioral LTS transition. The auxiliary symbolic evaluation
functions VO and VSM , which assign values to variables, are concretely inter-
preted within a model and its concrete evaluation functions. For a conditional
signal reception (the second rule), the corresponding boolean expression has to
be evaluated first, by the possibly updated evaluation functions, and only if it
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evaluates to true, the transition step can be taken. The rule in Figure 10 shows
how the enabled transitions, derived by the SOS rules for transitions (Figure 9),
are lifted up to the level of a class. It also shows implicitly that all state machines
of a considered class are inspected. The symbolic function SSMS keeps track of
the current states of the state machines, while VSMS maps (local) variables to
their value for the state machines of the object, and VO maps the (global) vari-
ables at the level of the object to their values.

〈e∗, VO , VSM 〉 = ce∗

〈tn from sn to sn′ effect send sgn(e∗) to pn, sn, VO , VSM 〉
send sgn(ce∗) to pn−−−−−−−−−−−−−−→TR 〈sn′, VO , VSM 〉

〈be, V ′
O , V ′

SM 〉 = true, V ′
O = VO [ce∗/vn∗], V ′

SM = VSM [ce∗/vn∗]

〈tn from sn to sn′ trigger receive sgn(vn∗|be) from pn, sn, VO , VSM 〉
receive sgn(ce∗) from pn−−−−−−−−−−−−−−−−−−→TR 〈sn′, V ′

O , V ′
SM 〉

Fig. 9. A subset of all deduction rules for transitions

sm = smn var∗ states trans∗, tr ∈ trans∗, cl = cn var∗ port∗ sm∗
cl , sm ∈ sm∗

cl ,

〈tr , SSMS (sm), VO , VSMS (sm)〉 l−→TR 〈sn′, V ′
O , V ′

SM 〉,
S′

SMS = SSMS [sn′/sm], V ′
SMS = VSMS [V ′

SM /sm]

〈cl, SSMS , VO , VSMS 〉 l−→CL 〈S′
SMS , V ′

O , V ′
SMS 〉

Fig. 10. Deduction rule for classes

Objects behave as specified by their class. In a composition, objects partic-
ipate and interact as described by the SOS rules for compositions of objects,
some of which are given in Figure 11. Every non-synchronizing transition of
one of the objects enabled for execution in the current configuration is executed
by the composition of the objects, and the functions are updated accordingly;
only the functions of the object this transition belongs to are updated. A non-
synchronizing transition receiving signals over an asynchronous lossless channel
is captured by the second rule. The first rule describes synchronization of two
objects via a synchronous channel.

4.2 Correctness of the T S
s2a Transformation

The operational semantics of SLCO generates an LTS representation of the
model dynamics, for a given model and its initialization. Thus, to reason about
the correctness of and property preservation by a model transformation, we need
to compare the behaviors of two models, one before and one after the transfor-
mation, represented as LTSs.
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cl1, cl2 ∈ class∗, o1, o2 ∈ obj∗, o1 ≡ on1 : cl1 , o2 ≡ on2 : cl2

chn(type∗) sync from on1 .pn1 to on2 .pn2 ∈ chan∗

〈cl1 , SOSMS (o1 ), VOS (o1 ), VOSMS (o1 )〉 send sgn(ce∗) to pn1−−−−−−−−−−−−−−−→CL 〈S ′
SMS , V ′

O , V ′
SMS 〉,

〈cl2 , SOSMS (o2 ), VOS (o2 ), VOSMS (o2 )〉 receive sgn(ce∗) from pn2−−−−−−−−−−−−−−−−−−−→CL 〈S ′′
SMS , V ′′

O , V ′′
SMS 〉,

S ′
OSMS = SOSMS [S ′

SMS /o1 ][S ′′
SMS /o2 ], V ′

OS = VOS [V ′
O/o1 ][V ′′

O /o2 ],

V ′
OSMS = VOSMS [V ′

SMS /o1 ][V ′′
SMS /o2 ]

〈obj∗, class∗, chan∗, SOSMS , VOS , VOSMS , B〉 sgn(ce∗)−−−−−→OBJS 〈S ′
OSMS , V ′

OS , V ′
OSMS , B〉

cl2 ∈ class∗, o2 ∈ obj∗, o2 ≡ on2 : cl2 ,

chn(type∗) async lossless from on1 .pn1 to on2 .pn2 ∈ chan∗,

〈cl2 , SOSMS (on2 ), VOS (o2 ), VOSMS (o2 )〉 receive sgn(ce∗) from pn2−−−−−−−−−−−−−−−−−−−→CL 〈S ′
SMS , V ′

O , V ′
SMS 〉,

S ′
OSMS = SOSMS [S ′

SMS /o2 ], V ′
OS = VOS [V ′

O/o2 ], V ′
OSMS = VOSMS [V ′

SMS /o2 ],

B(〈chn, o1 , o2 〉) = 〈sgn, ce∗〉, B ′ = B [nil/〈chn, o1 , o2 〉]
〈obj∗, class∗, chan∗, SOSMS , VOS , VOSMS , B〉 receiving sgn(ce∗)−−−−−−−−−−−−−→OBJS 〈S ′

OSMS , V ′
OS , V ′

OSMS , B ′〉

Fig. 11. A subset of all deduction rules for compositions of objects

m = mn obj∗ class∗ chan∗,

〈obj∗, class∗, chan∗, SOSMS , VOS , VOSMS , B〉 l−→OBJS 〈S ′
OSMS , V ′

OS , V ′
OSMS , B ′〉

〈m,SOSMS , VOS , VOSMS , B〉 l−→M 〈m,S ′
OSMS , V ′

OS , VOSMS , B ′〉

Fig. 12. Deduction rule for models

A wide range of equivalence relations on LTSs have been proposed [10]. Some
of them, e.g. strong bisimulation, are appropriate for concrete behavior, when
every action of the system is observable. For some of the defined SLCO trans-
formations, this is indeed sufficient. However, these relations are often too fine
when part of the behavior is preferred to be abstracted away and considered un-
observable. Some of the SLCO model transformations, as explained in the pre-
vious sections, add more detail to the behavior and therefore, some parts of the
behavior introduced by the transformation need to be abstracted away to mimic
the behavior before the transformation. In view thereof, we choose branching
bisimulation [11] as the equivalence relation we use for the correctness criterion.
Branching bisimulation is a relation between configurations of LTSs for which
some transitions are considered internal (unobservable), represented by labeling
them with τ (τ /∈ Λ). Intuitively, two configurations are branching bisimilar if
every transition step that can be executed in one configuration can be mimicked
in the other, possibly after a finite number of internal steps. Branching bisim-
ulation possesses many useful properties, one of which is that related models
possess the same properties that can be expressed in the temporal logic CTL∗

without the next state modality [6], including safety and liveness. In our case,
this means that if a certain property has been established for the source model,
which is usually much smaller then its implementations and thus easier to ana-
lyze, and if we apply a (well-composed) chain of model transformations for which
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our correctness criterion hold, then the generated model inherits the property
by construction, as well as all intermediate models in the chain. Thus, our model
transformation correctness criterion provides effective and efficient generation of
correct-by-construction code.

Definition 1. Let T be an SLCO model transformation such that for any SLCO
model m to which T applies and for a given initialization of m, there is a re-
naming ρ of the labels of the LTS (T (m)) such that LTS (m) and ρ(LTS (T (m)))
are branching bisimilar. Then T is a correct model transformation.1

The renaming function in the definition above is needed to rename some labels
into τ , but also to unify, if needed, the labels of transitions that are supposed
to mimic each other. Therefore, to establish the correctness result for an SLCO
transformation, we may need to find an appropriate renaming of the labels first.
This is rather obvious when comparing the transitions that are to be transformed
in Figure 5 with the transitions in Figure 6 created by the transformation, which
are required to capture the same observable behavior.

In this section, we discuss the main lines of the correctness proof for the sim-
ple variant of the Synchronous to Asynchronous transformation, T S

s2a . We chose
this one because the proof for this transformation has all the important aspects
that need to be taken into account, yet the established relation between config-
urations is simple enough to be given completely. Besides transformation T S

s2a ,
there are four more transformations that require a substantial amount of cases
to be considered for their correctness proof. The fourth column of Table 1 in
Section 3 lists the number of proof obligations for each transformation. The last
row lists two numbers, one for each version of the Synchronous to Asynchronous
transformation. Fortunately, the correctness proofs of the majority of transfor-
mations involve a single proof obligation only, relating each configuration for
input models to exactly one equivalent configuration for output models. This is
a clear benefit of designing transformations that are as fine-grained as possible.

Referring back to the definition of T S
s2a in Section 3.2, let Sgn be the set of

all signal names used in the sending and receiving statements of all trs and trr-
like transitions. We define a label-renaming function ρ as: for every sgn ∈ Sgn,
ρ(sending ssgn()) = τ , ρ(receiving ssgn()) = sgn(), ρ(sending asgn()) =
τ , ρ(receiving asgn()) = τ , and ρ(ε) = τ . Renaming ρ is straightforwardly
extended on LTS(TS

s2a (m)). By renaming receiving ssgn() to sgn(), we indicate
that these two labels represent successful communication. The other labels are
renamed to τ because they represent the implicit synchronization in the source
model, and should result in unobservable behavior of the target model.

Theorem 1. For a given SLCO model m = mn class∗ obj ∗ chan∗, and a chan-
nel chs = chn(t) sync from on1 .pn1 to on2 .pn2 ∈ chan∗, T S

s2a(m, chs) is a
correct model transformation.

Proof. We need to show that LTS (m) and ρ(LTS (TS
s2a (m))) are branching

bisimilar. As usual, the main difficulty of the proof lies in properly relating
1 It is essential here that all transitions of LTS(m) are observable.
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the configurations from LTS(m) and those from ρ(LTS (TS
s2a (m))). Before we

define the relation, it is worth noticing that each configuration of LTS (m) is
also a configuration of ρ(LTS (TS

s2a (m))), but for the latter the buffer function
is extended over the triples 〈cha , on1 , on2 〉 and 〈cha , on2 , on1 〉.

Let cf = 〈m,SOSMS ,VOS ,VOSMS ,B〉 be a configuration of LTS (m), and
cf ′ = 〈TS

s2a (m),S ′
OSMS ,V ′

OS ,V ′
OSMS ,B ′〉 a configuration of ρ(LTS(T S

s2a(m))).
We define a relation R between the configurations as follows: (cf , cf ′) ∈ R if and
only if VOS = V ′

OS , VOSMS = V ′
OSMS and

1. SOSMS = S ′
OSMS , B ′(〈cha, on1 , on2 〉) = nil, B ′(〈cha, on2 , on1 〉) = nil, and

B ′ = B otherwise, or
2. SOSMS (o1 )(sm1 ) = ss1 , S ′

OSMS (o1 )(sm1 ) = ssnw , SOSMS = S ′
OSMS other-

wise, B ′(〈cha , on1 , on2 〉) = (sgn , ε), B ′(〈cha , on2 , on1 〉) = nil, and B ′ = B
otherwise, only if there is a trs-like transition from ss1 with signal name
sgn(), or

3. SOSMS (o1 )(sm1 ) = ss2 , SOSMS (o2 )(sm2 ) = sr2 , S ′
OSMS (o1 )(sm1 ) = ssnw ,

S ′
OSMS (o2 )(sm2 ) = srnw , SOSMS = S ′

OSMS otherwise, B ′(〈cha , on1 , on2 〉) =
nil, B ′(〈cha , on2 , on1 〉) = nil, and B ′ = B otherwise, only if there is a trs-
like transition in sm1 to ss2, and there is a trr -like transition in sm2 to sr2,
or

4. SOSMS (o1 )(sm1 ) = ss2 , S ′
OSMS (o1 )(sm1 ) = ssnw , SOSMS = S ′

OSMS other-
wise, B ′(〈cha , on1 , on2 〉) = nil, B ′(〈cha , on2 , on1 〉) = (asgn , ε), and B ′ = B
otherwise, if there is a trs-like transition to ss2 with signal sgn().

Next, for each pair of configurations we have to show that they can mimic each
other, using the SOS rules. For example, let us consider case 2. If cf l−→ cf1 , for
some label l and a configuration cf1 of LTS (m), then either l �≡ sgn() or l ≡
sgn(). In the first case, this transition certainly does not involve state machine
sm1 of object o1 , since it can only synchronize in this configuration. In this case,
the same state machine(s) of the same object(s) can induce the same transition
cf ′ l−→ cf ′1 , and since the updates of the functions do not change SOSMS (o1 )(sm1 )
nor S ′

OSMS (o1 )(sm1 ), it follows that (cf1 , cf ′1 ) ∈ R.
If l ≡ sgn(), then sm2 has to be in a state sr1 for some trr -like transition,

according to the synchronization SOS rule in Figure 11. According to the SOS
rule for an asynchronous signal reception, also in Figure 11, cf ′

sgn()−−−→ cf ′1 (which
is renamed receiving ssgn() transition). Furthermore, in cf1 , sm1 is in state ss2
and sm2 is in state sr2 . In cf ′

1 , sm1 is in state ssnw and sm2 is in state srnw .
According to 3., (cf1 , cf ′1 ) ∈ R. Note here that lifting the constraint on sm1 and
allowing it to have other transitions besides the synchronizing signal sending in
state ss1 , breaks bisimilarity of R.

If we assume a transition made by cf ′, i.e., cf ′ l−→ cf ′
1 , then in a similar way,

we can conclude that this transition is either also executed by cf , or that this

transition is mimicked by a cf
sgn()−−−→ cf1 transition, depending on label l.

By a careful inspection of transitions generated by the SOS rules for the other
three cases of pairs of R-related configurations, we can prove that R is indeed a
branching bisimulation which relates LTS (m) and ρ(LTS (TS

s2a (m))). �
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5 Related Work

Various aspects of the correctness of model transformations have been consid-
ered, and different approaches have been proposed. A number of approaches are
based on graph-based transformation techniques.

In [9], input and output models are related during the specification of a trans-
formation, and then a theorem prover is used to show semantic equivalence
between the input and output of this transformation. The source and target
language discussed are relatively small, leading to a more straightforward trans-
formation compared to the sequences of transformations we consider. However,
the use of a theorem prover to automate parts of the correctness proofs has clear
advantages over manual proofs. The approach in [15] also uses a theorem prover
for assistance with correctness proofs. In this case, properties that are proved for
the given model transformation are more of a structural nature. It is interesting
that here the author advocates the advantages of having a single homogenous
formalism for description of transformations, which we also see advantageous in
our approach. The framework proposed in [18] allows for defining a set of graph
transformation rules to describe the operational semantics of a DSML, which is
used, similar to our approach, to generate an LTS representation of models in
the DSML, which then can be model checked. However, the translation frame-
work works only on a particular given model instance of the language, while we
aim at general results at the level of the entire language.

Instance-based verification of model transformations is described also in [13].
The approach entails generating a certificate for each model that is transformed.
These certificates are used to show that the model transformation preserves
certain properties for the given input model, but cannot be used to show that
properties are preserved for arbitrary input models.

The approaches in [7] and [8] are most closely related to the work presented
in this paper. In [7], preservation of behavior by model transformation is con-
sidered. Besides the models in the source language, also the language semantics
is transformed, and the result is compared with the semantics of the target lan-
guage. The paper states conditions that input models and model transformations
should fulfill to preserve the semantics. In [8], correctness of model transforma-
tions stated in terms of a bisimulation relation is considered. Here, the languages
are first given operational semantics in terms of graph-transformation rules as
well. Although our approach to the correctness of transformations is similar to
this one, the two languages considered in [8] are much simpler than the language
we used to demonstrate our approach.

6 Conclusions and Future Work

We described a formal framework for reasoning about the correctness of endoge-
nous model transformations for a small but non-trivial DSML. Using this frame-
work, we can asses whether sequences of transformations are well-composed, and
whether individual transformations are provably correct. By designing transfor-
mations that are as fine-grained as possible, we improved the reusability of these
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transformations both between sequences of transformations and within such se-
quences. Furthermore, this design decision increased the number of transforma-
tions with straightforward correctness proofs, and reduced the number of proof
obligations for the proofs of the larger transformation steps. The presented ap-
proach is independent of any specific model transformation language.

Given the large number of straightforward proofs, we consider investigating
the application of automated theorem proving to be a promising direction for
future research. Additionally, we want to investigate the generalization of the
approach to other DSMLs.
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Abstract. Lenses are one of the most popular approaches to define
bidirectional transformations between data models. However, writing a
lens transformation typically implies describing the concrete steps that
convert values in a source schema to values in a target schema. In con-
trast, many XML-based languages allow writing structure-shy programs
that manipulate only specific parts of XML documents without having
to specify the behavior for the remaining structure. In this paper, we
propose a structure-shy bidirectional two-level transformation language
for XML Schemas, that describes generic type-level transformations over
schema representations coupled with value-level bidirectional lenses for
document migration. When applying these two-level programs to partic-
ular schemas, we employ an existing algebraic rewrite system to optimize
the automatically-generated lens transformations, and compile them into
Haskell bidirectional executables. We discuss particular examples involv-
ing the generic evolution of recursive XML Schemas, and compare their
performance gains over non-optimized definitions.

Keywords: coupled transformations, bidirectional transformations, two-
level transformations, strategic programming, XML.

1 Introduction

Data transformations are often coupled [16], encompassing software transfor-
mation scenarios that involve the modification of multiple artifacts such that
changes to one of the artifacts induce the reconciliation of the remaining ones
in order to maintain global consistency. A particularly interesting instance of
this class are two-level transformations [18,5], that concern the type-level trans-
formation of schemas coupled with the value-level transformation of documents
that conform to those schemas. A typical example of two-level transformations
are format evolution scenarios [18,11], such as schema changes occurring during
maintenance operations or imposed by the natural evolution of the applications.
These schema evolutions call for the coupled evolution of the underlying docu-
ments and related artifacts so that they remain consistent with the new schema.

Most existing XML transformation and querying languages, such as XSLT,
XQuery or XPath, allow writing structure-shy programs that provide specific be-
havior only for the interesting bits of a (possibly huge) XML document without
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having to specify how to traverse the remaining structure. Due to their generic
form, such programs are easier to write and can be applied to documents satis-
fying different schemas. Nevertheless, they are not two-level. For example, using
XSLT we can separately specify a transformation between XML schemas (since
these can be represented as regular XML documents) and between XML docu-
ments, but the second is not a byproduct of the first. Thus, consistency between
both levels must be manually verified, while a two-level transformation provides
both transformations such that they are consistent by construction.

Another prominent instance of coupling are bidirectional transformations, as
a “mechanism for maintaining the consistency of two (or more) related sources of
information” [9]. For example, after a format evolution both old and new docu-
ments may co-exist and evolve independently. In a bidirectional transformation,
the coupling occurs between forward and backward value transformations such
that changes made to one of the data instances can be propagated to its con-
nected pair in order to recover consistency.

Similarly to two-level transformations, a good approach is to design intrinsic
bidirectional languages in which a program can be read both as a forward or
a backward transformation, so that these are correct for the respective seman-
tic space. Following this notion, many bidirectional languages have emerged in
the most diverse computing domains, including many focused on the transfor-
mation of tree-structured data and with a particular application to XML doc-
uments [15,3,10,21,20,14]. Among these, one of the most successful approaches
are the so-called lenses, introduced by Foster et al [10] to solve the classical
view-update problem: if a source model is abstracted into a view, how can up-
dates made to the view be propagated back to the original model? They propose
the Focal tree transformation language that allows users to build lenses with
sophisticated synchronization behavior in a compositional way.

Still, the aforementioned bidirectional languages are at best typed but not
two-level. On top of that, the programming style that grants them bidirection-
ality is usually more biased towards structure-sensitive constructs, to be able to
identify precisely the concrete steps required to translate between source and
target documents.

In this paper, we propose Multifocal, a generic structure-shy two-level
transformation language for XML Schema evolution whose underlying value-
level functions are bidirectional lens transformations that translate XML doc-
uments conforming to the old and new schemas. In comparison to a Focal lens
transformation, that describes a bidirectional view between two particular tree
structures, a Multifocal transformation describes a general type-level transfor-
mation (over XML Schemas) that provides multiple focus points, in the sense
that it produces a different view schema and a corresponding bidirectional lens
for each XML Schema to which it is applied successfully.

To describe such two-level transformations, we will use a generic style familiar
of strategic rewriting languages [24,19,17], where the combination of a standard
set of basic rules allows the design of flexible rewrite strategies in a compositional
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actor

imdb

seriesmovie

year title review boxoffice year title review season name

user comment country value user comment

name result

played

year title role award

** * *

year episode

**?

director

*

*

Fig. 1. Representation of a movie database schema inspired by IMDb
(http://www.imdb.com). Grey boxes denote elements and white ones model at-
tributes.

way, such as generic traversals that apply type-level transformations at arbitrary
levels inside schema representations.

A known disadvantage of generic programs is their worse performance in com-
parison to analogous non-generic ones, since they must undergo runtime checks
and blindly traverse whole input structures. In our framework, we mitigate this
issue by encoding the underlying bidirectional lens transformations in a point-
free1 language with powerful algebraic laws and allowing automatic optimization
by calculation [23], so that the optimized lens programs are able to efficiently
propagate updates on XML documents.

In Section 2 we motivate our framework with an example. Section 3 presents
the Multifocal language and discusses the design of our framework for the specifi-
cation, optimization and execution ofMultifocal transformations. The implemen-
tation of the framework (using the functional programming language Haskell)
is shown in Section 4. Section 5 illustrates by example how our framework can
tackle various application scenarios involving the generic evolution of recursive
XML schemas, and compares the speedups achieved by an automatic optimiza-
tion phase. In Section 6 we survey related work and Section 7 concludes the
paper with a synthesis of the main contributions and directions for future work.

2 Motivating Example

Consider the XML Schema from Figure 1 representing an IMDb-like database for
storing information about movies and actors. Imagine that we want to summarize
this schema according to the following steps:

1. Delete all series elements.
2. For each movie, replace its reviews by a popularity attribute counting

the number of comments and replace its boxoffice elements with a profit

attribute summing the total value elements.
3. For each actor, keep its name and a list of award names renamed to awname.

1 The point-free style is characterized by the lack of explicit “points” or variables.

http: //www.imdb.com
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awname

imdb

* *

*
titleyear

profit

 movie actor

popularity

director name

Fig. 2. A view of the movie database
schema from Figure 1

The resulting schema is shown in Fig-
ure 2. However, not only do we want to
transform the XML schema, but also to
migrate conforming XML documents and
propagate updates in both directions: if a
source document is modified, then a new
view document must be computed; and if
a view document is modified, then those
changes shall be translated back into a
modified source document. Consider, for
example, the source XML document from
Figure 3(a) containing one movie, one se-
ries and one actor. The forward transformation of our running example would
produce the XML view shown in Figure 3(b). If we modify the view by cor-
recting Uma Thurman’s name and award information, and add an entry for the
new Sherlock Holmes movie before the single actor element (Figure 3(c)), then
the backward transformation shall correct the actress’ name at the appropriate
location and insert a new movie element with default review and boxoffice

elements that are consistent with the modified view (Figure 3(d)).
In the remainder of this paper, we will propose a generic XML transformation

language for XML schemas in which we can express the above transformation
in a concise way close to its informal definition. Plus, the transformations for
XML documents will come for free as conforming bidirectional lenses, satisfying
strong round-tripping properties and supporting automatic optimization.

3 The Multifocal Framework

We now provide an overview of the Multifocal language and the respective frame-
work for strategic two-level bidirectional transformation. We start with a formal
definition of the bidirectional lenses at the core of our framework:

Definition 1 (Lens [10]). A lens l :S � V comprises two total transformations
get : S → V and put : V × S → S, satisfying the following properties:

get (put (v , s)) = v PutGet put (get (s), s) = s GetPut

To give an idea of the bidirectional programs we are considering, these round-
tripping properties guarantee that a lens is indeed an abstraction, i.e., the source
schema S contains more information than the view schema V , and that backward
propagation without modifications preserves the original documents.

Our two-level language over XML schemas is defined by instantiating a well-
known suite of combinators for strategic programming [24,19], together with
specific XML transformers. The full syntax of Multifocal is defined as follows:

strat ::= nop | strat >> strat | strat || strat | many strat | try strat
| all strat | once strat | everywhere strat | outermost strat
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<imdb>
<movie>
<year>2003</year>
<title>Kill Bill: Vol. 1</title>
<review user="emma">
<comment>Gorgeous!</comment></review>

<director>Quentin Tarantino</director>
<boxoffice country="USA" value="22089322"/>
<boxoffice country="Japan" value="3521628"/>

</movie>
<series><year>2011</year>
<title>Game of Thrones</title>
<season><year>2011</year>
<episode>Winter is Coming</episode>

</season></series>
<actor name="Umma Thurman">
<played><year>2003</year>
<title>Kill Bill: Vol. 1</title>
<role>The Bride</role>
<award name="Saturn" result="Won"/>

</played></actor>
</imdb>

(a) Source XML document

<imdb>
<movie> ... </movie>
<series> ... </series>
<movie><year>2012</year>
<title>Sherlock Holmes: Game of Shadows</title>
<review user=”” comment=””/>
<review user=”” comment=””/>
<director>Guy Ritchie</director>
<boxoffice country=”” value=”15”/>

</movie>
<actor name=”Uma Thurman”>
<played><year>2003</year>
<title>Kill Bill: Vol. 1</title>
<role>The Bride</role>
<award name=”Saturn Best Actress” result="Won"/>

</played></actor>
</imdb>

(d) Modified source XML document

<imdb>
<movie popularity="1" profit="25610950">
<year>2003</year>
<title>Kill Bill: Vol. 1</title>
<director>Quentin Tarantino</director>

</movie>
<actor name="Umma Thurman">
<awname>Saturn</awname>

</actor>
</imdb>

(b) View XML document

<imdb>
<movie> ... </movie>
<movie popularity=”2” profit=”15”>
<year>2012</year>
<title>Sherlock Holmes: Game of Shadows</title>
<director>Guy Ritchie</director>

</movie>
<actor name=”Uma Thurman”>
<awname>Saturn Best Actress</awname>

</actor>
</imdb>

(c) Modified view XML document

Fig. 3. Example of a bidirectional transformation between XML documents

| at ’"’ tag ’"’ strat | when ’"’ tag ’"’ strat
| hoist | plunge ’"’ tag ’"’ | rename ’"’ tag ’"’

| erase | select ’"’ xpath ’"’

The set of strategic combinators allows to apply transformations sequentially (>>),
alternatively (||), repetitively (many) or, more challengingly, at arbitrary depths
inside schema representations. It also includes combinators for identity (nop) and
optional rule application (try). Likewise [17] and other generic programming lan-
guages, instead of defining generic traversals by induction on the structure of types,
we define a small set of traversal combinators. The all combinator applies a trans-
formation to all immediate children of the current schema element (for the imdb
element from Figure 1, these would be all movie, series and actor elements).
The once traversal applies a given transformation exactly once somewhere inside
a schema representation at an arbitrary depth, by traversing the schema in a top-
down approach. Using all, we can define the everywhere combinator that tra-
verses a schema representation in a bottom-up fashion and applies the given
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transformation to all its descendants. The outermost traversal performs top-down
exhaustive rule application and can be defined at the cost of once.

To control the application of certain rules, it is useful to identify locations in-
side schemas. The at combinator applies a given rule if the name of the current
element matches a given XML element tag2. On the other hand, when takes the
name of an XML Schema element and performs the following pattern matching:
if the given element name is defined as a top-level element in the source schema,
it converts its structure into a type-level predicate; then, if the predicate suc-
ceeds when applied to the current top-level element in the input schema (such
that its structure matches the structure of the pattern element) it applies the
argument rule, otherwise rule application fails. Other local combinators inspired
in Focal [10] are: hoist that untags the current element, plunge that names a
new XML element and rename that renames the current element.

As a language for defining views of schemas, Multifocal also supports specific
abstraction combinators. To delete part of a schema, we simply call erase at
the appropriate location. So far, our language builds generic transformations
that describe the explicit changes that are performed on the source schema. An
alternative way to specify generic programs is to perform queries that traverse
arbitrary structures to collect values of a specific type, as in for example the
XPath language for selecting particular nodes from XML documents. To apply
an XPath query to a schema, we invoke the select combinator that attempts to
bidirectionalize the XPath expression by converting it into a lens transformation
that abstracts the schema into the desired result type.

As an example, the evolution scenario from Section 2 can be encoded as the
following Multifocal transformation:

everywhere (try (at "series" erase))

>> everywhere (try (at "movie" (

outermost (when "reviews" (

select "count(//comment)" >> plunge "@popularity"))

>> outermost (when "boxoffices" (

select "sum(//@value)" >> plunge "@profit")))))

>> everywhere (try (at "actor" (

outermost (at "played" (select "award/@name" >> all (rename "awname"))))))

This transformation deletes series elements by applying an erase (constrained
by at) everywhere in the source schema, and the popularity and profit at-
tributes are calculated using XPath queries (constrained by when) and tagged
with plunge. The list of award names of an actor are selected with another
XPath query, and such resulting name elements are renamed to awname by ap-
plying rename within the all traversal. In this transformation, the reviews and
boxoffices tags used by the when combinator denote top-level XML Schema el-
ements (Figure 4) that must be defined in the source XML Schema. They match
lists of elements named review and boxoffice (using the schema representa-
tions introduced in Section 4, they denote the types [μreviewF ] and [μboxofficeG ],
for arbitrary functors F and G), respectively.

2 As in XPath, XML node names preceded by an ampersat “@” denote attributes.
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<xs:group name="reviews"><xs:sequence>

<xs:element name="review" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence></xsd:group>

<xs:group name="boxoffices"><xs:sequence>

<xs:element name="boxoffice" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence></xs:group>

Fig. 4. XML Schema top-level elements modeling specific type patterns

XML File
(.xml)

XML Schema
(.xsd)

XML File
(.xml)

Multifocal File
(.2lt)

XML Schema
(.xsd)

Evaluate

XML File
(.xml)

Bidirectional Lens 
Executable

Forward

Backward
XML File

(.xml)

Fig. 5. Architecture of the Multifocal
framework

The general architecture of our
framework is illustrated in Figure 5.
A two-level transformation defined as
a Multifocal expression is executed in
two stages: first, it is evaluated as
a type-level transformation by apply-
ing it to a source XML Schema, pro-
ducing a target XML Schema and a
bidirectional lens; second, the lens is
compiled into an executable file that
can be used to propagate updates be-
tween XML documents conforming to
the source and target schemas. In our
scenario, optimization is done at the second stage: we optimize the value-level
lenses once for each input schema and generate optimized executables that effi-
ciently propagate updates between XML documents.

4 Implementation

This section unveils the implementation of the Multifocal framework in Haskell.
Haskell is a general-purpose functional programming language with strong static
typing, where structures are modeled by algebraic data types and programs are
written as well-typed functions through pattern matching on their input values.
This embedding is supported by front-ends that translate XML Schemas and
XML documents into Haskell types and values, and vice-versa. A more technical
description of similar XML-Haskell front-ends can be found in previous work [2].

Two-level transformations written in Multifocal are translated into a core
library of Haskell combinators that operate on Haskell type representations.
After translating the source XML Schema into an Haskell type, the framework
applies the type-level transformation to produce as output a target type and
a lens representation as Haskell values. From these, it generates a target XML
Schema and an Haskell executable file containing the lens transformation and the
data type declarations that represent all the source and target XML elements.
The main function of this file parses XML documents complying to the schemas,
converts them into internal Haskell values, runs the lens transformation either
in the forward or backward direction to propagate source-to-target or target-to-
source updates, and finishes by pretty-printing an updated XML document.
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◦ : (B � C ) → (A � B) → (A � C ) id :A � A
× :(A � C ) → (B � D) → (A × B) � (C × D) π1 :A × B � A
+ :(A � C ) → (B � D) → (A+ B) � (C +D) π2 :A × B � A
� :(A � C ) → (B � C ) → (A+ B) � C ! :A � 1
(|g |)F : (F A � A) → (μF � A) outF : μF � F (μF )
��(g)��F : (A � F A) → (A � μF ) inF : F (μF ) � μF
map : (A � B) → ([A] � [B ]) concat : [[A]] � [A] length : [A] � Int
filter l : [A + B ] � [A] filter r : [A+ B ] � [B ]

Fig. 6. Point-free lens combinators

Encoding of Schemas and Lenses. In Haskell, sums + and products × correspond
to xs:sequence and xs:choice elements in XML Schema notation. Primitives
include base types, such as the unit type 1, integers Int or strings String , and lists
[A ] of values of type A that model XML sequences. To accommodate recursive
schemas, we represent user-defined types (denoting XML elements) as fixpoints
μtagF of a polynomial functor F , for a given name tag3. A polynomial functor
is either the identity Id (for recursive invocation), the constant A, the lifting of
sums ⊕ , products ⊗ and lists [ ] or the composition of functors � . For example,
the top-level element of the non-recursive schema from Figure 1 is represented
as μimdb(([ ]� (μmovieM ⊕μseriesS ))⊗ ([ ]�μactorA)), where M ,S and A are the
functors of the movie, series and actor elements. Application of a polynomial
functor F to a type A yields an isomorphic sum-of-products type F A.

In our framework, bidirectionality is achieved by defining the value-level se-
mantics of our two-level programs according to the point-free lens language de-
veloped in [22] and summarized in Figure 6. Each of these lens combinators
possesses a get and a put function satisfying the bidirectional properties from
Definition 14. Fundamental lenses are identity (id) and composition (◦). The
!,π1 and π2 combinators project away parts of a source type, while � applies
two lenses alternatively to distinct sides of a sum. The × and + combinators
map two lenses to both sides of a pair or a sum, respectively. The outF and
inF isomorphisms expose and encapsulate the top-level structure of an induc-
tive type with functor F . The well-known fold (| · |)F and unfold ��(·)��F recursion
patterns recursively consume and produce values of an inductive type. In this pa-
per, we treat some typical operations over lists such as mapping, concatenation,
length and filtering as primitive lenses. Their recursive definitions can be found
in [23].

3 This is actually one of many possible representations of algebraic data types for use
in generic programming. For a detailed discussion see [13].

4 In [22], some of the lens combinators admit additional parameters to control value
generation. In this paper, we substitute such parameters with suitable defaults.
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nop, erase :: Rule
nop a = return (id , a)
erase a = return (!, 1)

at :: String → Rule → Rule
at name r a@(μtag f ) | name ≡ tag = r a
at name r a = mzero

all ::Rule → Rule
all r Int = return (id , Int)
all r [a ] = do (l , b) ← r a

return (map l , [b ])
all r μtag f = do (l , g) ← allF r f

return ((|ing ◦ l |)f , μtagg)

...
allF :: Rule → RuleF
allF r Id = return (id , Id)
allF r [ ] = return (id , [ ])
allF r a = do (l , b) ← r a

return (l , b)
allF r (f ⊗ g) = do (l1 , h) ← allF r f

(l2 , i) ← allF r g
return (l1×l2 , h ⊗ i)

...
everywhere r = all (everywhere r) >> r

once :: Rule → Rule
once r Int = r Int
once r [a ] = r [a ] ‘mplus‘

do (l , b) ← once r a
return (map l , [b ])

once r a@(μtag f ) = r a ‘mplus‘
do (l , g) ← onceF r f

return (��(l ◦ out f )��g , μtagg)

...

type RuleF = Fctr → Maybe (Lens ,Fctr)

onceF ::Rule → RuleF
onceF r Id = mzero
onceF r [ ] = do (l , g •) ← r [•]

return (l , g)
onceF r (f ⊗ g) =

do (l , h •) ← r ((f ⊗ g) •)
return (l , h)

‘mplus‘ do (l ,h) ← onceF r f
return (l×id , h ⊗ g)

‘mplus‘ do (l , i) ← onceF r g
return (id×l , f ⊗ i)

...
outermost r = many (once r)

Fig. 7. Encoding of some strategic combinators as Haskell rewrite rules

Two-Level Lens Transformations. Multifocal combinators can be encoded as
rewrite rules that, given a source type representation, yield a lens representation
and a target type representation:5:

type Rule = Type → Maybe (Lens ,Type)

In our implementation, types and lenses are represented as values of type Type
and Lens (a grammar for lenses built using the combinators from Figure 6).
The Maybe Haskell type models partiality of rule application: return denotes
successful application, failure is signaled with mzero and mplus implements left-
biased choice. Figure 7 presents the encoding of some combinators, namely the
fundamental all and once that traverse inside the functorial structure of types.

The all traversal applies an argument rule to all children of the current
type and has the most interesting behavior for user-defined types: it invokes the
auxiliary rule allF that propagates a rule application down to the constants,
where it applies the argument rule, and returns a lens transformation (wrapped
as a rewrite rule RuleF on functor representations Fctr); then, it constructs

5 For a clearer presentation, we encode types and transformations with unconstrained
data representations. Our actual implementation follows a type-safe encoding in-
spired in [5], such that the conformity between all the artifacts (schemas,documents
and transformations) is enforced by the Haskell type system.
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a bottom-up lens (fold) that recursively applies the lens transformation to all
values of the recursive type. The once traversal applies an argument rule exactly
once at an arbitrary depth in a top-down approach, and stops as soon as the
argument rule can be successfully applied. To be able to apply normal type rules
inside a functor, the auxiliary rule onceF flattens the functor by applying it to a
special type mark •. When the argument rule can be successfully applied, it infers
a new functor representation using • to remember the recursive invocations6. For
recursive types, the resulting lens performs a top-down traversal (unfold) that
applies the value-level transformations of the argument rule to each recursive.

Other combinators for processing user-defined types are: hoist that unpacks
an user-defined type by applying out at the value-level; plunge that constructs
a new (non-recursive) user-defined type by applying in at the value-level; and
rename that renames an existing user-defined type and is coupled to the id lens.
Notice that rename n is different from hoist >> plunge n, since rename works
for all data types, and plunge can only create non-recursive ones.

The erase combinator deletes the current top-level type, by replacing it with
the unit type and applying ! at the value-level. In order to bundle a XPath query
as a two-level transformation, the select combinator specializes it for the input
type and then tries to lift the specialized expression into a lens. We specialize
XPath expressions by translating them into generic point-free programs than can
be optimized to non-generic point-free functions using the techniques from [8,6].
To lift the resulting functions into lenses, we check if their point-free expressions
are defined using only the point-free lens combinators from Figure 6, otherwise
rule application fails.

Schema Normalization. To keep a minimal suite of combinators, our language
supports abstractions through the erase combinator, that deletes elements lo-
cally and thus leaves “dangling” unit types in the target schema. However, these
empty unnamed types are unintended and may yield XML Schemas that are
deemed ambiguous by many XML processors. For example, when applying our
running Multifocal transformation to the IMDb schema from Figure 1, deleting
series inside imdb elements will result in a list [μmovieM + 1]. Such dangling
unit types have no representation in the XML side and must be deleted from
the target schema representation. Such deletion is performed by a normalize
procedure that removes these and other ambiguities, by exhaustively applying
the rules from Figure 87. Normalization is silently applied by extending the all
and once traversals so that they apply normalize after rewriting.

Lens Optimization. Although the lens transformations generated by our frame-
work are instantiated for particular source and target schemas, they still contain
many redundant computations and traverse the whole structures, as a conse-
quence of being a two-level transformation. To improve their efficiency, we reuse

6 Unlike in the pseudo-code from Figure 7, in our implementation functor inference
must be performed as a separate procedure and not simply via pattern matching.

7 The exact lens definitions of id�nil and nil�id can be found in [23].
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π1 :A × 1 � A π2 : 1 × A � A -- Products
id�nil : [A] + 1 � [A] nil�id : 1 + [A] � [A] -- Sums
filter l : [A + 1] � [A] filter r : [1 + A] � [A] -- Lists
id�id :A+ A � A concat : [[A]] � [A] -- Ambiguous types

Fig. 8. Rules for normalization of XML Schema representations
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Fig. 9. A company hierarchized payroll
XML schema inspired in [17]
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Fig. 10. A view of the company schema

a rewrite system for the optimization of point-free lenses [23] (similar to the one
for the optimization of XPath queries) that employs powerful algebraic point-free
laws for fusing and cutting redundant traversals. After rewriting, the resulting
transformations work directly between the source and target types and are sig-
nificantly more efficient, as demonstrated in Section 5. In our framework, we
provide users with the option to optimize the generated bidirectional programs
at the time of generation of the Haskell bidirectional executable, if they intend to
repeatedly propagate updates between XML documents conforming to the same
schemas. This could be the case, for example, when the schemas represent the
configuration of a live system that replies to frequent requests. In such cases, the
once-a-time penalty of an additional optimization phase for a specific schema is
amortized by a larger number of executions.

5 Application Scenarios

We now demonstrate two XML evolution scenarios (the IMDb example from
Section 3 and another example for the evolution of a recursive XML Schema),
and compare the performance of the lenses resulting from the execution of the
two-level transformations with their automatically optimized definitions.

A classical schema used to demonstrate strategic programming systems is the
so called “paradise benchmark” [17]. Suppose one has a recursive XML Schema
to model a company with several departments, each having a name, a manager
and a collection of employees or sub-departments, illustrated in Figure 9. Our
second evolution example consists in creating a view of this schema according
to the following transformation:
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Fig. 11. Benchmark results for the IMDb example

Fig. 12. Benchmark results for the paradise example

everywhere (try (at "manager" (

all (select "(//name)[1]") >> rename "managername")))

>> everywhere (try (at "employee" erase))

>> once (at "dept" (hoist >> outermost (at "dept" (

select "name" >> rename "branch")) >> plunge "dept"))

For each top-level department, this transformations keeps only the names of
managers (renamed to managername), deletes all employees and collects the
names of direct sub-departments renamed to branch. The resulting non-recursive
schema is depicted in Figure 10. There are some details worth noticing. First, it is
easier to keep only manager names using a generic query instead of a transforma-
tion that would need to specify how to drop the remaining structure. The XPath
filter “[1]” guarantees a sole result if multiple names existed under managers.
Second, since dept is a recursive type, we unfold its top-level recursive struc-
ture once using hoist to be able to process sub-branches, and create a new
non-recursive dept element with plunge.

Performance Analysis. Unfortunately, the lenses resulting from the above trans-
formations are not very efficient. For instance, in the IMdb example the traversals
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over series’ movies and actors are independent and can be done in parallel.
Also, the transformations of reviews and boxoffices and the extra normaliz-
ing step that filters out unit types (resulting from erased series elements) can
be fused into a single traversal. For the paradise example, all the three steps
and the extra normalization step (for erased employee elements) can be fused
into a single traversal. Also, the first two steps, that traverse all departments
recursively due to the semantics of all (invoked by everywhere) for recursive
types, are deemed redundant for sub-departments by the last step.

All these optimizations can be performed by our lens optimization phase.
We have measured space and time consumption of the lenses generated by our
two examples, and the results are presented in Figures 11 and 12. To quantify
the speedup achieved by the optimizations, we have compared the runtime be-
havior of their backward transformations for non-optimized (specification) and
optimized lens definitions (optimized)8. To factor out the cost of parsing and
pretty-printing XML documents, we have tested the put functions of the lenses
with pre-compiled input databases of increasing size (measured in kBytes needed
to store their Haskell definitions), randomly generated with the QuickCheck test-
ing suite [4]. We compiled each function using GHC 7.2.2 with optimization flag
O2. As expected, the original specification performs much worse than the opti-
mized lens, and the loss factor grows with the database size. Considering the
biggest sample, the loss factors are of 3.7 in time and 4.1 in space for the IMDb
example and of 9.4 in time and 13.4 in space for the paradise example. The more
significant results (and the worse overall performance) for the paradise example
are justified by the elimination of the recursive traversals over sub-departments.

6 Related Work

In [18], Lämmel et al propose a systematic approach to XML schema evolu-
tion, where the XML-based formats are transformed in a step-wise fashion and
the transformation of coupled XML documents can be largely induced from the
schema transformations. They study the properties of such transformations and
identify categories of XML schema evolution steps, taking into account many
XML-specific issues, but do not propose a formalization or implementation of
such a general framework for two-level transformation. The X-Evolution sys-
tem [11] provides a graphical interface for the evolution of XML Schemas coupled
with the adaptation of conforming XML documents. Document migration is au-
tomated for the cases when minimal document changes can be inferred from the
schema evolution steps, while user intervention through query-based adaptation
techniques is required to appropriately handle more complex schema changes.

Two famous bidirectional languages for XML are XSugar [3] and biXid [15],
that describe XML-to-ASCII and XML-to-XML mappings, respectively. In both,
bidirectional transformations are specified using pairs of intertwined grammars
describing the source and target formats, from which a forward transformation

8 Note that parsed XPath expressions are already optimized in the non-optimized lens,
since their successful “lensification” depends on their specialization.
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is obtained by parsing according to the rules in one grammar and a backward
transformation by pretty printing according to the rules in the other. However,
while the emphasis of XSugar is on bijective transformations, biXid admits am-
biguity in the transformations and only postulates that translated documents
shall be consistent up to the grammar specification.

The Focal lens language [10] provides a rich set of lens combinators, from
general functional programming features (composition, mapping, recursion) to
tree-specific operations (splitting, pruning, merging) for the transformation of
tree-structured data. In [20], Liu et al propose Bi-X, a functional lens language
closely resembling the XQuery Core language that can serve as the host lan-
guage for the bidirectionalization of XQuery. The main feature of Bi-X is its
support for variable binding, allowing lenses that perform implicit duplication.
Using variable referencing, structure-shy combinators such as XPath’s descen-
dant axis can also be translated into equivalent Bi-X programs. Although their
development is done in an untyped setting, they define a type system of regular
expressions that is used to refine backward behavior.

In previous work [2], we proposed a two-level bidirectional transformation
framework (2LT) implemented in Haskell for the strategic refinement of XML
Schemas into SQL databases. Later [7], we showed how point-free program cal-
culation can be used to optimize such bidirectional programs and how these can
be combined to provide structure-shy query migration. In this paper, we tackle
the dual problem of XML schema abstraction, supporting the execution and
optimization of coupled bidirectional lenses. While refinement scenarios are in-
herent to strategic rewriting techniques, like the automatic mapping of abstract
schemas to more concrete ones [2], view definition scenarios typically involve
more surgical steps that abstract or preserve specific pieces of information and
motivate a different language of primitive evolution steps. Contrarily to the 2LT
framework, where two-level transformations are written within Haskell using a
combinator library, we propose the Multifocal XML transformation language,
mixing strategic and specific XML transformers, to write “out of the box” views
of XML Schemas. Another new feature of our approach is the specification and
optimization of generic two-level transformations over recursive XML Schemas.

7 Conclusion

In this paper we have proposedMultifocal, a generic two-level bidirectional trans-
formation language for XML Schema evolution with document-level migrations
based on the bidirectional framework of lenses. By using strategic program-
ming techniques, these coupled transformations can be specified in a concise
and generic way, mimicking the typical coding pattern of XML transformation
languages such as XSLT, that allow to easily specify how to modify only selected
nodes via specific templates. When applied to input schemas, our schema-level
transformations produce new schemas, as well as bidirectional lens transforma-
tions that propagate updates between old and new documents. In our framework,
we release such bidirectional transformations as independent programs that can



Multifocal: A Strategic Bidirectional Transformation Language 103

be used to translate updates for particular source and target schemas. We also
provide users with an optional optimization phase that improves the efficiency
of the generated lens programs for intensive usage scenarios.

Our framework has been fully implemented in Haskell, and is available through
the Hackage package repository (http://hackage.haskell.org) under the name
multifocal. It can be used both as a stand-alone tool for XML Schema evo-
lution and as a combinator library for the two-level bidirectional evolution of
arbitrary inductive data type representations.

Although our language already supports combinators in the style of XSLT
transformations and XPath queries, the expressiveness of the underlying bidi-
rectional transformations is naturally limited by the language of point-free lenses
in use. That said, the translation of some XPath features that are not perfect
abstractions, such as value-level filtering, is not considered in our approach. In
future work, we plan to extend this language to support more XPath features.
This would require, however, to loosen either the round-tripping laws or the re-
quirement that lens functions must be totally defined for documents conforming
to the schemas. Other directions for future work that we are investigating are:
(i) the processing of annotations in the input XML Schemas such as xs:key to
identify reorderable chunks in the source document and provide extra alignment
information to guide the translation of view updates in the style of [1]; (ii) the
leveraging of the underlying bidirectional framework from asymmetric lenses to
other symmetric formulations such as [12] that guarantee weaker properties but
do not impose a particular abstract-or-refine data flow.

In this work, we propose a way of replacing three unidirectional XML transfor-
mations (a schema-level transformation and two transformations between XML
documents) with a single two-level bidirectional Multifocal transformation. In
order to bring Multifocal closer to standard XML transformation tools, we plan
to develop translations from XSLT-like idioms to Multifocal. For a successful
integration, a comparative study on the usefulness, expressiveness and efficiency
of Multifocal transformations would be needed.
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19. Lämmel, R., Visser, J.: A Strafunski Application Letter. In: Dahl, V. (ed.) PADL
2003. LNCS, vol. 2562, pp. 357–375. Springer, Heidelberg (2002)

20. Liu, D., Hu, Z., Takeichi, M.: Bidirectional interpretation of xquery. In: PEPM
2007, pp. 21–30. ACM (2007)

21. Mu, S.-C., Hu, Z., Takeichi, M.: An Algebraic Approach to Bi-directional Updating.
In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 2–20. Springer, Heidelberg
(2004)

22. Pacheco, H., Cunha, A.: Generic Point-free Lenses. In: Bolduc, C., Desharnais, J.,
Ktari, B. (eds.) MPC 2010. LNCS, vol. 6120, pp. 331–352. Springer, Heidelberg
(2010)

23. Pacheco, H., Cunha, A.: Calculating with lenses: optimising bidirectional transfor-
mations. In: PEPM 2011, pp. 91–100. ACM (2011)

24. Visser, E.: Stratego: A Language for Program Transformation Based on Rewriting
Strategies System Description of Stratego 0.5. In: Middeldorp, A. (ed.) RTA 2001.
LNCS, vol. 2051, pp. 357–361. Springer, Heidelberg (2001)



Bidirectional Transformation

of Model-Driven Spreadsheets�
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Abstract. Spreadsheets play an important role in software organiza-
tions. Indeed, in large software organizations, spreadsheets are not only
used to define sheets containing data and formulas, but also to collect
information from different systems, to adapt data coming from one sys-
tem to the format required by another, to perform operations to enrich
or simplify data, etc. In fact, over time many spreadsheets turn out to
be used for storing and processing increasing amounts of data and sup-
porting increasing numbers of users. Unfortunately, spreadsheet systems
provide poor support for modularity, abstraction, and transformation,
thus, making the maintenance, update and evolution of spreadsheets a
very complex and error-prone task.

We present techniques for model-driven spreadsheet engineering where
we employ bidirectional transformations to maintain spreadsheet models
and instances synchronized. In our setting, the business logic of spread-
sheets is defined by ClassSheet models to which the spreadsheet data
conforms, and spreadsheet users may evolve both the model and the
data instances. Our techniques are implemented as part of the MDSheet
framework: an extension for a traditional spreadsheet system.
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1 Introduction

Spreadsheets are widely used in the development of business applications. Spread-
sheet systems offer end users a high level of flexibility, making initiation easier
for new users. This freedom, however, comes at a price: spreadsheets are noto-
riously error prone as shown by numerous studies reporting that up to 90% of
real-world spreadsheets contain errors [21].
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In recent years, the spreadsheet research community has recognized the need
to support end-user model-driven spreadsheet development (MDSD), and to pro-
vide spreadsheet developers and end users with methodologies, techniques and
the necessary tool support to improve their productivity. Along these lines, sev-
eral techniques have been proposed, namely the use of templates [1], ClassSheet
models [10] and class diagrams [14]. These proposals guarantee that end users
can safely edit their spreadsheets and introduce a form of model-driven software
development: they allow to define a spreadsheet business model from which a
customized spreadsheet application holding the actual data is generated. The
consistency of the spreadsheet data with the overlying model is guaranteed, of-
ten by limiting the editing options on the data side to ensure that the structure
of the spreadsheet remains unchanged.

