
Using Free Scheduling

for Programming Graphic Cards

Wlodzimierz Bielecki and Marek Palkowski

Faculty of Computer Science, West Pomeranian University of Technology,
70210, Zolnierska 49, Szczecin, Poland

{bielecki,mpalkowski}@wi.zut.edu.pl

http://kio.wi.zut.edu.pl/

Abstract. An approach is presented permitting us to build free schedul-
ing for statement instances of affine loops. Under the free schedule, loop
statement instances are executed as soon as their operands are available.
To describe and implement the approach, the dependence analysis by
Pugh and Wonnacott was chosen where dependences are found in the
form of tuple relations. The proposed algorithm has been implemented
and verified by means of the Omega project software. Results of ex-
periments with the NAS benchmark suite are discussed. Speed-up and
efficiency of parallel code produced by means of the approach are studied.
Problems to be resolved in order to enhance the power of the presented
technique are outlined.

Keywords: fine-grained parallelism, free scheduling, parameterized
affine loops, NVIDIA cards.

1 Introduction

Microprocessors with multiple execution cores on a single chip are typical com-
putation platforms now. The lack of automated tools permitting for exposing
parallelism for such systems decreases the productivity of programmers and in-
creases the time and cost of producing a parallel program.

Because most computations are contained in program loops, automatic extrac-
tion of parallelism from loops is extremely important formulti-core systems, allow-
ing us to produce parallel code from existing sequential applications and to create
multiple threads that canbe easily scheduled to achievehighprogramperformance.

Given a loop, a schedule of loop statement instances is a function that assigns
a time of execution to each loop statement instance preserving all dependences
in this loop. There have been developed numerous approaches to form loop
statement instance scheduling, for example [7,9,12,13,18].

Under the free schedule, loop statement instances are executed as soon as
their operands are available that permits us to extract all fine-grained paral-
lelism available in the loop, but well-known techniques based on linear or affine
schedules do not guarantee finding free scheduling for non-uniform loops.

In this paper, we present a novel technique that permits for building free
scheduling for both uniform and non-uniform loops. It is based on forming the

R. Keller et al. (Eds.): Facing Multicore-Challenge II 2011, LNCS 7174, pp. 72–83, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://kio.wi.zut.edu.pl/

Using Free Scheduling for Programming Graphic Cards 73

exact transitive closure of a dependence relation describing all dependences in a
loop. Experimental results with the NAS benchmarks suite demonstrate that the
approach can be successfully applied to produce parallel programs for NVIDIA
graphic cards.

2 Background

A discussed algorithm deals with static-control loop nests, where lower and up-
per bounds as well as conditionals and array subscripts are affine functions of
symbolic parameters and surrounding loop indices. A statement instance s(I) is
a particular execution of a statement s of the loop for some loop iteration I.

Two statement instances s1(I) and s2(I) are dependent if both access the
same memory location and if at least one access is a write. Provided that s1(I)
is executed before s2(I), s1(I) and s2(I) are called the source and destination
of the dependence, respectively. The sequential execution ordering of statement
instances, denoted as s1(I)≺ s2(J), is induced by the lexicographic ordering of
iteration vectors and the textual ordering of statements when the instances share
the same iteration vector.

Definition [11]. The free schedule is the function that assigns statement in-
stances (for execution) as soon as their operands are available, that is, it is
mapping σ:LD→ Z such that

σ(p) =

{
0 if there is no p′ ∈ LD s.t. p′ ≺ p
1 +max(σ(p′)), p′ ∈ LD, p′ ≺ p

i.e., it is the fastest schedule, where p, p’ are loop statement instances, LD is
the loop domain.

The approach to find free scheduling, presented in this paper, requires an
exact representation of dependences. To describe the approach and carry out
experiments, we have chosen the dependence analysis proposed by Pugh and
Wonnacott [25] where dependences are represented with dependence relations.
This analysis is implemented in Petit [14] which returns a set of dependence
relations describing all dependences in a loop. A dependence relation is a tuple
relation of the form {[input list] → [output list] : constraints}, where input list
and output list are the lists of variables used to describe input and output tuples
and constraints is a Presburger formula describing the constraints imposed upon
input list and output list [20].

