

Lecture Notes in Computer Science 7305
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Achim D. Brucker Jacques Julliand (Eds.)

Tests and Proofs

6th International Conference, TAP 2012
Prague, Czech Republic, May 31 – June 1, 2012
Proceedings

13

Volume Editors

Achim D. Brucker
SAP Research
Vincenz-Priessnitz-Straße 1
76131 Karlsruhe, Germany
E-mail: achim.brucker@sap.com

Jacques Julliand
LIFC UFR ST
16 route de Gray
25030 Besançon Cedex, France
E-mail: jacques.julliand@univ-fcomte.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-30472-9 e-ISBN 978-3-642-30473-6
DOI 10.1007/978-3-642-30473-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012937676

CR Subject Classification (1998): D.2.4, D.2, D.1, D.3, F.3, F.4.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 6th International Conference on
Tests and Proofs (TAP 2012) held from May 31 to June 1, 2012, in Prague,
Czech Republic, as part of the TOOLS Federated Conferences.

TAP 2012 was the sixth event in a series of conferences devoted to the con-
vergence of tests and proofs for developing novel techniques and applications
that support engineers in building secure, safe, and reliable systems. While for
several decades the proof and test communities were quite distant from each
other, there is a recent trend—both in academia and industry—to combine both
approaches. This cross-fertilization results, on the one hand, in new insights into
the fundamentals of tests and proofs and, on the other hand, to the development
of novel techniques that increase the quality of large-scale systems.

The first TAP conference (held at ETH Zurich in February 2007) was an
effort to provide a forum for the cross-fertilization of ideas and approaches from
the testing and proving communities. For the 2008 edition we found the Monash
University Prato Centre near Florence to be an ideal place providing a stimu-
lating environment. The third TAP was again held at ETH Zurich in July 2009.
Since 2010, TAP has been co-located with TOOLS, and its instance for 2010
therefore took place at the School of Informatics (E.T.S. de Ingenieria Infor-
matica) of the University of Malaga, while TOOLS 2011 took place once more
at ETH Zurich. In 2012, TAP was part of TOOLS again, this time held at the
Czech Technical University in Prague.

We wish to sincerely thank all authors who submitted their work for con-
sideration. We received 29 submissions from which we finally accepted 13, after
a formal refereeing process requiring at least three reviews from the Program
Committee or by a reviewer appointed by the Program Committee. The various
selected papers are contributions essentially in the following four themes of re-
search: model-based testing, scenario based-testing, complex data structure gen-
eration, and the validation of protocols and libraries. Moreover, we were grateful
to host a tutorial on the static analysis platform Frama-C and the concolic test
generator Pathcrawler as well as their combination.

We would like to thank the Program Committee members as well as the
additional reviewers for their energy and their professional work in the review
and selection process. Their names are listed on the following pages. The lively
discussions during the paper selection were vital and constructive. We are also
very proud that TAP 2012 featured two keynotes by Andreas Kuehlman (Cover-
ity, Inc.) and Corina Pasareanu (NASA). Both are well-accepted experts in the
fundamentals and applications of testing and proving techniques. Our thanks go
to both of them.

VI Preface

It was a team effort that made the conference so successful. We are grateful to
the TAP Conference Chairs Yuri Gurevich and Betrand Meyer for their support.
Moreover, we particularly thank the organizers of the Tools Federated Confer-
ences, Pavel Tvrdik, Michal Valenta, Jindra Vojikova, and Jan Chrastina, from
Czech Technical University in Prague, for their hard work and their support in
making the conference a success.

March 2012 Achim D. Brucker
Jacques Julliand

Organization

Conference Chairs

Yuri Gurevich Microsoft Research, USA
Betrand Meyer ETH Zurich, Switzerland

Program Chairs

Achim D. Brucker SAP Research, Germany
Jacques Julliand Université de Franche-Comté, France

Program Committee

Nazareno Aguirre King’s College, London, UK
Bernhard K. Aichernig TU Graz, Austria
Paul Ammann George Mason University, USA
Dirk Beyer University of Passau, Germany
Nikolaj Bjorner Microsoft Research, USA
Achim D. Brucker SAP Research, Germany
Robert Clarisó University of Catalonia, Spain
Marco Comini Università di Udine, Italy
Catherine Dubois ENSIIE-CEDRIC, France
Gordon Fraser Saarland University, Germany
Angelo Gargantini Università di Bergamo, Italy
Alain Giorgetti Université de Franche-Comté, France
Patrice Godefroid Microsoft Research, USA
Martin Gogolla University of Bremen, Germany
Arnaud Gotlieb INRIA, France
Reiner Hähnle Technische Universität Darmstadt, Germany
Bart Jacobs Université de Louvain, Belgium
Jacques Julliand Université de Franche-Comté, France
Thierry Jéron INRIA, France
Gregory Kapfhammer Allegheny College, USA
Nikolai Kosmatov CEA Saclay, France
Victor Kuliamin Russain Academy of Sciences, Russia
Karl Meinke University of Stockholm, Sweden
Jeff Offutt George Mason University, USA
Holger Schlingloff Fraunhofer FIRST and Humboldt University,

Germany

VIII Organization

T.H. Tse University of Hong Kong, SAR China
Margus Veanes Microsoft Research, USA
Luca Viganò University of Verona, Italy
Burkhart Wolff Université Paris-Sud, France
Fatiha Zaidi Université Paris-Sud, France

Additional Reviewers

Shaukat Ali
Andra Baruzzo
Razieh Behjati
Chiara Braghin
Jens Brüning
Ming Chai
Ramona Enache
Martin Hentschel
Karthick Jayaraman

Elisabeth Joebstl
Mirco Kuhlmann
Ivan Lanese
Stefan Loewe
Olivier Ponsini
Daniel Riera
Mathias Soeken
Philipp Wendler

Table of Contents

Invited Talks

The Technology and Psychology of Testing Your Code as You
Develop It . 1

Andreas Kuehlmann

Combining Model Checking and Symbolic Execution for Software
Testing . 2

Corina S. Păsăreanu

Research Papers

From Model-Checking to Automated Testing of Security Protocols:
Bridging the Gap . 3

Alessandro Armando, Giancarlo Pellegrino, Roberto Carbone,
Alessio Merlo, and Davide Balzarotti

Using Coverage Criteria on RepOK to Reduce Bounded-Exhaustive
Test Suites . 19

Valeria Bengolea, Nazareno Aguirre, Darko Marinov, and
Marcelo F. Frias

A First Step in the Design of a Formally Verified Constraint-Based
Testing Tool: FocalTest . 35

Matthieu Carlier, Catherine Dubois, and Arnaud Gotlieb

Testing Library Specifications by Verifying Conformance Tests 51
Joseph R. Kiniry, Daniel M. Zimmerman, and Ralph Hyland

Incremental Model-Based Testing of Delta-Oriented Software Product
Lines . 67

Malte Lochau, Ina Schaefer, Jochen Kamischke, and Sascha Lity

Conformance Relations for Labeled Event Structures 83
Hernán Ponce de León, Stefan Haar, and Delphine Longuet

Test Generation from Recursive Tiles Systems . 99
Sébastien Chédor, Thierry Jéron, and Christophe Morvan

Generation of Test Data Structures Using Constraint Logic
Programming . 115

Valerio Senni and Fabio Fioravanti

X Table of Contents

Constructive Finite Trace Analysis with Linear Temporal Logic 132
Martin Sulzmann and Axel Zechner

Short Papers

Towards Scenario-Based Testing of UML Diagrams 149
Petra Brosch, Uwe Egly, Sebastian Gabmeyer, Gerti Kappel,
Martina Seidl, Hans Tompits, Magdalena Widl, and
Manuel Wimmer

Evaluating and Debugging OCL Expressions in UML Models 156
Jens Brüning, Martin Gogolla, Lars Hamann, and Mirco Kuhlmann

A Framework for the Specification of Random SAT and QSAT
Formulas . 163

Nadia Creignou, Uwe Egly, and Martina Seidl

A Lesson on Structural Testing with PathCrawler-online.com 169
Nikolai Kosmatov, Nicky Williams, Bernard Botella,
Muriel Roger, and Omar Chebaro

Tutorials

Tutorial on Automated Structural Testing with PathCrawler
(Extended Abstract) . 176

Nikolai Kosmatov and Nicky Williams

Author Index . 177

The Technology and Psychology

of Testing Your Code as You Develop It

Andreas Kuehlmann

Senior Vice President of R&D
Coverity, San Francisco, CA
akuehlmann@coverity.com

Abstract. Much of the contemporary research in the area of software
testing and verification has solely focused on advances in technology and
has to a large degree ignored the fact that success in software develop-
ment has as much to do with technology, as it has with psychology. For
development tools to be successful in practice, they must not “get in the
way of developers,” play to their unique psyche, and demonstrate a mea-
surable return of the investment, i.e., time and effort spent. Similarly,
their application must fit smoothly into the existing workflow and avoid
“off-cycle” processes. In this talk, we will discuss a number of technolog-
ical and psychological challenges of software testing during development
and argue that supporting tools must align advanced technologies with
sociological and organizational aspects in order to be successful. The
talk will be based on our experience in the development and deployment
of static analysis technology and utilize various practical examples to
demonstrate the discussed concepts.

A.D. Brucker and J. Julliand (Eds.): TAP 2012, LNCS 7305, p. 1, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Combining Model Checking

and Symbolic Execution for Software Testing

Corina S. Păsăreanu

Carnegie Mellon Silicon Valley, NASA Ames,
M/S 269-2, Moffett Field CA 94035
corina.s.pasareanu@nasa.gov

Abstract. Techniques for checking complex software range from model
checking and static analysis to testing. Over the years, we have developed
a tool, Symbolic PathFinder (SPF), that aims to leverage the power of
systematic analysis techniques, such as model checking and symbolic ex-
ecution, for thorough testing of complex software. Symbolic PathFinder
analyzes Java programs by systematically exploring a symbolic repre-
sentation of the programs’ behaviors and it generates test cases that are
guaranteed to cover the explored paths. The tool also analyzes different
thread inter-leavings and it checks properties of the code during test gen-
eration. Furthermore, SPF uses off-the-shelf decision procedures to solve
mixed integer-real constraints and uses “lazy initialization” to handle
complex input data structures. Recently, SPF has been extended with
“mixed concrete-symbolic” constraint solving capabilities, to handle ex-
ternal library calls and to address decision procedures’ incompleteness.
The tool is part of the Java PathFinder open-source tool-set and has
been applied in many projects at NASA, in industry and in academia.
We review the tool and its applications and we discuss how it compares
with related, “dynamic” symbolic execution approaches.

A.D. Brucker and J. Julliand (Eds.): TAP 2012, LNCS 7305, p. 2, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

From Model-Checking to Automated Testing
of Security Protocols: Bridging the Gap�

Alessandro Armando1,2, Giancarlo Pellegrino3,4, Roberto Carbone2,
Alessio Merlo1,5, and Davide Balzarotti3

1 DIST, Università degli Studi di Genova, Italy
{armando,alessio.merlo}@dist.unige.it

2 Security & Trust Unit, FBK-irst, Trento, Italy
{armando,carbone}@fbk.eu

3 Institute Eurecom, Sophia Antipolis, France
{giancarlo.pellegrino,davide.balzarotti}@eurecom.fr

4 SAP Research, Mougins, France
giancarlo.pellegrino@sap.com

5 Università Telematica E-Campus, Italy
alessio.merlo@uniecampus.it

Abstract. Model checkers have been remarkably successful in finding
flaws in security protocols. In this paper we present an approach to bind-
ing specifications of security protocols to actual implementations and
show how it can be effectively used to automatically test implementa-
tions against putative attack traces found by the model checker. By using
our approach we have been able to automatically detect and reproduce
an attack witnessing an authentication flaw in the SAML-based Single
Sign-On for Google Apps.

1 Introduction

Security protocols are communication protocols that aim at providing security
guarantees (such as authentication or confidentiality) through the application
of cryptographic primitives. Security protocols lie at the core of security-critical
applications, such as Web-based Single Sign-On solutions and on-line payment
systems. Unfortunately, security protocols are notoriously error-prone as wit-
nessed by the many protocols that have been found vulnerable to serious attacks
years after their publication and implementation. (See [13] for a survey.)

Interestingly, many attacks on security protocols can be carried out with-
out breaking cryptography. These attacks exploit weaknesses in the protocols
that are due to the complex and unexpected interleaving of different proto-
col sessions as well as to the possible interference of malicious agents. Since
these weaknesses are very difficult to spot by traditional verification techniques

� This work has partially been supported by the FP7-ICT Project SPaCIoS
(no. 257876) and by the project SIAM funded in the context of the FP7 EU “Team
2009 - Incoming” COFUND action.

A.D. Brucker and J. Julliand (Eds.): TAP 2012, LNCS 7305, pp. 3–18, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

4 A. Armando et al.

(e.g., manual inspection and testing), a variety of novel model checking tech-
niques specifically tailored to the analysis of security protocols have been put
forward [1,18,22]. This has spurred the development of a new generation of
model checkers which has proved remarkably successful in discovering (previ-
ously unknown) flaws in security protocols [4,20,28]. While in the past model
checkers have been mainly used to support the analysis of security protocols at
design time, recently their usage has been extended to support the discovery of
vulnerabilities in actual, even deployed, systems. For instance, model checking
was key to the discovery of serious vulnerabilities in the SAML-based Single
Sign-On for Google Apps [3] as well as in the PKCS#11 security tokens [11].

Test
Execution

Engine
Formal
Model

Security
Properties

SUT
Configuration

Attack Trace

Instrumentation Program
Fragments

Model Checking

SUT

Mapping

Ad
ap

te
r

Verdict

Fig. 1. Overview of the Approach

The main limitation
of the existing ap-
proaches is that re-
producing attack traces
found by a model
checker against proto-
col implementations
not only requires a
thorough understand-
ing of both the proto-
col and its implemen-
tation, but also a substantial amount of manual activity.

In this paper we tackle this difficulty by presenting an approach that supports
(i) the binding of specifications of security protocols to actual implementations
through model instrumentation, and (ii) the automatic testing of real imple-
mentations against putative attacks found by a model checker.

It is worth pointing out that most model checking techniques (and the asso-
ciated tools) for security protocol analysis work on abstract models of the pro-
tocols. These models do not specify how protocol messages should be checked
and generated, nor the way in which the internal state of the principals should
be updated. As a consequence, the attack traces returned by these tools are not
directly executable. Our paper shows that this gap can be filled in automatically.
To the best of our knowledge a solution to this problem is not available.

Our approach consists of the following steps (cf. Figure 1):

Model Checking. Given a formal model of the protocol and a description of the
expected security properties, a model checker systematically explores the state
space of the model looking for counterexamples. Any counterexample found by
the model checker is returned as an Attack Trace.

Instrumentation. The instrumentation step automatically calculates and pro-
vides the Test Execution Engine with a collection of Program Fragments, en-
coding how to verify (generate) incoming (outgoing, resp.) messages, by using
the functionalities provided by the Adapter. The association between abstract
messages and concrete ones is in the Mapping input.

From Model-Checking to Automated Testing of Security Protocols 5

Execution. The Test Execution Engine (TEE) interprets the Attack Trace and
executes the program fragments accordingly. The SUT Configuration specifies
which principals are part of the System Under Test (SUT) and which, instead,
are simulated by the TEE. The Verdict indicates whether the TEE succeeded
or not in reproducing the attack. Note that if the verdict is negative, the whole
approach can be iterated by requesting the model checker to provide another
attack trace (if any).

Our approach naturally supports both model and property-driven security
testing and in doing so it paves the way to a range of security testing tech-
niques that go beyond those implemented in state-of-the-art penetration testing
tools [9,15]. For instance, prior research has shown that a number of subtle flaws
found by model checkers can be exploited in real implementations as launching
pad for severe attacks [3,4,11]. Moreover, even when security protocols do not
suffer from design flaw, their implementations can still expose vulnerabilities.
In these cases mutants can be derived from the original model [12,14] and our
approach can be used to check their existence into the implementation.

In order to assess the effectiveness of the proposed approach we developed
a prototype of the architecture in Figure 1 and used it to test two Web-based
Single Sign-On (SSO) solutions that are available on-line, namely the SAML-
based SSO for Google Apps and the SimpleSAMLphp SSO service offered by
Foodle. The prototype is able to successfully execute an attack on the Google
service whereby a client gets access to her own Gmail account without having
previously requested it [4]. Quite interestingly, our prototype also shows that the
same attack does not succeed against the SSO service of Foodle, due to specific
implementation mechanisms used by SimpleSAMLphp.

2 SAML Web-Browser SSO

Browser-based Single Sign-On (SSO) is replacing conventional solutions based
on multiple, domain-specific credentials by offering an improved user experience:
clients perform a single log in operation to an identity provider, and are yet able
to access resources offered by a variety of service providers. Moreover, by replac-
ing multiple credentials (one per service provider) with a single one (associated
with the identity provider), SSO solutions are expected to improve the overall
security as users tend to use weak passwords and/or to reuse the same password
on different service providers.

The OASIS Security Assertion Markup Language (SAML) 2.0 Web Browser
SSO Profile (SAML SSO, for short) [23] is an emerging standard for Web-based
SSO. Three basic roles take part in the protocol: a client C, an identity provider
IdP and a service provider SP. The objective of C, typically a web browser
guided by a user, is to get access to a service or a resource provided by SP. IdP
is responsible to authenticate C and to issue the corresponding authentication
assertions (a special type of assertion used to authenticate users). The SSO
protocol terminates when SP consumes the assertions generated by IdP to grant
or deny C access to the requested resource.

6 A. Armando et al.

SAML Authentication Protocol

C IdP SP

S1. GET URI

A1. HTTP302 IdP?SAMLRequest=AuthnReq(IS, DS, IIreq , ACS, IDreq)&RelayState=URI

A2. GET IdP?SAMLRequest=AuthnReq(IS, DS, IIreq , ACS, IDreq)&RelayState=URI

IdP builds an authentication assertion
AuthnAssert(IDAA, IS, IIAA, SJ, RC,
IDreq, SID, NA, NB)A3. HTTP200 Form(. . .)

A4. POST ACS, RelayState=URI&SAMLResponse=Response(IDresp, IDreq, DS, IIresp,AuthnAssert(. . .))

S2. HTTP200 Resource(URI)

Fig. 2. SAML Web-browser SSO SP-Initiated

Figure 2 shows an
excerpt of the mes-
sages exchanged
during a typical exe-
cution of the SAML
SSO protocol. In the
first message (S1), C
asks SP to provide
the resource located
at URI. SP then ini-
tiates the protocol by sending C a redirect response (A1) of the form:

HTTP/1.1 302 Obj Moved\r\n
Location : IdP ?SAMLRequest=AuthnReq(IS, DS, IIreq , ACS, IDreq)&RelayState=URI

where AuthnReq(IS, DS, IIreq, ACS, IDreq) abbreviates the XML expression:

<AuthnRequest ID="IDreq" Version ="2.0" IssueInstant="IIreq "
Destination="DS" AssertionConsumerServiceURL="ACS"
ProtocolBinding="HTTP -POST">
<Issuer>IS</Issuer >

</AuthnRequest >

Here IDreq is a string uniquely identifying the request, IS is the issuer of the re-
quest, DS is the intended destination of this request, IIreq is a timestamp, and
ACS (Assertion Consumer Service) is the end-point of the SP. A common im-
plementation choice is to use the RelayState field to carry the original URI that
the client has requested. In step A2, C forwards the authentication request to IdP,
which in turn challenges C to provide valid credentials. Note that in Figure 2 the
authentication phase is abstractly represented by the dashed arrow as it is not in
the scope of the SAML SSO standard. If the authentication succeeds, IdP builds
the assertionAuthnAssert(IDAA, IS, IIAA, SJ, RC, IDreq, SID, NA, NB), where
IDAA is a string uniquely identifying the assertion, IS is the issuer, IIAA is a
timestamp, SJ is the user C, RC is the intended consumer of the assertion, IDreq

is a string uniquely identifying the request, SID is the session index, and NA and
NB are NotOnOrAfterand NotBefore timestamps establishing the validity of the
authentication assertion. The assertion is then included inside a SAML authen-
tication response Response(IDresp, IDreq, DS, IIresp,AuthnAssert(. . .)), where
IDresp is the ID of the response, IDreq the ID of the request, DS the destination,
and IIresp is the timestamp of the operation. Then, the response is properly en-
coded, placed in an HTML form equipped with a self-submitting client-side script,
and returned in an HTTP 200 response to the client (step A3). Finally, C trans-
mits back the response to SP (step A4), SP checks its validity of the assertion and
if these checks are successful then sends the resource to C (step S2).

3 Model Checking

We specified SAML SSO using ASLan [7], one of the specification languages
developed in the context of the AVANTSSAR Project (www.avantssar.eu). For

www.avantssar.eu

From Model-Checking to Automated Testing of Security Protocols 7

Table 1. Facts and their informal meaning

Fact Meaning
stater(j, a, [e1, . . . , ep]) a, playing role r, is ready to execute the protocol step j, and

[e1, . . . , ep], for p ≥ 0 is a list of expressions representing the
internal state of a.

sent(rs, b, a, m, c) rs sent message m on channel c to a pretending to be b.
ik(m) The intruder knows message m.

the sake of brevity in this paper we present a simplified version of ASLan, fea-
turing only the aspects of the language that are relevant for this work. ASLan
supports the specification of model checking problems of the form M |= φ, where
M is a labeled transition system modeling the behaviors of the honest principals
and of the Dolev-Yao intruder (DY)1 and their initial state I, and φ is a Linear
Temporal Logic (LTL) formula stating the expected security properties. (See [3]
for the details). The states of M are sets of ground (i.e. variable-free) facts, i.e.
atomic formulae of the form given in Table 1. Transitions are represented by

rewrite rules of the form (L
rn(v1,...,vn)−−−−−−−−→ R), where L and R are finite sets of

facts, rn is a rule name, i.e. a function symbol uniquely associated with the rule,
and v1, . . . , vn are the variables occurring in L. It is required that the variables
occurring in R also occur in L. The rules for honest agents and the intruder are
specified in Sections 3.1 and 3.2. Here and in the sequel we use typewriter font
to denote states and rewrite rules with the additional convention that variables
are capitalized (e.g. Client, URI), while constants and function symbols begin
with a lower-case letter (e.g. client, hReq).

Messages are represented as follows. HTTP requests are represented by expres-
sions hReq(mtd , addr , qs , body), where mtd is either the constant get or post,
addr and qs are expressions representing the address and the query string in
the URI respectively, and body is the HTTP body. Similarly, HTTP responses
are expressions of the form hRsp(code, loc, qs , body), where the code is either the
constant c30x or c200, loc and qs are (in case of redirection) the location and the
query string of the location header respectively, and body is the HTTP body. In
case of empty parameters, the constant nil is used. For instance, the message A1
in Figure 2 is hRsp(c30x, IdP, hBind(aReq(SP, IdP, id(N)), URI), nil) obtained by
composing hRsp, hBind and aReq. id(N) is the unique ID of the request, hBind
binds the SAMLRequest aReq and the RelayState URI to the location header. All
the other HTTP fields are abstracted away because they are either not relevant
for the analysis or not used by SAML SSO protocol.

3.1 Specification of the Rules of the Honest Agents

The behavior of honest principals is specified by the following rule:

1 A Dolev-Yao intruder has complete control over the network and can generate new
messages both from its initial knowledge and the messages exchanged over the net-
work.

8 A. Armando et al.

sent(brs, bi, a, mi, ci) � stater (j, a, [e1, . . . , ep])
sendj,k

r (a,...)−−−−−−−−→
sent(a, a, bo, mo, co) � stater (l, a, [e′1, . . . , e

′
q]) (1)

for all honest principals a and suitable terms brs, bi, bo, ci, co, e1, . . . , ep, e′1, . . . , e
′
q,

mi, mo, and p, q, k ∈ N. Rule (1) states that if principal a playing role r is at step
j of the protocol and a message mi has been sent to a on channel ci (supposedly)
by bi, then she can send message mo to bo on channel co and change her internal
state accordingly (preparing for step l). The parameter k is used to distinguish
rules associated to the same principal, and role. Notice that, in the initial and
final rules of the protocol, the fact sent(. . .) is omitted in the left and right hand
sides of the rule (1), respectively. For instance, the reception of the message A1
in Figure 2 by the client and the sending of the message A2 are modeled by the
following rewrite rule:

sent (SP1, SP, C, hRsp(c30x, IdP, AReq, nil), CSP2C) �
statec(2, C, [SP, IdP, URI, CC2SP, CSP2C, CC2SP2 , CSP2C2 , CC2IdP, CIdP2C])

send2,1
c (C,IdP,SP,SP1,URI,AReq,CC2SP,CSP2C,CC2SP2 ,CSP2C2 ,CC2IdP,CIdP2C)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

statec(4, C, [SP, IdP, URI, AReq, CC2SP, CSP2C, CC2SP2 , CSP2C2 , CC2IdP, CIdP2C]) �
sent (C, C, IdP, hReq(get, IdP, AReq, nil), CC2IdP) (2)

3.2 Specification of the Rules of the Intruder

The abilities of the DY intruder of intercepting and overhearing messages are
modeled by the following rules:

sent(A, A, B, M, C)
intercept(A,B,M,C)−−−−−−−−−−−→ ik(M) (3)

sent(A, A, B, M, C)
overhear(A,B,M,C)−−−−−−−−−−→ ik(M) �LHS

where LHS is the set of facts occurring in the left hand side of the rule.
We model the inferential capabilities of the intruder restricting our attention

to those intruder knowledge derivations in which all the decomposition rules are
applied before all the composition rules [21]. The decomposition capabilities of
the intruder are modeled by the following rules:

ik({M}k) � ik(k−1)
decrypt(M,...)−−−−−−−−→ ik(M) �LHS (4)

ik({M}s
K) � ik(K) sdecrypt(K,M)−−−−−−−−→ ik(M) �LHS (5)

ik(f(M1, . . . , Mn))
decomposef (M1,...,Mn)−−−−−−−−−−−−−→ ik(M1) � . . . � ik(Mn) �LHS (6)

where {m}k (or equivalently enc(k, m)) is the result of encrypting message m
with key k and k−1 is the inverse key of k, {m}s

k (or senc(k, m)) is the symmetric
encryption, and f is a function symbol of arity n > 0.

From Model-Checking to Automated Testing of Security Protocols 9

For the composition rules we consider an optimisation [18] based on the obser-
vation that most of the messages generated by a DY intruder are rejected by the
receiver as non-expected or ill-formed. Thus we restrict these rules so that the
intruder sends only messages matching the patterns expected by the receiver [6].
For each protocol rule (1) in Section 3.1 and for each possible least set of mes-
sages {m1,l , . . . , mjl ,l} (let m be the number of such sets, then l = 1, . . . ,m and
jl > 0) from which the DY intruder would be able to build a message m′ that
unifies mi, we add a new rule of the form

ik(m1,l) � . . . � ik(mjl,l) � stater (j, a, [e1, . . . , ep])
impersonatej,k,l

r (...)−−−−−−−−−−−−→
sent(i, bi, a, m′, ci) � ik(m′) �LHS (7)

This rule states that if agent a is waiting for a message mi from bi and the
intruder is able to compose a message m′ unifying mi, then the intruder can
impersonate bi and send m′.

3.3 Specifying the Authentication Property

The language of LTL we consider uses facts as atomic propositions, the proposi-
tional connectives (namely, ¬, ∨, ∧, ⇒), the first-order quantifiers ∀ and ∃, and
the temporal operators F (eventually), G (globally), and O (once). Informally,
given a formula φ, Fφ (Oφ) holds if at some time in the future (past, resp.) φ
holds. Gφ holds if φ always holds on the entire subsequent path. (See [3] for more
details about LTL.) We use ∀(φ) and ∃(φ) as abbreviations of ∀X1. . . .∀Xn.φ
and ∃X1. . . .∃Xn.φ respectively, where X1, . . . , Xn are the free variables of the
formula φ. We base our definition of authentication on Lowe’s notion of non-
injective agreement [19]. Thus, SP authenticates C on URI amounts to saying
that whenever SP completes a run of the protocol apparently with C, then (i) C
has previously been running the protocol apparently with SP, and (ii) the two
agents agree on the value of URI. This property can be specified by the following
LTL formula:

G∀(statesp(7, SP, [C, . . . , URI, . . .])⇒∃O statec(2, C, [SP, . . . , URI, . . .])) (8)

stating that, if SP reaches the last step 7 believing to talk with C, who requested
URI, then sometime in the past C must have been in the state 2, in which he
requested URI to SP.

Since we aim at testing implementations using attack traces as test cases with
the purpose of detecting a violation of the authentication property, we would like
to be sure that at the end of the execution of the attack trace, the property has
been really violated. Thus, we need to take into account the testing scenario in
terms of the observability of channels and of the internal states of each principal.
This can be done by defining a set of observable facts. For instance, in case the
tester can observe the messages passing through a channel c then, for all rs,
b, a, and m, the sent(rs, b, a, m, c) facts are observable. Similarly, in case the

10 A. Armando et al.

tester can observe the internal state of an agent a, then for all r, j, e1, . . ., en

the stater(j, a, [e1, . . . , en]) facts are observable.
Once defined the set of observable facts according to the testing scenario, we

rewrite the formula using them. For instance, let us suppose that the internal
state of sp is not observable, while the channel cSP2C is observable, we rewrite
the property (8) as follows:

G∀(sent(SP, SP, C, res(URI), cSP2C)⇒∃O statec(2, C, [SP, . . . , URI, . . .])) (9)

where res(URI) represents the resource returned by SP in step 7.

c idp i sp
S1. hReq(get, uri_i, nil, nil) S1. hReq(get, uri_sp, nil, nil)

A1. hRsp(c30x, sp, hBind(aReq(sp, idp,
id), uri_sp))

A1. hRsp(c30x, sp, hBind(aReq(sp, idp,
id), uri_sp))

A2. hReq(get, idp, hBind(aReq(sp, idp, id), uri_sp))

A3. hRsp(c200, nil, nil, form(pBind(sARsp(inv(kidp), sp, idp, c, id), uri_sp)))

A4. hReq(post, sp, nil, pBind(sARsp(...), uri_sp))

S2. hRsp(c200, nil, nil, res)

Fig. 3. Authentication Flaw of the SAML 2.0 Web Browser
SSO Profile

When the model
does not satisfy the
expected security prop-
erty, a counterexam-
ple (i.e. an attack
trace) is generated
and returned by the
model checker. A vi-
olation of the authen-
tication property (9),
as discussed in [4], is
witnessed by the at-
tack depicted in Figure 3. The attack involves four principals: a client (c), an
honest IdP (idp), an honest SP (sp), and a malicious service provider (i) and
comprises the following steps: c initiates the protocol by requesting a resource
uri_i at the SP i; i, pretending to be c, requests a different resource uri_sp
at sp and sp reacts by generating an Authentication Request, which is then
returned to i; i maliciously replies to c by sending an HTTP redirect response
to idp containing aReq(sp, idp, id) and uri_sp (instead of aReq(i, idp, id_i),
and uri_i as the standard would mandate); the remaining steps proceed ac-
cording to the standard. The attack makes c consume a resource from sp, while
c originally asked for a resource from i.

4 Instrumentation

The model instrumentation is aimed at instructing the TEE on the generation
of outgoing messages and on the checking of incoming ones. Instrumenting a
model consists in calculating program fragments p associated to each rule of the
model. Program fragments are then evaluated and executed by the TEE (See
Section 5) in the order established by the Attack Trace.

Before providing further details we define how we relate expressions with ac-
tual messages. As seen in Section 3, messages in the formal model are specified
abstractly. For instance, a SAML request AuthnReq(IS, DS, IIreq , ACS, IDreq)
is modeled by the expression aReq(SP, IdP, ID) thereby abstracting IIreq. A fur-
ther abstraction step is done by modeling two fields such as IS and ACS with

From Model-Checking to Automated Testing of Security Protocols 11

only one variable SP. Let D be the set of data values the messages exchanged
and their fields. For instance, if AuthnReq(is, ds, ii, acs, id) is an element in D,
then also id, ds, ii, acs, and id are in D. Let E be the set of expressions used to
denote data values in D. An abstraction mapping α maps D into E.

Let D⊥ be an abbreviation for D ∪ {⊥} with ⊥ �∈ D. Let f be a user defined
function symbol of arity n ≥ 0. Henceforth we consider constants as functions
of arity n = 0. We associate f to a constructor function and a family of selector
functions:

Constructor: f : Dn → D such that α(f (d1, . . . , dn)) = f(α(d1), . . . , α(dn))
for all d1, . . . , dn ∈ D;

Selectors: πi
f : D → D⊥ such that πi

f (d) = di if d = f(d1, . . . , dn) and πi
f (d) =

⊥ otherwise, for i = 1, . . . , n.

with the following exceptions. With K ⊆ D we denote the set of cryptographic
keys. If k ∈ K, then inv (k) is the inverse key of k. If f = enc (asymmetric
encryption), then

1. π1
enc is undefined and

2. π2
enc : K × D → D⊥, written as decrypt , is such that decrypt(inv (k), d′) = d

if d′ = encrypt(k, d) and decrypt(inv(k), d′) = ⊥ otherwise.

If f = senc, sdecrypt is defined similarly as above, replacing inv (k) with k.
We assume that the Adapter provides constructors and selectors as program
procedures. The association between symbols and procedures are specified in
the Mapping (See Figure 1).

In the specification of security protocols, the behavior of the principals is
represented in an abstract way, and thus the operations to check incoming mes-
sages and to generate outgoing ones are implicit. For example, in ASLan, mes-
sage checks are realized by pattern matching and fields of the received message
must match with some expressions stored in the state of the agent. Outgoing
messages are calculated without specifying which operations are performed to
compute it. Therefore, in order to interact with a system under test, we need to
make explicit these procedures. We write these procedures as well as the TEE in
a pseudolanguage composed of statements such as if-then-else, foreach, and the
like. We also assume that the pseudolanguage has a procedure eval(p) in order
to evaluate a program fragment p. Let e be a ground expression in E. We call
�e a memory location in which a data value d ∈ D is stored such that e = α(d).

A data value d could be the result of the evaluation of a program fragment p,
i.e. d = eval(p). For the sake of simplicity, in the sequel we sometimes use indif-
ferently the data value notation and the memory location containing it. We use
memory locations to refer to channels as well. Let �ci and �co be two memory lo-
cations for the channel constants ci and co, respectively. Besides the common op-
eration of reading and writing on channels as memory locations, we define two op-
erators to access them as pipes in order to send (i.e. �c >> �m) and to receive data
values (i.e. �c << �m). Also, we consider a further operation to peek the first data
value available in the pipe without removing it (i.e. �c |> �m). The use of the latter

12 A. Armando et al.

operator will be clear to the reader when we explain the Instrumentation for the
intruder’s rules.

4.1 Instrumentation of the Rules of the Honest Agents

Let us consider the following example of ASLan rule:

sent (A, A, B, f({g(A, B, m)}sK, {h(A, K)}Kb), CA2B) �

stateb(1, B, [B, Kb, inv(Kb), m, CA2B, CB2A])
send

1,1
b (B,A,Kb,K,CA2B,CB2A)−−−−−−−−−−−−−−−→

stateb(2, B, [. . . , A, K]) �sent (B, B, A, f(B, m), CB2A) (10)

This rule can be executed only if the message received on the channel �CA2B is
f(d1, d2)), where d1 can be decrypted only after having decrypted d2, containing
the data value of the decryption key K. Moreover d1 must be g(d3, d4, d5)), where
d3 is simply stored in �A, while d5 must be equal to �m, and d4 must be equal
to �B, given that the variables B belongs to the internal state of the agent. As
said, these checks are implicit in the ASLan semantics (pattern matching), as
well as the procedure necessary to construct the message �f(B,m), which is sent
on the channel �CB2A . Nevertheless, for the testing purpose, we need to explicit
these procedures. They only depend on the structure of the rule and thus can
be precomputed. A program fragment p

send
j,k
r (a,...,ci,co) encoding a rule (1) is as

follows:

�′mi
:= �mi;

�ci >> �mi;
if �′mi

is not empty and �mi != �′mi
then: return False;

eval(pmi);
�mo := eval(pmo);
�co << �mo;

where mi and mo are the incoming and outgoing message respectively. The
fragment pmi checks whether �mi is such that mi = α(�mi) and pmo computes a
message �mo such that mo = α(�mo). In the sequel, we describe how to generate
automatically pmi and pmo for a generic ASLan rule (1).

We define an association between an ASLan expression e and the fragment
p used to retrieve –accessing directly to memory locations or using selectors
operating on them– the corresponding data value denoted by e. We call p : e
an associated expression where e ∈ E and p is a program fragment –containing
selectors operating on memory locations– such that e = α(eval(p)).

With reference to the send rule (1), just after the reception of �mi , the knowl-
edge of the principal is represented by the following set of associated expressions:
Ms = {�mi : mi, �e1 : e1, . . . , �en : en}. Given Ms we need compute the associ-
ated expressions of each sub-term of mi.

Definition 1 (Closure under decomposition). Given a set Ms of associated
expressions, the closure of Ms under decomposition, in symbols ↓Ms, is the
smallest set such that:

From Model-Checking to Automated Testing of Security Protocols 13

1. Ms ⊆ ↓Ms,
2. if p1 : enc(k, e) ∈ ↓Ms and p2 : inv(k) ∈ ↓Ms, then (decrypt(p2, p1) : e) ∈

↓Ms,
3. if p1 : senc(k, e) ∈ ↓Ms and p2 : k ∈ ↓Ms, then (sdecrypt(p2, p1) : e) ∈ ↓Ms,
4. if p : f(e1, . . . , en) ∈ ↓Ms, then (πj

f (p) : ej) ∈ ↓Ms for j = 1, . . . , n.

Let us provide an example of closure. With reference to the rule (10), the set Ms
contains the associated expression for the incoming message �f(senc(...),enc(...)) :
f(senc(K, g(A, B, m)), enc(Kb, h(A, K))) and other expressions known by the
agent �B : B, �Kb : Kb, �inv(Kb) : inv(Kb), �m : m, �CA2B : CA2B , and �CB2A :
CB2A. By definition ↓Ms contains Ms and other associated expressions. For ex-
ample, we have �f(senc(...),enc(...)) : f(senc(. . .), enc(Kb, h(A, K))) ∈ Ms ⊆ ↓Ms
then π1

f (�f(senc(...),enc(Kb,h(A,K)))) : senc(. . .) and π2
f (�f(senc(...),enc(Kb,h(A,K)))) :

enc(Kb, h(A, K)) are in ↓Ms (case 4 of the definition). Given that �Kb : Kb is in
↓Ms, the case 2 is applicable, thus decrypt(�inv(Kb), π

2
f(. . .)) : h(A, K) ∈ ↓Ms as

well. The example can be easily extended to the other sub-terms of the message.
However, it already clarifies why we need the closure of the knowledge. Indeed,
the first part of the message f(. . .) is encrypted with K and it can be decrypted
only after having decrypted the second part, containing the key K. Notice that,
for the sake of simplicity, in this paper we assume atomic keys. Nevertheless the
approach described can be readily generalized to support composed keys.

After having computed all the associated expressions, we need to either check
or store the data values, according to the list of expressions representing the
internal state of the principal. With reference to the send rule (1), let kn =
{e1, . . . , en}, and Ms′ = ↓Ms − {�e1 : e1, . . . , �en : en}.
Definition 2 (Atomic checks). The set of atomic checks Pmi for a message
mi ∈ E over a knowledge kn is defined as follows:

1. for each p : e in Ms′, if either e is a constant or e is a variable, and e ∈ kn
then the following fragment is in Pmi :
if eval(p) != �e then: return false;

2. for each p1 : e, . . . , pn : e in Ms′, if e is a variable, and e �∈ kn then the
following fragment is a member of Pmi :
�e := eval(p1);
if (�e!=eval(p2) or �e!=eval(p3) or . . . or �e!=eval(pn))
then: return false;

For instance, let us consider the rule (10), the following checks are in Pf(...):

1. if eval(π3
g (sdecrypt(π

2
h (. . .), π

1
f (. . .)))) != �m then: return false;

if eval(π2
g (sdecrypt(π

2
h (. . .), π

1
f (. . .)))) != �B then: return false;

2. �A := eval(π1
h(decrypt (�inv(Kb), π

2
f (. . .))));

if (�A!=eval(π1
g (sdecrypt(π

2
h(. . .), π

1
f(. . .))))) then: return false; . . .

Program fragment pmi is a sequence of all the items in Pmi .

Definition 3 (Message generation function). We call message generation
function over a set of expressions kn a function MsgGen defined as follows:

14 A. Armando et al.

1. MsgGen(e) = �e if e ∈ kn;
2. MsgGen(f(e1, . . . , en)) = f(MsgGen(e1), . . . , MsgGen(en))

With reference to the send rule (1), the program fragment pmo is calculated by
MsgGen(mo) over kn = {e′1, . . . , e′q}.

4.2 Instrumentation of the Rules of the Intruder

Intercept and Overhear Rules. Let us consider the intercept rule (4) in
Section 3. Let M be the message. The fragment pintercept(A,B,M,C) of pseudocode
encoding the rule is as follows:

�′M := �M ;
�c >> �M ;
if �′M is not empty and �M != �′M then: return False;

where �′M contains the previous value (if any) in �M , before the reception of
the new message. The fragment of pseudocode encoding the overhear rule (4) in
Section 3 is the same as the one defined above, except from the operator |> in
place of >>.

Decomposition Rules. Let us consider the rules modeling the ability of de-
composing messages (i.e. decrypt, sdecrypt, and decompose).

The fragment of pseudocode pdecrypt(M,...) encoding the rule (4) is as follows:

�M := eval(decrypt(�inv(K), �{M}K
));

where M and K are two ASLan expressions for the message and the public key,
{M}K is the asymmetric encryption of M with K, and decrypt is the selector
function associated to enc. Similarly for psdecrypt(...) encoding the rule (5).

The fragment pdecomposef (M1,...,Mn) encoding the rule (6) is as follows:

�M1 := eval(π1
f (�f(M1,...,Mn)));

...
�Mn := eval(πn

f (�f(M1,...,Mn)));

where f(M1, . . . , Mn) is the message the intruder decomposes, and πi
f for i =

1, . . . , n are the selector functions associated to the user function symbol f .

Composition Rules. Let us consider the impersonate rule (7) in Section 3.
The fragment of pseudocode p

impersonate
j,k,l
r (...) encoding this rule is computed

by MsgGen(m′) over the knowledge kn = {m1,l, . . . , mjl,l}.

5 Test Case Execution

The Test Execution Engine (TEE) takes as input a SUT Configuration, describ-
ing which principals are part of the SUT, and an Attack Trace. The operations
performed by the TEE are as follows:

From Model-Checking to Automated Testing of Security Protocols 15

1 procedure TEE(SUT :Agent Set;[step1, . . . , stepn]:Attack Trace)
2 for i:=1 to n do:
3 if not(stepi == sendj,k

r (a, . . .) and a ∈ SUT) then:
4 if not eval(pstepi) then:
5 printf ("Test execution failed in step %s", stepi);
6 halt;

The TEE iterates over the attack trace provided as input. During each iteration
it checks whether the rule stepi must be executed (line (3)). Namely, if stepi is
either an intruder’s rule or a rule concerning an agent that is not under test, then
the program fragment pstepi is executed. If pstepi is executed without any errors
the procedure continues with the next step, otherwise (lines (5)–(6)) notifies that
an error occurred.

6 Experimental Results

In order to assess the effectiveness of the proposed approach, we have developed
a prototype of the architecture depicted in Figure 1.

We have implemented the Instrumentation, the TEE and the Adapter compo-
nents in Java. The Model Checking module is the SATMC model checker tool [2]
taken off-the-shelf from the AVANTSSAR Platform. The Instrumentation com-
ponent takes an ASLan model and the Mapping as input. It produces program
fragments in a Java class. The TEE instantiates the class and executes the attack
trace as described in Section 5. The Adapter implements the constructor and se-
lector functions defined in Section 4. For example, constructors and selectors for
the HTTP protocol are available in a Java class called adapter.Http that is built
upon the Apache HttpComponents (http://hc.apache.org/). Those for the
SAML SSO protocol in a class called adapter.Saml that is based on OpenSAML
(https://wiki.shibboleth.net/confluence/display/OpenSAML/Home). These
functions are used by program fragments as described in Section 4.

We extended the formal model of the SAML SSO we developed in previous
work [4] by modeling messages using ASLan expressions as seen in Section 3. We
provided the formal model to the model checker together with the authentication
property (9). The model checker found the attack trace depicted in Figure 3.

We have tested two Web-based SSO solutions freely available on-line, the
SAML-based SSO for Google Apps (http://code.google.com/googleapps/
domain/sso/saml_reference_implementation.html) and the SimpleSAMLphp
SSO service offered by Foodle, a surveys and polls on-line service
(https://foodl.org). We have specified two mappings, one for each solution.
For example, the mapping for testing SAML-based SSO for Google Apps contains
associations as urisp = "http://mail.google.com/a/ai-lab.it/h" and hReq =
adapter.Http where urisp, hReq are constructor functions.

We have run the prototype against the SAML-based SSO for Google Apps
by using the set {idp, sp} as SUT Configuration. The SP is the Google GMail
service while the IdP is a local identity provider service at the AI-Lab. The TEE

http://hc.apache.org/
https://wiki.shibboleth.net/confluence/display/OpenSAML/Home
http://code.google.com/googleapps/domain/sso/saml_reference_implementation.html
http://code.google.com/googleapps/domain/sso/saml_reference_implementation.html
https://foodl.org

16 A. Armando et al.

automatically executed the attack traces till the message S2 of Figure 3 and,
as expected, the message S2 contains the mailbox of the user. Therefore, the
prototype was able to automatically detect the authentication flaw.

We have used the same SUT Configuration in the experiment with Sim-
pleSAMLphp. In this case we used Foodle as SP and Feide OpenIdP iden-
tity provider (https://openidp.feide.no) as IdP. The execution of the attack
failed when message S2 was received. The analysis of exchanged messages has
revealed that SimpleSAMLphp returns an error message instead of the message
S2. We identified the cause in additional checks that reinforce the binding be-
tween authentication requests and responses. These checks are based on cookies
and, since the authentication request is never routed through c, no cookies are
installed in c. Therefore, when c presents an authentication response at sp, it
fails in restoring the local user session for c.

7 Related Work

Automated analysis of security protocols has been studied and several analysis
tools have been developed (see e.g., [1,10,24]). Also, there have been applications
of model checking to the security analysis of Web Services (e.g., [8,17,27]). These
approaches mostly focus on design time verification, and fall short in validating
whether the real systems satisfy the desired properties in later life stages. Model-
based testing has been applied to security-relevant systems in the recent past,
e.g., [25,26]. These approaches do not propose a coherent generic methodology
for security testing. Also, mappings between the abstract and concrete levels are
currently managed in an ad-hoc manner only [30].

Model-checkers have been already proposed for testing by interpreting coun-
terexamples as test cases. (See [16] for a survey). However there is no systematic
approach for execution and interpretation of counterexamples.

Security-specific mutation operators have been considered in order to introduce
implementation-level vulnerabilities into models [12,14]. These approaches focus
on detecting implementation-level vulnerabilities. They extend and complete the
one we presented. Indeed, when a model is secure with respect to a security prop-
erty, it is mutated by using a security-specific mutation operator. Moreover, it does
not only consider logical flaw but also vulnerabilities at the implementation level.

TorX is an automated model-based testing tool that aim at improving the
quality of the software in an on-the-fly manner [29]. Its architecture has a module
providing a connection with the SUT in order to send input and receiving output.
However, more generic approaches for implementing adapters are needed.

An approach for model-checking driven security testing is proposed in [5].
Although the approach is protocol independent, it is strictly focused on the
concretization of abstract messages in order to derive concrete test cases.

The automated tool Tookan [11] is based on an approach similar to the one we
described. It reverse-engineers a real PKCS#11 token to deduce its functionality,
constructs a model of its API for the SATMC model checker, and then executes
any attack trace found by the model checker directly on the token. Nevertheless,
this approach is specific for the PKCS#11 security tokens.

https://openidp.feide.no

From Model-Checking to Automated Testing of Security Protocols 17

8 Conclusions

In this paper we proposed an approach that supports the binding of specifications
of security protocols to actual implementations through model instrumentation,
and the automatic testing of real implementations against putative attacks found
by a model checker. The approach consists in model checking a formal model
looking for a counterexample (i.e. attack trace) violating a security property.
In case an attack is returned, it calculates automatically program fragments
encoding how to verify and generate protocol messages. The attack trace is
interpreted and the program fragments are executed accordingly.

In order to assess the effectiveness of the proposed approach we developed
a prototype and used it to test two Web-based Single Sign-On (SSO) solutions
that are available on-line, namely the SAML-based SSO for Google Apps and
the SimpleSAMLphp SSO service offered by Foodle. The prototype is able to
successfully execute an attack on the Google service. The prototype also shows
that the same attack does not succeed against the SSO service of Foodle, due to
specific implementation mechanisms used by SimpleSAMLphp.

Application of our techniques on other protocols (e.g. OpenID, OAuth) is
under way and confirms the viability of the approach.

References

1. Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, J.,
Drielsma, P.H., Heám, P.C., Kouchnarenko, O., Mantovani, J., Mödersheim, S., von
Oheimb, D., Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., Vigneron, L.:
The AVISPA Tool for the Automated Validation of Internet Security Protocols and
Applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 281–285. Springer, Heidelberg (2005)

2. Armando, A., Carbone, R., Compagna, L.: LTL Model Checking for Security Pro-
tocols. Journal of Applied Non-Classical Logics (2009)

3. Armando, A., Carbone, R., Compagna, L., Cuellar, J., Abad, L.T.: Formal Analysis
of SAML 2.0 Web Browser Single Sign-On: Breaking the SAML-based Single Sign-
On for Google Apps. In: Proc. of ACM FMSE 2008 (2008)

4. Armando, A., Carbone, R., Compagna, L., Cuellar, J., Pellegrino, G., Sorniotti, A.:
From Multiple Credentials to Browser-Based Single Sign-On: Are We More Secure?
In: Camenisch, J., Fischer-Hübner, S., Murayama, Y., Portmann, A., Rieder, C.
(eds.) SEC 2011. IFIP AICT, vol. 354, pp. 68–79. Springer, Heidelberg (2011)

5. Armando, A., Carbone, R., Compagna, L., Li, K., Pellegrino, G.: Model-checking
driven security testing of web-based applications. In: Proc. of ICSTW 2010 (2010)

6. Armando, A., Compagna, L.: Automatic SAT-Compilation of Protocol Insecurity
Problems via Reduction to Planning. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE
2002. LNCS, vol. 2529, pp. 210–225. Springer, Heidelberg (2002)

7. AVANTSSAR. Deliverable 2.1: Requirements for modelling and ASLan v.1 (2008),
http://www.avantssar.eu

8. Backes, M., Mödersheim, S., Pfitzmann, B., Viganò, L.: Symbolic and Crypto-
graphic Analysis of the Secure WS-ReliableMessaging Scenario. In: Aceto, L., In-
gólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 428–445. Springer,
Heidelberg (2006)

http://www.avantssar.eu

18 A. Armando et al.

9. Bau, J., Bursztein, E., Gupta, D., Mitchell, J.: State of the art: Automated black-
box web application vulnerability testing. In: 2010 IEEE Symposium on Security
and Privacy, SP (2010)

10. Blanchet, B.: Automatic verification of cryptographic protocols: A logic program-
ming approach. In: Proc. of PPDP 2003 (2003) (invited talk)

11. Bortolozzo, M., Centenaro, M., Focardi, R., Steel, G.: Attacking and fixing
PKCS#11 security tokens. In: ACM Conf. on CSS

12. Büchler, M., Oudinet, J., Pretschner, A.: Security Mutants for Property-Based
Testing. In: Gogolla, M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp. 69–77.
Springer, Heidelberg (2011)

13. Clark, J., Jacob, J.: A Survey of Authentication Protocol Literature: Version 1.0
(November 17, 1997), www.cs.york.ac.uk/~jac/papers/drareview.ps.gz

14. Dadeau, F., Héandam, P.-C., Kheddam, R.: Mutation-based test generation from
security protocols in HLPSL. In: ICST 2011 (2011)

15. Doupé, A., Cova, M., Vigna, G.: Why Johnny Can’t Pentest: An Analysis of Black-
Box Web Vulnerability Scanners. In: Kreibich, C., Jahnke, M. (eds.) DIMVA 2010.
LNCS, vol. 6201, pp. 111–131. Springer, Heidelberg (2010)

16. Fraser, G., Wotawa, F., Ammann, P.: Testing with model checkers: a survey. Softw.
Test., Verif. Reliab. 19 (2009)

17. Hondo, M., Nagaratnam, N., Nadalin, A.: Securing web services. IBM Systems
Journal 41(2), 228–241 (2002)

18. Jacquemard, F., Rusinowitch, M., Vigneron, L.: Compiling and Verifying Secu-
rity Protocols. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS (LNAI),
vol. 1955, pp. 131–160. Springer, Heidelberg (2000)

19. Lowe, G.: A hierarchy of authentication specifications. In: Proc. of the 10th IEEE
CSFW 1997 (1997)

20. Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using
FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 167–
181. Springer, Heidelberg (1996)

21. Marrero, W., Clarke, E.M., Jha, S.: Model checking for security protocols. tech.
report cmu-scs-97-139. Technical report, CMU (May 1997)

22. Millen, J.K., Shmatikov, V.: Constraint solving for bounded-process cryptographic
protocol analysis. In: Proc. of ACM CCS 2001 (2001)

23. OASIS. SAML V2.0 (2005), http://docs.oasis-open.org/security/saml/v2.0/
24. Ryan, P., Schneider, S., Goldsmith, M., Lowe, G., Roscoe, B.: Modelling and Anal-

ysis of Security Protocols. Addison Wesley (2000)
25. Salas, P.A.P., Krishnan, P., Ross, K.J.: Model-based security vulnerability testing.

In: Australian Software Engineering Conf., pp. 284–296 (2007)
26. Salas, P.A.P., Krishnan, P.: Testing privacy policies using models. In: Proc. of

SEFM 2008 (2008)
27. Salaün, G., Bordeaux, L., Schaerf, M.: Describing and reasoning on web services

using process algebra. In: Proc. of ICWS 2004 (2004)
28. Shmatikov, V., Mitchell, J.C.: Finite-state analysis of two contract signing proto-

cols. Theoretical Computer Science 283(2), 419–450 (2002)
29. Tretmans, G.J., Brinksma, H.: Torx: Automated model-based testing. In: First

European Conf. on Model-Driven Software Engineering
30. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing. Tech-

nical report, University of Waikato, New Zealand

www.cs.york.ac.uk/~jac/papers/drareview.ps.gz
http://docs.oasis-open.org/security/saml/v2.0/

Using Coverage Criteria on RepOK

to Reduce Bounded-Exhaustive Test Suites

Valeria Bengolea1,4, Nazareno Aguirre1,4,
Darko Marinov2, and Marcelo F. Frias3,4

1 Department of Computer Science, FCEFQyN,
Universidad Nacional de Ŕıo Cuarto, Argentina
{vbengolea,naguirre}@dc.exa.unrc.edu.ar

2 Department of Computer Science, University of Illinois at Urbana-Champaign, USA
marinov@illinois.edu

3 Department of Software Engineering,
Buenos Aires Institute of Technology, Argentina

mfrias@itba.edu.ar
4 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina

Abstract. Bounded-exhaustive exploration of test case candidates is a
commonly employed approach for test generation in some contexts. Even
when small bounds are used for test generation, executing the obtained
tests may become prohibitive, despite the time for test generation not
being prohibitive. In this paper, we propose a technique for reducing
the size of bounded-exhaustive test suites. This technique is based on
the application of coverage criteria on the representation invariant of the
structure for which the suite was produced. More precisely, the repre-
sentation invariant (which is often implemented as a repOK routine) is
executed to determine how its code is exercised by (valid) test inputs.
Different valid test inputs are deemed equivalent if they exercise the
repOK code in a similar way according to a white-box testing criterion.
These equivalences between test cases are exploited for reducing test
suites by removing from the suite those tests that are equivalent to some
test already present in the suite.

