
Incremental Model-Based Testing

of Delta-oriented Software Product Lines

Malte Lochau1, Ina Schaefer2, Jochen Kamischke1, and Sascha Lity1

1 TU Braunschweig, Institute for Programming and Reactive Systems, Germany
{m.lochau,j.kamischke,s.lity}@tu-bs.de

2 TU Braunschweig, Institute for Software Systems Engineering, Germany
i.schaefer@tu-bs.de

Abstract. Software product line (SPL) engineering provides a promis-
ing approach for developing variant-rich software systems. But, testing
of every product variant in isolation to ensure its correctness is in general
not feasible due to the large number of product variants. Hence, a system-
atic approach that applies SPL reuse principles also to testing of SPLs
in a safe and efficient way is essential. To address this issue, we propose
a novel, model-based SPL testing framework that is based on a delta-
oriented SPL test model and regression-based test artifact derivations.
Test artifacts are incrementally constructed for every product variant by
explicitly considering commonality and variability between two consec-
utive products under test. The resulting SPL testing process is proven
to guarantee stable test coverage for every product variant and allows
the derivation of redundancy-reduced, yet reliable retesting obligations.
We compare our approach with an alternative SPL testing strategy by
means of a case study from the automotive domain.

Keywords: Delta-oriented Software Product Lines, Model-based Test-
ing, Regression Testing.

1 Introduction

Diversity is prevalent in modern software systems in order to meet different cus-
tomer requirements and application contexts [25]. Software product line (SPL)
engineering [8] provides a promising approach to develop variant-rich software
systems by managed reuse. Since these software systems increasingly control
safety- or business-critical applications, it is essential to ensure that they meet
their requirements. Recently, there has been considerable progress in applying
model checking [24,7,2] and theorem proving [3] to SPLs. However, those tech-
niques are still far from being used in industrial engineering, mainly because of
scalability issues, even for single products. Testing is much more established for
practical applications in order to ensure that software systems meet their require-
ments. Testing is indispensable to reveal faults coming from different sources,
such as erroneous feature interactions arising from obscured interplays between
software and hardware devices [4].

A.D. Brucker and J. Julliand (Eds.): TAP 2012, LNCS 7305, pp. 67–82, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



68 M. Lochau et al.

Testing SPLs product by product is, in general, infeasible due to the high num-
ber of products to be tested. Recent SPL testing approaches focus on redundancy
reduction by considering representative product subsets under test. The subset
selection is based on (1) combinatorial criteria on feature models [9,20,22], (2)
coverage criteria on SPL test models [5], and (3) coverage criteria on feature
interactions [16]. But, until now, few attention in SPL research is paid to the
problem how to actually conduct an efficient testing process on those subsets that
avoids a traditional product by product process, again, contradicting SPL reuse
principles. The new ISO 26262 standard for automotive systems even requires
comprehensive testing strategies coping with existing system variants [28].

In this paper, we propose a novel approach for incremental model-based test-
ing (MBT) [30] of SPLs based on principles of regression testing [1]. MBT is
well-suited for planing reuse potentials in SPL testing [18]. Variable test models
are used to explicitly capture behavioral commonality and variability between
product variants. On this basis, a concise approach for incrementally assembling
and reusing test artifacts for sets of products under test is built.

Our framework comprises state machines as test models extended with delta
modeling concepts [6,23] to express variability. When testing a set of products,
for each step from a product p to the next product p�, an automated adaptation of
the test model is performed by applying a regression delta. The regression delta
contains the modifications to obtain the test model of product p� from test model
of product p. It is computed automatically from the delta modeling structure of
the test models. From the regression delta, the test goals for product p�, as well
as of the set of test cases and retest obligations are derived. Additionally, it can
be determined which existing test cases are applicable to product p� and which
test results still hold. This framework has two major potentials in SPL testing:
(1) test cases can be reused for different product variants while guaranteeing
the validity of test cases and the confidential test coverage for every product
variant, and (2) test results can be reused according to change impacts between
product variants, thus guaranteeing appropriate fault detection efficiency. Our
approach is evaluated by means of a case study from the automotive domain
w.r.t. previous results obtained from an existing SPL testing approach. It is, to
the best of our knowledge, the first SPL MBT framework that captures reuse
potentials between different product variants.

The paper is organized as follows. In Sect. 2, foundations of model-based
testing are introduced. In Sect. 3, delta modeling for test models is presented.
The incremental SPL testing approach is described in Sect. 4 and evaluated in
Sect. 5. Sect. 6 discusses related work, and Sect. 7 concludes.

2 Foundations

We briefly introduce the main principles of MBT and regression testing under-
lying the incremental SPL testing framework developed in the remainder of this
paper.



Incremental Model-Based Testing of Delta-oriented SPLs 69

2.1 Model-Based Testing

Model-based testing aims at the automation of black-box testing processes [30].
A test model serves as a behavioral specification capturing the functional re-
quirements of a software product under test to be verified.

Due to their wide acceptance in industrial control systems engineering, state-
machine-like modeling approaches are commonly used as test models. State ma-
chine test models define input/output relations by means of sequences of con-
trollable input and expected observable output events. We focus on basic, i.e., flat
basic state machines as test models to keep our illustrations graspable, where
the major results are enhanceable to, e.g., UML-like state machine variants pro-
viding hierarchy, concurrency, variables etc.

