
Constructive Finite Trace Analysis

with Linear Temporal Logic

Martin Sulzmann and Axel Zechner

Informatik Consulting Systems AG, Germany
{martin.sulzmann,axel.zechner}@ics-ag.de

Abstract. We consider linear temporal logic (LTL) for run-time testing
over limited time periods. The technical challenge is to check if the finite
trace produced by the system under test matches the LTL property. We
present a constructive solution to this problem. Our finite trace LTL
matching algorithm yields a proof explaining why a match exists. We
apply our constructive LTL matching method to check if LTL properties
are sufficiently covered by traces resulting from tests.

1 Introduction

Linear temporal logic (LTL) [4] is a powerful formalism for the concise specifi-
cation of complex, temporal interaction patterns and has numerous applications
to verify the static and dynamic behavior of software systems.

Our interest here is in the application of LTL for run-time testing. Specifically,
our focus is on off-line testing where the system produces a finite trace log.
The trace log is obtained by stimulation of the system by a test case. The
resulting traces are then matched against some LTL formulas which express test
properties.

There exists several prior works which study finite LTL trace matching,
e.g. see [3,5]. The problem is that existing algorithms for finite trace match-
ing only yield yes/no answers. That is, either the answer is yes and the trace
could be matched, or the answer is no and there is no match. In our view this is
often not sufficient. For example, we wish to have a more detailed explanation
why a trace could be matched or why is there no match.

Our novel idea is to apply a constructive algorithm for finite trace match-
ing where the algorithm yields a proof in case of a successful match. Proofs are
representations of parse trees (a.k.a. derivation trees) and provide detailed expla-
nations why there is a match. Thus, we can for example inspect some suspicious
test cases which succeeded unexpectedly. There are several further advantages
of representing the result of finite LTL trace matching in terms of proofs.

Proofs provide for independent verification of the test results. This is impor-
tant in case we apply a finite trace LTL trace matching tool in the context of a
formal software certification process such as DO-178B [6] where the tools output
either must be formally certified or alternatively are manually verifiable. For-
mal tool certification is often too cost-intensive and requires a potential costly
re-certification in case of software changes. Based on the proof representation it
is straightforward to verify the test results manually.

A.D. Brucker and J. Julliand (Eds.): TAP 2012, LNCS 7305, pp. 132–148, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Constructive Finite Trace Analysis with Linear Temporal Logic 133

Via proofs it is also easy to accommodate for various matching semantics,
e.g. weak or strong [2]. The advantage here is that we don’t need to re-run
the entire matching algorithm if for example we favor a weak semantics. We
simply compute the proof and then afterwards we choose the appropriate proof
interpretation, e.g. either weak or strong.

Proofs allow us to check to what extent the LTL properties are covered by
tests (traces). For example, if some pre-condition is never satisfied the LTL
property may be vacuously true but clearly the LTL property is then not fully
covered. One of our new contributions is a method to check for a fixed set of
LTL properties and traces if the LTL properties are sufficiently covered. This
complements earlier works [7] which shows how to generate traces to sufficiently
cover a given set of LTL properties. In practice, automatic generation of test
cases is often not possible due to the lack of a formal test model on which we
could apply a model checker. Therefore, tests are written by hand. The ability
to check coverage of LTL properties is clearly a big win to evaluate the quality
of a test suite.

The Key Ideas. We consider an example to highlight the key ideas of our work.
We assume a finite trace of the form [a, b, c, d, d, e, f] where letters a − f stand
for atomic propositions representing the inputs and outputs of the system under
test recorded at some specific measuring points. The test property is specified
via the LTL formula (a ∨ b) until (c ∧ next (�(e ∨ f))).

Our constructive matching algorithm generates the following proof term

[inl a
√
, inr b

√
] untilprf (c

√
, fwdnext fwd� fwd� stop� e

√
) (1)

whose graphical representation is as follows

until

1
���
�

����
��
� 2

��

��

3

��
3
���

�

���
��

��

inl

��
inr

��

c 4n �� 5� �� 6� �� e

a b

Edges are labeled with numbers where numbers refer to specific trace posi-
tions. Subscripts n and � tell us whether the next trace position is reached due to
next or �. Label inl (inr) indicates matching against the left (right) component
of choice (∨). Leaf nodes represent matched atomic propositions. Based on this
representation it is now quite clear that the trace matches the LTL formula.

There are further possible matches, i.e. proofs:

[inl a
√
, inr b

√
] untilprf (c

√
, fwdnext fwd� fwd� fwd� stop� f

√
) (2)

[inl a
√
, inr b

√
] untilprf (c

√
, fwdnext fwd� fwd� fwd� fwd� (�(e ∨ f))?) (3)

In proof (2) we match f instead of e in �(e ∨ f). Proof (3) represents a match
where we reach the end of trace without having matched the sub-formula �(e∨f).

134 M. Sulzmann and A. Zechner

This proof is of course quite silly because we know there is a match without ?.
The point is that proofs can possibly represent ’partial’ matches. That is,
sub-formulas could not be matched due to a prematurely ending trace.