We present case studies that evaluate the effectiveness of our tech-
nique. The results show that by reducing the size of bounded-exhaustive
test suites up to two orders of magnitude, we obtain test suites whose
efficacy measured as their mutant-killing ability is comparable to that of
bounded-exhaustive test suites.

1 Introduction

Testing is the primary approach to detect bugs in software. It consists of execut-
ing a piece of software under assessment for a variety of test cases. These cases
often correspond to instantiating parameters of the software with different in-
puts. Moreover, in order to increase the chances of detecting bugs, one typically
seeks these inputs to be as many and as varying as possible [19].

A.D. Brucker and J. Julliand (Eds.): TAP 2012, LNCS 7305, pp. 19–34, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

20 V. Bengolea et al.

An essential task in testing is test-input generation. It is a difficult task be-
cause one has to come up with inputs exercising the software in many different
ways, and it has been typically done manually. In the last few years, various
approaches and tools have been developed to perform automated test-input gen-
eration. A particularly challenging task is generating test inputs for code that
manipulates complex data structures, e.g., directed graphs or AVL trees, because
these inputs need to satisfy complex constraints to be valid. In this and other
related contexts, the bounded-exhaustive exploration of possible inputs is an ap-
proach that has been quite successful [2, 7, 10, 13, 17]. This technique consists of
generating all the inputs that satisfy the constraints corresponding to the well-
formedness of the generated structures, within certain prescribed bounds. Tools
following this approach usually involve some form of constraint-solving process,
e.g., based on search, model checking, or combinations of these.

The rationale behind bounded-exhaustive testing dwells on the small-scope hy-
pothesis [8], which conjectures that (in some contexts) if a program has bugs, then
most of these bugs can be reproduced using small inputs. However, the explo-
ration of all possible structures within the given bounds is a costly task that, even
for small scopes, may produce very large test suites. Moreover, the time required
to execute the obtained test suite may be many times prohibitive. For instance,
for testing a merge routine on binomial heaps, the bounded exhaustive test-suite
bounded by 6 nodes for each binomial heap has 57,790,404 tests. Also, there are sit-
uations where larger scopes are necessary to achieve coverage and detect bugs, e.g.,
some insertion/deletion processes in balanced trees require structures of larger
sizes to force rotations or enable other rebalancing mechanisms.

In this paper we propose a technique for reducing the size of bounded-
exhaustive test suites. This technique is based on the application of coverage
criteria on the representation invariant of the structure for which the suite was
produced. More precisely, the representation invariant, i.e., the constraint in-
dicating whether a structure is well-formed or not, is employed to define an
equivalence relation between valid test inputs. The technique requires the rep-
resentation invariant to be provided as a repOK routine [11], and consists of
analysing how the code of this routine is exercised by different test inputs. Dif-
ferent valid test inputs will be considered equivalent if they exercise the repOK

code in a similar way, according to some white-box testing criterion. These equiv-
alences between test cases are exploited for filtering tests, leaving out of the suite
those tests that are equivalent to some test already present in the suite.

Essentially, our proposal involves the definition of a black-box testing criterion
with respect to the code under test, defined in terms of white-box testing crite-
ria with respect to the representation invariant for the inputs of the code under
test. Namely, our criterion specifies when two different inputs are to be consid-
ered equivalent disregarding the structure of the code under test (hence, black-
box), by considering only the structure of repOK routine (hence, white-box). We
present a particular application of this criterion to the reduction of bounded-
exhaustive test suites for imperative/executable representation invariants. How-
ever, the approach presented in this paper can also be adapted to declarative

Using Coverage Criteria on RepOK 21

representation invariants, which are becoming popular in various object-oriented
languages, e.g., invariants as specified in Eiffel or via contract languages such as
JML [3] and Code Contracts [4]; the adaptation is straightforward when these
invariants are involved in run-time contract-checking environments, where they
are made “executable” and the code corresponding to their run-time evaluation
would correspond to an imperative repOK routine.

To assess the effectiveness of the reduced test suites produced using our ap-
proach, we present some case studies comparing bounded-exhaustive suites with
suites whose size is reduced employing a variety of white-box testing criteria
on repOK, for various data structures. We find that the reduction of up to two
orders of magnitude still largely preserves the mutant-killing capability of test
suites for various operations on these data structures.

2 Preliminaries

Test Coverage Criteria. A test coverage criterion is a means for measuring how
well a test suite exercises a program under test. Coverage criteria are mainly
classified into black-box and white-box [6,19]; the former disregard the structure
of the program under test, while the latter may pay special attention to the
structure of the program under test. Black-box coverage criteria “see” the code
under test as a black box, taking into consideration only the specification of the
program. An example of a known black-box criterion is equivalence partitioning
coverage, which consists of partitioning the space of program inputs into equiv-
alence classes, defined in terms of the specification of the expected inputs for
the program under test. White-box coverage criteria analyse the program under
test, and how the tests in the test suite exercise it, in order to measure coverage.
A simple well-known white-box coverage criterion is decision coverage, which,
in order to be satisfied, requires each decision point in the program under test
(conditions in if-then-else statements, loops, etc.) to evaluate to true and false
when different tests in the suite are exercised.

Test-Input Generation for Complex Structures. In the context of test-input gen-
eration for complex structures, two approaches can be distinguished, the gener-
ative approach and the filtering approach [7]. The former works by generating
instances of the input structure by calling a generator routine, that combines
calls to constructors and insertion routines on the structure. The latter builds
candidate structures using only its structural definition, and then employs a
predicate that characterises valid structures, known as a representation or class
invariant, in order to filter out the invalid candidates. The representation invari-
ant can be defined declaratively, e.g., using some contract-specification language
such as JML [3], or operationally, i.e., via a routine that, when applied to a
candidate, returns true if and only if the candidate is a valid one. The latter are
typically called repOK routines [11]. As put forward in [11], developers should
equip their complex structures implementations with repOK routines, since these
routines will greatly help in debugging the implementations.

22 V. Bengolea et al.

Bounded-Exhaustive Testing. Bounded-exhaustive testing is a testing technique
that has proved useful in certain testing contexts, in particular, testing code that
manipulates complex data structures. Examples of such code include libraries
of data structures such as AVL trees, graphs, linked lists, etc., and programs
that manipulate source code (where source code can be viewed as data with a
complex structure) such as compilers, type checkers, refactoring engines, etc.

Bounded-exhaustive testing produces, for a given program under test and
a user-provided bound k on the size of inputs, all valid inputs whose size is
bounded by k, and then tests the program using the produced test suite. The
rationale behind the approach is that many bugs in programs manipulating
complex structures can be reproduced using small instances of the structure.
Thus, by testing the program on all possible structures bounded in size by some
relatively small scope one would be able to exhibit many bugs.

3 Reducing Bounded-Exhaustive Test Suites

In this section, we present an approach to help in reducing bounded-exhaustive
test suites. The approach assumes that we have an imperative implementation of
the representation invariant of the structure for which the bounded-exhaustive
suite was produced; thus, it fits better with filtering approaches to test generation
(for which such a representation invariant is often a requirement). The reduction
process works by defining a family of coverage criteria and employing the repOK
routine (i.e., the imperative implementation of the representation invariant) to
define an equivalence between inputs. Then, according to some reduction rate on
the bounded-exhaustive suite, test cases are discarded if they are “equivalent”
to some test cases remaining in the suite.

To describe how the technique works, let us first describe how we define cov-
erage criteria using repOK. Let C be a class, and let repOK be a parameterless
boolean imperative routine, characterising the representation invariant of C. The
representation invariant is the property that distinguishes well-formed instances
from ill-formed ones. A property expected of C is that its constructors must
establish repOK after their execution, and public methods of C must preserve it.
As an example, let us consider the following Java classes, implementing binary
trees of integers:

public class BinaryTree {

private Node root;

private int size;

...

}

public class Node {

private int key;

private Node left;

private Node right;

...

// setters and getters

// of the above fields

...

}

The representation invariant for this class should check that the linked structure
starting with root is indeed a tree, i.e., that it is acyclic and with a single parent

Using Coverage Criteria on RepOK 23

for every reachable node except the root, and that the value of size agrees with
the number of nodes in the structure. Checking that this property holds for a
binary tree object can be implemented as in the following method from class
BinaryTree (taken from the examples distributed with the Korat tool [2]):

public boolean repOK() {

if (root == null) return size == 0;

Set visited = new HashSet();

visited.add(root);

LinkedList workList = new LinkedList();

workList.add(root);

while (!workList.isEmpty()) {

Node current = (Node) workList.removeFirst();

if (current.getLeft() != null) {

if (!visited.add(current.getLeft())) return false;

workList.add(current.getLeft());

}

if (current.getRight() != null) {

if (!visited.add(current.getRight())) return false;

workList.add(current.getRight());

}

}

return (visited.size() == size);

}

Now suppose that one needs to test a routine that receives as a parameter
a binary tree, e.g., binary tree traversal routine. Notice that, as a (black-box)
criterion for testing the traversal routine, we can define a partition of all possible
binary tree structures according to the way the different structures “exercise”
the repOK routine. The motivation is basically that tests that exercise the code
of repOK in the same way can be considered as similar, and therefore can be
thought of as corresponding to the same class.

We still have to define what we mean by “exercise in a similar way”. This
can be done, in principle, by choosing any white-box coverage criterion, to be
applied to repOK. For instance, we can consider decision coverage on repOK; in
this case, two inputs to the traversing routine (the code under test) would be
considered equivalent if they make the decision points in repOK to evaluate to
the same values. Thus, for instance, of the following three trees:

1

2

null null

3

null null

1

2

null null

3

4

null null

null

1

2

null null

null

the first and the second would be considered equivalent, but none of these would
be equivalent to the third one (notice that, as opposed to these other two, pred-
icate current.getRight() != null never evaluates to true in this case).

24 V. Bengolea et al.

In general, notice that any white-box testing criterion Crit gives rise to a
partition of the input space of the program under test, with each class in the
partition usually capturing some path or branch condition expressed as a con-
straint on the inputs. Given a program under test P , a criterion Crit, and an
input c, we will denote by �c�PCrit the partition c belongs to, i.e., the set of all
inputs that exercise the code of P in the same way c does, according to Crit. Our
technique works by defining an equivalence between inputs. Let C be a repOK-
equipped class, and let Crit be a selected white-box coverage criterion. Given
two valid objects c1 and c2 of C, i.e., two objects satisfying C’s representation
invariant, we will say that c1 is equivalent to c2 (according to repOK under Crit),
if and only if �c1�

repOK
Crit = �c2�

repOK
Crit .

In the above example we picked one of the simplest white-box coverage criteria
to be applied to repOK; of course, choosing more sophisticated coverage criteria
(e.g., path coverage, condition coverage, MCDC, etc.) would yield finer grained
equivalence relations on the state space of the input data type.

Once one has decided the white-box criterion to be applied to repOK, one can
use it to reduce bounded-exhaustive suites. The approach we followed for doing
so is the following. Suppose that you have used some mechanism for generating
a bounded-exhaustive test suite, to be used for testing, with N tests in it. More-
over, you have realised that you will not have enough resources to analyse the
program under test for all these cases. Instead, you have resources to test your
system for a fraction of this suite, let us say N/10. In this case, we do as follows:

– Determine the number of possible equivalence classes of inputs (depends both
on the white-box criterion chosen on repOK and the complexity of repOK’s
code).

– Set a maximummaxq for the number of tests for every single equivalence class
q. For instance, divide the size of the test suite to be built (in the example
N/10) by the number of equivalence classes, and set this as a maximum.

– Process the bounded-exhaustive test suite, leaving at most maxq tests for
each equivalence class q of inputs.

As we mentioned, the result of applying the above process strongly depends on
the selected white-box criterion. Moreover, this process strongly depends on the
structure of the repOK routine too. For instance, an if-then-else with a com-
posite condition could alternatively be written as nested if-then-else statements
with atomic conditions; such structurally different but behaviourally equivalent
programs may have very different equivalence classes, for the same white-box
criterion, and therefore our approach may result in different reduced suites.

4 On the Effectiveness of Reduced Test Suites

In this section we evaluate the effectiveness of test suites reduced using the ap-
proach presented in the previous section. The evaluation is based on several case
studies, corresponding to analyses of various routines on selected heap-allocated
data structures, namely binomial heaps, binary search trees, doubly linked lists,

Using Coverage Criteria on RepOK 25

and red black trees. We have used the implementation of these structures provided
in the Roops benchmark [15]. We are not dealing in this paper with bounded-
exhaustive generation, so the approach would work with any generation tool. It
is worth mentioning however that we generated the bounded-exhaustive suites
on which reductions are applied, using Korat [2]. Also, we experimented with dif-
ferent coverage criteria on repOK, in order to perform the reductions. We selected
three coverage criteria: decision coverage, path coverage and a variant of deci-
sion coverage, that we call counting decision coverage. Notice that, since we are
comparing with bounded-exhaustive suites, we are able to determine precisely
which are the coverable equivalence classes for each criterion (e.g., we are able
to determine precisely which repOK paths the bounded-exhaustive suites cover),
which is necessary for the reduction process. Of course, this requires executing
repOK for all tests in the bounded-exhaustive suite, a task which would anyway
be done at test generation time, prior to suite reduction and the testing of the
program under test.

We also used counting decision coverage (CDC). This criterion takes into
account the number of times each decision in the program evaluates to true and
false. More precisely, given a program under test P and two inputs c1 and c2
for P , c1 and c2 are equivalent according to P under CDC if and only if, for
every decision point cond in P , the number of times cond evaluates to true (resp.
false) when P is executed for c1 equals the number of times cond evaluates to
true (resp. false) when P is executed for c2. We believe CDC to be useful in our
context since, in general, there is a relationship between the size of a structure
and the number of times a particular decision point in the corresponding repOK

evaluates to true or false (think of conditions inside loops). As a consequence,
as the size of a structure increases, the number of equivalence classes will also
increase, and hence the variety of cases in the reduced suite. For instance, while
decision coverage considers as equivalent the first two trees in the example of
the previous section, CDC will distinguish them.

Structure of the Experiments. We took the repOK code for each of the above
mentioned structures, and we automatically instrumented it to obtain, from a
repOK call on a given valid structure, the equivalence class the structure belongs
to, for each of the selected criteria. We ran the instrumented repOK methods on
tests of the bounded-exhaustive test suite to collect their equivalence class infor-
mation. We then built reduced test suites that select from a bounded-exhaustive
test suite some test cases for each (coverable) equivalence class corresponding to
the criterion. In particular, we reduced the bounded-exhaustive test suites by one
and two orders of magnitude, i.e., 10% and 1% of the starting test suite size. The
test cases selected for the reduced test suite are the first generated/encountered
test cases for each of the coverable equivalence classes. Note that other selec-
tions could be possible, e.g., randomly selecting an appropriate number of test
cases for each equivalence class. The selection has been made taking at most
Nr/M test cases for each equivalence class, where Nr is the size of the reduced
test suite (e.g., 10% of the bounded-exhaustive suite) and M is the number of
equivalence classes. In both cases (10% reduction and 1% reduction), when the

26 V. Bengolea et al.

bounded-exhaustive test suite was too small to reduce it to 10% (or 1%) of its
original size, we have taken at least one test case for each covered equivalence
class.

To measure the effectiveness of the approach, we took some sample rou-
tines manipulating the data structures selected for analysis. These routines were
merge, insert, delete and find for binomial heaps, isPalindromic for doubly
linked lists, insert, delete and search for search trees, and add, remove and
contains on red-black trees. We generated mutants of these routines, and mea-
sured the effectiveness of the different suites, bounded-exhaustive and reduced,
in mutant killing. We also included in this assessment the “one per class” suites,
consisting of exactly one test per coverable equivalence class (i.e., a minimal
suite with the same coverage as the corresponding bounded-exhaustive suite).
We used muJava [14] to generate mutants. The mutants we got are those ob-
tained by the application of 12 different method-level mutation operators [12],
including arithmetic, logical and relational operator replacement, when these
ones were applicable to the selected routines.

We have tried to foresee potential threats to the validity of our experimental
results. The case studies represent, in our opinion, typical testing situations in
the context of the implementation of complex, heap allocated data structures (a
main target for bounded-exhaustive testing). We chose case studies of varying
complexities, including data structures with simple, intermediate, and complex
constraints (e.g., linked lists, search trees and binomial heaps, respectively).
Since the approach depends on the structure of repOK, we took implementations
of these routines as provided in Korat, instead of providing our own. Also, for
the evaluation we selected coverage criteria of varying complexities: the rather
simple decision coverage, the more thorough path coverage, and an intermediate
one, counting decision coverage.

4.1 Case Studies

Binomial Heaps (merge). This case study involves testing merge, a routine ma-
nipulating binomial heaps. This routine takes as parameters a pair of binomial
heaps, and produces a binomial heap corresponding to the union of the two pa-
rameters. This is an example of a case in which the bounded-exhaustive suites
quickly become too large, making bounded-exhaustive testing impractical. Fig-
ure 1 shows, for various scopes, the sizes of bounded-exhaustive (BE) suites and
suites with repOK-based reductions to 10% and 1%, for the three mentioned
white-box coverage criteria applied to repOK. For each criterion, it is also indi-
cated the number of equivalence classes of inputs that have been covered (CC,
for covered classes). The scope in this case specifies the maximum number of
elements for both heaps, and the range for nodes’ keys, from zero to the speci-
fied value. Since the bounded-exhaustive suites have been generated using Korat,
these exclude symmetric cases on reference fields (Korat provides a symmetry-
breaking mechanism as part of its generation process).

The merge routine was mutated, obtaining a total of 117 mutants. Then,
the ability to kill mutants of the bounded-exhaustive, the reduced test suites

Using Coverage Criteria on RepOK 27

Scope BE Decision Cov. Count. Decision Cov. Path Cov.

10% 1% CC 10% 1% CC 10% 1% CC

2,2 36 3 3 3 9 9 9 9 9 9
3,3 784 76 4 4 59 16 16 59 16 16
4,4 14,400 1200 144 4 1060 119 25 1060 119 25
5,5 876,096 49,420 7506 4 42,500 6460 36 42,500 6460 36
6,6 57,790,404 2,455,826 342,166 4 1,993,860 315,698 49 1,993,860 315,698 49

Fig. 1. Sizes of bounded-exhaustive and suites with repOK-based reductions, for testing
binomial heap’s merge

Scope BE Decision Cov. Count. Decision Cov. Path Cov.

10% 1% OPC 10% 1% OPC 10% 1% OPC

2,2 38 100 100 100 42 42 42 42 42 42
3,3 8 11 86 86 8 14 14 8 14 14
4,4 7 7 11 86 7 7 12 7 7 12
5,5 7 7 7 86 7 7 12 7 7 12
6,6 7 7 7 86 7 7 12 7 7 12

Fig. 2. Measurement of effectiveness of bounded-exhaustive and reduced test suites,
on mutant killing for merge (table reports mutants remaining live)

and the minimal “one per equivalence class”, was assessed. Figure 2 reports the
results indicating the remaining live mutants, and highlighting the cases in which
the mutation score of the reduced suites matched that of the corresponding
bounded-exhaustive suite. Out of the 7 mutants that remained live with the
largest bounded-exhaustive suite, 4 are equivalent to the original program. Notice
that in this case, the reduced test suites for all the coverage criteria analysed
were in most cases as effective as the bounded-exhaustive suites, for mutant
killing, even with suites of 1% the size of the bounded-exhaustive ones.

Binomial Heaps (insert, delete and find). Our second case study corresponds
to routines manipulating a single binomial heap, namely insert, delete and find.
Figure 3 shows, for various scopes, the sizes of the various suites. The scopes in
this case simply indicate the sizes of the corresponding binomial heaps.

Routines insert, delete and find were mutated (the number of mutants
obtained were 99, 184 and 28, respectively), and the effectiveness of the different
suites on mutant killing was assessed. Figure 4 reports the results of the analysis
for this case study. Out of the 25 and 31 mutants that remained live with the
largest bounded-exhaustive suite for insert and delete, 2 and 14 are equivalent
to the respective original program. In this case, the reduced suites were not as
effective as the previous case study, especially for the delete routine. However,
notice that the results are still very good, taking into account the reduction in
size of the suites. For instance, for scope 8 and counting decision coverage, the
10%-reduced suite only misses one mutant (32 vs. 31 out of 184) compared to
the bounded-exhaustive suite.

28 V. Bengolea et al.

Scope BE Decision Cov. Count. Decision Cov. Path Cov.

10% 1% CC 10% 1% CC 10% 1% CC

2 12 3 3 3 3 3 3 3 3 3
3 84 8 4 4 8 4 4 8 4 4
4 480 40 4 4 40 5 5 40 5 5
5 4680 264 38 4 339 40 6 339 40 6
6 45,612 1938 270 4 2772 367 7 2772 367 7
7 751,912 37,650 3814 4 33,052 4947 8 33,052 4947 8
8 4,829,952 241,568 24,220 4 217,662 29,494 9 217,662 29,494 9

Fig. 3. Sizes of bounded-exhaustive and suites with repOK-based reductions, for testing
binomial heap’s operations insert, delete and search

Doubly Linked Lists (isPalindromic). Our next case study corresponds to the
routine isPalindromic, which checks whether a given sequence of integers (im-
plemented over a doubly linked list) is a palindrome. Figure 5 shows, for various
scopes, the sizes of the various suites and the number of equivalence classes cov-
ered. The scopes in this case correspond to the number of entries in the list, the
range for the size of the list, and the number of integer values allowed in the
list. The routine isPalindromic was mutated, obtaining 23 mutants. Figure 6
reports the results of the analysis for this case study. Out of the 13 mutants that
remained live with the largest bounded-exhaustive suite, 2 are equivalent to the
original program. In this case study, reduced test suites are again as effective as
the bounded-exhaustive ones, in most of the cases, even reduced to 1% of the
size of the bounded-exhaustive ones.

Search Trees (insert, delete and search). Our next case study regards the
data structure search trees, and the main routines for insertion, deletion and
search. Figure 7 shows, for various scopes, the sizes of the various suites, and the
number of covered classes. The scopes indicate the maximum number of nodes in
the tree, the range for the size field of the tree, and the number of keys allowed
in the tree.

Routines insert, delete and search were mutated (the number of mutants
obtained were 9, 24 and 4, respectively). Table 8 reports the results obtained
for the analysis. In this case study, reduced test suites are again as effective
as the bounded-exhaustive ones, in most of the cases, with less effectiveness in
the delete routine. Notice however that the mutant-killing score is still very
good for delete in the reduced suites, with counting decision coverage at a 10%
almost matching the bounded-exhaustive suite in scope 6,0,6,9 (2 vs. 0 out of 24
mutants).

Red-Black Trees (remove, add and contains) The last case study we present
involves routines manipulating red-black trees. There routines are remove, add
and contains. Figure 9 shows, for various scopes, the sizes of the corresponding
suites and the number of equivalence classes covered in each case. The scopes

Using Coverage Criteria on RepOK 29

Scope Oper.(#Mutants) BE Decision Cov. Count. Decision Cov. Path Cov.

10% 1% OPC 10% 1% OPC 10% 1% OPC

2 insert(99) 36 44 44 44 44 44 44 44 44 44
delete(184) 124 152 152 152 152 152 152 152 152 152
find(28) 0 12 12 12 12 12 12 12 12 12

3 insert(99) 25 26 34 34 26 34 34 26 34 34
delete(184) 81 106 149 149 106 149 149 106 149 149
find(28) 0 8 12 12 8 12 12 8 12 12

4 insert(99) 25 25 34 34 25 34 34 25 34 34
delete(184) 77 99 149 149 101 149 149 101 149 149
find(28) 0 6 12 12 6 12 12 6 12 12

5 insert(99) 25 25 25 34 25 25 34 25 25 34
delete(184) 61 80 101 149 65 85 149 65 85 149
find(28) 0 2 6 12 2 6 12 2 6 12

6 insert(99) 25 25 25 34 25 25 34 25 25 34
delete(184) 33 65 99 149 48 53 115 48 53 115
find(28) 0 2 6 12 0 3 12 0 3 12

7 insert(99) 25 25 25 34 25 25 34 25 25 34
delete(184) 31 37 82 149 35 49 115 35 49 115
find(28) 0 0 5 12 0 0 12 0 0 12

8 insert(99) 25 25 25 34 25 25 34 25 25 34
delete(184) 31 54 70 149 32 48 115 32 48 115
find(28) 0 2 5 12 0 0 12 0 0 12

Fig. 4. Measurement of effectiveness of bounded-exhaustive and reduced test suites,
on mutant-killing for insert, delete and search for binomial heaps (table reports
mutants remaining live)

indicate the maximum number of nodes in the tree, the range for the size field
of the tree, and number of keys allowed in the tree. In this case study, paths and
sizes were for some scopes too large to enable us to perform the analysis. Thus,
we considered in this case study a bounded version of path coverage, namely
path coverage without taking into account repetitions of edges (known as simple
path coverage [19]).

Routines remove, add and contains were mutated (the number of mutants
obtained were 142, 126 and 36, respectively), and the results of the analysis are
reported in Figure 10. Out of the 41, 36 and 6 mutants that remained live with
the largest bounded-exhaustive suite for remove, add and contains, respectively,
4, 11 and 4 are equivalent to the respective original program. In this case study,
reduced test suites showed better effectiveness for the contains routine, match-
ing in many cases the mutant-killing score of the bounded-exhaustive suites. For
the other two routines it was not the same case, although they achieved a very
good mutant-killing score in many cases (e.g., counting decision coverage for add
in scope 7,0,7,7 missed only 4 out of 126 compared to the bounded-exhaustive
suite).

30 V. Bengolea et al.

Scope BE Decision Cov. Count. Decision Cov. Path Cov.

10% 1% CC 10% 1% CC 10% 1% CC

4,0,4,4 156 8 2 2 10 4 4 10 4 4
4,0,4,8 820 42 5 2 50 7 4 50 7 4
5,0,5,5 1555 78 8 2 100 13 5 100 13 5
5,0,5,10 16,105 806 81 2 777 108 5 777 108 5
6,0,6,6 19,608 981 99 2 1035 136 6 1035 136 6
6,0,6,12 402,234 20,112 2,012 2 15,786 2,193 6 15,786 2,193 6
7,0,7,7 299,593 14,980 1,498 2 13,239 1,781 7 13,239 1,781 7
7,0,7,14 12,204,241 610,213 61,022 2 402,933 55,918 7 402,933 55,918 7

Fig. 5. Sizes of bounded-exhaustive suites and suites with repOK-based reductions, for
testing isPalindromic operation for doubly linked lists

Scope BE Decision Cov. Count. Decision Cov. Path Cov.

10% 1% OPC 10% 1% OPC 10% 1% OPC

4,0,4,4 15 15 23 23 15 22 22 15 22 22
4,0,4,8 15 15 23 23 15 15 22 15 15 22
5,0,5,5 13 15 22 23 13 15 22 13 15 22

5,0,5,10 13 15 15 23 13 13 22 13 13 22
6,0,6,6 13 13 15 23 13 13 22 13 13 22

6,0,6,12 13 13 15 23 13 13 22 13 13 22
7,0,7,7 13 13 13 23 13 13 22 13 13 22

7,0,7,14 13 13 13 23 13 13 22 13 13 22

Fig. 6. Measurement of effectiveness of bounded-exhaustive and reduced test suites,
on mutant-killing for isPalindromic for doubly linked lists (table reports mutants
remaining live)

5 Related Work

There exist some approaches that are related to the work presented in this pa-
per. With respect to the reduction of bounded-exhaustive test suites, the work
of some of the authors of this paper [1] is strongly related to the work presented
in this paper, especially because both approaches are based on the use of cov-
erage criteria. However, the previous approach [1] differs from the work of this
paper in two aspects. First, it requires the user to provide the coverage criterion
to perform the suite reduction, as opposed to our work here, where the cover-
age criterion is a standard one applied to the representation invariant. Second,
the previous approach targets the improvement in the test generation process,
whereas our work in this paper concerns the reduction of bounded-exhaustive
test suites to reduce the time for testing. Another work related to ours is the
one presented in [9]. In [9], the authors present various techniques for reducing
the costs of bounded-exhaustive testing. These techniques are sparse test gen-
eration, which attempts to reduce the time to the first failing test (but not the

Using Coverage Criteria on RepOK 31

Scope BE Decision Cov. Count. Decision Cov. Path Cov.

10% 1% CC 10% 1% CC 10% 1% CC

3,0,3,3 45 5 5 5 7 7 7 9 9 9
3,0,3,4 148 10 5 5 14 7 7 9 9 9
3,0,3,6 822 70 5 5 72 7 7 78 9 9
3,0,3,8 2,760 228 25 5 242 21 7 248 27 9
5,0,5,8 29,416 1836 240 5 2634 278 16 2888 260 65
6,0,6,9 167,814 10,158 1095 5 14,430 1605 22 16,665 1576 197

Fig. 7. Sizes of bounded-exhaustive suites and suites with repOK-based reductions, for
testing delete, insert and search operations of search trees

Scope Oper.(#Mutants) BE Decision Cov. Count. Decision Cov. Path Cov.

10% 1% OPC 10% 1% OPC 10% 1% OPC

3,0,3,3 delete(24) 2 12 12 12 12 12 12 12 12 12
insert(9) 0 0 0 0 0 0 0 0 0 0
search(4) 0 0 0 0 0 0 0 0 0 0

3,0,3,4 delete(24) 2 12 12 12 12 12 12 12 12 12
insert(9) 0 0 0 0 0 0 0 0 0 0
search(4) 0 0 0 0 0 0 0 0 0 0

3,0,3,6 delete(24) 2 12 12 12 12 12 12 12 12 12
insert(9) 0 0 0 0 0 0 0 0 0 0
search(4) 0 0 0 0 0 0 0 0 0 0

3,0,3,8 delete(24) 2 9 12 12 9 12 12 9 12 12
insert(9) 0 0 0 0 0 0 0 0 0 0
search(4) 0 0 0 0 0 0 0 0 0 0

5,0,5,8 delete(24) 0 9 16 16 9 12 12 9 12 12
insert(9) 0 0 0 0 0 0 0 0 0 0
search(4) 0 0 0 0 0 0 0 0 0 0

6,0,6,9 delete(24) 0 9 16 16 2 9 12 0 12 12
insert(9) 0 0 0 0 0 0 0 0 0 0
search(4) 0 0 0 0 0 0 0 0 0 0

Fig. 8. Measurement of effectiveness of bounded-exhaustive and reduced test suites, on
mutant-killing for insert, delete and search for search trees (table reports mutants
remaining live)

suite); oracle-based test clustering, which groups together failing tests to reduce
the time for inspection of failing tests; and structural test merging, whose pur-
pose is to generate smaller suites of larger tests by merging together smaller test
inputs. Of these three, the latter is related to our work, since it has as a purpose
to reduce the size of the test suite. However, the approach is rather different,
since bounded exhaustiveness is preserved in structural test merging (although
sets of small inputs are encoded as a single large input), whereas in our case we
drop bounded exhaustiveness by selecting only some tests. The same differences
apply to other works based on test granularity [16].

32 V. Bengolea et al.

Scope BE Decision Cov. Count. Decision Cov. Simple Path Cov.

10% 1% CC 10% 1% CC 10% 1% CC

4,0,4,4 164 14 7 7 16 16 16 108 108 108
4,0,4,8 6408 500 62 7 608 64 16 169 157 157
5,0,5,5 575 53 7 7 30 30 30 97 97 97

5,0,5,10 56,790 2732 496 7 5313 532 30 245 165 157
6,0,6,6 1962 174 14 7 184 16 46 113 113 113

6,0,6,12 412,140 10,411 2,652 7 38,579 4,017 46 505 229 157
7,0,7,7 6377 469 61 7 570 66 66 154 142 142

7,0,7,14 3,045,266 89,960 11,654 7 284,408 29,449 66 2211 465 157

Fig. 9. Sizes of bounded-exhaustive suites and suites with repOK-based reductions, for
testing remove, add and contains operations of red-black trees

Scope Oper.(#Mutants) BE Decision Cov. Count. Decision Cov. Simple Path Cov.

10% 1% OPC 10% 1% OPC 10% 1% OPC

4,0,4,4 remove(142) 47 82 82 81 70 70 70 47 47 47
add(126) 38 58 90 90 90 90 90 44 44 44
contains(36) 6 8 9 9 9 9 9 6 6 6

4,0,4,8 remove(142) 47 66 81 81 65 70 70 82 82 82
add(126) 38 40 43 90 40 58 90 53 62 62
contains(36) 6 6 7 9 6 8 9 8 8 8

5,0,5,5 remove(142) 43 81 82 81 68 68 68 68 68 68
add(126) 38 43 90 90 90 90 90 56 56 56
contains(36) 6 7 9 9 9 9 9 8 8 8

5,0,5,10 remove(142) 43 55 77 81 52 67 68 82 82 82
add(126) 36 40 42 90 39 43 90 49 58 78
contains(36) 6 6 6 9 6 7 9 8 8 8

6,0,6,6 remove(142) 41 66 82 81 46 66 66 71 71 71
add(126) 36 42 58 90 55 90 90 62 62 62
contains(36) 6 6 8 9 7 9 9 8 8 8

6,0,6,12 remove(142) 41 53 60 81 50 61 66 82 82 82
add(126) 36 40 40 90 37 40 90 47 49 78
contains(36) 6 6 6 9 6 6 9 8 8 8

7,0,7,7 remove(142) 41 60 81 81 41 66 66 76 76 76
add(126) 36 40 43 90 40 90 90 53 62 62
contains(36) 6 6 7 9 6 9 9 8 8 8

7,0,7,14 remove(142) 41 50 55 81 44 50 66 76 82 82
add(126) 36 42 58 90 55 90 90 47 49 79
contains(36) 6 6 6 9 6 6 9 8 8 8

Fig. 10. Measurement of effectiveness of bounded-exhaustive and reduced test suites,
on mutant-killing for add, remove and contains for red-black tree (table reports mu-
tants remaining live)

Other researchers have studied the effects of reducing test suites in finding bugs,
e.g., the work in [18]. Our work is related, but we propose a specific approach for

Using Coverage Criteria on RepOK 33

test-suite reduction (as opposed to studying the effects of test-suite reductions in
general), and we target specifically bounded-exhaustive test suites.

6 Conclusions and Further Work

Bounded-exhaustive test suites are popular in some testing contexts, such as
that of testing complex heap allocated data structures. However, in many cases
bounded-exhaustive test suites become too large as the bound for the gener-
ated suites increases, thus making their (exhaustive) use impractical. We have
presented an approach for reducing bounded-exhaustive test suites, and conse-
quently also the time spent in testing using these suites, for cases in which an
imperative representation invariant routine is available for the inputs for which
the suites were generated. The approach works by defining black-box criteria for
the program under test, based on the definition of equivalence relations of inputs,
defined in terms of white-box criteria on the imperative representation invariant;
basically, the rationale for this is that, if two inputs exercise the representation
invariant code in the same way, according to a white-box criterion, these inputs
may be considered similar, i.e., considered to belong to the same equivalence
class of inputs. These equivalence classes are then employed in order to filter out
of the exhaustive suites some tests that are equivalent to some others already
present in the suite.

Although our motivation is the reduction of bounded-exhaustive test suites,
the idea of using white-box criteria on the representation invariant is indeed
the definition of a new black-box coverage criterion, for programs whose inputs
count on a representation invariant. This idea can also be adapted to declarative
representation invariants, which are becoming popular, e.g., invariants as speci-
fied in Eiffel or via contract languages such as JML and Code Contracts; these
invariants are typically involved in run-time contract-checking environments, so
they are “executable”, and the code corresponding to their run-time evaluation
would correspond to what we referred to as repOK in this paper.

We presented some case studies showing the performance of suites reduced
using the above approach, compared to bounded-exhaustive suites. As the ex-
periments show, for some white-box coverage criteria on the representation in-
variant, we obtain a performance in mutant killing that is comparable to that
of bounded-exhaustive suites. In particular, we used a variant of decision cover-
age, called counting decision coverage, which takes into account the number of
times each decision point in the program under test becomes true and false. This
criterion, applied to the representation invariant, is useful in our context, since
in general we observe that there is a relationship between the size of the struc-
ture and the number of times a particular decision point in the corresponding
representation invariant evaluates to true or false.

As work in progress, we are currently examining the approach proposed in this
paper for several additional case studies, based on more complex data structures.
We also plan to assess the approach in the context of testing applications manip-
ulating source code, such as compilers or, more particularly, refactoring engines,
as is done using ASTGen [5].

34 V. Bengolea et al.

References

1. Aguirre, N., Bengolea, V., Frias, M., Galeotti, J.: Incorporating Coverage Crite-
ria in Bounded Exhaustive Black Box Test Generation of Structural Inputs. In:
Gogolla, M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp. 15–32. Springer,
Heidelberg (2011)

2. Boyapati, C., Khurshid, S., Marinov, D.: Korat: Automated Testing based on Java
Predicates. In: Proc. of Intl. Symposium on Software Testing and Analysis ISSTA
2002. ACM Press (2002)

3. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond Assertions: Advanced
Specification and Verification with JML and ESC/Java2. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
342–363. Springer, Heidelberg (2006)

4. Code Contracts, http://research.microsoft.com/en-us/projects/contracts/
5. Daniel, B., Dig, D., Garćıa, K., Marinov, D.: Automated Testing of Refactoring En-

gines. In: Proc. of European Software Engineering Conference and Intl. Symposium
on Foundations of Software Engineering ESEC/FSE 2007. ACM Press (2007)

6. Myers, G.J.: The Art of Sofware Testing, 2nd edn. John Wiley & Sons, Inc. (2004)
7. Gligoric, M., Gvero, T., Jagannath, V., Khurshid, S., Kuncak, V., Marinov, D.:

Test Generation through Programming in UDITA. In: Proc. of Intl. Conference on
Software Engineering ICSE 2010. ACM Press (2010)

8. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press
(2006)

9. Jagannath, V., Lee, Y.Y., Daniel, B., Marinov, D.: Reducing the Costs of Bounded-
Exhaustive Testing. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS,
vol. 5503, pp. 171–185. Springer, Heidelberg (2009)

10. Khurshid, S., Marinov, D.: TestEra: Specification-Based Testing of Java Programs
Using SAT. Automated Software Engineering 11(4) (2004)

11. Liskov, B., Guttag, J.: Program Development in Java: Abstraction, Specification
and Object-Oriented Design. Addison-Wesley (2000)

12. Ma, Y.-S., Offutt, J., Kwon, Y.-R.: MuJava: An Automated Class Mutation Sys-
tem. Journal of Software Testing, Verification and Reliability 15(2) (2005)

13. Milicevic, A., Misailovic, S., Marinov, D., Khurshid, S.: Korat: A Tool for Gener-
ating Structurally Complex Test Inputs. In: Proc. of Intl. Conference on Software
Engineering ICSE 2007. IEEE Press (2007)

14. MuJava, http://www.cs.gmu.edu/~offutt/mujava/
15. Roops, http://code.google.com/p/roops/
16. Rothermel, G., Elbaum, S., Malishevsky, A., Kallakuri, P., Davia, B.: The Impact

of Test Suite Granularity on the Cost-Effectiveness of Regression Testing. In: Proc.
of Intl. Conference on Software Engineering ICSE 2002. ACM Press (2002)

17. Sullivan, K., Yang, J., Coppit, D., Khurshud, S., Jackson, D.: Software Assurance
by Bounded Exhaustive Testing. In: Proc. of Intl. Symposium on Software Testing
and Analysis ISSTA 2004. ACM Press (2004)

18. Yu, Y., Jones, J., Harrold, M.: An Empirical Study of the Effects of Test-Suite
Reduction on Fault Localization. In: Proc. of Intl. Conference on Software Engi-
neering ICSE 2008. ACM Press (2008)

19. Zhu, H., Hall, P., May, J.: Software Unit Test Coverage and Adequacy. ACM Com-
puting Surveys 29(4) (1997)

http://research.microsoft.com/en-us/projects/contracts/
http://www.cs.gmu.edu/~offutt/mujava/
http://code.google.com/p/roops/

A First Step in the Design of a Formally Verified

Constraint-Based Testing Tool: FocalTest

Matthieu Carlier1, Catherine Dubois1,2, and Arnaud Gotlieb3

1 CEDRIC-ENSIIE, Évry, France
{dubois,carlier}@ensiie.fr

2 INRIA, Paris, France
3 Certus V&V Center, SIMULA RESEARCH LAB., Lysaker, Norway

arnaud@simula.no

Abstract. Constraint-based test data generators rely on SMT or con-
straint solvers to automatically generate test data (e.g., Pex, Sage, Gatel,
PathCrawler, Euclide). However, for some test data generation requests
corresponding to particular test objectives, these tools may fail to de-
liver the expected test data because they focus on efficiency rather than
soundness and completeness. We adopt an opposite view in the develop-
ment of FocalTest, a test data generation tool for Focalize programs. The
goal of the tool is to generate an MC/DC-compliant set of test data over
the precondition of user-defined program properties. The development of
such a correct-by-construction test data generator requires 1) to provide
a formally verified translation of Focalize programs and properties into
constraint systems; 2) to introduce a formally verified constraint solver
able to solve those constraint systems. This paper is concerned with the
first step only where we formally demonstrate with Coq the soundness
of the translation of an intermediate functional language into a con-
straint system. This objective requires to formally define the operational
semantics of the source language that features the manipulation of con-
crete data types via pattern-matching and function calls, constructions
that are mirrored in the constraint language. Although such a semantics-
oriented formalization is only a first step of a larger goal which is to
provide a formally verified constraint-based testing tool, we argue that
it is an important contribution to the building of more robust software
testing tools.

1 Introduction

A new trend in software testing consists in using constraint solvers or SMT-
solvers to generate test inputs that satisfy a given test objective. The idea
of using constraint (logic) programming to capture the concrete semantics of
programs written in other languages is not new. In the early 2000s, Podelski
proposed using constraint solving procedures to deal with general infinite-state
systems [18], while Flanagan more specifically addressed imperative languages
[10]. These pioneering works built the foundational layout for opening the door
to concrete approaches implemented in tools such as InKa [13] for C or GATEL

A.D. Brucker and J. Julliand (Eds.): TAP 2012, LNCS 7305, pp. 35–50, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

36 M. Carlier, C. Dubois, and A. Gotlieb

[17] for Lustre, and more recently Euclide [12,7] for C, JAUT [6] and PET [11]
for Java Bytecode. However, as far as we know, the question of proving the
soundness and completeness of these translations, far from trivial in general, has
not yet really been addressed. Soundness means here that a possible execution of
the program is a solution of the constraint system and conversely completeness
states an assignment, solution of the constraint system is a possible execution
of the corresponding program.

This paper tackles this objective in the context of the constraint-based testing
tool FocalTest [4,5] developed by the authors, that allows to test programs writ-
ten with the Focalize language [1]. FocalTest implements property-based testing
of programs and thus implies to select test data that satisfy MC/DC (i.e., Modi-
fied Condition/Decision Coverage) on the precondition of the user-defined prop-
erty under test. MC/DC is a well-known structural coverage criterion defined
for tackling the complexity of decision in the civil avionics domain [14]. Please
consult [4,5] for comparable testing tools or related works. The source language
is a functional language that features the definition and manipulation of concrete
data types via pattern-matching, higher order and function calls, constructions
that are mirrored in the constraint language. In this paper we describe formally
the translation of the program and the property under test into a system of
constraints and demonstrate its soundness and completeness. In our context, a
property is an implication between a precondition and a conclusion (in an al-
gebraic like setting), a precondition being mainly a set of conditions also called
decisions. Our objective requires to formally define the operational semantics
of both the source language and the constraint language. Both soundness and
completeness ensure that when a solution of the constraint system representing
the precondition of the property under test is found, then this solution is indeed
possible and satisfies the precondition. Conversely, if there exists a possible eval-
uation that satisfies the precondition the corresponding assignment is necessarily
a solution of the constraint system. A machine–checked formalization and proof
of soundness of the translation has be realized in Coq [8] and is available as a
side part of this paper. A nice result is that a translator written in ML, which
preserves semantics, has been extracted from this Coq code. More generally the
work presented in this paper prepares the ground for addressing a broader ob-
jective, which consists in developing a formally-proved constraint-based testing
tool. In the context of FocalTest, this requires 1) to provide a formally verified
translation of Focalize programs and properties into constraint systems which is
the topic of this paper; 2) to introduce a formally verified constraint solver able
to solve those constraint systems.

In the context of testing, few formalizations based on operational semantics
(and even fewer machine-checked ones) have been explored. We can cite Bruckner
andWolff’ work [2] where the authors formalize and verify in Isabelle some white-
box test techniques for a small imperative language. In [19], Wotawa and Nica
detail a constraint representation of imperative programs which ends with the
proposition of a soundness theorem (theorem 3.3) close to ours. However none of
these works proposed a formalization as advanced as the one given in this paper.

Formally Verified CBT Tool: FocalTest 37

Note however that in the general setting of programming languages, a lot of such
proof of soundness and completeness exist, e.g., the famous and substancial proof
of semantics preservation for Compcert, a compiler for a large subset of C [15].

The paper is organized as follows: Sec. 2 briefly presents Focalize and Focal-
Test and gives the necessary background to understand our approach. The trans-
lation into constraints is done in two steps and uses an intermediate language, a
form of monadic language, called FMON. The paper focuses on the second step,
however Sec. 3 gives some insight into the first step. Sec. 4 formally describes the
second step: syntax and semantics of both FMON and the constraint language
and then the translation are detailed. Sec. 5 focuses on soundness and complete-
ness of the translation and we precise the outline of the machine-checked proof
in Coq. Finally, Sec. 6 concludes the paper.

2 A Brief Presentation of Focalize and FocalTest

This section briefly presents the technical background necessary to understand
what follows.

Focalize (previously named Focal, http://focalize.inria.fr) is an envi-
ronment allowing the development of programs step by step, from specification
to implementation. This environment proposes a language also named Focalize
and tools to analyze the code -in particular its dependencies-, to compile into
various formats -Ocaml executable code, Coq code, HTML representation and
UML class diagrams-, to prove properties (e.g., that the implementation satisfies
its specification). In our context a specification is a set of algebraic properties
describing relations between input and output of the functions implemented in
a Focalize program. Focalize is a strongly typed functional language (close to
ML) and offers mechanisms inspired by object-oriented programming, e.g., in-
heritance and late binding to ease modularization and reuse. Besides basic types,
Focalize allows the programmer to introduce new datatypes, called in the sequel
algebraic datatypes or simply datatypes for short, defined by their value construc-
tors (with a fixed arity, constant if arity is null). Focalize also offers a convenient
mechanism to explore and de-structure values of datatypes by pattern match-
ing, also known as case analysis (match x with pat1 → e1 | . . . | patn → en).
It also includes mutually recursive functions, local binding (let x = e1 in e2),
conditionals (if e then e1 else e2) and higher-order functions.

As an example, consider the Focalize program of Fig. 1 where app (append)
and rev (reverse) both are user-defined functions. Lists are here built from 2
constructors: the constant constructor nil (empty list) and the binary recursive
constructor cons (adding a new value at the beginning of a list). The property
called rev prop simply says that reversing a list can be done by reversing its
sub-lists. A more thorough overview of Focalize can be found in [1].

The authors have developed and integrated into the environment Focalize the
FocalTest tool that allows the user to test whether his programs meet their spec-
ifications or some user-defined properties. FocalTest implements the property-
based testing technique, which is a general testing technique that uses property

http://focalize.inria.fr

38 M. Carlier, C. Dubois, and A. Gotlieb

let rec app(l, g) =
match l with

nil → g
| cons(h, t) → cons(h, app(t, g));

let rec rev aux(l, ll) =
match l with

nil → ll
| cons(h, t) → rev aux(t, cons(h, ll));

let rev(l) = rev aux(l, nil);

property rev prop :
all l l1 l2 : list(int),
l = app(l1, l2) → rev(l) = app(rev(l2), rev(l1));

Fig. 1. A Focalize program

specifications to select test cases and guide evaluation of test executions [9]. It
implies selecting test inputs from the property under test and checking the ex-
pected output results in order to evaluate the conformance of programs w.r.t. its
property specifications. FocalTest is a constraint-based test data generation tool,
meaning that it translates a Focalize program into a set of constraints, and then,
by calling a constraint solver, it can generate test data satisfying the precondition
part of user-defined properties. This process is the subject of the formalization
presented in the paper. Furthermore the constraint-based approach permits one
to obtain an MC/DC-compliant test suite that covers the precondition part of
any Focalize property. It implies that the tool is able to generate test inputs that
satisfy or do not satisfy a decision in the precondition.

Our implementation is based on a systematic translation of Focalize programs
into constraint programs (clpfd in SICStus Prolog more precisely). It lies on the
definition of efficient user-defined constraint combinators to tackle conditionals,
pattern-matching and higher-order functions. More details on the random and
constraint-based approaches of FocalTest can be found in [4] and [5]. Experi-
mental evaluation results given in [5] demonstrate that the constraint resolution
process suits well, in particular the way to solve ite and match combinators.

Focalize
Program

Property

FMON
Program

Set of
constraints

Test
Inputresolution

Fig. 2. Test input generation process

Formally Verified CBT Tool: FocalTest 39

In the rest of the paper, we call test unity a set of function definitions together
with concrete type definitions and the property under test. Let us suppose in
the following that everything is defined and contained in the test unity (all the
dependencies are present, the inheritance has been solved). It is the task of the
compiler not of the testing tool. The functions may be distributed in the different
components (called species in the Focalize jargon) of the Focalize program. It
may also contain some undefined functions only declared. All we require is that
everything needed by the functions involved in the property under test is defined.
A property under test is assumed to be of the following form:

∀X1 ∈ T1 . . .Xm ∈ Tm, A1 ⇒ · · · ⇒ An︸ ︷︷ ︸
Precondition

⇒B1 ∨ · · · ∨Bp︸ ︷︷ ︸
Conclusion

where Ais and Bis are function calls. If not, it may be rewritten as a set of such
properties (as explained in [4]).

The different steps to produce test data according to a test unity is illustrated
by Fig. 2, where FMON (Functional MONadic) is an intermediate language for
programs and properties designed to ease the translation into constraints. The
first step of the process is the translation of Focalize programs into FMON,
while the second step produces a set of constraints for both the FMON program
and the precondition part of the property. As said previously, in this paper, we
focus on the constraint system generation part, assuming that we have at hand a
correct constraint solver. Furthermore, for the sake of simplicity, we consider only
simple decisions from the precondition part of properties. It means we assume a
correct translation fromMC/DC-compliant values on decisions to simple decision
true or false values. A more important current restriction concerns higher-order
aspects of Focalize programs. Although, we have built a constraint translation
that can handle higher-order function calls, formally proving the correction of
the translation is far from trivial. We elaborate on this in Section 6.

3 From Focalize to FMON

As Focalize is a real-world language, it includes many additional features that
can reasonably be discarded for a correction proof because they are irrelevant
and do not introduce any particular problems. So the first step of our process
is a normalization one that consists in giving names to all computation steps
and to put pattern-matching expressions in a canonical form without any nested
patterns. Regarding pattern-matching, the process is a Focalize-dedicated adap-
tation of the algorithms proposed in [16]. It is detailed in [3] and proved sound
and complete w.r.t. both the Focalize semantics and the FMON language se-
mantics. An overview of this normalization step is now given. The naming of all
the computation steps is formalized by a function called Ne that associates an
identifier to every expression evaluation (e.g., function call, condition in condi-
tional, etc.) through the help of local bindings. Since Focalize is a pure functional
programming language (i.e., no side effects), we do not have to take care about

40 M. Carlier, C. Dubois, and A. Gotlieb

any evaluation strategy as long as we respect the call-by-value evaluation of Fo-
calize. For example, considering that modular code has already been flattened,
any function call (FreshF is a set of fresh variables) can be tackled with the
following:

Ne(f(e1, . . . , en)) =

∣∣∣∣∣∣∣∣∣

letx1 = Ne(e1) in
...

letxn = Ne(en) in
f(x1, . . . , xn)

(∀i ∈ �1, n�, xi ∈ FreshF)

For Focalize user-defined properties, a dependency analysis is needed to recover
all the functions involved in the precondition part, because some of the function
calls may be deeply nested in recursive calls. We do not detail this calculation
that may be difficult to implement efficiently, as it is somehow outside the scope
of the paper. The interested reader can look at [3] to get more details.

So from here, the test unity is built: it is technically a bunch of function
definitions with a property whose only interesting part for us is the precondition.
The precondition, a set of conditions that can be seen as calls to predicates
(Boolean functions), is transformed according to the same principles as Focalize
programs. It means that local bindings are used to name the arguments of the
called predicates.

4 From FMON to Constraints

This section formally introduces the FMON language (i.e., syntax and seman-
tics), the target language of constraints and the translation from the former to
the latter.

4.1 The FMON Language

Syntax. FMON syntax is detailed in Fig. 3. It is close to Focalize’s syntax but
contains some restrictions. In particular, arguments of function calls, conditions
in conditionals, and matched expressions can only be variables (and not expres-
sions), in order to prepare the translation into constraints. Furthermore, any
pattern-matching expression cannot have nested patterns. It can only have non-
overlapping n-ary constructors applied to variables as patterns. But, note that
it can have a catch-all pattern (written) as final clause. As mentioned above,
using functional programming terminology, FMON only contains named abstrac-
tions and complete applications. Furthermore functions cannot have functions as
arguments or results.

A FMON program is a list of function definitions stored in a function environ-
ment which can be considered as a partial function relating a function identifier
with its closure <x1, . . . , xn � e>. In this notation, x1, . . . , xn are the bound

Formally Verified CBT Tool: FocalTest 41

variables of the function and the expression e its body (where free variables are
not authorized). Furthermore functions can call each other and are implicitly
mutually recursive.

e ::= letx = e in e local binding
| ifx then e else e conditional
| f(x1, . . . , xi) function call
| op (x1, x2) basic bin. operator

|

match x with

| pat → e
...

| pat → e
[| → e]

pattern matching

| i | b integer/boolean
| C(x1, . . . , xn) constructors
| x variable

pat ::= C(pat arg, . . . , pat arg) constructor pattern
pat arg ::= x | variable pattern/catch-all

Fig. 3. FMON syntax

Semantics. Operational semantics of FMON expressions is described with in-
ference rules (see Fig. 4). The evaluation judgement is E ; Ef � e � v where Ef
is the function environment that associates a closure to each function identifier
and E is the evaluation context that associates free variables of e to their values.
Such a judgement tells us that e evaluates to v, provided that the evaluation
context is E and the function environment is Ef. Rule app evaluates a function
call by evaluating the arguments and then evaluating the body of the function in
the context that binds each parameter to its corresponding value. Rules match
and catch concern pattern-matching. The former formalizes the case when the
value v of the matched variable x matches the constructor Ci, then the value of
the entire expression is the value of expression ei. The latter corresponds to the
situation where v does not match any of the listed constructors but a catch−all
branch exists. In both rules, F checks whether a value matches a given pattern.
When it happens, the function returns the evaluation context that binds the
variables of the pattern; otherwise it fails (nok). The ⊕ operator is used to up-
date environments and contexts (and later assignments). In rule op, �op , v1, v2�
denotes the interpretation of operator op on values v1 and v2.