Definition 1. (State Machine Test Model)
A state machine test model is a 4-tuple tm � �S, s0, L, T �, where S is a finite
set of states, s0 � S is the initial state, L is a set of transition labels, and
T � S � L � S is a transition relation.

A transition label l � �πI , πO� � L � ΠI � ΠO is a pair of a controllable
input event πI � ΠI triggering the transition, and an observable output event
πO � ΠO specifying a system reaction released by the transition, where ΠI and
ΠO are disjoint input/output alphabets. We assume state machine test models
to be deterministic, and to obey well-formedness properties as usual, i.e., the
transition graph has to be connected and every state has to be reachable from
the initial state. By TM�L� we refer to the set of well-formed state machine test
models over a label set L.

Test models specify all intended behaviors a product under test is to be verified
against by means of test runs, i.e., representative executions. Test runs refer to
test cases derived from a test model tm � TM�L�.

Definition 2. (State Machine Test Case)
A test case tc � �t0, t1, . . . , tk� � T � of a state machine test model tm � TM�L�
is a finite sequence of k transitions of tm.

Test case tc is valid for test model tm � TM�L�, written valid�tc, tm�, if its transi-
tion sequence corresponds to an alternating sequence s0, t0, s1, . . . , sk�1, tk�1, sk
of states and transitions conforming tm, i.e., (1) it starts in the initial state s0,
and (2) for all segments �si, ti, si�1� � T , 0 � i � k � 1, holds. For a test case
tc � �t0, t1, . . . , , tk�1�, we define a corresponding test run:

exec�tm, tc� � �l0, l1, . . . , lk�1� � L�

to be given as the trace traversed by tc in tm, i.e., a sequence of labels li of tran-
sitions ti, 0 � i � k � 1. We limit our considerations to deterministic behaviors,
i.e., a one-to-one correspondence between test runs and test cases. By TC�tm�,
we denote the set of test cases, i.e., all valid paths of a test model tm.

In MBT, the behaviors of an implementation of product p are verified for test
cases tc to conform those specified in its test model tm [29]. By 	te, we denote



70 M. Lochau et al.

the testing equivalence under consideration in the following, usually some kind
of trace equivalence [10]. The equivalence notion applied for the purposes of
this paper is discussed in more detail in Sect. 5. According to deterministic
behaviors specified in a test model, we assume product variants to also behave
deterministically when reasoning about equivalence of test case executions. A
product under test p passes a test run of a test case tc � TC�tm�, if its observable
behavior under the sequence of inputs conforms to the expected output behavior
specified in test model tm:

p passes tc :
 exec�p, tc� 	te exec�tm, tc�

A test suite ts � TC�tm� is a collection of test cases, where:

p passes ts :
 �tc � ts : p passes tc

A test model tm (and thus TC�tm�) potentially contains (1) an infinite number
of paths, as well as (2) paths of infinite length. For the test conformance to be
decidable, test suites ts � TC�tm� are restricted to those with (1) a finite number
of test cases, and (2) each test case to be of finite length. Adequacy criteria for
selecting appropriate test suites from test models tm usually require structural
elements in tm to be traversed at least once. For state machines, such coverage
criteria are all-states, all-transitions, etc. [30]. Formally, a coverage criterion C
applied to a test model tm selects a finite set of test goals :

tg � C�tm� � �g1, g2, . . . , gn

for instance, tg � T , i.e., the set of all transitions in tm. We write covers�tc, g�
for a test case tc � ts � TC�tm�, if the test goal g is traversed in test model tm
via tc. A test suite ts satisfies coverage criterion C, if:

�g � C�tm� : �tc � ts : covers�tc, g�

Summarizing, the set of test artifacts for a product p is given as follows.

Definition 3. (Product Test Artifacts)
The collection of test artifacts for product p is a 4-tuple tap � �tmp, tgp, tsp, tpp�
consisting of a test model tmp, a finite set tgp of test goals in tmp for criterion
C, a test suite tsp, and a test plan tpp.

A test plan organizes the test suite application by further (de-)selecting, priori-
tizing, etc. test cases from ts. We assume test plans simply to be subsets tpp � tsp
containing those test cases actually to be (re-)tested on product p. In case of
single product testing, we assume tpp � tsp.

Example 1. Consider the state machine test model in Fig. 1 consisting of states
S � �s0, s1, s2 and transitions T � �t0, t1, t2, t3. Assuming C is the all-
transitions coverage criterion, the set of test goals is given as tg � �t0, t1, t2, t3.
A sample test suite ts � �tc1, tc2 that satisfies C consists, e.g., of two test cases
tc1 � �t0, t1� and tc2 � �t0, t2, t3�, where tc1 covers t0 and t1 and tc2 covers
t0, t2, and t3. A test run of tc2 corresponds to the sequence exec�tc2, tm� �
��π1, π2�, �π3, π5�, �π3, π2��.



Incremental Model-Based Testing of Delta-oriented SPLs 71

s0 s1

s2

t0 : π1 2

t1 : π1 4

t2 : π3 5t3 : π3 2

Fig. 1. Sample State Machine Test Model

For the following discussions, we assume the existence of some (black-box) test
case generator (cf. e.g. [12]) and write tc � gen�tm, g� to generate a test case
that covers test goal g on test model tm, and ts � gen�tm, C� for the generation
of entire test suites satisfying coverage criterion C on test model tm.

