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Abstract. In this article, conflict detection between functions in self-organizing 
networks (SON) is reviewed. SON coordination is of crucial importance to 
management automation of fourth-generation networks. In particular, conflict 
detection is studied from knowledge management perspective. The advantages 
of model-based conflict detection over algorithmic alternatives are analyzed. 
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1 Introduction 

Analogously to “plug and play” concept used in computing, self-organizing is 
perceived as an increasingly important capability for networks. A network with self-
organizing capability is called as Self-Organizing Network (SON), where installation 
and operation are mainly done through a set of automatic and mostly autonomous 
self-organizing capabilities such as self-configuration, self-optimization, and self-
healing. The self-organizing capability is expected to reduce Capital Expenditure 
(CAPEX) and Operational Expenditure (OPEX) of the network by making it easier to 
realize potentially time-varying operational objectives. 

Self-organization tasks are carried out by instances of SON functions in the radio 
access network. The type of a SON function describes its capability, an example of 
the type being. Transmitter/Receiver (TRX) tilt angle adjustment. The presence of 
multiple concurrent function instances gives rise to the need of coordination. For 
example, one self-organizing function instance may update a parameter with a 
particular value. Immediately afterwards, another SON function instance may change 
the parameter with another value. At worst, the two functions can make conflicting 
adjustments. This is one type of conflict between SON functions. 

The coordination can be built based a complete set of pre-defined decision trees 
(i.e., the “hard-coded”) to resolve or prevent all known conflicts between SON 
functions. However, the weakness of such an approach is that it is not scalable. A 
change in the SON functions could require the change of the complete set of the 
decision tree at worst. The new SON functions are coming. Any update or additions 
of the SON functions will require the change on the decision trees as well. The 
motivation of this article is thus to investigate a coordination approach which is 
scalable and future proof in resolving or preventing the SON conflicts. 
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Below, SON functions and conflicts between them are introduced, followed by 
discussion about conflict detection for SON functions from information management 
perspective. It is argued that the use of suitably chosen knowledge models and 
reasoning is better than “hard-coded” algorithmic detection logic. The choice of 
conflict detection methodology affects not only implementation and testing of SON 
system, but also maintenance of the system. 

This article is organized as follows: in Section 2, characteristics of SON functions 
are described followed by a Section on operations architecture for a SON-capable 
network. In Section 4, the interactions between SON functions are discussed. Sections 
5-7 present approaches for conflict detection and introduce the use of knowledge 
management and reasoning in SON coordination. 

2 Scopes and Locations of SON Functions in a Network 

A SON function instance in a mobile network [1-7] can be characterized in terms of 
its type, scopes and location. Relevant scopes are input scope, impact area, and impact 
time. An input scope of a SON function is the scope in which a SON function 
instance collects the inputs required for its execution. An impact area of a SON 
function is the scope in affected by an action of a SON function instance. The input 
scope and the impact area can each consist of a cell, a cell pair, cell neighbours, a cell 
cluster, sub-network, or the network. Furthermore, an impact time of a SON function 
is the time period during which an action of the SON function instance has an effect 
upon other related SON function instances. The location of a SON function consists 
of the entity or entities where a SON function instance is executed. 

The aforementioned scopes and locations may have a significant effect to the 
network in terms of stability, reliability, scalability, and performance. Usually, a 
function executed frequently requires more scalable architecture. The function might 
benefit from a de-centralized architecture in terms of performance. In such a case, the 
location of the function should be small.  

On the other hand, a centralized approach is suitable for SON functions where the 
scalability and performance requirements are not high, and where the scopes are 
large. Typically the scope in such a case might vary from a cell cluster to network.  

As a summary, when considering the optimal location for a given SON function, one 
may start with the rule of thumb "the faster the SON function is, the more decentralized 
its location is in the network."  However, this rule of thumb may be overly simplistic for 
some SON functions so it should not be assumed to apply in all cases.  