4.2 The Constraint Language

Introduction and Syntax. Firstly, the syntax of our constraint language is
given in Fig. 5. A constraint system (also called constraint store) is mainly com-
posed of integer constants, terms, finite-domain variables, algebraic variables

42 M. Carlier, C. Dubois, and A. Gotlieb

E ;Ef � b � b
bool

E ; Ef � i � i
int

E(x) = v

E ;Ef � x � v
var

E ; Ef � C(x1, . . . , xn) � C(E(x1), . . . , E(xn))
nc

E(x) = true E ; Ef � e1 � v1

E ;Ef � if x then e1 else e2 � v1
ift

E(x) = false E ;Ef � e2 � v2

E ; Ef � ifx then e1 else e2 � v2
iff

�op , E(x1), E(x2)� = v

E ;Ef � op (x1, x2) � v
op

Ef(f) = <x1, . . . , xn � e>
(x1, E(x1)), . . . , (xn, E(xn));Ef � e � v

E ; Ef � f(x1, . . . , xn) � v
app

E ;Ef � e1 � v1
E ⊕ (xv1); Ef � e2 � v2

E ;Ef � letx = e1 in e2 � v2
let

E(x) = v F(pati, v) = E ′

∀j �= i, F(patj , v) = nok

E ⊕ E ′; Ef � ei � vi

E ;Ef �

match x with

| pat1 → e1
...

| patn → en
[| → e]

� vi

match

E(x) = v ∀j, F(patj , v) = nok

E ;Ef � e � v

E ;Ef �

match x with

| pat1 → e1
...

| patn → en
| → e

� v

catch

Fig. 4. FMON expression semantics

which are variables that may be bound to terms built over constructors, equali-
ties and inequalities. In addition, the language contains three constraints intro-
duced to stick to the behavior of functional programs: a constraint capturing
function calls, a constraint called ite capturing conditionals and a constraint
called match for pattern-matching. Note that, within a constraint logic pro-
gramming environment (such as SICStus Prolog for example), the function-call
constraint is somehow built-in in the language because it simply corresponds to
clause invocation. The last two constraints are basically user-defined constraints.
Informally, the constraint ite(X, σ, σ′) where X is an algebraic variable, is sat-
isfied when the constraints of σ (resp. σ′) are satisfied if X is valuated with
Ctrue (resp. Cfalse), Ctrue and Cfalse being two special constants. A similar
informal semantics is given to the match constraint (this time the discriminant
part is the constructor used in the value of X). In order to distinguish FMON
variables from constraint variables in the rest of the paper, we write FMON vari-
ables with lowercases x, y, ... and both finite domain and algebraic variables with
uppercases X,Y, However, for the sake of clarity, we use the same spelling
for constructors and predefined operators in both contexts, although they are
theoretically distinct.

Formally Verified CBT Tool: FocalTest 43

σ ::= c | σ, σ simple constraint/store

c ::= X =fd a | X �=fd a integer equality/inequality
| X =h t | X �=h t algebraic equality/inequality
| f(X1, . . . , Xn) function call

|
match(X, [patt(pat, σ),

. . . ,
patt(pat, σ)], σ)

matching constraint

| ite(X,σ, σ) conditional constraint
| fail fail constraint

pat ::= C(X1, . . . , Xn) pattern

a ::= i | X | op(X1, X2) integer/finite domain variable/bin. int. operator

t ::= X | C(X1, . . . , Xn) algebraic variable/term

Fig. 5. Syntax of constraints

Cclosure Environment. The counterpart of function/closure in the constraint
system is the notion of Cclosure (Constraint closure) that we introduce here. A
Cclosure <X1, . . . , Xn, R � σ> is a triple composed of a variable R, a list
of constraint variables X1, ... Xn and a set of constraints σ = {c1, ..., ck}. At
a first glance, a Cclosure can be seen as a clause definition for a n + 1-ary
predicate f(X1, ..., Xn, R) :- c1, ..., ck. Note that any FMON function closure
is translated into a Cclosure.

Semantics. An assignment (that is a function that associates values to con-
straint variables) is consistent for a given store σ if all the constraints of σ are
satisfied by the assignment. The assignment is total if all the variables appearing
in σ are valued. A solution of σ is both a total and consistent assignment.

Defining the semantics of the constraint language means to explicit the cases
where an assignment satisfies σ. The hardest part concerns function calls because
they require to unfold the constraints σb associated to the function body and
these constraints may contain new variables, external to the assignment. And
these variables also need to be valuated to satisfy the constraints of σb. For an
assignment valuating only the arguments of a given function call and from the
caller point of view (i.e., before any function unfolding), the assignment is total
since it is defined for the function arguments. However, from the callee point
of view, the assignment is not total because new variables need to be valuated.
Intuitively, to tackle this problem it suffices to define a total assignment as
an assignment containing the values for all variables involved in the resolution
of the constraint system or to set up the value of any variable appearing in the
unfolded system. The second proposition is however insufficient to allow recursive
function calls, because in this case the set of variables may become unbounded.
For the first proposition, deciding whether a variable is involved depends on

44 M. Carlier, C. Dubois, and A. Gotlieb

the value of other variables. It explains, at least partially, why we chose to
define the semantics as a predicate able to complete a current assignment. Thus,
the satisfaction relation (also called the solution predicate) has the following
judgement A; Ecl � σ 	→ A′ which can be read: the assignment A is extended
into the assignment A′, solution of σ w.r.t. the Cclosure environment Ecl. A
formal definition is given in Fig. 6 and Fig.. 7.

A; Ecl � c �→ A1

A1; Ecl � σ �→ A2

A; Ecl � c, σ �→ A2

cj1

A; Ecl � σ1 �→ A1

A1; Ecl � σ2 �→ A2

A; Ecl � σ1, σ2 �→ A2

cj2

A(X) = i

A; Ecl � X =fd i �→ A
fdi

X �∈ A
A; Ecl � X =fd i �→ A ⊕ (Xi)

fdi’

A(X) = �op,A(X1),A(X2)�

A; Ecl � X =fd op(X1, X2) �→ A
op

X �∈ A v = �op,A(X1),A(X2)�

A; Ecl � X =fd op(X1, X2) �→ A ⊕ (X, v)
op’

A(X) = C(A(X1), . . . ,A(Xn))

A; Ecl � X =h C(X1, . . . , Xn) �→ A
c

X �∈ A v = C(A(X1), . . . ,A(Xn))

A; Ecl � X =h C(X1, . . . , Xn) �→ A ⊕ (X, v)
c’

A(X) = A(Y) 	 ∈ {h, fd}
A; Ecl � X =� Y �→ A

x
X �∈ A Y ∈ A 	 ∈ {h, fd}
A; Ecl � X =� Y �→ A ⊕ (X,A(Y))

x’

Fig. 6. Solution predicate for a store of constraints (part1)

The following Cclosure environment illustrates the concepts presented above
by defining the store associated to the factorial function:

Ecl = (fact, <N1, R1 � σ>)
σ = (C =h (N1 ≤ 1), ite(C, [R1 =fd 1],

[N2 =fd N1 − 1, fact(N2, R2), R1 =fd R2 ∗N1]))

The sequent A; Ecl � fact(E, S) 	→ A (where A = (S, 6), (E, 3)) can be estab-
lished. Each time the definition of fact is unfolded, any variable from fact can
get a value in the assignment. These values are then erased after the verification
of the constraints attached to fact (see rule call).

The solution predicate specifies that A has to satisfy all the constraints of
the store (see rules cj1 and cj2). Equality constraints are satisfied when both
sides have the same value (rules fdi, x, op, c). If a variable is not valued
in the assignment, then extending the assignment according to the constraint
is possible. In every case, the variable is fully defined by the sole right-hand
side of the constraint (rules fdi’, x’, op’, hc’). The other rules associated to
our additional constraints follow a simple operational semantics related to their
programming counterpart. Evaluating a call f(X1, . . . , Xn, R) leads to satisfy the
constraints in the closure of f, provided that the variables of f are replaced by

Formally Verified CBT Tool: FocalTest 45

Ecl(f) = <X ′
1, . . . , X

′
n, R

′
� σb>

(X ′
1,A(X1)), . . . , (X

′
n,A(Xn), (R

′,A(R)); Ecl � σb �→ A′

A; Ecl � f(X1, . . . , Xn, R) �→ A
call

A(X) = Ctrue A; Ecl � σ1 �→ A′

A; Ecl � ite(X,σ1, σ2) �→ A′ ite true

A(X) = Cfalse A; Ecl � σ2 �→ A′

A; Ecl � ite(X,σ1, σ2) �→ A′ ite false

A(X) = Ck(A(Xk
1), . . . ,A(Xk

nk
)) 1 ≤ k ≤ i

A ⊕ (Xk
1 ,A(Xk

1)), . . . , (X
k
nk

,A(Xk
nk

)); Ecl � σk �→ A′

A; Ecl �

match(X, [

patt(X =h C1(X
1
1 , . . . , X

1
n1

), σ1),
...

patt(X =h Ci(X
i
1, . . . , X

i
ni
), σi)],

σ)

�→ A′

match pat

σ �= fail A(X) �= Ck(A(Xk
1), . . . ,A(Xk

nk
)) ∀k, 1 ≤ k ≤ i

A; Ecl � σ �→ A′

A; Ecl �

match(X, [

patt(X =h C1(X
1
1 , . . . , X

1
n1

), σ1),
...

patt(X =h Ci(X
i
1, . . . , X

i
ni
), σi)],

σ)

�→ A′

match other

Fig. 7. Solution predicate for a store of constraints (part 2)

the values assigned toX1, . . . , Xn and R in the assignmentA (see the rule call).
Rules match pat and match other are used to formalize a match constraint,
which is satisfied if at most one of the patterns is matched. Recall that patterns
are expected to be non-overlapping.

We now turn on the statement of two main theorems on solution predicates,
that will be useful in the next section. The first one is proved by induction over
A � σ 	→ A′, the second one is proved by induction on the store σ.

Theorem 1. Let A, A′ be two assignments and σ be a constraint store.
If A; Ecl � σ 	→ A′ then A′ is a solution for σ.

Theorem 2. Let A, A′ be two assignments and σ be a constraint store such
that A; Ecl � σ 	→ A′.
Then, for any variable X in the domain of A′, A ⊕ (X,A′(X)); Ecl � σ 	→ A′ is
valid.

46 M. Carlier, C. Dubois, and A. Gotlieb

4.3 Translating FMON Expressions into Constraints

In this section, we explain how to translate any FMON expression e into a set
of contraints σ using syntax-directed rules (see Fig. 8). Such rules involve a
judgement Tx, R �C e 	−→ σ where Tx is an environment associating a FMON
variable to its corresponding constraint variable, and R is a constraint variable
associated to the result of the expression. An implicit hypothesis behind this
translation states that the test unity is composed of well-typed functions and
properties. As a result, choosing between numerical equality or algebraic equality
is performed using the typing information only from rules value and var. In
rule value, Tv is the identity function except for FMON Boolean values that are
translated into Ctrue or Cfalse, 2 algebraic constants. Translating a variable
is immediate, just look at the translation environment Tx. The translation of a
conditional (rule if) is also straightforward: translate the condition which is a
variable, translate both branches separately with the same result variable R. As
we said previously, a FMON n-ary function call is translated into a n + 1-ary
constraint, close to a Prolog predicate by adding a constraint variable for the
result (see rule function).

Rule let requires to produce a fresh variable associated with the value of the
expression e1. Thus, predicate FreshC(X) denotes that X is a fresh variable.
Rule match (resp. matchcatch) translates any pattern-matching expression
without (resp. with) a final catch-all clause. Both rules require recursive calls to
translate the expressions ei and the patterns pati. The only difference between
both rules lies on the default clause: fail is generated if there is none. Func-
tion Tp syntactically translates a pattern into a term where FMON variables
are translated into constraint variables. The function also returns a translation
variable environment associating pattern variables with fresh variables.

Each function definition appearing in Ef is translated into a Cclosure. More
precisely, if Ef(f) = <x1, . . . , xn � e> then the Cclosure obtained by translation
is <X1, . . . , Xn, R � σ> (R, X1, . . ., Xn are fresh variables) where σ is the
translation of e when R is bound to the result of e or formally,
(x1, X1), . . . , (xn, Xn);R �C e 	−→ σ.
For example the Cclosure for function app in Fig. 1 is

<L,G,R �

match(L,
[patt(L =h nil, R =h G)
patt(L =h cons(H,T), R =h cons(H,K), app(T,G,K))
], fail)

>.

To end up this presentation, we now explain how to translate the precondition
part of a property into a set of constraints. As a fresh variable is associated
to each condition, the process just adds an equality constraint to either true
or false depending on the expectations. As a simple example, if we want to
satisfy the precondition of the property of Fig. 1 with the Cclosure environment
containing the Cclosures for app, rev aux and rev, then the precondition is
translated into L =h R, app(L1, L2, R). On the contrary, if we want to falsify it,
then the precondition is translated into: L �=h R, app(L1, L2, R).

Formally Verified CBT Tool: FocalTest 47

Tx(x1) = X1 . . . Tx(xn) = Xn

Tx;R �C f(x1, . . . , xn) �−→ f(R,X1, . . . , Xn)
function

FreshC(X) Tx;X �C e1 �−→ σ1

Tx ⊕ (xX);R �C e2 �−→ σ2

Tx;R �C let x = e1 in e2 �−→ σ1 ∧ σ2

let

Tv(v) = v′

Tx;R �C v �−→ R =� v′
value

Tx(x) = X

Tx;R �C x �−→ R =� X
var

	 ∈ {fd, h} wrt the type of the value/variable

Tx(x) = X Tx;R �C e1 �−→ σ1

Tx;R �C e2 �−→ σ2

Tx;R �C ifx then e1 else e2 �−→ ite(X,σ1, σ2)
if

Tx(x) = X
Tp(pati) = (Cpati, Ti) Tx ⊕ Ti;R �C ei �−→ σi ∀i ∈ �1, n�

Tx;R �C

match x with

| pat1 → e1
...

| patn → en

�−→

match(X, [
patt(X =h Cpat1, σ1)

...
patt(X =h Cpatn, σn)], fail)

match

Tx(x) = X
Tp(pati) = (Cpati, Ti) Tx ⊕ Ti;R �C ei �−→ σi ∀i ∈ �1, n+ 1�

Tx;R �C

match x with

| pat1 → e1
...

| patn → en
| → en+1

�−→

match(X, [
patt(X =h Cpat1, σ1)

...
patt(X =h Cpatn, σn)],
σn+1)

matchcatch

Fig. 8. Translation of FMON expressions into constraints

5 Soundness and Completeness of the Constraint
Generation

In this section, we formalize both theorems and discuss shortly the difficulties
of the proofs.

Theorem 3 (Soundness). if E ; Ef � e � v and Tx;R �C e 	−→ σ and A |=Tx
E

then there exists A′ such that A; Ecl � R = v, σ 	→ A′ .

48 M. Carlier, C. Dubois, and A. Gotlieb

This theorem establishes the correction property we want to demonstrate, namely
to show that the evaluation result of an expression is necessarily a solution of
the constraint system. Formally speaking, if an expression e evaluates to value
v w.r.t. the evaluation context E , Ef, and if e is translated into a constraint store
σ where R is the variable that captures the evaluation result v, then there exists
an extension A′ of A where R = v. The notation A |=Tx

E means that A and E
share the same domain and agree on the values of a variable and its constraint
counterpart.

This semantics-preserving theorem shows that the FMON semantics is really
correctly captured by the semantics of the constraint system. Its proof is done
by induction over the evaluation of the expression e (i.e. E ; Ef � e � v) The
hardest part of the proof is concerned with the let binding and match cases
where freshness of variable has to be dealt with.

Theorem 4 (Completeness). If A; Ecl � R = v, σ 	→ A′ and Tx;R �C e 	−→
σ and A |=Tx

E then E ; Ef � e � v.

This theorem states the completeness of the translation by showing that any
solution of the constraint system is also a possible result of the evaluation
of the corresponding expression. Formally speaking, if expression e is trans-
lated into σ where R is the returned value and if A is one of the solutions of
R = v, σ then the context E leads to the evaluation of e into v. Note that,
with this theorem, the set of possible evaluations of e is an over-approximation
of the set of solutions of the constraint system. This theorem is proved by in-
duction over the solution predicates; the hardest point being related to rule
Cj2 that combines two distinct constraint stores to translate the let binding
expression.

Both soundness and completeness theorems prove there exists a bijection be-
tween the set of functional program evaluations and the solution set of the con-
straint system. Provided we have at hand a correct constraint solver, it means
that a solution of the constraint system is actually a test data solving the testing
objective over the functional program.

Paper-written proofs of these theorems are available (in Carlier’s Ph.D [3]
and [5]) but more interestingly, we also performed a machine-checked proof of
the soundness theorem in Coq. This allowed us to find a bug in one of the rules
in Fig. 7 and to patch the soundness proof. The Coq implementation available
at www.ensiie.fr/~dubois/Coqfocaltest follows carefully the specifications
given in this paper and also provides a lot of extra details, in particular about
fresh names and dedicated data structures. Minimal extra type information has
been necessary, it appears as annotations tied to variables, more precisely a
Boolean set to true if the variable has type integer, false if it has a concrete
type. The Coq development contains around 20 000 lines of code. Thanks to
the Coq extraction mechanism a correct translator written in OCaml can be
extracted and is operational.

www.ensiie.fr/~dubois/Coqfocaltest

Formally Verified CBT Tool: FocalTest 49

6 Conclusion

We have formally and semantically defined and verified the translation of test
unities into constraints. A test unity is composed of both a program and a test
objective for which a test data generation is issued. In this paper, provided that
we have at hand a correct and complete constraint solver, we proved both man-
ually and with the proof-assistant Coq, that such an issue can be automatically
solved in our constraint-based testing tool FocalTest. In other words we have
demonstrated the soundness and completeness of the translation process, ensur-
ing so an equivalence between the solutions of the constraint system and the
evaluation of the corresponding Focalize program.

However, this work still needs to be extended in two directions. Firstly, we did
not deal with higher-order function calls in our proofs, although these aspects
are tackled in FocalTest. Secondly, to complete the overall picture, we need to
formalize and verify (with machine-checked proofs) the algorithms involved in
the constraint solving procedure. This work is currently under process and we
are pretty confident in our ability to design a complete correction proof of our
constraint-based test data generation tool. This would make a first step towards
more formally verified test data generation tools.

References

1. Ayrault, P., Carlier, M., Delahaye, D., Dubois, C., Doligez, D., Habib, L., Hardin,
T., Jaume, M., Morisset, C., Pessaux, F., Rioboo, R., Weis, P.: Trusted soft-
ware within focal. In: C&ESAR 2008, Computer Electronics Security Applications
Rendez-vous, pp. 162–179 (2008)

2. Brucker, A.D., Wolff, B.: Interactive Testing with HOL-TestGen. In: Grieskamp,
W., Weise, C. (eds.) FATES 2005. LNCS, vol. 3997, pp. 87–102. Springer, Heidel-
berg (2006)

3. Carlier, M.: Test automatique de propriétés dans un atelier de développement de
logiciels sûrs. PhD thesis, CEDRIC Laboratory, Paris, France (2009)

4. Carlier, M., Dubois, C.: Functional Testing in the Focal Environment. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 84–98. Springer, Heidelberg
(2008)

5. Carlier, M., Dubois, C., Gotlieb, A.: Constraint reasoning in focaltest. In: Int. Conf.
on Soft. and Data Tech. (ICSOFT 2010), Athens (July 2010); Also, CNAM Tech.
Report CEDRIC-09-1703, 36 pages (2009)

6. Charreteur, F., Gotlieb, A.: Constraint-based test input generation for java byte-
code. In: 21st IEEE Int. Symp. on Softw. Reliability Eng. (ISSRE 2010), San Jose,
CA, USA (November 2010)

7. Denmat, T., Gotlieb, A., Ducasse, M.: Improving constraint-based testing with
dynamic linear relaxations. In: 18th IEEE Int. Symp. on Soft. Reliability Eng.
(ISSRE 2007), Trollhttan, Sweden (November 2007)

8. Coq development team. The Coq proof assistant reference manual, Ver. 8.3 (2009)
9. Fink, G., Bishop, M.: Property-based testing: A new approach to testing for as-

surance. ACM SIGSOFT Software Engineering Notes 22(4), 74–80 (1997)
10. Flanagan, C.: Automatic software model checking via constraint logic. Sci. Comput.

Program. 50(1-3), 253–270 (2004)

50 M. Carlier, C. Dubois, and A. Gotlieb

11. Gómez-Zamalloa, M., Albert, E., Puebla, G.: Test case generation for object-
oriented imperative languages in clp. TPLP 10(4-6), 659–674 (2010)

12. Gotlieb, A.: Euclide: A constraint-based testing platform for critical c programs.
In: Int. Conf. on Soft. Testing, Valid. and Verif. (ICST 2009), Denver (April 2009)

13. Gotlieb, A., Botella, B., Rueher, M.: A CLP Framework for Computing Structural
Test Data. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach,
U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI),
vol. 1861, pp. 399–413. Springer, Heidelberg (2000)

14. Hayhurst, K., Veerhusen, S., Chilenski, J., Rierson, L.K.: A practical tutorial on
modified condition/decision coverage, nasa langley. Technical report (2001)

15. Leroy, X.: Formal verification of a realistic compiler. Communications of the
ACM 52(7), 107–115 (2009)

16. Maranget, L.: Compiling Lazy Pattern Matching. In: Conference on Lisp and Func-
tional Programming. ACM Press (1992)

17. Marre, B., Arnould, A.: Test sequences generation from lustre descriptions: Gatel.
In: Proc. of the 15th IEEE Conference on Automated Software Engineering (ASE
2000). IEEE CS Press (September 2000)

18. Podelski, A.: Model Checking as Constraint Solving. In: Palsberg, J. (ed.) SAS
2000. LNCS, vol. 1824, pp. 22–37. Springer, Heidelberg (2000)

19. Wotawa, F., Nica, M.: On the compilation of programs into their equivalent con-
straint representation. Informatica 32(4), 359–371 (2008)

Testing Library Specifications

by Verifying Conformance Tests

Joseph R. Kiniry1, Daniel M. Zimmerman2, and Ralph Hyland3

1 IT University of Copenhagen, Denmark
kiniry@acm.org

2 University of Washington Tacoma, USA
dmz@acm.org

3 University College Dublin, Ireland
ralph.hyland@gmail.com

Abstract. Formal specifications of standard libraries are necessary when
statically verifying software that uses those libraries. Library specifica-
tions must be both correct, accurately reflecting library behavior, and use-
ful, describing library behavior in sufficient detail to allow static
verification of client programs. Specification and verification researchers
regularly face the question of whether the library specifications we use are
correct and useful, and we have collectively provided no good answers.
Over the past few years we have created and refined a software engineering
process, which we call the Formal CTD Process (FCTD), to address this
problem. Although FCTD is primarily targeted toward those who write
Java libraries (or specifications for existing Java libraries) using the Java
Modeling Language (JML), its techniques are broadly applicable. The key
to FCTD is its novel usage of library conformance test suites. Rather than
executing the conformance tests, FCTD uses them to measure the cor-
rectness and utility of specifications through static verification. FCTD is
beginning to see significant use within the JML community and is the
cornerstone process of the JML Spec-a-thons, meetings that bring JML
researchers and practitioners together for intensive specification writing
sessions. This article describes the Formal CTD Process, its use in small
case studies, and its broad application to the standard Java class library.

1 Introduction

In an ideal world, all software systems would be 100% reliable and have verifiable
formal specifications. These specifications would be both correct, accurately re-
flecting the runtime behavior of the implementations they claim to describe, and
useful, providing sufficient information to allow developers to use and extend the
implementations in safe, behaviorally predictable ways.

Clearly, we do not—and will likely never—live in this ideal world. The vast
majority of today’s software has defects, and some is completely unreliable. Of
the software that is considered robust and reliable, most has not undergone
formal verification. A commonly discussed way in which the reliability of such
software is determined is through exhaustive automated unit testing, both of

A.D. Brucker and J. Julliand (Eds.): TAP 2012, LNCS 7305, pp. 51–66, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

52 J.R. Kiniry, D.M. Zimmerman, and R. Hyland

individual components and of full systems. Very little of today’s software has
formal specifications of any kind and, in our experience, many of the formal
specifications that do exist are either incorrect or not useful.

While it is clearly impossible to achieve an ideal, 100% reliable, fully-specified
world, it is certainly possible to improve the current state of software specifi-
cation and reliability. One approach to doing this for Java applications, taken
by the Java Modeling Language (JML) community, has been to retroactively
provide formal specifications for the behavior of the standard Java class library.
Since the standard library is the foundation for all Java software, this enables
Java programs to be formally specified and verified using the standard library
specifications as building blocks. A set of specifications for much of the Java
1.4 class library was included as part of the release of the Common JML tool
suite [2], and has since been used to formally specify and verify multiple large
Java systems [13,14]. In addition, a set of specifications for Java 1.5 through 1.7
is under development as part of the OpenJML project.

We call such retroactive specification of classes Contract the Design (CTD).
To perform CTD, the specification writer takes an implementation that already
exists, such as the Java class library, and writes contracts (formal specifications)
to describe the existing behavior. This approach is effectively the logical dual
of Design by Contract (DBC) [17], where contracts are written first and the
software is subsequently implemented in a way that fulfills the contracts.

Unfortunately, two critical difficulties arise when using CTD to specify ex-
isting systems. The first is that retroactively devising good specifications for
existing systems is quite difficult, even with full access to source code, and is es-
pecially problematic when documentation is incomplete, absent, or vague (a not
infrequent occurrence). The second is that, once a specification has been written
for a non-trivial piece of software, it is hard to determine whether the specifi-
cation is correct and useful. Imagining all the situations in which the software
might be used is infeasible, and it is impossible to just “try out” the specifica-
tion with the multitude of tools that will consume and use it. These difficulties
are also faced by developers writing conformance tests for libraries (and, more
generally, unit tests for nontrivial software systems), who must devise sets of
tests that thoroughly exercise the functionality of their systems.

As a result of these difficulties, the Java class library specifications currently
packaged with JML were written over several years in essentially ad hoc fashion.
Efforts were made to ensure their correctness, and they are all (to the best of
our knowledge) at least type-correct; however, there was no systematic way to
measure their utility and, until now, no attempt to devise such. Deficiencies
in the specifications have primarily been discovered by application developers
attempting to verify their code and by tool developers attempting to make their
tools understand the specifications, and the specifications have been patched in
various ways over time in response to these discoveries.

This work addresses the difficulties in using CTD for library specification,
taking advantage of the substantial body of knowledge related to the creation
of high quality unit test suites by combining existing testing techniques with

Testing Library Specifications by Verifying Conformance Tests 53

runtime and static verification techniques. The resulting process, which we call
the Formal CTD Process (FCTD), allows us to effectively test specifications for
correctness and measure their utility.

The Formal in Formal CTD Process refers to the fact that we use verification
tools to determine the correctness and utility of specifications. We consider the
correctness of a specification to be a binary property: a specification is correct
if it is never violated by the implementation it claims to specify and incorrect
otherwise. This can be determined statically or, in cases where the source code
of the system being specified is unavailable, evidence for such can be observed
dynamically. We measure the utility of a specification as the percentage of the
unit tests for the specified implementation that can be statically verified using
the specification.

The “secret sauce” of this process is the realization that unit tests and verifica-
tion “fit” together well. Unit tests operationally express the correct behavior of a
system under test (SUT), while specifications denotationally express the correct
behavior of a SUT. Thus, unit test outcomes should be statically verifiable using
SUT specifications. Just as test coverage criteria tell us something about the
quality of our implementations, verification coverage criteria (correctness and
utility) tell us something about the quality of our specifications.

FCTD has been used in several case studies, and we have devised a method
to apply it to the entire standard Java class library. The resulting ability to test
the specifications of the Java class library is playing a critical role in the effort
to update JML to support current and future versions of Java. The end result of
this effort will be a correct and useful JML specification of the Java class library
to complement the (often poor) existing Javadoc “specification”, which will both
clarify the behavior of the library for application developers and allow them to
confidently use the many verification and validation tools that understand JML.
In the remainder of this article we provide background information about the
components of the FCTD process, describe the principles underlying FCTD, and
discuss concrete realizations of FCTD for JML and Java code.

2 Background

FCTD combines unit testing and verification to evaluate specifications. In this
section, we provide background information on the tools and techniques used in
our concrete realizations of FCTD: JML, unit testing, and static checking. More
detailed descriptions are available in the cited works and in the documentation
accompanying the tools.

2.1 The Java Modeling Language

The Java Modeling Language [16] is a specification language for Java programs.
It allows developers to specify class and method contracts (i.e., preconditions,
postconditions, invariants) as well as more sophisticated properties, up to and
including mathematical models of program behavior. Many tools are compatible

54 J.R. Kiniry, D.M. Zimmerman, and R. Hyland

with JML, including compilers, static checkers, runtime assertion checkers, unit
test generators, and automated specification generators [2].

Runtime assertion checking (RAC) is one of the most common applications
of JML. A special RAC compiler is used to transform JML-annotated Java
code, adding runtime checks for method preconditions and postconditions, class
invariants and constraints, and other JML contracts such as loop invariants and
variant functions. The transformed code, when run in any Java virtual machine,
signals assertion failures at runtime via special JML runtime errors.

JML and its associated tools are used in many contexts. Many formal methods
researchers have adopted JML, and many JML-compatible tools have full JML
specifications; in some cases, these tools have even been statically verified. JML
is also used in educational contexts at several universities [15], as well as in
production systems such as the KOA Internet-based remote voting system [13].

Currently, most stable and supported publicly available JML tools only sup-
port Java versions prior to 5.0. The OpenJML project [5] and the JMLEclipse
project [3] are efforts to build JML tools atop modern compiler code bases (Open-
JDK [19] and the Eclipse JDT [22], respectively), so that JML will be able to
better keep pace with future changes to Java. This modernization effort is a pri-
mary motivator for the work presented here, as a multitude of new specifications
must be written for new and changed classes in the standard Java class library
before a new set of JML tools can be effectively used.

2.2 Unit Testing

Unit testing has long been an important validation technique in many software
development processes. It is essentially the execution of individual components
of a system (the units) in specific contexts to determine whether the components
generate expected results. A single unit test has two main parts: test data and
a test oracle. The test data are input values—for example, method parameter
values—used to establish the state of the unit under test. The test oracle is a
(typically small) program that determines whether the behavior of the unit is
correct when it is executed with the test data.

Testing a non-trivial software system typically requires many unit tests, which
are collectively called a test suite. The quality, usually called coverage, of a test
suite is measured in several ways [23]; for example, given a particular SUT,
statement coverage (sometimes called code coverage) is the percentage of the ex-
ecutable code in that system that is executed during testing, while path coverage
is the percentage of the possible execution paths through that system that is
executed during testing.

As will become evident in Section 3, effective use of FCTD requires the avail-
ability of a high-coverage test suite for the system being specified, preferably
a conformance test suite that defines the full functionality of the system. Sig-
nificant research has been done on techniques for automatically generating test
suites, and many of those techniques are quite promising. However, the develop-
ment of test suites is still predominantly done without automation. Developers
sit down with the system to be tested, decide what test data should be used

Testing Library Specifications by Verifying Conformance Tests 55

and how to determine whether each test has passed or failed, and encode this
information manually.

Test suites are usually executed within a test framework that runs and records
the result of each test and summarizes the results of the suite to the developer.
This allows the test suite to be run easily, repeatably, and without constant
developer supervision; it also allows test runs to be incorporated into the au-
tomatic build processes that exist in many software development environments.
Such frameworks exist for nearly every programming language; the predominant
ones for Java are JUnit [10] and TestNG [1]. For the purposes of FCTD there
is no clear reason to choose one over the other; we have typically used JUnit
because it ships as an integrated part of the open-source Eclipse Development
Platform [22], which we use for most of our development work.

One particular way of automating the development and execution of test
suites that applies specifically to JML-annotated Java programs is embodied in
the JMLUnit [4] and JMLUnitNG [24] tools. These tools automatically generate
test oracles using JML runtime assertion checks. For each method under test,
the tools construct JUnit or TestNG (respectively) tests to call that method
with multiple test data values taken from a default or developer-provided set.
Each test passes if the method call completes with no assertion failures and fails
if the method call completes with an assertion failure other than a violation
of the method’s precondition. If a test violates the method’s precondition it is
considered meaningless, because the behavior of a method is undefined when its
precondition is violated and can therefore not be evaluated.

FCTD does not work with unit tests generated by tools like JMLUnit and
JMLUnitNG, because such tools generate operational “specifications” (in the
form of unit tests) directly from denotational specifications (in the form of JML).
Since the resulting tests pass exactly when the specifications are satisfied, re-
gardless of how trivial the specifications are, they can provide no information
about specification utility. To guarantee “objective” evaluation of specification
utility, unit tests must be written independently (i.e., without reference to the
specifications being evaluated).

2.3 Static Verification

Static verification is a process whereby a body of formally specified source or
object code is analyzed to determine whether it satisfies its specification. This
analysis is typically carried out by transforming the code and specification into
verification conditions, which are then evaluated using one or more automated
theorem provers. An extended static checker is a tool that performs static veri-
fication as well as checking for and flagging common programming errors.

In our initial experiments with FCTD we have primarily used ESC/Java2 [14],
an evolution of the original Digital SRC ESC/Java [8], to perform static verifica-
tion on JML-annotated Java code. We have also experimented with the prototype
ESCs being developed as part of the OpenJML and JMLEclipse projects, but
these are not currently robust enough to reason about the rich specifications
under discussion here.

56 J.R. Kiniry, D.M. Zimmerman, and R. Hyland

ESC/Java2 detects typical Java programming errors such as null pointer deref-
erences, invalid class casts, and out-of-bounds array indexing. It also performs
several kinds of automated verification to attempt to ensure that the code is cor-
rect with respect to its associated JML specifications and, in conjunction with
a specification consistency checker, to ensure that the specifications themselves
are sound. The consistency check is important, especially for specification writers
who are just learning CTD/DBC, because it is easy for inexperienced developers
to write inconsistent specifications (e.g., invariants that collapse to true) that
are always satisfied regardless of the system’s actual behavior.

The verification performed by ESC/Java2 is modular ; it verifies each method
m by transforming the Java code of only method m into verification conditions
and relies on the JML specifications of all the other methods and classes to which
m refers to create the remainder of the verification conditions it needs. Thus,
ESC/Java2 verifies each method in relative isolation, which is far less resource-
intensive (and far more feasible given the state of automated theorem prover
technology) than processing an entire system, or even an entire class, at once.

Support for modern Java syntax and constructs in ESC, as in JML itself, is
still a work in progress. We expect that the new ESC tools being developed as
part of the OpenJML and JMLEclipse projects will address this issue.

3 The Formal CTD Process

The Formal CTD Process is a combination of unit testing techniques and verifi-
cation techniques. FCTD is general enough to be applied to systems and speci-
fications written in any language and unit tests running in any framework; the
only requirement is the availability of at least one static verification tool capable
of reasoning about off-the-shelf unit tests.

It is important to note that executing unit tests is a completely optional part
of the process. Executing unit tests within a RAC environment to determine
whether CTD specifications are violated by the tests is certainly feasible; how-
ever, there are two serious issues with using runtime checks to evaluate speci-
fication quality. First, it is quite easy to write correct, but clearly non-useful,
specifications that pass their runtime assertion checks regardless of what the
underlying implementation does. Second, it is possible for all the runtime checks
to pass when running a test suite that does not thoroughly exercise the imple-
mentation, leaving incorrect specifications undiscovered.

A conformance test suite (or other high-coverage test suite) can provide some
persuasive evidence for the correctness of a set of specifications through run-
time checking, because it thoroughly exercises all the intended functionality of
the implementation. However, even runtime checks of conformance tests cannot
conclusively establish correctness because there is always the possibility of unde-
sirable “easter eggs” (e.g., “when a specific, undocumented set of parameters is
passed to this method, exit the virtual machine”) in any given implementation.
To truly establish correctness, the specification must be statically verified against
the implementation; if source code is not available, the best we can do is to

Testing Library Specifications by Verifying Conformance Tests 57

perform runtime checking of a conformance test suite and hope (or, when possi-
ble, measure with coverage tools) that it completely covers the implementation.

On the other hand, it is impossible to determine the utility of a specification
through runtime checking regardless of the test suite used. Runtime checking
provides no basis for determining whether a specification will enable us to prove
the correctness of programs that use the specified system.

In this section, we describe how FCTD allows us to determine the utility of
specifications; in the next section, we describe our specific implementations of
FCTD for testing JML specifications of Java systems.

3.1 Unit Tests as Operational Behavioral Specifications

As noted above, CTD specifications written for an existing system are correct if
they can be statically verified. The use of static verification to determine specifi-
cation correctness is one aspect of FCTD, but the critical hypothesis underlying
the process is the following: if correct CTD specifications for a system are suffi-
cient to allow an existing high-quality and high-coverage test suite for the system
to be statically verified, then for all practical purposes the specifications are use-
ful. By statically verifying a full test suite, we effectively “test” the ability of the
specifications to capture the intended behavior of the system. The existing test
suite is an operational behavioral specification of the system, against which we
compare our formal specifications.

To illustrate this idea, consider the method java.lang.String.getChars

from the Java class library. Its signature and Javadoc documentation (Figure 1)
are fairly straightforward. A careful reading of this documentation (plus the
knowledge that, in Java, performing array operations on a null array causes
a NullPointerException) yields a 23-line JML specification (Figure 2) with
three behavior clauses, one normal and two exceptional. This specification refers
to charArray, a model field representing the character sequence encapsulated
by the String, and equal, a model method that compares ranges of charac-
ters in two arrays for equivalence; both of these are inherited from java.lang.

CharSequence, an interface implemented by String.1

Surprisingly, the reference implementation of getChars is only 7 statements
long. Three if statements check the legitimacy of parameters and, if necessary,
throw various instances of StringIndexOutOfBoundsException. Once the pa-
rameters are found to be legitimate, a single call to System.arraycopy copies
the characters from the string into the destination array.

Verifying the correctness of this specification with respect to the reference im-
plementation is a straightforward proposition—after all, the body of the method
is short and, while it has a relatively high cyclomatic complexity given its size,
its “shape” matches that of the specification. Moreover, the specification of
System.arraycopy is strong and well-used.

But how do we measure the utility of our 23-line getChars specification? To
accomplish this, we turn our attention to the conformance test suite for the

1 The specification would, of course, be significantly longer if it did not use the inher-
ited model field and model method.

58 J.R. Kiniry, D.M. Zimmerman, and R. Hyland

public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)

Copies characters from this string into the destination character array. The first
character to be copied is at index srcBegin; the last character to be copied is at index
srcEnd-1 (thus the total number of characters to be copied is srcEnd-srcBegin). The
characters are copied into the subarray of dst starting at index dstBegin and ending
at index dstbegin+(srcEnd-srcBegin)-1.

(parameter descriptions omitted; they contain no restrictions on parameter values)

Throws IndexOutOfBoundsException if any of the following is true: srcBegin is nega-
tive; srcBegin is greater than srcEnd; srcEnd is greater than the length of this string;
dstBegin is negative; dstBegin+(srcEnd-srcBegin) is larger than dst.length.

Fig. 1. Javadoc documentation for library method java.lang.String.getChars

public normal_behavior
requires srcBegin >= 0

&& srcBegin <= srcEnd
&& srcEnd <= charArray.length
&& dst != null
&& dstBegin >= 0
&& dst.length >= dstBegin + (srcEnd - srcBegin);

modifies dst[dstBegin .. dstBegin +srcEnd-srcBegin -1];
ensures equal(charArray , srcBegin , dst, dstBegin , srcEnd - srcBegin);

also
public exceptional_behavior

requires srcBegin < 0
|| srcBegin > srcEnd
|| srcEnd > charArray.length
|| dstBegin < 0
|| (dst != null && dst.length < dstBegin + (srcEnd - srcBegin));

modifies \nothing ;
signals_only IndexOutOfBoundsException;

also
public exceptional_behavior

requires dst == null;
modifies \nothing ;
signals_only NullPointerException;

Fig. 2. JML specification for library method java.lang.String.getChars

Java class library, the Java Compatibility Kit (JCK), which includes tests for
getChars in the class GetCharsTest. This class is around 450 lines in length
and contains nine comprehensive tests that call getChars a total of 36 times.

If we execute this test suite against the reference implementation of getChars,
we exercise the implementation against the idea of correctness that the test
writers had in mind when writing the tests. If, on the other hand, we attempt to
prove that the unit tests always pass, we exercise our specification of getChars
against that same idea of correctness.

One potential issue with this technique is overspecification—generating speci-
fications detailed enough to prove that all the unit tests pass but too cumbersome
or too highly specific to the particular tested situations for developers to use in
general applications. We attempt to avoid overspecification in two ways: first,
we develop specifications only from publicly-available documentation (including

Testing Library Specifications by Verifying Conformance Tests 59

test suites when necessary to clarify ambiguous documentation) and not directly
from source code; second, we use conformance tests or other high-coverage, high-
quality test suites in an effort to cover enough functionality that “specifying to
the tests”, if it is done at all, actually results in useful specifications.

We return to the JCK and getChars in Section 4.2; first, however, we explain
how we combine unit testing and static verification to prove that the unit tests
always pass.

3.2 Unit Test Specifications

In order to statically verify a test T , we must have specifications for both T itself
and the test framework F against which T is written. Otherwise, T would be
trivially verifiable as it need not maintain or establish any particular properties.

The specification for each test T is simple, and happens to match the default
specification that ESC/Java2 assigns to any method that has no specification.
Its precondition is true, as there are no constraints on when the unit test can be
run;2 its postcondition is also true, as we expect the test to terminate normally.
Additionally, no exceptions should be thrown, so its exceptional postcondition
is false. In essence, such a specification says that all unit tests should pass, no
unit tests should fail and the test suite should not halt unexpectedly.

While test frameworks typically have a very rich set of methods to assert
test conditions, we presume that test framework F contains only two methods—
Assert(boolean P) and Fail()—and that all other assertion methods in F
are defined in terms of these two methods. The Assert method does nothing
if P is true and reports a test failure if P is false, while the Fail method
unconditionally reports a test failure.

Framework F records a passing result for test T if T terminates normally. T
may call the Assert method an arbitrary number of times to check the validity
of an arbitrary number of predicates; if any of these assertions fail, F records a
failing result for T . F also, of course, records a failing result for T if T calls the
Fail method.

The specification of Assert(P) is {P} Assert(P) {P}. This specification forces
the verifier to check that P holds, as it is the precondition of Assert. This is
logically equivalent to simply asserting P. In case the test calls other methods of
the framework API in the same method body, we also require that P holds as
the postcondition.

The specification of Fail is {false} Fail {true}. This specification forces
the verifier to attempt to prove an unprovable verification condition, and thus
will always fail verification. The idea here is that the verification systems we use
have the ability to reason about unreachable code, and one way of checking for
such is to attempt to assert false in unreachable blocks [12]. Since unit tests
should never fail, all calls to Fail should be unreachable during static analysis.

2 Unit tests that depend on the results of other unit tests, which can be written in
certain testing frameworks, have somewhat more complex preconditions; however,
such frameworks typically handle the ordering of such tests automatically.

60 J.R. Kiniry, D.M. Zimmerman, and R. Hyland

With this combination of automatic default specification for the unit test and
novel specification of test framework assertions, successful verification of a given
unit test means that the unit test always passes: neither Assert(false) nor Fail
is ever called. Therefore, it demonstrates that the CTD specification is sufficient
to guarantee the success of the unit test. We measure specification utility as the
percentage of unit tests in a test suite that can be statically verified; clearly, the
correspondence between this measure of utility and actual “real-world” utility
for developers is highly dependent on the quality of the test suite we verify.
In particular, successful verification of a library conformance test—effectively,
a complete definition of the required library behavior—against a library spec-
ification means that generalized client programs of the library should also be
verifiable against the library specification (though they may still, of course, be
unverifiable for reasons having nothing to do with the library specification).

Now that we have described the general idea of using verification to test the
correctness and utility of specifications, we will discuss our concrete applica-
tions of this general idea using Java, JML, ESC/Java2, and Java unit testing
frameworks.

4 The Concrete Process

We have been using the FCTD process for several years when writing new, or re-
working existing, specifications of the Java API. An early variant of the concrete
process was proposed by David Cok during the development of ESC/Java2. That
process, which only used hand-written unit tests, the ESC/Java2 static checker
and the JUnit framework, was used to write specifications of several classes.
More recently one of the authors focused on refining the process, incorporat-
ing support for both static and runtime checking and using tests from the Java
Compatibility Kit (JCK) [11].

In this section, we describe the modifications we have made to use JUnit and
the JCK with the FCTD process, as well as giving background information on
the organization of the JCK and its companion JavaTest framework.

4.1 JUnit

The FCTD process was originally designed for use with JUnit-like frameworks;
therefore, the JML specifications added to the JUnit testing framework in order
to successfully carry out FCTD are essentially those discussed in Section 3.2.

The JUnit API’s key class, org.junit.Assert, has many methods that al-
low the test writer to assert various conditions. The most important two such
methods are assertTrue(String message, boolean condition), which as-
serts that condition is true, and fail(String message), which causes an
unconditional test failure. Figure 3 shows the JML specifications added to those
methods for FCTD. A number of other methods, including assertFalse and
assertNull, are implemented in terms of assertTrue; still others, such as
assertEquals (for object equivalence) have their own implementations and we
do not show the JML specifications for these here.

Testing Library Specifications by Verifying Conformance Tests 61

/** Asserts that a condition is true. */
//@ public normal_behavior
//@ requires condition;
//@ ensures condition;
public static void assertTrue(/*@ nullable @*/ String message ,

boolean condition);

/** Fails a test with no message . */
//@ public normal_behavior
//@ requires false;
//@ ensures true;
public static void fail(/*@ nullable @*/ String message);

Fig. 3. The specification of key methods in JUnit’s Assert class

With these modifications to the JUnit API, we can perform FCTD with any
existing set of JUnit tests for a JML-annotated SUT. We have sets of hand-
written JUnit tests for a small selection of classes in the Java class library, as
described later in Section 5; however, the conformance tests in the Java Com-
patibility Kit are preferable to our JUnit tests for testing the Java class library.

4.2 The Java Compatibility Kit

An implementation of the Java class library typically consists of a combination
of Java code and native libraries. There are many such implementations, even
on the same hardware and OS platform; Sun themselves implemented the class
library for three platforms (Solaris, Windows, Linux), Apple implemented it for
Mac OS and Mac OS X, and other implementations have been developed by
companies such as IBM and Hewlett-Packard and open-source groups such as
the Apache Harmony [21] and GNU Classpath [9] projects. In addition, Open-
JDK [19], an open-source (GNU GPLv2+Classpath) version of Java first made
available by Sun in 2007 and currently maintained by Oracle, runs on many
different hardware and operating system platforms.

To ensure that the multitude of Java class library implementations would
be mutually compatible and conform to the Java standard, Sun developed an
extensive conformance test suite called the Java Compatibility Kit (JCK). Java
licensees are required to ensure that their implementations pass the JCK tests
before they can use the Java trademark.

Initially, Sun released the JCK to the public with a read-only license; the
source code for the JCK was publicly available, but developers were explicitly
permitted only to read the source code and not to compile or execute it.3 The
read-only license was one of the inspirations for the FCTD process, as it led us
to consider ways in which we could make use of this conformance test suite while
neither compiling nor executing it. Since the release of OpenJDK, however, Sun
(now Oracle) has licensed the JCK for use by developers who are running it in

3 Sun’s (now Oracle’s) licensees, of course, have always had full access to the JCK
under more liberal license terms.

62 J.R. Kiniry, D.M. Zimmerman, and R. Hyland

//@ public normal_behavior
//@ ensures \fresh(\result);
//@ ensures \result.isPassed ();
//@ ensures stringEquals(\ result.getReason(), reason);
public static /*@ pure non_null @*/ Status passed
(/*@ nullable @*/ String reason);

//@ public normal_behavior
//@ requires false;
//@ ensures \fresh(\result);
//@ ensures \result.isFailed ();
//@ ensures stringEquals(\ result.getReason(), reason);
public static /*@ pure non_null @*/ Status failed
(/*@ nullable @*/ String reason);

Fig. 4. The specification of key methods in JavaTest’s Status class

conjunction with OpenJDK development or with projects that derive substan-
tially from OpenJDK (such as the OpenJML project) [20].

JavaTest. The JCK test suite is designed to be executed within a framework
called JavaTest, which was also developed by Sun. The source for the JavaTest
framework is available separately from the JCK distribution [18] and is (primar-
ily) released under the same open-source license as OpenJDK. Thus, we are able
to modify the JavaTest framework in a way that allows us to attempt static
verification of all the unit tests in the JCK (and, for that matter, any other test
suites written for the JavaTest framework).

The JavaTest API differs significantly from most standard test APIs in that it
does not enable test code to directly assert predicates. Instead, “status” objects
are constructed to indicate whether a given test branch passed or failed in some
fashion. Thus, there is no direct analogue to the Assert method in the JavaTest
API. When a test branch determines that it has succeeded, it always constructs
and returns a status object representing a “success”. Similarly, when a test
branch determines that it has failed, it always constructs and returns a status
object representing a “failure”.

Our modifications to the framework are primarily to the class com.sun.

javatest.Status, which implements the “status” object and therefore encap-
sulates the result of a single test. Status contains factory methods for creating
objects that indicate that a test has passed, failed, or caused an error, and these
methods are used by the JCK tests to report their outcomes.

To use FCTD with the JCK, we added JML specifications to these factory
methods in the manner described in Section 3.2; these appear in Figure 4.4 Note
that the failed factory has a precondition of false, while the passed factory
need not have pre- or postconditions relating to an asserted predicate because
it always indicates a passed test. We also added minimal specifications to some
related classes to ensure that we did not cause any NullPointerExceptions or
similar runtime issues.

4 stringEquals is shorthand for “the two strings are equivalent or are both null.”

Testing Library Specifications by Verifying Conformance Tests 63

public Status String0061() {
String testCaseID = "String0061";
String s = "getChar Test"; //step Create a String
char[] dst = null; //step Create a null reference
try {

s.getChars (1,3,dst ,0); // step Try to get chars
}
catch (NullPointerException e) { //step Catch an exception

return Status.passed("OKAY");
}
return Status.failed(testCaseID + " getChars failed");

}

Fig. 5. The first JCK test method for String.getChars

JCK Example. An example will help to clarify the usage of the JavaTest
framework for running automated tests. Recall that we discussed the method
java.lang.String.getChars in Section 3.1. The first JCK test method for
getChars (also the 61st JCK test method for the String class), String0061
, is replicated in Figure 5. In this test, the success case is the return in the
catch block where a “passed” instance of Status is constructed; this particular
test is checking to see that passing a null array to getChars correctly causes
a NullPointerException. The failure case is the final return where a “failed”
Status is constructed.

The JML specification of getChars, therefore, needs to be strong enough to
guarantee that a NullPointerException is always thrown when getChars is
called on a String and given a null destination array. If the specification is
sufficient, String0061 will pass its static verification. The JML specification
in Figure 2 correctly guarantees a NullPointerException in this instance and
allows String0061 to be statically verified. Interestingly, the specification for
getChars shipped with some versions of the JML tools (including the most
recent version of the Common JML tools released in 2009) does not include the
exceptional behavior clause with the NullPointerException; FCTD would have
detected that deficiency by failing to statically verify String0061 and reporting
less than 100% utility for the String specification.

5 Case Studies

For our first case study, we wrote or rewrote specifications for 26 commonly-used
classes in the Java class library: AbstractList, ArrayList, Arrays, BitSet,
Boolean, ByteArrayInputStream, Character, Class, Collection, Compara-
ble, Exception, File, InputStream, Integer, List, Long, Map, Math, Object,
Properties, Set, String, StringBuffer, System, Throwable, and Vector.5 We
used FCTD with hand-written JUnit tests to help ensure that the specifications
were both correct and useful.

5 See http://kindsoftware.com/trac/mobius/browser/src/mobius.esc/trunk/

ESCTools/Escjava/test/jdktests for details.

http://kindsoftware.com/trac/mobius/browser/src/mobius.esc/escjava/trunk/ESCTools/Escjava/test/jdktests
http://kindsoftware.com/trac/mobius/browser/src/mobius.esc/escjava/trunk/ESCTools/Escjava/test/jdktests

64 J.R. Kiniry, D.M. Zimmerman, and R. Hyland

The second case study was conducted as a part of Hyland’s MSc work [11].
Specifications for three classes that had no existing JML specifications were writ-
ten and verified using the JCK tests. These classes—ResourceBundle, Print-
Stream, and Stack—were chosen because they are the most frequently used
classes in the Java API (as measured by two static analysis tools) that were
missing specifications.

In both case studies, JML specifications for a class C were written using
Javadoc documentation for C and any classes of which C is a client. Reading
publicly available unit tests was permitted, but not encouraged, and served only
to resolve ambiguity in the documentation. In an effort to avoid overspecification,
viewing C’s source code was not permitted under any circumstances.

The struggles and outcomes of this process highlight the fact that natural
language specifications, as seen in Javadoc documentation, are often imprecise
and incomplete. This was witnessed both during attempts to verify the classes in
question against their newly-written specifications and during attempts to test
the specifications by verifying the JCK tests and other tests against them. Hy-
land’s MSc report discusses in detail some of the challenges posed and solutions
found while writing usable and correct specifications for these three classes.

During both case studies, a specification was deemed correct only if (a) a
manual review by multiple parties of the informal documentation and the formal
specification had a positive outcome, (b) hand-written unit tests all passed when
executed with runtime assertion checking of the JML specifications turned on,
and (c) ESC/Java2 verified all unit tests successfully. If unit tests could not
be executed, as in the case of the JCK, then part (b) was not performed. The
utility of a class specification was measured in these case studies as the ratio
of the number of verified unit tests for the class to the total number of unit
tests run for the class, and no class specification was declared “finished” until its
utility was measured at 100%. All class specifications were declared “finished”
by the end of the case studies.

As a result of these case studies, we have much higher confidence in the cor-
rectness and utility of the tested specifications than we did for specifications that
were written in the past using more ad hoc techniques. Consequently, the JML
community is continuing to use this process to write (and rewrite) specifications
for Java 1.7 as development on the new JML tool suite, OpenJML, continues.

6 Conclusion

We have described a new process, the Formal CTD Process (FCTD), for de-
termining whether formal specifications written for an existing software system
are correct and useful. FCTD effectively uses the existing unit test suite for the
software system as a behavioral specification and validates the formal specifica-
tions against the unit test suite by performing modular static verification. By
doing so it ensures that the formal specifications capture enough of the system’s
behavior to pass the unit tests, demonstrating the utility of the specifications.

FCTD is best suited to testing library specifications using conformance tests,
since conformance tests by definition describe exactly the required functionality

Testing Library Specifications by Verifying Conformance Tests 65

of a library.We have described a method for applying FCTD to the standard Java
class library using the Java Compatibility Kit and a version of its accompanying
JavaTest infrastructure augmented with formal specifications for key classes.
This will allow us to evaluate new specifications written for Java library classes
against the library conformance tests used by all Java licensees, and thus to
ensure that our library class specifications are of high quality.

While the concrete processes we have described here are specific to Java, JML,
and their associated tools and tests, the general technique of using static verifica-
tion of unit tests to validate specifications written for existing software systems
is widely applicable. Our process can be easily adapted to any programming
language and specification language for which both unit testing frameworks and
static verification tools are available. We believe, therefore, that our process has
the potential to significantly improve the quality of specifications written for
existing software systems, and thereby also to significantly increase the utility
of formal verification techniques that rely on such specifications.

There are several open research challenges and opportunities associated with
this work. We speculate that unit tests generated by tools that are unaware of
specifications (e.g., those that perform symbolic execution, shape analysis, etc.)
may have some utility in terms of testing specifications, but we have not yet
explored this avenue. We also speculate that the output of specification inference
tools such as Daikon [6] and Houdini [7], which attempt to infer preconditions,
postconditions and invariants from a body of code, may provide good starting
points for the generation of correct and useful specifications. Finally, we believe
it is possible to provide a more precise measurement of code and specification
coverage than the “number of tests” ratio we currently use as a measure of utility.