2.2 Regression Testing

The purpose of regression testing is to efficiently verify that changes between
different versions of a product are as intended [1,11]. For a software product
implementation version p evolving to version p� over time, regression testing
strategies aim at verifying that (1) the changes are correctly implemented, and
(2) the changes do not erroneously influence parts of p reused in p� other than
intended. When stepping to the next version p�, the test suite evolves accordingly
such that ts� � gen�tm�, C� is executed on p�. For non-naive regression testing
approaches, reuse potentials between p and p� arise, namely (1) the reuse of test
cases in ts generated from tm in ts� for reducing test generation efforts, and (2)
reuse of test execution results for test cases in ts applied to p for p�, i.e., reducing
test execution efforts. For the reuse of test cases tc � ts in ts�, we require:

exec�tc, tm� 	te exec�tc, tm
��

Thus, tc concerns system reactions equivalently specified in tm and tm�, i.e.,
addressing behaviors similar to p and p�. For the reuse of test execution results
obtained from exec�tc, p� for reusable test cases tc � ts�, we further require:

exec�tc, tm� 	te exec�tc, tm
�� � exec�tc, p� 	te exec�tc, p

��

This second reuse problem refers to the well-known retest selection problem of
regression testing [1]: select from the set tsR of reusable test cases a minimum
retest subset tsRT � tsR such that tsRT is capable to cover all potentially erro-
neous impacts of changes between the product implementations p and p�:

exec�tsRT, p
�� 	te exec�tsRT, p� � exec�tsR, p

�� 	te exec�tsR, p�

Regression testing approaches categorize test cases into sets of reusable tsR � ts,
obsolete tsO � ts�tsR, and new tsN � ts��tsR test cases. The set of test cases to
be (re-)executed on p� contains the retest set tsRT � tsR, as well as all new test
cases in tsN .



72 M. Lochau et al.

3 Delta-Oriented SPL Test Modeling

In order to apply an incremental MBT approach to SPLs, we need a reusable
test model to capture the commonality and variability in a closed form instead
of storing each test model variant separately. We base our approach on the
concept of delta modeling [6,23], a modular and flexible variability modeling
approach that is well suited as basis for regression-based SPL testing by incre-
mentally evolving test artifacts for product variants. In delta modeling, a family
of similar products is captured by a designated core product and a set of deltas
encapsulating changes to the core model. A delta adds and removes elements
from the core product. If there are hierarchically structured elements, a delta
operation can be used to change the internal structure of these elements. A prod-
uct variant is obtained by selecting a subset of the available deltas, determining
a suitable ordering and applying the operations of the deltas one by one to the
core product.

We apply the principles of delta modeling to state machine test models. A
delta over a state machine test model, as defined in Def. 1, can add and remove
states and transitions. Changing the label of a transition can be encoded by
removing a transition and adding a transition between the same states with a
different label. The following definition introduces the syntax of state machine
deltas.

Definition 4. (State Machine Delta)
A state machine delta is a set of delta operations δ � Op, where Op contains
(1) for every s � S, �add s and �rem s, and (2) for every t � T , �add t and
�rem t for finite sets of possible states S and transitions T .

The application of a set of delta operations transforms one state machine into
another. A delta is applicable to a state machine if the states and transitions to
be removed exist and if the states and transitions to be added do not yet exist.
A delta is consistent if it only adds or removes each state or transition once.

Definition 5. (State Machine Delta Application)
The application of an applicable and consistent delta δ � Op to a state machine
tm � �S, s0, L, T � defines a function apply : TM�L��P�Op� � TM�L� such that
apply�tm, δ� � tm� � �S�, s0, L, T

�� where

– if δ � �, tm� � tm
– if δ � �op � δ�, then tm� � apply�apply�tm, op�, δ��
– for δ � �add s, we have S� � S � �s and T � � T
– for δ � �rem s, we have S� � S��s and T � � T
– for δ � �add t, we have T � � T � �t and S� � S
– for δ � �rem t, we have T � � T ��t and S� � S

In order to describe the set of possible test models for an SPL, we connect the
deltas to the product variants. Each product test model is defined by a set of
deltas to be applied to a given core test model tmcore in order to generate the
test model of the variant. Instead of specifying sets of deltas for each product



Incremental Model-Based Testing of Delta-oriented SPLs 73

test model, the connection can also be made by associating deltas to product
features [6]. A suitable ordering of delta application has to be defined such
that each delta is applicable to the respective model when it is used. The test
model of the product variant is obtained by applying the given deltas in the
specified ordering to the core test model tmcore. During the generation process,
it is possible that an intermediate model is constructed that is not well-formed.
However, after applying all deltas, it has to be guaranteed that the resulting
test model is well-formed. A more detailed description of the product generation
process in delta modeling can be found in [23].

To allow for a flexible delta-oriented SPL test modeling, any potential test
model should be usable as core model. This means that a state machine delta
has to exist to derive every valid test model variant from that arbitrary core
model.

Proposition 1. (Existence of State Machine Delta)
For each core state machine test model tmcore � TM�L� and each test model
variant tm � TM�L�, there exists a state machine delta δ � Op such that tm �
apply�tmcore, δ� holds.

Proof: For any potential tmcore � �S, s0, L, T � and test model variant tm �
�S�, s0, L, T

��, we have to show that there exist delta operations δ � Op that
are sufficient to transform the sets S and T to S� and T �, respectively. For each
s � S�, three cases arise: (1) for states s � S � S� no delta operation is required,
(2) for states s � S�S�, s can be removed from S to build S� via �rem s, and (3)
for states s � S��S, s can be added to S to built S� via �add s. For transitions,
the same cases hold.

