
DPF Workbench: A Diagrammatic Multi-Layer
Domain Specific (Meta-)Modelling Environment

Yngve Lamo, Xiaoliang Wang, Florian Mantz, Wendy MacCaull, and Adrian Rutle

Abstract. This paper presents the DPF Workbench, a diagrammatic tool for domain
specific modelling. The tool is an implementation of the basic ideas from the Dia-
gram Predicate Framework (DPF), which provides a graph based formalisation of
(meta)modelling and model transformations. The DPF Workbench consists of a spe-
cification editor and a signature editor and offers fully diagrammatic specification
of domain-specific modelling languages. The specification editor supports develop-
ment of metamodelling hierarchies with an arbitrary number of metalevels; that is,
each model can be used as a metamodel for the level below. The workbench also
facilitates the automatic generation of domain-specific specification editors out of
these metamodels. Furthermore, the conformance relations between adjacent meta-
levels are dynamically checked by the use of typing morphisms and constraint va-
lidators. The signature editor is a new component that extends the DPF Workbench
with functionality for dynamic definition of predicates. The syntax of the predicates
are defined by a shape graph and a graphical icon, and their semantics are defined
by validators. Those predicates are used to add constrains on the underlying graph.
The features of the DPF Workbench are illustrated by a running example presenting
a metamodelling hierarchy for workflow modelling in the health care domain.

1 Introduction

Model-driven engineering (MDE) promotes the use of models as the primary arte-
facts in the software development process. These models are used to specify, simu-
late, generate code and maintain the resulting applications. Models can be specified

Yngve Lamo · Xiaoliang Wang · Florian Mantz
Bergen University College, Norway
e-mail: {yla,xwa,fma}@hib.no

Wendy MacCaull · Adrian Rutle
St. Francis Xavier University, Canada
e-mail: {wmaccaul,arutle}@stfx.ca

R. Lee (Ed.): Computer and Information Science 2012, SCI 429, pp. 37–52.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

{yla,xwa,fma}@hib.no
{wmaccaul,arutle}@stfx.ca

38 Y. Lamo et al.

by general-purpose modelling languages such as the Unified Modeling Language
(UML) [20], but to fully unfold the potentials of MDE, models are specified by
Domain-Specific Modelling Languages (DSMLs), each tailored to a specific do-
main of concern [11]. DSMLs are modelling languages where the language primi-
tives consist of domain concepts. Traditionally such domain concepts are specified
by a graph based metamodel while the constraints are specified by a text based lan-
guage such as the Object Constraint Language (OCL) [19]. This mixture of text
based and graph based languages is an obstacle for employing MDE especially with
regard to model transformations [25] and synchronisation of graphical models with
their textual constraints [23]. A more practical solution to this problem is a fully
graph based approach to the definition of DSMLs; i.e., diagrammatic specification
of both the metamodel and the constraints [24].

The availability of tools that facilitate the design and implementation of DSMLs
is an important factor for the acceptance and adoption of MDE. DSMLs are re-
quired to be intuitive enough for domain experts whereas they have a solid formal
foundation which enables automatic verification and sound model transformations.
Since DSMLs are defined by metamodels, these tools need to support automatic
generation of specification editors out of metamodels.

An industrial standard language to describe DSMLs is the Meta-Object Facility
(MOF) [18] provided by the Object Management Group (OMG). A reference im-
plementation inspired by the MOF standard is Ecore, which is the core language
of the Eclipse Modelling Framework (EMF) [26]. This framework uses a two-level
metamodelling approach where a model created by the Ecore editor can be used to
generate a DSML with a corresponding editor (see Fig. 1a). This editor, in turn, can
be used to create instances; however, the instances of the DSML cannot be used to
generate other DSMLs. That is, the metamodelling process is limited to only two
user-defined metamodelling levels.

The two-level metamodelling approach has several limitations (see [13, 1] for
a comprehensive argumentation). The lack of multi-layer metamodelling support

Fig. 1 A simplified view of (a) the EMF metamodelling hierarchy, and (b) a generic meta-
modelling hierarchy as implemented in the DPF Workbench

DPF Workbench 39

forces DSML designers to introduce type-instance relations in the metamodel. This
leads to a mixture of domain concepts with language concepts in the same modelling
level. The approach in this paper tackles this issue by introducing a multi-layer
metamodelling tool.

