
A Systematic Approach to the Comparison of Roles
in the Software Development Processes

Murat Yilmaz1, Rory V. O’Connor2, and Paul Clarke1

1 Lero Graduate School in Software Engineering, Dublin City University, Ireland
2 Lero, the Irish Software Engineering Research Centre, Dublin City University

{murat.yilmaz,roconnor,pclarke}@computing.dcu.ie

Abstract. The vision of building a successful software product requires teams
of individuals equipped with a wide range of social and technical skills. Further-
more, by combining these skills with appropriate job roles, we should be able
to improve the productivity of a software organization. In order to identify and
compare different roles in software development activities, we conduct a system-
atic comparison of software development models, covering traditional approaches
through to agile techniques. To compare the roles in the literature with industrial
software landscapes, we use data from a survey conducted on 266 software prac-
titioners to ascertain job roles in two middle size software companies, one of
which uses traditional methods and in particular ISO/IEC 12207 for managing
their software development activities while other uses a tailored agile methodol-
ogy. In light of our interviews, we found that based on project specific needs, the
roles used in industry vary significantly from the roles defined in literature.

1 Introduction

Software development is a complex socio-technical activity, which relies on teams of
individuals working harmoniously. Therefore, individuals should be able to cope with
challenges embedded in software development tasks. These tasks, however, should be
performed as teamwork to accomplish a particular contract with stakeholders [1]. Dur-
ing these activities, the socio-technical skills of individuals are an important considera-
tion when forming teams. As mentioned in every software development methodology,
there are job roles for individuals to be assigned. A role is a series of expectations from
an individual mostly for team-based activities that are defined in a social context or a
situation.

Furthermore, from an industrial perspective, the actual success of customizing a
methodology not only depends on the methods we choose but also the roles that are
included in a software development method. Therefore, understanding these roles and
systematically selecting a set of suitable roles for a proposed methodology has several
merits. Firstly, the role selection process helps us to control the flow of information
to manage the activities in a software company. Consequently, roles convey a value
to the development methodology [2]. Software development is not easy, it needs dedi-
cated personnel. However, evidence suggests that individuals should be more effective
in settings such that roles are well-defined [3]. Secondly, role selection can be used for

A. Mas et al. (Eds.): SPICE 2012, CCIS 290, pp. 198–209, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Systematic Approach to the Comparison of Roles 199

stimulating individuals. Agile methods cause alterations in several roles or job titles
previously defined in traditional software development. This realignment has weakened
some of the traditional roles to some extent: therefore even some practitioners think that
agile reduces the ability of managers to command their teams [4]. Thirdly, organizing
the roles for the software development methodology can be considered as a form of
software quality assurance activity in order to improve the product quality [5].

In this paper, we constitute a systematic comparison framework based on actual-
ized roles and defined roles in the software development processes. We formalize our
research question as: “In practice, do software development roles differ from the role
definitions provided by the software development process methodologies?” To this end,
we review the literature to single out the set of defined roles for the selected software
development processes and systematically compare them with the roles that are used in
industrial settings. Based on a case study with two middle size software companies, we
first use the data collected on our surveys to understand the working roles or titles in
an industrial software organization, and secondly we interview software practitioners to
validate our results.

The remainder of this paper is structured as follows: In section two, we introduce our
research viewpoint, which defines our systematic approach that enables the comparison
of different roles. The following section reviews the roles identified in literature for
the different software development processes. The next section evaluates our approach
by analyzing of data gathered from the case studies we conducted in two middle size
software companies. The last section will conclude the paper with a brief summary of
contributions.

2 Research Overview

The first part of our systematic approach starts with constructing our research goal to
evaluate whether there is a significant amount of difference in previously identified
roles and their actualizations especially when tailoring a role-based task assignment in
software development. Next, we survey the literature for the roles for both traditional
and agile methodologies that are mentioned in software development literature. We se-
lectively chose software methodologies and processes and work on the roles that are
defined by these approaches. In technical terms, we conduct a thematic content analysis
(i.e. descriptive presentation of this literature review) based on roles as the units of anal-
ysis. After identifying software development roles in the literature, secondly we conduct
a focus group study with one of our industrial partners, where we seek opinions about
actual roles that are used in their company. We initiate the focus group conversation
by using some parts on our previously conducted survey, in which we ask participants
about their organizational roles and experience levels on that role (see figure 1). Sec-
ondly, we interview team leaders and development managers about how accurate the
actualization of the job roles.