A significant drawback of such approaches lies in the fact that the evolution
of both spreadsheet models and the instances generated from them is considered
in isolation. That is to say that, after obtaining a spreadsheet instance from
a particular model, a simple evolution step on the model side may break the
conformity with its instance, and vice versa. A first attempt to overcome this
limitation was proposed in [7], where it was shown how to co-evolve spreadsheet
instances upon a model evolution defined according to a well-behaved set of
possible transformations. The approach presented in [7], however, has two im-
portant drawbacks: i) the evolutions that are permitted at the model level can
only be refinement steps: it is not possible to perform model evolutions that are
frequent in spreadsheets such as removing a column, for example; and ii) it does
not allow users to directly evolve spreadsheet instances having the corresponding
model automatically co-evolved.

The goal of this paper is to study a more general setting where editing opera-
tions on models can be translated into conforming editing operations on spread-
sheets and editing operations on spreadsheets can be translated into respective
editing operations on models. For this purpose, we develop independent edit-
ing languages for both models and spreadsheets and bind them together using
a symmetric bidirectional framework [9, 16] that handles the edit propagation.
Among other properties, the fundamental laws governing the behavior of such
bidirectional transformations guarantee that the conformity of spreadsheet in-
stances and models can always be restored after a modification. Both the model
and instance evolution steps are available as an extension of OpenOffice.

2 ClassSheets as Spreadsheet Models

Erwig et al. [10] introduced the language of ClassSheets to model spreadsheets
at a higher abstraction level, thus allowing for spreadsheet reasoning to be per-
formed at the conceptual level. ClassSheets have a visual representation very
similar to spreadsheets themselves: in Figure 1, we present a possible model for
a Budget spreadsheet, which we adapted from [10].1

1 We assume colors are visible in the digital version of this paper.
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Fig. 1. Budget spreadsheet model

This model holds two classes where data is to be inserted by end users: i)
Year, with a default value of 2010, for the budget to accommodate multi-year
information and ii) Category, for assigning a label to each expense. The actual
spreadsheet may hold several repetitions of any of these elements, as indicated
by the ellipsis. For each expense we record its quantity and its cost (with 0 as
default value), and we calculate the total amount associated with it. Finally,
(simple) summation formulas are used to calculate the global amount spent per
year (cell D5), the amount spent per expense type in all years (cell F3) and the
total amount spent in all years (cell F5) are also calculated.

Erwig et al. not only introduced ClassSheets , but they also developed a tool -
the Gencel tool [12] - that given a ClassSheet model generates an instance (i.e.
a concrete spreadsheet) that conforms to the model. Figure 2 presents a possible
spreadsheet as generated by Gencel given the ClassSheet shown in Figure 1 (and
after the end user manually introduced soma data). In this particular case, the
spreadsheet is used to record the annual budget for travel and accommodation
expenses of an institution.

Fig. 2. Budget spreadsheet instance

Since the spreadsheet is generated using all the information in the model, it is
able of providing some correctness guarantees: formulas are kept consistent while
new years are added, for example. Note also that, throughout the years, cost and
quantity are registered for two types of expenses: travel and accommodation, and
that formulas are used to calculate the total expense amounts.

Spreadsheet Evolution. At the end of 2011, the spreadsheet of Figure 2 needs to
be modified to accommodate 2012 data. Most spreadsheet users would typically
take four steps to perform this task: i) insert three new columns; ii) copy all
the labels (”Year”, ”Qnty”, ”Cost” and ”Total”); iii) copy all the formulas (to
compute the total amount spent per expense type in 2012, and the total expense
for that same year) and iv) update all the necessary formulas in the last column
to account for the new year information. More experienced users would possibly
shortcut these steps by copy-inserting, for example, the 3-column block of 2011
and changing the label “2011” to “2012” in the copied block. Still, the range
of the multi-year totals must be manually extended to include the new year
information. In any (combination) of these situations, a conceptually unitary
edition, add year, needs to be executed via an error-prone combination of steps.
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This is precisely the main advantage of model-driven spreadsheet develop-
ment: it is possible to provide unitary transformations such as the addition of
class instances (e.g., a year or a category) as one-step procedures, while all the
structural impacts of such transformations are handled automatically (e.g., the
involved formulas being automatically updated). This advantage is exploited to
its maximum when the model and the instance are part of the same spreadsheet
development environment, as it was proposed for OpenOffice in [5].2 Besides
automation, it is also guaranteed that this type of instance level operations does
not affect the model-instance conformity binding.

There are, however, several situations in which the user prefers to change a
spreadsheet instance (or a particular model) in such a way that, after the edit,
it will no longer conform to the previously defined model (or the respective
instance). For example, if the user wants to add a column containing a possible
expense discount for a particular year only, this is a trivial operation to perform
at the data level which is actually not simple to perform at the model level.
Therefore choosing to evolve the original spreadsheet, we may obtain the one
given in Figure 3, which no longer conforms to the model of Figure 1 (the discount
was added in column K).

Fig. 3. Budget spreadsheet instance with an extra column

One possible model evolution that regains conformity is shown in Figure 4: a
class for years with 3 columns is kept, while a new class for years with an extra
discount column is introduced.

Fig. 4. Budget spreadsheet model with an extra column

In the remainder of this paper, we study the evolution of spreadsheet mod-
els and instances in a systematic way. As a result of our work, we present a
bidirectional framework that maintains the consistency between a model and
its instance. By being bidirectional, it supports either manually evolving the
spreadsheet instances, as we have described in this section, or editing the model
instead. In any case, the correlated artifact is automatically co-evolved, so that
their conformity relationship is always preserved.

2 Actually, Figure 1 and Figure 2 present a ClassSheet model and a spreadsheet in-
stance as defined in the embedding of ClassSheets in spreadsheets [5].
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3 Spreadsheet Evolution Environment

This section presents a bidirectional spreadsheet evolution environment. This
environment combines the following techniques:

– firstly, we embed ClassSheet models in a spreadsheet system. Since the visual
representation of ClassSheets very much resembles spreadsheets themselves,
we have followed the traditional embedding of a domain specific language
(ClassSheets) in a general purpose programming language (spreadsheet sys-
tem). In this way, we can interact with both the models and the instances
in the same environment as described in [4, 7].

– secondly, we construct a framework of bidirectional transformations for Class-
Sheets and spreadsheet instances, so that a change in an artifact is auto-
matically reflected to its correlated one. This framework provides the usual
end-user operations on spreadsheets like adding a column/row or deleting a
column/row, for example. These operations can be realized in either a model
or an instance, and the framework guarantees the automatic synchronization
of the two. This bidirectional engine, that we describe in detail in the next
section, is defined in the functional programming language Haskell [18].

– finally, we extend the widely used spreadsheet system Calc, which is part of
OpenOffice, in order to provide a bidirectional model-driven environment to
end-users. Evolution steps at the model and the instance level are available as
new buttons that extend the functionalities originally built-in the system. A
script in OpenOffice Basic was developed to interpret the evolution steps and
to make the bridge with theHaskell framework. An OpenOffice extension is
available at the SSaaPP project web page: http://ssaapp.di.uminho.pt/.

In Figure 5, we present an overview of the bidirectional spreadsheet environment
that we propose. On the left, the embedded ClassSheet is presented in a Model
worksheet while the data instance that conforms to it is given on the right, in
a Data worksheet. Both worksheets contain buttons that perform the evolution
steps at the model and instance levels.

Every time a (model or instance) spreadsheet evolution button is pressed, the
system responds automatically. Indeed, it was built to propagate one update at
a time and to be highly interactive by immediately giving feedback to users. A
global overview of the system’s architecture is given in Figure 6.

Also, our bidirectional spreadsheet engine makes some natural assumptions
on the models it is able to manipulate and restricts the number of operations
that are allowed on the instance side.

Model Evolution Steps. On the model side, we assume the ClassSheet on which
an editing operation is going to be performed is well-formed. By being well-
formed we mean a model respecting the original definition of ClassSheets [10],
where all references made in all formulas are correctly bound. Also, a concrete
model evolution operation is only actually synchronized if it can be applied to
the initial model and the evolved model remains well-formed; otherwise, the

http://ssaapp.di.uminho.pt/
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Fig. 5. A bidirectional model-driven environment for the budget spreadsheet

MDSheet

ClassSheet Spreadsheet

ClassSheet' Spreadsheet'

OpM OpD

OpenOffice

Fig. 6. Architecture of the MDSheet addon for OpenOffice

operation is rejected and the original model remains unchanged. The intuition
behind this is that operations which cannot be applied to one side should not
be put to the other side, but rejected by the environment. A similar postulate
is made in [16].

For example, an operation that would produce an ill-formed ClassSheet model
occurs when removing the cost column in Figure 1. In this case, the formula that
computes the total expense amount per year would point to a non-existing cost
value. This is precisely one of the cases that our system rejects.

Data Evolution Steps. The success of spreadsheets comes from the simplicity
and freedom that they provide to end-users. This freedom, however, is also one
of the main causes of errors in spreadsheets. In our evolution environment, we
need to restrict the number of operations that a user may request. The reason
for this is the following: for any supported operation, we guarantee that there
exists a concrete model that the evolved instance will conform to; and for this we
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need to reduce the huge number of operations that is available in a spreadsheet
system such as Calc, so that we can ensure model-instance conformity at all
times.

As an example of an operation on an instance that we are not able to propa-
gate to its conforming model is the random addition of data rows and columns.
Indeed, if such an edit disrespects the structure of the original spreadsheet, we
will often be unable to infer a new model to which the data conforms. Therefore,
the operations (such as addColumn) that may affect the structure of a spread-
sheet instance need to be performed explicitly using the corresponding button
of our framework. The remaining editing operations are performed as usually.

4 The MDSheet Framework

In this section, we present our framework for bidirectional transformations of
spreadsheets. The implementation is done using the functional programming
language Haskell and we will use some of its notation to introduce the main
components of our framework. After defining the data types that encode mod-
els and instances, we present two distinct sets of operations over models and
instances. We then encode a bidirectional system providing two unidirectional
transformations to and from that map operations on models into operations
on instances, and operations on instances to operations on models, respectively.
Figure 7 illustrates our bidirectional system:

conforms to conforms to

Op

Op

to
from

M

D

ClassSheet

Spreadsheet

ClassSheet'

Spreadsheet'

Fig. 7. Diagram of our spreadsheet bidirectional transformational system

Given a spreadsheet that conforms to a ClassSheet model, the user can evolve
the model through an operation of the set OpM , or the instance through an
operation of the set OpD. The performed operation on the model (data) is then
transformed into the corresponding operation on the data (model) using the to
and from transformations, respectively. A new model and data are obtained with
the new data conforming to the new model.

4.1 Specification of Spreadsheets and Models

The operations defined in the next sections operate on two distinct, but similar,
data types. The first data type, named Model , is used to store information about
a model. It includes the list of classes that form the model and a grid (a matrix)
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that contains the definition of the ClassSheet cells. The second type, Data, is
used to store information about model instances, i.e., the spreadsheet data. It
also stores a list of classes and a matrix with the cell contents. The definition of
these data types is as follows:

data Model = Model {classes :: [ModelClass ], grid ::Grid }
data Data = Data {classes :: [DataClass ], grid ::Grid }

The difference between the two data types lies in the kind of classes used. Models
define classes with repetitions, but do not have repetitions per se. However, the
data can have several instances, and that information is stored within the class.
For a class, we store its name, the position of its top-left and bottom-right points
(respectively tl and br in the data structure below) and the kind of expansion
of the class.

data ModelClass = ModelClass {
classname :: String
, tl :: (Int , Int)
, br :: (Int , Int)
, expansion :: Expansion ()}

data DataClass = DataClass {
classname :: String
, tl :: (Int , Int)
, br :: (Int , Int)
, expansion :: Expansion Int }

In DataClass , the number of instances is stored in the expansion field. In
ModelClass , the expansion is used to indicate the kind of expansion of a class.
It is possible to store the number of instances for horizontal and for vertical
expansions, and for classes that expand both horizontally and vertically. It is
also possible to represent static classes (i.e., that do not expand).

Having introduced data types for ClassSheet models and spreadsheet in-
stances, we may now define operations on them. The next two sections present
such operations.

4.2 Operations on Spreadsheet Instances

The first step in the design of our transformational system is to define the op-
erations available to evolve the spreadsheets. The grammar shown next defines
the operations the MDSheet framework offers.

data OpD : Data → Data =
addColumnD Where Index -- add a column

| delColumnD Index -- delete a column
| addRowD Where Index -- add a row
| delRowD Index -- delete a row
| AddColumnD Where Index -- add a column to all instances
| DelColumnD Index -- delete a column from all instances
| AddRowD Where Index -- add a row to all instances
| DelRowD Index -- delete a row from all instances
| replicateD ClassName Direction Int Int -- replicate a class
| addInstanceD ClassName Direction Model -- add a class instance
| setLabelD (Index , Index) Label -- set a label
| setV alueD (Index , Index) Value -- set a cell value
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| SetLabelD (Index , Index) Label -- set a label in all instances
| SetV alueD (Index , Index) Value -- set a cell value in all instances

To each entry in the grammar corresponds a particular function with the same
arguments. The application of an update opD :OpD to a data instance d :Data
is denoted by opD d : Data.

The first operation, addColumnD, adds a column in a particular place in
the spreadsheet. The Where argument specifies the relative location (Before
or After) and the given Index defines the position where to insert the new
column. This solves ambiguous situations, like for example when inserting a
column between two columns from distinct classes. The behavior of addColumnD

is illustrated in Figure 8.

  Before  8

A  B  C D  E  F G  H  I

=>addColumn D =>

A  B  C D  E  F G  H  I A  B  C D  E  F G  ◊  H  I

Fig. 8. Application of the data operation addColumnD

In an analogous way, the second operation, delColumnD, deletes a given
column of the spreadsheet. The operations addRowD and delRowD behave as
addColumnD and delColumnD, but work on rows instead of on columns. An op-
eration in all similar to addColumnD (delColumnD, addRowD and delRowD)
is AddColumnD (DelColumnD, AddRowD and DelRowD). This operation is
in fact a mapping of addColumnD over all instances of a class: it adds a col-
umn to each instance of an expandable class. The operation replicateD allows
to replicate (or duplicate) a class, with the two last integer arguments being the
number of instances of the class provided as first argument and the number of
the instance to replicate, respectively. This operation will be useful for our bidi-
rectional transformation functions, and will be explained in more detail later.
The operation addInstanceD performs a more complex evolution step: it adds
a new instance of a given class to the spreadsheet. For the example illustrated
in Figure 2, it could be used to add a new instance of the year class. The op-
erations described so far work on sets of cells (e.g. rows and columns), whereas
the last two OpD operations, setLabelD and setV alueD, work on a single cell.
The former allows to set a new label to a given cell while the latter allows to
update the value of a cell. Versions of these last two operations that operate on
all instances are also available: SetLabelD and SetV alueD, respectively.

When adding a single column to a particular instance with several columns,
the chosen instance becomes different than the others. Therefore, this operation
is based on two steps: firstly, the chosen instance is separated from the others
(note that the second dashed line becomes a continuous line); secondly, a new
column, indicated by ♦, is inserted in the specified index. This operation can
be used to evolve the data of the budget example as suggested at the end of
Section 2 (and illustrated in Figure 3).
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4.3 Operations on Models

In this section we present the operations that allow transformations on the model
side. The grammar shown next declares the existing operations:

data OpM :Model → Model =
addColumnM Where Index -- add a new column

| delColumnM Index -- delete a column
| addRowM Where Index -- add a new row
| delRowM Index -- delete a row
| setLabelM (Index , Index) Label -- set a label
| setFormulaM (Index , Index) Formula -- set a formula
| replicateM ClassName Direction Int Int -- replicate a class
| addClassM ClassName (Index , Index ) (Index , Index) -- add a static class
| addClassExpM ClassName Direction (Index , Index ) (Index , Index)

-- add an expandable class

As it occurred with OpD for instances, the OpM grammar represents the func-
tions operating on models. The application of an update opM :OpM to a model
m :Model is denoted by opM m :Model .

The first five operations are analogous to the data operations with the same
name. New operations include setFormulaM which allows to define a formula
on a particular cell. On the model side, a formula may be represented by an
empty cell, by a default plain value (e.g., an integer or a date) or by a function
application (e.g., cell F5 in Figure 2 is defined as the result of SUM(Year.total)).
The operation replicateM allows to replicate (or duplicate) a class. This will be
useful for our bidirectional transformation functions. The last two operations
allow the addition of a new class to a model: addClassM adds a new static
(non-expandable) class and addClassExpM creates a new expandable class. The
Direction parameter specifies if it expands horizontally or vertically.

To explain the operations on models, we present in Figure 9 an illustration
of the execution of the composition of two operations: firstly, we execute an
addition of a row, addRowM (where the new row is denoted by ♦); secondly, we
add a new expandable class (addClassExpM ) constituted by columns B and C
(denoted by the blue rectangle and the grey column labeled with the ellipsis).

 Before  3addRowM

A  B  C  D
1
2
3

A  B  C  D
1
2
◊
3

=> =>

A   B  C     D
1
2
◊
3

...

 ; addClassExpM "BlueClass" Horizontal (2,1) (3,4)

Fig. 9. Application of the model operations addRowM and addClassExpM

The first operation, addRowM , adds a new row to the model between rows 2
and 3. The second operation, addClassExpM , adds a new class to the model. As
a first argument, this operation receives the name of the class, which is ”Blue-
Class” in this case. Its second argument specifies if the class expands vertically
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or horizontally (the latter in this case). The next two arguments represent the
upper-left and the right-bottom indexes limiting the class, respectively. The last
argument is the model itself.

These operations allow to evolve models like the one presented in Figure 1.
However, the problem suggested in Figures 3 and 4, where the data evolves as
a result of an end-user operation and the model automatically co-evolves, is not
yet handled by transformations we presented so far. In the next section, we give
a bidirectional setting where co-evolution is automatic.

4.4 Bidirectional Transformation Functions

In this section, we present the bidirectional core of our spreadsheet transforma-
tion framework. In our context, a bidirectional transformation is defined as a
pair of unidirectional transformations with the following signature:

to :Model × OpM → Op�D
from :Data × OpD → Op�M

Since these transformations are used in an online setting, in which the system
reacts immediately to each user modification, the general scheme of our trans-
formations is to transform a single update into a sequence of updates. That said,
the forward transformation to propagates an operation on models to a sequence
of operations on underlying spreadsheets, and the backward transformation from
propagates an operation on spreadsheets to a sequence of operations on overlying
models. We denote a sequence of operations on models op� as being either the
empty sequence ∅, an unary operation op, or a sequence of operations op�1; op

�
2.

Our transformations take an additional model or instance to which the origi-
nal modifications are applied. This is necessary because most of the operations
calculate the indexes of the cells to be updated based on the operation itself,
but also based on the previous model or spreadsheets, depending on the kind of
operation.

We now instantiate the to and from transformations for the operations on
models and instances defined in the previous two sections. We start by presenting
the to transformation: it receives an operation on models and returns a sequence
of operations on data. Although, at least currently, the translation of model
operations returns an empty or singleton sequence of data operations, we keep
its signature consistent with from to facilitate its understanding and evidence
the symmetry of the framework.

to : OpM → Op�D
to (addColumnM w i ) = AddColumnD w (columnIndexD i)
to (delColumnM w i ) = DelColumnD (columnIndexD i)
to (addRowM w i ) = AddRowD w (rowIndexD i)
to (delRowM w i ) = DelRowD (rowIndexD i)
to (setLabelM (i , j ) l ) = SetLabelD (positionD (i , j )) l
to (setFormulaM (i , j ) f ) = SetV alueD (positionD (i , j )) f
to (replicateM cn dir n inst) = replicateD dir cn n inst
to (addClassM cn p1 p2 ) = ∅
to (addClassExpM cn dir p1 p2 ) = ∅
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The first five model operations have a direct data transformation, that is, a
transformation with the same name which does the analogous operation. An in-
teresting transformation is perfomed by replicateM : it duplicates a given class,
but not the data. Instead, a new empty instance is added to the newly cre-
ated class. Another interesting case is the transformation of the model operation
addClassM . This model transformation does not have any impact on data in-
stances. Thus, to returns an empty set of data transformations. In fact, the same
happens with the addClassExpM operation.

We now present the from transformation, which maps data operations into
model operations:

from :OpD → Op�M
from (addColumnD w i) =

replicateM className Horizontal classInstances instanceIndexM

; addColumnM w columnOffsetIndexM
from (delColumnD i) =

replicateM className Horizontal classInstances instanceIndexM

; delColumnM columnOffsetIndexM
from (addRowD w i) =

replicateM className Vertical classInstances rowIndexM

; addRowM w rowOffsetIndexM
from (delRowD i) =

replicateM className Vertical classInstances rowIndexM

; delRowM rowOffsetIndexM
from (setLabelD (i , j ) l) =

replicateM className Horizontal classInstances columnIndexM

; replicateM className Vertical classInstances rowIndexM

; setLabelM positionOffsetM l
from (setV alueD (i , j ) l ) = ∅
from (addInstanceD cn dir m) = ∅

The transformations in this case are more complex than the model-to-data ones.
In fact, most of them produce a sequence of model operations. For instance, the
first transformation (addColumnD) results in the replication of a class followed
by the addition of a new column. The argument classInstances is actually a
function that calculates the number of data class instances based on the data to
be evolved. On the other hand, the operation to set a value of a particular cell,
setV alueD, does not have any impact on the model. The same happens to the
operation addInstanceD which adds a new instance of an expandable class. The
definition of from for the (non-empty) data operations in the range of to (e.g.,
AddColumnD, DelRowD) is simply the inverse of to.

4.5 Bidirectional Transformation Properties

Since the aim of our bidirectional transformations is to restore the conformity
between instances and models, a basic requirement is that they satisfy correct-
ness [22] properties entailing that propagating edits on spreadsheets or on models
leads to consistent states:
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d ::m

(to m opM ) d :: opM m
to-Correct

d ::m

opD d :: (from d opD) m
from-Correct

Here, we say that a data instance d conforms to a model m if d ::m, for a binary
consistency relation (::) ⊆ Data × Model .

As most interesting bidirectional transformation scenarios, spreadsheet in-
stances and models are not in bijective correspondence, since multiple spread-
sheet instances may conform to the same model, or vice versa. Another bidi-
rectional property, hippocraticness [22], postulates that transformations are not
allowed to modify already consistent pairs, as defined for from :

d ::m opD d ::m

from d opD = ∅ from-Hippocratic

Reading the above law, if an operation on data opD preserves conformity with the
existing model, then from produces an empty sequence of operations on models
∅. Operationally, such a property is desired in our framework. For example, if
a user adds a new instance to an expandable class, preserving conformity, the
original model is expected to be preserved because it still reflects the structure
of the data. However, hippocracticness for to is deemed too strong because even
if the updated model is still consistent with the old data, we still want to update
the data to reflect a change in the structure, making a better match with the
model [8]. For example, if the user adds a column to the model, the intuition is
to insert also a new column to the data, even if the old data remains consistent.

Usually, bidirectional transformations are required to satisfy “round-tripping”
laws that ensure a certain degree of invertibility [9, 13]. In our application,
spreadsheet instances refine spreadsheet models, such that we can undo the
translation of an operation on models with an application of from (except when
the operation on models only concerns layout, such as addClassM , and is not
reflexible on the data):

to m opM = op�D op�D �= ∅ d ::m

from� d op�D = opM
to-Invertible

However, the reverse implication is not true. For example, the transformation
steps from addColumnD = replicateM ; addColumnM and to� (replicateM ;
addColumnM ) = replicateD;AddColumnD do not give equal data operation.

Since an operation on data may issue a sequence of operations on models, we
introduce the transformation to� which applies to to a sequence of operations:

to� ∅ = ∅ to� opM = to opM

to� opM
�
1 = opM

�
1 to� opM

�
2 = opM

�
2

to� (opM�
1; opM

�
2) = to� opM�

1; to
� opM�

2

A dual definition can be given for from�. As common for incremental transfor-
mations (that translate edits rather than whole states), our sequential trans-
formations naturally satisfy an history ignorance [8] property meaning that the
translation of consecutive updates does not depend on the update history.
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5 Related Work

Our bidirectional approach is inspired in the state-based bidirectional framework
of (constraint) maintainers [20, 22], where (correct and hippocratic) forward
and backward transformations propagate modifications from source to target
models, and vice-versa, while preserving a consistency relation that establishes
a relationship between them. However, our formulation is closer to operation-
based symmetric bidirectional frameworks [9, 16]. The framework of symmetric
delta lenses from [9] generalizes maintainers to transformations that operate over
deltas as high-level representations of updates. Like [16], our transformations
carry a more operational feeling as they transform the actual operations on data
and models. Our bidirectional transformations also satisfy a similar totality law
guaranteeing that if an operation does not fail on the initiating side, then the
transformed sequence of operations also succeeds. For example, given a consistent
state d ::m, propagating a data operation over d always generates operations on
ClassSheet models that can be applied to the original model m.

A group of researchers from Tokyo developed a series of bidirectional ap-
proaches for the interactive development of XML documents [17, 23]. Similarly
to our OpenOffice assisted environment, they assume an online setting where the
editor reacts immediately to one operation at a time. In their setting, instead of
preserving an explicit consistency relation, transformations obey one-and-a-half
round-tripping laws (in the style of to ◦ from ◦ to = to) to ensure that after
each modification the editor converges into a consistent state, i.e., a further
transformation does not alter the related documents.

The coupled evolution of metamodels (let it be grammars, schemas, formats,
etc) and conforming models is a typical problem in MDE. Works such as [15, 19]
assess the degree of automation of metamodel-model evolution scenarios by
studying categories of metamodel modifications that are model-independent or
support the co-evolution of underlying models which need to be transformed in
order to become conforming to an updated version of their original metamodel.
Existing tools for automated coupled metamodel-model evolution may either re-
quire users to specify sequences of simple that describe how to evolve a source
metamodel into a new version [24], or assume that a new metamodel is provided
externally so that the system must user model difference approaches to identify
the concrete metamodel changes [3]. Both [24] and [3] support typical meta-
model operations such as renaming, addition and deletion and many others to
manipulate particular object-oriented features. The to transformation proposed
in this paper tackles an instance of this problem (concerned with translating
a single modification at a time), with metamodels as classsheets and models
as spreadsheets. In our bidirectional setting, the from transformation tackles
another dual but less common coupled model-metamodel evolution problem.

In [4–7], the authors introduced tools to transform spreadsheets into relational
databases, and more generically, to evolve a model and automatically co-evolve
the underlying data. This work, however, has some limitations: first, it does not
allow users to perform non-refinement evolutions, i.e., it is not possible to remove
data from spreadsheets. In our work we created a more general setting where
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all kinds of evolutions are possible, including the deletion of data. Second, it is
not possible to evolve the structure of the spreadsheet through changes to the
data, i.e., it is only possible to edit the data in such a way that it always con-
forms to the model. We have solved this problem by allowing users to change the
data and infer a new model whenever necessary. Third, the previous work prop-
agates modified states into new states. This work propagates editing operations
themselves, and thus allows for more efficient incremental transformations.

The first approach to deliver model-driven engineering to spreadsheet users,
Gencel [11], generates a new spreadsheet respecting a previously defined model.
In this approach, however, there is no connection between the stand alone model
development environment and the spreadsheet system. As a result, it is not
possible to (automatically) synchronize the model and the spreadsheet data,
that is, the co-evolution of the model (instance) and its instance (model) is
not possible, unless it is done by hand, which is very error prone and thus not
desirable. In our work we present a solution for this problem.

6 Conclusions and Future Work

In this paper we have presented a bidirectional model-driven spreadsheet en-
vironment. We constructed a bidirectional framework defining usual end-user
operations on spreadsheet data and on ClassSheet models that always guaran-
tee synchronization after an evolution step at the data or model level. We have
created an extension to the OpenOffice Calc spreadsheet system so that it offers
a model-driven software development environment. The developed spreadsheet
evolution environment allows: the generation of a spreadsheet instance from a
ClassSheet model; the evolution of the model and the automatic co-evolution of
the data; the evolution of the data and the automatic co-evolution of the model.

The techniques we present propose the first bidirectional setting for the evo-
lution of spreadsheet models and instances. Our research efforts, however, have
thus far considered standalone, non-concurrent spreadsheet development only.
In a computing world that is growingly distributed, developing spreadsheets is
often performed in a collaborative way, by many actors. As part of our plans for
future research, we have already engaged in trying to extend our work in this
paper to a distributed environment.

Although there exists some empirical evidence that an approach to spread-
sheet development based on models can sometimes be effective in practice [2],
the global environment envisioned in this paper still lacks a concrete empirical
analysis. In this line, a study with real spreadsheet users is under preparation.
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Abstract. File carvers are forensic software tools used to recover data
from storage devices in order to find evidence. Every legal case requires
different trade-offs between precision and runtime performance. The re-
sulting required changes to the software tools are performed manually
and under the strictest deadlines.

In this paper we present a model-driven approach to file carver devel-
opment that enables these trade-offs to be automated. By transforming
high-level file format specifications into approximations that are more
permissive, forensic investigators can trade precision for performance,
without having to change source.

Our study shows that performance gains up to a factor of three can
be achieved, at the expense of up to 8% in precision and 5% in recall.

1 Introduction

Digital forensics is a branch of forensic science that attempts to answer legal
questions based on the analysis of information recovered from digital devices.
These digital devices are typically computers or mobile phones confiscated from
a suspect, found near a crime scene or otherwise expected to have information
stored that is relevant to an investigation. In the context of this paper we are
interested in file carvers : tools that recover data from storage devices without
the help of (file system) storage metadata [16].

The current growth in size of storage devices requires that file carvers scale
to analyze data in the terabyte range. Moreover, forensic investigations are of-
ten performed under very strict deadlines, making the runtime performance of
such tools critical. Additionally, the large diversity in (variants of) file formats
encountered on devices requires these tools to be easy to modify and extend.

Because each case may require different trade-offs with respect to precision
and runtime performance, file carvers often need to be modified on a case-by-case
basis. Currently, this kind of just-in-time “carver hacking” is performed by hand,
which is error prone and time consuming; it is also inherently incompatible with
very strict deadlines.

In previous work we have developed a model-driven approach to digital foren-
sics tool construction [5]. In this work the file formats of interest, e.g., JPEG,
GIF etc., are declaratively modeled using a domain-specific language (DSL) called
Derric. These descriptions are then input to a code generator that produces
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highly efficient and accurate format validators that form an essential part of our
file carver Excavator.

Excavator competes with file carvers widely used in practice, and is much
easier to maintain due to the high-level Derric language. Nevertheless, the gen-
erated components encode a particular trade-off between precision and runtime
performance. In this work we apply model transformations on Derric descrip-
tions in order to make this trade-off configurable. We present three model trans-
formations that successively obtain format validators that are more permissive
(i.e., produce more false positives) but exhibit better runtime performance. As
a result forensic investigators can choose between precision and runtime perfor-
mance without having to change any code.

We have evaluated Excavator using the different format validators at each
permissiveness configuration for the file formats JPEG, GIF and PNG on a rep-
resentative test image of 1TB. Our results show that performance gains up to a
factor of three can be achieved, at the expense of up to 8% in precision and 5%
in recall.

This paper makes the following contributions:

– We present three model transformations to automatically derive format val-
idators that trade precision for better runtime performance.

– We evaluate our approach on a representative test image in the terabyte
range showing that substantial performance gains can be achieved.

Organization of this Paper. The rest of this paper is organized as follows.
Section 2 discusses file carving and analyzes the development, performance and
scalability challenges in the engineering of digital forensics software. We in-
troduce our model-driven approach to building file carvers and discuss how it
addresses the challenges. This includes an overview of Derric, our domain-
specific language (DSL) for file format description. Section 3 defines three model
transformations on Derric descriptions. Section 4 evaluates the effect of the
model transformations on the runtime performance and precision of the gener-
ated carvers. In Section 5 we discuss our results. Related work is discussed in
Section 6. We summarize our research and results in Section 7.

2 Background

2.1 File Carving

When recovering data from a storage device, all available metadata such as file
system records and application logs are used to identify locations where data is
stored. After this initial step, there is usually a significant amount of unallocated
space left on the storage device. This space may contain only zeros (or some other
factory default value), but may also contain deleted files, operating system caches
or data that has been hidden on purpose. To recover this data, a content-based
technique called file carving can be used.
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clusters:

contents:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E1 F1 F2a F3 E2 F2b E3

Fig. 1. An example set of contiguous clusters on a storage device

A typical modern file carver consists of a set of format validators used by
one or more file reconstruction algorithms. In its most basic form the format
validators consist of checking for format-specific constants at the start and end
of a stream (called header/footer matching) and the file reconstruction algorithm
simply moves through the input stream in a single pass, invoking all format
validators at each offset to determine whether a file is located there. On each
hit, the identified file is saved for further analysis.

Apart from generating a large amount of false positives, this approach has
another drawback: it is unable to recover files that are split into multiple parts
and stored in non-contiguous locations. This so-called file fragmentation is com-
mon, usually as a result of performance optimization by the operating system
and implementation details of the file system.

To recover fragmented files but avoid a combinatorial explosion, file carvers
implement file reconstruction algorithms, such as bifragment gap carving [10].
However, to improve precision and reduce the amount of required iterations to
reconstruct a single file, they also use more advanced format validators that
validate (part of) the format’s structure and content.

Common optimizations include running multiple format validators on the
same block of data concurrently and applying data classification techniques to
reduce the search space (e.g., removing blocks of zeros). These techniques are
not discussed further in this paper.

File Carving Example. An example set of contiguous clusters commonly found on
storage devices is shown in Figure 1. Clusters 1, 15, 16 and 20 contain only zeros.
The remaining clusters contain three files: F1 (clusters 2–6), F2 (fragmented,
clusters 7–10 and 17–19) and F3 (clusters 11–14).

A traditional file carver that performs a single pass over the data checking
for headers and footers only will probably recover F1, since it will find a header
in cluster 2 and a correct following footer in cluster 6. Fragmented file F2 is
problematic, as the first footer following the header in cluster 7 is F3’s footer in
cluster 14. As a result, both F2 and F3 are not recovered.

A more sophisticated format validator may detect a problem around cluster 11
or 12 and report this to the file carver. The file carver can then decide to look for
suitable footers within a certain range, possibly finding both F3’s footer in cluster
14 as well as F2’s footer in cluster 19. Some shuffling of the clusters between
the original error location in cluster 11 and the potential footers may lead the
file carver to consider clusters 7–10 and 17–19, which the format validator will
accept. From the remaining clusters, F3 will then be easy to recover as well.
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2.2 Software Engineering Challenges

From a software engineering perspective, the challenges in file carver construction
can be classified into three areas, described in the following subsections.

Modifiability. Digital forensics tools must be continually adapted to new ver-
sions and variants of storage formats encountered during investigations. For in-
stance, even when using a standardized format such as the JPEG image file
format, different vendors of, for instance, digital cameras may store the actual
files in different ways, often deviating from the standard. When forensic inves-
tigators encounter traces on some device that they want to recover or analyze,
they often need to adapt their tools to these new, modified or different storage
formats in order to maximize recoverable evidence.

Runtime Performance. Strict time constraints means that analyses must be
completed as quickly as possible, even when the amount of data to analyse grows
very fast. Brute force algorithms are intractable when it comes to reconstructing
a file by finding its parts in a set of millions of fragments. Hence, the challenge
is to use as much domain-specific knowledge as possible for optimization. This
includes knowledge about hardware, operating systems, file system implementa-
tion, file formats and typical fragmentation patterns [10].

Scalability. Digital forensics tools must be scalable to deal with relatively large
data sizes. Common hard drive sizes in desktop computers are already in the
terabyte range. Support for these data sizes imposes additional constraints on
the design and implementation of tools. Recovering evidence from a set of data
of which 1% barely fits into working memory requires custom approaches. Most
analyses must use a streaming architecture to collect information while reading
through the data from beginning to end in a single pass.

2.3 Model-Driven Digital Forensics

To address the challenges described in the previous section, we have developed
a model-driven approach to file carver construction, called Excavator. The
architecture of Excavator consists of three parts and is shown in Figure 2.

The first part is a domain-specific language called Derric that allows file
formats to be specified in a declarative way. A simplified example of a Derric
specification of the PNG image file format is shown in Figure 3, which will be
discussed in more detail below. A Derric file format description captures the
information to be used by a file carver to recognize (fragments of) files in a
data stream. Derric file format descriptions are tailored to digital forensics
applications; they may leave out details of a file format that would be relevant
for implementing a file viewer, for instance, but are not important for file carving.

The Derric file format descriptions are input to the second component, a
code generator to obtain format validators. A format validator is used to check
that a certain sequence of bytes indeed can be recognized as part of a file format.
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Fig. 2. Overview of the Excavator architecture

The code generator performs domain-specific optimizations to make the resulting
code as efficient as possible, such as skipping over blocks of data that will not be
interpreted and only generating variables for values read from the input data that
will actually be referenced. Both the Derric DSL1 and the Excavator code
generator have been developed using Rascal2, a DSL for source code analysis
and transformation [13]. The code generator produces Java source code.

The third part is the file carver itself, which employs dedicated algorithms and
heuristics for locating candidate files in the data stream. This component uses
the generated format validators to verify if a candidate file is an instance of a file
format. This component can be considered the runtime system of Excavator.
The runtime system is implemented in Java using the latest IO libraries for
maximum throughput.

Excavator can be configured to run with or without file reconstruction ca-
pabilities. The algorithm it implements is bifragment gap carving with a config-
urable maximum gap size, with a default value of 2MB. It supports a variable
cluster size with a default value of 4096 bytes. It does not support parallelism
or filtering through data classification.

Our model-driven approach to digital forensics tool construction addresses
the aforementioned challenges in the following way:

– Modifiability. Using high-level file format descriptions separates the “what”
from the “how”: if a new variant or version of a file format has to be accomo-
dated, only the file format description has to be changed; the code generator
and runtime system remain unchanged.

– Runtime Performance. The code generator can apply sophisticated op-
timizations to obtain fast code. Because this concern is now isolated in the
code generator, it does not affect the description of file formats. Tradition-
ally, optimizations in digital forensics tools are tangled with the matching
logic of file format structure.

– Scalability. The runtime system effectively captures the way data is pro-
cessed, independently from the generated validators. This means that a file
carver can be made to run in streaming fashion by changing the runtime

1 http://www.derric-lang.org/
2 http://www.rascal-mpl.org/

http://www.derric-lang.org/
http://www.rascal-mpl.org/
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system. Additionally, state-of-the-art file carving algorithms (e.g., [8]) can
be plugged into the system without affecting the other components.

Still, there is room for improvement. Digital forensics tools are often adapted
to a certain situation in order to trade quality and completeness of the results
for increased performance. On the one hand, if a recovery tool produces many
false positives, this may be problematic, because they all have to be inspected
manually. On the other hand, this may be preferable to not having any results at
all before the deadline. In order to make this trade-off configurable we can apply
model transformations to Derric file format descriptions to obtain a faster file
carver at the cost of some precision. These transformations are described in
Section 3.

2.4 Example: PNG Image File Format

As an illustration of Derric, we present a description of a simplified version of
the PNG image file format in Figure 3. It omits the details of optional data struc-
tures but is complete enough to be transformed into a validator that properly
recognizes PNG files.

At the beginning of the format description, the name of the format is specified
(line 1) along with a set of storage-related defaults, such as string encoding
(line 2) and default numerical type (lines 3–6), in this case single-byte unsigned
integers.

Next is the definition of the format’s sequence (lines 8–11), which defines the
ordering of data structures in a valid file. In this example only a single operator
appears (asterisk), which specifies that the structure must appear zero or more
times. Additional constructs exist such as selection (parentheses), subsequenc-
ing (square brackets), optionality (question mark) and exclusion (exclamation
mark).

The final part is the structures block (lines 13–54), defining the structures
mentioned in the sequence. Each structure has a name and a list of field descrip-
tions between curly braces. For example, the Chunk structure on lines 18–27
has four fields: length (line 19), chunktype (line 20), chunkdata (line 21) and crc
(lines 22–26).

The Chunk structure’s fields demonstrate some of Derric’s specification con-
structs. The length field has the length of the chunkdata field as value, and its
type is a 32-bit unsigned integer. The chunktype field is four bytes in size and
may contain any value except the ASCII string “IDAT”. The chunkdata field does
not specify its value but constrains that its size must correspond to the value
of the length field. Circular references like this are common in format descrip-
tions and are useful in situations where only part of a data structure has been
recovered; each value can be used to validate the other.

Finally, the crc field has a fixed size of four bytes and defines a value that
must be calculated using the “crc32-ieee” algorithm (line 22) using the values of
the chunktype and chunkdata fields (line 25).

Additionally, Derric supports structure inheritance. This is shown on line
28 where the IHDR structure inherits the fields of the Chunk structure and then
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1format PNG

2 strings ascii

3 sign false

4 unit byte

5 size 1

6 type integer

7

8sequence

9 Signature IHDR

10 Chunk* IDAT IDAT* Chunk*
11 IEND

12

13structures

14Signature {

15 marker: 137,80,78,71,13,10,26,10;

16}

17

18Chunk {

19 length: lengthOf(chunkdata) size 4;

20 chunktype: !"IDAT" size 4;

21 chunkdata: size length;

22 crc: checksum(algorithm="crc32-ieee",

23 init="allone",start="lsb",

24 end="invert",store="msbfirst",

25 fields=chunktype+chunkdata)

26 size 4;

27}

28IHDR = Chunk {

29 chunktype: "IHDR";

30 chunkdata: {

31 width: !0 size 4;

32 height: !0 size 4;

33 bitdepth: 1|2|4|8|16;

34 colourtype: 0|2|3|4|6;

35 compression: 0;

36 filter: 0;

37 interlace: 0|1;

38 }

39}

40

41IDAT = Chunk {

42 chunktype: "IDAT";

43 chunkdata: compressed(

44 algorithm="deflate",

45 layout="zlib",

46 fields=chunkdata)

47 size length;

48}

49

50IEND {

51 length: 0 size 4;

52 chunktype: "IEND";

53 crc: 0xAE, 0x42, 0x60, 0x82;

54}

Fig. 3. Structure of the simplified PNG image file format

overrides the chunktype and chunkdata fields (lines 29–38). Its length and crc
fields remain the same as in Chunk.

3 Transforming Derric Models

In order to make the trade-off between precision and runtime performance con-
figurable we have implemented three model-transformations on Derric descrip-
tions, based on an analysis of validation techniques in file carving [3]. Each
transformation removes constraints so that more permissive specifications are
obtained. The transformations consist of replacing computationally expensive
operations with cheaper versions that resemble the original technique, or skip
over data entirely instead of processing it. They can be applied successively so
that in the end four format validators can be derived from a Derric specifica-
tion. The transformations are source-to-source transformations; as a result, the
generic code generator of Excavator can be reused to obtain a working format
validator from each transformed description.
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Using the transformations, we can distinguish four configurations of format
validator precision:

– Base: base validator (the most precise validator, based on the complete file
format description).

– NoCA: removal of all content analysis (e.g., removal of CRC checks, data
decompression, etc.).

– NoDD: removal of all data dependencies (e.g., a field’s value becomes un-
defined if it used to be equal to the contents of some other field’s value).

– Header: removal of all matching except header and footer patterns.

Although each transformation could be applied independently, for the purpose of
this paper we only consider the consecutive application of each transformation.
The effect of other combinations of transformations is left as future work. The
transformations are described in more detail below.

Remove Content Analysis. The most computationally expensive technique is
content analysis, which is the interpretation and validation of a file’s content, as
opposed to matching structural metadata. For instance on lines 22–26 of Figure 3
a CRC32 over each Chunk of PNG data is defined using the checksum keyword.
Additionally, lines 43–46 describe the compression scheme used by the IDAT
structure using the compressed keyword. Removing these expensive analyses will
reduce running time significantly at the cost of missing some fragmented files
due to lower precision.

Removing content analysis consists of one of two rewrites, based on the field
the content analysis is defined on:

– If the field has an externally defined size, i.e., if it has a fixed value (such as
the CRC32’s four bytes) or references an outside value (such as the IDAT ’s
reference to its length field), the field’s value specification is removed. As a
result, the data will be skipped over instead of processed.

– When the end of a field is specified by an end marker as part of the content
analysis itself, the end marker is lifted out of the content analysis specifica-
tion to be used to specify the end of the field.

More precisely, the transformation is defined by the following two rules:

f: CA(x) size n; ⇒ f: size n;

f: CA(x, terminator=c); ⇒ f: terminatedBy c;

The first rule replaces a fixed-length field f which requires content-analysis CA
with a field of unknown data but of the same length. If the field f has no
fixed length, but a terminator constant c is specified in the content-analysis, the
content-analysis is removed, and field f is now terminatedBy c.

Remove Data Dependencies. The second transformation removes data de-
pendencies. All references to values or sizes defined elsewhere in the description
are removed. An example of this is the chunkdata field as shown on line 21 in
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Figure 3 where size depends on the value of length on line 19. There are two
types of data dependencies that are dealt with differently. First, if the contents
of a field are defined by reference to another field, the reference is removed by
clearing the content specification. The field’s value becomes “undefined”. The
transformation rule implementing this transformation is as follows:

f: E[f ′] size n ⇒ f: size n;

If the value of a fixed-length field f is defined by some expression E referencing
field f ′, the value specification is simply removed.

Second, if the size specification of a field depends on another field, the trans-
formation is more involved. It is not possible to clear the size specification of
a field just like with value dependencies, since then the position of a following
field or structure becomes undefined. Instead, we remove the entire field from its
containing structure. To ensure that the generated validator still works, we lo-
cate the first field f ′ that defines a constant value c that is required to follow the
removed field f ; if s does not define such a field itself, we find the first following
structure that does, using the format’s sequence. We replace the definition of f ′

with f ′: terminatedBy c;. To prevent backtracking in the generated validator, we
remove any non-mandatory structures (indicated by *, ?, and ()) inbetween f
and f ′. To find the first mandatory field that defines a constant, we use a simple
algorithm, similar to the computation of first-sets of context-free grammars [1].

Figure 4 shows the effect of a single transformation step to remove the size
dependency of the chunktype field of PNG’s IDAT structure3. In this example
the content-analysis and value dependencies have already been removed. In this
step, the chunkdata field has been removed from IDAT. Additionally, the length
field of IEND has been changed to include the terminatedBy modifier, because it
is the first mandatory constant field following the removed chunktype field.

IDAT {

length: lengthOf(chunkdata) size 4;

chunktype: "IDAT";

chunkdata: size length;

crc: size 4;

}

IEND {

length: 0 size 4

...

}

⇒

IDAT {

length: size 4;

chunktype: "IDAT";

crc: size 4;

}

IEND {

length: terminatedBy 0 size 4

...

}

Fig. 4. Example of Remove Data Dependencies

3 Note that the IDAT structure no longer inherits from the Chunk structure; the
inheritance hierarchy has been flattened during normalization.
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sequence

s e

structures

s { header: 137, 80, 78, 71, 13, 10, 26, 10; }

e { footer: terminatedBy 0, 0, 0, 0, "IEND", 0xAE, 0x42, 0x60, 0x82; }

Fig. 5. Example of Reduce to Header/Footer

Reduce to Header-Footer Matching. The third and last model transfor-
mation reduces a format description to two patterns: one for the beginning and
one for the end of the file. This is the same strategy that is employed by the
Scalpel carver [17]. It requires file formats to have a clearly defined header
and footer, using only constants. As a result, a validator based on this descrip-
tion will hardly ever reject data since for every header some footer is very likely
to be found (assuming a large amount of files or fragments in the input data).
Fragmentation in the input data will lead almost certainly to false positives.
However, all recovered files are collected in a single linear pass over the input
data.

The transformation operates as follows. Let S be the largest sequence of non-
optional consecutive structures starting from the beginning of the sequence def-
inition of the file format. Let E be a similar list of structures, but now starting
backwards, from the end of the sequence definition. Now collapse both S and E
into single structures s and e by taking the largest sequence of constant fields
starting from the beginning and the end respectively, and concatenating consec-
utive field constants into single constants a and b. Then define the structures s
and e as s { header: a; } and e { footer: terminatedBy b; }. Finally, construct
a new file format with sequence s e. The resulting file format searches for the
constant header pattern a, and (if found) subsequently searches for the constant
footer pattern b.

Figure 5 shows the result of applying this transformation to the full PNG
description of Figure 3. Note that all consecutive constant fields in the IEND
structure have been merged into the single field footer to construct the largest
possible constant.

4 Evaluation

To evaluate the effect of the transformations we have applied them on three Der-
ric file format specifications, namely for JPEG, GIF and PNG. We have run the
resulting 3×4 = 12 carver configurations on a representative disk image of 1TB,
containing over a million recoverable files. We have then compared the difference
in runtime performance, precision and recall between the configurations.
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4.1 Development of Benchmark Disk Image

The largest publicly available disk image for exercising file carvers is 40GB in
size4. This, however, is not large enough to properly assess how an application
deals with scalability issues in practice. We have therefore developed our own
1TB test set based on data downloaded from Wikipedia. The size of Wikipedia
means we could get enough files to fill at least a significant part of the 1TB data
set we wanted to create. We used the latest available static dump of all images
on Wikipedia, which dates from 20085. Attempting to download all files from
that list resulted in around 50% errors due to missing files. The end result was a
usable set of over 1.2 million files with a total size of 357GB. An overview of how
the files are distributed over each type (JPEG, GIF and PNG) and their total
sizes is shown in the first column of Table 1.

These files were written into the test image file, spread out across the entire
1TB. Space between files (or fragments) was filled using 543GB of random data
and 100GB of only zeros. Although there is little known about the amount and
size of zero data blocks on hard drives, we believe 10% is a low estimate, which
means the test image is more challenging for file carvers (since zeros are relatively
easy to disqualify).

93% of the files have been written into the test image in contiguous blocks
and are therefore not fragmented. 3% has been split into two parts and the
remaining 4% has been divided into four equal size groups of 3, 4, 5–10 and 11–
20 fragments, corresponding to observations of fragmentation in the wild [10].
Splitting was done at random locations in the files, but always on a cluster
boundary of 4096 bytes, corresponding to the smallest common cluster size.

Table 1. Results per configuration for all three file formats

Format Configu- Running True False Precision Recall
ration time positives positives

JPEG Base 742m 882,511 0 100.0% 94.9%
input data: NoCA 295m 860,022 22,007 97.5% 92.4%

total files: 930,424 NoDD 231m 837,382 46,561 94.7% 90.0%
total size: 327GB Header 231m 837,382 46,561 94.7% 90.0%

GIF Base 320m 34,078 0 100.0% 93.2%
input data: NoCA 267m 33,210 702 97.9% 90.8%

total files: 36,576 NoDD 231m 32,912 2,780 92.2% 90.0%
total size: 3GB Header 231m 32,912 2,780 92.2% 90.0%

PNG Base 691m 222,660 0 100.0% 94.2%
input data: NoCA 280m 219,001 8,073 96.4% 92.6%

total files: 236,457 NoDD 231m 212,911 13,905 93.9% 90.0%
total size: 27GB Header 231m 211,790 14,577 93.6% 89.6%

4 http://digitalcorpora.org/corpora/disk-images
5 http://static.wikipedia.org/downloads/2008-06/en/images.lst

http://digitalcorpora.org/corpora/disk-images
http://static.wikipedia.org/downloads/2008-06/en/images.lst
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Fig. 6. Effect of each carver configuration on runtime performance

4.2 Execution of the Benchmark

The 12 carver configurations have been run on a 3.4GHz Intel Core i7-2600 with
8GB of RAM and an attached 2TB 10.000RPM SATA harddrive. The operating
system used was Ubuntu Linux 11.04, with Oracle’s JDK 1.6.0 update 13. The
results of each run are shown in Table 1. For each file type and configuration it
shows the wall clock running time in minutes in the third column. The fourth
and fifth column of each table display the number of true and false positives
respectively. True positive means a file has been recovered that was actually
present in the disk image. False positive means that the file carver recovered a
file erroneously, for instance, by combining a file header with the wrong footer.
The last two columns give precision and recall percentages. An overview of the
effect on runtime performance is shown graphically in Figure 6.