References

1. Beust, C., Suleiman, H.: Next Generation Java Testing. Addison–Wesley Publish-
ing Company (2007)

2. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K.R.M.,
Poll, E.: An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer (February 2005)

3. Chalin, P., Robby, et al.: JMLEclipse: An Eclipse-based JML specification and
verification environment (2011), http://jmleclipse.projects.cis.ksu.edu/

4. Cheon, Y., Leavens, G.T.: A Simple and Practical Approach to Unit Testing: The
JML and JUnit Way. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp.
231–255. Springer, Heidelberg (2002)

5. Cok, D.R., et al.: OpenJML (2011),
http://sourceforge.net/apps/trac/jmlspecs/wiki/OpenJml

6. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Science of
Computer Programming 69(1-3), 35–45 (2007)

7. Flanagan, C., Leino, K.R.M.: Houdini, an Annotation Assistant for ESC/Java. In:
Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer,
Heidelberg (2001)

http://jmleclipse.projects.cis.ksu.edu/
http://sourceforge.net/apps/trac/jmlspecs/wiki/OpenJml

66 J.R. Kiniry, D.M. Zimmerman, and R. Hyland

8. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. ACM SIGPLAN Notices 37(5), 234–245 (2002)

9. Free Software Foundation, Inc.: GNU Classpath (2011),
http://www.gnu.org/software/classpath/

10. Gamma, E., Beck, K.: JUnit: A regression testing framework (2011),
http://www.junit.org/

11. Hyland, R.: A Process for the Specification of Core JDK Classes. Master’s thesis,
University College Dublin (April 2010)

12. Janota, M., Grigore, R., Moskal, M.: Reachability analysis for annotated code. In:
6th International Workshop on the Specification and Verification of Component-
based Systems (SAVCBS 2007), Dubrovnik, Croatia (September 2007)

13. Kiniry, J.R., Cochran, D., Tierney, P.: A verification-centric realization of e-voting.
In: International Workshop on Electronic Voting Technologies (EVT 2007), Boston,
Massachusetts (2007)

14. Cok, D.R., Kiniry, J.R.: ESC/Java2: Uniting eSC/Java and JML. In: Barthe, G.,
Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 108–128. Springer, Heidelberg (2005)

15. Kiniry, J.R., Zimmerman, D.M.: Secret Ninja Formal Methods. In: Cuellar, J., Sere,
K. (eds.) FM 2008. LNCS, vol. 5014, pp. 214–228. Springer, Heidelberg (2008)

16. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the Design of
JML Accommodates Both Runtime Assertion Checking and Formal Verification.
In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2002.
LNCS, vol. 2852, pp. 262–284. Springer, Heidelberg (2003)

17. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Inc.
(1988)

18. Oracle Corporation: JT Harness project (2011), http://jtharness.java.net/
19. Oracle Corporation: OpenJDK (2011), http://openjdk.java.net/
20. Oracle Corporation: OpenJDK community TCK license agreement (2011),

http://openjdk.java.net/legal/openjdk-tck-license.pdf

21. The Apache Software Foundation: Apache Harmony - Open Source Java SE (2011),
http://harmony.apache.org/

22. The Eclipse Foundation: The Eclipse project (2011), http://www.eclipse.org/
23. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy. ACM

Computing Surveys 29(4), 366–427 (1997)
24. Zimmerman, D.M., Nagmoti, R.: JMLUnit: The Next Generation. In: Beckert,

B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 183–197. Springer,
Heidelberg (2011)

http://www.gnu.org/software/classpath/
http://www.junit.org/
http://jtharness.java.net/
http://openjdk.java.net/
http://openjdk.java.net/legal/openjdk-tck-license.pdf
http://harmony.apache.org/
http://www.eclipse.org/

Incremental Model-Based Testing

of Delta-oriented Software Product Lines

Malte Lochau1, Ina Schaefer2, Jochen Kamischke1, and Sascha Lity1

1 TU Braunschweig, Institute for Programming and Reactive Systems, Germany
{m.lochau,j.kamischke,s.lity}@tu-bs.de

2 TU Braunschweig, Institute for Software Systems Engineering, Germany
i.schaefer@tu-bs.de

Abstract. Software product line (SPL) engineering provides a promis-
ing approach for developing variant-rich software systems. But, testing
of every product variant in isolation to ensure its correctness is in general
not feasible due to the large number of product variants. Hence, a system-
atic approach that applies SPL reuse principles also to testing of SPLs
in a safe and efficient way is essential. To address this issue, we propose
a novel, model-based SPL testing framework that is based on a delta-
oriented SPL test model and regression-based test artifact derivations.
Test artifacts are incrementally constructed for every product variant by
explicitly considering commonality and variability between two consec-
utive products under test. The resulting SPL testing process is proven
to guarantee stable test coverage for every product variant and allows
the derivation of redundancy-reduced, yet reliable retesting obligations.
We compare our approach with an alternative SPL testing strategy by
means of a case study from the automotive domain.

Keywords: Delta-oriented Software Product Lines, Model-based Test-
ing, Regression Testing.

1 Introduction

Diversity is prevalent in modern software systems in order to meet different cus-
tomer requirements and application contexts [25]. Software product line (SPL)
engineering [8] provides a promising approach to develop variant-rich software
systems by managed reuse. Since these software systems increasingly control
safety- or business-critical applications, it is essential to ensure that they meet
their requirements. Recently, there has been considerable progress in applying
model checking [24,7,2] and theorem proving [3] to SPLs. However, those tech-
niques are still far from being used in industrial engineering, mainly because of
scalability issues, even for single products. Testing is much more established for
practical applications in order to ensure that software systems meet their require-
ments. Testing is indispensable to reveal faults coming from different sources,
such as erroneous feature interactions arising from obscured interplays between
software and hardware devices [4].

A.D. Brucker and J. Julliand (Eds.): TAP 2012, LNCS 7305, pp. 67–82, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

68 M. Lochau et al.

Testing SPLs product by product is, in general, infeasible due to the high num-
ber of products to be tested. Recent SPL testing approaches focus on redundancy
reduction by considering representative product subsets under test. The subset
selection is based on (1) combinatorial criteria on feature models [9,20,22], (2)
coverage criteria on SPL test models [5], and (3) coverage criteria on feature
interactions [16]. But, until now, few attention in SPL research is paid to the
problem how to actually conduct an efficient testing process on those subsets that
avoids a traditional product by product process, again, contradicting SPL reuse
principles. The new ISO 26262 standard for automotive systems even requires
comprehensive testing strategies coping with existing system variants [28].

In this paper, we propose a novel approach for incremental model-based test-
ing (MBT) [30] of SPLs based on principles of regression testing [1]. MBT is
well-suited for planing reuse potentials in SPL testing [18]. Variable test models
are used to explicitly capture behavioral commonality and variability between
product variants. On this basis, a concise approach for incrementally assembling
and reusing test artifacts for sets of products under test is built.

Our framework comprises state machines as test models extended with delta
modeling concepts [6,23] to express variability. When testing a set of products,
for each step from a product p to the next product p�, an automated adaptation of
the test model is performed by applying a regression delta. The regression delta
contains the modifications to obtain the test model of product p� from test model
of product p. It is computed automatically from the delta modeling structure of
the test models. From the regression delta, the test goals for product p�, as well
as of the set of test cases and retest obligations are derived. Additionally, it can
be determined which existing test cases are applicable to product p� and which
test results still hold. This framework has two major potentials in SPL testing:
(1) test cases can be reused for different product variants while guaranteeing
the validity of test cases and the confidential test coverage for every product
variant, and (2) test results can be reused according to change impacts between
product variants, thus guaranteeing appropriate fault detection efficiency. Our
approach is evaluated by means of a case study from the automotive domain
w.r.t. previous results obtained from an existing SPL testing approach. It is, to
the best of our knowledge, the first SPL MBT framework that captures reuse
potentials between different product variants.

The paper is organized as follows. In Sect. 2, foundations of model-based
testing are introduced. In Sect. 3, delta modeling for test models is presented.
The incremental SPL testing approach is described in Sect. 4 and evaluated in
Sect. 5. Sect. 6 discusses related work, and Sect. 7 concludes.

2 Foundations

We briefly introduce the main principles of MBT and regression testing under-
lying the incremental SPL testing framework developed in the remainder of this
paper.

Incremental Model-Based Testing of Delta-oriented SPLs 69

2.1 Model-Based Testing

Model-based testing aims at the automation of black-box testing processes [30].
A test model serves as a behavioral specification capturing the functional re-
quirements of a software product under test to be verified.

Due to their wide acceptance in industrial control systems engineering, state-
machine-like modeling approaches are commonly used as test models. State ma-
chine test models define input/output relations by means of sequences of con-
trollable input and expected observable output events. We focus on basic, i.e., flat
basic state machines as test models to keep our illustrations graspable, where
the major results are enhanceable to, e.g., UML-like state machine variants pro-
viding hierarchy, concurrency, variables etc.

Definition 1. (State Machine Test Model)
A state machine test model is a 4-tuple tm � �S, s0, L, T �, where S is a finite
set of states, s0 � S is the initial state, L is a set of transition labels, and
T � S � L � S is a transition relation.

A transition label l � �πI , πO� � L � ΠI � ΠO is a pair of a controllable
input event πI � ΠI triggering the transition, and an observable output event
πO � ΠO specifying a system reaction released by the transition, where ΠI and
ΠO are disjoint input/output alphabets. We assume state machine test models
to be deterministic, and to obey well-formedness properties as usual, i.e., the
transition graph has to be connected and every state has to be reachable from
the initial state. By TM�L� we refer to the set of well-formed state machine test
models over a label set L.

Test models specify all intended behaviors a product under test is to be verified
against by means of test runs, i.e., representative executions. Test runs refer to
test cases derived from a test model tm � TM�L�.

Definition 2. (State Machine Test Case)
A test case tc � �t0, t1, . . . , tk� � T � of a state machine test model tm � TM�L�
is a finite sequence of k transitions of tm.

Test case tc is valid for test model tm � TM�L�, written valid�tc, tm�, if its transi-
tion sequence corresponds to an alternating sequence s0, t0, s1, . . . , sk�1, tk�1, sk
of states and transitions conforming tm, i.e., (1) it starts in the initial state s0,
and (2) for all segments �si, ti, si�1� � T , 0 � i � k � 1, holds. For a test case
tc � �t0, t1, . . . , , tk�1�, we define a corresponding test run:

exec�tm, tc� � �l0, l1, . . . , lk�1� � L�

to be given as the trace traversed by tc in tm, i.e., a sequence of labels li of tran-
sitions ti, 0 � i � k � 1. We limit our considerations to deterministic behaviors,
i.e., a one-to-one correspondence between test runs and test cases. By TC�tm�,
we denote the set of test cases, i.e., all valid paths of a test model tm.

In MBT, the behaviors of an implementation of product p are verified for test
cases tc to conform those specified in its test model tm [29]. By 	te, we denote

70 M. Lochau et al.

the testing equivalence under consideration in the following, usually some kind
of trace equivalence [10]. The equivalence notion applied for the purposes of
this paper is discussed in more detail in Sect. 5. According to deterministic
behaviors specified in a test model, we assume product variants to also behave
deterministically when reasoning about equivalence of test case executions. A
product under test p passes a test run of a test case tc � TC�tm�, if its observable
behavior under the sequence of inputs conforms to the expected output behavior
specified in test model tm:

p passes tc :
 exec�p, tc� 	te exec�tm, tc�

A test suite ts � TC�tm� is a collection of test cases, where:

p passes ts :
 �tc � ts : p passes tc

A test model tm (and thus TC�tm�) potentially contains (1) an infinite number
of paths, as well as (2) paths of infinite length. For the test conformance to be
decidable, test suites ts � TC�tm� are restricted to those with (1) a finite number
of test cases, and (2) each test case to be of finite length. Adequacy criteria for
selecting appropriate test suites from test models tm usually require structural
elements in tm to be traversed at least once. For state machines, such coverage
criteria are all-states, all-transitions, etc. [30]. Formally, a coverage criterion C
applied to a test model tm selects a finite set of test goals :

tg � C�tm� � �g1, g2, . . . , gn

for instance, tg � T , i.e., the set of all transitions in tm. We write covers�tc, g�
for a test case tc � ts � TC�tm�, if the test goal g is traversed in test model tm
via tc. A test suite ts satisfies coverage criterion C, if:

�g � C�tm� : �tc � ts : covers�tc, g�

Summarizing, the set of test artifacts for a product p is given as follows.

Definition 3. (Product Test Artifacts)
The collection of test artifacts for product p is a 4-tuple tap � �tmp, tgp, tsp, tpp�
consisting of a test model tmp, a finite set tgp of test goals in tmp for criterion
C, a test suite tsp, and a test plan tpp.

A test plan organizes the test suite application by further (de-)selecting, priori-
tizing, etc. test cases from ts. We assume test plans simply to be subsets tpp � tsp
containing those test cases actually to be (re-)tested on product p. In case of
single product testing, we assume tpp � tsp.

Example 1. Consider the state machine test model in Fig. 1 consisting of states
S � �s0, s1, s2
 and transitions T � �t0, t1, t2, t3
. Assuming C is the all-
transitions coverage criterion, the set of test goals is given as tg � �t0, t1, t2, t3
.
A sample test suite ts � �tc1, tc2
 that satisfies C consists, e.g., of two test cases
tc1 � �t0, t1� and tc2 � �t0, t2, t3�, where tc1 covers t0 and t1 and tc2 covers
t0, t2, and t3. A test run of tc2 corresponds to the sequence exec�tc2, tm� �
��π1, π2�, �π3, π5�, �π3, π2��.

Incremental Model-Based Testing of Delta-oriented SPLs 71

s0 s1

s2

t0 : π1 2

t1 : π1 4

t2 : π3 5t3 : π3 2

Fig. 1. Sample State Machine Test Model

For the following discussions, we assume the existence of some (black-box) test
case generator (cf. e.g. [12]) and write tc � gen�tm, g� to generate a test case
that covers test goal g on test model tm, and ts � gen�tm, C� for the generation
of entire test suites satisfying coverage criterion C on test model tm.

2.2 Regression Testing

The purpose of regression testing is to efficiently verify that changes between
different versions of a product are as intended [1,11]. For a software product
implementation version p evolving to version p� over time, regression testing
strategies aim at verifying that (1) the changes are correctly implemented, and
(2) the changes do not erroneously influence parts of p reused in p� other than
intended. When stepping to the next version p�, the test suite evolves accordingly
such that ts� � gen�tm�, C� is executed on p�. For non-naive regression testing
approaches, reuse potentials between p and p� arise, namely (1) the reuse of test
cases in ts generated from tm in ts� for reducing test generation efforts, and (2)
reuse of test execution results for test cases in ts applied to p for p�, i.e., reducing
test execution efforts. For the reuse of test cases tc � ts in ts�, we require:

exec�tc, tm� 	te exec�tc, tm
��

Thus, tc concerns system reactions equivalently specified in tm and tm�, i.e.,
addressing behaviors similar to p and p�. For the reuse of test execution results
obtained from exec�tc, p� for reusable test cases tc � ts�, we further require:

exec�tc, tm� 	te exec�tc, tm
�� � exec�tc, p� 	te exec�tc, p

��

This second reuse problem refers to the well-known retest selection problem of
regression testing [1]: select from the set tsR of reusable test cases a minimum
retest subset tsRT � tsR such that tsRT is capable to cover all potentially erro-
neous impacts of changes between the product implementations p and p�:

exec�tsRT, p
�� 	te exec�tsRT, p� � exec�tsR, p

�� 	te exec�tsR, p�

Regression testing approaches categorize test cases into sets of reusable tsR � ts,
obsolete tsO � ts�tsR, and new tsN � ts��tsR test cases. The set of test cases to
be (re-)executed on p� contains the retest set tsRT � tsR, as well as all new test
cases in tsN .

72 M. Lochau et al.

3 Delta-Oriented SPL Test Modeling

In order to apply an incremental MBT approach to SPLs, we need a reusable
test model to capture the commonality and variability in a closed form instead
of storing each test model variant separately. We base our approach on the
concept of delta modeling [6,23], a modular and flexible variability modeling
approach that is well suited as basis for regression-based SPL testing by incre-
mentally evolving test artifacts for product variants. In delta modeling, a family
of similar products is captured by a designated core product and a set of deltas
encapsulating changes to the core model. A delta adds and removes elements
from the core product. If there are hierarchically structured elements, a delta
operation can be used to change the internal structure of these elements. A prod-
uct variant is obtained by selecting a subset of the available deltas, determining
a suitable ordering and applying the operations of the deltas one by one to the
core product.

We apply the principles of delta modeling to state machine test models. A
delta over a state machine test model, as defined in Def. 1, can add and remove
states and transitions. Changing the label of a transition can be encoded by
removing a transition and adding a transition between the same states with a
different label. The following definition introduces the syntax of state machine
deltas.

Definition 4. (State Machine Delta)
A state machine delta is a set of delta operations δ � Op, where Op contains
(1) for every s � S, �add s
 and �rem s
, and (2) for every t � T , �add t
 and
�rem t
 for finite sets of possible states S and transitions T .

The application of a set of delta operations transforms one state machine into
another. A delta is applicable to a state machine if the states and transitions to
be removed exist and if the states and transitions to be added do not yet exist.
A delta is consistent if it only adds or removes each state or transition once.

Definition 5. (State Machine Delta Application)
The application of an applicable and consistent delta δ � Op to a state machine
tm � �S, s0, L, T � defines a function apply : TM�L��P�Op� � TM�L� such that
apply�tm, δ� � tm� � �S�, s0, L, T

�� where

– if δ � �, tm� � tm
– if δ � �op
 � δ�, then tm� � apply�apply�tm, op�, δ��
– for δ � �add s
, we have S� � S � �s
 and T � � T
– for δ � �rem s
, we have S� � S��s
 and T � � T
– for δ � �add t
, we have T � � T � �t
 and S� � S
– for δ � �rem t
, we have T � � T ��t
 and S� � S

In order to describe the set of possible test models for an SPL, we connect the
deltas to the product variants. Each product test model is defined by a set of
deltas to be applied to a given core test model tmcore in order to generate the
test model of the variant. Instead of specifying sets of deltas for each product

Incremental Model-Based Testing of Delta-oriented SPLs 73

test model, the connection can also be made by associating deltas to product
features [6]. A suitable ordering of delta application has to be defined such
that each delta is applicable to the respective model when it is used. The test
model of the product variant is obtained by applying the given deltas in the
specified ordering to the core test model tmcore. During the generation process,
it is possible that an intermediate model is constructed that is not well-formed.
However, after applying all deltas, it has to be guaranteed that the resulting
test model is well-formed. A more detailed description of the product generation
process in delta modeling can be found in [23].

To allow for a flexible delta-oriented SPL test modeling, any potential test
model should be usable as core model. This means that a state machine delta
has to exist to derive every valid test model variant from that arbitrary core
model.

Proposition 1. (Existence of State Machine Delta)
For each core state machine test model tmcore � TM�L� and each test model
variant tm � TM�L�, there exists a state machine delta δ � Op such that tm �
apply�tmcore, δ� holds.

Proof: For any potential tmcore � �S, s0, L, T � and test model variant tm �
�S�, s0, L, T

��, we have to show that there exist delta operations δ � Op that
are sufficient to transform the sets S and T to S� and T �, respectively. For each
s � S�, three cases arise: (1) for states s � S � S� no delta operation is required,
(2) for states s � S�S�, s can be removed from S to build S� via �rem s
, and (3)
for states s � S��S, s can be added to S to built S� via �add s
. For transitions,
the same cases hold.

Example 2. Consider Fig. 2. The state machine introduced in Fig. 1 now serves
as the core model. By applying the delta operations of δtm, we obtain the left
test model variant tm. By applying the delta operations of δtm� , we obtain the
right test model variant tm�.

4 Delta-Oriented SPL Regression Testing

When applying MBT to SPLs, i.e., a family of similar product variants P �
�p1, p2, . . . pn
 with explicit commonality and variability, a corresponding collec-
tion of test artifacts tai � �tmi, tgi, tsi, tpi� is to be provided for every product
variant pi � P . The artifact construction and application of test suites tsi to
implementations of product variants pi � P is usually done in some ordering.
The result is a chain of product testing campaigns continuously stepping from
test artifacts ta of variant p to the next product test artifacts ta� of variant
p�. Reuse potentials between ta and ta� arise by incrementally promoting pre-
vious test artifacts to subsequent products under test. In contrast to classical
regression scenarios, differences between product variants are explicitly specified
beforehand in an SPL, e.g., on the basis of a reusable test model.

Based on delta-oriented state machines as reusable SPL test models, we define
a model-based SPL regression testing approach that assembles product-specific

74 M. Lochau et al.

s0 s1

s2

t0 : π1 π2

t1 : π1 π4
t2 : π3 π5t3 : π3 π2

s0 s1

s2

t0 : π1 π2

t2 : π3 π5

t4 : π3 π2

t5 : π1 π4

s0 s1

s2

t0 : π1 π2

t2 : π3 π5t3 : π3 π2

t5 : π1 π4

δtm = {rem t1, rem t3,
add t4, add t5}

δ−1
tm = {add t1, add t3,
rem t4, rem t5} δtm′ = {rem t1, add t5}

δtm,tm′ = {add t3, rem t4}

Fig. 2. Sample Delta-oriented SPL Test Model and Regression Delta Derivation

test artifacts by incrementally reusing test artifacts of previous products. In par-
ticular, we incrementally evolve product test artifacts for a sequence p1, p2, . . . , pn
of products under test as follows:

1. Generate an initial collection of product test artifacts ta1 using MBT tech-
niques for single products as usual and apply the resulting test suite ts1 to
the implementation of p1.

2. Incrementally evolve tai to tai�1, for 1 � i � n, and apply the new (re-)test
plan tpi�1 � tsi�1 to pi�1.

Although p1 might be chosen arbitrarily, we suggest to start the incremental
SPL testing campaign with the core product pcore as it usually comprises most
of the commonalities among product variants.

As illustrated in Fig. 3, the incrementation of product test artifacts ta for
product p to ta� of a subsequent variant p� decomposes into four levels. For each
incrementation from pi to pi�1, (1) the reuse of product test artifacts from tai
in tai�1, as well as (2) the generation of new artifacts required for tai�1 is to be
performed. Both steps are to be conducted in a way that ensures the different
components of tai�1 to meet the requirements according to their relationships
(cf. Sect. 2), namely validity of test cases tc � tsi�1 w.r.t. tmi�1, coverage of
test goals g � tgi�1 for criterion C by test suite tsi�1, and appropriate (re-)test
selections for test plans tpi�1 � tsi�1.

Accordingly, we apply the delta approach to also reason about the incremental
changes on test artifacts from ta to ta�, where δta,ta� is decomposed into sub deltas
for the different components of test artifact collections:

δta,ta� � �δtm,tm� , δtg,tg� , δts,ts� , δtp,tp��

Incremental Model-Based Testing of Delta-oriented SPLs 75

Fig. 3. Incremental Evolution of SPL Test Artifacts

The test model is the central part for deriving any kind of test artifacts in MBT.
As a consequence, the sub deltas on the remaining product test artifacts are
directly deducible from changes on test model specifications.

Test Model Delta. One of the main benefits of a delta-oriented SPL test model is
its ability to comprehensively encapsulate the differences of every product variant
w.r.t. some core model. However, for the incremental evolution of product test
artifacts, we rather have to make explicit the differences of a product variant
p� to the previous product p under test. Therefore, we introduce the concept of
regression deltas to aggregate all changes when evolving from tm to tm�.

Definition 6. (State Machine Regression Delta)
A state machine regression delta δtm,tm� � Op for state machine pair �tm, tm�� �
TM�L� � TM�L� is a state machine delta such that tm� � apply�tm, δtm,tm��.

The application of a state machine regression delta on a test model yields the
subsequent test model variant. As illustrated in Fig. 2, by intuition, a regression
delta δtm,tm� results from composing the inverted delta δ�1

tm of tm and the delta
δtm� of tm�. The inverse δ�1 � Op of a state machine delta δ � Op is built
component-wise, i.e., by inverting each delta operation op � δ to op�1 in δ�1

such that �add e
�1 � �rem e
 and �rem e
�1 � �add e
 for e � S � T .
However, using set union to compose δ�1

tm and δ�tm into δtm,tm� produces un-
sound results in case of equal delta operations. For instance, in Fig. 2, �add t5
 �
δtm� δtm� holds, thus set union would yield �rem t5, add t5
 � δtm,tm� , i.e., con-
flicting operations in the regression delta. Instead, for the correct derivation of
regression delta δtm,tm� from state machine deltas δtm � Op and δtm� � Op,
we have to apply an alternative composition operator that takes common delta
operations into account. The symmetric difference A Δ B � �A�B� � �B�A� of
two sets A and B solely contains those elements being either exclusive to set A
or B. In addition, to build the regression delta, we require the first operand of
the symmetric difference to be inverted.

Proposition 2. (State Machine Regression Delta Construction)
For two state machine deltas δtm � Op and δtm� � Op, the regression delta is
given as δtm,tm� � �δtm�δtm���1 � �δtm��δtm�.

76 M. Lochau et al.

Proof: For tm� � �S�, s0, L, T
�� to result from applying δtm,tm� � �δtm�δtm���1�

�δtm��δtm� to tm � �S, s0, L, T � , we have to show the sets S� and T � to be
built correctly from S and T . For states s � S�, we have two cases: (1) s � S,
and (2) s � S. For case (1), we have to show that �rem s
 � δtm,tm� , where
we have two further cases: (1a) s � Score, thus �add s
 � δtm which implies
�rem s
 � �δtm�δtm���1, and (1b) s � Score, thus �add s
 � δtm, but �rem s
 �
�δtm�δtm���1, because �add s
 � �δtm�δtm��. For case (2), we have to show that
�add s
 � δtm,tm� , where, again, two further cases arise: (2a) s � Score, thus
�rem s
 � δtm which implies �add s
 � �δtm�δtm���1, and (2b) s � Score, thus
�add s
 � �δtm�δtm���1, but �add s
 � �δtm��δtm�. Symmetric cases arise for
ensuring states s � S� are either removed if s � S, or not added if s � S via
δtm,tm� . Further note, that these cases also hold for the set of transitions. Finally,
the existence of a regression delta for arbitrary pairs of state machines follows
directly from Prop. 1: as any test model variant is derivable from an arbitrary
core model by a set of delta operations, any test model tm can be assumed as
core model to derive the test model of tm�.

Example 3. The regression delta between the test model tm and tm� in Fig. 2
results in δtm,tm� � �δtm�δtm���1 � �δtm��δtm� � �add t3, rem t4
. As both
products share the delta operations concerning t1 and t5, those transitions are
not affected by the regression delta.

Please note, that regression deltas constitute a generalization of state machine
deltas, i.e., δtm can be represented as δtmcore,tm.

We now describe the derivation of the deltas concerning the incrementation of
the three remaining test artifacts from the state machine regression delta. Those
deltas are similar to those for state machines (cf. Sect. 3), but are to be adapted
to artifact types considered in the particular components of ta.

Test Goal Delta. The construction of the delta δtg,tg� for the incrementation
of the set of test goals depends on the coverage criterion C considered. For
simple structural criteria such as all-states and all-transitions, i.e., criteria with
C�tm� � S � T , δtm,tm� is directly adaptable to evolve the test goals via the
following rules:

– ��rem e
 � δtm,tm� : e � tg� �rem e
 � δtg,tg�

– ��add e
 � δtm,tm� : e � C�tm�� � �add e
 � δtg,tg�

Otherwise, for more complex criteria, e.g., path-oriented criteria like MC/DC
coverage [30], a (partial) regeneration of test goals via C�tm�� is required, where
δtm,tm� indicates model parts in tm� potentially affected.

Test Suite Delta. As described in Sect. 2.2, regression testing approaches parti-
tion an existing test suite ts of product p into subsets of reusable tests tsR and
obsolete tests tsO when evolving to product p�. For our incremental SPL testing
approach it seems promising not to discard obsolete test cases in the next test
suite ts�, but rather to collect them for potential reuse for subsequent products
under test. Therefore, we partition product test suites ts � tsV � tsO into sets

Incremental Model-Based Testing of Delta-oriented SPLs 77

of valid and obsolete test cases. When evolving ts � tsV � tsO to ts’ � ts�V � ts�O
via δts,ts’, changes in δtm,tm� have effects on the incrementation of both sets.
Accordingly, we also partition the test suite delta into δtsV ,ts�

V
and δtsO,ts�

O
.

By Ttc � T , we refer to the subset of transitions from T such that (1) tc �
T �

tc, and (2) Ttc is minimal. Thus, a test case tc is valid for test model tm �
�S, so, L, T �, if Ttc � T , whereas Ttc � T holds for obsolete test cases. A test
case tc � tsO being obsolete for p becomes valid for p� as follows:

�t � Ttc�T : ��add t
 � δtm,tm� � �add tc
 � δtsV ,ts�

V
� �rem tc
 � δtsO,ts�

O

i.e., the set of transitions of tc missing in the set T of the test model of p is
added to p� via the regression delta. Correspondingly, valid test cases tc � tsV
become obsolete by the rule:

�t � Ttc : �rem t
 � δtm,tm� � �add tc
 � δtsO,ts�

O
� �rem tc
 � δtsV ,ts�

V

The set of reusable test cases ts�R � tsV � ts�V therefore contains those test cases
valid for p, as well as for p�. In addition to ts�R, further test cases may be required
in ts to cover all test goals in tg�. A test goal g � tg� is uncovered by ts�R if either

– �add g
 � δtg,tg� , i.e., the test goal is new in p�, or
– �tc � tsV : covers�tc, g� � tc � ts�O, i.e., all test cases of p covering g are

obsolete for p�.

For covering those test goals, further previously obsolete test cases tc � tsO� ts�V
with covers�tc, g� may be found and added to ts�R. Otherwise, a new test case
tcg � gen�tm�, g� is required, where �add tcg
 � δtsV ,ts�

V
. The set of all new test

cases generated for p� thus gives the set ts�N in terms of regression testing.

Example 4. Consider the test cases tc1 � �t0, t1� and tc2 � �t0, t2, t3� of Ex-
ample 1 for all-transition coverage. When stepping from the core model to
tm (cf. Fig. 2), tc1 and tc2 both become obsolete, thus new test cases, e.g.,
tc3 � �t0, t2, t5� and tc4 � �t0, t2, t4� are generated. For tm�, again, tc1 is obso-
lete, whereas tc2 as well as tc3 are reusable and cover all test goals.

Test Plan Delta. Test plans tp � tsV are used to define which valid test cases
from a test suite are actually executed on the product under test, where tp �
tsN � tsRT. New test cases tc � tsN are applied in any case to verify that new,
i.e., varying behaviors are correctly implemented. In addition, from the set of
reusable test cases tsR, a retest set tsRT � tsR is selected to verify that the
changes do not erroneously affect common behaviors covered by tsR. For the
selection of tsRT, different strategies appear in the literature [11], e.g., retest-all
tsRT � tsR, retest-non tsRT � �, and retest-random, where some tsRT � tsR
is chosen. In addition, techniques for change impact analyses such as program
slicing [13] support the retest selection decision by the following criterion:

tc � tsRT :
 exec�tc, tm� 	te exec�tc, tm
�� � exec�tc, p� 	te exec�tc, p

��

Summarizing, the test plan delta δtp,tp� is defined by the rules:

78 M. Lochau et al.

– �tc � tp�ts�RT : �rem tc
 � δtp,tp�

– �tc � ts�RT �tp : �add tc
 � δtp,tp�

– �tc � ts�N : �add tc
 � δtp,tp�

For further enhancements, additional information about previous test plans can
be used for retest selections, e.g., how often a test case has been already executed
(and failed).

Soundness of the Approach. For the soundness of the presented approach, we
require the resulting test artifacts to be (1) valid, i.e., every test suite solely con-
tains valid test cases, and (2) complete, i.e., guaranteeing complete test coverage
of every product test model w.r.t. criterion C. Let ta1, ta2, . . . , tan be a collection
of test artifacts incrementally built for a sequence of products p1, p2, . . . , pn via
deltas on test artifact as defined above.

Theorem 1. (Validity of Product Test Suites)
For product test suites tsi of each tai, 1 � i � n, tsVi � TC�tmi� holds.

Proof: By induction over the chain of regression delta applications. For i � 1,
we assume soundness of the test case generator, i.e., gen�tm1, C� � TC�tm1�.
For induction steps from i to i�1, (1) validity of tsVi follows from the induction
hypothesis, and (2) validity of tsVi holds as obsolete and reusable test cases from
tsi are confirmed via the regression delta, and new test cases in tsi�1 are, again,
delivered by the test case generator, i.e., gen�tmi�1, tg� � TC�tmi�1�.

Theorem 2. (Completeness of Product Test Suites)
For product test suites tsi and test goals tgi of each tai, 1 � i � n, (1) tgi �
C�tmi� holds, and (2) tsi satisfies C.

Proof Idea: Again, by induction over the chain of regression delta applications.
For the correct incrementation (1) of test goals for more complex criteria, we
rely on a sound implementation of the test goal selection function C, and (2) of
test suites, we, again, assume soundness of the test case generator.

Moreover, the approach ensures every test case generated during the incremen-
tal testing process to be executed at least once as the set tsN is always selected for
the test plan. Our approach implicitly fulfills the complete SPL test suite coverage
requirement proposed in [5]. In addition, it supports reasoning about the reliabil-
ity of test plans: the impact on the fault detection efficiency of retesting selections
between SPL products in comparison to complete product by product SPL testing
is parameterizable via the change impact criterion under consideration.

5 Implementation and Evaluation

We developed a tool chain for the sample implementation of our incremental SPL
testing approach. For the delta-oriented state machine SPL test modeling, we de-
veloped an Eclipse plug-in incorporating the Eclipse Modeling Framework. The
tool supports the configuration of product variants based on a domain feature

Incremental Model-Based Testing of Delta-oriented SPLs 79

model and the automated derivation of product test models. Those test models
are imported into IBM Rational Rhapsody to apply the add-on ATG for
automated test case generation and execution.

To evaluate our approach, we considered an SPL case study from the auto-
motive domain, a simplified Body Comfort System (BCS) including numerous
features like automatic power windows, human machine interface, alarm system,
etc., comprising 11, 616 valid product variants. We already obtained evaluation
results from testing the BCS SPL in previous work for an SPL subset testing
approach covering all valid feature pairs [19,16]. This allowed us to compare
the results to those of our incremental testing technique w.r.t. gain in efficiency
arising from test artifact reuse potentials. The original BCS SPL 150% state ma-
chine test model created for the MoSo-PoLiTe approach contains 105 states and
107 transitions comprising 26 input and 33 output events. We remodeled this
test model to build a delta-oriented SPL test model including one core model
and 40 delta modules.

For our experiments, we considered the Model Element Coverage criterion
as supported by ATG. For covering every single product variant, an estimated
amount of 743, 424 test cases is required including multitudes of redundancies
due to similarities among product variants. After applying MoSo-PoLiTe [19]
we obtained 17 representative products (P1 � P17), thus reducing the number
of test cases to 1, 093 for testing this set product by product. To evaluate our
incremental approach, we considered the same product subset and further added
a core product (P0) as the starting point of the incremental SPL testing process.
The results of the case study are shown in Fig. 4. Triangles denote the number of
test cases generated and applied per product in the MoSo-PoLiTe approach [19].
In contrast, for the incremental SPL testing approach, diamonds denote the
number of test cases to be newly generated for a product, and squares denote
the number of test cases to be (re-)tested on that product. We focused our
experiments on the reuse of test cases, whereat for the reuse of test results, we
applied change impact analyses based on test model slicing [13]. Comparing our
results to those of MoSo-PoLiTe, a significant reduction of the testing efforts
concerning test case generation and execution was achieved, however ensuring
the same degree of test model coverage. In particular, the average number of test

Fig. 4. Evaluation Results for the BCS SPL Case Study

80 M. Lochau et al.

cases generated and executed per product for MoSo-PoLiTe amounts 64, whereas
our incremental approach solely requires an average number of 10 new test cases
and 9 test cases selected for execution per product. In cases where the number
of test case executions exceeds the number of test cases generated, existing test
cases are selected for retesting. Most test cases are generated and selected for the
first four products. As the number of existing test cases covering commonality
between product variants continuously increases, a decreasing number of test
cases is generated and executed for the remaining products.

Threats to Validity. The efficiency of the approach depends on the test case
generator applied. The quality of the test suite of the initial product under test
is particularly crucial for the subsequent iterations. However, this drawback is
adherent to model-based testing in general, rather than an inconvenience of our
approach. For the reuse of test cases, our current approach uses global repos-
itories S and T to identify equality of traces by means of syntactical identity
for testing equivalence 	te and is restricted to deterministic behaviors. This is
a rather strict requirement, but weakening this notion to more realistic test-
ing equivalences [10] is far less efficiently decidable. Providing sound criteria for
retest selection is, due to the black-box assumption of model-based testing, an
open problem as common change impact analysis techniques are usually based on
source code investigations [13]. For evaluating the impact of those criteria w.r.t.
decreasing fault detection efficiency compared to complete product by product
testing, further experiments, e.g., considering mutations, have to be performed.

6 Related Work

Various applications of behavioral models with variabilities to model-based SPL
testing were proposed [18]. Cichos et al. propose a coverage-driven SPL test
suite generation approach that is based on an annotative 150% test model [5].
Lochau et al. also use an annotative statechart test model for the detection and
test coverage of interactions among feature artifacts [15,16]. Weissleder et al.
define variabilities in state machines via annotations [32], whereas Szasz et al.
add variable parts in Statecharts using composition operators [26].

Two research directions for reducing redundancies in product by product test-
ing of SPLs currently exist: regression-based SPL testing and SPL subset selec-
tion heuristics. In [27,11], surveys on regression-based SPL testing approaches are
presented mainly concentrating on empirical evaluations of different strategies. A
first conceptional approach for regression-based SPL testing was, e.g., proposed
by Batory et al. [31]. The authors propose an incremental refinement of test
suites for a particular product variant under test w.r.t. the features composed
into the product. Neto et al. [17] introduce an SPL testing framework, where re-
gression testing decisions are performed on the basis of architectural similarities
between product variants. Subset selection heuristics mainly use combinatorial
testing heuristics to select representative products under test, e.g., considering
features as combinatorial parameters [14]. For instance, Oster et al. cover pair-
wise feature combinations [20,21,19], whereas Perrouin et al. consider T-wise

Incremental Model-Based Testing of Delta-oriented SPLs 81

combinations [22]. However, no strategies for test artifact reuse between prod-
ucts in those sub sets are mentioned. The notion of SPL test suites introduced
in [5] is the closest related to our framework, but no application strategies of
those test suites are provided. Furthermore, as our approach incrementally gen-
erates test cases on demand rather than symbolically in one pass, it is assumed
to obey better scalability properties.

7 Conclusion

In this paper, we presented a novel MBT framework for incrementally deriving
test suites for SPL product variants by applying principles of regression testing.
As future work, we plan to further optimize the SPL testing process by (1) local
minimizations of product test suites as well as global reductions on complete SPL
test suites, and (2) delta-oriented, i.e., compositional test suite generation. For
reliable fault detection efficiency, further theoretical considerations concerning
appropriate test case reuse and retest selection criteria are to be considered.

References

1. Agrawal, H., Horgan, J.R., Krauser, E.W., London, S.A.: Incremental Regression
Testing (1993)

2. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A Model-Checking Tool for
Families of Services. In: Bruni, R., Dingel, J. (eds.) FORTE 2011 and FMOODS
2011. LNCS, vol. 6722, pp. 44–58. Springer, Heidelberg (2011)

3. Bruns, D., Klebanov, V., Schaefer, I.: Verification of Software Product Lines with
Delta-Oriented Slicing. In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS,
vol. 6528, pp. 61–75. Springer, Heidelberg (2011)

4. Calder, M., Kolberg, M., Magill, E., Reiff-Marganiec, S.: Feature Interaction: A
Critical Review and Considered Forecast. Computer Networks 41(1), 115–141
(2003)

5. Cichos, H., Oster, S., Lochau, M., Schürr, A.: Model-Based Coverage-Driven Test
Suite Generation for Software Product Lines. In: Whittle, J., Clark, T., Kühne, T.
(eds.) MODELS 2011. LNCS, vol. 6981, pp. 425–439. Springer, Heidelberg (2011)

6. Clarke, D., Helvensteijn, M., Schaefer, I.: Abstract Delta Modeling. Mathematical
Structures in Computer Science (2011) (to appear)

7. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model Check-
ing Lots of Systems: Efficient Verification of Temporal Properties in Software Prod-
uct Lines. In: ICSE 2010 (2010)

8. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley Longman Publishing Co., Inc. (2001)

9. Cohen, M., Dwyer, M., Shi, J.: Interaction Testing of Highly-Configurable Systems
in the Presence of Constraints. In: ISSTA, pp. 129–139 (2007)

10. De Nicola, R.: Extensional Equivalence for Transition Systems. Acta Inf. 24, 211–
237 (1987)

11. Engström, E., Skoglund, M., Runeson, P.: Empirical Evaluations of Regression
Rest Selection Techniques. In: Proc. of ESEM 2008, pp. 22–31 (2008)

82 M. Lochau et al.

12. Fraser, G., Wotawa, F., Ammann, P.: Testing with Model Checkers: A Survey.
Software Testing, Verification and Reliability 19(3), 215–261 (2009)

13. Gupta, R., Jean, M., Mary, H., Soffa, L.: An Approach to Regression Testing using
Slicing. In: Proceedings of the Conference on Software Maintenance. pp. 299–308.
IEEE Computer Society Press (1992)

14. Kim, C.H.P., Batory, D.S., Khurshid, S.: Reducing Combinatorics in Testing Prod-
uct Lines. In: AOSD 2011, pp. 57–68. ACM (2011)

15. Lochau, M., Goltz, U.: Feature Interaction Aware Test Case Generation for Em-
bedded Control Systems. ENTCS 264, 37–52 (2010)

16. Lochau, M., Oster, S., Goltz, U., Schürr, A.: Model-based Pairwise Testing for Fea-
ture Interaction Coverage in Software Product Line Engineering. Software Quality
Journal, 1–38 (2011)

17. da Mota Silveira Neto, P.A., do Carmo Machado, I., Cavalcanti, Y.C., de Almeida,
E.S., Garcia, V.C., de Lemos Meira, S.R.: A regression testing approach for software
product lines architectures. In: SBCARS 2010, pp. 41–50 (2010)

18. Olimpiew, E.M.: Model-Based Testing for Software Product Lines. Ph.D. thesis,
George Mason University (2008)

19. Oster, S., Lochau, M., Zink, M., Grechanik, M.: Pairwise Feature-Interaction Test-
ing for SPLs: Potentials and Limitations. In: FOSD 2011 (2011)

20. Oster, S., Markert, F., Ritter, P.: Automated Incremental Pairwise Testing of Soft-
ware Product Lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287, pp.
196–210. Springer, Heidelberg (2010)

21. Oster, S., Zorcic, I., Markert, F., Lochau, M.: MoSo-PoLiTe - Tool Support for
Pairwise and Model-Based Software Product Line Testing. In: VAMOS 2011 (2011)

22. Perrouin, G., Sen, S., Klein, J., Le Traon, B.: Automated and Scalable T-wise Test
Case Generation Strategies for Software Product Lines. In: ICST 2010, pp. 459–468
(2010)

23. Schaefer, I., Bettini, L., Damiani, F.: Compositional Type-Checking for Delta-
oriented Programming. In: AOSD 2011. ACM Press (2011)

24. Schaefer, I., Gurov, D., Soleimanifard, S.: Compositional Algorithmic Verification
of Software Product Lines. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2010. LNCS, vol. 6957, pp. 184–203. Springer, Heidelberg (2011)

25. Schaefer, I., Hähnle, R.: Formal Methods in Software Product Line Engineering.
IEEE Computer 44(2), 82–85 (2011)

26. Szasz, N., Vilanova, P.: Statecharts and Variabilities. In: VAMOS 2008, pp. 131–140
(2008)

27. Tevanlinna, A., Taina, J., Kauppinen, R.: Product Family Testing: A Survey. ACM
SIGSOFT Software Engineering Notes 29, 12–18 (2004)

28. Thiel, S., Hein, A.: Modeling and Using Product Line Variability in Automotive
Systems. IEEE Software 19(4), 66–72 (2002)

29. Tretmans, J.: Testing Concurrent Systems: A Formal Approach. In: Baeten,
J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 46–65. Springer,
Heidelberg (1999)

30. Utting, M., Legeard, B.: Practical Model-Based Testing. A Tools Approach. M.
Kaufmann (2007)

31. Uzuncaova, E., Khurshid, S., Batory, D.S.: Incremental test generation for software
product lines. IEEE Trans. Software Eng. 36(3), 309–322 (2010)

32. Weißleder, S., Sokenou, D., Schlingloff, H.: Reusing State Machines for Automatic
Test Generation in ProductLines. In: MoTiP 2008 (2008)

Conformance Relations

for Labeled Event Structures

Hernán Ponce de León1, Stefan Haar1, and Delphine Longuet2

1 INRIA and LSV, École Normale Supérieure de Cachan and CNRS, France
ponce@lsv.ens-cachan.fr, stefan.haar@inria.fr
2 Univ. Paris-Sud, LRI UMR8623, Orsay, F-91405

longuet@lri.fr

Abstract. We propose a theoretical framework for testing concurrent
systems from true concurrency models like Petri nets or networks of au-
tomata. The underlying model of computation of such formalisms are
labeled event structures, which allow to represent concurrency explicitly.
The activity of testing relies on the definition of a conformance rela-
tion that depends on the observable behaviors on the system under test,
which is given for sequential systems by ioco type relations. However,
these relations are not capable of capturing and exploiting concurrency
of non sequential behavior. We study different conformance relations for
labeled event structures, relying on different notions of observation, and
investigate their properties and connections.

1 Introduction

This paper aims at laying the foundations of a systematic study of conformance
relations for specifications that integrate features of concurrent behavior. Our
ultimate goal is to lift conformance testing and its formal tools to the level of
event structure semantics, where it currently focusses on sequential actions.

The Present State of the Art: A Sequential Picture. In fact, one of the
most popular formalisms studied in conformance testing is that of labeled transi-
tion systems (LTS). A labeled transition system is a structure consisting of states
and transitions labeled with actions from one state to another. This formalism
is usually used for modeling the behavior of processes and as a semantical model
for various formal languages such as CCS [1], CSP [2], SDL [3] and LOTOS [4].
Depending on the nature of the possible observations, different conformance
relations have been defined for labeled transitions systems [5,6,7,8,9,10,11]; we
will study how these lift to the “concurrent world”. Several developments were
built on the relation of trace preorder (trace inclusion). Firstly, it was refined
into the testing preorder, that requires not only the inclusion of the implementa-
tion traces in those of the specification, but also that any action refused by the
implementation should be refused by the specification [5,12]. A practical modi-
fication of the testing preorder was presented in [7], which proposed to base the
observations on the traces of the specification only, leading to a weaker relation
called conf. A further refinement concerns the inclusion of quiescent traces as

A.D. Brucker and J. Julliand (Eds.): TAP 2012, LNCS 7305, pp. 83–98, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

84 H. Ponce de León, S. Haar, and D. Longuet

a conformance relation (e.g. Segala [10]). Moreover, Tretmans [11] proposed the
ioco relation: each output produced by the implementation on specified stimuli
should corresponde to the specified ones, and the implementation is authorised
to reach a state where it cannot produce any output only if this is the case in
the specification too.

Shifting to Concurrent Specifications. However, this framework does not
yet very well support the testing from concurrent specifications, in which some
pairs of events can be specified to occur in arbitrary order, or jointly. The exhaus-
tive testing of all interleavings for a set of concurrent transitions is prohibitively
slow, and is also conceptually inadequate; for both reasons, our aim is to pro-
vide a generalized framework that handles true concurrency in partially ordered
models. The first major steps in this direction had been made in [13,14]: partially
ordered patterns of input/output events were admitted as transition labels in a
generalized I/O-automaton model, leading to a generalization of the basic no-
tions and techniques of I/O-sequence based conformance testing. An important
practical benefit of true-concurrency models here is an overall complexity reduc-
tion, despite the fact that checking partial orders requires in general multiple
passes through the same labelled transition, so as to check for presence/absence
of specified order relations between input and output events. In fact, if the sys-
tem has n parallel and interacting processes, the length of checking sequences
increases by a factor that is polynomial in n. At the same time, the overall size
of the automaton model (in terms of the number of its states and transitions)
shrinks exponentially if the concurrency between the processes is explicitly mod-
eled. This feature indicates that with increasing size and distribution of SUTs in
practice, it is computationally wise to seek alternatives for the direct sequential
modeling approach. We add that true concurrency models are not only promis-
ing for practical reasons, but also are more adequate in reflecting the actual
structure of distributed systems, and tend to be more accessible for designers
and implementers, in particular if modularity can be exploited.

As indicated above, the work presented in [13,14] presents a first step towards
a concurrency-based conformance theory. The partial-order I/O automata mod-
els developed there progress with respect to global state models such as multiport
I/O-Automata by specifying dependence relations across processes explicitly,
and allow to specify natural conditions that avoid e.g. controllability violations.
However, the models of [13,14] still force us to maintain a sequential automaton
as the system’s skeleton, and to include synchronization constraints (typically:
that all events specified in the pattern of a transition must be completed before
any other transition can start), which limit both the application domain and
the benefits from concurrency modeling. In other work in progress, we abandon
automata altogether and focus on Petri nets as system models, which allows to
completely discard any global synchronizations, and to exploit existing theory of
concurrent behavior for devising testing strategies.

The present article provides the semantic viewpoint which accompanies and
complements that shift in systems modeling. We use throughout a canonical
semantic model for concurrent behavior, labeled event structures, providing a

Conformance Relations for Labeled Event Structures 85

unifying semantic framework for system models such as Petri nets, communicat-
ing automata, or process algebras; we abstract away from the particularities of
system specification models, to focus entirely on behavioral relations.

The underlying mathematical structure for the system semantics is given by
event structures in the sense of Winskel et al [15]. Mathematically speaking,
they are particular partially ordered sets, in which order between events e and
e′ indicates precedence, and where any two events e and e′ that are not ordered
maybe either

– in conflict, meaning that in any evolution of the system in which e occurs,
e′ cannot occur; or

– concurrent, in which case they may occur in the same system run, without
a temporal ordering, i.e. e may occur before e′, after e′, or simultaneously.

The state reached after some execution is represented by a configuration of
the event structure, that is a conflict-free, history-closed set. The use of partial
order semantics provides richer information and finer system comparisons than
the interleaved view.

Overview. The paper is organized as follows: Section 2 gives the fundamen-
tal definitions of the semantic model of labeled event structures and Sect. 3
gives two definitions of observation of processes. Then, Sect. 4 introduces and
studies conformance relations for general labeled event structures, and Sect. 5
specializes to I/O systems in which the label set is split into input and output
labels, and introduces a new, true-concurrency-enabled ioco relation. Section 6
discusses the advantages and drawbacks of the conformance relations presented,
and concludes.

2 Labeled Event Structures

We shall be using event structures following Winskel et al [15] to describe the
dynamic behavior of a system. In this paper we will consider only prime event
structures [16], a subset of the original model which is sufficient to describe
concurrent models (therefore we will simply call them event structures), and we
label their events with actions over a fixed alphabet L.

Definition 1 (Labeled event structure). A labeled event structure over an
alphabet L is a 4-tuple E = (E,≤,#, λ) such that

– E is a set of events,
– ≤ ⊆ E × E is a partial order (called causality) satisfying the property of

finite causes, i.e. ∀e ∈ E : |{e′ ∈ E | e′ ≤ e}| < ∞,
– # ⊆ E×E is an irreflexive symmetric relation (called conflict) satisfying the

property of conflict heredity, i.e. ∀e, e′, e′′ ∈ E : e # e′ ∧ e′ ≤ e′′ ⇒ e # e′′,
– λ : E → L is a labeling mapping.

We denote the class of all labeled event structures over L by LES(L).

86 H. Ponce de León, S. Haar, and D. Longuet

but1

change1

#liq1 choc1

q1

#but2 but′2

liq2 choc2

change2 change′2

q2

but3

liq3

change3

q3

but4

#liq4 change4

change′4 liq′4

q4

but′5but5

liq5 choc5

change5 change′5

q5

Fig. 1. Labeled event structures

Given a labeled event structure E = (E,≤,#, λ) ∈ LES(L), two events e, e′ ∈ E
are said to be concurrent, written e co e′, iff neither e ≤ e′ nor e′ ≤ e nor e # e′

hold.

Example 1. Fig. 1 presents different LES specifications of vending machines. The
requirements are the following: when one pushes a button, the machine delivers
chocolate bars or liquorices, and supplies change. We represent causality between
events by the Hasse diagram of ≤, and direct conflict by #. The labeling λ is
such that λ(ei) = λ(e′i) = e.

Machine q1 to q4 have only one button while machine q5 has two of them. In
machines q1 and q2, a choice is made between supplying liquorice or chocolate
after pressing the button, and concurrently, the machines supply change. The
choice is made when the button is pushed in machine q2 but internally after
the pressing of the button in machine q1. Machine q3 only supplies liquorice and
change concurrently while q4 do both, but in a sequential way. We can press
concurrently two different buttons in q5, each of them producing liquorice or
chocolate and supplying change.

A computation state of an event structure is called a configuration and is repre-
sented by the set of events that have occurred in the computation. If an event is
present in a configuration, then so are all the events on which this event causally
depends. Moreover, a configuration obviously does not contain conflicting events.

Definition 2 (Configuration). Let E = (E,≤,#, λ) ∈ LES(L), a
configuration of E is a set of events C ⊆ E such that

– C is causally closed: e ∈ C ⇒ ∀e′ ≤ e : e′ ∈ C, and
– C is conflict-free: ∀e, e′ ∈ C : ¬(e # e′).

Conformance Relations for Labeled Event Structures 87

The initial configuration of E, denoted by ⊥E , is the empty set of events. We
denote the set of all the configurations of E by C(E).

Example 2. The configurations of the labeled event structure q1 of Fig. 1 are
⊥q1 , {but1}, {but1, liq1}, {but1, change1}, {but1, choc1}, {but1, liq1, change1}, and
{but1, choc1, change1}. It is worth noting that the configurations of q1 and q2 are
different but their λ-images are the same.

A particular kind of event structures are those representing only sequential be-
haviors, i.e. without concurrency. A labeled event structure is called sequential
iff there are no pairs of concurrent events in it: ≤ ∪ # = E×E. Sequential event
structures can be seen as the computation trees obtained by unfolding labeled
transition systems [17]. In Fig. 1, q4 is a sequential labeled event structure.

3 Observing Event Structures

The next sections will present several conformance relations over labeled event
structures. These relations are based on the chosen notion of observation of the
system behavior in response to stimuli. The observations most studied in the
literature for defining conformance relations are (execution) traces and refusals.

The definition of the notion of trace for a labeled event structure is not
straightforward since it relies on the chosen semantics for concurrency [18]. The
presence of explicit concurrency in a specification may be interpreted in several
ways. In an early stage of specification, concurrency between events may be used
as underspecification, leaving the choice of the actual order between events to
the developper. The events specified as concurrent may then occur in any order
in the implementation (maybe always the same one). In the specification of a
distributed system however, concurrent events in the specification may be meant
to remain concurrent in the implementation, because they are destined to occur
in different components executed in parallel for instance.

We follow here two established semantics for concurrency, namely interleaving
semantics where concurrent events may be executed in any order, and partial
order semantics where no order is wanted or can be observed between concur-
rent events. In the first case, observing the behavior of the system action by
action is sufficient since concurrent events will be observed sequentially. In the
second case, several concurrent events may be observed together in one step,
since they are not ordered. This leads to two definitions of traces for labeled
event structures.

3.1 Single Action Observations

In this first setup, one considers atomic experiments on a system as single actions,
and obtains an interleaving semantics for concurrency.

88 H. Ponce de León, S. Haar, and D. Longuet

Definition 3. Let E = (E,≤,#, λ) ∈ LES(L), a ∈ L, σ = σ1 · σ2 · . . . · σn ∈ L+

and C,C′ ∈ C(E), we define

C
a

=⇒ C′ � ∃e ∈ E\C : C′ = C ∪ {e} and λ(e) = a

C
a

=⇒ � ∃C′ : C
a

=⇒ C′

C
σ

=⇒ C′ � ∃C0, . . . Cn : C = C0
σ1=⇒ C1

σ2=⇒ . . .
σn=⇒ Cn = C′

C
σ

=⇒ � ∃C′ : C
σ

=⇒ C′

One goes from a configuration to another by performing only one action at a
time, thus leading to a trace semantics where an execution is a sequence of
single actions (obviously, the empty sequence leads to the same configuration,

i.e. C
ε

=⇒ C).1 Possible observations of the system behavior are captured by the
following definition.

Definition 4. Let E ∈ LES(L), A ⊆ L, σ ∈ L∗, S ⊆ C(E) and C,C′ ∈ C(E),
we define

– traces(E) � {σ ∈ L∗ | ⊥E
σ

=⇒}
– C after σ � {C′ | C σ

=⇒ C′}
– C refuses A � ∀a ∈ A : C � a

=⇒
– S refuses A � ∃C ∈ S : C refuses A

The set traces(E) contains the full action sequences of E , while C after σ con-
tains the possible configurations reached from C when σ was observed. Refusal
of an action set A means the impossibility of executing any transition with a
label in A. In the next section we will use refuses together with after, and as
the system can reach several configurations after σ, we extend refuses to sets
of configurations.