Example 2. Consider Fig. 2. The state machine introduced in Fig. 1 now serves
as the core model. By applying the delta operations of δtm, we obtain the left
test model variant tm. By applying the delta operations of δtm� , we obtain the
right test model variant tm�.

4 Delta-Oriented SPL Regression Testing

When applying MBT to SPLs, i.e., a family of similar product variants P �
�p1, p2, . . . pn with explicit commonality and variability, a corresponding collec-
tion of test artifacts tai � �tmi, tgi, tsi, tpi� is to be provided for every product
variant pi � P . The artifact construction and application of test suites tsi to
implementations of product variants pi � P is usually done in some ordering.
The result is a chain of product testing campaigns continuously stepping from
test artifacts ta of variant p to the next product test artifacts ta� of variant
p�. Reuse potentials between ta and ta� arise by incrementally promoting pre-
vious test artifacts to subsequent products under test. In contrast to classical
regression scenarios, differences between product variants are explicitly specified
beforehand in an SPL, e.g., on the basis of a reusable test model.

Based on delta-oriented state machines as reusable SPL test models, we define
a model-based SPL regression testing approach that assembles product-specific



74 M. Lochau et al.

s0 s1

s2

t0 : π1 π2

t1 : π1 π4
t2 : π3 π5t3 : π3 π2

s0 s1

s2

t0 : π1 π2

t2 : π3 π5

t4 : π3 π2

t5 : π1 π4

s0 s1

s2

t0 : π1 π2

t2 : π3 π5t3 : π3 π2

t5 : π1 π4

δtm = {rem t1, rem t3,
add t4, add t5}

δ−1
tm = {add t1, add t3,
rem t4, rem t5} δtm′ = {rem t1, add t5}

δtm,tm′ = {add t3, rem t4}

Fig. 2. Sample Delta-oriented SPL Test Model and Regression Delta Derivation

test artifacts by incrementally reusing test artifacts of previous products. In par-
ticular, we incrementally evolve product test artifacts for a sequence p1, p2, . . . , pn
of products under test as follows:

1. Generate an initial collection of product test artifacts ta1 using MBT tech-
niques for single products as usual and apply the resulting test suite ts1 to
the implementation of p1.

2. Incrementally evolve tai to tai�1, for 1 � i � n, and apply the new (re-)test
plan tpi�1 � tsi�1 to pi�1.

Although p1 might be chosen arbitrarily, we suggest to start the incremental
SPL testing campaign with the core product pcore as it usually comprises most
of the commonalities among product variants.

As illustrated in Fig. 3, the incrementation of product test artifacts ta for
product p to ta� of a subsequent variant p� decomposes into four levels. For each
incrementation from pi to pi�1, (1) the reuse of product test artifacts from tai
in tai�1, as well as (2) the generation of new artifacts required for tai�1 is to be
performed. Both steps are to be conducted in a way that ensures the different
components of tai�1 to meet the requirements according to their relationships
(cf. Sect. 2), namely validity of test cases tc � tsi�1 w.r.t. tmi�1, coverage of
test goals g � tgi�1 for criterion C by test suite tsi�1, and appropriate (re-)test
selections for test plans tpi�1 � tsi�1.

Accordingly, we apply the delta approach to also reason about the incremental
changes on test artifacts from ta to ta�, where δta,ta� is decomposed into sub deltas
for the different components of test artifact collections:

δta,ta� � �δtm,tm� , δtg,tg� , δts,ts� , δtp,tp��



Incremental Model-Based Testing of Delta-oriented SPLs 75

Fig. 3. Incremental Evolution of SPL Test Artifacts

The test model is the central part for deriving any kind of test artifacts in MBT.
As a consequence, the sub deltas on the remaining product test artifacts are
directly deducible from changes on test model specifications.

Test Model Delta. One of the main benefits of a delta-oriented SPL test model is
its ability to comprehensively encapsulate the differences of every product variant
w.r.t. some core model. However, for the incremental evolution of product test
artifacts, we rather have to make explicit the differences of a product variant
p� to the previous product p under test. Therefore, we introduce the concept of
regression deltas to aggregate all changes when evolving from tm to tm�.

Definition 6. (State Machine Regression Delta)
A state machine regression delta δtm,tm� � Op for state machine pair �tm, tm�� �
TM�L� � TM�L� is a state machine delta such that tm� � apply�tm, δtm,tm��.

The application of a state machine regression delta on a test model yields the
subsequent test model variant. As illustrated in Fig. 2, by intuition, a regression
delta δtm,tm� results from composing the inverted delta δ�1

tm of tm and the delta
δtm� of tm�. The inverse δ�1 � Op of a state machine delta δ � Op is built
component-wise, i.e., by inverting each delta operation op � δ to op�1 in δ�1

such that �add e�1 � �rem e and �rem e�1 � �add e for e � S � T .
However, using set union to compose δ�1

tm and δ�tm into δtm,tm� produces un-
sound results in case of equal delta operations. For instance, in Fig. 2, �add t5 �
δtm� δtm� holds, thus set union would yield �rem t5, add t5 � δtm,tm� , i.e., con-
flicting operations in the regression delta. Instead, for the correct derivation of
regression delta δtm,tm� from state machine deltas δtm � Op and δtm� � Op,
we have to apply an alternative composition operator that takes common delta
operations into account. The symmetric difference A Δ B � �A�B� � �B�A� of
two sets A and B solely contains those elements being either exclusive to set A
or B. In addition, to build the regression delta, we require the first operand of
the symmetric difference to be inverted.