This paper presents the DPF Workbench, a prototype diagrammatic (meta)mode-
lling tool for the specification of diagrammatic signatures, (meta)models, and the
generation of specification editors (see Fig. 1b). The DPF Workbench is an imple-
mentation of the techniques and methodologies developed in the Diagram Predicate
Framework (DPF) [5], that provides a formalisation of (meta)modelling and mo-
del transformations based on category theory and graph transformations. The DPF
Workbench supports the development of metamodelling hierarchies by providing
an arbitrary number of metalevels; that is, each model at a metalevel can be used
as a metamodel for the metalevel below. Moreover, the DPF Workbench checks the
conformance of models to their metamodels by validating both typing morphisms
and diagrammatic constraints. DPF Workbench extends the DPF Editor [15] with a
signature editor which is used to define new domain specific predicates (syntax) and
their corresponding validators (semantics).

The functionality of the DPF Workbench is demonstrated by specifying a meta-
modelling hierarchy for health workflows. Health services delivery processes are
complicated and are frequently developed from regional or national guidelines
which are written in natural language. Having good models of these processes is
particularly valuable for several reasons (1) the modelling process which must be
done in conjunction with (health) domain experts clarifies the meaning of the gui-
delines and has, in a number of situations, found ambiguities or inconsistencies in
the guidelines; (2) graphical display of a process makes it easy for the (clinicians)
domain experts to understand; (3) formal descriptions can be analysed for their be-
havioural characteristics via model checking; and, (4) the models can drive an exe-
cutable workflow engine to guide the actual process in health care settings. The use
of MDE technology is especially valuable because guidelines may be updated or
changed every few years so the model and associated workflow must be redeve-
loped; moreover, though compliance with guidelines is required across a province
or country, individual health districts, indeed individual hospitals or other service
settings (clinics, etc.) will have processes that are specific to their setting so the ove-
rall process must be customised for the local setting. With MDE once the model
is written and analysed for correctness the executable code is generated automati-
cally. Moreover the abstraction required for development of abstract models makes
it easier to involve domain experts in the development process. MDE transforma-
tion techniques can be used to generate code suitable for model checkers to verify
behavioural characteristics of a workflow model, an important feature for a safety
critical applications such as health care. Health care costs are rising dramatically
worldwide; better outcomes for the patient as well as enhanced efficiencies have
been shown to result from better process (workflow) definitions.

40 Y. Lamo et al.

The remainder of the paper is organised as follows. Section 2 introduces some
basic concepts from DPF. Section 3 gives a brief overview of the tool architecture.
Section 4 demonstrates the functionality of the tool in a metamodelling scenario.
Section 5 compares DPF Workbench with related tools, and finally Section 6 out-
lines future research and implementation work and concludes the paper.

2 Diagram Predicate Framework

In DPF, models are represented by (diagrammatic) specifications. A specification
S = (S,CS : Σ) consists of an underlying graph S together with a set of atomic
constraints CS [24, 23]. The graph represents the structure of the specification and
the atomic constraints represent the restrictions attached to this structure. Atomic
constraints are specified by predicates from a predefined (diagrammatic) signature
Σ. A signature Σ = (ΠΣ ,αΣ) consists of a collection of predicates, each having a
symbol, an arity (or shape graph), a visualisation and a semantic interpretation (see
Table 1).

Table 1 The signature Σ used in the metamodelling example

ΠΣ αΣ(π) Visualisation Semantics

[mult(m,n)] 1 a �� 2 X
f

[m..n]
�� Y ∀x ∈ X : m ≤ |f(x)| ≤ n, with

0 ≤ m ≤ n and n ≥ 1

[irreflexive] 1
a��

X
f

[irr] ��
∀x ∈ X : x /∈ f(x)

[injective] 1 a �� 2 X
f

[inj]
�� Y ∀x,x′ ∈ X : f(x) = f(x′) im-

plies x = x′

[nand] 1 a ��

b

��

2

3

X
f ��

g

��
[nand]

Y

Z

∀x ∈ X :
f(x) = ∅ ∨ g(x) = ∅

[surjective] 1 a �� 2 X
f

[surj]
�� Y f(X) = Y

[jointly-
surjective 2]

1 a �� 2

3

g

�� X
f �� Y

Z

b

��
[js]

f(X) ∪ g(Z) = Y

[xor] 1 a ��

b

��

2

3

X
f ��

g

��
[xor]

Y

Z

∀x ∈ X :
(f(x) = ∅ ∨ g(x) = ∅)
and
(f(x) 	= ∅ ∨ g(x) 	= ∅)

DPF Workbench 41

In the DPF Workbench, a DSML corresponds to a specification editor, which in
turn consists of a signature and a metamodel. A specification editor can be used to
specify new metamodels, and thus define new DSMLs (see Fig. 1b).