4.3 Analysis of Results

The fastest two configurations, NoDD and Header, require the same amount of
time to complete for each format. The 231m corresponds to the time required
to read through a terabyte of data on the hardware used, indicating that when
using the NoDD and Header configurations, the application is bound by the read
performance of the underlying platform. In other words, reading all data in a
single linear pass would take the same amount of time.

Additionally, on JPEG and GIF, both the NoDD and Header configurations
return exactly the same results, indicating that the final transformation does not
impact the quality of the results or runtime performance. However, on PNG the
situation is different: the NoDD configuration returns a little more true positives
and fewer false positives.

This difference can be traced to the fact that the descriptions for JPEG and
GIF both have a large variable block in the middle that is effectively eliminated
by the remove data dependencies transformation, while the PNG description



Domain-Specific Optimization in Digital Forensics 133

does have a fixed structure at a variable location between the first and final
structure (the IDAT structure). This causes the PNG NoDD configuration to be
more discriminating than the Header configuration. The result is slightly higher
precision and recall.

For all three formats, the Base configuration returns no false positives, reach-
ing 100% precision. The Base descriptions are complete, which leads to validation
of all the contents of a candidate match. Since all three formats are compressed,
even a single missing or misplaced fragment will lead to errors during validation
and be rejected by the validator.

Another point of interest is the running time of the Base configuration. For
JPEG and PNG, this is both at least twice the time required to run the NoCA
configuration and at least three times the amount of time required to run the
NoDD and Header configurations. Two factors contribute to this. The first factor
is the relatively expensive operations by the validators. An example of this is
CRC calculation. Although an optimized implementation is used, due to frag-
mentation, the CRC is sometimes calculated over large blocks that end up not
being matches.

The second factor is the effect of fragment reordering in Excavator. When-
ever a validator rejects a candidate match, an additional check is performed to
determine whether a possible footer of the same file format is relatively close to
the error location. If this is the case, the clusters between the error location and
the matching footer are partially reordered and removed, running the valida-
tor on each combination to determine possible hits. To prevent a combinatorial
explosion, reordering is only enabled when the distance between error location
and footer is smaller than 2MB. Consequently, it is triggered by the most precise
validators. In the more permissive validators the gap size is either too large or
it is entirely undetected (and leads to a false positive in the results).

5 Discussion

Effects on Analysis Time. It can be argued that, although more permissive
validators will run faster, in practice, they may end up requiring more of the
investigator’s time, because there are more false positives to inspect. This time
could also be spent running the analysis using a higher precision validator. De-
pending on the legal case, however, it might be more valuable to have results
more quickly: even with more false positives, a crucial piece of evidence could
be found earlier.

With our current results we believe the transformed validators are a useful al-
ternative to the most precise validators, since the loss of precision and recall (8%
and 5% respectively) is relatively small compared to the gain in performance (be-
tween 40% and 320%). For example, for PNG, the fastest carver returns 211,790
true positives and 14,577 false positives but it requires only 1/3rd of the running
time of the most precise carver.

At the same time, the fastest validators do not make the original valida-
tors obsolete, considering that, after the fastest validator has finished, the most
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precise JPEG validator is able to recover 45,129 true positives in the extra 510
minutes.

An alternative approach is to use the more precise validators for only a short
period of time and use their intermediate results when time runs out. While this
is possible, there is a chance that the more precise validator will spend a lot of
time near the beginning of the disk image recovering a fragmented file, while the
fastest validator (which does not reject anything) will skip over it and return all
the relatively simple matches directly.

Another alternative approach is to use one of the fastest validators and run
the most precise validator on the results to remove false positives. This may help
all carver configurations achieve 100% precision.

Other File Formats. Our experiment takes three popular image file formats
and shows how the described model transformations affect runtime performance
and precision of the generated validators from their descriptions. A question is
whether this approach works as well on other file formats. There is a strong
indication that they will perform similarly, considering that most forensically
interesting file formats tend to either be multimedia, document or container files.
All three of these types of files often have features comparable to the image file
types we used: extensive metadata, compressed contents and well-defined headers
and footers. Examples of forensically interesting file types that are structured
similarly are AVI and MPEG for multimedia, XLS and PDF for documents, and
ZIP and RAR for containers. In future work we will apply Excavator and the
model transformations on Derric descriptions of these file formats.

6 Related Work

Transformation for optimization is as old as the theory of compiler construc-
tion [2]. Moreover, transformation is considered to be one of the cornerstones of
model-driven engineering [18,4] and generative programming [9]. In both areas
the objective is to specify the essential variability of an application domain at
high levels of abstraction, and then generating the low-level code automatically.
The commonality of an application domain is captured by such transformations.
We have applied this well-known pattern in the context of digital forensics.

Domain-specific analysis, verification, optimization, parallelization and trans-
formation (AVOPT) are well-known reasons for DSL development [14]. In partic-
ular, for optimization, the explicit representation of high-level domain concepts
can be used by a compiler in order to generate code that is more efficient. Such
optimizations are very hard to obtain in the context of ordinary, hand-written
programs, since the high-level domain concepts are lost in low-level code. In this
paper we have shown how to use domain concepts of Derric (content analysis,
data dependencies and header/footer) in order to obtain faster file carvers.

In [7] the authors present a model and strategy for transforming source code
in order to reduce the energy consumption of a program. It includes an explicit
cost model of both the transformations and the object program. Our transfor-
mations themselves are very inexpensive, and the cost model for file carving is
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based solely on the most expensive operations at runtime. Another instance of
applying model transformation for optimization is presented in [6]. The authors
apply a number of successive transformations on BIP (Behavior, Interaction,
Priorities) models to obtain a single monolithic, efficient program. The Derric
model transformations operate in the same way in that they remove overhead
elements from the input model. What makes our transformations different from
such approaches, however, is that the transformations are not (strictly) seman-
tics preserving, as they discard information. As such the transformations can be
considered approximations, in a similar way that context-free grammars can be
approximated by regular expressions [15].

Our software toolExcavator represents the state-of-the-art in digital forensics
data recovery, implementing fragmented file recovery [10,8] and a stream-based
processing model [11]. Furthermore, our model-driven approach distinguishes
itself by allowing high-level specification of elaborate data structures not imple-
mented in popular file carvers. By comparison, PhotoRec [12] requires hand-
written format validators and Scalpel [17] employs regular expressions for
format validation.

7 Conclusion

Modifiability, runtime performance and scalability are the major challenges in
digital forensics software construction. Moreover, forensic investigations are often
constrained by very strict deadlines. As a result digital forensics software is often
modified on a case-by-case basis. This just-in-time “carver hacking” is error prone
and time consuming.

In previous work we have introduced a model-driven approach to digital foren-
sics software development, Derric, which improves performance and modifia-
bility by generating efficient code from high-level file format descriptions. In
this paper we introduced three source-to-source model transformations on Der-
ric descriptions in order to make the trade-off between precision and runtime
performance configurable. This allows investigators to choose performance over
precision if time constraints should require so, or the other way around,—without
having to change any code.

The effect of the model transformations is evaluated on a 1TB disk image
containing over a million recoverable files, specifically constructed to resemble a
realistic file carving scenario. Our results show that performance gains up to a
factor of three can be achieved. This comes at a loss of up to 8% in precision
and 5% in recall.
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Abstract. Business processes are recognized by organizations as one of the 
most important intangible assets, since they let organizations improve their 
competitiveness. Business processes are supported by enterprise information 
systems, which can evolve over time and embed particular business rules that 
are not present anywhere else. Thus, there are many organizations with 
inaccurate business processes, which prevent the modernization of enterprise 
information systems in line with the business processes that they support. 
Therefore, business process mining techniques are often used to retrieve reliable 
business processes from the event logs recorded during the execution of 
enterprise systems. Unfortunately, such event logs are represented with 
purpose-specific notations such as Mining XML and still don’t apply the recent 
software modernization standard: ISO 19506 (KDM, Knowledge Discovery 
Metamodel). This paper presents an exogenous model transformation between 
these two notations. The main advantage is that process mining techniques can 
be effectively reused within software modernization projects according to the 
standard notation. This paper is particularly focused on the empirical evaluation 
of this transformation by simulating different kinds of business process models 
and several event logs with different sizes and configurations from such 
models. After analyzing all the model transformation executions, the study 
demonstrates that the transformation can provide suitable KDM models in a 
linear time in accordance with the size of the input models. 

Keywords: Business Processes, Event Logs, Knowledge Discovery 
Metamodel, Model Simulation. 

1 Introduction 

Most companies recognize business processes as a valuable asset to carry out their 
daily operation with the aim of achieving their business goals [1]. Business processes 
management helps companies to continuously adapt their operation in order to 
maintain their degree of competitiveness. 
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Most parts of business processes are automatically supported by means of 
enterprise information systems [2]. These information systems unfortunately undergo 
software erosion overtime as a result of uncontrolled maintenance, and they become 
Legacy Information Systems (LIS). LIS embed much business knowledge that is not 
present anywhere else, which may imply that the business process representations of a 
company are misaligned with the actual business processes. 

Software modernization is a suitable solution to address software erosion 
problems. Software modernization is the concept of evolving LIS with a focus on all 
aspects of the current system’s architecture and the ability to transform current 
architectures into target architectures [3]. Software modernization improves the 
Return on Investment (ROI) by extending the lifecycle of systems, since it advocates 
preserving the embedded business knowledge. Business process mining techniques 
facilitate the preservation of business knowledge, since such techniques retrieve the 
actual, embedded business processes [4]. 

Business process mining techniques work with event logs recorded from the 
system execution, which represent the sequence of business activities executed by an 
enterprise system. Event logs models are often represented according to the Mining 
XML (MXML) metamodel [5]. These event logs represented according to MXML are 
suitable for most of the process mining techniques but they are not to be used in 
whole software modernization projects. For example, the discovered business 
processes model cannot have additional information about relationships between 
source code elements and the respective discovered business activities. This kind of 
information is necessary to understand and modernize LIS in line with the actual 
business processes supported by them [6]. 

Moreover, software modernization advocates the usage of the Knowledge 
Discovery Metamodel (KDM), which was recognized as the standard ISO 19506 [7], 
to represent different legacy software artifacts. KDM is organized into various 
orthogonal concerns (metamodel packages) that are in turn organized in different 
abstraction layers. The KDM event package allows representing event models 
alternatively to MXML. 

This paper presents a declarative model transformation implemented using QVTr 
(Query/View/Transformation Relations) for transforming MXML event models into 
KDM event models [8]. The main advantage is that event logs transformed into KDM 
models can be integrated into software modernization processes so that synergies 
between event models and the remaining kinds of models (e.g., code model, database 
model, etc.) can be exploited together and in a homogeneous and standardized way.  

This paper provides a formal experiment to empirically validate the model 
transformation. The experiment systematically simulates several event log models 
following different configurations. The study analyzes the effects of simulating 
factors (e.g., size of logs, complexity, etc.) on the efficiency of the model 
transformation. The result of this study demonstrates the scalability and suitability of 
the model transformation to be applied for obtaining KDM event models from 
MXML models in a linear time in accordance with the size and the complexity of the 
input model. 

The remainder of this paper is organized as follows: Section 2 summarizes related 
work. Section 3 presents the model transformation under study. Section 4 describes 
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the experiment based on model simulation. Section 5 provides the analysis and 
interpretation of results. Finally, Section 6 discusses conclusions and future work. 

2 Related Work 

Business process mining describes a family of a posteriori analysis techniques 
exploiting the information recorded in an event log [9]. Event logs sequentially record 
the business activities executed in process aware information systems. There are 
several works that use process mining dealing with the construction of business 
processes when there is no a priori business process model. For example, Van der 
Aalst et al. [10] propose the α-algorithm to discover the control flow of business 
processes from event logs. Similarly, Madeiros et al. [11] suggest a genetic algorithm 
for business process discovery. 

Other proposals deal with the registration of event logs, e.g., Ingvaldsen et al. [12] 
focus on ERP (Enterprise Resource Planning) systems to obtain event logs from the 
SAP’s transaction data logs. Günther et al. [13] provide a generic import framework 
for obtaining event logs from different kinds of systems. Other authors such as Pérez-
Castillo et al. [14] propose an approach to obtain event logs by means of the injection 
of traces in legacy source code to enable the collection of event logs in non-process-
aware systems. 

All these proposals focus on the development and application of business process 
mining techniques. However, the mentioned approaches do not address the effective 
use of business processes to modernize legacy information systems being aligned with 
the actual business process. Zou et al [15] developed a framework that statically 
analyzes the legacy source code and applies a set of heuristic rules to recover the 
underlying business processes. Other works focus on recovering business processes 
by dynamically tracing the system execution driven by use cases (e.g., Cai et al. [16]), 
or driven by the users’ navigation in graphical user interfaces (e.g., di 
Francescomarino et al [17]). The goal of these works is to obtain the actual, 
embedded business processes to be used during software modernization. 

Unfortunately, all these works [15-17] propose ad hoc techniques that do not 
follow the KDM standard. As a consequence, the reuse as well as the scalability of 
these techniques to be applied to large and complex LIS is limited. In this sense, 
Pérez-Castillo et al. [8] present a preliminary method to integrate MXML event logs 
into KDM repositories, which is the starting point of this research. Nevertheless, this 
method has not been empirically validated, for example, through model simulation.  

Model simulation is often applied in other research fields such as aerospace, 
healthcare, etc. Literature contains some proposals that use model simulation for 
empirically assessing model transformations. For instance, Wong et al. [18] use model 
simulation to empirically validate the translation of business process diagrams into 
executable BPEL (Business Process Execution Language) processes. Syriani et al. 
[19] use simulation to validate models of reactive systems such as modern computer 
games. Biermann et al. [20] propose simulation environments based on a model's 
concrete syntax definition for visual languages. The validation of the proposed model 
transformation follows a model simulation approach similar to such studies. 



140 M. Fernández-Ropero et al. 

3 MXML to KDM Transformation 

The proposed model transformation takes an MXML model and obtains an equivalent 
KDM model at the same abstraction level. MXML is the notation commonly used to 
represent event logs to be exploited in business process mining techniques [5] (see 
Fig. 1). An MXML model represents an individual log (WorkflowLog). The log 
consists of a set of business processes (Process) that collect, in turn, several instances 
of such processes (ProcessInstance). Each process instance represents a certain 
execution of a business process using particular data. For example, in a bank 
company, process could be different execution instances for different customers. Each 
process instance has a sequence of events (AuditTrailEntry). Each event consists of 
four elements: (i) the business activity executed (WorkflowModelElement); (ii) the 
type of the event (i.e., start or complete) (EventType); (iii) the user who started or 
completed the business activity (Originator); and finally (iv) the time when the event 
was recorded (Timestamp). All these elements can contain additional information 
through Data and Attribute elements. 

On the other hand, The KDM Event metamodel (see Fig. 2) defines the 
EventModel metaclass to depict an event model in KDM. Each event model 
aggregates a set of event resources of a LIS (EventResource). Particularly, event 
resources can be states, transitions or events themselves (Event). Each event has two 
features: the name of the event and the kind (i.e., start or complete). Event resources 
and other elements can be related by means of event relationships 
(AbstractEventRelationship) which can depict next states, transitions, consumed 
events, etc. Moreover, the KDM event metamodel extends the KDM action package 
metamodel by defining a set of event actions that can be associated with event 
resources (see Fig. 2). For example, events that are produced by particular code 
elements can be represented with ProducesEvent elements. These elements contain 
references to pieces of source code (CodeElement) by means of the feature 
implementation. It enables the integration of KDM event models with the remaining 
of KDM models ensuring its appropriate usage in modernizations projects. 

 

Fig. 1. The MXML Metamodel 
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Fig. 2. The KDM event metamodel and extensions 

3.1 Transformation Rules 

The MXML to KDM model transformation consists of a set of eight declarative 
transformation rules. First of all, a KDM event model must be created from the 
MXML event log model (Rule 1). Events entail the key element of MXML event log 
models, thus, events must be transformed into the KDM event model (Rule 2). 
Furthermore, the information concerning the four components of an event (i.e., 
business activity name, type, originator and timestamp) must be represented in the 
KDM event model. Besides, the name and type of the events in the MXML models 
are represented in the KDM event models by using the features of the Event metaclass 
respectively (Rule 3). The information concerning the originator and timestamp 
cannot be directly represented in the KDM model according to the KDM event 
package. For this reason, the KDM event model must be extended with additional 
metaclasses so that it can support this information. Events (which represent executed 
business activities) are mapped to the pieces of source code that support those 
activities (Rule 4). This is possible because the KDM event model can be linked with 
other KDM models (e.g., the KDM code model) by means of the features 
implementation that link code elements (see Fig. 2). 

Rule 1. Each instance of the WorkflowLog metaclass is transformed into an instance 
of the EventModel metaclass in the output model. 

Rule 2. Each instance of the AuditTrailEntry metaclass is transformed into an 
instance of the Event metaclass in the output model. 
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Rule 3. Instances of the WorkflowModelElement and EventType metaclass, 
belonging to an instance of the AuditTrailEntry metaclass, are respectively 
incorporated into the features ‘name’ and ‘kind’ of the respective instance of the 
Event metaclass (see Rule 2). 

Rule 4. Instances of the Attribute metaclass with the name feature ‘implementation’ 
are transformed into instances of the CodeElement metaclass within the respective 
instance of the Event metaclass in the output model (see Rule 2). 

In order to represent all the information registered in a MXML model in the KDM 
model, the KDM event metamodel is extended by means of the ExtensionFamily 
metaclass, the standard extension mechanism of KDM (see highlighted metaclasses in 
Fig. 2). The extension family defines a set of stereotypes containing a set of tag 
definitions. Stereotypes define a wide concern while tag definitions specify the new 
elements that will be used in normal elements of the KDM event metamodel through 
tagged values. Tagged values allow changing or adjusting the meaning of those 
elements by associating a value with a previously defined tag. According to the 
extension mechanism, Rule 5 refines R1 by adding the extension family within the 
event model. The extension family has four stereotypes: <process>, 
<processInstance>, <originator> and <timestamp>. Event resources are tagged with 
<process> (Rule 6) and <processInstance> (Rule 7) to respectively collect business 
processes and their instances from event logs. Finally, both originator and timestamp 
are represented by incorporating tagged values to the respective event (Rule 8). 

Rule 5. An instance of the ExtensionFamily metaclass is created for each instance of 
the EventModel metaclass in the output model (see Rule 1). This instance contains 
four instances of the Stereotype metaclass. In turn, each Stereotype instance 
contains an instance of the TagDefiniton metaclass. The values of these four 
stereotypes are: <process>, <processInstance>, <originator> and <timestamp>. 

Rule 6. Each instance of the Process metaclass is transformed in the output model 
into an instance of the EventResource metaclass with an instance of the 
TaggedValue metaclass. The tag feature of this instance links to the <Process> 
stereotype, and the value feature represents process name. 

Rule 7. Each instance of the ProcessInstance metaclass is transformed in the output 
model into an instance of the EventResource metaclass with an instance of the 
TaggedValue metaclass. The tag feature of this instance links to the 
<ProcessInstance> stereotype, and the value feature represents the name of the 
business process instance. 

Rule 8. Instances of the Originator and Timestamp metaclass are transformed into 
two instances of the TaggedValue metaclass which are added to the respective 
instance of the Event metaclass (see Rule 2). The instances of the TaggedValue 
metaclass respectively define their tag features as <Originator> and 
<Timestamp> stereotype, and their value feature with the name of the originator 
and timestamp registered in the input model. 

An executable version of the model transformation has been implemented using 
QVTr (Query/View/Transformation relations) [21], which provides a declarative and 
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rule-based specification. Due to the space limitation this paper shows the 
‘auditTrailEntry2Event’ relation as an example (see Fig. 3). The full transformation is 
available online [22]. The checkonly domain of the relation is defined on instances of 
the AuditTrailEntry metaclass. This input domain checks the existence of the four 
elements in an event (i.e., the business activity, type, originator and timestamp). The 
input domain also evaluates the existence of the process instance, process and the 
event log where the AuditTrailEntry element belongs. The enforce domain creates an 
instance of the Event metaclass according to Rule 2. This event is created within the 
respective log, process and process instance. The originator and timestamp are added 
with the appropriate stereotype according to Rule 8. Finally, the when clause invokes 
the ‘processInstance2eventResource’ to check, as a pre-condition, that the respective 
process instance was previously created by means of the invoked relation (see Fig. 3). 
 

 

Fig. 3. The ‘auditTrailEntry2Event’ QVT relation 

4 Experiment Description 

This section presents one experiment to validate the proposed model transformation. 
The experiment is based on the formal protocol proposed by Jedlitschka et al. [23] for 
conducting and reporting empirical research in software engineering. According to this 

top relation auditTrailEntry2Event { 
 xEventName : String; 
 xEventType : String; 
 xOriginatorName : String; 
 xDate : String; 
 xProcessInstanceName : String; 
 xProcessName : String; 
 xModelName : String; 
 checkonly domain mxml ate : mxml::AuditTrailEntry { 
  workflowModelElement = wme : mxml::WorkflowModelElement { 
   name = xEventName 
  }, 
  eventType = type : mxml::EventType { 
   type = xEventType 
  }, 
  originator = originator : mxml::Originator { 
   name = xOriginatorName 
  }, 
  timestamp = timestamp : mxml::Timestamp { 
   date = xDate      
  }, 
  processInstance = pi : mxml::ProcessInstance { 
   name = xProcessInstanceName, 
   process = p : mxml::Process { 
    name = xProcessName, 
    workflowLog = wl : mxml::WorkflowLog { 
     name = xModelName 
    } 
   } 
  } 
 };  

 enforce domain event eventModel:event::EventModel{ 
  name = xModelName, 
  eventElement = eRes:event::EventResource { 
   name = xProcessName, 
   eventElement = eRes2:event::EventResource { 
    name = xProcessInstanceName, 
    eventElement = event : event::Event { 
     name = xEventName, 
     kind = xEventType, 
     taggedValue = originatorTag : kdm::TaggedValue { 
      tag = ot : kdm::TagDefinition { 
       tag = 'Originator' 
      }, 
      value = xOriginatorName 
     }, 
     taggedValue = timestampTag : kdm::TaggedValue { 
      tag = dt : kdm::TagDefinition { 
       tag = 'Timestamp' 
      }, 
      value = xDate 
     }, 
     implementation = codeElement : code::CodeElement { 
      name = xEventName 
     } 
    } 
   }     
  } 
 }; 
 when { 
  processInstance2eventResource (pi, eventModel); 
 }   
}
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protocol, the following sections describe the research goal and questions, research 
hypothesis, variables, design and execution procedure, as well as the analysis procedure. 

4.1 Research Goal and Questions 

The main research goal of this experiment is the efficiency assessment of the 
transformation. In order to evaluate this property the experiment attempts to answer 
two research questions:  

─ RQ1: Is the model transformation scalable to large MXML models?  

─ RQ2: Does the input model’s complexity affect to the transformation 
performance?  

Firstly, scalability assessment (RQ1) is important to ensure the applicability of this 
transformation with large and complex event logs. Secondly, the study of side effects 
of the event log’s complexity (RQ2) in the transformation performance is valuable to 
prove its feasibility with any kind of event log. 

The study randomly simulates a set of event logs for assessing the research 
questions. Event logs are simulated through Process Log Generator (PLG) [24], a 
tool for the generation of business process models and simulation of different MXML 
logs (cf. Section 4.4).  

4.2 Variables 

A set of variables is defined for the assessment of the model transformation 
efficiency. There are two independent variables: (i) Size, which represents the number 
of events in the simulated MXML log; and (ii) ECyM, which represents the Extended 
Cyclomatic Metric (ECyM) of the MXML model [25]. ECyM determines how 
complicated the behavior of the model is, i.e., its complexity. The ECyM of a graph G 
with V vertices, E edges, and p connected components is: ECyM = |E| - |V| + p 

The dependent variables of the study are two: (i) Transformation Time, which is 
the time spent on transforming a MXML model into a KDM model through the 
proposed model transformation; and (ii) Performance, which is the ratio between the 
size of the input model and the transformation time. This variable is normalized in the 
range [0, 1]. 

4.3 Research Hypothesis 

In the case of RQ1, it is necessary to check if there is a linear relation between the 
size of the MXML model and the time of transformation through the proposed model 
transformation. To do this, the hypotheses are: 

─ HRQ1,0: The size of the MXML model has a linear relation with the time of 
transformation. 

─ HRQ1,1: The size of the MXML model has not a linear relation with the time of 
transformation 
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To answer RQ2 it is necessary to check if the input model’s complexity affects the 
performance. To do this, the hypotheses are: 

─ HRQ2,0: The ECyM of the log does not influence the performance. 

─ HRQ2,1: The ECyM of the log influences the performance. 

The goal of the statistical analysis is being able to accept these null hypotheses with 
an acceptable confidence level. 

4.4 Design and Execution Procedure 

The experiment evaluates the transformation model in several simulated event logs. 
The experiment’s execution consists of the following steps: 

1. The set of MXML logs are simulated using PLG. PLG allows users to obtain 
business processes with different sizes by defining the maximum number of nested 
branches. The study uses three sizes: 2, 3 and 4 maximum nested branches, which 
are respectively labeled as low, medium and high. Four business process models 
are created for each size. In turn, four event logs are simulated for each business 
process with different numbers of business process instances: 50, 100, 150, and 
200. In total, 48 logs conform the sample to perform the experiment. For each log 
steps 2 to 3 are repeated. 

2. The MXML log is analyzed for collecting relevant variables (i.e., number of 
events, ECyM, etc.).  

3. The MXML is transformed into a KDM event model. The transformation is 
executed through Medini QVT [26], a model transformation engine supporting 
QVTr. The transformation is executed in a computer with a dual processor of 2.1 
GHz and 4 GB of RAM memory. After the execution, transformation information 
is also recorded. The whole collected information is shown in Table 1. 

4. After the whole execution of the sample, the collected information is statistically 
analyzed to answer the research questions. 

4.5 Analysis Procedure 

The data analysis was carried out according to the following steps: 

1. The hypotheses established for RQ1 are evaluated by means of a regression line 
model using the Pearson linear correlation test, which quantifies the intensity of the 
linear relation between variables size and transformation time. Under the 
hypothesis that the transformation time is theoretically linear (i.e., O(n) with 
n=number of events), a linear regression model is established to check it and find 
out whether the proposal is therefore scalable. The linear regression model 
considers the transformation time as a dependent variable and the size of the 
business processes as the independent variable. The obtained Pearson's correlation 
coefficient R2 (between -1 and 1) indicates the degree to which the real values of 
the dependent variable are close to the predicted values. 
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Table 1. Data collected in the experiment execution 

ID 
Size 

(#events) 
Complexity 

(ECyM) 
Transf. 
Time (s) Performance 

1 788 27 10.03 0.50 
2 1564 27 41.15 0.27 
3 2300 27 94.15 0.24 
4 3080 27 141.62 0.13 
5 1000 21 10.55 0.69 
6 2000 21 41.31 0.28 
7 3000 21 91.62 0.15 
8 4000 21 138.11 0.11 
9 628 10 76.00 1.00 

10 1294 10 349.26 0.45 
11 1926 10 751.34 0.26 
12 2560 10 1259.48 0.22 
13 646 12 93.79 0.97 
14 1282 12 382.96 0.44 
15 1910 12 811.55 0.27 
16 2552 12 1373.64 0.23 
17 972 43 22.04 0.69 
18 2046 43 91.40 0.24 
19 3150 43 212.45 0.16 
20 3980 43 350.19 0.12 
21 1200 14 33.41 0.53 
22 2400 14 134.28 0.22 
23 3600 14 287.99 0.13 
24 4800 14 663.58 0.04 
25 1842 0 23.27 0.33 
26 4066 0 74.56 0.11 
27 5962 0 118.06 0.05 
28 7870 0 241.19 0.02 
29 1094 66 21.38 0.60 
30 2188 66 107.58 0.24 
31 3176 66 215.36 0.16 
32 4454 66 318.04 0.09 
33 2408 246 27.36 0.22 
34 5110 246 114.27 0.07 
35 7548 246 218.29 0.01 
36 9986 246 421.56 0.00 
37 1904 1037 131.08 0.31 
38 3800 1037 562.49 0.11 
39 5934 1037 1329.71 0.04 
40 7980 1037 1959.02 0.00 
41 2032 0 82.63 0.28 
42 4076 0 323.87 0.09 
43 6116 0 763.84 0.04 
44 8216 0 1512.17 0.01 
45 1906 54 87.45 0.28 
46 3948 54 363.11 0.10 
47 6500 54 889.43 0.04 
48 7668 54 1175.69 0.02 

Mean  3510 127 386.32 0.24 
Std. Dev. 2352 285 468.27 0.23 
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2. Hypotheses of RQ2 are assessed by using the ANOVA test (Analysis Of Variance 
between groups). It is a parametric test to compare how a particular factor affects 
the mean of a quantitative variable. If the means of variable for each factor are 
equal, then the factor does not affect the variable. The factor under study is the 
event log complexity (ECyM) labeled as low, medium and high. Each event log is 
categorized in these three groups according to the percentiles Q1/3 and Q2/3, which 
divide the distribution in three sub-samples. As a result, the hypotheses of RQ2 are 
equivalent to the following according to the ANOVA test: 

─ HRQ2,0: µperformance; ECyM=”low” = µperformance; ECyM=”medium” = µperformance; ECyM=”high”. All 
expected means are equal. 

─ HRQ2,1: µperformance; ECyM=”low” ≠ µperformance; ECyM=”medium” ≠ µperformance; ECyM=”high”.  

5 Results 

The following sections show the results after analyzing the data obtained in the 
experiment using R, an open source statistical tool [27]. 

5.1 Scalability Testing (RQ1) 

To calculate the equation of the regression line the variables were represented by a 
scatter plot (see Fig. 4). If the regression line is very close to most points in the scatter 
chart, both variables are strongly correlated. The regression line equation estimated is 
y = 193.23x – 291849. 

After applying the Pearson correlation test, the value of linear correlation 
coefficient of Pearson was R2=0.94, which is very close to 1. This value makes it 
possible to ensure that there is a strong positive correlation between both variables. In 
terms of significance, the correlation value means that 5% of the transformation time 
variation cannot be explained by size through the line of fit. 

The result shows that the null hypothesis (HRQ1,0) cannot be rejected since there is 
a linear relationship between the size of input model and transformation time. 

5.2 Suitability Testing (RQ2) 

The HRQ2,0 hypothesis proposes that the means of performance for each factor of 
ECyM are equal. After applying the ANOVA test (see Table 2) the p-value is 0.105. 
Since the p-value is greater than 0.05 the null hypothesis cannot be rejected; it is 
accepted therefore that the means are equal at a 95% confidence level. This can also 
be checked graphically in Fig. 5 which shows the box chart for each distribution with 
low, medium and high complexity. This result proves that the complexity (ECyM) 
does not have an influence in the performance. 
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Fig. 4. Scatter plot of the size and the transformation time 

 

Fig. 5. Box plot of performance 
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Table 2. ANOVA results 

 Df Sum Sq Mean Sq F value Pr (>F) 
Complexity Factor 2 0.249 0.12449 2.365 0.105 

Residuals 45 2.368 0.05263   

5.3 Validity Evaluation 

This section discusses the threats to the validity of the experiment. 

─ Internal Validity: The simulation was carried out with 48 event logs simulated 
from randomly generated business processes. Hence, the results may 
differ slightly in case of generation of different business processes. In addition, 
the supporting tool used to obtain the business process could be a factor that 
may affect the values of the experiment. To mitigate this threat the experiment 
should be replicated by using larger samples, different tools, and then, by 
comparing the obtained results.  

─ Construct Validity: The selected variables were adequate to answer the 
research questions in an appropriate manner. However, the way in which such 
variables are assessed could be a threat. To mitigate this threat, other 
mechanisms can be considered for the evaluation of the proposed variables (e.g., 
complexity can be calculated using other metrics available in the literature). 

─ External Validity: The experiment considers simulated event logs, thus the 
obtained results could not be strictly generalized to real-life event logs. This threat 
may be mitigated by replicating the experiment using industrial event logs. 

6 Conclusions 

This paper proposes a model transformation to integrate MXML event logs into the 
KDM event model repository. Nowadays, KDM makes it possible to build reverse 
engineering tools in a KDM ecosystem where reverse engineering tools recover 
knowledge regarding different artifacts, and the outgoing knowledge is represented 
and managed in an integrated and standardized way through a KDM repository. As a 
result, the KDM event models can be used in combination with other embedded 
knowledge recovered through reverse engineering to modernize legacy information 
systems. This transformation therefore facilitates the applicability of business process 
mining techniques and algorithms within software modernization projects. 

This work provides an implementation of the model transformation using QVTr as 
well as a supporting tool in order to facilitate its validation and adoption by the 
industry. In fact, the transformation is validated through an experiment based on the 
automatic simulation of event logs. The experiment shows that the model 
transformation is able to obtain KDM event models from MXML logs in a scalable 
and suitable way. This means that the transformation can be executed in a linear time 
regarding the number of events. The performance of the transformation is also 
independent of the complexity of the input log.  
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The future work will address the repeatability of the experiment using additional 
and different event log models in order to deal with the detected threats and to obtain 
strengthened conclusions. 
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Abstract. Model transformations are commonly used to transform
models suited for one purpose (e.g., describing a solution in a particular
domain) to models suited for a related but different purpose (e.g., sim-
ulation or execution). The disadvantage of a transformational approach,
however, is that feedback acquired from analyzing transformed models is
not reported on the level of the problem domain but on the level of the
transformed model. Expressing the feedback on the level of the problem
domain requires improving traceability in model transformations.

We propose to visualize traceability links in (chains of) model trans-
formations, thus making traceability amenable for analysis.

1 Introduction

Domain-specific languages (DSLs) play a pivotal role in the model-driven en-
gineering (MDE) paradigm. DSLs describe the domain knowledge [7] and offer
expressive power focused on that domain through appropriate notations and ab-
stractions [9]. A typical application of a DSL such as [1,6], however, goes beyond
describing the domain knowledge, and includes, for example, execution or sim-
ulation (cf. the discussion of executability of DSLs in [15]). Hence, application
of a DSL requires adequate tool support for execution and simulation. In MDE,
typically the transformational approach is adopted to this end [18].

The main advantage of the transformational approach is the flexibility it pro-
vides by reusing existing formalisms. Adapting the DSL for a different pur-
pose, such as simulation or execution, solely requires the implementation of an-
other model transformation. However, the disadvantage of a transformational
approach, is that analyses are not performed on the domain level, but on the
level of the target language of a model transformation [14]. This raises the issue
of traceability, i.e., results acquired from analyzing the target models of a model
transformations have to be related to the source models.

Traceability plays an essential role in a number of typical model development
scenarios such as debugging and change impact analysis. When debugging mod-
els, it is important to understand whether the erroneous part of the target model
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results from the source model or from the transformation itself, and to pinpoint
the corresponding parts of the source model and/or transformation functions.
Moreover, when source models are about to change, one should determine the
effect of proposed changes on the target model.

In this paper, we propose to apply a visualization technique to facilitate the
analysis of the relation between source models, model transformations, and tar-
get models. The proposed approach is also applicable to chains of model transfor-
mations in which the target model(s) of a preceding model transformation serve
as source model(s) for the subsequent one. In this way, the approach enables
traceability of model transformation compositions.

On the model level, our visualization makes explicit what source model ele-
ments are the origin of a target model element and what transformation elements
are involved in creating a target model element. The model developer can there-
fore identify source model element(s) and transformation element(s) responsible
for producing (erroneous) target model element(s), as well as generated target
model element(s) based on a particular source model element (cf. Section 3.4).

The remainder of this paper is structured as follows. We start by stating the
requirements has to satisfy in Section 2. Next we discuss the visualization in
Section 3. In Section 4, we review the related work. Section 5 concludes the
paper and provides directions for further research.

2 Requirements

We start by identifying requirements the visualization approach should satisfy.
Our first requirements follow from the definition of traceability: the visualization
should be able to represent structure of (Req1) and relations between (Req2)
the source (meta)model, the target (meta)model and the model transformation.
The visualization should further be able to present model transformations with
multiple models serving as input and as output (Req3).

The next group of requirements is related to our intention to apply the visual-
ization to chains of model transformation. The visualization, hence, should allow
the user to inspect traceability across multiple transformation steps (Req4), e.g.,
to identify all source model elements that indirectly are responsible for produc-
ing an (erroneous) target element. Moreover, the user should be able to ignore
(some of) the intermediate transformation steps (Req5), if desired.

Scrutinizing these requirements we observe similarity with visualizing trace-
ability in traditional software development: models correspond to software de-
velopment artifacts such as requirements specifications, design documents, and
source code. Relating test cases to requirements is essentially the same as re-
lating source models to target models through multiple transformation steps.
This realization led to the decision to use a traceability visualization tool orig-
inally developed for traditional software development process. The tool, called
TraceVis [17], turned out to be perfectly suitable for our purpose.

The basic outline of the TraceVis visualization is shown in Fig. 1. It represents
three hierarchies (left, middle, right) connected by means of traceability links.
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Fig. 1. TraceVis shows the relations between different hierarchies

The middle hierarchy is mirrored to allow the relations with both the left and
right hierarchies to be represented. When the user selects elements from one of
the hierarchies, connected elements from other hierarchies and the connecting
traceability links become highlighted (cf. Req4). Moreover, TraceVis allows the
user to hide a hierarchy (cf.Req5). Finally, it is known that while visualization of
relations as straight lines is well-suited for smaller number of relations, it does not
scale up well [12]. Therefore, TraceVis supports hierarchical edge bundling [12]
specially designed for scalability.

3 Traceability on the Model Level

3.1 Basic Visualization

Fig. 1 shows part of a screen shot from the TraceVis tool applied to a “Book
2 Publication” model transformation [10]. The source model, the target model
and the model transformation are represented as hierarchies: the left one, the
right one and the middle one, respectively.

In hierarchies representing source and target models, the outermost columns
represent the roots of the hierarchies. These are artificial nodes created for group-
ing (multiple) model(s) that serve as input and output of a model transformation
(cf. Req3). The next level of the hierarchies, represented by the second leftmost
and the second rightmost columns, shows the filenames of the input, and out-
put models, respectively. The remaining levels of the hierarchy correspond to
the elements of the input and output models. Model elements in these columns
are shown on top of the elements they contain. In this way, the containment
hierarchy in the models is visualized as a hierarchy.

The middle hierarchy represents a transformation. This hierarchy is mirrored
to allow both the relations with the input and output models to be represented.
The middle column serves for grouping all the modules of the transformation, it
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Fig. 2. TraceVis visualizes a chain of six model transformations

is labeled with the filename of the trace model that is visualized (cf. Section 3.3).
The columns adjacent to the middle column are used for grouping the different
kinds of transformation elements available in the model transformation language:
e.g., in ATL we group helpers, matched rules, lazy matched rules, unique lazy
matched rules, and called rules. Proceeding from the middle column outwards
we see the column showing the actual transformation elements, e.g., ATL trans-
formation rules. Finally, the outermost columns visualize the instances of the
transformation rules, i.e., run-time applications of a rule to model elements.

3.2 Visualizing Transformation Chains

Fig. 2 shows a chain of six endogenous model transformations. The DSL on
which the transformations are defined is aimed at modeling systems consisting
of objects that operate in parallel and communicate with each other [1]. The
transformations perform a stepwise refinement of the source model and bring
it closer to the implementation by replacing, e.g., synchronous communication
with asynchronous one, and lossless channels with lossy ones.

In Fig. 2 the transformation hierarchies are hidden, i.e., only the input and
output models of the transformations are visualized. In all transformations, the
model is copied and “slightly” modified. This is why there are many “straight”
lines in the visualization. Since the model transformations refine the model,
changes to the models are all local. For the first transformation, a selection
(orange) is made that shows such a local change. While this change might appear
as being hard to detect, it becomes apparent when zooming in on a part of the
visualization (cf. Fig. 3). Only the last model transformation changes the model
drastically. In the visualization, a single model element (pink) is selected in the
penultimate model. This single model element gives rise to many model elements
in the target model. This particular model transformation extends the model
with a protocol implementation consisting of many model elements.
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Fig. 3. Zooming in reveals that two lazy matched rules modify the model

3.3 From Model Transformations to TraceVis

Since TraceVis has originally not been designed for model transformations, we
had to implement a complementary tool for automatically generating TraceVis
input from model transformations. To make the distinction between different
applications of the same transformation element, we have to analyze the trace
model. To obtain the trace model the transformation should be executed, since
without executing the transformation there is no target model and, hence, no
trace model. Various approaches can be chosen to acquire a trace model from a
model transformation execution. One can adapt the transformation engine such
that it generates a trace model. In spirit of MDE we have opted, however, for a
model transformation rather than transformation engine adaptation. The entire
tool chain for generating trace models is presented in Fig. 4.

First, a higher-order model transformation, called tracer adder and imple-
mented in ATL, takes as an input the model transformation being visualized,
say T , and augments T such that the trace model is generated as an addi-
tional output model of T . This transformation is based on the one described by
Jouault [13]. Next, the augmented transformation is applied to input models,
resulting in output models and a trace model that contains links both to the
input models and to the output models. Finally, the input models, the output
models and the trace model are transformed to an XML file that serves as input
for the TraceVis tool. This transformation has been implemented in Java and
can be reused if other model transformation languages are considered.

3.4 Applications

Debugging. In the introduction, we observed that domain-specific models are
typically analyzed by transforming them to a formalism suitable for analysis.
The disadvantage of this approach is that feedback from the analysis model is
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Fig. 4. Tool architecture

not reported in terms of the DSL, but in terms of the generated model. Suppose
an error manifests in an executable target model. To fix this error, it has to
be related to the elements in the domain-specific source model it is generated
from. Using TraceVis, the visualized trace links can be followed from the model
elements that caused the error to the model elements in the source model to
establish the origin of the error. This is referred to as origin tracking [8].

It may be the case that the manifested error is not caused by an erroneous
source model, but by an erroneous model transformation. Since the visualized
trace links also show the relations between target model elements and trans-
formation elements, errors in model transformations can easily be found. Also,
when obsolete target model elements are generated, the visualization can be
consulted to identify the responsible transformation element.

Impact Analysis. In addition to debugging, the visualization can also be used
to facilitate change impact analysis. Change impact analysis is the process of
determining the effect of proposed changes [3]. Evaluating this effect is considered
to be one of the most expensive activities in the software maintenance process [4].
Most maintenance efforts include nowadays means of identifying impacts prior to
making extensive software changes [5]. Using our visualization one can determine
which target model elements are affected by changed source model elements.

By means of impact analysis, one can determine what part of a target model
will change based on a change in the source model it was generated from. For
instance, for the transformation chain described in [1], one can determine which
part of the target Promela model will be affected by the change in a source
SLCO model. Subsequently, this information can be used to perform incremental
model checking of the Promela model (cf. [19]). Hence, conducting change impact
analysis as a preliminary step reduces the verification effort. A similar argument
can be made for, e.g., reducing the simulation effort.

4 Related Work

A traceability framework for model transformations was implemented in the
model-oriented language Kermeta [11]. Similarly to [11], we support designers in
gathering information on the transformation behavior, and make use of a trans-
formation trace model. However, as opposed to [11], our approach focuses on
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visualization. Moreover, while the approach of [11] focuses on model transfor-
mations written in Kermeta, our approach is, in principle, language independent
although the current implementation is restricted to ATL.

To visualize chains of model transformations, Von Pilgrim et al. place model
representations on two-dimensional planes in a three-dimensional space [16].
Lines between these planes connect source model elements to target model el-
ements. As opposed to our work, the model transformation itself is not visu-
alized. Moreover, the choice of two-dimensional planes in a three-dimensional
space leads to scalability issues when long transformation chains are considered.

In our previous work [2] we have applied TraceVis to visualize model trans-
formation on the metamodel level. While traceability visualization at the meta-
model level is similar to traceability visualization at the model level, the informa-
tion extraction is different from the process described in Section 3.3. The reason
for this is that the relation between a model transformation and the elements
of its source and target metamodel can be derived from its source code directly
without running the transformation. Moreover, the intended applications of the
current work differ from those of [2].

5 Conclusions and Future Work

In this paper, we have presented a novel approach to visualization of traceabil-
ity information in model transformations. Our approach explicates relations on
a model level, and is applicable not only to single transformations but also to
transformation chains. Applications of the proposed approach range from de-
bugging and coverage analysis to change impact analysis.

The approach consists of two phases. First, the hierarchical structure of mod-
els and model transformation(s) as well as relations between these structures are
extracted from the model and model transformation files. Second, the hierarchies
are extracted and the relations between them are visualized using TraceVis. By
visual inspection of the TraceVis visualization, model designers can answer such
questions as what source model element(s) and transformation element(s) are
responsible for producing what (erroneous) target model element(s), or what
generated target model element(s) are based on a particular source model ele-
ment? Finally, model designers can use the TraceVis visualization as a starting
point of a change impact analysis that aims at understanding how changes to a
source model affect the target model and the corresponding transformation.

The current version of the extraction tool supports ATL transformations only.
Therefore, we consider application of the approach to other model transformation
languages to be an important part of the future work.

Acknowledgements. We would like to thank Wiljan van Ravensteijn for pro-
viding us with TraceVis, Ivo van der Linden for his help on the implementation
of data extraction, as well as Joost Gabriels for his comments on the earlier
versions of this manuscript.
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Abstract. Although there are powerful model transformation languages
(MTLs) like ATL, model-to-model transformations still are often im-
plemented in general-purpose languages (GPLs) like Java, especially in
EMF-based projects. Developers might hesitate to learn another lan-
guage, use new tools, or they feel limited by the specific but less versa-
tile constructs an MTL provides. However, model transformation code
written in a GPL is less readable, contains redundancies or verbose ex-
pressions, and there are fewer possibilities for formal reasoning. Our ap-
proach combines some benefits of MTLs with GPL programming. We
use the GPL Scala to realize MTLs similar to ATL as internal domain-
specific languages. The benefits are seamless integration with EMF and
state-of-the-art tool support as well as the possibility to extend MTLs
and to mix MTL and GPL code. In contrast to similar approaches with
dynamically typed languages like Ruby, Scala allows for static type-safety
without adding syntactic clutter.

1 Introduction

Model transformations and their definition are still a prevalent research topic
with no generally accepted single solution, but a multitude of transformation
methods. In the beginning, model transformations have been regarded as a very
general problem. But in fact, there are many specific applications for model
transformations, each application with a distinct set of requirements. As a result,
many transformation methods have been developed, each tailored for a specific
set of similar model transformation applications. Examples for transformation
methods are unidirectional imperative model transformations, graph transfor-
mations, declarative (uni- and bi-directional) approaches, specific methods for
product lines, code generation, etc.

A commonality of all model transformation applications is the typed nature of
transformation sources (and in many cases transformation targets). Metamodels
for source (and target) models are used. Here, a metamodel defines a set of types
(e.g., via classes), and each object in a model has at least one of these types.

To apply a model transformation method, one can either use a general purpose
programming language (GPL) or (if available) a domain specific language (DSL)
that realizes a transformation method. We call these DSLs model transformation

Z. Hu and J. de Lara (Eds.): ICMT 2012, LNCS 7307, pp. 160–175, 2012.
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languages (MTLs). Examples for MTLs are ATL[11], QVT Operational, ETL1

from the Epsilon language family, and Tefkat2.
In general, the DSL community distinguishes between two types of DSLs:

external and internal DSLs. An external DSL is a language in its own right. Ex-
ternal DSLs require explicit tool support (e.g., a parser, interpreter or compiler).
An internal DSL is basically a library written in a so-called host language (usu-
ally a GPL). Internal DSLs use the existing tools of their host language. Some
GPLs are more suitable host languages than others, since some languages offer
more syntactical flexibility and hence more possibilities to create the desired
DSL syntax. Examples for languages that are considered good host languages
are Ruby, Smalltalk, Lisp (including dialects), Groovy, and Scala [7,8].

Most of these established host languages are dynamically typed with little
or no compile time type checking. Here Scala is unique: it is a statically typed
language and uses type inference to combine static safety with the clear syn-
tax of dynamically typed languages. Due to the importance of types for model
transformations, we consider Scala as an ideal host language to realize model
transformation methods as internal DSLs.

In this paper, we evaluate Scala as a host language for MTLs, especially in
comparison to dynamically typed languages. As an example, we present how to
implement an internal DSL for rule-based, unidirectional, and hybrid declarative
and imperative model-to-model transformations with new target source-target
relationship in Scala that is similar to ATL (terminology taken from [6]).

The paper is organized as follows. The next section provides a background on
internal DSL development with Scala. In section 3, we present a language similar
to ATL and demonstrate it with the well-known Families2Persons3 example. The
next section discusses tool support. Section 5 describes the advantage of using
Scala regarding static type-safety and type inference. In section 6, we extend the
example MTL with further constructs and cover advanced topics like pattern
matching. We end the paper with related work and conclusions.

2 Embedding DSLs in Scala

This section is about Scala features that are particularly helpful for developing
internal DSLs.

Flexible Syntax

In general Scala’s syntax resembles Java with three major exceptions. First,
Scala permits omitting semicolons, dots in method invocations, and parentheses
when a method is called with only one parameter. "Hello".charAt(1); can
be written as "Hello" charAt 1. Suitable identifiers provided, statements can
resemble natural language sentences. Secondly, type annotations are optional in

1 http://www.eclipse.org/gmt/epsilon/doc/etl/
2 http://tefkat.sourceforge.net
3 http://wiki.eclipse.org/ATL/Tutorials - Create a simple ATL transformation
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most cases and follow the identifier (as in UML): instead of their type, method
definitions begin with def, immutable variable definitions with val, and mutable
variable definitions with var. Their type can be inferred in most cases, while
still providing static type-safety. Thirdly, type parameters of generic types are
enclosed in square brackets and array (and list) items are accessed with normal
parentheses.

Listing 1.1. Scala’s syntax

1 class Container[T] { // type parameters are enclosed in square brackets

2 val numbers = List(1,2,3) // type is inferred as List[Int]

3 var content: List[T] = null // type cannot be inferred from null

4 def access(i: Int): T = { return content(i) } // ’: T’ is optional

5 }

Implicit Conversions

Usually, you can only change or extend your own code. For example, adding a
new method to the existing java.lang.String class is not possible. Languages
like Ruby and Smalltalk circumvent this: they allow modifying a class for the
whole application. Scala provides implicit conversions to change the perceived
behavior of classes in each scope differently. Implicit conversions are methods an-
notated with the additional keyword implicit. The implicit method implicit

def fromAToB(from : A) : B = new B(from) for example converts an object
of type A to an object of type B. With this implicit conversion declared or im-
ported, objects of type A can be used as objects of type B within the current
scope.