Content analysis is an organized study of characteristics found in a content of any
type of communication, such as books, websites, newspapers, etc [6]. Our approach
uses the content analysis technique for making interpretations to create a role

200 M. Yilmaz, R.V. O’Connor, and P. Clarke

selection schema based on literature of roles in software development methodologies.
Based on the survey data collected previously, these roles will be systematically com-
pared to their industrial actualizations. To this end, we first collect data from literature
and consult industry about the defined roles frequently used in software engineering
settings. Secondly, we conduct a focus group, where we record the session and a con-
tent analysis was performed on participants’ definition of roles that are actualized in
software development landscapes.

We form a number of acronyms based on the roles that are found from the litera-
ture. Here, we are making partial use of a coding mechanism to construct a role-based
schema with the defined roles from the literature. The coding aims to create variables
based on the roles defined in software development. It is done for easy comparison of
roles by constructing a unique key for each role found from the literature. Our coding
schema allows us to observe the commonalities and differences between software en-
gineering roles. It helps us to investigate cause-effect relationships, interrelationships,
and situational conditions for each role category. Here, we design several questions to
seek validity for our coding in the defined categories, and analysis of identified roles
from the literature.

– Is this role the same as a role in the other categories?
– Are there any duplicated role codings in a category?
– In which context do these roles emerge?
– What kind of roles have changed or evolved in emerging methods?
– Is there any observable change for other roles when a role evolved to an other form

(i.e. covariance between categories)?

The objective coding [7] is a technique to review a collection of documents for ex-
tracting and indexing the information so as to form a new perspective on representing
the data. We use an objective coding scheme on the collected information of roles. This
coding should be helpful for visually comparing actualized roles systematically with the
ones cited in the literature. In addition, a diagram is drawn to support the development
of the relationship among roles (see Figure 1).

Finally, we aim to formulate a framework for software practitioners, which enable
them to select proper roles for their software development methodologies. Consequently,
by using such a framework, a software practitioner may easily choose or customize the
necessary roles for his or her development activities.

3 Roles in Software Development Processes

Many different variants of development models and methodologies have been created.
In this section, we survey the roles that are defined in the literature starting from tradi-
tional software development and working through ISO/IEC 12207, and agile method-
ologies such as extreme programming (XP), scrum and feature driven development
(FDD).

A Systematic Approach to the Comparison of Roles 201

�������	
������
�	������������

�	�����
��������
������������	��������

�	������	��	���������
���������

������������������

����������	� �����
�������

���	�����������	�����
!������	������������

���	��������������	����	�
�
����"�����
���

#����$����	��	���	������
����������

��$������������

�������������$�����
�������	�����������

Fig. 1. Our Systematic Approach for Investigating the Roles in Software Development
Environments

3.1 Roles in Traditional Software Development

Software engineering teams address the complex problems of software development
by sharing the tasks among its members with respect to their roles. Roles are the de-
scriptions of duties or assignments and competence for participants that are required
to achieve a defined tasks and activities of software development [8]. In his essay, The
Cathedral and the Bazaar, Raymond states that because of the strict roles defined in
traditional software development, traditional approach is similar to building a cathe-
dral, where a small team of people working in an isolated environment [9]. Therefore,
this could be considered as a drawback because several artifacts are only visible for a
limited number of individuals in this setting.

Traditional roles include: Project manager who is responsible for allocation of
resources, project expenditures, and responsible from the general objectives of a soft-
ware project. Another typical role in the development processes is the role of a devel-
oper. A software developer is responsible for designing and maintaining the software
programs, whereas a software tester is responsible for creating test plans and testing
the developed programs. In many cases user interface designers (design screen inter-
faces), database designers (design database schema) and the software architects (de-
sign technical blueprints) are also included as a generic software practitioner category.