Next we show a specification Fig. 2 is an example of a specification S2 that en-
sures that “activities cannot send messages to themselves”. In S2, this requirement
is forced by the atomic constraint ([irreflexive],δ) on the arrow Message. Note

that δ is a graph homomorphism δ : (1
a��

) → (Activity

Message
��

) specifying the
part of S2 to which the [irreflexive] predicate is added.

Element Flow

Activity Message
[irr]

2S

3S

Π
Σ αΣ Proposed vis. Semantic interpretation

[mult(m, n)] 1
a

2 X
f

[m..n]
Y ∀x ∈ X : m ≤ |f(x)| ≤ n,

with 0 ≤ m ≤ n and n ≥ 1

[irreflexive] 1
a

X
f

[irr]

∀x ∈ X : x /∈ f(x)

activity1 mes1activity1

activity3

activity2mes1

mes2
1S1S '

Fig. 2 The specifications S2, S3, the signature Σ, a valid instance S1 of S2, and an invalid
instance S′

1 of S2 that violates the irreflexivity constraint

The semantics of the underlying graph of a specification must be chosen in a way
that is appropriate for the corresponding modelling environment [24, 23]. In object-
oriented structural modelling, each object may be related to a set of other objects.

Hence, it is appropriate to interpret nodes as sets and arrows X
f−→ Y as multi-valued

functions f : X → ℘(Y). The powerset ℘(Y) of Y is the set of all subsets of Y ; i.e.
℘(Y) = {A | A ⊆ Y }. Moreover, the composition of two multi-valued functions
f : X → ℘(Y), g : Y → ℘(Z) is defined by (f ;g)(x) :=

⋃{g(y) | y ∈ f(x)}.
The semantics of a specification is defined by the set of its instances (I, ι) [9]. An

instance (I, ι) of S is a graph I together with a graph homomorphism ι : I → S that
satisfies the atomic constraints CS . To check that an atomic constraint is satisfied
in a given instance of S, it is enough to inspect the part of S that is affected by
the atomic constraint [23]. In this way, an instance of the specification is inspected
first to check that the typing is correct, then to check that every constraint in the
specification is satisfied. For example, Fig. 2 shows two graphs S0,S′

0, both typed
by the specification S2, but only S0 is a valid instance of S2, since S′

0 violates the
([irreflexive],δ) constraint on Message by having a circular (reflexive) arrow
of type Message.

In DPF, two kinds of conformance relations are distinguished: typed by and
conforms to. A specification Si at metalevel i is said to be typed by a specifica-
tion Si+1 at metalevel i + 1 if there exists a graph homomorphism ιi : Si → Si+1,

42 Y. Lamo et al.

called the typing morphism, between the underlying graphs of the specifications. A
specification Si at metalevel i is said to conform to a specification Si+1 at metale-
vel i+1 if there exists a typing morphism ιi : Si → Si+1 such that (Si, ιi) is a valid
instance of Si+1; i.e. such that ιi satisfies the atomic constraints CSi+1 .

For instance, Fig. 2 shows a specification S2 that conforms to a specification
S3. That is, there exists a typing morphism ι2 : S2 → S3 such that (S2, ι2) is a
valid instance of S3. Note that since S3 does not contain any atomic constraints,
the underlying graph of S2 is a valid instance of S3 as long as there exists a typing
morphism ι2 : S2 → S3.

3 Tool Architecture

The DPF Workbench has been developed in Java as a plug-in for Eclipse [10].
Eclipse follows a cross-platform architecture that is well suited for tool integra-
tion since it implements the Open Services Gateway initiative framework (OSGi).
Moreover, it has an ecosystem around the basic tool platform that offers a rich set
of plug-ins and APIs that are helpful when implementing modelling tools. In ad-
dition, Eclipse technologies are widely used in practise and are also employed in
commercial products such as the Rational Software Architect (RSA) [14] as well as
in open-source products such as the modelling tool TOPCASED [27]. For this rea-
son the DPF Workbench can be integrated into such tools easily and used together
with them.