3 Reference Architecture of a SON-Capable LTE Network  
and Its O&M 

Figure 1 shows SON-capable multi-vendor reference architecture for LTE [8] and its 
operations and management (O&M). It is in accord with the LTE and O&M 
architecture made at 3GPP standardization body, where a NE (such as an eNodeB, 
eNB for short) is managed through the Domain Manager (DM) of the same vendor. 
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The network elements under a DM form a vendor domain. Different vendor domains 
can interwork via open interfaces (e.g., X2 and Itf-N). In the Figure, one can see that 
some SON functions are located in network management layer, some in DM, and 
some in NEs (e.g., eNBs). Itf-N and Itf-S are interfaces used for the management of 
eNBs and other management elements (e.g., mobility management entity, MME) of 
the LTE network. The X2 interface is the control interface between eNBs. The control 
interface between an eNB and MME is the S1 interface. More details of the interfaces 
can be found in the standard [8]. The SON function instances reside in network 
manager (NM), DM, or NEs, and their locations are selected according to their input 
and impact scopes.  
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Fig. 1. Multi-vendor reference architecture of a SON-capable LTE network and its O&M, 
where interfaces Itf-N, Itf-S, S1, and X2 are defined in [8] 

SON functions of an LTE network can reside in different network entities. This 
leads to the architecture as shown in Figure 1, which can be called multi-layer SON 
architecture, where some SON functions are realized with a decentralized approach 
and others are implemented with a centralized approach. In this sense, the reference 
architecture is a hybrid multi-layer SON architecture consisting of both decentralized 
and centralized SON functions.  It would be inefficient to centralize a function where 
most of the required data is available in eNB. It would be equally inefficient to 
distribute functions which are dependent on large quantities of X2 data, since in most 
cases the X2 will share the same physical routing with S1. 

This hybrid SON architecture requires a standard SON management framework 
made for O&M, including its standard interface Itf-N. This standard SON 
management framework can be that shown in Figure 2. It proposes a distributed SON 
coordination function to support the operator in the operation of the whole network. 
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This distributed SON coordination function is responsible on (1) reacting to 
operational instructions accordingly, (2) managing the conflicts between the SON 
functions in the network and resolving them, and (3) running operational workflows 
to pursue operational goals.  

The principles of this SON management framework can be summarized as follows: 

• Individual SON functions are located at NE, DM, and NM. 
• A distributed SON coordination function coordinates them. 
• Cross-Itf-N SON conflict/coordination should be standardized (i.e., the blue 

part in the Figure). 
• A vendor-specific SON function can work in NM if it supports the standard 

interface. 
• A vendor-specific SON coordination function can work across NM if it 

supports the standard interface.  

 

Fig. 2. An architecture framework for the distributed SON coordination function 

4 Functional Conflicts in a Self-organizing Network 

This section introduces SON conflicts and the situations in which they arise. 
Examples of SON conflicts are provided below. A good understanding of SON 
conflicts is the basis for correctly operating a SON network with multiple SON 
functions integrated.  
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4.1 General Nature of SON Function Interactions 

A SON interaction takes place between two SON function instances. Such an 
interaction can only appear when there is a dependency either directly or indirectly 
between the two instances. Some SON interactions may actually boost the system 
performance of the network, whereas other SON interactions may have an adverse 
effect on overall performance. The first type of SON interaction could be called as 
positive SON interactions, and the second type negative SON interactions or SON 
conflicts. The latter are the main focus of this article.  

A SON takes place between two or more SON function instances in a given time 
period, where one instance (say A) has an impact on another instance (say B) 
affecting the originally intended operation of the latter instance and thus lower the 
related system performance. The impact of a SON conflict can (1) distort the input for 
Instance B, (2) block the execution of Instance B, (3) cancel the intended action of 
Instance B, (4) cancel the change made by instance B, (5) delete / diminish the 
performance gain achievable by Instance B, and/or (6) compete with Instance B to 
solve the problem that should be solved originally by Instance B alone. Thus, by 
definition, a SON conflict is always directional; Instance A having conflict with 
Instance B in a particular way does not mean that Instance B would conflict with 
Instance A in the same way if at all.  

Specific SON conflicts (more general, SON interactions) can only occur between 
specific SON function instances under an assumption of specific system integration 
and operation environment (including specific priority assumption for the specific 
SON function instances). 