The general form of a dependence relation is as follows [25]:

{[s1, ..., sk] → [t1, ..., tk′]|
n∨

i=1

∃αi1, ..., αimis.t.Fi},
where Fi, i=1, 2, ..., n, are conjunctions of affine equalities and inequalities
on the input variables s1, ..., sk, the output variables t1, ..., tk′ , the existentially
quantified variables αi1, ..., αimi and symbolic constants, k, k′,m, n are integers.

An ultimate dependence source (resp. destination) is a source (resp. destina-
tion) that is not the destination (resp. source) of another dependence. A set,

74 W. Bielecki and M. Palkowski

UDS, comprising all ultimate dependence sources can be found as domain(R)-
range(R), where R represents all dependences in a loop.

Given dependence relations R1, R2,..., Rm, our approach requires first prepro-
cessing these relations according to the procedure presented in [2]. Preprocessing
makes the sizes of input and output tuples of dependence relations to be the same
as well as inserts identifiers of loop statements in the last position of input and
output tuples (this permits for applying the union, composition, and difference
operations to relations describing dependences).

Positive transitive closure for a given relation R, R+, is defined as follows
R+ = {[e] → [e′] : e → e′ ∈ R ∧ ∃(e′′ : e → e′′ ∈ R+ ∧ e′′ → e′ ∈ R)}.

Transitive closure, R∗, is defined as follows: R∗ = R+∪I, where I the identity
relation. Details concerning these operations can be found in [16].

3 Finding Free Scheduling for Parameterized Loops

The idea of the algorithm presented in this section is as follows. Given prepro-

cessed relations R1, R2, ..., Rm, we firstly calculate R =
m⋃
i=1

Ri. Next we create

the relation R�by inserting variables k and and k+1 into the first position of
the input and output tuples of relation R; variable k is to present the time
of a partition (a set of statement instances to be executed at time k). Next, we
calculate the transitive closure of relationR�,R�*, and form the following relation

FS = {[X] → [k, Y] : X ∈ UDS (R) ∧ (k, Y) ∈ Range((R�)∗\{[0, X]}) ∧
¬(∃ k�>k s.t. (k�, Y) ∈ Range(R�)+\{[0, X]})},

where (R�)∗\{[0, X]} means that the domain of relation R�* is restricted to the
set including ultimate dependences sources only (elements of this set belong to
the first time partition); the constraint ¬(∃ k�>k s.t. (k�, Y) ∈ Range(R�)+\{[0,
X]}) guarantees that partition k includes only those statement instances whose
operands are available, i.e., each statement instance will belong to one time
partition only.

It is worth to note that the first element of the tuple representing the set
Range(FS) points out the time of a partition while the last element of that
exposes what is the statement whose instance(iteration) is defined by the tuple
elements 2 to n-1, where n is the number of the tuple elements of a preprocessed
relation. Taking the above consideration into account and provided that the
constraints of relation FS are affine, the set Range(FS) is used to generate
parallel code applying any well-known technique to scan its elements in the
lexicographic order, for example the techniques presented in papers[1,26].

The outermost sequential loop of such code scans values of variable k (rep-
resenting the time of partitions) while inner parallel loops scan independent
instances of partition k. Techniques aimed at calculating the transitive closure
of dependence relations are presented in papers [4,5,16] and are out of the scope
of this paper.

Using Free Scheduling for Programming Graphic Cards 75

Finally, we expose independent statement instances, that is, those that do not
belong to any dependence and generate code enumerating them. According to
the free schedule, they are to be executed at time k=0.

Below we present the algorithm that realizes the presented above idea in a
formal way.

Algorithm: Finding free scheduling for statement instances of a parameterized
loop
Input: Preprocessed relation R describing all dependences in a loop.
Output: Code representing free scheduling.
Method:

1. Transform relation R of the form {[X] → [Y] : constraints}, where X and Y
are vectors representing the input and output tuple variables, respectively,
to relation R�of the form {[k, X] → [k+1, Y] : constraints ∧ k � 0}.

2. Calculate (R�)+ using any of known techniques, for example those presented
in papers [4,5,16].

3. Form the following relation FS :
FS = {[X] → [k, Y] : [X] ∈ UDS (R) ∧ [k, Y] ∈ Range((R�)∗\{[0, X]}) ∧
¬(∃ k�>k s.t. [k�, Y] ∈ Range(R�)+\{[0, X]})}.

4. Generate code scanning elements of the set Range(FS). For this purpose,
apply any well-known algorithm, for example that published in [14]. The
outermost sequential loops of this code scan time partitions while the inner
parallel loops scan instances to be executed in a particular partition.