In particular, we are interested in ’shortest’ proof. Informally, for a shortest
proof the longest derivation path from the root to a leaf is minimal among all
other proofs. Proof (1) is the shortest for our running example. Based on shortest
proofs we can check if a test suite satisfies the unique first cause (UFC) coverage
criteria [7]. Briefly, a test suite achieves UFC coverage of a set of requirements
expressed as LTL formulas if each condition in an LTL formula has been shown
to affect the formula’s outcome as the unique first cause for some trace.

For our running example, we find that UFC coverage is not achieved. Condi-
tion f affects the formula’s outcome (the formula is satisfied for this trace). But
clearly f is not the unique first cause because in the trace [a, b, c, d, d, e, f] there
is the ’earlier’ condition e due to which the formula is satisfied as well. This is
easy to see by inspecting the shortest proof (1). e

√
appears in the proof (1) but

f
√

is absent.
Via the additional trace [a, b, c, d, d, f, e] we achieve UFC coverage. In the

shortest proof

[inl a
√
, inr b

√
] untilprf (c

√
, fwdnext fwd� fwd� stop� f

√
)

resulting from matching the above trace against the LTL formula we find f
√
.

Based on the above observations, we can re-phrase the UFC coverage criteria
as follows. To achieve UFC coverage, for each condition a in an LTL formula
there must exist a shortest proof in which a

√
appears.

Summary of Contributions and Outline of Paper

– We give a constructive explanation of finite trace LTL matching where the
particular finite trace semantics can be chosen a-posteriori (Section 2).

– We provide for an efficient algorithm to compute shortest proofs (Section 3).
– We re-phrase the UFC coverage criteria in terms of shortest proofs

(Section 4).

Related work is discussed in Section 5.

2 Constructive Finite Trace LTL Matching

We formalize matching of finite trace T against an LTL formula L, see Figure 1.
A trace T is a finite list of atomic propositions where we represent atomic propo-
sitions by letters a, b etc. In our actual implementation, propositions are com-
positions of more elementary basic conditions, e.g. Key == On ∧ Speed > 100 .
For brevity, we ignore this level of detail and only consider atomic propositions.

Constructive Finite Trace Analysis with Linear Temporal Logic 135

LTL in negation normal form:
B ::= a | b | ... Atomic propositions
L ::= B | True | False | L ∧ L | L ∨ L Boolean layer

| next L | �L | L until L | �L Temporal layer

Finite trace:
T ::= [] Empty list/trace

| B : T Trace with head B and tail T

Proofs:
P ::= B

√
| True

√
| L? | inl P | inr P | (P, P)

| fwdnext P | � Ps | stop� P | fwd� P | Ps untilprf P
Ps ::= [] | P : Ps

Short-hand for list of proofs: [P1, ..., Pn] = P1 : ... : Pn : []

T � L � P

(True) T � True � True
√

(Base)
B′ = B

B′ : T � B � B
√

(EndOfTrace)
L �= True

[] � L � L?
(next)

T � L � P

B : T � next L � fwdnext P

(∨-Left) B : T � L1 � P1

B : T � L1 ∨ L2 � inl P1

(∨-Right)
B : T � L2 � P2

B : T � L1 ∨ L2 � inr P2

(∧) B : T � L1 � P1 B : T � L2 � P2

B : T � L1 ∧ L2 � (P1, P2)

(�-Stop) B : T � L � P

B : T � �L � stop� P
(�-Fwd) T � �L � P

B : T � �L � fwd� P

(�-1)

B : T � L � P1

T � �L � � Ps

B : T � �L � � (P1 : Ps)

(�-2)
[B] � L � P1

[B] � �L � � [P1]

(until -1)
B : T � L2 � P2

B : T � L1 until L2 � [] untilprf P2

(until -2)
B : T � L1 � P1 T � L1 until L2 � Ps untilprf P1

B : T � L1 until L2 � P1 : Ps untilprf P2

(until -3)
[B] � L1 � P1

[B] � L1 until L2 � [P1] untilprf L?
2

Fig. 1. Constructive Finite Trace LTL Matching

136 M. Sulzmann and A. Zechner

We use the standard LTL syntax. In our formulation, we assume that formulas
are in negation normal form. For brevity, we omit the negation operator ¬ and
assume that the negation of a proposition is simply represented as an atomic
proposition, e.g. a.

The matching relation among finite traces and LTL formulas is described in
terms of judgments of the form T � L � P . The judgment T � L � P states
that trace T matches formula L and the additional parameter P represents a
proof for a match. We generally assume that for the matching relation · � · � ·,
T and L are input values and P is the output in case of a successful match.

Figure 1 contains the rules to derive judgments T � L � P . A derivation
with final judgment T � L � P is essentially a (up-side-down) tree where the
leaves (judgments) are connected to base rules (EndOfTrace), (True) and (Base)
and intermediate nodes are connected to the other rules. In essence, P represents
a compact representation of the derivation tree.

The proof B
√

states that proposition B could be verified. Such proofs are
derived via rule (Base) which states that B matches the head of the trace.

True
√

is a proof for the always True formula which matches any trace. See rule
(True).