Figure 3 illustrates that the DPF Workbench basically consists of three compo-
nents (Eclipse plugins). The bottom component (the Core Model Management Com-
ponent) provides the core features of the tool: these are the facilities to create, store
and validate DPF specifications. This part uses EMF for data storage. This means
the DPF Workbench contains an internal metamodel that is an Ecore model. As a
consequence, each DPF specification is also an instance of this internal metamodel.
EMF has been chosen for data storage since it is a de facto standard in the modelling
field and guarantees high interoperability with various other tools and frameworks.
Therefore, DPF models can be used with e.g., code generation frameworks such as
those offered by the Eclipse Model To Text (M2T) project. Recently an adapter for
Xpand (M2T) has been added to the workbench offering native support for DPF spe-
cifications. This means Xpand templates can use the DPF metamodelling hierarchy
in addition to the one which is given by EMF.

The top component (the Visual Component) provides the visual editors, i.e., spe-
cification editors and signature editors. This component is implemented using the
Graphical Editing Framework (GEF). GEF provides technology to create rich gra-
phical editors and views for the Eclipse Workbench. The component mainly consists
of classes following GEF’s Model-View-Controller (MVC) architecture. There are
Figures classes (constituting the view), Display Model classes and controller classes
(named Parts in accordance with the GEF terminology). Special arrow-routing
and display functions have been developed for showing DPF’s special kinds of
predicates.

DPF Workbench 43

Display ModelFigures

Parts

Core ModelGEF

Eclipse Platform

DPF API

Visual Component

Gluing and Code-generation
 Components

Core Model
Management
Component

Signature Editor

Code-gen

Xpand

Specification Editor

Fig. 3 The main component architecture of the DPF Workbench plug-in packages

The middle component (the Gluing Component) is used as mediator between the
first two components. It ties together the functionality and manages file loading,
object instantiation and general communication with the Eclipse platform.

4 A Metamodelling Example

This section illustrates the steps of specifying a metamodelling hierarchy using the
DPF Workbench. The example demonstrates a metamodelling hierarchy that is used
to specify a workflow for the treatment of Cancer Related Pain [6]. First we use
the signature editor to define the signature that is used in the example. Then we
show how to specify a metamodel using the DPF Workbench. We also show the
generation of specification editors for DSML by loading an existing metamodel and
an existing signature into the tool. Furthermore we present how type checking and
constraint validation are performed by the workbench.

4.1 Creating Signatures

We first explain how we create a new project in the DPF Workbench and define
the signature; i.e., the predicates that will be available in the modelling process.
The DPF Workbench runs inside Eclipse, and has its own custom perspective. To
get started, we activate the specification editor by selecting a project folder and
invoking an Eclipse-type wizard for creating a new DPF Signature. The signature for
the metamodelling hierarchy must include the predicates from Table 1. We use the
signature editor to define the arity of the predicates, a graphical icon that illustrates
the predicates in the DPF Workbench toolbar and the semantics of the predicates.
Figure 4 shows how the arity of the [xor] predicate is defined. Figure 5 shows how
the semantics of the [xor] predicate is defined as a Java validator. An example
usage of the [xor] predicate explained in Section 4.2. Currently the semantics can
only be defined by Java validators, but in future, it will be possible to define the
semantics also by use of OCL syntax.

44 Y. Lamo et al.

Fig. 4 Definition of the arity and the graphical icon of the [xor] predicate

Fig. 5 An excerpt of the definition of the Java validator for the [xor] predicate

4.2 Defining Metamodels

After defining all the necessary predicates we load the DPF Workbench with the
desired set of predicates corresponding to the signature shown in Table 1.

We start the metamodelling process by configuring the tool with the DPF Work-
bench’s default metamodel S4 consisting of Node and Arrow, that serves as a star-
ting point for metamodelling in the DPF Workbench. This default metamodel is
used as the type graph for the metamodel S3 at the highest level of abstraction of
the workflow metamodelling hierarchy. In S3, we introduce the domain concepts
Elements and Control, that are typed by Node (see Fig. 6). We also introduce Flow,

DPF Workbench 45

NextControl, ControlIn and ControlOut, that are typed by Arrow. The typing of this
metamodel by the default metamodel is guaranteed by the fact that the tool allows
only creation of specifications in which each specification element is typed by Node
or by Arrow. One requirement for process modelling is that “each control should
have at least one incoming arrow from an element or another control”; this is speci-
fied by adding the [jointly-surjective 2] constraint on the arrows ControlIn
and NextControl. Another requirement is that “each control should be followed by
either another control or by an element, not both”; this is specified by the [xor]

constraint on the arrows ControlOut and NextControl. We save this specification in a
file called process m3.dpf, with “m3” reflecting the metalevel M3 to which it
belongs.