5. Find set, IND, containing independent statement instances:
IND = IS - (domain(R) ∪ range(R)),
where IS represents the union of preprocessed iterations sets of all loop
statements. Generate code scanning elements of set IND. For this purpose,
apply any well-known algorithm, for example that published in [14]. This
code is to be executed at time k=0.

Let us illustrate the presented algorithm by means of the following imperfectly
nested parameterized loop.

Example 1

for(i=1; i<=n; i++){

a[i][0] = 1; //s1

for(j=1; j<=n; j++){

a[i][j] = a[i-1][j] + a[i][j-1]; //s2

}

}

There are the three dependence relations returned by Petit
R1 ={[i,-1,1] → [i,1,2] : 1 � i � n};
R2 ={[i,j,2] → [i+1,j,2] : 1 � i < n && 1 � j � n};
R3 ={[i,j,2] → [i,j+1,2] : 1 � i � n && 1 � j < n}.

76 W. Bielecki and M. Palkowski

Fig. 1. The free schedule for Example 1 when n=5. The solid lines represent depen-
dences, the dotted lines represent synchronization barriers between time partitions.

Figure 1 presents the free schedule for the loop of Example 1 when n=5.
Applying the presented algorithm, we get the following results being produced

by means of the Omega calculator.

1. R�= {[k,i,-1,1]→ [k+1,i,1,2] : 1� i� n && 0 � k} ∪ {[k,i,j,2]→ [k+1,i+1,j,2]
: 1 � i < n && 1 � j � n && 0 � k} ∪ {[k,i,j,2] → [k+1,i,j+1,2] : 1 � i �
n && 1 � j < n && 0 � k}.

2. R�+ = {[k,i,j,2] → [k’,i’,i-k+j-i’+k’,2] : 1 � i � i’ � n && 0 � k < k’ && 1
� j && k+i’ � i+k’ && i+j+k’ � n+k+i’} ∪ {[k,i,-1,1] → [k’,i’,i-k+k’-i’,2]
: 1 � i � i’ � n && k+i’ < i+k’ && 0 � k && i+k’ � n+k+i’}.

3. FS = {[1,-1,1] → [k,i’,k-i’+1,2] : 1 � i’ � k, n && k < n+i’} ∪ {[i,-1,1] →
[0,i,-1,1] : 1 � i � n}.

4. Range(FS) = {[k,i,k-i+1,2]: 1 � i � k, n && k < n+i} ∪ {[0,i,-1,1]: 1 � i �
n}.
The loop scannig elements of the set Range(FS) for k≥0 and being produced
by the codegen function of the Omega library is as follows.

for(t2 = 1; t2 <= n; t2++) { // parallel loop

a[t2][0] = 1; // s1(0,t2,-1,1);

}

for(t1 = 1; t1 <= 2*n-1; t1++) {

for(t2 = max(-n+t1+1,1); t2 <= min(n,t1); t2++) { //parallel loop

a[t2][t1-t2+1] = a[t2-1][t1-t2+1] + a[t2][t1-t2];

// s1(t1,t2,t1-t2+1,2);

}}

5. IND = ∅. There is no independent statements in the loop.

Using Free Scheduling for Programming Graphic Cards 77

The pseudocode above was manually transformed to the parallel code for NVIDIA
cards presented below. The main function of this code runs kernels of parallel
loops. The value of variable n blocks represents the number of threads that exe-
cute a single block of independent loop statement instances, i.e., the number of
engaged CUDA cores. The value of variable idx defines the identifier of a block;
the values of variables lb and ub indicate the lower and upper bounds of the par-
allel loop, respectively; variable packet is to represent the number of iterations
in a block.

//Kernel definitions

__global__ void loop1_gpu(float (*a)[n])

{

int idx = blockIdx.x, t2;

int packet = (int)ceil(n / blockDim.x);

int lb = idx*packet+1;

int ub = ((idx+1)*packet < n) ? (idx+1)*packet : n;

for(int t2 = lb; t2 <= ub; t2++)

a[t2][0] = 1;

}

__global__ void loop2_gpu(float (*a)[n], t1)

{

int idx = blockIdx.x, t2;

int packet = (int)ceil((max(-n+t1+1,1) - min(n,t1)) / blockDim.x);

int lb = idx*packet+max(-n+t1+1,1);

int ub = ((idx+1)*packet < min(n,t1)) ? (idx+1)*packet : min(n,t1);

for(int t2 = lb; t2 <= ub; t2++)

a[t2][t1-t2+1] = a[t2-1][t1-t2+1] + a[t2][t1-t2];