Proposition 2. (State Machine Regression Delta Construction)
For two state machine deltas δtm � Op and δtm� � Op, the regression delta is
given as δtm,tm� � �δtm�δtm���1 � �δtm��δtm�.



76 M. Lochau et al.

Proof: For tm� � �S�, s0, L, T
�� to result from applying δtm,tm� � �δtm�δtm���1�

�δtm��δtm� to tm � �S, s0, L, T � , we have to show the sets S� and T � to be
built correctly from S and T . For states s � S�, we have two cases: (1) s � S,
and (2) s � S. For case (1), we have to show that �rem s � δtm,tm� , where
we have two further cases: (1a) s � Score, thus �add s � δtm which implies
�rem s � �δtm�δtm���1, and (1b) s � Score, thus �add s � δtm, but �rem s �
�δtm�δtm���1, because �add s � �δtm�δtm��. For case (2), we have to show that
�add s � δtm,tm� , where, again, two further cases arise: (2a) s � Score, thus
�rem s � δtm which implies �add s � �δtm�δtm���1, and (2b) s � Score, thus
�add s � �δtm�δtm���1, but �add s � �δtm��δtm�. Symmetric cases arise for
ensuring states s � S� are either removed if s � S, or not added if s � S via
δtm,tm� . Further note, that these cases also hold for the set of transitions. Finally,
the existence of a regression delta for arbitrary pairs of state machines follows
directly from Prop. 1: as any test model variant is derivable from an arbitrary
core model by a set of delta operations, any test model tm can be assumed as
core model to derive the test model of tm�.

Example 3. The regression delta between the test model tm and tm� in Fig. 2
results in δtm,tm� � �δtm�δtm���1 � �δtm��δtm� � �add t3, rem t4. As both
products share the delta operations concerning t1 and t5, those transitions are
not affected by the regression delta.

Please note, that regression deltas constitute a generalization of state machine
deltas, i.e., δtm can be represented as δtmcore,tm.

We now describe the derivation of the deltas concerning the incrementation of
the three remaining test artifacts from the state machine regression delta. Those
deltas are similar to those for state machines (cf. Sect. 3), but are to be adapted
to artifact types considered in the particular components of ta.

Test Goal Delta. The construction of the delta δtg,tg� for the incrementation
of the set of test goals depends on the coverage criterion C considered. For
simple structural criteria such as all-states and all-transitions, i.e., criteria with
C�tm� � S � T , δtm,tm� is directly adaptable to evolve the test goals via the
following rules:

– ��rem e � δtm,tm� : e � tg� �rem e � δtg,tg�

– ��add e � δtm,tm� : e � C�tm�� � �add e � δtg,tg�

Otherwise, for more complex criteria, e.g., path-oriented criteria like MC/DC
coverage [30], a (partial) regeneration of test goals via C�tm�� is required, where
δtm,tm� indicates model parts in tm� potentially affected.

Test Suite Delta. As described in Sect. 2.2, regression testing approaches parti-
tion an existing test suite ts of product p into subsets of reusable tests tsR and
obsolete tests tsO when evolving to product p�. For our incremental SPL testing
approach it seems promising not to discard obsolete test cases in the next test
suite ts�, but rather to collect them for potential reuse for subsequent products
under test. Therefore, we partition product test suites ts � tsV � tsO into sets



Incremental Model-Based Testing of Delta-oriented SPLs 77

of valid and obsolete test cases. When evolving ts � tsV � tsO to ts’ � ts�V � ts�O
via δts,ts’, changes in δtm,tm� have effects on the incrementation of both sets.
Accordingly, we also partition the test suite delta into δtsV ,ts�

V
and δtsO,ts�

O
.

By Ttc � T , we refer to the subset of transitions from T such that (1) tc �
T �

tc, and (2) Ttc is minimal. Thus, a test case tc is valid for test model tm �
�S, so, L, T �, if Ttc � T , whereas Ttc � T holds for obsolete test cases. A test
case tc � tsO being obsolete for p becomes valid for p� as follows:

�t � Ttc�T : ��add t � δtm,tm� � �add tc � δtsV ,ts�

V
� �rem tc � δtsO,ts�

O

i.e., the set of transitions of tc missing in the set T of the test model of p is
added to p� via the regression delta. Correspondingly, valid test cases tc � tsV
become obsolete by the rule:

�t � Ttc : �rem t � δtm,tm� � �add tc � δtsO,ts�

O
� �rem tc � δtsV ,ts�

V

The set of reusable test cases ts�R � tsV � ts�V therefore contains those test cases
valid for p, as well as for p�. In addition to ts�R, further test cases may be required
in ts to cover all test goals in tg�. A test goal g � tg� is uncovered by ts�R if either

– �add g � δtg,tg� , i.e., the test goal is new in p�, or
– �tc � tsV : covers�tc, g� � tc � ts�O, i.e., all test cases of p covering g are

obsolete for p�.