[xor][mult]

Fig. 6 DPF Workbench configured with the default metamodel consisting of Node and Ar-
row, and the signature Σ from Table 1 indicated with a bold black rectangle; showing also the
specification S3 under construction; note that the bold black arrow ControlOut is selected,
therefore the predicates that have 1 → 2 as their arity are enabled in the signature bar.

4.3 Generating Specification Editors from Metamodels

In this section, we illustrate how a specification editor can be generated from
the existing specification S3. This is achieved by again invoking the wizard for
creating a new DPF Specification Diagram. This time, in addition to specifying
that our file shall be called process m2.dpf, we also specify that the file
process m3.dpf shall be used as the metamodel for our new specification S2.
We use the signature from Table 1 with this new specification editor. Note that the
tool palette in Fig. 7 contains buttons for each specification element defined in Fig. 6.
In process m2.dpf we will define a specification S2 which is compliant with
the following requirements:

1. Each activity may send messages to one or more activities
2. Each activity may be sequenced to another activity
3. Each activity may be connected to at most one choice
4. Each choice must be connected to at least two conditions
5. Each activity may be connected either to a choice or to another activity, but not

both.
6. Exactly one activity must be connected to each choice

46 Y. Lamo et al.

7. Each condition must be connected to exactly one activity
8. An activity cannot send messages to itself
9. An activity cannot be sequenced to itself

We will explain now how some of the requirements above are specified in S2. The
requirements 1 and 2 are specified by introducing the Activity node that is typed
by Element, as well as Message and Sequence arrows that are typed by Flow. The
requirement 5 is specified by adding the constraint [nand] on the arrows Sequence
and Choice. The requirement 6 is specified by adding the constraints [injective]
and [surjective] on ChoiceIn. The requirements 8 and 9 are specified by adding
the constraint [irreflexive] on Message and Sequence, respectively.

Fig. 7 The DPF Workbench configured with the specification S3 from Fig. 6 as metamodel,
and the signature Σ from Table 1 indicated with a bold black rectangle; the specification S2
under construction is also shown.

4.4 Conformance Checks

The conformance relation between S2 and S3 is checked in two steps. Firstly, the
specification S2 is correctly typed over its metamodel by construction. The DPF
Workbench actually checks that there exists a graph homomorphism from the spe-
cification to its metamodel while creating the specification. For instance, when we
create the ChoiceIn arrow of type ControlIn, the tool ensures that the source and
target of ChoiceIn are typed by Element and Control, respectively. Secondly, the
constraints are checked by corresponding validators during creation of specifica-
tions. In Fig. 7 we see that all constraints specified in S3 are satisfied by S2. Howe-
ver, Fig. 8 shows a specification which violates some of the constraints of S3, e.g.,
the [xor] constraint on the arrows ControlOut and NextControl in S3 is violated
by the arrow WrongArrow in S2. The constraint is violated since Condition – that is
typed by Control – is followed by both a Choice, and an Activity, violating the requi-
rement “each control should be followed by either another control or by an element,
not both”. This violation will be indicated in the tool by a message (or a tip) in the
status bar.

DPF Workbench 47

Fig. 8 A specification violating the [xor] constraint on the arrows ControlOut and Next-
Control in S3

4.5 Further Modelling Layers

We can now repeat the previous step and load the specification editor with the spe-
cification S2 (by choosing process m2.dpf) as metamodel. This editor is then
used to specify the workflow model at the metalevel M1. The example is taken from
the Guidelines for the Management of Cancer-Related Pain in Adults [6]. This gui-
deline outlines the procedure to manage a patient’s pain. The Pain Assessment ac-
tivity assesses all causes of pain (total pain), determine pain location(s), pain inten-
sity, and other symptoms. Complete history and all previous analgesics (including
opioids) and response to each will be documented in this activity. After assessment,
if the patient is currently under any opioid medication then the flow will be either
forwarded to the Strong Opioid Regimen1 or Strong Opioid Regimen2 activity, de-
pending on the pain level and current opioid dose. Otherwise, the flow goes to the
Non-Opioid or Weak Opioid or Strong Opioid Regimen1 activity. While a patient is
taking any Strong Opioid medication, his/her pain intensity is assessed regularly and
the dose is adjusted accordingly. If any symptoms for opioid toxicity or other side
effects are found, they are managed appropriately. We modelled the workflow in
the DPF Editor and ensured that the model is conformant to its metamodel. In [21],
the authors modelled the guideline using a different workflow modelling language
(called CWML). They monitored some interesting properties involving pain reas-
sessment times and verified some behavioural LTL-properties using an automated
translator to a model checker. In that work, the authors did not focus on metamodel-
ling or the conformance aspects.