A SON conflict can be further categorized as a direct SON conflict or an indirect 
SON conflict. A direct SON conflict takes place between two or more SON function 
instances on the same network entity in a given time period, as shown in Figure 3. As 
shown in Figure 4 and Figure 5, an indirect SON conflict takes place happens 
between two or more SON function instances that take effect on (1) the same network 
entity at different points of time beyond the above time period (as shown in Figure 4) 
and/or (2) different network entities that would lead to a conflict at certain network 
entity at certain time later (as shown in Figure 5).  

 

Fig. 3. An example of a direct SON conflict between Function B and Function A. From [9] 
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Fig. 4. An example of an indirect SON conflict between Function B and Function A, which 
happens beyond the execution period of Function A. From [9] 

 

Fig. 5. An example of an indirect SON conflict between the functional actions at different NEs 

4.2 Network Parameters Related to SON Functions 

There are many network parameters (a few hundreds, some of which only rarely 
change in the course of network operation) related to SON functions in a self-
organizing LTE network. These parameters include the cell-related identities (IDs), 
radio transmission power and other antenna parameters, radio channel parameters, 
neighbor cell parameters, mobility parameters, etc. As shown in Figure 6, many of 
the network parameters are directly related to two or more different SON function 
types, as their shared inputs, their shared outputs, or both. 

In Figure 6, SON function interacting with another SON function through their 
directly shared network parameters and their indirectly related parameters are 
illustrated. This issue will be discussed in more detail in the next sections.  
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Fig. 6. The network parameters directly shared by different SON functions in a self-organizing 
LTE network. Solid line means a major parameter, while the dashed arrow line means a 
secondary parameter. From [10].  

4.3 Examples of Potential SON Conflicts between Selected SON Functions 

Examples of SON conflicts between selected SON functions are studied below. 

4.3.1   Potential SON Conflicts between Physical Cell ID Function Instances 
Two or more instances of physical cell ID (PCI) function can be active in a network 
or network area at the same time. They can be triggered by the insertion of cells and 
the need to update certain assigned cell IDs. Therefore, there are potential conflicts of 
cell-ID collision caused by two individual instances from assigning their cell IDs. For 
example shown in Figure 7, Cell Z is confused by two of its neighbor cells that have 
the same Physical Cell ID “Cell X” after the PCI instance B assigns the same physical 
cell ID to the latest inserted cell, if they are not coordinated. There is thus the need of 
a conflict solution.  

 

 

Fig. 7. A potential indirect conflict between two PCI instances (A and B) over different time 
and from different cells, where Cell Z is confused by two of its neighbor cells that have the 
same Physical Cell ID “Cell X” after the PCI instance B assigns the same physical cell ID to 
the latest inserted cell, if they are not coordinated 
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4.3.2   Potential SON Conflict between Two Cell Outage Compensation (COC) 
Function Instances in Two Different Domains 

As shown in Figure 8, Cells A1 and A2 belong to Domain A managed by Domain 
Manager A. Cells B1 and B2 belong to Domain B managed by Domain Manager B. 
Cell A2 is neighbour to both Cell A1 and Cell B1. There is an individual COC 
function in each domain, which is running in the domain manager of that domain. 
There is a limit in the reality: Each domain has only visibility to its own domain.   

 

Fig. 8. An example cell outage at the border between two domains, and the problem for 
compensating its coverage by the two COC functions in Domain A and B, where Cell A1 and 
A2 are of Domain A and Cell B1 and B2 are of Domain B 

Now, let us assume that Cell A2 fails, and that the failure creates a coverage hole that 
needs to be fixed with the extended coverage from both Cell A1 and Cell B1. Thus, 
each of the domains should have to activate its COC function. The following cross-
domain conflicts between the COC functions in the different domains can take place: 

• If the neighbouring Domain B finds the outage, the neighbouring Domain B may 
need to activate its COC function and inform Domain A (with the cell outage) to 
activate its COC function. 

• If Domain A (with the cell outage) finds the outage, this domain may need to 
activate its COC function and inform the neighbouring Domain B to activate its 
COC function. 

