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Preface

The Multicore Challenge is still causing agonizing pain on users of scientific
computing, software developers, and vendors. While in theory the exponential
increase of computing power is about to continue at least for the next couple
of years, it is more and more difficult to harness the capabilities of parallel
hardware in practical implementations. With the conference for young scientists
“Facing the Multicore Challenge”, which was held in Heidelberg in 2010, we
initiated a platform for the mutual exchange between young researchers and ex-
perienced specialists in the domain of high-performance computing. The paper
contributions, recent discussions, and the observations within the current com-
puting landscape gave rise to the idea to have a second edition of the conference
in 2011. The present proceedings are the outcome of this second conference for
young scientists – “Facing the Multicore Challenge II” – held at the Karlsruhe In-
stitute of Technology (KIT), September 28–30, 2011. The conference focused on
the topics and the impact of multicore, manycore and coprocessor technologies
in science and for large-scale applications in an interdisciplinary environment.

The 2011 conference – partially funded by KIT – placed emphasis on the
support and the advancement of young researchers. It brought together leading
experts as well as motivated young researchers in order to discuss recent devel-
opments, the present status of the field, and its future prospects in a pleasant
atmosphere stimulating the exchange of ideas. It was the designated goal to
address current issues including mathematical modeling, design of parallel algo-
rithms, aspects of microprocessor architecture, parallel programming languages,
compilers, hardware-aware computing, heterogeneous platforms, emerging ar-
chitectures, tools, performance tuning, and requirements for large-scale applica-
tions. The results of the presented research papers clearly show the potential of
emerging technologies in the area of multicore and manycore processors that are
paving the way toward personal supercomputing and very likely toward exascale
computing. However, many issues related to parallel programming environments,
development of portable and future-proof concepts, and the design of scalable
and manycore-ready algorithms still need to be addressed in future research.
Some of these points are the subject of the presented papers.

These proceedings include diverse and interdisciplinary research work. In the
contributed papers the status of the parallel evolution is investigated and theses
for further development of hardware and software are discussed. Then, a load-
balancing approach for hybrid programming models is considered and benefits
of a task-based programming model are underlined. Research papers on parallel
programming environments include a productivity and performance analysis and
a case study of a programming model with high-level description of algorithms
and automated vectorization. An application and performance study based on a
simulator considers aspects of asymmetric manycore architectures. Furthermore,
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the mapping of a matrix estimation algorithm to an FPGA platform is investi-
gated. Scheduling techniques for graphics processing units (GPUs) are presented
in another paper. In the context of GPU computing, two research paper deal with
the mapping and GPU acceleration of graph algorithms. The proceedings fur-
ther describe the experience with high-level programming approaches for GPUs.
Finally, the issues of parallel numerical methods in the manycore era are dis-
cussed in four research papers – highlighting aspects of a hybrid parallelization
of a realistic simulation as well as of algebraic and geometric multigrid solvers
and parallel preconditioners.

The conference organizers and editors would like to thank all the contribu-
tors for submitting exciting and novel work and providing multifaceted input to
the discussions. Special thanks is devoted to the Technical Program Committee
for their exhaustive work and effort in the reviewing process and their helpful
feedback for the authors. Last but not least, we would like to acknowledge the
financial support from Karlsruhe Institute of Technology in the context of the
KIT Startup Budget 2011.

The conference Facing the Multicore-Challenge II was kindly funded and
supported by the Karlsruhe Institute of Technology (KIT) in the context of the
Startup Budget 2011. The Shared Research Group 16-1 of Jan-Philipp Weiss at
KIT has received financial support from the Concept for the Future of Karlsruhe
Institute of Technology in the framework of the German Excellence Initiative and
the industrial collaboration partner Hewlett-Packard. The graphics on the cover
were kindly produced by Dimitar Lukarski.

September 2011 Rainer Keller
David Kramer

Jan-Philipp Weiss
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Only the First Steps of the Parallel Evolution
Have Been Taken Thus Far

James Reinders

Director, Evangelist, Intel Corporation,
Hillsboro, Oregon, USA

james.r.reinders@intel.com

1 Introduction

We are roughly fives years into the multicore era of computing, and it is safe to say that
a parallel evolution is well underway. We have only taken the first steps along this evo-
lution. In my talk, and this paper, I offer a brief history of the evolution and predictions
of four major trends that will, or have, emerged and help characterize the future.

The four major trends that I have chosen to highlight and discuss are:

1. The future of hardware is specialization and programmability.
2. The future of system design is imbalance.
3. The future of programming is parallelism.
4. The future of computing is data processing using parallelism.

2 The Trends Driving Us to Parallelism

Parallel computers have been around for many years, but several recent trends have
led to increased parallelism in even common everyday computers. These trends can be
illustrated by looking at characteristics of Intel processors from 1971 to date. While
all the data in these graphs are from Intel product lines, the same trends are apparent
across the industry in the product lines of other vendors. From these trends, the asser-
tion that hardware now generally requires explicit parallel programming to maximize
performance would be difficult to refute.

In 1965, Gordon Moore observed that transistor densities on silicon devices were
doubling about every two years. This observation has become known as Moore’s Law.
Consider Figure 1, which shows a plot of transistor counts for Intel microprocessors.
Two data points at the extremes of this chart are approximately 0.001 million 10−3 tran-
sistors in 1971 and 1000 million 103 transistors in 2011. That works out to 1.995x every
two years, showing that 2x per year has been amazingly accurate over four decades.

This exponential growth has created opportunities for more and more complex de-
signs for microprocessors. Until 2004, there was also a rise in the switching speed
of transistors. This translated into an increase in the performance of microprocessors
through a steady rise in the rate at which their circuits were clocked. An increase in
clock rate, if the instruction set remains the same (as has mostly been the case for the
Intel architecture), translates roughly into an increase in the rate at which instructions

R. Keller et al. (Eds.): Facing Multicore-Challenge II 2011, LNCS 7174, pp. 1–9, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 J. Reinders

Fig. 1. Moore’s Law, which observes that the number of transistors on a chip will double about
every two years, continues to this day (log scale). In the multicore era, different versions of
processors with different cache sizes and core counts has led to a greater diversity in processor
sizes in terms of transistor counts.

are completed and therefore an increase in computational performance. This increase is
shown in Figure 2.

Many of the increases in processor complexity have also been to increase perfor-
mance, even on single core processors, so the actual increase in performance has been
greater than this.

From 1973 to 2003, clock rates increased by three orders of magnitude (1000x),
from about 1MHz in 1973 to 1GHz in 2003. However, as is clear from Figure 2, clock
rates have now ceased to grow, and are now generally top out around 3GHz. In 2005,
three factors converged to limit the growth in performance of single cores, and shift new
processor designs to the use of multiple cores. These are known as the “three walls”:

Fig. 2. Growth of processor clock rates over time (log scale). This graph shows a dramatic halt
by 2005.
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1. The Power Wall: Growth in power usage with clock rate that reached an unaccept-
able level.

2. The ILP Wall: Instruction level parallelism maximally exploited, with little remain-
ing opportunity.

3. The Memory Wall: A growing gap between processor speeds and memory speeds
leading to little gain from continued processor speed gains.

In order to achieve increasing performance over time for each new processor genera-
tion, we see these three as limiting factors for designs. We cannot depend on rising clock
rates due to the power wall. We cannot depend on automatic mechanisms to find (more)
parallelism in serial code, due to the ILP wall. In order to achieve higher performance,
we must write explicitly parallel programs. When writing these parallel programs, the
memory wall makes it very valuable to account for communication and memory ac-
cess costs. It is often advantageous to use additional parallelism to hide the latency of
memory access.

Instead of using the growing number of transistors predicted by Moore’s Law for
ways to maintain the serial processor illusion, architects of modern processor designs
now provide multiple mechanisms for explicit parallelism. We must use them, and use
them well, in order to achieve performance that will continue to scale over time.

The resulting trend in hardware is clear: more and more parallelism at a hardware
level will become available and can benefit applications written to utilize it. How-
ever, unlike rising clock rates, non-parallelized application performance will not change
without active changes in programming. The so-called “free lunch”1 of automatically
faster serial applications through faster microprocessors has ended. The “new free
lunch” requires scalable parallel programming. The good news is that if we design a
program for scalable parallelism, it can continue to scale as processors with more par-
allelism become available. Parallelism in hardware has been present since the earliest
computers and reached a great deal of sophistication in mainframe and vector super-
computers by the late 1980’s. For mainstream computation, miniaturization using inte-
grated circuits started with designs that were largely devoid of hardware parallelism in
the 1970s. Microprocessors emerged first using simple single threaded designs based on
a very limited transistor budget. In 1971, the Intel 4004 4-bit microprocessor, designed
to be used in an electronic calculator, was introduced. It used only 2,300 transistors in
its design. The most recent Intel processors use over billions of transistors; a billion
transistors would be enough for 434,782 Intel 4004 processors.

Hardware is naturally parallel since each transistor can switch independently. As
transistor counts grew in accordance with Moore’s Law, as shown in Figure 1, hardware
parallelism, both implicit and explicit, gradually also appeared in microprocessors in
many forms. Some variability in the number of transistors used for a processor can
be seen in Figure 1, especially in recent years. Before multicore processors, different
cache sizes were by far the driving factor in this variability. Today, cache size, number
of cores, and optional core features (such as vector units) result in processors with a
range of capabilities to be available. This is an additional factor that we need to take

1 Herb Sutter. The free lunch is over: A fundamental turn towards concurrency in software. Dr.
Dobbs Journal , March 2005.



4 J. Reinders

into account when writing a program: even at a single point in time, it may need to
run on processors with different numbers of cores, different SIMD instruction sets and
vector widths, different cache sizes, and possibly different instruction latencies.

The amount of change, in software, needed for each kind of additional hardware
mechanism using parallelism has grown because we naturally tackled the less intru-
sive (easier) first. Automatic mechanisms requiring the least software change, such as
instruction-level parallelism (ILP), were generally introduced first. This worked well
until several issues converged to force a shift to explicit rather than implicit mecha-
nisms in the multicore era. As previously noted, the most significant of these issues was
power.

Figure 3 shows a graph of total power consumption over time. After decades of
steady increase in power consumption, the multicore era ushered in a halt to this growth.
From this chart we can see that modern processors span a large range of power con-
sumption, with lower consumption driven, in large part, by the growth of mobile and
embedded computing.

The sudden rise in the number of hardware threads in the multicore era shows one
aspect of the move toward explicit parallelism mechanisms. It is easy to argue that the
use of multiple hardware threads requires more software changes than prior changes in
hardware architecture. Another form of parallelism, vector parallelism, is growing in
the multicore era as measured by the width of data operations as shown in Figure 5.
While data width parallelism growth predates the halt in the growth of clock rates, the
forces driving multicore parallelism growth are also adding motivation to increase data
width. While some automatic parallelization (including vectorization) is possible, it has
not been universally successful. Explicit parallel programming is generally needed to
fully exploit both these forms of hardware parallelism capabilities.

Additional hardware parallelism will continue to be motivated by Moore’s Law cou-
pled with power constraints. This will lead to processor designs that are increasingly

Fig. 3. Graph of processor total power consumption (log scale). The maximum power consump-
tion of processors grew steadily for nearly two decades before the multicore era. This growth was
brought to a halt by an interest in reduced power consumption, greater efficiencies, and mobile
operation. We also simultaneously see more options at lower power points.
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Fig. 4. Hardware threads emerged early as a trend in the multicore era

Fig. 5. Growth in data processing widths (log scale). At first the width of scalar elements grew,
but now the number of elements in a register is growing with the addition of SIMD (vector)
instructions that can specify the processing of multiple scalar elements at once.

complex and diverse. Proper abstraction of parallel programming methods are neces-
sary to be able to deal with this diversity, and to deal with the fact that Moore’s Law
continues unabated for now, so the maximum number of cores (and the diversity of
processors) will continue to increase.

3 Multicore Era Thus Far

None of the programming languages in widespread use were designed as parallel pro-
gramming languages. All were created to serve a single-core world, and have many
shortcomings and biases that interfere with parallel programming and offer little to
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express parallelism explicitly. It may surprise some to learn that Fortran has perhaps
been the most aggressive at parallelism support with vectorizable array notations (For-
tran90), FORALL (Fortran95), OpenMP (1997), DO CONCURRENT (Fortran 2008)
and Coarray Fortran (Fortran 2008).

At the dawn of the multicore era, Intel introduced the Intel Threading Building
Blocks (TBB) as a solution to extend C++ for parallelism. Well designed and imple-
mented, it got a substantial boost from Intel’s decision to open source it and from it
being ported to numerous operating systems and processors. The TBB project has been
widely used and is now the most popular abstraction for parallel programming.

There is considerable interest in extending TBB beyond what is possible in a C++
template library. Three key challenges that have emerged are: support for C program-
ming, optimization support in compilers and support for explicit vectorization. To ad-
dress these, Intel has created the Intel Cilk Plus project. Intel has implemented these
very interesting extensions for C and C++ in the Intel compilers (Windows, Linux and
Mac OS X versions). Intel has also published the full language specification, and the
interface specifications to its runtime library and open sourced the runtime to help other
compilers follow. There is work on a branch of gcc to explore adding these to gcc. Cilk
Plus is a project (http://cilkplus.org) worth following as it develops.

Most recently, the new C++11 standard lays a solid foundation by addressing
memory model issues that made parallelism in C++ suspect previously. This brings
us to a point where it is time to debate how to formally extend our languages
for parallelism. I summarized key thoughts in a blog “Parallelism as a First Class
Citizen in C and C++, the time has come.” (http://software.intel.com/
en-us/blogs/tag/citizenparallel/ ) Many developers agree strongly with
the idea that we are ready for this debate and standardization. It would represent a sub-
stantial step forward for programming in C and C++.

While you could argue that the multicore era is only getting started, there are signs
that the rate of parallelism growth can grow very fast if we find uses for it. Multicore
processors have gone from 2 to 4 to 8 highly programmable cores. Many-core pro-
cessors promise to offer a much faster pace if we can use it. Intel has unveiled a new
architecture: the Intel Many Integrated Core (MIC) Architecture. The early prototype
(codenamed: Knights Ferry) using the MIC architecture has 32 cores. The product (co-
denamed: Knights Corner) will have more than 50 cores. Many-core processors give up
serial performance in favor of a design with a higher degree of parallelism. Many-core
processors are not designed to displace multicore processors, but rather offer a higher
degree of parallelism specifically aimed at highly scalable workloads. With Moore’s
Law continuing to give us more and more transistors, today’s octo-core multicore pro-
cessors and 32 core many-core processors are just a start. The future is a lot of par-
allelism. Of course, cores is not the only dimension for parallelism. SSE has offered
128-bit wide data operations for a decade. Multicore processors from Intel offer 256-bit
wide operations, called Advanced Vector Extensions (AVX), while the Knights Ferry
many-core co-processor offers 512-bit wide operations. Again, these may just be start-
ing points for the future.

http://cilkplus.org
http://software.intel.com/en-us/blogs/tag/citizenparallel/
http://software.intel.com/en-us/blogs/tag/citizenparallel/
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Many-core processors from Intel highlight that more cores can be coupled with pro-
grammability while addressing the need for a greater ratio of performance per unit of
power, higher system density, and high versatility.

Parallelism is driving the largest systems in the world to gain 80% more performance
each year (see current graphs available on top500.org and updated each 6 month titled
“Projected Performance Development”). This is twice the rate that you might expect
from Moore’s Law (which is about 40% gain per year). The difference between a 40%
gain from more transistors and 80% gain in high performance computing comes from
parallelism. Going parallel is happening like wildfire, making the need and opportunity
of parallel programming ever greater.

4 Trends for the Future

There are four major trends that I would like to highlight to encourage thought and
debate.

The future of hardware is specialization and programmability. Power considerations
favor power efficient designs but at the expense of programmability. The most general-
purpose designs offer high degrees of programmability. For instance, GPUs emerged
as more power efficient ways to render graphics in visual displays. This they have suc-
ceeded in doing. Interest in using GPUs for non-graphical work has been vaulted into
consideration as well. When reusing functionality, intended for graphics originally, the
power efficiency may remain but the programmability is brought into question. Trying
to fix programmability and stay power efficient are at odds with each other, especially
if the original mission in graphics is also a requirement. The future is going to be more
and more precise specialization, and the current interest in “highly parallel” workloads
is going to be a very harsh critic of solutions. Solutions will be judged on programma-
bility and power efficiency for “highly parallel” workloads alone. Being dual-purpose
with graphics will not be enough if it means compromise. I believe this spells the end to
GPU computing as we know it, because once we are looking for solutions for “highly
parallel” workloads, we should expect the winning solution will have to maximize pro-
grammability and power efficiency. The market will decide what works best. My point,
however, was not to predict the end of GPU computing. My point was to ask that we
consider the success of the concept of a “GPU” for graphics procession as validating
the concept of specialization, in this case for graphic programming. And then, consider
“What does a specialized solution for “highly parallel” look like?” What other “spe-
cialized” solutions are in our future? I can imagine a future where processing chips
have large number of transistors dedicated to functions that are highly efficient and
programmable when used, and relatively low burden when not used. Of course, this
has to be balanced with cost and design considerations. More transistors make this an
important area to anticipate and study. Future hardware will see increased emphasis
on specialization. “One size fits all” is under constant attack, and increases in transis-
tor counts is definitely one such attack. Programmable but specialized hardware will
become more common in the future.

The future of system design is imbalance. I decided to emphasize this only slightly
in jest. It happened that someone recently complained about imbalance in computer
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systems to the point of suggesting they would rather have slower processors and bal-
ance than have processors that were faster than memory. The only reason anyone could
agree with such a viewpoint would be the assumption that it must “cost something” to
have processors faster than they would be in a system with “balance with memory.” My
thoughts on this are very different because I observe that the concept of “balance with
memory” is a circular definition. “Balance” means that the capabilities of the memory
system are sufficient to serve the demands of the processing on the CPU. If we believe
once a program saturates the memory capabilities, that our job is done until we find
more memory bandwidth then we are ignoring any additional CPU power that is wait-
ing for us. New algorithms seem to be emerging when we take a different view. When
an eye is put on what extra compute power can do, without adding burden to memory,
interesting things happen. When more CPU power can be used for the same memory
utilization, we find that one person’s balance is another person’s imbalance. One simple
example: consider an application that is reading a data stream and processing it. Imag-
ine it is memory bound. What if we reformulate the application to read a compressed
data stream and output compressed data? The work of the application increases be-
cause of the decompression and compression work that is added. However, the amount
of data processed may go up substantially if the processor has enough available com-
pute power. Suddenly, we may have a use for the previously unused capability in this
supposedly “unbalanced system.” The only motivation for discovering such new meth-
ods comes in “unbalanced” systems. In the future, CPUs will keep driving “imbalance”
and some uses of the “imbalance” will emerge thereby making “imbalance” appear to
be less for some uses. We’ll probably find that most applications will feel systems are
“unbalanced” because they have not discovered use for all the compute power. There-
fore, I propose it will be useful to a few, and an unused opportunity for many more.
Hence, the future is “imbalanced” designs.

The future of programming is parallelism. Parallel hardware demands parallel pro-
gramming. We should not expect that magically parallelizing compilers will ever ap-
pear. Nevertheless, not all programmers will not have to be parallel algorithm experts.
Libraries and tools are emerging to support common patterns in solving problems in par-
allel. Most programmers can view parallel programming more as solutions they utilize
than a deep area of study and focus. Parallel programming experts will be in demand,
but not everyone will need to focus on parallelism.

The future of computing is data processing using parallelism. I like to say “the par-
allelism is in your data and not your code.” That’s a bit extreme, but it is the right place
to look because data parallelism scales. Amdahl’s Law is depressing without under-
standing Gustafson’s Law. As long as problem sizes grow, we will see scaling. As a
result, we are going to see more and more emphasis on learning, studying, using and
supporting data parallel methods. An excellent place to start is making it more explicit
and portable in our programming languages. Hence, my strong interest in adding array
notations to C and C++ as we have in the Cilk Plus project.

5 The World Moves Fast

125 years ago, we had no airplanes, no radio, no TV, no computers, no cell phones,
and no internet. In 1907, humans flew for the first time in a heavier than-air aircraft.
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By 1962, humans were in space. By 1969, we were standing on the moon, and in 1976
we were seeing pictures from a spacecraft sitting on Mars. Imagine the person, like my
grandfather, who saw all that – the dawn of radio, TV, automobiles, airplanes and space-
flight. What a change! Computers have advanced at a fantastic pace too, from vacuum
tubes in the 1940s, to a million transistors in the late 1980s to billions today. What an
amazing journey this was as well! The world is going faster now than ever. Today, start-
ing with billions of transistors, the first decade of multicore era, the dawn of many-core
processors. . . where will we steer our journey during the next several decades?

I hope you view this as a challenge. I do.

6 Summary

The future of computing is many things, and parallel is one of them. The ability to
evolve to an all-parallel future combined with the need for parallel computing sets the
stage for this evolution. I choose not to call it a revolution because it builds on so much
of the past. Nevertheless, certain shackles in our serial-oriented past must become things
of the past and disappear.

The future includes programmable uses for specialized hardware, adjusting to what
we call imbalance today, parallel programming and widespread use of high degrees of
data parallelism.

The world is moving fast, and parallelism is a key trend. We’ve really only seen the
beginning of this evolution. It is an exciting challenge for us all.
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Abstract. In this paper we are going to compare the performance ob-
tained with the hybrid programming models MPI+SMPSs and MPI-
+OpenMP, especially when executing with a Dynamic Load Balancing
(DLB) library. But first we will describe the SMPSuperscalar program-
ming model and how it hybridizes nicely with MPI. We are also explain-
ing the load balancing algorithm for hybrid applications, LeWI, and how
it can improve the performance of hybrid applications. We will also an-
alyze why SMPSs is able to exploit the benefits of LeWI further than
OpenMP. The performance results will show not only how the perfor-
mance of hybrid applications can be improved with LeWI but also the
benefit of using a hybrid programming model MPI+SMPSs for load bal-
ancing instead of MPI+OpenMP.

1 Introduction

In an HPC environment using a hybrid programming model is often a good
approach to obtain a good performance when parallelizing an application. When
we talk about hybrid programming models the first combination that comes to
our mind is MPI+OpenMP.

The reason for MPI+OpenMP being the mostly used hybrid model is its
success. Its success is not only because the performance obtained (which is the
sum of the good performance obtained by the two programming models on their
own). It is also because the flexibility it gives, being able to program clusters
of shared memory nodes and the possibility to tackle the parallelization from
different approaches, with more or less granularity, using shared memory or
communication. Not only that but it has also shown how the use of OpenMP as
the second level of parallelism can help load balance the MPI level [1].

In this paper we will talk about the load balancing library, DLB, and a balanc-
ing algorithm, LeWI, that can improve the performance of hybrid applications.
DLB can load balance an application at runtime without modifying nor ana-
lyzing the application. In a previous work [2] we showed the potential of DLB
and LeWI when executed with MPI+OpenMP applications. But we also found
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a limitation of OpenMP, that prevented the algorithm to obtain all the possi-
ble benefit. We are going to explain how using a hybrid programming model
with SMPSuperscalar+MPI can overcome this limitation and obtain a better
performance for most applications.

We will introduce the basics of SMPSuperscalar, a programming model aiming
at shared memory systems. SMPSs is a programming model that has shown to
obtain a performance comparable to OpenMP on its own [3]. Not only this but
it can also hybridize with MPI offering a powerful hybrid model. We will explain
how the MPI+SMPSs approach can help load balance applications with LeWI,
and improve the performance obtained by the MPI+OpenMP version of the
same application.

The paper is organized as follows: we will first explain the basics of the SMPSs
programming model and the different techniques to combine it with MPI. In the
next section we will introduce the DLB library and the LeWI algorithm and show
how it can benefit fromusingMPI+SMPSs. In Section 4 wewill present the perfor-
mance evaluation comparing the performance of the MPI+OpenMP and
MPI+SMPSs versions of an application with and without LeWI. Finally, we will
conclude summing up the results presented in this paper and the future work.

2 Hybrid MPI+SMPSuperscalar Programming Model

2.1 SMPSuperscalar (SMPSs)

SMPSuperscalar is a task based programming model for shared memory systems.
It was first released in 2007. A task is the basic parallel element. Each task will
be executed by a thread and different tasks can run in parallel. The programmer
should mark functions that can be executed as tasks (taskified) in the code
with compiler directives and give all the parameters of the function (task) a
directionality. The directionality of a parameter can be: input, output or inout.
Each time a taskified function is called, a task is created and added to the
task graph. The parallelism between tasks is controlled by tasks’ dependencies.
And dependencies will be computed at runtime based on the directionality of
the parameters. The runtime environment will ensure that the dependencies are
fulfilled when executing the tasks.

There are two kinds of code in an SMPSs application: the tasks and the serial
code. The serial code is all the code that is outside a taskified function. SMPSs
threads present a hierarchy. The master thread executes the serial code, creates
the tasks and can execute tasks. The slave threads will only execute tasks.

In Figure 1 we can see an example of execution of an SMPSs application. In
this example there is just one taskified function, func task. The master thread
starts executing some user code until it reaches the start directive for SMPSs
(css start), when the worker threads are created. At this point of the execution
there are no tasks in the task graph yet so the worker threads are idle while
the master thread continues executing the user code. When the master thread
reaches a call to a taskified function it will create the task and add it to the
task graph. The worker threads will get the tasks that are ready to run from the



12 M. Garcia et al.

Fig. 1. SMPSs execution model

graph and execute them always respecting the dependencies. At some point of
the execution the master thread can decide to execute a task (if it has reached a
barrier or if there are too many of them in the graph). In the example the master
thread executes task 3 after task 1 is finished. At the end of the execution the
css finish is called to join all the threads.

The number of threads can be changed at any time during the execution, the
only limitation is that a thread will never leave a task before finishing it.

The SMPSs programming model does not need explicit synchronization be-
tween tasks, because the correctness of the execution is ensured by the depen-
dencies. But it is important to notice that the serial code, that will be executed
in a series by the master thread, can run in parallel with tasks executed by slave
threads. To avoid race conditions between tasks and the serial code we need
some synchronization mechanisms:

Barrier: All the tasks created before the barrier must be finished before the
execution can proceed further in the serial code.

Wait on(variable): Creates a dependency with the given variable at this point
of the code. Therefore, the execution can not proceed from this point until
the dependencies for the given variable are fulfilled.

These are the basics of the programming model and the runtime. There are
more features that we will not explain here, but you can find more details in the
documentation [4].

2.2 Hybrid MPI+SMPSuperscalar

SMPSuperscalar hybridizes nicely with MPI. We can spawnMPI processes across
nodes and exploit the node parallelism with SMPSs.
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There are several ways of mixing MPI and SMPSs, the most obvious and easy
one would be to have the MPI calls as serial SMPSs code. We must ensure that
the data that we want to send or receive is ready with one of the synchronization
mechanisms that SMPSs offers (barrier, wait on).

When using MPI+SMPSs we can also encapsulate MPI calls inside SMPSs
tasks. This approach allows to overlap communication and computation. In this
case the dependencies would be satisfied by the runtime if they were correctly
set in the code as inputs and outputs of the task containing the MPI call. This
approach presents some drawbacks that must be taken into account:

– Possibility of several concurrent MPI calls: we need to use thread-safe
MPI

– Reordering of MPI calls: Can introduce a deadlock; we need to control
the order of communication tasks.

– Wasting a core while in a communication task.

To avoid these limitations SMPSs includes a Communication Thread. The Com-
munication Thread is a mechanism that allows to overlap computation and com-
munication transparently for the programmer. The programmer must mark the
tasks that include MPI communication calls with device(comm thread) and the
runtime will handle them. There is a special thread not counted among the gen-
eral pool of threads that only executes communication tasks, and communication
tasks can only be executed by the Communication Thread.

With this environment communication tasks are executed in order, therefore
we ensure that there are no introduced deadlocks. And we do not need a thread-
safe MPI because only one thread will be executing communication tasks.

3 Dynamic Load Balancing (DLB) Library

The Dynamic Load Balancing (DLB) is a shared library that helps load balance
applications with two levels of parallelism. The current version provides support
for:

– MPI+OpenMP
– MPI+SMPSs

The aim of DLB is to balance the MPI level using the malleability of the inner
parallel level. One of its main properties is that the load balancing will be done
at runtime without analyzing nor modifying the application previously. The
algorithm that has showed better performance results is LeWI (Lend When
Idle) [2]. And this is the algorithm that we are going to explain in the following
section and use for the performance evaluation.

3.1 LeWI Algorithm

The philosophy of LeWI is based on the fact that when an MPI process is waiting
in an MPI blocking call none of its threads is doing useful work. Therefore, we
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have one or several CPUs that are not being used. LeWI aims to use these
CPUs to speedup other MPI processes running in the same node. The usual
behavior of an MPI application is that if a process is blocked in an MPI call it is
waiting for one or several other processes to finish. Speeding up processes that
are more loaded helps to load balance the application and to speedup the whole
application.

In Figure 2 we can see the behavior of the LeWI algorithm when balancing an
unbalanced application. On the left hand side, Figure 2.a shows an unbalanced
hybrid application with 2 MPI processes and 2 threads per process. In this
example MPI process 1 is more loaded than MPI process 0 and this makes that
MPI process 0 must wait in an MPI Send for some time.

In the center, Figure 2.b shows the behavior of the same application when
executed with the LeWI algorithm. When an MPI process reaches a blocking
MPI call it will lend its CPUs to the other MPI processes running in the same
node. With the lent CPUs the more loaded MPI processes will be able to finish
their computation faster and the MPI process 0 will be less time waiting in
the MPI call. The use of the computational resources will be better and the
application will perform better.

Fig. 2. LeWI behavior

When an MPI process that has lent its cores reaches the end of the blocking
call it will retrieve the cores that it had before lending them. And it will be able
to continue its computation with its threads.

3.2 SMPSs Potential for Load Balancing

The limitation that we detected in this algorithm is the fact that OpenMP can
only change the number of threads outside a parallel region. This means that
when an MPI process lends its cores the MPI process that wants to use them is
not able to do so until reaching a new parallel region (i.e. the number of OpenMP
threads can only be changed before spawning a parallel region). This is shown
in Figure 2.c; when MPI 0 lends its cores to MPI 1, MPI process 1 is already
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executing its third parallel loop. Therefore, MPI 1 is not able to use the lent
cores until the fourth loop starts.

This limitation makes the performance of the algorithm highly dependent
on the number of parallel regions that the application presents between MPI
blocking calls (i.e. if there is just one parallel loop between MPI blocking calls
we cannot change the number of threads. Therefore, the application cannot be
balanced and the performance cannot be improved).

This limitation was not inherent to the algorithm but introduced by the pro-
gramming model used (in this case OpenMP). To overcome this limitation we
chose a shared memory programming model that allowed us to change the num-
ber of threads at any time, such as SMPSuperscalar.

In Figure 2 we show the difference between using OpenMP or SMPSs when
running with LeWI algorithm and how it can impact the performance.
Figure 2.c shows the limitation in OpenMP that cannot start to use the threads
until it reaches a new parallel region. In Figure 2.b we can see how SMPSs can
start to use the new threads as soon as they are available. This example shows
us how the performance can be improved by using SMPSs instead of OpenMP.

4 Performance Evaluation

4.1 Environment

The experiments have been executed on Marenostrum. Marenostrum has 10240
PowerPC processors. Its nodes are JS21 blades with two IBM PowerPC 970MP
processors with two cores each and 8Gb of shared memory. This means that we
have nodes of 4 cores with shared memory.

We have used the MPICH library as the underlying MPI runtime and the
operating system is a Linux 2.6.5-7.244-pseries64. The OpenMP compiler used
is IBM XL version 10.1 and SMPSs version used is 2.0.

4.2 Methodology

In this section we will use the speedup to compare the performance of each
experiment. The speedup has been computed as the serial time divided by the
parallel execution time.

The serial time used to compute the speedup is the execution time of the
MPI only version of the application executed with a single MPI process. We are
using the MPI version with one MPI process and not the serial version of the
application because we want to focus on the performance obtained by the inner
programming model, in our case OpenMP or SMPSs. By using this baseline we
exclude the overhead introduced by the MPI runtime from the computation of
the speedup.

In the following charts we will be comparing several configurations for each
application. Their meaning is as follows:
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OMP - ORIG: Execution of the original MPI+OpenMP application without
any load balancing.

OMP - LeWI: Execution of the MPI+OpenMP application with DLB and
LeWI algorithm.

SMPSs - ORIG: Execution of the original MPI+SMPSs application without
any load balancing.

SMPSs - LeWI: Execution of the MPI+SMPSs application with DLB and
LeWI algorithm.

All the executions have been run in Marenostrum (4 cores per node). We will
present different configurations, running with 2 MPI processes per node or 4 MPI
processes per node. Although it is not usual to run more than one MPI process
in the same node sometimes it is done because the application is MPI only or
for performance reasons. In our case it is necessary because we balance between
MPI processes running in the same node. Furthermore, we showed in a previous
work that running several MPI processes in the same node could improve the
performance of applications when combined with the DLB library.

In the following sections we will present the results obtained with different
applications.

4.3 PILS

PILS is a synthetic benchmark that we have developed to help us evaluate load
balancing techniques. What we aim to reproduce with PILS is not a whole
application but the parallel region between MPI calls of an application.

The core of the synthetic benchmark is a function that will do several floating
point operations without data involved. In the case of the OpenMP version this
function will be called in each iteration. In the case of SMPSs version this function
will be taskified, meaning that each call to this function is a task. The cost of the
core function in terms of time and computation is always the same. The imbal-
ance between MPI processes will be introduced by the number of times that the
function is executed which will be given by the loads of each MPI process.

In Figure 3 we can see a schematic representation of PILS. The amount of
work is prescribed at the beginning of the execution for each MPI process. This
work load is processed in the parallel regions. The number of parallel regions
depends on the parallel grain parameter. A parallel region in the OpenMP version
corresponds to a parallel loop. In the SMPSs version a parallel region is a loop
that creates several tasks and finishes with an SMPSs barrier. At the end of the
iteration there is an MPI barrier to synchronize all the processes.

The PILS benchmark has several configurable parameters that allow us to re-
produce the behavior of different types of applications. The different parameters
are the following:
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Fig. 3. PILS benchmark

Parallel grain Parallel regions

1 1

0,5 2

0,1 10

Fig. 4. Parallelism grain and parallel
regions

Programming Model: We can compile three different versions of the bench-
mark:
– MPI
– MPI+OpenMP
– MPI+SMPSs

Work Distribution: We can introduce the load balance of the application as
the different loads for each MPI process. For all the executions the sum of
the loads will be the same (giving always the same amount of work to the
application).

Parallelism Grain: Represents the amount of computation that is parallel for
the iteration. The value can go from 1 (everything is parallel) to 0 (nothing
is parallel). You can see the relationship between parallelism grain and the
number of parallel regions in Figure 4.

Iterations: The number of iterations that we will execute. Each iteration in-
cludes the computational part (parallel regions in OpenMP or SMPSs) and
MPI communication.

In the following experiments we have executed PILS with the parameter itera-
tions always equal to 1. We want to compare the performance of the different
programming models with different works loads and parallelism grain.

InFigure 5we can see the speedupobtained forPILSwith the 4 different versions
when running with 2 MPI processes in the same node. We executed with five con-
figurations for the work load that go from a very unbalanced application (10-90) to
a well balanced application (50-50) and for each of the imbalanced configurations
we used 10 different values for the parallelism grain rangingfrom 1 to 0,1.

We can see that the executions without LeWI (SMPSs-ORIG andOMP-ORIG)
have the same performance, this means that the baseline for both are the same.
But we can see the difference when running with LeWI (SMPSs-LeWI and OMP-
LeWI). While SMPSs obtains almost the ideal speedup of 4 for all the executions,
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Fig. 5. PILS 2 MPIs per node in Marenostrum

Fig. 6. PILS 4 MPIs per node in Marenostrum

the performance of the versionwith LeWI andOpenMPdepends on the parallelism
grain (or equivalent, on the number of parallel regions between MPI calls).

Figure 6 shows the performance of PILS when running with 4 MPI processes
in the same node. In this case we can see 7 different configurations of work loads
with different levels of imbalance between the MPI processes. Again, the original
executions of the two models without LeWI have the same performance but
when running with LeWI we can see how SMPSs performs much better. While
SMPSs with LeWI can obtain an almost ideal speedup for all the configurations,
OpenMP depends on the parallelism grain and almost never can reach the same
performance as SMPSs.