}

int main(int argc, char * argv[]){

...

int threads_per_block = 1;

int n_blocks = atoi(argv[1]); // number of CUDA cores

// Kernel invocation

loop1_gpu <<< n_blocks, threads_per_block>>> ((float(*)[n])d_A);

for(t1 = 1; t1 <= 2*n-1; t1++) {

loop2_gpu <<< n_blocks, threads_per_block>>> ((float(*)[n])d_A, t1);

...

}

4 Experimental Results

The presented algorithm was implemented by us in a tool by means of the Omega
library. It generates C-like pseudo-code scanning loop statement instances

78 W. Bielecki and M. Palkowski

according to free scheduling. Using this tool, we have experimented with loops
of the NAS 3.2 benchmark suite [23].

The NAS Parallel Benchmarks (NPB) have been developed at the NASA
Ames Research Centre to study performance of parallel supercomputers. Bench-
marks are derived from computational fluid dynamics and include [23]:

– EP - An embarrassingly parallel kernel, which evaluates an integral by means
of pseudorandom trials.

– MG - Simplified multigird kernel, which solves a 3D Poisson PDE.
– CG - A conjugate gradient method is used to compute an approximation to

the smallest eigenvalue of a large, sparse, symmetric positive definite matrix.
– FT - A 3-D partial differential equation solution using FFTs.
– IS - A large integer sort.
– LU - A regular-sparse, block (5x5) lower and upper triangular system solu-

tion.
– SP - Solution of multiple, independent systems of non diagonally dominant,

scalar, pentadiagonal equations.
– BT - Solution of multiple, independent systems of non diagonally dominant,

block tridiagonal equations with a (5x5) block size.
– UA - Unstructured Adaptive, a new kernel solving scientific problems fea-

turing irregular, dynamic memory accesses.
– DC, DT - Data Cube operator and Data Transfer benchmarks.

From 431 loops of the NAS benchmark suite, Petit is able to carry out a depen-
dence analysis for 257 loops only, and it discovers dependences in 133 loops only.
For 133 loops qualified for experiments, the tool is able to calculate the transitive
closure of dependence relations for 96 loops. Scheduling and generating code are
possible for 65 ones (for the rest 31 loops the algorithm fails to produce relation
FS due to the time out limitation - maximum 10 seconds to produce set FS).
For 19 from those 65 loops, the algorithm does not expose any parallelism (there
exists a single statement instance for each time partition). Therefore parallelism
is extracted for 46 loops only.

To assess the efficiency of code produced by the proposed algorithm, the
following criteria were taken into account for choosing NAS loops: (i) a loop
must be computatively heavy (there are many NAS benchmarks with constant
upper bounds of loop indices, hence their parallelization is not justified), (ii)
code produced by the algorithm must be parallel (there are NAS loops for which
there exists a single statement instance for each time partition), (iii) structures of
chosen loops must be different (there are many NAS loops of a similar structure).
Applying these criteria, we selected the following NAS loops: FT auxfnct 2 (Fast
Fourier Transform Benchmark), UA diffuse 4 and UA transfer 4 (both from
Unstructured Adaptive benchmark).

Codes, produced for these loops by the presented approach, were manually
converted by us to parallel programs to be executed on an NVIDIA graphic card
8800 GTS, 96 CUDA Cores, 1.6 GHz, GDDR3 512 MB (in the same way as
it is done for Example 1). For this purpose, we have used the NVIDIA CUDA
library [24].

Using Free Scheduling for Programming Graphic Cards 79

Table 1. Results for NAS benchmarks

Loop Upper data transf.
time (without data transfer time)

