
Enabling Continuously Evolving
Context Information in Mobile Environments

by Utilizing Ubiquitous Sensors

Stefan Forsström and Theo Kanter

Mid Sweden University, Sundsvall 851 70, Sweden
{stefan.forsstrom,theo.kanter}@miun.se

Abstract. Context-aware applications require local access to current and
relevant views of context information derived from global sensors. Exist-
ing approaches provide only limited support, because they either rely on
a network broker service precluding open-ended searches, or they adopt
a presence model which has scalability issues. To this end, we propose
a fully distributed architecture employing context user-agents co-located
with data-mining agents. These agents create and maintain local schemas
using ranking of global context information based on context proximity.
Continually evolving context information thus provides applications with
current and relevant context views derived from global sensors. Further-
more, we present an evaluation model for assessing the effort required to
present local applications with current and relevant contextual views. We
show in a comparison with earlier work that the approach achieves the
provisioning of evolving context information to applications within pre-
dictable time bounds, circumventing earlier limitations.

Keywords: Evolving context, ubiquitous sensors, mobile environments.

1 Introduction

With the current escalation within mobile Internet-access and smart mobile de-
vices, users demand applications to behave more intelligently. One group of such
intelligent applications is called context-aware applications. These applications
are made aware of their user’s context, to change their own behavior. This opens
up a new field of user friendly services, which can be per person adapted to
provide the best possible service for that particular user. These applications
do however require reliable context information to perform intelligent decision
making. This context information have traditionally been gathered from stored
personal preferences or local sensors on each end users device. However, some
applications have already identified the advantages of also utilizing context in-
formation from other users, to create even better collaborative services. Because
of this, we focus on scenarios which demand a massive collaborative user base
and applications which require access to a large amount of continuously chang-
ing context information. These scenarios are for example, the exchange of road

K. Pentikousis et al. (Eds.): MONAMI 2011, LNICST 97, pp. 289–303, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



290 S. Forsström and T. Kanter

Fig. 1. Our approach to the Internet of Things

characteristics and environmental information between a large number of cars,
when traveling at high speed during hazardous weather. Or the enabling of con-
text based advertisements when users are near a shopping mall. For example,
receiving notification on the amount of available parking space, relevant sales
based on the wardrobe of the user, and the availability of the users clothing
size in the store. Furthermore, these scenarios also include social applications,
for example finding other users with similar interests, or notification on status
changes of relevant friends based on their situation.

To address this, we envision a system where a wide range of connected de-
vices acts as routers and gateways, for sensor based context information coming
from wireless sensor networks (WSN). This can then be shared on the Internet,
creating a system for distributed context, called the Internet of Things. Figure 1
shows an overview of this general system which contains devices connected to the
Internet, sharing and relaying context information from a wide range of attached
sensor in a distributed support. Furthermore, in this paper we will examine the
possibility to create continuously changing context information that can be uti-
lized in this general architecture. This is motivated by the fact that we will
require intelligent context-aware services in the future Internet of Things, which
will demand usage of context in a manner similar to how context behaves in the
real world. Therefore, we consider context information to be continuously chang-
ing and evolving over time. To be concrete, the location of a mobile entity can
change multiple times per second and because other entities services might uti-
lize this information, the most current location must be made available without
delay. The same logic applies to other sensor based context, such as temperature,
humidity, proximity, but also other context information such as mood, interests,



Continuously Evolving Context Information 291

personal profile, etc. Furthermore, intelligent applications will require the con-
text to be current, reliable, and provided without delay even when performing an
open ended search. This complexity poses some significant problems, since con-
text changes very quickly and sometimes without prior notion. We will therefore
need a system which can manage this constantly changing and evolving context,
in addition to disseminating and exchanging the context information to other
entities within predictable time bounds. In detail, each entity in such a system
is required to have a constantly changing object, representing their current con-
text which must be continuously updated and made available to applications, in
the form of a view of the entity’s current context. Therefore, this paper focuses
on the problem of creating a system which is capable of managing this context
evolution, in a manner which can be utilized in mobile applications without hin-
dering the information flow. To be concrete, the following requirements must be
supported:
1. Ubiquitous access to global context information derived from a large number

of sensors with continuously changing values.
2. Support a large number of mobile entities and avoiding single points of fail-

ures.
3. Dissemination of context information within predictable time bounds.
4. Open ended searches in the system, without prior knowledge of the context

sources.
5. Provide access to continually changing global context information as current,

relevant, and accurate contextual views.