4.4 LUB

LUB is a kernel performing an LU matrix factorization. The structure is a two
dimensional matrix organized by blocks. The data is distributed by blocks of
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Fig. 7. LUB behavior

rows among the different MPI processes. In Figure 7 we can see a schematic
representation of the LUB kernel. There are four functions that are applied to
the data blocks, lu0, fwd, bdiv and bmod. The fwd blocks can be processed in
parallel but depend on the lu0 computation. The bdiv blocks can be processed
in parallel but depend on the lu0 block. And the bmod blocks can be processed
in parallel but each one depends on the fwd block in the same column and the
bdiv block in its row.

We have two OpenMP parallelizations for this application. The first one (la-
beled as OMP1 in the charts) is the “natural” one that parallelizes the outer
possible level. But this parallelization is not the optimal for LeWI because it
presents few loops between MPI calls. So it gives low malleability to change
the number of threads. The second OpenMP parallelization (labeled as OMP2)
parallelizes inner loops of the application giving more malleability to LeWI to
change the number of threads. We can say that OMP2 is a parallelization tuned
to obtain the best of LeWI but that also introduces some overhead.

The SMPSs parallelization considers each algorithm applied to a block as a
task which is the natural way of parallelizing this application with a task oriented
programming model.

In the experiments we have worked with a matrix of 5000 x 5000 elements
with block size of 200 x 200 elements.

In Figure 8 we can see the performance obtained when running LUB in a single
node of Marenostrum (4 cores). We have executed with 2 or 4 MPI processes
in the same node. We can see how the 3 original versions (OMP1, OMP2 and
SMPSs) have a similar performance, and in general all of them have a bad
speedup when running with 4 MPI processes per node. The reason for this is
that the imbalance of the application grows linearly with the number of MPI
processes. But in all the cases the best performance close to the ideal one is
obtained by the SMPSs version when running with LeWI. Not even the modified
OpenMP version (OMP2 ) implemented to obtain the most out of LeWI is able
to get the same performance as SMPSs with LeWI.

It is important to notice that with the OpenMP versionOMP1 LeWI is able to
increase the speedup of the application from 2.8 to 3.5. This means executing the
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Fig. 8. LUB in 1 node in Marenostrum

Fig. 9. LUB in 2 and 4 nodes in Marenostrum

application without modifying it nor analyzing it previously. The tuned version
OMP2 was implemented to give a chance to the OpenMP version compared to
the SMPSs version.

The performance of LUB executed on 2 and 4 nodes of Marenostrum can be
seen in Figure 9. We have also executed LUB with 2 and 4 MPI processes per
node in each version. In this case we can see how the performance obtained is
not so close to the ideal one. The two reasons for this performance drop are
the following: first, the more MPI processes are running the more imbalance
is presented by the application. Second, LeWI can only balance between MPI
processes running in the same node. This means that when the imbalance is
present between processes running in different nodes LeWI can not improve the
performance. But still the version SMPSs with LeWI is the one that obtains the
best speedup, even better than the OpenMP version modified to run with LeWI
(OMP2 ).

4.5 BT-MZ (NAS Benchmarks)

The BT application is one of the benchmarks in the NAS Multizone suite [5].
The original version is a hybrid parallelization of MPI+OpenMP that we will see
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in the charts as OMP1. We have modified this benchmark to be parallelized with
SMPSs (labeled SMPSs), and we have also modified the original MPI+OpenMP
version because in some parts of the code it presented several loops inside a
single parallel region. This prevents LeWI to change th number of threads often
enough. We have labeled this tuned version for LeWI OMP2.

The NAS benchmarks can run different classes that correspond to the size of
the problem that it is solving. In our experiments we have executed classes A,
B and C (with the following relationship of size: A < B < C).

Fig. 10. BT-MZ in 1 node in Marenostrum

In Figure 10 we can see the performance obtained with BT-MZ when running
in a single node in Marenostrum 3 different classes, A, B and C. In this case
we see a big difference between the performance of the original OpenMP version
(OMP1 ) and the tuned version for LeWI (OMP2 ). The reason of this difference
is that the granularity of the loops is too small for OMP2 and some data locality
is lost. When running with 4 MPI processes in the same node we do not see this
effect because the OpenMP level is only used to load balance, therefore, the
performance is the same for both versions (OMP1 and OMP2 ).

Looking at the executions with LeWI we see that in all the cases it improves
the performance of the original application. But the best performance is always
obtained by the SMPSs version with LeWI being close to the ideal performance
in some cases.

In Figure 11 we can see the speedup obtained by the different executions of
BT-MZ class C in 2 and 4 nodes. Again, the versions with LeWI improve the
performance of the original executions. We can notice that the improvement in
the performance when running in several nodes is less than when running in a
single node. The reason is that LeWI can only balance MPI processes running
in the same node.
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Fig. 11. BT-MZ class C in 2 and 4 Nodes in Marenostrum

5 Conclusions

In this paper we have explained the basics of SMPSuperscalar. SMPSuperscalar
is a programming model for shared memory systems that hybridizes nicely with
MPI. We have explained why MPI+SMPSs is a powerful hybrid programming
model and we have underlined this observation in the performance evaluation
section. We have also presented a load balancing algorithm for hybrid applica-
tions called LeWI. The LeWI algorithm improves the load balance and perfor-
mance of hybrid applications. To achieve this it redistributes the computational
resources assigned to the application between the different MPI processes of the
application.

The current version of LeWI supports MPI+OpenMP and MPI+SMPSs ap-
plications. We have detected and explained a limitation of the algorithm when
load balancing MPI+OpenMP applications related to the malleability of
OpenMP. And we have seen that this limitation can be avoided when using
SMPSs instead of OpenMP. In the performance evaluation section we have exe-
cuted three different applications with different imbalance patterns. For all the
applications we have an MPI+OpenMP version and an MPI+SMPSs version.
In the performance results obtained we have seen that SMPSs can achieve the
same performance as OpenMP when combined with MPI in all the applications
we have tested.

We have also shown how the LeWI algorithm improves the performance of all
the applications executed and does not penalize the performance of balanced ap-
plications. And we can use it without analyzing nor modifying the original appli-
cation. But the most interesting remark from the performance evaluation is that
for all the applications the best performance is obtained with the MPI+SMPSs
version of the application running with LeWI. The malleability of SMPSs al-
lows LeWI to improve the performance of unbalanced applications and obtains
a higher speedup than the same application with MPI+OpenMP and LeWI.
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Abstract. Will HPC programmers (have to) adapt to new program-
ming languages and parallelization concepts? Many different languages
are currently discussed as complements or successors to the traditional
HPC programming paradigm (Fortran/C+MPI). These include both lan-
guages designed specifically for the HPC community (e.g. the partitioned
global address space (PGAS) languages UPC, CAF, X10 or Chapel) and
languages that allow the use of hardware accelerators (e.g. Cn for Clear-
Speed accelerator boards, CellSs for IBM CELL and GPGPU languages
like CUDA, OpenCL, CAPS hmpp and RapidMind).

During the project “Partnership for Advanced Computing in Europe –
Preparatory Phase” (PRACE-PP), developers across Europe have ported
three benchmarks to more than 12 different programming languages and
assessed both performance and productivity. Their results will help sci-
entific groups to choose the optimal combination of language and hard-
ware to efficiently tackle their scientific problems. This paper describes
the framework used for this assessment and the results gathered during
the study together with guidelines for interpretation.

1 Introduction

A few developments have re-animated the discussion on HPC programming mod-
els. First, the physical limits of performance-gains through an increase in clock
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speeds have been reached. Performance improvements now require the exploita-
tion of the increased on-chip and off-chip parallelism. Second, hardware acceler-
ators promise high performance, low energy consumption and/or smaller foot-
prints but require device-specific languages. Third, the fastest HPC installations
are now composed of hundreds of thousands of cores. Handling this level of
scalability goes beyond the limits of most MPI codes.

High Performance Computing (HPC) is at a crossroads. New programming
languages have not gained widespread acceptance; High Performance Fortran
(HPF) being probably the best-known example. But HPC is in need for new
programming and parallelization models to keep pace with architecture develop-
ments. Many different candidate languages are available, but it is very unclear
which of these languages are mature enough, provide sufficient ease-of-use and
high performance. To guarantee portability and sustainability, it is important
to check the promises made for each language and ensure that the number of
possible languages is narrowed down to a sensible set which could be widely
supported by hardware, compiler and tool developers.

PRACE, the Partnership for Advanced Computing in Europe (PRACE) is
an international non-profit association with its headquarters in Brussels. The
PRACE Research Infrastructure provides a persistent world-class High Perfor-
mance Computing service for scientists and researchers from academia and indus-
try. The PRACE leadership systems form the apex of the performance pyramid
and are well integrated into the European HPC ecosystem. On the road to en-
able software for the Petascale era, the PRACE-PP software work package has
investigated the European HPC workload [1], chosen an application benchmark
suite [2], optimized those codes [3] and improved their scalability [4]. In parallel,
more than 12 new languages and paradigms have been chosen for a deep investi-
gation of performance and productivity. Here, productivity was considered to be
a combination of ease-of-use and achievable performance, a full definition can be
found in [5]. The intention of the PRACE report was to give assistance to those
scientific groups who are considering porting their codes to new languages or
hardware accelerators; the objective was to check whether the promises of these
languages could be trusted. The full results of this study are reported in [6]. The
most important findings of the study are presented in this paper.

Three mathematical kernels, a dense matrix-matrix multiplication, a sparse
matrix-vector multiplication and a one-dimensional Fast Fourier Transformation,
have been chosen as synthetic benchmarks. The selection of those follows the
“dwarves taxonomy” introduced in [7]. We describe the experimental setup in
Section 2 and give an overview of the basic results in Section 3. Conclusions are
given in Section 4 and a proposal how the work could be expanded to form a
benchmark framework is given in Section 5. A benchmark suite which is able to
handle both different languages and different hardware architectures is becoming
more important. A first implementation for a GPU/CPU benchmark is given
in [8] and has been discussed during a BoF session at SC09. The “PRACE First
– Implementation Project” (PRACE-1IP) is currently working on an extended
language benchmark suite.
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2 Experimental Setup

This study was started with the selection of benchmark kernels. The selection
was based on the taxonomy of the seven dwarves, which has been repeatedly
used in PRACE for the classification of applications. To be able to cover as
many languages as possible, three relatively easy and well-known benchmarks
were chosen from the Euroben [9] benchmark suite. This synthetic benchmark
suite had already been used for the assessment of the PRACE-PP hardware
prototypes. The three kernels are:

1. MxM: Dense matrix-matrix multiplication.
2. SpMV: Sparse (CSR) matrix-vector multiplication.
3. FFT: 1-dimensional Fast Fourier Transformation.

Serial and parallel C and Fortran versions existed for all kernels. A version based
on Intel’s MKL (Math Kernel Library, [10]) was used as reference implementa-
tion and its performance on an 8-core Nehalem-EP board was used as base-
line for performance comparisons. The developers involved could choose from
a list of programming languages which included the PGAS (Partitioned Global
Address Space) languages UPC (Unified Parallel C, [11]) and CAF (Coarray
Fortran, [12]), the DARPA HPCS (High Productivity Computing Systems, [13])
languages (Chapel [14] and X10 [15]) and several low-level and high-level lan-
guages for hardware accelerators (Cn [16] for ClearSpeed accelerators, CellSs [17]
for IBM CELL, CUDA [18], OpenCL [19], CAPS hmpp [20] and RapidMind [21]
for Nvidia Tesla). Additionally, a mixed MPI+OpenMP port and a mixed
MPI+CUDA port were done, to test the effectiveness of these hierarchical par-
allelization concepts.

The wide variety of languages was necessary to cover the most significant
paradigms that introduce different ways of treating and abstracting parallelism.
The languages were chosen mid of 2009, implementations were due approxi-
mately four months later, performance figures were then updated for a workshop
in March 2010 [22]. Newer figures on the extended benchmark suite are currently
prepared and should be available early 2012, first intermediate results have been
reported in the PRACE-1IP deliverable [23]. Several facts show how fast evolv-
ing this field is; for all languages new compiler versions exists, several languages
moved out of focus because of lacking hardware developments and one language
(Rapidmind) is no longer available but its main concept and core development
team has been included in Intel ArBB [24]. Table 1 gives an overview of the
compiler versions used for the data presented in this study.

The most severe hurdle for the study was the fact that the languages were
designed for quite different hardware architectures. There was neither a language
which could be used on all different hardware, nor a hardware which could be
used as a reference for all implementations. The selection of kernels to bench-
mark all languages was problematic as well, since some codes fit very well to
some devices while others don’t. We expectet that hardware accelerators could
show off their potential wit MxM, a kernel with a high computational intensity,
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Table 1. Compiler versions and mapping between hardware and languages

Language Compiler version 1. MxM 2. SpMV 3. FFT

CAF cce 7.1.2 cray xt n.a. cray xt
CAPS CAPS hmpp v2.0.0 tesla tesla n.a.
CellSs CellSs V2.2 cell cell cell
Chapel Chapel V0.9 cray xt cray xt n.a.
Cn Cn 3.11 clearspeed clearspeed clearspeed
CUDA CUDA 2.2, V0.2.1221 tesla tesla tesla
CUDA+MPI CUDA 2.2, gcc 4.1.2, OpenMPI 1.3.2 tesla tesla n.a.
MPI+OpenMP Intel Version 10, OpenMPI 1.3.2 nehalem nehalem n.a.
OpenCL CUDA 2.2, OpenCL 1.0 conf. release tesla n.a. n.a.
RapidMind RapidMind 4.0 tesla tesla n.a.
UPC Berkeley UPC 2.8.0 itanium itanium itanium
X10 X10 v1.7.5 ibm pwr6 ibm pwr6 n.a.

but will perform dramatically worse on SpMV, a memory-bound kernel with a
low computational intensity. The FFT kernel is somewhere between these two
extremes and can potentially run well on accelerators but requires some opti-
mization effort. Several PRACE-PP “Future Technology” prototypes were used
for benchmarking. Final results of these prototypes can be found in [25]. An
overview of the different hardware is given in Table 2; the mapping between
languages and hardware can be found in Table 1.

We chose double-precision arithmetic and compared the whole time of the
main mathematical routine, which included the time for data movements to and
from accelerator devices. Not all languages supported parallel execution; e.g.
most accelerator languages do not support multiple devices. The reference input
data sets were chosen to reflect relevant matrix sizes or vector lengths for one
board. They were also adapted to include both advantageous and disadvanta-
geous data sets for the different hardware (e.g. for MxM matrix sizes which are
a multiple of 512 will perform best on Tesla GPUs).

To measure productivity, the programmers were asked to fill in “developer di-
aries”, which have been specially developed for this task but are inspired by the
work carried out in the DARPA-HPCS project, see [26] especially [27] and [28].

Table 2. Hardware overview

Peak perf. Peak perf. for
Name System Processor [GFlop/s] comp. (Fig. 5)

cell QS22-blade cluster PowerXCell8i(1PPC+8SPE) 102.4 per acc. 102.4 (1PXC8i)
clearspeed CATS units CSX700 (96PE) 96.0 per acc. 96.0 (1CSX700)
cray xt Cray XT5 AMD Barcelona (4 cores) 9.2 per core 73.6 (8 cores)
itanium SGI Altix Itanium Montecito (2 cores) 6.4 per core 102.4 (16 cores)
ibm pwr6 IBM Power6 cluster Power6 (2 cores) 18.8 per core 601.6 (32 cores)
nehalem Intel processor Nehalem EP (4 cores) 10.1 per core 80.8 (8 cores)
tesla Nvidia Tesla S1070 C1060 GPU (240SP) 78.0 per acc. 78.0 (1C1060)
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The diaries contained the development time needed and the performance ob-
tained with a few data-sets for each development or optimization step. The
information given in the diaries allows much insight into the problems encoun-
tered with the language, it shows the first time when an error-free version of the
code was running, and the optimization potential and effort which lead from the
first version to the finally submitted version. All submitted versions were kept
in a subversion directory along with the performance results. After submission,
programmers were asked to fill in a survey where they could briefly report their
personal experience.

3 Results

Ideally, to obtain statistically significant results, a set of developers with equal
level of knowledge for all languages and a thorough understanding of the three
mathematical kernels would be needed. Furthermore, each developer would need
to port the kernels to several languages to compute mean times of development
or the mean lines of code. This is a task which requires enormous time and
resources and might nevertheless fail since the level of maturity varies extremely
between the languages (ranging from implementations on which some time had
to be spent in finding compiler-bugs to well established products). The results of
such a study would be partially invalidated by every new compiler release. In a
field which evolves as fast as hardware-accelerator languages do today, we believe
that our approach, which relies on only one programmer per language, is the only
feasible approach that could lead to a separation of the promising languages from
the immature ones. Since all kernels are easy to understand, all programmers
have prior HPC knowledge and everyone had no or very little experience with
the language, we believe that the study is able to give an insight into the current
state of these languages and reveal remarkable tendencies between them.

Figure 1, 2 and 3 show the raw results of this study. All programmers were
asked to start with the MxM kernel and, if time remains, subsequently port the
SpMV and FFT kernel. Since all languages have different formal requirements,
LoC (Lines of Code) was reported by the programmers themselves. The 3000
lines which were necessary for the CUDA FFT implementation show clearly
how many lines of code are necessary if a kernel cannot simply use the CUDA
libraries: a version based on a cuFFT library call contained only 75 LoC, but
was restricted to single-precision arithmetic.

Figure 2 reports the development time in days and relies on the information
given by the programmer in the developer diaries. Besides the total time given
from the diaries it reports the time necessary for a first working version if this
could be deduced from the diaries. Unfortunately, no estimate on the devel-
opment time for the Cn ports exists because those were done by ClearSpeed-
Petapath staff outside of PRACE.

Figure 3 gives an overview of the achieved performance. Maximum perfor-
mance means the maximum performance which could be obtained for one of the
approximately 20 different reference input data sets for each kernel. To allow
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Fig. 1. Lines of Code as reported by the programmers

Fig. 2. Development time in days as reported by the programmers in their diaries

Fig. 3. Maximum Performance per kernel and language in percentage of peak perfor-
mance. Maximum performance is achieved by one of the reference input data sets and
usually based on single-core or single-accelerator measurements.

a comparison between the different languages on different hardware, the per-
centage of peak performance was used. This was usually based on single-core
or single-accelerator runs (see second column from the right in Table 2). Many
implementations made use of highly optimized mathematical libraries; especially
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in the case of MxM the ability to use those seems to be the most decisive per-
formance factor.

Figure 4 shows a combination of the two productivity metrics development
time versus lines of code. It confirms that the relation between both metrics is
quite similar between most languages and the pattern stays roughly the same
throughout all kernels. Chapel is the only language which positively sticks out;
Chapel is very clear and concise and therefore allows fast programming with
only a few lines of code, which minimises programming errors.

Finally, Figure 5 gives a comprehensive view on the productivity achieved
with each language per kernel. This time, performance measurements are based
on raw performance measured. We tried to keep the peak performance of the
units as comparable as possible; an overview is given in the rightmost column
of Table 2. It ranges from 73.6 GFlop/s for 8 AMD Barcelona cores up to 102
GFlop/s for a PowerXCell8i. For X10, data was available only per node, which
has more than 600 GFlop/s peak performance. However, the performance of X10
was so low that the overall scale is not affected. Using a vertical line between
the blue bars for one kernel will separate the languages which are not yet able to
deliver enough performance to be used in HPC from those that are fast enough.
Inserting an additional horizontal line will separate the languages which took too
much development time from those with an acceptable development effort. This
idea is illustrated by the dotted separation lines for performance in light blue
and for productivity in dark blue. Please note that their placement is arbitrarily,
it usually depends on the actual project, e.g. on the available man power or
computing ressources.

Figure 6, 7 and 8 give a separate overview of the PGAS, GPGPU and accel-
erator languages to allow fast performance comparisons. Performance measure-
ments for the PGAS languages have been performed on different architectures
(Cray XT, Intel Itanium and IBM POWER6); only CAF and Chapel results are
directly comparable. The percentage of peak performance was therefore used
as the basis for the comparison. The overview of GPGPU languages was eas-
ier: all performance measurements have been done on the same Nvidia Tesla
machine and are therefore directly comparable. The overview of accelerator lan-
guages is based on the fastest implementations available for each accelerator
and directly compares results for one C1060, one PowerXCell8i, one ClearSpeed
CSX700 with the performance achieved on one Nehalem-EP board (2 sockets
with 4 cores each).

Fig. 4. Development time versus lines of code for all languages and kernels
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Fig. 5. Performance versus development time for all languages. Performance is mea-
sured in MFlop/s on the unit specified below. The units are chosen to have approxi-
mately the same peak performance; see rightmost column in Table 2.

Fig. 6. Maximum performance achieved with the PGAS language ports for all ker-
nels. Performance measurements have been performed on different hardware and are
therefore given in percentage of peak performance.

Fig. 7. Maximum performance achieved with different GPGPU languages for all kernels.
Performancemeasurementshavebeenperformedon1NvidiaC1060andgiven inMFlop/s.
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Fig. 8. Performance comparison of hardware accelerators for all kernels together with
the reference performance obtained on 8 Nehalem-EP cores

4 Conclusions

The presented results are all based on one single port of the kernel to the lan-
guage; one programmer was responsible for one language. Hence, the figures will
mainly show certain trends and tendencies in the comparison of the languages.
Since new hardware and new compilers are released nearly every quarter we
like to consider the results as a snapshot showing the state of the languages in
autumn 2009. Currently, we are in the process of establishing a constant evalu-
ation of new languages and compiler releases which is further described in the
following section.

Concerning the PGAS languages (Fig. 6), a remarkable difference exists be-
tween the more mature languages (UPC, CAF) and the latest HPCS languages
(Chapel, X10), which were still too immature and did not even deliver one per-
cent of peak performance. The difference in performance has been further intensi-
fied by the fact that Chapel and X10 were amongst the few languages which could
not make use of library calls. The compiler releases used for Chapel and X10
were mostly proof-of-concepts. Looking at the reported development time and
lines of code, Chapel clearly outperformed all other languages. Within PRACE-
1IP, we are monitoring progress made with new Chapel compiler releases. UPC
and CAF have been selected for studies on more complex benchmark codes.

Looking at the GPGPU languages (Fig. 7), CUDA is clearly the fastest lan-
guage. The performance of CAPS hmpp was one of the positive surprises during
this study while the RapidMind ports could not meet expectations. Further stud-
ies on the portability of RapidMind code and code performance [29] showed that
a Cell optimized version of MxM is able to compete with the Cell SDK version,
but performance is hardly portable across architectures (even if the program-
ming model seems abstract enough to allow writing architecture-independent
code and a highly optimized compiler which could add architecture-specific auto-
optimizations). The OpenCL performance results were obtained on a beta-release
of the compiler and are therefore not published; this version was not able to com-
pete with the performance of the other languages. Meanwhile, a full set of the
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three OpenCL benchmarks is available and OpenCL will be further used to assess
GPGPU performance of real applications.

Comparing MKL runs on 8 Nehalem-EP cores running at 2.53 GHz (peak per-
formance: 80 GFlop/s) with 1 C1060 GPU (78 GFlop/s), 1 PowerXCell8i (102
GFlop/s) and 1 CSX700 (96 GFlop/s) seems reasonable and shows that even
for the matrix-matrix multiplication benchmark, which is targeted to hardware
accelerators, the performance increase is not overwhelming. If the code relies
on double-precision arithmetic a significant performance improvement when us-
ing hardware accelerators will only appear in very special circumstances. We
are currently evaluating the improvement gains by the new Nvidia “Fermi”
hardware [30].

5 Future Work

The first pass in our performance and productivity assessment has unveiled a few
shortcomings in the original setup that have been improved for the PRACE-1IP
evaluation:

– The questionnaire should specify in more detail how to measure the lines
of code. Tools, which could reliable measure this metric for all languages,
should be employed.

– The developer diaries need to be adapted to assist programmers in decid-
ing which time needs to be accounted under which category (development,
testing, bug-fixing, etc.).

– The benchmarks should be chosen to represent important application do-
mains and make it hard to simply use library calls.

The last point might be controversial since many production codes make use
of vendor optimized (math) libraries. A separate assessment of the suitability
and performance of vendor libraries and ISV codes is needed and will be very
beneficial for certain communities, but the majority of highly-scalable codes are
still home-brewed. These codes will only benefit from a comparative languages
study if the chosen benchmarks are closely related to their most time-consuming
kernel routines. Additionally, it is important that the performance and produc-
tivity measurements are based on real ported codes without any library calls to
ensure that: firstly, the performance improvements do not depend on the highly
architecture-optimized library version but are achievable with hand-ported code
and a regular compiler; secondly, the benchmark code could be used as a guide-
line to port a full application and a rough estimate on the difficulty of the port.

In the follow-on project we have limited the number of languages under investi-
gation, dismissed Cell and Clearspeed hardware and adopted Cilk [31], ArBB [24]
and StarSs, a successor of CellSs, as new languages. We proposed a 3-level hier-
archy for testing new languages:

1. The three mathematical kernels could be used for a first assessment of new
languages.
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2. Those languages that pass a certain performance threshold (e.g. 75% of peak
for MxM) should form the middle level of the hierarchy. The languages of the
middle level should then be ported to more complex mathematical kernels
which can not be simply based on math library calls, to better reflect their
true potential.

3. Only languages that are able to pass certain performance and productivity
levels should then form the upper level. Porting of promising applications to
the languages of the upper level should prove if the determined productivity
improvements persist for full application codes.

Once this hierarchy has been set up it is relatively easy to add new languages
or evaluate new compiler versions.

To ensure that these results are most beneficial to the scientific community we
need to find a way to make them as transparent as possible. Making the hierarchy
accessible online together with performance and productivity results will ensure
that everyone who is considering to move to new languages or architectures
could get instant advice. Bringing this data together with metrics like GFlop/s
per Dollar or GFlop/s per Watt will allow further judgments. The PRACE work
package on “Future Technologies” has already started to gather these values.
How to complement the limited resources available within PRACE with external
man power might be the most challenging question. Assessing performance of
submitted codes is not the problem, but a network of trust is necessary to assess
development time, the most important metric to determine productivity.
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Abstract. Today’s highly parallel machines drive a new demand for
parallel programming. Fixed power envelopes, increasing problem sizes,
and new algorithms pose challenging targets for developers. HPC appli-
cations must leverage SIMD units, multi-core architectures, and het-
erogeneous computing platforms for optimal performance. This leads
to low-level, non-portable code that is difficult to write and maintain.
With IntelR© Array Building Blocks (Intel ArBB), programmers focus on
the high-level algorithms and rely on an automatic parallelization and
vectorization with strong safety guarantees. Intel ArBB hides vendor-
specific hardware knowledge by runtime just-in-time (JIT) compilation.
This case study on data mining with adaptive sparse grids unveils how
deterministic parallelism, safety, and runtime optimization make Intel
ArBB practically applicable. Hand-tuned code is about 40% faster than
ArBB, but needs about 8x more code. ArBB clearly outperforms stan-
dard semi-automatically parallelized C/C++ code by approximately 6x.

Keywords: parallel languages, vector computing, high performance
computing, IntelR© Array Building Blocks, Intel ArBB, OpenCL.

1 Introduction

Moore’s Law is still alive and well: the amount of transistors on a chip is still
growing exponentially [2]. Because of well-known fundamental limitations in en-
ergy consumption [20], hardware vendors can no longer increase performance of
single-core CPUs at the usual pace. Instead, the available transistor budget is
used to build multi-core and many-core CPUs. This trend is expected to continue
in future [2], making (efficient) parallelism a key requirement for software [21].
To complicate matters, software not only needs to cope with thread parallelism,
but it is also required to exploit SIMD parallelism, e. g., Intel R© Streaming SIMD
Extensions (SSE) or Intel R© Advanced Vector Extensions (AVX).

Classic programming approaches for recent CPUs use threading APIs (e. g.,
POSIX [5], OpenMP [16]) and augment it with vectorization hints for the com-
piler or low-level intrinsic functions to control SIMD parallelism. The drawbacks
of this approach are manifold. First, new hardware generally comes with new
features. The evolution of SSE to AVX is just one example. Code with low-level
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vectorization is not portable and may not exploit new hardware features. Sec-
ond, it exposes machine specifics such as memory organization, SIMD length and
instructions, and data alignment. Third, it becomes increasingly difficult for pro-
grammers to focus on the problem domain. Scientists cannot naturally express
their algorithm in such low-level programming models, but need to reformulate
the algorithm due to a lack of expressiveness of the programming language used.

Intel R© Array Building Blocks [15] provides a generic parallel programming
model for vector-parallel programming. It frees programmers from the depen-
dencies to the current compute platform. Intel ArBB relies on a combination of
standard C++ interfaces and a powerful runtime system with just-in-time (JIT)
compilation. The JIT compiler generates an optimized vectorized and multi-
threaded code from a single-source high-level program description. With this ap-
proach, ArBB may re-target an application to a new hardware platform without
the need to recompile. In addition, its programming model provides a portable
and deterministic parallel programming model with sequential semantics.

In this paper, we use SG++ as a case study. SG++ is a high-performance data
mining application that solves high dimensional problems through sparse-grid
discretization techniques. Possible application scenarios are data mining tasks
such as classification and regression. SG++ learns the structure of the data from
input sampling data and creates a smooth function to classify unknown data sets.
We compare several highly tuned implementations in OpenMP and SSE/AVX
with a high-level implementation in Intel ArBB.

2 Related Work

There are numerous (parallel) programmingmodels for HPC applications. Due to
space limitations, we focus on wide-spread languages. Fortran 2008 offers support
for high-level data-parallel programming [10]. C++11 is expected to implement
a threading-model for the first time [11]. OpenMP [16] offers data-parallel and
task-parallel programming on top of C/C++ and Fortran. In contrast to ArBB,
these traditional languages are compile-time optimized languages that do not
allow for re-targeting the application to future hardware. In addition, the base
languages make it hard for a compiler to select matching SIMD instructions and
to vectorize the code effectively.

The high-level language given by ArBB aims to balance between productivity
and forward-scaling high performance such that future hardware improvements
can be exploited without re-compilation. A summary of ArBB can be found in
[15] which describes the programming model, the JIT compiler, and the code
optimization techniques in detail. The ArBB programming model integrates the
common parallel pattern of elemental functions using the map-operator into
the more general context of vector processing and is therefore not limited to
traditional “kernel-based programming” (cf. OpenCL [7]).

While providing a framework for parallel programming is not a new idea,
ArBB combines several interesting ideas into a single approach. Skeleton li-
braries such as Muesli [4], SkeTo [14], and OSL [12] (see [13] for a short sur-
vey) are framework-based approaches to parallel programming. None of them
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utilizes a VM infrastructure to retarget code to the compute environment. As
fixed-skeleton libraries they cannot support unforeseen algorithmic patterns. In
addition, all of them only target parallelization and omit vectorization. ArBB
and OpenCL are more generic, as they do not restrict the algorithmic patterns
and also target vector units of modern CPUs. ArBB and OpenCL as presented
do not support MPI, which the mentioned skeleton libraries do.

In [18], the authors explore the “Ninja performance gap” of several impor-
tant workloads by using directives (pragma hints) and compiler extensions up to
algorithmic changes. These techniques mainly aim to exploit SIMD-level paral-
lelism as found in today’s CPUs and utilize multiple cores through OpenMP. In
this case study, we focus on a single workload but employ multiple hand-tuned
baselines. We do not aim to augment existing code with parallelization/vector-
ization hints; our target are data-parallel programming languages with runtime
code generation and assess their performance impact. We exclusively rely on
elemental functions to not exclude OpenCL from our evaluation.

For a meaningful comparison between HPC languages, a proper metric is
needed. The common trend shows that platforms become more complex and
heterogeneous with every generation. Hence, there is an ongoing research how to
score productivity in high performance computing. Many different aspects are
surveyed in [6,19]. Unfortunately, we cannot apply these in our case study due to
the fact that they are partly based on developer surveys, programmer diaries, and
other qualitative measurements. Hence, we focus on an ease-of-use comparison
and evaluate the readability of the different approaches. Performance also plays a
crucial role in our assessment, as we are targeting the HPC domain. For the sake
of simplicity, we restrict ourselves to Lines of Codes (LOC). While we know about
fundamental limitations in using LOCs as a productivity measurement metric,
we believe that LOCs are a good basis to measure how concisely a scientific
algorithm can be represented in source code in terms of expressiveness.

3 Intel ArBB

ArBB is a data-parallel language inspired by functional paradigms [1]. It relies
on a virtual machine (VM) [9] with a C API for direct usage or for use by a lan-
guage binding. ArBB currently offers a language binding (header-only C++ API
on top of the VM API) to embeds a data-parallel language into C++ (no own
textual representation, no external executable). This library-based approach en-
ables any ISO-compliant industry-standard C++ compiler. ArBB is embedded
into C++ such it naturally extends the language features of C++. Class tem-
plates, functions, or user-defined types are supported orthogonally to what ArBB
provides. Moreover, the host language can be used to drive program generation,
i. e., meta-programming and specialization can be part of an application.

In C++, an ArBB parallel region is formed by a function pointer that is
handed to arbb::call which in turn returns a function object (closure) of the
same signature as the function pointer. This allows to capture an intermediate
representation of the to-be-invoked function for compilation and optimization
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by the JIT compiler. An ArBB program may use any level of indirection (mod-
ularization) offered by the host language; code is optimized and inlined as if
there were no call boundaries. The ArBB operators associated to ArBB collec-
tions embrace parallelism such that they itself can be used in a serial fashion.
Thus, programmers can reason about their code as if it was sequential and let
the ArBB VM create parallelism out of the operations on ArBB collections. The
program is mapped to the hardware by propagating and fusing excessive copy
operations as well as barrier synchronization. ArBB can be applied per region
or grow into an application similar to other frameworks.

Transparently retargeting code requires the code to be expressed using ArBB,
i. e., calling into statically compiled code might break this ability. Since ArBB
aims to overcome the burden of adapting to different hardware, runtime compiler
technology is be employed to avoid optimization by (manually) slightly varying
an algorithm’s formulation. Programmers are encouraged to focus on the prob-
lem domain and algorithmic quality. Sealing the parallelism inside of operators
as well as high-level optimizations and canonization applied to an unified internal
representation allows the JIT compiler to aim for performance portability.

4 Sparse Grid Data Mining

We choose data mining as an application due to its growing importance: in many
scientific fields, there has been a shift to data-driven applications in recent years.
More and more data is available and is being collected, and is thus harvested
and explored. Generalizing, inferring from gathered data, is a frequent task,
which arises in many diverse areas such as medicine, finance, traffic control, or
astrophysics. If the outcome of a certain measurement or experiment is expensive
to obtain but it is related to other properties, it is of interest to reconstruct or
learn this dependency to be able to predict it in the future.

In other words, starting from m known observations, S = {(xi, yi) ∈ R
d ×

K}i=1,...,m, the aim is to learn the functional relation f(xi) ≈ yi as accurate
as possible. Reconstructing f then allows to estimate f(x) for new properties
x. For the task of binary classification (think of a bank discriminating potential
customers into creditworthy and non-creditworthy based on previous customers)
we choose as target labels K = {+1,−1}, for regression (learning a general
function), we allow K = R.

Our target is to find a function f , which satisfies these requirements, and
which is a linear combination of N basis functions ϕj with coefficients αj , f =∑N

j=1 αjϕj(x). The basis functions are associated with grid points on some grid.
Here, we are considering piecewise d-linear functions. The main advantage of
this approach is that almost arbitrarily large data sets can be dealt with (our
example contains more than 250,000 data points), as the resulting algorithms
scale almost linearly with the number of training data. Unfortunately, regular
grid structures suffer the “curse of dimensionality”: a regular grid structure with
equidistant meshes and k grid points in one dimension features kd grid points in d
dimensions. This exponential growth typically prevents more than 4 dimensions
for a reasonable discretization.
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We therefore employ adaptive sparse grids [3,17], which mitigate the curse of
dimensionality to a large extent. Sparse grids employ a hierarchical basis with
basis functions defined on several levels of discretization. For piecewise d-linear
functions, they are ϕl,i(x) := ϕ(2lx − i), based on a reference hat function
ϕ(x) := max(1 − |x|, 0). The d-dimensional basis functions are then created as

products of one dimensional functions, ϕl,i(x) :=
∏d

k=1 ϕlk,ik(xk), with l and i
as multi-indices indicating level and index in each dimension.

This allows one to represent a function on several scales. To find out which
scales contribute most to the overall solution, as plenty of grid points can be
omitted in the hierarchical representation as they have only little contribution—
at least for sufficiently smooth functions. The cost is reduced from O((2n)d) to
O(2nnd−1) while a similar accuracy as for full grids is maintained. For functions
that do not meet the smoothness requirements (as for classification), or where the
data points are clustered together (our regression example), we employ adaptive
refinement, spending only grid points where necessary. This leads, as for the DR5
dataset later on, to highly non-balanced grids, which poses further challenges for
algorithms and parallelization.