For covering those test goals, further previously obsolete test cases tc � tsO� ts�V
with covers�tc, g� may be found and added to ts�R. Otherwise, a new test case
tcg � gen�tm�, g� is required, where �add tcg � δtsV ,ts�

V
. The set of all new test

cases generated for p� thus gives the set ts�N in terms of regression testing.

Example 4. Consider the test cases tc1 � �t0, t1� and tc2 � �t0, t2, t3� of Ex-
ample 1 for all-transition coverage. When stepping from the core model to
tm (cf. Fig. 2), tc1 and tc2 both become obsolete, thus new test cases, e.g.,
tc3 � �t0, t2, t5� and tc4 � �t0, t2, t4� are generated. For tm�, again, tc1 is obso-
lete, whereas tc2 as well as tc3 are reusable and cover all test goals.

Test Plan Delta. Test plans tp � tsV are used to define which valid test cases
from a test suite are actually executed on the product under test, where tp �
tsN � tsRT. New test cases tc � tsN are applied in any case to verify that new,
i.e., varying behaviors are correctly implemented. In addition, from the set of
reusable test cases tsR, a retest set tsRT � tsR is selected to verify that the
changes do not erroneously affect common behaviors covered by tsR. For the
selection of tsRT, different strategies appear in the literature [11], e.g., retest-all
tsRT � tsR, retest-non tsRT � �, and retest-random, where some tsRT � tsR
is chosen. In addition, techniques for change impact analyses such as program
slicing [13] support the retest selection decision by the following criterion:

tc � tsRT :
 exec�tc, tm� 	te exec�tc, tm
�� � exec�tc, p� 	te exec�tc, p

��

Summarizing, the test plan delta δtp,tp� is defined by the rules:



78 M. Lochau et al.

– �tc � tp�ts�RT : �rem tc � δtp,tp�

– �tc � ts�RT �tp : �add tc � δtp,tp�

– �tc � ts�N : �add tc � δtp,tp�

For further enhancements, additional information about previous test plans can
be used for retest selections, e.g., how often a test case has been already executed
(and failed).

Soundness of the Approach. For the soundness of the presented approach, we
require the resulting test artifacts to be (1) valid, i.e., every test suite solely con-
tains valid test cases, and (2) complete, i.e., guaranteeing complete test coverage
of every product test model w.r.t. criterion C. Let ta1, ta2, . . . , tan be a collection
of test artifacts incrementally built for a sequence of products p1, p2, . . . , pn via
deltas on test artifact as defined above.

Theorem 1. (Validity of Product Test Suites)
For product test suites tsi of each tai, 1 � i � n, tsVi � TC�tmi� holds.

Proof: By induction over the chain of regression delta applications. For i � 1,
we assume soundness of the test case generator, i.e., gen�tm1, C� � TC�tm1�.
For induction steps from i to i�1, (1) validity of tsVi follows from the induction
hypothesis, and (2) validity of tsVi holds as obsolete and reusable test cases from
tsi are confirmed via the regression delta, and new test cases in tsi�1 are, again,
delivered by the test case generator, i.e., gen�tmi�1, tg� � TC�tmi�1�.

Theorem 2. (Completeness of Product Test Suites)
For product test suites tsi and test goals tgi of each tai, 1 � i � n, (1) tgi �
C�tmi� holds, and (2) tsi satisfies C.

Proof Idea: Again, by induction over the chain of regression delta applications.
For the correct incrementation (1) of test goals for more complex criteria, we
rely on a sound implementation of the test goal selection function C, and (2) of
test suites, we, again, assume soundness of the test case generator.

Moreover, the approach ensures every test case generated during the incremen-
tal testing process to be executed at least once as the set tsN is always selected for
the test plan. Our approach implicitly fulfills the complete SPL test suite coverage
requirement proposed in [5]. In addition, it supports reasoning about the reliabil-
ity of test plans: the impact on the fault detection efficiency of retesting selections
between SPL products in comparison to complete product by product SPL testing
is parameterizable via the change impact criterion under consideration.

5 Implementation and Evaluation

We developed a tool chain for the sample implementation of our incremental SPL
testing approach. For the delta-oriented state machine SPL test modeling, we de-
veloped an Eclipse plug-in incorporating the Eclipse Modeling Framework. The
tool supports the configuration of product variants based on a domain feature



Incremental Model-Based Testing of Delta-oriented SPLs 79

model and the automated derivation of product test models. Those test models
are imported into IBM Rational Rhapsody to apply the add-on ATG for
automated test case generation and execution.

To evaluate our approach, we considered an SPL case study from the auto-
motive domain, a simplified Body Comfort System (BCS) including numerous
features like automatic power windows, human machine interface, alarm system,
etc., comprising 11, 616 valid product variants. We already obtained evaluation
results from testing the BCS SPL in previous work for an SPL subset testing
approach covering all valid feature pairs [19,16]. This allowed us to compare
the results to those of our incremental testing technique w.r.t. gain in efficiency
arising from test artifact reuse potentials. The original BCS SPL 150% state ma-
chine test model created for the MoSo-PoLiTe approach contains 105 states and
107 transitions comprising 26 input and 33 output events. We remodeled this
test model to build a delta-oriented SPL test model including one core model
and 40 delta modules.