The remainder of this paper is organized in the following way: Section 2 examines
background and related work in the area. Section 3 presents our approach and
proposed system for evolving context information. Section 4 presents our proof
of concept prototype and evaluation. And section 5 presents our conclusions and
future work.

2 Related Work

Context and context awareness have been studied for some time in relation to
context-aware applications. But with the recent escalation in the mobile market,
the amount of context-aware applications for mobile devices have proliferated
and increased in multitude. The term context have been defined and redefined on
multiple occasions. One of the most well known within computer science defines
context as the elements of the user’s environment which the computers knows
about. But this was later redefined to also include circumstances, situation, and
relevance. Hong et al. [1] has studied this in detail and the problems which
are faced when creating context awareness. Furthermore, the constant change
of context information dictates that it must be gathered from many different
sources concurrently at the same time. This of often achieved by using auto-
mated sensors, predefined personal profiles, schedules, social networks, address
information, statistics, etc. This autonomously acquired context information can
then be used to create context awareness, which has been formalized into what
we today see as context-aware applications.



292 S. Forsström and T. Kanter

2.1 Related Context Exchange Systems

Related systems can be organized into three distinct categories, depending on
where they store the actual context information. In detail, these three categories
are: centralized, semi distributed, and fully distributed storage.

Centralized systems store the context information under a single administra-
tive authority, either in a single large database or replicated in a cloud based
manner. The IMS presence system [2] is an example of such a centralized system,
which provides presence services that are governed and administrated by an op-
erator. Other examples of centralized storage include the SenseWeb project [3],
SENSEI project [4], and the presence extension to XMPP [5]. Project SERENOA
[6] also has a similar centralized approach with ontology based modeling of con-
text. However, all of these centralized systems have scalability issues when the
number of updates and queries in the centralized storage increase in magni-
tude. This will happen when the number of connected device increases to the
magnitude of millions of entities. Therefore, they will have problems to support
requirement 1 concerning continuously updating data from a large number of
entities. Furthermore, centralized systems also have problems with requirement
2, because they expose a single points of failure.

Semi distributed systems store the context information locally on each en-
tity in a peer-to-peer manner, but still maintaining a centralized authority for
the exchange of context between peers. These systems use session establishment
protocols such as SIP to exchange the context, but under supervision by a cen-
tralized authority. The Mobilife project [7], the CONTEXT project [8], and the
ADAMANTIUM project [9] are examples of such a system with peer-to-peer ex-
change of context under centralized supervision. Naturally, these systems scale
better in comparison to centralized systems. But they still maintain a centralized
component, which will become a bottleneck for the context exchange when the
entities perform open ended queries on a large and continually changing dataset.
This comes from the fact that the centralized component has to administrate all
the sessions, even if the actual exchange is performed outside of the centralized
component. Therefore, semi distributed systems have problems addressing the
single point of failure of requirement 2, because of the centralized component.
In addition to having problems with the support for the open ended searches in
requirement 4.

Fully distributed systems both stores and administrates the context locally
on each entity in a fully peer-to-peer oriented manner. These systems often
utilize distributed hash tables to enable logarithmic scaling when the number of
entities increases in magnitude. Examples of such systems are the MediaSense
framework [10], the SOFIA project [11], and COSMOS [12]. Naturally, these
systems does not contain any single point of failure and are thus more resilient,
even if the distribution itself often require additional overhead for maintaining
the overlay. Also, they have no real support for evolving context and the provision
of contextual views to applications, which is demanded by requirement 5.



Continuously Evolving Context Information 293

Fig. 2. Overview of the proposed architecture

3 Creating Evolving Context Schemas

Because the related systems do not support all the previously specified require-
ments, a new approach is required. Therefore, this paper present an approach
which builds on previous results from [13] and extends that initial approach
to enabling ad hoc context exchange in mobile devices. But in this paper we
consider context to be following a natural form of progression and evolution,
which will gradually change with the situation of the user. We will represent this
evolving context information by an information object called an evolving con-
text schema, which contains all context information related to a specific entity.
This follows the Context Information Integration (CII) model explained in [14],
which proposes the use of a context schema that combines oriented models with
ontological properties. This context schema changes with the user, and contains
all relevant contextual information about that particular entity. Furthermore, in
this paper we will adapt this context model to support dynamic and evolving
context views, created from context schemas located on each entity’s end device.
In detail, the schema will be transformed from a stable database element as it
was in the CII model, to a continuously changing object with the most current
information that can provide context views to applications within predictable
time bounds. An overview of our proposed architecture can be seen in figure 2.
Each of these parts will be explained further in detail on how they contribute
to the creation and utilization of evolving context information. But in overview,
our architecture contains the evolving context schema, the context gatherer, the
traversing agents, the context updating agents, and the context exchange overlay
network.