Example 3. With this interleaving semantics, the traces of machine q3 in Fig. 1
are {ε, but, but · liq, but ·change, but · liq ·change, but ·change · liq}, since concurrent
events may be seen in any order. Therefore, machines q3 and q4 have the same
traces. Due to the inheritance of conflict, machines q1 and q2 also have the same
traces since after but, one can perform liq and change in any order, or choc and
change in any order.

Concerning refusals, one can see that machine q1 cannot produce chocolate
after producing liquorice, i.e. (⊥q1 after but · liq) refuses {choc}. Note that
S refuses A is false when S is empty, therefore (⊥q3 after but · choc) refuses ∅
is false since but · choc is not a trace of q3.

3.2 Partially Ordered Observations

Since the event structure model is capable of explicitly distinguishing the causal
structure of the model, it is natural to expect the observations of machines q3
and q4 of Fig. 1 to be different; in fact, actions liq and change are independent
in q3, but they are causally ordered in q4.

1 We denote by ε the empty word and by · the concatenation of words in L∗.

Conformance Relations for Labeled Event Structures 89

In order to distinguish such behaviors, the notion of trace must keep concur-
rency explicit, i.e. must preserve the partial order of the events of an execution.
We first recall the notion of labeled partial order, then we lift Def. 3 and Def. 4
to the partial order setting.

Definition 5 (Labeled partial order). A labeled partial order over L is a
tuple ω = (Eω ,≤ω, λω), where

– (Eω ,≤ω) is a partial order, and
– λω : Eω → L is a labeling mapping.

We denote the class of all labeled partial orders over L by LPO(L).

Labeled partial orders will be used to represent observations of executions con-
taining concurrent events. Moreover, we will need the notion of labeled concurrent
set to represent a set of concurrent events: we say that α ∈ LPO(L) is a labeled
concurrent set over L iff <α= ∅, and denote the class of such objects by CO(L).

In partial order semantics, a step of an execution from a given configuration
may be a single action or a set of actions performed concurrently. This leads to
the following definitions. We indicate by a subscript or superscript π the relations
and sets to be interpreted in the partial order semantics.

Definition 6. Let E = (E,≤,#, λ) ∈ LES(L), α = (Eα,≤α, λα) ∈ CO(L),
ω = (Eω ,≤ω, λω) ∈ LPO(L) and C,C′ ∈ C(E), we define

C
α

=⇒π C′ � ∃A ⊆ E\C : C′ = C ∪A,A = Eα,
<|A×A= ∅ and λ|A = λα

C
α

=⇒π � ∃C′ : C
α

=⇒π C′

C
ω

=⇒π C′ � ∃A ⊆ E\C : C′ = C ∪A,A = Eω,
≤|A×A = ≤ω and λ|A = λω

C
ω

=⇒π � ∃C′ : C
ω

=⇒π C′

The ability of making concurrent execution explicit is the key advantage in using
partial order semantics.

Definition 7. Let E ∈ LES(L), A ⊆ CO(L), ω ∈ LPO(L), S ⊆ C(E) and
C,C ′ ∈ C(E), we define

– tracesπ(E) � {ω ∈ LPO(L) | ⊥E
ω

=⇒π}
– C afterπ ω � {C′ | C ω

=⇒π C′}
– C refusesπ A � ∀α ∈ A : C � α=⇒π

– S refusesπ A � ∃C ∈ S : C refusesπ A

Example 4. We consider labeled partial orders of Fig 2. We can observe liq and
change concurrently after but in machine q1 of Fig. 1, so we have ω1 ∈ tracesπ(q1),
but we cannot observe them concurrently in q4 because the system only allows
to see them ordered, thus ω1 �∈ tracesπ(q4).

90 H. Ponce de León, S. Haar, and D. Longuet

but

liq

change

ω1

but

change

liq

σ1

but

liq

change

σ2

but

liq

σ3

Fig. 2. Partially ordered observations vs. sequential observations

In the other way round, causality between liq and change is desired in q4
but cannot be observed or is not wanted in q1, so σ1 ∈ tracesπ(q4) and σ1 �∈
tracesπ(q1).

Prefixes are also allowed, we have for instance σ3 ∈ tracesπ(q1).

Note that in a sequential labeled event structure E , since there is no concurrency,
we have tracesπ(E) = traces(E). Since L ⊆ CO(L) and L∗ ⊆ LPO(L), Def. 6
and Def. 7 are strict generalizations of Def. 3 and Def. 4.

Remark 1. By abuse of notation, we will use indistinctly σ1 and but · change · liq
or ω1 and but · (liq co change).

4 Conformance Relations for Concurrent Systems

The objective of this paper is to propose a generalization of the ioco relation [11].
We first propose generalizations of the conformance relations defined in the lit-
erature for systems with symmetric interactions, i.e. where inputs and outputs
are not differentiated. We follow the presentation and notations adopted in [11].

The first relation proposed in the literature, called trace preorder, is based on
the inclusion of the executions of the system under test in those allowed by the
specification. The intuition is that an implementation i should not exhibit any
unspecified sequence of actions, i.e. not present in the specification s.

Definition 8 (Trace preorder for single action observation). Let i, s ∈
LES(L), then

i ≤tr s ⇔ traces(i) ⊆ traces(s)

Example 5. With the interleaving semantics, the traces of q1 and q2 are the
same, and we have q1 ≤tr q2 and q2 ≤tr q1. Analogously, q3 ≤tr q4 and q4 ≤tr q3.
The systems q3 and q4 implement part of what is specified in q1 and q2, therefore
q3, q4 ≤tr q1, q2.

This relation is very similar to the trace preorder for labeled transition systems
since it is based on the observation of sequences of actions. On the contrary,
the adaptation of the trace preorder to labeled event structures with the partial
order semantics leads to a new conformance relation.

Conformance Relations for Labeled Event Structures 91

Definition 9 (Trace preorder for partially ordered observation). Let
i, s ∈ LES(L), then

i ≤π
tr s ⇔ tracesπ(i) ⊆ tracesπ(s)

Example 6. Since tracesπ(q1) = tracesπ(q2), we have q1 ≤π
tr q2 and q2 ≤π

tr q1 . We
also have q3 ≤π

tr q1 and q3 ≤π
tr q2, but q4 �≤π

tr q3 because ≤π
tr requires concurrent

events in the specification to remain truly concurrent in the implementation and
does not accept any order between them as it is the case of ≤tr. The traces of
q2 are observable in q5, but q5 accepts more behaviors since the second button
can still be pushed after the first one was, so q2 ≤π

tr q5 but q5 �≤π
tr q2.

With both relations, we have that q2 correctly implements q1, but q1 specifies
that after pressing a button the user has a choice between liquorice and chocolate,
while q2 may refuse one of these. The reason of this is that both ≤tr and ≤π

tr

only consider sequences (resp. partial order) of actions as observations, and not
whether conflicts are resolved internally by the machine, or externally by the
environment.

Therefore, we propose a stronger relation to refine≤π
tr. In addition to requiring

that any execution of the implementation is allowed in the specification, we
require that any time the implementation refuses to perform a new action, that
action cannot be performed in the specification either. This new conformance
relation generalizes the testing preorder of [5].2

Definition 10 (Testing preorder for partially ordered observation). Let
i, s ∈ LES(L), then

i ≤π
te s ⇔ ∀ω ∈ LPO(L), A ⊆ CO(L) :

⊥i afterπ ω refusesπ A ⇒ ⊥s afterπ ω refusesπ A

Example 7. Consider again Fig. 1, we have q1 ≤π
te q2: there are no trace

ω and no set of events A such that ⊥q1 afterπ ω refusesπ A and ¬(⊥q2

afterπ ω refusesπ A). However, q2, q3 �≤π
te q1, since for instance ⊥q2

afterπ but refusesπ {choc} and ¬(⊥q1 afterπ but refusesπ {choc}). The
button can be pressed twice concurrently in q5, but not in q2, so (⊥q2

after but) refuses {but} and q2 �≤π
te q5.

Note that the relation ≤π
te does not allow extra traces in the implementation.

In fact, q1 �≤π
te q3 since ⊥q1 afterπ but · choc refusesπ ∅, yet ⊥q3 afterπ but ·

choc = ∅, hence ¬(⊥q3 afterπ but · choc refusesπ ∅). As but co but is a trace of
q5 yet not one of q2, we have q5 �≤π

te q2. As this relation checks for trace inclusion,
it still differentiates between q3 and q4, i.e. q4 �≤π

te q3

We propose a weaker relation confπ restricting all the traces to only the ones
contained in the specification. This relation requires that the implementation

2 From now on, we will present the conformance relations for the partial order seman-
tics only. The corresponding conformance relations for the interleaving semantics
can be straightforwardly deduced.

92 H. Ponce de León, S. Haar, and D. Longuet

does what it has to do, not that it does not what it is not allowed to do. It
allows underspecification, i.e. that only a subset of the functionalities of the
actual system are specified.

Definition 11 (Relation conf for partially ordered observation). Let
i, s ∈ LES(L), then

i confπ s ⇔ ∀ω ∈ tracesπ(s), A ⊆ CO(L) :
⊥i afterπ ω refusesπ A ⇒ ⊥s afterπ ω refusesπ A

Example 8. We saw in Ex. 7 that q1 ≤π
te q2, and since confπ considers the traces

of q2 only, we have q1 confπ q2.
Since the relation confπ is based on the traces of the specification only,

it allows extra traces in the implementation. So even if q1 �≤π
te q3, we have

q1 confπ q3. In the same way, q5 �≤π
te q2 but q5 confπ q2.

However, if all traces of the implementation are also traces of the specification,
then the testing preorder is equivalent to confπ. We have ¬(q2 confπ q1) since
q2 �≤π

te q1 and tracesπ(q1) = tracesπ(q2). Moreover, we have ¬(q3 confπ q1) since
q3 �≤π

te q1 and tracesπ(q3) ⊆ tracesπ(q1), and also ¬(q2 confπ q5) since q2 �≤π
te q5

and tracesπ(q2) ⊆ tracesπ(q5).

The following result relates the different implementation relations in the partial
order semantics.

Proposition 1
1. ≤π

tr and ≤π
te are preorders; confπ is reflexive.

2. ≤π
te = ≤π

tr ∩ confπ

Proof. Point 1 being obvious, we only show point 2, by proving that the inclu-
sion holds in both directions. Suppose i �≤π

tr s, then there exists ω ∈ LPO(L) such

that⊥i
ω

=⇒π, but⊥s � ω=⇒π, thus⊥s afterπ ω = ∅ and ¬(⊥s afterπ ω refusesπ ∅)
while ⊥i afterπ ω refusesπ ∅, i �≤π

te s and finally ≤π
te ⊆ ≤π

tr. As confπ is a re-
striction of ≤π

te to the traces of s, it is easy to prove that ≤π
te ⊆ confπ.

Suppose i �≤π
te s, then there exist ω ∈ LPO(L), A ⊆ CO(L) such that ⊥i

afterπ ω refusesπ A and ¬(⊥s afterπ ω refusesπ A). If ω ∈ tracesπ(s) we
have that ¬(i confπ s). If ω �∈ tracesπ(s), we know by ⊥i afterπ ω refusesπ A
that ω ∈ tracesπ(i) and therefore i �≤π

tr s.

Example 9. In Fig. 3 we can see that p2 confπ p1. If we denote the set {a, b, c} by
L, we have ⊥p2 afterπ a refusesπ {a, b} and ⊥p1 afterπ a refusesπ {a, b}; we
also have ⊥p2 afterπ a · c refusesπ L and ⊥p1 afterπ a · c refusesπ L; finally
⊥p2 afterπ a · b refusesπ S is false for any set S. We can see that p3 confπ p2
since p3 is p2 with an additional branch. Nevertheless we do not have p3 confπ p1:
we have ⊥p3 afterπ a · b refusesπ {c} but ¬(⊥p1 afterπ a · b refusesπ {c}).
This shows that confπ is not transitive.

The interested reader may verify that the relations presented in Ex. 6, Ex. 7 and
Ex. 8 satisfy Prop. 1.

Conformance Relations for Labeled Event Structures 93

#a a

c b c

p1

a

c

p2

a

#b c

p3

Fig. 3. The confπ relation is not transitive

5 Conformance Relations for Input/Output Concurrent
Systems

As usual when testing reactive systems, we want to distinguish between the
controllable and observable actions of the system under test. We extend the
model of labeled event structures to make a distinction between input actions
(proposed by the environment) and output actions (produced by the system) of
the system, leading input-output labeled event structures (IOLES).

Definition 12 (Input-output labeled event structure). An input-output
labeled event structure is a labeled event structure over the alphabet L = Li �
Lo. The class of input-output labeled event structures over L is denoted by
IOLES(L).

As usual, let ?a denote an input action in Li and !a an output action in Lo.
Examples of IOLES are given in Fig. 4.

5.1 The ioco Relation for the Interleaving Semantics

We first present the definition of the ioco conformance relation for labeled event
structures with the interleaving semantics.

The ioco relation requires that, after a trace of the specification, the outputs
produced by the implementation are authorized by the specification, but also the
absence of outputs. A state where the system cannot produce outputs is called
quiescent in the labeled transition system framework. Similarly, in the labeled
event structure framework, a configuration where the system cannot produce
outputs will be called quiescent.

Definition 13 (Quiescent configuration for single action observation).

Let E ∈ IOLES(L). A configuration C ∈ C(E) is quiescent iff ∀a ∈ Lo : C � a=⇒.

In our framework, a system is in a quiescent configuration if it is waiting for an
input from the environment or it deadlocks.

As it is now standard in the LTS framework, we assume that quiescent config-
urations are observable by a special output action δ ∈ Lo. The event correspond-
ing to a δ action should be unique in the given configuration (1), and it should
be in conflict with all the other possible events from the same configuration (2).

94 H. Ponce de León, S. Haar, and D. Longuet

Additionally, since the δ action captures the notion of not observing anything
but the absence of reaction of the system, observing δ should not change the be-
havior of the system (3). We denote by ΔE an IOLES E enriched by δ such that
these properties hold. Formally, we assume that every quiescent configuration
C ∈ C(ΔE) has the following properties:

(∃! eδ ∈ E \ C : λ(eδ) = δ ∧ C
δ

=⇒) (1)

∧ (∀e′ ∈ E \ (C ∪ {eδ}), C
λ(e′)
=⇒ ⇒ eδ#e′) (2)

∧ (∀σ ∈ L∗ : C
σ

=⇒ ⇒ C ∪ {eδ} σ
=⇒) (3)

In the interleaving semantics, the way to observe the outputs of the system in
response to stimuli is the same as in the LTS framework: the set of possible
outputs from a given configuration is the set of every single possible output.

Definition 14 (Expected outputs for single action observation). Let E ∈
IOLES(L) and S ⊆ C(E), then

out(S) �
⋃
C∈S

{a ∈ Lo | C a
=⇒}

We obtain the following adaptation of the ioco conformance relation to the
labeled event structure framework with the interleaving semantics: for any trace
of the specification enriched with δ actions, every single output produced by the
implementation after this trace (including δ) is authorised by the specification.

Definition 15 (ioco for single action observation). Let i, s ∈ IOLES(L),
then

i ioco s ⇔ ∀σ ∈ traces(Δs) : out(⊥Δi after σ) ⊆ out(⊥Δs after σ)

?but

!liq !change

s

?but

!liq

!change

i

?but

#!liq !change

!change !liq

s′

Fig. 4. Difference between ioco and co-ioco

Example 10. We consider the labeled event structures of Fig. 4, s and s′ being
two specifications and i a possible implementation.

Conformance Relations for Labeled Event Structures 95

As we saw in previous examples, with the interleaving semantics, s and s′

have the same traces: traces(s) = traces(s′) = {ε, ?but, ?but · !liq, ?but · !change,
?but · !liq · !change, ?but · !change · !liq} and we obtain:3

σ out(⊥Δs after σ) out(⊥Δ′
s
after σ) out(⊥Δi after σ)

ε {δ} {δ} {δ}
?but {!liq, !change} {!liq, !change} {!liq}

?but · !liq {!change} {!change} {!change}
?but · !change {!liq} {!liq} ∅

?but · !liq · !change {δ} {δ} {δ}
?but · !change · !liq {δ} {δ} ∅

We conclude that both i ioco s and i ioco s′ hold. Note that the fact of ob-
serving the empty set is different from observing δ. Observing δ after executing
a trace σ means that the system performed σ and reached a quiescent configu-
ration, while observing the empty set formally denotes the fact of not being able
to execute the experiment σ as in the case of i for the trace ?but · !change.

5.2 The ioco Relation for the Partial Order Semantics: co-ioco

We define a new conformance relation co-ioco for labeled event structures with
the partial order semantics.

We first need to define the notion of quiescent configuration in this semantics:
here, the possible actions in a given configuration are not only single actions but
also sets of concurrent events.

Definition 16 (Quiescent configuration for partially ordered observa-
tion). Let E ∈ IOLES(L). A quiescent configuration C ∈ C(E) is such that

∀α ∈ CO(Lo) : C � α=⇒π.

We also need to redefine the properties that the enhancement of an IOLES by δ
actions must verify. The conflict with other possible events in the given configu-
ration expressed by property (2) extends to sets of concurrent events. Property
(3) naturally extends to partial order semantics, considering partially ordered
trace instead of sequential ones. Therefore, denoting byΔE the enhancement by δ
actions of an IOLES E , we assume that every quiescent configuration C ∈ C(ΔE)
has the following properties:

(∃! eδ ∈ E \ C : λ(eδ) = δ ∧ C
δ

=⇒π)

∧ (∀α = (Eα,≤α, λα) ∈ CO(L) : C
α

=⇒π ⇒ ∀e′ ∈ Eα : eδ#e′)

∧ (∀ω ∈ LPO(L) : C
ω

=⇒π ⇒ C ∪ {eδ} ω
=⇒π)

In the partial order semantics, the outputs of the system under test in response
to stimuli may be single outputs as well as sets of concurrent outputs. We need

3 To lighten the examples, we consider the traces of s and i only, and not all the traces
of Δs and Δi, since it makes no difference in these cases.

96 H. Ponce de León, S. Haar, and D. Longuet

any set of concurrent outputs to be entirely produced by the system under test,
so we define the set of expected outputs from a set of configurations S as the
set of maximal sets of concurrent outputs.

Definition 17 (Expected outputs for partially ordered observation).
Let E ∈ IOLES(L) and S ⊆ C(E), then

outπ(S) �
⋃
C∈S

{α ∈ CO(Lo) | C α
=⇒π and Eα is maximal w.r.t ⊆}

We obtain the following formulation of the co-ioco conformance relation, in
the case of the partial order semantics: for any partially ordered trace of the
specification enriched with δ actions, the sets of concurrent outputs produced
by the implementation after this trace (including δ) are among those authorised
by the specification.

Definition 18 (co-ioco). Let i, s ∈ IOLES(L), then

i co-ioco s ⇔ ∀ω ∈ tracesπ(Δs) : outπ(⊥Δi afterπ ω) ⊆ outπ(⊥Δs afterπ ω)

Example 11. We have tracesπ(s) = {ε, ?but, ?but · !liq, ?but · !change, ?but ·
(!liq co !change)} and tracesπ(s

′) = {ε, ?but, ?but·!liq, ?but · !change, ?but ·
!liq · !change, ?but · !change · !liq} and we can observe:

ω outπ(⊥Δs afterπ ω) outπ(⊥Δ′
s
afterπ ω) outπ(⊥Δi afterπ ω)

ε {δ} {δ} {δ}
?but {!liq co !change} {!liq, !change} {!liq}

?but · !liq {!change} {!change} {!change}
?but · !change {!liq} {!liq} ∅

?but · (!liq co !change) {δ} ∅ ∅
?but · !liq · !change ∅ {δ} {δ}
?but · !change · !liq ∅ {δ} ∅

We conclude that i co-ioco s′ but ¬(i co-ioco s). This is due to the fact that
the co-ioco relation requires any concurrent set of outputs depending on the
same input to remain concurrent.

6 Conclusion, Discussion and Future Work

We have laid several cornerstones for conformance testing under true concur-
rency. Four well-established conformance relations over labeled transition sys-
tems [11] (trace preorder, testing preorder, conf and ioco) have been extended
to concurrency-enabled relations over labeled event structures, and illustrated
in several examples. The next steps will encompass test case generation and the
formalization of adequate centralized and distributed test architectures.

With the interleaving semantics, the relations we obtain boil down to the
same relations defined for LTS, since they focus on sequences of actions. The
only advantage of using labeled event structures as a specification formalism

Conformance Relations for Labeled Event Structures 97

for testing remains in the conciseness of the concurrent model with respect to
a sequential one. As far as testing is concerned, the benefit is low since every
interleaving has to be tested.

By contrast, under the partial order semantics, the relations we obtain allow to
distinguish explicitly implementations where concurrent actions are implemented
concurrently, from those where they are interleaved, i.e. implemented sequen-
tially. Therefore, these relations will be of interest when designing distributed
systems, since the natural concurrency between actions that are performed in
parallel by different processes can be taken into account. In particular, the fact
of being unable to control or observe the order between actions taking place
on different processes will not be considered as an impediment for testing. This
opens interesting perspectives for a distributed test architecture where testers
would scarcely have to synchronize. If the specification allows it, one could even
think of a local test architecture where testers are completely independent from
each other.

It should be noted that the co-ioco relation allows for further refinement that
we do not discuss here. As defined in Def. 7, this relation deals with concurrent
inputs and concurrent outputs in the same way: it requires concurrency to be
preserved by the implementation. This is exactly what should be the case when
the specification requires these concurrent inputs to be processed by different
entities, and the concurrent outputs to be issued from different processes. That
is, the distribution or attribution of events assigned to concurrent processes is
then part of the specification, and conformance requires the implementation to
have exactly this distribution. An analogous idea is captured in the concurrency-
preserving bisimulation relation developed in [19]. It is natural to look also for
means of dealing with concurrency in specifications in a different way, namely
with a “don’t care”-type approach: that is, for some events a and b that are
specified as concurrent, one may accept implementations that order a before b
OR that order b before a (provided of course they conform otherwise to the spec-
ification). Care must then be taken to distinguish different types of dependency
(output on output? input on output? output on input?) and to study which kind
of dependency may be added without compromising required properties. A dis-
cussion of some of these aspects, plus the question when dependencies might be
dropped in the implementation, can be found in [14]. In the present context, such
generalization requires the modification of Def. 6: the requirement ≤|A×A = ≤ω

is then replaced by an inclusion relation, with additional constraints such as
preservation of immediate input-output-orders etc. The discussion and develop-
ment of these points, which are at the heart of work in progress, would have
taken us too far afield here.

Acknowledgment. The research related here was funded by the DIGITEO/
DIM-LSC project TECSTES, convention DIGITEO Number 2011-052D -
TECSTES.

98 H. Ponce de León, S. Haar, and D. Longuet

References

1. Milner, R.: Communication and concurrency. PHI Series in computer science. Pren-
tice Hall (1989)

2. Hoare, T.: Communicating Sequential Processes. Prentice-Hall (1985)
3. ITU-TS: Recommendation Z.100: Specification and Description Language (2002)
4. Brinksma, E., Scollo, G., Steenbergen, C.: Lotos specifications, their implemen-

tations and their tests. In: Linn, R.J., Uyar, M.U. (eds.) Conformance testing
methodologies and architectures for OSI protocols, pp. 468–479. IEEE Computer
Society Press (1995)

5. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Com-
puter Science 34, 83–133 (1984)

6. Abramsky, S.: Observation equivalence as a testing equivalence. Theoretical Com-
puter Science 53, 225–241 (1987)

7. Brinksma, E.: A theory for the derivation of tests. In: Protocol Specification Testing
and Verification VIII, pp. 63–74. North-Holland (1988)

8. Phillips, I.: Refusal testing. Theoretical Computer Science 50, 241–284 (1987)
9. Langerak, R.: A testing theory for LOTOS using deadlock detection. In: Protocol

Specification, Testing and Verification IX, pp. 87–98. North-Holland (1990)
10. Segala, R.: Quiescence, fairness, testing, and the notion of implementation. Infor-

mation and Computation 138(2), 194–210 (1997)
11. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Soft-

ware - Concepts and Tools 17(3), 103–120 (1996)
12. De Nicola, R.: Extensional equivalences for transition systems. Acta Informat-

ica 24(2), 211–237 (1987)
13. von Bochmann, G., Haar, S., Jard, C., Jourdan, G.-V.: Testing Systems Specified

as Partial Order Input/Output Automata. In: Suzuki, K., Higashino, T., Ulrich,
A., Hasegawa, T. (eds.) TestCom/FATES 2008. LNCS, vol. 5047, pp. 169–183.
Springer, Heidelberg (2008)

14. Haar, S., Jard, C., Jourdan, G.-V.: Testing Input/Output Partial Order Automata.
In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W. (eds.) TestCom/FATES
2007. LNCS, vol. 4581, pp. 171–185. Springer, Heidelberg (2007)

15. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
part I. Theoretical Computer Science 13, 85–108 (1981)

16. Winskel, G.: Event Structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
APN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987)

17. Nielsen, M., Sassone, V., Winskel, G.: Relationships Between Models of Concur-
rency. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993.
LNCS, vol. 803, pp. 425–476. Springer, Heidelberg (1994)

18. Aceto, L., De Nicola, R., Fantechi, A.: Testing Equivalences for Event Structures.
In: Venturini Zilli, M. (ed.) Mathematical Models for the Semantics of Parallelism.
LNCS, vol. 280, pp. 1–20. Springer, Heidelberg (1987)

19. Balaguer, S., Chatain, T., Haar, S.: A concurrency-preserving translation from
time Petri nets to networks of timed automata. In: International Symposium on
Temporal Representation and Reasoning, pp. 77–84. IEEE Computer Society Press
(2010)

Test Generation from Recursive Tiles Systems

Sébastien Chédor1, Thierry Jéron2, and Christophe Morvan3

1 Université Rennes I
2 INRIA Rennes - Bretagne Atlantique

3 Université Paris-Est, Marne-La-Vallée, France
{sebastien.chedor,thierry.jeron}@inria.fr,

christophe.morvan@univ-paris-est.fr

Abstract. In this paper we explore test generation for Recursive Tiles Systems
(RTS) in the framework of the classical ioco testing theory. The RTS model al-
lows the description of reactive systems with recursion, and is very similar to
other models like Pushdown Automata, Hyperedge Replacement Grammars or
Recursive State Machines. We first present an off-line test generation algorithm
for Weighted RTS, a determinizable sub-class of RTS, and second, an on-line test
generation algorithm for the full RTS model. Both algorithms use test purposes
to guide test selection through targeted behaviours.

1 Introduction and Motivation

Conformance testing is the problem of checking by test experiments that a black-box
implementation behaves correctly with respect to its specification. It is well known that
testing is the most used validation technique to assess the quality of software systems,
and represents the largest part in the cost of software development. Automatising is thus
required in order to improve the cost and quality of the testing process. In particular,
it is undoubtedly interesting to automate the test generation phase from specifications
of the system. Formal model-based testing aims at resolving this problem by the for-
mal description of testing artefacts (specifications, possible implementations, test cases)
by mathematical models, formal definitions of conformance, the execution of tests and
their verdicts, and the proof of some essential properties of test cases relating verdicts
produced by test executions on implementations and conformance of these implemen-
tations with respect to their specifications. The ioco conformance theory introduced
in [13] is a well established framework for the formal modelling of conformance test-
ing for Input/Output Transition Systems (IOLTSs). Test generation algorithms and tools
have been designed for this model [9,12] and for more general models whose semantics
can be expressed in the form of infinite state IOLTSs [10,8].

In this paper, we are interested in test generation for reactive recursive programs, like
the one in Fig 1. There already exist several ways to define recursive behaviours: push-
down automata (PDA), recursive state machines [1], regulars graphs, defined by func-
tional (or deterministic) hyperedge replacement grammars (HR-grammars), [7,3]. Each
of these models has its merits and flaws: PDA are classical, and well understood; recur-
sive state machines are equally expressive and more visual as a model; HR-grammars
are a visual model which characterizes the same languages but enables to model sys-
tems having states of infinite degree. Furthermore, recent results define classes of such

A.D. Brucker and J. Julliand (Eds.): TAP 2012, LNCS 7305, pp. 99–114, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

100 S. Chédor, T. Jéron, and C. Morvan

static void main(String [] args){
try{

// Block 1 (input)
int k =in.readInt();
comp(k);
// Block 2 (output)
System.out.println("Done");

}
catch (Exception e){

// Block 3 (output)
System.out.println(e.getMessage());

}
}
void comp (int x){

// Block 4 (input)
int res =1;
boolean cont=in.readBoolean();
if (cont){

if (x==0)throw new Exception("An error occurred");
// Block 5 (internal)
res=x*comp(x-1);
// Block 6 (output)
System.out.println("Some text");
return res;

}
else {

// Block 7 (output)
system.out.println("You stopped");
return res;

}
} Fig. 1. A recursive program

systems which may be determinized [5], which is of interest for test generation. The HR-
grammars, on the other hand, are very technical to define. Here we try to get the best of
both worlds: we use HR-grammars presented as tiling systems, called RTS (RTS). Such
systems are mostly finite sets of finite LTS with frontiers, crossing the frontier corre-
sponds to entering a new copy of one of the finite LTS. The semantics of an RTS is then
an infinite state LTS. Hopefully for such models (co)-reachability which is essential for
test generation using test purposes is decidable. Also determinization is possible for the
class of Weighted RTS, which permits to design off-line test generation algorithms for
this sub-class. For the whole class of RTS however determinization is impossible, but
on-line test generation is still possible as subset construction is performed along finite
executions.

To the best of our knowledge test generation for recursive programs has been seldom
considered in the literature. The only work we are aware of is [6] which considers
a model of deterministic PDA with inputs/outputs (IOPDS) and generate test cases in
the same model. The present work can be seen as an extension of this, where non-
determinism is taken into account.

Test Generation from Recursive Tiles Systems 101

Contribution and Outline: The contribution of the paper is as follows. Section 2 recalls
the main ingredients of the ioco testing theory for IOLTSs. In Section 3, we define the
model of RTS for the description of recursive reactive programs, give its semantics in
terms of an infinite state IOLTS obtained by recursive expansion of tiles. In Section 4,
in the ioco framework, we propose an off-line test selection algorithm guided by test
purposes for Weighted RTSs, a determinizable sub-class of RTSs, and prove essential
properties of generated test cases. Furthermore in Section 5, we design an on-line test
generation algorithm for the full RTS model, also using test purposes for test selection.

2 Conformance Testing Theory for IOLTS

This section recalls the ioco testing theory for the model of Input/Output Labelled Tran-
sition Systems that will serve as a basis for test generation from RTS. We first give a
non-standard definition of IOLTS and introduce notations and basic operations, then
review the ioco testing theory.

Definition 1. An IOLTS (Input Output Labelled Transition System) is a tuple M =
(QM, ΣM, ΛM,→M, CM, initM) where QM is a set of states; ΣM is the alphabet of
actions partitioned into a set of inputs Σ?

M, a set of outputs Σ!
M and a set of internal

actions Στ
M and we denote by Σo

M � Σ?
M ∪ Σ!

M the set of visible actions 1; ΛM is a
set of colours with initM ∈ ΛM a colour for initial states; →M⊆ QM × ΣM × QM

is the transition relation; CM ⊆ QM × ΛM is a relation between colours and states.

In this non-standard definition of IOLTSs, colours are used to mark states by the relation
CM. For a colour λ ∈ ΛM, CM(λ) � {q ∈ QM | (q, λ) ∈ CM} and CM(λ) � {q ∈
QM | (q, λ) �∈ CM} denote respectively the sets of states coloured and not coloured by
λ. In particular, CM(initM) defines the set of initial states.

We write q
a−→M q′ for (q, a, q′) ∈→M and q

a−→M for ∃q′ : q
a−→M q′. This

notation is generalized to sequences of actions, and for w = μ1 . . . μn ∈ (ΣM)∗, we
note q

w−→M q′ for ∃q0, . . . , qn : q = q0
μ1−→M q1

μ2−→M · · · μn−→M qn = q′.
For X ⊆ QM a subset of states and Σ′ ⊆ Σ a sub-alphabet, we denote by

postM(Σ′, X) = {q′ ∈ QM | ∃q ∈ X, ∃μ ∈ Σ′ : q
μ−→M q′} the set of direct

successors of a state in X by an action in Σ′, and preM(Σ′, X) = {q ∈ QM | ∃q′ ∈
X, ∃μ ∈ Σ′ : q

μ−→M q′} the set of direct predecessors of X by a transition in Σ′.
The set of states reachable from P ⊆ QM by actions in Σ′ is reachM(Σ′, P) �
lfp(λX.P ∪postM(Σ′, X)) where lfp is the least fixed point operator. Similarly, the set
of states coreachable from P ⊆ QM (i.e. the set of states from which P is reachable) is
coreachM(Σ′, P) � lfp(λX.P ∪ preM(Σ′, X)). We will also write reachM(Σ′, λ)
for reachM(Σ′, CM(λ)) and coreachM(Σ′, λ) for coreachM(Σ′, CM(λ)).

ΓM(q) � {μ ∈ ΣM | q
μ−→M} denotes the subset of actions enabled in q and

respectively, OutM(q) � ΓM(q) ∩ Σ!
M and InM(q) � ΓM(q) ∩ Σ?

M denote the set of
outputs (resp. inputs) enabled in q. For P ⊆ QM, OutM(P) �

⋃
q∈P OutM(q) and

InM(P) �
⋃

q∈P InM(q).

1 In the examples, for readability reasons, we write ?a for an input a ∈ Σ?
M, !x for an output

x ∈ Σ!
M and internal actions have no sign.

102 S. Chédor, T. Jéron, and C. Morvan

Visible behaviours of M are defined by the relation =⇒M∈ QM×({ε}∪Σo
M)×QM

as follows: q
ε=⇒M q′ � q = q′ or q

τ1.τ2···τn−→M
∗

q′ and for a ∈ Σo
M, q

a=⇒M q′ �
∃q1, q2 : q

ε=⇒M q1
a−→M q2

ε=⇒M q′. For σ = a1 · · · an ∈ (Σo
M)∗ a sequence of

visible actions, q
σ=⇒M q′ stands for ∃q0, . . . , qn : q = q0

a1=⇒M q1 · · · an=⇒M qn = q′

and q
σ=⇒M for ∃ q′ : q

σ=⇒M q′. We denote q after σ � {q′ ∈ Q | q
σ=⇒M q′} for

the set of states in which one can be after observing σ starting from q and for P ⊆ QM,
P after σ �

⋃
q∈P q after σ. Traces(q) � {σ ∈ (Σo

M)∗ | q
σ=⇒M} denotes

the set of sequences of visible actions that may be observed from q and Traces(M) �⋃
q0∈C(initM) Traces(q0). TracesP (M) = {σ ∈ (Σo

M)∗ | (CM(initM) afterσ) ∩
P �= ∅} denotes the set of traces of sequences accepted in P .

M is input-complete if in each state all inputs are enabled, possibly after internal
actions, i.e. ∀q ∈ QM, ∀a ∈ Σ?

M, q
a=⇒M. M is complete in a state q if any action is

enabled in q: ∀q ∈ QM, Γ (q) = ΣM. M is complete if it is complete in all states.
An IOLTS M is deterministic if |C(initM)| = 1 (i.e. there is a unique initial state)

and ∀q ∈ QM, ∀a ∈ Σo
M, |q aftera| ≤ 1, where |.| is the cardinal of a set.

From an IOLTS M, one can define a deterministic IOLTS D(M) with same traces
as M as follows: D(M) = (2QM , Σo

M, ΛD,→D, CD, initD) where for P, P ′ ∈ 2QM ,
a ∈ Σo

M, P
a−→D P ′ ⇐⇒ P ′ = P aftera, and initD ∈ ΛD is the colour for

the singleton state CD(initD) = CM(initM) after ε ∈ 2QM . One can define other
colours in ΛD and, depending on the objective, the colouring CD may be defined ac-
cording to ΛM and CM. For example, if f ∈ ΛM defines marked states in M, one may
define a colour F ∈ ΛD for D(M) such that TracesCM(f)(M) = TracesCD(F)(D(M))
simply by colouring by F the states in s ∈ 2QM such that C(f) intersects s, i.e. at
least one state in s is marked by f . Observe that the definition of D(M) is not always
effective. However, it is the case wheneverM is a finite state IOLTS. Even when it is ef-
fective, such a transformation may lead to an exponential blow-up. Often, for efficiency
reasons, the full construction of D(M) is avoided, and on-the-fly paths are computed
(visiting only a limited part of the powerset).

Synchronous product of IOLTS: One may define a product of two IOLTS such that
sequences of actions in the product are the sequences of actions of both IOLTS:

Definition 2. Let Mi = (QMi
, Σ, ΛMi

,→Mi
, CMi

, initMi
), i = 1, 2 be two IOLTSs

with same alphabet Σ. Their synchronous product M1 × M2 is the IOLTS P =
(QP , ΣP , ΛP,→P , CP , initP) such that QP � QM1 × QM2 , and ∀(q1, q2), (q′1, q

′
2) ∈

QP , (q1, q2)
a−→P (q′1, q

′
2) � q1

a−→M1 q′1∧q2
a−→M2 q′2. We define ΛP � ΛM×ΛM′ ,

in particular initP � (initM1 , initM2), and for any (λ1, λ2) ∈ ΛP the colouring
relation is defined by CP((λ1, λ2)) � CM1(λ1) × CM2(λ2).

Specification and Implementation: In the ioco testing framework, we assume that the
behaviour of the specification is modelled by IOLTS S = (QS , ΣS, ΛS ,→S , CS , initS).
The implementation under test is a black box system with same observable interface
as the specification. In order to formalize conformance, it is usually assumed that the
implementation behaviour can be modelled by an (unknown) input-complete IOLTS
I = (QI, ΣI, ΛI,→I, initI) with ΣI = Σ?

I ∪Σ!
I ∪Στ

I and Σ?
I = Σ?

S and Σ!
I = Σ!

S .

Test Generation from Recursive Tiles Systems 103

Quiescence: It is current practice that tests observe traces of the implementation, and
also absence of reaction (quiescence) using timers. Tests should then distinguish be-
tween quiescences allowed or not by the specification. Several kinds of quiescence may
happen in an IOLTS: a state q is output quiescent if it is only waiting for inputs from
the environment, i.e. Γ (q) ⊆ Σ?

M, (a deadlock i.e. Γ (q) = ∅ is a special case of out-
put quiescence), and a livelock if an infinite sequence of internal actions is enabled,
i.e.∀n ∈ N, ∃σ ∈ (Στ

M)n, q
σ−→M

2. We note quiescent(q) if q is either an output
quiescence or in a livelock. From an IOLTS M one can build a new IOLTS Δ(M)
where quiescence is made explicit by a new output δ:

Definition 3. Let M = (QM, ΣM, ΛM,→M, CM, initM) be an IOLTS, Δ(M) is the
IOLTS Δ(M) = (QM, ΣΔ(M), ΛM,→Δ(M), CM, initM) where ΣΔ(M) = ΣM ∪ {δ}
with δ ∈ Σ!

Δ(M) (δ is considered as an output, observable by the environment), and
→Δ(M)=→M ∪{(q, δ, q) | q ∈ quiescent(M)} is obtained from →M by adding δ
loops for each quiescent state q.

In the sequel, we note Σ!δ
M for Σ!

M ∪ {δ} and Σoδ
M for Σo

M ∪ {δ}. The traces of Δ(M)
denoted by STraces(M) are called the suspension traces of M. They represent the
visible behaviour of M, including quiescence and are the basis for the definition of the
ioco conformance relation.

Conformance Relation: In the ioco formal conformance theory [13], the implementa-
tion I conforms to its specification S if after any suspension trace σ of S the imple-
mentation I exhibits only outputs and quiescences that are specified in S. Formally:

Definition 4. Let S be an IOLTS and I be an input-complete IOLTS with same visible
alphabet (Σ?

S = Σ?
I and Σ!

S = Σ!
I),

I ioco S � ∀σ ∈ STraces(S), Out(Δ(I) afterσ) ⊆ Out(Δ(S) afterσ).

It can be proved [10] that I ioco S ⇐⇒ STraces(I) ∩ MinFTraces(S) = ∅, where
MinFTraces(S) � STraces(S).Σ!

S \ STraces(S) is the set of non-conformant suspen-
sion traces, minimal for the prefix ordering.

Test Cases, Test Suites, Properties: The behaviour of a test case is modelled by an
IOLTS equipped with colours representing verdicts assigned to executions.

Definition 5. A test case for S is a deterministic and input-complete IOLTS
T C = (QT C, ΣT C , ΛT C ,→T C, CT C , initT C) where Pass, Fail, Inc, None ∈ ΛT C are
colours characterising verdicts. CT C(Pass), CT C(Fail), CT C(Inc) and CT C(None) forms
a partition of QT C . Its alphabet is ΣT C = Σ?

T C
∪ Σ!

T C
where Σ?

T C
= Σ!δ

S and Σ!
T C

=
Σ?

S (outputs of T C are inputs of S and vice versa). A test suite is a set of test cases.

The execution of a test case T C against an implementation I can be modelled by the
parallel composition T C‖I where common actions (inputs, outputs and quiescence)
are synchronized. The effect is to intersect sets of suspension traces (Traces(T C‖I) =

2 We here consider both loops or internal actions and divergences, i.e. infinite sequences of in-
ternal actions traversing an infinite number of states.

104 S. Chédor, T. Jéron, and C. Morvan

STraces(Δ(I)) ∩ Traces(T C)). Consequently, the possible failure of a test case on an
implementation is defined as T C fail I � STraces(Δ(I)) ∩ TracesCT C(Fail)(T C) = ∅.
Similar definitions can be given for pass and inconc relative to Pass and Inc.

We now define some properties that should be satisfied by test cases in order to
correctly relate conformance to rejection by a test case:

Definition 6. Let S be a specification, and T S a test suite for S.
TS is sound if no test case may reject a conformant implementation:

∀I, ∀T C ∈ T S, I ioco S =⇒ ¬(T C fail I).
T S is exhaustive if it rejects all non-conformant implementations:

∀I,¬(I ioco S) =⇒ ∃T C ∈ T S, T C fail I.
It is complete if it is both sound and exhaustive.
TS is strict if it detects non-conformance as soon as they happen:

∀I, ∀T C ∈ T S,¬(T C‖I ioco S) ⇒ T C fail I.

The following characterisations derived from [10] are very convenient to prove those
properties on generated test suites:

Proposition 1. Let T S be a test suite for S,
T S is sound if

⋃
T C∈T S TracesCT C(Fail)(T C) ⊆ MinFTraces(S).Σ∗

S ,
T S is exhaustive if

⋃
T C∈T S TracesCT C(Fail)(T C) ⊇ MinFTraces(S),

T S is strict if
∧

T C∈T S(Traces(T C) ∩ MinFTraces(S) ⊆ TracesCT C(Fail)(T C)).

3 Recursive Tiles Systems and Their Properties

In this section, we define the Recursive Tiles Systems (RTS), a model to define infinite
state IOLTS based on the regular graphs of [7]. We present some key properties of these
systems relative to ε-closure (suppression of internal actions), product and determiniza-
tion that will be useful for test generation in the next sections.

Definition 7. A recursive tile system (RTS) is a tuple R = ((Σ, Λ), T , t0) where

– Σ = Σ? ∪ Σ! ∪ Στ is a finite alphabet of actions partitioned into inputs, outputs
and internal actions,

– Λ is a finite set of colours with a particular one init marking initial states.
– T is a set of tiles tA = ((Σ, Λ), QA,→A, CA, FA) defined on (Σ, Λ) where

• QA ⊆ N is the set of vertices,
• →A⊆ QA × Σ × QA is a finite set of transitions,
• CA ⊆ QA × Λ is a finite set of coloured vertices,
• FA ⊆ T × 2N×N, the frontier, relates to some tile, tB, a partial function (often

denoted fB) over N, associating to vertices of QB, vertices of QA.
– t0 ∈ T is an initial tile (the axiom).

The frontier FA of a tile tA is used to append tiles tB to tA: the frontier of tA identifies
tiles tB and how some vertices of tB are merged with vertices of tA.

A tile tA defines an IOLTS [tA] = (QA, Σ, Λ,→A, CA, init).

Test Generation from Recursive Tiles Systems 105

Example 1. The following example presents an RTS abstracting the program of Fig. 1,
R = ((Σ, Λ), T , tmain) with Στ = {try, throw, catch, Block5}, Σ? = {?Block1, ?Block4},
Σ! = {!Block2, !Block3, !Block6, !Block7}, Λ = {init, succ}, T =

{
tmain, tcomp

}
a set of

tiles, and tmain the initial tile.

– tmain = ((Σ, Λ), Qmain,→main, Cmain, Fmain) with
Qmain = {0, 1, 2, 3, 4, 5, 6}, Cmain = {(0, init)} (init depicted by �)
Fmain = {(comp, {0 → 2, 2 → 3, 5 → 4})}, and →main depicted below,

– tcomp = (comp, (X, Σ, Λ), Qcomp,→comp, Ccomp, Fcomp) with
Qcomp = {0, 1, 2, 3, 4, 5}, →comp Ccomp = {(2, succ)} (succ depicted by �),
Fcomp = {(comp, {0 → 3, 2 → 4, 5 → 5})} and →comp depicted below.

main: 0 1

2fcomp(0)

3fcomp(2)

4 fcomp(5)

5

6

try

?Block1

!Block2

!Block3

catch

comp:

10

2

3 fcomp(0)

4 fcomp(2)

5 fcomp(5)

?Block4

!Block7

!Block6

Block5

throw

For the frontier, e.g., in the tile tmain, 2fcomp(0) means that (comp, {0 → 2}) belongs
to Fmain, i.e. the vertex 0 of tcomp is associated to the vertex 2 of tmain.

The semantics of an RTS is formally defined by an IOLTS by a tiling operation that
appends tiles to another tile (initially, the axiom), inductively defining an IOLTS. For-
mally, given a set of tiles T and a tile tE = ((Σ, Λ), QE ,→E , CE , FE) with FE defined
on T , the tiling of tE by T , denoted by T (tE), is the tile t′E = ((Σ, Λ), Q′

E ,→′
E , C′

E , F
′
E)

iteratively defined according to the elements of the frontier FE , as follows:

1. Initially, Q′
E = QE , →′

E=→E , C′
E = CE F ′

E = ∅;
2. for each pair (tB, fB) ∈ FE , with tB = ((Σ, Λ), QB,→B, CB, FB) ∈ TB,

let ϕB : QB → N be the injection mapping vertices of QB to new vertices of Q′
E

with ϕB(n) := fB(n) whenever n ∈ dom(fB), n+max(Q′
E)+1 otherwise, where

max(Q′
E) is the vertex with greatest value in Q′

E . The tile t′E is then defined by:
– Q′

E = Q′
E ∪ Im(ϕB),

– →′
E=→′

E ∪{(ϕB(n), a, ϕB(n′)) | (n, a, n′) ∈→B},
– C′

E = C′
E ∪ {(ϕB(n), λ) | (n, λ) ∈ CB},

– F ′
E = F ′

E ∪ {(tC , {(ϕB(j), fC(j)) | j ∈ dom(fC)}) | (tC , fC) ∈ FB}. The up-
date of F ′ expresses that the frontier of the new tile t′A is composed from those
of the tiles that have been added.

Remark 1. In a tiling, the order chosen to append a copy of the tiles that belong to the
frontier is not important. Two different orders would produce isomorphic tiles (up to a
renaming of vertices).

106 S. Chédor, T. Jéron, and C. Morvan

0 1

2

3

4 fcomp(5)

5

6 8 10

fcomp(0)

11

fcomp(2)

try

?Block1

!Block2

!Block3

catch

?Block4

Block5

!Block7

!Block6

throw
0 1

2

3

4

fcomp(5)

5

6 8 10

11

13 15

fcomp(0)

16

fcomp(2)

try

?Block1

!Block2

!Block3

catch

?Block4

Block5

!Block7

!Block6

throw

?Block4

Block5

!Block7

!Block6

throw

Fig. 2. T (tmain) and T 2(tmain) tiles

Example 2. We illustrate the principle of tiling using the RTS defined in Example 1.
Consider that tmain is the initial tile. Its tiling T (tmain), is performed as follows: there
is a single element in its frontier; we add a copy of tcomp (with new vertices), identifying
vertices 2, 3 and 4 of tmain to vertices 0, 2 and 5 of tcomp.

The resulting tile is depicted in Fig. 2 (left-hand side). This new tile may be in turn
extended by adding a copy of tcomp, identifying 4, 10 and 11 to 0, 2 and 5. Again, we
illustrate the resulting tile in Fig. 2 (right-hand side) (observe that our definition of
ϕcomp induces that some elements of N are left out). Obviously iterating this process
will result in vertex 4 having infinite in-degree.

An IOLTS is finally obtained from an RTS as the union of the IOLTS of tiles resulting
from the iterated tilings from the axiom. Formally,

Definition 8. Let R = ((Σ, Λ), T , t0) be an RTS. R defines an IOLTS
�R� = (QR, Σ, Λ,→R, CR, init) given by⋃

k[T k(t0)]

The infinite union of Definition 8 is valid because, by construction, for all k ≥ 0:
[T k(t0)] ⊆ [T k+1(t0)], where ⊆ is understood as the inclusion of IOLTS, i.e. inclusion
of states, transitions and colourings.

For an RTS R with axiom t0, and a state q in �R�, �(q) denotes the level of q, i.e. the
least k ∈ N such that q is a state of [T k(t0)], and t(q) denotes the tile in T that created
q. For a vertex v of a tile of R, �v� denotes the set of states in �R� corresponding to v.

Requirement 1. In order to simplify proofs, we impose some technical restrictions on
the RTS, R = ((Σ, Λ), T , t0), that can be ensured by a normalisation step, without loss
of generality:

1. for any state, q, of finite degree in �R�, every transition connected to q is either
defined in t(q) or one of the tiles of its frontier (this may be checked on T)

2. the set of enabled actions in copies of a vertex v is uniform (for all vertices v
in R, for all q, q′ in �v�, Γ�R�(q) = Γ�R�(q′)), thus can be written Γ�R�(�v�).
Furthermore, we may assume that each vertex possesses a colour reflecting this
value (see Corollary 1 below).

Test Generation from Recursive Tiles Systems 107

Remark 2. The IOLTS obtained from RTS correspond to the equational, or regular
graphs of [7] and [3]. These IOLTS are derived from an axiom using deterministic HR-
grammars. Each such grammar may be transformed into a tiling system, and conversely.
Our definition aims at a greater simplicity.

Reachability. Computation of (co)reachability sets, that are central for verification and
safety problems, as well as for test generation, are effective for RTS:

Proposition 2 ([3]). Given an RTS R = ((Σ, Λ), T , t0), a sub-alphabet Σ′ ⊆ Σ, a
colour λ ∈ Λ, and a new colour rλ �∈ Λ, an RTS R′ = ((Σ, Λ ∪ {rλ}), T ′, t′0) can be
effectively computed, such that �R′� is isomorphic to �R� with respect to the transitions
and the colouring by Λ, and states reachable from a state coloured λ by actions in Σ′

are coloured rλ: CR′(rλ) = reach�R′�(C(λ), Σ′). The same result holds for states
co-reachable from λ.

Proposition 3.13 (b) of [3] enables to perform several computations related to our pur-
pose. We rephrase it for RTS.

Proposition 3 ([3]). Given an RTS R = ((Σ, Λ), T , t0), for any subset S in N ∪ {∞}
and new colour #S �∈ Λ, it is possible to compute an RTS R′ = ((Σ, Λ∪{#S}), T ′, t′0)
such that �R� is isomorphic to �R′� with respect to the transitions and the colouring by
Λ, and every state of �R′� of (in- or out- or total-) degree is in S is coloured by #S .

In particular this result enables to identify on the set of tiles properties of the states,
like deadlocks, inputlock. The following corollary is also a direct consequence of this
proposition (performing successive colouring for computing the degree related to some
actions).

Corollary 1. Given an RTS R and a vertex v of a tile t of R, for any q in �v� the
allowed actions Γ�R�(q) in state q can be effectively computed.

Observable Behaviour of RTS: Abstracting away internal transitions is important for
test generation. With the following proposition, it is possible to do it for RTS.

Proposition 4. From an RTS R with IOLTS �R� = (QR, Σ, Λ,→R, CR, init) and
visible actions Σo ⊆ Σ, one can effectively compute an RTS Clo(R) with same colours
Λ, whose IOLTS �Clo(R)� = (Q′

R, Σo, Λ,→′
R, C′

R, init) has no internal action, is of
finite out-degree, and for any colour λ ∈ Λ, TracesCR(λ)(�R�) = TracesC′

R(λ)(�Clo(R)�).

This result is classical and follows mainly from [3]. Infinite out-degree may occur when-
ever there is an infinite sequence of internal transitions. However, careful computation
of Clo(R) enables to avoid such occurrences.

Synchronous Product: The synchronous product of IOLTS is the operation used to
intersect languages, and is useful for test selection using a test purpose. We can prove
that the product of an RTS with a finite IOLTS is an RTS. More precisely, given any
RTS R with IOLTS �R�, and a finite state IOLTS A, one can compute an RTS denoted

108 S. Chédor, T. Jéron, and C. Morvan

by R×A such that �R×A� = �R� ×A (the × on the right-hand side of the equality
is the product for IOLTS).

In general, the product of two RTS is not recursive. Indeed, the intersection of two
context-free languages can be obtained by a product of two RTS, if such a product
was recursive the intersection of two context-free languages would be a context-free
language (e.g.,

{
anbnck | n, k ∈ N

} ∩ {
anbkck | n, k ∈ N

}
is not context-free).

Weighted RTS. In the following we will often consider an important class of RTS.
This class possesses the valuable property of being determinizable.

Definition 9. An RTS R with IOLTS �R� = (QR, Σ, Λ,→R, CR, init) is weighted if
CR(init) is a singleton {q0}, and for any u ∈ Σ∗ and any states q, q′ ∈ QR, q0

u→ q

and q0
u→ q′ implies �(q) = �(q′) (same level).

Note that determining if an RTS is weighted is decidable, using an algorithm from [5].

Example 3. Assuming internal actions are not observable, the RTS defined in Exam-
ple 1 may be weighted or not depending on the way the closure is performed. A back-
ward closure ensures that the IOLTS is weighted: in fact, it is, then, deterministic. A
forward closure induces non-determinism at ?Block4. Since path ending with this block
would either be silently followed by throw and thus end in the initial tile (level 0), or be
followed by Block5 and terminate at the next level (at least 1).

Determinization of recursive LTS. An RTS R is deterministic if its underlying IOLTS
�R� is deterministic. This is decidable from the set of tiles defining it (for example using
Proposition 3). However, since PDA cannot be determinized in general, there is no hope
to determinize an arbitrary RTS. Still, there are some classes of determinizable PDA,
like visibly PDA [2], or, more recently, the weighted grammars of [4]. These grammars
define a class of PDA that can be determinized and which both subsume the visibly
PDA and the height deterministic PDA [11].

Proposition 5 ([5]). Any weighted RTS R can be transformed into a deterministic one
D(R) with same set of traces and, for any colour, same traces accepted in this colour.

Example 4. Following Example 3, assume that vertex 5 is not in any frontier anymore,
and suppose that there are 3 transitions labelled ?Block4 between 0 and respectively 1,
3 and 5. This is a weighted system. In such a situation, determinization would simply
perform a finite LTS determinization in the tile tcomp. In the general case some tiles need
to be merged first.

4 Off-Line Test Generation for Weighted RTS

In this section and the following, we consider the generation of test cases from RTS. We
focus, here, on weighted RTS, which are determinizable, and propose an off-line test
generation algorithm that operates a selection guided by a test purpose (specified by a
finite IOLTS). Computations are performed at the RTS level with consequences on the
underlying IOLTS semantics, enabling the proof of properties on generated test cases.

Test Generation from Recursive Tiles Systems 109

4.1 Construction of the Canonical Tester

Quiescence. As seen in Section 2 quiescence represents the absence of action in the
specification. Given a specification defined by a RTS S, detecting vertices where the
absence of reaction is permitted enables to construct a suspended specification, Δ(S).

For finite state IOLTS, livelocks come from loops. On the contrary, for IOLTS de-
fined by RTS, livelocks may come from infinite paths of silent actions involving in-
finitely many states. We call such paths divergent.