Rule (EndOfTrace) and the corresponding proof L? indicate that L is un-
matched because the trace ended prematurely. Depending on the interpretation
of the match, i.e. proof, we can consider L? either as a valid match or not and
can thus accommodate a weak or strong LTL matching semantics.

Rules (∨-Left) and (∨-Right) deal with matching a non-empty trace against
a disjunction of formulas. Proofs inl P and inr P indicate which branch of a
choice formula (∨) could be matched. We use pairs (P, P) to represents proofs
for matching a conjunction of formulas. See rule (∧).

Proof fwdnext P represents a match for a next L formula. See rule (next).
Proof stop� P indicates that the eventually (�) quantified formula could be

matched at the present trace position whereas proof fwd� P shows that we have
to make a step forward in the future to find a match. See rules (�-Stop) and
(�-Fwd).

For example, here’s a derivation making use of rule (�-Stop). For clarity, each
derivation step is annotated with the respective rule applied (read upwards).

a = a
(Base)

[a, a] � a � a
√

(�-Stop)
[a, a] � �a � stop� (a

√
)

In case of the always (a.k.a. globally) operator � the quantified LTL formula
must hold at each position of the trace. The corresponding proof � Ps contains
therefore a list of proofs Ps where each individual proof represents a proof for a
particular position. All of these proofs are collected in a list. See rule (�-1). In
the last step, we reach the empty trace. The resulting proof (�L)? is ignored.
See rule (�-2). For example, consider the following sample derivation.

Constructive Finite Trace Analysis with Linear Temporal Logic 137

a = a
(Base)

[a] � a � a
√

�a �= True
(EndOfTrace)

[] � �a � (�a)?

(�-2)

[a] � �a � � [a
√
]

Similarly to �, the proof for until uses a list to represent the sub-proof for
the left operand. See rules (until -1) and (until-2). In our formulation, we also
build a match/proof in case the right operand can never be matched but the left
operand is matched at each position. See rule (until-3).

In summary, a proof P represents a compact representation of a derivation
where a trace T matches an LTL formula L. That is, from the shape of P we
can conclude which rules have been applied to build the derivation and we can
reconstruct the entire derivation. In fact, each proof implies a trace and a formula
such that the trace matches the formula. This is easy to see, by viewing P as the
input and T and L as outputs of the matching relation T � L � P . It follows:

Lemma 1 (Proofs Represent Derivations). (1) Let T � L � P be the
final judgment of a derivation. Then, proof P exactly tells us which rules have
been applied and in which order.

(2) Let P be a proof. Then, T � L � P is derivable for some trace T and
formula L.

A-Posteriori Weak Interpretation of Proofs. The general problem with
LTL and finite traces is how to deal with cases where the trace ends prematurely.
For example, consider the proof resulting from the derivation

a �= True
(EndOfTrace)

[] � a � a?

(next)

[a] � next a � fwdnext (a?)

In the context of testing with LTL, it is likely that some test cases (traces) are
too short for some test properties (LTL formulas). To avoid false negatives, we
favor a weak interpretation of proofs.

Definition 1 (Weak Proof Interpretation). We say that formula L is
weakly matched by trace T , written T �weak L, iff there exists a proof P such
that T � L � P .

We find that the formula in the above example is weakly matched.
Similarly, we can give a strong proof interpretation following the strong finite

trace semantics introduced in [2].

Definition 2 (Strong Proof Interpretation). We say that formula L is
strongly matched by trace T , written T �strong L, iff there exists a proof P
such that T � L � P and P does not contain any term of the form ·?.

138 M. Sulzmann and A. Zechner

size : P �→ N

size(B
√
) = 1

size(True
√
) = 0

size(L?) = size(L)
size(stop� P) = size(P)

size(inl P) = size(P)
size(inr P) = size(P)
size(P1, P2) = max(size(P1), size(P2))
size(fwd� P) = 1 + size(P)

size(fwdnext P) = 1 + size(P)

size(�[P1, ..., Pn]) = 1 +max i≤n
i=1 ((i− 1) + size(Pi))

size([P1, ..., Pn] untilprf P) = 1 +max (n+ size(P),max i≤n
i=1 ((i− 1) + size(Pi)))

size : L �→ N

size(B) = 1 size(True) = 1
size(False) = 1 size(L1 ∧ L2) = size(L1) + size(L2)
size(L1 ∨ L2) = size(L1) + size(L2) size(next L) = 1 + size(L)
size(�L) = 1 + size(L) size(L1 until L2) = 1 + size(L1) + size(L2)
size(�L) = 1 + size(L)

Fig. 2. Size of Proofs and Formulas

In case of a weak proof interpretation, it is important to check that the LTL
properties are sufficiently covered by test cases. As motivated in the introduction,
we use shortest proofs for coverage checking. Next, we formalize shortest proofs.

Shortest Proofs. Figure 2 defines the size of a proof and a formula. The size of
the proof is the longest possible path from the root to a leaf. Leafs B

√
have size

1 whereas leafs which contain True
√

represent trivial matches and therefore we
set their size to 0.