bounds time, s. 1 GPUs 2 GPUs 8 GPUs 96 GPUs

FT auxfnct 2
N1, N2, N3
= 100

a: 0.00034
s: 0.00626
f: 0.00750
t: 0.01411

0.4632 0.2330 0.0572 0.0088

N1, N2, N3
= 200

a: 0.00044
s: 0.04988
f: 0.04611
t: 0.09643

3.9193 1.9588 0.4952 0.0872

UA diffuse 4
N1, N2 =
64; N3, N4
= 10

a: 0.00032
s: 0.00319
f: 0.00167
t: 0.00518

0.1959 0.0979 0.0275 0.0011

N1,N2 =
128; N3,N4
= 10

a: 0.00035
s: 0.00972
f: 0.00561
t: 0.01567

0.8055 0.3970 0.1064 0.0159

UA transfer 4
N1, N2 =
1000

a: 0.00032
s: 0.00632
f: 0.00264
t: 0.00928

0.4053 0.2458 0.0717 0.0202

N1, N2 =
2000

a: 0.00037
s: 0.02510
f: 0.00981
t: 0.03528

1.6222 0.9294 0.2456 0.0476

Table 1 presents results of time measuring (in seconds) for executing the chosen
loops on the graphic card. The execution time of a loop consists of the time of
data transfer to/from a graphic card and the time of calculations. Experiments
were carried out for two different values of the upper bounds of loop indices (see
column 2). The time of data transfer (see column 3) comprises the times of [24]:
allocation (a), sending data to the graphic card (s), and fetching data memory of
the graphic card (f). Column 3 presents also the sum of those times as the time of
data transfer (t). It is worth to note that the time of data transfer does not depend
on the number of GPU cores [24]. Columns 4-7 show the time of calculations (not
including the time of data transfer) for 1, 2, 8, and 96 GPU cores.

Table 2 presents the execution time (the sum of the time of data transfer and
the time of calculations), speed-up, and efficiency for different numbers of GPU
cores. The results in Table 2 demonstrate that parallel loops formed on the basis
of parallel code produced by the algorithm: i) permit for utilizing many GPU
cores (up to 96 under our experiments); ii) speed-up increases with increasing the
number of GPU cores (up to 96 under our experiments). For loop UA diffuse 4,
increasing values of N1 and N2 leads to decreasing speed-up for 96 cores. This
can be explained by increasing the number of synchronization evens and not

80 W. Bielecki and M. Palkowski

Table 2. Time, speed-up, and efficiency

Loop Upper
1 GPU 2 GPUs 8 GPUs 96 GPUs

bounds time,s time,s S E time,s S E time,s S E

FT auxfnct 2
N1,N2,N3=
100

0.477 0.247 1.93 0.97 0.118 6.69 0.84 0.023 20.84 0.22

N1,N2,N3=
200

4.016 2.055 1.95 0.98 0.592 6.79 0.85 0.184 21.86 0.23

UA diffuse 4
N1,N2=64;
N3,N4=10

0.201 0.103 1.95 0.98 0.033 6.15 0.77 0.006 31.87 0.33

N1,N2=128;
N3,N4=10

0.821 0.413 1.99 0.99 0.122 6.72 0.84 0.032 25.99 0.27

UA transfer 4
N1,N2= 1000 0.415 0.255 1.63 0.81 0.081 5.12 0.64 0.030 14.04 0.15
N1,N2= 2000 1.657 0.965 1.72 0.86 0.281 5.90 0.74 0.083 20.01 0.21

enough increasing the work running by each core. However, with increasing the
number of cores, speed-up increases for the same values of the loop upper bounds.

To evaluate the time complexity of the algorithm presented in this paper, we
measured the time that takes the tool, implementing the presented algorithm,
from the beginning of a dependence analysis to the end of pseudo code generation
on the machine with the following features: Intel Core 2 Duo 2.34 Ghz, 2 GB
RAM, Ubuntu Linux.

Table 3. Time complexity of the algorithm

loop dep. analysis, s R′+ and Range(FS), s Final code, s Total time, s

FT auxfnct 2 0.01 0.07 0.01 0.09

UA diffuse 4 0.01 0.05 0.01 0.07

UA transfer 4 0.01 0.03 0.01 0.05

In our implementation, Petit was used as the dependence analyser. Calculating
R�+ and the set Range(FS) was carried out by a function written by us, and
final code generation was realized on the basis of the Omega library codegen
function. Table 3 presents the results for the three examined NAS loops. The
first column contains the name of a loop while the remaining columns expose
time measurement results (in seconds): of dependence analysis, calculating R′+

and Range(FS), final code generation, and the total time.
Table 4 presents the comparison of time measurements for an Intel Core 2 Duo

2.34 Ghz computer (1 and 2 CPUs) and an NVIDIA 8800 GTS graphic card (1
and 96 CUDA cores). Loop FT auxfnct 2 is executed much faster on 96 CUDA
cores than on two CPU cores. For the next two loops, free-scheduling introduce
high volume of synchronization on two CPU cores that results in negative speed-
up, while for the graphic card the speed-up is about 20 for 96 cores.