202 M. Yilmaz, R.V. O’Connor, and P. Clarke

Table 1. Traditional Software Development Roles

Code Role Name Primary Type of Value
PM Project Manager Resource Allocation and Budgeting
SD Software Developer Development Activities
UID User Interface Designer Design Screen Interfaces
DD Database Designers Data Modeling
SA Software Architects Software Modeling
BA Business Analyst Stakeholder Management
RE Requirement Engineer Gathering Requirements
SQA Software Quality Assurance Creating and Maintaining Quality
SAN System Analyst Construction of a System

A business analyst is not only responsible for solving the problems by regulating the
connections between the business and the technical people but also for documenting
several parts (e.g. requirement documents) of a software project. In addition to these
roles some others can also be seen regarding several needs; e.g. requirements engineer,
systems analyst, software quality assurance engineer (see Table 1) .

Table 2. Systems Engineering Roles and their values from [10]

Code Role Name Primary Type of Value
RO Requirements Owner Understanding Need
SD System Designer Accomplishing work
SA System Analysis Reducing Risks
VV Validation & Verification Mitigating Risks
LO Logistics and Operations Understanding need
G Glue among the subsystems Accomplishing work, Reducing Risks
CI Customer Interface Understanding the Need
TM Technical Manager Technical Management
IM Information Manager Knowledge Management
PE Process Engineer Managing and Understanding Needs
CO Coordinator Organizational Management
CA Classified Ads SE Accomplishing Work (assumed)

Sheard [11] identifies twelve roles (see Table 2) of development from system engi-
neering viewpoint while investigating the relationship between the roles and their im-
portance for creating a value. This work not only suggests that the value is asserted in
qualitative terms and it should be quantified in further research but it also claims that it
should be observed as a requested improvement within a product by better (i) definition
of the requirements, (ii) management strategies, (iii) ways for mitigating risks, (see [10]
for details).

3.2 Roles in ISO/IEC 12207

ISO/IEC 12207 [12] has three main groups of roles for its participants. The first group
consists of the principal roles are the acquirer, who is a form of stakeholder that ob-
tains products or services from supplier, who is an individual or another organization
agree on providing a software products or services. Implementer executes development
tasks, while the maintainer can be either an organization or an individual who performs
the upkeep of developed software), and operator is responsible for the execution of a

A Systematic Approach to the Comparison of Roles 203

system [12]. The second category consists of configuration and supporting roles; the
configurator is responsible for the establishment and transformation of the information
needed by an individual or a group, evaluator tests and measure a software process or
a product by using the data collected during the actual tasks that are performed, the
auditor investigates the products and processes are compatible with the agreements,
the usability specialist deals with the demands and needs of the stakeholders such as
the design activities based on human factors and skills and their fulfillment [12].

Table 3. Roles in ISO/IEC 12207 (adapted from [12,13])

Code Role Name Primary Type of Value
AC Acquirer Software Client or User or Product Owner
SU Supplier Software Producer, Product Seller
IMP Implementer Realization of Development Tasks
MN Maintainer Maintain the Software
OP Operator System Execution
CON Configurator Accomplishing Work, Reducing Risks
EV Evaluator Test & Measure a Process or a Product
AU Auditor Contract Management
US Usability Specialist Problems Regarding to People Factors
MA Manager Managing
AM Asset Manager Managing Assets
CM Knowledge Manager Knowledge Management
RA Reuse Administrator Seeking for Reusable Parts

The third group has the organizational roles, the manager identifies and manages the
state of the play (i.e. condition and progression of the project) with respects to project
constraints (e.g. objectives, budget, schedules), the asset manager is a type of manager
deals with the management and optimization of the assets regarding to the plan he or
she prepared, the knowledge manager role works on the collection of particular knowl-
edge and skills throughout the organization and used for improvement for the products
and services. The reuse program administrator seeks to find favorable or advantageous
circumstances for reusable parts of a product or a service. Unlike the other two subfields
of software engineering (i.e. requirements engineering and software development), do-
main engineer is a form responsible for designing the domain models (i.e. software
models) and domain descriptions for a software system (see Table 3).