3.1 Evolving Context Schema

Context schemas will be used to model the evolving context information in our
system. But to create these evolving context schemas, we will require relations



294 S. Forsström and T. Kanter

between different entities’ context. In order to solve this, we utilize context prox-
imity calculations to find related entities based on the context proximity distance
of their respective context schemas. This means that it is possible to determine
that two entities are connected and thus related to each other, based on the fact
that their context relates to each other by a predefined context proximity dis-
tance. This proximity in regards to context has been described by Antifakos et
al. [15], although at that point it was quite simple and primitive. But in detail,
it builds on the idea that if two entities who share similar context is probably
relevant to each other, and is therefore within context proximity to each other.
Furthermore, it is very difficult to determine the context proximity between non-
scalar context values, such as favorite color or favorite restaurant. And because
of this, we will assume in this paper that context proximity can be calculated
by a universal context proximity function. However, we acknowledge that it will
be problematic calculating this scalar distance in the general case between all
different types of context. This schema evolution with relations based on context
proximity can be illustrated algebraically as in equation 1 and 2. In these equa-
tions, Cevolving is the set of currently evolving context in the context schema for
a particular entity. This evolving context schema is defined as the union of the
set of all local context Clocal and the set of all relevant remote context Crelevant.
Furthermore, this relevant set is determined by fcp(), a context proximity func-
tion that can determine if the remote context Cremote is relevant, based on a
specified proximity distance d.

{Cevolving} = {Clocal} ∪ {Crelevant} (1)

{Crelevant} = {Cremote : fcp(Cremote) ≤ d} (2)

These context schemas will continually be evolved by the system, as the entities’
context is always changing. Thus in our architecture, the context gatherer and
the updating agents evolves context from local and remote sources, thus keeping
the Clocal and the Crelevant set up to date. While the traversing agents traverses
the network to find new remote context information, that can be considered
relevant based on the context proximity function. Lastly, the context schema
provides contextual views to applications from the evolving schema. In relation
to the scenario with cars exchanging road characteristics, this will mean that
a car’s context schema would contain the context of the other cars traveling
on the same road as well as the context of its driver and all passengers. Thus
exchanging context with other relevant cars, to provide contextual views to ap-
plications running in their driver assist systems. Hence, the evolving context
schema addresses requirement 5 regarding context views, because applications
can access the evolving context schema and get a view of the current context.
Furthermore, the evolving context schema also addresses requirement 4 regard-
ing open ended searches, because of the context relations created by the context
proximity function.



Continuously Evolving Context Information 295

3.2 Context Gatherer

The context gatherer is a component which gathers context from local sources,
thus providing the Clocal set in equation 1. This component is required for the
enabling of evolving context since most context information has a local sensor as
its originating source of contextual data. These sensors do however impose their
own problems, since they only provide raw values and often in many different
formats based on each manufacturer. Thus, the problem that the context gath-
erer solves is to create context information from many different types of sensors,
while providing this context information upward to the evolving context schema.
In detail, the context gatherer continually read values from sensors either locally
attached, built-in, or connected trough local wired and wireless networks, to sub-
sequently update the values into the evolving context schema. Following this, we
propose the usage of multiple concurrent gatherers which should be specialized
for the different types of sensors and their specific update frequency. Hence, the
context gatherer contributes to the addressing of requirement 1 regarding global
access to sensor information, because it provides sensor information as context
into the evolving context schemas. The operation of the context gatherer can
be seen as a flow chart in figure 3. Furthermore, pseudo code for the context
gatherer’s operation can be seen below.