Function Objects

In Scala, functions are treated as objects. Functions can be created anonymously,
the syntax is (arg: T) => {block}. In Listing 1.2, the functions arithmeticMean
or geometricMean can be passed for an easy to read invocation of calculate
as demonstrated in line 8.

Listing 1.2. Simple example of an internal DSL

1 object Calculator {

2 def calculate (fnc: (List[Int]) => Int) = { ...; this }

3 def geometricMean(lst: List[Int]): Int = { ... }

4 def arithmeticMean(lst: List[Int]): Int = { ... }

5 def of(lst: List[Int]) = { ... }

6 }

7 // using the calculator DSL resembles natural language:

8 Calculator calculate arithmeticMean of List(1,2,3)
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3 A Rule-Based Transformation Language in Scala

To demonstrate Scala as a host language for MTLs, we developed an inter-
nal DSL4 for rule-based, unidirectional, and hybrid declarative and imperative
model-to-model transformations with new target source-target relationship. This
language is designed to resemble ATL. We demonstrate its usage with the help
of ATL’s Families2Persons example and compare the syntax with that of ATL.

A Simple Transformation

The basic example Families2Persons from the ATL tutorials is a model-to-model
transformation. The family metamodel is shown in Fig. 1. Every family member
is to be transformed into a person. A person can either be male or female; a
person has only one (full) name. The person metamodel is shown in Fig. 2.

lastName:String
Family

firstName:String
Member

familyFather
0..1

father
1

mother
1

familyMother
0..1

sons
0..*

familySon
0..1

familyDaughter
0..1

daughter
0..*

Fig. 1. Families metamodel

 
fullName:String

Person

 
 

Male

 
 

Female

Fig. 2. Persons metamodel

The transformation creates a Person for each Member in the source model. The
transformation determines the gender of each family member and creates a new
male or female person, respectively. Finally, the fullName field is set according
to the first name of the member and the last name of the family it belongs to.

Rule Definition

ATL transformation rules describe the transformation from a source to a target
model element. Listing 1.3 shows an ATL rule that transforms a Member to
a Female element. An ATL rule has different sections: two mandatory (from
and to) and two optional (using and do) sections. A rule specifies types (i.e.,
metamodel classes) for its source and its targets within the from and to sections.
In this example, a helper method isFemale (implemented in ATL’s imperative
function syntax; not shown here) is used to check the gender of the source Member
element (line 3). This ensures that the rule Member2Female is only executed upon
member elements that are either a familyMother or a familyDaughter. Within
the do section, the newly created Female is assigned its fullName based on the

4 accessible at http://metrikforge.informatik.hu-berlin.de/projects/smtl
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source member’s firstName and the lastName retrieved with another helper
method called familyName (line 7).

Listing 1.3. Rule MemberToFemale using ATL

1 rule Member2Female {

2 from

3 s: Families!Member (s.isFemale())

4 to

5 t: Persons!Female

6 do {

7 t.fullName <- s.firstName + ’ ’ + s.familyName;

8 }

9 }

In our Scala MTL, rules are instances of the class Rule and source and target
types are specified as type parameters. Listing 1.4 shows the Member to Female

rule in our example MTL. The Rule class provides methods that—by omitting
parenthesis, dots, and semicolons—act as the ’keywords’ of our MTL. These
methods (’keywords’) are parametrized with functions. The types of these func-
tions (and their parameters) are determined by the rule’s type parameters (and
due to type inference, types do not have to be specified again). The when method
is used to define execution constraints that are passed as a function object (line
3). The passed function (defined in line 9) has to take an object of the rule’s
source type as input and has to return a boolean value. The actual transforma-
tion logic is passed as a function object to the perform method (do is already
a keyword in Scala and cannot be used here). The passed function has to have
two input parameters with types that correspond to the rule’s source and target
types. In the example, this function is anonymously defined (line 5-7) and the
types of its parameters s and t (source and target) are implicitly inferred. Be-
cause of Scala’s functional programming features and its concise syntax, it can
also serve as a well-integrated alternative to OCL queries in many situations.

Listing 1.4. Rule MemberToFemale using the Scala MTL

1 new Rule[Member, Female]

2 when

3 isFemale

4 perform

5 ((s, t) => {

6 t.setFullName(s.getFirstName() + " " + getFamilyName(s))

7 })

8 // using Scala as a GPL for helper methods:

9 def isFemale(m: Member) = m.familyMother!=null ||

m.familyDaughter!=null
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Transformation Execution

No special tooling or plug-ins are needed for transformation execution. A trans-
formation is an instance of the class TransformationM2M which manages trans-
formation execution. It is parametrized (using ’keyword’ methods) with source
and target metamodels as shown in Listing 1.5 (line 4-5). One or many rules
can be added to the transformation using the addRule method (line 7). Calling
the transform method with the source model as argument starts the transfor-
mation. The source model can be provided as an XML file or as an Iterable
of EObjects. To chain transformations, other transformations can be used as
argument as well. The transformation result is returned as an EMF resource
(default) or can be saved to the file system calling export (line 9).

Listing 1.5. Transformation execution example

1 val member2female = new Rule[Member, Female] ... // as in listing 1.4

2 ...

3 val transformation = new TransformationM2M

4 from "http://../Families"

5 to "http://../Persons"

6

7 transformation addRule member2female

8

9 transformation transform sourceModel export "output.xmi"

During transformation execution, the source model is traversed. Rules that
are not marked as ’lazy’ (using the isLazy ’keyword’) are applied on source
model elements directly. A rule is only executed, if the source type matches and
if the when function returns true. This is comparable to ’matched’ and ’lazy’
rules in ATL or to the ’top’ and ’normal’ rule system in RubyTL [2]. Phasing [4]
is also supported by calling the transformation’s nextPhase method between
adding multiple rules.

The transformation process keeps traces. The created target elements and the
used rules are stored. Traces can be queried within a transformation. Therefore,
rules do not necessarily create new objects. On the contrary, new target objects
are only created, if not already created within the trace. A transformation rule
can explicitly be declared to create new elements every time by calling the rule’s
isNotUnique method. This is similar to ’copy rules’ in RubyTL.

4 Tool Support

The rationale for using internal DSLs and Scala as a host language is the better
tool support and integration with existing modeling frameworks. Basic tool sup-
port is ’for free’ for internal DSLs, since the host language’s tools can be used.
For external DSLs like ATL specific tools need to be developed and their quality
directly depends on the efforts put into them. Compared to other internal DSLs
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like RubyTL, our approach allows for better code assist and static checks based
on Scala’s static type system. Furthermore, Scala is fully byte code compatible
with Java. Java-based modeling frameworks (e.g., EMF or Kermeta) can be used
effortlessly. Since Scala can access any Java class, content assist is also provided
for metamodel-based types, as long as there are corresponding Java classes (such
as in EMF).

Fig. 3. Code completion in the Scala MTL using Eclipse with the Scala IDE plug-in

To use the presented approach, a Scala compiler and EMF is needed. To get
the described tool support the Scala IDE5 plug-in for Eclipse is recommended
(it includes a Scala compiler). This tooling provides syntax highlighting, wiz-
ards, templates, debugging and code completion (based on static types). The
transformation code can be debugged like any other Scala program and all at-
tribute values can be observed at runtime. This includes the (Java-based) model
elements. Within the listings in this paper we also highlight the ’keywords’ of
the internal DSL, although this would not be the case in an unmodified Scala
tooling, but could be provided by a separate plug-in.

A dynamically typed language (like Ruby) allows only limited code comple-
tion. Therefore, RubyTL for example offers an Eclipse plug-in called AGE6. It
provides a Ruby editor with syntax highlighting and code templates. The edi-
tor’s code completion is limited to the keywords of RubyTL, since no static type
information is available. Errors based on wrong types can only be discovered at
runtime. For ATL (an external DSL) a specific rich-featured editor had to be
developed. In return, ATL’s syntax could be perfectly tailored. However, ATL
uses only a small set of data types7. Therefore, full support in the editor can
only be offered for those types. Others will be presented as a default data type
named OclAny.

5 Static Type-Safety without Syntactic Clutter

Because of Scala’s powerful type inference, the syntactic clutter is noticeably re-
duced in comparison to other statically typed languages like Java. Furthermore,
implicit conversions greatly improve flexibility; similar to the open class concept
in dynamically typed languages but with static type-safety.

5 http://scala-ide.org/
6 http://gts.inf.um.es/trac/age
7 http://wiki.eclipse.org/ATL/User Guide - The ATL Language#Data types
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The following listings are based on the ATL example Class2Relational8. The
listings show a simplified transformation of a class schema model (metamodel
in Fig. 4) to a relational database model (metamodel in Fig. 5). They cover a
rule that generates a foreign key column in a table based on an attribute of type
Class. Additionally, the source attribute has to be a single value and not a list
(i.e., multivalued) to trigger the rule.

First, the newly created column gets its name. Secondly, the value of the
column’s attribute ’type’ is retrieved with a helper method. Finally, the owner
of the new column is set to the owning table. This table needs to be the same
as the one generated when the owner of the source attribute was transformed.

The Scala MTL uses implicit conversions to provide a concise syntax: in line 8
of Listing 1.8, a value of type Class is passed to the setOwnermethod, which re-
quires a value of type Table. Therefore another rule that transforms a Class to
a Table is needed. The need for such a rule can be explicitly expressed with the
MTL’s method as[ReturnType](inputObject). In this example an expression
for explicit conversion would be col.setOwner(as[Table](attr.getOwner)).
Similarly, a lazy rule (see Sec. 3) is also explicitly called like this. However, the

8 http://www.eclipse.org/m2m/atl/atlTransformations/#Class2Relational
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Listing 1.6. Rule Attribute2Column using ATL

1 rule classAttribute2Column {

2 from

3 attr : Class!Attribute (

4 attr.type.oclIsKindOf(Class!Class) and not attr.multivalued

5 )

6 to

7 col : Relational!Column (

8 name <- attr.name + ’Id’,

9 type <- thisModule.objectIdType,

10 owner <- attr.owner

11 )

12 }

Listing 1.7. Rule Attribute2Column using RubyTL

1 top_rule ’classAttribute2Column’ do

2 from Class::Attribute

3 to Relation::Column

4

5 filter do |attr|

6 attr.type.kind_of? Class::Class and not attr.multivalued

7 end

8

9 mapping do |attr, col|

10 col.name = attr.name + ’Id’

11 col.type = objectIdType

12 col.owner = attr.owner

13 end

14 end

Listing 1.8. Rule Attribute2Column using the Scala MTL

1 new Rule[Attribute, Column]

2 when ((attr) => {

3 attr.getType.isInstanceOf[Class] && !attr.isMultivalued

4 })

5 perform ((attr, col) => {

6 col.setName(attr.getName + "Id")

7 col.setType(objectIdType)

8 col.setOwner(attr.getOwner)

9 })
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explicit call can be omitted if the needed rule was declared to be implicitly avail-
able: implicit val classToTable = new Rule[Class, Table] perform (...).

This is possible, because the Rule class in the Scala MTL extends the pre-
defined Function1 type. As a result, a rule can be used like a function (with
one parameter). The signature of this function is determined by the rule’s type
parameters. An invocation of the classToTable function therefore needs a pa-
rameter of type Class and returns a Table. The Scala compiler inserts invoca-
tions of these ’rule functions’ automatically to convert objects implicitly as long
as the required rules are marked as implicit and are in scope.

In the example, a conversion from the attribute’s owner (of type Class) to the
type that is needed for the column’s owner (of type Table) is necessary. The Scala
compiler solves this type problem by automatically calling the classToTable

rule. If no appropriate rule is available, the developer gets an error message at
compile time stating that no suitable conversion could be found or why available
conversions do not fit.

This example shows how Scala’s type inference and implicit mechanisms can
be used to create a syntax that is as concise as in ATL or RubyTL but still pre-
serves static type-safety. An exemplary calculation of the Halstead metrics [9] for
the Families2Persons and Class2Relational example using ATL, QVTo, RubyTL,
and our Scala MTL confirmed this. In fact, Scala’s implicit mechanism is a rule-
based system itself and therefore plays well into the implementation of rule-based
transformation languages. However, as the insertion of an implicit conversions
is only based on the source and target types, the inserted rule can still fail at
runtime because its value-based constraint is not satisfied.

6 Extending the Internal DSL

One of the main advantages of internal DSLs is their easy extensibility in contrast
to external DSLs where DSL-specific tools have to be adapted accordingly. In
this section, we demonstrate how to add functionality to the Scala MTL.

Multiple Target Model Elements

In the simple example of Listing 1.4 one object of type Member is transformed
into one object of type Female. Other transformation languages allow to create
more than one target object per rule. This can be a list of objects of the same
type (often called one-to-many rule) or objects of different types.

Regarding different target types, a drawback of using type parameters to
define a rule’s source and target type is the fixed number of type parameters.
Scala’s type system does not allow to overload types with a different number of
type parameters. In order to allow a rule to have more than one target type, we
could define different rule types with a different number of type parameters like
Rule2[S,T1,T2], Rule3[S,T1,T2,T3] etc. This leads to duplication of code. To
avoid this, one could use heterogeneously typed lists (HLists [12]). However, this
increases code complexity considerably.
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We propose a more lightweight solution. We use a statically available Scala
object that enhances the syntax of the Scala MTL with a create method. With
this method, one creates additional output objects without changing the rule’s
’signature’. There is a type parameter to determine the target object’s type
(refer to Listing 1.9, line 5). All attributes and methods of the returned model
object are accessible as usual. However, these additional target objects are not
defined within the rule’s signature and are created as a side effect. This becomes
important, if a rule is used implicitly as a function (see section 5).

Listing 1.9. Creating more target model elements

1 new Rule[Member, Female]

2 perform ((s, t) => {

3 t.setFullName(s.getFirstName() + " " + getFamilyName(s))

4

5 var newFemale = create[Female]

6 newFemale.setFullName("...")

7 })

Another obvious solution to target object creation is the standard new oper-
ator. But this solution is inadequate for two reasons. First, EMF objects should
never be created directly. EMF objects should only be exposed via (generated)
interfaces. Instances based on concrete implementations are created by facto-
ries. This allows EMF models to function in different contexts transparently
(e.g., EMF models stored in multiple resources, and EMF models stored in a
CDO database). Secondly, new target objects need to be registered within the
transformation trace; the create method does this automatically.

The ability to create multiple target model elements in a rule also allows one-
to-many transformations, i.e., rules with multiple target objects of the same type.
To further support this, the ’keyword’ toMany can be used instead of perform.
The toMany method expects a function as argument similar to perform. But the
second argument that is given to this passed function is a reference to an empty
list and not the target object. This list can be filled with an arbitrary number
of target objects.

Declarative Element Creation Using Case Classes

Many transformation rules only create a target model element and set its at-
tributes. Therefore MTLs often provide features to create objects and pass their
attributes along. ATL for example supports this in its declarative ’to’ section.

In Scala, a similar way for a more declarative object creation is the use of case
classes. Scala case classes are declared with the case keyword. The compiler
generates a bunch of instance and static methods for each case class. These
methods (among other things) allow creating instances without the new operator
and allow passing constructor arguments directly behind the class’ name. This is
especially useful, if the fields of a case class are also implemented as case classes.



Type-Safe Model Transformation Languages as Internal DSLs in Scala 171

Nested object structures can be created in a single line of code, e.g.: val x =

ClassA(ClassB(1),ClassC(ClassD())).
However, since EMF does not allow to use concrete model element imple-

mentations directly, we cannot use case classes directly. Instead, we generate
corresponding case classes for all types of the target metamodel. Furthermore,
we generate implicit conversions that convert instances of these generated case
classes to their corresponding target model objects (using EMF’s factories). The
required code can be generated explicitly with a Scala script or with an Eclipse
plug-in. By default, the case classes are named like their corresponding metaclass
but with a ’CC’ postfix.

Syntax can be further shortened by overloading the perform method. The
overloaded method expects a function with a single parameter as the argument:
only the source model element is passed and the target object is expected as the
return value. Listing 1.10 shows a simplified version of the Member2Female rule
that uses case classes and the simplified perform method.

Listing 1.10. Object creation using case classes

1 new Rule[Member, Female]

2 perform ((s) => {

3 FemaleCC(s.getFirstName() + " " + getFamilyName(s))

4 })

Here, it is particularly helpful that Scala supports named and default pa-
rameters : In the example above, the target element creation in line 3 could
alternatively be written as FemaleCC(fullName = s.getFirstName() + ...).
This makes the instantiation of classes with many constructor parameters easier.
Case classes can also be used for rules with multiple targets. In summary, case
classes allow declarative-like object creation in an otherwise imperative MTL.

Pattern Matching

Pattern matching is a powerful Scala feature, particularly useful for transforma-
tion code with a lot of alternatives or null checks. Pattern matching in Scala
is only available on instances of case classes because here, the Scala compiler
automatically provides the needed instance methods. Therefore, if we not only
generate case classes and corresponding implicit conversions for the target meta-
model but also for the source metamodel, we can seamlessly integrate Scala’s
pattern matching: source model elements are implicitly converted to case class
instances and patterns can be matched on those instances.

Listing 1.11 shows an example. It uses the relation metamodel (Fig. 5).
Whereas the attributes in a metamodel class are unordered, the constructor
parameters of the corresponding case class are ordered. We implemented this
order to be alphabetic by the attribute’s name. This results in the following case
class constructors: ColumnCC(keyOf, name, owner, type), TypeCC(name),

TableCC(cols, keys, name).
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Pattern matching is made available by using use.matching instead of the
perform keyword. This way, the implicit conversion is automatically triggered.
The case statement compares a specified case class instance (the pattern) with
the source model element that was converted to a case class instance of the same
type, here a MaleCC instance as the pattern with a (converted) Male source model
element. The case statement’s body has to return a target model element (or an
instance of the corresponding case class).

Listing 1.11. A pattern matching example using generated case classes

1 new Rule[Column, Type].use.matching {

2 case ColumnCC(_, _, TableCC(_, _, name), t@TypeCC(_))

3 if name.startsWith("m2m_") => t

4 case _ => TypeCC("unknown") // the default case

5 }

The presented pattern matching uses constructor patterns. Such patterns con-
sist of a case class instance, its attributes, and potentially nested case class in-
stances. An attribute that does not need to match any pattern can be specified
with the ’ ’ character. Matching on patterns with nested case class instances is
called deep matching: not only the top level objects are checked, but also the
content of the contained (case class) instances. The ’ ’ can also be used as a
top level pattern to define the default case. The example pattern in Listing 1.11
matches if the Column has an owner and a type set (line 2). Furthermore the
owner’s name needs to start with ’m2m ’: the pattern does only match columns
in tables called ’m2m ...’. On a match the type of the Column is returned.

Scala’s pattern matching makes null checks on attributes unnecessary. The
example of Listing 1.11 will not fail, even if the source Column’s type is null.
The ’ ’ pattern matches anything including null; null is only matched by null
(explicit null check) or ’ ’. Beyond that, a fine grained error handling is possible
with pattern matching: Each unsatisfying attribute occurrence can be addressed
explicitly with a case statement and the appropriate error handling code. This
allows for effective separation of actual logic (triggered by the desired input
pattern) from error handling code. A MatchError will only be thrown, if no case
matched at all. This can be prevented by providing a default case as the last
case statement.

Listing 1.12 demonstrates a possible rule written in ATL covering the pat-
tern match of Listing 1.11. First, null checks for the needed attributes are done
(line 7), and then the name of the owner is tested. The readability can suffer
from several nested If statements, and more complex pattern structure can eas-
ily lead to missing cases: The rule in Listing 1.12 for example does something for
all cases, except if type and owner are defined and the owner name is incorrect.

However, there is an issue with our approach: pattern matching with implicit
conversions to case classes is designed for trees and many models are graphs
(i.e., with references); a naive implementation of the implicit conversions to case
classes can lead to circular dependencies so that the implicit mechanism prevents
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Listing 1.12. An ATL version of the pattern matching example

1 rule ColumnTypeSelectTest {

2 from

3 c : Relational!Column

4 to

5 type : Relational!Type

6 do {

7 if(not c.type.oclIsUndefined() and not c.owner.oclIsUndefined()) {

8 if(c.owner.name.startsWith(’Family’)) {

9 type.name <- c.type.name;

10 }

11 } else {

12 type.name <- ’unknown’;

13 }

14 } }

the compile process from terminating. A solution is to traverse the containment
hierarchy (a spanning tree existing in each EMF model) twice: one time for
creating new objects and a second time for setting the cross references.

7 Related Work and Discussion

The general idea and best practices of internal DSLs have been extensively dis-
cussed by Martin Fowler on his blog (finally edited into a book [7]). A set of
patterns for internal DSLs in several languages has been published by Günther
and Cleenewerck in [8]. Scala’s potential as a host language for general DSLs has
been evaluated in [14]. Hofer et al. showed the extensibility of DSLs written in
Scala in [10]. Scala has already been used as a host language for a variety of inter-
nal DSLs, e.g., in [16] and [1]. Sloane showed how the term-based transformation
language Stratego can be implemented as an internal DSL in Scala [15].

Picard showed how to use Scala for EMFmodel transformations [13]. However,
no domain-specific model transformation constructs or syntax elements were
implemented. The work basically shows how to parse an EMF model from its
XMI serialization, create Scala objects from it, and how Scala as a GPL can be
used to implement transformations. Therefore, the fact that Scala is JVM-based
is not leveraged and there is no integration with EMF tooling.

Cuadrado and Molina used Ruby as host language for their MTL called
RubyTL [3,2]. Similar to the work presented in this paper, they designed RubyTL
to be a hybrid transformation language that uses declarative constructs to real-
ize pattern matching and rule selection and an imperative style to realize rule
actions. Furthermore, RubyTL is designed as an extendable MTL with the goal
to efficiently implement and evaluate new transformation techniques. In [5,4]
the authors facilitated these characteristics to research rule factorization and
composition techniques based on rule phasing (i.e., assign rules to consecutively
executed phases).
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Ruby is a dynamically typed language with fast prototyping capabilities but
also a lack of static type-safety. This is in direct contrast to our work with Scala.
Scala uses static type inference, which allows for a similar programming style
as in dynamically types language but preserves static type-safety. Furthermore,
Scala as a host language provides better tool support than RubyTL (or any
other dynamically typed language) due to the annotation of static errors and
superior content assist based on programming-time knowledge about the type
of any variable. Furthermore, RubyTL is not based on EMF or any other com-
parable technology, and works directly on an in-memory representation of XMI.
RubyTL therefore does not use any metamodel information and even if Ruby
was statically typed, RubyTL would have no types to work with. Additionally,
most existing modeling APIs are written in Java and as such can be used from
within Scala, but cannot (at least not without limitations) be used in Ruby.

However, our approach also shares some of the general disadvantages of in-
ternal DSLs: In contrast to external DSLs, code completion and error messages
are not tailored for the DSL. Therefore, some knowledge of the host language
is needed when using an internal DSL. Internal DSLs are easier extensible than
external DSLs (because no DSL-specific tools have to be adapted) but often ad-
vanced features of the host language are used in order to achieve a desired DSL
syntax. Therefore, the DSL’s implementation is sometimes hard to understand
which makes extensions to the DSL less straightforward. The complexity of the
DSL’s implementation can also show through in complex error messages. Finally,
the ability to mix MTL constructs with GPL code is also a disadvantage because
arbitrary GPL code seriously limits possibilities for formal reasoning.

8 Conclusions

In this paper, we used Scala to implement model transformation languages as
internal DSLs. We showed that Scala can be used as a host language for model
transformation languages and is flexible enough to create syntaxes that resem-
ble known model transformation languages, for example ATL. In [17], we also
implemented an MTL for bidirectional model transformations that makes more
use of advanced features of Scala’s type system. Since we use an internal DSL
approach, model transformation languages are easy to extend: language features
can be added and existing behaviour can be adopted to the specific needs of
one’s current transformation task. Furthermore, Scala is rooted in the Java pro-
gramming environment and existing modeling APIs (which are mostly written
in Java, e.g., EMF and anything written for it) can be used immediately. Fur-
thermore, transformations or helper methods that were already written in Java
can be reused, integrated and gradually migrated to the more concise means
that the internal DSL provides. Compared to other internal DSL approaches to
model transformations, Scala is statically typed based on type inference: it pro-
vides a clean syntax similar to dynamically typed languages, but still provides
the benefits of static type-safety. These benefits are (among others) compile
type warnings and errors as well as better code completion based on type infor-
mation. Compared to external languages, powerful tool support (including full
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debugging support) does already exist, even though not tailored for each spe-
cific internal DSL: especially error messages can be confusing. An IDE plug-in
could be provided to improve error messages or to provide templates and syntax
highlighting for the internal DSL. However, this would eliminate the advantage
of being independent from DSL-specific tools and their development.
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Abstract. Many model transformation languages of different nature
have been proposed during the last years, each one of them suitable for a
certain kind of transformation task. However, a complex transformation
problem may not fall into a single transformation category, making the
solution written in the chosen transformation language suboptimal, as
some concerns cannot be handled naturally.

To tackle this issue, we propose to define a model transformation
tool as a family of model transformation languages. Each member of
the family is a simple language intended to deal with a particular kind
of transformation task. In this paper we discuss the different issues in-
volved, such as design decisions, interoperability among languages, and
composability. We illustrate the paper with a transformation from UML
and OCL to Java, in which languages for pattern matching, mapping,
attribution and target-oriented transformations are used. Finally, the
approach is validated with a proof-of-concept implementation.

1 Introduction

Model transformation is one of the key elements in Model Driven Engineering
(MDE). Hence, in the last years a number of model transformation languages
of different nature have been proposed. As acknowledged by the classifications
of model transformation languages given in [4] and [13], each language provides
a series of features that make it more suitable to address a certain kind of
transformation problems. So far, two paths have been taken by transformation
language designers: a) keep the language focused or b) add more features to the
language in order to widen its scope. The first approach limits the applicability
of the language, while the second one tends to pollute the original design.

We have been working on an alternative design, in which a model transfor-
mation language is made up of smaller languages. Each language is focused on
a specific kind of transformation task, and altogether form a so-called family of
model transformation languages. In this way, a complex transformation prob-
lem could be split into smaller tasks using the most appropriate language for
each one of them, with the additional advantage of enhanced declarativeness
and intentionality, as languages are really tailored for the problem being solved.
Realizing this approach requires a way to make the languages interoperable, as
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well as composition mechanisms in order to specify how the results provided by
each language contribute to the global transformation result.

This paper reports the initial results of our work building a family of model
transformation languages, named Eclectic. We focus on two aspects: the main
design decisions which span all languages in the family, and language interoper-
ability and composability mechanisms which are the foundation of our approach.
To show the feasibility of the approach the paper is illustrated with a transfor-
mation from UML and OCL to Java, which is addressed using four languages of
Eclectic, for pattern matching, mapping, attribution and target-oriented trans-
formations. The paper also reports on a proof-of-concept implementation, which
includes textual editors and a compiler for the Java Virtual Machine (JVM),
that is freely available at [5]. The architecture of the tool is extensible so that it
would allow us to integrate domain specific transformation languages (DSTL).

Paper Organization. Section 2 explains the main design decisions, presents the
running example, and introduces four languages of Eclectic. Section 3 describes
the interoperability and composition mechanisms. Section 4 reviews some related
work. Section 5 gives some conclusions and outlines the future work.

2 Design of the Family

The design of a family of transformation languages must take into account two
main concerns: the design of the different languages that build it up, and how
to compose them which in turn will require making them interoperable.

In this section we will outline the design principles of Eclectic and illustrate
some of its member languages by means of a running example. Section 3 will
explain the interoperability and composability mechanisms for them.

2.1 Design Principles

The aim of our approach is to tame complex model transformations by promoting
intentionality. As a motivating example, ATL is well-known for being a simple,
declarative transformation language, but as the transformation problem at hand
moves away from being a mapping task, intentionality blurs. This is so because
non-declarative constructs such as lazy rules, imperative rules or complex navi-
gation code must be tangled with declarative code. Our design tries to solve this
issue by providing separate languages for different kinds of transformation task,
following a series of design principles:

– Few Features. The number of constructs of each language should be kept
as low as possible, including only those that are important to tackle the task
each language is intended to.

– Orthogonality. Each language should only be useful for a few tasks, avoid-
ing redundancy with respect to the ones addressed by other languages. This
will facilitate users choosing a language for each particular task.
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– Simple Syntax. The fact that few features will be included in each language
will facilitate the definition of a simpler and cleaner syntax than complex
languages (e.g, no need for statement separators). In addition, syntax should
highlight those constructs that are the essence of each language, while “hid-
ing” constructs that are more accidental.

– Lightweight Type Information. The amount of type information should
be low. This can be achieved with type inference (which would be facilitated
because languages are simple) or by relying on dynamic typing. Our current
implementation uses dynamic typing, but we plan to support type inference.

– Eclecticism.As a major design principle, we believe that each style of model
transformation has its own value to tackle certain problems, so we do not
restrict Eclectic to the languages considered so far, but we are looking into
other possible languages, and we are willing to contributions in this sense.

2.2 Running Example

The rest of the paper will be illustrated with a transformation that takes a UML
model plus an OCL model with invariants and preconditions, and generates a
Java model. We have used the UML meta-model of the Eclipse UML2 plug-in,
an OCL meta-model based on the ATL implementation, and the Java meta-
metamodel of MoDisco. Figure 1 shows relevant excerpts of them.

Class

Class

Declaration

TypeAccess

OclExpression

NavExp

feature:String
VariableExp

Type

name : String

method 1

VariableDcl

Property

name : String

Classifier
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  type 1

Method

Declaration
Statement

 * stms

      returnType 1 

Fig. 1. Excerpts of the meta-models involved in the running example. They have been
slightly simplified for the sake of clarity (e.g., renamings, hierarchy flattening).

In this transformation (uml2java) there are several aspects to consider. The
mapping between UML class models and Java classes is more or less straight-
forward, except for some cases that requires detecting concrete patterns. On the
other hand, translating OCL expressions to Java can be (partially) done with
templates that generate pieces of Java code, but it requires computing type in-
formation for an accurate translation. Finally, we restrict UML models to use
single inheritance.

In the rest of the section the languages are briefly introduced by showing an
excerpt of the running example. The examples in this section do not consider lan-
guage composition, but it is added in the next one. In addition, the development
of the languages that compose Eclectic is being inspired by existing languages of
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different nature. Thus, we will briefly comment on related work as the languages
are explained, although more details are given in Section 4.

2.3 Mapping Language

Establishing correspondences among meta-model elements in order to fix het-
erogeneities between semantically equivalent meta-models is the kind of trans-
formation task that rule-based model-to-model transformation languages in the
style of declarative ATL can handle naturally. For our initial prototype we have
chosen to create a simplification of ATL, called SMaps.

Listing 1 shows an excerpt of the mapping between UML and Java using this
language. The input and output models are indicated between parenthesis in the
transformation header (line 1). This style is followed in the rest of the languages
of Eclectic. As can be seen, mappings among source and target metaclasses are
specified using from - to (lines 4 and 14), and they may include modifiers such as
linking (stating how to relate both target elements). Mappings between structural
features are specified using ←. We allow the same reference to be mapped more
than once if it is multivalued (lines 10-11).

Conversions between datatypes and explicit transformations are done with the
notion of converter. A converter is basically a function that is offered as a library
(line 2 performs the importation) or can be specified as a mapping between
datatypes (lines 20-23). It is implicitly invoked using the the convert modifier
(line 7 and 8). The rationale for this notation instead of plain function calls is
to enhance text clarity, so that the reader clearly identifies the left part and the
right part of mapping (i.e., with a function call the right part of the mapping
is “wrapped” into the actual parameters). In our implementation, libraries of
converters are provided as Java classes.

1 mapping struct(uml) −> (java)
2 uses java conventions
3

4 from uml!Class to cd: java!ClassDeclaration, cu : java!CompilationUnit
5 linking cd.originalCompilationUnit = cu
6

7 cd.name <− name convert java conventions.camelCase
8 cd.visilibity <− visibility convert mapVisibility
9

10 cd.bodyDeclaration <− ownedAttribute
11 cd.bodyDeclaration <− ownedOperation
12 end
13

14 from uml!Property to m: java!MethodDeclaration, ta: java!TypeAccess
15 linking get.typeAccess = ta
16 m.name <− name convert java conventions.getterName
17 ta.type <− type
18 end
19

20 converter mapVisibility: uml!Visibility −> String
21 #vk public −> ’public’
22 #vk private −> ’private’
23 end

Listing 1. Excerpt of the mapping from UML to Java
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The execution semantics is a mix between ATL and RubyTL. Mappings cor-
respond to ATL rules, and the ← construct is a form of ATL binding. However,
binding resolution works as in RubyTL, taking into account the conformance
relationship of both the source and the target element, but, so far, only the first
target element is resolved as in ATL.

With the aim reducing the cluttering of the transformation text, we have
decided to do without navigation language (e.g., OCL), so that model navigation
must be done in separate navigation modules.

As can be observed the language is intended neither to extract implicit infor-
mation or to perform one-to-many transformations (when the number of target
elements of a mapping is not known before hand). Instead, it is focused on
resolving structural heterogeneities between semantically equivalent models. In
this line, we expect to evolve SMaps by considering constructs in the style of the
Mapping Operators (MOPs) proposed in [23].

2.4 Target-Oriented Language

This language, called Tao, is intended to address transformations mainly driven
by the structure of the target model. This roughly corresponds to the style of
model-to-text template languages, where fixed pieces of text are parameterized
with expressions that fill in the holes. This kind of transformations usually has a
high-degree of nesting, thus a design decision has been to consider object syntax
as a way to specify large instantiation sequences (similar to QVT syntax).

Listing 2 generates a Java class from an OCL specification, with one method
per OCL invariant. Templates are specified with template, and take one or more
parameters, being polymorphic on the first parameter (e.g., lines 15 and 18). We
have chosen this syntax because we plan to experiment with multiple-dispatch
templates. The instantiation of a new object is specified with model!Metaclass

{ assignments }, where assignments initialize attributes and references. For

1 tao gen java(uml, ocl) −> (java)
2 uses java conventions, string
3

4 template mapProgram(p : ocl!Program)
5 java!ClassDeclaration {
6 name = p.name convert java conventions.camelCase, string.concat(”Check”)
7 bodyDeclarations = p.invariants to java!Method {
8 name = name
9 visibility = ”public”

10 expressions = p.body with mapExpression
11 }
12 }
13 end
14

15 template mapExpression(expr : ocl!NavigationExpr)
16 ...
17 end
18

19 template mapExpression(expr : ocl!LetExpr)
20 ...
21 end

Listing 2. Generator from OCL to Java
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example, line 6 sets the name of the Java class by combining two converters,
where the result of the first one is the input of the second one. Then, line 7
initializes bodyDeclarations by creating one method per invariant defined in the
OCL program. Finally, line 10 invokes mapExpression explicitly.

As can be seen, this language has only a few elements yet it simplifies a task
that is sometimes cumbersome. Please note that, although some constructs such
as object-syntax or template invocation resemble parts of QVT, there is the
important difference that we have avoided complex mechanisms, for instance
QVT Operational initialization rules.

Finally, it could be possible to consider template languages that use the syntax
of the target language (e.g., Java) to make the transformation text more fluent.
In fact, these kind of languages could be integrated in Eclectic as libraries con-
tributed by third-parties, acting as domain-specific transformation languages.

2.5 Attribute Computation

Attribute grammars are a well known technique for specifying how to compute
properties of language constructs, called attributes, by defining their values in
terms of the attribute values of related constructs [1]. Attribute computation
is defined by rules (or equations), and the attribution system is in charge of
performing the evaluation by associating attribute values to syntax tree nodes,
propagating values through the nodes as needed. Transformation problems that
require propagating values top-down or bottom-up are typically difficult to ex-
press with some transformation languages (e.g., ATL, TGGs). In QVT it is
possible to use when and where clauses to propagate values, but “propagation
code” gets tangled with mapping code.

In this way, a simple language for attribute computation has been defined.
It is called SAttr. It supports synthesized attributes that propagate information
bottom-up, and inherited attributes that propagate top-down. It also includes
a simple expression language, as the essence of this kind of transformations is
to perform computations based on previously computed values. An attribution
transformation is composed of attribution rules. Each attribution rule matches
an element of a given metaclass and computes attribute values. To this end,
there are two basic constructs: attribute initialization and attribute access. The
expr[attr] ← right-part construct is used to initialize an attribute, and it has the ef-
fect of associating the value of right-part to attr for the element referred by expr. In
the case of synthesized attributes, self is used to refer to the element matched by
the rule. Similarly, attribute values can be accessed with the expr[attr] construct
(in this case using self[attr] to access an inherited attribute). Our implementation
schedules the execution according to the dependencies.

Listing 3 shows a piece of transformation that associates type information to
the elements of the OCL abstract syntax model (it is partially inspired in the
OCL specification). In this example, the type of each sub-expression is propa-
gated from the leaves using the type synthesized attribute (line 2), while con-
textual type information is provided by the env inherited attribute (line 3, an
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immutable map that associates a variable declaration with its type). In line 7, the
type of a navigation expression (NavExpr) is gathered by getting the type of the
receptor object (self.source[type]), and then looking up the type of the navigated
feature (the feature operation is a helper defined in a navigation library). As
another example, to deal with let expressions, line 11 adds a variable declaration
to the inherited env, computing the variable type as the type of the initialization
expression (so performing weak type inference). Then, it is propagated as an
inherited attribute so that it is available for the body expressions. Note that,
in line 16 the env attribute is used to gather the type of a variable reference
that points to a variable declaration. Finally, even though it is not shown in this
example, it is possible to create target elements if needed by interoperating with
languages with this capacity, as is the case of Tao (see Section 3.2).

1 attribution typing(uml, ocl) −> ()
2 syn type : uml!Classifier
3 inh env : !Map
4

5 rule ocl!NavExp
6 receptor[env] <− self[env]
7 self[type] <− self.source[type].feature(self.name).type
8 end
9

10 rule ocl!LetExp
11 body[env] <− self[env].put(self.varDcl, self.init[type])
12 self[type] <− self.body[type]
13 end
14

15 rule ocl!VariableExp
16 self[type] <− self[env].get(self.variable)
17 end

Listing 3. Collecting type information from OCL expressions

Our current design only considers basic features of attribution systems. Other
systems such as Kiama or Silver implement more complex features, and we
want to explore which ones are more useful in a model transformation setting.
Nevertheless, in its current state, we have found this language particularly useful
to compile expression languages to a low-level representation (see Section 3.1).

2.6 Pattern Matching

The languages shown so far just match a single model element. In order to
address transformations where more complex patterns have to be found, we
have included a simple pattern matching language in the family, named SPat.

Here we just briefly introduce the language, by means of the example shown
in Listing 4, which is completed in the next section. The GettableProperty pattern
gathers all public UML Property whose owning class does not contain an operation
whose name would collide with the corresponding Java getter method. As can
be seen this language is in the style of Tefkat, although other styles such as the
one of VIATRA2 one could be possible. Interestingly, the getterName converter
can be reused as a function call (line 4).
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1 pattern GettableProperty
2 forall p: uml!Property [ p.visibility = #pk public ] and
3 not exists o: uml!Operation [ p.owner.includes(o) and p.name = java conventions.getterName(a.name) ]
4 end

Listing 4. Matching properties that do not collide with an existing “get”

In this section we have commented on four languages that illustrates the
design of Eclectic. They have have been presented without taking into account
how to make them work together. Next section discusses the issues involved.

3 Language Composition

Our design based on a family of model transformation languages allows us to
decompose a transformation problem into subproblems, where each subproblem
is tackled with the most appropriate language. However, this poses two main
concerns: language composition and interoperability.

In this context, composition is the ability of combining different languages to
achieve a common task, while interoperability is the ability of two or more com-
ponents (transformation languages in this case) to exchange information and to
use it. There are two types of transformation composition: internal and external.
Internal transformation composition refers to the composition of transformation
constructs of a single language, while external transformation composition must
take into account how to compose heterogeneous constructs belonging to differ-
ent languages. Indeed, in this setting we are dealing with external transformation
composition which requires interoperability.

3.1 Interoperability

Transformation language interoperability has been regarded as an important
topic in model transformation [10]. However, so far, only limited forms of inter-
operability has been achieved [22].

JVM

IDC Runtime lib.

SMap SAtt SPat ...

EMF

Fig. 2. Eclectic architecture

Figure 2 shows the architecture of our solution.
Our approach to interoperability is based on a
common intermediate language, called Intermedi-
ate Dependency Code (IDC), so that each member
of the family compiles down to it. IDC is com-
posed of a few basic instructions (some of them
specialized for model manipulation), which use a
simplified form of Static Single Assignment (SSA)
to represent data dependencies between instruc-
tions [3]. IDC does not force any particular transformation style (e.g., rule-based
transformations) as it does not provide any notion of rule, but lower-level mech-
anisms. IDC is compiled to the JVM, and it uses a runtime library to deal with
different modeling frameworks (we currently support EMF).
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The key element of IDC is its ability to schedule the execution of several trans-
formations based on their data-dependences using continuations. A continuation
reifies the concept of “the rest of the computation”, so that execution state of a
given program can be saved into a continuation and restored later. This concept
is supported in some programming languages, for instance Scheme or Scala [16].
Basically, we use continuations to enable a transformation execution to be sus-
pended until a required piece of data (provided by another transformation) is
available. This provides a means to integrate heterogeneous languages. Addi-
tionally, as all transformations run over the JVM, method-level interoperability
is also supported. Due to space reasons we do not give a full explanation of IDC,
but more details are given in [17].

3.2 Composition

Our strategy to tackle transformation composition has been to identify abstract
relationships among transformation constructs, and reify them in each language
as a composition mechanism. The definition of each composition mechanism has
two aspects: how one language publishes or makes available the data it handles,
and how another language requires and consumes this data.

Based on our experience with model transformations, and during the pro-
cess of building Eclectic, we have identified four types of composition: feeding a
transformation rule or a pattern with some value(s), resolving a reference from a
source element to a target element, decorating model elements with virtual prop-
erties or operations, and configuring transformation definitions for execution.

Please note that this list is not exclusive, but others means of composition
are possible, for instance inheritance, if one can make a transformation written
in one language be extended by of another one written in another language, as
proposed in [22]. In the following we discuss these forms of composition, showing
how they are integrated in Eclectic.

Feeding Transformation Constructs. Transformation constructs such as
transformation rules and patterns, are normally fed with model elements in order
to start processing them. Sometimes a rule embeds the pattern (e.g., ATL), while
sometimes both constructs are separated (e.g., VIATRA2). In any case, this can
be seen as an abstract relationship where the transformation engine feeds some
language construct with model elements (e.g., a pattern) or a transformation
construct feeds another transformation construct (e.g., a pattern feeding a rule).

Both SMap and SAttr use simple patterns based on the name of a metaclass
(i.e., model!Metaclass syntax) but if we want more complex patterns (such as the
one shown in Listing 4) we need to include in each language a way to specify
patterns or filter expressions. Hence, we would like a composition mechanism
that does not require to change these languages to refer to a pattern expressed
with SPat. Our solution has been to make the result of a pattern available as a
new type, that is instantiated for each match of the pattern. Listing 5 shows the
GettableProperty pattern, that uses the providing keyword to initialize the result
of the match (line 7). We have included the possibility of assigning self to some
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object, so that the result is referentially equal to such object (p in this case),
but extended with additional properties. Now, Listing 6 uses the pattern as if
it were a normal metaclass (line 5) but it is actually refering to the result of a
pattern, that may be the result of performing a complex search.

1 spat umlext(uml)
2

3 pattern GettableProperty
4 forall p: uml!Property [p.visibility= #pk public] and
5 not exists o: uml!Operation [ p.owner.includes(o) ...]
6

7 providing self = p,
8 self.isPublic = true
9 end

Listing 5. Publishing a pattern in SPat

smap struct(uml) −> (java)
uses java conventions
uses umlext

from umlext!GettableProperty to
get: java!MethodDeclaration,
ta: java!TypeAccess

// Same as as original transformation
end

Listing 6. Using a pattern in SMap

What is distinctive of this approach is that it separates patterns from rules
without requiring any special syntax, but there is a seamless integration making
a pattern result looks like a type. Likewise, recursive patterns in SPat are allowed
using the same strategy.

Resolving References. Resolving a target element from a source element that
is pointed by a reference is a primary element of model-to-model transformation
languages. ATL, for instance, performs this task implicitly through a binding
construct (←). In this case, we need to resolve relationships established by dif-
ferent languages in their own manner.

We take inspiration from Tefkat’s tracking classes and the proposal of [12] for
our mechanism to make source-target correspondences available. In these works,
the underlying idea is to establish an interface between transformation rules by
means of an intermediate model (which can be considered a trace model, where a
tracking class is a type of trace link), so that there is a layer of indirection through
this model to refer to the data produced by another rule. We generalize this
mechanism to span several languages, making the intermediate model implicit.

In the case of SMap, the strategy is to tag each mapping, so that the set of
tags of a transformation is the interface of the transformation. From an external
program, a tag is as a new type of trace link that keeps a correspondence, and
the interface is the set of trace link types that can be instantiated by a given
transformation execution. Listing 7 shows how the SMap transformation uses a
tag (classifier in line 4) to make a mapping resolvable from other transformations.
Implicitly, a trace link called classifier is created, that has a source reference
pointing to a UML class, and two target references pointing to the cd and cu

elements (lines 5-6). Please note that in SMap a tag is not the same as a typical
rule name, since the same tag may be contributed by different mappings, for
instance the classifier tag applies both to mappings from UML classes to Java
classes as from UML primitive types to Java.

In SAttr, however, there is no need to explicitly set the interface with tags,
but it is automatically derived. In the example of Listing 3 the interface consists
of two trace links, one for each declared attribute, type and env. An external
transformation would refer to an attribute value as if it were a trace link.
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Transformations written in other languages, like Tao, may need to refer to
these trace links. To this end, the following syntax can be used:
transf!trace link(.target)? where transf is the name of a external transformation,
trace link is the name of the trace link that will be used to resolve the source
element to a target element, and target is the name of the target element to be
gathered (if not given the first target element is used).

Listing 8 shows how the gen java Tao transformation interoperates with SAttr
and SMap (struct and typing transformations). Line 6 shows how to obtain the
Java getter method that corresponds to a given UML property (the uml property

helper is part of a navigation library that links the OCL and UML models).
This mapping between properties and methods has been performed by the struct

transformation (Listing 7, lines 10-14). A more complex example is also shown
in line 12, where the UML type of a let expression that has been computed in
the typing transformation is gathered (expr[typ!type]), and from obtained type,
the corresponding Java is next obtained.

1 mapping struct (uml) −> (java)
2 uses java conventions
3

4 [classifier]
5 from uml!Class to cd: java!ClassDeclaration,
6 cu : java!CompilationUnit
7 ...
8 end
9

10 [ get ]
11 from uml!Property to
12 m: java!MethodDeclaration,
13 ta: java!TypeAccess
14 end

Listing 7. Tagging mappings

tao gen java(uml, ocl) −> (java)
uses typing, struct

template mapExpression(expr : ocl!NavExp)
java!MethodInvocation {
method = expr.uml property[struct!get]

}
end

template mapExpression(expr : ocl!LetExp)
java!VariableDeclarationExpression {
type = expr[typing!type][struct!classifier.cd]

}
end

Listing 8. Resolving references

Decorating Model Elements. The possibility of adding virtual properties
and operations (sometimes known as helpers) to model elements has been used
so far as a way to enable navigation libraries in model transformation lan-
guages [9][15][2]. Although we have not shown any example of this scenario,
Eclectic supports navigation libraries as well.

Nevertheless, we have also used this feature as a way to enable invocation of
Tao templates. The interface of a Tao transformation is just the set of rules seen
as operations, which return target elements. This form of interface is independent
of how these operations have been implemented (with Tao in this case), but
those transformations requiring explicit creation of elements simply invoke one
operation expecting one or more target elemens as a result.

Listing 9 shows a piece of an SMap transformation that invokes the
mapPrecondition operation to generate an assert expression from an operation
precondition (lines 9-10). From the point of view of SMap, Tao templates are
converters. This means that at the SMap level the way to use languages that
require explicit rule invocation is through a converter.

The SAttr language is also allowed to use Tao transformations. This is im-
portant as SAttr does not have any construct to create new elements. As we
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explained, SAttr provides a simple expression language, so we just rely on nor-
mal method calls as the composition mechanism.

Configuring Transformation Definitions. The mechanisms discussed so far
allow us to use the results produced by a transformation in another one written in
a different language. To this end, the uses keyword establishes a dependency with
an external transformation. However, we still need to configure the composite
transformation which consists of the smaller transformation programs. We also
would like to consider the configuration of transformation chains (i.e., feeding a
transformation with the output of another).

We have devised a simple language to specify composite transformation pro-
grams and transformation chains. It basically treats transformations as functions
with zero or more parameters, and with zero or more result models. There is a
special construct, composite, which performs all the necessary plumbing, at the
IDC level, to schedule two or more transformations to be executed together as a
unit. Listing 10 shows the complete transformation chain for the UML2Java ex-
ample. First of all, a new composite transformation (uml2java si, lines 2-7), which
uses the four transformations previously presented, is defined. When the same
model name is used as output (lines 3-4) it means that both transformations
contribute to it. If a transformation program has no output models, it is indi-
cated using an underscore (lines 5-7). Note that we use the term transformation
to refer to a piece of program that just contributes to a global result, although
it does not perform any actual transformation (e.g., umlext that find patterns).

The composite transformation uml2java si, however, does deal with multiple
inheritance, so the first step in the chain would be to rewrite the UML model
to remove multiple inheritance (e.g., introducing interfaces). Line 9 invokes the
rewriting transformation, remove multiple obtaining a UML model with only single
inheritance (uml sing inh)1. Afterwards, the composite transformation is invoked
normally (line 12), obtaining the target model. Please note that our composi-
tion mechanism is able of dealing with transformations that depend on one an-
other. This is possible because our engine is based on continuations as explained in
Section 3.1.

1 mapping struct (uml) −> (java)
2 uses gen java
3

4 from uml!Operation to m: java!Method
5 m.name <− name
6 // The mapPrecondition template will create
7 // a java!MethodInvocation to assert the
8 // precondition (if it exists)
9 m.bodyDeclaration <− m.pre

10 convert gen java.mapPrecondition
11 end

Listing 9. Invoking a template from
SMap

1 chain uml2java(uml, ocl) −> (java)
2 composite uml2java si(uml, ocl) −> (java)
3 java = struct(uml)
4 java = gen java(uml, ocl)
5 = typing(uml, ocl)
6 = umlext(uml)
7 end
8

9 uml single inh = remove multiple(uml)
10 java = uml2java si(uml single inh, ocl)
11 end

Listing 10. Configuring UML2Java

1 We have not implemented an in-place language in Eclectic yet, but it can be simulated
with a copy transformation.
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The task of writing transformation chains has been typically addressed with
build scripts or Java programs. In our case, this language simplify writing trans-
formation chains considering transformations as functions with a number of in-
put/output models (in the style of MCC [11]). Besides, it provides facilities to
compose transformations, and we are working on giving support to higher-order
transformations.

4 Related Work

The notion of family of languages has been used both to refer to independent
DSLs that share common implementation artefacts [7][21] and to refer to a set
of related languages that must be composed to achieve a common goal [18].
For instance, UML [14] can be considered as a family of related modeling lan-
guages, each one intended to address some concern (e.g., structure, behaviour,
deployment) of object-oriented modeling, which share a common core.