Based on the presented results, we can conclude that the presented algo-
rithm can be successfully applied for producing parallel programs for many NAS
benchmarks to be executed on graphic cards.

Using Free Scheduling for Programming Graphic Cards 81

Table 4. CPU and GPU times comparison

Loop Upper bounds 1 CPU 2 CPUs 1 GPU 96 GPUs

FT auxfnct 2
N1,N2,N3= 100 0.174 0.091 0.477 0.023
N1,N2,N3= 200 2.081 1.543 4.016 0.184

UA diffuse 4
N1,N2=64; N3,N4=10 0.010 0.027 0.201 0.006
N1,N2=128; N3,N4=10 0.038 0.046 0.821 0.032

UA transfer 4
N1,N2= 1000 0.028 0.050 0.415 0.030
N1,N2= 2000 0.071 0.101 1.657 0.083

5 Related Work

The approaches published in [8,17,22,21] build an explicit graph of a subset of
the iteration space, with each node representing the instance of a statement. Free
scheduling can be found by searching the graph or using the transitive closure
of the graph, but dependences are restricted to uniform ones and the problem
regarding boundary cases exists.

For the case of polyhedral approximations of dependences (including direction
vectors), Darte and Vivien’s algorithm is optimal but it does not guarantee
forming free scheduling for parameterized loops [10].

For affine dependences, the most powerful algorithm for building scheduling
is Feautrier’s one based on multi-dimensional affine schedules [13]. But as men-
tioned by Feautrier, it is not optimal for all codes with affine dependences. How-
ever, the dimension of the schedules built by Feautrier’s algorithm is minimal
for each statement of the loop nest [27].

The approaches published in [7,15,19] present different ways of building affine
partition mappings, but none of them guarantees producing free scheduling for
the general case of loops with affine dependences.

Paper [3] presents a technique permitting for building free scheduling but only
for non-parameterized loops.

The approach presented in [6] permits for extracting free scheduling within
each synchronization-free slice but it does not produce free scheduling for all
loop statement instances.

6 Conclusion and Outlook

In this paper, we presented the algorithm that permits us to build free scheduling
for statement instances of parameterized arbitrarily nested loops. The necessary
condition to apply it is the possibility of the calculation of the exact transitive
closure of a relation describing all dependences in a loop.

There are tasks to be resolved in the future to strengthen the power of the
presented algorithm and justify its application for parallelizing real-life codes:
1) developing algorithms and corresponding implementations permitting for au-
tomatic NVIDIA code generation from pseudo code produced by the presented

82 W. Bielecki and M. Palkowski

algorithm; 2) when a free schedule is represented by non-linear forms, tech-
niques should be developed to generate code enumerating statement instances
under such a schedule.

References

1. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In:
PACT 13 IEEE International Conference on Parallel Architecture and Compilation
Techniques, Juan-les-Pins, pp. 7–16 (September 2004)

2. Beletska, A., Bielecki, W., Cohen, A., Palkowski, M., Siedlecki, K.: Coarse-grained
loop parallelization: Iteration space slicing vs affine transformations. Parallel Com-
puting 37, 479–497 (2011)

3. Beletskyy, V., Siedlecki, K.: Finding Free Schedules for Non-uniform Loops. In:
Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790,
pp. 297–302. Springer, Heidelberg (2003)

4. Bielecki, W., Klimek, T., Trifunovic, K.: Calculating exact transitive closure for a
normalized affine integer tuple relation. Electronic Notes in Discrete Mathemat-
ics 33, 7–14 (2009)

5. Wlodzimierz, B., Tomasz, K., Marek, P., Beletska, A.: An Iterative Algorithm of
Computing the Transitive Closure of a Union of Parameterized Affine Integer Tuple
Relations. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part I. LNCS, vol. 6508,
pp. 104–113. Springer, Heidelberg (2010)

6. Bielecki, W., Palkowski, M.: Extracting Both Affine and Non-linear
Synchronization-Free Slices in Program Loops. In: Wyrzykowski, R., Don-
garra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009. LNCS, vol. 6067, pp.
196–205. Springer, Heidelberg (2010)

7. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. In: Conference on Program-
ming Language Design and Implementation, pp. 101–113. ACM (2008)

8. Chen, D.K.: Compiler optimizations for parallel loops with fine-grained synchro-
nization. Ph.D. thesis, Champaign, IL, USA (1994), uMI Order No. GAX95-12325

9. Darte, A., Robert, Y.: Constructive methods for scheduling uniform loop nests.
IEEE Trans. Parallel Distrib. Syst. 5, 814–822 (1994)

10. Darte, A., Vivien, F.: Optimal fine and medium grain parallelism detection in
polyhedral reduced dependence graphs. In: Proceedings of the 1996 Conference
on Parallel Architectures and Compilation Techniques, PACT 1996, pp. 281–291.
IEEE Computer Society, Washington, DC, USA (1996)

11. Darte, A., Khachiyan, L., Robert, Y.: Linear scheduling is nearly optimal. Parallel
Processing Letters 1(2), 73–81 (1991)

12. Feautrier, P.: Some efficient solutions to the affine scheduling problem: I. one-
dimensional time. Int. J. Parallel Program. 21(5), 313–348 (1992)

13. Feautrier, P.: Some efficient solutions to the affine scheduling problem: II. multi-
dimensional time. Int. J. Parallel Program. 21(5), 389–420 (1992)

14. Kelly, W., Maslov, V., Pugh, W., Rosser, E., Shpeisman, T., Wonnacott, D.: The
omega library interface guide. Tech. rep., College Park, MD, USA (1995)

15. Kelly, W., Pugh, W.: A framework for unifying reordering transformations. Tech.
rep., Univ. of Maryland Institute for Advanced Computer Studies Report No.
UMIACS-TR-92-126.1, College Park, MD, USA (1993)

Using Free Scheduling for Programming Graphic Cards 83

16. Kelly, W., Pugh, W., Rosser, E., Shpeisman, T.: Transitive closure of infinite graphs
and its applications. Int. J. Parallel Programming 24(6), 579–598 (1996)

17. Krothapalli, V., Sadayappan, P.: Removal of redundant dependences in doacross
loops with constant dependences. IEEE Transactions on Parallel and Distributed
Systems 2, 281–289 (1991)

18. Le Gouëslier d’Argence, P.: Affine scheduling on bounded convex polyhedric do-
mains is asymptotically optimal. Theor. Comput. Sci. 196, 395–415 (1998)

19. Lim, A.W., Cheong, G.I., Lam, M.S.: An affine partitioning algorithm to maxi-
mize parallelism and minimize communication. In: Proceedings of the 13th ACM
SIGARCH International Conference on Supercomputing, pp. 228–237. ACM Press
(1999)

20. Surhone, L.M., Tennoe, M.T., Henssonow, S.F.: Presburger Arithmetic. VDM Ver-
lag Dr. Mueller AG & Co. Kg (2010); ISBN: 6133083557

21. Midkiff, S.P., Padua, D.A.: Compiler algorithms for synchronization. IEEE Trans-
actions on Computers 36, 1485–1495 (1987)

22. Midkiff, S.P., Padua, D.A.: A comparison of four synchronization optimization
techniques. In: ICPP (2), pp. 9–16 (1991)

23. NAS: Parallel Benchmarks Suite, Version 3.3 (February 2008),
http://www.nas.nasa.gov

24. NVIDIA: NVIDIA CUDA C Programming Guide 4.0 (2011),
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/

CUDA C Programming Guide.pdf

25. Pugh, W., Wonnacott, D.: An Exact Method for Analysis of Value-Based Array
Data Dependences. In: Banerjee, U., Gelernter, D., Nicolau, A., Padua, D.A. (eds.)
LCPC 1993. LNCS, vol. 768, pp. 546–566. Springer, Heidelberg (1994)

26. Verdoolaege, S.: Integer set library - manual. Tech. rep. (2011),
http://www.kotnet.org/~skimo//isl/manual.pdf

27. Vivien, F.: On the Optimality of Feautrier’s Scheduling Algorithm. In: Monien,
B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 299–308. Springer,
Heidelberg (2002)

http://www.nas.nasa.gov
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://www.kotnet.org/~skimo//isl/manual.pdf

	Using Free Scheduling
for Programming Graphic Cards
	Introduction
	Background
	Finding Free Scheduling for Parameterized Loops
	Experimental Results
	Related Work
	Conclusion and Outlook
	References