For example, consider the proofs obtained by matching [a, a] against next a∨
�a:
[a, a] � next a ∨ �a � inr (stop� a

√
) [a, a] � next a ∨ �a � inl (fwdnext a

√
)

where size(inr (stop� a
√
)) = 1 < 2 = size(inl (fwdnext a

√
)).

In case of a proof for ∧ the size of the overall proof is determined by the
maximum of the size of the sub-proofs. Similarly, we compute the maximum of
the sub-proofs for � and until . The difference compared to ∧ is that for � and
until we add i − 1 to take into account the iterations through the trace. The
additional 1+ in e.g. size(�L) = 1 + size(L) ensures to unambiguously select
among proofs for � and until and proofs for some unfolding of � and until
for a specific trace. For example, consider

[a] � �a ∨ a � inl � [a
√
] [a] � �a ∨ a � inr a

√

For trace [a], proposition a is essentially the unfolded version of �a. We strictly
favor the unfolded version by adding 1 in case of �. For the above, we find that

size(inr a
√
) = 1 < 2 = size(inl � [a

√
])

Constructive Finite Trace Analysis with Linear Temporal Logic 139

The only remaining ambiguity arises in pathological cases such as matching [a]
against a ∨ a and matching [a] against next b ∨ next c. In the first case, we find
two identical matches by either choosing the left or right branch. In the second
case, the trace ended prematurely and we end up with unresolved formulas of
equal size in the left and right branch.

To resolve such un-ambiguities, we favor the “left-most” proof in case of sev-
eral shortest proofs. For brevity, we omit a formal definition and only provide
the intuition. We say a proof P1 is left-most w.r.t. some other proof P2 iff along
the longest paths from the root of P1 and P2 we find that P1’s path takes earlier
a left turn than P2’s path.

Definition 3 (Shortest Left-Most Proof). Let T � L � P . We say that
P is the shortest left-most proof w.r.t. trace T and formula L iff for any other
proof P ′ such that T � L � P ′ we have that either

– size(P) < size(P ′), or
– size(P) = size(P ′) and P is left-most w.r.t. P ′.

Obviously, there exists other strategies to make the matching relation determin-
istic. For example, instead of choosing the left-most proof among the shortest
proofs, we could choose the shortest proof among the left-most proofs.

Definition 4 (Left-Most Shortest Proof). Let T � L � P . We say that P
is the left-most shortest proof w.r.t. trace T and formula L iff P is a left-most
proof and for any other proof left-most proof P ′ such that T � L � P ′ we have
that size(P) < size(P ′).

For example, proof inl � [a
√
] is the left-most shortest proof for trace [a] and

�a ∨ a. But as shown above, this proof is not the shortest left-most.

3 Deterministic Matching with Derivatives

We first develop an algorithm to compute the left-most shortest match. Based
on that we then derive an algorithm for computing the shortest left-most match.

The straightforward approach to obtain the left-most shortest match would
be to employ a back-tracking algorithm where we interpret the judgments in
Figure 1 as Prolog clauses. However, such an approach easily leads to undesirable
high run-time behavior.

For example, consider the trace [a,, a, c] and the formula �(a∧ �b). In each
step, besides the last step, we can match a and then seek for b which cannot be
matched. Thus, we end up with a quadratic run-time behavior where we would
expect that a linear scan of the trace ought to be sufficient. This situation is
similar to the regular expression for which it is well-known that a back-tracking
matching algorithm easily leads to exponential run-time behavior.

To avoid unnecessary back-tracking, we seek for a matching algorithm which
strictly guarantees to make progress towards computing a proof. The basic idea
is to reduce the matching problem B : T � L to the simpler problem T � L\B

140 M. Sulzmann and A. Zechner

Expressions and functions over proofs:

e ::= P Proofs

| case P of P → P Case expression
f ::= λP.e Functions with input pattern P

| ⊥ Undefined

L\B �d (L P → P)

(Trued) True\B �d (True λTrue
√
.True

√
) (Falsed) False\B �d (False ⊥)

(Succ-Bd)
B′ = B

B′\B �d (True λTrue
√
.B

√
)

(Fail-Bd)
B′ �= B

B′\B �d (False ⊥)

(∨d)

L1\B �d (L′
1 f1)

L2\B �d (L′
2 f2)

f = λP. case P of

inl P ′ → inl (f1 P ′)
inr P ′ → inr (f2 P ′)

(L1 ∨ L2)\B �d (L′
1 ∨ L′

2 f)

(∧d)

L1\B �d (L′
1 f1)

L2\B �d (L′
2 f2)

f = λ(P1, P2).(f1 P1, f2 P2)

(L1 ∧ L2)\B �d (L′
1 ∧ L′

2 f)

(�d)

L\B �d (L′ f ′)
f = λP. case P of

inl P ′ → stop� (f ‘ P ′)
inr P ′ → fwd� P ′

(�L)\B �d (L′ ∨ �L f)

(nextd) (next L)\B �d (L λP.fwdnext P)

(�d)

L\B �d (L′, f ′)
f = λ(P, P ′). case P ′ of

� Ps → � (f ′ P : Ps)

(�L)? → � [f ′ P]

(�L)\B �d (L′ ∧�L f)

(untild)

L1\B �d (L′
1, f1) L2\B �d (L′

2, f2)

f = λP. case P of

inl P ′ → [] untilprf f2 P ′

inr (P1, P2 untilprf P3) → ((f1 P1) : P2) untilprf P3

inr (P1, P ?
2) → [f1 P1] untilprf (P ?