In the context of model transformations there are some examples of fami-
lies of languages. First of all, the QVT architecture is similar to our proposal.
However, there is a significant difference, as we advocate for simple languages,
while QVT Relational and Operational are complex languages. Epsilon [6] is a
family of model management languages, where each language is intended for a
model management task, such as validation, migration or model transformation.
There is a base language, EOL, that is common to all of them. These languages,
however, work independently, and they are composed by means of ANT scripts
that feed one language with the ouput of another. TransML [8] is a family of
languages for modeling model transformations. It is organized as a stack, with
lower languages refinining the upper ones. Finally, ATL has two basic execution
modes: normal mode that corresponds to model-to-model transformations, and
refining mode that corresponds to in-place transformations, thus ATL can be
considered as a family with two languages.

In the context of program transformation, Kiama [19] is a Scala library for
language processing that provides several internal languages for describing at-
tribute grammars, tree rewriting, abstract state machines, and pretty printing.

Composition of heterogeneous rule-based transformation languages is studied
in [22], where a common virtual machine, called EMFTVM, is used to implement
ATL and a rewriting language. Our approach is also based on an intermediate
language, but with different characteristics. EMFTVM provides a common no-
tion of module and transformation rules, which enables a common semantics for
module import and rule inheritance. In our case, the intermediate language pro-
vides more general composition services (see Section 3), so that each language
of Eclectic is allowed to have its own semantics. For instance, this would allow
us to integrate a purely imperative language in the family (i.e., with no rules).

Creating chains of model transformations is a widely used technique to split
complex transformation problems [20][11]. In these chains the input of one trans-
formation is just fed with the output of a previous one, which has the disadvan-
tage that the transformation execution context is lost so actual interoperability
is not possible (unless complex architectures are used [24]).
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5 Assessment and Future Work

In this paper we have presented a family of model transformation languages,
called Eclectic. Our aim is to address complex transformation problems by split-
ting them into smaller problems that can be solved with simple languages. How-
ever, this requires a careful design of the different languages as well as taking
into consideration interoperability and composability issues. Here, we have pre-
sented the design and composition mechanisms of Eclectic, which have been illus-
trated by means of a running example. Besides, the feasibility of the approach
is demonstrated by means of an proof-of-concept implementation available at
http://sanchezcuadrado.es/projects/eclectic.

As a summary, Table 1 relates the languages and the composition mecha-
nisms presented in this paper. An entry with Use means that a language can
interoperate with another language that has an entry with Enable for the same
composition mechanism. For instance, all languages (except Chain) are able to
invoke operations that decorate models elements, but Tao is the only language
that currently decorates models. The SPat/Decorating entry is special because
in this language only methods without side-effects are allowed, which means that
it could interoperate with a navigation library but not with a Tao program.

Table 1. Summary of mechanisms and languages

Feeding Resolving Decorating Composing
Mapping (SMap) Use Use, Enable Use Enable
Attribution (SAttr) Use Use, Enable Use Enable
Target-oriented (Tao) - Use Use, Enable Enable
Pattern Maching (SPat) Use,Enable Use Use* Enable
Configuration (SChain) - - - Use, Enable

As can be observed in the table, an important aspect of our design is that
languages are loosely coupled, so that it is possible to evolve members of the fam-
ily without affecting the other languages. In fact, new languages could be added
seamlessly. This is particularly important to enable interoperability with domain-
specific transformation languages (DSTL). We envision an scenario where part
of a complex transformation is written with Eclectic, and it is completed and
extended by means of a DSTL that addresses variable parts.

In principle, one possible drawback of this approach is learning facility. How-
ever, we have tried to keep the languages small and with a similar syntax so
that one can learn how to use them just looking a few examples. In addition,
we believe that this approach enhances intentionality of the transformation text,
which favours comprehensibility.

One concern that we would like to address is the fragmentation of the trans-
formation code. Being languages with few features, sometimes one has to rely on
other languages to perform simple operations. Thus, further evaluation is needed
to assess the real possibilities of the approach. One such evaluation would be to
apply Eclectic to transform other UML models apart from the class diagram,
testing the transformations with large models to benchmark the performance of
our engine.

http://sanchezcuadrado.es/projects/eclectic
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Finally, we have presented several proof-of-concept components of Eclectic,
but further experiments are need to find out simpler and even more compact
constructs. Additionally, we are looking into how to integrate other transforma-
tion styles such as in-place and bidirectional transformations.
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Abstract. Model-to-model transformations are often employed to establish trans-
lational semantics of Domain-Specific Languages (DSLs) by mapping high-level
models into more concrete ones. Such semantics are also executable when there
exists a target platform able to execute the target models. Conceiving a transfor-
mation that targets a low-level language still remains arduous due to the large
semantic gap between the DSL and the corresponding target language. In this
respect, depending on the domain of the DSL, this task can be made easier by
reusing an existing platform and bytecode language for that domain, as for in-
stance the EMF Transformation Virtual Machine (EMFTVM) for the domain of
model transformation. This paper defines executable semantics for EMFMigrate,
a model transformation language specifically designed for managing the cou-
pled evolution in model-driven development. To this end, the approach considers
EMFTVM as the runtime engine targeted by the proposed semantic mappings.

1 Introduction

Domain-specific languages [1] (DSLs) are software languages which allow the designer
to express problems in terms of concepts proper to a given application domain. A DSL
essentially consists of an abstract syntax, the set of language concepts and their re-
lationships usually given in terms of a metamodel; a concrete syntax, the (textual or
graphical) notation that the end user will use to specify programs conforming to the
abstract syntax; and a semantics, the meaning of the language constructs by means of
corresponding semantic mappings [2]. Among the available approaches to semantics,
model-to-model transformations are often employed to establish translational seman-
tics [3] of a DSL by mapping its metamodel to those of low-level programming lan-
guages and platforms. When there exists a target platform able to execute the target
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models, then the semantics of the DSL is executable too. However, writing a transfor-
mation that targets a general-purpose programming language, or a bytecode/assembly
language, still remains arduous due to the large semantic gap between DSL and target
language [4].

Depending on the domain of the DSL, the task of providing executable semantics can
be made easier by reusing an existing runtime engine for that domain. Such a runtime
engine would support DSL primitives to reduce the semantic gap between the DSL
and the runtime engine, and provides dedicated facilities for source languages, such as
source-level debugging. Also, the fact that multiple languages reuse a common runtime
engine means that the runtime engine receives more exposure to real-world usage. This
translates into a more stable and mature runtime engine.

This paper proposes to use the EMF Transformation Virtual Machine (EMFTVM)
as a reusable runtime engine for the model transformation domain. EMFTVM was
conceived as a common runtime engine for heterogeneous model transformation lan-
guages [5], and provides a high-level bytecode metamodel to express transformations.
Domain-specific language primitives are part of the bytecode metamodel, such as ex-
plicit transformation modules and rules, including their composition mechanisms, and
model manipulation instructions. Since the bytecode is represented as a metamodel, as
aforementioned the DSL semantics may be given in terms of a model transformation,
e.g. in ATL [6], and executed in EMFTVM itself. Moreover, the bytecode metamodel
implementation enables runtime performance optimizations by automatically collecting
low-level information, such as local variable slot assignment, maximum stack usage,
and instruction branch offsets. A discussion on such aspects can be found in [5].

We show how EMFTVM can be used for providing executable semantics to EMFMi-
grate [7], a DSL dedicated to the management of the coupled evolution1 of metamodel
and a wide range of related artifacts (e.g., models, transformations, and concrete syntax
specifications). Whenever a metamodel undergoes modifications such artifacts might
become invalid and demand specific adaptation in order to consistently recover their va-
lidity. In this respect, EMFMigrate provides a way to express metamodel changes, and
use those changes to drive the adaptations of the affected artifacts. The EMFMigrate
language itself is a domain-specific transformation language, that allows one to specify
how a model should be transformed in order to work with the new metamodel. As an
example, an ATL transformation is automatically adapted by means of an EMFMigrate
program as a consequence of the modifications operated on the source metamodel.

By leveraging the primitive semantics of EMFTVM, it is possible to give EMFMi-
grate a corresponding semantics and implementation. In this respect, an ATL transfor-
mation has been developed to translate EMFMigrate programs to EMFTVM bytecode.
The development of the transformation took ten days for two people, which is very ef-
ficient if compared with alternative methods as discussed later in the paper. Because
EMFMigrate is a rule-based language the built-in rule construct of EMFTVM can be
used directly, and the general rule matching/application behaviour does not need to
be programmed explicitly. For instance, the OCL implementation provided by EMF-
TVM can be completely reused to implement the filter mechanisms of EMFMigrate.

1 The terms coupled evolution and co-evolution are used interchangebly throughout this paper,
in the literature the term co-adaptation (e.g., [8]) is also used.
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Alternatively, additional efforts would have been required to implement a parser for
OCL and its semantics which is known to be complex. As a result, EMFMigrate lever-
ages the proven functionality of EMFTVM, its debugging facilities, and integrates with
other languages that target EMFTVM, such as ATL and SimpleGT2.

The remainder of this paper is structured as follows: In section 2 we introduce the
EMFTVM bytecode language, and in section 3, we introduce the EMFMigrate lan-
guage. In section 4, we demonstrate how EMFMigrate is implemented on top of EMF-
TVM. In section 5, we discuss related work. Finally, section 6 concludes this paper.

2 EMFTVM

The EMF Tranformation Virtual Machine (EMFTVM) is a virtual machine for model
transformation/manipulation on top of the Eclipse Modeling Framework (EMF). It is a
stack-based VM (i.e. instructions communicate values via a stack), and uses a low-level
bytecode language to describe model transformations. Three important features of this
bytecode language are i) that it is represented as an EMF model, and that it supports
ii) first-class rules and iii) closures. Closures are nested, nameless functions that can
be invoked or passed as parameters to other functions. These features make it easier to
compile a source language to EMFTVM bytecode: any model transformation language
with EMF support can be used to implement the compiler, rule-based source languages
may directly target the rule construct, and each (executable) source language expression
element can be translated to a single EMFTVM closure (one-on-one mapping).

EMFTVM bytecode is organised into modules, which represent self-contained units
of execution. Each module consists of a number of fields, operations, and rules. Fields
and operations can be static or dynamic, similar to Java fields and methods. Modules
also specify a number of input, in/out, and output models. This distinction allows one
to enforce read-only or write-only constraints at run-time: input models are read-only,
output models write-only, and in/out models can be read and written. Finally, modules
may import other modules.

Instructions are organised into code blocks. Fig. 1 shows the structure of code blocks.
Code blocks are executable lists of instructions, and have a number of local variables.
Code blocks are used to represent operation bodies and field initialisers. Code blocks
may also have nested code blocks, which effectively represent closures in EMFTVM.

EMFTVM’s nameless function support makes it an implementation of lambda cal-
culus, and hence a Turing-complete language. Although this may be considered a nec-
essary precondition for any common runtime language, the real value of EMFTVM of
course lies in its domain-specific primitives. The notion of modules and rules, and their
configurable semantics, allow a language designer to map their source language module
and rules directly to their EMFTVM counterparts.

EMFTVM rules consist of input elements, output elements, a matcher code block,
applier code block, and post-apply code block. This distinction between matcher, ap-
plier, and post-apply allows one to execute rules in stages: the matcher filters potential
input element matches, the applier assigns element properties and deletes elements,
and the post-apply block contains code that should be run after a rule has been applied.

2 http://soft.vub.ac.be/soft/research/mdd/simplegt

http://soft.vub.ac.be/soft/research/mdd/simplegt
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Fig. 1. Structure of EMFTVM rules and code blocks

EMFTVM provides a framework for automatic matching and tracing, which invokes
these three different code blocks at specific stages.

Input elements can have a binding code block. This allows EMFTVM to apply a
search plan strategy [9] in its automatic matcher. Each binding block calculates the
valid values for an input element, given the values of the input elements that have al-
ready been bound (either by iteration or by another binding). Furthermore, rules have
a name that is unique within its module, and can have a number of super-rules. These
super-rules are stored as names only, and are resolved at load-time, when rules are com-
posed. This is done to facilitate interaction with the module import mechanism. Module
import, super-rules and rule inheritance are further explained in [5].

Rules can be abstract, which means that they are only applied in combination with a
non-abstract sub-rule. A rule may create default traces, which allows the transformation
module to resolve target elements from a (list of) source element(s). Default traces have
as consequence that the same input pattern may not be matched by another rule that
creates default traces, as this would result in ambiguous source-target value resolution.
Rules may also match against distinct elements, which means that no two elements in a
single input pattern match can be equal.

Finally, rules have an execution mode, which can be either manual, automatic single,
or automatic recursive. Manual rules have to be explicitly invoked. Automatic single
rules are matched once, then applied once by the automatic matching framework. Au-
tomatic recursive rules are matched and applied by the automatic matching framework
until there are no more matches.

EMFTVM provides two built-in composition mechanisms: module import and rule
inheritance. As these composition mechanisms work at the level of the bytecode, it is
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possible to compose heterogeous transformation languages, as long as they compile to
EMFTVM bytecode. A detailed description of the composition semantics can be found
in [5].

3 EMFMigrate

Similarly to any software artefacts, metamodels can evolve over time [8]. Since mod-
els, transformations and other modelling artefacts are defined according to correspond-
ing metamodels, proper co-evolution techniques have to be provided to propagate the
changes operated on a given metamodel to those modelling elements depending on it.
The metamodel/model co-evolution problem has been already intensively explored and
a research corpus is already available. Most of the efforts are focusing on metamod-
el/model co-evolution (e.g., [10,11,12,13,7]), but also transformations (e.g., [14]) and
supporting tools (e.g., [15]) have been taken into account too. At the moment, a com-
prehensive approach capable of dealing with the co-evolution of the different artefacts
in a homogeneous manner, i.e., adopting the same tools and techniques for the different
kinds of artefact adaptations, is still missing. As a consequence, keeping the metamod-
els and all the artefacts depending on it in a consistent state requires the modeller to
deal with a wide range of techniques, languages, and tools.

EMFMigrate [7] is an attempt aiming at supporting the coupled evolution in general,
in the sense that it is not restricted to specific kinds of artefacts. It allows the declar-
ative specification of migration strategies for different modelling artefacts affected by
the same metamodel modifications. The approach consists of a DSL which provides
modellers with dedicated constructs for i) specifying migration libraries, which aim
to embody and enable the reuse of recurrent artefact adaptations; ii) customizing mi-
grations already available in libraries; and iii) managing those migrations which are
not fully automated and that require user intervention. In other words, the metamodels
refactorings originate different adaptations depending on the kind of artefact to be kept
consistent, each adaptation is formalized in a library. Recurrent adaptations are spec-
ified in default libraries which can be in turn customized in order to address ad-hoc
needs. An EMFMigrate specification is given as follows:

1migration migrationID;
2include library;
3migrate A : MM with Delta {
4 rule mr1
5 [guard1] rewritingRule∗

6 rule mr2
7 [guard2] rewritingRule∗

8 ...
9 rule mrn

10 [guardn] rewritingRule∗

11}

List. 1.1. Simple EMFMigrate migration program

In particular, a migration program is able to migrate the artefact A, conforming to
the metamodel MM, according to the differences in the model Delta, conforming to
the difference metamodel proposed in [16] already applied to other co-evolution cases
(e.g., [10,17]). The parameters A, MM, and Delta are either specified within the program
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Fig. 2. EMFMigrate language metamodel

(as for the transformation and delta models in List. 1.3) or in a launch configuration di-
alog. The migration is specified in terms of migration rules mri. Each rule is applied
on the artefact A if the corresponding guardi evaluated on the difference model Delta
holds. The body of a migration rule consists of a sequence of rewriting rules like the
following

s[guard] → t1[assign1]; t2[assign2]; . . . tn[assignn]

where s, t1, . . ., tn refer to metaclasses of MM, and guard is a boolean expression
which has to be true in order to rewrite s with t1, t2, and tn. It is possible to specify the
values of the target term properties by means of assignment operations (see assigni).

As said above, an EMFMigrate specification can include libraries consisting of recur-
rent migration rules. For example, the EMFMigrate specification in List. 1.1 includes
the library ’myLib.mig’. The definition of a migration library for managing the adap-
tation of artefacts conforming to a metamodel MM is given as follows:

1library ’myLib.mig’ : MM{
2 rule mr1
3 [guard1] rewritingRule∗

4 rule mr2
5 [guard2] rewritingRule∗

6 ...
7 rule mrm
8 [guardm] rewritingRule∗

9}

List. 1.2. Simple EMFMigrate migration library

Fig. 2 shows the metamodel of EMFMigrate. Migration is the root metaclass of
the metamodel. By means of Migration instances, it is possible to specify a library or
a migration program (see the metaclasses MigrationLibrary) and MigrationProgram,
respectively). Both of them consist of migration rules (see Rule) whose application
depends on a guard (see the reference filter typed OpDef ). If the guard evaluated on
the delta model holds, the corresponding migration rules (see RewritingRule) are ap-
plied. Each rewriting rule consists of a left hand side (see MigratorSX) specifying the
elements which have to be migrated as specified in the right hand side of the rule (see
MigratorDX).
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1migration migrationExample;
2migrate "petriNet2PNML.atl": ATL with "PN1_PN2.delta" {
3 rule renameClass[
4 class c=changeClass(c1:class) where {
5 set name= %newName;
6 }
7 ]
8 {
9 o1 :OclModelElement where[

10 name= c1.name
11 ] ->
12 o2 :OclModelElement [
13 name = newName
14 ]
15 }
16}

List. 1.3. EMFMigrate program for adapting a sample ATL transformation

To discuss an exemplar application of EMFMigrate, List. 1.3 shows a migration pro-
gram defined for managing the adaptation of the simple petriNet2PNML ATL trans-
formations with respect to the changes represented in the PN1 PN2.delta delta model.
The considered ATL transformation is in the left-hand side of Fig. 3 together with its
representation as a model conforming to the ATL metamodel (see the right-hand side of
the same figure). Such a transformation is able to generate a Petri Net Markup Language
(PNML) model from a PetriNet one. The delta model, which is not shown here due to
space limitations, represents the differences between the two versions of the PetriNet
metamodel shown in Fig. 4. The new version of the metamodel has been produced by
operating a number of changes, such as: i) the metaclasses TransitionToPlace and
PlaceToTransition have been added; ii) the new metaclass Arc has been added
as a superclass of TransitionToPlace and PlaceToTransition, iii) the meta-
class Net has been renamed as PetriNet, and iv) the the old references places and
transitions in the old Net metaclass have been merged in the elements reference

Fig. 3. Sample ATL transformation rule and its abstract syntax
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a) Initial version b) Revised version

Fig. 4. Different versions of the source PetriNet metamodel

of the new PetriNet metacalass. The dashed lines in Fig. 3 denote the ATL transfor-
mation elements, which have been affected by the operated metamodel changes.

The migration in List. 1.3 is able to adapt the transformation in Fig. 3 with respect
to the renaming operation performed on the initial metaclass Net in Fig. 4.a. In fact,
the guard of the migration program in List. 1.3, lines 3–7 matches with the renaming
operation performed on the metaclass Net to obtain the final PetriNet in Fig. 4.b.
In case of metaclass renaming the considered ATL transformation can be adapted by
replacing all the occurrences of the old metaelement with the new one (see List. 1.3,
lines 9–14). By considering the transformation in Fig. 3, the execution of the migration
program in List. 1.3 adapts the input pattern PetriNetMM0!Net of the rule Net by
replacing it with the new PetriNetMM0!PetriNet.

More complex scenarios can be managed by means of EMFMigrate. However, the
EMFMigrate validation is beyond the purpose of this paper, which instead focuses on
the adoption of EMFTVM for providing semantics of DSLs in the model transformation
domain, such as EMFMigrate. In this respect, the next section shows how the semantics
of EMFMigrate are established by harnessing EMFTVM.

4 Implementing EMFMigrate with EMFTVM

In this section we describe how the semantics of EMFMigrate are defined by means of
model-to-model transformations targeting the EMFTVM bytecode metamodel. In par-
ticular, Section 4.1 describes the mappings between EMFMigrate and EMFTVM, and
how these mappings are implemented in ATL. Finally, section 4.2 discusses the bene-
fits of adopting EMFTVM to implement EMFMigrate instead of using more traditional
languages, such as Java.

4.1 Mapping of EMFMigrate Constructs to EMFTVM Constructs

As the EMFTVM bytecode language is based on a metamodel, model transformations
can be used to translate EMFMigrate specifications to EMFTVM modules. Fig. 5(a)
shows how an ATL transformation module translates EMFMigrate into EMFTVM.
Fig. 5(b) shows how the generated EMFTVM module is then executed on top of the
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(a) Generation of an EMFTVM module out of an EMFMigrate specification

(b) Execution of the generated EMFTVM module

Fig. 5. Executing EMFMigrate specifications

existing runtime engine infrastructure to obtain a migrated version of the modelling
artefact – in this case an ATL transformation module. In the remainder of this section,
we will discuss how the EMFMigrate to EMFTVM transformation3 is organised, and
what patterns are used to perform the translation.

Table 1 lists the correspondences between the EMFMigrate and EMFTVM constructs.
The top part refers to constructs which are used to form migration programs, while the
bottom part refers to simple and nested expressions, as discussed later in this section.
Additionally, at the end of the section details about debugging aspects are provided.

Migration Programs. By referring to the metamodels illustrated in Fig. 1 and Fig. 2,
EMFMigrate programs are contained in migrations, which are mapped to EMFTVM
modules. Migrations can include libraries, which maps to EMFTVM module import.
The model-to-be-migrated is mapped to an in/out model in EMFTVM, while the delta

Table 1. Mapping of EMFMigrate constructs to EMFTVM constructs

EMFMigrate construct → EMFTVM construct

migration → module
include → imports

migrated model → in/out model
delta model → input model

rule → automatic single default rule
rewriting rule → input and output elements for containing rule

rewriting rule output bindings → code in rule applier block
rule filter expression → code in rule matcher block

rewriting rule “where” expression → code in rule matcher block

3 http://tinyurl.com/emig2EMFTVM-atl

http://tinyurl.com/emig2EMFTVM-atl
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model is mapped to an input model (i.e. read-only). This is done because the model-
to-be-migrated is transformed in-place. EMFMigrate rules consist of a filter expression
and a number of rewriting rules. The rule itself is mapped to an automatic single default
rule in EMFTVM, just like ATL matched rules. The filter expression becomes part of
the EMFTVM rule’s matcher code while the list of rewriting rules provide the input and
output elements for the EMFTVM rule. Each rewriting rule can also provide a “where”
clause, which becomes part of the EMFTVM rule’s matcher code block, and can provide
output bindings, which become part of the EMFTVM rule’s applier code block.

1rule MigrationProgram {
2 from s: EMig!MigrationProgram in IN
3 to t: EMFTVM!Module (
4 name <- s.name,
5 sourceName <- s.name + ’.emig’,
6 rules <- s.rules,
7 features <- Sequence{main},
8 inputModels <- Sequence{delta},
9 inoutModels <- Sequence{inmodel}),

10 ... ,
11 ln: EMFTVM!LineNumber (
12 startLine <- s.line,
13 endLine <- s.endline,
14 startChar <- s.offset,
15 endChar <- s.endoffset)
16}

List. 1.4. EMFMigrate MigrationProgram rule excerpt

List. 1.4 shows an excerpt of the “MigrationProgram” transformation rule, which
transforms an EMFMigrate migration into an EMFTVM module. Lines 5 and 11–15
are related to debugging, which is discussed later in the section.

Simple Expressions. The pattern used for translating expressions is different, as shown
in List. 1.5. Expressions are mapped to EMFTVM code blocks, which can be invoked
from the surrounding source model element using the InvokeCb instruction (see List. 1.5,
line 13). In this way, the compiler can abstract from the specific expression type used,
as all expression types are mapped to a code block. In the case of nested expressions,
the current expression can specify the nested expression as a nested code block, and
invoke that code block at the desired time using InvokeCb.

1rule FilterMigratorDX {
2 from s: EMig!FilterMigrator in IN (not s.isSX)
3 to t: EMFTVM!CodeBlock (
4 code <- Sequence{invokecb_value, invoke_resolve, load_migrDXObj, setFeature},
5 nested <- Sequence{s.value},
6 lineNumbers <- Sequence{ln}),
7 ln: EMFTVM!LineNumber (
8 instructions <- Sequence{invokecb_value, invoke_resolve, load_migrDXObj,

setFeature},
9 startLine <- s.line,

10 endLine <- s.endline,
11 startChar <- s.offset,
12 endChar <- s.endoffset),
13 invokecb_value: EMFTVM!InvokeCb (
14 codeBlock <- s.value),
15 invoke_resolve: EMFTVM!Invoke (
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16 opname <- ’resolve’),
17 load_migrDXObj: EMFTVM!Load (
18 localVariable <- s.refImmediateComposite().localVar(false)),
19 setFeature: EMFTVM!"Set" (
20 fieldname <- s.featureSX.obj.name)
21}

List. 1.5. EMFMigrate-to-EMFTVM compiler FilterMigratorDX rule (in ATL)

This specific rule transforms a FilterMigrator expression that is used in the right-
hand-side of a rewrite rule (e.g, see List. 1.3, lines 12–14). This expression is composed
of a feature and a value to assign to it. The value takes the form of a nested expression,
and is therefore listed as a nested code block. In List. 1.5, line 8, the value code block
is invoked, which leaves the resulting value on the stack. The resolve() operation is
invoked on this value (List. 1.5, lines 15–16), which applies the implicit tracing mech-
anism of EMFTVM, and translates any transformed source elements into their target
element counterparts. Next, the rewriting rule’s target element is loaded onto the stack,
and the specified feature is set to the resolved value (List. 1.5, lines 17–20).

Nested Expressions. List. 1.6 shows the rule that transforms the nested value expres-
sion of the FilterMigrator expression. It is again transformed into a code block, this
time containing only a load instruction that loads the referred element onto the stack.
As the FilterMigratorDX rule does not have to refer to the internals of the nested code
block, it is possible to insert any sequence of instructions into the nested code block.
That suffices to represent any kind of nested expression.

1rule DotNavigationObjDXTarget {
2 from s: EMig!DotNavigationObjDX in IN (not s.isSX)
3 to t: EMFTVM!CodeBlock (
4 code <- Sequence{load},
5 lineNumbers <- Sequence{ln}),
6 ln: EMFTVM!LineNumber (
7 startLine <- s.line,
8 endLine <- s.endline,
9 startChar <- s.offset,

10 endChar <- s.endoffset,
11 instructions <- Sequence{load}),
12 load: EMFTVM!Load (
13 localVariable <- s.obj.localVar(false))
14}

List. 1.6. EMFMigrate-to-EMFTVM compiler DotNavigationObjDXTarget rule (in ATL)

The bytecode resulting from this compiler strategy typically contains many nested
code blocks that are simply invoked without parameters from their surrounding code
block. In order to improve runtime performance, such nested code blocks can simply
be in-lined into the surrounding code block. EMFTVM provides a reusable in-lining
transformation for this purpose4, which can be applied after the compiler. This trans-
formation moves the contents of the code block to be inlined (transitively) upward to
the first surrounding code block that is not being in-lined. The result is a “flattened”
bytecode structure, with minimal code block nesting.

4 http://tinyurl.com/InlineCodeblocks-atl

http://tinyurl.com/InlineCodeblocks-atl
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Debugging. An interesting aspect of implementing transformation languages with
EMFTVM is related to the debugging features which are natively offered by the VM.
Firstly, the file name of the source file is stored in the EMFTVM module (List. 1.4,
line 5), such that the VM can point to the right file in a debugging session. Secondly,
EMFTVM code blocks allow for line number information to be attached to instruc-
tions (List. 1.4, lines 11–15). The line number information can include the start line,
start column, end line, end column, start character offset, and end character offset. De-
pending on the EMF-based parser generator used (TCS, EMFText, or xText), a specific
subset of these is specified. As EMFMigrate is based on xText, the start line, end line,
start character offset, and end character offset can be provided (the other information is
not available through xText). During a debugging session, the VM can provide the line
number information based on the current instruction offset. Together with the source
file name information, this allows the Eclipse-based debugger to highlight the corre-
sponding text passage in the source file.

4.2 Discussion

The EMFMigrate-to-EMFTVM compiler was implemented over the course of ten days
by two people (pair programming). The resulting ATL program contains 650 lines of
code (LOC). If we compare this to generating Java code for EMFMigrate, this might be
considered very efficient: that Java code would contain a lot of the code that is already
part of EMFTVM, which took four months of development by one person. It is more
difficult to compare EMFTVM to the ATL virtual machine as a compilation target, as
we have no data on that. The main difference lies in programming the semantics of
transformation rules, which is already built into EMFTVM, but not in the ATL VM.
The size of the code of the ATL-to-ATL VM compiler is 1975 LOC against 1555 LOC
for the ATL-to-EMFTVM compiler. This is not a significant difference, considering
that the first compiler needs to implement rule behaviour from scratch. Note that the
first compiler is written in ACG, a DSL for generating ATL VM bytecode, which is
more concise than ATL (but can only target ATL VM bytecode).

By using EMFTVM, EMFMigrate also leverages the exposure EMFTVM has al-
ready received as a runtime for ATL and SimpleGT: many improvements have already
been made to EMFTVM since its first release. As mentioned before, all work on perfor-
mance optimisation done on EMFTVM is available to EMFMigrate as well. EMFTVM
currently has similar performance as the production ATL VM for EMF, which was
heavily optimised by Obeo5.

Regarding the correctness and the completeness of the translation of EMFMigrate to
EMFTVM, our approach does not provide additional advantages over regular compiler
development. As the EMFMigrate-to-EMFTVM transformation serves as the official
semantics specification, it is by definition the correct specification. Completeness of
the transformation depends on whether the mapping represented by the EMFMigrate-
to-EMFTVM transformation is total. This can be determined for (a subset of) ATL
by analysing the coverage of the source metamodel in the transformation rules [18].

5 http://www.obeo.fr

http://www.obeo.fr
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In any case, the completeness analysis for the EMFMigrate-to-EMFTVM compiler has
not been done: the EMFMigrate language is still under development, and additional
language semantics are likely required.

5 Related Work

Defining Semantics for DSLs. For the definition of the executable – or runtime –
semantics, often a transformation language/engine is provided, which allows for defin-
ing a compiler that translates the DSL into a general-purpose programming language
or bytecode/assembly code. Translational semantics or semantic anchoring (e.g., [3])
is used in similar situations where the target models are not necessarily given in an
executable notation. The Spoofax language workbench [19] includes the Stratego trans-
formation language [20] for this purpose. Stratego offers the option of specifying trans-
formation rules in terms of concrete (textual) syntax, which helps to bridge the semantic
gap between DSL and target language. Our approach to reduce the actual gap is by pro-
viding a high-level domain-specific virtual machine that includes language constructs
semantically close to the DSL domain. Recent work on Spoofax has added the option
to define debuggers for DSLs using syntax event linking specifications [21]. EMFTVM
comes with a DSL-aware debugger that can be reused for any DSL that compiles to
EMFTVM bytecode. Most other language workbenches, such as MetaEdit+ [22] and
JetBrains MPS [23], come with a template language for code generation, which also
aims to bridge the semantic gap between DSL and target language by using concrete
syntax. The Whole Platform [24] uses a framework approach to define DSL executable
semantics, which requires the developer to write transformations in Java. AToM3 [25]
uses graph transformation to rewrite a DSL into terms of another language for which
executable semantics have been defined, such as Petri Nets and State Charts. If a DSL’s
semantics lie sufficiently close to one of these provided language implementations, this
approach is very effective. The EMFTVM bytecode language also provides such a lan-
guage implementation for the domain of model transformation. Rascal can represent
grammars and interpreters within the same language: an interpreter is written as a se-
ries of eval() functions that take a specific DSL expression as input. The way an
eval() function can just call other eval() functions without knowing the nested
DSL expression types is similar to how an EMFTVM compiler can just invoke a nested
code block without knowing what expression type produced that code block.

Runtime Engines for Model Transformation. In the domain of model transforma-
tion, there have been two efforts to provide common runtime engine for multiple model
transformation languages. One of these concerns the alignment of ATL and QVT Op-
erational [26]. The executable semantics are provided by the ATL virtual machine in
this case. Another such effort is the ATC VM6, which aims to provide a common ex-
ecution framework for languages such as QVT or RubyTL. In both cases, high-level
constructs, such as transformation rules, are compiled away into low-level primitives.
EMFTVM leaves a smaller semantic gap, and requires less transformation effort than
these VMs. In the case of the ATL VM, the bytecode uses a proprietary XML format

6 http://sourceforge.net/projects/atc/

http://sourceforge.net/projects/atc/
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(ASM), and compilers are specified in a bytecode-specific compiler language (ACG).
ACG specifies ASM bytecode very concisely, which helps to bridge the semantic gap
between ATL and ASM.

T-core [27] is a language that provides a set of model transformation primitives, fo-
cused on graph transformation. T-core appears to be for graphs what EMFTVM is for
EMF, and provides an implementation of low-level model transformation primitives, in-
cluding transformation rules. The implementation – and choice of graph representation
framework – is ongoing work.

Co-evolution. The application scenario of EMFTVM in this paper pertains to the
EMFMigrate language, which is related to the research on coupled evolution in model-
driven engineering. The definition of the EMFMigrate approach has been inspired by
existing techniques and tools like [13] and [11]. COPE [13] is an approach that permits
the migration of models in response to an evolving metamodel, combining metamodel
changes and model migration using coupled-transactions. Flock [11] is a metamodel/-
model co-evolution approach that permits the specification of model migration strate-
gies. When a migration strategy is evaluated, some parts of the migrated model are
derived from the original model and other parts from user specification rules. In [14] the
authors deal with the metamodel/transformation co-evolution problem. The approach
is based on Higher Order Transformations which are able to support the adaptation
of existing transformations developed in the GME/GReAT toolset. In [15] the authors
provide a solution to adapt GMF models with respect to the changes applied to the me-
tamodel underpinning the overall definition of the editor. In particular, specific GMF
model adapters are provided to automate the propagation of domain-model changes.

Differently to the previous works, EMFMigrate aims at supporting the coupled evo-
lution in general, in the sense that it is not restricted to a particular kind of co-evolution.
Interestingly, the approach permits to specify libraries of migrations, which can be
reused and in case customized.

6 Conclusions and Future Work

This paper presents how to give a ”useful” semantics to EMFMigrate, a model transfor-
mation language specifically tailored for the management of coupled evolution. In par-
ticular, we have established an executable semantics by adopting EMFTVM, a reusable
runtime engine for the domain of model transformation. EMFTVM provides a high-
level bytecode language that has specific constructs for model manipulation, such as
transformation rules and model element manipulation instructions. The bytecode lan-
guage is defined as a metamodel, which allows the semantics to be translational, i.e.,
the translator is given as a model-to-model transformation. Low-level information for
performance optimization, such as local variable slot assignment and maximum stack
usage, is computed automatically by EMFTVM. Bytecode verification helps track down
compiler bugs. As to productivity, the EMFMigrate-to-EMFTVM translator was im-
plemented in ten days by two people. If we compare this to generating Java code for
EMFMigrate, this may be considered very efficient as the Java code would contain a
lot of the code that is already part of EMFTVM, which took four months of develop-
ment by one person. In the future, we plan to embed OCL in EMFMigrate to allow for
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richer model navigation. As the ATL-to-EMFTVM compiler already includes an OCL
module, this module can be reused in the definition of the EMFMigrate-to-EMFTVM
compiler.
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Abstract. As practical tools for disciplined multi-level modeling have
begun to emerge, the problem of supporting simple and efficient trans-
formations to-and-from multi-level model content has started to assume
growing importance. The problem is not only to support efficient trans-
formations between multi-level models, but also between multi-level and
traditional two-level model content represented in traditional modeling
infrastructures such as the UML and programming languages. This is not
only important to facilitate interoperability between multi-level modeling
tools and traditional tools, but also to extend the benefits of multi-level
modeling to transformations. Multi-level model content can already be
accessed by traditional transformation languages such as ATL and QVT,
but in a way that is blind to the ontological classification information
they contain. In this paper we present an approach for making rule-based
transformation languages “multi-level aware” so that the semantics of
ontological instantiation can be exploited when writing transformations.

Keywords: multi-level transformation, orthogonal classification archi-
tecture, ontological classification, linguistic classification.

1 Introduction

Transformations are one of the key pillars of model-driven software engineering
[11] and are key to the productivity and flexibility advantages that make model-
driven development so attractive. This is reflected in the rapidly growing interest
in model transformations in academia and the increasing sophistication of the
transformation capabilities offered by leading modeling environments. However,
most contemporary model transformation technologies suffer from the same fun-
damental weakness as the modeling languages they are based-on, the restriction
to a linear modeling architecture that usually accommodates only one pair of
classification levels (types and instances). This makes it difficult for models, and
transformation languages that build on them, to handle deep classification sce-
narios (when there are more than just two classification levels in a domain of
interest) without introducing additional accidental complexity [3] into models.
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Over the last few years a new architecture for model organization has emerged
that accommodates deep classification in a much simpler and uniform way, whilst
retaining all the advantages of traditional modeling architectures. The key idea
behind this so called Orthogonal Classification Architecture (OCA) [2], is to
recognize two fundamentally distinct forms of classification relationship and
represent them in two completely orthogonal dimensions. One form, so called
linguistic classification, captures a model element’s role from a linguistic per-
spective, while the other form, ontological classification, captures a model ele-
ment’s role in the domain of interest. Disentangling linguistic classification from
ontological classification in this way allows modelers to represent multiple onto-
logical classification levels in a uniform and natural way without having to worry
about the difference between classes and objects or how to use ad hoc modeling
concepts like stereotypes or power-types.

Because of these advantages several research groups have developed prototype
realizations and applications of OCA-based modeling environments in recent
years [10][1]. However, these have all focused on the core structural models rather
than on transformations between them. To date no transformation language has
been developed to specifically support transformations between multi-level mod-
els represented using an OCA modeling framework. While the structural models
themselves may be multi-level aware, therefore, the transformations that go with
them are often not, or require the use of numerous workarounds and ad hoc tech-
niques to operate on multi-level model content. Again, the end result is greater
accidental complexity and lower efficiency in the resulting transformations.

In this paper we present an approach that makes the first steps towards ad-
dressing this problem by making a traditional “two-level” transformation lan-
guage “multi-level aware”. The work is presented in the context of the Melanie
(Multi-level modeling and ontology engineering environment) [12] prototype
modeling environment developed by the Software Engineering Group at the Uni-
versity of Mannheim based on the OCA principles. This environment is based
on the Eclipse EMF and GMF frameworks, thereby allowing the rich set of
EMF languages and tools to be applied to multi-level models represented us-
ing Melanie’s default general purpose modeling language - the Level-Agnostic
Modeling Language (LML). This includes several well known model transfor-
mation frameworks such as ATL and QVT. The work presented in this paper
is actually based on ATL (ATLAS Transformation Language) and can be un-
derstood as a technique for making ATL “multi-level aware”. Technically this
is achieved by writing a so-called ATL adapter that provides several additional
capabilities beyond those in the core language. For example, the ATL adapter
allows transformations to explicitly distinguish between ontological instances of
a model element and linguistic instances.

The remainder of the paper is organized as follows. In the next section we
provide a brief introduction to the OCA and the deep instantiation approach to
multi-level modeling upon which the Melanie framework is based. After that we
outline the different classes of transformations that make sense between multi-
level and two-level model content. Section 4 then describes the ATL adapter that
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we have implemented to support the identified transformation types. Since using
ATL this adapter supports the EMF environment upon which Melanie is built.
Once the transformation approach has been defined, section 5 shows how it has
been applied in the context of another prototype modeling tool [5]. Section 6
continues with a discussion of current limitations and the future evolution paths
for the technology. Finally section 7 concludes with some closing observations.

2 Orthogonal Classification Architecture

In this section we give a brief introduction to the Orthogonal Classification
Architecture (OCA) upon which multi-level models are based. This serves as
the basis for the description of multi-level aware model transformations in the
following sections. The goal of multi-level modeling is to allow users to create
models containing as many classification levels as needed to best model the
domain in hand. If the domain features deep classification, which is more often
than not the case, three or more levels are needed. The aim of the OCA is to
allow deep classification scenarios to be modeled in a “uniform” and “adaptable”
way. “Uniform” means that all model content at all levels is represented using
the same basic set of concepts and symbols, while “adaptable” means that all
model content, across all levels, is “soft” (i.e. treated as editable data) and can
be changed interactively. Changes to a model element at any level therefore
take place immediately and have an immediate effect on all the other model
elements that depend on them. In contrast, current meta-modeling technologies
such as the Eclipse Modeling Framework (EMF) only make two classification
levels available to modelers to capture a problem domain (the meta-model and
the instance of the meta-model). Moreover, only one level is available for editing
at a time. Either the meta-model is available for editing without the model or the
model is available for editing with a fixed meta-model. Since there is no explicit
support for more than two levels we characterize such approaches as “two-level”
in this paper.

By clearly separating ontological classification from linguistic classification,
and using the same set of linguistic classifiers across all levels, the OCA allows
an arbitrary number of ontological classification levels to be visualized and edited
at all times. All model elements in the OCA typically have two direct types - an
ontological type (horizontally dashed arrows in Figure 1) which characterizes its
domain properties and a linguistic type (vertically dotted arrows in Figure 1)
which characterizes its linguistic properties (i.e. what kind of model element
it is). The ontological type of a model element is contained in the higher (i.e.
more abstract) ontological level while the linguistic classifier is contained in
the linguistic meta-model. This is referred to as the Pan-level Model (PLM)
since it spans all the ontological levels. For example, in Figure 1 “Collie” is the
ontological type of “Lassie” and “Shep” while “Breed” is the ontological type
of “Collie”. All four model elements are linguistic instances of the linguistic
type “clabject” defined in the PLM. The term clabject is a contraction of the
concatenation of the words “class” and “object” and is used as a neutral term to
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avoid characterizing a model element as either a class or an object (since most
elements usually combine the properties of both). As illustrated in Figure 1,
the name “Orthogonal Classification Architecture” reflects the fact that the two
forms of classification are arranged in separate (i.e. orthogonal) dimensions.

Fig. 1. The Orthogonal Classification Architecture and the resulting two transforma-
tion dimensions

The precise type/instance properties of model elements are captured using
the notion of potency as part of the so called “deep instantiation” mechanism.
Potency is a non-negative integer that states how many subsequent levels a
model element can influence. The potency of an instance is always one less
than the potency of its type. Thus, clabjects with potency 0 cannot have any
instances, while clabjects of potency 1 can have instances one level below but
no further, and so on. In other words, if a model element has a potency of 1 it
only influences the following level, with 2 it influences the following two levels
and so on. A special value for potency is the “*” value. This value states that a
model element influences all following model levels.

Melanie is the first fully-fledged graphical editor supporting the OCA ap-
proach with multi-level modeling based on deep instantiation. It is an Eclipse
plug-in built on the EMF modeling environment and GMF graphical editing
environment. From the point of view of EMF, the L0 (PLM) is a regular Ecore
meta-model and L1 is a regular meta-model instance. All standard EMF based
technologies such as OCL and ATL can be used on the L1 model content, but
they are oblivious to the multi-level interpretation of the content in terms of
ontological classification levels. Awareness of ontological levels has to be built
into a special multi-level aware interpretation of the model content. For example,
one of the main components of Melanie is a GMF based graphical editor which
is aware of ontological classification and supports the usual (and enhanced) in-
stantiation semantics and services between them.
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3 Multi-level Aware Transformations

Model transformations are normally used in environments like EMF to trans-
form between content represented in different technology spaces. An important
example is the transformation of information from the EMF technology space
(in UML models) to the Java technology space (for execution on Java virtual
machines) [9]. In the long run, there may come a time when all relevant infor-
mation in software information is represented in a multi-level way based on the
OCA. When that time comes, all transformations will essentially map multi-
level model content to multi-level information. However, until then, for practical
purposes it will also be important to be able to map multi-level model content
to traditional 2-level content and vice versa. In general, therefore, there is a need
for three forms (or modes) of transformations, as illustrated in Figure 2 - multi-
level to multi-level, multi-level to 2-level and 2-level to multi-level. The latter
two transformation modes involving 2-level models are particularly important
in making Melanie compatible with existing 2-level based tools. These distinct
transformation modes are described more fully below. Due to space restrictions
multi-level is marked as *-level in Figure 2.

(a) (b)

(c)

Fig. 2. The three supported transformation modes: (a) 2-level to *-level, (b) *-level to
*-level, (c) *-level to 2-level

2-level to Multi-level mode. This mode, which focuses on transforming 2-level
(e.g. Ecore) models to multi-level models, has two main areas of application.
The first is to migrate existing meta-models to multi-level models. This enables
language engineers to import already existing meta-models when migrating to
multi-level modeling. For example, a language engineer can use a model trans-
formation to transform a meta-model, defined in Ecore, to the O0 level of a
new Ontology. The instances of this model can then be transformed to the O1

level of the model as instances of the types at O0. The second area of applica-
tion is to achieve interoperability with existing two-level model technology based
tools. For instance, data that is stored in a two-level model can be automatically
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imported into a multi-level model. In short, this form of transformation makes
all two-level models suitable input for multi-level models.

Multi-level to 2-level mode. This mode is used to make multi-level models avail-
able as input to existing two-level tools. For example a transformation that
translates multi-level BPMN models into a two-level format understood by a
workflow or simulation engine can be developed to allow a multi-level modeling
tool such as Melanie to be used together with an existing ecosystem of tools.

Multi-level to Multi-level mode. The multi-level to multi-level mode serves the
same purpose as ATL in connection with Ecore models nowadays. Example use
cases include model-to-model transformations between two models conforming
to two different meta-models or model refactoring by applying refinement trans-
formations.

3.1 Impact of Multi-level Modeling on Transformations

The main difference between OCA-based model content and regular Ecore/MOF
based model content from the point of view of defining transformations is that
the OCA defines two classification dimensions on which transformation rules
can be defined whereas Ecore/MOF is only aware of one classification dimen-
sion. Figures 1 and 3 show these distinct linguistic and ontological dimensions.
The key challenge in making rule-based transformations “multi-level aware” is
to enable to be explicitly distinguished between ontological instances and lin-
guistic instances when identifying sets of objects to transform. Rules intended to
operate in the linguistic dimension should affect all model elements that match
a linguistic type no matter which ontological level they reside in, while rules
defined to operate in the ontological dimension should only affect the model
elements that are ontological instances of a particular model element.

Fig. 3. An example of the two transformation dimensions arising in the OCA
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Figure 3 shows a simple example of the difference between the definition of
rules on the linguistic and ontological dimension. The top part of the figure
shows the bottom two levels of the ontology featured in Figure 1 with “Collie”
at O0 and two instances of “Collie”, “Lassie” and “Shep”, at O1. All these three
model elements are instance of the linguistic type clabject. The lower left shows
all ontological instances of “Collie” marked with a grey background. Notice that
only the ontological instances of Collie are identified as instances, and these all
exist in the ontological level below Collie. The lower right side, on the other
hand, shows all linguistic instances of the linguistic type clabject. In contrast
to the ontological dimension, all model elements that are clabjects, are identi-
fied, regardless of their ontological level. A key feature of “multi-level aware”
transformation rules, therefore, is the explicit distinction between ontological
and linguistic instances.

The definition of transformation rules on clabjects has to take deep instanti-
ation into account, particularly the possibility to have an arbitrary number of
levels in a multi-level model. If one defines a transformation on an ontological
model element the question arises as to how to treat the instances on distinct lev-
els, especially when transforming from more than two levels to an 2-level model
which only supports two levels (the meta-model and the meta-model instances).
For simplicity, the current implementation always focuses on the instances which
exist at the lowest level in the instantiation hierarchy. For example if an ontology
contains three levels and a transformation is defined on the highest level, only
the model elements on the lowest level are transformed into the target model. All
model elements in between are currently ignored. However, there are use cases
in which it is desirable to take particular pairs of levels into account. This is a
topic for further research. The problem does not arise when transforming from
2-level to multi-level models because the number of levels in a multi-level model
is sufficient to accommodate all the classification levels in an 2-level model.

In the domain of 2-level to multi-level transformations a problem arises when
transforming model elements to the highest ontological level. Here model ele-
ments have no ontological type at a higher level which can be specified during
transformation definition. A workaround for this could be to specify the lin-
guistic type of the element to be created and by convention place the by the
transformation created model element at the highest ontological level available.

4 Multi-level Aware ATL

To make ATL multi-level aware, its syntax must be extended to facilitate ex-
plicit differentiation between the linguistic and ontological dimensions. In our
current implementation, linguistic classification is handled using the standard
in-built ATL notation. Thus, to identify a linguistic type the default ATL syn-
tax (MetaModelName!MetaModelElement) is used. To identify an ontological
type, on the other hand, this syntax is changed to MetaModelName!“Level ::
OntologicalT ypeName”. The rule “ComponentClass2Class” in Listing 1 line 18
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gives an example of a source pattern defined on an ontological type and a target
pattern defined on a linguistic type. The helper called “createName” in line 6 is
an example of a helper defined on an ontological type.

The second change to the ATL language occurs in the way features of types
are accessed. In a multi-level aware transformation a user can specify whether a
linguistic attribute or an ontological attribute is intended. To access a linguistic
feature the syntax “ l .featureName” is used. To access an ontological feature
the syntax “ o .featureName” is used. This syntax is used heavily in the former
mentioned “createName” helper.

The ATL Regular VM’s adapter concept is used to realize the required ATL
dialect. The Regular VM architecture, which allows different adapters to be
plugged in according to the model used in a transformation, is shown in
Figure 4. Further technical details about the Regular VM are described in the
“ATL Developer Guide” [6]. The following paragraphs explain the role of the
adapter’s three components named “ASMPLMModel”, “AtlPLMModelHandler”
and “ASMPLMModelElement”.

Fig. 4. The architecture implemented by the multi-level aware ATL adapter

ASMPLMModel - implements the default behavior of ASMEMFModel extended
by the loading of ontological model elements as meta-model types. This enables
a user to define rules which operate on, or create, ontological model elements
as well as linguistic model elements, by using the multi-level aware ATL syntax
extensions.

AtlPLMModelHandler - is the default handler implementation provided by
ATLEMFModelHandler. Its main functionality is to delegate function calls to
the multi-level specific implementations of ASMModel and ASMModelElement.

ASMPLMModelElement - enables access to linguistic/ontological model ele-
ments and their attributes. The default implementation is extended to support
the reading and writing of linguistic and ontological features. This is achieved by
overriding the default implementation of operations when they are defined on the
ontological layer. Linguistic requests are passed on to the base class functionality
which is provided through ASMEMFModelElement.
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5 Multi-level Aware Transformation Example

This section presents an example of the use of the aforementioned ATL adapter
in the context of another Eclipse tool called nAOMi (opeN, Adaptable, Ortho-
graphic Modeling Environment) [13]. This is a prototype tool developed at the
University of Mannheim to support the notion of Orthographic Software Mod-
eling (OSM). The example shows how multi-level aware ATL transformations
can be used to generate system views on-the-fly from a Single Underlying Model
(SUM).

5.1 Orthographic Software Modeling

The OSM approach aims to provide a flexible and intuitive way of organizing
multiple views of software systems and components. It achieves this by inte-
grating three main innovations - on-demand view generation, dimension-based
navigation and an inherently view-based method.

On-demand View Generation - ensures that views are kept synchronized and
consistent with an underlying database of information about the system under
development. This database is known as the Single Underlying Model (SUM)
[5]. It contains all available information about the modeled system but is never
directly seen by end users. Instead views tailored to specific stakeholders are
generated as projections from the SUM on-demand. Consistency is achieved by
ensuring that all views are up-to-date with the SUM rather than between the
different views themselves.