loop
wait for sensor update
if new sensor value then

update context schema
end if

end loop

Fig. 3. Operation of the context gatherer

3.3 Traversing Agents

The traversing agents solve the problem of finding new relevant context, thus
providing the Crelevant set in equation 2. In detail, the traversing agent browses
the local context schema for relations which could be relevant to explore. To find
a new entity, the traversing agent communicates with a known entity from the
local context schema, asking for other relevant entities. To determine if another



296 S. Forsström and T. Kanter

entity is relevant, the traversing agent utilizes the context proximity function
with a predefined distance. If two entities are in context proximity to each other,
they are considered relevant and the other entity’s relevant context is inserted
into the local context schema. Because of all the traversing, these agents operate
on a best effort system, always traversing the network and evaluating other en-
tity’s context. Each entity can have multiple traversing agents operating at the
same time, because they can concurrently expand the evolving context schema
without internal interference. The traversing agent contributes to the addressing
of requirement 1 regarding global access to sensor information, because it enables
exchange of ubiquitous context information. The algorithm for a traversing agent
is a five step process. Firstly, it acquires the local context schema. Secondly, it
examines the local context schema and chooses a relation which it wants to tra-
verse. Thirdly, it traverses this relation, communicating and fetching the remote
entity’s schema. After it has both the local and the remote schema, it performs
an evaluation based on the context proximity between the schemas. Depending
on the result of the context proximity evaluation, it determines which parts of
the remote context information should be included in the local context schema.
This algorithm for the traversing agents can be seen in figure 4 and pseudo code
for the traversing agent’s operation can be seen below.

loop
get local context schema
choose a relation
acquire remote context schema
for all context in remote schema do

if is within context proximity then
add to local context schema

end if
end for

end loop

Fig. 4. Traversing agent algorithm



Continuously Evolving Context Information 297

3.4 Context Updating Agents

The context updating agents operate in a similar manner as the context gath-
erer. The main difference is that the content gatherer acquire context from local
sources, and the context updating agents acquire context from remote sources.
Therefore the context updating agents is responsible for keeping the Crelevant set
in equation 1 continuously updated and accurate. The context updating agents
are required because the traversing agent only finds new relations, they do not
keep the context values continuously updated. In detail, the context updating
agents examines the local schema and determines if a context value requires
updating. If this is the case, it establishes a connection to the remote source
and acquires the most recent value, to then update the local schema. The sys-
tem will require multiple context updating agents for keeping all context values
continuously updated. Therefore, multiple context updating agents will run con-
currently and acquire context from many different sources at the same time.
Hence, the context updating agent contributes to the addressing of requirement
1 regarding global access to sensor information, because it maintains the context
from sensors with continuously changing values. In detail, the algorithm for a
context updating agent can be seen in figure 5 and visualized in pseudo code
below.

loop
get local context schema
choose a context value
if value require update then

acquire remote context schema
if new value is within context proximity then

update local context with new value
else

remove context value from local context schema
end if

end if
end loop

Fig. 5. Context updating agent algorithm



298 S. Forsström and T. Kanter

Fig. 6. DCXP protocol operation

3.5 Context Exchange Overlay

The communication between entities must be done in a scalable and dynamic
manner, without inducing unnecessary delay. These requirements demand the
usage of a peer-to-peer oriented protocol, which enables direct connections be-
tween entities. This can be realized by any infrastructure able to provide scalable
context dissemination within predictable time bounds, but we have realized it
with the usage of a completely distributed context exchange system called the
DCXP network [16]. However, any type of scalable context exchange network can
be used to create evolving context, even cloud based storage, presence services,
or session establishment systems. In detail, DCXP enables direct dissemination
of context between entities that have joined an overlay network, using a context
user-agent. An overview figure of the dissemination of the DCXP network can
be seen in figure 6, which shows how a context user-agent first must resolve a
sought after context identity and then get the value from the remote source. The
DCXP network scales well due to the logarithmic lookup in its distributed hash
table. But the hash table can be exchanged to other similar infrastructure if de-
manded, for example P-grid. Also, because the actual dissemination is performed
on a peer-to-peer basis without proxies, network delay is kept to a minimum.
This peer-to-peer communication is paramount to the continual context evolu-
tion, because both the context updating agents and the traversing agents operate
under the premise that communication is performed with minimized delays and
within predictable time bounds. Furthermore, the DCXP network can run with-
out relying on centralized naming services such as DNS. The DCXP network
also provide the option to perform open ended searches utilizing the relations
between entities on the overlay, which was demanded by requirement 4. The
DCXP network also address requirement 2 about large amounts of entities with-
out central point of failures and requirement 3 about predictable time bounds.