• When both domains decide their specific cell compensations (e.g., increasing a 
cell coverage towards the outage area), they need to coordinate or be coordinated 
so that to make the specific cell compensations consistent, which fixes the outage 
problem properly. 

This raises the question: how should the coverage of cells A1 and B1 be adjusted 
correctly by the two separated domains? Neither of them has visibility beyond their 
own domain. This problem can only be solved by the cooperation of the COC 
function instances in Domain A and Domain B in run time. They need thus be 
coordinated in run time, so that a potential conflict can be identified, and prevented or 
resolved. 
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5 Information Management Requirements 

Abstracting from previous discussion, the logic for detecting conflicts can be 
summarized as follows: 

• A prevents the execution of B (e.g. number of concurrent instances is 
limited). 

• The output of A changes data in the input scope of B so that execution of B 
is no longer possible. 

• The output of A acts in an opposite direction than that of B. 

Information needed to detect these conflicts require 

1. Type of function instance. 
2. Inputs and outputs associated with a particular function type. 
3. Location of function instance. 
4. Scopes of function instance. 

Of the types of information listed above, #1 is readily known, for #2, the types of 
parameters can be determined in design time (but corresponding scopes only in run 
time), and #3 and #4 are determined in run time. As described above, #4 may involve 
cross-vendor domain operations. 

Due to the number of SON function types, as well as combinations of their relative 
locations and scopes, an exhaustive conflict matrix would be large. Consequently, an 
algorithmic implementation would be equally sizable. Such implementations not only 
need to be implemented and tested, but also maintenance aspects need to be taken into 
account. For instance, a change in the definition of a SON function type could at 
worst require reassessment of the entire conflict matrix. 

Below, an alternative is studied, namely a means of generating interaction analysis 
automatically from small number of more easily verifiable constructs. 

6 Use of Models for Conflict Analysis Generation 

The basis for generation of the conflict is the use of models. Function types are 
modeled in terms of its inputs and outputs, whereas function instances are 
characterized by their type, location, and scopes. Conflict analysis can then be 
generated from small number of rules related to types, inputs, outputs, locations, and 
scopes of function instances. 

Modeling described above can be based on different modeling paradigms. Simple 
Entity-Relationship (ER) model is conceptually the simplest, but ensuring the 
consistency of the model is a challenge. The use of a modeling language alone is not 
enough, but needs to be accompanied by processes and best current practices (BCPs). 
This is also true for more complex variants of ER such as the class diagram of Unified 
Modelling Language (UML). Furthermore, the analysis of ER-type models requires  
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bespoke algorithm which also needs to be maintained and conform to the same set of 
processes and BCPs as the model. Indeed, one might say that the algorithmic 
complexity of conflict analysis has been traded for complexity of model and analysis 
algorithm maintenance.  

These shortcomings can be addressed by using models the consistency of which 
can be readily established, and which facilitate reasoning to at least partly substitute 
bespoke algorithms. This necessitates the use of formal models. We have opted to use 
knowledge modeling paradigm which provide formal semantics, supports reasoning, 
consistency checking, and – as a bonus – also can deal with imperfect information. 
More precisely, we are using Description Logic (DL) models, the properties of which 
are well known [11]. 

With DL models, Knowledge Base (KB) is the basis for reasoning. The creation 
and governance of KB should be designed to minimize effort required and support 
participation of knowledge management roles [12]. In view of these goals, the 
contents of knowledge base can be reduced to the following constituents: 

1. Ontology of SON function types and their inputs and outputs. 
2. Rules for identifying conflicts. 
3. System state (types/locations/scopes of SON function instances). 

Of the above, #1 originates from standards and systems design, #2 is expert 
knowledge, and #3 is imported from the run-time system. As discussed in [12], model 
transformations can be utilized to create KB contents corresponding to #1 and #3. The 
middle constituent needs to be created by expert, but the crucial difference is that 
related modeling can be performed in terms of higher-level domain concepts, as 
illustrated in the example below. The creation of model transformations in #1 and #3 
may require expert knowledge, but their operation does not. 

7 Example  

In this Section, a simple example is studied to illustrate our concepts introduced 
above. 