Lemma 1. For a RTS R, there exists a loop or a divergent path in �R� if and only if
there exists a vertex v and two states q1, q2 ∈ �v� with �(q1) ≤ �(q2) such that q1

σ→ q2

for some σ ∈ Στ ∗ and for all states q on this path, �(q1) ≤ �(q).

Proof. (⇒) Let p = q0
a1→ q1

a2→ q2... be an infinite path in �R�, with ∀k ∈ N, ak ∈ Στ .
If p contains a loop, there exits one state of minimal level in this loop, let q1 be this state.
Now consider an elementary path. As each state is only seen once, we build a sequence
of states qik

such that ∀ik ≤ j, �(qik
) ≤ �(qj). As there are only a finite number of

vertices, there is a least one v such two states of �v� appear in this path. Let these two
states be q1 and q2.

(⇐) If there exist a vertex v and two states q1, q2 ∈ �v� with �(q1) = �(q2) such
that q1

σ→ q2 for σ ∈ Στ+, and for all states q on this path, �(q1) ≤ �(q), then
q1 = q2, since any path from two distinct occurrences of the same tile at the same level
involves vertices of lower level. Hence this path is a loop. Otherwise, �(q1) < �(q2),
let p0 := q1

σ→ q2 for σ ∈ Στ+, since for all q in this path, �(q1) ≤ �(q). Thus, by

definition, a similar path may be constructed reaching a state q3, with, q2
σ′
→ q3 for

σ′ ∈ Στ+, �(q2) < �(q3), and �(q2) ≤ �(q) for all q involved. Iterating this process
enables to produce an infinite path in �R� satisfying the hypothesis. ��
Proposition 6. From any RTS R, it is effective to build an RTS denoted Δ(R) such
that �Δ(R)� = Δ(�R�). Consequently Traces(�Δ(R)�) = STraces(�S�).

Proof. Let R be a RTS, we add self-loops δ as follows.

For deadlock and output lock, we use Requirement 1, item 2, which ensures that for a
vertex v in a tile t of R, has a uniform value for Γ�R�(�v�). The δ-transitions are added
to each v in R such that Γ�R�(�v�) = ∅ or Γ�R�(�v�) ⊆ ΣR

? . This operation produces a
new RTS R′.

For livelocks, there are two different cases: internal loops and divergent paths. From
Lemma 1 we know that such situations may be detected from self-reaching vertices.
This result also ensures that this detection may be performed taking each tile as an
axiom. Then, for each tile t in R′:

– Colour each vertex v of tile t by a colour λv not in ΛR′ .
– Use Proposition 2 to colour by λ′

v vertices in reach�Rt�(Στ , λ), where R
′
t is the

RTS identical to R
′, with initial tile t. This computation simply enables to detect

vertices involved in an infinite path, but the resulting RTS is not kept.
– Each vertex v coloured by both λv and λ′

v is involved in a livelock. We add quies-
cence to each such vertex in R′ to produce Δ(R).

��

110 S. Chédor, T. Jéron, and C. Morvan

Output Completion. After using Proposition 6 for the computation of Δ(S) from
the specification S, the next step is to complete Δ(S) to recognise STraces(S).Σ!δ .
The complete suspended specification, denoted by CS(S), is computed from Δ(S) as
follows: a new colour UnS is added to detect paths leading to unspecified behaviours.
Then, for every tile t, a new vertex, vUnS

t , is added (having colour UnS), new transitions
leading to vUnS

t are added as well:{
v

a→ vUnS | v ∈ QA ∧ a ∈ Σ!δ ∧ a �∈ Γ�Δ(S)�(�v�)
}

.

By construction, we get Traces(�CS(S)�) = STraces(�S�).Σ!δ
S ∪ STraces(�S�) and

TracesC(UnS)(�CS(S)�) = STraces(�S�).

Canonical Tester. Whenever CS(S) is weighted, Proposition 5 enables to determinize
it into D(CS(S)). From D(CS(S)) we build a new RTS Can(S) called the canonical
tester of S as follows:

– a new colour Fail is considered and vertices of D(CS(S)) are coloured by Fail if
composed of vertices all coloured by UnS in CS(S).

– inputs and outputs are mirrored in Can(S) wrt. S.

From this construction we can deduce that

TracesC(Fail)(�Can(S)�) = MinFTraces(�S�) (1)

TracesC(Fail)(�Can(S)�) = STraces(�S�) (2)

and Traces(�Can(S)�) is their disjoint union.
In fact TracesC(Fail)(�Can(S)�) = TracesC(UnS)(�CS(S)�) = STraces(�S�) and

TracesC(Fail)(�Can(S)�) = TracesC(UnS)(�CS(S)�) \ TracesC(UnS)(�CS(S)�)

= Traces(�CS(S)�) \ TracesC(UnS)(�CS(S)�)

(asTraces(�CS(S)�) is the union TracesC(UnS)(�CS(S)�) ∪ TracesC(UnS)(�CS(S)�))

= STraces(�S�).Σ!δ
S \ STraces(�S�)

= MinFTraces(�S�)

From (1) it immediately follows that the test suite T S reduced to {Can(S)} is sound
and exhaustive (see Section 2). T S is also strict, which is proved as follows:
Traces(�Can(S)�) ∩MinFTraces(�S�) = (TracesC(Fail)(�Can(S)�) ∪ STraces(�S�) ∩
MinFTraces(�S�) = TracesC(Fail)(�Can(S)�) using the disjoint union and (1).

Test Case Selection with a Test Purpose. The canonical tester has important proper-
ties, but one may want to focus on particular behaviours, using a test purpose. In our
formal framework, a test purpose is a deterministic finite IOLTS T P over Σoδ, with a
particular colour Accept. States coloured by Accept have no successors.

As seen in the previous section, the product P between Can(S) and T P is an RTS.
On this product, new colours are specified as follows :

– CP(Fail) = CCan(S)(Fail) × QT P

– CP(Pass) = CP(Fail) × CT P (Accept)

Test Generation from Recursive Tiles Systems 111

– CP(None) = Coreach(CP(Pass)) \ CP(Pass)
– CP(Inc) = QP \ (CP(Fail) ∪ CP(Pass) ∪ CP(None))

Note that, by construction, each state has a unique colour in {Fail, Pass, None, Inc}.
States coloured by Fail or Pass have no successors, and states coloured by Inc have
only Fail or Inc successors.

In order to avoid states coloured by Inc where the test purpose cannot be satisfied
anymore, transitions labelled by an output (input of S, controllable by the environment)
and leading to a state coloured by Inc may be pruned, as well as those leaving Inc.
Consequently, runs leading to an Inc coloured state necessarily end with an input action.

Finally, the test case T C generated from S and T P is the product P , equipped with
new colours Fail, Pass, None, Inc and pruned as above.

Example 5. Figure 3, below, represents the test case obtained from Example 1 with the
test purpose accepting only (Σoδ)∗?Block4?Block4(Σoδ)∗!Block2. The vertices labelled by
F correspond to the one coloured by Fail but is split for better readability. Triangle
vertices are those coloured by Inc. Observe that each vertex is a set of pairs, so indices
depicted below are not related to the original ones.

0

1 2 3 fcomp(1)

F

6 5 4 fcomp(4)

7 8 F

?Block1

?Block4 ?Block4

!Block7

!Block6!Block2

?Block2,3,6,7

?Block
2,3,6,7 ?B

lo
ck2

,6

?B
lo
ck

2,
6

?Block
2,3,7

?Block3,6,7

?B
lo
ck
7

?
B
l
o
c
k
3 ?Bl

ock
3

1 2 fcomp(1)

5 F

4 3 fcomp(4)

?Block4

?Block7

7Block6

?Block3

?Block2,6

?Block2,3,7

Fig. 3. Example of a test case

4.2 Properties of Generated Test Cases

We now prove the requested properties of test cases defined in Section 2, relating test
case failure to non-conformance, and a new property, precision, that relates test case
success (Pass verdict) to the satisfaction of the test purpose.

Soundness and Strictness. According to the construction ofP , the definition of CP(Fail),
and pruning, selection by T P do not add any colouring by Fail with respect to Can(S),
thus TracesC(Fail)(�T C�) = Traces(�T C�)∩TracesC(Fail)(�Can(S)�). By (1) we deduce
TracesC(Fail)(�T C�) = Traces(�T C�) ∩ MinFTraces(�S�) ⊆ MinFTraces(�S�) which
proves both strictness (equality) and soundness (inclusion).

Exhaustiveness. We prove that the test suite T S composed of all test cases that can be
generated from arbitrary test purposes T P is exhaustive. We thus need to establish the
inequality

⋃
T C∈T S TracesC(Fail)(�T C�) ⊇ MinFTraces(�S�).

Let σ′ = σ.a ∈ MinFTraces(�S�) = TracesC(Fail)(�Can(S)�) be a minimal non-
conformant trace for S. We have σ ∈ STraces(�S�) and there exists b ∈ Σ!δ such

112 S. Chédor, T. Jéron, and C. Morvan

that σ.b ∈ STraces(�S�) (if no output continues σ in STraces(�S�), a δ does). Now
consider a test purpose T P such that σ.b ⊆ TracesC(Accept)(T P) and let T C be the test
case generated from S and T P . By construction of T C, we get σ′ ∈ TracesFail(�T C�).

Precision. As a complement to the above properties, precision relates test cases to
test purposes. It says that the verdict Pass is returned as soon as possible, once the
test purpose is satisfied. Formally, a test case T C is precise with respect to T P if
TracesC(Pass)(�T C�) = TracesC(Accept)(T P) ∩ STraces(�S�) ∩ Traces(�T C�).

By construction, states coloured by Pass are those coloured by Accept in T P and not
by Fail in Can(S). Thus TracesC(Pass)(�T C�) = TracesC(Accept)(T P) ∩ STraces(�S�)
which (since TracesC(Pass)(�T C�) ⊆ Traces(�T C�)) implies precision.

5 On-Line Test Generation from RTS

For the general case, determinization is an issue, as seen in Section 3. As usual in
similar cases [13], one may rely on “on-line” test generation (executing test cases while
generating them) or equivalently produce test cases as finite trees.

5.1 Test Case Generation

Output-Completion and ε-Closure. The process starts from the output-completed
specification CS(S) defined in Section 4. This time, the canonical tester cannot be
built from CS(S). However, using Proposition 4, one can built Clo(CS(S)), ensuring
the following properties:

MinFTraces(S) ⊆ TracesC(UnS)(Clo(CS(S))) ⊆ STraces(S).Σ!δ

TracesC(UnS)(Clo(CS(S))) = STraces(S)

Product and Colouring. The next step consists in the computation of the product
of Clo(CS(S)) with a test purpose given as a complete finite IOLTS T P. Let P =
Clo(CS(S)) × T P be this product, one may define the following new colours on P
using a co-reachability analysis:

– CP(UnS) = CClo(CS(S))(UnS) × QT P

– CP(Pass) = CClo(CS(S))(UnS) × CT P (Accept)
– CP(None) = Coreach(CP (Pass)) \ CP(Pass)
– CP(Inc) = QP \ (CP(Fail) ∪ CP(Pass) ∪ CP(None))

Computing Test Cases. The last step consists in computing test cases in a way similar
to [13]. These test cases will be modelled as finite trees. Formally such a finite tree will
be a prefix-closed set of words in Σoδ∗.({Fail, Pass, None, Inc} ∪ {ε}). Given a tree θ,
for some symbol a, the notation a; θ � {au | u ∈ θ}, furthermore, given two trees θ, θ′,
the tree formed by the union of those trees is denoted by θ + θ′.

Test Generation from Recursive Tiles Systems 113

A test case T C is a tree built from P by taking as argument a set of states PS. Let
us define test cases by applying the following algorithm recursively, starting from the
initial state CP(init).

Choose non deterministically between one of the following operations.

1. (* Terminate the test case *)
θ := {None}

2. (* Give a next input to the implementation *)
Choose any a ∈ out(PS) such that
(PS after a) ∩ (CP(Pass) ∪ CP(None)) �= ∅
θ := a; θ′

where θ′ is obtained by applying the algorithm with PS′ = (PS aftera)
3. (* Check the next output of the implementation *)

θ :=
∑

a∈X1

a; Fail +
∑

a∈X2

a; Inc +
∑

a∈X3

a; Pass +
∑

a∈X4

a; θ′

with:
– X1 = {a | PS after a ⊆ CP(UnS)}
– X2 = {a | (PS after a ⊆ (CP(Inc) ∪ CP(UnS)))

∧(PS aftera ∩ CP(Inc) �= ∅)}
– X3 = {a | PS after a ∩ CP(Pass) �= ∅}
– X4 = {a | (PS after a ∩ CP(Pass) = ∅)

∧(PS aftera ∩ CP(None) �= ∅)}
– θ′ is obtained by applying the algorithm with PS′ = (PS aftera)

Formally, a tree needs to be transformed into a test case IOLTS T C by an appropriate
colouring of states ending in Fail, Pass, Inc or None after a suspension trace. We skip
this for readability.

5.2 Properties of the Test Cases Generated On-Line

Soundness and Strictness. By definition of X1, those traces of T C falling in a state
coloured by Fail are those in Traces(�CS(S)�) \ TracesC(UnS)(�CS(S)�) =
MinFTraces(�S�). Thus TracesC(Fail)(T C) = MinFTraces(�S�) ∩ Traces(T C) which
proves both soundness and strictness, as in the off-line case.

Exhaustiveness. The proof of exhaustiveness is similar to the one in Section 4, con-
sisting in building a test purpose T P for each non-conformant trace, and proving that a
possible resulting test case would produce a Fail after this trace.

Precision. From the construction of T C, in particular, the set X3, we have
TracesC(Pass)(T C) = TracesC(Pass)(Clo(CS(S)) × T P) ∩ Traces(T C). Then, by def-
initions of the colours, we obtain: TracesC(Pass)(T C) = TracesCUnS

(Clo(CS(S))) ∩
TracesC(Accept)(T P)) ∩ Traces(T C). Which eventually proves precision:
TracesC(Pass)(T C) = STraces(S) ∩ TracesC(Accept)(T P) ∩ Traces(T C).

114 S. Chédor, T. Jéron, and C. Morvan

6 Conclusion

In this paper we have presented recursive tile systems, a general model of IOLTS allow-
ing for recursion. We have provided algorithms to produce sound, strict and exhaustive
test suites, either off-line or on-line. These algorithms enable to employ test purposes
(even, for the on-line case) which are a classical way to drive tests towards sensitive
properties. We have also established the precision of our tests with respect to test pur-
poses.

An interesting perspective would be to incorporate known results on probabilistic
RTS. This would enable to take into account quantitative properties of systems, or to
express coverage properties of finite test suites.

References

1. Alur, R., Etessami, K., Yannakakis, M.: Analysis of Recursive State Machines. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 207–220. Springer, Heidelberg
(2001)

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the 36th Annual
ACM Symposium on Theory of Computing (STOC 2004), pp. 202–211. ACM (2004)

3. Caucal, D.: Deterministic graph grammars. Texts in Logics and Games, vol. 2, pp. 169–250
(2007)

4. Caucal, D.: Synchronization of Regular Automata. In: Královič, R., Niwiński, D. (eds.)
MFCS 2009. LNCS, vol. 5734, pp. 2–23. Springer, Heidelberg (2009)

5. Caucal, D., Hassen, S.: Synchronization of Grammars. In: Hirsch, E.A., Razborov, A.A.,
Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 110–121. Springer, Hei-
delberg (2008)

6. Constant, C., Jeannet, B., Jéron, T.: Automatic Test Generation from Interprocedural Speci-
fications. In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W. (eds.) TestCom/FATES
2007. LNCS, vol. 4581, pp. 41–57. Springer, Heidelberg (2007)

7. Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: Handbook of Theoretical
Computer Science. Elsevier (1990)

8. Frantzen, L., Tretmans, J., Willemse, T.A.C.: A Symbolic Framework for Model-Based Test-
ing. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES 2006 and RV 2006.
LNCS, vol. 4262, pp. 40–54. Springer, Heidelberg (2006)

9. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. Software Tools for Technology
Transfer (STTT) 7(4), 297–315 (2005)

10. Jeannet, B., Jéron, T., Rusu, V.: Model-Based Test Selection for Infinite-State Reactive Sys-
tems. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2006.
LNCS, vol. 4709, pp. 47–69. Springer, Heidelberg (2007)

11. Nowotka, D., Srba, J.: Height-Deterministic Pushdown Automata. In: Kučera, L., Kučera, A.
(eds.) MFCS 2007. LNCS, vol. 4708, pp. 125–134. Springer, Heidelberg (2007)

12. Tretmans, G.J., Brinksma, H.: Torx: Automated model-based testing. In: Hartman, A., Dussa-
Ziegler, K. (eds.) First European Conference on Model-Driven Software Engineering, pp.
31–43 (December 2003)

13. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Software - Con-
cepts and Tools 17(3), 103–120 (1996)

Generation of Test Data Structures

Using Constraint Logic Programming

Valerio Senni1 and Fabio Fioravanti2

1 DISP, University of Rome Tor Vergata, Rome, Italy
senni@disp.uniroma2.it

2 Dipartimento di Scienze, University ‘G. D’Annunzio’, Pescara, Italy
fioravanti@sci.unich.it

Abstract. The goal of Bounded-Exhaustive Testing (BET) is the auto-
matic generation of all the test cases satisfying a given invariant, within
a given bound. When the input has a complex structure, the develop-
ment of correct and efficient generators becomes a very challenging task.
In this paper we use Constraint Logic Programming (CLP) to systemat-
ically develop generators of structurally complex test data.

Similarly to filtering-based test generation, we follow a declarative
approach which allows us to separate the issue of (i) defining the test
structure and invariant, from that of (ii) generating admissible test in-
put instances. This separation helps improve the correctness of the devel-
oped test case generators. However, in contrast with filtering approaches,
we rely on a symbolic representation and we take advantage of efficient
search strategies provided by CLP systems for generating test instances.

Through some experiments on examples taken from the literature on
BET, we show that CLP, by combining the use of constraints and recur-
sion, allows one to write intuitive and easily understandable test genera-
tors. We also show that these generators can be much more efficient than
those built using ad-hoc filtering-based test generation tools like Korat.

1 Introduction

The identification of test cases, which is a central task in the testing process, is
very often carried out as a manual activity. As a consequence, it is error-prone,
it has limited applicability, and can be very expensive (around 50% of the cost
of software development). Formal and automated techniques have thus received
interest from the testing community because they can be used to develop test
suites in a more systematic and affordable way, by enforcing correctness and
allowing flexible integration with the considered code coverage criteria.

In this paper we focus on the bounded-exhaustive testing [7,26] approach
(BET), whose goal is to test a program on all the input instances satisfying
a given invariant, up to a given bound on their size. The motivation underlying
the BET approach is based on the observation that defects, if any, are likely to
appear already in small-sized instances of the inputs.

Automated test input generators should be (i) correct, that is, they should
generate only test input instances which satisfy the considered invariant, and

A.D. Brucker and J. Julliand (Eds.): TAP 2012, LNCS 7305, pp. 115–131, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

116 V. Senni and F. Fioravanti

(ii) efficient, when generating test input candidates and filtering out those which
are not admissible, so that they can be applied to large and realistic domains.

Modern software often manipulates input data with complex structure (like
trees and graphs) and satisfying non-trivial invariants (like sorting, coloring,
depth balancing). The correct and efficient generation of structurally complex
inputs is a challenging task because the number of test input candidates can
grow very fast, but only a few inputs, which satisfy the desired invariants, are
to be selected as admissible. The generation of large and complex test objects
is also required by some recent application domains, such as XML documents
generation, considered in [18], where an RSS feed parser is tested for HTML
injection vulnerabilities, and in [4], where they are used for testing Web Services.

In this paper we propose a framework based on Constraint Logic Programming
(CLP) for the systematic development of generators of large sets of structurally
complex test data.

Similarly to filtering-based techniques, we adopt a declarative approach which
allows us to separate the issue of (i) defining the test input structure and invari-
ants, from that of (ii) generating admissible test input instances. This separation
helps improve the correctness of the developed test case generators, because it
lets testing engineers write what to generate, in a very intuitive and easily un-
derstandable way. Efficient CLP search strategies are then used for specifying
how test instances should be generated.

Although heavy optimizations require in-depth knowledge of CLP techniques,
we will show that excellent results can be already obtained by following some sim-
ple programming guidelines. In particular, we show that test generators should
be written following the so-called constrain-and-generate approach, according to
which the structural and invariant constraints should be computed first, post-
poning as much as possible the actual generation of test instances. This allows
the CLP computation engine to prune the search space at the symbolic level,
avoiding useless executions of the expensive instantiation phase.

We experiment with some examples taken from the literature on BET, and we
show that CLP, by combining the use of constraints and recursion, allows us to
write test generators which are simpler and more efficient than those built using
the ad-hoc test generation tool Korat [29]. However, our focus is not on deriving
CLP generators from Korat ones. Rather, we assume that those generators have
been derived from a given, abstract, model and we evaluate their efficiency.

Our evaluation shows that modern CLP systems can be used effectively as
a core component to construct fast and correct test generators and for more
complex test suite development frameworks.

In Sec. 2, we briefly recall the Korat approach and illustrate, as a case-study,
a Red-Black Trees generator. In Sec. 3, we introduce our CLP-based approach
and we illustrate its expressiveness by providing a clean and strongly declara-
tive definition of a Red-Black Trees generator. We also show how to use some
optimization techniques known in the Logic Programming community to obtain
even faster generators. Finally, in Sec. 4, we carry out an extensive comparison
between our CLP-based approach and that of Korat.

Generation of Test Data Structures 117

2 The Korat Approach

We now illustrate the Korat approach for writing automated test generators.
Korat [29] is a tool for bounded-exhaustive testing of Java programs, which
is specifically tailored for the construction of structurally complex test inputs.
It allows the generation of complex data structures by providing primitives to
populate an object domain, to initialize objects, and to set links among them.

Given a data structure definition, Korat requires (1) a so-called finitization
method, which defines the bounds of the search space, and (2) a method repOK(),
which specifies the data structure invariant. Korat performs a systematic search
of the program input space, avoiding the full exploration of failing regions and
the generation of isomorphic structures (i.e. equal modulo Java objects identity).
Details of the optimizations used in the search can be found in [5,25,29].

We now illustrate how the Korat approach works by applying it for writing a
test input generator for Red-Black Trees.

Example 1. A Red-Black Tree [8] is a binary search tree where each node has
two labels: a color, which is either red or black, and an integer, called key (for
the purpose of test generation, node values are abstracted away in the definition
of the data structure). Therefore, it satisfies the following type equation:

Color ::= 0 | 1

Key ::= ... | -1 | 0 | 1 | ...

Tree ::= e | Color x Key x Tree x Tree

where 0 and 1 denote red and black, respectively, and e denotes the emtpy tree.
A Red-Black Tree must also satisfy the following three invariants:

(I1) no red node has a red child,
(I2) every path from the root to a leaf has the same number of black nodes, and
(I3) for every node n, all the nodes in the left (respectively, right) subtree of

n, if any, have keys which are smaller (respectively, bigger) than the key
labeling n.

Since Red-Black Trees enjoy a weak form of balancing, operations such as in-
serting, deleting, and finding values are more efficient, in the worst-case, than in
ordinary binary search trees.

We consider the Red-Black Tree generator implementation taken from the Korat
repository1. The RedBlackTree class, shown in Fig. 1, uses an internal class Node
defining the generic node of the Red-Black Tree data structure. The Node class
has integer attributes key, color and value, and attributes left, right and
parent of type Node.

The finitization method finRedBlackTree, shown in Fig. 2, is used to define
the search space for generating the test candidates. It accepts the following
arguments: numEntries, denoting the number of objects of class Node which can
be used for building the Red-Black Tree, minSize and maxSize, denoting the
minimum and maximum number of nodes of the tree (maxSize is expected to be

1 https://korat.svn.sourceforge.net/

https://korat.svn.sourceforge.net/

118 V. Senni and F. Fioravanti

public class RedBlackTree {
private Node root = null;
private int size = 0;
private static final int RED = 0;
private static final int BLACK = 1;

public static class Node {
int key, value;
Node left = null, right = null, parent;
int color = BLACK;

}

METHODS...
}

Fig. 1. Red-Black Trees java class

public static IFinitization finRedBlackTree
(int numEntries, int minSize, int maxSize, int numKeys) {

IFinitization f = FinitizationFactory.create(RedBlackTree.class);
IClassDomain entryDomain = f.createClassDomain(Node.class, numEntries);
IObjSet entries = f.createObjSet(Node.class, true);
entries.addClassDomain(entryDomain);

IIntSet sizes = f.createIntSet(minSize, maxSize);
IIntSet keys = f.createIntSet(-1, numKeys - 1);
IIntSet values = f.createIntSet(0);
IIntSet colors = f.createIntSet(0, 1);

f.set("root", entries); f.set("size", sizes);
f.set("Node.left", entries); f.set("Node.color", colors);
f.set("Node.right", entries); f.set("Node.key", keys);
f.set("Node.parent", entries); f.set("Node.value", values);

return f;
}

Fig. 2. Red-Black Trees finitization method

not bigger than numEntries), and numKeys, denoting the upper bound for keys
values (with lower bound 0). The methods createClassDomain, createObjSet,
and addClassDomain populate the object domain, while the calls to the method
createIntSet populate the integer domains for tree sizes and node keys, values,
and colors, respectively. Finally, the method set is used to map class attributes
to the appropriate domains (nodes or integers), which will be used by Korat
during the candidate instantiation phase. Notice that, though color and value

are declared as integers, color can only take values in {0, 1} and value is a
constant, (so, in practice, values are abstracted away).

The method repOK(), which for lack of space is not shown here, is an impera-
tive specification of the Red-Black Tree data structure invariants I1, I2, and I3.
It is used by Korat to filter, among the many candidate trees generated, only
those that satisfy the Red-Black Trees invariants.

3 The CLP-Based Approach

Logic Programming [24] is a declarative programming paradigm based on a com-
putational interpretation of resolution-based first-order theorem proving. Sets of

Generation of Test Data Structures 119

formulas can be regarded as programs and proof search can be used as a general-
purpose problem solving mechanism.

Constraint Logic Programming (briefly, CLP) [20] extends Logic Program-
ming with constraints, which are managed by fast, domain-specific, constraint
solvers. During the proof search process, constraints are collected in a store
which is required to be consistent at each step, and the problem solving process
amounts to reducing the initial problem to a satisfiable set of constraints. Among
several other applications, CLP has shown to be well suited for encoding and
solving combinatorial problems [11].

Let us now briefly recall the CLP framework and its operational semantics,
for more details we refer the reader to [20]. Let Σ be a logic language signature
Σ = 〈F ,V , Π∪ΠC〉, where F is a finite set of function and constant symbols, V is
a denumerable collection of variables, Π∪ΠC is a finite set of predicate symbols,
where Π and ΠC are disjoint sets. Atoms are of the form p(s1, . . . , sn) where p
is a predicate symbol in Π and si’s are (F ,V)-terms, A constraint is a first-order
formula over F , V , and ΠC , (typically, a conjunction such as X#>3,X+Y#<0). In
logic programming notation, a comma denotes a conjunction and the symbol :-
denotes the implication ←. Strings denote variables if they start with a capital
letter and constants, otherwise. Comments are started by %. When variables need
not be named, they are replaced by _. A CLP program P over Σ is a finite set
of clauses of the form:

H :− c, A1, . . . , Am.
where c is a constraint, and H and Ai’s are atoms.

A CLP system computes answers to user queries (called goals) of the form
c, A1, . . . , Ak against a program P , where c is a constraint and A1, . . . , Ak is a
finite conjunction of atoms. Given a program P , an answer to a goal c, A1, . . . , Ak

is a substitution ϑ such that ∀(A1, . . . , Ak)ϑ is a logical consequence of P and cϑ
is satisfiable in the constraints theory. We denote by [[G]]P the set of all the
answers to the goal G against the program P . We will feel free to omit the
subscript P whenever the intended program is clear from the context. An answer
ϑ is ground whenever (c, A1, . . . , Ak)ϑ contains no variables.

The programming paradigm of CLP, sometimes referred to as constrain-and-
generate [27], is structured mainly in two phases: first constraints are added to
the constraint store and checked for consistency (constrain), then the solver in-
stantiates variables to produce actual values that satisfy the constraints in the
store (generate). Since in the constrain phase the constraint store is checked
for consistency at each modification, several unsatisfiable cases are rejected at
the symbolic level. When the problem is satisfiable, the search for a satisfying
substitution is committed to a dedicated solver. This behavior is quite differ-
ent from the generate-and-test approach of Korat and other filter-based tech-
niques [14,22,29]. In particular, we focus on Constraint Logic Programming over
Finite Domains (CLP(FD) [27]) where constraints are linear arithmetic equali-
ties and inequalities on variables ranging over finite integer domains.

The FD comparison predicates inΠC are #=, #>, #>=, #<, #=<. The function sig-
nature F extends the set {+, -, *}∪Z and the set {[], [_|_]} of list constructors.

120 V. Senni and F. Fioravanti

Predicates and function symbols in FD have the standard interpretation over Z.
We assume to have the built-in predicates: fd_domain(Vs,Min,Max), that con-
strains all the variables in the list Vs to range over [Min, . . . , Max] ⊂ Z, and
fd_labeling(Vs), that forces each variable in Vs to assume a concrete value among
those allowed by the current constraint store (an additional Settings argument
is contemplated, for configuring the search process).

We propose the following instantiation of the constrain-and-generate paradigm
for the implementation of efficient (filter-based) test case generators:

gen_structure(Struct,P1,...,Pk) :-

% Preamble (constrain)

...definition of the variables in Vars and their domain,

% Symbolic Definition (constrain)

structure(Struct,P1,...,Pk,Vars), % data structure shape

...filters, % invariants

% Instantiation (generate)

fd_labeling(Vars).

The semantics of this predicate is that, for any given value of the parameters
P1,. . . ,Pk we build a structure Struct that satisfies the desired invariants.

The Preamble contains the definition of the set Vars of the required variables
and their domains. The Symbolic Definition phase contains: (i) a call to a
predicate structure which defines, by structural induction, the data structure
shape (e.g. list, tree, graph) using variables in Vars as placeholders for values,
and (ii) a filters part which contains a conjunction of predicates that assert
constraints among the variables in Vars. Finally, the Instantiation phase in-
vokes the built-in labeling mechanism, possibly using problem-specific settings
to configure the search strategy. The solver tries to minimize backtracking on
assignments and each assignment triggers a deterministic propagation towards
related variables, which reduces their domain and the set of future choices.

Concerning point (i) of the Symbolic Definition phase above, in this paper
we consider simple tree-like structures, where Logic Programming can show the
advantage of the built-in unification mechanism. Graph-like structures are a bit
more involved to deal with and one can rely on a classical incidence/adjacency-
matrix representation or rely on more sophisticated decompositions [31].

Let gen_structure be a generator predicate and let p1,. . . ,pk be concrete
values for the parameters, the set T of test cases induced by the generator is
T = {Structϑ | ϑ∈ [[gen_structure(Struct,p1,...,pk)]]}. Note that, due to
the Instantiation phase, we have that T contains only ground test cases.

3.1 Red-Black Trees

Let us now illustrate the CLP-based specification of a Red-Black Tree generator.
This generator is parameterized, as for Korat, by the maximum and minimum
tree size (defined as the number of its nodes), and by the maximum value for
the keys. Since we do not generate nodes beforehand, but on demand, we do not
need an extra parameter for counting the number of nodes, as Korat does. The
following clause defines the predicate rbtree:

Generation of Test Data Structures 121

rbtree(T,MinSize,MaxSize,NumKeys) :-

% Preamble

MinSize#=<S, S#=<MaxSize, fd_labeling([S]),

varlist(S,Keys), varlist(S,Colors), Max#=NumKeys-1,

fd_domain(Keys,0,Max), fd_domain(Colors,0,1),

% Symbolic Definition

lbt(T,S,Keys,[]), % data structure shape

ci(T,Colors,[]), pi(T,_), ordered(T,0,Max), % filters

% Instantiation

fd_labeling(Keys), fd_labeling(Colors).

where the predicate varlist(N,L), is used for constructing a list L of N fresh
variables. Given the ground (non-negative) input integers minSize, maxSize,
and numKeys, the set [[rbtree(T,minSize,maxSize,numKeys)]] contains all the
red-black trees of size ranging in {minSize, . . . ,maxSize}, with keys ranging
in {0, . . . ,numKeys-1}.

The first line of the Preamble chooses a tree size value S. Then, two lists
of (distinct) variables are defined, Keys and Colors, with the corresponding
domains, {0,. . . ,NumKeys-1} and {0,1}, respectively. These variables are placed
along the tree structure in the Symbolic Definition part by the predicate lbt,
which defines (2-)labeled binary trees by structural induction:

1. lbt(e,S, Ks, Ks) :- S#=0.

2. lbt(t(_,K,L,R),S,[K|Ks],NKs) :- S#>=1, SL#>=0, SR#>=0,

NS#=S-1, fdsum(NS,SL,SR),

lbt(L,SL,Ks,TKs), lbt(R,SR,TKs,NKs).

The first argument is either the constant e denoting the empty tree or a term
t(C,K,L,R) denoting a (non-empty) tree with left subtree L, right subtree R,
and whose root node is labeled with color C and key K. The second argument is
the size of the tree (the number of nodes) which, in clause 2, is at least 1 and
is non-deterministically split by the fdsum predicate into a pair of non-negative
integers SL and SR denoting the size of the left and right subtrees, respectively,
such that S = SL + SR + 1. The left and right subtrees are then constructed
recursively. Note that the variables in Keys are placed in distinct nodes.

The predicate ci (for color invariant) encodes the invariant (I1) of Sec. 1 and
is defined as follows:

4. ci(e, Cs, Cs).

5. ci(t(C,_,L,R),[C|Cs],NCs) :- C#=1, % root is black

ci(L,Cs,TCs), ci(R,TCs,NCs).

6. ci(t(C,_,L,R),[C|Cs],NCs) :- C#=0, % root is red

not_redroot(L), not_redroot(R),

ci(L,Cs,TCs), ci(R,TCs,NCs).

7. not_redroot(e).

8. not_redroot(t(C,_,_,_)) :- C#=1. % root is black

Note that the color variables are placed in distinct nodes. In clause 6 the color
invariant is enforced by testing the color of the roots of the left and right subtrees.

The predicate pi (for path invariant) encodes the invariant (I2) of Sec. 1 and
is defined as follows:

122 V. Senni and F. Fioravanti

9. pi(e ,C) :- C#=0.

10. pi(t(C,_,L,R),D) :- ND#>=0, D#=ND+C, pi(L,ND), pi(R,ND).

The semantics of pi is the following: for a given tree t, pi(t,d) holds if and
only if on all root-to-leaf paths in t there are exactly d black nodes. In this case,
we say that d is the value of the black-nodes counter of t. Note that if a tree is
empty then its black-nodes counter is 0, otherwise, the black-nodes counter is
computed by adding the ‘color’ of the root (i.e. 0, if red, and 1, if black) to the
black-nodes counter of (both) its subtrees (that must have the same value).

Finally, the predicate ordered defines the invariant (I3) in Sec. 2, concerning
the ordering of the keys, and is defined as follows:

11. ordered(e, _, _).

12. ordered(t(_,N,L,R),Min,Max) :- Min #=< N, N #< Max, M #= N+1,

ordered(L,Min,N), ordered(R,M,Max).

There is a simple correspondence between the CLP(FD) generator and the Korat
generator. The predicate lbt is essentially a definition of the tree data type, as
given in Sec. 1. This allows us to start from trees rather than from graphs, which
is a significant advantage over Korat, which must perform the acyclicity check.
The filter predicates ci, pi, and ordered, are very similar to the Korat code
for repOk(), which can be retrieved in the Korat repository. Note that repOk()
executes three tests: (i) acyclicity, using the repOkAcyclic() procedure, (ii) in-
variants (I1) and (I2) using the repOkColors() procedure, and (iii) ordering in-
variant (I3), using the repOkKeysAndValues() procedure. The repOkColors()
procedure returns true iff the goal ci(T,Colors,[]),pi(T,_) succeeds and
repOkKeysAndValues() returns true iff the goal ordered(T,0,Max) succeeds.

We compared the efficiency of the CLP-based Red-Black Trees generator with
the Korat-based one. Following the approach of [25], we consider the ‘canonical
set’ [[rbtree(T,s,s,s)]], which is the set of all red-black trees of s nodes and
keys ranging in {0,. . . ,s-1}.

The results of this comparison are summarized in Fig. 3 (columns 1-4,9) and
show that the CLP-based Red-Black Trees generator, which has been run us-
ing two different CLP systems, SICStus2 and GNU Prolog3, is very efficient
with respect to the Korat generator. Further details and discussion about the
experimental evaluation can be found in Sec. 4.

3.2 Optimizations

In this section we discuss some optimization techniques available in the field of
logic programming that can be used for building even more efficient test case
generators. Simple optimizations can be done by using information coming from
groundness analysis [19] and determinacy checking [23], that allow us to deter-
mine when a predicate has at most one answer. In order to improve determinism,
one can put such predicates in the Preamble so that they are evaluated only once
(we applied this optimization to the Heaparrays example discussed in Sec. 4).

2 http://www.sics.se/sicstus/
3 http://www.gprolog.org/

http://www.sics.se/sicstus/
http://www.gprolog.org/

Generation of Test Data Structures 123

Size Trees Time

Original Partially evaluated Synchronized Korat

GNU SICStus GNU SICStus GNU SICStus Korat

6 20 0 0.01 0 0 0 0 0.47
7 35 0.01 0.06 0 0.03 0 0.01 0.63
8 64 0.02 0.20 0.01 0.07 0 0.03 1.49
9 122 0.08 0.71 0.04 0.28 0 0.06 4.51

10 260 0.29 2.60 0.16 0.98 0.01 0.13 21.14
11 586 1.07 9.52 0.58 3.55 0.03 0.26 116.17
12 1296 3.98 35.19 2.17 13.00 0.06 0.54 -
13 2708 14.85 131.13 8.15 47.90 0.12 1.17 -
14 5400 55.77 - 30.73 177.63 0.26 2.49 -
15 10468 - - 115.59 - 0.55 5.35 -
20 279264 - - - - 25.90 - -

Fig. 3. Comparison of Red-Black Trees generators. The table reports the size of the
red-black trees (column 1), the number of computed red-black trees (2), the time,
in seconds, for generating all the structures running the original CLP generator of
Sec. 3 using GNU Prolog and SICStus (3-4), the partially evaluated CLP generator of
Sec. 3.2 (5-6), the synchronized CLP generator of Sec 3.2 (7-8), and Korat (9). Zero
means less than 10 ms and (-) means more than 200 seconds.

A more sophisticated technique is Program Transformation, that is a seman-
tics-preserving program rewriting technique which is applicable, among other
languages, also to Constraint Logic Programming [12]. It can be used to optimize
and synthesize programs [13] and it is based on rewriting rules, whose application
is directed by strategies. Here we use Program Transformation to optimize our
Red-Black Trees generator. The transformations are performed by using our
transformation tool MAP [1].

Step 1. We perform a partial evaluation [21] of lbt, ci, pi, and ordered w.r.t.
their first argument and the term domain T ::= e | t(_,_,T,T), by using
the unfolding rule (which unrolls predicate calls by using their definitions). For
reasons of space, we show the effect of this transformation only for predicate pi:

pi(e,0).

pi(t(C,_, e, e),D) :- D#=C.

pi(t(C,_, e,t(Cr,Lr,Kr,Rr)),D) :- D#=C, pi(t(Cr,Kr,Lr,Rr),0).

pi(t(C,_,t(Cl,Ll,Kl,Rl), e),D) :- D#=C, pi(t(Cl,Kl,Ll,Rl),0).

pi(t(C,_,t(Cl,Ll,Kl,Rl),t(Cr,Lr,Kr,Rr)),D) :- ND#>=0, D#=ND+C,

pi(t(Cl,Kl,Ll,Rl),ND),

pi(t(Cr,Kr,Lr,Rr),ND).

Performance improvement is due to the instantiation of the heads of the clauses
which reduces unification successes and prunes the search tree, at the cost of an
increase in the number of clauses. The performance of the partially evaluated
generator w.r.t. that of the original one is shown in Fig. 3. �
The execution of a conjunction of atoms that share a variable ranging over a
term domain (such as T ::= e | t(_,_,T,T) above) may be inefficient and
even non-terminating, under the standard depth-first CLP evaluation strategy.
In the Red-Black Trees generator the predicates lbt, ci, pi, and ordered share
the tree variable T. Each tree is traversed four times. Indeed, there are productive

124 V. Senni and F. Fioravanti

interactions between those predicates that we do not take advantage of. Namely,
the check of the path invariant of pi may produce earlier failure for a given
distribution of the nodes of T. Similarly for the choice of nodes colors in ci and
the lengths of the paths computed in T.

Step 2. We apply a program transformation strategy that optimizes programs
to avoid multiple traversals of a data structure [30]. This strategy replaces a
conjunction of atoms G by a new atom that performs a synchronized execution
on the shared variables, and produces the same results. The effect is to obtain
(i) a single traversal of terms in the shared domain and (ii) a better interaction
among the constraints of each predicate in G to promote as early as possible
failures/successes. We take advantage of the previous partial evaluation step by
applying the current transformation to the partially evaluated versions of lbt,
ci, pi, and ordered. We don’t have enough space here to discuss the details of
this transformation, but we give here a sketch of it.

In goalG=lbt(T,S,Keys,[]),ci(T,Colors,[]),pi(T,_),ordered(T,0,Max)

(occurring in the definition of rbtree) the atoms share the variable T. We in-
troduce a new predicate sync (which stands for synchronized) defined by the
following clause:

def. sync(T,S,Keys,NewKeys,Colors,NewColors,Min,Max,D) :-

lbt(T,S,Keys,NewKeys),

pi(T,D), ci(T,Colors,NewColors), ordered(T,Min,Max).

where the goal G is abstracted to one containing only variables. Then we derive
a recursive definition of sync in two steps. First, we perform a partial evaluation,
by unfolding, and we obtain (after rearrangement of the constraints to the left
of the other atoms) the following new definition:

sync(e,A, B,B, C,C,_,_,0) :- A#=0.
sync(t(A,B, e, e),C,[B|D],D,[A|E],E,F,G,A) :- C#=1, F#=<B, B#<G.
sync(t(A,B, e,t(C,D,E,F)),G,[B|H],I,[A|J],K,L,M,A) :-

G#>=2, O#=G-1, A+C#>0, L#=<B, B#<M, P#=B+1,
lbt(t(C,D,E,F),O,H,I), pi(t(C,D,E,F),0), ci(t(C,D,E,F),J,K), ordered(t(C,D,E,F),P,M).

sync(t(A,t(B,C,D,E),F, e),G,[F|H],I,[A|J],K,L,M,A) :-
G#>=2, O#=G-1, A+B#>0, L#=<F, F#<M,
lbt(t(B,C,D,E),O,H,I), pi(t(B,C,D,E),0), ci(t(B,C,D,E),J,K), ordered(t(B,C,D,E),L,F).

sync(t(A,F,t(B,C,D,E),t(G,H,I,J)),K,[F|L],M,[A|N],O,P,Q,R) :-
K#>=3, S#=K-1, T#>0, U#>0, A+B#>0, A+G#>0, V#>=0,
R#=V+A, P#=<F, F#<Q, W#=F+1, fdsum(S,T,U),
lbt(t(B,C,D,E),T,L,X), pi(t(B,C,D,E),V), ci(t(B,C,D,E),N,Y), ordered(t(B,C,D,E),P,F),
lbt(t(G,H,I,J),U,X,M), pi(t(G,H,I,J),V), ci(t(G,H,I,J),Y,O), ordered(t(G,H,I,J),W,Q).

Next, by folding, we replace goals that match the body of the clause def by the
corresponding instances of the head and we obtain the following clauses:

1. sync(e,A, B,B, C,C,_,_,0) :- A#=0.
2. sync(t(A,B, e, e),C,[B|D],D,[A|E],E,F,G,A) :- C#=1, F#=<B, B#<G.
3. sync(t(A,B, e,t(C,D,E,F)),G,[B|H],I,[A|J],K,L,M,A) :-

G#>=2, O#=G-1, A+C#>0, L#=<B, B#<M, P#=B+1,
sync(t(C,D,E,F),O,H,I,J,K,P,M,0). % replacement

4. sync(t(A,F,t(B,C,D,E), e),G,[F|H],I,[A|J],K,L,M,A) :-
G#>=2, O#=G-1, A+B#>0, L#=<F, F#<M,
sync(t(B,C,D,E),O,H,I,J,K,L,F,0). % replacement

5. sync(t(A,F,t(B,C,D,E),t(G,H,I,J)),K,[F|L],M,[A|N],O,P,Q,R) :-
K#>=3, S#=K-1, T#>0, U#>0, A+B#>0, A+G#>0, V#>=0,

Generation of Test Data Structures 125

R#=V+A, P#=<F, F#<Q, W#=F+1, fdsum(S,T,U),
sync(t(B,C,D,E),T,L,X,N,Y,P,F,V), % replacement
sync(t(G,H,I,J),U,X,M,Y,O,W,Q,V). % replacement

The definition of the predicate sync is now made of the clauses {1, 2, 3, 4, 5}.
The final step of this transformation consists in a further application of folding
which replaces the goal G in the definition of rbtree (which is an instance of the
body of clause def) by the goal sync(T,S,Keys,[],Colors,[],0,MaxNat,_).
The performance improvements of the synchronized generator w.r.t. the partially
evaluated generator and the original one are shown in Fig. 3. �
By correctness of the transformation rules and of the transformation strategy,
we are ensured that the two generators are equivalent, in terms of their least
Herbrand models [24] and, thus, define the same set of test cases.

4 Experimental Evaluation

In order to measure the effectiveness of our technique, we retrieved the code of
several test case generators from the Korat repository and we encoded the cor-
responding CLP(FD)-based generators (their code can be found in the technical
report [32]).

We considered generators for: (i) sorted lists of integers, (ii) an array-based
representation of the heap data structure, (iii) integer-labeled search trees, and
(iv) an array-based representation of disjoint partitions of a set. For disjoint
sets, we found it difficult to reverse-engineer the exact specification from the
Java code in the Korat repository and, thus, we decided to recode the Korat
version from scratch w.r.t. an abstract model (the code can be found in [32]).

In all our experiments, we found that the performance of CLP-based test gen-
erators is always much better than the performance of the corresponding Korat
generators. We should stress here some points discussed in Sec. 3. Korat builds
data structures starting from a domain of graphs. In logic programming, on the
contrary, terms are first-class objects, and graphs are represented through terms
(see standard textbooks encodings). This is an advantage of logic programming,
which allows us to choose the most adequate and simple primitive data struc-
ture. In contrast, Korat generates trees through the computationally expensive
process of generating directed graphs and filtering the acyclic ones.

All the experiments were performed on an Intel Core 2 Duo E7300 2.66 GHz
under the Linux operating system, and the timings were collected using built-in
CLP and Java statistics predicates.

In particular, the CLP timings were measured by exploring the whole search
space through a call of the form gen_structure(Struct,p1,...,pk),fail for
the parameter values of interest. The idea is to exploit the CLP backtracking
mechanism to explore each success of gen_structure, while trying to succeed.
For every success of the subgoal gen_structure(Struct,p1,...,pk), a con-
crete structure is generated. Since we are not interested in keeping all the struc-
tures in memory (which could be unmanageable), each structure is deleted as
soon as it has been constructed. Due to the presence of the fail built-in, the

126 V. Senni and F. Fioravanti

whole goal fails, and, thus, the CLP system backtracks and tries to find another
solution to gen_structure(Struct,p1,...,pk). The computation terminates
after all the structures have been generated. At this stage, we are not yet ad-
dressing the issue of converting the CLP structures to proper Java objects. This
issue will be briefly discussed in Sec. 5.

We selected two different CLP(FD) systems for running our CLP-based test
generators: SICStus, for its diffusion and industrial strength, and GNUProlog, for
its efficient compilation. We found that, in our experiments, GNUProlog outper-
forms SICStus, due to its efficient compilation. However, we chose to keep also the
SICStus timings, because they revealed to be much more stable w.r.t. different
encodings we experimented with (such as moving term comparison constraints
from the head to the body). Therefore, SICStus seems to be more reliable in
a setting where the user is not aware of the inner evaluation mechanism and
cannot take advantage of it, while being still efficient.

Size Sorted Lists Time

GNU SICStus Korat

8 6435 0.00 0.01 0.61
9 24310 0.00 0.05 1.08

10 92378 0.02 0.17 1.83
11 352716 0.09 0.65 6.37
12 1352078 0.36 2.51 24.95
13 5200300 1.40 9.63 125.73
14 20058300 5.40 37.35 -
15 77558760 21.16 143.79 -
16 300540195 82.22 -

Size Heaparrays Time

GNU SICStus Korat

6 13139 0.00 0.01 0.30
7 117562 0.03 0.15 0.86
8 1005075 0.17 1.27 3.41
9 10391382 1.66 12.65 34.103

10 111511015 17.57 134.26 -

Size Search Trees Time

GNU SICStus Korat

7 429 0.01 0.03 0.87
8 1430 0.02 0.11 4.43
9 4862 0.08 0.43 33.99

10 16796 0.28 1.67 -
11 58786 1.11 6.53 -
12 208012 4.43 25.42 -
13 742900 17.68 100.09 -
14 2674440 70.75 - -

Size Disjoint Sets Time

GNU SICStus Korat

6 203 0.00 0.00 1.60
7 877 0.00 0.01 37.10
8 4140 0.01 0.06 -
9 21147 0.10 0.28 -

10 115975 0.61 1.58 -
11 678570 3.90 9.83 -
12 - 26.63 65.29 -
13 - 189.42 - -

Fig. 4. Generators performance evaluation

In Fig. 4 we show the tables con-
taining the timings for GNU Pro-
log, SICStus Prolog, and Korat,
with a timeout of 200 seconds. The
memory consumption of the CLP
generators is negligible and grows
very slowly on the size of the struc-
tures (as in Korat) so we did not
report it.

The results show that the
CLP(FD)-based approach outper-
forms Korat in all the examples we
considered. In some examples the
CLP(FD)-based approach allowed
us to explore a much larger input
domain.

We did not explore different
tunings of the CLP(FD)-solver,
other than the default ones, which
revealed to be already satisfactory.
However, more complex problems
(involving, for example, conditions
based on minimization) may bene-
fit of the many built-in predicates
implementing more sophisticated
solution search algorithms [27].

These promising results allow
us to draw first conclusions on
the validity of our CLP(FD)-based
approach. The CLP(FD) encod-
ing of generators requires no more

Generation of Test Data Structures 127

ingenuity that the Korat encoding. On the contrary, we claim that correctness is
a natural outcome of this approach and the programmer confidence in the devel-
oped generators is greatly increased. Furthermore, while being more declarative,
this approach is also much more efficient and deserves to be further investigated
for better integration into real-world testing frameworks.

5 Related Work and Conclusions

Constraint-based techniques have been widely used in the field of test case gen-
eration, since pioneering work in [10]. Early use of CLP for test generation can
be found in the tool ATGen [28], developed for testing Spark ADA programs.

Several approaches using constraints are white-box and aim at the automatic
extraction of CLP test generators from program source code, according to given
coverage criteria. Moreover, most of them are not directly concerned with the
efficiency of bounded-exhaustive generation of complex inputs.

In particular, in [9], white-box testing of an imperative language with pointers
and heap is performed by symbolic execution of a small-step operational seman-
tics in CLP, guided by coverage criteria. This approach can generate pointer-
based data structures, at the expense of defining ad-hoc constraints solvers for
the structures considered (mainly lists). Further work on white-box testing has
been done in [6,17] for the generation of heap-allocated data structures, follow-
ing a fixed coverage criteria for the choice of the test cases. The work in [16]
presents a technique for white-box testing of object-oriented programming lan-
guages, which is more general and language independent than previous ones.
Indeed, test case generators are obtained by partial evaluation of a language
interpreter w.r.t. a given program.

The declarative approach has also been adopted by test generation tools such
as Korat [29], which has been used in our experimental evaluation, UDITA [14],
and TestEra [22]. These tools are quite efficient in practice but require careful
implementations of clever ad-hoc backtracking mechanisms and search strategies,
which are either built-in (like non-deterministic choice) or easily implementable
in standard CLP systems. Lazy instantiation strategies in UDITA [14] can be
seen as a particular CP solution strategy. Moreover, these tools are language-
specific and they are not easily adaptable to other languages. Their integration
with homogeneous but more general testing environments such as JPF [33] can be
expensive and lead to suboptimal performance w.r.t. their original version [15].

In contrast, the proper interaction between a CLP test generator and, for ex-
ample, a Java-based testing environment can be achieved either by using a bidi-
rectional Java-Prolog interface, provided by most CLP systems, or by using an
intermediate string representation of CLP data structures combined with Java’s
(de)serialization. In the latter case, for example, one could (i) generate XML en-
codings of CLP terms, and (ii) use libraries like XStream4 or Simple5 for con-
structing Java objects from XML. The problem of obtaining XML from CLP data

4 http://xstream.codehaus.org
5 http://simple.sourceforge.net

http://xstream.codehaus.org
http://simple.sourceforge.net

128 V. Senni and F. Fioravanti

structures can be solved, once and for all, by writing a single, universal, translator
which constructs XML elements while recursively traversing a generic CLP term.
We expect the CLP to Java translation to add negligible overhead. It should be
noted, indeed, that such translation would be triggered only for structures which
are of actual interest for testing (in contrast with the partial building of the Java
objects and their destruction, if unsatisfactory, as in Korat [5]).

Efficiency aspects are considered in [34,35] where the process of generating the
shape of the data structure is separated from that of generating proper values
for data. In our approach, this separation is achieved transparently by following
the constrain-and-generate programming approach of CLP, which prescribes the
invocation of the instantiation mechanism only after all the constraints have
been generated. Many unfeasible structures can, therefore, be eliminated at the
symbolic level by constraint consistency checks.

In this paper we focus on showing that CLP can be used as a core component
for efficient test case generators of complex input data. In contrast to some of the
above-mentioned techniques, our method does not start from source code and
has been designed for black-box testing. It does not require the development of
ad-hoc constraint solvers or search strategies, but it leverages commonly avail-
able CLP systems and libraries. However, strategies can easily be customized,
if needed, and further LP instruments (some of which discussed in Sec. 3.2) are
available to optimize the generators obtained according to our general scheme.

For example, in [7] it is shown that the use of BET for verifying large systems
is feasible and provides effective results, but requires significant effort to be tuned
and combined with abstraction techniques to reach the generation of useful test
sets. For this purpose, our approach could easily benefit from decades of research
on program analysis and abstract interpretation of constraint logic programs.

This work can be extended along several directions.
In [3] the Korat engine is modified to reduce the search space, by trying to skip

structures which are in the same equivalence class of already considered struc-
tures. A similar issue is addressed in [4] for partition-based testing. Although we
did not experiment on this subject (because the focus was on building all the
structures) we believe that this optimization can be easily integrated in CLP by
generating exactly one or a small set of witnesses per equivalence class.

There are several issues that deserve further study. Among these, we plan
to explore the relationship between constraint solution strategies and test cov-
erage criteria. Indeed, one may be interested into exploring the set of possible
structures according to an ordering, parameterized by a given coverage criteria.

Furthermore, while in this paper we focused on model-based input generation
only, we believe that the CLP approach can be successfully applied also for
generating test oracles which can be used for verifying the post-conditions of the
methods under test, since CLP generators can also be used as acceptors.

Regarding the application of program transformation and other optimization
techniques, we plan to develop fully automatic optimization techniques tuned
for this specific problem and for our CLP-based approach. A further application

Generation of Test Data Structures 129

domain of program transformation is the automated extraction of test generators
from (formal) specifications.

In conclusion, we believe that, due to its inherent symbolic execution mecha-
nism, Constraint Logic Programming has a promising application field in test-
case generation. CLP provides a highly declarative language and ensures effi-
ciency by using dedicated constraint solvers and heuristics. On the basis of the
results presented in this work we claim that correctness and efficiency of gener-
ators can take advantage from CLP-based techniques, especially in the case of
complex input data.

Acknowledgements. We would like to thank Maurizio Proietti for many stim-
ulating conversations. We would also like to thank the anonymous referees for
their constructive comments on a preliminary version of this paper.