The guideline is represented as the DPF specification S1 in Fig. 9. Note that
this time the tool palette contains buttons for each specification element defined
in Fig. 7. For this tool palette (not shown in Fig. 9) we have chosen a concrete
syntax for process modelling with special visual effects for model elements. For
instance, model elements typed by Choice and Condition are visualised as diamonds
and circles, respectively. In future, to enhance readability, the specification editor
will facilitate other visualisation functionalities like zooming, grouping, etc.

48 Y. Lamo et al.

F
ig

.9
T

he
G

ui
de

li
ne

s
fo

r
th

e
M

an
ag

em
en

to
f

C
an

ce
r-

R
el

at
ed

Pa
in

in
A

du
lt

s

DPF Workbench 49

Finally, we may use predicates from the signature to add constraints to S1, and,
we may use S1 as a metamodel for another modelling level. This pattern could be
repeated as deep as it is necessary, however, in this example we stop at this level,
and will eventually generate the code that is used for model checking of S1.

5 Related Work

There is an abundance of visual modelling tools available, both as open-source soft-
ware and as closed-source commercial products. Some of these tools also possess
metamodelling features, letting the users specify a metamodel and then use this me-
tamodel to create a new specification editor. Table 2 summaries the comparison of
some popular metamodelling tools with the DPF Workbench.

Table 2 Comparison of the DPF Workbench to other metamodelling tools, EVL stands for
Epsilon Validation Language, and the current predefined validator in DPF is implemented in
Java

Tool No. of Diagrammatic Constraint Platform Visual UI
Layers language

EMF/GMF 2 OCL, EVL, Java Java VM �
VMTS ∞ OCL Windows �
AToM3 2 OCL, Python Python, Tk/tcl �
GME 2 OCL Windows �

metaDepth ∞ EVL Java VM
DPF ∞ � Predefined validator Java VM �

The Visual Modelling and Transformation System (VMTS) supports editing mo-
dels according to their metamodels [17]. AToM3 (A Tool for Multi-formalism and
Meta-Modelling) is a tool for multi-paradigm modelling [2, 8]; formalisms and mo-
dels are described as graphs. From the metamodel of a formalism, AToM3 can ge-
nerate a tool that lets the user create and edit models described in the specified
formalism. Some of the metamodels currently available are: Entity-Relationship,
Deterministic and Non-Deterministic Finite State Automata, Data Flow Diagrams,
etc.

The Generic Modelling Environment (GME) [16] is a configurable toolkit for
creating domain-specific modelling and program synthesis environments. The confi-
guration is accomplished through metamodels specifying the modelling paradigm
(modelling language) of the application domain [12]. The GME metamodelling lan-
guage is based on the UML class diagram notation and OCL constraints.

The metaDepth [7] framework permits building systems with an arbitrary number
of metalevels through deep metamodelling. The framework allows the specification
and evaluation of derived attributes and constraints across multiple metalevels, lin-
guistic extensions of ontological instance models, transactions, and hosting different
constraint and action languages. At present, the framework supports only textual

50 Y. Lamo et al.

specifications; however, there is some work in progress on integrating DPF with
metaDepth that aims to give a graph based formalisation of metaDepth, and deep
metamodelling in general.

The table shows that VMTS, metaDepth and DPF Workbench support n-layer
metamodelling, while other three tools, AToM3, GME and EMF/GMF only support
two level metamodelling. Most tools use OCL as their constraint language while
Java, EVL and Python are alternatives. Those tools have no support for diagram-
matic constraints, except the DPF Workbench, which has a dynamic definition of
constraint syntax and corresponding semantics by use of Java validators.