Continuously Evolving Context Information 299

Fig. 7. A view from the evolving context schema for entity number five

This is because the resolving in the DCXP system scales logarithmically and
that the context is exchanged on a peer-to-peer basis after the initial resolve.

4 Prototype and Evaluation

Figure 7 presents a running proof of concept prototype that shows our approach
in a simulated environment. In detail, the figure shows the graphical view of an
entity’s evolving schema. The graphical view is centered on a particular entity,
in this case entity number five. The view contains the other entities that are in
context proximity, as well as the context proximity distance which can be seen as
a circle in the background. This view is updated continuously as the entity move
around and as new entities enters or leaves the context proximity area. This
simulation is comparable to the scenario with the traveling cars exchanging road
characteristics, as the entities constantly move around and thus dynamically ex-
change context information between each other. The schema in the prototype
does however only contain location based context values, in the form of lati-
tude and longitude. But in conclusion, the prototype proves the feasibility of the
approach because it creates evolving context information from sensor based con-
text. Furthermore, the proposed system was evaluated in comparison to related
alternative systems. And because the related systems were categorized into three
different types, centralized, semi distributed, and fully distributed systems, the
proposed system will be compared against those general architectures.

4.1 Comparison to Centralized Architectures

The scaling of resources such as bandwidth and storage space is a significant
problem in centralized systems when the number of entities increases in mag-
nitude. The proposed system does however provide decentralized access to in-
formation, which scales better in comparison. This can be proved quantitatively



300 S. Forsström and T. Kanter

by looking at the sum of all context information which a centralized system
must manage in its storage. Equation 3 shows the total amount of stored con-
text Cstored in the central database. This can be compared to equation 4, which
shows the amount stored on each entity in the proposed system. From this it is
possible to deduce that the amount of data in a central database will become
unmanageable when the amount of total entities increases in magnitude. The
proposed system will however still have a manageable set of stored data, be-
cause the stored amount is only based on the relevant number of entities, not
the total number of entities in the system. To be concrete, if a system has in total
100 000 entities, with ten context values each, but only fifty of these entities can
be considered relevant for a particular application. The total stored size for a
centralized system would then be 1 000 000 entries, compared to 510 entries in
the proposed system.

Cstored =
total entities∑

n=1

n ∗ Cremote (3)

Cstored = Clocal +
relevant entities∑

n=1

n ∗ Cremote (4)

The same problem occurs when comparing the delays for an application query-
ing the stored context information. The delay Dapplication for centralized ac-
cess can be seen in equation 5, where the transmission delay over the Internet
dtransmission is added twice on top of the database query time dcentral database.
In the proposed architecture the same application access is performed locally,
see equation 6. Thus the delay is isolated to the database query inside the lo-
cal database dlocal database, which was previously proven to also contain a much
smaller dataset. Hence, the centralized lookup will always be two transmission
delays longer than the delay for the local database, regardless of centralized
location and replication.

Dapplication = dtransmission + dcentral database + dtransmission (5)

Dapplication = dlocal database (6)

The proposed system also has a lower propagation delay Dpropagation for when
context information changes. This can be seen in equation 7 and equation 8,
which shows the delay from the point when the context is updated to that when
it has arrived at the application. In centralized systems it is apparent that the
context information must be routed through the centralized point, which induces
an additional transmission delay over the Internet in comparison to peer-to-peer
dissemination. To be concrete, the propagation delay of a centralized system will
always add one additional transmission delay over the Internet, because it has
to relay the information.

Dpropagation = dtransmission + dcentral database + dtransmission (7)



Continuously Evolving Context Information 301

Dpropagation = dtransmission + dlocal database (8)

This problem can also be found when studying the required workload by the
centralized component compared to the distributed workload of each node in the
proposed system. The total workload required to create one view of a schema for
each end application in a centralized system can be seen in equation 9, this can
be compared to equation 10 which shows the required workload on each end node
in the proposed system. However, one important thing to note is that the total
workload will be the same in both systems i.e. the workload of the centralized
system will be equal to the sum of workload by all nodes in the proposed system.