Back to the data-driven problem, we would like f to be as close to the known
data points as possible, preferably minimizing the mean squared error. Addi-
tionally, we require close data points to very likely have similar function values.
We thus want to generalize and to not learn potential noise in the data. In sum-
mary, we minimize a trade-off between both (the hierarchical basis allowing for
a simple generalization functional), which leads to a system of linear equations,

argmin
f

1

m

m∑
i=1

(f(x)− yi)
2
+ λ

N∑
j=1

α2
j ⇒

(
1

m
BBT + λI

)
α =

1

m
By ,

with matrix B, Bi,j = ϕi(xj), and identity matrix I.
The system matrix is rather densely populated for typical datasets; thus, we

do not want to fully assemble it. On the other hand, the applications of the
matrix B and its transposed version boil down to function evaluations (and
somehow transposed ones), as (BTα)i = f(xi). Function evaluations can be
implemented in a multi-recursive way in both level and dimensionality, leading
to a computationally efficient algorithm.

Unfortunately, this algorithm is inherently recursive and requires random
memory access, both of which impose severe restrictions on parallel systems.
Especially accelerator cards penalize such algorithms severely. Alternatively, one
could evaluate all basis functions for all data points and sum up the results. The
resulting algorithm is computationally much less efficient, but it can be arbi-
trarily parallelized and vectorized. A recent study [8] has shown that excellent
speedups can be achieved on hybrid systems, even though a typical application
did require 15 times more evaluations than before. Streaming access of the data
and the avoidance of recursive structures and branches easily evens this out.
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Algorithm 1. Iterative version of the operation v = BTα: every instance xm is
evaluated at every grid point g; see [8]. We denote level and index of grid point
g in dimension k by glk and gik , and the corresponding coefficient by αg.

for all xm ∈ S with vm ← 0 do
for all g ∈ grid with s← αg do

for k = 1 to d do
s← s · ϕlk,ik(xmk ) = s ·max(1− |2glk · xmk − gik |; 0)

end for
vm ← vm + s

end for
end for

5 Implementation

As pointed out in the previous section, the most crucial parts are fast (iterative)
evaluations of the function and its transposed counterpart. They can be realized
using flat array structures containing the sparse grids’ points (l and i uniquely
define them each, thus we have two matrices L and I with the jth row containing
the jth grid point), the training data points (a matrix S of the data points xj ,
row-wise), the coefficient vector α, and the vector y containing the evaluation
results yj , see Fig. 1. Using such a data layout leads to an algorithmic structure
similar to a band-matrix multiplication with differing element-wise functions.

The kernel is implemented by three nested loops, see Alg. 1. The needed
operation inside the inner most loop is non-linear due to the tensor construction
of the sparse grid’s space (see [8]). A suitable vectorization and parallelization
for this algorithm would be the evaluation of several dataset instance on one
grid point. This leads to a vectorization and parallelization of the outer most
loop. Unfortunately the Intel R© Composer XE 2011 is only able to vectorize
inner most loops. Since the loop which iterates over the dimensions contains a
non-linear operation, the loops cannot be exchanged in order the to enable auto-
vectorization by the compiler. Additional temporal data structures are needed for
such an exchange, which blow up the code and introduce unnecessary operations
and reduce the programmers productivity.

Results for hand-tailored versions exploiting this approach have been shown
in [8] for several programming models and architectures, ranging from multi-core
CPUs to hybrid systems using several CPU sockets and GPUs. Although excel-
lent absolute performance and speed-ups have been achieved, they were only
possible by the burden of creating a hardware-aware implementations. For each
platform, a complete rewrite of the kernels was necessary, and all future hardware
changes will require code adjustments and changes as well. The hand-tailored
implementations used here feature standard and well-known performance opti-
mization techniques like loop-unrolling and register-blocking.

Fig. 1 illustrates the Intel ArBB data containers to store L, I, S, α, and y.
Since multi-dimensional structures are required, the splitting is performed as



42 A. Heinecke et al.

Level
dense<array<fp, 4>, 1>

Index
dense<array<fp, 4>, 1>

α
dense<fp, 1>

y
dense<array<fp, 4>, 1> dense<fp, 1>

Sum Dataset S

Fig. 1. ArBB data containers to manage adaptive sparse grids and data sets

follows: a grid point’s level, index data, and single training data instances are
coupled into ArBB d-dimensional vector types, whereas α- and y-values are only
one-dimensional, independent from the grid’s dimensionality. All data elements
are aggregated using the dense container type in ArBB.

After this step, five one-dimensional dense containers store the required data
(Fig. 1). Besides this, Fig. 1 also gives an idea of how the language interface is
designed: using templates, the member types of a container can be defined. This
way, mixed precision calculations are easily realized since they can be performed
by an additional template type. Here, fp is such a generalization. Moreover,
Fig. 1 sketches how a data set is evaluated on the sparse grid: each instance has
to be evaluated on every grid point as illustrated by the dashed arrows

Algorithm 2 provides the implementation details of a dataset’s evaluation for
an arbitrary number of dimensions. Evaluating an instance for all grid points is
implemented using the map operator in ArBB. The code example shows, that
the map operator is able to determine which element should be mapped on what
argument by comparing the input parameters with the signature of the called
function. Due to limitations in the current C++ standard, this kernel has to be
defined in an inlined local structure. Inside this function an additional significant
advantage of ArBB can be observed: element-wise functions and operators.

Unlike approaches as taken in [8], there is no loop iterating over the number
of dimensions. Such a loop is replaced by calling functions and operators directly
on the vector types that are used to store one grid point or one instance. Please
note that the for(,,) in the listing defines a sequential execution of the loop
body. If a parallel loop is intended, the map operator should be used.

ArBB focuses on the mathematical problem description and hides the prac-
tical representation from the programmer. There is no blocking or reordering of
the operations, leading to an easily readable source code. As stated in section 2,
the JIT compiler in ArBB and the virtual machine are responsible for a highly
efficient execution on a given hardware platform. This significantly simplifies a
programmer’s life and directly leads to better understanding and maintainabil-
ity of the written code. If an ArBB code is compared to the OpenCL or in-
trinsics versions, much information about the scientific problem gets lost in the
latter ones. As described in [8], in case of hand-tuned vectorization using intrin-
sics, several dataset instances are evaluated for one grid point simultaneously.
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This requires duplicate loads or even shift operations inside the innermost ker-
nels. Using OpenCL, the kernel implements the evaluation of one instance on
all grid points. Moreover, since OpenCL includes an offloading model, concepts
like device contexts, command queues, buffers, and explicit kernels have to be
used, which require programmers to cope with additional boilerplate code.

In both OpenCL and intrinsics, the actual mathematical idea is not clearly
represented which may cause difficulties in porting and maintaining the code.
To be more precise, since several optimization techniques like register blocking
and prefetching are employed, the code’s readability decreases further. As it
can be seen from this case study, ArBB requires no built-in assumptions about
the underlying hardware, whereas intrinsics require a binary compatible platform
and OpenCL relies on an execution model based on a complex memory hierarchy
and small execution units (see [7] for details).

To discuss ease-of-use capabilities ArBB is compared in terms of lines of code
(LOC) with these hardware-aware alternatives. For ArBB, 10 LOC are needed
for the whole kernel (as shown in Alg. 2). These 10 lines are independent from
the floating point precision that is used, since this can be handled by an ad-
ditional template type. In case of Intrinsics, the kernel including an OpenMP
parallelization requires 80 LOC for every floating point precision and vector-
ization method (SSE or AVX), so we end up with 320 LOC for intrinsics.
Although, the vectorized code can be transcribed semi-automatically between
SSE and AVX, recompilation and individual testing is needed to ensure correct-
ness. Due to its exposed offloading model, OpenCL is the most complex one
in terms of LOC: for each floating point standard approximately 250 LOC are
required which results in 500 LOC using OpenCL for both single and double
precision support. Different OpenCL targets may also cause a code rewrite since
they offer hardware cache and same address spaces for host and target.

6 Results

The previous sections have introduced the scientific application, and its imple-
mentation with ArBB, hand-tuned vectorization, and OpenCL. These different
programming languages have been compared in terms of their productivity. We
now focus on the performance of all three approaches.

As workloads we use two different datasets with distinct properties and chal-
lenges. For classification, we use a synthetic 5-dimensional dataset. The 218 data
points have been drawn randomly from the domain, and have been assigned to
the target values ±1 based on a 3 × 3 × 3 × 3 × 3 checkerboard pattern. For
regression, we use a 5-dimensional real-world dataset (DR5) from astrophysics
with measurements of more than 430, 000 galaxies to predict the galaxies’ red-
shift as a measure for their distance. Without the data mining approach this
data is very expensive to obtain.

We employ spatial adaptivity with six refinement steps for both workloads.
This leads to completely different types of grids. Whereas the checkerboard
dataset requires a regular distribution of grid points along the classification, the
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Algorithm 2. Implementation of the innermost kernel using the Intel ArBB
map-operator and element-wise functions. ArBB language extensions are under-
lined.

template<typename fp>
void arbb mult ( const dense<array<fp , DIM>>& Dataset ,

const dense<array<fp , DIM>>& Level ,
const dense<array<fp , DIM>>& Index ,
const dense<fp>& alpha , dense<fp>& y)

{
struct l o c a l {

static void eva lGr idPoint ( const array<fp , DIM>& DataPoint ,
const dense<array<fp , DIM>>& Level ,
const dense<array<fp , DIM>>& Index ,
const dense<fp>& alpha , fp& y po in t ) {

y po in t = 0 . 0 ;
for ( usize j = 0 , j < Level . l ength ( ) , j++) {
y po in t += alpha [ j ] ∗ mul reduce(

max(1 − abs ( Leve l [ j ] ∗ DataPoint − Index [ j ] ) , 0 ) ) ;
} end for ;

}
} ;
map( l o c a l : : eva lGr idPoint ) ( s t o r a g e s i z e , Dataset , Level , Index , alpha , y ) ;

}

astrophysical DR5 dataset is highly clustered. The checkerboard dataset leads
to a prediction accuracy of more than 92%, the redshift dataset to an MSE of
≈ 5.3 · 10−4. As shown in [8], computation with single precision is sufficient. We
use a dual-package Intel R© XeonTM X5650 (2.66GHz, 24GB memory) for the
evaluation of the generated SSE code. In addition, we test on a recent Intel R©

CoreTM i7-2600 (3.40GHz, 8GB memory) to evaluate AVX vectorization.
Table 1 compares the out-of-the-box performance for Alg. 2 to Intel R© OpenCL

and the hand-tuned intrinsic versions. The runtime includes the serial grid re-
finement with parallel calculation of B and BT . Besides the timing, we also give
results in terms of GFLOPS. SG++ is sensitive to rounding errors, which may
lead to slightly different structures of the learned adaptive grid (see [8] for an in-
depth discussion). While they achieve the same classification accuracy, runtime
may vary significantly. Hence, GFLOPS give a better indication of the actual
performance of the algorithm.

For both platforms, the optimal intrinsic version delivers about 40% more
performance than ArBB in terms of execution time and between 1.6-1.9x if
measuring in GFLOPS. In comparison to Intel OpenCL there is a mid-30%
performance penalty for ArBB using the Intel Xeon workstation. On the Core i7
system, ArBB outperforms OpenCL by 11% due to a better support for AVX at
the current time. Please note that both Intel ArBB and the Intel OpenCL SDK
are currently in a beta phase thus further improvements can be expected for the
release versions. A significant amount of performance for ArBB Beta 6 is lost
due to a missing thread pinning when executing threaded code. Furthermore, we
did single threaded experiments, here ArBB was able to yield up to 90% of the
intrinsics’ implementation, which confirms issues with the threading runtime in
ArBB. For both test platforms the double-precision OpenCL performance drops
clearly below the baseline using the static compiler. First analysis shows that the
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Table 1. Performance for the 5-dim. checkerboard dataset and the DR5 dataset on a
two-socket IntelR© XeonTM workstation with IntelR© X5650 processors and on a one-
socket IntelR© CoreTM i7-2600 desktop. For ArBB, the multi-threaded out-of-the-box
performance is shown, single-threaded execution achieved up to 90% of the intrinsics’
performance. The OpenCL numbers are based on the IntelR© OpenCL SDK.

Tool 5d ch.board SP 5d ch.board DP DR5 SP DR5 DP
time [s] GFLOPS time [s] GFLOPS time [s] GFLOPS time [s] GFLOPS

IntelR© XeonTM X5650 desktop

ArBB 8300 83 18600 40 4200 91 5600 42
SSE 5400 140 10600 70 2300 138 2500 80

OpenCL 5700 117 81000 9 3500 109 23700 9
ICC 12 25200 28 26000 28 11100 28 7300 28

IntelR© CoreTM i7-2600 desktop

ArBB 11000 63 24500 30 5500 70 7500 34
SSE 11600 65 21600 34 5000 76 5500 38
AVX 6400 118 13000 56 2600 145 3100 73

OpenCL 13800 49 196000 4 7800 50 68000 4
ICC 12 62000 12 60500 12 31500 12 18600 12

vectorizer seems to be the problem in this case hence the wrong data streams
are vectorized.

In our experiments, ArBB clearly outperforms the static compiler (Intel C++
Composer XE 2011) by a factor of 6x for single precision on the Core i7 system.
This huge speed-up is due to the fact that the JIT compiler in ArBB is able to
vectorize the kernels with their non-linear inner most loop. Here a connection
to Alg. 2 is useful: due to the map operator the ArBB compiler can analyze the
data flow and choose a sufficient vectorization afterwards. A static compiler is
not able to extract this knowledge from three nested loops.

For SSE, OpenCL (single precision only) exhibits a performance advantage
over ArBB, because of additional manual optimizations like loop-unrolling, local
store prefetching, and introduction of temporary variables. For OpenCL, this was
necessary to achieve optimal performance on a GPU (see [8]). Without typical
GPU optimizations, the straightforward CPU version of OpenCL achieves a
significantly lower performance (about 15%), which results in an out-of-the-box
performance that is slightly below ArBB.

Both tables additionally show that ArBB also automatically exploits the ca-
pabilities of new hardware without recompilation. Switching from one processor
generation to a newer one yields the same speed-up as for low-level code which
has to be rewritten to support new features.

Although ArBB is in beta phase (and work in progress), it already shows its
enormous potential as a high-level programming language. The current release
features an automatic parallel vectorized performance that is only around fifty
percent slower than hand-tuned codes. Moreover, as stated in the previous
section, the ArBB code is more readable than even the standard C++ code
which gives an additional productivity advantage of ArBB.
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7 Conclusions

We have demonstrated the capabilities of the novel programming model of Intel
ArBB for a real-world application from the field of data mining, with adaptive
sparse grids as the underlying data structure.

We have compared other implementations to an ArBB implementation. The
Intel OpenCL implementation delivers performance close to hand-tuned SSE
code. Programmers need to write some boilerplate code, and also need to handle
buffer transfers. Orchestrating the memory hierarchy explicitly is mostly super-
fluous for architectures which are employing cache memory transparently. This,
and other low-level language elements may harm performance-portability. The
resulting complexity often obscures the underlying problem, but the code can
be executed with excellent performance on today’s GPUs.

Using platform-dependent implementations with vector intrinsics obviously
provided the best performance. Intrinsics give control to hand-tune code in order
to exploit the hardware. In terms of lines of code, this approach is to some
extent even better than OpenCL, but it requires to reimplement the algorithm
for new hardware architectures. The porting effort from SSE to AVX is little,
but requires the availability of the new hardware (or simulators) and imposes
additional correctness testing.

ArBB provides a high-level, hardware-oblivious programming approach, which
allows to exploit data-parallelism as well as (nested) parallelism using general
vector-parallelism and elemental functions. Its main advantage is its expressive-
ness which typically leads to a fraction of the code compared to loop-nested code
(or compared to our OpenCL and Intrinsics code). ArBB guides programmers to
write parallel algorithms which can be automatically parallelized. Furthermore,
it is easy to generalize for different precisions or a different dimensionality of a
problem because C++ language constructs such as templates are orthogonal to
ArBB. ArBB is targeting the Intel R© Many Integrated Core (MIC) architecture,
or Intel R© architecture in general (incl. non-Intel processors). Moreover, ArBB
will target GPU architectures in the future. Being able to write maintainable
code in a hardware-oblivious way with only slightly lower performance promises
a significant gain for the parallelization of scientific problems.
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Abstract. The future high-end embedded systems applications are
characterized by their computation-intensive workloads, their high-level
of parallelism, their large data-set requirements, and their dynamism.
Those applications require highly-efficient manycore architectures. In re-
sponse to this problem, we designed an asymmetric homogeneous with
dynamic allocator manycore architecture, called AHDAM chip. AHDAM
chip exploits the parallelism on all its granularity levels. It implements
multithreading techniques to increase the processors’ utilization. We de-
signed an easy programming model and reused an automatic compilation
and application parallelization tool. To study its performance, we used
the radio spectrum sensing application from the telecommunication do-
main. On a simulation framework, we evaluated sequential and parallel
versions of the application on 2 platforms: single processor, and AH-
DAM chip with a variable number of processors. The results show that
the application on the AHDAM chip has an execution time 574 times
faster than on the single-processor system, while meeting the real-time
deadline and occupying 51.92 mm2 at 40 nm technology.

Keywords: Manycore, asymmetric, multithreaded processors, dynamic
applications, embedded systems.

1 Introduction

During the last decades, the computing systems were designed according to the
CMOS technology push resulting from Moore’s Law, as well as the application
pull from ever more demanding applications [1]. The emergence of new embedded
applications for mobile, telecom, automotive, digital television, communication,
medical and multimedia domains has fuelled the demand for architectures with
higher performances (order of TOPS), more chip area and power efficiency. These
complex applications are usually characterized by their computation-intensive
workloads, their high-level of parallelism, their large data-set requirements and
their dynamism. The latter implies that the total application execution time
can highly vary with respect to the input data, irregular control flow, and auto-
adaptivity. Typical examples of dynamic algorithms are 3D rendering, high def-
inition (HD) H.264 video decoder, and connected component labeling [2].

R. Keller et al. (Eds.): Facing Multicore-Challenge II 2011, LNCS 7174, pp. 48–59, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



AHDAM: An Asymmetric Homogeneous 49

The parallelism can be exploited on multiple granularities, such as instruction
level (ILP), loop level (LLP), and thread level (TLP). Those massively paral-
lel high-end embedded applications, which can have more than 1000 parallel
threads, require highly efficient microprocessor architectures. With the limits of
ILP [3] and the low transistor/energy efficiency of superscalar processors for em-
bedded systems applications, the chip manufacturers are increasing the overall
processing power by integrating additional CPUs or ”cores” to the microproces-
sor package. Such microprocessor chip architectures for the embedded systems
world are calledMPSoC. An MPSoC with large number of cores is called a many-
core architecture. These architectures need to exploit all types of parallelism in
a given application.

Unfortunately, the existing MPSoC/manycore architectures offer only par-
tial solutions to the power, chip area, performance, reliability and dynamism
problems associated with the embedded systems. For instance, an optimal static
partitioning on an MPSoC cannot exist since all the tasks processing times de-
pend on the input data that cannot be known off-line. [4] and [5] show that the
solution consists in dynamically allocating tasks according to the availability of
computing resources. Global scheduling maintains the system load-balanced and
supports workload variations that cannot be known off-line. Only an asymmetri-
cal approach can implement a global scheduling and efficiently manage dynamic
applications. An asymmetric MPSoC architecture consists of one (sometimes
several) centralized or hierarchized control core, and several homogeneous or
heterogeneous cores for computing tasks. The control core handles the tasks
scheduling. In addition, it performs load balancing through task migrations be-
tween the computing cores when they are homogeneous. The asymmetric ar-
chitectures have usually an optimized architecture for control. This distinction
between control and computing cores renders the asymmetric architecture more
transistor/energy efficient than the symmetric architectures. However, one main
drawback of asymmetric architectures is their scalability. The centralized core
is not able to handle more than a specific threshold number of computing cores
due to reactivity reasons.

In this paper, we present the AHDAM chip, an asymmetric manycore architec-
ture that tackles the challenges of future massively-parallel dynamic embedded
applications. Its architecture permits to process applications with large data sets
by efficiently hiding the processors’ stall time using multithreaded processors.
Besides, the AHDAM chip has an easy programming model as it will be shown
in this paper. The main contributions of this paper are:

– System design (architecture + programming model) of an efficient asymmet-
ric manycore chip architecture for the embedded systems.

– Architecture evaluation using a significant application from radio telecom-
munication domain (radio sensing).

This paper is organized as follows: Section 2 introduces the AHDAM chip
architecture, its system environment, its programming model, its different com-
ponents functionality, their interoperability, and the execution model. The evalu-
ation of the architecture using an embedded application from the radio
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telecommunication domain, and its performance speedup compared to a
monothreaded core is done in section 3. And finally, section 4 concludes the
paper by discussing the present results along with future works.

2 AHDAM Chip

AHDAM chip stands for Asymmetric Homogeneous with Dynamic Allocator
Manycore chip. It is used as an on-chip accelerator component for high-end mas-
sively parallel dynamic embedded applications. Depending on the computation
requirements, it can be used as a shared accelerator for multiple host CPUs, or
a private accelerator for each host CPU. The host CPU is running an operating
system or a bare-metal application. When a host CPU encounters a massively-
parallel application, it sends an execution demand to AHDAM chip and wait for
its acknowledgment. Then, the host CPU offloads the massively-parallel appli-
cation to AHDAM chip. The application is already decomposed into concurrent
tasks. AHDAM chip exploits the parallelism at the thread level (TLP) and loop
level (LLP).

In this section, we illustrate AHDAM chip’s programming model that sup-
ports the control-flow and streaming execution models (section 2.1). Then, we
describe the overall architecture as well as the functionalities and interoper-
abilites between the hardware components in section 2.2. A typical execution
model will be presented.

2.1 Programming Model

The programming model for AHDAM chip architecture is specifically adapted to
dynamic applications and global scheduling methods. It is based on a streaming
programming model. The chip’s asymmetry is tackled on 2 levels: a fine-grain
level and a coarse-grain level. The proposed programming model is based on
the explicit separation of the control and the computing parts. As depicted
in Figure 1, each sequential application is parallelized semi-automatically us-
ing the PAR4ALL tool from HPC Project [6]. It is manually cut into differ-
ent tasks through pragmas from which explicit execution dependencies are ex-
tracted (TLP). Then, the generated parallel application follows a second path
in PAR4ALL, where OpenMP pragmas are inserted at the beginning of possibly
parallelized ’for-loop’ blocks (fine-grain). In fact, OpenMP [7] is a method of
loop parallelization (LLP) whereby the master thread forks a specified number
of slave threads, and a task is divided among them. Then, the child threads run
in parallel, with the runtime environment allocating threads to different cores.
The PAR4ALL tool supports AHDAM chip Hardware Abstraction Layer (HAL)
for proper tasks generation. PAR4ALL generates as output the computing tasks
and the control task that are extracted from the application, so as each task is a
standalone program. The greater the number of independent and parallel tasks
that are extracted, the more the application can be accelerated at runtime, and
the application pipeline balanced.
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Fig. 1. AHDAM programming model and an example of a typical CDFG control graph

The control task is a Control Data Flow Graph (CDFG) extracted from the
application (Petri Net representation), which represents all control dependencies
between the computing tasks (coarse-grain). The control task handles the com-
puting task scheduling and activations. A specific compilation tool is used for
the binary generation from the CDFG generated by the PAR4ALL tool.

For the computing tasks, a specific HAL is provided to manage all memory ac-
cesses and local synchronizations, as well as dynamic memory allocation andman-
agement capabilities.A special on-chip unit calledMCMU(MemoryConfiguration
and Management Unit) is responsible for handling these functionalities (more de-
tails in section 2.2). With these functions, it is possible to carry out local control
synchronizations or to let the controlmanager taking all control decisions. Concur-
rent tasks can share data through local synchronizations handled by the MCMU
(streaming execution model). Each task is defined by a task identifier, which is
used to communicate between the control and the computing parts. A task sus-
pends/resumes its execution based on data availability from other tasks. It follows
the producer/consumer executionmodel (streaming).When a data is produced by
Task A, then Task B resumes its execution. When data is consumed by Task B,
then it suspends its execution. Each task has the possibility to dynamically allo-
cate or deallocate buffers (or double buffers) in the shared memory space through
specific HAL functions. An allocated buffer is released when a task asks for it and
is the last consumer. A buffer cannot be released at the end of the execution of the
owner task. A dynamic right management of buffers enables a dataflow execution
between the tasks: it is handled by the MCMU.

Once each application and thread has been divided into independent tasks,
the code is cross-compiled for each task. For heterogeneous computing resources,
the generated code depends on the type of the execution core.
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2.2 Architecture Description

The AHDAM chip architecture separates control from computing tasks. This sep-
aration rends the architecture more transistor/energy efficient, since the tasks
are executed on dedicated resources. AHDAM chip is composed of 3 main units:
Memory units, control unit, and computation units, as shown in Figure 2. AH-
DAM chip has M Tiles, where a Tile represents a computation unit. In the
following sections, we will describe in more details the functionality of each unit.

Fig. 2. AHDAM chip architecture

Memory Units. The AHDAM chip memory hierarchy is composed of a sepa-
rated L2 instruction memory and data cache memory.

The instruction memory is a shared on-chip multi-banked SRAMmemory that
stores the codes of the tasks. The code size for all the tasks is known statically for
a given application, thus the instruction memory size can be well dimensioned. In
addition, the instruction memory is a shared memory, which is suitable for inter-
tile task migration and load-balancing. Besides, it is implemented as a multi-
banked memory instead of a single-banked multiple Read/Write ports memory,
which is proven to be more efficient according to CACTI 6.5 tool [8]. In addition
to a better area occupation, the multi-bank memory generates less contention per
bank when multiple Tiles are accessing simultaneously the instruction memory.
This happens when the instruction codes for the tasks are stored in different
memory banks.

On the other hand, since we cannot know in advance the application data set
size, we implement a L2 data cache memory instead of an on-chip SRAM mem-
ory. Cache memories have a bigger area and are less area/energy efficient than
SRAM memories. But caches facilitate the programmability since the memory
accesses to the external DDR3 memory are transparent to the programmer and
independent from the data set size. This eliminates the need for explicit data
prefetching using DMA engines, which hardens the tasks decomposition and
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synchronization as it happens with the IBM Cell processor [9] for instance. All
the L2 data cache memories are connected to an on-chip DDR controller, which
transfers the data memory access requests to the off-chip DDR3 memories.

A special unit called MCMU (Memory Configuration and Management Unit)
handles the memory configuration for the tasks. It divides the memory into
pages. In addition, MCMU is responsible of managing the tasks’ creation and
deletion of dynamic data at runtime, and synchronizing their access with other
tasks. There is one allocated memory space per data. A data identifier is used by
tasks to address them. Each task has a write exclusive access to a data buffer.
Since all the tasks have an exclusive access to data buffers, the data coherency
problems are eliminated without the need for specific coherency mechanisms. A
data access request is a blocking demand, and another task can read the data
when the owner task releases its right. Multiple readers are possible even if the
memory latency will increase with the number of simultaneous accesses.

The Instruction interconnection network connects the M Tiles to the multi-
banked instruction memory. It is a multibus. According to the author [10], the
multibus occupies less die area that other types of NoCs for small to medium
interconnections, and has less energy consumption and memory access latency.
The shared on-chip instruction memory is the last level of instruction memory. As
we will see later in section 2.3, the execution model assumes that the instructions
are already prefetched in the instruction memory.

Control Unit. In the AHDAM chip, the CCP (Central Controller Processor)
controls the task prefetching and execution. The application CDFG is stored in
dedicated internal memories. The CCP is a programmable solution that consists
of an optimized processor for control, which is a small RISC 5-stage, in-order,
and scalar pipeline core. Thus, the RTOS functionalities are implemented in
software. In addition, the CCP has special interfaces from receiving/sending
interruption demands to the computation units.

Computation Units. The AHDAM chip supports M Tiles. The CCP views a
Tile as 1 computation unit. But actually, a Tile has one MPE (Master Processing
Element) and N LPEs (Loop Processing Element). In addition, it has a special
scratchpad memory called Thread Context Pool that stores the thread contexts
to be processed by the LPEs. The Thread Context Pool represents the tasks
runqueue per Tile, thus AHDAM chip has M runqueues. The occupation status
of all the Tiles’ Thread Context Pool are updated in a special shared memory
unit called the TCP state. The TCP state is shared by all the Tiles.

The MPE is the Master PE that receives the execution of a coarse-grain task
or master thread from the CCP. It is implemented as a monothreaded processor
with sufficient resources (ALUs, FPUs, etc...) for executing the tasks’ serial
regions. On the other hand, the LPE or Loop PE, is specialized in executing
child threads that represent loop regions. The LPEs are implemented as blocked
multithreaded VLIW processors with 2 hardware thread contexts (TC). In fact,
the blocked multithreaded processor increases the LPE’s utilization by masking
the long access to the off-chip DDR3 memory that stalls the processors.
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Each MPE and LPE has a private L1 I$, L1 D$, and L2 D$. For the multi-
threaded LPE, the L1 I$ is shared by both TCs, while the L1 D$ is segmented
per TC. In this way, we privilege the execution of 2 child threads from the
same parent thread, while limiting their interferences on the data memory level.
The Tile NoC, which is a set of multiple busses interconnecting all the units to
each other and to the external world (control and memory busses), is responsi-
ble of forwarding the cores’ request accesses to the corresponding external unit.
However, for the memory data accesses, the requests are grouped by a special
MUX/DEMUX unit that forwards the data request to the DDR controller, then
to the off-chip DDR3 memory. The Tile NoC provides one serial connection of
the Tile to the external world, which eases the implementation of the Control
and Instruction busses.

2.3 Execution Model

In this section,we describe a typical executionmodel sequence in theAHDAMchip.
At the beginning, theAHDAMchip receives an application executiondemand from
an external host CPU through the System bus. The CCP handles the communi-
cation. It fetches the application task dependency graph (CDFG), stores it in its
internal memory, and checks the next tasks ready to run to be pre-configured by
the MCMU.When the MCMU receives a task pre-configuration demand from the
CCP, it configures the shared instruction memory space and allocates the neces-
sary free space, then it fetches the tasks instruction codes from the off-chip DDR3
memory using an internalDMAengine, and finally it creates internally the transla-
tion tables. At this stage, the CCP is ready to schedule and dispatch the next tasks
to run on available computation units through the Control bus.

Each task has serial regions and parallel regions. The parallel regions are the
parallelized loop codes using a fork-join programming model such as OpenMP
pragmas. For instance, let us consider the code example shown in Figure 3. It
consists of 3 serial regions (S1,S2,S3) and 2 parallel regions (P1,P2). The thread
execution is processed in 4 steps: 1) executing the serial region 2) forking the child
threads 3) executing the child threads in parallel 4) joining the child threads.

Fork: The MPE executes the serial region of the task (S1). When it encounters
a loop region using OpenMP pragmas (P1), the MPE executes a scheduling
algorithm that uses a heuristic to fork the exact number of child threads in the
appropriate Tiles’ Thread Context Pool. The scheduling algorithm is part of a
modified OpenMP runtime. The heuristic determines the maximum number of
parallel child threads required to execute the loop as fast as possible based on:
1) the data set size 2) the number of cycles to execute one loop iteration 3) the
Tiles’ Thread Context Pool occupation using the shared TCP State memory 4)
the cost of forking threads in the local and other Tiles. If possible, the algorithm
favors the local Thread Context Pool since the fork and join process are done
faster by avoiding the access to multiple busses. However, in some cases, the
local Thread Context Pool is full or not sufficient while the ones in other Tiles
are empty. Therefore, the local MPE has the possibility of forking the child
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threads in others Thread Context Pool by verifying their availability using the
shared TCP state memory. This can be the case for the parallel region P2 in
Figure 3.

Execute: Then, each LPE (Loop PE) TC executes one child task instance from
the local Thread Context Pool until completion. Forked parallel child threads
are executed in a farming model by the LPEs. As soon as a LPE is idle, it
spins on the local Thread Context Pool semaphore trying to fetch another child
thread context. This type of execution model reduces the thread scheduling time
and improves the LPEs occupation rate. In addition, it optimizes the execu-
tion of irregular for-loops. In fact, some for-loops have different execution paths
that render their execution highly variable as shown in parallel region P1 in
Figure 3. This scheduling architecture resembles the SMTC (Symmetric Multi-
Thread Context) scheduling model, which has been shown to be the best schedul-
ing architecture for multiple multithreaded processors [11].

In AHDAM, we implement a fork-join model with synchronous scheduling:
the master thread forks the child threads, then waits to join until all the child
threads have finished their execution. Therefore, during the execution of the
parallel child threads, the MPE is in a dormant mode and is not preemptable
by the CCP. There are 2 advantages from using this execution model: 1) the
LPEs have a full bandwidth to the memory and are not disturbed by the MPE
execution 2) easier ’join’ process.

Join: When a child thread finishes execution, it sends a message to the corre-
sponding MPE. The MPE waits until all the child threads have finished execution
to join the process and continue execution of the serial region (S2).

Fig. 3. A task code example of serial and parallel regions using OpenMP pragmas
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3 Evaluation

In this part, we provide a case study scenario in order to evaluate the AH-
DAM chip performance. The AHDAM chip is simulated in a modified SESAM
framework [12], which is a SystemC framework for modeling and exploration of
asymmetric MPSoC architectures. SESAM supports the AHDAM programming
model already discussed in section 2.1. It also has a wide range instruction-
set simulators (ISS) including monothreaded MIPS1 and MIPS32, and cycle-
accurate multithreaded MIPS1 [13]. The latter implements the blocked
multithreading protocol and has 2 thread contexts. In this framework, MPEs
are implemented as monothreaded MIPS32 24K with FPU, while LPEs are im-
plemented as 2-threaded 3-way VLIW processor (1 ALU, 1 FPU, 1 ld/st). In
fact, the performance results of the monothreaded 3-way VLIW are extracted
from Trimaran simulator [14] due to its high simulation speed compared to the
RTL model, then the results are injected in SESAM simulator. The CCP is a
32-bit monothreaded 5-stage RISC processor similar to MIPS1 R3000.

We choose an application that meets the future high-end embedded appli-
cations requirements as discussed in section 1. It is a radio spectrum sensing
application from the telecommunication domain. This component, which can
be found in cognitive radios, is developed by Thales Communications France
(TCF). The radio spectrum sensing application sweeps the overall radio spec-
trum to detect unused spectrums. If an unused spectrum is found, it establishes
a communication. We conducted a profiling on a modified version of the appli-
cation, which provides a high degree of scalability for platform testing (number
of cores, etc...) and is not fully optimized for sensing processing. This appli-
cation has been developed within the SCALOPES project. The application is
characterized by its high computation requirements and its adaptive reconfigura-
tion (dynamism). The application supports different execution modes. For our
evaluation, we choose the following options: high-sensitivity (frequency sample
102.4MHz), 6 buffers, 100 ms buffer size every 1 sec. This gives us a computation
requirement of 75.8 GOPS, a data set of 432MB, and a real-time deadline of 6
seconds. In addition, we examined the hot spots in the code where most of the
application time is spent, and we noticed that 99.8% of the loop regions can be
parallelized by OpenMP.

Initially, the radio sensing application is built to run sequentially on a mono-
threaded processor. The task level parallelism is explicitly expressed by inserting
specific pragmas. Then, PAR4ALL cuts the application in a set of tasks accord-
ing to these pragmas, generates communication primitives to implement a dou-
ble buffer streaming processing, and the corresponding CDFG control graph.
For this paper, 19 tasks are generated. Once independent tasks are generated,
PAR4ALL identifies netloops and inserts OpenMP pragmas. The loop paral-
lelism is detected during runtime depending on the resources occupation. Also
some loops are irregular, which means a variable execution time between the
child threads.

We run the radio-sensing application on 2 processing systems running at
500MHz:
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– Sequential version: 1 MIPS32 24K processor with a FPU, and a sufficient
on-chip memory for data and instructions (432 MB). The memory access
time to the on-chip memory is 10 cycles, as well as the L2$ memory. The
processor has 4KBI and 8KBD L1$, and a 32KB L2$.

– Parallel version: AHDAM chip that is configured with 8 Tiles and 4/8/16
LPEs per Tile. The MPE has 4KBI and 8KBD L1$, while the LPE has 1KBI
and 2KBD (1KB per TC) L1$, and a 32KBD L2$. The on-chip instruction
memory is equal to 1.5 MB, which is the total size of the tasks’ instructions
and stack memories. The memory access to the on-chip instruction memory
takes 10 cycles, as well as the L2 D$. For the off-chip DDR3 memory, the
access time is 50 cycles.