3.3 Roles in Extreme Programming

According to Beck [14], the participants and their roles are as follows; Programmers
are the individuals who need to have good communication and collaboration skills for
both team and individual levels. They are responsible for developing, maintaining and
testing the software. One of their main responsibilities is to ensure that their work is
clean and lean. The technical decisions are made by programmers. Customers form the
steering teams in business terms and in particular in requirement satisfaction decisions.
Testers help customers to write functional test cases. Business decisions are made by
customers [14]. The tracker role composes a trace and feedback mechanism in XP. The
estimations, goals and iterations made by teams are controlled by a tracker, who pro-
vides feedback. The tracker is also responsible for measuring constraints such as scarce

204 M. Yilmaz, R.V. O’Connor, and P. Clarke

resources and delivery times versus goal evaluation. The coach is the role which is ac-
countable for XP project who needs to understand the problems occurring during the
process to instruct team members and transfer the information or sometimes experience
among teams and individuals. Finally, the manager is responsible for final decisions,
and also an aim of this role is to recognize problems likely occur during the develop-
ment life-cycle (see table 4).

Table 4. Roles in XP (adapted from [14,15])

Code Role Name Primary Type of Value
PRG Programmers Maintaining and Testing Software
CU Customers Managing Business Decisions
TST Testers Helps Costumers for Functional Test Cases
TRC Tracker Feedbacks and Estimations
CO Coach Supervise Team
CON Consultant Guides the Team for Problem Solving
MA Manager Management

3.4 Roles in Scrum

Schwaber and Beedle [16] single out six roles for the participants of Scrum. The Scrum
Master is a type of management role specific to Scrum, who is responsible for the align-
ment of practices and rules as they have organized. This role interacts not only with
project team but also customer and management. Its aim is to maximize productivity
by practicing the agile and scrum values and monitoring the team to avoid any kind of
complications. The Product Owner is the role which is responsible for exercising the
project management and control activities. Additionally, this role is also responsible
for transforming the product backlog into product features. Scrum Team should be con-
sidered as a self organizing structure to produce a working piece of a product, where
its main goal is to achieve time targeted objectives of each sprint. The customer role
will continuously evaluate the backlog items, and helps the selection for a sprint. The
management role is responsible for implementing the proper standards for the software
development process. Additionally, this role encompasses decision making activities
and finalizing them at different stages of development process such as evaluating goals,
gathering requirements, etc. (see Table 5).

Table 5. Roles in SCRUM (adapted from [16])

Code Role Name Primary Type of Value
SM Scrum Master Managing Scrum Team
PO Product Owner Product Management Decisions
CUS Customer Evaluation of backlog items
ST Scrum Team Organized itself for time boxed goals
MNG Management Evaluate Decisions and Goals
USR User Evaluate System Functionalities

A Systematic Approach to the Comparison of Roles 205

3.5 Roles in FDD

FDD has the most comprehensive role description with a flexibility of roles [17]. For
example, an individual can play multiple roles, or either a role can be shared by multiple
persons [15]. The three main categories of roles, which are: key, supporting and addi-
tional roles. The key roles are project manager, who administers the entire project and
maintains the work settings of the software team, the lead software architect is the role
which makes the appropriate decisions for software development, the software develop-
ment manager is a role which focuses on daily activities and team negotiations during
the software development activities. The lead programmer, the class owner and the do-
main expert are the three roles used in FDD. The supporting roles includes; manager
(release), knowledge expert, build process engineer, toolsmith and system administra-
tor. Moreover, testers, technical document expert and software deployment personnel
are the other roles used in this practices [17](see table 6).