The example relates to two SON function types: CCO-RET adjusts TRX tilt angle 
and CCO-PWR adjusts transmission power. The SON coordinator is assessing the 
risk of conflict of starting CCO-PWR in cells C2 and C3 while CCO-RET is running 
in cell C1. The sector S1a of cell C1 is neighbor to sectors S2a of cell C2 and S3a of 
cell C3. We shall assume that CCO-RET has been started first, and has output 
parameter TRX-tilt. For simplicity we shall assume that the input and output scopes 
of both functions are the same as their locations, so that e.g. CCO-RET collects its 
input from C1 and also performs adjustments in C1. 

The outputs of both of the functions potentially affect the cell size as well as 
interference caused to neighboring cells. Relevant to the analysis, CCO-RET is 
assumed to have an output parameter TRX-tilt and CCO-power an output TX-power.  
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Both parameters TRX-tilt and TX-power relate to coverage. The two functions may be 
in conflict e.g. so that CCO-RET attempts to reduce interference by tilting its TRX 
down, whereas CCO-power simultaneous decides to increase output power for its 
TRX in a neighboring sector. 

 

Fig. 9. Topology for the example 

Let us next consider how this situation can be modeled with knowledge 
management technologies. We shall use OWL/RDF-like syntax [13] for the 
illustration. In the interests of space, we leave out some details (e.g. relation between 
sectors and cells as well as neighbor relations). 
 
 CCO-RET hasScope C1 
 CCO-power hasScope C2 
 CCO-power hasScope C3 
 CCO-RET hasOutput TRX-tilt 
 CCO-power hasOutput TRX-power 
 TRX-tilt relatesTo Coverage 
 TRX-power relatesTo Coverage 
 Coverage isA DomainConcept 
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Above, the three first assertions define the scopes of the functions, and the two next 
ones establish the relevant input and output parameters for conflict detection. The 
three last assertions, in turn, say that both TRX-tilt and TRX-power relate to the 
domain concept called Coverage. Next we proceed to define the conflict detection 
rule: 
 
 if (Function1 hasOutput which relatesTo DomainConcept D) and 
    (Function2 hasIntput which relatesTo DomainConcept D) and 
    ((scopeOf Function1) AdjacentTo (ScopeOf Function2)) then 
   PotentialConflict 
 
Above, a pseudo-logic description has been used instead of actual OWL rule to 
enhance readability. For simplicity, the rule above assumes that parameter based 
conflict detection is performed in “worst case” manner, i.e., if the parameters of two 
function instances are related to the same domain concept, they always result in a 
conflict. Modelling can be made more accurate by considering parameter value 
ranges. 

The definition of conflict presented above is generic, and is not specific to the 
types of the functions used in the example. The same rule can be readily be used for 
output parameter scope adjacency based conflict detection for any SON functions, 
provided that their parameters are mapped to domain model concepts. Similar generic 
rules can be defined for detecting other types of conflicts (e.g., impact of an output 
parameter of one function instance on an input parameter of another function). 

Some of the advantages of the model-based approach described above are: 
 

• Domain expert defining conflict detection rules can operate with high-level 
conflicts rather than dealing with individual pairs of functions. 

• Reasoner ensures that definitions in the knowledge base are internally 
consistent. 

• If function definition is added or modified, only mapping of parameters to 
domain model need to be checked.  

8 Summary and Outlook 

Concepts related to coordination of self-organized functions have been described with 
a focus on SON conflicts between function instances in run time. SON coordination 
has been analyzed from knowledge management perspective, and summarized the 
benefits of model-based approach as compared to “hard-coded” algorithms. The main 
advantages of the use knowledge management models are consistency, change 
management, and the ability to work on higher conceptual level in defining conflicts. 
The knowledge models for conflict detection uses existing information models and 
expert knowledge as inputs in creating the class model used by the reasoner. 

In production systems, the information management flexibility provided by model-
driven methods needs to be balanced with other considerations, such as real-time 
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performance. The knowledge base / reasoner approach described above is not to be 
taken to substitute other paradigms, but rather to provide a complementary 
functionality where it makes sense. 
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