In Figure 4, we compare the execution time of these processing systems. The
results show that the AHDAM chip with 4 LPE/tile has a speed-up of 145 com-
pared to a single-processor system. And since the application has lot of LLP,
the acceleration goes up to 574 for 16 LPE/tile. In fact, Trimaran compiler op-
timizations contribute with the LLP exploitation to this high speed-up factor.
It is clear that only AHDAM(8x16) with 136 processors is able to meet the
real-time deadline constraints of 6 seconds for the radio-sensing application. In
addition, we estimated the chip size (processors + memories) at 40 nm technol-
ogy of both processor systems giving the radio-sensing application conditions.
The cache memories and SRAM memories are estimated using CACTI 6.5 tool.
As for the processors, we synthesized the multithreaded VLIW LPE and the
CCP, while the MPE core area is given at MIPS website. AHDAM(8x4) with 40
processors has an estimated die area of 30.67 mm2, while AHDAM(8x16) with
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Fig. 4. a) Execution time of radio-sensing application on 1 PE v/s AHDAM chip with
8 Tiles and 4/8/16 LPEs on 6 buffers. The real-time deadline is 6 seconds b) Surface
repartition of AHDAM with 8 Tiles and 16 LPE/tile at 40 nm technology
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136 processors is 51.92 mm2, which is only 69.2% bigger. The surface repartition
of AHDAM(8x16) is shown in Figure 4(b). We can notice that the computing
cores take 27% of the overall die area, which is quite a good number compared
to recent MPSoC architectures. In fact, the key design parameter taken in AH-
DAM design is to reduce the size of the on-chip memory and integrate instead
more efficient processors for computation.

4 Conclusion

This paper has presented an asymmetric homogeneous with dynamic allocator
manycore architecture, called AHDAM. The AHDAM chip is designed to tackle
the challenges and requirements of future high-end massively parallel dynamic
embedded applications. The AHDAM chip units are chosen to increase the tran-
sistor/energy efficiency.

We presented the AHDAM chip programming model and its automatic com-
pilation tool that takes as input a sequential application, then decomposes it into
multiple parallel independent tasks (TLP), and finally inserts OpenMP pragmas
at the loop level (LLP). To study its performance, we used the radio spectrum
sensing application from the telecommunication domain. We simulated the ex-
ecution of sequential and parallel versions of the application on 2 platforms: a
single processor with sufficient on-chip memory for the application data set, and
the AHDAM chip with a variable number of processors. The results show that
the application on the AHDAM chip with 136 processors has an execution time
574 times faster than on the single-processor system, while meeting the real-time
deadline and occupying 51.92 mm2. The speed-up is almost scalable with respect
to the number of LPEs since the application has lot of LLP.

For future enhancements, we would like also to compare AHDAM with other
MPSoC architectures excluding the GPU architecture. In fact, with AHDAM
chip, we are targeting applications that are highly dynamic with lot of TLPs.
This execution model is not adequate with the GPU execution model, thus not
comparable with AHDAM chip. In addition, we aim to explore AHDAM runtime
environment and the heuristics for forking the child threads between the Tiles.
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Abstract. This paper presents a FPGA-based multiprocessor system
for the essential matrix estimation from a set of point correspondences
containing outliers. The estimation is performed using two methods: the
8-point and the 5-point algorithm, and complemented with robust es-
timation. The description of the architecture and the hardware-specific
design considerations are given. Performance and resource use depend-
ing on the chosen method and the number of processing cores are also
given.1

Keywords: FPGA, robust estimation, essential matrix, multicore.

1 Introduction

The problem of essential matrix estimation has been studied in the literature
for decades, but is still a field of active research. This is because of wide spec-
trum of the possible practical applications depending on the knowledge of the
essential matrix. Such applications include finding the relative orientation and
position between cameras (used in visual odometry), finding the 3D coordinates
of matched image points (allowing for 3D reconstruction), camera calibration
etc. The input data for the essential matrix estimation algorithms are the im-
age points matched across two overlapping views of the same scene. Such points
must be however registered with a calibrated camera, i.e. inner camera parame-
ters must be known in order to achieve the normalization. Field programmable
gate array (FPGA) technology has in recent years evolved and became the tool
that can successfully be used to tackle the challenges created by advanced image
processing tasks [3][7][4]. The possibility to freely form parallel, pipelined archi-
tectures that are tailored to the requirements of the application at hand allows
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for the creation of fast, power efficient embedded systems. In this paper, we
present a FPGA based system for robust estimation of the essential matrix. In
order to achieve it, we use the 8-point and the 5-point algorithm along with the
RANSAC (random sample consensus) robust estimation framework running on
a multicore system based on the Microblaze processors [13] with the dedicated
coprocessor.

2 Robust Estimation of the Essential Matrix

This section describes the essential processing stages and the basic concepts
underlying the implemented essential matrix estimation method.

2.1 The Fundamental and Essential Matrices

In computer vision, the fundamental matrix F is a matrix that relates corre-
sponding points (described by homogeneous image coordinates) in two images
of the same scene (a stereo pair). It is a 3× 3 rank 2 matrix. Let us now denote
the homogeneous coordinates of the projection of a real-world point to image
one by x, and the homogeneous coordinates of the projection of the same point
on a different image of the same scene by x′. The homogeneous coordinates of
each corresponding point pair x ↔ x′ are related with the fundamental matrix
F. The relation is described by the so called epipolar constraint (1) [2], [6].

x′TFx = 0 (1)

Any rank two matrix is a potential fundamental matrix, and it must satisfy the
cubic constraint (2).

det(F) = 0 (2)

The essential matrix E is a specialization of the fundamental matrix. It is also a
3× 3 rank two matrix that relates the locations of the projections of a real-word
point on two images of the same scene. The difference is that in the case of
the essential matrix E the cameras are assumed to be calibrated beforehand, so
that we deal with the calibrated coordinate system. The relation between the
essential matrix and the fundamental matrix is given in (3) [2], [6].

E = K′TFK (3)

The matrices denoted byK andK′ are the camera matrices for both scene views,
returned as the result of camera calibration. For the monocular case, in which
both of the images of the scene are registered using the same camera, K = K′.
The essential matrix has two equal, non-zero singular values. The algebraic con-
straint resulting from this fact is given in (4).

2EETE− trace(EET )E = 0 (4)
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The fundamental matrix allows for the 3D reconstruction with the accuracy up
to a projective transformation, while the essential matrix allows for the recon-
struction accurate up to a scale. The matrices can be computed using a set of
corresponding points in two views of the same scene x ↔ x′. In our work, we
are especially interested in the essential matrix, as it can be decomposed into
the relative rotation matrix R and translation vector t.

The methods of computation of the essential matrix are a field of active re-
search and numerous methods have been developed over the years. The common
starting point for most of those method is given below.

As mentioned before, the essential matrix fulfills the epipolar constraint (1) if
the corresponding points are normalized, i.e. transformed by multiplying them
by the respective intrinsic camera matrices. The components of the equation (1)
can be written down as:

E =

⎡
⎣ e11 e12 e13
e21 e22 e23
e31 e32 e33

⎤
⎦ , x =

⎡
⎣x
y
1

⎤
⎦ , x′ =

⎡
⎣x′

y′

1

⎤
⎦ .

From this, for a single pair of corresponding points we get:

x′xe11 + x′ye12 + x′e13 + y′xe21 + y′ye22 + (5)

+y′e23 + xe31 + ye32 + e33 = 0

By putting the elements of the matrix E in a column vector (row after row order)
we can rewrite the equation for a single point pair (5) in the form given in (6).

[
x′x x′y x′ y′x y′y y′ x y 1

]
e = 0 (6)

By stacking such equations for n point pairs, we get a system of equations given
in (7).

Ae =

⎡
⎢⎣
x′
1x1 x′

1y1 x′
1 y′1x1 y′1y1 y′1 x1 y1 1

...
...

...
...

...
...

...
...

...
x′
nxn x′

nyn x′
n y′nxn y′nyn y′n xn yn 1

⎤
⎥⎦ e = 0 (7)

Common to all the methods is the fact, that they use n observed point pairs
in the epipolar constraint. In other words, we use a system of n equations of
the form given in (7) to impose the linear constraints on the essential matrix.
The names of the methods are derived from the minimum number of point pairs
required to compute the essential matrix.

2.2 The 8-Point Algorithm

The 8-point algorithm is a classical method for the estimation of the essential
(but also the fundamental) matrix. The essential matrix has 9 elements, but it
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is defined up to an unknown scale, so that 8 point pairs are sufficient to find
a solution by using (7). If rank(A) = 8, the solution is unique (up to a scale)
and can be found by linear methods. In practice, this is rarely the case. The
presence of image noise and quantization effects affect the accuracy of keypoint
localization, so that the method of choice for finding the solution is the least
squares method. The most common approach is to perform the singular value
decomposition (SVD) of the matrix A (SV D(A) = UDVT ). The least squares
solution is then the right singular vector corresponding to the smallest singular
value.

2.3 The 5-Point Algorithm

Whenever the intrinsic camera parameters are known (i.e. the camera has been
calibrated) the required number of point pairs can be reduced to 5 by deriving
additional equations from the cubic (2) and the essential 4 constraints. More-
over, according to [10] enforcing the intrinsic calibration constraints improve
the accuracy of the ego-motion and structure reconstruction. Additionally, the
5-point algorithm is also significantly more robust against the coplanarity of the
analyzed points.

In this algorithm the matrix A (7) defines 5 linear constraints. The singular
value decomposition is used to calculate the 4-dimensional null-space of the
equation system. The essential matrix is a linear combination of four singular
vectors corresponding to the zero singular values:

e = xe1 + ye2 + ze3 + we4 (8)

where ei are the vectors spanning the null-space, and x, y, z and w are some
scalars. As the essential matrix can be estimated only up to scale the w is set to 1.
Substituting e into the cubic (2) and the essential (4) constraints gives 10 third-
degree polynomial equations consisting of the 20 monomials. The monomials
ordered in the GrLex order form a monomial vector X and the equation system
can be rewritten as:

MX = 0 (9)

where M is a 10× 20 matrix. According to [11] it is possible to solve this system
of polynomial equations by defining a Gröbner basis from the constraints and
using it to construct a 10x10 action matrix. The Gröbner basis is obtained by
the Gauss-Jordan elimination of (9):[

I B
]
X = 0 (10)

Afterwards, the action matrix is created by extracting appropriate columns of
the eliminated

[
I B

]
matrix. The solutions of the equation system are encoded

in the left eigenvectors of the action matrix corresponding to the real eigenvalues.
The detailed description of the 5-point algorithm using the Gröbner basis is

beyond the scope of this paper and can be found in [11]. However, it is important
to notice that the solution is obtained using standard linear algebra algorithms
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and is numerically more stable than the variant presented in [10] which requires
finding the roots of the 10th degree polynomial. Other methods of solving the
5-point relative pose problem are described e.g. in [9], [1] and [8].

2.4 Robust Estimation with RANSAC

In real-life applications, the pairs of points x ↔ x′ used as the input data for
computing the essential matrix are detected and matched automatically, using
dedicated algorithms. Figure 1 gives an example output of automatic image
feature detection and matching algorithm.

Fig. 1. Illustration of automatic feature detection and matching performance

The black crosses in the image indicate the features detected in the frame.
The lines represent the displacement of the features from the previous (reference)
frame to the current frame. The figure on the left contains only inliers – the
tracks of the features converge towards the center of the image, as the frames
were registered with the camera moving forward. The right image contains the
outliers registered during the same matching procedure. It is evident, that the
incorrectly matched point pairs (outlier) percentage is considerable.

As multiple point pairs are necessary to compute the essential matrix, the
probability of selecting an incorrectly matched point pair as a part of the input
data may be relatively high, even for a seemingly low outlier percentage. To
avoid the corruption of results by invalid measurement data, robust estimation
algorithms are used. In computer vision, the most commonly used method of
robust estimation is the RANSAC algorithm and its variations.

RANSAC (ang. Random SAmple Consensus) is an iterative algorithm, that
enables correct estimation of parameters of a mathematical model (the essential
matrix in our case) from a set of measurement data (matched points) containing
some percentage of outliers (false matches) ([5]). The algorithm is nondeter-
ministic – the correct result is given with some probability. To perform robust
estimation with RANSAC , we proceed as follows:
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– randomly choose a sample s from a set of measurement data S; compute the
model parameters M̂ using this sample

– check the cardinality of a set of data consistent with the model M̂ with an
error less than Δ (cardinality of the set Si, which is a subset of S)

– if the cardinality of Si is higher than some threshold T , return M̂ as the
result (optionally, compute the model parameters using the data from Si)

– if the cardinality of Si is lower than T , repeat all the steps given above

– after N tries, choose the Si with the highest cardinality and return the corre-
sponding model M̂ as the result (optionally, compute the model parameters
using the data from the chosen Si)

The least number of samples N that must be tested to get a model that is
not corrupted with the outliers is given in equation (11). The term s stands for
sample size, w is the probability that a randomly chosen element of S is an inlier
(a correct match in our case), ε = 1− w is the probability, that the a randomly
chosen element of S is an outlier. The desired probability of getting the correct
result is p.

N =
log(1− p)

log(1− (1− ε)s)
(11)

There are numerous criteria for testing the consistency of the matched point pairs
with the essential or fundamental matrix. The consistency measure, along with
the user-selected threshold, is used as the Δ term in the RANSAC framework.
For our implementation, we chose to use the the Sampson error (a first order
approximation of the geometric error) (12).

Δi =
(x′

i
T
Exi)

2

(Exi)21 + (Exi)22 + (ETx′
i)
2
1 + (ETx′

i)
2
2

(12)

The (Exi)j stands for the j-th element of the vector. The Sampson error is widely
used in similar applications, as it is a good compromise between accuracy and
computation speed [6]. In the specific case of the essential matrix estimation, the
execution time of the algorithm depends strongly on the quality of the matches.
As the percentage of outliers ε grows, the number of samples that must be tested
to get a correct result (with the desired probability) grows rapidly in a nonlinear
manner. The minimum size of the sample is another factor, that has a very
strong influence on the minimum number of hypotheses that need to be tested.
Table 1 compares the minimum number of samples N that need to be tested at
a fixed probability p = 0.99 for a sample size s of five and eight (as used the
five- and the eight-point algorithm).

While the eight-point algorithm has the benefit of simplicity, the five-point
algorithm is faster in real-life applications. The process of model generation takes
more time in the case of the five-point algorithm, but the number of required
RANSAC iterations is significantly smaller, especially when the percentage of
outliers grows [9][10]. The hypothesis testing step is the same for both algorithms.
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Table 1. Minimum number of samples N that need to be tested at a fixed probability
p = 0.99 for a given sample size s

sample outlier percentage ε
size 10% 20% 30% 40% 50%

s = 5 6 12 26 57 146
s = 8 9 26 78 272 1177

3 Description of the Implemented System

The basic structure of the system is split into the part that is responsible for
the dataflow and the blocks used to perform the computations. The control
core (ConCore) consists basically of a single MicroBlaze soft-core microproces-
sor equipped with a fast local memory composed of the dedicated FPGA Block-
RAM (BRAM) resources (256kB). Depending on the configuration, up to four
processing cores (ProcCore) can be connected to the ConCore. The ProcCore
cores are also MicroBlaze microprocessors, but in this case they are configured
to perform computations, thus they are equipped with an IEEE-754 compati-
ble single precision floating point unit (FPU). The ProcCores perform the task
of hypothesis generation, both in the case of the 8-point and the 5-point algo-
rithm implementations. As the hypothesis generation processes are independent
from one another, the use of a few independent ProcCores results in almost
proportional increase of processing speed due to the parallelization. Depending
on the algorithm executed, the RAM configuration for ProcCores differs. The
8-point algorithm implementation requires significantly less program memory, so
that it can be executed from fast, internal memory composed of BRAM blocks
(64kB each). The 5-point algorithm is more memory consuming and requires
the use of the external DDR3 RAM along with a dedicated multi-port memory
controller (MPMC) created using FPGA resources. To speed up the operations
using external memory, the ProcCores used within the 5-point algorithm im-
plementation were equipped with 16kB data cache and 16kB instruction cache.
The ConCore randomly selects a minimum sample (5 or 8 matched point pairs)
from the dataset and sends it to the currently available ProcCore. Upon the
completion of the hypothesis generation process, the ProcCore sends the results
(the computed candidate essential matrix) to the ConCore. Upon receiving the
candidate essential matrix from any of the ProcCores, the ConCore sends it to
the dedicated coprocessor, along with the dataset that is to be tested against the
candidate hypothesis. The testing of the hypotheses (candidate essential matri-
ces) against the measurement set is considered a time consuming operation, but
the computations required to perform this operation follow a simple data-flow
scheme. The complexity results from the necessity of repeating the test for each
interest point pair and the potentially large number of hypotheses that need to
be tested. The formula given by equation (12) is therefore a good candidate for
hardware implementation. Individual operations in the formula are easily de-
composed to form a pipelined structure, fully utilizing the spatial and temporal
parallelism enabled by the use of flexible, dedicated hardware. To provide fast
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communication between the elements of the system, the FSL (Fast Simplex Link)
interface was used ([12]). FSL is a dedicated, fast, unidirectional point-to-point
interface with FIFO buffering. Moreover, the Microblaze microprocessor can ser-
vice the communication via FSL with dedicated instructions, which results in
transfer speed increase. FSL communication is faster than communication using
the available system buses (PLB or AXI). The block diagram of the system is
given in Figure 2. The complete system contains additional support peripherals
– a serial port for communication and a timer for profiling.

Fig. 2. Block diagram of the multiprocessor system

The microprocessor-based cores (ConCore, ProcCores) use single precision 32
bit format for floating point number representation. The Sampson error copro-
cessor uses 23-bit floating point number representation. The decision to switch
to a reduced representation was made to reduce the use of hardware resources,
e.g. the floating point multiplication of numbers in 23-bit format requires only
a single dedicated DSP48E block, whereas multiplying two single precision (32-
bit) floating point numbers requires three such blocks. For a detailed comparison
of both floating point formats see Figure 3.

As mentioned before, the candidate essential matrix to be tested (nine floating
point values) is sent to the coprocessor via FSL and stored in its internal

Fig. 3. Comparison of IEEE-754 single precision format (top) and reduced precision
format used by the coprocessor (bottom); numbers stand for the number of bits; ’s’
stands for sign
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registers for further processing.Afterwards, the consecutive point pair coordinates
are transmitted to the coprocessor for testing against the currently stored candi-
date. The results (the error values for each point pair) are transmitted back to the
microprocessor using FSL. As the Microblaze is a 32-bit microprocessor, and the
FSL channels are 32-bit wide, the input data is converted into 32-bit floating point
format before storing. The output data is converted back to the 32-bit single pre-
cision floating point format compatible with the FPU used in Microblaze-based
ConCore and ProcCores. Both the input and the output data are transmitted in
word by word order. The coprocessor consists of two main blocks – the controller
block and the computational block. The controller is used to arrange and convert
the incoming and outgoing data. The computational block is an exact implemen-
tation of the equation 12 using 23-bit floating point arithmetic blocks. The block
diagram of the coprocessor is given in Figure 4. For the block diagram of the com-
putational part of the coprocessor see Figure 5.

Fig. 4. Block diagram of the coprocessor

Fig. 5. Block diagram of the computational block; thick lines across datapaths denote
delay balancing registers
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To implement the hardware, we have used a XC6VLX240T Virtex-6 FPGA
from Xilinx clocked at 100 MHz. This is a rather sizable device, but the results
presented in the next section show, that the system could easily fit in a smaller,
less expensive FPGA.

4 Results and Discussion

The tests were performed on a dataset consisting of 363 pairs of corresponding
points. The points were detected and matched automatically by using the Harris
corner detector and SSD (sum of squared differences) point neighborhood sim-
ilarity measure on two images of the same scene. The camera used to register
the image was calibrated beforehand and the point of interest image coordinates
were normalized before passing to the system. As the RANSAC algorithm used
in the estimation process of essential matrix is nondeterministic, a fixed scenario
was used for comparison of processing speed against alternative platforms. The
test consisted of 1000 algorithm iterations (model generation and testing against
measurement data set), each iteration operated on the minimum required set of
point pairs randomly selected from the dataset. The average execution time over
1000 runs for each configuration with the 8-point and the 5-point algorithm are
given in Table 2

Table 2. Average procesing time (in miliseconds) for a single algorithm iteration –
TPI stands for time per iteration, TPI/C stands for time per iteration for a single core

number of 8-point 5-point
ProcCores TPI TPI/C TPI TPI/C

1 2.07 2.07 15.21 15.21

2 1.19 2.39 9.61 19.23

4 0.74 2.95 8.03 32.11

As mentioned before, the candidate essential matrices can be independently
generated on multiple cores. Therefore, the achieved speedup should be almost
proportional to the number of processors. The operations that cannot be per-
formed in parallel are linked mainly with dataflow control and hypothesis testing
and take only a small fraction of processing time compared to the hypothesis
generation step. Hence, according to the Amdahl’s law, they do not cause a sig-
nificant slowdown of operation. This is the case for the implementation of the
8-point algorithm, as each ProcCore uses an independent, dedicated memory
block. In the case of the implementation of the 5-point algorithm all ProcCores
share the external memory through MPMC, which creates a bottleneck in the
system and decreases performance. The reported power consumption for a sys-
tem with 4 ProcCores is around 6 W. A software implementation of the algorithm
on a machine with Intel Atom N270 1.6 GHz microprocessor with 1 GB RAM
requires 0.59 ms for single iteration of the 8-point algorithm, and 1.53 ms for the
5-point algorithm. A single iteration of the 5-point algorithm takes more time,
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but consulting Table 1 reveals, that for a higher expected outlier percentage the
5-point algorithm may prove to be more time-efficient. Additionally, the 5-point
algorithm is reported to return results that are more accurate, and is more ro-
bust to degenerate configurations of matched points [11]. The Table 3 gives the
amount of resources (BlockRAM block (BRAM), flip-flops(FF), FPGA lookup
tables (LUT) and the DSP blocks (DSP48E)) used to implement the 8-point and
5-point variants with a different number of ProcCores.

Table 3. The relation between resource usage and the number of ProcCores. The
values in percent are given with respect to all corresponding resources available in the
device.

Resource 1 × ProcCore 2 × ProcCore 4 × ProcCore

8-point algorithm implementation

BRAM 44 (11%) 53 (13%) 71 (17%)

FF 9372 (3%) 11322 (4%) 15222 (5%)

LUT 14617 (10%) 17601 (12%) 23569 (16%)

DSP48E 31 (4%) 36 (5%) 46 (6%)

5-point algorithm implementation

BRAM 96 (23%) 108 (26%) 132 (32%)

FF 16185 (5%) 18480 (6%) 23070 (8%)

LUT 18773 (12%) 22245 (15%) 29189 (19%)

DSP48E 31 (4%) 36 (5%) 46 (6%)

Clearly, the implementation of the 5-point algorithm requires more FPGA
resources for implementation. This is due to the fact, that it uses a dedicated
controller to make use of the external memory, as the code and data for Proc-
Cores cannot fit in the internal FPGA memory blocks. The resource use shows,
that the designs could easily be ported to a smaller, less expensive, lower power
FPGA, and that it shows a good scalability potential. Adding additional Proc-
Cores is possible, but only to a certain extent – the Microblaze microprocessor
can service only up to 16 FSL channels, so only 3 more ProcCores can be added
to a single ConCore.

5 Conclusions

The article presents the implementation of the essential matrix estimation algo-
rithms in a single FPGA, using normalized feature correspondences detected in
the image sequence as the input data. The use of flexible programmable hardware
and specialized point-to-point interfaces allows to freely tailor the architecture
of the system to the task at hand. This allows to achieve good performance in
a low power, small footprint device. The results provided by the described de-
vice can be used further, e.g. for ego-motion estimation or 3D reconstruction.
The availability of low power, small footprint solution performing the described
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task is desirable in applications such as unmanned aerial vehicles, small mobile
robots, driver assistance systems etc. The results have been already tested for
correctness, but more functional tests are needed to evaluate the usability of the
system in real life scenarios. The authors also plan to integrate other worked out
image processing blocks (e.g. feature detection and matching) within the same
FPGA. The preprocessing and feature detection algorithms benefit significantly
from hardware implementation, so the overall system performance as compared
to analogous implementation on a PC will surely improve.
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Abstract. An approach is presented permitting us to build free schedul-
ing for statement instances of affine loops. Under the free schedule, loop
statement instances are executed as soon as their operands are available.
To describe and implement the approach, the dependence analysis by
Pugh and Wonnacott was chosen where dependences are found in the
form of tuple relations. The proposed algorithm has been implemented
and verified by means of the Omega project software. Results of ex-
periments with the NAS benchmark suite are discussed. Speed-up and
efficiency of parallel code produced by means of the approach are studied.
Problems to be resolved in order to enhance the power of the presented
technique are outlined.

Keywords: fine-grained parallelism, free scheduling, parameterized
affine loops, NVIDIA cards.

1 Introduction

Microprocessors with multiple execution cores on a single chip are typical com-
putation platforms now. The lack of automated tools permitting for exposing
parallelism for such systems decreases the productivity of programmers and in-
creases the time and cost of producing a parallel program.

Because most computations are contained in program loops, automatic extrac-
tion of parallelism from loops is extremely important formulti-core systems, allow-
ing us to produce parallel code from existing sequential applications and to create
multiple threads that canbe easily scheduled to achievehighprogramperformance.

Given a loop, a schedule of loop statement instances is a function that assigns
a time of execution to each loop statement instance preserving all dependences
in this loop. There have been developed numerous approaches to form loop
statement instance scheduling, for example [7,9,12,13,18].

Under the free schedule, loop statement instances are executed as soon as
their operands are available that permits us to extract all fine-grained paral-
lelism available in the loop, but well-known techniques based on linear or affine
schedules do not guarantee finding free scheduling for non-uniform loops.

In this paper, we present a novel technique that permits for building free
scheduling for both uniform and non-uniform loops. It is based on forming the
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exact transitive closure of a dependence relation describing all dependences in a
loop. Experimental results with the NAS benchmarks suite demonstrate that the
approach can be successfully applied to produce parallel programs for NVIDIA
graphic cards.

2 Background

A discussed algorithm deals with static-control loop nests, where lower and up-
per bounds as well as conditionals and array subscripts are affine functions of
symbolic parameters and surrounding loop indices. A statement instance s(I ) is
a particular execution of a statement s of the loop for some loop iteration I.

Two statement instances s1(I ) and s2(I ) are dependent if both access the
same memory location and if at least one access is a write. Provided that s1(I )
is executed before s2(I ), s1(I ) and s2(I ) are called the source and destination
of the dependence, respectively. The sequential execution ordering of statement
instances, denoted as s1(I )≺ s2(J ), is induced by the lexicographic ordering of
iteration vectors and the textual ordering of statements when the instances share
the same iteration vector.

Definition [11]. The free schedule is the function that assigns statement in-
stances (for execution) as soon as their operands are available, that is, it is
mapping σ:LD→ Z such that

σ(p) =

{
0 if there is no p′ ∈ LD s.t. p′ ≺ p
1 +max(σ(p′)), p′ ∈ LD, p′ ≺ p

i.e., it is the fastest schedule, where p, p’ are loop statement instances, LD is
the loop domain.

The approach to find free scheduling, presented in this paper, requires an
exact representation of dependences. To describe the approach and carry out
experiments, we have chosen the dependence analysis proposed by Pugh and
Wonnacott [25] where dependences are represented with dependence relations.
This analysis is implemented in Petit [14] which returns a set of dependence
relations describing all dependences in a loop. A dependence relation is a tuple
relation of the form {[input list ] → [output list ] : constraints}, where input list
and output list are the lists of variables used to describe input and output tuples
and constraints is a Presburger formula describing the constraints imposed upon
input list and output list [20].

The general form of a dependence relation is as follows [25]:

{[s1, ..., sk] → [t1, ..., tk′ ]|
n∨

i=1

∃αi1, ..., αimis.t.Fi},
where Fi, i=1, 2, ..., n, are conjunctions of affine equalities and inequalities
on the input variables s1, ..., sk, the output variables t1, ..., tk′ , the existentially
quantified variables αi1, ..., αimi and symbolic constants, k, k′,m, n are integers.

An ultimate dependence source (resp. destination) is a source (resp. destina-
tion) that is not the destination (resp. source) of another dependence. A set,
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UDS, comprising all ultimate dependence sources can be found as domain(R)-
range(R), where R represents all dependences in a loop.

Given dependence relations R1, R2,..., Rm, our approach requires first prepro-
cessing these relations according to the procedure presented in [2]. Preprocessing
makes the sizes of input and output tuples of dependence relations to be the same
as well as inserts identifiers of loop statements in the last position of input and
output tuples (this permits for applying the union, composition, and difference
operations to relations describing dependences).

Positive transitive closure for a given relation R, R+, is defined as follows
R+ = {[e] → [e′] : e → e′ ∈ R ∧ ∃(e′′ : e → e′′ ∈ R+ ∧ e′′ → e′ ∈ R)}.

Transitive closure, R∗, is defined as follows: R∗ = R+∪I, where I the identity
relation. Details concerning these operations can be found in [16].

3 Finding Free Scheduling for Parameterized Loops

The idea of the algorithm presented in this section is as follows. Given prepro-

cessed relations R1, R2, ..., Rm, we firstly calculate R =
m⋃
i=1

Ri. Next we create

the relation R�by inserting variables k and and k+1 into the first position of
the input and output tuples of relation R; variable k is to present the time
of a partition (a set of statement instances to be executed at time k). Next, we
calculate the transitive closure of relationR�,R�*, and form the following relation

FS = {[X ] → [k, Y ] : X ∈ UDS (R) ∧ (k, Y ) ∈ Range((R�)∗\{[0, X ]}) ∧
¬(∃ k�>k s.t. (k�, Y ) ∈ Range(R�)+\{[0, X ]})},

where (R�)∗\{[0, X ]} means that the domain of relation R�* is restricted to the
set including ultimate dependences sources only (elements of this set belong to
the first time partition); the constraint ¬(∃ k�>k s.t. (k�, Y ) ∈ Range(R�)+\{[0,
X ]}) guarantees that partition k includes only those statement instances whose
operands are available, i.e., each statement instance will belong to one time
partition only.

It is worth to note that the first element of the tuple representing the set
Range(FS ) points out the time of a partition while the last element of that
exposes what is the statement whose instance(iteration) is defined by the tuple
elements 2 to n-1, where n is the number of the tuple elements of a preprocessed
relation. Taking the above consideration into account and provided that the
constraints of relation FS are affine, the set Range(FS ) is used to generate
parallel code applying any well-known technique to scan its elements in the
lexicographic order, for example the techniques presented in papers[1,26].

The outermost sequential loop of such code scans values of variable k (rep-
resenting the time of partitions) while inner parallel loops scan independent
instances of partition k. Techniques aimed at calculating the transitive closure
of dependence relations are presented in papers [4,5,16] and are out of the scope
of this paper.
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Finally, we expose independent statement instances, that is, those that do not
belong to any dependence and generate code enumerating them. According to
the free schedule, they are to be executed at time k=0.

Below we present the algorithm that realizes the presented above idea in a
formal way.

Algorithm: Finding free scheduling for statement instances of a parameterized
loop
Input: Preprocessed relation R describing all dependences in a loop.
Output: Code representing free scheduling.
Method:

1. Transform relation R of the form {[X ] → [Y ] : constraints}, where X and Y
are vectors representing the input and output tuple variables, respectively,
to relation R�of the form {[k, X ] → [k+1, Y ] : constraints ∧ k � 0}.

2. Calculate (R�)+ using any of known techniques, for example those presented
in papers [4,5,16].

3. Form the following relation FS :
FS = {[X ] → [k, Y ] : [X ] ∈ UDS (R) ∧ [k, Y ] ∈ Range((R�)∗\{[0, X ]}) ∧
¬(∃ k�>k s.t. [k�, Y ] ∈ Range(R�)+\{[0, X ]})}.

4. Generate code scanning elements of the set Range(FS ). For this purpose,
apply any well-known algorithm, for example that published in [14]. The
outermost sequential loops of this code scan time partitions while the inner
parallel loops scan instances to be executed in a particular partition.

5. Find set, IND, containing independent statement instances:
IND = IS - ( domain(R) ∪ range(R) ),
where IS represents the union of preprocessed iterations sets of all loop
statements. Generate code scanning elements of set IND. For this purpose,
apply any well-known algorithm, for example that published in [14]. This
code is to be executed at time k=0.

Let us illustrate the presented algorithm by means of the following imperfectly
nested parameterized loop.

Example 1

for(i=1; i<=n; i++){

a[i][0] = 1; //s1

for(j=1; j<=n; j++){

a[i][j] = a[i-1][j] + a[i][j-1]; //s2

}

}

There are the three dependence relations returned by Petit
R1 ={[i,-1,1] → [i,1,2] : 1 � i � n};
R2 ={[i,j,2] → [i+1,j,2] : 1 � i < n && 1 � j � n};
R3 ={[i,j,2] → [i,j+1,2] : 1 � i � n && 1 � j < n}.
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Fig. 1. The free schedule for Example 1 when n=5. The solid lines represent depen-
dences, the dotted lines represent synchronization barriers between time partitions.

Figure 1 presents the free schedule for the loop of Example 1 when n=5.
Applying the presented algorithm, we get the following results being produced

by means of the Omega calculator.

1. R�= {[k,i,-1,1]→ [k+1,i,1,2] : 1� i� n && 0 � k} ∪ {[k,i,j,2]→ [k+1,i+1,j,2]
: 1 � i < n && 1 � j � n && 0 � k} ∪ {[k,i,j,2] → [k+1,i,j+1,2] : 1 � i �
n && 1 � j < n && 0 � k}.

2. R�+ = {[k,i,j,2] → [k’,i’,i-k+j-i’+k’,2] : 1 � i � i’ � n && 0 � k < k’ && 1
� j && k+i’ � i+k’ && i+j+k’ � n+k+i’} ∪ {[k,i,-1,1] → [k’,i’,i-k+k’-i’,2]
: 1 � i � i’ � n && k+i’ < i+k’ && 0 � k && i+k’ � n+k+i’}.

3. FS = {[1,-1,1] → [k,i’,k-i’+1,2] : 1 � i’ � k, n && k < n+i’} ∪ {[i,-1,1] →
[0,i,-1,1] : 1 � i � n}.

4. Range(FS) = {[k,i,k-i+1,2]: 1 � i � k, n && k < n+i} ∪ {[0,i,-1,1]: 1 � i �
n}.
The loop scannig elements of the set Range(FS) for k≥0 and being produced
by the codegen function of the Omega library is as follows.

for(t2 = 1; t2 <= n; t2++) { // parallel loop

a[t2][0] = 1; // s1(0,t2,-1,1);

}

for(t1 = 1; t1 <= 2*n-1; t1++) {

for(t2 = max(-n+t1+1,1); t2 <= min(n,t1); t2++) { //parallel loop

a[t2][t1-t2+1] = a[t2-1][t1-t2+1] + a[t2][t1-t2];

// s1(t1,t2,t1-t2+1,2);

}}

5. IND = ∅. There is no independent statements in the loop.
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The pseudocode above was manually transformed to the parallel code for NVIDIA
cards presented below. The main function of this code runs kernels of parallel
loops. The value of variable n blocks represents the number of threads that exe-
cute a single block of independent loop statement instances, i.e., the number of
engaged CUDA cores. The value of variable idx defines the identifier of a block;
the values of variables lb and ub indicate the lower and upper bounds of the par-
allel loop, respectively; variable packet is to represent the number of iterations
in a block.

//Kernel definitions

__global__ void loop1_gpu(float (*a)[n])

{

int idx = blockIdx.x, t2;

int packet = (int)ceil(n / blockDim.x);

int lb = idx*packet+1;

int ub = ((idx+1)*packet < n) ? (idx+1)*packet : n;

for(int t2 = lb; t2 <= ub; t2++)

a[t2][0] = 1;

}

__global__ void loop2_gpu(float (*a)[n], t1)

{

int idx = blockIdx.x, t2;

int packet = (int)ceil((max(-n+t1+1,1) - min(n,t1)) / blockDim.x);

int lb = idx*packet+max(-n+t1+1,1);

int ub = ((idx+1)*packet < min(n,t1)) ? (idx+1)*packet : min(n,t1);

for(int t2 = lb; t2 <= ub; t2++)

a[t2][t1-t2+1] = a[t2-1][t1-t2+1] + a[t2][t1-t2];

}

int main(int argc, char * argv[]){

...

int threads_per_block = 1;

int n_blocks = atoi(argv[1]); // number of CUDA cores

// Kernel invocation

loop1_gpu <<< n_blocks, threads_per_block>>> ((float(*)[n])d_A);

for(t1 = 1; t1 <= 2*n-1; t1++) {

loop2_gpu <<< n_blocks, threads_per_block>>> ((float(*)[n])d_A, t1);

...