6 Conclusion and Future Work

In this paper, we presented the prototype (meta)modelling tool DPF Workbench.
The tool is developed in Java and runs as a plug-in on the Eclipse platform. The
DPF Workbench supports fully diagrammatic metamodelling as proposed by the
DPF Framework. The functionality of the tool has been illustrated by specifying a
metamodelling hierarchy for health workflow modelling. Workflow is becoming an
increasingly popular paradigm across many domains to articulate process definitions
and guide actual processes. While the methods discussed here have been applied to a
case study involving workflow for a health care system, they can be used to develop
correct and easily customisable executable process definitions for many complex
and safety critical systems. It has been shown how the specification editor’s tool
palette can be configured for a given domain by using a specific metamodel and a
specific signature. To ensure correct typing of the edited models the tool uses graph
homomorphisms. Moreover, it implements a validation mechanism that checks ins-
tances against all the constraints that are specified by the metamodel. We have also
shown how models created in the tool can be used as metamodels at an arbitrary
number of metamodelling levels. The authors are not aware of other EMF based
tools that facilitate multi-level metamodelling. The DPF Workbench also includes
a signature editor to dynamically create new predicates and their corresponding
semantics.

Many directions for further work still remains unexplored, other are currently in
the initial development phases. We shall only mention the most prominent here:

Code generation. The real utility for an end user of DPF Workbench will become
manifest when an actual running system can be generated from specifications.
We have already done some introductory work on code generation [4], and lately
an Xpand adapter is included to the DPF Workbench. The adapter will be used
in a further work to automatically generate scripts that will be used for model
checking workflows specified by the DPF Workbench.
Configurable concrete syntax. As the system exists today, all diagram (nodes,
arrows and constraints) visualisations are hardcoded in the specification editor
code. A desirable extension would be to make visualisations more decoupled
from the rest of the Display Model than is the current situation. This would in-
volve a configurable and perhaps directly editable concrete syntax [3].

DPF Workbench 51

Layout and routing. Automated layout seems to become an issue when dealing
with medium-sized to large diagrams. There seems to be a big usability gain to be
capitalised on in this matter. Today’s specification editor contains a simple rou-
ting algorithm, based on GEF’s ShortestPathConnectionRouter class.
The problem of finding routing algorithms that produce easy-readable output is a
focus of continuous research [22], and this problem applied to DPF Workbench
can probably be turned into a separate research task.

In addition to these areas, development to utilise the core functionality of DPF
Workbench as a base for model transformation and (meta)model evolution is on
the horizon, reflecting the theoretical foundations that are being laid down within
the DPF research community.

References

1. Atkinson, C., Kühne, T.: Rearchitecting the UML infrastructure. ACM Transactions on
Modeling and Computer Simulation 12(4), 290–321 (2002),
doi:10.1145/643120.643123

2. AToM3: A Tool for Multi-formalism and Meta-Modelling: Project Web Site,
http://atom3.cs.mcgill.ca/

3. Baar, T.: Correctly Defined Concrete Syntax for Visual Modeling Languages. In: Wang,
J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 111–
125. Springer, Heidelberg (2006)

4. Bech, Ø., Lokøen, D.V.: DPF to SHIP Validator Proof-of-Concept Transformation
Engine,
http://dpf.hib.no/code/transformation/
dpf to shipvalidator.py

5. Bergen University College and University of Bergen: Diagram Predicate Framework
Web Site, http://dpf.hib.no/

6. Broadfield, L., Banerjee, S., Jewers, H., Pollett, A., Simpson, J.: Guidelines for the Ma-
nagement of Cancer-Related Pain in Adults. Supportive Care Cancer Site Team, Cancer
Care Nova Scotia (2005)

7. de Lara, J., Guerra, E.: Deep Meta-modelling with METADEPTH. In: Vitek, J. (ed.)
TOOLS 2010. LNCS, vol. 6141, pp. 1–20. Springer, Heidelberg (2010)

8. de Lara, J., Vangheluwe, H.: Using AToM3 as a Meta-CASE Tool. In: Proceedings of
ICEIS 2002: 4th International Conference on Enterprise Information Systems, Ciudad
Real, Spain, pp. 642–649 (2002)

9. Diskin, Z., Wolter, U.: A Diagrammatic Logic for Object-Oriented Visual Modeling. In:
Proceedings of ACCAT 2007: 2nd Workshop on Applied and Computational Category
Theory, vol. 203(6), pp. 19–41. Elsevier (2008), doi:10.1016/j.entcs.2008.10.041

10. Eclipse Platform: Project Web Site, http://www.eclipse.org
11. Fowler, M.: Domain-Specific Languages. Addison-Wesley Professional (2010)
12. GME: Generic Modeling Environment: Project Web Site,

http://www.isis.vanderbilt.edu/Projects/gme/
13. Gonzalez-Perez, C., Henderson-Sellers, B.: Metamodelling for Software Engineering.