2)

(L1 until L2)\B �d (L′
2 ∨ (L′

1 ∧ (L1 until L2)) f)

Fig. 3. Building Derivatives and Proof Transformers

where formula L\B is obtained from L by consuming the current head B of the
trace. The formula L\B is referred to as the derivative of L with respect to B
and can be obtained by structural induction over the shape of L. The concept of
derivatives, originally developed for regular expressions [1], also applies to linear
temporal logic as first shown in [3] We extend this idea to compute the left-most
shortest and shortest left-most match.

One of the challenges we face is to build the proof of the original formula
out of the proof of the derivative. Roughly, we attack this challenge as follows.
For a trace [B1, ..., Bn], we build the sequence of derivatives L →f1 L\B1 →f2

... →fn L\B1...\Bn. The purpose of the fi’s will be explained shortly. By using

Constructive Finite Trace Analysis with Linear Temporal Logic 141

L �p P

(Truep) True �p True
√

(∧) L1 �p P1 L2 �p P2

(L1 ∧ L2) �p (P1, P2)

(∨-Leftp) L1 �p P1

(L1 ∨ L2) �p inl P1

(∨-Rightp)

there is no P1 such that L1 �p P1

L2 �p P2

(L1 ∨ L2) �p inl P2

(Basep) B �p B? (�p) � L �p (�L)? (nextp) next L �p (next L)?

(�p) �L �p (�L)? (untilp) L1 until L2 �p (L1 until L2)
?

Fig. 4. Building the Final Left-Most Proof (weak version)

Boolean laws we check if the final formula L\B1...\Bn yields true. If yes, we can
build a proof P . The proof for the original formula L is obtained by applying the
proof transformers fi. In each derivative step, we compute a proof transformer
function fi which tells us how to build the proof of the original formula given
the proof of the derivative. Thus, we obtain the proof of the initial formula L by
application of (f1 ◦ ... ◦ fn) P . Next, we formalize this idea.

Computing the Left-Most Shortest Match. Figure 3 defines judgments
L\B �d (L′ f) which build the derivative L′ = L\B and also a proof trans-
formation function which transforms a proof for L′ into a proof for L.

The base cases (Trued), (Falsed), (Succ-Bd) and (Fail-Bd) are straightforward.
False formulas are represented by ⊥, the undefined proof transformer. As we will
see, false formulas and their ⊥ proofs only appear in intermediate steps. They
will be eventually discarded because they are not derivable in our matching rule
system.

Rules (∨d) and (∧d) are defined by structural induction and contain no sur-
prises. In rule (nextd), we simply drop the next · operator.

More interesting is rule (�d). The derivative of �L w.r.t. B is (L\B)∨�L where
L\B is the derivative of L w.r.t. B. As we will see, we favor the ’left-most’ match
and therefore we first try to find a match for L at the current position B and
only in case of failure we will continue with the next position by trying again
�L. The proof transformation function f checks if a proof is found in either the
left or right component of the resulting derivative and then applies the proof
transformer resulting from L\B to construct a proof for �L.

In rule (�d), we assume that eventually �L is matched against the empty
trace which then results in the proof (�L)?. Therefore, the second case when
building the proof for �L given the proof for L\B ∧�L.

142 M. Sulzmann and A. Zechner

In rule (untild), the derivative for L1 until L2 is L2\B∨(L1\B∧(L1 until L2))
and expresses that we either immediately satisfy L2, or we must further unroll
the until formula. The resulting proof transformer f covers all the until cases
(1-3) we have seen in Figure 1.

Figure 4 builds a proof for the final LTL formula. Any unmatched LTL formula
is considered as possibly true. Recall that we postpone the decision of how to
interpret proofs. The rules strictly favor the left-most match. For example, see
rules (∨-Leftp) and (∨-Rightp).

We have now everything at hand to formalize the derivative-based algorithm
for matching a trace against a formula.

Definition 5 (Derivatives Matching Algorithm). Let L be an LTL for-
mula, T be a finite trace of the form [B1, ..., Bn] and P be a proof. We say that P
is the derivative matching result of matching T against L, written T �d L � P ,
iff

– L\B1 �d (L1 f1),...,Ln−1\Bn �d (Ln fn) for some L1,...,Ln and f1,
...,fn, and

– Ln �p P ′ for some P ′, and
– P = (f1 ◦ ... ◦ fn) P

′.