}

4 Experimental Results

The presented algorithm was implemented by us in a tool by means of the Omega
library. It generates C-like pseudo-code scanning loop statement instances
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according to free scheduling. Using this tool, we have experimented with loops
of the NAS 3.2 benchmark suite [23].

The NAS Parallel Benchmarks (NPB) have been developed at the NASA
Ames Research Centre to study performance of parallel supercomputers. Bench-
marks are derived from computational fluid dynamics and include [23]:

– EP - An embarrassingly parallel kernel, which evaluates an integral by means
of pseudorandom trials.

– MG - Simplified multigird kernel, which solves a 3D Poisson PDE.
– CG - A conjugate gradient method is used to compute an approximation to

the smallest eigenvalue of a large, sparse, symmetric positive definite matrix.
– FT - A 3-D partial differential equation solution using FFTs.
– IS - A large integer sort.
– LU - A regular-sparse, block (5x5) lower and upper triangular system solu-

tion.
– SP - Solution of multiple, independent systems of non diagonally dominant,

scalar, pentadiagonal equations.
– BT - Solution of multiple, independent systems of non diagonally dominant,

block tridiagonal equations with a (5x5) block size.
– UA - Unstructured Adaptive, a new kernel solving scientific problems fea-

turing irregular, dynamic memory accesses.
– DC, DT - Data Cube operator and Data Transfer benchmarks.

From 431 loops of the NAS benchmark suite, Petit is able to carry out a depen-
dence analysis for 257 loops only, and it discovers dependences in 133 loops only.
For 133 loops qualified for experiments, the tool is able to calculate the transitive
closure of dependence relations for 96 loops. Scheduling and generating code are
possible for 65 ones (for the rest 31 loops the algorithm fails to produce relation
FS due to the time out limitation - maximum 10 seconds to produce set FS ).
For 19 from those 65 loops, the algorithm does not expose any parallelism (there
exists a single statement instance for each time partition). Therefore parallelism
is extracted for 46 loops only.

To assess the efficiency of code produced by the proposed algorithm, the
following criteria were taken into account for choosing NAS loops: (i) a loop
must be computatively heavy (there are many NAS benchmarks with constant
upper bounds of loop indices, hence their parallelization is not justified), (ii)
code produced by the algorithm must be parallel (there are NAS loops for which
there exists a single statement instance for each time partition), (iii) structures of
chosen loops must be different (there are many NAS loops of a similar structure).
Applying these criteria, we selected the following NAS loops: FT auxfnct 2 (Fast
Fourier Transform Benchmark), UA diffuse 4 and UA transfer 4 (both from
Unstructured Adaptive benchmark).

Codes, produced for these loops by the presented approach, were manually
converted by us to parallel programs to be executed on an NVIDIA graphic card
8800 GTS, 96 CUDA Cores, 1.6 GHz, GDDR3 512 MB (in the same way as
it is done for Example 1). For this purpose, we have used the NVIDIA CUDA
library [24].
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Table 1. Results for NAS benchmarks

Loop Upper data transf.
time (without data transfer time)

bounds time, s. 1 GPUs 2 GPUs 8 GPUs 96 GPUs

FT auxfnct 2
N1, N2, N3
= 100

a: 0.00034
s: 0.00626
f: 0.00750
t: 0.01411

0.4632 0.2330 0.0572 0.0088

N1, N2, N3
= 200

a: 0.00044
s: 0.04988
f: 0.04611
t: 0.09643

3.9193 1.9588 0.4952 0.0872

UA diffuse 4
N1, N2 =
64; N3, N4
= 10

a: 0.00032
s: 0.00319
f: 0.00167
t: 0.00518

0.1959 0.0979 0.0275 0.0011

N1,N2 =
128; N3,N4
= 10

a: 0.00035
s: 0.00972
f: 0.00561
t: 0.01567

0.8055 0.3970 0.1064 0.0159

UA transfer 4
N1, N2 =
1000

a: 0.00032
s: 0.00632
f: 0.00264
t: 0.00928

0.4053 0.2458 0.0717 0.0202

N1, N2 =
2000

a: 0.00037
s: 0.02510
f: 0.00981
t: 0.03528

1.6222 0.9294 0.2456 0.0476

Table 1 presents results of time measuring (in seconds) for executing the chosen
loops on the graphic card. The execution time of a loop consists of the time of
data transfer to/from a graphic card and the time of calculations. Experiments
were carried out for two different values of the upper bounds of loop indices (see
column 2). The time of data transfer (see column 3) comprises the times of [24]:
allocation (a), sending data to the graphic card (s), and fetching data memory of
the graphic card (f). Column 3 presents also the sum of those times as the time of
data transfer (t). It is worth to note that the time of data transfer does not depend
on the number of GPU cores [24]. Columns 4-7 show the time of calculations (not
including the time of data transfer) for 1, 2, 8, and 96 GPU cores.

Table 2 presents the execution time (the sum of the time of data transfer and
the time of calculations), speed-up, and efficiency for different numbers of GPU
cores. The results in Table 2 demonstrate that parallel loops formed on the basis
of parallel code produced by the algorithm: i) permit for utilizing many GPU
cores (up to 96 under our experiments); ii) speed-up increases with increasing the
number of GPU cores (up to 96 under our experiments). For loop UA diffuse 4,
increasing values of N1 and N2 leads to decreasing speed-up for 96 cores. This
can be explained by increasing the number of synchronization evens and not
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Table 2. Time, speed-up, and efficiency

Loop Upper
1 GPU 2 GPUs 8 GPUs 96 GPUs

bounds time,s time,s S E time,s S E time,s S E

FT auxfnct 2
N1,N2,N3=
100

0.477 0.247 1.93 0.97 0.118 6.69 0.84 0.023 20.84 0.22

N1,N2,N3=
200

4.016 2.055 1.95 0.98 0.592 6.79 0.85 0.184 21.86 0.23

UA diffuse 4
N1,N2=64;
N3,N4=10

0.201 0.103 1.95 0.98 0.033 6.15 0.77 0.006 31.87 0.33

N1,N2=128;
N3,N4=10

0.821 0.413 1.99 0.99 0.122 6.72 0.84 0.032 25.99 0.27

UA transfer 4
N1,N2= 1000 0.415 0.255 1.63 0.81 0.081 5.12 0.64 0.030 14.04 0.15
N1,N2= 2000 1.657 0.965 1.72 0.86 0.281 5.90 0.74 0.083 20.01 0.21

enough increasing the work running by each core. However, with increasing the
number of cores, speed-up increases for the same values of the loop upper bounds.

To evaluate the time complexity of the algorithm presented in this paper, we
measured the time that takes the tool, implementing the presented algorithm,
from the beginning of a dependence analysis to the end of pseudo code generation
on the machine with the following features: Intel Core 2 Duo 2.34 Ghz, 2 GB
RAM, Ubuntu Linux.

Table 3. Time complexity of the algorithm

loop dep. analysis, s R′+ and Range(FS), s Final code, s Total time, s

FT auxfnct 2 0.01 0.07 0.01 0.09

UA diffuse 4 0.01 0.05 0.01 0.07

UA transfer 4 0.01 0.03 0.01 0.05

In our implementation, Petit was used as the dependence analyser. Calculating
R�+ and the set Range(FS ) was carried out by a function written by us, and
final code generation was realized on the basis of the Omega library codegen
function. Table 3 presents the results for the three examined NAS loops. The
first column contains the name of a loop while the remaining columns expose
time measurement results (in seconds): of dependence analysis, calculating R′+

and Range(FS), final code generation, and the total time.
Table 4 presents the comparison of time measurements for an Intel Core 2 Duo

2.34 Ghz computer (1 and 2 CPUs) and an NVIDIA 8800 GTS graphic card (1
and 96 CUDA cores). Loop FT auxfnct 2 is executed much faster on 96 CUDA
cores than on two CPU cores. For the next two loops, free-scheduling introduce
high volume of synchronization on two CPU cores that results in negative speed-
up, while for the graphic card the speed-up is about 20 for 96 cores.

Based on the presented results, we can conclude that the presented algo-
rithm can be successfully applied for producing parallel programs for many NAS
benchmarks to be executed on graphic cards.
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Table 4. CPU and GPU times comparison

Loop Upper bounds 1 CPU 2 CPUs 1 GPU 96 GPUs

FT auxfnct 2
N1,N2,N3= 100 0.174 0.091 0.477 0.023
N1,N2,N3= 200 2.081 1.543 4.016 0.184

UA diffuse 4
N1,N2=64; N3,N4=10 0.010 0.027 0.201 0.006
N1,N2=128; N3,N4=10 0.038 0.046 0.821 0.032

UA transfer 4
N1,N2= 1000 0.028 0.050 0.415 0.030
N1,N2= 2000 0.071 0.101 1.657 0.083

5 Related Work

The approaches published in [8,17,22,21] build an explicit graph of a subset of
the iteration space, with each node representing the instance of a statement. Free
scheduling can be found by searching the graph or using the transitive closure
of the graph, but dependences are restricted to uniform ones and the problem
regarding boundary cases exists.

For the case of polyhedral approximations of dependences (including direction
vectors), Darte and Vivien’s algorithm is optimal but it does not guarantee
forming free scheduling for parameterized loops [10].

For affine dependences, the most powerful algorithm for building scheduling
is Feautrier’s one based on multi-dimensional affine schedules [13]. But as men-
tioned by Feautrier, it is not optimal for all codes with affine dependences. How-
ever, the dimension of the schedules built by Feautrier’s algorithm is minimal
for each statement of the loop nest [27].

The approaches published in [7,15,19] present different ways of building affine
partition mappings, but none of them guarantees producing free scheduling for
the general case of loops with affine dependences.

Paper [3] presents a technique permitting for building free scheduling but only
for non-parameterized loops.

The approach presented in [6] permits for extracting free scheduling within
each synchronization-free slice but it does not produce free scheduling for all
loop statement instances.

6 Conclusion and Outlook

In this paper, we presented the algorithm that permits us to build free scheduling
for statement instances of parameterized arbitrarily nested loops. The necessary
condition to apply it is the possibility of the calculation of the exact transitive
closure of a relation describing all dependences in a loop.

There are tasks to be resolved in the future to strengthen the power of the
presented algorithm and justify its application for parallelizing real-life codes:
1) developing algorithms and corresponding implementations permitting for au-
tomatic NVIDIA code generation from pseudo code produced by the presented
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algorithm; 2) when a free schedule is represented by non-linear forms, tech-
niques should be developed to generate code enumerating statement instances
under such a schedule.
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Abstract. The longest common subsequence (LCS for short) for given
two strings has various applications, e.g. comparison of DNAs. In this
paper, we propose a GPU algorithm to accelerate Hirschberg’s CPU LCS
algorithm improved using Crochemore et al’s bit-parallel CPU algorithm.
Crochemore’s algorithm includes bitwise logical operators which can be
computed in embarrassingly parallel. However, it also includes an op-
erator with less parallelism, i.e. an arithmetic sum. In this paper, we
focus on how to implement these operators efficiently in parallel. Our
experiments with 2.93GHz Intel Core i3 530 CPU, GeForce 8800 GTX,
GTX 285, and GTX 480 GPUs show that the proposed algorithm runs
maximum 12.77 times faster than the bit-parallel CPU algorithm and
maximum 76.5 times faster than Hirschberg’s LCS CPU algorithm. Fur-
thermore, the proposed algorithm runs 10.9 to 18.1 times faster than
Kloetzli’s existing GPU algorithm.

1 Introduction

There are various metrics of the similarity between two strings, for example,
the edit distance. The longest common subsequence [3] (LCS for short) is one
of them. LCS can be applied to various problems, e.g., comparison of DNAs,
inexact string matching, spell checking, and others.

An algorithm to compute the LCS of given two strings was proposed by
Hirschberg [4]. The algorithm recursively computes LCS while computing the
length of LCS (LLCS for short) between various substrings of the given two
strings. When lengths of given two strings are m and n, Hirschberg’s algorithm
requires O(mn) time and O(m + n) space. A method to compute LLCS faster
with bit-parallelism is well-known. The method requires O(�m/w
n) time and
O(m+ n) space [1] where w is the word size of a computer. Using this method,
Hirschberg’s LCS algorithm can be accelerated. However, much faster algorithms
are desirable for strings of length more than one million characters, which are
common in the field of the comparison of DNAs. So, we consider to accelerate the
bit-parallel algorithm with a GPU (Graphics Processing Unit). The bit-parallel
algorithm includes bitwise logical operations and arithmetic sums. Bitwise logical
operations are suitable for GPU because they can be executed in embarrassingly
parallel. However, arithmetic sums have less parallelism. So, we device to com-
pute them efficiently in parallel.

R. Keller et al. (Eds.): Facing Multicore-Challenge II 2011, LNCS 7174, pp. 84–95, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Based on the method proposed in the paper, we implement a bit-parallel
LCS algorithm on CUDA [5,8,7,2]. The experiment with GeForce GTX 480 and
2.93GHz Intel Core i3 530 CPU shows our algorithm is 2.1 to 12.77 times faster
than the bit-parallel CPU algorithm, and 37.3 to 76.5 times faster than the non-
bit-parallel CPU algorithm. Another experiment shows our algorithm is 37.3
to 76.5 times faster than Kloetzli et al’s GPU algorithm over the same GPU
(GeForce 8800 GTX).

The remainder of the paper is organized as follows. In Section 2, we briefly
review the definition of LCS and existing algorithms for a CPU. In Section 3, we
present the proposed algorithm. In Section 4, we conduct several experiments
to compare our algorithm with the CPU algorithms and the existing GPU al-
gorithm. In Section 5, we give some concluding remarks and show some future
works. Due to the limited space, we illustrate neither the architecture nor the
programming of GPUs in this paper. Readers unfamiliar with them are recom-
mended the literatures [5,8,7,2].

2 LCS

2.1 The Definition of LCS

Let C and A be strings c1c2 · · · cp and a1a2 · · · am respectively. In the following,
we assume without loss of generality that characters in the same string are
different from each other. If there exists a mapping from the indices of C to
the indices of A subject to the following conditions C1 and C2, C is called a
subsequence of A.

C1: F (i) = k if and only if ci = ak
C2: If i < j, then F (i) < F (j).

However, we define the null string as a subsequence of any string. We define
a string which is a subsequence of both string A and string B as a common
subsequence between A and B. The LCS between A and B is the longest one of
all the common subsequences between A and B. For example, the LCS between
”abcdefghij” and ”cfilorux” is ”cfi”. LCSs between ”abcde” and ”baexd” are
”ad”, ”ae”, ”bd”, and ”be”.

2.2 How to Compute the Length of the LCS

The LLCS can be computed using the dynamic programming. This algorithm
stores the LLCS between A and B in L[m][n] if we fill the table L with (m +
1) × (n + 1) cells based on the following rules R1 to R3 where m is the length
of A and n is that of B. To fill the table L, this algorithm requires O(mn) time
and O(mn) space.

R1: If i = 0 or j = 0, then L[i][j] = 0.
R2: If A[i − 1] = B[j − 1], then L[i][j] = L[i− 1][j − 1] + 1.
R3: Otherwise, L[i][j] = max(L[i][j − 1], L[i− 1][j]).
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Listing 1.1. Hirschberg’s LLCS algorithm

1 Input : s t r i n g A o f l ength m, B o f l ength n
2 Output :LLCS L [ j ] o f A and B [ 0 . . . j −1] for a l l j (0<=j<=n)
3 l l c s (A,m,B, n , L){
4 for ( j=0 to n) K [ 1 ] [ j ] = 0
5 for ( i=1 to m) {
6 for ( j=0 to n) K[ 0 ] [ j ] = K[ 1 ] [ j ]
7 for ( j=1 to n) {
8 i f (A[ i −1] == B[ j −1]) K[ 1 ] [ j ] = K[ 0 ] [ j −1] + 1
9 else K[ 1 ] [ j ] = max(K[ 1 ] [ j −1] , K[ 0 ] [ j ] )

10 }}
11 for ( j=0 to n) L [ j ] = K[ 1 ] [ j ]
12 }

Listing 1.2. Hirschberg’s LCS algorithm

1 Input : s t r i n g A o f l ength m, B o f l ength n
2 Output :LCS C o f A and B
3 l c s (A,m,B, n ,C) {
4 i f (n==0) C = ”” ( nu l l s t r i n g )
5 else i f (m==1) {
6 for ( j=1 to n) i f (A[0]==B[ j −1]) { C = A[ 0 ] return }
7 C = ””
8 }
9 else {

10 i = m/2
11 l l c s (A [ 0 . . . i −1] , i ,B, n , L1 )
12 l l c s (A[m− 1 . . . i ] ,m−i ,B[ n− 1 . . . 0 ] , n , L2 )
13 M = max{ j : 0<=j<=n , L1 [ j ]+L2 [ n−j ]}
14 k = min{ j : 0<=j<=n , L1 [ j ]+L2 [ n−j ] == M}
15 l c s (A [ 0 . . . i −1] , i ,B [ 0 . . . k−1] ,k ,C1)
16 l c s (A[ i . . . m−1] ,m−i ,B[ k . . . n−1] ,n−k ,C2)
17 C = s t r c a t (C1 ,C2)
18 }}

The rules R2 and R3 imply that the ith row (1 ≤ i ≤ m) of L can be computed
only with the ith and (i − 1)th rows. This property leads us to an algorithm
which requires less memory, shown in Listing 1.1 [4]. K is a temporary array of
size 2 × (n + 1) cells. L is an array for storing output of size 1 × (n + 1) cells.
Hirschberg’s LLCS algorithm shown in Listing 1.1 stores the LLCS between a
string A and a string B[0...j − 1] (the substring of B from the 1st character to
the jth character of B) in L[j]. This implementation reduces the required space
to O(m + n) with the same time complexity O(mn).

2.3 Hirschberg’s LCS Algorithm

Listing 1.2 shows the LCS algorithm proposed by Hirschberg [4] where S[u...l]
(u ≥ l) represents the reversal of the substring S[l...u] of a string S. This algo-
rithm recurrently computes an LCS while computing the LLCS. The algorithm
requires O(mn) time and O(m + n) space.
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Listing 1.3. Crochemore et al’s bit-parallel LLCS algorithm

1 Input : s t r i n g A o f l ength m, B o f l ength n
2 Output :LLCS L [ i ] o f A [ 0 . . . i −1] and B for a l l i (0<=i<=m)
3 l l c s b p (A,m,B, n , L){
4 for ( c=0 to 255) {
5 for ( i=0 to m−1)
6 i f ( c==A[m−i −1]) PM[ c ] [ i ] = 1
7 else PM[ c ] [ i ] = 0
8 }
9 for ( i=0 to m−1) V[ i ] = 1

10 for ( j=1 to n) V = (V + (V & PM[B[ j ] ] ) ) | (V & ˜(PM[B[ j −1 ] ] ) )
11 L [ 0 ] = 0
12 for ( i=1 to m) L [ i ] = L [ i −1]+(1−V[ i −1])
13 }

2.4 Computing the LLCS with Bit-Parallelism

There is an efficient LLCS algorithm with bit-parallelism. The algorithm shown
in Listing 1.3 is Crochemore et al’s bit-parallel LLCS algorithm [1] where V is
a variable storing a bit-vector of length m. The notation & represents bitwise
AND, | represents bitwise OR,˜represents bitwise complement, and + represents
arithmetic sum. Note that, + regards V[0] as the least significant bit. First of all,
Crochemore et al’s algorithm makes a pattern match vector (PMV for short).
PMV P of string S about c is the bit-vector of length m which satisfies following
conditions.

C1: If S[i] = c, then P[i] = 1.
C2: Otherwise, P[i] = 0.

In the 4th to 8th lines of Listing 1.3, PMV of string A about each character c
is made. Because we assume one byte character, 0 ≤ c ≤ 255. Reversals of PMV
about c are stored in PM[c] where a variable PM is a two-dimensional bit array
of size 256×m.

This algorithm represents the table of dynamic programming as a sequence of
bit-vectors such that each bit-vector corresponds to a column of the table. The
ith bit of each bit-vector represents the difference between ith cell and (i− 1)th
cell of the corresponding column. Repeating bitwise operations, the algorithm
does the process which is equal to computing the table L from left to right.

The last column of the table L output by this algorithm is a bit-vector. How-
ever, we can easily convert it into an ordinary array of integer in O(m) time.
The converting process is in the 11th to 12th lines in Listing 1.3.

Crochemore et al’s algorithm requires O(�m/w
n) time and O(m+ n) space.
where w is the word size of a computer.

3 The Proposed Algorithm

3.1 The CPU Algorithm to Be Implemented on a GPU

The dominant part of the LCS algorithm shown in Listing 1.2 is llcs(), which
computes the LLCS. In the paper, we aim to accelerate the LCS algorithm shown
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in Listing 1.2 improved with the bit-parallel LLCS algorithm shown in Listing1.3
(in other words, we replace invocation of llcs() in Listing 1.2 with llcs bp() in
Listing 1.3). The algorithm requires O(�m/w
n + m + n) time and O(m + n)
space. For this purpose, we propose a method to accelerate the LCS algorithm
with a GPU. Even if we use 64 bit mode on a GPU, the length of every integer
register is still 32 bits. So, the word size w is 32.

In the 16th line of Listing 1.2, llcs() computes the LLCS between the reversal
of string A and the reversal of string B. However, if we reverse A and B in every
invocation of llcs(), the overhead of reversing becomes significant. So, we make
a new function llcs’() which traverses strings from tail to head. llcs’() is the
same as llcs() except the order of string traverse. We also make the bit-parallel
algorithm llcs bp’() corresponding to llcs’().

The output of Hirschberg’s LLCS algorithm shown in Listing 1.1 is the mth
row of the table L. However, Crochemore et al’s algorithm shown in Listing 1.3
represents a column of the table as a bit-vector and computes the table from 0th
column to nth column. Hence, Crochemore et al’s algorithm outputs the nth col-
umn. So, we change the original row-wise LLCS algorithm shown in Listing 1.1
into column-wise algorithm. In addition to this, we have to change the original
LCS algorithm shown in Listing 1.2 into another form corresponding to column-
wise LLCS algorithm. Because our algorithm embeds 32 characters into one vari-
able of unsigned integer, length of string A must be a multiple of 32. Therefore,
when length of string A is not a multiple of 32, we have to pad string A and make
its length a multiple of 32. For this padding, we can use characters not included
in both of string A and string B (e.g. control characters).

3.2 Outline of the Proposed Algorithm

A GPU computes only llcs() in the 11th to 12th lines of Listing1.2. Other parts of
Listing 1.2 are computed by a CPU. The reason is that GPUs support recursive
calls only within some levels although the algorithm shown in Listing 1.2 has
recursive calls of lcs() in the 15th to 16th lines.

The LLCS algorithm shown in Listing 1.3 includes bitwise logical operators
(&, |, )̃ and arithmetic sums (+) on bit-vectors of length m. Bitwise logical
operators are easily parallelized. However, an arithmetic sum has carries. Because
carries propagate from the least significant bit to the most significant bit in the
worst case, an arithmetic sum has less parallelism. So, we have to devise in
order to extract higher parallelism from the computation of an arithmetic sum.
We think to process the bit-vectors of length m in parallel by dividing them
into sub-bit-vectors. On a GPU, each bit-vector is represented as an array of
unsigned integer. A variable of unsigned integer on a GPU is of size 32 bits. In
CUDA architecture, 32 threads in the same warp are synchronized at instruction
level (SIMD execution). So, we set the number of threads in one block at 32 so
that threads in one block can be synchronized with no cost. Since one thread
processes one unsigned integer (32 bits), one block processes 1024 bits.
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Fig. 1. Block partition in case of m = 3072 and n = 4096

During one invocation of the kernel function, our algorithm performs only
1024 iterations of n iterations. We call a group of those 1024 iterations one
step in the remainder of the paper. For example, the jth step represents 1024
iterations from 1024×j to 1024×(j+1)−1.We set the number of bits processed
in one block and the number of iterations in one invocation at the same value
so that each thread can transfer carries by reading from or writing to only one
variable.

Fig. 1 is an example of block-step partition in case of m = 3072 and n =
4096. Each rectangle in this figure represents one step of one block. We call it a
computing block in the remainder of the paper. Each computing block can not
be executed until its left and lower computing blocks have been executed. So,
only the lowest leftmost computing block can be executed in the 1st invocation
of the kernel function. The computing block is the 0th step of the block covering
sub-bit-vector V[2048 · · ·3072]. In the 2nd invocation of the kernel function,
both the 1st step of the block covering V[2048 · · ·3072] and the 0th step of the
block covering V[1024 · · ·2047] can be executed. In each invocation of the kernel
function, we execute all computing blocks we can execute at that time. Then,
computing blocks with the same number in Fig. 1 can be executed in parallel
at the same time (the numbers represent execution order). Based on the above
ideas, we invoke the kernel function (�m/1024
+ �n/1024
− 1) times to get the
LLCS.

Black arrows in Fig. 1 indicate that the block covering sub-bit-vector V[i · · · i+
1023] gives the value of V[i · · · i + 1023] to (j + 1)th step of itself at the end of
jth step. On the other hand, white arrows indicate that the block covering sub-
bit-vector V[i · · · i+1023] gives carries in each iteration to jth step of the block
covering V[i−1024 · · · i−1]. Transfer of values from a computing block to another
computing block, shown as black or white arrows in Fig. 1, is done out of the
for-loop invoking the kernel function. During the for-loop, carries are stored in
an array on the shared memory. After the loop, carries on shared memory are
copied into the global memory. Reading is similar to this. Before the loop, carries
on global memory are loaded into the shared memory. During the loop, we use
carries on shared memory, not on the global memory.
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Listing 1.4. A pseudo code of llcs kernel() and llcs gpu()

1 global void l l c s k e r n e l (
2 int m, n , char ∗dstr2 , unsigned int ∗g V , ∗g PM, ∗ car , int num) {
3 index = g l oba l thread ID ; count = step number o f t h i s b lock ;
4 cu r so r = 1024 ∗ count ; V = g V [ index ] ;
5 Load c a r r i e s from car on g l oba l memory ;
6 for ( j=0 to 1023) {
7 i f ( cu r so r+j >= n) re turn ;
8 PM = g PM[ dstr2 [ c u r so r+j ] ] [ index ] ;
9 V = (V & (˜PM)) | (V + (V & PM) ) ;

10 }
11 g V [ index ] = V;
12 Save c a r r i e s to car on g l oba l memory ;
13 }
14
15 void l l c s g pu (
16 char ∗A, ∗B, int m, n , char ∗dstr1 , ∗dstr2 , int ∗out ,
17 unsigned int ∗g V , ∗ car , ∗g PM) {
18 dstr1 = padded copy o f A; dst r2 = B;
19 num x = (m+1023)/1024; num y = (n+1023)/1024;
20 for ( i=0 to ( (m+31)/32)−1) g V [ i ] = 0xFFFFFFFF;
21 Make PM vec to r s ;
22 for ( i=1 to num x+num y−1)
23 l l c s k e r n e l ( ) in P a r a l l e l on GPU( gridDim=num x , blockDim=32);
24 for ( i=0 to m)
25 out [ i ] = the amount o f z e r o s from 0th b i t to i th b i t in g V ;
26 }

3.3 The Kernel Function

This section describes the kernel function llcs kernel() which performs one step
(1024 iterations) and the host function llcs gpu() which calls llcs kernel(). List-
ing 1.4 is a pseudo code of llcs kernel() and llcs gpu(). llcs gpu() is a GPU
implementation of llcs bp() shown in Listing 1.3. In addition to them, we make
llcs kernel’() and llcs gpu’() which is a GPU implementation of llcs bp’(). How-
ever they are quite similar to llcs kernel() and llcs gpu(). So, we skip to explain
them.

First, we explain the kernel function llcs kernel(). Argument m and argument
n respectively represent the length of string A and string B. dstr2 represents
the copy of string B on the global memory. g V is an array to store the bit-
vector V. g PM is a two-dimensional array to store PMV of string A about
each character c (0 ≤ c ≤ 255). g PM[c] is the PMV of string A about c.
Argument car is an array to store carries. When we use the array car, we regard
car as two-dimensional array and do double buffering. Argument num represents
the number of invocation of llcs kernel(). num is used to compute which step
the block should process in llcs kernel(). The for-loop in the 6th to 10th lines
represents the process of one step (1024 iterations). Transfer of values from a
computing block to another computing block, which is shown as black or white
arrows in Fig. 1, is done in the 4th to 5th lines and the 11th to 12th lines.

Next, We explain the function llcs gpu(). llcs gpu() invokes the kernel function
llcs kernel() (num x+num y−1) times in the for-loop of the 22nd to 23rd lines.
Pre-processing is in the 18th to 20th lines. The string A is padded in the 18th
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Fig. 2. Parallelization of n-bit full adder (in the case of n = 32)

line. The number num x of blocks and the number num y of steps are computed
in the 19th line. In the 20th line, all bits of bit-vector V are initialized to one.
The 24th to 26th lines are post-processing where bit-vector V is converted into
an ordinary array and written in the output-array out.

3.4 Parallelization of an Arithmetic Sum

As we state in Section 3.2, + has less parallelism because it has carries. To
parallelize +, we applied Sklansky’s method to parallelize the full adder named
conditional-sum addition [9].

Sklansky’s method uses the fact that every carry is either 0 or 1. To compute
the addition of n-bit-numbers, each half adder computes a sum and a carry to
the upper bit in the both cases in advance. Then, carries are propagated in
parallel. In our algorithm, we use 32 bit width half adders rather than one bit
width half adders.

Using an example in Fig. 2, we explain the method to parallelize the n-bit full
adder. Fig. 2 shows a 32 bit addition performed by four full adders of 8 bit width.
Note that Fig. 2 is illustrative and our actual implementation uses 1024 bit full
adders realized by 32 full adders of 32 bit width. In Fig. 2, we compute the sum
and carry of U, V, and l car (carry from the lower sub-bit-vector). To compute
U+V+l car, first, we compute one-bytewise sums and carries of each byte. S0(0)
represents one-bytewise sums and carries when a carry from the lower byte is 0.
S0(1) represents them when the carry from the lower byte is 1. Next, we consider
computing two-bytewise sums and carries from S0(0) and S0(1). To get them, we
copy the 3rd byte of S0(0) into the 3rd byte of S0(1). The results (two-bytewise
sums and carries) are S1(0) and S1(1). Similarly, we get four-bytewise sums and
carries from S1(0) and S1(1). The results are S2(0) and S2(1). S2(0) is U+V (the
sums and the carry when a carry from the lower sub-bit-vector is 0). S2(1) is
U+V+1 (the sums and the carry when a carry from the lower sub-bit-vector is 1).
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The most important advantage of the method is to be able to execute the compu-
tation of St+1(0) and St+1(1) from St(0) and St(1) 2

t byte by 2t byte in parallel.
When the number of elements in U and V is l, we repeat this process (log2l) times
to get U+V+l car.

The implementation is based on the above ideas. Input are two arrays of
unsigned integer, which store 1024-bit-vector, and a carry from the lower bit-
vector. Output are two arrays of unsigned integer and a carry to the upper
bit-vector. The number of elements in one array is 32. In addition to them, we
make an array of bool storing carries to the upper element on the shared memory.
First, we compute one-bytewise sums for two arrays of unsigned integer. When
a sum is smaller than two operands, we set a carry to the upper byte 1. Next, we
get two-bytewise sums and carries from neighboring two one-bytewise sums and
carries. This process can be done with one comparison and two substitutions.
In the same way, we get four-bytewise ones, eight-bytewise ones, and finally 32-
bytewise ones . ”A carry to the upper byte” of the most significant byte is ”a
carry to the upper bit-vector.” So, we store the carry in the global memory.

3.5 Other Notes

cudaMemcpy() of each array is done before the host function llcs gpu() and
recursive calls in Listing 1.2. Also, cudaMalloc() of each array is also done out of
the recursive calls. If they are done in the recursive calls, overhead is too heavy.

When we pad the string on the device, we have to copy the original string
from the host. However, transfer across host and device is much slower than
device to device transfer or host to host transfer. So, we would like to reduce
the number of transfer across host and device as few as possible. To do so, only
once we perform host to device transfer to make a copy of the original string on
the global memory. In llcs gpu() or llcs gpu’(), when we use the string, we copy
it into working memories on the device. It is the copy that we pad.

If the lengths of given strings are shorter than some constant value, the cost
to make PMV and copy data to device becomes larger than the cost to compute
the LLCS with dynamic programming on a CPU. In such a case, execution speed
becomes slower when we use a GPU. So, we check the lengths of strings before
invoking llcs gpu(). When the length of A is shorter than 4096, we compute the
LLCS with dynamic programming on a CPU.

4 Experiments

In this section, we compare the execution time of the proposed algorithm with
the execution times of Kloetzli et al’s GPU algorithm, Hirschberg’s CPU algo-
rithm, and Crochemore’s CPU algorithm. We execute our program on 2.93GHz
Intel Core i3 530 CPU and Windows 7 Professional 64bit. Our development en-
vironment are CUDA 3.1 and Visual Studio 2008 Professional. We use default
compile options in release mode and no SSE instruction is used.
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Table 1. The speedup ratio of our algorithm to Hirschberg’s CPU algorithm

m n CPU(Hi) CPU(bp) GPU(bp) GPU(bp) GPU(bp)
(106 chars) (106 chars) (8800) (285) (480)

1.16 1.05 1.00 13.21 35.97 51.77 60.87
1.50 1.49 1.00 13.14 41.84 62.25 70.61
1.80 1.32 1.00 13.52 42.41 67.13 74.90
1.80 0.27 1.00 15.05 26.56 32.75 37.34
1.80 0.41 1.00 14.59 30.40 42.15 47.11
1.80 1.46 1.00 13.45 42.84 68.46 76.04
1.80 1.51 1.00 13.40 43.10 69.07 76.50

CPU:2.93GHz Intel Core i3 530, Hi:Hirschberg, bp:bit-parallel,
8800:GeForce 8800 GTX, 285:GeForce GTX 285, 480:GeForce GTX 480

Fig. 3. A comparison of CPU(Hirschberg), CPU(Bit-Parallel), and GPU(Bit-Parallel)

4.1 A Comparison with the Existing CPU Algorithms

Fig. 3 shows the result of comparison among the non-bit-parallel CPU algo-
rithm (CPU(Hi)), bit-parallel CPU algorithm (CPU(bp)), and bit-parallel GPU
algorithm (GPU(bp)) over GeForce GTX 285. Fig. 3 (a) includes CPU(Hi),
CPU(bp), and GPU(bp). Fig. 3 (b) includes only CPU(bp) and GPU(bp). The
x-axes of these two graphs show length of string A and string B measured in
millions. The y-axes show execution times. In Fig. 3 (a), times are measured in
hours. In Fig. 3 (b), times are measured in minutes. Because we assume tar-
gets to be DNA sequences, we use strings of length 0.27 million to 1.8 million
in the experiment. In addition, Table 1 shows the speedup ratio of CPU(bp)
and GPU(bp) to CPU(Hi). In this table, we execute GPU(bp) on three types of
GPUs, i.e., GeForce 8800 GTX, GeForce GTX 285, and GeForce GTX 480.

Fig. 3 and Table 1 show that CPU(bp) runs 14 to 15 times faster than
CPU(Hi) in all of seven cases. GPU(bp) runs 2.1 times faster than CPU(bp)
in the shortest case of 1.8 million and 0.27 million. In the longest case of 1.8
million and 1.51 million, GPU(bp) runs 5.1 times faster than CPU(bp).
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Fig. 4. A comparison with Kloetzli et al’s GPU algorithm

Comparing with CPU(Hi), the proposed algorithm (GPU(bp)) runs 26.5 to
43.1 times faster over GeForce 8800 GTX, 32.7 to 69.0 times faster over GeForce
GTX 285, and 37.3 to 76.5 times faster over GeForce GTX 480.

4.2 A Comparison with the Existing GPU Algorithm

We compared our algorithm with Kloetzli et al’s GPU algorithm. Kloetzli et al
used an AMD Athlon 64 CPU and a GeForce 8800 GTX GPU. To Compare
over the same GPU, we used GeForce 8800 GTX GPU too. Because our CPU
(2.93GHz Intel Core i3 530) is faster than Kloetzli et al’s CPU, our environ-
ment is not completely equal to Kloetzli et al’s. However, our algorithm scarcely
depends on CPU. So, we can expect the result does not become quite different.