Fig. 5. Orthographic Software Modeling Overview
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Dimension-based Navigation - offers an intuitive and platform independent way
for users to navigate around views. It achieves this by regarding views as cells in
a multidimensional cube. Each dimension of the underlying methodology forms
a different dimension of the cube and each independently selectable aspect of
that dimension represents a dimension element. Selecting a view therefore cor-
responds to selecting a single cell within the cube. Figure 6 shows the nAOMi
Eclipse plug-in that supports this metaphor for navigating around views. The left
part of Figure 6 shows the dimension explorer which modelers can use to select
a view by picking an element from each dimension. In the example screenshot
the dimensions for the KobrA [4] approach are available, which are “Abstrac-
tion”, “Version”, “Component”, “Encapsulation”, “Projection”, “Granularity”
and “Operation”. However, these dimensions can be tailored to the needs of the
software development methodology used. The right part shows the view that has
been generated for the selected dimension elements.

An Inherently View-based Method - defines the dimensions and dimension el-
ements used to represent a system and the contents of the different views.

Fig. 6. Orthographic Software Modeling Tool
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In our current nAOMi prototype the KobrAmethod is used, but it is also possible
to use other methods. To provide a concrete example of the application of this
approach we use a Travel Booking System.

5.2 View Generation by ATL Transformations

The ATL dialect described in this paper is an ideal vehicle for describing trans-
formations to create UML-views of a system on-the-fly from a multi-level SUM.
We demonstrate a multi-level to 2-level transformation which generates an Ecore
based component diagram UML view from a multi-level SUM. This transforma-
tion uses the multi-level aware ATL adapter. Figure 7 shows a part of the SUM,
related to component diagram modeling, modeled with our multi-level model-
ing environment. The model contains two ontological types on level O0 which
are “ComponentClass” and the “Acquires” relationship. The “Acquires” model
element is connected via a source and a target connection to two “Component-
Classes”. On level O1, two instances of the “ComponentClass” type exist which
are called “TravelBookingSystem” and “AccountManager”. These are connected
to an instance of “Acquires” which is called “TBS AM”.

Fig. 7. The small part of the SUM which is used for evaluation modeled in Melanie
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module kobra ;
create OUT : UML from IN : PLM;

helper def : umlModel : UML! Model = OclUndefined ;
5

helper context PLM!”O0 : : Acquires ” def : createName : S t r ing = ’
From ’ + s e l f . o . source . l . name + ’To ’ + s e l f . o . t a r g e t .
l . name ;

rule Ontology2Model {
from s : PLM! Ontology

10 to t : UML! Model (
name <− s . name

)
do {
thisModule . umlModel <− t ;

15 }
}

rule ComponentClass2Class {
from s : PLM!”O0 : : ComponentClass”

20 to t : UML! Class (
name <− s . l . name

)
do {
thisModule . umlModel . packagedElement <− thisModule . umlModel .

packagedElement−>append ( t ) ;
25 }

}

rule Acqu i r e s2Assoc i a t i on {
from s : PLM!”O0 : : Acquires ”

30 to t : UML! As soc i a t i on (
name <− s . createName ,
ownedEnd <− Sequence{ thisModule . createMemberEnds ( s . o .

source ) , thisModule . createMemberEnds ( s . o . t a r g e t ) }
)
do {

35 thisModule . umlModel . packagedElement <− thisModule . umlModel .
packagedElement−>append ( t ) ;

}
}

l a zy rule createMemberEnds {
40 from s : PLM!”O0 : : ComponentClass”

to t : UML! Property (
type <− s

)
}

Listing 1. The complete ATL transformation used for evaluation
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The multi-level aware transformations on the model are defined by employ-
ing the standard ATL transformation editor. Listing 1 shows the fully functional
transformation that is used for the transformation of the use case presented here.
ATL’s support for adding source pattern elements in quotation marks is used to
make an ATL rule aware of ontological levels. By putting the expressions in quo-
tation marks these are not checked by the syntax checker which allows customiza-
tions of the ATL syntax. The non-standard pattern PLM!“O0::ComponentClass”
in Listing 1 line 19 is used to define a transformation on the ontological instances
of the “ComponentClass” model element which reside at level O1. If a transfor-
mation developer wishes to create an ontological multi-level model element he
can use this style of describing a pattern for target patterns. To define rules on
linguistic model elements one can specify source and target patterns using the
standard ATL syntax. When accessing the attributes of model elements, switch-
ing between ontological and linguistic mode is achieved without any extensive
modifications to the ATL syntax. The user can use the keywords “. l .” or “. o .”
to switch between linguistic traits and ontological attributes. In Listing 1 line 21
the linguistic attribute name is accessed by “ l .name”. To access the ontological
attribute “name” if one is specified by the ontological type, the statement would
have the form “ o .name”. The same also works for the left hand side of the
assignment statement when one wants to write values to ontological instead of
linguistic attributes.

Fig. 8. Setup of a multi-level to Ecore transformation
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Figure 8 shows how the transformation from the 2-level to the multi-level mod-
eling technology space is set up. Transformations are run by the “Regular ATL
Virtual Machine” instead of the EMF tailored “EMF-specific Virtual Machine”.
This is necessary as only the regular virtual machine supports the concept of
adapters. In the run dialog the path to the PLM registered in the Eclipse work-
bench, “uri:http://swt.informatik.uni-mannheim.de/PLM”, must be entered as
meta-model in order to make ATL aware of the linguistic meta-model. Addition-
ally, “MLM” must be selected for all multi-level meta-models. The path to the
multi-level model itself is put into the corresponding source and target model
text boxes. At runtime the ontological levels are extracted as meta-model infor-
mation by the ATL adapter, which enables ATL to match rules on ontological
model elements.

After running the transformation, the two-level UML component diagram
view is created as shown in Figure 9. It contains the “TravelBookingSystem” and
“AccountManager” components connected via an acquires relationship, called
“FromTravelBookingSystemToAccountManager”, as described in the multi-level
SUM. The created views can be opened with the standard Ecore tools since they
are standard Ecore models created through the EMF ATL adapter used as the
target model adapter. In this figure the resulting model is opened in the generic
EMF model editor.

Fig. 9. The result of the executed transformation in the generic EMF model editor
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6 Limitations and Future Work

Even though the example has deliberately been kept small it contains all the
important concepts of the ATL transformation language [7]. These are: matched
rules, lazy or called rules, imperative statements and helpers. Hence, this small
example gives a good insight into the functionality of the adapter. In particular,
it shows that multi-level aware ATL transformations look and feel very much
like 2-level ATL transformations. The definition of rules on ontological types and
switching between the linguistic dimension can be realized without requiring any
additional knowledge on the part of a transformation developer.

It is a further research topic to refine the syntax used for realizing such trans-
formations. At the time of writing we are developing and evaluating 2-level
to multi-level transformation capabilities and have so far not encountered any
transformation requirements which are not easily describable using current ATL
syntax. In order to distinguish between setting linguistic or ontological proper-
ties, the prefixes “ l .” and “ o .” can be used, as demonstrated for multi-level
to 2-level transformations.

The approach described in this paper is just the first step in the direction of
multi-level aware transformations, and there are many open research questions.
These include the question of how to bridge the mismatch in classification level
numbers between 2-level and multi-level models and the question of how to spec-
ify transformation rules that create model elements on the highest ontological
level which do not have an ontological type. However, we are confident that with
the evolution of our implementation and extension of our experiments solutions
to these questions can be found.

For further evaluation of the ATL adapter approach we plan to implement
a second case study using this technology within the “Reliably Secure Soft-
ware Systems” priority program funded by the Deutsche Forschungsgemeinschaft
(DFG). This case study will import business processes from EMF based tools
and will annotate them with security requirements for the imported process.
These security annotated processes will then again be translated back into the
business process modeling tool understandable format and will additionally con-
figure enforcement engines to enforce the security requirements.

Our long term goal is it do define an integrated, multi-level aware textual
transformation language that supports all classes of services applicable to multi-
level models in a uniform and level-agnostic way. This language, known as
TREACLE (Transformation, Rule, Enquiry, Action and Constraint Language),
will also provide support for OCL-like constraints, EOL [8] like action operations,
data-base like queries and ontology-like inference rules as well as ATL/QVT like
transformation rules in a unified, multi-level aware form.

7 Conclusion

In this paper we have presented an approach that takes the first steps towards
supporting model transformations that fully exploit the multi-level modeling en-
vironments that are starting to emerge from the research community. The paper
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provides insights into the topic of multi-level aware transformation definition
and the problems that need to be solved when implementing transformations
on top of a multi-level modeling platform. Rather than focusing on multi-level
to multi-level transformations, which are likely to be the long term use case
for multi-level aware model transformations, the paper focuses on the more im-
portant near term goal of supporting interoperability with existing two-level
modeling platforms such as those based on the EMF and the MOF. For this use
case, multi-level to 2-level transformations and vice versa are more important.
Finally, the work shows that a simple working prototype can be developed by
extending existing technologies and the theories on which state-of-the art mod-
eling technologies are based. This significantly lowers the learning curve and
adoption barrier for development organizations intending to migrate to multi-
level modeling technology. Even though we only showed how to extend ATL we
are confident that the same approach will work for other transformation tech-
nologies such as QVT. For instance, we indirectly created a multi-level aware
OCL implementation in order to support ATL’s assignment statement.
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Abstract. In this paper, we propose a new model-sensitive search plan
generation algorithm to speed up the process of graph pattern matching.
This dynamic programming based algorithm, which is able to handle
general n-ary constraints in an integrated manner, collects statistical
data from the underlying EMF model, and uses this information for
optimization purposes. Additionally, runtime performance measurements
have been carried out to quantitatively evaluate the effects of the search
plan generation algorithm on the pattern matching engine.

Keywords: graph pattern matching, search plan generation algorithm,
model-sensitive search plan.

1 Introduction

Efficient, scalable, and standard compliant techniques and tools are still un-
doubtedly needed to promote the spread of model-driven technologies in an
industrial context. As numerous scenarios in the model-based domain, such as
(i) checking the application conditions in rule-based model transformation tools
[1,2], (ii) bidirectional model synchronization, or (iii) on-the-fly consistency val-
idation, can be described as a general pattern matching problem, its efficient
implementation is undisputedly an important task.

In this general pattern matching context, a pattern consists of constraints,
which place restrictions on variables, and the number of variables involved in
a constraint is referred as its arity. The pattern matching process determines a
mapping of variables to the elements of the underlying model in such a way that
the assigned model elements must fulfill all constraints. Structural constraints
can be checked by using the services of the modelling layer (e.g., type checks,
navigation along links), while non-structural constraints are handled by some
other means (e.g., integer or textual comparison).

As non-structural constraints are easily manageable [3], the current paper
only focuses on structural constraints, which correspond to the graph pattern
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matching problem [4]. Although available pattern matching engines support type
checks and link navigations as unary and binary structural constraints, respec-
tively, practical model-driven scenarios additionally require the handling of n-ary
constraints to express ordered references or pattern composition [5].

When building a pattern matching engine, its performance highly depends
on the order in which the constraints of a pattern are evaluated (cf. the impact
of the variable ordering in general backtracking). This rationale motivates the
construction of heuristics-based algorithms for generating constraint sequences
or search plans [6], which can be efficiently evaluated.

While the majority of state-of-the-art search plan generation algorithms [1,7,8]
exploits only type and multiplicity restrictions derived from the metamodel of
the problem domain, two novel model-sensitive approaches [9,10] take, for opti-
mization purposes, the potential structure of instance models into account as fur-
ther domain-specific knowledge. Although the inherent performance advantages
of model-sensitive search plan generation techniques have already been clearly
shown [11], the applicability of the tools themselves in a more general modeling
context is hindered by the fact that both engines (i) operate on non-standard
(tool specific) model representations, and (ii) apply graph-based algorithms for
search plan generation, which can handle only unary and binary constraints in
an integrated manner.

In this paper, we propose a completely new model-sensitive search plan gener-
ation algorithm, based on dynamic programming, to enable the integrated han-
dling of general n-ary constraints. The algorithm collects statistical data from
the model under transformation via an extensible framework and uses this infor-
mation for optimization purposes. The pluggable collection of statistical data is
exemplified on Eclipse Modeling Framework (EMF) compliant models. Finally,
the effects of the search plan generation algorithm on the performance of pattern
matching are quantitatively evaluated by using runtime measurements.

The remainder of the paper is structured as follows: Section 2 introduces basic
modeling and pattern specification concepts. The general pattern matching pro-
cess is sketched in Sec. 3, while Sec. 4 presents the new search plan generation
algorithm. Section 5 gives a quantitative assessment and performance compari-
son. Related work is discussed in Sec. 6, and Sec. 7 concludes our paper.

2 Metamodel, Model and Pattern Specification

2.1 Metamodels and Models

A metamodel represents the core concepts of a domain. In this paper, our ap-
proach is demonstrated on a real-world running example from the railway do-
main [12] (developed in the MOGENTES project [13]), whose metamodel is
depicted in Fig. 1(a). Classes are the nodes in the metamodel: Routes, Sensors,
Signals, SwitchPositions, and TrackElements, which can either be Switches or Seg-
ments. References are the edges between classes, which can be uni- or bidirec-
tionally navigable as indicated by the arrows at the end points. A navigable end is
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labelled with a role name and a multiplicity, which restricts the number of target
objects that can be reached via the given reference. In our example, a Route
has at least 2 Sensors (as shown by the unidirectional reference hasSensors), and
defines an arbitrary number of SwitchPositions, which is a bidirectional reference.
Attributes (depicted in the lower part of classes) store values of primitive or
enumerated types, e.g., the length integer in a Segment, or the actualState of
a Switch whose possible values are listed in the enumeration SwitchStateKind.
Figures 1(b) and 1(c) depict two models from the domain, whose nodes and
edges are called objects and links, respectively.

«eclass» 
Signal 

+  actualState :SignalStateKind 

«eclass» 
Route 

«eclass» 
SwitchPosition 

+  switchState :SwitchStateKind 

«eclass» 
Switch 

+  actualState :SwitchStateKind 

«eclass» 
Segment 

+  length :EInt 

«eclass» 
TrackElement 

«eclass» 
Sensor 

«enumeration» 
SignalStateKind 

  STOP 
  FAILURE 
  GO 

«enumeration» 
SwitchStateKind 

  FAILURE 
  LEFT 
  RIGHT 
  STRAIGHT 

+sensor 

0..* observes 

+trackElement 

0..* 

+switchPosition 

0..* 
inPosition 

+switch 

0..1 
* 

hasSensors 

+routeDefinition 

2..* 

+route 

1 defines 

+switchPosition 

0..* * 
hasExit +exit 

1 

* 
hasEntry +entry 

1 

(a) The metamodel of the railway track domain

#Route 1

#Segment 3

#Sensor 2

#Signal 0

#Switch 2

#SwitchPosition 1

#defines 1

#hasEntry 0

#hasExit 0

#hasSensors 2

#inPosition 1

#observes 3

ro1 :Route se1 :Sensor

se2 :Sensor

swp1 :SwitchPosition sw1 :Switch

seg1 :Segment

seg3 :Segmentseg2 :Segmentsw2 :Switch
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observes
observes
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(b) Model 1

#Route 1

#Segment 0

#Sensor 2

#Signal 0

#Switch 1

#SwitchPosition 3

#defines 3

#hasEntry 0

#hasExit 0

#hasSensors 2

#inPosition 1

#observes 1

ro1 :Route se1 :Sensor

swp1 :SwitchPosition sw1 :Switch

se2 :Sensor

swp2 :SwitchPosition

swp3 :SwitchPosition

hasSensors

d
e
fi
n
e
s

inPosition

observes
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e
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n
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s

d
e
fi
n
e
s

hasSensors

(c) Model 2

Fig. 1. Metamodel of the railway track domain and two sample models

EMF-Specific Issues: References and attributes are collectively referred to as
structural features and handled uniformly in EMF. Each navigable direction of
a structural feature is represented by an indexed List in the source class, which
stores corresponding target objects.

Our approach collects statistical data from the model at runtime via EMF
adapters. An object and link counter is introduced for each class and structural
feature, which stores the number of type conforming objects and links, respec-
tively, as shown by the tables in Figures 1(b) and 1(c).

2.2 Pattern Specification

As defined in [5,14], a pattern is a set of constraints over a set of variables. A
variable is a placeholder for an object in a model, and it has a reference to a class
from the metamodel, which defines the type of the objects that can be assigned
to the variable during pattern matching. A constraint specifies a condition on a
set of variables (which are also referred to as parameters in this context) that
must be fulfilled by the objects, which are assigned to the parameters.
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EMF-Specific Issues: Although the pattern matcher has a pluggable infras-
tructure for the constraints that can be used for specifying patterns, only one
kind of constraints is used throughout the paper.1 In the following, a constraint
maintains a reference to a structural feature, and it prescribes the existence of a
link, which (i) conforms to the referenced structural feature and (ii) connects the
source and the target object assigned to the first and last parameter, respectively.

An ordered or unordered structural feature can be modeled by a binary con-
straint in the pattern specification, when the order information is irrelevant in
the pattern matching process. In contrast, ternary constraints should be used
for ordered unidirectional structural features, where the second parameter is an
integer index, which prescribes the location of the target object in the list of the
source object containing links that conform to the structural feature.

Example. Pattern routeSensor (Fig. 2) expresses a sample requirement defined
by railway domain experts, which has been slightly simplified for presentation
purposes. It states that a route must have a sensor observing a switch, and the
observed switch itself must be part of the route. The pattern has 5 variables (RO,
IDX, SE, SW and SWP), 1 ternary and 3 binary constraints, which prescribe the
existence of an ordered unidirectional and 3 bidirectional references, respectively.

hasSensors

defines observes

inPosition

RO : Route SE : Sensor

SWP : SwitchPosition SW : Switch

IDX : Integer

1 pattern routeSensor(RO:Route, IDX:Integer,
2 SE:Sensor, SW:Switch, SWP:SwitchPosition) =
3 {
4 hasSensors(RO, IDX, SE);
5 observes(SE, SW);
6 inPosition(SW, SWP);
7 defines(RO, SWP);
8 }

Fig. 2. Pattern routeSensor in a graphical and textual representation

3 Pattern Matching Process at Runtime

As [14] states, pattern matching is the process of determining mappings for all
variables in a given pattern, such that all constraints in the pattern are fulfilled.
The mappings of variables to objects are collectively called a match, which can
be a complete match when all the variables are mapped, or a partial match in
all other cases. The overall process of pattern matching is as follows:

Section 3.1. Operations representing atomic steps in the pattern matching pro-
cess are created from the pattern specification.

Section 3.2. The operations are filtered and sorted by a search plan generation
algorithm (for the details see Sec. 4) to produce efficient search plans.

Section 3.3. The search plan is then used by an interpreter to control the
actual execution of pattern matching, which is carried out as a depth-first
traversal.

1 Type restrictions for variables are going to be represented as constraints only in a
future version of the pattern matcher.
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3.1 Creating Operations

This subsection, which reuses some definitions from [5,14], describes the process
of creating operations from the constraints in the pattern specification. In the
following, it is assumed that an (arbitrary) order is fixed for the variables in the
pattern, and the notation vp denotes the pth variable according to this order.

An adornment [5] represents binding information for all variables in the pat-
tern by a corresponding character sequence consisting of letters B or F, which
indicate that the variable in that position is bound or free, respectively.

An operation represents a single atomic step in the matching process. It con-
sists of a constraint, an operation adornment, and a mask, which is derived from
the operation adornment. An operation adornment prescribes which parameters
must be bound when the operation is executed, while amask represents the same
binding information, but projected on all variables in the pattern. A check oper-
ation has only bound parameters. An extension operation has free parameters,
which get bound when the operation is executed.

Setting operation adornments. For presentation purposes, we assume that
operations use the standard EMF services, which restricts the set of operations
created for a constraint in the following manner.

For each binary constraint referring to a bidirectional structural feature, 3
operations with the corresponding BB, BF, and FB adornments are created. The
check operation (BB) verifies the existence of a link, while the other two, adorned
by BF and FB, denote forward and backward navigations, respectively. Analo-
gously, for each binary constraint referring to a unidirectional structural feature,
2 operations with the corresponding BB and BF adornments are prepared.

For each ternary constraint (referring to an ordered unidirectional structural
feature), operations adorned by BBB, BBF, and BFF are prepared (adornment
BFB is disallowed for presentation purposes). The check operation (BBB) verifies
that (i) a link connects the source and the target object mapped to the first
and the third parameter, respectively, and (ii) the target object is stored in
the appropriate List of the source object at the index assigned to the second
parameter. The operation with the BBF adornment is a forward navigation along
the single link, which is stored at the index assigned to the second parameter.
Finally, the operation adorned by BFF is a forward navigation along all links that
conform to the structural feature of the constraint, and that retain the source
object mapped to the first parameter.

Mask derivation. A mask mo is a sequence of *, B, and F characters. Char-
acter * at position p means that the binding of variable vp is irrelevant, while
letters B or F at position p explicitly prescribe the corresponding variable vp to
be bound or free, respectively. For each letter B (F) in the adornment, the posi-
tion p of the corresponding parameter vp is looked up by using the fixed variable
order, and position p is set to B (F) in the mask. All other locations of the mask
are set to *.
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Categorizing and applying operations. In the context of an adornment, op-
erations can be categorized. An operation o is a present (or applicable) operation
with respect to an adornment a, if the following conditions hold:

1. General operation applicability. Each variable vp, that must be free
according to the mask mo of operation o, is also free in adornment a.

2. Immediate operation applicability. Each variable vp, that must be bound
according to the mask mo of operation o, is also bound in adornment a.

An operation o is a past operation, if the first condition on general operation
applicability is violated. An operation o is a future operation, if only the second
condition on immediate operation applicability is violated.

If an operation o is a present (or applicable) operation w.r.t. adornment a, then
applying the operation o on adornment a resulting in an adornment a′ (denoted
by a

o
=⇒ a′) (i) binds all free variables indicated by mask mo of operation o, and

(ii) leaves the binding of all other variables unaltered.

Example. Figure 3(a) lists the operations derived from the routeSensor pattern.
In the following, we suppose that variables RO, IDX, SE, SW and SWP are ordered
in this specific sequence. For instance, operation observes(SE,SW) adorned by
BF is an extension operation, and it is only applicable if variable SE is bound,
and variable SW is free, which is also reflected in mask **BF* as SE and SW are the
third and fourth variable, respectively. This operation can be categorized as a
future operation with respect to adornment BFFFF, as it violates the immediate
operation applicability condition at the third position.

Constraint Op. Adornm. Mask
hasSensors(RO,IDX,SE) BBB BBB** future check
hasSensors(RO,IDX,SE) BBF BBF** future extension
hasSensors(RO,IDX,SE) BFF BFF** present extension
observes(SE,SW) BB **BB* future check
observes(SE,SW) BF **BF* future extension
observes(SE,SW) FB **FB* future extension
inPosition(SW,SWP) BB ***BB future check
inPosition(SW,SWP) BF ***BF future extension
inPosition(SW,SWP) FB ***FB future extension
defines(RO,SWP) BB B***B future check
defines(RO,SWP) BF B***F present extension
defines(RO,SWP) FB F***B past extension

Operation
Applic. Type

(a) Operations

Constraint Op. Adornm. Mask

(1) defines(RO,SWP) BF B***F BFFFB
(2) inPosition(SW,SWP) FB ***FB BFFBB
(3) hasSensors(RO,IDX,SE) BFF BFF** BBBBB
(4) observes(SE,SW) BB **BB* BBBBB
(1) hasSensors(RO,IDX,SE) BFF BFF** BBBFF
(2) observes(SE,SW) BF **BF* BBBBF
(3) inPosition(SW,SWP) BF ***BF BBBBB
(4) defines(RO,SWP) BB B***B BBBBB

Adornm. ai

(a0 = BFFFF)
Search plan Step Operation

Search plan 1
(derived from
model 1)

Search plan 2
(derived from
model 2)

(b) Search plans as sequence of operations

Fig. 3. Operations and search plans for the routeSensor pattern

3.2 Search Plan Generation

When pattern matching is invoked, variables can already be bound to objects
to restrict the search. The corresponding binding information of all variables
is called initial adornment a0. By using the initial adornment, a search plan
generation algorithm filters and sorts the operations to produce a search plan.
The current search plan formalism is a precise and extended variant of [5].

A search plan SP = 〈o1, o2, . . . , ol〉, starting from an initial adornment a0, is
a sequence of operations satisfying the following conditions:
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1. No multiple constraint checks. Each constraint in the pattern has at
most one corresponding operation in the search plan.

2. Valid adornment sequence. An adornment sequence a0, a1, . . . , al can be
derived in such a way that a0

o1=⇒ a1
o2=⇒ . . .

ol=⇒ al. The last element al in
this adornment sequence is referred as the adornment of the search plan.

A search plan is complete, if each constraint is represented by exactly one oper-
ation in the sequence, and its adornment has only B characters.

Example. Figure 3(b) depicts two search plans generated by our algorithm for
Models 1 and 2, when variable RO is initially bound and, thus, the initial adorn-
ment is BFFFF. The rightmost column presents the adornment after applying the
operation in the same line. SP1 extends the partial match along two separate
directions before joining the branches with the last (check) operation, while SP2
employs a clockwise navigation along the references in the pattern.

3.3 Search Plan Execution by a Pattern Matcher Interpreter

By conceptually following the corresponding part of [14], the interpreter uses a
match array for storing the matches, and the search plan for guiding the pattern
matching process. The size of the match array is determined by the number of
variables in the pattern. Each operation has a mapping, which identifies the slots
in the match array that correspond to the parameters of the operation.

When pattern matching is invoked, the initial match array is filled in by the
objects that are initially assigned to the variables, and it is passed on to the first
operation in the search plan. When an extension operation is executed, the struc-
tural feature of its constraint is navigated in forward (BF, BBF, BFF) or backward
(FB) direction depending on the operation adornment, then each accessed object
is type checked and bound to the corresponding free variable, and the execution
is passed on to the following operation for subsequent processing together with
the extended match array. A check operation simply passes on the unchanged
match array, if the actual check succeeded, and stops triggering further process-
ing steps otherwise. If a match array passes beyond the last operation, then it
represents a complete match, which is copied and stored in the result set.

This pattern matching (PM) process implements a depth-first traversal of a
PM state space, where a PM state represents a partial match that is produced
by an extension operation during pattern matching. The PM state space can
be described by a tree, whose root is the initial match, while internal nodes
and leaves correspond to partial and complete matches, respectively. Note that
each tree level is produced by a corresponding extension operation, and check
operations do not influence the tree structure as they do not bind any variables.

Example. Figure 4 depicts two PM state spaces, which are generated by per-
forming search plans SP1 and SP2 on Model 2, respectively. E.g., the second
level of Fig. 4(a) represents the partial matches that are prepared when navi-
gating along defines links from route ro1 to switch positions swp1, swp2, and
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swp3, as prescribed by operation defines(RO,SWP) with adornment BF. Framed
leaves represent those complete matches that pass beyond the last check opera-
tion (only shown in Fig. 3(b)), while unframed ones fail this check. It is obvious
from Fig. 4 that SP2 is better than SP1, as SP2 traverses less PM states.

ROB IDXF SEF SWF SWPF

ro1 - - - -

ROB IDXF SEF SWF SWPB
ro1 - - - swp1

ROB IDXF SEF SWF SWPB
ro1 - - - swp2

ROB IDXF SEF SWF SWPB
ro1 - - - swp3

ROB IDXF SEF SWB SWPB

ro1 - - sw1 swp1

ROB IDXB SEB SWB SWPB

ro1 1 se1 sw1 swp1
ROB IDXB SEB SWB SWPB

ro1 2 se2 sw1 swp1

(1) defines(RO,SWP) BF B***F

(2) inPosition(SW,SWP) FB ***FB

(3) hasSensors(RO,IDX,SE) BFF BFF**

(a) PM state space by performing SP1 on Model 2

ROB IDXF SEF SWF SWPF

ro1 - - - -

ROB IDXB SEB SWF SWPF

ro1 1 se1 - -
ROB IDXB SEB SWF SWPF

ro1 2 se2 - -

ROB IDXB SEB SWB SWPF

ro1 1 se1 sw1 -

ROB IDXB SEB SWB SWPB
ro1 1 se1 sw1 swp1

(1) hasSensors(RO,IDX,SE) BFF BFF**

(2) observes(SE,SW) BF **BF*

(3) inPosition(SW,SWP) BF ***BF

(b) PM state space by perform-
ing SP2 on Model 2

Fig. 4. Sample PM state spaces for Model 2

4 Dynamic Programming Based Search Plan Generation

As demonstrated in Fig. 4, the search plan has a large impact on the number of
produced matches, and consequently, on the performance of pattern matching.
As such, the production of a good search plan is an essential issue, and that is why
a quantitative characterization of operations and search plans is introduced for
optimization purposes by means of weights and costs. Note that a cost function
should ideally have a strong correlation with the size of the PM state space.

Operation weight calculation. An extension operation o is augmented by a
weight wo, which denotes the cost of performing the operation. In our approach,
a weight is defined as an average branching factor for that level of the PM state
space tree, which represents the operation execution, and is calculated using
the statistical data collected from the underlying model. The weights of ternary
operations with the BBF adornment are set to 1 (irrespective of the model), as
these operations never induce any branching in the matching process. For binary
and ternary operations with the corresponding BF and BFF adornments (forward
navigation), the structural feature referenced by the constraint of the operation is
determined, and the weight is the ratio of the link and object counters defined for
this structural feature and its source class, respectively. For binary operations
with FB adornment (backward navigation), the link counter of the structural
feature is divided by the object counter of the target class to define the weight.

Search plan costs. The search plan cost cl used in this paper estimates the
size of the PM state space tree via the cl =

∑l
j=1

∏j
i=1 woi expression [10],

which sums up the estimated number of PM states on a level-by-level basis
(excluding the root). To support an iterative search plan cost calculation, the
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cost cl is complemented by a product value πl and the calculation is rearranged
as (cl, πl) = f(cl−1, πl−1, wol), where c0 = 0, π0 = 1, πl = πl−1wol , and

cl =
l∑

j=1

j∏

i=1

woi =

cl−1︷ ︸︸ ︷
wo1 + . . .+ wo1wo2 · · ·wol−1

+

πl︷ ︸︸ ︷
wo1 · · ·wol−1︸ ︷︷ ︸

πl−1

· wol︸︷︷︸
wol

= cl−1 + πl.

Algorithm data structures. To avoid unnecessary recalculations in our ap-
proach, a state stores only the best of those search plans that share the same
adornment. A state S contains a search plan SPS with its adornment aS and
costs (cS , πS); and sequences of present extension Ope

S , future extension Ofe
S ,

and future check Ofc
S operations2 (w.r.t. adornment aS), which are (i) pairwise

disjoint by definition, and (ii) ordered based on their weights. Two states are
adornment disjoint, if they have different adornments.

The initial state S0 has an empty operation sequence as its search plan, the
initial adornment a0 as its adornment, and its cost values are set as cS0

:=
c0, πS0

:= π0. Its operations are categorized w.r.t. the initial adornment a0.

Algorithm. An efficient search plan is generated by a dynamic programming
based algorithm (see Algorithm 1), which iteratively fills states into an initially
empty table T with n + 1 columns and k rows, where n is the number of free
variables |aS0 | in the adornment aS0 of the initial state S0 and k ≥ 1 is a user-
defined parameter that influences the trade-off between efficiency and optimality
of the algorithm. In general, the column T [i] stores the best k adornment dis-
joint states (in an increasing cost order), which have i free variables in their
adornment, while T [i][j] is the jth best from these adornment disjoint states.

The two key features of the algorithm can be summarized as follows. (i) The
table only stores adornment disjoint states with the consequence of keeping only
the best search plan from those ones that share a common prefix. (ii) Addition-
ally, the table only stores a constant number of adornment disjoint states in each
column, immediately discarding costly search plans, which are not among the
best k solutions, and implicitly all their possible continuations. This avoids the
production of all search plans, which could alone result in the same (exponential)
complexity as the match calculation process.

First, the algorithm determines the number of free variables n = |aS0 | in
the adornment aS0 of the initial state S0 (line 1), and stores this state S0 in
T [n][1] (line 2). Then, the table is traversed by processing columns in a de-
creasing order based on the number of free variables in the state adornments
(lines 3–17). In contrast, the inner loop (lines 4–16) proceeds in an increasing
state cost order starting from the best state T [i][1] in each column T [i]. For
each present extension operation o in each stored state S (lines 6–15), the next
state S′ is prepared in a two-phase process, which (1) calculates the search plan
SPS′ , the adornment aS′ and the cost cS′ of the next state S′ immediately in
calculateNextState (lines 8–9), and (2) updates the search plan, and the se-
quences of present extension, future extension, and future check operations in

2 Note that past and present check operations need not be stored as they will be
immediately processed by the algorithm.
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Algorithm 1. The procedure calculateSearchPlan(S0, k)

1: n := |aS0 | //number of free variables in the initial state adornment aS0 is calculated

2: T [n][1] := S0

3: for (i := n to 1) do
4: for (j := 1 to k) do
5: S := T [i][j] //current state S
6: for each (o ∈ Ope

S ) do
7: // for each present extension operation
8: S′ := calculateNextState(S, o) // next state S′ is calculated
9: i′ := |aS′ | // next state S′ has i′ free variables in its adornment aS′

10: (a, c) := determineIndices(T [i′], S′)
11: if (checkInsertCondition(T [i′ ], S′,a, c)) then
12: updateOperations(S′ , S, o)
13: insert(T [i′], S′,a, c)
14: end if
15: end for
16: end for
17: end for
18: return SPT [0][1]

a delayed manner in updateOperation (line 12), but only if the next state S′

passes the insert condition (line 11), which uses indices a and c for decision
making, which are calculated by determineIndices (line 10). In the latter case,
the complete next state S′ is inserted into the column T [i′] by using indices a
and c (line 13). Finally, the algorithm returns the search plan SPT [0][1] (line 18).

The procedure calculateNextState(S, o) partially calculates the new state
S′ from state S and operation o. The new search plan SPS′ is determined by
appending operation o to the search plan SPS of state S. The new adornment
aS′ is calculated by applying operation o on the adornment aS of state S (i.e.,

aS
o

=⇒ aS′). The new costs cS′ and πS′ are computed from the costs cS and πS

of state S, and the weight wo of operation o according to the cost function f .
The procedure determineIndices(T [i′], S′) calculates indices a and c. Index

a marks the position of that stored state T [i′][a], which has the same adornment
aS′ as state S′. Index a is set to k+1, if no such stored state exists. Index cmarks
the position at which state S′ should be inserted based on its cost. Index c is set
to k+1, if state S′ is not among the best k adornment disjoint states. Formally,
c is the smallest index for which cS′ < cT [i′][c] holds (or cT [i′][c] = null).

The procedure checkInsertCondition(T [i′], S′, a, c) makes a positive deci-
sion, (1) if column T [i′] does not contain any states with the adornment aS′ of
new state S′ (a = k + 1), new state S′ is among the best k adornment disjoint
states (c < a), and a reachability analysis3 determines that the search plan SPS′

can be completed in a valid manner, or (2) if column T [i′] already stores a state
T [i′][a] at location a with the adornment aS′ of new state S′ (a < k + 1), and
this new state S′ is better than the stored state T [i′][a] (c ≤ a).

3 The reachability analysis is only discussed in [15] due to space limitations.
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The procedure updateOperations(S′, S, o) processes all operations o∗ of

present extension Ope
S , future extension Ofe

S , and future check Ofc
S sequences

of state S in an increasing weight order by also recategorizing these operations
with respect to the adornment aS′ of new state S′.

• Discard operations causing multiple checks. If operation o∗ originates
from the same constraint as the selected operation o, then operation o∗ is
discarded to avoid checking a constraint more than once. This can be easily
checked as each operation maintains a reference to its constraint.

• Discard past operations. If operation o∗ is a past operation, then it is
discarded as it violates the general operation applicability condition.

• Append present check operations to the search plan. If operation o∗

is a present check operation, then it is immediately appended to the search
plan to perform the corresponding checks as soon as possible.

• Append present extension, future extension, and future check op-
erations to the corresponding list. If operation o∗ is a present extension,
a future extension or a future check operation, then it is appended to the
corresponding operation sequence Ope

S′ , O
fe
S′ , or O

fc
S′ of state S′, respectively.

As operation application can only change variables from free to bound, a past
operation can never be recategorized in any states derivable from S′, (hence,
its immediate disposal is justified) while a future operation might eventually
become a present or past operation in a later phase of the algorithm.

The procedure insert(T [i′], S′, a, c) determines m = min {a, k}, removes
state T [i′][m], shifts elements between T [i′][c] and T [i′][m − 1] downward, and
inserts state S′ at position c.

Example. The dashed box of Fig. 5 presents the contents of table T (with 3
empty fields in the second row) after running our algorithm on Model 2 with
initial adornment BFFFF. Each arrow represents the derivation of a new state,
which was produced by one execution of the innermost cycle (lines 6–15). States
with watermark A were temporarily stored in the table (but later discarded due
to the appearance of better states). The state with letter B failed the reachability
analysis, while states with watermark C were discarded as the corresponding
column had already contained a better state with the same adornment.

For instance, the first execution of the innermost cycle processes operation
hasSensors(RO,IDX,SE) with adornment BFF, whose weight is #hasSensors

#Route
=

2
1 = 2 as Model 2 has 2 hasSensors links, and 1 Route. The corresponding new
state is inserted into T [2][1] as its adornment BBBFF has 2 free variables, and
column T [2] is empty at this time. In this new state, both costs are 2, operations
with constraint hasSensors(RO,IDX,SE) are discarded, and all other operations
are recategorized w.r.t. adornment BBBFF.

5 Measurement Results

In this section, we quantitatively assess the effects of different cost models and
various configurations of our proposed search plan generation algorithm on the
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runtime performance of the pattern matching process. More specifically, our
model-sensitive (MS) cost model was compared to a domain-specific (DS) ap-
proach, which latter used operation weights 1 and 10 for constraints representing
structural features with at most one (1) and arbitrary (*) multiplicity, respec-
tively. For configuring our algorithm, its parameter k was set to 1 and 2.

The pattern routeSensor of Fig. 2 and 10 models of different size from the
case study [12] were used for experimentation purposes. Pattern matching was
always restricted to a given Route in the model, which was assigned to variable RO
in the initial match and used as a starting point. The complete process (including
search plan generation) was repeated on each distinct Route.

Figure 6(a) presents the measured data. The first column indicates the model
identifier, the second and third columns the model size and the number of
distinct Routes in the model, respectively. The remaining columns show the
measured values for the different configurations, which independently involve
domain-specific (DS) and model-sensitive (MS) cost models, and algorithm pa-
rameter values k = 1 and 2. The PM columns denote the number of PM states
(i.e., elementary pattern matching steps), which was averaged over all distinct
Routes in the model. The SP columns show the cost of the (model-sensitive)
search plan that was considered the best by the search plan generation algo-
rithm and that was actually used to control pattern matching.

Model Routes DS (k=1) DS (k=2)
size PM PM SP PM SP PM

# # # # cT[0][1] # cT[0][1] #
1 1450 20 1128.55 579.80 430 579.80 115 118.50

2 2601 40 885.15 456.75 349 456.75 102 104.78

4 5234 80 881.15 454.94 355 454.94 101 105.19

8 10627 160 912.64 470.81 361 470.81 102 106.29

16 21186 320 939.48 483.93 357 483.93 104 107.36

32 42202 640 936.80 482.44 353 482.44 104 107.21

64 85428 1280 960.83 494.65 362 494.65 105 108.51

128 171030 2560 955.14 491.77 362 491.77 105 108.78

256 339490 5120 943.89 486.02 356 486.02 104 107.93

512 685830 10240 953.93 491.18 364 491.18 106 109.18

MS (k=1) MS (k=2)

(a) Comparison of PM state spaces
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Fig. 6. Measurement results

Fig. 6(a) shows that model-sensitive search plans have the capability to clearly
outperform domain-specific ones (in this case on all test models by nearly 400
steps in average) when the pattern has many structural feature constraints with
arbitrary multiplicity. Our algorithm generated the same search plan for the
settings of the fifth and the seventh column, which explains the equal values
there. Fig. 6(b) presents the relative frequency distribution histogram of the PM
state differences of DS and MS approaches (with parameter k = 2) when these
differences are calculated on a route-by-route basis for each of the 2560 starting
points of model 128 (see the thick frames in Fig. 6(a)). Fig. 6(b) shows that
the DS approach was better by 6 to 10 steps in 1.875% of the 2560 cases (first
column), the MS search plan was faster by 562 to 1000 steps in nearly 10% of the
cases (last column), while a draw occured in 6.875% of the cases (fifth column).
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In contrast to our preliminary expectations, which assumed that it was suffi-
cient to set parameter k only to 1 in practical cases, it can be seen that a more
thorough analysis with k = 2 can already pay off for small and simple patterns.

Unfortunately, the models of this case study were structurally similar, since
all the MS search plans (irrespectively of the different models) were the same
for a given parameter, which should not necessarily be the case. As further
general characteristics, the average wall clock time4 for search plan generation
was 50 μs (for all configurations), and a single PM step took 51 ns in average.
Neither the search plan generation, nor the pattern matching is affected by the
model-sensitive nature of the approach, as object and link counters are initialized
and incrementally updated, when the model is loaded and changed, respectively.

6 Related Work

Numerous useful model transformation tools are now surveyed, which internally
perform search plan driven pattern matching. A more detailed comparison of
pattern matcher engines is provided in [14].

Search plan driven pattern matchers. Fujaba [1] uses a search plan gener-
ation strategy that solely exploits type and multiplicity restrictions, which are
derived from the metamodel. According to the used strategy, a navigation along
an edge with an at most one multiplicity precedes navigations along edges with
arbitrary multiplicity. Fujaba originally operated on top of a non-standard model
representation, but recent versions can handle EMF models as well.

Pattern matchers driven by model-sensitive search plans. Although Fu-
jaba [16] is a model-sensitive approach and runs on EMF models, it has only a
simple greedy strategy to control pattern matching. GrGen [9] and Viatra [10],
which employ model-sensitive search plans, operate on a non-standard model-
ing layer, which has several consequences. On one hand, these tools can use an
arbitrary and optimized model representation, which can already have an inte-
grated support for statistical data collection. On the other hand, if these tools
aim to manipulate EMF-compliant models, then they have to be converted by
import and export mechanisms, which (i) is not always possible for legacy EMF-
based systems, and (ii) results in the inherent duplication of the complete model,
which has a significant negative impact on the memory consumption. Since all
other similarities and distinctions of GrGen, Viatra, and our approach are re-
lated to the employed search plan generation algorithms, these are evaluated in
the following separate paragraphs.

Analysis of model-sensitive search plan generation algorithms. In con-
trast to our dynamic programming search plan generation algorithm, GrGen
and Viatra use graph based techniques, which are obviously sufficient for sorting

4 A 2.93 GHz Intel Pentium Dual-Core CPU with 3.7 GB RAM was used for all
measurements. A 64-bit Ubuntu 11.04 with kernel 2.6.32–33 and Java 1.6.0 20 served
as the underlying operating system and virtual machine, respectively. Measurements
that result in time values were repeated 50 times for each starting point.
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and filtering unary and binary constraints, which are the most widespread re-
striction types, but these solutions lack the integrated handling of general n-ary
constraints, which are required for ordered references and pattern composition
[5]. Both GrGen and Viatra support the construction of complex patterns from
simpler ones, but the calculation of matches along pattern composition is sched-
uled by a separate piece of code and not the core search plan algorithm.

Search plan costs are calculated from the operation weights as a sum
∑

iwoi

in Viatra, and as a product
∏

i woi in GrGen, which can also be restructured
to a sum by using the logarithm operator (i.e.,

∑
i lnwoi). As a graph based

algorithm provides a provably optimal solution with these cost functions, they
are perfect for filtering operations, but completely useless for sorting due to the
insensitivity of these cost functions to the operation order.

A dynamic programming algorithm can cope with more complex cost func-
tions, and it can provably find the optimum, if the whole solution space is ex-
plored when k =

(
n

�n
2 �
)
. For a smaller k, the optimality is no longer guaranteed

as the optimal search plan might have a prefix that is not among the best k
adornment disjoint solutions at some point, and thus, this solution is discarded.
In this sense, the selection of k can be considered as a trade-off between the
polynomial runtime of the algorithm and the proven optimality of the solution.

Finally, it must be emphasized that the overall success of model-sensitive
search plan generation algorithms highly rely on a strong correlation between
the search plan cost and the size of the actually traversed state space, which is
only a hypothesis that was thoroughly analyzed in [11], but not a provable fact.5

7 Conclusion

In this paper, we proposed a novel search plan generation algorithm based on
dynamic programming together with a model-sensitive cost function for EMF
models to speed up pattern matching in practice. Additionally, performance mea-
surements have been carried out in a hardware and JVM independent manner
to assess the effects of search plan generation on the pattern matching process.

Our future tasks are to repeat measurements in additional scenarios, to give a
quantitative performance comparison of our approach to other pattern matchers,
and to embed the pattern matching framework into different modeling tools.

Acknowledgements. The authors acknowledge the help of Benedek Izsó, István
Ráth and Dániel Varró in providing us the railway scenario for the measurements.
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Abstract. Professional development of software dealing with structured
models requires more systematic approach and semantic foundations
than standard practice in general-purpose programming languages af-
fords. One remedy is to move to domain-specific environments. Here,
instead, we present a tool for the implementation of pattern matching as
fundamental means of automated data extraction from complex models
in a general-purpose programming language. The interface is simple but,
thanks to elaborate and rigorous design, is also light-weight, portable,
non-invasive, type-safe, modular and extensible. It is compatible with
object-oriented data abstraction and has full support for nondeterminism
by backtracking. The tool comes as a library consisting of two levels: ele-
mentary pattern constructs (generic, highly reusable) and pattern bind-
ings for particular data models (specific, fairly reusable, user-definable).
Applications use the library code in a small number of idiomatic ways,
making pattern-matching code declarative in style (yet retaining richer
host-language semantics), easily writable, readable and maintainable.
Library and idiom together form a tightly embedded domain-specific
language; no extension of the host language is required. The current
implementation is in Java, but assumes only standard object-oriented
features, and can hence be ported to other mainstream languages.

1 Introduction

Whether models and model transformations are expressed in problem-specific
tools that need to be implemented, or in general-purpose programming environ-
ments, at the end of the day a model is a data structure describing an actual or
potential system, and a model transformation is a program that either creates
such data or extracts relevant information from them. Whereas declarative (func-
tional or logical) languages are more or less equally powerful on the creation and
extraction sides, object-oriented languages are notorious for the relative clum-
siness of their default extraction idiom, in terms of type cases, casts and getter
methods, compared to the creation idiom of compositional constructor calls.

In earlier work, we have pleaded the cause of a more advanced, specifically
object-oriented technique of data extraction, namely the visitor style pattern: in
[5], we have demonstrated how visitor-based extraction can be optimized using a
combination of static and dynamic analyses. Here, we turn to a more paradigm-
neutral technique that enjoys great popularity, e.g. in functional programming
and in string processing, namely pattern matching.
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We present a generic programming aid for data extraction by pattern match-
ing that unifies desirable features of declarative paradigms with an object-
oriented approach to data abstraction, making no assumptions about the data
metamodel other than the host-language semantics. It comes in two parts: a
basic library and a programming idiom that uses the library operations as its
core vocabulary. Problem-specific composite operations can be provided by the
user by extending the library cleanly through subclassing. Our implementation
is hosted in Java, but nothing prevents the same technique to be used in other
strongly typed object-oriented environments such as C++ or .NET.

2 Standards of Pattern Matching

Pattern matching, in the wide sense, plays an important role in many different
kinds of programming environments. The techniques applied differ substantially
regarding theoretical foundation and expressiveness, the treatment of nondeter-
minism, type discipline, etc. The following are the relevant role models, positive
or negative, for our approach.

String processing with regular expressions. Typing is not an issue, since patterns
refer to character strings only. Theoretical foundation is sound, but only as long
as certain pragmatic extensions are excluded. Nondeterminism is not supported
except for top-level substring search.Conceptually nondeterministic forms are dis-
ambiguated explicitly by different flavours (greedy etc.) of constructors.

Functional programming with algebraic datatypes. Inverse constructors are a cen-
tral means of data extraction and equational function definition in functional
programming languages (Hope, Haskell, ML, Opal), and shares the full type dis-
cipline of the language. Nondeterminism arises not within one pattern, but rather
between overlapping patterns of equations, and is usually resolved implicitly by
a first-fit rule.

XML processing with XPath and XSLT. XPath pattern definition has become
practically relevant as a central part of the XSL transformation system. There
is no commonly agreed theory for the full scope of the pattern language. Nonde-
terminism is supported by the “for-each” statement of the XSLT language,
although control is limited to complete enumeration.

Logic programming with goals & unification. Logic programming languages (most
famous: Prolog) offer a distinct quality by making nondeterminism, unification
of variables and values, and automated exploration of solution spaces first-class
constructs of the language. They are usually weakly typed.

Model query and transformation. In dedicated model query languages pattern
matching is a central functionality as well: the evaluation of a query delivers a
subset of model nodes. Selection criteria range from simple checks on attribute
values to complex relational constraints among nodes. In graph transformation
systems, graph patterns feature prominently as the left hand sides of rewrite
rules. The pervasive nondeterminism in graphs is often handled by explicit con-
trol flow.
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3 Requirements

Our approach is distinguished by following a carefully selected canon of rigorous
design requirements:

1. Statically type-safe variables. No need to down-cast variable bindings.
2. Statically type-safe patterns. Detect ill-typed pattern matching attempts as

often as possible.
3. No language extension: independent of host compiler/interpreter. Solution

can be used with off-the-shelf programming platforms.
4. No assumptions on host language beyond standard OOP. Solution can be

re-implemented in any comparable host environment.
5. No adaptation of model datatypes required. Data models can be developed

without pattern matching in mind; no source code access required.
6. Support for multiple views per type. Different collections of pattern elements

can expose different structural aspects of data models.
7. Declarative, readable, writable, customizable. Patterns express the program-

mer’s intention of data extraction with as little formal noise as possible.
8. Full reification: no parsing/compilation overhead at runtime. Patterns are

typed host-language objects; ill-defined usage is detected at compile time.
9. Support for continuation-style nondeterminism. Patterns allow multiple suc-

cessive matches postponable indefinitely, even across persistent serialization.
10. Nondeterminism incurs no significant cost unless actually used. No central

storage or control mechanism; lazy exploration of alternatives.

Space does not permit us to give either a full verification that our implementation
satisfies these requirements, nor a full validation that the requirements actually
yield a good solution to a particular class of problems. With respect to the latter,
the reader is invited to judge on the grounds of own practical experiments with
the downloadable demo distribution; see Section 6 below.

4 Design

The requirements for static type safety and reification rule out a domain-specific
language for pattern matching that is used at run-time syntactically, in the style
of textually encoded regular expressions. On the other hand, the requirements
for host language independence rule out implicit compile-time embedding of
pattern matching code. The remaining middle ground is covered by generative
approaches, which embed domain-specific notation in an explicit translation,
and by library approaches, where patterns are constructed at run-time, but in
terms of semantical host language objects. Here, we pursue the library approach
because it is more lightweight and flexible. Of course, complex fragments of code
using the library can be generated from a more concise domain-specific notation,
as for instance done by our umod tool [5].