For example, consider trace [a, a] and formula next a ∨ �a. We first build the
derivatives of L = next a ∨ �a:

L\a = a ∨ (True ∨ �a)
︸ ︷︷ ︸

L1

L1\a = True ∨ (True ∨ (True ∨ �a))
︸ ︷︷ ︸

L2

The proof transformers connected to the derivative steps are as follows:

L\a �d L1

λP. case P of
inl P ′ → inl (fwdnext P ′)
inr P ′ → case P ′ of

inl P ′′ → stop� a
√

inr P ′′ → fwd� P ′′
︸ ︷︷ ︸

f1

L1\a �d L2

λP.case P of inl P ′ → inl a
√

inr P ′ → case P ′ of
inl P ′′ → inl True

√

inr P ′′ → case′P ′′ of
inl P ′′′ → stop� True

√

inr P ′′′ → fwd� P ′′′
︸ ︷︷ ︸

f2

For the final formula, we find

True ∨ (True ∨ (True ∨ �a)) �p inl True
√

Constructive Finite Trace Analysis with Linear Temporal Logic 143

We now transform the final proof into a proof of the initial formula by applying
the proof transformers connected to the derivative steps:

(f1 ◦ f2)(inl True
√
) = inl (fwdnext a

√
)

The proof on the right is the proof for the original formula next a ∨ �a. This
proof is also the left-most shortest proof. This result holds in general.

In a first step, we verify that the proof transformer connected to the derivative
computes the proof of the original formula given the proof of the derivative.

Lemma 2 (Derivatives Matching Correctness). Let L\B �d (L′ f) and
T � L′ � P ′. Then, B : T � L � P for some P such that f P ′ = P .

Proof. (Sketch) By induction over the structure of L and the derivation T �
L′ � P ′. For example, consider L1 until L2. Case (untild) applies. By assump-
tion we have that T � L′

2 ∨ (L′
1 ∧ (L1 until L2)) � P ′′. For brevity, we only

consider the case P ′′ = inl P ′. Thus, we conclude that T � L′
2 � P ′ (1). From

the premise of case (untild), we conclude L2\B �d (L′
2, f2) (2). By induction

hypothesis applied to (1) and (2) we conclude that B : T � L2 � f2 P ′. Via
rule rule (until -1) we conclude that B : T � L1 until L2 � [] untilprf f2 P ′. By
construction we find that f inl P ′ = [] untilprf f2 P ′ and thus we are done.

The other cases can be proven similarly.

The following result follows immediately by construction.

Lemma 3 (Correctness of Final Left-Most Proof). Let L �p P . Then
[] � L � P and P is the left-most shortest proof w.r.t. [] and L.

The composition of the individual proof transformers clearly yields a valid proof
of the original formula. We further know that the final proof is the left-most
shortest proof. The important observation is that the derivatives matching step
L\B �d (L′ f) preserves left-most shortest proofs. That is, if the proof P ′

of L′ is left-most shortest, then it follows that proof f P ′ of L is also left-most
shortest. Thus, we obtain the following result.

Theorem 1 (Left-Most Shortest Derivatives Matching Correctness).
Let T �d L � P for some trace T , LTL formula L and proof P . Then, T �
L � P and P is the left-most shortest proof w.r.t. T and L.

Computing the Shortest Left-Most Match. We are now interested in the
shortest match. There are several adjustments we need to make to the derivative-
based matching algorithm:

– (1) We must aggressively simplify formulas by using Boolean laws such as
L ∨ True = L. Thus, we favor formulas which evaluate as early as possible
to True and the resulting proofs are shorter.

144 M. Sulzmann and A. Zechner

L �s (L P → P)

(Ts) True �s (True λP.P) (Fs) False �s (False ⊥) (Bs) B �s (B λP.P)

(∨-1s) (True ∨ L) �s (True λP.inl P) (∨-2s) (L ∨ True) �s (True λP.inr P)

(∨-3s) (False ∨ L) �s (L λP.inr P) (∨-4s) (L ∨ False) �s (L λP.inl P)

(∨-5s)

L1 �= False and L1 �= True and L2 �= False and L1 �= L2

L1 �s (L′
1 f1) L2 �s (L′

2 f2)

f = λP. case P of

inl P ′ → inl (f1 P ′)
inr P ′ → inr (f2 P ′)

(L1 ∨ L2) �s ((L′
1 ∨ L′

2) f)

(∨-6s) L �s (L′ f ′) f = λP.inl (f ′ P)

(L ∨ L) �s (L′ f)

(∧-1s) (True ∧ L) �s (L λP.(True
√
, P)) (∧-2s) (L ∧True) �s (L λP.(P,True

√
))

(∧-3s) (False ∧ L) �s (False ⊥) (∧-4s) (L ∧ False) �s (False ⊥)

(∧-5s)
L1 �= True and L1 �= False and L2 �= True and L2 �= False and L1 �= L2

L1 �s (L′
1 f1) L2 �s (L′

2 f2)

(L1 ∧ L2) �s ((L′
1 ∧ L′

2) λ(P1, P2).(f1 P1, f2 P2))

(∧-6s) L �s (L′ f ′) f = λP.(f ′ P, f ′ P)

(L ∧ L) �s (L′ f)

Fig. 5. Simplifications and Proof Transformers I

– (2) The simplifications must be applied in intermediate derivative matching
steps.

– (3) We currently built the left-most shortest final proof. Here, we need some
additional rules to guarantee that we built the shortest left-most final proof.