Fig. 4 shows the result. The x-axis shows the length of strings A and B. The y-
axis shows execution times measured in minutes. GPU(Kloetzli) represents the
execution time of Kloetzli et al’s GPU algorithm. GPU(proposed) represents
the execution time of our GPU algorithm.

In the shortest case (1.8 million and 0.27 million), the speedup ratio is 12.0.
In the longest case (1.8 million and 1.51 million), the speedup ratio is 17.6. The
speedup ratio ranges from 10.9 (1.8 million and 0.41 million) to 18.1 (1.8 million
and 1.51 million).

4.3 A Comparison for Longer Strings

We show the result of comparison between the bit-parallel CPU algorithm and
the proposed algorithm in Table 2. We set the lengths of given two strings are
identical. The lengths are 1MB, 2MB, 4MB, 8MB, and 16MB. The leftmost
column shows the speedup ratio of the proposed algorithm to the bit-parallel
CPU algorithm. In Table 2, the longer the lengths of strings become, the larger
the speedup ratio becomes. For example, the speedup ratio increases from 4.46
to 9.95 with increase of the lengths of strings from 1MB to 8MB. In the longest
case of 16MB, the speedup ratio is 12.77.
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Table 2. A comparison with the bit-parallel CPU algorithm

String CPU(bp) GPU(bp) speedup
Length(MB) (seconds) (seconds) ratio

1 468.55 105.04 4.46
2 1855.39 327.82 5.66
4 7424.83 940.72 7.89
8 29772.05 2992.01 9.95

16 131574.88 10306.66 12.77

CPU:2.93GHz Intel Core i3 530, GPU:GeForce GTX 285

5 Conclusions

In the paper, we have presented a method to implement the bit-parallel LCS
algorithm on a GPU and have conducted several experiments on our program
based on the method. As a result, the proposed algorithm runs 2.48 to 12.77 times
faster than the bit-parallel algorithm on a CPU and 10.9 to 18.1 times faster
than Kloetzli et al’s algorithm on a GPU. Future works include optimization
to the newest Fermi architecture and GPU implementation of other bit-parallel
algorithms with a similar method.
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Abstract. HPC systems now exploit GPUs within their compute nodes
to accelerate program performance. As a result, high-end application de-
velopment has become extremely complex at the node level. In addition
to restructuring the node code to exploit the cores and specialized de-
vices, the programmer may need to choose a programming model such
as OpenMP or CPU threads in conjunction with an accelerator pro-
gramming model to share and manage the different node resources. This
comes at a time when programmer productivity and the ability to pro-
duce portable code has been recognized as a major concern. In order to
offset the high development cost of creating CUDA or OpenCL kernels,
directives have been proposed for programming accelerator devices, but
their implications are not well known. In this paper, we evaluate the state
of the art accelerator directives to program several applications kernels,
explore transformations to achieve good performance, and examine the
expressivity and performance penalty of using high-level directives ver-
sus CUDA. We also compare our results to OpenMP implementations to
understand the benefits of running the kernels in the accelerator versus
CPU cores.

1 Introduction

Computational scientists performing research in a broad range of domains are
demanding ever more powerful computing systems as they strive to solve some of
the most pressing problems of today and prepare for those of tomorrow. To meet
their needs, systems that provide significantly higher levels of peak performance
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than any currently installed platforms are already being procured. Much more
powerful computers are expected to be built and delivered during the coming
decade. These future exascale systems may feature a variety of architectural
innovations that offer new ways to address the inherent challenges of scale, power,
reliability, cost, and packaging.

To attain the desired levels of computational performance while meeting op-
erational constraints, hardware designers have begun to exploit recent develop-
ments in mainstream computer architectures. Following hard upon the heels of
the industry-wide move from single to multi-core systems – designed to increase
the overall computational performance without unduly increasing the amount of
energy required to operate it – dominant mainstream computer architectures are
now undergoing a second transition from homogeneous to heterogeneous designs
that incorporate components designed for high-throughput, providingmassive lev-
els of parallelism.Emerging large-scale platformswill be heavily impacted by these
technology shifts. For instance, the Tianhe-1A relies on graphic processing units
(GPUs) to achieve 2.5 Petaflops of peak Performance. In addition, Oak Ridge Na-
tional Laboratory (ORNL) has already announced that its next leadership class
machine will be based on a heterogeneous multi-core system with GPUs.

Whereas accelerators on today’s multi-core nodes are typically GPUs – mas-
sively parallel processors that can be programmed to perform a range of com-
putations including, but not limited to, their original graphics domain – future
systems are expected to have much higher core counts and density [1], and po-
tentially will integrate a variety of special-purpose devices, or system on chips,
that can provide the highest levels of performance on suitable code regions. Sig-
nificant challenges face application developers as they learn to efficiently exploit
recently installed architectures. The effectiveness of MPI-based applications has
been reduced by the effects of multiple levels of architectural parallelism, lim-
ited amounts of memory per core and complex sharing of resources such as in-
terconnects, caches and shared memories. The transition to heterogeneous node
hardware will significantly exacerbate their difficulties, as they will need to ex-
plicitly detect and adapt code to run on the GPUs, potentially using yet another
programming model. They will be required to deal with distinct and complex
memory systems and the high cost of data transfer between them. As a result,
GPU directive-based programming APIs are starting to emerge in an attempt
to facilitate the porting process.

In this paper, we aim to identify the challenges involved in exploiting GPUs
for non-graphics applications; to evaluate the programming effort and perfor-
mance that can be obtained via the use of two existing, directive-based pro-
gramming models, the HMPP and PGI accelerator directives, and compare them
with CUDA and OpenMP. The accelerator directives used are a relatively new
technology and we expect that the underlying implementation is capable of im-
provement. Nevertheless, we observe that even with the use of directives, a good
deal of program reorganization may be required. The amount of effort depends
not only upon the application program in question but also on the desired level
of performance improvement.
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The paper is organized as follows. The next section below discusses the state
of the art with respect to heterogeneous computing. We compare two high-
level directive-based programming models in Section 3. This is followed by the
description of our efforts to adapt two existing programs, with different program
structures and requirements, to a platform that includes GPUs in Section 4. In
each case, we have used CUDA and two directive-based programming models to
port the code to a multicore node that employs a GPU provided by NVIDIA.
We then state our conclusions of our work in Section 5.

2 Programming Models for Heterogeneous Systems

Several vendors have provided programming interfaces for accelerators.Most have
adapted the C programming language to fit the strict requirements of applications
on their platform. GPUs were originally programmed using OpenGL. Domain-
specific languages for graphics programming like GLSL (OpenGL Shading Lan-
guage), HLSL (high level shader language), and Cg (C for graphics) fromNVIDIA
are also available.With their growingusefulness for compute-intensive functions in
general-purpose applications, a number of programming interfaces (mostly based
on C) have been provided to facilitate the development of application kernels for
them. Rather than being fully fledged languages, most of them are based upon C.
These include StreamIt [6], Sh [11], Brook [7], CUDA [13] andOpenCL. Compared
with those programming languages, CUDA in particular has become popular for
general-purpose programming on NVIDIAGPUs. The OpenCL [3] specification is
the first standard programming API for accelerators released by Khronos [2].

Based heavily on CUDA, it is poised to become the first standard
Moreover, a variety of high level programming directives for accelerators are

available or are undergoing development. CAPS HMPP [9], PGI accelerator di-
rectives [4] and HiCUDA [10] target CUDA and OpenCL [3]. RapidMind [5]
defines C++ extensions that allow its users to describe how data in a C++ ap-
plication should be mapped between GPUs, Cell processors and cores. However
their approach requires redefinition of data types and the creation of kernels with
a special syntax language. It is important to note that while these approaches
provide portability at the language / directive level, the program optimizations
and porting strategies required to apply them depend heavily on the target ar-
chitecture and the application input set.

3 A Comparison of Directive-Based Programming
Approaches

CUDA (and OpenCL) require the application developer to carefully study all
the salient details of the target architecture. The process of code adaptation and
tuning may be lengthy, involving significant reorganization of code and data,
and is moreover error-prone. Porting the resulting code to another GPU (e.g. a
successor model) may require non-trivial modification. High-level programming
models have the potential to simplify the program creation and maintenance
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effort of the code. There have been few studies [12] that compare different ven-
dors’ GPU directives implementations. However, unlike ours, they do not focus
on and the optimization process to achieve good performance, and the benefits
of using the directives versus native CUDA or OpenMP.

In this section we provide an overview and compare two of the most popular
directive based programming languages for GPUs: PGI Accelerator Directives
and the HMPP Workbench.

3.1 Overview of the HMPP and PGI Accelerator Directives

HMPP is a directive-based programming interface for hybrid multicore paral-
lel programming that aims to free the application developer from the need to
code in a hardware-dependent manner. It is implemented by a source-to-source
compiler designed to extract maximal data parallelism from C and FORTRAN
kernels and translate them into NVIDIA CUDA or OpenCL. The main concepts
of HMPP are the codelet and the callsite. A function that can be executed re-
motely on an accelerator is identified by the codelet directive; the callsite is the
place the codelet (kernel) function call is launched. HMPP has both synchronous
and asynchronous modes for the codelet remote procedure calls (RPCs). The
asynchronous mode enables the overlapping of data transfers between the host
and accelerators with other work. The programmer specifies targets for the exe-
cution of codelets. If the desired accelerator is present and available, it will run
there. Otherwise the native host version is run.

PGI’s Accelerator directives may be incrementally inserted into a code to desig-
nate a portion of C or Fortran code to be run on CUDA-enabled NVIDIA GPUs.
They enable the application developer to specify regions for potential accelera-
tion, to manage the necessary data transfers between the host and accelerator,
and to initialize and shut down the accelerator. They further provide guidance to
the implementation to help it perform data scoping, mapping of loops and trans-
formations for performance. The directives assume that it is the host that handles
the memory allocation on the device, initiates data transfers, sends the kernel to
the device, waits for completion and transfers the results back from the device.
The host is also responsible for queuing kernels for execution on the device.

The PGI directives include the kernel region declaration #pragma acc with
copyin, local and copyout clauses to specify the input data, local data and output
data of the kernel. PGI also supports the autoscoping of these data automatically.
Directives #pragma acc for parallel(M) and #pragma acc for vector(N) are used
to help the compiler identify parallel loops and how they should be mapped to
the GPU.The compiler also attempts to associate a loop nest’s iterations to grid
and blocksizes that map to the GPU. The grid sizes will depend on the amount
of work launched in the kernel while the threadblock size remains constant. In
addition, PGI provides other clauses to optimize the kernels such as cache to load
data to shared memory, loop unroll and host to run a loop in the CPU. PGI has
been developing new directives such as the #pragma acc region and #pragma
acc declaration directive to scope variables that should be shared among kernels
and reside in the GPU or CPU or both.
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HMPP uses the concept of groups, #pragma hmpp group <groupid >, tar-
get=CUDA, to specify codelets that share the same data set and will run in
the same accelerator. HMPP provides the codelet #pragma hmpp <groupid
><codeletid >codelet and callsite directive#pragma hmpp <groupid ><codeletid
> to specify codelets and where to invoke them. In addition these directive have
clauses to specify the input, and output data and their sizes in the format for-
mat args[A1]=size and args[A1].io=in, args[An].io=inout. HMPP provides the
asynchronous advanced load and delegate store directive to control when to
move data to and from the accelerator. The directive #pragma hmppcg paral-
lel indicates that the following loop is parallel and can be mapped to the GPU,
while #pragma hmppcg noParallel indicates that a loop must not be parallelized.
HMPP allows the user to explicitly define the threadblock size of a loop nest by
using the #pragma hmppcg grid blocksize NxN directive. The #pragma hmpp
<groupid >resident specifies data that should be allocated in the GPU and that
may be shared among codelets.

4 Adapting Programs for GPUs: Two Case Studies

In this section, we present our experimental results that consists of adapting
two applications kernels to run on GPU based platform. For both kernels, we
use the PGI and HMPP accelerator directive-based programming to accelerate
the kernels and we describe the transformation we used to get good performance
when comparing it against CUDA and OpenMP.

Our experiments were run on an NVIDIA Tesla C2070 GPU with 448 cores in
14 Streaming Multiprocessors with frequency of 1.15 GHz. The GPU has 6GB
DDR5 global memory shared by all threads. The local memory is 64K in size,
and can be split 16K/48K or 48K/16K between L1 cache and shared memory.
Shared memory for each Streaming Multiprocessor is accessible only within a
thread block. The Tesla C2070 is also equipped with an L2 cache that covers
GPU global memory.

4.1 S3D Thermodynamics Kernel

S3D is a parallel combustion flow solver for the direct numerical simulation of
turbulent combustion. S3D [8] solves fully compressible Navier-Stokes, total en-
ergy, species and mass conservation equations coupled with detailed chemistry.
The governing equations are supplemented with additional constitutive rela-
tions, such as the ideal gas equation of state, models for chemical reaction rates,
molecular transport and thermodynamic properties. These relations and detailed
chemical properties are implemented as kernels or community-standard libraries
that are amenable to acceleration through GPU computing. For this work, we
chose the thermodynamics kernel that evaluates the mixture-specific heat, en-
thalpy and Gibbs functions as a temperature polynomial.The coefficients of the
thermodynamic polynomials and their relevant temperature ranges are obtained
from thermodynamic databases following the conventions used in the NASA
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do i = 1, np
enth(i) = 0.0
do m = 1, nslvs
if(temp(i)<midtemp(m)) then
enth(i)=enth(i)+yspec(i,m)*Rsp(m)*(&

coefflow(6, m)+temp(i)*(&
. . .

coefflow(5, m)*rp05))))) )
else
enth(i)=enth(i)+yspec(i,m)*Rsp(m)*(&

coeffhig(6, m)+temp(i)*(&
. . .

coeffhig(5, m)*rp05))))) )
end if

end do
end do

(a)S3D Thermodynamics Serial

!$OMP parallel do private(i, m, enth)
do i = 1, np

enth(i) = 0.0
do m = 1, nslvs
if(temp(i)<midtemp(m))then
enth(i)=enth(i)+yspec(i,m)*Rsp(m)*(&

coefflow(6,m)+temp(i)* (&
. . .

coefflow(5,m)*rp05))))))
else

enth(i)=enth(i)+yspec(i,m)*Rsp(m)*(&
coeffhig(6,m)+temp(i)*(&

. . .
coeffhig(4,m)*rp04+temp(i)*(&
coeffhig(5,m)*rp05))))))

end if
end do

end do
!$OMP end parallel do

(b)S3D Thermodynamics OpenMP

!$OMP parallel private(i,m,flag_hig,flag_low)
do m = 1, nslvs

!$OMP do
do i = 1, np

if(temp(i)<midtemp(m)) then
flag_low(i, m)=1
flag_hig(i, m)=0

else
flag_low(i, m)=0
flag_hig(i, m)=1

endif
enddo

!$OMP end do nowait
enddo

!$OMP do
do i = 1, np
enth(i) = 0.0

do m = 1, nslvs
enth(i)=flag_low(i,m)*(enth(i)+yspec(i,m)*&

Rsp(m)*(coefflow(6,m)+ temp(i)*(&
. . .

coefflow(5, m)*rp05))))) ))+&
flag_hig(i,m)*(enth(i)+yspec(i,m)*&
Rsp(m)*(coeffhig(6,m)+temp(i)*(&

. . .
coeffhig(5, m)*rp05))))) ))

end do
end do
!$OMP end do nowait
!$OMP end parallel

(c)Optimized S3D Thermodynamics with
OpenMP

Fig. 1. S3D Thermodynamics Kernel Code snippet

Chemical Equilibrium code. The thermodynamic kernel with small variations is
applicable across a wide range of reacting flow applications.

Figure 1(a) shows the most time consuming portion of the serial kernel, where
a double nested loop contains an if statement. The serial version takes about
22 seconds to execute in a CPU core. We decided to parallelize the outerloop
with OpenMP as shown in Figure 1(b). We noticed that the inner loop was not
being vectorized because of the if conditional. To further optimize the code, we
hoisted the if conditional by precomputing the branch values in a separate loop
that was also parallelized with OpenMP. As a result, we merge the if and else
computations into single statements that were masked with the precomputed
branch result. Figure 1(c) shows the transformation applied. By doing so, we
were able to parallelize and vectorize the computational loop which yielded a
good speed up of 3.8x when running the code on four cores. When running the
code on twelve cores, the original OpenMP version in Figure 1(b) yielded the
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!$acc data region copyin(temp,...),&
copyout(enth)

do j = 1, MR
!$acc region
!$acc do parallel(np)

do i = 1, np
enth(i) = 0.0
do m = 1, nslvs

if(temp(i)<midtemp(m)) then
enth(i)=enth(i)+yspec(i,m)*&

Rsp(m)*(&
...

coefflow(5, m)*rp05)))))
else

enth(i)=enth(i)+yspec(i,m)*&
Rsp(m)*(&
...

coeffhig(5, m)*rp05))))))
end if

end do
end do

!$acc end region
!$acc region
!$acc do parallel(np)

do i = 1, np
cp(i) = 0.0
do m = 1, nslvs

...
end do

end do
!$acc end region
end do
!$acc end data region

(a) PGI

!$hmpp <cudagroup> group, target=CUDA
!$hmpp <cudagroup> resident, args[Rsp].io=in
real,parameter::Rsp(1:nstts)=Ru/molwgt(1:nstts)
!$hmpp <cudagroup> resident, args[midtemp].io=in
real,parameter::midtemp(68)=(/ ... /)
!$hmpp <cudagroup> resident,args[coeffhig].io=in
real,parameter::coeffhig(7,68)=reshape(/.../)

subroutine calc_mixenth(np, ... ,cp)
implicit none
. . .
!$hmpp <cudagroup> allocate
!$hmpp <cudagroup> s3d_mixenth advancedload,&

args[::Rsp; ...; ::coeffhig]
!$hmpp <cudagroup> s3d_mixenth callsite
call hmpp_kernel1(np, ... , coeffhig)
!$hmpp <cudagroup> s3d_mixcp callsite, &

arg[::Rsp; ...].advancedload=true
call hmpp_kernel2(np, temp, ... , coeffhig)
!$hmpp <cudagroup> release
end subroutine calc_mixenth

!$hmpp <cudagroup> s3d_mixenth codelet, &
args[np;...;yspec].io=in,args[enth].io=out

subroutine hmpp_kernel1(np,temp,...,coeffhig)
...

end subroutine hmpp_kernel1
!$hmpp <cudagroup> s3d_mixcp codelet, &

args[np;...;yspec].io=in,args[cp].io=out
subroutine hmpp_kernel2(np,...,coeffhig)

...
end subroutine hmpp_kernel2

(b) HMPP

Fig. 2. S3D Thermodynamics Kernel Code snippet

best performance of 9.5x because it does not have any shared memory contention
on the masked branch variable.

Our first attempt to accelerate the code with PGI and HMPP directives,
by inserting a !$ acc region directive and creating a HMPP codelet for the
main computational loopnest yielded very little performance for PGI and HMPP
directives (2x speedup for PGI and 1.2 speedup for HMPP). By using the CUDA
Profiler from NVIDIA, we observed that most of the time was spent in the
accelerated kernels on data transfer between the CPU and GPU. Since the kernel
contains read-only arrays, we optimized the accelerated kernels by allocating
and initializing the read only variables inside the GPU. To do so, we had to
inline the main computational kernel loop (loop i) inside the procedure that was
invoking it within its loop j. The PGI version of this transformation is shown
in Figure 2(a), which uses a data region to define the data that resides in the
GPU. For HMPP, we used the group and resident directive to allocate data in
the GPU and share data among the codelets of the same group. Figure 2(b), the
HMPP implementation, where codelets s3d mixenth and s3d mixcp belong to the
same group named cudagroup. Arrays Rsp, midtemp, coeffhig and coefflow are
declared as resident variables, which makes them accessible to the two codelets
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S3D Thermodynamics Timings (Seconds)

SERIAL 21.926

HMPP 0.363

HMPP Kernel 0.3192948

HMPP Data Transfer 0.042834

PGI 0.346305

PGI Kernel 0.320225

PGI Data Transfer 0.02608

CUDA 0.29

CUDA Kernel 0.269265

CUDA Data Transfer 0.019952

OpenMP 12 Threads (best) 2.274

(a) S3D Thermodynamics Timing Table

(b) S3D Thermodynamics Speedup

Fig. 3. S3D Thermodynamics Kernel Experiment

defined in the HMPP group. In order to optimize the data transfers, we used
the advancedload directive to initialize the read only data once before the first
codelet calc mixenth is executed. We also used the advancedload clause of the
HMPP callsite directive to notify HMPP that the read only data is available in
the GPU for the second codelet.

When comparing the results from different parallelization and acceleration
strategies, we found that the HMPP and PGI implementations produced 60x
and 63x speedup, respectively. The native CUDA implementation produced a
speedup of 76 times that amount, while the OpenMP version using twelve threads
produced a speedup of 10, as shown in Figure 3(b). The timings of our exper-
iments are shown in Figure 3(a). Our results show that by managing the data
correctly we were able to produce good speedups with the PGI and HMPP
accelerator directives, within 80% of the native CUDA performance.

4.2 HOMME/SE Application

The High-Order Multi-scale Modeling Environment application, HOMME, is
one of the highly promising frameworks for integrating the atmospheric primi-
tive equations in spherical geometry. HOMME applies a spectral element method
to conserve both mass and energy using an isotropic hyper-viscosity term. To
discretize horizontal dimension, it uses a cubed-sphere grid and in the radial
direction a vertical dimension. The HOMME application consists of several hun-
dred Fortran 90 subroutines where the computations are spread evenly across
them and whose relevance depends on the input problem.

For each of the spherical elements in the grid, HOMME maintains a global
data structure that stores the state of the element, including velocity, tempera-
ture, pressure, divergence and geo-potential. Figure 4(a) shows a code fragment
of the subroutine compute and apply rhs which is one of the routines that com-
putes the divergence for each of the cubed elements. The ie loop iterates over the
spherical elements, the q loop over the advected physics, the k loop iterates over
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...
do ie=nets, nete

do q=1,qsize
do k=1,nlev

gradQ5d(:,:,k,q,1)=
elem(ie)%state%v(:,:,1,k,n0)*&
elem(ie)%state%Qdp(:,:,k,q,n0)

gradQ5d(:,:,k,q,2)=
elem(ie)%state%v(:,:,2,k,n0)* &
elem(ie)%state%Qdp(:,:,k,q,n0)

end do
end do

divdp4d(:,:,:,:) =
divergence_sphere5d( &
gradQ5d(:,:,:,:,:), &
deriv, elem(ie))

...
end do

(a) Serial code

...
!$omp parallel private(ie,j,i,k,q,m,l,&
!$omp& gradQ5d,divdp4d,deriv)
...

!$omp do
do ie=nets, nete
do q=1,qsize

do k=1,nlev
gradQ5d(:,:,k,q,1)=
elem(ie)%state%v(:,:,1,k,n0)*&
elem(ie)%state%Qdp(:,:,k,q,n0)
gradQ5d(:,:,k,q,2)=
elem(ie)%state%v(:,:,2,k,n0)* &
elem(ie)%state%Qdp(:,:,k,q,n0)

end do
end do

divdp4d(:,:,:,:) =
divergence_sphere5d( &
gradQ5d(:,:,:,:,:), &
deriv, elem(ie) )

...
end do

!$omp enddo nowait
!$omp end parallel region

(b) OpenMP code

Fig. 4. The original and OpenMP divergence sphere code version

the vertical radial grid points and the j and i loops iterate over the horizontal
plane grid points.

In HOMME, coarse grain parallelism is implemented via MPI by distribut-
ing the spherical elements across nodes, whereby one or more elements can be
assigned to an MPI process (see ie loop). In our case we assumed that each
node will be assigned twelve elements to provide enough work for all the cores
for in-node optimization or acceleration (i.e one element per core). The in-node
problem size used was: ie = 12, qsize d = 101, nlev = 26 and nv,np = 4. We
optimized several versions of the kernel for OpenMP, PGI Accelerator directives,
and HMPP. We then compared them against the original serial version and the
CUDA implementation tuned by NVIDIA and ORNL.

For the OpenMP version, see Figure 4(b). We parallelized the ie loop with
OpenMP parallel do to assign spherical elements to OpenMP threads and take
advantage of the node’s shared memory. One of the challenges faced, when port-
ing the code to OpenMP is to make sure memory access is consistent, by always
accessing the same spherical element with the same thread including the data ini-
tialization loops. This improves locality by placing element’s data in the core’s
local memory. We also must determine whether to privatize variables such as
gradQ, a temporary variable that gathers data that is passed to the procedure
or inline the procedure to avoid unnecessary data copies. For the inner loops we
need to make sure loops get vectorized, if possible. When running the OpenMP
kernel we noticed that using 4 threads gives the best performance with 510 mil-
liseconds and a speedup of 2.67. The sequential version takes 1366 milliseconds.
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!$acc region
!$acc do parallel(nete)

do ie=nets, nete
!$acc do parallel(qsize)

do q=1,qsize
!$acc do vector(32)

do k=1,nlev
!$acc do vector(nv)

do j=1,nv
!$acc do vector(nv) private(dudx00,dvdy00i)

do l=1,nv
dudx00=0.0d0
dvdy00i=0.0d0

do i=1,nv
dudx00 = dudx00 + Dvv(i,l ) * &
(metdet(i,j,ie)*(Dinv(1,1,i,j,ie)* &
gradQ5da(i,j,k,q,1,ie) + &
Dinv(1,2,i,j,ie)*gradQ5da(i,j,k,q,2,ie)))

dvdy00i = dvdy00i + Dvv(i,j ) * &
(metdet(l,i,ie)*(Dinv(2,1,l,i,ie)* &
gradQ5da(l,i,k,q,1,ie) + &
Dinv(2,2,l,i,ie)*gradQ5da(l,i,k,q,2,ie)))

end do
divdp4da(l,j,k,q,ie)= &

rmetdetp(l,j,ie) * &
(rdx(ie))*dudx00+(rdy(ie))*dvdy00i

end do
end do

end do
end do

enddo
!$acc end region

(a) PGI Accelerator Directives

!$hmpp <elements_group> divergence codelet
subroutine hmpp_divergence_sphere(rmetdetp,rdx,
rdy,Dvv,metdet,Dinv,gradQ5da,divdp4dhmpp)

....
!$hmppcg parallel
!$hmppcg grid blocksize 32x4

do k1 = 1, (nv*nv*nlev*qsize*(nete-nets+1))
k2 = k1
l = mod(k2, nv) + 1
k2 = k2 / nv
j = mod(k2, nv) + 1
k2 = k2 / nv
k = mod(k2, nlev) + 1
k2 = k2 / nlev
q = mod(k2, qsize) + 1
k2 = k2 / qsize
ie = mod(k2, (nete-nets+1)) + nets
k2 = k2 / (nete-nets+1)

dudx00 =0.0d0
dvdy00i=0.0d0
do i=1,nv
dudx00= dudx00+ Dvv(i,l)*(metdet(i,j,ie) *&
(Dinv(1,1,i,j,ie)*gradQ5da(i,j,k,q,1,ie) +&
Dinv(1,2,i,j,ie)*gradQ5da(i,j,k,q,2,ie)))

dvdy00i =dvdy00i + Dvv(i,j)*(metdet(l,i,ie)*&
(Dinv(2,1,l,i,ie)*gradQ5da(l,i,k,q,1,ie)+ &
Dinv(2,2,l,i,ie)*gradQ5da(l,i,k,q,2,ie)))
end do
divdp4dhmpp(l,j,k,q,ie)= rmetdetp(l,j,ie) *

((rdx(ie))*dudx00+(rdy(ie))*dvdy00i)
enddo

end subroutine hmpp_divergence_sphere

(b) HMPP Implementation

Fig. 5. The inlined and accelerated divergence sphere code snippet

For the PGI and HMPP implementations of the kernel, it was necessary to
inline the procedure divergence sphere to map data parallel loops to a GPU
and provide sufficient work. Also, this step is necessary if we want to accelerate
the kernel at the ie loop, using the same approach adopted by the OpenMP
implementation.

With the PGI accelerator directives, we needed to do some code restructuring
to achieve good performance. We inlined the procedure divergence sphere and
inserted a !$acc region to accelerate the ie loop. This was necessary for the PGI
directives since it cannot handle function calls inside an accelerated region. The
next step was to specify how to parallelize the the loop nest iterations across
the GPU Symmetric Multi-processors (SM) and within the SMs efficiently. We
use the parallel and vector clause to specify the vector size and grid size: in this
case we specified a block size of nv × nv × nv. To avoid non-coalesced memory
accesses we eliminated a temporary array gv and fused the inner loops. We
also allocated and initialized all the data inside the GPU by using the PGI
data region directive and copyout directive to obtain the results of the kerne.
To achieve good performance, we allocated and initialized the twelve spectral
elements state on the GPU. Figure 5(a) shows the implementation of the kernel
using the PGI accelerator directives.
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HOMME/SE Timings (Miliseconds)

SERIAL 1366.37

HMPP Kernel 105.72

PGI Kernel 137.43

CUDA 70.00

OpenMP 4 Threads (best) 510.62

(a)HOMME/SE Timing Table

(b)HOMME/SE Divergence Sphere
Speedup

Fig. 6. HOMME/SE Kernel Experiments

We used a similar code transformation to implement the kernel with HMPP
directives; With HMPP we had to outline the ie loop to a separate procedure to
create a codelet. We also had to transform the loops by collapsing the ie and q
loops with the l and the e loop respectively to provide enough work for a two-
dimensional thread block (At the time of writing, HMPP 2.5.0 only supported
two dimensional thread blocks). Figure 5(b) shows the HMPP implementation
of the kernel. The OpenMP version (with 4 threads) achieves a speedup of 2.67
(over the serial version). Without counting the data transfer time, the GPU
implementations achieve a speed up of 9.9x for the (ACC) PGI directives, 12.92x
for HMPP and 19.5x for the CUDA implementation

5 Conclusions

This paper explores GPU programming models and compares the use of two
sets of accelerator directives in two real-world application kernel studies. We
explain the challenges and limitations encountered and, based on the lessons
learned, reached initial conclusions on how to transform code to take advantage
of the accelerator directive. In the HOMME/SE kernel, significant restructuring
was needed to make sure the compilers generated the correct GPU scheduling
(blocksize and grid size) and achieve a comparable performance to CUDA. We
also compared the performance of running the codes on the GPU versus the
CPU, and found that in all the cases the GPU yielded significantly better per-
formance. In order to use the accelerator directives efficiently, it is necessary to
perform code transformations to close the gap in performance to native CUDA
implementations.
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Abstract. Greedy graph matching provides us with a fast way to
coarsen a graph during graph partitioning. Direct algorithms on the
CPU which perform such greedy matchings are simple and fast, but offer
few handholds for parallelisation. To remedy this, we introduce a fine-
grained shared-memory parallel algorithm for maximal greedy matching,
together with an implementation on the GPU, which is faster (speedups
up to 6.8 for random matching and 5.6 for weighted matching) than
the serial CPU algorithms and produces matchings of similar (random
matching) or better (weighted matching) quality.

1 Introduction

We propose a fine-grained shared-memory parallel algorithm for generating
greedy matchings of undirected graphs. This algorithm was inspired by the par-
allel graph coarsening algorithm discussed in [8, Sec. 3.2] and follows a paradigm
similar to that of the auction algorithm [4] for bipartite graphs (implemented on
the GPU in [17]), but applying to general greedy matchings in arbitrary undi-
rected graphs. The GPU has been used to accelerate solving of sparse problems,
e.g. in the CUSP library [3], which provides sparse linear algebra and graph
computations using CUDA.

Graph matchings have applications in minimising power consumption in
dynamic wireless networks [19], heuristics for solving the travelling salesman
problem [9], and organ donation [16]. Our primary interest however, will be the
coarsening of graphs and hypergraphs (where edges may contain more than two
vertices). During coarsening, we first match neighbouring vertices in a
(hyper)graph and then merge matched pairs of vertices into a single vertex,
which yields a coarser version of the (hyper)graph. Repeatedly coarsening a
(hyper)graph gives a multi-level hierarchy of increasingly coarser approxima-
tions of the original (hyper)graph, which is useful for (hyper)graph partitioning,
e.g. in the context of sparse matrix–vector multiplication [5,18] or LU decompo-
sition of sparse matrices [1,7]. The following definitions have been set up such
that they can easily be generalised to hypergraphs.

Graphs will be denoted by G = (V,E), where V ⊆ N is the set of vertices
and E the set of edges of the graph (all e ∈ E are of the form e = {v, w} for
some v, w ∈ V ). For v ∈ V , we denote the collection of neighbours of v by

Vv := {w ∈ V | ∃e ∈ E : v, w ∈ e} \ {v}.

R. Keller et al. (Eds.): Facing Multicore-Challenge II 2011, LNCS 7174, pp. 108–119, 2012.
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The graph G is weighted if it is provided with a function ω : E → R>0 assigning
a weight ω(e) > 0 to each edge e ∈ E.

A matching of G is a map π : V → N such that

1. for all v ∈ V there exists at most one w ∈ V \ {v} such that π(v) = π(w)
(we match at most two vertices to each other),

2. for all v, w ∈ V , v �= w, if π(v) = π(w), then v ∈ Vw and w ∈ Vv (we only
match neighbouring vertices).

We consider two different vertices v, w ∈ V to be matched to each other if
π(v) = π(w). If we cannot match any more vertices without breaking one of
these two conditions, we call π maximal. If G is weighted, then the weight ωπ of
π is defined as the sum of the weights of all edges included in the matching:

Mπ := {{v, w} ∈ E | π(v) = π(w), v �= w}, ωπ :=
∑

e∈Mπ

ω(e).

2 Serial Matching

We will consider simple greedy random matching, as outlined in Alg. 1. For this
algorithm we use π(v) = ∞ to indicate that the vertex v is unmatched.

Algorithm 1. Serially creates a matching of a graph G = (V,E) with V ⊆ N
by constructing π : V → N ∪ {∞}.
1: Randomise the order of the vertices in V .
2: for v ∈ V do
3: π(v)←∞;
4: for v ∈ V do
5: if π(v) =∞ then
6: w ← select(v, Vv ∩ π−1({∞}));
7: if w �=∞ then
8: π(v)← min{v, w};
9: π(w)← min{v, w};

The function select(v,W ) is defined for vertices v ∈ V and collections of
neighbours W ⊆ Vv. Should W be empty, then select(v,W ) = ∞, otherwise
select(v,W ) = w for some neighbour w ∈ W of v. Choosing different prescrip-
tions for selecting neighbours gives us different kinds of matchings. Here, we
consider two options for select: random matching and weighted matching.

For random matching, select(v,W ) returns the first available w ∈ W . Be-
cause we randomise vertex order, this amounts to matching vertices to random
neighbours, while providing an early exit for the selection mechanism.

For weighted matching, select(v,W ) returns a neighbour w ∈ W with
ω({v, w}) = maxu∈W ω({v, u}). Here, the selection process takes longer: every
neighbour needs to be considered to find the heaviest edge originating from v.
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Note that in either case Alg. 1 produces maximal matchings. This ensures
that the number of matched vertices is at least half of the maximum possible
number of matched vertices when considering all possible matchings.

Other greedy matching strategies such as dynamic minimum degree (vertices
with fewest unmatched neighbours are matched first) or Karp–Sipser [10] (ver-
tices with a single unmatched neighbour are matched first) are not considered,
because dynamically keeping track of all vertex degrees leads to serialisation.
A more in-depth discussion and comparison of such matching strategies can be
found in [11]. A distributed-memory parallel implementation of the Karp–Sipser
algorithm is presented in [13].

2.1 Matching by Decreasing Edge Weights

We will also compare weighted matchings generated by our GPU algorithm with
weighted matchings generated by Alg. 2.

Algorithm 2. Serially creates a weighted matching of a weighted graph G =
(V,E) with V ⊆ N and weights ω : E → R>0 by constructing π : V → N∪{∞}.
1: for v ∈ V do
2: π(v)←∞;
3: for {v, w} ∈ E in order of decreasing ω({v, w}) do
4: if π(v) =∞, π(w) =∞, and v �= w then
5: π(v)← min{v, w};
6: π(w)← min{v, w};

Alg. 2 ensures that we always match the vertices belonging to an edge with
maximum weight in the entire graph, in contrast to weighted matching by
Alg. 1 where the edge with maximum weight originating from a random ver-
tex is matched. Because of this, Alg. 2 is 1

2 -optimal, i.e. the weight ωπ of the
matching π generated by Alg. 2 is guaranteed to be at least half of the maxi-
mum weight that any matching of this graph can attain. A distributed-memory
parallel algorithm for weighted matching is given in [12]; this algorithm is based
on locally dominant edges and is also 1

2 -optimal.