Table 6. Roles in FDD (adapted from [17,15])

Code Role Name Primary Type of Value
PM Project Manager Resource Management
LSA Lead Software Architect Architectural Decisions
DEM Development Manager Evaluation of backlog items
LP Lead Programmer Organized itself for time boxed goals
CO Class Owner Form Teams for Implementing Features
DE Domain Expert Inform Teams for Adequate Features
RM Release Manager Managing the development process
DM Domain Manager Managing Domain Experts
LG Language Guru Acquiring a Knowledge on Technology
BE Build Engineer Executing a Build Process
TA Toolsmith Creating Utilities for project
SYA System Administrator Administration of Work Systems
TE Testing Verifying the Actualization of a System
DEP Deployer Release of Feature Deployment
TEW Technical Writer The Documentation for Users

4 Evaluation of Roles from Industrial Settings

As a part of a survey, we asked 266 participants from two different software compa-
nies about their roles in their applied settings in order to identify the commonality of
meaning in the different roles. One of the software companies (with a staff about 400
personnel) is working in telecommunication sector, which composes solutions for large-
scale e-government projects. The other company supplies turn key software solutions
to telecommunications operators and mobile service providers. It has a staff of about
40 personnel. By creating a list of roles based on the roles mentioned in the literature,
we conduct a focus group in one of the companies about the actualization of roles in
development environments. This brings individuals together to debate about software
development roles in their company and their actualizations with respect to their ex-
periences. Next, we ask our research question to a selection of people mostly to the
individuals from the management teams.

206 M. Yilmaz, R.V. O’Connor, and P. Clarke

Company A is using the traditional software development approaches to define the
roles: PM, SD, UID, SA, BA, SQA, where DD is embedded in SD, and RE role is
somehow split with BA and SD. The role of system analyst provides the requirement
engineering processes.

Interview quotation: “During our development activities, we observe lots of
overlapping roles, which sometimes hinder our ability to handle some develop-
ment tasks. For example, some of our teams have key players with overlapping
roles and some individuals perform more than one role by the nature of our
development process. We found it interesting to have a big picture of the roles
in the different software development processes.”

Company A uses ISO/IEC 12207 combined with an iterative development schema and
a customized role selection based on the traditional viewpoint for developing and main-
taining software project. However the roles defined by ISO/IEC 12207 are not fully
used to profile the personnel. Instead, they use the role names (see Table 1) that are
traditionally used in software development.

Interview quotation: “We use approximately 14 out of 43 processes, 60 out of
95 activities, 180 out of 406 tasks from ISO/IEC 12207. We believe that assign-
ing suitable roles to teams and individuals is very important for our success. A
review of roles in different methodologies is useful from an industrial perspec-
tive. All type of roles should be visible to everyone in the company, and they
should be defined in a simple language to provide a way of ensuring every-
one understands them. Therefore, we are not using the role names provided by
ISO/IEC 12207. I would say, we mostly use the classical role names you have
mentioned.”

According to the management team of Company A, the role of team leader should not
dictate anything to teammates but communicated the vision of a company or a project.
Therefore, maintaining a friendship and trust is more important than dictating the facts
to software teams.

Interview quotation: “People usually trust other people to some extent. There
are always problems, when it comes to role assignment as well as delegations
based on these roles. I personally observed several situations, where improper
delegation did cause lots of conflicts and tensions. I would strongly suggest
that role tailoring should not be taken lightly.”

Company B uses a customized agile methodology, which relies on XP and Scrum. They
use agile methodology so as to cope with dynamically challenging requirements and to
fulfill the request of their customer for continuous integration with small increments.
They use all roles defined by scrum (i.e. SM, PO, CUS, ST, MNG, USR) and a tester
role (TST) and a progress tracker (TRC) role from XP.

A Systematic Approach to the Comparison of Roles 207

Interview quotation: “There is the notion of tailoring methodologies, how
about the roles? It is always a problem for us to select the suitable roles for
our customized methodology. Therefore, broader view of roles in software de-
velopment activities are very important for us. However, just as there is no
one-size-fits-all methodology for developing applications in software develop-
ment, there should not be a one-size-fits-all approach to role selection.”