For our experiments, we considered the Model Element Coverage criterion
as supported by ATG. For covering every single product variant, an estimated
amount of 743, 424 test cases is required including multitudes of redundancies
due to similarities among product variants. After applying MoSo-PoLiTe [19]
we obtained 17 representative products (P1 � P17), thus reducing the number
of test cases to 1, 093 for testing this set product by product. To evaluate our
incremental approach, we considered the same product subset and further added
a core product (P0) as the starting point of the incremental SPL testing process.
The results of the case study are shown in Fig. 4. Triangles denote the number of
test cases generated and applied per product in the MoSo-PoLiTe approach [19].
In contrast, for the incremental SPL testing approach, diamonds denote the
number of test cases to be newly generated for a product, and squares denote
the number of test cases to be (re-)tested on that product. We focused our
experiments on the reuse of test cases, whereat for the reuse of test results, we
applied change impact analyses based on test model slicing [13]. Comparing our
results to those of MoSo-PoLiTe, a significant reduction of the testing efforts
concerning test case generation and execution was achieved, however ensuring
the same degree of test model coverage. In particular, the average number of test

Fig. 4. Evaluation Results for the BCS SPL Case Study



80 M. Lochau et al.

cases generated and executed per product for MoSo-PoLiTe amounts 64, whereas
our incremental approach solely requires an average number of 10 new test cases
and 9 test cases selected for execution per product. In cases where the number
of test case executions exceeds the number of test cases generated, existing test
cases are selected for retesting. Most test cases are generated and selected for the
first four products. As the number of existing test cases covering commonality
between product variants continuously increases, a decreasing number of test
cases is generated and executed for the remaining products.

Threats to Validity. The efficiency of the approach depends on the test case
generator applied. The quality of the test suite of the initial product under test
is particularly crucial for the subsequent iterations. However, this drawback is
adherent to model-based testing in general, rather than an inconvenience of our
approach. For the reuse of test cases, our current approach uses global repos-
itories S and T to identify equality of traces by means of syntactical identity
for testing equivalence 	te and is restricted to deterministic behaviors. This is
a rather strict requirement, but weakening this notion to more realistic test-
ing equivalences [10] is far less efficiently decidable. Providing sound criteria for
retest selection is, due to the black-box assumption of model-based testing, an
open problem as common change impact analysis techniques are usually based on
source code investigations [13]. For evaluating the impact of those criteria w.r.t.
decreasing fault detection efficiency compared to complete product by product
testing, further experiments, e.g., considering mutations, have to be performed.

6 Related Work

Various applications of behavioral models with variabilities to model-based SPL
testing were proposed [18]. Cichos et al. propose a coverage-driven SPL test
suite generation approach that is based on an annotative 150% test model [5].
Lochau et al. also use an annotative statechart test model for the detection and
test coverage of interactions among feature artifacts [15,16]. Weissleder et al.
define variabilities in state machines via annotations [32], whereas Szasz et al.
add variable parts in Statecharts using composition operators [26].

Two research directions for reducing redundancies in product by product test-
ing of SPLs currently exist: regression-based SPL testing and SPL subset selec-
tion heuristics. In [27,11], surveys on regression-based SPL testing approaches are
presented mainly concentrating on empirical evaluations of different strategies. A
first conceptional approach for regression-based SPL testing was, e.g., proposed
by Batory et al. [31]. The authors propose an incremental refinement of test
suites for a particular product variant under test w.r.t. the features composed
into the product. Neto et al. [17] introduce an SPL testing framework, where re-
gression testing decisions are performed on the basis of architectural similarities
between product variants. Subset selection heuristics mainly use combinatorial
testing heuristics to select representative products under test, e.g., considering
features as combinatorial parameters [14]. For instance, Oster et al. cover pair-
wise feature combinations [20,21,19], whereas Perrouin et al. consider T-wise



Incremental Model-Based Testing of Delta-oriented SPLs 81

combinations [22]. However, no strategies for test artifact reuse between prod-
ucts in those sub sets are mentioned. The notion of SPL test suites introduced
in [5] is the closest related to our framework, but no application strategies of
those test suites are provided. Furthermore, as our approach incrementally gen-
erates test cases on demand rather than symbolically in one pass, it is assumed
to obey better scalability properties.

7 Conclusion

In this paper, we presented a novel MBT framework for incrementally deriving
test suites for SPL product variants by applying principles of regression testing.
As future work, we plan to further optimize the SPL testing process by (1) local
minimizations of product test suites as well as global reductions on complete SPL
test suites, and (2) delta-oriented, i.e., compositional test suite generation. For
reliable fault detection efficiency, further theoretical considerations concerning
appropriate test case reuse and retest selection criteria are to be considered.

References

1. Agrawal, H., Horgan, J.R., Krauser, E.W., London, S.A.: Incremental Regression
Testing (1993)

2. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A Model-Checking Tool for
Families of Services. In: Bruni, R., Dingel, J. (eds.) FORTE 2011 and FMOODS
2011. LNCS, vol. 6722, pp. 44–58. Springer, Heidelberg (2011)

3. Bruns, D., Klebanov, V., Schaefer, I.: Verification of Software Product Lines with
Delta-Oriented Slicing. In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS,
vol. 6528, pp. 61–75. Springer, Heidelberg (2011)

4. Calder, M., Kolberg, M., Magill, E., Reiff-Marganiec, S.: Feature Interaction: A
Critical Review and Considered Forecast. Computer Networks 41(1), 115–141
(2003)