The classical semantics of patterns as the inverse of constructor terms of alge-
braic datatypes, de-facto standard in declarative languages, does not carry over
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abstract class Pattern<A> {
// instance methods
public abstract boolean match(A target);
public boolean matchAgain();
// factory methods
public static <A> Pattern<A>
both(Pattern<? super A> first, Pattern<? super A> second);

public static <A> Pattern<A>
either(Pattern<? super A> first, Pattern<? super A> second);

public Pattern<Object> forInstancesOf(Class<? extends A> cls);
public static <A> Pattern<A> eq(A constant);
public static <A> Pattern<A> equal(A constant);

}

class Variable<A> extends Pattern<A> {
public A getValue();
public <B> List<A> eagerBindings(Pattern<? super B> root, B target);
public <B> Iterable<A> lazyBindings(Pattern<? super B> root, B target);

}

abstract class Transform<A, B> extends Pattern<A> {
protected final Pattern<? super B> body;
protected abstract B apply(A target);
protected abstract boolean isApplicable(A target);

}

Fig. 1. Interface synopsis (Core)

smoothly to the object-oriented paradigm, because object constructors gener-
ally lack the mathematical benevolent properties of their algebraic counterparts,
namely extensional equality, injectivity, disjointness and completeness. A looser
notion of pattern matching, more appropriate to the abstraction style of object
orientation, is to consider it the reification and composition of certain classes of
data-extraction operations, namely testing (classifying objects as either accept-
able or not), projection (extracting values and subobjects) and binding (assigning
data to variables). The design of our library is such that these three concerns
are separated as much as possible, but can be composed as freely as possible.

The main interface of the library is the abstract base class Pattern<A> of
patterns that can process objects of type A. The success of all implied testing
is indicated by the Boolean return value of the match method. Projection is
accomplished by invoking getter methods on the argument; for a compositional
approach see below. Binding occurs as a side effect of successful matches; unsuc-
cessful matches leave the corresponding variables in unspecified state. A variable
is simply a pattern of subclass Variable<A> that matches always, and binds
to the matched object for later retrieval via the getValue method.

Note that the (recursive) invocation of match is the primary concept, and the
return values govern the matching control flow. Variables are plain von Neumann
variables (assignable slots) rather than the richer ones of logic programming: No
unification or implicit equality test is performed; successive matches for the
same variable simply overwrite its value. This makes both data extraction and
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backtracking extremely light-weight. Thus variables should be used linearly, but
can of course be related by constraints embedded in a composite pattern.

The variable interface is unique in the sense that its type parameter occurs
in a return type. All other generic pattern instance methods have type parame-
ters only in argument types, making them contravariant : patterns that accept a
subtype form a supertype and vice versa. Patterns are used only via their con-
travariant interface in many places. This can be expressed in Java by wildcards
with lower bounds, of the form Pattern<? super A>.

As mentioned before, the binding aspect of pattern matching is conditional
on the testing aspect: Bound values are only meaningful if the matched object
is deemed acceptable. For reasons of simplicity and efficiency, our library does
not provide automatic means to detect whether a variable has been bound; the
responsibility to bind occurring variables on success is part of the contract of
composite pattern classes. The basic idiom of pattern matching is thus:

Variable<C> vc = new Variable<C>();
Variable<D> vd = new Variable<D>();
Pattern<A> p = myPattern(vc, vd); // known to bind vc, vd
if (p.match(x))

doSomething(vc.getValue(), vd.getValue());

It is not an accident that the pattern variables vc and vd in this example have
local declarations with precise static type (first two lines): This style enables the
full use of static type information for bound values, even if the matching pattern
has been constructed from generic building blocks that are defined independently
of the type of occurring variables.

Generic building blocks are the key to reuse and concise notation. For instance,
operators to lift patterns from elements to data structures of the Java collection
framework, thereby encapsulating ubiquitous but repetitive search procedures,
are part of the Paisley library. Fine control over searching is supported by explicit
nondeterminism.

Nondeterminism is realized by backtracking. After a successful call to match,
additional matches for the same target may be attempted by subsequent calls
to matchAgain. Patterns may also be reused, although not concurrently, by
calling match with a new target. The semantics of return value and binding
side effects is the same for both methods. Note however that the argument is
not repeated with matchAgain: it is the responsibility of each pattern subclass
to store the relevant information. Storage should be strictly local, such that
memory leaks can be avoided by allowing patterns to become garbage after use.

Iteration over all matches of a nondeterministic pattern is effected by extend-
ing the above idiom slightly by a do . . . while loop, with minimal redundancy.

if (p.match(x)) do
doSomething(vc.getValue(), vd.getValue()) ;

while (p.matchAgain());

The default implementation of matchAgain always returns false, specifying
a deterministic pattern. For patterns with a single variable, bindings for all
matches can be collected either eagerly or lazily with eagerBindings and
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lazyBindings, respectively, thus effecting fully reified encapsulated search as
strongly typed objects of the Java collection framework (collecting bindings of
multiple variables is awkward in Java due to the lack of Cartesian products).
The iteration pattern for all matches simplifies accordingly.

for (C c : vc.lazyBindings(p, x))
doSomething(c) ;

Patterns can be combined in a logically generic way conjunctively (both) and
disjunctively (either), giving rise to Cartesian product and disjoint union
of matches, respectively: The pattern both(p, q) succeeds where both p
and q succeed, and binds all variables bound by either p or q; no guaran-
tees of non-interference are given for variables occuring in both. The pattern
either(p, q), dually, succeeds where either p or q succeeds, and binds all
variables bound by both p and q; variables bound only by one of p or q are con-
tingent on information not available from logical disjunction, but other pattern
control flow constructs implemented in our library.

For dynamic type case distinction, every pattern can be guarded by an in-
stance test by calling forInstancesOf, which delegates to the primitive
Class.isInstance, resulting in a pattern widened to type Object.

Since there is no semantically natural and unique notion of equality in object-
oriented systems, there is no direct equivalent of pattern constants, with the
exception of primitive types. However, comparing targets to a fixed object by
either == or equals is a ubiquitous testing pattern and supported by the eq
and equal pattern factory methods, respectively.

As a generic construct for both testing and projection, patterns can be lifted
contravariantly over partial functions: Given a transformation that produces an
object of type B from a known subset of objects of type A, implemented as a sub-
class of Transform<A, B>, each pattern with target type B induces a pattern
with target type A, which transforms its argument and delegates the matching
of the result to its constructor argument. Testing can be accomplished in the
isApplicable method, projection in the apply method. Hence both case
distinctions and getters can be reified as atomic pattern building blocks, which
can then be combined by logical operators and nesting. Constructor patterns à
la Scala case class can be assembled in this way from components.

Where more appropriate, complex composite testing/projections operations
can also be hand-coded as monolithic subclasses of Transform. Note however
that correct implementation of nondeterministic backtracking is not a trivial
issue, and the generic realization in both and either is quite helpful.

Generic constructions for more complex pattern applications, such as search-
ing in aggregate data structures with various degrees of nondeterminism, are
either already available as extensions to the basic library or can be user-defined
tailored to problem-specific needs. Specific constructions that encapsulate a view,
or systematic mode of extraction, of a certain data type should be bundled for
use as specific pattern matching idioms. Such views can be developed without
changes or even access to the internal definitions of data classes, and they can
coexist and be used on a completely case-by-case basis.
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5 Related Work

Limited space allows only the discussion of the most relevant related work.
In specialized model transformation systems the application of pattern match-

ing is often supervised by a dedicated control language. See for instance the
“Rule Application Control Language” of GrGen.NET [1]. This role is taken in
our approach by the hosting imperative programming language in the natural
way.

Pattern notations take a vast number of theoretically and pragmatically dif-
ferent forms in the multitude of existing model transformation systems. For
instance, the query language of the GReTL system [3], GReQL, offers regular
path expressions to express complex patterns. Our approach lacks a “Kleene
star” primitive for the iteration of a fixed access operation, but this can easily
be accomplished using the recursion mechanism of the host language.

A theoretically elegant design of pattern matching capabilities for Java,
JMatch, is presented in [6]. While it has had much impact, and is cited heavily
by later work, there are severe drawbacks: The approach assumes a perspective
on pattern matching that is very much like logical programming. As a result,
their nondeterminism is rather heavy-weight, requiring CPS transformation of
certain program parts. Furthermore, the solution is a host language extension
and requires a special academic compiler. All such experiments are eventually
doomed to oblivion unless some big vendor adopts the technology.

The multi-paradigm language Scala [7] incorporates a powerful pattern match-
ing idiom with clean semantics and user-defined extensibility, via singleton ob-
jects and the unapply method. Being part of the core Scala design, it is better
integrated with the host language than our approach can ever hope to be. On
the other hand, we find the lack of nondeterminism a significant weakness.

The approach most similar to ours, Kiama [8], is hosted on Scala. It makes
pervasive use of the pattern matching functionality of its host language. This
project is a carry-over of Stratego [2], which is a transformation system as a
dedicated DSL. Their relationship corroborates our views on the tradeoff between
the lightweight nature of embedding vs. analysis and optimisation opportunities
from separation of languages.

Hosaya and Pierce [4] show the significance of pattern matching for XML pro-
cessing, a standpoint we strongly support, in particular with regard to readabil-
ity and maintainability of real-world code. Their work focuses on type inference
and DSLs for XML processing, two tasks we deliberately delegate to the hosting
programming language.

6 Conclusion

We have outlined how our requirements for effective pattern matching are ful-
filled by a simply and concisely designed library. The separation of the con-
cerns of testing, projection and binding, together with powerful generic pattern
constructs ensures static type safety, compositionality and a flexible notation
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allowing for arbitrary user-defined extensions. From the engineering viewpoint,
the three most valuable features are

1. the type safety of patterns and their variables,
2. the cleanly compositional behaviour of nondeterminism, which may save the

user a substantial amount of cluttered and hardly reusable code fragments
consisting of loops and recursions, and

3. the full reification of patterns, whereby data extraction procedures can be
organized, aggregated, serialized and shared like any other objects of the
host language.

The light-weight nature of the language embedding has proven a blessing rather
than a curse, in particular with respect to nondeterminism, which is semantically
straightforward, easy to use, and nondisruptive with respect to the rest of the
host language, especially compared with heavy-weight solutions such as JMatch.

The Paisley toolkit is being developed and extended continually. An up-to-date
version of the library and a number of example applications can be downloaded
from http://bandm.eu/metatools/paisley.

References

1. Blomer, J., Geiß, R., Jakumeit, E.: The GrGen.NET User Manual (2011),
http://www.grgen.net

2. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT Tu-
torial, Examples, and Reference Manual (latest). Department of Information
and Computing Sciences, Universiteit Utrecht, Utrecht, The Netherlands (2006),
http://www.strategoxt.org

3. Horn, T., Ebert, J.: The GReTL Transformation Language. In: Cabot, J., Visser,
E. (eds.) ICMT 2011. LNCS, vol. 6707, pp. 183–197. Springer, Heidelberg (2011)

4. Hosoya, H., Pierce, B.C.: Regular expression pattern matching. In: ACM SIGPLAN–
SIGACT Symposium on Principles of Programming Languages (POPL), London,
England (2001); full version in Journal of Functional Programming, 13(6), 961–1004
(November 2003)

5. Lepper, M., Trancón y Widemann, B.: Optimization of Visitor Performance by
Reflection-Based Analysis. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS,
vol. 6707, pp. 15–30. Springer, Heidelberg (2011)

6. Liu, J., Myers, A.C.: JMatch: Iterable Abstract Pattern Matching for Java. In: Dahl,
V. (ed.) PADL 2003. LNCS, vol. 2562, pp. 110–127. Springer, Heidelberg (2002)

7. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. artima, 2nd edn. (2010)
8. Sloane, A.M., Kats, L.C.L., Visser, E.: A pure object-oriented embedding of at-

tribute grammars. Electronic Notes in Theoretical Computer Science 253 (2010),
http://wiki.kiama.googlecode.com/hg/papers/LDTA09.pdf

http://bandm.eu/metatools/paisley
http://www.grgen.net
http://www.strategoxt.org
http://wiki.kiama.googlecode.com/hg/papers/LDTA09.pdf


Constraint-Driven Modeling

through Transformation

Andreas Demuth, Roberto E. Lopez-Herrejon, and Alexander Egyed

Institute for Systems Engineering and Automation
Johannes Kepler University (JKU)

Linz, Austria
{andreas.demuth,roberto.lopez,alexander.egyed}@jku.at

Abstract. In model-driven software engineering, model transformations
play a key role since they are used to automatically generate and update
models from existing information. However, defining concrete transfor-
mation rules is a complex task because the designer has to cope with in-
completeness, ambiguity, bidirectionality, and rule dependencies. In this
paper, we propose a vision of Constraint-driven Modeling in which trans-
formation is used to automate the generation of model constraints instead
of generating entire models. Three illustrative scenarios show how this
approach addresses common transformation issues and how designers
can benefit from using model constraints and guidance. We developed a
proof-of-concept implementation that covers an important part of this
vision and thus demonstrates its feasibility. The implementation also sug-
gests that a constraint-driven transformation is efficient and scales even
with increasing numbers of involved models.

1 Introduction

With the increasing use of Model-Driven Engineering (MDE) [1] for complex
software systems, the generation of models from existing artifacts through model
transformation [2] is a vital necessity. Various classifications and taxonomies
have been published to compare the state-of-the-art (e.g., [3,4]) and rich trans-
formation languages are available, such as ATL [5] or QVT [6], which define
transformation rules that are executed by a transformation engine to generate
models. Since the source models of transformations are likely to be manually
edited during development, re-transformations are necessary to update the cor-
responding generated models. However, such a re-transformation of non-trivial
models can be time expensive and may affect the modeler’s normal workflow
[7,8]. Hence, incrementality is required to allow partial model updates without
complete re-transformations in order to achieve acceptable performance when
working with large, non-static models [8]. To date, various sophisticated trans-
formation techniques exist that produce excellent results as long as the generated
models are static and there are no uncertainties.

However, problems arise when these requirements are not fulfilled. For ex-
ample, a common issue with re-transformations – even when performed incre-
mentally – is the inevitable loss of manual changes to the generated models.
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The issue is similar with bidirectional transformations [9,10], which are often
used to synchronize models or to keep them consistent, when both involved mod-
els are edited concurrently. Furthermore, there are situations where it cannot be
ensured that traditional approaches will generate the desired models because of
ambiguity, uncertainties, and the fact that certain information neither is avail-
able at the time the transformation rules are written nor can be derived from
the involved models when those rules are executed.

In this paper, we propose Constraint-driven Modeling (CDM), a generic ap-
proach that guides the construction of new models while conserving consistency
with the related models and eliminates issues arising with re-transformations,
uncertainties, and bidirectionality. CDM relies on incremental model transforma-
tions to generate constraints from existing models that represent the invariants
that the generated models should meet. Such constraints, written in a constraint
language (e.g., the Object Constraint Language (OCL) [11]), are validated by a
consistency checker on a given model. The provided guidance, which is derived
from the generated constraints and existing inconsistencies, helps designers to
stepwise transform the initially generated model to a version that matches the
desired characteristics by pointing out inconsistencies (i.e., aspects of the model
that do not satisfy invariants). Such guidance can be either the information which
elements are causing inconsistencies, or suggestions of model changes (options)
that can be performed to restore consistency. To obtain an initial, yet incomplete
version of the desired model to start working with, a traditional batch model
transformation with unambiguous rules can be used to generate a skeleton. Thus,
CDM can be seen as a complement to traditional model transformation.

We evaluated our approach and showed its feasibility by implementing a pro-
totype that generates constraints, enforces them incrementally, and informs the
user about existing inconsistencies. Performance tests with large industrial mod-
els of up to 162,237 model elements previously showed the scalability of con-
straint validation [12]; our tests with these models show that the median times
for incremental transformation and constraint generation are under .07 millisec-
onds. Thus, the approach scales and provides instant user feedback when involved
models are edited.

2 Running Example

To illustrate our work, we first present two incremental changes that are chal-
lenging for common model transformation approaches.

Let us consider the sequence and class diagrams shown in Fig. 1(a) and
Fig. 1(b) respectively. In Fig. 1(a), the unnamed instance of class LightSwitch
receives a message named activate. According to the semantics of UML se-
quence diagrams, this message requires that the instance of LightSwitch pro-
vides a method also named activate. At first glance, it looks like a simple
transformation can be used to automatically add the method activate to class
LightSwitch in Fig. 1(b) whenever a message is added to a sequence diagram
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(a) (b) (c) (d)

Fig. 1. Two UML models (a) and (b), and evolved versions (c) and (d)

whose name does not match any method in the class. An example for such a
transformation rule written in ATL-like syntax is shown in Listing 1.

However, there is an issue with this approach: Should the method activate

be added to LightSwitch or would it make more sense for the system to add it
to the superclass Switch?

Obviously, this question cannot be answered automatically. The only possi-
bility would be to make an assumption (e.g., always add the method to the
specified class to be on the safe side), which leads to the generation of poten-
tially unintended models where methods are not declared in the desired place or
where methods are unnecessarily overridden.

3 Constraint-Driven Modeling

Common transformation languages usually describe the steps that have to be
performed to generate new models from existing ones. The previous section
illustrated that it can be difficult or even impossible to writing transformation
rules that automate complex decisions or always lead to desired results.

Intuitively, and in contrast with standard model transformations, we propose
to generate constraints on a model (to guide designers) rather than generating
the model itself whenever precise transformation results cannot be derived. For
example, the added message activate on the source model should impose a
constraint that a same named method should be available to class LightSwitch
rather than saying it should be owned by it. If the method is already there then
the constraint is instantly satisfied. If the method does not exist then further

from
s : SequenceDiagram ! Message

to
t : ClassDiagram !Method (

name <− s.name ,
owner <− ge tC l a s s (s.receiver.className)

)

Listing 1. Sample transformation to generate methods in class diagrams
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(a) Model transformation. (b) Constraint transformation.

Fig. 2. From ambiguous model transformation (a) to constraint transformation (b)

actions are required to deal with this problem – actions that must either come
from a human or be derivable from other transformations.

When traditional model transformation approaches are used, the transforma-
tion process can be regarded as:

A
Tm−−→ Bg (1)

where A is called the source model, consisting of an arbitrary number of model
elements. Tm is the transformation model, consisting of transformation rules,
that is used to transform A to the generated model Bg.

We expanded this notation and define our approach as:

A
Tc−→ C � Br (2)

where the variable A denotes the source model and Tc is a set of model transfor-
mation rules. However, as the solid arrow from A to C and the changed subscript
of T suggest, this set of rules no longer generates a model (i.e., Bg), but instead
it contains transformation rules that are applied to A in order to generate con-
straints (i.e., the constraint model C). This constraint model consists of a set
of constraints that are enforced by an incremental consistency checker on the
model Br, as indicated by the curvy arrow from C to Br. The model Br is no
longer the generated model but is now called the restricted model, as indicated
by the subscript r, that is either consistent or inconsistent with the constraint
model C, and therefore a valid or invalid solution of the modeling problem.

Note that an initial version of Br may be generated through a traditional
transformation (analogous to Bg) or even built manually by a designer. However,
once generated, this proposed approach can detect inconsistencies if both A and
Br are evolved concurrently. Thus, our approach should not be seen as replac-
ing traditional transformation approaches but instead complementing them in
case of co-evolution, uncertainties, complex rule-scheduling issues or even model
merging as will be demonstrated below. Next, we present how it is applied.

3.1 Application: Uncertainties

Let us come back to our running example from Section 2 where we illustrated
that choosing the right class for a required method cannot be fully automated.
The traditional approach shown in Fig. 2(a) automatically generates one of sev-
eral possible models and we could at most use heuristics for deciding on which
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Fig. 3. Application of approach to models from Fig. 1(a) and Fig. 1(b)

transformation to use (which never guarantees correctness). However, while the
knowledge contained in Fig. 1(a) is insufficient to generated a correct update to
the class diagram, it is sufficient to generate a correct constraint on said diagram.
Such constraints can be generated by transformation rules that are triggered by
the addition/removal of class instances or messages in sequence diagrams that
can be efficiently validated by state-of-the-art consistency checkers.

To automate constraint generation, we provide two transformation rules that
are triggered by class instances or messages in sequence diagrams and that use
information from the sequence diagram to generate very specific and expressive
constraints. These rules are shown in Listing 2.

rule t1
from

s : SequenceDiagram ! Instance
to

t : ConstraintModel ! Constra int (
context <− ”Package” ,
inv <− ” s e l f . c l a s s e s−>e x i s t s ( c | c . name=’” + s.className + ” ’ ) ”

)
rule t2

from
s : SequenceDiagram ! Message

to
t : ConstraintModel ! Constra int (

context <− ”Class ” ,
inv <− ” s e l f . name=’” + s.receiver.className + ” ’ imp l i e s s e l f .

providedMethods−>e x i s t s (m|m. name=’” + s.name + ” ’ ) ”
)

Listing 2. Transformation rules to generate class (t1) and method (t2) constraints

Note that, even though we use ATL-like syntax for this example, our approach
can be used with any transformation language. After applying these rules to the
motivating example from Section 2 as illustrated in Fig. 3 and according to (2),
C consists of the following OCL constraints:

c1 context Package inv: self.classes->exists(c|c.name=’LightSwitch’)

c2 context Class inv:

self.name=’LightSwitch’ implies

self.providedMethods->exists(m|m.name=’activate’)

c3 context Class inv:

self.name=’LightSwitch’ implies

self.providedMethods->exists(m|m.name=’turnOff’)
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In Fig. 3 we can see that the method required by the constraint c2 is not present
in Br, as indicated by the empty, dashed rectangle in the LightSwitch class,
meaning that this particular model will be marked inconsistent. Note that we
use OCL as the constraint language in our example because it is a well known
and accepted language for writing constraints and we have existing tool sup-
port for incrementally validating OCL constraints. Nonetheless, in principle any
constraint language and consistency checker may be used.

Fig. 2(b) illustrates the basic concept of the constraint-driven modeling ap-
proach. It is noteworthy that the approach does not modify the restricted model.
It simply restricts it. The generated restriction – depicted as partial frame with
rounded corners around the restricted model Br – may be light in that there
are various options on how to change the restricted model. In such as case, the
designer has the freedom to decide which of the options is the desired one (e.g.,
add activate to LightSwitch or Switch) with the knowledge that the approach
notifies/prevents options that are invalid. In the most extreme case, the restric-
tions may be severe enough to allow for one option only. In such a case, the
approach could automatically select this option with the knowledge that it is
the one and only right option (e.g., if LightSwitch had no parent class then
there is a single option only).

3.2 Incremental Constraint Model Management

Let us take a closer look at the transformation that generates the constraint
model C. As shown in (2) and Fig. 3, applying the transformation rules of the
transformation model to the source model generates the constraint model.

Source model update. The transformation approach we use supports incre-
mentality to allow updates of the constraint model without performing a com-
plete re-transformation of the source model. When A is updated to A′, we can
write this as

A
ΔA−−→ A′ (3)

where ΔA is a sequence of modifications done to elements in A (e.g., add a new
model element). ΔA is used as input for the transformation model to generate
the set ΔC, as shown in (4).

ΔA
Tc−→ ΔC (4)

ΔC includes pairs of constraints and actions (i.e., {add, remove}) that define
whether the constraint should be added or removed from the existing constraint
model C. By applying ΔC on C, the updated constraint model C′ is generated:

C
ΔC−−→ C′ (5)

Let us consider the evolution of the models shown in Fig. 1(a) and Fig.1(b) to
the versions shown in Fig. 1(c) and Fig. 1(d) where the name of the message #2
was updated to deactivate, the message #3 was introduced, and the name of
the method turnOff was changed to switchOff. For the changes in the source
model, the corresponding ΔA is 〈〈Message2, update〉, 〈Message3, new〉〉.
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Fig. 4. Update of constraint model after changes in source model

To build ΔC, the transformation engine executes the applicable transfor-
mation rules for the elements in ΔA (i.e., message #2 and message #3) to
generate the corresponding constraints, as defined in (4) and shown in Fig. 4.
For 〈Message2, update〉, the constraint c3′ is generated and the information
〈c3′, add〉 is added to ΔC.

c3’ context Class inv:

self.name=’LightSwitch’ implies

self.providedMethods->exists(m|m.name=’deactivate’)

Since the constraint c3 was already generated from the same element as c3′, mes-
sage #2, 〈c3, remove〉 is also added to ΔC in order to remove the now outdated
constraint c3. For 〈Message3, new〉, the transformation rule t2 is executed to
generate a new constraint c4 and 〈c4, add〉 is added to ΔC.

c4 context Class inv:

self.name=’LightSwitch’ implies

self.providedMethods->exists(m|m.name=’dim’)

At this point, ΔC is {〈c3, remove〉, 〈c3′, add〉, 〈c4, add〉}. When these changes are
applied to C = {c1, c2, c3} as defined in (5) and shown in Fig. 4, the resulting
updated constraint model is C′ = {c1, c2, c3′, c4}. We used dotted lines for re-
moved elements, that is c3 and the corresponding inconsistency in LightSwitch.
As Fig. 4 indicates, the constraints c3′ and c4 are violated by the restricted model
since the class LightSwitch does not provide the required methods deactivate
and dim.

Ultimately, changes of the source model A affect the constraints that are
enforced by the consistency checker:

C′ � Br (6)

Next, we describe how such constraint model changes can affect the consistency
status of the restricted model Br.

3.3 Constraint Validation and Solution Space

We define the solution space of a modeling problem to initially include all pos-
sible instances of a metamodel (there are likely infinite). When a constraint is
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validated, it determines whether a model meets those characteristics. Therefore,
applying a constraint decreases the size of the solution space and the validation
result shows whether a specific model is part of the solution space.

We define the validation of a constraint c for a specific model m as val :
(m, c) → {false, true} where false is returned if m violates c, true otherwise.
For a model Br and a constraint model C, the result of a total validation (i.e., a
validation of all available constraints, written as valT ) would then be equal to:

valT (Br, C) =
∧

1≤i≤|C|
val(Br, ci) (7)

If at least one constraint validation val(Br, ci) returns false, the overall status of
Br is also false and therefore outside the solution space. It is easy to see that the
order of constraint validation does not affect the final result. However,
the execution order determines when the overall inconsistency of a model Br

is discovered during the validation and the order in which inconsistencies are
corrected can of course be important when deriving stepwise adaptations.

Since constraints are composed of expressions that are evaluated on only the
restricted model, direct dependencies among constraints typically do not exist
and are not considered here. The addition of a new constraint thus does not
affect the validity of existing constraints. This leads us to the conclusion that
constraints are independent of each other. Furthermore, the used trans-
formation rules do only access the source model to construct constraints and
add the constraint to the constraint model without accessing other constraint
model elements, thus the transformation rules for generating constraints
are independent and dependencies between them that require a certain order
of execution cannot occur. These observations have interesting benefits to model
transformation discussed next.

3.4 Providing Guidance

When an inconsistency is detected, the minimum amount of guidance provided to
the designer is a notification about the inconsistency’s occurrence and its location
(i.e., which model element is violating which constraint). Based on data captured
during constraint validation, the consistency checker can determine which model
elements are actually causing the inconsistency. Hence, it can inform the designer
about the locations of error-causing elements.

Constraint-driven modeling may appear inferior to traditional transformation
in that it never generated model elements in the restricted model. However, there
is currently considerable progress in automatically suggesting repairs to incon-
sistencies in design models. Based on a specific constraint and the inconsistent
parts, it is thus possible to derive modifications – like specialized transforma-
tions – that lead to a consistent model. If such modifications can be derived,
they are proposed to the user as a list of options. If the restrictions are un-
ambiguous, only a single option remains and it could be applied automatically
(much like transformation). For example, the action <add method "dim" to
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class "LightSwitch"> is an option for removing the inconsistency caused by
the absence of the method dim in the LightSwitch class and the constraint c4.
Thus, using constraints does not only expose inconsistencies but it also enables
user guidance to help understanding and solving them. Note that incorporating
source model data makes a constraint much more specific and expressive when
presented to the user than a manually written, generic constraint that relies on
metamodel data and functions.

Nevertheless, dependencies between constraints in terms of required model
characteristics and corresponding model elements can occur (e.g., c1 requires
a class LightSwitch and c2 – c3 require specific methods in this class). Cre-
ating additional inconsistencies can therefore be necessary to achieve overall
model consistency. More research in automated fixing of design models based on
constraint violations is needed to automate this. However, we believe that this
problem is solvable and the focus of our future work.

Guidance is however not limited to inconsistencies. For each constraint, its
source as well as the locations where it is validated are available and can be
presented to the user. When the source model is edited during development, the
constraints that are affected by those changes can also be highlighted. When
a designer, for example, adds a new message to a sequence diagram with a
name that already has a matching method in a class diagram, the highlighted
constraint shows him or her the existing method immediately. The designer can
then easily decide whether this existing method should be used (i.e., the message
means the existing method) or if a naming conflict was introduced (i.e., a new
method was planned).

4 Additional Benefits of Constraint-Driven Modeling

Now, we want to show several additional scenarios that benefit from constraint-
driven modeling in context of rule-scheduling, model merging, and bidirection-
ality.

Rule-scheduling and race conditions. Now let us consider an example where
two transformation rules tm1 and tm2 are working with the same generated
model and the order of rule execution is important. For example, the sequence
diagram in Fig. 1(a) contains an instance of the class LightSwitch. Therefore,
let us assume that transformation rule tm1 generates a corresponding class if no
such class exists in the diagram in Fig. 1(b). As we have discussed in Section
2, the sequence diagram requires the class LightSwitch to provide a method
activate. Let transformation rule tm2 generate this method in LightSwitch1.
When the transformations are performed, it is crucial that tm1 is executed before
tm2 to ensure that the class LightSwitch exists before the method activate

is added. This issue is illustrated in Fig. 5(a) where the bottom transformation
encounters an error after the execution of tm2. If the rule tm1 is still executed,

1 We ignore the fact that such a transformation will not always lead to satisfying
results – as discussed above – for this example.
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(a) Model transformation. (b) Constraint transformation.

Fig. 5. From dependent transformation rules (a) to independent ones (b)

the resulting model B will contain an empty LightSwitch class because only tm1

was executed successfully. If the execution of rules is stopped after the error, no
model is generated at all. Defining the order of rule execution manually is tedious
and a constant source of error. Moreover, support for defining an execution order
is not a standard feature of all transformation languages or systems [3].

The constraining approach, shown in Fig. 5(b), is free of scheduling issues
because constraints cannot directly depend on other constraints and the order
of transformation is not relevant for the transformation results, as discussed in
Section 3.3. Hence, the rules t1 and t2 we have previously defined can be applied
in any order. If a model does not provide the required information for constraint
validation (e.g., the class that should be checked is not present), the validation
fails and an inconsistency is detected.

Bidirectionality and model merging. When models should be synchronized
automatically, transformations are often used to propagate changes from one
model to the other and perform the corresponding changes. Let us assume that
we have established transformation rules that keeps message names and method
names synchronized and that a link between messages and corresponding meth-
ods exists. In Fig. 1(c), the name of the highlighted message has been changed
from turnOff (see Fig. 1(a)) to deactivate. Concurrently, the corresponding
method in the class diagram was changed from turnOff() (see Fig. 1(b)) to
switchOff(), as highlighted in Fig. 1(d). Since both synchronized model ele-
ments were changed (indicated by the bold arrows), there is no way to determine
in which direction the required synchronization should be performed. Perform-
ing a synchronization in this situation will always lead to the loss of the changes
in the generated model (i.e., either B′′ overrides changes in B′ or A′′ overrides
changes in A′ that cannot be used for a transformation in the opposite direc-
tion afterwards). A possible solution would be the concurrent execution of the
transformations followed by a merge of the updated models (A′ and B′) and
the resulting generated models (A′′ and B′′), as illustrated in Fig. 6(a), that
generated A′′′ and B′′′. However, this requires a complex merging strategy and
is likely to produce models that still require manual adaptation.

The solution of the constraint transformation approach is shown in Fig. 6(b).
We can see that our approach still has to decide which change to process first.
However, because only constraint models are updated, the restricted models A′

r

and B′
r are not changed and can therefore still be processed to perform constraint

updates in the opposite direction, leading both constraint models ca and cb
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(a) Model transformation. (b) Constraint transformation.

Fig. 6. From bidirectionality (a) to unidirectional constraint transformation (b)

being updated. With our approach, no immediate merging (either automated
or manual) is required when restricted models are edited and following source
model changes lead to constraint updates.

After the constraint model updating took place in the example, there are two
new constraints: i) message number 2 in Fig. 1(c) should be named switchOff

(from Fig. 1(d)) and ii) the name of the method switchOff in Fig. 1(d) should
be changed to deactivate (from Fig. 1(c)). The designer can then decide which
of the elements should be renamed.

5 Validation

In this section we first discuss various aspects regarding the correctness of our
approach and its results. Then, we present the results of a performance evaluation
and finally discuss possible threats to validity.

5.1 Correctness

Based on the presented scenarios and the properties of constraints we showed
that common transformation issues like rule-scheduling, race conditions, and
model merging do not arise when constraint models are generated through trans-
formation and that those models can be updated easily.

Nevertheless, the correctness of the applied constraints and the provided user
guidance is determined by the correctness of the manually written transformation
rules, the used source models, and the transformation language implementation
– as with traditional approaches.

Errors in both the source models and the applied rules lead to errors in the
generated model. As with traditional approaches, such errors also affect the
generated model (i.e., the constraints) in our approach. However, designers can
inspect arbitrary constraints and decide whether the constraints are correct. By
using a transformation mechanism that creates traceability links between source
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model elements, transformation rules and the generated constraints automati-
cally – as we did in our prototype implementation – designers can use faulty
constraints to detect errors in the source model or the transformation rules and
fix them. Moreover, faulty constraints can simply be ignored or deactivated,
which means that contradicting constraints do not prevent designers from con-
structing the desired model. Generally, existing errors are never incorporated in
the restricted model automatically when our approach is used.

5.2 Implementation

To support the vision proposed in this work, we implemented a proof-of-concept
prototype tool and applied it to several domains. The prototype, based on the
Cross-Layer Modeler (XLM) [13], investigates the constraint generation/valida-
tion and the presentation of consistency information and constraints, but not the
inconsistency repair. The latter is future work. The tool employs the Model/-
Analyzer [14] consistency checker to validate constraints that are automatically
generated through incremental transformation from templates and are managed
and updated incrementally. We added components to the XLM to support mul-
tiple different source, constraint and restricted models simultaneously, which
requires the management of multiple, parallel running consistency checkers.

5.3 Performance Evaluation

Basically, our approach has two phases: i) generating constraints, and ii) validat-
ing them. For the latter, the performance of the employed consistency checker
was thoroughly evaluated with 34 large-scale industrial models of up to 162,237
model elements and complex constraints in [12,15]; it was shown that most
changes in restricted models are processed in less than one millisecond. To show
that also the former is fast and scalable, two different test setups were used:

Test I. Replacing ambiguous transformations – as discussed in Section 3
Test II. Replacing merges – different sources restrict a single model

Test I simulated simple unidirectional transformations in the scenario we de-
scribed in Section 3 and was performed with 20 of the industrial models we
previously used in [12,15]. Test II determined the performance of our approach
in scenarios where multiple source models are used to generate various con-
straints that are restricting the same model (i.e., merges of generated models
would be required with traditional approaches). This test shows the behavior of
the approach when complexity is gradually increased and more models become
involved. For Test II, we generated random models and constraints with similar
characteristics as those we used for constraint validation testing because the sce-
nario required multiple, related source models and our industrial models were
designed as independent models.

For all tests, single model elements were added to or removed from a source
model, which forced an incremental constraint model update (i.e., the addition or
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Fig. 7. Median processing times for constraint updates

removal of exactly one constraint). Between 1 and 10 source models were used for
Test II, the required time for processing the source model change and performing
constraint model updates was measured. For the evaluation we used an Intel
Core i5-650 machine with 8GB of memory running Windows 7 Professional. In
Fig. 7 the median times for 1,000 runs per test with a 99% confidence interval
are shown. Note that the increasing number of source models in Test II does
not affect the processing time significantly and that the median times for the
addition of elements are between .01 and .07 milliseconds in both tests. Element
removal takes between .006 and .03 milliseconds and is indeed faster than element
addition because no transformations are required. These numbers show that our
approach can update constraint models instantly and does scale for increasing
numbers of source models. The similar results for Test I and Test II suggest that
our randommodels for Test II were a valid choice for testing scalability. Note that
bidirectional transformations are split into unidirectional ones in our approach,
thus there was no need for testing bidirectional transformations explicitly.

5.4 Threats to Validity

Although it seems intuitive that decisions made by domain experts in situation
with very specific problems and with guidance are more trustworthy than au-
tomated decisions based on generalized knowledge or heuristics, we have yet to
show that the quality of the resulting models is higher or that our approach
leads to quicker results. Additionally, we have not investigated to which degree
guidance and suggested options reduce the time needed for design decisions or
finding inconsistencies. Another threat to the validity of our vision is the au-
tomated derivation and execution of options to remove existing inconsistencies.
Even though basic traceability information – which is always available – provides
a certain amount of guidance, a key aspect of constraint-driven modeling is the
automated suggestion of valid options to remove inconsistencies. However, this
is still an open research question that we want to address in future work. Finally,
we have yet to develop an efficient strategy for finding contradictions between
constraints and fixing them automatically.
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6 Related Work

Model Transformation is a very active field of research and several topics related
to our work have been discussed. Regarding bidirectionality, Sasano et al. [16]
developed a system to perform bidirectional transformations with ATL, and
Stevens [17] focused on bidirectionality for QVT. Cicchetti et al. [18] developed
the bidirectional transformation language JTL that supports the specification
of non-bijective transformations so that one model can be mapped to a set of
other models. We tackle the complexity of bidirectional transformations by using
unidirectional transformations and constraints.

In terms of incrementality and execution speed, Jouault and Tisi [19] proposed
an approach to make ATL transformations incremental. They achieve incremen-
tality by using scopes built during OCL expression execution to determine which
rules have to be re-executed after source model changes. We make use of auto-
matically created scopes in the same way to determine which constraints have
to be re-created in our prototype and also for finding constraints that have to
be re-validated by the consistency checker [14]. In [20], Tisi et al. propose the
lazy execution of transformations, which eliminates the need for an initial trans-
formation of the entire source model to speed up the process for large source
models, which is also the performance bottleneck of our prototype.

Regarding automated design error fixes, the generation of fixing actions was
discussed by Xiong et al. [21]. They developed a language called Beanbag that
allows the definition of constraints and fixing behavior at the same time. With
our approach, such Beanbag programs can be generated automatically. Saxena
and Karsai [22] published a MDE-based approach for design space exploration in
which constraints are used to describe invariants of valid models. Our approach
is ideal to generate constraints for design space exploration algorithms.

7 Conclusions and Future Work

In this paper we presented an incremental and generic approach that uses model
transformation to automatically generate constraint models. We showed that
constraints are independent, and constraint validation does not require a fixed
order of execution. We then discussed how model transformation issues like am-
biguity, rule-scheduling, model merging, and bidirectionality are addressed and
how the approach enables user guidance and encourages the use of domain-
knowledge to solve specific modeling problems. We believe this work contributes
a novel complement to existing state-of-the-art on model transformation.

We validated the approach by developing a prototype implementation. Perfor-
mance tests showed that our approach is scalable and provides instant guidance
for designers. For future work we plan to further investigate the usability of the
approach and to implement the automated derivation of options for removing
inconsistencies and the checking for contradicting constraints.
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Abstract. This paper examines the effect of class diagram transforma-
tion on state machines, a subject which has not been properly investi-
gated. It is demonstrated that structural relations between states can be
interpreted as a logical relation between the corresponding formulas and
the preservation of the latter corresponds to the preservation of state
machine structure. A sufficient condition, based on the form of the un-
derlying transformation and proofs, is provided which guarantees that
class structure transformation preserves the structure of state machines.
The goal is to automatically transform state-invariants and to identify
those state machines which need to be manually transformed after class
model redesign.

Keywords: UML, OCL, State Machines, redesign, refactoring, design
patterns.

1 Introduction

UnifiedModeling Language [19] provides textual and diagrammaticmeans for sys-
tem specification. During the development process, a system specification under-
goes several changes due to a number of factors including changed or new client
requirements, new technology enablers and so on. For example if an interface is
changed, then the constraints describing it may no longer make sense. In such
cases extensive manual reengineering of system specification and design is needed,
which is very time consuming and error prone. One of the major problems is the
fact that after changing a UML diagram several other diagrams, of the same or
other kinds, need to be reconsidered and possibly modified. This is due to the mul-
tiplicity of UML diagrams and their partial redundancy. The same aspect can be
covered by different diagrams. Thus one needs methods to automatize synchro-
nization of updates of different diagrams. Model transformations is a new area of
research (cf. e.g. [4,17]). They are at the core of Model Driven Engineering. How-
ever, not much attention has been paid to the impact of refactoring patterns on
software models. In particular, it is not clear which properties are preserved and
what is the impact on other UML diagrams such as state machines. It should be
pointed out that such a refactoring does not have to preserve an underlying meta-
model, as is usually assumed in the case of model transformations.

In this paper we investigate the impact of class transformations on state ma-
chines with the help of the notion of interpretation functions. Those functions
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were defined in the paper [13] to formally study the redesign of UML class
diagrams with OCL constraints and to transform and trace those constraints.
We establish a sufficient condition for a class diagram modification to preserve
the structure of associated state machines. UML interprets states as conditions
satisfied during objects’ life-cycles [19]; such conditions are called in OCL state-
invariants [18]. Consequently states in a state machine can be interpreted as
OCL formulas. They describe values of object attributes and inter-relationships
between different objects. We show that structural relationships between states
of a state machine can be specified by logical relations between the corresponding
OCL-invariants. These relations are defined in terms of first order formulas and
entailment relations. We define a generic method of deriving such relations. UML
metamodel and OCL are used to define schemata generating the corresponding
logical formulas. We show that preservation of state machines structure corre-
sponds to preservation of those logical relations. We provide a sufficient condition
guaranteeing that interpretation functions preserve structure of state machines.

Interestingly, several class transformation patterns can be formalized using in-
terpretation functions (cf. [13]) and consequently these functions can be used to
automatically transform the corresponding state-invariants (see subsection 3.2).
Our approach is consistent with the use of inductive theorem provers, such as
PVS, and logic programming since interpretation functions preserve proofs using
resolution, induction and proposition calculi. Consequently, it is not necessary to
redo proofs after transformation. Similarly, this approach allows us to avoid the
rewriting of propositional temporal logic formulas after the modification of class
diagrams. Automatic model-checking is not a problem, but it is usually hard to
write temporal formulas. Class diagrams and state machines are different and
seemingly incomparable. Therefore it is interesting that the class refactoring has
a well defined impact on state machines. For the transformation of class diagrams
and constraints very powerful term rewriting tools, such as Elan/Thom [9] and
Maude [2], can be used. Our method allows us to automatically rewrite state in-
variants when an interpretation function is applicable, to identify state-invariants
which need to be rewritten and state machines which need to be reconsidered.
This saves the clerical work of reconsidering all state machines and state invari-
ants and performing changes by hand. To our best knowledge, this is the first
approach investigating the impact of class model modification on state machines.

This paper is organized as follows. In section 2, we study the relation between
state machines structure and formulas, in particular OCL formulas. In section 3,
we present briefly the idea of interpretation functions, the accompanying results
and apply them to SM transformation. In section 4, we illustrate our approach
with an application of the so called State Pattern. In section 5, we discuss the
related work. Section 6 concludes this paper.

2 Logical Structure of State Machines

In this section, we consider the so called behaviour state machines describing
behaviour of model elements, in particular objects [19]. In the first subsection,
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we consider state-invariants and relations between them. We argue that those
relations correspond to logical relations. In the second subsection, we define the
logical relations in a formal way. In the third one, we present a generic way
of defining logical relations with the help of the UML metamodel and OCL
constraints. In the fourth one, we explain those ideas using a simple example.

2.1 States and Regions

A state machine (SM) is composed of a number of states connected by edges
corresponding to transitions. States can be structured; one state can contain
several other states called substates. In UML, “a state models a situation dur-
ing which some (usually implicit) invariant condition holds” ([19], subsection
15.3.11). Those formulas are called state-invariants and can be expressed for
example in OCL. They describe values of object attributes and inter-object re-
lationships.

The expressive power of state machines is due to the concept of structured
states which allow one to describe system behaviour in a hierarchical way.
UML distinguishes between atomic/indecomposable states and composite states
which contain other states. Basically a composite state (i.e., state with attribute
isComposite being true) can be either an or-state with exclusive substates or a
concurrent state (so called and-state). A state is an or-state if it contains one
region. A state is an and-state if it contains more than one region. In UML
it is called orthogonal composite state and isOrthogonal has value true. UML
standard imposes several constraints on structured states [19]:

1. “If a composite state is active and not orthogonal, at most one of its substates
is active.”

2. “If the composite state is active and orthogonal, all of its regions are active,
with at most one substate in each region.”

3. “Each region has a set of mutually exclusive disjoint subvertices and a set
of transitions.”

4. “If the state machine is in a simple state that is contained in a composite
state, then all the composite states that either directly or transitively contain
the simple state are also active.”

For every system configuration, the set of active states contains a particular state
if, and only if, the corresponding invariant is satisfied. If the invariants describe
precisely the reachable configurations, then the conditions listed above can be
explained in terms of logical relations such as implication.

2.2 Structural Relationships versus Invariants

State-invariants concern objects or in general UML model elements [19]. They
are formulas of the form F (self ) where self is the only free variable of F ; this
variable is bound to the object (or model element) in question. Below we assume
that every state of a state machine has an associated invariant. Moreover, for a
state s (or si) we denote by F (Fi , resp.) the corresponding invariant.
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It is natural to assume that the invariant corresponding to a substate logi-
cally implies the invariant corresponding to its superstate, since the invariant
corresponding to the substate should be more restrictive. We call this condi-
tion invariant monotonicity. Formally, let s1 and s2 be two different states and
let F1 and F2 be the corresponding invariants. If s1 is a substate of s2 , then
F1 =⇒ F2 (i.e., the invariant corresponding to s1 implies the invariant corre-
sponding to s2 ). Due to the transitivity of implication, this property holds also
for indirect substates, i.e., substates of a substate and so on (see the constraint
(4) above).

As a running example, we consider a simple, but illustrative SM containing
composite states (see Fig. 1).

s11

s12

m() m()

s

s21

s22

n() n()

r1 r2

Fig. 1. SM with nested states

Regions r1 and r2 are parts of state s . s11 and s12 are direct substates of
r1 (i.e., s11 and s12 are elements of r1 .subvertex ); similarly s21 and s22 are
substates of r2 . In the above example, the invariant monotonicity condition for
states s11 and s has the form (F11 =⇒ F ).

One can ask, when states of a SM cover all possibilities. We say that di-
rect substates s1 , ..., sn of state s are exhaustive if, and only if, the disjunction
F1 ∨ ... ∨ Fn of invariants corresponding to the substates logically implies the
invariant F corresponding to s. UML requires that only one direct substate of
an or-state can be active at a given time. We say that states in a state machine
are non-overlapping if for every or-state s and for every two different direct sub-
states s1 and s2 of s , the corresponding conjunction F1 ∧ F2 is logically false.
Note that this property concerns only or-states and does not exclude the use of
and-states, since according to UML [19] substates of an and-substate cannot be
direct substates of an or-state. In the above example, this means that F11 ∧ F12

and F21 ∧ F22 are logically false.
It is also natural to require that for every and-state s , for the corresponding

invariant F and for every set A = {F1 , ...,Fn} including invariants corresponding
to all states in a certain sub-region of s , the disjunctions

∨
A is logically implied

by F . We use
∨{F1 , ...,Fn} as an abbreviation for F1 ∨ ... ∨ Fn (similarly for∧

). We call this requirement region-exhaustivity condition. It says that disjunc-
tion of state-invariants corresponding to a region of a concurrent state is logically
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implied by the invariant of the concurrent state. In the above example, this
corresponds to the requirement that F implies F11 ∨ F12 and F21 ∨ F22 .

The notion of orthogonal states is used in the UML standard without a pre-
cise definition. Orthogonality usually means independence. For example if a point
has two Cartesian coordinates, then those coordinates are considered orthogo-
nal. One can generalize this idea to object attributes and say that two sets of
object attributes are orthogonal if they are disjoint. Logically, satisfaction of an
invariant including only attributes from the first set is independent from satis-
faction of an invariant including only attributes from the second set. This has an
analogy in boolean algebra. We say that regions r1 , ..., rn are truly orthogonal if
for every state si from ri , for i = 1 , ..., n , the conjunction of the corresponding
invariants F1 ∧ ... ∧ Fn is not logically false. Thus an arbitrary combination of
substate-invariants is logically possible.

UML defines so called initial pseudo states for marking SM states. A state s is
initial if it is marked by an initial pseudo state. We define invariants specifying
initial system states with the help of an auxiliary function f . We associate false
with states which are not initial. Then we move from substates to composite
states; we take disjunctions of or-states and conjunctions of compound and-
substates.

– If s is not initial, then f (s) = false
– Else if s is an atomic state, then f (s) = F where F corresponds to s
– Else s is a composite state; let s1 , ..., sn be all its direct substates

• If s is an or-state, then f (s) = F ∧ (f (s1 ) ∨ ... ∨ f (sn))
• Else s is an and-state and then f (s) = F ∧ (f (s1 ) ∧ ... ∧ f (sn))

For a topmost initial state s we can identify the condition f (s) which is satisfied
when the corresponding system starts to operate. It is stronger than the invari-
ant corresponding to s . One can express this as the conjunction of invariants
corresponding to initial state configurations, i.e., trees of states active when the
system starts to operate [19]. In the running example, the initial state is char-
acterized by the formula F ∧ F11 ∧ F21 . The invariant monotonicity condition
implies that it is enough to consider invariants corresponding to atomic states,
i.e., F11 ∧ F21 .

There are other structural properties which can be expressed by logical rela-
tions between formulas. It is hard to describe more involved structural proper-
ties of state machines in general terms. Therefore in subsection 2.4, we use UML
metamodel and OCL to define such properties in a fully formal way.

2.3 Logical Relations

In the previous subsection we have shown that structural relations between states
in a SM correspond to logical relations between formulas. In this section, we
define the notion of the logical relation using the entailment relation. The novel
thing is the exposure of the relation of state machine structures to the entailment.

Constraints considered in the previous section are first order formulas. The
relations between them are considered at the level of propositions and the only
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thing that matters is whether some formulas are implied by other formulas (e.g.
in the monotonicity condition). This kind of relationship can be studied in gen-
eral terms using entailment relations, i.e., a binary relation of the form A � F
where A is a set of formulas, which we sometimes call axioms, and F is a single
formula. Usually, it corresponds to the relation of being provable (logical con-
sequence) or being satisfied (semantic consequence). In this paper we use the
notion of entailment relation in the first sense. We write � F for ∅ � F ; in this
case we say that F is a tautology with respect to the entailment relation �, or
equivalently that it logically holds.

We define logical relation constraining state-invariants to be a propositional
formula of the form C (Y1 , ...,Yn) where Y1 , ...,Yn are propositional variables
ranging over first order formulas, e.g, state-invariants. As mentioned above,
state-invariants are formulas with one free variable self which is bound to the
underlying object. All the logical relations defined in the previous section have
to be considered in respect to an entailment relation. In case of the running ex-
ample, we say that states s11 and s satisfy the invariant monotonicity condition
in respect to � if, and only if, � F11 =⇒ F holds.

In general, let A be a set of formulas. We say that states s1 , ..., sn of a SM
satisfy propositional formula C(Y1, ..., Yn) in respect to specification A and en-
tailment relation � if, and only if, A � C (F1 , ...,Fn) holds. A can be seen as a
set of domain specific axioms specifying domain’s semantics. It can be also an
axiomatization of OCL. Of course A can be empty.

2.4 Derivation of Logical Formulas from SM

State machines may have different shapes and can be very complex. Conse-
quently deriving logical dependencies from the topology of a SM and writing the
corresponding logical formulas ‘by hand’ would be very time consuming and er-
ror prone. Therefore, we define a generic method for deriving such formulas from
abstract syntax of SM diagrams. We use OCL formulas referring to elements of
the UML metamodel [19]. They can be seen as schemata allowing us to generate
a concrete logical relation for a concrete SM.