3 Parallel Matching

A problem with Alg. 1 is its serial nature: in order to prevent matching more than
two vertices to each other, we seemingly have to consider vertices one-by-one.
To be able to match vertices simultaneously, while still satisfying the matching
criteria, we propose Alg. 3, which permits us to evaluate select in parallel for
many vertices.

For this algorithm π(v) ∈ {blue, red,dead} indicates that v has not been
matched. The function colour(v) determines for vertices v ∈ V whether they
are put into the blue or the red group. The for all . . . parallel do construct
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Algorithm 3 . Creates a matching of a graph G = (V,E), with V ⊆ N, in
parallel by constructing π : V → N ∪ {blue, red,dead}.
1: for all v ∈ V parallel do
2: π(v)← blue;
3: done← false;
4: while not done do
5: {Assign vertex colours:}
6: done← true;
7: for all v ∈ V parallel do
8: if π(v) ∈ {blue, red} then
9: done← false;
10: π(v)← colour(v);
11: {Blue vertices propose to red vertices:}
12: for all v ∈ V parallel do
13: if π(v) = blue then
14: if Vv ∩ π−1({blue, red}) = ∅ then
15: σ(v)← dead;
16: else
17: σ(v)← select(v, Vv ∩ π−1({red}));
18: else
19: σ(v)←∞;
20: {Red vertices respond to blue vertices:}
21: for all v ∈ V parallel do
22: if π(v) = red then
23: if Vv ∩ π−1({blue, red}) = ∅ then
24: σ(v)← dead;
25: else
26: σ(v)← select(v, Vv ∩ π−1({blue}) ∩ σ−1({v}));
27: {Match mutual proposals:}
28: for all v ∈ V parallel do
29: if σ(v) = dead then
30: π(v)← dead;
31: else if σ(v) �=∞ then
32: if σ(σ(v)) = v then
33: π(v)← min{v, σ(v)};

(a) Colour. (b) Propose. (c) Respond. (d) Match.

Fig. 1. Illustration of one iteration of Alg. 3’s main loop: (a) we colour all vertices
blue or red; (b) let the blue vertices propose to the red vertices; (c) let the red vertices
respond to one of these proposals; (d) and match the mutual proposals
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indicates a for-loop where each iteration can be executed completely indepen-
dently. These for-loops make Alg. 3 suitable for a GPU implementation, where
each independent loop iteration (corresponding to a vertex) is mapped to a dif-
ferent GPU thread. Furthermore, π and σ can be kept on the GPU during the
iterations of Alg. 3, such that communication between the CPU and GPU is
limited to only the start and the end of the matching process.

Alg. 3 starts by marking all vertices v ∈ V as blue (line 2), such that they are
unmatched. Then, we enter the main loop (line 4) and colour each unmatched
vertex blue or red (line 10, this is irrespective of the current colour of the ver-
tex). All blue vertices propose to red neighbours, chosen by select (line 17).
Vertices without unmatched neighbours are flagged as being dead. Red vertices
then consider proposals made to them by their neighbours, and respond to one
of them, chosen by select (line 26). Here, data thrashing due to parallel reads
and writes to σ is avoided by only checking whether σ(w) = v for neighbours
w ∈ Vv with π(w) = blue. After this, we match all vertices that have compatible
proposals and responses (line 28). Vertices that were flagged as dead receive a
special matching value (dead) so that they are no longer considered for match-
ing in subsequent iterations. We restart the main loop and reassign unmatched
vertices to either the blue or red group. The main loop is repeated until we
obtain a maximal matching.
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Fig. 2. The ratio between the number of matched vertices and the total number of
vertices, as a function of the number of iterations of the while-loop at line 4 of Alg. 3.
The number after each graph name indicates the number of edges.

The effect of iterating the main loop of Alg. 3 can be seen in Fig. 2. Here
we observe that the number of unmatched vertices decreases rapidly as the
number of iterations increases, stabilising when the matching is maximal. Note
that the matching is maximal when all vertices are either matched or dead.
Therefore, we keep track of a ‘done’ flag in Alg. 3, which becomes true when
π−1({blue, red}) = ∅. Because we only need to store a fixed value in ‘done’ at
line 9, we can do this directly in parallel without having to resort to atomic oper-
ations (an atomic compare-and-swap halved performance during experiments).



A GPU Algorithm for Greedy Graph Matching 113

3.1 Vertex Labelling

It is important that the function colour finds different blue and red groups
every iteration, because otherwise we can get stuck in situations where a non-
maximal matching is not enlarged. A direct way to define this function is to
determine the blue and red groups by randomly assigning each vertex to the
blue group with probability p and to the red group with probability 1− p, i.e.

colour(v) =

{
blue with probability p ∈ [0, 1],
red otherwise.

(1)

Intuitively, we should ensure that the blue and red groups are approximately
of equal size (by picking p = 1

2 , similar to [8, Sec. 3.2]) so that all unmatched
vertices have a good chance of possessing a neighbour of a different colour and
are therefore able to propose or respond in the current iteration. This leads to a
large number of matched or dead vertices, which will speed up later iterations.

Let us make this more precise by considering random matching in a random
graph G with vertices V = {1, . . . , n}, where an edge between two vertices
v, w ∈ V exists with probability P ({v, w} ∈ E) = d for a fixed density parameter
d ∈ [0, 1]. During a single iteration of Alg. 3 we match a number of vertices
equal to twice the number N of red vertices that receive a proposal from a blue
neighbour, i.e.

N =
∑
v∈V

P (π(v) = red)P (v is proposed to | π(v) = red)

=
∑
v∈V

P (π(v) = red)

⎛
⎝1−

∏
w∈V \{v}

(1 − P (w proposes to v | π(v) = red))

⎞
⎠

=
∑
v∈V

P (π(v) = red)

⎛
⎝1− ∏

w∈V \{v}

(
1− P (π(w) = blue)P ({v, w} ∈ E)

nr. of red neighb. of w

)⎞⎠ .

We now approximate the number of red neighbours of w by its average 1+(1−
p) (d (n− 1)− 1) (since v is already a red neighbour of w). This gives

N ≈ N∗ := n (1− p)

(
1−

(
1− p d

1 + (1− p) (d (n− 1)− 1)

)n−1
)
.

The approximate expected fraction of matched vertices in a large random graph
for a single iteration of Alg. 3 then equals

lim
n→∞

2N∗

n
= 2 (1− p)

(
1− e−

p
1−p

)
. (2)

This function is maximal for p ∈ [0, 1] satisfying 1− p = e−
p

1−p (2− p), yielding
p ≈ 0.53406, independent of the density d. Therefore, this choice of p yields the
largest number of matched vertices per iteration, and hence the shortest running
time of Alg. 3, regardless of the edge density of the random graph. Because of
this, we expect such a p also to work well for non-random graphs, which we
confirmed experimentally for ecology1 in Fig. 3.
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Fig. 3. The effect of the probability p from eq. (1) (left) on the absolute matching size,
weight, and time required to generate the matching, rescaled to a range of 100%, and
(right) on the observed and theoretical, eq. (2), fraction of matched vertices during the
first iteration of Alg. 3 for the matrix ecology1

3.2 Random Vertex Assignment

To evaluate eq. (1) in parallel on the GPU we use the MD5 message digest
algorithm [15]. This algorithm calculates a 128-bit value, the MD5 hash, of a
given sequence of bits, such that small changes in this sequence in general result
in a completely different MD5 hash. A sequence of bits is converted to an MD5
hash by padding the sequence such that its number of bits is a multiple of 512,
and then adding the contribution of each 512-bit chunk of the padded sequence
to the hash.

To employ the MD5 algorithm as a random number generator we generate
a single random number r on the CPU, which we pass to the GPU as a pa-
rameter for all threads (we again create a GPU thread for each vertex v ∈ V ).
Then, we create for each 32-bit vertex number v a 512-bit array consisting of
{v, r v, . . . , r15 v} and calculate the hash of this array, which we normalise to
obtain a pseudorandom number in [0, 1] for eq. (1). Changing either v or r will
result in a different array and therefore a completely different hash. By generat-
ing different values r, we can therefore create completely different assignments
of the unmatched vertices of the graph, for each iteration of Alg. 3.

To improve performance, we only use the first quarter of the MD5 algo-
rithm, which did not reduce the quality of the matchings during experiments.
This makes Alg. 4 fast and parallel, requires only a small amount of thread-
independent storage (we do not store {v, r v, . . . , r15 v} explicitly), and yields
reproducible vertex colourings.

4 Results

For graph coarsening, it is important to randomise the ordering of the vertices
of the graph to ensure that we do not get stuck in star graphs [14, Sec. 5.3].
Therefore, we randomly permute all vertices on the CPU after the graph has
been read from disk (as was also done in the experiments in [11]), where we
use the same permutation for benchmarking the serial and parallel algorithms.
Randomisation of the vertices will decrease performance, because it prevents
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Algorithm 4. Implementation of colourr(v) for Alg. 3, based on [15, Sec. 3.4].
Here v ∈ N is a vertex, r ∈ N is a parameter, p ∈ [0, 1] (eq. (1)), and K and R
are MD5 constants and shift amounts, kept in constant GPU memory.

1: Initialise hash as h0, h1, h2, h3.
2: Let a0 ← h0, a1 ← h1, a2 ← h2, a3 ← h3.
3: for i = 0 to 15 do
4: a4 ← (a1 and a2) or ((not a1) and a3);
5: a5 ← a3, a3 ← a2, a2 ← a1;
6: a1 ← a1 + rol(a0 + a4 +K(i) + v,R(i)); (bitwise rotate left)
7: a0 ← a5;
8: Add a0, . . . , a3 to h0, . . . , h3.
9: v ← r v;
10: if (h0 + h1 + h2 + h3) mod 232 < p 232 then
11: return blue;
12: else
13: return red;

coalesced reading on the GPU when looping over vertex neighbours. As we are
interested in the performance of the greedy matching process itself, permuting
the graph and I/O transfer have not been included in the recorded timings. CPU
to GPU transfer takes up, on average, 39% of the time.

The actual implementation of Alg. 3 was done with both NVIDIA’s Compute
Unified Device Architecture (CUDA) library version 3.1.2 and Intel’s Threading
Building Blocks (TBB) library version 3.0 in C++, compiled with g++ ver-
sion 4.1.2 using O3 optimisation flags. For the CUDA implementation, static
graph data (i.e. neighbour ranges, indices, and edge weights) were placed in one-
dimensional textures to improve cache use. Dynamic data (i.e. π and σ) were
placed in one-dimensional arrays, such that using a one-dimensional thread dis-
tribution (one thread per vertex and a CUDA block size of 256) gives us coalesced
data writing everywhere in the algorithm. For more implementation details, we
would like to refer the reader to the source code of the discussed algorithms,
which is freely available at http://www.staff.science.uu.nl/~faggi101/.

For weighted matching, we use 425 symmetric matrices from the University
of Florida sparse matrix collection [6], where the edge weights are set to the
absolute value of the corresponding matrix entry. For random matching this
set is augmented with the graphs from the 10th DIMACS challenge on graph
partitioning [2], which do not possess edge weights. This gives us a large, unbiased
test set of matrices arising from real-world applications.

The experiments were performed on a computer equipped with two quad-core
2.4 GHz Intel Xeon E5620 processors with hyperthreading, 24 GiB RAM, and an
NVIDIA Tesla C2050 with 2687 MiB global memory. We measured the scaling
of the TBB implementation of Alg. 3 with respect to the number of threads
used by the CPU in Fig. 4 and compared both the CUDA and TBB (using 16
threads) implementations to the serial matching algorithms (Alg. 1 and Alg. 2)
in Fig. 5. Fig. 5 shows the ratios of the average (over 32 random permutations
of the graph vertices) matching size, time, and weight, together with error bars
of one standard deviation. From these results, we observe the following:

http://www.staff.science.uu.nl/~faggi101/
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Fig. 4. Scaling of the random matching time of Alg. 3 with the number of TBB threads,
on a dual quad-core CPU with hyperthreading (8 physical cores) in a log-log plot. The
matching time is relative to the matching time required by Alg. 3 on a single core.

• Alg. 3 scales well as we increase the used number of threads. The test system
possesses 8 physical cores, but up to 16 threads with hyperthreading, which
explains good speedups up to 8 threads and smaller speedups thereafter.

• The quality of the generated random matchings by Alg. 3 is comparable to
that of the serial algorithm: for both CUDA and TBB the average matching
size ratio is more than 99%.

• Weighted matching with Alg. 3, for both CUDA and TBB, yields higher
quality matchings than Alg. 1 (average matching weight ratio 115%), but
lower quality matchings than Alg. 2 (ratio of 85%). This is not surprising,
since Alg. 2 always picks the globally heaviest edge, whereas Alg. 1 and Alg.
3 pick heavy edges locally. Furthermore, Alg. 1 does this one-sidedly, whereas
Alg. 3 performs a two-sided comparison (both proposers and responders pick
the heaviest neighbour), which leads to an increase in matching weight.

• In Fig. 5 we see that Alg. 3 does not obtain the same speedup for all graphs.
This is related to the ratio of the maximum and minimum degree of the
vertices of the graph, (maxv∈V |Vv|) / (minw∈V |Vw |). When this ratio is large,
vertices with high degree will keep a small number of CUDA threads occupied
for a long time, while the other kernels have already finished, leading to a
low occupancy of the GPU and decreased performance.

• The speedups increase as the graphs become larger. For CUDA, Alg. 3
reaches speedups up to 6.8, 5.6, and 37 compared to random matching with
Alg. 1 and weighted matching with Alg. 1 and Alg. 2. However, for TBB we
only reach speedups up to 1.1, 0.7, and 13.

Most of the time in Alg. 3 is spent loading and storing data, instead of performing
calculations. This is confirmed by the NVIDIA CUDA profiler for randommatch-
ing of ecology1, where the instruction-to-byte ratios are equal to 2.36 and 1.31 (ac-
cording to the profiler, they should be close to 4.06) for proposing and responding
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Fig. 5. Comparison between the serial matching algorithms (Alg. 1 and Alg. 2) and
Alg. 3 implemented in CUDA on the GPU and in TBB on a multi-core CPU
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to proposals in Alg. 3: this makes the algorithm bandwidth limited. Non-coalesced
memory access due to randomisation is reflected in a low texture-cache hit rate,
which is 35% for proposing, and 3% for responding, but we do utilize 70% and
82%, respectively, of the maximum available global memory bandwidth. This ex-
plains the fact that the GPU, with its much larger bandwidth (144 GB/s for a
Tesla C2050’s global memory vs. 17 GB/s for DDR3 RAM), performs better than
the CPU TBB implementation, and that for weighted matching (where the edge
weights also need to be read) the speedups are smaller, because memory traffic is
increased. We therefore expect performance to be increased further when select
involves a more compute-intensive assessment of each of the vertex’s neighbours.

5 Conclusion

We have described a fine-grained shared-memory parallel algorithm for greedy
graph matching (Alg. 3) and created a GPU implementation of this algorithm to
compare it with serial greedy matching on the CPU (Alg. 1 and 2). For random
matching, Alg. 3 provides maximal matchings of similar quality as Alg. 1; it
is slower for smaller graphs (< 105 edges), but becomes increasingly faster as
the number of edges increases (up to a speedup factor of 6.8). For weighted
matching of large graphs, Alg. 3 offers both better performance (speedups up
to 5.6) and better quality than Alg. 1, while compared to Alg. 2 we sacrifice
matching quality for a much better performance (speedups up to 37). Alg. 3
performs much better on the GPU than on the multi-core CPU because of the
GPU’s superior memory bandwidth. These results were obtained for a large set
of graphs arising from real-world applications.

We are interested in applying this algorithm in the context of (hyper)graph
coarsening [18] and anticipate that there, with more complicated ways for ver-
tices to select desired neighbours to be matched to, the ability of Alg. 3 to
perform many of these selections in parallel will lead to higher speedups.
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Abstract. The simulation of the electrophysiology of the heart is chal-
lenging due to its multiscale nature requiring the use of high spatial
resolutions. Hence, it is important to efficiently utilize large parallel ma-
chines. In this article, we present a code designed to meet these scal-
ability challenges on contemporary multicore-based massively parallel
architectures. It is based on a well-established model originally designed
for shared-memory systems. To improve scalability and extend support
to distributed-memory architectures, we developed a hybrid OpenMP-
MPI code. The new code shows excellent scalability up to 8448 cores
with both explicit and implicit time discretizations. We present an in-
depth analysis of the advantages of hybrid parallelization for this type
of application.

1 Introduction

The contraction of the heart is a highly tuned mechanism that is organized
by a complex electrical activation system. In each cardiac cell, approximately a
million ion channels, pumps, and exchangers work together by allowing or forcing
specific ions to cross the cell’s inner and outer membranes [5]. They come in
dozens of different types, encoded by different genes. Their permeability/activity
depends on transmembrane voltage, ion concentrations, and time. Together, the
ion channels in a cell membrane generate action potentials : temporary changes
in transmembrane voltage that serve to open calcium channels, allowing a large
amount of calcium to enter the cell, bind to the cell’s contractile molecules, and
initiate a contraction. Unlike skeletal muscle cells, cardiac muscle cells can trigger
action potentials in their neighbors by passing current through the gap junctions
that connect their interiors. By this mechanism, the entire cardiac muscle can
be activated in less than 100ms; a prerequisite for an ordered contraction.

Mathematical modeling is essential to understand the dynamics of the in-
teractions between ion channels in the cell membrane [17]. The first numerical
models of cardiac cells date from the 1960s. Since then, the models have grown
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in complexity to capture newly discovered channel types as well as our evolving
understanding of the known channels. In addition, it is now possible to couple
many such models together to simulate entire hearts.

The high spatial and temporal gradients occurring in the propagation of the
action potential require high spatial resolution. The size of whole-heart models
therefore ranges from O(106) nodes for small mammals [24] to O(108) nodes
for an adult human heart [6]. The required sizes could increase by more than
an order of magnitude when muscle diseases are modeled. Consequently, much
work is devoted to improving the performance and scalability of these simulations
[1,7,15,16,25].

In this paper, we report on our work to develop a hybrid OpenMP-MPI par-
allelization for an existing heart model in order to optimize strong and weak
scaling, improve performance, and advance the limit of achievable model size.
The paper is organized as follows. In Section 2, we describe the mathematical
models underlying the numerical simulation of the electrophysiology of the heart.
In Section 3, we present the Propag code which is the basis of the work de-
scribed in the article. In Section 4, we explain the new hybrid parallelization of
Propag. Finally, in Section 5, we present and analyze our performance results.

2 Mathematical Model

The human heart contains a few billion muscle cells. Gap junctions allow action
potentials to propagate from one cell to another [2,12]. To model this electro-
physiological system mathematically, it is customary to treat the intracellular
environment with the gap junctions as a continuous domain. Likewise, the extra-
cellular environment, which in reality consists of many different components, is
treated as another continuous domain. These domains and the active membrane
between them can then be discretized with a spatial step size that is much larger
than a single cell. This leads to the bidomain model [4,19]

∇ · (σi∇φi) = βIm = −∇ · (σe∇φe) (1)

where φi and φe denote the intra- and extracellular potential fields, β is the
membrane surface-to-volume ratio, σi and σe denote the conductivity tensors in
the intra- and extracellular domain, and the transmembrane current density Im
equals

Im = Cm
∂Vm

∂t
+ Iion + Istim , (2)

with Vm = φi − φe and Cm = 1μF/cm2 the membrane capacitance. Here, Iion is
the ionic current; Istim denotes a stimulation current. In this study, we simulated
Iion with the Ten Tusscher-Panfilov 2006 model [23]. Free boundary conditions
are imposed for φe, φi and Vm.

By inserting (2) into (1) and using an operator splitting approach (see also,
for example, Vigmond et al. [25]), we obtain the following bidomain reaction-
diffusion model

∂Vm

∂t
=

1

βCm

[
∇ · (σi∇(Vm + φe))− β (Iion + Istim)

]
(3)
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∇ · ((σi + σe)∇φe) = −∇ · (σi∇Vm) . (4)

Equation (3) is used to integrate Vm and (4) is used to compute φe from Vm at
each time step.

An important simplification of the bidomain model is possible by assum-
ing that σi is proportional to σe. This allows for lumping the two domains
together in the integration. Introducing the monodomain conductivity tensor
σ′
μν = (σiμν σeμν)/(σiμν + σeμν) and eliminating φe from (3) and (4), we obtain

the following monodomain reaction-diffusion model [19]:

∂Vm

∂t
=

1

βCm

[
∇ · (σ′∇Vm)− β (Iion + Istim)

]
. (5)

Especially in whole-heart simulations, a monodomain model approximates a
bidomain model very well [19]. By combining (5) with (4) it is still possible
to compute φe, which is of special importance because, in contrast to Vm, it can
be measured clinically (Figure 1). By solving (4) less frequently, this approach
is much more efficient than a bidomain reaction-diffusion model. Solution tech-
niques for these equations are a subject of continuing research [1,7,16,25].

3 The Propag Code

The purpose of this work was to improve an existing cardiac simulation code,
named Propag, [6,19,20], and to study and remove the bottlenecks that pre-
vented it from running efficiently on contemporary massively-parallel computers.

The original code had been developed to solve both mono- and bidomain mod-
els on complicated geometries obtained from CT or MRI images of the heart.
It was designed to run efficiently on shared-memory machines such as the SGI
Altix family, using 16 to 128 cores. Parallelization had therefore been done with
OpenMP directives in a NUMA-aware fashion (taking care of memory place-
ment). In practice, the existing code could run heart models up to 100 million
nodes in a reasonable amount of time and with good parallel performance. Strong
scaling had a fixed limit of about 4 · 105 model nodes per core.

3.1 Characterization of the Code

Propag works with semi-structured finite-difference meshes, i.e., many of the
possible node positions are not occupied. The heart or torso anatomy is input as
a Cartesian array storing the cell types (tissue type, blood, or void). We refer to
the elements of this Cartesian box as voxels whereas non-void voxels are called
cells. Based on the cell types of surrounding voxels, the vertices of the mesh
receive types as well. Vertices that are not completely surrounded by void are
referred to as (mesh) nodes. In the original code, connectivity was computed on
the fly. In the new code, the topology is stored explicitly since we cannot control
the shapes of individual subdomains in the domain decomposition.
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Fig. 1. Visualization of model results. The
heart generates a potential field in the torso
(A). Electrocardiograms (B) and catheter elec-
trograms (C) can be derived and compared to
measured data as well as to the underlying
simulated action potentials (D) and dozens of
other membrane-related variables.
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Algorithm 1. Monodomain Explicit Euler Time Integrator

1: Compute In+1
dif = β−1∇ · (σ′∇V n

m ) and In+1
stim

2: Evaluate In+1
ion = ION STEP(V n

m , In+1
dif , In+1

stim )

3: Set V n+1
m = V n

m + τ
[
In+1
dif − In+1

stim − In+1
ion

]

In this article we focus on the monodomain capabilities of the code. Originally,
the code used an explicit Euler scheme to solve (5), see Algorithm 1.

In monodomain mode, the computation of Iion in ION STEP dominates the
runtime (cf. Figure 2). It consists of a single loop over all mesh nodes and the
approximate solution of a set of ordinary differential equations (about 40 in our
model) at each node and hence is amenable to parallelization.

In Figure 2, an analysis of the runtime of the original Propag is shown.
The graph shows a breakdown of the runtime of a monodomain simulation on
one 24-core node of a Cray XE6 (equipped with two AMD Opteron 2.1 Ghz
“Magny Cours” processors). Due to the NUMA-aware memory allocation and
since runtime is distributed over only few scalable tasks of large granularity, the
OpenMP parallelization is very efficient and OpenMP management overhead
is negligible. The parallel efficiency on 24 cores is 86.9% for this rather small
example (422,091 mesh nodes).

The reaction-diffusion equation (5) contains a stiff diffusion term. With ex-
plicit time integration schemes, numerical stability requires a time step size that
decreases quadratically with the spatial step size. To enable stable and accu-
rate integration of very large models (with several billion degrees of freedom) we
recently implemented an Implicit-Explicit (IMEX) Euler time discretization in
Propag. Here, the linear diffusion term is treated implicitly while the non-linear
ionic current is treated explicitly. In contrast to an explicit integration scheme,
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the IMEX Euler method requires the solution of a linear system in each time
step. In our experience, the matrix in this system is well-conditioned for practi-
cal time step sizes so that a few Bi-CGSTAB steps suffice to effectively reduce
the (relative) residual norm to the tolerance ε = 10−8.

4 Hybrid Parallelization

The currently largest shared-memory machines are limited to a few thousand
cores per machine while the largest distributed-memory architectures scale to
hundreds of thousands of cores. To efficiently utilize these resources, we ported
Propag to an MPI code that can run on distributed-memory architectures.
Such systems usually consist of a large number of multi-socket compute nodes
connected by a high-speed interconnect. In recent years, the number of cores per
socket has increased significantly. Within a compute node, memory is shared
between cores, usually with NUMA architecture. Therefore, we retained the
existing OpenMP parallelization, which is efficient for intra-node parallelization,
and added an MPI layer for inter-node parallelism. Such a hybrid parallelization
approach has been used for a variety of codes and has proven beneficial for
several reasons:

1. It simplifies adding new levels of concurrency beyond what is easily accom-
plished with MPI and hence can be used to overcome algorithmic scaling
limitations (e.g., GTC [3]).

2. It allows to mitigate efficiency loss in applications that are limited by the
scaling of all-to-all communication (e.g., PARATEC [18] and CPMD [8]) or
where communication time is a significant part of the runtime.

3. Since the shared memory often renders halo (or overlap) zones unnecessary,
hybrid codes can use less memory. If additional work must be performed on
the halo, scalability can be enhanced by increasing the number of threads
per process (e.g., FISH [10]).

4. It simplifies the load balancing of applications with dynamic or complicated
structure since intra-process load balancing is possible using dynamic or
guided loop scheduling (e.g., NPB BT-MZ Benchmark [21]).

It is worth noting, though, that hybrid parallelization is not always beneficial.
Mahinthakumar and Saied report no improvement in a hybrid implicit finite
element (FE) solver [14]. In general, there are many factors contributing to the
performance of hybrid execution and results can vary between simulation setups,
cf. [13].

4.1 MPI Parallelization

For the MPI parallelization of the code, we exploited techniques that have proven
to be very efficient for the parallelization of general (unstructured) FE applica-
tions. Hence, we use a cell-wise distribution of the geometry. The decompo-
sition is computed through an interface to existing graph-partitioning libraries
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(e.g., ParMETIS [11]). Differently than previous versions of Propag, all arrays
range only over cells and nodes and connectivity information is stored explic-
itly. While this change has a negative impact on single-core performance and
the OpenMP scalability of the code (due to additional indirect accessing), it is
compensated for by better scalability of the MPI layer.

Since the mesh in Propag is distributed cell-wise, nodes are duplicated on
multiple processes. One of these processes is distinguished as the owner of the
node. For inter-process communication, we use the notion of communication
traces introduced by Sahni et al. [22]. In Propag a communication trace consists
of a set of nodes (located on an inter-process boundary) and the rank of a peer
process. On the peer, a matching communication trace is built with a consistent
ordering of the interface entities. Hence, by means of a communication trace,
inter-process communication is possible without the need for a global numbering
of mesh entities. All communication is based on two primitives: The function
SUMUP AT OWNER gathers data on the owner and COPY TO OTHERS overwrites the
data at each copy by the data at the owner (scatter). These communication
steps are implemented on top of non-blocking MPI send/receive calls and an
extended interface (START, TEST, WAIT) is provided to overlap these operations
with computations.

Using these communication primitives, we can rewrite Algorithm 1 as shown
in Algorithm 2. The algorithm is written in such a way that it allows for over-
lapping communication of the diffusion currents with the computation of Istim
(to hide the communication in SUMUP AT OWNER) and with the evaluation of Iion
for the interior nodes (to hide COPY TO OTHERS), assuming the necessary hard-
ware capabilities. In our tests, we have not seen improvements in scalability or
runtime due to overlap. Nevertheless, by construction, all receive calls are pre-
posted timely before the WAIT call. This is important for good MPI performance
on many systems including the targeted Cray XT5.

Algorithm 2. Parallel Monodomain Explicit Euler

1: Compute locally In+1
dif = β−1∇ · (σ′∇V n

m )

2: Call SUMUP AT OWNER START(In+1
dif )

3: Compute In+1
stim

4: Call SUMUP AT OWNER WAIT(In+1
dif )

5: Call COPY TO OTHERS START(In+1
dif )

6: Evaluate In+1
ion = ION STEP(V n

m , In+1
dif , In+1

stim ) for all own nodes

7: Call COPY TO OTHERS WAIT(In+1
dif )

8: Evaluate In+1
ion = ION STEP(V n

m , In+1
dif , In+1

stim ) for all other nodes

9: Set V n+1
m = V n

m + τ
[
In+1
dif − In+1

stim − In+1
ion

]

4.2 MPI Threading Support

The intra-process parallelization via OpenMP was retained and extended to new
code segments. As in the original code, we mostly use parallel for worksharing
constructs. This approach (in comparison to the use of large parallel sections)
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incurs some overhead but simplifies the implementation. Experiments with the
original code (Figure 2) show that OpenMP overhead does not significantly affect
the scalability of the explicit solver.

All MPI calls in Propag are performed outside the parallel sections. There-
fore, the minimal level of thread support an MPI implementation must provide is
MPI THREAD FUNNELED. As defined by the standard, this level of thread support
suits applications where it is ensured that only the main thread makes MPI calls.
In comparison to higher levels of thread support, this does not incur overhead
due to locks/mutexes in the MPI implementation.

We do not anticipate savings in communication time by having multiple
threads performing communication since the code is limited by latency rather
than bandwidth. Using multiple threads for communication can be advantageous
if a single thread is incapable of saturating the network interface [21].

5 Performance Analysis

All experiments were performed on a Cray XT5 machine operated by the Swiss
National Supercomputing Centre. The system consists of 1844 nodes with two
6-core AMD Opteron 2.4 Ghz “Istanbul” processors per node (22,128 cores in
total1). The nodes are connected through a Seastar 2+ interconnect.

For our experiments, we consider approximations of a model anatomy (based
on CT data of a human heart obtained at autopsy [19]) at different spatial
resolutions. We summarize the description of the four considered problem sizes
(small, medium, large and extra-large) in Table 1.

Table 1. Problem sizes for experiments

Name Resolution #cubes #nodes

S 0.5 mm 3,024,641 3,200,579

M 0.25 mm 24,197,121 24,900,671

L 0.125 mm 193,576,968 196,390,842

XL 0.0625 mm 1,548,615,744 1,559,870,636

We study strong scaling for the problem sizes S, M, L and XL, varying
both the number of processes and the number of threads per process, the latter
between 1 (one MPI process per core), 6 (one MPI process per socket), and 12
(one MPI process per node). For all setups we start with at least 12 threads. We
measure the average time required to perform ten Explicit Euler or IMEX Euler
steps, respectively. Every tenth step, an MPI ALLREDUCE is performed to sum up
some statistics that have been accumulated locally. For the purpose of our tests,
we do not perform significant I/O. For the IMEX runs, we use the Bi-CGSTAB
solver with a Jacobi preconditioner and a fixed time step size τ = 0.02 ms.

1 Due to an interconnect congestion problem, we could not yet perform tests on more
than 8448 cores.
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Fig. 3. Scaling of Explicit Euler (left) and IMEX Euler (right) on the Cray XT5.
Problem M requires at least 24 cores for IMEX Euler or Explicit Euler with one thread
per process. X requires at least 132 cores for execution (96 when using 12 threads per
process). The starting point for the strong scaling study for problem XL is 2112 cores.

5.1 Performance of Single-Threaded Execution

In Figure 3, the time per run for the different problem sizes is plotted against
the number of threads (i.e., number of processes times threads per process). The
code scales well up to 8448 cores for the larger problem sizes. In general, the
scaling of the Explicit Euler is much better than the IMEX Euler as the latter
requires multiple MPI ALLREDUCE calls per time step and additional point-to-
point communication for sparse matrix-vector multiplication.

For S on 1056 cores (one thread per process), the IMEX Euler requires∼ 169×
more MPI ALLREDUCE calls than Explicit Euler. At this scale, the code spends
48.0% of the compute time in the calls to MPI ALLREDUCE (compared to 9.7%
for the Explicit Euler). Hybrid execution can improve this situation, see Section
5.2. Nevertheless, for this small problem size, the code still achieves an efficiency
of 56.5% and 21.9% on 1056 cores using the Explicit Euler and IMEX Euler,
respectively. For larger problems, such as L, the parallel efficiency on 8448 cores
relative to 132 cores (the minimum required to run the problem) is 81.6% and
53.2% for Explicit Euler and IMEX Euler, respectively.

The limits in (strong) scalability of Propag can be linked to two major
sources of inefficiency: A relative increase in communication time and a sub-
optimal decrease in the degrees of freedom per process.

In Table 2, we report the relative percentage of the average walltime of com-
munication in the main computational loop as reported by the Integrated Per-
formance Monitor (IPM) [9]. The data show that there is an ∼ 4× increase
in the relative communication time (both point-to-point and collective) when
increasing the number of cores by a factor of 8.

In Table 3 we show the increase in the total number of nodes due to the
overlap between subdomains. Due to the cell-based decomposition, nodes on
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Table 2. Breakdown of communication time for S using Explicit and IMEX integration
with one thread per process

#cores
% of walltime % of walltime

in point-to-point in collective
communication communication

Explicit Euler

132 4.91% 2.31%

1056 20.10% 10.07%

#cores
% of walltime % of walltime

in point-to-point in collective
communication communication

IMEX Euler

132 13.04% 12.31%

1056 32.57% 48.09%

Table 3. Characteristics of the node distribution during scale-out of M

#procs 12 24 528 1056 4224 8448

% Increase
1.58 2.33 10.14 13.25 22.55 29.67

in #nodes

inter-process boundaries must be duplicated so that the total number of nodes
(where copies are accounted for) grows with the number of processes. As can be
seen in Table 3, the number of nodes has grown by almost 30% on 8448 cores.
Using an argument similar to that of Amdahl’s law, we can derive an upper
bound for the parallel efficiency as the ratio between the total number of nodes
in serial and parallel. In our example, the maximum attainable efficiency when
scaling from 12 to 8448 cores is 78.3%. A similar finding was reported by Sahni
et al. [22] in the context of an unstructured FE solver.

5.2 Benefits of Hybrid Execution

In Section 5.1, we have identified two major sources of scalability loss in Propag.
In this section, we will analyze how hybrid execution, using multiple threads per
process, allows to mitigate these inefficiencies.

In Table 4, we present a breakdown of the communication time for the problem
size S. The results for runs with one thread per process correspond to the results
in Table 2. Unlike before, Table 4 contains absolute communication times (for
1010 time steps) to allow for comparing the results from different runs. Our
results show that the use of multiple threads per process can significantly reduce
the communication time. Using 6 or 12 threads per process reduces the time
in MPI ALLREDUCE by 22–52% or up to 61%, respectively. Similarly, TPt2Pt is
decreased by 22–64% or 5–72% for 6 or 12 threads. Interestingly though, a
smaller number of processes does not always imply lower communication cost
since the TPt2Pt for 11 × 12 threads is larger than for 22 × 6 threads. Using
more threads per process leads to larger buffer sizes. This results in an improved
bandwidth utilization but also increased latency.
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Table 4. Breakdown of communication time for S using Explicit and IMEX Euler.
TPt2Pt and TColl denote point-to-point and collective communication time, respectively.

#cores
procs ×

TPt2Pt TCollthreads/proc

Explicit Euler

132× 1 5.12 s 2.41 s

132 22× 6 3.99 s 1.37 s

11× 12 4.87 s 2.34 s

1056× 1 3.90 s 1.95 s

1056 176× 6 2.43 s 0.95 s

88× 12 2.25 s 0.76 s

#cores
procs ×

TPt2Pt TCollthreads/proc

IMEX Euler

132× 1 35.53 s 33.55 s

132 22× 6 20.86 s 25.89 s

11× 12 12.18 s 14.99 s

1056× 1 38.13 s 56.29 s

1056 176× 6 13.73 s 39.81 s

88× 12 10.52 s 33.46 s

Table 5. Percentage increase in #nodes for M with 1, 6, and 12 threads per process

#cores
12 24 528 1056 4224 8448

threads

1 1.58 2.33 10.14 13.25 22.55 29.67

6 0.40 0.84 4.82 6.55 11.31 14.87

12 0.00 0.40 3.33 4.82 8.79 11.31

In Section 5.1, we have noted that a strict upper limit for the parallel efficiency
in Propag exists due to the growth of node copies on inter-process boundaries.
For the intra-process parallelization based on OpenMP worksharing constructs,
no overlap is required. When keeping the total number of threads constant,
using more threads per process will result in fewer node copies. In Table 5, we
show that this results in a strong reduction of the number of additional nodes.
Consequently, the theoretical upper bound for the efficiency improves: When
using 12 threads per process, efficiency when going from 12 to 8448 cores is
bounded by 89.8% (rather than 78.3%, cf. Section 5.1). We measure an efficiency
of 74% for the Explicit Euler solver which seems to be practically impossible to
achieve with a pure MPI version.