Wiley (2008)

http://atom3.cs.mcgill.ca/
http://dpf.hib.no/code/transformation/dpf_to_shipvalidator.py
http://dpf.hib.no/code/transformation/dpf_to_shipvalidator.py
http://dpf.hib.no/
http://www.eclipse.org
http://www.isis.vanderbilt.edu/Projects/gme/

52 Y. Lamo et al.

14. IBM: Rational Software Architect,
http://www-01.ibm.com/software/awdtools/
architect/swarchitect/

15. Lamo, Y., Wang, X., Mantz, F., Bech, Ø., Rutle, A.: DPF Editor: A Multi-Layer Diagram-
matic (Meta)Modelling Environment. In: Proceedings of SPLST 2011: 12th Symposium
on Programming Languages and Software (2011)

16. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C., Nordstrom, G.,
Sprinkle, J., Volgyesi, P.: The Generic Modeling Environment. In: Proceedings of WISP
2001: Workshop on Intelligent Signal Processing, vol. 17, pp. 82–83. ACM (2001),
http://www.isis.vanderbilt.edu/sites/default/
files/GME2000Overview.pdf

17. Lengyel, L., Levendovszky, T., Charaf, H.: Constraint Validation Support in Visual Mo-
del Transformation Systems. Acta Cybernetica 17(2), 339–357 (2005)

18. Object Management Group: Meta-Object Facility Specification (2006),
http://www.omg.org/spec/MOF/2.0/

19. Object Management Group: Object Constraint Language Specification (2010),
http://www.omg.org/spec/OCL/2.2/

20. Object Management Group: Unified Modeling Language Specification (2010),
http://www.omg.org/spec/UML/2.3/

21. Rabbi, F., Mashiyat, A.S., MacCaull, W.: Model checking workflow monitors and its
application to a pain management process. In: Proceedings of FHIES 2011: 1st Interna-
tional Symposium on Foundations of Health Information Engineering and Systems, pp.
110–127 (2011),
http://www.iist.unu.edu/ICTAC/FHIES2011/
Files/fhies2011 8 17.pdf

22. Reinhard, T., Seybold, C., Meier, S., Glinz, M., Merlo-Schett, N.: Human-Friendly Line
Routing for Hierarchical Diagrams. In: Proceedings of ASE 2006: 21st IEEE/ACM Inter-
national Conference on Automated Software Engineering, pp. 273–276. IEEE Computer
Society (2006)

23. Rutle, A.: Diagram Predicate Framework: A Formal Approach to MDE. Ph.D. thesis,
Department of Informatics, University of Bergen, Norway (2010)

24. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A Diagrammatic Formalisation of MOF-
Based Modelling Languages. In: Oriol, M., Meyer, B. (eds.) TOOLS EUROPE 2009.
LNBIP, vol. 33, pp. 37–56. Springer, Heidelberg (2009)

25. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A Formalisation of Constraint-Aware Model
Transformations. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013,
pp. 13–28. Springer, Heidelberg (2010)

26. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Frame-
work 2.0, 2nd edn. Addison-Wesley Professional (2008)

27. TOPCASED: Project Web Site, http://www.topcased.org

http://www-01.ibm.com/software/awdtools/architect/swarchitect/
http://www-01.ibm.com/software/awdtools/architect/swarchitect/
http://www.isis.vanderbilt.edu/sites/default/files/GME2000Overview.pdf
http://www.isis.vanderbilt.edu/sites/default/files/GME2000Overview.pdf
http://www.omg.org/spec/MOF/2.0/
http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/UML/2.3/
http://www.iist.unu.edu/ICTAC/FHIES2011/Files/fhies2011_8_17.pdf
http://www.iist.unu.edu/ICTAC/FHIES2011/Files/fhies2011_8_17.pdf
http://www.topcased.org

	DPFWorkbench: A Diagrammatic Multi-Layer Domain Specific (Meta-)Modelling Environment
	Introduction
	Diagram Predicate Framework
	Tool Architecture
	A Metamodelling Example
	Creating Signatures
	Defining Metamodels
	Generating Specification Editors from Metamodels
	Conformance Checks
	Further Modelling Layers

	Related Work
	Conclusion and Future Work
	References