5. Cichos, H., Oster, S., Lochau, M., Schürr, A.: Model-Based Coverage-Driven Test
Suite Generation for Software Product Lines. In: Whittle, J., Clark, T., Kühne, T.
(eds.) MODELS 2011. LNCS, vol. 6981, pp. 425–439. Springer, Heidelberg (2011)

6. Clarke, D., Helvensteijn, M., Schaefer, I.: Abstract Delta Modeling. Mathematical
Structures in Computer Science (2011) (to appear)

7. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model Check-
ing Lots of Systems: Efficient Verification of Temporal Properties in Software Prod-
uct Lines. In: ICSE 2010 (2010)

8. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley Longman Publishing Co., Inc. (2001)

9. Cohen, M., Dwyer, M., Shi, J.: Interaction Testing of Highly-Configurable Systems
in the Presence of Constraints. In: ISSTA, pp. 129–139 (2007)

10. De Nicola, R.: Extensional Equivalence for Transition Systems. Acta Inf. 24, 211–
237 (1987)

11. Engström, E., Skoglund, M., Runeson, P.: Empirical Evaluations of Regression
Rest Selection Techniques. In: Proc. of ESEM 2008, pp. 22–31 (2008)



82 M. Lochau et al.

12. Fraser, G., Wotawa, F., Ammann, P.: Testing with Model Checkers: A Survey.
Software Testing, Verification and Reliability 19(3), 215–261 (2009)

13. Gupta, R., Jean, M., Mary, H., Soffa, L.: An Approach to Regression Testing using
Slicing. In: Proceedings of the Conference on Software Maintenance. pp. 299–308.
IEEE Computer Society Press (1992)

14. Kim, C.H.P., Batory, D.S., Khurshid, S.: Reducing Combinatorics in Testing Prod-
uct Lines. In: AOSD 2011, pp. 57–68. ACM (2011)

15. Lochau, M., Goltz, U.: Feature Interaction Aware Test Case Generation for Em-
bedded Control Systems. ENTCS 264, 37–52 (2010)

16. Lochau, M., Oster, S., Goltz, U., Schürr, A.: Model-based Pairwise Testing for Fea-
ture Interaction Coverage in Software Product Line Engineering. Software Quality
Journal, 1–38 (2011)

17. da Mota Silveira Neto, P.A., do Carmo Machado, I., Cavalcanti, Y.C., de Almeida,
E.S., Garcia, V.C., de Lemos Meira, S.R.: A regression testing approach for software
product lines architectures. In: SBCARS 2010, pp. 41–50 (2010)

18. Olimpiew, E.M.: Model-Based Testing for Software Product Lines. Ph.D. thesis,
George Mason University (2008)

19. Oster, S., Lochau, M., Zink, M., Grechanik, M.: Pairwise Feature-Interaction Test-
ing for SPLs: Potentials and Limitations. In: FOSD 2011 (2011)

20. Oster, S., Markert, F., Ritter, P.: Automated Incremental Pairwise Testing of Soft-
ware Product Lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287, pp.
196–210. Springer, Heidelberg (2010)

21. Oster, S., Zorcic, I., Markert, F., Lochau, M.: MoSo-PoLiTe - Tool Support for
Pairwise and Model-Based Software Product Line Testing. In: VAMOS 2011 (2011)

22. Perrouin, G., Sen, S., Klein, J., Le Traon, B.: Automated and Scalable T-wise Test
Case Generation Strategies for Software Product Lines. In: ICST 2010, pp. 459–468
(2010)

23. Schaefer, I., Bettini, L., Damiani, F.: Compositional Type-Checking for Delta-
oriented Programming. In: AOSD 2011. ACM Press (2011)

24. Schaefer, I., Gurov, D., Soleimanifard, S.: Compositional Algorithmic Verification
of Software Product Lines. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2010. LNCS, vol. 6957, pp. 184–203. Springer, Heidelberg (2011)

25. Schaefer, I., Hähnle, R.: Formal Methods in Software Product Line Engineering.
IEEE Computer 44(2), 82–85 (2011)

26. Szasz, N., Vilanova, P.: Statecharts and Variabilities. In: VAMOS 2008, pp. 131–140
(2008)

27. Tevanlinna, A., Taina, J., Kauppinen, R.: Product Family Testing: A Survey. ACM
SIGSOFT Software Engineering Notes 29, 12–18 (2004)

28. Thiel, S., Hein, A.: Modeling and Using Product Line Variability in Automotive
Systems. IEEE Software 19(4), 66–72 (2002)

29. Tretmans, J.: Testing Concurrent Systems: A Formal Approach. In: Baeten,
J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 46–65. Springer,
Heidelberg (1999)

30. Utting, M., Legeard, B.: Practical Model-Based Testing. A Tools Approach. M.
Kaufmann (2007)

31. Uzuncaova, E., Khurshid, S., Batory, D.S.: Incremental test generation for software
product lines. IEEE Trans. Software Eng. 36(3), 309–322 (2010)

32. Weißleder, S., Sokenou, D., Schlingloff, H.: Reusing State Machines for Automatic
Test Generation in ProductLines. In: MoTiP 2008 (2008)


	Incremental Model-Based Testing of Delta-oriented Software Product Lines
	Introduction
	Foundations
	Model-Based Testing
	Regression Testing

	Delta-Oriented SPL Test Modeling
	Delta-Oriented SPL Regression Testing
	Implementation and Evaluation
	Related Work
	Conclusion
	References