References

1. The MAP transformation system (1995-2012),
http://www.iasi.cnr.it/~proietti/system.html.

2. ICST 2009, Second International Conference on Software Testing Verification and
Validation, April 1-4. IEEE Computer Society, Denver (2009)

3. Aguirre, N., Bengolea, V.S., Frias, M.F., Galeotti, J.P.: Incorporating Coverage
Criteria in Bounded Exhaustive Black Box Test Generation of Structural Inputs.
In: Gogolla, M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp. 15–32. Springer,
Heidelberg (2011)

4. Bartolini, C., Bertolino, A., Marchetti, E., Polini, A.: Ws-taxi: A wsdl-based testing
tool for web services. In: ICST [2], pp. 326–335 (2009)

5. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on java
predicates. In: ISSTA, pp. 123–133 (2002)

6. Charreteur, F., Botella, B., Gotlieb, A.: Modelling dynamic memory management
in constraint-based testing. Journal of Systems and Software 82(11), 1755–1766
(2009)

7. Coppit, D., Yang, J., Khurshid, S., Le, W., Sullivan, K.J.: Software assurance by
bounded exhaustive testing. IEEE Trans. Software Eng. 31(4), 328–339 (2005)

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press (2009)

9. Degrave, F., Schrijvers, T., Vanhoof, W.: Towards a Framework for Constraint-
Based Test Case Generation. In: De Schreye, D. (ed.) LOPSTR 2009. LNCS,
vol. 6037, pp. 128–142. Springer, Heidelberg (2010)

10. DeMillo, R.A., Offutt, A.J.: Constraint-based automatic test data generation. IEEE
Trans. Software Eng. 17(9), 900–910 (1991)

11. Dovier, A., Formisano, A., Pontelli, E.: An empirical study of constraint logic
programming and answer set programming solutions of combinatorial problems. J.
Exp. Theor. Artif. Intell. 21(2), 79–121 (2009)

12. Fioravanti, F., Pettorossi, A., Proietti, M.: Transformation Rules for Locally Strat-
ified Constraint Logic Programs. In: Bruynooghe, M., Lau, K.-K. (eds.) Program
Development in CL. LNCS, vol. 3049, pp. 291–339. Springer, Heidelberg (2004)

13. Fioravanti, F., Pettorossi, A., Proietti, M., Senni, V.: Program transformation for
development, verification, and synthesis of programs. Intelligenza Artificiale 5(1),
119–125 (2011)

http://www.iasi.cnr.it/~proietti/system.html

130 V. Senni and F. Fioravanti

14. Gligoric, M., Gvero, T., Jagannath, V., Khurshid, S., Kuncak, V., Marinov, D.: Test
generation through programming in udita. In: Kramer, J., Bishop, J., Devanbu,
P.T., Uchitel, S. (eds.) ICSE (1), pp. 225–234. ACM (2010)

15. Gligoric, M., Gvero, T., Lauterburg, S., Marinov, D., Khurshid, S.: Optimizing
generation of object graphs in java pathfinder. In: ICST [2], pp. 51–60

16. Gómez-Zamalloa, M., Albert, E., Puebla, G.: Test case generation for object-
oriented imperative languages in clp. TPLP 10(4-6), 659–674 (2010)

17. Gotlieb, A., Botella, B., Rueher, M.: A CLP Framework for Computing Structural
Test Data. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach,
U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI),
vol. 1861, pp. 399–413. Springer, Heidelberg (2000)

18. Wang, D., Chang, H.-Y., Ly-Gagnon, M., Hoffman, D.: Grammar based testing of
html injection vulnerabilities in rss feeds. In: ICST [2], pp. 105–110 (2009)

19. Howe, J.M., King, A.: Efficient groundness analysis in prolog. Theory Pract. Log.
Program. 3, 95–124 (2003)

20. Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. J. Log. Pro-
gram. 19/20, 503–581 (1994)

21. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial evaluation and automatic program
generation. Prentice-Hall, Inc., Upper Saddle River (1993)

22. Khalek, S.A., Yang, G., Zhang, L., Marinov, D., Khurshid, S.: Testera: A tool for
testing java programs using alloy specifications. In: Alexander, P., Pasareanu, C.S.,
Hosking, J.G. (eds.) ASE, pp. 608–611. IEEE (2011)

23. Kriener, J., King, A.: RedAlert: Determinacy Inference for Prolog. Theory and
Practice of Logic Programming 11(4-5), 537–553 (2011)

24. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer (1987)
25. Marinov, D.: Automatic Testing of Software with Structurally Complex Inputs.

PhD thesis. MIT (2005)
26. Marinov, D., Andoni, A., Daniliuc, D., Khurshid, S., Rinard, M.: An evaluation

of exhaustive testing for data structures. Technical report, MIT Computer Science
and Artificial Intelligence Laboratory Report MIT -LCS-TR-921 (2003)

27. Marriott, K., Stuckey, P.J.: Programming with constraints: an introduction. MIT
Press, Cambridge (1998)

28. Meudec, C.: Atgen: automatic test data generation using constraint logic program-
ming and symbolic execution. Software Testing, Verification and Reliability 11(2),
81–96 (2001)

29. Milicevic, A., Misailovic, S., Marinov, D., Khurshid, S.: Korat: A tool for generating
structurally complex test inputs. In: ICSE, pp. 771–774. IEEE Computer Society
(2007)

30. Proietti, M., Pettorossi, A.: Unfolding - definition - folding, in this order, for avoid-
ing unnecessary variables in logic programs. Theor. Comput. Sci. 142(1), 89–124
(1995)

31. Robinson, R.W.: Counting unlabeled acyclic digraphs. In: Little, C. (ed.) Combina-
torial Mathematics V. Lecture Notes in Mathematics, vol. 622, pp. 28–43. Springer,
Heidelberg (1977), 10.1007/BFb0069178

32. Senni, V., Fioravanti, F.: Generation of test data structures using constraint logic
programming. Technical Report 12-04, IASI-CNR, Roma, Italy (2012)

Generation of Test Data Structures 131

33. Visser, W., Pasareanu, C.S., Khurshid, S.: Test input generation with java
pathfinder. In: Avrunin, G.S., Rothermel, G. (eds.) ISSTA, pp. 97–107. ACM
(2004)

34. Visvanathan, S., Gupta, N.: Generating test data for functions with pointer inputs.
In: ASE, p. 149. IEEE Computer Society (2002)

35. Zhao, R., Li, Q.: Automatic test generation for dynamic data structures. In: SERA,
pp. 545–549. IEEE Computer Society (2007)

Constructive Finite Trace Analysis

with Linear Temporal Logic

Martin Sulzmann and Axel Zechner

Informatik Consulting Systems AG, Germany
{martin.sulzmann,axel.zechner}@ics-ag.de

Abstract. We consider linear temporal logic (LTL) for run-time testing
over limited time periods. The technical challenge is to check if the finite
trace produced by the system under test matches the LTL property. We
present a constructive solution to this problem. Our finite trace LTL
matching algorithm yields a proof explaining why a match exists. We
apply our constructive LTL matching method to check if LTL properties
are sufficiently covered by traces resulting from tests.

1 Introduction

Linear temporal logic (LTL) [4] is a powerful formalism for the concise specifi-
cation of complex, temporal interaction patterns and has numerous applications
to verify the static and dynamic behavior of software systems.

Our interest here is in the application of LTL for run-time testing. Specifically,
our focus is on off-line testing where the system produces a finite trace log.
The trace log is obtained by stimulation of the system by a test case. The
resulting traces are then matched against some LTL formulas which express test
properties.

There exists several prior works which study finite LTL trace matching,
e.g. see [3,5]. The problem is that existing algorithms for finite trace match-
ing only yield yes/no answers. That is, either the answer is yes and the trace
could be matched, or the answer is no and there is no match. In our view this is
often not sufficient. For example, we wish to have a more detailed explanation
why a trace could be matched or why is there no match.

Our novel idea is to apply a constructive algorithm for finite trace match-
ing where the algorithm yields a proof in case of a successful match. Proofs are
representations of parse trees (a.k.a. derivation trees) and provide detailed expla-
nations why there is a match. Thus, we can for example inspect some suspicious
test cases which succeeded unexpectedly. There are several further advantages
of representing the result of finite LTL trace matching in terms of proofs.

Proofs provide for independent verification of the test results. This is impor-
tant in case we apply a finite trace LTL trace matching tool in the context of a
formal software certification process such as DO-178B [6] where the tools output
either must be formally certified or alternatively are manually verifiable. For-
mal tool certification is often too cost-intensive and requires a potential costly
re-certification in case of software changes. Based on the proof representation it
is straightforward to verify the test results manually.

A.D. Brucker and J. Julliand (Eds.): TAP 2012, LNCS 7305, pp. 132–148, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Constructive Finite Trace Analysis with Linear Temporal Logic 133

Via proofs it is also easy to accommodate for various matching semantics,
e.g. weak or strong [2]. The advantage here is that we don’t need to re-run
the entire matching algorithm if for example we favor a weak semantics. We
simply compute the proof and then afterwards we choose the appropriate proof
interpretation, e.g. either weak or strong.

Proofs allow us to check to what extent the LTL properties are covered by
tests (traces). For example, if some pre-condition is never satisfied the LTL
property may be vacuously true but clearly the LTL property is then not fully
covered. One of our new contributions is a method to check for a fixed set of
LTL properties and traces if the LTL properties are sufficiently covered. This
complements earlier works [7] which shows how to generate traces to sufficiently
cover a given set of LTL properties. In practice, automatic generation of test
cases is often not possible due to the lack of a formal test model on which we
could apply a model checker. Therefore, tests are written by hand. The ability
to check coverage of LTL properties is clearly a big win to evaluate the quality
of a test suite.

The Key Ideas. We consider an example to highlight the key ideas of our work.
We assume a finite trace of the form [a, b, c, d, d, e, f] where letters a − f stand
for atomic propositions representing the inputs and outputs of the system under
test recorded at some specific measuring points. The test property is specified
via the LTL formula (a ∨ b) until (c ∧ next (�(e ∨ f))).

Our constructive matching algorithm generates the following proof term

[inl a
√
, inr b

√
] untilprf (c

√
, fwdnext fwd� fwd� stop� e

√
) (1)

whose graphical representation is as follows

until

1
���
�

����
��
� 2

��

��

3

��
3
���

�

���
��

��

inl

��
inr

��

c 4n �� 5� �� 6� �� e

a b

Edges are labeled with numbers where numbers refer to specific trace posi-
tions. Subscripts n and � tell us whether the next trace position is reached due to
next or �. Label inl (inr) indicates matching against the left (right) component
of choice (∨). Leaf nodes represent matched atomic propositions. Based on this
representation it is now quite clear that the trace matches the LTL formula.

There are further possible matches, i.e. proofs:

[inl a
√
, inr b

√
] untilprf (c

√
, fwdnext fwd� fwd� fwd� stop� f

√
) (2)

[inl a
√
, inr b

√
] untilprf (c

√
, fwdnext fwd� fwd� fwd� fwd� (�(e ∨ f))?) (3)

In proof (2) we match f instead of e in �(e ∨ f). Proof (3) represents a match
where we reach the end of trace without having matched the sub-formula �(e∨f).

134 M. Sulzmann and A. Zechner

This proof is of course quite silly because we know there is a match without ?.
The point is that proofs can possibly represent ’partial’ matches. That is,
sub-formulas could not be matched due to a prematurely ending trace.

In particular, we are interested in ’shortest’ proof. Informally, for a shortest
proof the longest derivation path from the root to a leaf is minimal among all
other proofs. Proof (1) is the shortest for our running example. Based on shortest
proofs we can check if a test suite satisfies the unique first cause (UFC) coverage
criteria [7]. Briefly, a test suite achieves UFC coverage of a set of requirements
expressed as LTL formulas if each condition in an LTL formula has been shown
to affect the formula’s outcome as the unique first cause for some trace.

For our running example, we find that UFC coverage is not achieved. Condi-
tion f affects the formula’s outcome (the formula is satisfied for this trace). But
clearly f is not the unique first cause because in the trace [a, b, c, d, d, e, f] there
is the ’earlier’ condition e due to which the formula is satisfied as well. This is
easy to see by inspecting the shortest proof (1). e

√
appears in the proof (1) but

f
√

is absent.
Via the additional trace [a, b, c, d, d, f, e] we achieve UFC coverage. In the

shortest proof

[inl a
√
, inr b

√
] untilprf (c

√
, fwdnext fwd� fwd� stop� f

√
)

resulting from matching the above trace against the LTL formula we find f
√
.

Based on the above observations, we can re-phrase the UFC coverage criteria
as follows. To achieve UFC coverage, for each condition a in an LTL formula
there must exist a shortest proof in which a

√
appears.

Summary of Contributions and Outline of Paper

– We give a constructive explanation of finite trace LTL matching where the
particular finite trace semantics can be chosen a-posteriori (Section 2).

– We provide for an efficient algorithm to compute shortest proofs (Section 3).
– We re-phrase the UFC coverage criteria in terms of shortest proofs

(Section 4).

Related work is discussed in Section 5.

2 Constructive Finite Trace LTL Matching

We formalize matching of finite trace T against an LTL formula L, see Figure 1.
A trace T is a finite list of atomic propositions where we represent atomic propo-
sitions by letters a, b etc. In our actual implementation, propositions are com-
positions of more elementary basic conditions, e.g. Key == On ∧ Speed > 100 .
For brevity, we ignore this level of detail and only consider atomic propositions.

Constructive Finite Trace Analysis with Linear Temporal Logic 135

LTL in negation normal form:
B ::= a | b | ... Atomic propositions
L ::= B | True | False | L ∧ L | L ∨ L Boolean layer

| next L | 	L | L until L | �L Temporal layer

Finite trace:
T ::= [] Empty list/trace

| B : T Trace with head B and tail T

Proofs:
P ::= B

√
| True

√
| L? | inl P | inr P | (P, P)

| fwdnext P | � Ps | stop� P | fwd� P | Ps untilprf P
Ps ::= [] | P : Ps

Short-hand for list of proofs: [P1, ..., Pn] = P1 : ... : Pn : []

T � L � P

(True) T � True � True
√

(Base)
B′ = B

B′ : T � B � B
√

(EndOfTrace)
L �= True

[] � L � L?
(next)

T � L � P

B : T � next L � fwdnext P

(∨-Left) B : T � L1 � P1

B : T � L1 ∨ L2 � inl P1

(∨-Right)
B : T � L2 � P2

B : T � L1 ∨ L2 � inr P2

(∧) B : T � L1 � P1 B : T � L2 � P2

B : T � L1 ∧ L2 � (P1, P2)

(-Stop) B : T � L � P

B : T � 	L � stop� P
(-Fwd) T � 	L � P

B : T � 	L � fwd� P

(�-1)

B : T � L � P1

T � �L � � Ps

B : T � �L � � (P1 : Ps)

(�-2)
[B] � L � P1

[B] � �L � � [P1]

(until -1)
B : T � L2 � P2

B : T � L1 until L2 � [] untilprf P2

(until -2)
B : T � L1 � P1 T � L1 until L2 � Ps untilprf P1

B : T � L1 until L2 � P1 : Ps untilprf P2

(until -3)
[B] � L1 � P1

[B] � L1 until L2 � [P1] untilprf L?
2

Fig. 1. Constructive Finite Trace LTL Matching

136 M. Sulzmann and A. Zechner

We use the standard LTL syntax. In our formulation, we assume that formulas
are in negation normal form. For brevity, we omit the negation operator ¬ and
assume that the negation of a proposition is simply represented as an atomic
proposition, e.g. a.

The matching relation among finite traces and LTL formulas is described in
terms of judgments of the form T � L � P . The judgment T � L � P states
that trace T matches formula L and the additional parameter P represents a
proof for a match. We generally assume that for the matching relation · � · � ·,
T and L are input values and P is the output in case of a successful match.

Figure 1 contains the rules to derive judgments T � L � P . A derivation
with final judgment T � L � P is essentially a (up-side-down) tree where the
leaves (judgments) are connected to base rules (EndOfTrace), (True) and (Base)
and intermediate nodes are connected to the other rules. In essence, P represents
a compact representation of the derivation tree.

The proof B
√

states that proposition B could be verified. Such proofs are
derived via rule (Base) which states that B matches the head of the trace.

True
√

is a proof for the always True formula which matches any trace. See rule
(True).

Rule (EndOfTrace) and the corresponding proof L? indicate that L is un-
matched because the trace ended prematurely. Depending on the interpretation
of the match, i.e. proof, we can consider L? either as a valid match or not and
can thus accommodate a weak or strong LTL matching semantics.

Rules (∨-Left) and (∨-Right) deal with matching a non-empty trace against
a disjunction of formulas. Proofs inl P and inr P indicate which branch of a
choice formula (∨) could be matched. We use pairs (P, P) to represents proofs
for matching a conjunction of formulas. See rule (∧).

Proof fwdnext P represents a match for a next L formula. See rule (next).
Proof stop� P indicates that the eventually (�) quantified formula could be

matched at the present trace position whereas proof fwd� P shows that we have
to make a step forward in the future to find a match. See rules (�-Stop) and
(�-Fwd).

For example, here’s a derivation making use of rule (�-Stop). For clarity, each
derivation step is annotated with the respective rule applied (read upwards).

a = a
(Base)

[a, a] � a � a
√

(�-Stop)
[a, a] � �a � stop� (a

√
)

In case of the always (a.k.a. globally) operator � the quantified LTL formula
must hold at each position of the trace. The corresponding proof � Ps contains
therefore a list of proofs Ps where each individual proof represents a proof for a
particular position. All of these proofs are collected in a list. See rule (�-1). In
the last step, we reach the empty trace. The resulting proof (�L)? is ignored.
See rule (�-2). For example, consider the following sample derivation.

Constructive Finite Trace Analysis with Linear Temporal Logic 137

a = a
(Base)

[a] � a � a
√

�a �= True
(EndOfTrace)

[] � �a � (�a)?

(�-2)

[a] � �a � � [a
√
]

Similarly to �, the proof for until uses a list to represent the sub-proof for
the left operand. See rules (until -1) and (until-2). In our formulation, we also
build a match/proof in case the right operand can never be matched but the left
operand is matched at each position. See rule (until-3).

In summary, a proof P represents a compact representation of a derivation
where a trace T matches an LTL formula L. That is, from the shape of P we
can conclude which rules have been applied to build the derivation and we can
reconstruct the entire derivation. In fact, each proof implies a trace and a formula
such that the trace matches the formula. This is easy to see, by viewing P as the
input and T and L as outputs of the matching relation T � L � P . It follows:

Lemma 1 (Proofs Represent Derivations). (1) Let T � L � P be the
final judgment of a derivation. Then, proof P exactly tells us which rules have
been applied and in which order.

(2) Let P be a proof. Then, T � L � P is derivable for some trace T and
formula L.

A-Posteriori Weak Interpretation of Proofs. The general problem with
LTL and finite traces is how to deal with cases where the trace ends prematurely.
For example, consider the proof resulting from the derivation

a �= True
(EndOfTrace)

[] � a � a?

(next)

[a] � next a � fwdnext (a?)

In the context of testing with LTL, it is likely that some test cases (traces) are
too short for some test properties (LTL formulas). To avoid false negatives, we
favor a weak interpretation of proofs.

Definition 1 (Weak Proof Interpretation). We say that formula L is
weakly matched by trace T , written T �weak L, iff there exists a proof P such
that T � L � P .

We find that the formula in the above example is weakly matched.
Similarly, we can give a strong proof interpretation following the strong finite

trace semantics introduced in [2].

Definition 2 (Strong Proof Interpretation). We say that formula L is
strongly matched by trace T , written T �strong L, iff there exists a proof P
such that T � L � P and P does not contain any term of the form ·?.

138 M. Sulzmann and A. Zechner

size : P 	→ N

size(B
√
) = 1

size(True
√
) = 0

size(L?) = size(L)
size(stop� P) = size(P)

size(inl P) = size(P)
size(inr P) = size(P)
size(P1, P2) = max(size(P1), size(P2))
size(fwd� P) = 1 + size(P)

size(fwdnext P) = 1 + size(P)

size(�[P1, ..., Pn]) = 1 +max i≤n
i=1 ((i− 1) + size(Pi))

size([P1, ..., Pn] untilprf P) = 1 +max (n+ size(P),max i≤n
i=1 ((i− 1) + size(Pi)))

size : L 	→ N

size(B) = 1 size(True) = 1
size(False) = 1 size(L1 ∧ L2) = size(L1) + size(L2)
size(L1 ∨ L2) = size(L1) + size(L2) size(next L) = 1 + size(L)
size(L) = 1 + size(L) size(L1 until L2) = 1 + size(L1) + size(L2)
size(�L) = 1 + size(L)

Fig. 2. Size of Proofs and Formulas

In case of a weak proof interpretation, it is important to check that the LTL
properties are sufficiently covered by test cases. As motivated in the introduction,
we use shortest proofs for coverage checking. Next, we formalize shortest proofs.

Shortest Proofs. Figure 2 defines the size of a proof and a formula. The size of
the proof is the longest possible path from the root to a leaf. Leafs B

√
have size

1 whereas leafs which contain True
√

represent trivial matches and therefore we
set their size to 0.

For example, consider the proofs obtained by matching [a, a] against next a∨
�a:

[a, a] � next a ∨ �a � inr (stop� a
√
) [a, a] � next a ∨ �a � inl (fwdnext a

√
)

where size(inr (stop� a
√
)) = 1 < 2 = size(inl (fwdnext a

√
)).

In case of a proof for ∧ the size of the overall proof is determined by the
maximum of the size of the sub-proofs. Similarly, we compute the maximum of
the sub-proofs for � and until . The difference compared to ∧ is that for � and
until we add i − 1 to take into account the iterations through the trace. The
additional 1+ in e.g. size(�L) = 1 + size(L) ensures to unambiguously select
among proofs for � and until and proofs for some unfolding of � and until
for a specific trace. For example, consider

[a] � �a ∨ a � inl � [a
√
] [a] � �a ∨ a � inr a

√

For trace [a], proposition a is essentially the unfolded version of �a. We strictly
favor the unfolded version by adding 1 in case of �. For the above, we find that

size(inr a
√
) = 1 < 2 = size(inl � [a

√
])

Constructive Finite Trace Analysis with Linear Temporal Logic 139

The only remaining ambiguity arises in pathological cases such as matching [a]
against a ∨ a and matching [a] against next b ∨ next c. In the first case, we find
two identical matches by either choosing the left or right branch. In the second
case, the trace ended prematurely and we end up with unresolved formulas of
equal size in the left and right branch.

To resolve such un-ambiguities, we favor the “left-most” proof in case of sev-
eral shortest proofs. For brevity, we omit a formal definition and only provide
the intuition. We say a proof P1 is left-most w.r.t. some other proof P2 iff along
the longest paths from the root of P1 and P2 we find that P1’s path takes earlier
a left turn than P2’s path.

Definition 3 (Shortest Left-Most Proof). Let T � L � P . We say that
P is the shortest left-most proof w.r.t. trace T and formula L iff for any other
proof P ′ such that T � L � P ′ we have that either

– size(P) < size(P ′), or
– size(P) = size(P ′) and P is left-most w.r.t. P ′.

Obviously, there exists other strategies to make the matching relation determin-
istic. For example, instead of choosing the left-most proof among the shortest
proofs, we could choose the shortest proof among the left-most proofs.

Definition 4 (Left-Most Shortest Proof). Let T � L � P . We say that P
is the left-most shortest proof w.r.t. trace T and formula L iff P is a left-most
proof and for any other proof left-most proof P ′ such that T � L � P ′ we have
that size(P) < size(P ′).

For example, proof inl � [a
√
] is the left-most shortest proof for trace [a] and

�a ∨ a. But as shown above, this proof is not the shortest left-most.

3 Deterministic Matching with Derivatives

We first develop an algorithm to compute the left-most shortest match. Based
on that we then derive an algorithm for computing the shortest left-most match.

The straightforward approach to obtain the left-most shortest match would
be to employ a back-tracking algorithm where we interpret the judgments in
Figure 1 as Prolog clauses. However, such an approach easily leads to undesirable
high run-time behavior.

For example, consider the trace [a,, a, c] and the formula �(a∧ �b). In each
step, besides the last step, we can match a and then seek for b which cannot be
matched. Thus, we end up with a quadratic run-time behavior where we would
expect that a linear scan of the trace ought to be sufficient. This situation is
similar to the regular expression for which it is well-known that a back-tracking
matching algorithm easily leads to exponential run-time behavior.

To avoid unnecessary back-tracking, we seek for a matching algorithm which
strictly guarantees to make progress towards computing a proof. The basic idea
is to reduce the matching problem B : T � L to the simpler problem T � L\B

140 M. Sulzmann and A. Zechner

Expressions and functions over proofs:

e ::= P Proofs

| case P of P → P Case expression
f ::= λP.e Functions with input pattern P

| ⊥ Undefined

L\B �d (L P → P)

(Trued) True\B �d (True λTrue
√
.True

√
) (Falsed) False\B �d (False ⊥)

(Succ-Bd)
B′ = B

B′\B �d (True λTrue
√
.B

√
)

(Fail-Bd)
B′ �= B

B′\B �d (False ⊥)

(∨d)

L1\B �d (L′
1 f1)

L2\B �d (L′
2 f2)

f = λP. case P of

inl P ′ → inl (f1 P ′)
inr P ′ → inr (f2 P ′)

(L1 ∨ L2)\B �d (L′
1 ∨ L′

2 f)

(∧d)

L1\B �d (L′
1 f1)

L2\B �d (L′
2 f2)

f = λ(P1, P2).(f1 P1, f2 P2)

(L1 ∧ L2)\B �d (L′
1 ∧ L′

2 f)

(�d)

L\B �d (L′ f ′)
f = λP. case P of

inl P ′ → stop� (f ‘ P ′)
inr P ′ → fwd� P ′

(�L)\B �d (L′ ∨ �L f)

(nextd) (next L)\B �d (L λP.fwdnext P)

(�d)

L\B �d (L′, f ′)
f = λ(P, P ′). case P ′ of

� Ps → � (f ′ P : Ps)

(�L)? → � [f ′ P]

(�L)\B �d (L′ ∧�L f)

(untild)

L1\B �d (L′
1, f1) L2\B �d (L′

2, f2)

f = λP. case P of

inl P ′ → [] untilprf f2 P ′

inr (P1, P2 untilprf P3) → ((f1 P1) : P2) untilprf P3

inr (P1, P ?
2) → [f1 P1] untilprf (P ?

2)

(L1 until L2)\B �d (L′
2 ∨ (L′

1 ∧ (L1 until L2)) f)

Fig. 3. Building Derivatives and Proof Transformers

where formula L\B is obtained from L by consuming the current head B of the
trace. The formula L\B is referred to as the derivative of L with respect to B
and can be obtained by structural induction over the shape of L. The concept of
derivatives, originally developed for regular expressions [1], also applies to linear
temporal logic as first shown in [3] We extend this idea to compute the left-most
shortest and shortest left-most match.

One of the challenges we face is to build the proof of the original formula
out of the proof of the derivative. Roughly, we attack this challenge as follows.
For a trace [B1, ..., Bn], we build the sequence of derivatives L →f1 L\B1 →f2

... →fn L\B1...\Bn. The purpose of the fi’s will be explained shortly. By using

Constructive Finite Trace Analysis with Linear Temporal Logic 141

L �p P

(Truep) True �p True
√

(∧) L1 �p P1 L2 �p P2

(L1 ∧ L2) �p (P1, P2)

(∨-Leftp)
L1 �p P1

(L1 ∨ L2) �p inl P1

(∨-Rightp)

there is no P1 such that L1 �p P1

L2 �p P2

(L1 ∨ L2) �p inl P2

(Basep) B �p B? (p) 	 L �p (L)? (nextp) next L �p (next L)?

(�p) �L �p (�L)? (untilp) L1 until L2 �p (L1 until L2)
?

Fig. 4. Building the Final Left-Most Proof (weak version)

Boolean laws we check if the final formula L\B1...\Bn yields true. If yes, we can
build a proof P . The proof for the original formula L is obtained by applying the
proof transformers fi. In each derivative step, we compute a proof transformer
function fi which tells us how to build the proof of the original formula given
the proof of the derivative. Thus, we obtain the proof of the initial formula L by
application of (f1 ◦ ... ◦ fn) P . Next, we formalize this idea.

Computing the Left-Most Shortest Match. Figure 3 defines judgments
L\B �d (L′ f) which build the derivative L′ = L\B and also a proof trans-
formation function which transforms a proof for L′ into a proof for L.

The base cases (Trued), (Falsed), (Succ-Bd) and (Fail-Bd) are straightforward.
False formulas are represented by ⊥, the undefined proof transformer. As we will
see, false formulas and their ⊥ proofs only appear in intermediate steps. They
will be eventually discarded because they are not derivable in our matching rule
system.

Rules (∨d) and (∧d) are defined by structural induction and contain no sur-
prises. In rule (nextd), we simply drop the next · operator.

More interesting is rule (�d). The derivative of �L w.r.t. B is (L\B)∨�L where
L\B is the derivative of L w.r.t. B. As we will see, we favor the ’left-most’ match
and therefore we first try to find a match for L at the current position B and
only in case of failure we will continue with the next position by trying again
�L. The proof transformation function f checks if a proof is found in either the
left or right component of the resulting derivative and then applies the proof
transformer resulting from L\B to construct a proof for �L.

In rule (�d), we assume that eventually �L is matched against the empty
trace which then results in the proof (�L)?. Therefore, the second case when
building the proof for �L given the proof for L\B ∧�L.

142 M. Sulzmann and A. Zechner

In rule (untild), the derivative for L1 until L2 is L2\B∨(L1\B∧(L1 until L2))
and expresses that we either immediately satisfy L2, or we must further unroll
the until formula. The resulting proof transformer f covers all the until cases
(1-3) we have seen in Figure 1.

Figure 4 builds a proof for the final LTL formula. Any unmatched LTL formula
is considered as possibly true. Recall that we postpone the decision of how to
interpret proofs. The rules strictly favor the left-most match. For example, see
rules (∨-Leftp) and (∨-Rightp).

We have now everything at hand to formalize the derivative-based algorithm
for matching a trace against a formula.

Definition 5 (Derivatives Matching Algorithm). Let L be an LTL for-
mula, T be a finite trace of the form [B1, ..., Bn] and P be a proof. We say that P
is the derivative matching result of matching T against L, written T �d L � P ,
iff

– L\B1 �d (L1 f1),...,Ln−1\Bn �d (Ln fn) for some L1,...,Ln and f1,
...,fn, and

– Ln �p P ′ for some P ′, and
– P = (f1 ◦ ... ◦ fn) P

′.

For example, consider trace [a, a] and formula next a ∨ �a. We first build the
derivatives of L = next a ∨ �a:

L\a = a ∨ (True ∨ �a)︸ ︷︷ ︸
L1

L1\a = True ∨ (True ∨ (True ∨ �a))︸ ︷︷ ︸
L2

The proof transformers connected to the derivative steps are as follows:

L\a �d L1

λP. case P of
inl P ′ → inl (fwdnext P ′)
inr P ′ → case P ′ of

inl P ′′ → stop� a
√

inr P ′′ → fwd� P ′′
︸ ︷︷ ︸

f1

L1\a �d L2

λP.case P of inl P ′ → inl a
√

inr P ′ → case P ′ of
inl P ′′ → inl True

√

inr P ′′ → case′P ′′ of
inl P ′′′ → stop� True

√

inr P ′′′ → fwd� P ′′′
︸ ︷︷ ︸

f2

For the final formula, we find

True ∨ (True ∨ (True ∨ �a)) �p inl True
√

Constructive Finite Trace Analysis with Linear Temporal Logic 143

We now transform the final proof into a proof of the initial formula by applying
the proof transformers connected to the derivative steps:

(f1 ◦ f2)(inl True
√
) = inl (fwdnext a

√
)

The proof on the right is the proof for the original formula next a ∨ �a. This
proof is also the left-most shortest proof. This result holds in general.

In a first step, we verify that the proof transformer connected to the derivative
computes the proof of the original formula given the proof of the derivative.

Lemma 2 (Derivatives Matching Correctness). Let L\B �d (L′ f) and
T � L′ � P ′. Then, B : T � L � P for some P such that f P ′ = P .

Proof. (Sketch) By induction over the structure of L and the derivation T �
L′ � P ′. For example, consider L1 until L2. Case (untild) applies. By assump-
tion we have that T � L′

2 ∨ (L′
1 ∧ (L1 until L2)) � P ′′. For brevity, we only

consider the case P ′′ = inl P ′. Thus, we conclude that T � L′
2 � P ′ (1). From

the premise of case (untild), we conclude L2\B �d (L′
2, f2) (2). By induction

hypothesis applied to (1) and (2) we conclude that B : T � L2 � f2 P ′. Via
rule rule (until -1) we conclude that B : T � L1 until L2 � [] untilprf f2 P ′. By
construction we find that f inl P ′ = [] untilprf f2 P ′ and thus we are done.

The other cases can be proven similarly.

The following result follows immediately by construction.

Lemma 3 (Correctness of Final Left-Most Proof). Let L �p P . Then
[] � L � P and P is the left-most shortest proof w.r.t. [] and L.

The composition of the individual proof transformers clearly yields a valid proof
of the original formula. We further know that the final proof is the left-most
shortest proof. The important observation is that the derivatives matching step
L\B �d (L′ f) preserves left-most shortest proofs. That is, if the proof P ′

of L′ is left-most shortest, then it follows that proof f P ′ of L is also left-most
shortest. Thus, we obtain the following result.

Theorem 1 (Left-Most Shortest Derivatives Matching Correctness).
Let T �d L � P for some trace T , LTL formula L and proof P . Then, T �
L � P and P is the left-most shortest proof w.r.t. T and L.

Computing the Shortest Left-Most Match. We are now interested in the
shortest match. There are several adjustments we need to make to the derivative-
based matching algorithm:

– (1) We must aggressively simplify formulas by using Boolean laws such as
L ∨ True = L. Thus, we favor formulas which evaluate as early as possible
to True and the resulting proofs are shorter.

144 M. Sulzmann and A. Zechner

L �s (L P → P)

(Ts) True �s (True λP.P) (Fs) False �s (False ⊥) (Bs) B �s (B λP.P)

(∨-1s) (True ∨ L) �s (True λP.inl P) (∨-2s) (L ∨ True) �s (True λP.inr P)

(∨-3s) (False ∨ L) �s (L λP.inr P) (∨-4s) (L ∨ False) �s (L λP.inl P)

(∨-5s)

L1 �= False and L1 �= True and L2 �= False and L1 �= L2

L1 �s (L′
1 f1) L2 �s (L′

2 f2)

f = λP. case P of

inl P ′ → inl (f1 P ′)
inr P ′ → inr (f2 P ′)

(L1 ∨ L2) �s ((L′
1 ∨ L′

2) f)

(∨-6s) L �s (L′ f ′) f = λP.inl (f ′ P)

(L ∨ L) �s (L′ f)

(∧-1s) (True ∧ L) �s (L λP.(True
√
, P)) (∧-2s) (L ∧True) �s (L λP.(P,True

√
))

(∧-3s) (False ∧ L) �s (False ⊥) (∧-4s) (L ∧ False) �s (False ⊥)

(∧-5s)
L1 �= True and L1 �= False and L2 �= True and L2 �= False and L1 �= L2

L1 �s (L′
1 f1) L2 �s (L′

2 f2)

(L1 ∧ L2) �s ((L′
1 ∧ L′

2) λ(P1, P2).(f1 P1, f2 P2))

(∧-6s) L �s (L′ f ′) f = λP.(f ′ P, f ′ P)

(L ∧ L) �s (L′ f)

Fig. 5. Simplifications and Proof Transformers I

– (2) The simplifications must be applied in intermediate derivative matching
steps.

– (3) We currently built the left-most shortest final proof. Here, we need some
additional rules to guarantee that we built the shortest left-most final proof.

To motivate (1) and (2) we consider formula next a ∨ a and trace [a, a]. For
brevity, we only consider the resulting derivatives which are:

(next a ∨ a)\a = a ∨ True (a ∨ True)\a = True ∨ True

From True ∨True we obtain the final proof inl True
√
. Application of the proof

transformers connected to derivatives then leads to inl fwdnext a
√
. This is the

left-most shortest proof but clearly not the shortest left-most proof which is
inr a

√
.

To obtain the shortest proof we must apply simplifications also in interme-
diate steps. For our example, in the first derivative matching step we simplify
a∨True to True. The subsequent derivative step True\a = True then yields the

Constructive Finite Trace Analysis with Linear Temporal Logic 145

Helper: adj f L = λP.case P of (L′′)? → L?

P ′ → f P ′

(�s) L �s (L′ f ′)
f = λP. case P of

fwd� n(stop� P) → fwd� n(stop� (f ′ P))

fwd� n((L′′)?) → fwd� n(L?)

(�L) �s ((�L′) f)

(�s)
L �s (L′ f ′) f ′′ = adj f ′ L

(�L) �s ((�L′) λ� [P1, ..., Pn].�[f ′′ P1, ..., f ′′ Pn])

(untils)

L1 �s (L′
1 f1) L2 �s (L′

2 f2)

(L1 until L2) �s

(
(L′

1 until L′
2)

λ[P1, ..., Pn] untilprf P.

[f1 P1, ..., f1 Pn] untilprf ((adj f2) P2)

)

(nexts)
L �s (L′ f)

(next L) �s ((next L′) λfwdnext P.(adj f L) P)

Fig. 6. Simplifications and Proof Transformers II

final formula True which has the final proof True
√
. Application of the proof

transformers connected to the derivative matching and simplification step then
leads to inr a

√
. This is the shortest left-most proof we were looking for.

Next, we provide the details of the simplification step in terms of judgments
L �s (L P → P). Similar to the derivative matching step, each simplification
step yields a proof transformer which builds a proof of the original formula
given a proof of the simplified formula. The simplification rules are specified in
Figures 5 and 6.

Figure 5 contains the standard Boolean simplifications concerning ∨ etc. In
the LTL context, (Boolean) simplification also need to be applied ’below’ LTL
operators. For example, consider next (a ∨ True) which shall be simplified to
next True. For such simplifications, we apply the rules in Figure 6.

In rule (�s), we make use of the short-hand notation fwd�
n(P):

fwd�
0(P) = P fwd�

n+1(P) = fwd� (fwd�
n(P))

The proof transformation function f in this rule distinguishes between the case
that a proof for L could be found, resp. the trace ended prematurely. In the
first case, we follow the chain of fwd� steps until we reach stop� P which is then
replaced by stop� (f ′ P). In case the trace ended, represented by some proof L′′?,
we use the original (non-simplified) formula L to represent the proof fwd�

n(L?)
for �L.

In rule (�s), we apply the proof transformer f ′ to each of the sub-proofs.
The exception is in case of a sub-proof of the form ?. This must be the last
sub-proof. Like in case of rule (�s), we use the original (non-simplified) formula
L to represent the last sub-proof of �L. For brevity, we make use of the helper
function adj f L to either apply f or simply return L?. This helper function is
also used in rules (untils) and (nexts).

146 M. Sulzmann and A. Zechner

We always assume that simplification rules are applied aggressively by travers-
ing an LTL formula from top to bottom and from left to right. Then, the following
result follows.

Lemma 4 (Simplification Correctness and Preservation of Shortest
Left-Most). Let L �s (L′ f) and T � L′ � P ′ such that P ′ is the short-
est left-most proof w.r.t. T and L′. Then, T � L � P for some P such that
f P ′ = P and P is the shortest left-most proof w.r.t. T and L.

We yet need to address (3) from above. For example, consider formula next
(next a)∨ next b and trace [c]. The final formula is next a∨ b. The current final
proof construction algorithm in Figure 4 yields inl (next a)? but the shortest
final proof is inr a?.

Hence, we extend Figure 4 with two additional rules. We write L �ps P to
denote proof construction form formulas using the extended set of rules.

(∨-L?
p)

L1 �ps L′?
1 L2 �ps L′?

2

size(L′?
1) ≤ size(L′?

2)

(L1 ∨ L2) �ps inl L′?
1

(∨-R?
p)

L1 �ps L′?
1 L2 �ps L′?

2

size(L′?
2) < size(L′?

1)

(L1 ∨ L2) �ps inr L′?
2

The above rules apply if both branches of a ’choice’ formula are unmatched.
Otherwise, we will apply the existing rules (∨-Leftp) and (∨-Rightp). Thus,
(next a ∨ b) �ps inr a?.

Lemma 5 (Correctness of Final Shortest Proof). Let L′ �s (L f) and
L �ps P . Then [] � L � P and P is the shortest left-most proof w.r.t. [] and
L.

The definition of the shortest-left most match algorithm follows addressing the
above points (1-3).

Definition 6 (Shortest Left-Most Match Algorithm). Let L be an LTL
formula, T be a finite trace of the form [B1, ..., Bn] and P be a proof. We define
T �dslm

L � P iff

– L �s (L′ f ′), L\B1 �d (L1 f1),
L1 �s (L′

1 f ′
1), L

′
1\B2 �d (L2 f2),

...,
Ln−1 �s (L′

n−1 f ′
n−1), L

′
n−1\Bn �d (Ln fn),

for some L′, L1,L
′
1...,Ln and f ′, f1,f

′
1 ...,fn, and

– Ln �s (L′
n f ′

n), L
′
n �ps P ′ for some P ′, L′

n, f
′
n, and

– P = (f1 ◦ f ′
1 ◦ ... ◦ fn ◦ f ′

n) P
′.

Theorem 2 (Computing the Shortest Left-Most Proof). Let T �dslm

L � P for some trace T , LTL formula L and proof P . Then, we have that
T � L � P and P is the shortest left-most proof w.r.t. T and L.

The above result provides the basis for checking coverage of a set of requirements
expressed as LTL formulas.

Constructive Finite Trace Analysis with Linear Temporal Logic 147

4 Checking LTL Coverage by Inspecting Proofs

We repeat the unique first cause (UFC) coverage condition proposed in [7]: A
test suite achieves UFC coverage of a set of requirements expressed as temporal
formulas, if: (1) every basic condition in any formula has taken on all possible
outcomes at least once and (2) each basic condition has been shown to affect
the formula’s outcome as the unique first cause. A condition a is the unique first
cause (UFC) for φ along a path π if, in the first state along π in which φ is
satisfied, it is satisfied because of a.

Condition (1) essentially corresponds to the MC/DC coverage criteria. In our
formulation, we ignore this level of detail here because we only consider atomic
propositions at the Boolean propositional level.

The important point is that condition (2) can be characterized precisely in
terms of shortest left-most proofs. Roughly, conditions a in some test property
L must be covered by some shortest left-most proof P . That is, a

√
in P . To

unambiguously distinguish among several occurrences of a, e.g. as in a ∨ a, we
attach distinct labels k to conditions a, written ak. For example, a1 ∨ a2. Thus,
we can re-phrase the unique first cause coverage condition as follows.

Definition 7 (Unique First Cause Coverage Revisited Condition). A
test suite is a set {T1, ..., Tn} of traces and a set {L1, ..., Lm} of LTL test prop-
erties.

We say that a test suite satisfies the unique first cause coverage revisited
condition iff for all test properties Li and for all atomic condition ak in Li we
find some trace Tj such that Tj � Li � P for some P where P is the shortest

left-most proof and a
√

k is in P .

Based on Theorem 2 it immediately follows that the Unique First Cause Cover-
age Revisited Condition is checkable.

5 Related Work and Conclusion

There are various prior works which study finite trace matching algorithms,
e.g. see [3,5], and the design space of the semantics of finite trace LTL matching,
e.g. see [2]. To the best of our knowledge, we are the first to study construc-
tive finite trace matching. Such a matching approach has several advantages as
discussed in the introduction.

Of particular interest is the application of checking coverage of LTL test prop-
erties. Our focus here is the UFC coverage condition introduced in [7]. We can
give a precise definition of the UFC condition in terms of shortest left-most
proofs and thus we can easily check if a test suite satisfies the UFC condition.

The LTL matching and coverage approach as described has been fully imple-
mented and is in actual use in some mission-critical embedded system applica-
tions. We check coverage of LTL properties w.r.t. manually written test cases. As
our implementation language we use Haskell which fits very well the rewriting
nature of our matching algorithms. We incorporate several optimizations such

148 M. Sulzmann and A. Zechner

as hash consing for efficient comparison etc. Haskell’s lazy evaluation strategy is
of advantage in case of larger formulas with short proofs. Thanks to laziness we
only need to evaluate the necessary parts. Due to space constraints, we postpone
a more detailed description of our implementation and experiences from several
industrial case studies to some future work.

Another interesting topic is the issue of providing sensible explanation whys
a trace does not match the formula. Currently, we simply return the first failure
position in the trace and the formula. We believe that often there can be better,
e.g. shortest, explanations. This is something we will pursue in future work.

Acknowledgements. We thank the reviewers for their comments.

References

1. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
2. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.:

Reasoning with Temporal Logic on Truncated Paths. In: Hunt Jr., W.A., Somenzi,
F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003)

3. Jard, C., Jéron, T.: On-line model checking for finite linear temporal logic spec-
ifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 189–196. Springer,
Heidelberg (1990)

4. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, pp. 46–57. IEEE (1977)

5. Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification. Auto-
mated Software Engg. 12, 151–197 (2005)

6. RTCA/DO-178B. Software considerations in airborne systems and equipment cer-
tification (1992)

7. Whalen, M.W., Rajan, A., Heimdahl, M.P.E., Miller, S.P.: Coverage metrics for
requirements-based testing. In: Proceedings of the 2006 International Symposium
on Software Testing and Analysis, ISSTA 2006, pp. 25–36. ACM, New York (2006)

Towards Scenario-Based Testing of UML Diagrams�

Petra Brosch2, Uwe Egly1, Sebastian Gabmeyer2, Gerti Kappel2, Martina Seidl3,
Hans Tompits1, Magdalena Widl1, and Manuel Wimmer2

1 Institute for Information Systems, Vienna University of Technology, Austria
{uwe,tompits,widl}@kr.tuwien.ac.at

2 Business Informatics Group, Vienna University of Technology, Austria
{brosch,gabmeyer,gerti,wimmer}@big.tuwien.ac.at

3 Institute of Formal Models and Verification, Johannes Kepler University, Austria
martina.seidl@jku.at

Abstract. In model-driven engineering, models are not primarily developed for
documentation and requirement specification purposes, but promoted to first-class
artifacts, from which executable code is generated. As a consequence, typical de-
velopment activities like testing must be performed on the model level. In this
paper, we propose to use overlapping information inherent in multiple views of
models for automatic testing. Using a prototype based on the model checker SPIN

we show the feasibility of this approach and identify future challenges.

1 Introduction

Multi-view modeling languages like UML [6] offer different diagram types to lower
the complexity of describing software systems. Each diagram provides a distinct view
on the system, allowing for splitting a complex model into various areas of concern [4].
In that way, the diagrams complement one another, altogether providing a holistic rep-
resentation of the system. The views are connected by information redundant in the
different diagrams and consistency has to be assured [4]. In this paper, we investigate
how this information can be used as test data.

Consider the following example modeled in Fig. 1. Two state machines show a typi-
cal behavior of a PhD student (PhD) and a coffee machine (CM). Both state machines
change their states according to the messages they receive. Conditions for the state tran-
sitions are given in terms of transition labels. The transition labels consist of two parts:
The left part denotes an action triggering the transition, and the right part indicates a set
of actions performed during the transition. If no triggering action is defined (“−”), the
transition is executed unconditionally. Starting in state Tired , the PhD student turns the
coffee machine on and optimistically waits until it is ready. If she receives the error()
message, she becomes desperate, then tired and tries again. Otherwise, she is happy, de-
mands coffee, and waits until it is completed. The sequence diagram in Fig. 1 models a
forbidden scenario inside a neg fragment: After the coffee machine has sent an error, it

� This work was partially funded by the Vienna Science and Technology Fund (WWTF) through
project ICT10-018, by the fFORTE WIT Program of the Vienna University of Technology and
the Austrian Federal Ministry of Science and Research, and by the Austrian Science Fund
(FWF) under grants P21698, J3159-N23, and S11409-N23.

A.D. Brucker and J. Julliand (Eds.): TAP 2012, LNCS 7305, pp. 149–155, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

150 P. Brosch et al.

OffOff HeatingHeating

BrokenBrokenIdleIdle

PreparingCoffeePreparingCoffee

on()/−

−/error()off()/−

coffee()/− −/coffeeComplete()

repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

notTired()/on()

error()/−

notDesperate()/−

ready()/−

notHappy()/coffee()

coffeeComplete()/−

−/−

+ entry / off()

cm:CM alice:PhD

error()

coffee()

coffeeComplete()

neg

CM PhD

Fig. 1. Sequence diagram modeling a forbidden interaction for two state machines

receives a coffee request and then sends a coffeeComplete() message. Obviously, during
the parallel execution of the state machines the forbidden sequence can occur.

In model-driven engineering, models are not only used as mere design documents but
they serve as artifacts from which code is generated. It is important to detect faults in the
models; otherwise they may propagate to the code. Designing test cases on the model
level has been subject to extensive research, but often testing itself is transferred to the
code level or requires a simulation engine. To circumvent this problem, we use commu-
nication scenarios modeled in sequence diagrams. Testing is thus shifted to model level.
Hence, serious design and implementation errors in the model are detected at an early
point in time by using the information available due to multi-view modeling.

We start from a restricted subset of UML state machines and sequence diagrams
for which we provide a formal description. This description is designed in such a way
that it is extensible. The concept of model checking UML interactions has been de-
scribed in [8]. We formulate an alternative encoding more natural for our use case with
multiple communicating state machines. For experimental evaluation, we built a first
prototype with PROMELA, the input language of SPIN, a highly configurable, state-of-
the-art model checker. This allows us to derive challenges which have to be solved to
put our vision of testing multi-view models into practice.

2 Preliminaries

We consider a subset of the UML state machine and sequence diagrams modeling
only forbidden scenarios. Note that, to model forbidden scenarios, we consider only
sequences that are enclosed in a neg fragment. The model is consistent if the sequences
given in the sequence diagrams do not occur on any path of the state machines execut-
ing in parallel. The problem is formally defined as follows: A software model is a triple
(M,S,A) where M is a set of state machines, S is a set of sequence diagrams, and A
is a set of actions, including the empty action ε, necessary to model that a transition is
triggered by a completion event (denoted by “−” in Fig. 1). Note that we omitted the ac-
tions within the states which cause the completion event, because they are not relevant
for our purposes. For example, Fig. 1 shows a software model of two state machines
and one sequence diagram. The set of actions comprises all method calls indicated on
the transitions and entry or exit actions inside states.

Towards Scenario-Based Testing of UML Diagrams 151

Definition 1. A state machine is a tuple M = (S, ι, AT , AP , T), where S is a set of
states, ι ∈ S is a designated initial state, AT ⊆ A, AP ⊆ A, and T ⊆ S × AT ×
P(AP)×S is a transition relation. Each transition contains a triggering action a ∈ AT ,
called event, which triggers a state transition, and a set B ∈ P(AP) of actions, called
effects, which are performed when the transition is executed.

Note that this definition also handles entry and exit actions defined inside states: An
entry action in state si is included in the effects of each incoming transition to si, and
an exit action in the effects of each outgoing transition from si.

Figure 1 shows six states for the state machine MPhD = (S, ι, AT , AP , T).
The initial state ι = Tired is denoted by an incoming transition from the black circle.
The transition labels consist of two parts, separated by a backslash. The set AT contains
the string on the left side of the transition labels, and AP the set of strings indicated on
the right side of the transition labels or as entry or exit actions. For example, the transi-
tion from Waiting to Working is (Waiting , coffeeComplete(), {off ()},Working).

Definition 2. A neg fragment in a sequence diagram S ∈ S is a triple (L,m,N), where
L is a set of lifelines, m : L → M is a bijective function assigning a state machine to
each lifeline, and N is a forbidden sequence of triples L×A× L.

In the sequence diagram of our running example, there are two lifelines, cm and alice .
The state machine assigned to alice is m(alice) = PhD . The sequence of messages is
N = (〈cm , error(), alice〉, 〈alice, coffee(), cm〉, 〈cm , coffeeComplete(), alice〉).

The behavior of a set M of synchronously communicating parallel state machines is
defined as the composition M|| as follows [2].

Definition 3. Let Mk = (Sk, ιk, A
T
k , A

P
k , Tk), k ∈ {1, . . . , n}, be n state machines,

let Ak = AT
k ∪ AP

k , and let two state machines Mi,Mj , i �= j, synchronize over all
actions in Hij = ((AT

i ∩AP
j)∪ (AT

j ∩AP
i))\{ε} such that communication is pairwise,

i.e., Hij ∩Al = ∅ for l �∈ {i, j} (obviously, Hij = Hji). Then, the composition of a set
M of state machines is given by M|| = (S1×. . .× Sn, 〈ι1, . . . , ιn〉, A1 ∪ . . . ∪An, R)
with

1. (〈s1, . . . , si, . . . , sn〉, a, 〈s1, . . . , s′i, . . . , sn〉) ∈ R iff (si, a, E, s′i) ∈ Ti and a ∈
(A1 ∪ . . . ∪An) \

⋃
0<j≤n,i	=j Hij with 1 ≤ i ≤ n. The action a is called local.

2. (〈s1, . . . si, . . . , sj , . . . , sn〉, b, 〈s1, . . . , s′i, . . . , s′j, . . . , sn〉) ∈ R iff b ∈ Hij and
there exist transitions (si, v, B, s′i) ∈ Ti and (sj , b, G, s′j) ∈ Tj with b ∈ B and
1 ≤ i, j ≤ n and i �= j. The action b is called global.

Definition 4. A sequence π = 〈a1, a2, . . . , al〉 is a path in M|| = (S, ι, A,R) iff there
exist triples (s, ai, s′), (s′, ai+1, s

′′) ∈ R for all i where 1 ≤ i < l. A software model
(M,S,A) is consistent iff for any neg fragment (L,m,N) in any sequence diagram
with N = 〈n1, n2, . . . , nk〉 and nj = (lj , aj , l

′
j) for all j where 1 ≤ j < k, its

sequence of actions 〈a1, a2, . . . , ak〉 does not occur as subsequence of any path in M||.

3 Formulation of the Model Checking Problem

Inspired by previous work [8], we use the model checker SPIN [7] and its input language
PROMELA to verify whether a set of state machines fulfills a safety property described

152 P. Brosch et al.

as neg fragment of a sequence diagram. To this end, we encode the state machine as
a set of active PROMELA processes and the neg fragment as notrace assertion. In
verification mode, SPIN checks whether the behavior specified in the assertion occurs
on any execution trace of the processes executing in parallel. If this is the case, SPIN

returns the erroneous execution path on which the notrace behavior occurred. Oth-
erwise, it returns no error. We evaluated this approach on several examples. The fol-
lowing elements of PROMELA are relevant for our encoding: active proctype
(process behavior automatically instantiated at program start), label (identifier of
a unique control state), mtype (declaration of symbolic names for constant values),
chan (asynchronous or synchronous channel), and notrace (assertion defining un-
wanted sequences of channel activities). A software model (M,S,A) is encoded in
PROMELA as follows: Each action label a ∈ A \ ε is encoded as an element of mtype.
For each state machine M ∈ M we define an active proctype and a synchronous
global channel chan of type mtype. Each active proctype representing a state
machine M = (S, ι, AT , AP , T) contains a label for each state s ∈ S. The label
representing ι is placed at the beginning of the process to be executed first. For each
state machine, each transition T = (si, a, B, sj) is implemented within the PROMELA

label representing state si: A transition consists of a receive statement for a if a �= ε
or nothing otherwise, a statement for each b ∈ B \ ε or nothing if B = {ε}, and
a goto statement directing to the label representing sj . If si has more than one out-
going transition, the set of transitions is put inside an if statement. The sequence of
messages on each lifeline is encoded as PROMELA notrace assertion. A notrace
assertion is defined over some or all global channels and monitors all actions on these
channels during program execution. When all channel actions defined by the assertion
have been executed, an error is returned. Note that notrace assertions can contain
accept labels to model forbidden infinite behavior. The encoding of Fig. 1 is available
online at http://www.modelevolution.org/media/scenario-based-
testing/coffee.pml.