State-invariants are associated with states via the association stateInvariant
specified by the UML metamodel. As mentioned above, we assume that every
state s has one associated state-invariant, i.e., s .stateInvariant−>size() = 1 . In
the following we use smst as an abbreviation for an OCL formula specifying
all states of a SM. It can be defined with the help of so called iterators. The
invariant monotonicity condition can be expressed in OCL in respect to UML
metamodel as follows ([19], Fig. 15.2):

smst−>forAll(s | s .region.subvertex−>forAll(v |
v .stateInvariant implies s .stateInvariant))

This formula says that for an arbitrary state s of the underlying SM (i.e., for every
s ∈ smst), all the direct substate-invariants imply the invariant of s . The expres-
sion s .region.subvertex means all direct substates of s . The corresponding first or-
der formula (more precisely - schema) has the following form (cf. subsection 2.2):
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∧{v .stateInvariant =⇒ s .stateInvariant | s ∈ smst ∧ v ∈ s .region.subvertex}
In case of the running example, instantiation of this generic form results in the
following formula:

(F11 =⇒ F ) ∧ (F12 =⇒ F ) ∧ (F21 =⇒ F ) ∧ (F22 =⇒ F )

The generic forms defined below can be translated to first order logic in a similar
way. The non-overlappingness property can be expressed in OCL as follows:

smst .region−>forAll(r | r .subvertex−>forAll(v1 , v2 |
not(v1 = v2 ) implies not(v1 .stateInvariant and v2 .stateInvariant)))

This formula says that for every two different states in the same region the
corresponding invariants contradict one another. In particular if s is an or-state,
i.e., has one subregion and if it has two different direct substates, then they are
not overlapping.

The substate exhaustiveness condition says that for every region its substate-
invariants cover all possibilities. OCL does not provide the disjunction operator
over sets

∨
(cf. subsection 2.2), but it can be defined using iterators.

smst−>forAll(s | s .region−>forAll(r |
s .stateInvariant implies

∨
(r .subvertex .stateInvariant)).

This constraint says that for every composite state and every region of that state,
the state-invariant implies the disjunction of region’s substate-invariants. Thus
the substates of a region cover all possibilities described by its state-invariant.
In the case of the running example, this results in the formula:

(F =⇒ (F11 ∨ F12 )) ∧ (F =⇒ (F21 ∨ F22 ))

State orthogonality can be defined by assuming that the following schema does
not generate counter-tautologies (see subsection 2.2):

smst−>forAll(s | s .isOrthogonal implies s .region−>forAll(r1 , r2 | not(r1 = r2 )
implies r1 .subvertex−>forAll(s1 | r2 .subvertex−>forAll(s2 |

s1 .stateInvariant and s2 .stateInvariant))

The instantiation of this frame for the SM shown on Fig. 1 results in formulas
F1i ∧ F2j , for i, j = 1, 2, which, by assumption, are not counter-tautologies.

3 Transformation of State Machines

In this section we investigate the impact of class model redesign on the structure
of state machines. Such redesign can be described with the help of interpretation
functions (IF) [13]. They differ from the other term rewriting based approaches
[3,22,2] in that they are oriented at transforming formulas, in particular OCL con-
straints, and that they preserve proofs [12]. We reduce the problem of SM struc-
ture preservation to the problem of logical relations preservation. In the first sub-
section, we present the notion of interpretation function and explain how it can
be used. In the second subsection, we introduce the notion of logical invariants.
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3.1 Interpretation Functions

Interpretation functions proved to be a very useful vehicle for an automatic trans-
formation of OCL constraints when changes to class diagrams are performed [13]
(see also [11]). For example, if an attribute a of type Integer is replaced by a
path b.v where b is an association pointing to another class and v is an attribute
of that class of integer type, then every OCL constraint or state-invariant con-
taining a has to be modified. This kind of modifications can be performed using
interpretation functions, i.e., partial functions generated by mappings satisfying
conditions analogous to orthogonal term rewriting systems (cf. e.g. [21]). In the
above mentioned case, roughly speaking, they replace the attribute a by the
term b.v in all OCL-constraints in a correctness preserving way.

Basically, IFs are generated by mappings on sets of independent terms, like
linear functions are generated by mapping defined on a set of base vectors, they
preserve types and variables. The composition of terms corresponds to the lin-
ear composition. Model transformations generate functions on terms, but it has
to be checked if they are interpretation functions. By definition, IFs preserve
quantifiers and propositional operators such as negation, conjunction and impli-
cation. To some extent, they can be seen as a formal counterpart of dependency
relationships in UML (cf. [13]). Those relationships are used to compare different
specifications [19]; selected model elements in one specification are mapped to
the related model elements in another one. In case of IFs, model elements are
formalized by terms, thus we obtain a mapping on terms. We use term rewriting
(cf. [21]) for the model transformation, more precisely orthogonal term rewriting
systems. Orthogonal term rewriting systems are the most regular ones. Roughly
speaking, a set of term rewriting rules is orthogonal if its rewrite rules do not
overlap and consequently an application of one rule does not exclude an appli-
cation of another one. Sets of orthogonal terms play a role similar to base sets
in case of linear algebras.

Two algebraic terms u and v overlap if, and only if, one of the following
conditions is satisfied:

– u and v are different and u can be unified with v
– u can be unified with a non-variable, proper subterm of v , or vice versa

By unification we mean the existence of a substitution making both terms equal.
We say that a set of terms is overlapping free if it does not contain terms which
overlap. We say that a term t is linear if for every variable x , t contains x at most
once. We say that a set of terms is orthogonal if it does not contain variables, it
is overlapping free and contains only linear terms.

In this paper we use a variant of the so called order sorted algebras [8]. Term
algebra of an order sorted signature has the form T (S ,F ,�,X , τ) where S is
the set of sorts, F is a set of function symbols, X is a set of variables, � is a sort
comparison relation saying whether a sort is a subsort of another one and τ is a
typing function for terms. We assume that F contains functions for the property
names in the model (e.g., it contains functions corresponding to above mentioned
attribute a), and also boolean and arithmetic operations such as conjunction,
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addition and multiplication. Let ψ : T (S ,F ,�,X , τ) → T (S ′,F ′,�′,X ′, τ ′) be
a partial function. ψ is compositional iff for every term t the following conditions
hold:

(i) ψ(x ) is defined for every variable x ∈ X ∩ X ′

(ii) If ψ(t) is defined, mapping σ : X → X preserves types, i.e., τ(σ(x )) = τ(x ),
then ψ(tσ) = ψ(t)σ

(iii) var(ψ(t)) ⊆ var(t) if ψ(t) is defined
(iv) If ψ maps term ti to the term t ′i , for i = 0,..., n, x1 , ..., xn ∈ X ∩ X ′ and term

t has the form t0 [t1/x1 , ..., tn/xn ], then the substitution t ′0 [t
′
1/x1 , ..., t

′
n/xn ]

is well defined and ψ(t) has the form t ′0 [t
′
1/x1 , ..., t

′
n/xn ]

Conditions (i) and (ii) imply that compositional functions are defined on common
variables and that they do not depend on names of variables; tσ denotes the
renaming of variables of t according to σ. Condition (iii) is the variable inclusion
requirement made in case of term rewriting systems (cf. e.g. [21]). (iv) is a
compositionality condition. It allows us to scale up a mapping to complex terms.

Let A⊆T (S ,F ,�,X , τ) be a set of terms. Mapping ψ : A→T (S ′,F ′,�′,X ′, τ ′)
is orthogonal if there exists a partial function on sorts ρ : S → S ′ such that the
following conditions are satisfied:

(a) For every variable x , ρ(τ(x )) is defined iff x ∈ X ∩ X ′

(b) If x ∈ X ∩ X ′, then ρ(τ(x )) = τ ′(x )
(c) var(ψ(v)) ⊆ var(v), for v ∈ A
(d) If v ∈ A, then ρ(τ(v)) is defined and ρ(τ(v)) = τ ′(ρ(v))
(e) If ρ(s1 ), ρ(s2 ) are defined and s1 � s2 , then ρ(s1 ) �′ ρ(s2 )
(f) A (i.e., Dom(ψ)) is orthogonal

Conditions (a) and (b) say that the sort mapping ρ is determined by types of
common variables; they are analogous to conditions (i) and (ii). Condition (c) is
analogous to (iii). Condition (d) says that ρ commutes with the typing function
τ . Condition (e) says that ρ is monotone. Note that in case of a single-sorted
algebra, every orthogonal term rewriting system determines the corresponding
orthogonal identity mapping and vice versa any orthogonal mapping determines
an orthogonal term rewriting system.

A compositional function can be extended to boolean valued terms in the fol-
lowing way: If ψ(Φ) = Φ′ and ψ(Ψ) = Ψ ′, then ψ(Φ ∧Ψ) = Φ′ ∧Ψ ′. If ψ(Φ)=Φ′

and x ∈ X ∩ X ′, then ψ(∀xΦ) = ∀xΦ′. Similarly we can define the extension for
other propositional operators.

As proved in [13], an orthogonal mapping can be uniquely extended to a
compositional function; a function generated by an orthogonal mapping is called
interpretation function. The idea of IFs is that a mapping has to be defined on its
‘generators’ and that such an implicitly defined mapping can then be extended
to an interpretation function on the level of OCL and on the level of formal
specifications if certain assumptions are satisfied. Those functions allow us to
transform OCL specifications. In [14], we have demonstrated how to implement
interpretation functions using term rewriting tool Elan [9]. The above mentioned
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conditions can be checked automatically. In particular, the orthogonality of a set
of terms can be checked using standard unification algorithms. In the paper [12],
we have shown that IFs preserve proofs using propositional tautologies, the reso-
lution rule and induction, as well as simple equational proofs. This paper builds
on that results. IFs allow one to save the clerical work of redoing such proofs
after transformation of class diagrams. We refer the interested reader to [12,13]
for more details. Thus, we can automatically rewrite state invariants after class
model redesign if a corresponding interpretation function is applicable to the
invariant. If not, then the invariant has to be rewritten manually. Moreover, if
the proofs do not have the above mentioned forms, then the state machines need
to be reconsidered. Such cases can be automatically identified.

3.2 Logical Invariants

As explained above, a transformation of a class diagram requires the trans-
formation of the corresponding class constrains as well as state-invariants of a
SM. Subsection 2.2 explains that structural relationships between states impose
logical relation between the corresponding state-invariants. In general nothing
hinders us from arbitrary rearrangement of states into a new SM apart of the
logical relations between the corresponding state-invariants.

Let there be a transformation which maps state sj on state s ′j , for j = 1 , ..., n .
We say that this transformation preserves a logical relation C (Y1 , ...,Yn)
between those states in respect to entailment relation � if, and only, if
� C(F1, ..., Fn) implies � C (ψ(F ′

1 ), ..., ψ(F
′
n )). Similarly, we say that an interpre-

tation function ψ preserves a logical relation C (Y1 , ...,Yn) between those states
in respect to axiomsA and entailment relation � if, and only if, A � C (F1 , ...,Fn)
implies ψ(A) � C (ψ(F1 ), ..., ψ(Fn)).

For example, we say that IF ψ preserves the invariant monotonicity condition
in respect to � if, and only if,

� ∧{v .stateInvariant =⇒ s .stateInvariant | s ∈ smst ∧ v ∈ s .region.subvertex}
implies that

� ∧{ψ(v .stateInvariant) =⇒ ψ(s .stateInvariant) | s ∈ smst∧
v ∈ s .region.subvertex}

Preservation of other conditions is defined in a similar way.
The statement below follows from the fact that by definition interpretation

functions preserve quantifiers and propositional operators such as negation, con-
junction and implication (see subsection 3.1).

Statement

Let C (Y1 , ...,Yn) be a propositional formula and let ψ be an interpretation
function. Then ψ(C (Y1 ...,Yn)) = C (ψ(Y1 ), ..., ψ(Yn)).

As mentioned above, interpretation functions preserve proofs using resolution
rule, propositional tautologies and induction. In the following, �pri denotes
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entailment relation defined in the following way: Let A be a set of first order
formulas and let F be a formula. A �pri F if, and only if, there is a proof of F
containing only formulas from A and using propositional reasoning, resolution
rule and induction.

IFs are partial functions. The following corollary says that if a logical relation
is like the one defined in the previous statement and if an interpretation function
is defined on state-invariants and underlying domain specific axioms A, then it
preserves the logical relation between them.

Corollary

Let C be an OCL formula and let A be a set of OCL formulas. Let ψ be an
interpretation function which is defined on A and on state-invariants Fj , for
j = 1 , ..., n . If A �pri C , then ψ(A) �pri ψ(C ).

This corollary implies that if an interpretation function is defined on state-
invariants, then it preserves the structural relationships between the correspond-
ing states in respect to �pri . Consequently we can say that if the above men-
tioned properties are proved using above mentioned kinds of reasoning, then
they are preserved by interpretation functions. If for example, there is a proof
of the invariant monotonicity condition using those kinds of reasoning, then af-
ter transformation via an interpretation function this property remains valid.
Therefore the topology of a state machine is preserved. Despite the fact that SM
structure is preserved, the corresponding state-invariants have to be modified.
But to do this it is enough to apply the corresponding IF.

4 Example: Application of the State Pattern

In this section we apply ideas developed so far to a concrete example. We con-
sider a refactoring of a class diagram according to the so called State Pattern
(cf. e.g. [7]). The following example is rather simple, but the primary goal of
this approach is not to transform very sophisticated mathematical proofs. This
method is meant to eliminate doing proofs and refactoring by hand. In case of
many, even very simple proofs, manual transformation may prove to be very
laborious and lead to several errors. Note that in general, the method preserves
proof structure in respect to propositional operators such as conjunction and
negation, but it changes those parts of a proof which corresponds to induction
and resolution. It should be also noted that proofs like the one below can be done
manually or with the help of interactive as well as automatic theorem provers.
Our method is applicable to all these cases.

First we show an implementation of a state machine by enumeration types;
then we redesign this implementation using the State Pattern. (We refer the
interested reader to [13] for the details of this pattern application.)

Fig. 2 shows class FlipFlop with attribute state of an enumeration type and
operation next(). This attribute is formalized by an equally named function
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sFlip

sFlop

next() next()

FlipFlop

next()

state : enum{flip, flop}

top

Fig. 2. Implementation with enumeration types

symbol in the set F (see subsection 3.1). The state machine on the right hand
side corresponds to this class. An object of this class can be either in the state
sFlip or sFlop. The elements of the enumeration type define these states. The
state-invariant associated with state top has the form:

self .state = #flip ∨ self .state = #flop

Invariants corresponding to states sFlip and SFlop have the form:

state = #flip and state = #flop, respectively.

Note that the invariant monotonicity and the exhaustiveness condition are sat-
isfied. The operation next() transposes these states.

The non-overlappingness condition for this state machine has the form:

¬(self .state = #flop ∧ self .state = #flip)

We prove it formally by a contradiction using propositional tautologies, resolu-
tion as well as symmetry and transitivity axioms for equations. In general, such
a reasoning may include applications of the resolution rule, induction and the
propositional reasoning.

We apply the and-congruence tautology and the symmetry axiom

(a =⇒ b) =⇒ (c ∧ a =⇒ c ∧ b), x = y =⇒ y = x

to the negation of the non-overlappingness condition

self .state = #flop ∧ self .state = #flip

and obtain the formula

#flop = self .state ∧ self .state = #flip

Then we apply the transitivity axiom x = y ∧ y = z =⇒ x = z to the formula

#flop = self .state ∧ self .state = #flip

and obtain the formula #flop = #flip.
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The two elements of the enumeration type are different, thus #flip �= #flop
holds. Finally, we apply propositional tautologies concerning the transitivity and
negation of implication

(p =⇒ q) ∧ (q =⇒ r) =⇒ (p =⇒ r), (p =⇒ q) ∧ ¬q =⇒ ¬p
and obtain the formula

¬(self .state = #flop ∧ self .state = #flip)

Consequently, the states sFlip and sFlop are non-overlapping.
The State Pattern application yields the class diagram shown on Fig. 3. In the

redesigned version, the states are implemented by objects instantiating classes
Flip and Flop which in turn subclass the class State (see Fig. 3). Thus we do
not use here objects instead of elements of an enumeration type. We map the
elements of the enumeration type to the corresponding classes; i.e., flip and flop
are mapped to classes Flip and Flop, respectively. Moreover, the attribute state
is mapped to the term lnkState.oclType. This mapping is defined on the level of
model elements; it induces an interpretation function (cf. [13]).

State

Flip

lnkState

Flop

FlipFlop

next()

Fig. 3. States as objects

Note that the invariant monotonicity and the exhaustiveness condition are
satisfied for the transformed SM. The results proved in [12] guarantee that the
interpretation function preserves proofs like the one above. We show that the
property of non-overlappingness is indeed preserved by the interpretation func-
tion. The transformed proof has the same form as the previous one, in respect
to propositional formulas.

As in the previous case, we apply the and-congruence tautology and the sym-
metry axiom for equations to derive the formula

Flop = self .lnkState.oclType ∧ self .lnkState.oclType = Flip

from the formula

self .lnkState.oclType = Flop ∧ self .lnkState.oclType = Flip

Similarly the formula

Flop = self .lnkState.oclType ∧ self .lnkState.oclType = Flip
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implies Flop = Flip, thanks to the transitivity axiom for equations. The classes
Flip and Flop are different. Thus, as in the previous case, we derive

¬(self .lnkState.oclType = Flop ∧ self .lnkState.oclType = Flip)

Consequently, in the transformed SM state-invariants corresponding to states
sFlip and sFlop exclude each other and thus the application of State Pattern
preserves the property of non-overlappingness.

5 Related Work

Today’s software engineering processes embrace change as a constant factor.
There exist a number of approaches to redesign of UML class diagrams. The
best known is the refactoring [5]. It provides simple patterns for code and class
structure modification to extend and modify a system without altering its be-
haviour. There are a number of model transformation languages, one of the most
popular is ATL [1]. This language transforms models specified in XMI, at the
metalevel.

The term rewriting theory proved to be a very natural means for defining the
semantics of metamodels [3]. There exists a formal semantics of ATL based on
this theory [22]. There exists also a graph and term rewriting based approach
to the formalization and verification QVT-like transformations [2]. It formalizes
model transformations as theories in so called rewriting logic. However, these
approaches do not deal with class constraint transformations. It should be men-
tioned that there are a number of very powerful term rewriting tools such as for
example Elan/Thom [9] and Maude [2].

The first formal approach to the class diagram and constraint transforma-
tion was proposed in [10]. It is based on term rewriting and is related to the
method proposed by Egyed for abstracting away class diagram details if they
are irrelevant from a particular point of view [6]. In a previous paper [13], we
have refined the approach proposed in [10] and studied the redesign of UML
class diagrams with OCL constraints, as well as the transformation and trac-
ing of constraints. Those constraints may concern dependencies between classes,
associations, attributes or generalization relationships. We have introduced the
notion of interpretation function for redesign of class diagrams and constraint
transformation.

An analogous concept to [13] and to [6] was proposed in [16]. It allows one
to formalize refactoring rules for class diagrams and to classify them with re-
spect to their impact on annotated OCL constraints. It describes how the OCL
constraints have to be refactored to preserve their syntactical correctness. The
focus is on refactoring patterns rather than entailment preservation. We have
shown [12], that different kinds of entailment relations are preserved by inter-
pretation functions, in particular proofs using propositional tautologies, the res-
olution rule and the induction, and also a simple form of equational proofs. The
possibility of applying interpretation functions to formalize the State Pattern
has bee pointed out in [11].
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We should mention here an approach applying type theory and the proofs-
as-programs paradigm to transform platform independent models into platform
specific ones in a contract-preserving way [20]. The difference between our ap-
proach and that one is that interpretation functions do not preserve formulas,
but the entailment relation between them.

6 Concluding Remarks

In this paper we demonstrated that SM structure can be expressed by logical
relations between state-invariants. Those relations are preserved by a refactoring
if it corresponds to an interpretation function and the underlying proofs are
performed using induction, resolution and propositional tautologies. Moreover,
interpretation functions corresponding to refactorings can be used to rewrite
state invariants. For the automatic invariant transformation very powerful term
rewriting tools can be used. Our results can lessen the burden of UML diagrams
modifications after a class diagram modification. In the future we are going
to build a tool based on term rewriting for the automatic transformation of
state invariants and for the identification of state machines which have to be
reconsidered.
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Abstract. Model transformations are mostly developed from scratch.
For increasing development productivity as well as quality of model
transformations, reuse mechanisms are indispensable. Although numer-
ous mechanisms have been proposed, no systematic comparison exists
making it unclear, which reuse mechanisms may be best employed in
a certain situation. Therefore, this paper provides an in-depth compar-
ison of reuse mechanisms in rule-based model-to-model transformation
languages and categorizes them along their intended scope of applica-
tion. For this, a systematic comparison framework for reuse mechanisms
is proposed to highlight commonalities as well as differences. Finally,
current barriers to model transformation reuse are outlined.

Keywords: Reuse Mechanisms, Model Transformations, Comparison.

1 Introduction

Model transformations are crucial for the success of Model-Driven Engineering,
being comparable in role and importance to compilers for high-level program-
ming languages. Nevertheless, most of today’s transformation designers still fol-
low an ad-hoc manner to specify model transformations [10]. For increasing
development productivity as well as quality of model transformations, the ap-
plication of appropriate reuse mechanisms is indispensable. This need has been
recognized by the research community as a plethora of proposed reuse mecha-
nisms reveals [6–9, 13, 16, 18, 22–24, 26–30]. Nevertheless, there exists no survey
providing an overview of the proposed mechanisms to deeper understand their
commonalities and differences. Thus, it is unclear which reuse mechanisms may
be employed in a certain situation and which barriers exist in applying them.

Therefore, this paper provides an in-depth comparison of proposed reuse
mechanisms in rule-based model-to-model transformation languages to highlight
when to apply a certain reuse mechanism and how reuse mechanisms comple-
ment each other. In this respect, reuse mechanisms are categorized along their
intended scope of application, ranging from reuse in the small, e.g., functions,
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to reuse in the large, e.g., orchestration of model transformations. For this, a
systematic comparison framework for reuse mechanisms is proposed compris-
ing comparison criteria along four different dimensions analogous to the main
phases in software reuse [15], being abstraction, selection, specialization and in-
tegration. On the basis of this framework, the categorized reuse mechanisms are
compared and for each reuse mechanism corresponding supporting representa-
tives are given. To illustrate the different mechanisms, example reuse scenarios
on the basis of a running example are given.

Outline. Section 2 introduces the running example and presents the comparison
framework with its four dimensions. In Section 3, the comparison framework is
used to compare the reuse mechanisms along their different scopes of reuse. Sec-
tion 4 presents barriers to reuse in model transformations and finally, Section 5
concludes the paper.

2 Comparison Framework

This section introduces scopes of reuse based on an example which is used
throughout the paper to illustrate the different reuse mechanisms. Furthermore,
a comparison framework is presented to characterize the reuse mechanisms.

2.1 Scopes of Reuse

Different scopes of reuse exist which possess different reuse potentials, e.g., within/
across transformations or between the same/different metamodels (MMs). In this
respect, we identified five different scopes ranging from reuse in the small to reuse
in the large which are depicted in Fig. 1 on basis of the Class2ER example [2]:

– Scope 1: To avoid code duplication, reuse of logic within a single transfor-
mation is needed, i.e., the scope is to reuse the same transformation logic
between the same MMs in the same transformation (cf. (1) in Fig. 1).

– Scope 2: To realize similar transformation logic, e.g., to pursue different OR-
mapping approaches – a “one table per hierarchy” approach instead of a “one
table per class” approach (cf. (2) in Fig. 1) – reuse of transformation logic
between the same MMs in different transformations is needed.

– Scope 3: The transformation logic of the Class2ER example might be needed
in an Ontology2XML transformation as well, requiring that the same trans-
formation logic could be reused in the context of different MMs and thus
different transformations (cf. (3) in Fig. 1).

– Scope 4: Since cross-cutting concerns, e.g., debugging or tracing (cf. (4)
in Fig. 1), should be reusable throughout transformations, mechanisms are
needed that allow to reuse logic irrespective of MMs and transformations.

– Scope 5: Reuse in the large is achieved when existing transformations can
be applied without changing transformation logic or MMs, as is the case for
chaining a ER2Relational transformation after the Class2ER transforma-
tion in our running example (cf. (5) in Fig. 1).
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Fig. 1. Running Example - Different Scopes of Reuse

2.2 Comparison Criteria

In order to highlight commonalities as well as differences between reuse mech-
anisms across their scopes, a comparison framework (cf. Fig. 2) based on the
common phases (i) abstraction, (ii) selection, (iii) specialization, and (iv) inte-
gration of reuse mechanisms according to [15] is proposed in the following.

Abstraction. To enable reuse, abstraction is the key of any reuse mechanism.
According to [14], one might distinguish between abstraction by generalization
and abstraction by simplification. Abstraction by generalization allows to make
an artifact reusable in different situations. To achieve this in the context of model
transformations, it should be possible to decouple transformation logic from type
information, i.e., the source and the target MMs. Furthermore, reuse of transfor-
mation logic across platforms should be possible by generalizing from a certain
transformation language. Abstraction by simplification allows to emphasize the
information necessary for reuse, i.e., the visible part (e.g., interface of a function
to reuse), but to hide the actual realization of the artifact, i.e., the hidden part
(e.g., the implementation of the function) [15].

Selection. Provided that repositories of reusable artifacts exist, mechanisms are
needed to efficiently find the artifacts. Such mechanisms range from metainfor-
mation, e.g., documentation or pre-/post-conditions, to automatism in the form
of wizards or more advanced techniques from information retrieval [19].
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Specialization. To adapt an abstracted artifact to a specific transformation,
specialization is needed. Ideally, only knowledge of the signature of the abstracted
artifact, but not of the realization is needed (i.e., reuse in the black-box view).
In contrast, reuse in the white-box view demands additional knowledge of the
realization. For specialization, typically certain mechanisms are needed, e.g.,
passing of parameter values in functions or overriding/extending parts in the
context of inheritance. Finally, language-inherence states if a transformation
designer stays in the same formalism for specialization or not.

Selection
• Repository
• Metainformation
• Automatism

Abstraction SpecializationAbstraction
• Generalization

FromMetamodel
From Transformation Language

• Simplification

p
• Required Knowledge
• Mechanism
• Language inherence

• Simplification
Hidden Parts
Visible Parts

Integrationg
• Ability
• Kind

Fig. 2. Comparison Framework

Integration. Whereas specialization
solely configures an artifact, inte-
gration focuses on how reusable ar-
tifacts interact with the remaining
parts of the specified transformation.
Reuse mechanisms in software engi-
neering are typically categorized into
composition and generation mecha-
nisms [3, 20]. Thereby, composition
implies that integration must take
place whereas generation implies that
an executable transformation without
further need for integration is pro-
duced. Therefore, the first criterion
ability distinguishes between composition and generation, whereas the second
criterion kind differentiates potential ways of composition. In this respect, ac-
cording to [17], composition can be realized by (i) containment, i.e., the speci-
fied transformation nests the reusable artifact, (ii) connection, i.e., the specified
transformation reuses the artifact by delegation, (iii) extension, i.e., the reusable
artifact is extended and refined, and (iv) coordination, i.e., a synchronization lan-
guage is used to coordinate the reusable artifacts.

3 Comparison of Reuse Mechanisms

Based on the identified scopes and the introduced comparison framework, pro-
posed reuse mechanisms for model transformations are compared in the following
(cf. Table 1 for an overview and Table 2 for details). For each reuse mecha-
nism, representative transformation languages are listed, irrespective of their
paradigm (declarative, imperative or hybrid) or scenario (e.g., inplace or model-
to-model, or uni- or bidirectional transformations). To illustrate the different
mechanisms, sample transformations for different facets of the running example
are provided. To enhance understandability, ATL as a single transformation lan-
guage has been used to exemplify the reuse mechanisms since it supports most
of them.
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Table 1. Categorization of Reuse Mechanisms

Scope of Reuse Reuse Mechanisms Supporting Representatives

Reuse of Transformation Logic within a Single
T f ti

Functions
I h it

All languages
ATL ETL TGG T fk tTransformation Inheritance ATL, ETL, TGGs, Tefkat

Reuse of Transformation Logic in Similar Scenarios
(same MMs, different logic)

Superimposition
Transformation Product Lines

ATL, QVT, RubyTL
[12], [24]

Reuse of Transformation Logic in Different Scenarios Genericity SDM, VIATRA2, Tefkat, [6]
(different MMs, same logic) DSL External: [9], [30], Internal: [7], Epsilon, RubyTL

Reuse of Transformation Logic Independent of the
Scenario

AOP
HOT
Reflection

Xtend
All languages providing an explicit metamodel
SDM, MISTRAL

Reuse of Transformation Logic in the Large Orchestration [13], [22], [27], ATLFlow, QVT

3.1 Reuse of Transformation Logic within a Single Transformation

Mechanisms to avoid code duplication and thus to enhance readability and main-
tainability within a single transformation include functions and inheritance,
since both depend on concrete MM types.

Functions. All known transformation languages provide means to extract and
then reuse recurring transformation logic in functions. As can be seen in Fig. 3(a)
which realizes the running example in a “one table per class approach”, the con-
catenation of the name with translated is realized by an ATL helper which
is invoked several times in the transformation specification. Nevertheless, the
gained abstraction of this reuse mechanism is low, since functions typically de-
pend on concrete MM types, e.g., NamedElement in the example. Abstraction
by simplification is gained since the implementation is hidden after being de-
veloped once. For selection, no repository exists since functions are specific to
a single transformation. Specialization is done black-box based, i.e., functions
are specialized in a language-inherent manner by parameter values. Concerning
integration, functions are a connection-based composition mechanism.

Reusable Artifact Reusable Artifact

helper context NamedElement : addExtension() 
: String = self.name + '_translated';

rule CDModel2ERModel {
from cdmodel : CD!ClassDiagram
to ermodel : ER!ERDiagram (

d d l dd i ()

abstract rule NamedElem2ModelElem {
from namedElement : CD!NamedElement
to modelElement : ER!ModelElement (
name <- namedElement.name + '_translated'

)
}name <- cdmodel.addExtension(),

…
)

}
rule Class2Entity {
from class : CD!Class
to entity : ER!Entity (

}

rule CDModel2ERModel
extends NamedElem2ModelElem {

from cdmodel : CD!ClassDiagram
to ermodel : ER!ERDiagram (…)

}
l Cl 2E tit ns

io
n

ne
ct
io
n

y y
name <- class.addExtension(),
…

)
}
rule Property2Attribute {...}

rule Class2Entity
extends NamedElem2ModelElem {...}

rule Property2Attribute
extends NamedElem2ModelElem {...}

ex
te
n

co
nn

(b) Inheritance(a) Functions (b) Inheritance(a) Functions

Fig. 3. Reuse Mechanisms Within a Single Transformation
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Inheritance. In MMs it is common to employ inheritance between classes to
reuse feature definitions from previously defined classes. Since classes and their
respective objects are typically input for transformation rules, inheritance be-
tween transformation rules dealing with classes that are in an inheritance hierar-
chy in the MM may be applied in order to avoid code duplication, i.e., attribute
assignments. As can be seen in Fig. 3(b), rule inheritance in our running example
is used in order to avoid the re-specification of the name assignment. Therefore,
all rules inherit from the common base rule NamedElem2ModelElem. Neverthe-
less, inheritance does neither achieve abstraction from the actual MM types nor
from the underlying transformation language, since the superrules are bound to
concrete MM types. Furthermore, no abstraction by simplification takes place,
since the whole implementation of the superrules is exposed to transformation
designers. For selection, no repository exists since inheritance is currently specific
to a single transformation. Superrules might be specialized by overriding them in
a white-box, language-inherent manner. With respect to integration, inheritance
represents an extension-based composition mechanism.

Synopsis. Functions as well as inheritance are both mechanisms to avoid code
duplication within a single transformation. Nevertheless, they complement each
other, since functions reuse arbitrary transformation logic whereas inheritance
reuses assignments provided that the MM incorporates inheritance and thus
allows for rule inheritance. Although inheritance is an important reuse mecha-
nism in OOP, not all transformation languages support inheritance, or if they
do, they offer different semantics as we already investigated in [32]. For exam-
ple there are differences in how overridden assignments are incorporated in the
overriding assignment or the way type substitutability is supported.

3.2 Reuse of Transformation Logic in Similar Scenarios

Provided that a similar transformation scenario has to be realized on the basis of
an existing transformation, i.e., a transformation between the same source and
target MMs, but with different transformation logic, mechanisms are needed that
allow to either alter the existing transformation, e.g., superimposition, or to con-
figure an existing transformation such that it meets the changed requirements,
e.g., transformation product lines.

Superimposition. Superimposition allows to build the union of transformation
rules from different transformations. Thereby rules can be redefined, i.e., a rule
is replaced by a new one if their signatures are identical, and added, whereby
it is impossible to reuse the original rule. Superimposition has been proposed
for ATL and QVT Relations [29] and is applicable in our running example to
provide a new transformation that implements a “one table per hierarchy” ap-
proach on basis of the existing “one table per class” transformation. Thereby,
the superimposed transformation redefines the rule Class2Entity and adds an
additional helper Closure to calculate the transitive closure (cf. Fig. 4(a)).
The so-called phasing mechanism and refinement rules in RubyTL [5] extend
the idea of superimposition in the way that superimposed rules may refine the
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Fig. 4. Mechanisms to Reuse Transformation Logic in Similar Scenarios

results of the original rules. Nevertheless, superimposition abstracts neither from
the MMs (since old and redefined rules are bound to concrete MM types) nor
from the transformation language. Superimposition also does not abstract by
simplification, since the whole original transformation is visible to the trans-
formation designer. Concerning selection, existing transformations in the “ATL
Model Transformation Zoo”1 could be reused by superimposition. Nevertheless,
the selection process is supported by documentation only. Specialization is done
in a language-inherent, black-box manner since redefining existing transforma-
tion rules has to be done in the same language and requires to know the exact
signatures of the to be redefined transformation rules only. Regarding integration,
superimposition represents again an extension-based composition mechanism.

Transformation Product Lines. To deal with variabilities in model trans-
formations, approaches [12, 24] arose that allow transformation designers to
explicitly specify potential variabilities in model transformations, which we call
Transformation Product Lines (TPLs) (inspired by Software Product Lines).
These approaches typically use some variability model, e.g., feature models, to
guide the generation of a specific transformation. Fig. 4(b) shows a simplistic
feature model for our running example, allowing to choose the classes to be
translated as well as the applied OR-mapping approach. In this respect, the
reusable artifact is not only the already existing transformation but additionally
the feature model, which models interdependencies and constraints of a model
transformation. Since TPLs realize a set of related transformations, they are
bound to concrete MM types and thus, abstract neither from MMs nor from
the transformation language. Currently, no repository is available for selecting
a certain TPL. Specialization is done by configuring the feature model, thus,
no internals of the transformation are needed, being a black-box, non-language-
inherent mechanism. Concerning integration, TPLs represent a generation-based
reuse mechanism on basis of the configured feature model.

1 http://www.eclipse.org/m2m/atl/atlTransformations

http://www.eclipse.org/m2m/atl/atlTransformations


Fact or Fiction 287

Synopsis. Both superimposition and TPLs allow to realize related transforma-
tion scenarios. Nevertheless, superimposition follows an ad-hoc development ap-
proach, i.e., a transformation may be incrementally modified on demand whereas
TPLs represent a planned development approach, i.e., all potential variabilities
of a transformation have to be modeled in advance. Although changes in TPLs
themselves are challenging since the feature model, the transformation code as
well as the code generator have to be adapted accordingly, TPLs have the advan-
tage, that even domain experts without profound knowledge of a transformation
language might develop transformations by just selecting values from the feature
model. In contrast to TPLs, superimposition requires profound knowledge of the
transformation language but allows flexible changes of transformations.

3.3 Reuse of Transformation Logic in Different Scenarios

Assuming that the same transformation logic should be reused in a different
scenario, i.e., different source/target MMs, mechanisms are needed that allow to
decouple transformation logic from concrete MM types. In this respect, generic
transformations and domain-specific languages (DSLs) have been proposed as
detailed in the following.

Genericity. Genericity allows to parameterize transformation logic with types
to abstract from concrete MMs. Thereby, approaches have been proposed for
fine-grained genericity [18, 28], i.e., on the level of rules or functions, and coarse-
grained genericity [6], i.e., on the level of transformations. Fig. 5 shows an ex-
ample for coarse-grained genericity whereby the whole Class2ER transformation
should be reused for an Ontology2XML transformation. This is possible, since the

Class Metamodel ER Metamodel

rule CDModel2ERModel {

Reusable Artifact

Class Metamodel

NamedElement
name : String

ER Metamodel
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from cdmodel : CD!ClassDiagram
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Fig. 5. Genericity On the Level of Transformations
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1
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to attribute : ER!Attribute (
name <- property.name + '_translated',
type <- aType

),
aType : ER!Type(

name <- property.type,
)

}

Fig. 6. External DSL Example [30]

new MMs (Ontology and XML) are structurally similar to the old MMs (Class
and Relational). In this case, the transformation designer only has to specify a
binding model, denoting which types of the old MMs correspond to which types
of the new MMs. This binding model is then used to modify the original trans-
formation by means of a higher-order transformation (HOT) (cf. below). Thus,
the transformation designer only has to care about the source/target MMs repre-
senting the visible part, whereas the implementation is hidden. Nevertheless, al-
though the idea of generic functions and transformations is promising, no library
has been established so far putting the question whether there is support for se-
lection aside. Since specialization is done by setting type parameters in case of
fine-grained genericity or specifying the binding model in case of coarse-grained
genericity, it is considered as a black-box. Finally, the specialization process oc-
curs language-inherent in case of generic functions and non-language-inherent in
case of generic transformations. Whereas in case of fine-grained genericity con-
nection is applied as a composition mechanism for integration, coarse-grained
genericity resembles a generation-based mechanism.

Domain-specific Languages. Another way to reuse logic in different scenarios
are DSLs, which provide means to simplify specification of recurring problems in
transformations. Two different kinds of DSLs can be distinguished: (i) external
DSLs, i.e., the DSL can be used independently from the underlying transfor-
mation language, and (ii) internal DSLs, i.e., DSL constructs are embedded in
a transformation language. External DSLs have been proposed by [9] and [30]
which focus on the resolution of structural heterogeneities, e.g., the splitting of
the class Property into the classes Attribute and Type represents a vertical
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partitioning heterogeneity. Fig. 6 shows the solution of the running example us-
ing the DSL presented in [30]. In order to execute a DSL-based specification, it
has to be translated into a certain executable transformation language. Inter-
nal DSLs follow the same principles but differ in the fact that DSL constructs
are tightly integrated in a certain transformation language. A representative for
internal DSLs is the High Level Navigation Language (HNL) [7] which hides
complex OCL navigation expressions using ATL as the host language. Inter-
nal DSLs are also supported by RubyTL [8] and Epsilon2, whereby specialized
DSLs, e.g., Epsilon Flock for model migration, build upon the host language
Epsilon Object Language. Although both kinds of DSLs abstract from concrete
MMs, only external DSLs also abstract from the underlying transformation lan-
guage. Concerning simplification, the provided DSL syntax, i.e., the visible part,
abstracts from the operational semantics, i.e., the hidden part. Selection of a
certain reusable artifact, i.e., a DSL construct, is typically semi-automatically
supported by editors, e.g., by means of code completion based on the DSL’s
grammar. DSLs are specialized in a black-box, language-inherent manner, since
specialization is done by binding a certain grammar element to MM types, e.g.,
so-called ports need to be bound to a certain MM element in [30] (cf. Fig. 6).
Since DSL constructs are compiled to ordinary transformation code, generation
based integration takes place.

Synopsis. Genericity as well as DSLs allow both to decouple transformation
logic from concrete MM types. Genericity is a promising approach to reuse trans-
formation logic for structurally similar MMs, either on the fine-grained level of
rules or the coarse-grained level of transformations. Although especially in case of
coarse-grained genericity, large parts of transformation logic are reusable, it has
the drawback that it requires structural similarity resulting in a low probability
for application. In contrast, DSL constructs abstract from structural similarity
to a certain extent, e.g., in [30] structural flexibility is supported by providing
fixed parts as well as configurable parts. Thus, although the DSL constructs do
not allow to reuse whole transformations, DSLs have a higher probability for
application.

3.4 Reuse of Transformation Logic Independent of the Scenario

Parts of transformation logic might be independent of any concrete scenario
and might thus occur in series of transformations, e.g., cross-cutting concerns
like tracing or debugging (cf. Fig. 7). To reuse such cross-cutting concerns, sev-
eral mechanisms have been proposed, including higher-order transformations
(HOTs), aspect-orientation (AO), and reflection.

Higher-order Transformations, Aspect Orientation and Reflection. As
detailed in [26], HOTs can be applied in several ways to achieve reuse in model
transformations, being (i) transformation composition, (ii) transformation syn-
thesis, and (iii) transformation modification. Transformation composition,

2 http://www.eclipse.org/gmt/epsilon

http://www.eclipse.org/gmt/epsilon
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rule addDebugMessage{
from oldAssignment : ATL!Binding
to assignmentWithDebug : ATL!Binding (

propertyName <- oldAssignment.propertyName,
l d b

Reusable Artifact

value <- debugger
),
debugger : ATL!OperationCallExp (

source <- oldAssignment.value,
operationName <- 'debug',

rule CDModel2ERModel {
from cdmodel : CD!ClassDiagram
to ermodel : ER!ERDiagram (

name <- cdmodel.name + '…',
URI <- cdmodel.nsURI,

arguments <- Sequence {arg}
),
arg : ATL!StringExp (

stringSymbol <-
(oldAssignment.outPatternElement.outPattern."rule".name,

entities <- cdmodel.classes
)

}
...

(oldAssignment.outPatternElement.outPattern. rule .name
+ '.' + oldAssignment.outPatternElement.varName + '.' 
+ oldAssignment.propertyName)

)
} Higher Order TransformationClass2ER

URI := cdmodel.nsURI.debug(CDModel2ERModel.ermodel.URI),
entities := cdmodel.classes.debug(CDModel2ERModel.ermodel.entities)

Fig. 7. Higher-order Transformations

meaning that a HOT takes at least one transformation and potentially other
configuration models as input and produces a transformation as output, can be
used, e.g., to achieve genericity as described above. Transformation synthesis,
meaning that a transformation is generated from other artifacts, is often ap-
plied in the context of DSLs to generate transformations from DSL constructs
as mentioned above. Therefore, in this subsection, HOTs in the sense of trans-
formation modification are covered. The HOT takes a transformation as input
to, e.g., introduce cross-cutting concerns like debugging or tracing into an ex-
isting transformation. Similar goals might be achieved by AO, e.g., supported
in Xtend3 or discussed in [21] and reflection provided that the target of the
reflection is the transformation itself as, e.g., in MISTRAL [16].

Considering these three mechanisms, the reusable artifact might either be
the transformation, the introduced cross-cutting concerns or even both, depend-
ing on what is newly developed. All mechanisms abstract from concrete MM
types, but none of them abstracts by simplification, since no parts are explic-
itly hidden. With respect to selection, several ATL-based HOTs are available in
the Model Transformation Zoo. There are, however, no repositories for AO or
reflection. Specialization happens typically as a black-box, provided that only
transformation-independent modifications take place, e.g., for each assignment,
add a debug message. The specialization mechanism is either the HOT itself,
the so-called join point model in AO or the meta-rules in case of reflection [16],
describing where to introduce cross-cutting code. If the transformation to be
specialized and the HOT are written in the same transformation language, the
HOT is considered to be language-inherent. If AO and thus the specification of
the join point model is supported by the transformation language, specialization
occurs language-inherent. The same is true for reflection. Concerning integration,
all mechanisms are composition-based reuse mechanisms in terms of extension.

3 http://www.eclipse.org/workinggroups/oaw

http://www.eclipse.org/workinggroups/oaw
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Fig. 8. Orchestration Example

Synopsis. Although the three mechanisms pursue similar goals, i.e., introduc-
ing cross-cutting concerns into transformation languages without changing the
underlying transformation, the main difference lies in the kind of specialization.
Since HOTs are defined on the abstract syntax of a transformation language, a
transformation designer must have profound knowledge thereof (cf. Fig. 7). In
contrast, AO allow specialization on basis of the concrete syntax and reflection
on basis of the provided reflective API.

3.5 Reuse of Transformation Logic in the Large

To achieve reuse in the large, whole transformations might be reused without
adaptations. Thus, mechanisms are needed to orchestrate model transformations,
e.g., describing sequential or conditional executions of model transformations.

Orchestration. Orchestration languages have been proposed to replace low-
level descriptions, e.g., in terms of Ant4 tasks. Basically, they can be divided
into approaches allowing to orchestrate model transformations written in differ-
ent languages [13, 22, 27] or in a specific language only (Wires* [23], ATLFlow5).
Fig. 8 shows a simple example in Wires* sequentially executing two ATL model
transformations, first the Class2ER transformation and then a ER2Relational)
transformation. In this respect, no abstraction from the MMs is achieved since
the transformations to be reused still operate on concrete MMs. No abstraction
from the underlying transformation language is achieved, except the orches-
tration allows for transformations written in different languages. Concerning
simplification, the hidden parts comprise the implementation, since for orches-
tration only the source and target MMs of the transformations are of interest.
ATL transformations might be selected again from the Model Transformation
Zoo. Since transformations must be reused without adaptation, no specialization
might occur. Integration happens by means of the orchestration language, thus
it is classified as coordination.

Synopsis. Orchestration is a promising approach for reusing large portions of
transformation logic. Nevertheless, the frequency of occurrence is constrained by
the specificity of the reused transformations since each one is bound to concrete
source and target MMs. Thus, it might be beneficial to combine orchestration
with generic model transformations as proposed by [6].

4 http://ant.apache.org/
5 http://opensource.urszeidler.de/ATLflow/

http://ant.apache.org/
http://opensource.urszeidler.de/ATLflow/


292 M. Wimmer et al.

Table 2. Comparison of Reuse Mechanisms

Scope 4:
Scenario

independent

Scope 5:
In the Large

Functions Inheritance Superimposition
Transformation
Product Lines

Genericity DSL
HOT, AO,
Reflection

Orchestration

Function Base Rules
Base

Transformation
Feature Model,
Transformation

Generic Rules,
Transformations

DSL constructs,
Generator

Base
Transformation,
Concern or Both

Transformation

FromMM

From TL
yes (external),
no (internal)

Hidden Parts Implementation none none Transformation Implementation
Operational
Semantics

none implementation

Visible Parts Signature all all Features
Signature with
Type Parameters

DSL syntax all
Signature

(Source/Target
MMs)

ATL Model
Transformation

Zoo
DSL constructs

ATL Model
Transformation Zoo

(HOTs)

ATL Model
Transformation

Zoo

Documentation
Documentation,

Grammar
Documentation Documentation

manual
semi automatic

(code completion)
manual manual

black box white box black box black box black box black box black box

parameter
binding

overriding rule redefining rules
configuration on

basis of the
feature model

type parameter
binding

parameter binding

Transformation
(HOT), Join Point
Model (AO),
Metarules
(Reflection)

yes (fine grained
genericty), no
(coarse grained

genericity)

Composition Composition Composition Generation Composition Generation Composition Composition
Connection Extension Extension Connection Extension CoordinationKind

Required Knowledge

Mechanism

Language inherent

Integration
Ability

Scope 3:
Different Scenario

Selection

Specialization

Generalization

Repository

Automatism

Metainfo

Scope 1:
Single Transformation

Simplification

Reusable Artifact

Abstraction

Scope 2:
Similar Scenario

4 Barriers to Model Transformation Reuse

Although numerous reuse mechanism have been proposed, barriers to model
transformation reuse exists which hinder the adaptation of the mechanisms in
practice. In the following, the main barriers derived from our comparison are
presented, identifying further research potentials.

Insufficient Abstraction from Metamodels. Although some mechanisms,
e.g., genericity, allow to decouple transformation logic from concrete MM types,
the transformation logic is still dependent on the structure of the MMs. Thus,
reuse of transformation logic between different MMs is hampered. To improve
this situation, domain-specific standardized MMs would be beneficial, where
standardized transformations might be defined on. Specific MMs might then ex-
tend the standardized MMs. Thus, the standardized transformations might also
be reused to realize specific transformations, resembling the idea of frameworks
in software engineering. This way, reuse of larger portions of transformation
logic would be enabled. Nevertheless, additional costs for connecting them to
the actual MMs may occur.

Insufficient Abstraction from Platform. Except external DSLs, all reuse
mechanisms target at a single transformation language, but there is little work
on how to reuse transformation logic in general. A first step in this direction is
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presented in [31] where a classification of structural heterogeneities in model-to-
model transformations is given, which may serve as a pattern library for model
transformations. Furthermore, reusable transformation patterns have been pre-
sented in [1] for graph transformation languages and idioms for QVT in [11].
Thinking this one step further, reuse should be enabled during the whole de-
velopment cycle including requirements analysis, design, implementation, and
testing as also stated in [10].

Missing Repositories for Selection. As can be derived from our comparison,
hardly any repository of reusable artifacts has been established so far, except the
Model Transformation Zoo comprising a collection of ATL-based model trans-
formations. This is in contrast to software engineering, where different kinds of
repositories of reusable artifacts exists, ranging from fine-grained class-libraries
(being delivered with any programming language) over components to coarse-
grained frameworks.

Lack of Meta-information in Selection. As Table 2 reveals, there is little
meta-information available for selecting a reusable artifact without having to
know its internals. Therefore, it would be important to provide transformations
with according meta-information, comprising source/target MMs, test models,
pre- and postconditions, and documentation. Preconditions may be used, e.g., to
check if input models conform to the implemented transformation logic [4]. More
abstract models for model transformations, e.g., requirements, would provide an
additional source of meta-information.

Challenging Specialization Mechanisms. Although most reuse mechanisms
allow for specialization, they are sometimes challenging to be applied in prac-
tice. This includes especially HOTs as also stated in [25] where the user must
be familiar with the abstract syntax of the transformation language. In case
of inheritance, specialization has potential for improvement, since none of the
approaches allows to define reuse policies, e.g., to disallow rule inheritance (cf.
final keyword in Java) or to define some access rights (cf. keywords private,
protected or public). However, one important step in this direction has been
the introduction of the “module” concept in transformation languages [5].

Insufficient Support for Integration in the Large. Although orchestration
languages have been proposed to chain transformations to build larger ones, a
main issue is the compatibility of source/target MMs between the orchestrated
transformations. Thus, mechanisms are needed that ensure type compatibility in
transformation chains similar to type checks in ordinary programs. This would
incorporate compilation errors, if compatibility between MMs in the context of
a specific transformation is violated.

5 Conclusion

In this paper, we provided an overview on proposed reuse mechanisms in rule-
based model-to-model transformations. The comparison has been conducted on
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the basis of a framework covering the main phases in reuse, comprising abstrac-
tion, selection, specialization and integration. Although the comparison showed
that a variety of mechanisms for reuse have been proposed, several barriers hin-
dering their successful application have been identified. Furthermore, currently
there is a strong focus on reuse in the implementation phase but reuse across all
development phases would be urgently needed, e.g., general guidelines on how to
design transformations. Thus, in our opinion further research is needed to make
model transformation reuse more a fact than a fiction.
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W., Kolovos, D., Paige, R., Lauder, M., Schürr, A., Wagelaar, D.: A Comparison
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