Workloadcentral =
total entities∑

n=0

n ∗ (
related entities∑

m=0

m ∗ Cremote) (9)

Workloadper node =
related entities∑

n=0

n ∗ Cremote (10)

4.2 Comparison to Semi Distributed Architectures

In comparison, both the proposed system and semi distributed systems have the
propagation delay shown in equation 8. However, since a federated broker still
becomes a centralized component, it will scale poorly when performing queries
on the whole dataset. Thus, semi distributed systems scales as a centralized
system, as in equation 5 for such actions. Furthermore, because the centralized
component will require complete knowledge of the system to provide this service,
the system will have to store both centrally in the central component according
to equation 3 and remotely on each entity as in equation 4. Thus, the system
has a very large total amount of stored context information.

4.3 Comparison to other Fully Distributed Architectures

The proposed system is fully distributed, but it has advantages over alternative
fully distributed systems. Related systems such as SOFIA and COSMOS build
on much more cumbersome protocols, which have a larger overhead than the
DCXP protocol. The other distributed systems also offer direct dissemination
of context between entities in a similar manner, but only if the destination is
known beforehand. Thus, such systems would have to communicate with all the
entities on the system in order to create a relevance view. This can be defined
as the total signaling required to create a view and is denoted in equation 11.
This can be compared to the proposed architecture which would only requires
a smaller amount as in equation 12, because it can limit the amount of entities
based on context proximity. To be concrete, given the same system as before
with 100 000 entities having ten context values each and fifty relevant entities
for a particular application. The total signaling in related distributed systems
would be 200 000 transmissions and 100 000 local database lookups, where in the



302 S. Forsström and T. Kanter

proposed system this is limited to 100 transmissions and 50 database lookups.
However, it is important to note that the imposed delay of the communication
do not cumulatively sum to the total delay it takes for creating a view, since the
communication can be performed concurrently among all entities.

Stotal =
total entities∑

n=0

n ∗ (Stransmission + Slocal database + Stransmission) (11)

Stotal =
related entities∑

n=0

n ∗ (Stransmission + Slocal database + Stransmission) (12)

5 Conclusions

This paper proposed an approach to create evolving context information derived
from both global and local sensor information. For this we created a system
which is capable of enabling continuously evolving context from sensor based
sources, as adaptive views for applications within predictable time bounds. Our
system utilizes per entity unique context objects called context schemas, which
are evolved by data-mining agents. These agents provide continuous evolution by
concurrently acquiring context from local and remote sources, while traversing
context relations to find new and relevant sources of context. The architecture
can thus address the requirements defined in section 1 for the demanded system.
Requirement 1 concerned ubiquitous access to context, is fulfilled because the
proposed system can provide ubiquitous and global context information. It also
provides it as current, relevant, and continuously changing views from context
schemas, which was demanded by requirement 5. Requirement 2 concerned the
support for large amount of entities and requirement 3 concerned dissemination
within predictable time bounds, which are both fulfilled by utilizing the well
scaling DCXP network and its context user-agents. In detail, the support for
a large number of mobile entities comes from the logarithmic scaling and the
context exchange within predicable time bounds is provided by the peer-to-
peer dissemination. Furthermore, the system also fulfills requirement 4 which
concerned open ended searches, because it can perform these searches on the
context dataset by traversing the available relations.

The proposed architecture is implemented as a proof of concept prototype
based on a scenario with traveling cars exchanging road characteristics, utiliz-
ing location based sensors which is continuously updating. It is currently being
planned for field trials, which will evaluate and measure the required properties.
Such as initial seeding, propagation delay, workload, application delay, robust-
ness, battery consumption, and scalability. The architecture will thus become
intensively evaluated, to prove that it actually can manage real sensors and
mobile entities with volatile connections. However, the need for context-aware
systems that can provide continuously evolving context is going to be required
for future context-aware applications, in particularly for the Internet of Things.