Finally, Company B highlights the importance of face to face communication for agile
landscapes, and therefore selection of suitable roles for development activities becomes
more important.

Interview quotation: “The process of customization of roles is very important
particularly in agile development environments. A summary with roles con-
tained in different agile approaches is very helpful for us to see the suitable
roles for our process.”

5 Conclusions

In this paper, we highlight how roles in literature and their actualizations on industrial
environments vary for both plan driven and agile methodologies. Software development
is a collaborative endeavor that depends on its development methodology. However, se-
lection of a proper methodology is not enough for achieving goals of a software organi-
zation. The evidence suggests that we should also tailor the necessary roles depending
on development activities.

After analyzing the defined categories in light of the questions above, we confirmed
that several roles presented in older methods are emerged with a different name, with
similar responsibilities in newer approaches. Some of the roles, however, have their re-
sponsibilities changed while revealing in different software development organizations.
Most frequently, the role definitions that an organization uses based on a domain and a
set of circumstances.

Here, we present role orientations for the selected software development method-
ologies as shown in Table 7. We identify four types of role orientations: Actor-based,
activity-based, artifact-based and methodologies with extended role definitions based
on a previously defined role. For example, both Scrum and FDD have actor-based roles,
in which the skills of an individual are defined by the role characteristics such as prod-
uct owner or a class owner. In addition, all methodologies have activity-based roles

Table 7. Comparison of roles for the selected development methodologies

Role Orientations
Actor Based Activity Based Artifact Based Extended

Models Traditional �
System Engineering � �

ISO/IEC 12207 �
XP � � �

Scrum � �
FDD � � � �

208 M. Yilmaz, R.V. O’Connor, and P. Clarke

�����
��
��
����

	�
����
���
	�

���
����
���	�

����
�����������

�����
��	��	��	��

�

�	
��

���
	�

 ��!������	

��
���	�
"���

���������	
�

��
#�!
�

��
��
��
��
�	�
���

��
��
��#
�
���
	�
�	
�

��
��	
$��
��
���
	�%
�	
��
�

��
��
#&	

�#�

�%
�	�

��

��	�
!��
��
���

	�
�$�#

��'

!��

��	
���!

(���
���

���)��
����#��*

�����
���	�

���+�
������	�*
�+��$�#����	

���������	�
���������������	�
����������	�
����
��

���#�!��%����
����!������

��%
�	���

��
��
��#&

������

���
��#&	�#�
�,

����

��	����!#���-	�
���#�!�����

������	�!
��	�

���
����#.�

�
�
��
!����

�
��

��������
�
�

������
���

���/!�
���	��	�

������
���	��%�	���

���/
!��	

����	
�
���

��
�0
!
�
��
��
�	�
���
��
��

�������������	��������

���0
���%�	���

����
�����-	�

���0
1!�

��
	����

	��	
�

���
��$�

-��
���

#&��
#��

��
���

��(
��

��
���
	�

��
�2
	�
-

�
�
�%
�	
��
�

��
��
#1
!�
�
�

��
	�
��

!
��
��

�
�	
%
�	
��
�

��
��

��
��$
��
��
��
��
�

�
��
!�
�

�
�

�
�
�%
��
	�
��
	
�

�
��
�
�
��
��
�

��
��
��

	$
��
!�
��
��

��
��
��
�

�

	
�
�

��
���
$�-
��
��
�

��
�

�
�
��
!�
���
�

�
�
3
��
(�

��
��
��
#
��

��
�

��
��
��
�
�%
�	
��
�

�	
��
��
4#
��%
�	
��
�

��
�3�
��
	�
�$�
#�
�
���
	
�

������
$�-���5

!�
�����
��!��	#

�����������
	�
���

������4#��%�	���
���)�����$�6���#&��#�
���)������������ ��������	��7���

��������	�%�	���

�
�)�	�!���'!�!