To motivate (1) and (2) we consider formula next a ∨ a and trace [a, a]. For
brevity, we only consider the resulting derivatives which are:

(next a ∨ a)\a = a ∨ True (a ∨ True)\a = True ∨ True

From True ∨True we obtain the final proof inl True
√
. Application of the proof

transformers connected to derivatives then leads to inl fwdnext a
√
. This is the

left-most shortest proof but clearly not the shortest left-most proof which is
inr a

√
.

To obtain the shortest proof we must apply simplifications also in interme-
diate steps. For our example, in the first derivative matching step we simplify
a∨True to True. The subsequent derivative step True\a = True then yields the

Constructive Finite Trace Analysis with Linear Temporal Logic 145

Helper: adj f L = λP.case P of (L′′)? → L?

P ′ → f P ′

(�s) L �s (L′ f ′)
f = λP. case P of

fwd� n(stop� P) → fwd� n(stop� (f ′ P))

fwd� n((L′′)?) → fwd� n(L?)

(�L) �s ((�L′) f)

(�s)
L �s (L′ f ′) f ′′ = adj f ′ L

(�L) �s ((�L′) λ� [P1, ..., Pn].�[f ′′ P1, ..., f ′′ Pn])

(untils)

L1 �s (L′
1 f1) L2 �s (L′

2 f2)

(L1 until L2) �s

(
(L′

1 until L′
2)

λ[P1, ..., Pn] untilprf P.

[f1 P1, ..., f1 Pn] untilprf ((adj f2) P2)

)

(nexts)
L �s (L′ f)

(next L) �s ((next L′) λfwdnext P.(adj f L) P)

Fig. 6. Simplifications and Proof Transformers II

final formula True which has the final proof True
√
. Application of the proof

transformers connected to the derivative matching and simplification step then
leads to inr a

√
. This is the shortest left-most proof we were looking for.

Next, we provide the details of the simplification step in terms of judgments
L �s (L P → P). Similar to the derivative matching step, each simplification
step yields a proof transformer which builds a proof of the original formula
given a proof of the simplified formula. The simplification rules are specified in
Figures 5 and 6.

Figure 5 contains the standard Boolean simplifications concerning ∨ etc. In
the LTL context, (Boolean) simplification also need to be applied ’below’ LTL
operators. For example, consider next (a ∨ True) which shall be simplified to
next True. For such simplifications, we apply the rules in Figure 6.

In rule (�s), we make use of the short-hand notation fwd� n(P):

fwd� 0(P) = P fwd� n+1(P) = fwd� (fwd� n(P))

The proof transformation function f in this rule distinguishes between the case
that a proof for L could be found, resp. the trace ended prematurely. In the
first case, we follow the chain of fwd� steps until we reach stop� P which is then
replaced by stop� (f ′ P). In case the trace ended, represented by some proof L′′?,
we use the original (non-simplified) formula L to represent the proof fwd� n(L?)
for �L.

In rule (�s), we apply the proof transformer f ′ to each of the sub-proofs.
The exception is in case of a sub-proof of the form ?. This must be the last
sub-proof. Like in case of rule (�s), we use the original (non-simplified) formula
L to represent the last sub-proof of �L. For brevity, we make use of the helper
function adj f L to either apply f or simply return L?. This helper function is
also used in rules (untils) and (nexts).

146 M. Sulzmann and A. Zechner

We always assume that simplification rules are applied aggressively by travers-
ing an LTL formula from top to bottom and from left to right. Then, the following
result follows.

Lemma 4 (Simplification Correctness and Preservation of Shortest
Left-Most). Let L �s (L′ f) and T � L′ � P ′ such that P ′ is the short-
est left-most proof w.r.t. T and L′. Then, T � L � P for some P such that
f P ′ = P and P is the shortest left-most proof w.r.t. T and L.

We yet need to address (3) from above. For example, consider formula next
(next a)∨ next b and trace [c]. The final formula is next a∨ b. The current final
proof construction algorithm in Figure 4 yields inl (next a)? but the shortest
final proof is inr a?.

Hence, we extend Figure 4 with two additional rules. We write L �ps P to
denote proof construction form formulas using the extended set of rules.

(∨-L?
p)

L1 �ps L′?
1 L2 �ps L′?

2

size(L′?
1) ≤ size(L′?

2)

(L1 ∨ L2) �ps inl L′?
1

(∨-R?
p)

L1 �ps L′?
1 L2 �ps L′?

2

size(L′?
2) < size(L′?

1)

(L1 ∨ L2) �ps inr L′?
2

The above rules apply if both branches of a ’choice’ formula are unmatched.
Otherwise, we will apply the existing rules (∨-Leftp) and (∨-Rightp). Thus,
(next a ∨ b) �ps inr a?.

Lemma 5 (Correctness of Final Shortest Proof). Let L′ �s (L f) and
L �ps P . Then [] � L � P and P is the shortest left-most proof w.r.t. [] and
L.

The definition of the shortest-left most match algorithm follows addressing the
above points (1-3).