Continuously Evolving Context Information 303

References
1. Hong, J., Suh, E., Kim, S.J.: Context-aware systems: A literature review and clas-

sification. Expert Systems with Applications 36(4), 8509–8522 (2009)
2. 3GPP, TS 24.141: Presence service using the IP Multimedia (IM) Core Network

(CN) subsystem; Stage 3. 3GPP (December 2009),
http://www.3gpp.org/ftp/Specs/html-info/24141.html

3. Kansal, A., Nath, S., Liu, J., Zhao, F.: Senseweb: An infrastructure for shared
sensing. IEEE MultiMedia 14(4), 8–13 (2007)

4. Presser, M., Barnaghi, P.M., Eurich, M., Villalonga, C.: The SENSEI project:
integrating the physical world with the digital world of the network of the future.
IEEE Communications Magazine 47(4), 1–4 (2009)

5. Saint-Andre, P.: Extensible Messaging and Presence Protocol (XMPP): Core.
IETF, RFC 3920 (2004), http://www.ietf.org/rfc/rfc3920.txt

6. Project Serenoa: Multi-Dimensional Context-Aware Adaptation of Service Front-
Ends, “Context Aware Design Space and Context Aware Reference Framework,”
FP7 ICT 258030, Deliverable 2.1.1 (2011)

7. Klemettinen, M.: Enabling Technologies for Mobile Services: The MobiLife Book.
John Wiley and Sons Ltd. (2007)

8. Raz, D., Juhola, A., Serrat-Fernandez, J., Galis, A.: In: Hutchison, D. (ed.) Fast
and Efficient Context-Aware Services. Wiley, Chichester (2006)

9. Koumaras, H., Negrou, D., Liberal, F., Arauz, J., Kourtis, A.: ADAMANTIUM
project: Enhancing IMS with a PQoS-aware multimedia content management sys-
tem. In: International Conference on Automation, Quality and Testing, Robotics,
vol. 1, pp. 358–363 (2008)

10. Kanter, T., Österberg, P., Walters, J., Kardeby, V., Forsström, S., Pettersson, S.:
The mediasense framework. In: Proceedings of 4th IARIA International Conference
on Digital Telecommunications (ICDT), Colmar, France, pp. 144–147 (July 2009)

11. Toninelli, A., Pantsar-Syväniemi, S., Bellavista, P., Ovaska, E.: Supporting context
awareness in smart environments: a scalable approach to information interoperabil-
ity. In: Proceedings of the International Workshop on Middleware for Pervasive
Mobile and Embedded Computing, pp. 1–4. ACM (2009)

12. Bellavista, P., Montanari, R., Tibaldi, D.: COSMOS: A Context-Centric Access Con-
trolMiddleware forMobileEnvironments. In:Horlait, E.,Magedanz,T.,Glitho,R.H.
(eds.) MATA 2003. LNCS, vol. 2881, pp. 77–88. Springer, Heidelberg (2003)

13. Forsström, S., Kardeby, V., Walters, J., Kanter, T.: Location-Based Ubiquitous
Context Exchange in Mobile Environments. In: Pentikousis, K., Agüero, R., García-
Arranz, M., Papavassiliou, S. (eds.) MONAMI 2010. LNICST, vol. 68, pp. 177–187.
Springer, Heidelberg (2011)

14. Dobslaw, F., Larsson, A., Kanter, T., Walters, J.: An Object-Oriented Model in
Support of Context-Aware Mobile Applications. In: Cai, Y., Magedanz, T., Li,
M., Xia, J., Giannelli, C. (eds.) Mobilware 2010. LNICST, vol. 48, pp. 205–220.
Springer, Heidelberg (2010)

15. Antifakos, S., Schiele, B., Holmquist, L.: Grouping mechanisms for smart objects
based on implicit interaction and context proximity. In: Adjunct Proceedings of In-
ternational Conference on UbiquitousComputing (Ubicomp), Seattle, USA.Citeseer
(2003)

16. Kanter, T., Pettersson, S., Forsstrom, S., Kardeby, V., Norling, R., Walters, J., Os-
terberg, P.: Distributed context support for ubiquitous mobile awareness services.
In: Fourth International Conference on Communications and Networking in China,
ChinaCOM 2009, pp. 1–5 (August 2009)

http://www.3gpp.org/ftp/Specs/html-info/24141.html
http://www.ietf.org/rfc/rfc3920.txt

	Enabling Continuously EvolvingContext Information in Mobile Environmentsby Utilizing Ubiquitous Sensors
	Introduction
	Related Work
	Related Context Exchange Systems

	Creating Evolving Context Schemas
	Evolving Context Schema
	Context Gatherer
	Traversing Agents
	Context Updating Agents
	Context Exchange Overlay

	Prototype and Evaluation
	Comparison to Centralized Architectures
	Comparison to Semi Distributed Architectures
	Comparison to other Fully Distributed Architectures

	Conclusions