������
����&

�������

��
�%�	���	�

���3��

Fig. 2. A Summary of Roles Contained in the Different Approaches

such as software developer, a software tester, etc. We also consider roles that are based
on a creation of an artifact, which are highlighted by the agile methodologies. Finally,
extended roles are the roles that can be integrated or shared among the individuals such
as the roles like the domain expert role, which somehow comprises the technical writer
role in FDD.

Our study exhibits that a role-based schema can be useful for a tailoring process of
roles regarding to the organizational needs. Furthermore, we argue that a software de-
velopment organization should customize their own roles suitable for their social struc-
ture, where we suggest that our role based construct (see Figure 2) will be beneficial
for such activities. In other words, it enables them to select proper roles for their soft-
ware development methodologies. Consequently, by using such a framework, a software
teams may easily choose or customize the necessary roles based on their activities.

Analysis of identified roles from the literature is portrayed in Figure 2. We can con-
firm that several roles presented in older methods are emerged with a different name
with similar responsibilities in newer approaches. The roles, however, mostly have their
responsibilities changed and reappeared as another form while revealing in different

A Systematic Approach to the Comparison of Roles 209

software development organizations. Most frequently, the role definitions that an orga-
nization uses based on a domain and a set of circumstances. Moreover, it is important
to choose roles, based on the social structure of an organization and required interac-
tions. These customized roles are found to be organizational centric, which also clearly
supports the notion of separation of concerns [18].

Acknowledgments. This work is supported, in part, by Science Foundation Ireland
grant number 03/CE2/I303-1 to Lero, the Irish Software Engineering Research Cen-
tre (www.lero.ie).

References

1. Humphrey, W.: Introduction to the team software process (sm). Addison-Wesley Professional
(2000)

2. Hazzan, O., Dubinsky, Y.: Agile Software Engineering. Undergraduate Topics in Computer
Science. Springer (2008)

3. Cooper, D., Sutter, M.: Role selection and team performance. In: Working Papers in Eco-
nomics and Statistics. University of Innsbruck (2011)

4. Larman, C.: Agile and iterative development: a manager’s guide. Addison-Wesley Profes-
sional (2004)

5. Pressman, R.S., Ince, D.: Software engineering. McGraw-Hill (2000)
6. Krippendorff, K.: Content analysis: An introduction to its methodology. Sage Publications,

Inc. (2004)
7. Glaser, B., Strauss, A.: The discovery of grounded theory: Strategies for qualitative research.

Aldine Transaction (2007)
8. Sommerville, I.: Software Engineering, 9th edn. Addison Wesley (2009)
9. Raymond, E.: The cathedral and the bazaar. Knowledge, Technology & Policy 12, 23–49

(1999)
10. Sheard, S.: The value of Twelve systems engineering roles. In: Proceedings of INCOSE.

Citeseer (1996)
11. Sheard, S.: Twelve systems engineering roles. In: Proceedings of INCOSE. Citeseer (1996)
12. ISO/IEC: Amendment to ISO/IEC 12207-2008 - Systems and software engineering Software

life cycle processes (2008)
13. Acuna, S.T., Juristo, N., Moreno, A.M., Mon, A.: A Software Process Model Handbook for

Incorporating People’s Capabilities. Springer (2005)
14. Beck, K.: Extreme programming explained. Addison-Wesley (2000)
15. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development methods:

Review and Analysis. VTT Publications 478. Technical Research Centre of Finland (2002)
16. Schwaber, K., Beedle, M.: Agile Software Development with SCRUM. Prentice Hall (2002)
17. Palmer, S.R., Felsing, J.M.: A practical guide to feature-driven development. Prentice Hall

PTR (2002)
18. Dijkstra, E.W.: On the role of scientific thought. In: Selected Writings on Computing: A

Personal Perspective, pp. 60–66. Springer (1982)

www.lero.ie

	A Systematic Approach to the Comparison of Rolesin the Software Development Processes
	Introduction
	Research Overview
	Roles in Software Development Processes
	Roles in Traditional Software Development
	Roles in ISO/IEC 12207
	Roles in Extreme Programming
	Roles in Scrum
	Roles in FDD

	Evaluation of Roles from Industrial Settings
	Conclusions
	References