Definition 6 (Shortest Left-Most Match Algorithm). Let L be an LTL
formula, T be a finite trace of the form [B1, ..., Bn] and P be a proof. We define
T �dslm

L � P iff

– L �s (L′ f ′), L\B1 �d (L1 f1),
L1 �s (L′

1 f ′
1), L

′
1\B2 �d (L2 f2),

...,
Ln−1 �s (L′

n−1 f ′
n−1), L

′
n−1\Bn �d (Ln fn),

for some L′, L1,L
′
1...,Ln and f ′, f1,f ′

1 ...,fn, and
– Ln �s (L′

n f ′
n), L

′
n �ps P ′ for some P ′, L′

n, f
′
n, and

– P = (f1 ◦ f ′
1 ◦ ... ◦ fn ◦ f ′

n) P
′.

Theorem 2 (Computing the Shortest Left-Most Proof). Let T �dslm

L � P for some trace T , LTL formula L and proof P . Then, we have that
T � L � P and P is the shortest left-most proof w.r.t. T and L.

The above result provides the basis for checking coverage of a set of requirements
expressed as LTL formulas.

Constructive Finite Trace Analysis with Linear Temporal Logic 147

4 Checking LTL Coverage by Inspecting Proofs

We repeat the unique first cause (UFC) coverage condition proposed in [7]: A
test suite achieves UFC coverage of a set of requirements expressed as temporal
formulas, if: (1) every basic condition in any formula has taken on all possible
outcomes at least once and (2) each basic condition has been shown to affect
the formula’s outcome as the unique first cause. A condition a is the unique first
cause (UFC) for φ along a path π if, in the first state along π in which φ is
satisfied, it is satisfied because of a.

Condition (1) essentially corresponds to the MC/DC coverage criteria. In our
formulation, we ignore this level of detail here because we only consider atomic
propositions at the Boolean propositional level.

The important point is that condition (2) can be characterized precisely in
terms of shortest left-most proofs. Roughly, conditions a in some test property
L must be covered by some shortest left-most proof P . That is, a

√
in P . To

unambiguously distinguish among several occurrences of a, e.g. as in a ∨ a, we
attach distinct labels k to conditions a, written ak. For example, a1 ∨ a2. Thus,
we can re-phrase the unique first cause coverage condition as follows.

Definition 7 (Unique First Cause Coverage Revisited Condition). A
test suite is a set {T1, ..., Tn} of traces and a set {L1, ..., Lm} of LTL test prop-
erties.

We say that a test suite satisfies the unique first cause coverage revisited
condition iff for all test properties Li and for all atomic condition ak in Li we
find some trace Tj such that Tj � Li � P for some P where P is the shortest

left-most proof and a
√
k is in P .

Based on Theorem 2 it immediately follows that the Unique First Cause Cover-
age Revisited Condition is checkable.

5 Related Work and Conclusion

There are various prior works which study finite trace matching algorithms,
e.g. see [3,5], and the design space of the semantics of finite trace LTL matching,
e.g. see [2]. To the best of our knowledge, we are the first to study construc-
tive finite trace matching. Such a matching approach has several advantages as
discussed in the introduction.

Of particular interest is the application of checking coverage of LTL test prop-
erties. Our focus here is the UFC coverage condition introduced in [7]. We can
give a precise definition of the UFC condition in terms of shortest left-most
proofs and thus we can easily check if a test suite satisfies the UFC condition.

The LTL matching and coverage approach as described has been fully imple-
mented and is in actual use in some mission-critical embedded system applica-
tions. We check coverage of LTL properties w.r.t. manually written test cases. As
our implementation language we use Haskell which fits very well the rewriting
nature of our matching algorithms. We incorporate several optimizations such

148 M. Sulzmann and A. Zechner

as hash consing for efficient comparison etc. Haskell’s lazy evaluation strategy is
of advantage in case of larger formulas with short proofs. Thanks to laziness we
only need to evaluate the necessary parts. Due to space constraints, we postpone
a more detailed description of our implementation and experiences from several
industrial case studies to some future work.

Another interesting topic is the issue of providing sensible explanation whys
a trace does not match the formula. Currently, we simply return the first failure
position in the trace and the formula. We believe that often there can be better,
e.g. shortest, explanations. This is something we will pursue in future work.

Acknowledgements. We thank the reviewers for their comments.

References

1. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
2. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.:

Reasoning with Temporal Logic on Truncated Paths. In: Hunt Jr., W.A., Somenzi,
F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003)

3. Jard, C., Jéron, T.: On-line model checking for finite linear temporal logic spec-
ifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 189–196. Springer,
Heidelberg (1990)

4. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, pp. 46–57. IEEE (1977)

5. Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification. Auto-
mated Software Engg. 12, 151–197 (2005)

6. RTCA/DO-178B. Software considerations in airborne systems and equipment cer-
tification (1992)

7. Whalen, M.W., Rajan, A., Heimdahl, M.P.E., Miller, S.P.: Coverage metrics for
requirements-based testing. In: Proceedings of the 2006 International Symposium
on Software Testing and Analysis, ISSTA 2006, pp. 25–36. ACM, New York (2006)

	Constructive Finite Trace Analysis with Linear Temporal Logic
	Introduction
	Constructive Finite Trace LTL Matching
	Deterministic Matching with Derivatives
	Checking LTL Coverage by Inspecting Proofs
	Related Work and Conclusion
	References