4 Related Work

In the following, we focus on works which present results on the successful application
of verification techniques for multi-view system specifications. Cimatti et al. [5] use Hy-
brid Automata (HA) to describe a system of message exchanging components and ver-
ify the system against a scenario-based specification modeled with a Message Sequence
Chart (MSC). They present an extension to bounded model checking using k-induction
to prove that there exists no trace which satisfies a given scenario. Li et al. [9] use MSCs
as scenario-based specifications for concurrent systems modeled with Petri nets and dis-
cuss an approach to check if a Petri net either satisfies a mandatory scenario on all of its
traces, a forbidden scenario on none of its traces, or a dependent scenario on all traces
once a given, other scenario is satisfied. The CHARMY tool suite [10] offers a model-
ing, simulation, and verification environment for software architectures (SA). SAs de-
scribe the static and behavioral structures of systems with component, state transition,
and sequence diagrams. CHARMY employs SPIN and translates the SA to PROMELA

to detect deadlocks and unreachable states. The work most closely related to ours is
the one by Schäfer et al. [11]. They propose to verify a set of message-exchanging

http://www.modelevolution.org/media/scenario-based-testing/coffee.pml
http://www.modelevolution.org/media/scenario-based-testing/coffee.pml

Towards Scenario-Based Testing of UML Diagrams 153

state machines against a specification described by UML collaboration diagrams. They
implement their approach in HUGO, which automatically translates the state machine
diagrams to PROMELA and generates Büchi automata, so-called “never claims”, from
the collaboration diagrams. The generated artifacts form the input for SPIN, which per-
forms the verification. Knapp and Wuttke [8] extend the approach of Schäfer et al. [11]
to accommodate UML 2.0 sequence diagrams. Their encoding focuses on integrating
many language concepts, while we present an encoding suitable for our testing use case.

Another, more widely related research area is the synthesis of state machines from
sequence diagrams. Synthesis aims at automatically deriving design models from re-
quirements given as scenarios, as described by Whittle and Schumann [14]. An exten-
sion of the latter synthesis algorithm is proposed by Grønmo and Møller-Pedersen [13]
by considering also combined fragments in sequence diagrams. The synthesis of model
transition systems from scenarios is discussed by Uchitel et al. [12] who also consider
safety properties besides scenarios. Common to all these approaches is that the consis-
tency between the scenarios and the state machines are given by construction. However,
the synthesis rules may form an important input for the extension of our approach.

5 Discussion and Future Challenges

In this paper, we discussed the use of model checking to detect errors in multi-view
system specifications expressed with UML diagrams. We employ sequence diagrams
to model test cases, which express forbidden scenarios with neg fragments. As this al-
lows us to perform testing on the level of models, modelers remain within one level
of abstraction. Our current prototype is a proof of concept and restricted to the mod-
eling language elements discussed in this paper. Yet, it serves as test bed for various
interesting application scenarios. In future work, we plan to integrate positive scenar-
ios in sequence diagrams and additional constructs of state machines, like hierarchies,
asynchronous communication, or transition guards, into our framework. Also, other
techniques to assemble the information of the sequence diagram and more advanced
encodings (including model checkers other than SPIN) will be considered. Further, we
intend to compare our encoding with the one of Knapp and Wuttke [8] with respect to
scalability and ease of information extraction. We conclude with lessons learned from
building our prototype.

Variations in Semantics. The UML standard’s informal definition of its diagrams’ se-
mantics leaves much room for varying and even contradicting interpretations. For ex-
ample, a scenario modeled by a sequence diagram describing the interaction of a set of
parallel state machines may be interpreted such that either (i) at least one execution path
over the set of state machines must satisfy the scenario, (ii) all possible execution paths
must satisfy the scenario, or (iii) the occurrence of the scenario’s first element implies
the occurrence of all subsequent elements on all execution paths. By its very nature,
the encoding provides one such interpretation that has to eliminate all semantic varia-
tion points. This in turn requires a rigorous formalization of the UML standard which
should incorporate the smallest set of unambiguous constructs that retain a maximum
of the UML’s expressiveness. Presently, we started from a simplified version of UML
with a concise semantics, but for more language features we will consider works on
UML formalization [1,3].

154 P. Brosch et al.

Incomplete Information. In general, models do not describe a system in full detail, but
capture only certain aspects. This way, the modeler is not distracted by temporarily
irrelevant details. For building an executable system, the missing information is then
gathered in multiple refinement steps, eventually at the code level. For automated test-
ing, this kind of information may be necessary and has therefore to be collected.

State-Space Explosion. The most significant problem in model checking is the large
state space to be searched. To shrink the state space, techniques like partial order reduc-
tion have been proposed, where equivalent traces are considered only once. Although
implemented in model checkers like SPIN, we assume that such optimizations may be
performed at the encoding level by exploiting particularities of the modeling language.

Co-Evolution of Code. So far, we have treated sequence diagrams as a visualization
of safety properties. Alternatively, sequence diagrams may be used as visualizations
of excerpts of a program. Then, the role of sequence diagrams and state machines is
inverted, and sequence diagrams are verified against the state machine. In this manner,
we shift the focus to the detection of inconsistencies between the model and the code,
which may be introduced due to the evolution of the software system.

Presentation Issues. When a model checker determines that a specification is not sat-
isfied, it returns a counterexample, which explains the cause of the problem. Providing
an adequate representation of the counterexample, e.g., in the concrete syntax of the
employed modeling language, is indispensable for user-friendliness.

References

1. de Boer, F.S., Bonsangue, M.M., Steffen, M., Ábrahám, E.: A Fully Abstract Semantics for
UML Components. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2004. LNCS, vol. 3657, pp. 49–69. Springer, Heidelberg (2005)

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)
3. Broy, M., Cengarle, M.: UML Formal Semantics: Lessons Learned. SoSyM 10(4) (2011)
4. Rivera, J., Romero, J., Vallecillo, A.: Behavior, Time and Viewpoint Consistency: Three

Challenges for MDE. In: Chaudron, M.R.V. (ed.) MODELS 2008. LNCS, vol. 5421, pp. 60–
65. Springer, Heidelberg (2009)

5. Cimatti, A., Mover, S., Tonetta, S.: Proving and Explaining the Unfeasibility of Message
Sequence Charts for Hybrid Systems. In: FMCAD (2011)

6. OMG. Unified Modeling Language (UML), Superstructure V2.4.1 (August 2011),
http://www.omg.org/spec/UML/2.4.1/

7. Holzmann, G.J.: The Model Checker SPIN. TSE 23(5), 279–295 (1997)
8. Knapp, A., Wuttke, J.: Model Checking of UML 2.0 Interactions. In: Kühne, T. (ed.) MoD-

ELS 2006. LNCS, vol. 4364, pp. 42–51. Springer, Heidelberg (2007)
9. Li, X., Hu, J., Bu, L., Zhao, J., Zheng, G.: Consistency Checking of Concurrent Models for

Scenario-Based Specifications. In: Prinz, A., Reed, R., Reed, J. (eds.) SDL 2005. LNCS,
vol. 3530, pp. 298–312. Springer, Heidelberg (2005)

10. Pelliccione, P., Inverardi, P., Muccini, H.: CHARMY: A Framework for Designing and Veri-
fying Architectural Specifications. TSE 35(3), 325–346 (2008)

11. Schäfer, T., Knapp, A., Merz, S.: Model Checking UML State Machines and Collaborations.
ENTCS 55(3), 357–369 (2001)

http://www.omg.org/spec/UML/2.4.1/

Towards Scenario-Based Testing of UML Diagrams 155

12. Uchitel, S., Kramer, J., Magee, J.: Synthesis of Behavioral Models from Scenarios.
TSE 29(2), 99–115 (2003)

13. Grønmo, R., Møller-Pedersen, B.: From UML 2 Sequence Diagrams to State Machines by
Graph Transformation. JOT 10(8), 1–22 (2011)

14. Whittle, J., Schumann, J.: Generating Statechart Designs from Scenarios. In: ICSE, pp. 314–
323. ACM (2000)

Evaluating and Debugging OCL Expressions

in UML Models

Jens Brüning1, Martin Gogolla2, Lars Hamann2, and Mirco Kuhlmann2

1 University of Rostock
2 University of Bremen

Abstract. This paper discusses the relationship between tests and
proofs with focus on a tool for UML and OCL models. Tests are thought
of as UML object diagrams and theorems or properties which are to be
checked are represented as OCL constraints, i.e., class invariants or op-
eration pre- and postconditions. The paper shows for the UML and OCL
tool USE (UML-based Specification Environment) how to trace and de-
bug the validity of an expected theorem (an OCL constraint) within a
given test case (a state model in the form of a UML object diagram).

1 Introduction

A central issue in the relationship between tests and proofs is the question which
part of a test affects which part of a proof or a theorem to be proven. Tests as
well as proofs and the underlying theorems are highly structured entities with
many important relationships, not all being relevant in a specific situation during
development. For example, for proof counter-examples it is important to know
which part of the expected proof or theorem is falsified by the counter-example,
and it is important for the developer to find the respective parts of the test and
the proof or theorem in an adequate way.

This paper discusses this general question with focus on a tool for UML and
OCL models. Tests are thought of as UML object diagrams and theorems or
properties which are to be checked are represented as OCL constraints, i.e., class
invariants or operation pre- and postconditions. The paper shows for the UML
and OCL tool USE (UML-based Specification Environment) [GKH09] how to
trace and debug the validity of an expected theorem (an OCL constraint) within
a given test case (a constructed state model in form of a UML object diagram).
The technical realization in the tool is done by a so-called evaluation browser
which allows the developer to debug the evaluation of a complex OCL expression
and its subexpressions with respect to a given system state in a user-friendly way
with the aim of better understanding, for example, invariant failure.

2 Basic Evaluation Browser Concepts by Example

Let us introduce the basic idea of our approach by means of an example. The
USE screenshot in Fig. 1 shows in the upper row an OCL and UML model with

A.D. Brucker and J. Julliand (Eds.): TAP 2012, LNCS 7305, pp. 156–162, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Evaluating and Debugging OCL Expressions in UML Models 157

F
ig
.
1
.
B
a
si
c
U
se

o
f
E
va

lu
a
ti
o
n
B
ro
w
se
r

158 J. Brüning et al.

invariants and a corresponding state in form of 2 Class extent windows (these
2 windows determine a UML object diagram displayed in the lower right). The
class diagram represents a simple relational database schema with two tables
(Empl[oyee], Dep[artmen]t), two primary key constraints ({ename} is primary
key in Empl, {dname, ename} is primary key in Dept) and one foreign key con-
straint (Dept.ename references Empl.ename). The OCL details of one primary
key constraint and the foreign key constraint are shown in the top part of the 2
Evaluation browser windows, respectively.

As shown in the Class invariants window, the (database) state represented in
the Class extent windows does violate 2 of the specified constraints. In order to
understand the reason for the violation, USE allows to open so-called Evaluation
browser windows. In the screenshot we see one Evaluation browser window for
the failing primary key constraint ename PK and one for the failing foreign key
constraint ename FK. The windows have been configured in different ways to
demonstrate the possibilities of our approach. For example, the first window
shows variable substitutions in a subwindow in the very right, the second window
shows the variable substitutions inside the main Evaluation browser window.
OCL expressions evaluating to false are highlighted in the second window in
a white-on-black style, whereas they are displayed without special indication in
the first window. In this simple situation, the analysis could be done by simple
inspection without the evaluation browser, but we want to demonstrate the
approach with an easy understandable example. We will show below an involved
situation hard to understand by simple inspection.

In the first Evaluation browser window, which can be opened by double-clicking
in the Class invariants window the failing primary key invariant ename PK, one
subformula which evaluates to false is highlighted in grey. Three lines below
the highlighted grey line, we see that the OCL terms e1.ename and e2.ename

both evaluate to ‘Ada’. The variable substitutions responsible for this evaluation
are stated in the right subwindow (basically stating e1=EMP3, e2=EMP1) and the
evaluation of the selected and highlighted subexpression is displayed below the
substitutions on the right ((true implies false)=false). Thus, this Evaluation
browser window displays one concrete counter-proof for the expected primary key
property ename PK: EMP3 and EMP1 are distinct, but their ename values coincide,
and this violates the primary key requirement.

In the second Evaluation browser window, the foreign key constraint is ana-
lyzed. Only those subformulas evaluating to false are displayed and are pictured
in a white-on-black style. Below the central highlighted exists subformula it is
shown that for the Dept object DEP3 having ename attribute value ‘Cyd’ no
corresponding Empl object exists having the ename attribute value ‘Cyd’. Thus,
the Evaluation browser window again displays one concrete counter-proof for
the expected foreign key property ename FK.

3 General Features Available in the Evaluation Browser

Our so-called evaluation browser pictures the evaluation of an OCL term in a
graphical style as a tree. The tree nodes show OCL terms or subterms of the

Evaluating and Debugging OCL Expressions in UML Models 159

original term together with values of subterms and substitutions for occurring
variables. Tree subbranches may be opened or closed interactively through the
user or by setting particular configuration parameters. Particular tree parts may
be highlighted in color or in a white-on-black style. The aim of the evaluation
browser is to offer an intuitive, highly configurable, and flexible tool for analyzing
the evaluation of complex OCL terms. As indicated in Fig. 2, there are basically
six central configuration parameters for the OCL evaluation browser (basically
available by right-clicking into the Evaluation browser’s pane):

(A) Determination of opened subbranches of the tree.
(B) Turning the extended OCL formula evaluation on or off.
(C) Turning an additional variable assignment subwindow on or off.
(D) Turning an additional subexpression evaluation subwindow on or off.
(E) Positioning of variable assignments in the main evaluation term.
(F) Determining the highlighting of subformulas evaluating to particular values.

Fig. 2. General Features Available in Evaluation Browser

In (A) the developer determines the basic structure of opened or closed tree
subbranches. Either all subbranches, all subbranches evaluating to true, all
subbranches evaluating to FALSE are opened or no subbranch is opened. In
(B) an extended evaluation of OCL subformulas is configured. In the standard
evaluation of OCL for the exists quantifier the evaluation stops with true, if
the first satisfying element is found. However, one frequently wants to know
all elements satisfying the exists predicate. This can be accomplished by turn-
ing on the extended evaluation for exists. Analogous possibilities are provided
for the other logical operations. In (C) an explicit subwindow for the variable
assignments is opened. In (D) an explicit subwindow for the subexpression eval-
uation is opened. In (E) the position of variable assignments in the tree is fixed.

160 J. Brüning et al.

The variable assignments may be placed at the tree leafs (‘Late’) or inside the
tree as early as they appear (‘Early’). More options are available. In (F) the
highlighting of false subformulas resp. true subformulas is determined.

4 Further Features Available in the Evaluation Browser

The second USE screenshot in Fig. 3 shows the evaluation browser being used
for an automatically generated object diagram (test case) which is the result
of an ASSL procedure [GKH09]. The randomly generated object diagram rep-
resented by 2 Class extent windows in the left upper part of the screenshot
involves 16 objects with respective attribute values. As the class invariants win-
dow in the right shows, all invariants fail. The Evaluation browser window has
been opened through double-clicking the failing invariant Dept::ename FK. This
window shows all details, i.e., all reasons, why this invariant fails. The com-
plete evaluation tree has 3 subbranches evaluating to false and exactly these 3
subbranches have been opened and are displayed as white-on-black. The 3 sub-
branches indicate that the 3 objects Dept2, Dept4, and Dept8 are the reason for

Fig. 3. Further Use of Evaluation Browser

Evaluating and Debugging OCL Expressions in UML Models 161

the invariant failure. Checking these objects against all Dept objects in the sec-
ond Class extent window one learns that the respective ename values (‘J’, ‘G’,

‘A’) indeed cannot be found as ename values in the first Class extent window
for Empl objects. In this evaluation browser configuration, variable substitutions
are not displayed, but variables have been substituted by their values.

The Evaluate OCL expression window on the right is a cross-check against
the found result. This OCL expression retrieves all Dept objects which possess
a corresponding Empl object having the same name. It returns the complement
Dept object set Dept1, Dept3, Dept5, Dept6, and Dept7. This screenshot is an
explanation why the ‘theorem’ (i.e., the invariant Dept::ename FK) fails in this
test case (i.e., in this object diagram). Such a detailed analysis is needed during
development when unexpected results in form of failing constraints occur in order
to understand the reason for constraint failure.

5 Related Work

We only point to a few works on debugging in the context of model-based de-
velopment and declarative languages. In [SSJ+03] counter-example generation is
understood as debugging. [GHMGB07] discusses model-level debugging for soft-
ware architectures. Initial ideas towards model-based debugging are proposed
in [MS08]. [KSWR09] discusses a connection between debugging and QVT. The
work in [RVM10] proposes a debugger for the specification language Maude.

6 Conclusion

This paper has made a proposal for debugging OCL invariants in UML models.
Debugging works by means of term evaluation. The display of the evaluation
term may be adjusted by the developer in various ways. The ideas of the proposal
could be used for other declarative languages as well. Up to now there are too
few proposals for user-friendly debugging in the context of theorem proving or
theorem checking. Our approach currently works for invariants only and has
to be extended for pre- and postconditions. Further options for configuring the
evaluation tree are imaginable, for example, grouping of subbranches with similar
results. Larger case studies must give feedback on the usability of the proposal.

References

[GHMGB07] Graf, P., Hübner, M., Müller-Glaser, K.D., Becker, J.: A Graphical
Model-Level Debugger for Heterogenous Reconfigurable Architectures.
In: Bertels, K., Najjar, W.A., van Genderen, A.J., Vassiliadis, S. (eds.)
FPL, pp. 722–725. IEEE (2007)

[GKH09] Gogolla, M., Kuhlmann, M., Hamann, L.: Consistency, Independence and
Consequences in UML and OCL Models. In: Dubois, C. (ed.) TAP 2009.
LNCS, vol. 5668, pp. 90–104. Springer, Heidelberg (2009)

162 J. Brüning et al.

[KSWR09] Kusel, A., Schwinger, W., Wimmer, M., Retschitzegger, W.: Common
Pitfalls of using QVT Relations - Graphical Debugging as Remedy. In:
ICECCS, pp. 329–334. IEEE Computer Society (2009)

[MS08] Mayer, W., Stumptner, M.: Evaluating Models for Model-Based Debug-
ging. In: ASE, pp. 128–137. IEEE (2008)

[RVM10] Riesco, A., Verdejo, A., Mart́ı-Oliet, N.: A Complete Declarative Debug-
ger for Maude. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS,
vol. 6486, pp. 216–225. Springer, Heidelberg (2011)

[SSJ+03] Shlyakhter, I., Seater, R., Jackson, D., Sridharan, M., Taghdiri, M.: De-
bugging Overconstrained Declarative Models using Unsatisfiable Cores.
In: ASE, pp. 94–105. IEEE Computer Society (2003)

A Framework for the Specification

of Random SAT and QSAT Formulas�

Nadia Creignou1, Uwe Egly2, and Martina Seidl3,4

1 Laboratoire d’Informatique Fondamentale CNRS UMR 7279,
Aix-Marseille Université, France

2 Institut für Informationssysteme 184/3, Technische Universität Wien, Austria
3 Institute for Formal Models and Verification, Johannes Kepler University, Austria

4 Institut für Interaktive Systeme 188/3, Technische Universität Wien, Austria

Abstract. We present the framework [q]bfGen which allows the declar-
ative specification of random models for generating SAT and QSAT
formulas not necessarily in (prenex) conjunctive normal form. To this
end, [q]bfGen realizes a generic formula generator which creates formula
instances by interpreting the random model specification expressed in
XML. Consequently, the implementation of specific random formula gen-
erators becomes obsolete, because our framework subsumes their func-
tionality.

1 Motivation

Over the last years, tools for solving the satisfiability problem of propositional
logic (SAT) showed to be powerful backend engines for various hardware and
software verification problems [14]. The same hope is pined on extensions like
QSAT, where quantifiers are introduced over the propositional variables allowing
more succinct encodings of verification problems [2]. So far, QBF solvers have
not reached the same maturity as SAT solvers in terms of efficiency and stability.
Techniques which showed to be useful in SAT can often not directly be trans-
ferred to QBF. Whereas in SAT conjunctive normal form is the canonical input
format, the pendant for QSAT, the prenex conjunctive normal form (PCNF), is
not the commonly accepted representation format. In fact, the transformation
to PCNF might negatively influence the behavior of a solver [6]. Consequently,
QSAT solvers have been developed which process non-PCNF formulas, i.e., for-
mulas of less restricted structure [7,10,11].

In SAT as well as in QSAT, random formulas find their raison d’être justified
in two different use cases. From a theoretical point of view, random formulas
provide the basis for investigations on properties like the phase transition phe-
nomenon [9,8,4,5]. From a practical point of view, they are an important tool

� This work was partially funded by the Vienna Science and Technology Fund
(WWTF) through project ICT10-018, by the Austrian Science Fund (FWF) un-
der grant S11409-N23 and by the Agence Nationale de la Recherche under grant
ANR-09-BLAN-0011-01.

A.D. Brucker and J. Julliand (Eds.): TAP 2012, LNCS 7305, pp. 163–168, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

164 N. Creignou, U. Egly, and M. Seidl

RandomModelM
(XML)

conforms to

Random Formula
Formula

Language
L

creates
Instance

(Boole Format)

Formula
GeneratorGDescription L

(XML Schema)

[q]bfGen

Fig. 1. The basic architecture of [q]bfGen

for testing and evaluating solvers. In particular, random formulas are used for
fuzz testing which supports the automatic detection of various kinds of defects
in solvers [3] by random inputs.

Random models provide control mechanisms for randomly generating for-
mulas of a certain structure and size. The regularity of the formula structure
allows for a characterization by statistical and combinatorial means, which in
turn allows for a prediction of properties such as satisfiability and computa-
tional difficulty. Since most state-of-the-art solvers process formulas in (prenex)
conjunctive normal form only, also most random models describe and generate
formulas in PCNF. This restricted structure allows only a small set of parame-
ters like number and distribution of variables, clause sizes, and the probability
that a variable occurrence is negated to vary in the random model.

With the advent of non-PCNF solvers, also random models are required which
generate formula instances of less restricted structure and which, consequently,
introduce additional degrees of variability like the nesting depth of the formula
tree. To support the specification of such randommodels, we introduce the frame-
work [q]bfGen which provides a dedicated language for the description of random
models as well as a generic formula generator which creates random formula in-
stances according to such descriptions. By using [q]bfGen, the functionality of
specific random formula generators like [13,9,4] can be realized by giving simple
declarative descriptions of the according random model. For demonstration pur-
poses, we extend the shape model of Navarro and Voronkov [13] for quantified
Boolean formulas (QBF).

2 The Architecture of [q]bfGen

Our framework [q]bfGen allows the description of SAT and QSAT random models
in XML from which formula instances are directly created. The current prototype
uses the Boole format1 for the the representation, in future implementations we
consider to support also other output formats. As illustrated in Fig. 1, [q]bfGen
consists of two main components: (i) the language specification L and (ii) the
formula generator G. Within [q]bfGen a random model must be expressed in
conformance to L. The resulting random model description M is then passed

1 http://www.qbflib.org/boole.html

http://www.qbflib.org/boole.html

A Framework for the Specification of Random SAT and QSAT Formulas 165

to G, which generates random formula instances according to M. Finally, these
formula instances are provided to a SAT/QBF solver and evaluated. In the
following, both L and G are presented in detail.

The Language Specification L. In our implementation, L is realized as XML
Schema. For ease of presentation, we use the notation of the UML Class Diagram
to visualize a selection of concepts provided by L. In Fig. 2, we show a simplified
Class Diagram of the language specification L. Each random model has one
single element Root, which contains an arbitrary number of parameters and the
actual formula. A Parameter element has a unique name within a random model
and is characterized by a minimum value attribute, a maximum value attribute,
and a step width attribute. With parameters it is possible to specify iterations
for generating multiple formula instances with different settings. A Formula is
either a Quantified Formula or a Connective Formula. A Quantified Formula has a
unique name and introduces a new quantifier scope of a specified size which is
either of existential, of universal, or of random type. In the case of random type,
the quantifier is randomly selected for each instance. The size is either a fixed
number or it may be assigned by a parameter. For example, a QBF of the form
∀x1x2x3 φmay be described by a Quantified Formula where the name of the scope
is x, the size is 3, the type is universal, and φ is a Formula. A Connective Formula
is translated to a conjunction or a disjunction. These connectives are of arbitrary
arity. For example (¬x∧y∧φ) could be an instantiation of a conjunction where x
and y are variables and φmay be a complex formula. The variables occurring in a
Connective Formula are specified by a VarSet element which states the probability
for a variable being negated as well as from which quantifier block how many
variables shall be selected. When a random formula instance is created, it can be
assumed that within all instantiations of a VarSet, each variable occurs at most
once. To specify that the variables shall occur in all branches of the subformula
where the VarSet is defined, the position attribute must be set to a positive
integer (the relative distance from the current position in the formula tree). In
this way, it is possible to ensure that a variable is only instantiated once within
the subformula. An example for this feature follows in the next section. The
Formula element contains an attribute duplicates. For example, if a conjunction
shall contain three clauses of a certain size, then the clause is specified only once
and the duplication attribute is set to 3.

The Formula Generator G. With the language specification L formulated in
XML Schema, specifications of random models are expressed in XML. For the
creation of formula instances out of random model specifications, we provide the
formula generator G, which is implemented as a command line tool in Java using
Apache XMLBeans. When G is started it requires arguments like the random
model, a set name for the formulas, and the number of formula instances to
be generated. First G parses the provided random model and checks if it is
conformant to L and if no constraints are violated. Such constraints assert that
no parameter name is used which has not been specified, that no minimum
value is greater than a maximum value, etc. When the random model passed

166 N. Creignou, U. Egly, and M. Seidl

Fig. 2. Language specification

these tests, the formula instances are generated. Each formula instance is stored
in an individual file. In the current version of G, the output format is Boole, a
standard format for QBF. If the -p flag is set, then no quantifiers are printed,
i.e., the generated formulas are propositional formulas.

3 Tool Demo: The Fixed-Shape Model for QBF

In this section, we first present an extension of the fixed-shape model by Navarro
and Voronkov [13] to QBF and then show how it is specified within our frame-
work. For pedagogical reasons we focus on the specific 〈2, 2, 3〉-shape. The method
can then easily be extended to any balanced shape as defined in [13].

The Fixed-Shape Model for SAT and QBF. A 〈2, 2, 3〉-shape is an alternating-
{∨,∧}-formula tree where the root node is a disjunction having two conjunctions
as subformulas. Each of these conjunctions contains two clauses of size three. A
〈2, 2, 3〉-constraint over the set of variables X is any instantiation of the above
tree obtained by replacing the variables in the tree by possibly negated distinct
variables from X . A 〈2, 2, 3〉-formula is a conjunction of 〈2, 2, 3〉-constraints.
Observe that such formulas are in negation normal form

We are interested in creating random QBF instances of the form ∀X∃Y φ,
where X and Y are sets of variables and φ is a 〈2, 2, 3〉-formula. This extension of
the fixed-shape random model introduced in [13] to quantified formulas requires
the following additional parameters:

– The first parameter is the pair (m,n) specifying the number of variables in
each quantifier block (size of X , size of Y).

– The second parameter is a pair (u, e), which fixes the number u of universal
variables and the number e of existential variables that occur in each deepest,
non-leaf subtree of every 〈2, 2, 3〉-constraint of φ. Thus, u + e = 3. Here we
fix u = 1 and e = 2.

– The third parameter L is the number of 〈2, 2, 3〉-constraints in φ.

A Framework for the Specification of Random SAT and QSAT Formulas 167

Thus, we obtain a random (m,n)-(1, 2)-L-〈2, 2, 3〉-formula in choosing uniformly,
independently and with replacement L constraints among all the possible ones
that fulfill the above requirements. Note that the random model we propose is
inspired by [8] and [4] for QBF in PCNF.

Realization in [q]bfGen. For the specification of the random model described
above, the following steps are necessary:

1. To vary the ranges of X and Y , we specify two parameters m and n.
2. As we are interested in the probability that a formula instance is satisfi-

able when the ratio number of existential variables to number of constraints
increases, we range our experiments over L = rn where r is a real value.
Therefore we introduce another parameter called width.

3. In the next step, we introduce a Quantified Formula element of universal
type for X of size m which itself contains a Quantified Formula element of
existential type for Y of size n.

4. Then we specify the outmost conjunction by a Connective Element which
contains a description of the 〈2, 2, 3〉-constraints. Note that it suffices to
specify such a constraint only once, as the duplication may be achieved by
the duplicates attribute which is set to the value of the parameter width.

5. The 〈2, 2, 3〉-formula starts with a disjunction. Here we also specify a VarSet
consisting of one variable selected from X and two variables selected from Y .
The position attribute of this VarSet is set to two, stating that the variables
are not inserted immediately, but in the clauses occurring two levels below
in the formula tree. So we can insure, that these clauses do not share any
variables.

6. Finally, we specify a conjunction containing a disjunction which are both
duplicated twice realizing the two “2” in 〈2, 2, x〉. The last disjunction is of
arity three due to the literals obtained from the VarSet specified above.

We kindly refer to our project site [1] where we discuss the random model in
detail and where we also show first experiments. Further (P)CNF random models
from literature like [4,5,8,12] can also easily be handled.

4 Conclusion and Future Work

We introduced the framework [q]bfGen which provides a language for specify-
ing SAT and QSAT random models and a formula generator which interprets
such specifications and which creates formula instances accordingly. [q]bfGen is
not only valuable in the context of empirical investigations of the properties of
randomly generated formulas, but it is also a valuable tool within the solver
development process. The randomly generated formulas may then serve as input
data for fuzz testing [3], which is a powerful testing technique for such complex
tools as solvers. So conceptual as well as programming bugs can be tracked down
automatically and the robustness of the solvers increases. When used as backend
engine for verification tasks, buggy solvers are worthless. Thus, [q]bfGen might
become very helpful for the development of stable software.

168 N. Creignou, U. Egly, and M. Seidl

We demonstrated our approach by describing a shape model for prenex QBF.
The XML Schema, the prototypical implementation of the formula generator,
and the detailed specification of the random model presented above are available
at our project site [1].

In future work and driven by practical needs, we will include additional lan-
guage elements like XOR and realize more advanced duplication and iteration
mechanisms as provided at the moment.

References

1. qbfGen Project Site, http://fmv.jku.at/qbfgen/
2. Benedetti, M., Mangassarian, H.: QBF-Based Formal Verification: Experience and

Perspectives. JSAT 5(1-4), 133–191 (2008)
3. Brummayer, R., Lonsing, F., Biere, A.: Automated Testing and Debugging of SAT

and QBF Solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175,
pp. 44–57. Springer, Heidelberg (2010)

4. Chen, H., Interian, Y.: A Model for Generating Random Quantified Boolean For-
mulas. In: Proc. of IJCAI 2005, pp. 66–71. Professional Book Center (2005)

5. Creignou, N., Daudé, H., Egly, U., Rossignol, R.: (1,2)-QSAT: A Good Candidate
for Understanding Phase Transitions Mechanisms. In: Kullmann, O. (ed.) SAT
2009. LNCS, vol. 5584, pp. 363–376. Springer, Heidelberg (2009)

6. Egly, U., Seidl, M., Tompits, H., Woltran, S., Zolda, M.: Comparing Different
Prenexing Strategies for Quantified Boolean Formulas. In: Giunchiglia, E., Tac-
chella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 214–228. Springer, Heidelberg
(2004)

7. Egly, U., Seidl, M., Woltran, S.: A solver for QBFs in negation normal form. Con-
straints 14(1), 38–79 (2009)

8. Gent, I., Walsh, T.: Beyond NP: The QSAT Phase Transition. In: Proc. of
AAAI/IAAI 1999, pp. 648–653 (1999)

9. Gent, I.P., Walsh, T.: The SAT Phase Transition. In: Proc. of ECAI 1994, pp.
105–109 (1994)

10. Goultiaeva, A., Iverson, V., Bacchus, F.: Beyond CNF: A Circuit-Based QBF
Solver. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 412–426. Springer,
Heidelberg (2009)

11. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A Non-Prenex, Non-Clausal QBF Solver
with Game-State Learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS,
vol. 6175, pp. 128–142. Springer, Heidelberg (2010)

12. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: 2+p-sat:
Relation of typical-case complexity to the nature of the phase transition. Random
Struct. Algorithms 15(3-4), 414–435 (1999)

13. Navarro, J., Voronkov, A.: Generation of Hard Non-Clausal Random Satisfiability
Problems. In: Proc. AAAI/IAAI 2005, pp. 436–442 (2005)

14. Prasad, M.R., Biere, A., Gupta, A.: A survey of recent advances in SAT-based
formal verification. STTT 7(2), 156–173 (2005)

http://fmv.jku.at/qbfgen/

A Lesson on Structural Testing with

PathCrawler-online.com�

Nikolai Kosmatov1, Nicky Williams1, Bernard Botella1,
Muriel Roger1, and Omar Chebaro2

1 CEA, LIST, Software Safety Laboratory, PC 174, 91191 Gif-sur-Yvette France
firstname.lastname@cea.fr

2 ASCOLA (EMN-INRIA, LINA), École des Mines de Nantes, 44307 Nantes France
firstname.lastname@mines-nantes.fr

Abstract. PathCrawler is a test generation tool developed at CEA LIST
for structural testing of C programs. The new version of PathCrawler is
developed in an entirely novel form: that of a test-case generation web
service which is freely accessible at PathCrawler-online.com. This ser-
vice allows many test-case generation sessions to be run in parallel in a
completely robust and secure way. This tool demo and teaching expe-
rience paper presents PathCrawler-online.com in the form of a lesson
on structural software testing, showing its benefits, limitations and illus-
trating the usage of the tool on simple examples.

1 Introduction

Structural testing assures that the test set has thoroughly exercised the pro-
gram with respect to a given coverage criterion. PathCrawler [1, 2] is a concolic
test generation tool enumerating all program paths developed at CEA LIST for
structural testing of C programs. This paper presents a new version of the tool
developed in a novel form: that of a test-case generation web service freely ac-
cessible online [3]. This form is ideal for discovering the tool, its evaluation and
teaching. We have used it in courses taught in several French universities for
groups of 30 students working in parallel.

In our opinion, the benefits of automatic structural testing remain underes-
timated in the industry. To improve the situation, structural testing tools must
be more widely taught at verification and validation courses during higher ed-
ucation. That was our motivation to write a teaching experience paper and to
demonstrate the PathCrawler tool in the form of a small lessson where the stu-
dents manipulate the tool and answer the questions. Sec. 2,3 present our experi-
ence feedback and the lesson. Sec. 4 provides some related work and concludes.

2 Teaching Feedback and Discussion

This lesson assumes the students have learned basic notions related to structural
testing e.g. control-flow graphs (CFG), execution paths, branches and oracle. Our

� This work has been partially funded by several ANR projects.

A.D. Brucker and J. Julliand (Eds.): TAP 2012, LNCS 7305, pp. 169–175, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

170 N. Kosmatov et al.

a) b)

1 int Bsearch(int *A, int x, int n){
2 int low=0, high=n-1, mid , ret=0;
3 while(high > low){
4 mid = (low + high) / 2 ;
5 if(x == A[mid])
6 ret = 1;
7 if(x > A[mid])
8 low = mid + 1 ;
9 else

10 high = mid - 1;
11 }
12 mid = (low + high) / 2 ;
13 if(ret == 0 && x == A[mid])
14 ret = 0;
15 return ret;
16 }

1 int Bsearch(int *A, int x, int n){
2 int low=1, high=n-1, mid , ret=0;
3 while(high > low){
4 mid = (low + high) / 2 ;
5 if(x == A[mid])
6 ret = 1;
7 if(x > A[mid])
8 low = mid + 1 ;
9 else

10 high = mid - 1;
11 }
12 mid = (low + high) / 2 ;
13 if(ret == 0 && x == A[mid])
14 ret = 1;
15 return ret ;
16 }

Fig. 1. Two erroneous versions of binary search of element x in sorted array A of size n

experience shows that theoretical courses are insufficient for learning software
testing for the majority of students. The selected questions of this lesson corre-
spond exactly to the difficult points that should be thoroughly exercised in prac-
tice. Testing with a wrong (incomplete or too strong) precondition, or without
a precondition is a very common error that may be revealed by runtime-errors
or wrong test results, but may remain completely unnoticed. Another common
difficulty is to understand the role of an oracle. Many students do not see how
to check the results of a function under test f without necessarily using the
same algorithm again. Almost all students check the return values and forget
to check that f does not modify variables when it does not supposed to do so.
An incorrect oracle may work perfectly in an exercise and remain unnoticed,
so the teacher should check the oracle of each student even if the final results
seem correct. The three final questions help the students to acquire a deeper
understanding of the subtleties of structural testing. Drawing the CFG helps
the students to visualize and analyze test generation results, especially in the
last question involving several functions.

3 The Lesson

The C function Bsearch implements the well-known binary (or dichotomic) search
algorithm. Given an ordered array of integers, A, an integer value to search for, x,
and the number of elements in A, n, it should return 1 if x is an element of A and
0 if not. Let us investigate how PathCrawler can be used to test two different
implementations of Bsearch of Fig. 1.

3.1 Testing without a Precondition (Test Parameters)

Question 1. We start with the first implementation shown in Fig. 1a and be-
have as an inexperienced tester might, by just uploading this source code into

A Lesson on Structural Testing with PathCrawler-online.com 171

1 void oracle_Bsearch(int *Pre_A , int *A,
2 int Pre_x , int x, int Pre_n , int n, int result_implementation){
3 int i, present = 0;
4 for(i=0;i<n;i++){
5 if(A[i] != Pre_A[i])
6 { pathcrawler_verdict_failure (); return; } /* A modified */
7 if(Pre_A[i] == Pre_x)
8 present = 1;
9 }

10 if(present ==0 && present != result_implementation)
11 { pathcrawler_verdict_failure (); return; } /* x wrongly found in A */
12 else if(present ==1 && present != result_implementation)
13 { pathcrawler_verdict_failure (); return; } /* x wrongly not found in A */
14 else {pathcrawler_verdict_success (); return; }
15 }

Fig. 2. Oracle for the functions of Fig. 1

PathCrawler-online.com via Test Your Code page and running test generation
of function Bsearch with the default test parameters. Look at the Test Session
Results and explain the errors.

Answer. The Test Session Summary shows that two test-cases provoked a run-
time error. The Test-Case pages provide the input array sizes, input values and
covered path of each test-case. In one of them, with n=1873679323, the segmentation
fault occurred because although the array was empty in this test-case, the loop
body was executed (the path contains +3, i.e. the true branch at line 3 of the
source code), including an out-of-bound array access at line 5. The implemen-
tation assumes that n is no greater than the array dimension, so this must be
true for each test-case. The other test-case, with a negative value of n, provoked
a similar out-of-bound array access at line 13.

3.2 Definition of a Precondition

Question 2. Restart test generation of Bsearch again, but this time customize the
test parameters so that the values of the elements of A and of x are restricted to
the interval 0..10, the dimension of A, denoted by dim(A), can be any value from 1
to 8 and add an unquantified precondition stating that n is equal to dim(A). Look
at the Test Session Results. Are there runtime errors? Complete the precondition
if necessary. Explain what purpose a precondition serves in testing.

Answer. This time, the generated tests do not cause execution errors. However,
we see that in these cases A is not always sorted so binary search does not
necessarily work. We add to the precondition the requirement that A is sorted in
the following quantified precondition:

for all INDEX such that INDEX < n - 1, A[INDEX] <= A[INDEX + 1].

The preconditions ensure that the automatically generated test-cases will all
respect the input domain of the implemented function. This avoids test failures
due to test-cases which provoke execution errors or give the wrong result because,
even if correctly implemented, the algorithm is not supposed to work on the
inputs of such test-cases.

172 N. Kosmatov et al.

3.3 Role of an Oracle in Testing

Question 3. What purpose does the oracle fulfill in testing? What should a com-
plete oracle for Bsearch check?

Answer. The oracle examines the inputs and outputs of each test-case and de-
cides whether the implementation has given the expected outputs for the given
inputs. A complete oracle for Bsearch should check that

– the array A is not changed by the implementation,
– the implementation returns the correct result, i.e. if x is really present in A

then the implementation returns 1 and if not, it returns 0.

3.4 Using Structural Testing to Detect a Bug

Question 4. Go back to the test parameters used in Question 2 and change
the default oracle, calling pathcrawler_failure() if the outputs are as expected and
pathcrawler_success() if not. Rerun generation and check the verdicts and paths
covered by the different test-cases. How do these help locate the bug in this
implementation? Correct the bug and re-run generation with the same test pa-
rameters.

Answer. We replace the default oracle by the function of Fig. 2. The new test
session results contain 8 test-cases with verdict failure and 15 with verdict success.
Looking at the paths of the test cases, we see that the second condition on line
13 is only satisfied by the test-cases which failed (their path contains +13, +13b).
This indicates that the bug is in the single statement (line 14) which is executed
if this condition is satisfied. We replace it by ret=1; and re-run generation. All
test-cases have now verdict success.

3.5 Limits of Structural Testing

Question 5. With the same test parameters as in Question 4, now generate tests
for the second implementation of Bsearch in Fig. 1b. Are the same number of
cases generated as in Question 4? What are the verdicts? The bug is in line 2.
Try generation a few times to check whether the verdicts are always the same.
Explain your results.

Answer. Fewer cases are generated this time and they almost always all have
verdict success (although a run may occasionally happen to generate a test with
a failure verdict). The bug in this implementation just causes the first element
of the array not to be checked in some cases and this is why fewer tests are
generated. This example shows the limits of classical structural testing. All paths
in the code may be covered without revealing the error. This sort of error can
only be found by taking the intended functionality of the implementation into
account when generating the tests.

A Lesson on Structural Testing with PathCrawler-online.com 173

17 /* copy the function Bsearch above */
18 int spec_Bsearch(int *Pre_A , int *A,
19 int Pre_x , int x, int Pre_n , int n, int result_implementation){
20 int i, present = 0;
21 for(i=0;i<n;i++){
22 if(A[i] != Pre_A[i])
23 return 0; /* A modified */
24 if(Pre_A[i] == Pre_x)
25 present = 1;
26 }
27 if(present ==0 && present != result_implementation)
28 return 0; /* x wrongly found in A */
29 else if(present ==1 && present != result_implementation)
30 return 0; /* x wrongly not found in A */
31 else return 1;
32 }
33

34 int CompareBsearchSpec(int *A, int x, int n){
35 int *Pre_A = (int *) malloc(n * sizeof(int));
36 int i;
37 for (i = 0; i < n; i++)
38 Pre_A[i] = A[i];
39 int ret=Bsearch(A,x,n);
40 return spec_Bsearch(Pre_A , A, x, x, n, n, ret);
41 }

Fig. 3. Specification for Bsearch and function CompareBsearchSpec to be tested in Qu. 6

1 void oracle_CompareBsearchSpec(int *Pre_A , int *A,
2 int Pre_x , int x, int Pre_n , int n, int result_compare){
3 if (result_compare)
4 { pathcrawler_verdict_success (); return; }
5 else
6 { pathcrawler_verdict_failure (); return; }
7 }

Fig. 4. Oracle for function CompareBsearchSpec of Fig. 3

3.6 Testing with a Specification

Question 6. Create a file with the function Bsearch of Fig. 1b and the functions
shown in Fig. 3. Upload this new file into PathCrawler-online.com and gener-
ate tests for the function CompareBsearchSpec using the oracle of Fig. 4 and, otherwise,
the same test parameters as in Question 5. Explain the significance of the test-
case with a failure verdict (usually obtained before test generation is interrupted
because of the limit on the number of partial paths in this evaluation version).

Answer. The function spec_Bsearch provides a specification similar to the oracle of
Fig. 2, while CompareBsearchSpec calls Bsearch and spec_Bsearch to compare the result
with the specification. There are therefore execution paths in CompareBearchSpec in
which the result returned by the implementation is not accepted by spec_Bsearch.
In trying to generate tests to cover these paths, PathCrawler is searching for
inputs which cause the implementation of Bsearch to give an unexpected result.
In the test-case with the failure verdict, x is the first element of A and this case
reveals the bug that was not detected by structural testing of the implementation
of Bsearch alone.

174 N. Kosmatov et al.

4 Related Work and Conclusion

The PathCrawler method is related to other test generation tools combining sym-
bolic and concrete execution of the program under test, for example, DART [4],
CUTE [5], EXE [6], PEX [7], YOGI [8]. Although the idea to make tools avail-
able online for evaluation and use is very attractive, most tools are available only
for download and require installation on the user’s platform.

In the domain of software verification, few research teams provide an online
(evaluation) version for their tool to allow (potential) users to quickly run it and
to familiarize themselves with its concepts. The AgitarOne tool [9] (for unit test-
ing of Java) and Euclide [10] (for property verification or proving reachability in
C code) did have online versions allowing to try the tools. PEX for Fun [11] gives
access to a limited version of the PEX [7] test generation tool in a recreational
way, inviting the user to try to solve little puzzles. The online version of the
Interproc static analyzer [12] illustrates static analysis for programs in a small
imperative programming language accepted by the tool. In constraint program-
ming, WebCHR [13] provides a service for solving CHR (Constraint Handling
Rules) constraints online. No other software verification tool provides a testing
web service for C software similar to PathCrawler-online.com.

Automatic structural test generators may also be used for other purposes,
for example, to find execution errors [4–6], to verify conformity to specifications
[7, 8, 14] or to verify non-functional properties [15]. The PathCrawler method can
be efficiently combined with static analysis techniques, for example, for program
debugging [16, 17]. We are currently studying uses of PathCrawler which go
beyond traditional structural test-case generation, as illustrated by Question 6
above, and its novel combinations with static analysis and proof tools.

In this paper, we demonstrated PathCrawler-online.com, the new online
version of the PathCrawler test generation tool, and illustrated by a small prac-
tical session how it can be used for teaching. We hope that this work will be
helpful in teaching software testing at university level and will contribute to the
introduction of automatic structural testing techniques in industry.

References

1. Williams, N., Marre, B., Mouy, P., Roger, M.: PathCrawler: Automatic generation
of path tests by combining static and dynamic analysis. In: Dal Cin, M., Kaâniche,
M., Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 281–292. Springer,
Heidelberg (2005)

2. Botella, B., Delahaye, M., Hong-Tuan-Ha, S., Kosmatov, N., Mouy, P., Roger,
M., Williams, N.: Automating structural testing of C programs: Experience with
PathCrawler. In: AST 2009 (2009)

3. Kosmatov, N.: PathCrawler online (2010-2012),
http://pathcrawler-online.com/

4. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing.
In: PLDI 2005 (2005)

5. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
ESEC/FSE 2005 (2005)

http://pathcrawler-online.com/

A Lesson on Structural Testing with PathCrawler-online.com 175

6. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-
ically generating inputs of death. In: CCS 2006 (2006)

7. Tillmann, N., de Halleux, J.: Pex–White Box Test Generation for .NET. In: Beck-
ert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer,
Heidelberg (2008)

8. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J.: Proofs from tests. In:
ISSTA 2008 (2008)

9. AgitarOne Test Generator (2012), http://www.agitar.com/
10. Gotlieb, A.: Euclide: a constraint-based testing platform for critical C programs.

In: ICST 2009 (2009), http://euclide.gforge.inria.fr/
11. Pex for fun: Online evaluation version of PEX (2011), http://pexforfun.com/
12. Interproc online (2012),

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

13. WebCHR online (2012), http://dtai.cs.kuleuven.be/CHR/webchr.shtml
14. Rueher, M.: Exploration of the Capabilities of Constraint Programming for Soft-

ware Verification. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 182–
196. Springer, Heidelberg (2006)

15. Williams, N.: WCET measurement using modified path testing. In: WCET 2005
(2005)

16. Chebaro, O., Kosmatov, N., Giorgetti, A., Julliand, J.: The SANTE Tool: Value
Analysis, Program Slicing and Test Generation for C Program Debugging. In:
Gogolla, M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp. 78–83. Springer,
Heidelberg (2011)

17. Chebaro, O., Kosmatov, N., Giorgetti, A., Julliand, J.: Program slicing enhances a
verification technique combining static and dynamic analysis. In: SAC 2012 (2012)

http://www.agitar.com/
http://euclide.gforge.inria.fr/
http://pexforfun.com/
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
http://dtai.cs.kuleuven.be/CHR/webchr.shtml

Tutorial on Automated Structural Testing

with PathCrawler�

(Extended Abstract)

Nikolai Kosmatov and Nicky Williams

CEA, LIST, Software Safety Laboratory, PC 174, 91191 Gif-sur-Yvette France
firstname.lastname@cea.fr

Introduction. Automation of test-case generation brings obvious benefits. In
critical systems processes where structural testing is required by the develop-
ment norm, manually creating tests from the specification fails to achieve com-
plete satisfaction of the coverage criterion. In this case, automatic methods help
to reach the objectives which are not covered and provide corresponding path
conditions that may be used to refine the specification if needed. They may also
determine whether the objectives which are not yet covered are really infeasible.
Even when the development process does not impose any structural testing ac-
tivity, the use of a structural test generation tool is a way to increase the quality
of the software with a very low cost overhead. PathCrawler is a concolic test
generation tool developed at CEA LIST for structural testing of C programs.
It aims to cover all feasible program paths. The new version of PathCrawler is
developed in an entirely novel form: that of a test-case generation web service
which is freely accessible at PathCrawler-online.com.

The Tutorial. The first aim of the tutorial is to show how C code can quickly
and easily be debugged using automatic structural unit testing. The second aim
is to show that tools such as PathCrawler can help to respect the code coverage
required by many development norms, and report on what cannot be covered.
Finally, we will show how structural testing may be used in combination with
static analysis techniques and enhance their results.

This tutorial is aimed mainly at software engineering professionals and stu-
dents. They will learn more about the state of the art in automated software
testing and how it could help them in their future career in software develop-
ment or validation. Software engineering lecturers may also be interested in how
a tool such as PathCrawler-online.com can help in teaching software testing.
The necessary background is some knowledge of the C language.

After a brief introduction to structural testing and the concolic method un-
derlying the PathCrawler tool, the notions of precondition, coverage criterion,
and oracle will be explained and illustrated interactively on simple examples.
The tool outputs (test cases, results, infeasible paths,...) will be explained and
the tutorial students will be guided in the use of these outputs to discover the
source of different bugs. Some limits of structural testing and advantages of its
combination with static analysis tools will also be illustrated. The tutorial will
use the online version of the PathCrawler tool: PathCrawler-online.com.

� This work has been partially funded by several ANR projects.

A.D. Brucker and J. Julliand (Eds.): TAP 2012, LNCS 7305, p. 176, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Author Index

Aguirre, Nazareno 19
Armando, Alessandro 3

Balzarotti, Davide 3
Bengolea, Valeria 19
Botella, Bernard 169
Brosch, Petra 149
Brüning, Jens 156

Carbone, Roberto 3
Carlier, Matthieu 35
Chebaro, Omar 169
Chédor, Sébastien 99
Creignou, Nadia 163

Dubois, Catherine 35

Egly, Uwe 149, 163

Fioravanti, Fabio 115
Frias, Marcelo F. 19

Gabmeyer, Sebastian 149
Gogolla, Martin 156
Gotlieb, Arnaud 35

Haar, Stefan 83
Hamann, Lars 156
Hyland, Ralph 51

Jéron, Thierry 99

Kamischke, Jochen 67
Kappel, Gerti 149

Kiniry, Joseph R. 51
Kosmatov, Nikolai 169, 176
Kuehlmann, Andreas 1
Kuhlmann, Mirco 156

Lity, Sascha 67
Lochau, Malte 67
Longuet, Delphine 83

Marinov, Darko 19
Merlo, Alessio 3
Morvan, Christophe 99

Păsăreanu, Corina S. 2
Pellegrino, Giancarlo 3
Ponce de León, Hernán 83

Roger, Muriel 169

Schaefer, Ina 67
Seidl, Martina 149, 163
Senni, Valerio 115
Sulzmann, Martin 132

Tompits, Hans 149

Widl, Magdalena 149
Williams, Nicky 169, 176
Wimmer, Manuel 149

Zechner, Axel 132
Zimmerman, Daniel M. 51

	Title

	Preface
	Organization
	Table of Contents
	Invited Talks

	The Technology and Psychology
of Testing Your Code as You Develop It
	Combining Model Checking
and Symbolic Execution for Software Testing

	Research Papers
	From Model-Checking to Automated Testing
of Security Protocols: Bridging the Gap
	Introduction
	SAML Web-Browser SSO
	Model Checking
	Specification of the Rules of the Honest Agents
	Specification of the Rules of the Intruder
	Specifying the Authentication Property

	Instrumentation
	Instrumentation of the Rules of the Honest Agents
	Instrumentation of the Rules of the Intruder

	Test Case Execution
	Experimental Results
	Related Work
	Conclusions
	References

	Using Coverage Criteria on RepOK
to Reduce Bounded-Exhaustive Test Suites
	Introduction
	Preliminaries
	Reducing Bounded-Exhaustive Test Suites
	On the Effectiveness of Reduced Test Suites
	Case Studies

	Related Work
	Conclusions and Further Work
	References

	A First Step in the Design of a Formally Verified
Constraint-Based Testing Tool: FocalTest
	Introduction
	A Brief Presentation of Focalize and FocalTest
	From Focalize to FMON
	From FMON to Constraints
	The FMON Language
	The Constraint Language
	Translating FMON Expressions into Constraints

	Soundness and Completeness of the Constraint Generation
	Conclusion
	References

	Testing Library Specifications
by Verifying Conformance Tests
	Introduction
	Background
	The Java Modeling Language
	Unit Testing
	Static Verification

	The Formal CTD Process
	Unit Tests as Operational Behavioral Specifications
	Unit Test Specifications

	The Concrete Process
	JUnit
	The Java Compatibility Kit

	Case Studies
	Conclusion
	References

	Incremental Model-Based Testing
of Delta-oriented Software Product Lines
	Introduction
	Foundations
	Model-Based Testing
	Regression Testing

	Delta-Oriented SPL Test Modeling
	Delta-Oriented SPL Regression Testing
	Implementation and Evaluation
	Related Work
	Conclusion
	References

	Conformance Relations
for Labeled Event Structures
	Introduction
	Labeled Event Structures
	Observing Event Structures
	Single Action Observations
	Partially Ordered Observations

	Conformance Relations for Concurrent Systems
	Conformance Relations for Input/Output Concurrent Systems
	The ioco Relation for the Interleaving Semantics
	The ioco Relation for the Partial Order Semantics: co-ioco

	Conclusion, Discussion and Future Work
	References

	Test Generation from Recursive Tiles Systems

	Introduction and Motivation
	Conformance Testing Theory for IOLTS
	Recursive Tiles Systems and Their Properties
	Off-Line Test Generation forWeighted RTS
	Construction of the Canonical Tester
	Properties of Generated Test Cases

	On-Line Test Generation from RTS
	Test Case Generation
	Properties of the Test Cases Generated On-Line

	Conclusion
	References

	Generation of Test Data Structures
Using Constraint Logic Programming
	Introduction
	The Korat Approach
	The CLP-Based Approach
	Red-Black Trees
	Optimizations

	Experimental Evaluation
	Related Work and Conclusions
	References

	Constructive Finite Trace Analysis
with Linear Temporal Logic
	Introduction
	Constructive Finite Trace LTL Matching
	Deterministic Matching with Derivatives
	Checking LTL Coverage by Inspecting Proofs
	Related Work and Conclusion
	References

	Short Papers

	Towards Scenario-Based Testing of UML Diagrams

	Introduction
	Preliminaries
	Formulation of the Model Checking Problem
	Related Work
	Discussion and Future Challenges
	References

	Evaluating and Debugging OCL Expressions
in UML Models
	Introduction
	Basic Evaluation Browser Concepts by Example
	General Features Available in the Evaluation Browser
	Further Features Available in the Evaluation Browser
	Related Work
	Conclusion
	References

	A Framework for the Specification
of Random SAT and QSAT Formulas
	Motivation
	The Architecture of [q]bfGen
	Tool Demo: The Fixed-Shape Model for QBF
	Conclusion and Future Work
	References

	A Lesson on Structural Testing with
PathCrawler-online.com
	Introduction
	Teaching Feedback and Discussion
	The Lesson
	Testing without a Precondition (Test Parameters)
	Definition of a Precondition
	Role of an Oracle in Testing
	Using Structural Testing to Detect a Bug
	Limits of Structural Testing
	Testing with a Specification

	Related Work and Conclusion
	References

	Tutorials
	Tutorial on Automated Structural Testing
with PathCrawler

	Author Index