The actual, measured improvement of the hybrid code (running with 6 or
12 threads per process, respectively) is shown in Figure 4. For the case of the
Explicit Euler, threaded execution is beneficial starting at 96 cores. The code on
1056 cores with 6 threads per process shows an unexpectedly bad performance
that we cannot explain yet. For the IMEX Euler, which is more strongly limited
by communication time, execution with 6 threads per process is advantageous
already at 24 cores; execution with 12 threads per process is advantageous for
528 cores or more. When 2112 cores or more are used, running with 12 threads
per process is faster than running with 6 threads per process.
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Fig. 4. Improvement through hybrid execution for Explicit (left) and IMEX Euler
(right) relative to pure MPI for M on the Cray XT5

6 Conclusion

We have presented the successful hybrid parallelization of a large-scale heart
model. Performance was measured in monodomain simulations with up to 1.5 bil-
lion nodes. These system sizes are among the largest reported in the literature
for this scientific problem.

We have shown that hybrid parallelization can improve scalability of this
application as it 1) decreases the relative and absolute communication time
and 2) reduces the size of the overlap between adjacent subdomains. We have
analyzed both effects separately and have demonstrated runtime reductions up to
24% for an Explicit Euler and up to 62% for an IMEX Euler time discretization.
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Abstract. In many numerical simulation codes the backbone of the ap-
plication covers the solution of linear systems of equations. Often, being
created via a discretization of differential equations, the corresponding
matrices are very sparse. One popular way to solve these sparse linear
systems are multigrid methods - in particular AMG - because of their
numerical scalability. As the memory bandwidth is usually the bottle-
neck of linear solvers for sparse systems they especially benefit from
high throughput architectures like GPUs. We will show that this is true
even for a rather complex hierarchical method like AMG. The presented
benchmarks are all based on the new open source library LAMA and com-
pare the run times on different GPUs to those of an efficient OpenMP
parallel CPU implementation. As the memory access pattern is especially
crucial for GPUs we have a focus on the performance of different sparse
matrix formats.

Keywords: LAMA, AMG, GPU, CUDA.

1 Introduction

In this paper we show that it is possible to gain a significant performance in-
crease when GPUs are used for the solution phase of AMG. To achieve this it is
necessary to execute the full AMG cycle on a GPU with massively parallel com-
ponents. By using Jacobi smoothing the full AMG cycle essentially cuts down
to a series of sparse matrix vector multiplications (SpMV). So it is possible to
achieve good AMG performance for the solver phase if we have good SpMV
performance. We show that the popular CSR format does not lead to acceptable
performance on GPUs, at least if the rows are not padded like done by Baskaran
and Bordawekar[7]. Instead, more GPU-suitable formats like ELLPACK or JDS
are needed. ELLPACK has been successfully used for a GPU AMG implementa-
tion by Feng and Zeng[9]. Also Haase, et. al. have been successfully implemented
a AMG for GPUs using the interleaved compressed row storage format[11] which
is quite similar to our JDS implementation. In contrast to their publications we
focus on well known model problems to report comprehensible results. This has
been already the approach for our last publication “Scalable parallel AMG on
ccNUMA machines with OpenMP”[10], where we have compared our AMG im-
plementation to the open source solver packages PETSc and hypre[2,1]. This
CPU implementation also is the baseline for our GPU benchmarks. To make it

R. Keller et al. (Eds.): Facing Multicore-Challenge II 2011, LNCS 7174, pp. 133–146, 2012.
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easier to classify our results this paper follows the structure of our aforemen-
tioned paper and uses the same hardware and model problems.

We start with a short introduction of LAMA the library we used for our AMG
implementation. In the following section 3 we describe our hard- and software
setup and the execution environment we used. After describing the model prob-
lems, the used AMG Setup and the used sparse matrix formats we present the
obtained benchmark results. The benchmarks evaluate how the performance is
influenced by the matrix storage format and the precision of the calculations.

2 LAMA

The Library for Accelerated Math Applications, LAMA, is a new open source
project which is available at http://www.libama.org. The first of two main
design aims of LAMA is to allow easy integration of accelerators like GPGPUs.
As a consequence to this the second main design aim is to be extensible with new
matrix storage schemes while supporting a natural mathematical syntax without
sacrificing performance, like it is also achieved by the C++ Library Blitz++[3].
To achieve both goals LAMA is separated into two parts. A C library which
provides BLAS functionality for dense and sparse types and which is used to
utilize all types of accelerators and a C++ part which supports the extensibility
and provides the natural mathematical syntax. The C library makes our core
algorithms of our library usable by a wide range of applications and allows the
integration of existing BLAS Libraries. The C++ part uses simplified expression
templates [16] to achieve the second design aim. Utilizing this and by formulating
solvers only in terms of simple BLAS operations, like they are printed in text
books[6], we achieve very comprehensible solver implementations and it is easy to
experiment with new accelerators or data structures, e.g. different sparse matrix
formats. The results obtained in this paper have been produced with a version
of LAMA that is mainly using “compile time polymorphism” through templates.
This enables aggressive compiler optimizations while sacrificing some run time
flexibility. A very similar approach is taken by the LAToolbox[12] which is part
of the HiFlow3 FEM solver package[5].

Using LAMA we had only a minimal implementation effort to make the AMG
implementation, that we also used in our previous publication, run with CUDA
and OpenCL. It was only necessary to implement SpMV for the tested sparse
matrix storage formats within the back ends for CUDA and OpenCL. In addition
we also implemented specializations of the Jacobi smoother for the tested sparse
matrix storage formats for both back ends. Although this would not have been
necessary from a functional point of view, since we also implemented a universal
Jacobi based on just SpMV, the specialized version is slightly more efficient.
Because we have also used a specialized version of the Jacobi smoother in the
OpenMP back end this was necessary to have a fair comparison.

http://www.libama.org
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3 Hardware and Software Setup

The CPU results presented in this paper have been computed on the hardware
described in table 1. This is one of the systems we have used in our previous
publication [10], where it was named BULL. All binaries have been build with
gcc version 4.4.3 and the optimization options -O3 and -ffast-math.

3.1 GPUs

The GPU benchmarks have been done with the GPUs that are listed in table 2.
We have used CUDA 3.2 for the GPU benchmarks. To compile the GPU kernels
we have used the options -arch=sm_13 and -use_fast-math in all cases. If not
otherwise mentioned all measurements have been done in double precision with
disabled ECC and enabled Texture cache for the access to the input vector in
SpMV operations and Jacobi iterations.

Table 1. CPU Hardware

name CPU

cpu Xeon X5650
core freq. 2.67 GHz
L3-cache 12 MB
cores/cpu 6
HT off

sockets 2
cores 12

memory 12 GB
BW (GB/s) 32

Table 2. GPUs used

name G46 G48 T10 T20

device GeForce GeForce Tesla Tesla
GTX 460 GTX 480 C1060 C2050

compute cap. 2.1 2.0 1.3 2.0
multiprocessors 7 15 30 14
cores 336 480 240 448
core freq 1.43 GHz 1.40 GHz 1.30 GHz 1.2 GHz

memory 1 GB 1.5 GB 4 GB 3 GB
BW (GB/s) 115 177 102 144
HW Cache yes yes no yes

An introduction to CUDA or GPU programming can be found in [13]. We
just want to highlight that in contrast to a CPU a GPU is designed as a high
throughput architecture. This has certain implications for the performance char-
acteristics of these devices. Because the algorithm under examination is memory
bound the most crucial point for us is the high memory bandwidth of GPUs.
This high memory bandwidth comes at the cost of a high access latency and
strict coalescing requirements to achieve the full memory bandwidth[8]. To over-
come the high latency a GPU can manage a lot more threads concurrently than
there are compute cores. If enough threads are available it is possible to hide the
high access latency to the GPU memory, by switching between threads that are
waiting and threads that are ready to run.

To achieve good performance on a GPU this means that it is necessary to have
a high degree of parallelism and regular memory accesses. For the chosen solver
the high degree of parallelism is given. The regular memory access however is
dependent on the chosen storage format for sparse matrices. The influence of the
sparse matrix format on the coalescing is described in section 5.1.
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4 Execution

All benchmarks have been computed via the benchmark framework integrated
in the LAMA package. This framework running in Python ensures reproducible
run times by creating new processes for every test run, eliminating the possibility
of a benchmark influencing its followers with respect to memory usage. Within
every benchmark process, the reported run time is the minimum of 5 executions.
Additionally, every process is started at least 3 times. In case aberrations have
to be eliminated here this number will automatically increase. Since GPUs do
not support preemption and therefore deliver reproducible results this feature is
in general only triggered within CPU benchmarks.

4.1 Model Problems

Our set of test matrices is shown in table 3. It consists of different discretizations
of the Laplacian operator on structured grids in up to three dimensions. All
matrices have a total of 1 million rows but increase in the number of nonzero
entries. Each row corresponds to exactly one grid point and its nonzero values
refer to the entries of the differential stencil applied. We have chosen these model
problems because they are well known, which makes it more easy to compare
our results[8]. Additionally, they are a good measure for real world 1D, 2D and
3D applications because of the basic local access patterns common for matrices
based on a wide range of PDE applications.

Table 3. Laplacian discretizations used for solver benchmarks

name dimensions diags entries CSR mem

1D3P 1,000,000 3 3 Mio. 38 MB
2D5P 1,000x1,000 5 5 Mio. 61 MB
3D7P 100x100x100 7 7 Mio. 83 MB
2D9P 1,000x1,000 9 9 Mio. 107 MB

3D27P 100x100x100 27 27 Mio. 307 MB

To exploit the sparsity all matrices are stored in either Compressed Sparse
Row (CSR), Jagged Diagonal Storage (JDS) or ELLPACK format using both,
single and double precision. More details about the Matrix formats will be given
in Section 5.

To make it easier to compare our work with the results of others table 4
contains the theoretically calculated complexity of 10 AMG preconditioned CG
iterations for all evaluated matrix storage schemes and all model problems. The
achieved memory bandwidth and compute performance for the different devices
and model problems can be easily derived from these numbers and the given
execution times. These reference numbers are counted based on the assumptions
made in section 6 to allow the comparison of different hardware, even if they
differ in the capabilities of the available hardware performance counters.
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Table 4. Complexity of 10 CG-AMG Iterations

CSR ELL JDS
GB-S GB-D GFLOP GB-S GB-D GFLOP GB-S GB-D GFLOP

1D3P 8.24 14.80 1.26 6.96 13.68 1.30 8.12 13.40 1.26
2D5P 13.85 23.99 2.26 13.06 23.53 2.34 14.53 23.61 2.26
2D9P 17.09 29.24 2.91 16.52 28.99 2.98 18.41 29.71 2.91
3D7P 20.62 35.25 3.43 20.96 36.64 3.70 22.02 35.63 3.43

3D27P 36.80 62.01 6.56 38.39 65.27 6.98 40.95 65.43 6.56

4.2 AMG Setup Phase

Due to its complexity and partially sequential nature, the setup phase of AMG
in LAMA is computed on the CPU. This includes coarse grid definitions, in-
terpolation and restriction constructions as well as the multiplication of the
galerkin operators. As a coarsening strategy we use the classical Ruge-Stüben
algorithm[15] (1stage) in combination with standard interpolation.

Table 5 shows the galerkin operator stats of the resulting hierarchies for the
corresponding 2D and 3D stencils.

Table 5. Galerkin Operator stats for 2D and 3D stencils

2D5P 2D9P 3D7P 3D27P
Lvl Rows Entries Rows Entries Rows Entries Rows Entries

0 1000000 4996000 1000000 8988004 1000000 6940000 1000000 26463592
1 500000 4492002 250000 6220036 500000 9320600 125000 13642048
2 125000 3105014 62500 2776594 83331 6321285 14456 2762872
3 31250 1380362 15625 684745 10458 1611064 1317 318939
4 7813 338689 3126 120954 966 171576 181 25235
5 1563 59057 601 21161 133 13507 - -
6 312 10388 121 3405 - - - -
7 60 1452 - - - - - -

The coarsening rates, and therefore also the number of levels constructed, are
strongly related to the stencil size as well as the problem dimension. These levels
in return will define the amount and shape of the SpMV operations used within
each AMG V-cycle in the solution phase later on.

Besides the classical meaning of an AMG setup phase our solver initialization
also includes the setup of the coarsest grid inverse as well as the needed data
conversions and transfers for the GPU devices. Since this whole process is cur-
rently only partially parallelized and optimized, we will not consider it for the
benchmarks but focus on the solution phase.
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4.3 AMG Solution Phase

Here we describe the implementation of the AMG solution phase which is basi-
cally a series of SpMV operations. For the benchmarks we measure 10 iterations
of a CG solver preconditioned with AMG. In the solution phase AMG is running
a V-cycle performing two pre- and post-smoothing steps with a weighted Jacobi.

Although it has no effect on the performance analysis later on, table 6 exem-
plary shows the convergence history of the resulting AMG approach applied to
the 2D9P stencil.

Table 6. L2-residual reduction for 2D9P

Iter 0 1 2 3 . . . 8 9 10

LAMA 1.9E + 2 2.6E + 1 2.4E + 0 1.8E − 1 . . . 3.2E − 7 3.5E − 8 1.7E − 9

Please keep in mind that we only measure the run times of the solution phase.
The transfer of the matrices to GPU memory is considered to be a part of
the setup. Theoretically, these transfer costs could also be hidden behind the
computation of subsequent level operators. Besides that, also the transfer of the
rhs and the solution is not considered in the given run times. This is because
they remain constant for a given problem size, independently of the number and
complexity of the AMG cycles performed. For our benchmarks the transfer costs
for the needed uploads of right hand side and first guess as well as the download
of the solution are given in Table 7. The transfer times have been measured with
paged locked host memory that enables dma transfers and is necessary to allow
asynchronous transfers.

Table 7. Transfer cost of rhs, 1st guess and solution

float double

Transfer 2, 4ms 4, 8ms
Bandwidth 4.65GB/s 4.65GB/s

This shows that even with comparably small amounts of data transferred one
can utilize a quite satisfying percentage of the maximal available PCI-Express
bandwidth of 6GB/s.

5 Matrix Formats

There are many different storage formats available for sparse matrices. In this
paper we will focus on three of them which are quite diverse in their advantages
and disadvantages. They will be introduced briefly by showing the main storage
vectors for the test matrix in figure 1.
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2 9
1 5 5 1

6 9
2 4

7 3

Fig. 1. Example 5x5 matrix

0 2 6 8 10 12ia

0 1 1 2 4 2 3 3 2 4 03ja

2 9 1 5 5 1 6 9 4 2 3 7data

Fig. 2. The CSR storage format

5.1 The CSR Format

The first and probably most commonly used format (at least on CPUs) is the
compressed sparse row format (CSR). It keeps all matrix data in two index arrays
ia and ja, as well as the actual matrix values in data. The array ia keeps track
of the start and end of each row in the other two arrays as shown in figure 2,
while ja and data give the column index and value of each nonzero element. To
ensure fast access to the diagonal elements of the matrix they are always stored
first in each row.1

The storage amount is fixed by the number of rows and non zeros and there
are no additional requirements for the matrix pattern. Therefore the CSR format
is one of the most universal sparse formats available.

To give a baseline of our GPU AMG implementation we compare the run
times in single and double precision to the results obtained on the CPU for the
popular CSR format. The presented double precision run times on the CPU have
been validated against PETSc and boomer AMG from the hypre package[2,1].
This has been done in our aforementioned publication[10]. Table 8 list the run
times for all model problems and for all the hardware mentioned in the tables
1 and 2 in single and double precision. The first column shows the identifier of
the tested hardware in this column S means a serial run, 1 means a run that
uses one socket (6 Cores) of the CPU system and 2 means a run that uses
two sockets (12 Cores) of this system. The other identifiers are the GPUs from
table 2.

As one can see from table 8 the execution times for the GPUs are dramati-
cally increasing with the complexity of the model problems. To understand that
remember the implementation of the AMG solver phase, which is described in
section 4.3. As described there it mainly consist of SpMV operations and is
therefore memory bound. Given that the dramatic performance drop for more
complex problems can be easily explained by the fact that the memory system
of the tested GPUs does not run at full speed. This is due to the decreasing
memory coalescing with growing numbers of none zeros per row[8].

5.2 The ELLPACK Format

Looking towards GPUs or vector-processors in general one needs to ensure more
regularity in memory access in order to achieve good performance. The sparse
1 The CSR SpMV kernel can be found in our SVN Repository at sourceforge in
trunk/src/lama/lama_CSPBLAS_level2_cuda.cu
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Table 8. Execution Times for the CSR format in seconds

1D3P 2D5P 2D9P 3D7P 3D27P
S D S D S D S D S D

S 1.15 1.17 1.78 1.87 2.01 2.13 2.60 2.86 4.09 4.70
1 0.34 0.58 0.53 0.86 0.62 0.98 0.78 1.25 1.30 1.99
2 0.18 0.32 0.27 0.51 0.32 0.53 0.41 0.67 0.67 1.05

G46 0.11 0.17 0.77 0.96 1.40 1.75 1.98 2.39 6.02 6.45
G48 0.08 0.12 0.51 0.62 0.94 1.10 1.28 1.53 3.81 4.06
T10 0.20 0.30 0.74 0.90 1.14 1.29 1.52 1.63 2.93 3.00
T20 0.09 0.13 0.60 0.74 1.08 1.33 1.54 1.84 4.55 4.87

format provided by the ELLPACK package[4] ensures easier storage under the
additional requirement of an equally number of non zeroes per matrix row. Be-
cause of this assumption it does not need the array ia but might artificially
increase the number of non zeroes as shown in figure 3(a).

0 1 1 2 3 4 2 3 3 2 4 0ja

2 9 1 5 5 1 6 9 4 2 3 7data

(a) row-wise

0 1 2 3 4 1 2 3 2 0 3 4ja

5 12 1 6 4 3 9 95 2 7data

(b) column-wise

Fig. 3. The ELLPACK storage format

To allow coalesced memory access in terms of multiple threads reading a
sequence of matrix rows at once it is also beneficial to store the nonzero Elements
of the matrix column-wise as shown in figure 3(b), which is how ELLPACK is
stored on GPU devices for the benchmarks in this paper.2

While the number of additional artificial elements needed to meet the stor-
age requirements for ELLPACK might not be high for the actual system matrix
created from a differential stencil of some specific pattern, this does not need to
hold when looking at the whole AMG hierarchy of matrices. Especially Interpo-
lation operators are usually very unbalanced in terms of nonzero entries. Table 9
shows the overall overhead of artificial non zeros throughout the AMG hierarchy
of matrices.

The run times of the benchmarks with the ELLPACK format are given in
table 10. The table is formatted like table 8 in section 5.1. The run time for the
model problems 3D27P in double precision on the GeForce GTX 460 is missing
because the available global memory on this device is not large enough to store
the whole solver setup in addition to the texture memory reserved by the desktop
environment.
2 The ELLPACK SpMV kernel can be found in our SVN Repository at sourceforge in
trunk/src/lama/lama_CSPBLAS_level2_cuda.cu
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Table 9. Storage overhead of ELLPACK versus CSR for the AMG hierarchy

Stencil 1D3P 2D5P 2D9P 3D7P 3D27P

overhead 14% 14% 11% 17% 13%

Table 10. Execution Times for the ELL format in seconds

1D3P 2D5P 2D9P 3D7P 3D27P
S D S D S D S D S D

S 0.97 1.12 1.62 1.87 1.90 2.17 2.51 2.95 4.10 4.74
1 0.31 0.55 0.52 0.84 0.61 0.96 0.81 1.29 1.36 2.10
2 0.15 0.27 0.27 0.44 0.31 0.53 0.42 0.66 0.70 1.07

G46 0.10 0.15 0.16 0.22 0.19 0.25 0.26 0.37 0.43 N/A
G48 0.07 0.10 0.10 0.13 0.11 0.15 0.16 0.21 0.25 0.33
T10 0.11 0.19 0.15 0.24 0.17 0.27 0.25 0.38 0.38 0.54
T20 0.08 0.14 0.12 0.16 0.13 0.18 0.19 0.27 0.30 0.42

As one can see from figure 4(a) all tested GPUs have a huge benefit from the
ELLPACK format. This can be explained with the same arguments like the bad
performance of the CSR format on GPUs. Because we use a column major order
layout of the ELLPACK format on the GPU all accesses to the input matrix are
perfectly coalesced and therefore no memory bandwidth is wasted[8]. For the
CPU version of ELLPACK we are using row major order storage to have a good
cache utilization while accessing the input matrix. Although the performance
of ELLPACK remains constant its speedup increases because the CSR perfor-
mance is decreasing for the more complex system like it has been described in
section 5.1.

The CPU run times are nearly not affected by the storage format because the
additionally stored matrix elements of the ELLPACK format are compensated
by fewer indirect memory accesses and the fact that we can save the storage of
one integer array. It would be possible to further optimize the ELLPACK format
on the CPU, but this has not been done because it was not in the focus of this
work.

5.3 The JDS Format

For many applications the additional storage of artificial zeroes are a knock-out
criterion for the ELLPACK format. For matrices with few long rows this overhead
will turn out to be much higher than the percentage given in table 9. To have a
more general matrix storage structure we will also look at the Jagged Diagonal
Sparse (JDS) format, which has been known to perform well on graphics cards
as shown in [14]. The format is a compromise between highly efficient coalesced
memory accesses on GPUS from ELLPACK and the flexibility of CSR.
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Fig. 4. Speedup between Storage formats in double precision (colors on line)
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(b) final arrays

Fig. 5. The JDS storage format

The arrays for JDS are very similar to the column-wise ELLPACK storage
in figure 3(b). To remove the artificial elements we have to reorder the rows
by size and store the permutation in the array perm. Now this permutation is
also applied to every column in the arrays ja and data as shown in figure 5(a),
sorting all matrix entries to the front of every column.

Given an extra array for each column size dlg, it is now safe to remove all
artificial values. Additionally we store an array ilg for the number of elements
in each row which will give us easier access in certain loops. Note that in general
only one of the arrays dlg and ilg is needed, the second one is purely optional.
To avoid multiple writes to the output vector and to allow parallel execution of
a JDS SpMV operation we are using dlg and omiting ilg3. Figure 5(b) shows
the modified arrays for JDS.

Looking at the run times of JDS in table 11 the first thing to notice are the
comparably bad timings on the cpu. While there was a row-wise implementation
for ELLPACK on the CPU we only support column-wise ordering for JDS. Of
course this results in rather bad memory access patterns on a non-vector ar-
chitecture. In comparison to ELLPACK there are less matrix elements to load

3 The JDS SpMV kernel can be found in our SVN Repository at sourceforge in
trunk/src/lama/lama_CSPBLAS_level2_cuda.cu
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Table 11. Execution Times for the JDS format in seconds

1D3P 2D5P 2D9P 3D7P 3D27P
S D S D S D S D S D

S 1.27 1.41 3.45 3.91 4.40 5.99 7.02 8.06 10.04 12.14
1 0.37 0.62 0.77 1.08 0.98 1.37 1.5 1.92 2.27 3.01
2 0.21 0.33 0.42 0.59 0.55 0.81 0.85 1.07 1.23 1.56

G46 0.10 0.17 0.15 0.25 0.17 0.29 0.26 0.41 0.40 0.62
G48 0.08 0.10 0.10 0.14 0.11 0.15 0.17 0.23 0.24 0.33
T10 0.13 0.21 0.18 0.27 0.21 0.30 0.32 0.46 0.45 0.61
T20 0.09 0.13 0.11 0.18 0.13 0.20 0.20 0.30 0.29 0.44

within the JDS format, but this comes at the cost of two additional vectors perm
and dlg.

Comparing the run times of the JDS directly to ELLPACK we see only slight
differences as shown in figure 4(b). Besides that JDS is much more flexible than
ELLPACK looking at general matrix patterns with diverse row lengths that
would lead to much higher padding overhead.

6 Single Precision vs. Double Precision Performance

The run times with single precision arithmetic are given in tables 8, 10 and 11.
A rationale for these numbers can again be derived from the characteristics of a
SpMV. If we state that

– the execution time for SpMV is limited by the memory bandwidth
– we ignore the existence of caches.

we can calculate the possible speedup of single precision calculation over a double
precision calculation for a SpMV theoretically.

To do that, let A be our input matrix with n rows, n columns and for sim-
plicity k none zero elements per row. To do a SpMV depending on the storage
format the following values need to be accessed:

CSR ELL JDS
n · k n · k n · k acc. to the input vector
n n n acc. to the output vector
n · k n · k n · k acc. to the none zero elements of A
n · k n · k n · k acc. to the column index array of A
n 0 0 acc. to the row index array of A
0 0 n acc. to the permutation array of A
0 0 n · k acc. to the dlg index array of A
n · (2 · k + 1) n · (2 · k + 1) n · (2 · k + 1) acc. to floating point values
n · (k + 1) n · k n · (2 · k + 1) acc. to integer values
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With the size of a single precision floating point value being 4b, a double pre-
cision value 8b and a integer value 4b this leads to

CSR ELL JDS
n · (5 · k + 3) · 4 n · (5 · k + 2) · 4 n · (6 · k + 3) · 4 bytes in double precision
n · (3 · k + 2) · 4 n · (3 · k + 1) · 4 n · (4 · k + 2) · 4 bytes in single precision

Because the accesses to the row index array do not grow with the number of
none zeros the ratio of double precision to single precision gets bigger with in-
creasing values of k for CSR. For ELL the ratio is getting smaller with increasing
values of k and for JDS they remain constant. This leads to the following upper
bounds for the theoretical speedup of single precision over double precision.

CSR ELL JDS
supk>=1

(5·k+3)
(3·k+2) = 5

3 supk>=1
(5·k+2)
(3·k+1) = 7

4 supk>=1
(6·k+3)
(4·k+2) = 3

2

Taking into account that the peak single precision performance is 8-times of
its double precision performance for a Tesla C1060 and 2-times for the other
tested GPUs it is obvious that the double precision compute performance is
not the bottle neck for a SpMV operation with double precision. That this is
not only a theoretical investigation can be seen in figure 6. The fact that the
speedup is larger than the stated maximum for the model problem 1D3P can be
explained by cache effects (L1/L2/Texture). Because for smaller stencils we have
a better cache utilization which makes the theoretical calculation to pessimistic.
The more significant single precision performance drop for the CSR format on
the GPUs can be explained by the fact that memory coalescing is a lesser issue
for double precision, because the doubled size means that only 8 consecutive
elements need to be accessed to exploit the available memory bandwidth.
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7 Conclusion

We have shown that the incorporation of GPUs for AMG can give a performance
boost for the solution phase if the right sparse matrix format is chosen. Based
on the cache-ignoring memory model from section 6 one can see in figure 7
that the performance - in terms of memory saturation - is nearly optimal. The
evaluation of different GPUs shows that this is even true for cheap devices like
the GeForce GTX 460. Supplementary we have taken a closer look at the aspect
of single precision calculation. Looking at this we want to accentuate that the
theoretical disadvantage for double precision calculations of GPUs is really no
issue for memory bound algorithms, like AMG.

8 Future Work

Choosing the right sparse matrix format makes the GPU a really good piece of
hardware to compute the solution phase of AMG. But if we take a look at the
performance of the whole algorithm the setup phase also has big optimization
potential. To address this two things should be done. First the proof that it is
possible that the transfer of the AMG hierarchy into GPU memory can be almost
completely hidden behind its own computation on the CPU. Given this proof
also very sophisticated AMG setups can benefit from GPUs during the solution
phase, even if the setup process is to complicated to execute effectively on the
GPU. The second thing to do is to accelerate the setup with the integration of
GPUs, by executing parts or even the whole setup on the GPU.

Besides that more techniques to speedup the solution phase should be ex-
plored. These include the effect of mixed precision calculation and the option to
choose different matrix storage formats for different parts of the algorithm.

Alongside to these AMG related topics we want to support distributed mem-
ory machines with LAMA. This will also address multi GPU aspects and the
possibility to effectively utilize CPU and GPU resources in parallel.
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Abstract. The solution of large systems of linear equations is typically
achieved by iterative methods. The rate of convergence of these methods
can be substantially improved by the use of preconditioners, which can
be either applied in a black-box fashion to the linear system, or exploit
properties specific to the underlying problem for maximum efficiency.
However, with the shift towards multi- and many-core computing archi-
tectures, the design of sufficiently parallel preconditioners is increasingly
challenging.

This work presents a parallel preconditioning scheme for a state-of-
the-art semiconductor device simulator and allows for the acceleration of
the iterative solution process of the resulting system of linear equations.
The method is based on physical properties of the underlying system
of partial differential equations and results in a block preconditioner
scheme, where each block can be computed in parallel by established se-
rial preconditioners. The efficiency of the proposed scheme is confirmed
by numerical experiments using a serial incomplete LU factorization pre-
conditioner, which is accelerated by one order of magnitude on both
multi-core central processing units and graphics processing units with
the proposed scheme.

1 Introduction

With the introduction of multi-core central processing units (CPUs) in average
desktop computers as well as the use of graphics processing units (GPUs) for
general purpose computations, established serial algorithms need to be adjusted
or even replaced by parallel variants. In particular, it can be very challenging to
use the massively parallel architecture of GPUs with hundreds of threads even
for standard algorithms like matrix-matrix multiplications efficiently [13].

While impressive performance for linear algebra operations can be obtained
on GPUs, there are concerns about the use of GPUs from a productivity point of
view [2]. While in some cases OpenMP [15] allows for a parallelization of existing
code by adding a few lines of code only, GPU programming using OpenCL [11]
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or CUDA [14] requires a deep understanding of the underlying GPU computing
architecture and often a complete redesign of existing CPU-based code. Conse-
quently, the shorter execution times may not balance the increased development
effort.

While existing GPU libraries tend to provide only basic LAPACK-style
functionality, our C++ library ViennaCL [19] provides high-level access to the
vast computing resources of multi-core CPUs and GPUs using OpenCL. The
application programming interface is compatible with uBLAS from the peer-
reviewed Boost libraries [1] and thus hides the details of the GPU computing
hardware from the user, while providing convenient use and high performance
computations. Like other GPU libraries such as CUBLAS [14] and MAGMA
[12], ViennaCL provides BLAS level 1, 2 and 3 routines for dense linear algebra
operations. However, the focus is on sparse matrices and iterative solvers as well
as high usability, which is also the case for the CUDA-based Cusp library [3].
ViennaCL targets shared memory systems and can be run on multiple GPUs.
An investigation of dense matrix-matrix multiplications on heterogeneous dis-
tributed memory architectures using MPI has already been carried out [21] and
shown that a distribution of the problem at hand should be accomplished on a
higher level in order to keep communication overhead under control.

For the solution of partial differential equations, discretization schemes like
the finite element, the finite difference or the finite volume method lead to large
systems of linear equations, for which iterative solvers are typically employed
[17]. The efficiency of such iterative solution schemes depends on the condition
number of the underlying system matrix. Therefore, preconditioners often need
to be employed in order to obtain a good convergence rate. However, the design
of good parallel preconditioners can be very challenging and problem-specific
[18]. Parallel black-box preconditioners for ViennaCL are in preparation, but
they typically come at the expense of spectral efficiency compared to – possibly
serial – problem-specific techniques. The successful implementation of rather
complex preconditioners for GPUs is continuously reported by a number groups
in various fields, e.g. [7] for algebraic multigrid methods, [22] for a factored sparse
approximate inverse technique or [8] for results on a multi-colored incomplete
LU (ILU) factorization.

In this work we present a parallel preconditioner for our state-of-the-art semi-
conductor device simulator. We demonstrate that only a single additional com-
pute kernel added to the functionality already provided in ViennaCL allows to
reduce execution times by about one order of magnitude compared to a single-
threaded execution. This readily shows that a library-centric design of GPU-
based algorithms allows for short code development times, while leveraging the
full power of multi-core CPUs and GPUs.

We give an overview of the simulator in Sec. 2. The block preconditioning
scheme we have recently derived from the underlying problem formulation is
motivated, detailed and discussed in Sec. 3, 4 and 5, which is the key for the
parallelization of the iterative solver. Results are discussed in Sec. 6 and a con-
clusion is drawn in Sec. 7.
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2 A Deterministic Solution Approach for the Boltzmann
Transport Equation for Semiconductors

The Boltzmann transport equation (BTE) for semiconductors is given by

∂f

∂t
+ v · ∇xf + F · ∇pf = Q{f} (1)

and commonly considered to be the best semi-classical description of carrier
transport in semiconductors. Here, f(x,p, t) denotes the distribution function
of carriers in the device with respect to the spatial location x, momentum p and
time t. The velocity v is given by the energy band structure of the material, the
force F is obtained from the electrostatic potential, and the scattering operator
Q{f} is given in low-density approximation as

Q{f} =

∫
B
S(p′,p)f(p′)− S(p,p′)f(p) dp′ , (2)

where B denotes the Brillouin-zone of the material and S(·, ·) denotes the scat-
tering rate from one state to another.

The high dimensionality of the problem as well as the integro-differential na-
ture make the solution of the BTE very challenging. While the stochastic Monte
Carlo method has been the method of choice for a long time, the spherical
harmonics expansion (SHE) method has become an increasingly attractive al-
ternative. Here, the momentum-part of the distribution function is expanded
into spherical harmonics Yl,m as

f(x,p, t) ∼=
L∑

l=0

l∑
m=−l

fl,m(x, H, t)Yl,m(θ, ϕ) , (3)

where H denotes total energy. The series is truncated at a finite expansion order
L, typically L ∈ {1, 3, 5}. In the following, only the steady-state is considered.

While the application of the SHE method has long been restricted to
one-dimensional device simulations due to high memory requirements, enough
memory is available on modern computers to allow for two-dimensional device
simulations [9]. While fully parallel implementations of the Monte Carlo method
have already been reported [23], an artificial restriction of the SHE method to a
single CPU core would be detrimental to the attractiveness of the method.

The SHE method ultimately leads to the solution of large systems of linear
equations for the expansion coefficients fl,m in the (x, H) space. A nonlinear
iteration scheme is typically employed to ensure self-consistency of the BTE
with the Poisson equation describing the electrostatic potential. As discussed by
Jungemann et al. [10], the indefinite system of linear equations resulting from the
SHE equations requires a good preconditioner in order to obtain convergence of
iterative solvers. This is in contrast to many other problem classes, where e.g. the
positive definiteness of the system matrix typically ensures convergence, even if
the number of iterations required might be large. In recent publications on the
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Fig. 1. Trajectories of carriers in free flight within the device are given by constant
total energy H . Carriers can change energy only through inelastic scatting, which is
instant in time and localized space.

SHE method [9,10], an ILU preconditioner was used for that purpose. ILU is
a widely accepted black-box preconditioner [17], but in its pure form restricted
to single-threaded execution. Even though parallel block-variants of ILU as well
other parallel preconditioning techniques such as sparse approximate inverses
[6] or polynomial preconditioners have been developed, their convergence en-
hancement can be typically considerably lower than for single-threaded variants
[17,18].

3 Physics-Based Block-Preconditioning

To obtain a set of equations for the unknown expansion coefficients fl,m in (3),
the BTE is formally projected onto the individual spherical harmonics Yl,m. In
operator form, the SHE equations in steady state can then be written as

Ll,m{f} = Ql,m{f} , l = 0, . . . , L, m = −l, . . . , l ,

where Ll,m and Ql,m denote the projections of the streaming operator and the
scattering operator onto the spherical harmonics Yl,m respectively. Employing
the H-transform [9,5], carrier trajectories in free flight are given by hyperplanes
of constant total energy H in the simulation domain (x, H), cf. Fig. 1. This is
reflected in the model by the fact that Ll,m does not couple any of the, say, NH

different energy levels in the simulation domain.
Carriers within the device can change their total energy only by inelastic

scattering events, thus the scattering operator Ql,m{f} is responsible for cou-
pling different energy levels. However, if only elastic scattering processes are
considered, the total energy of the involved particles remains unchanged and
the different energy levels do not couple. Therefore, in a SHE simulation using
only elastic scattering and NH different energy levels, the resulting system of
linear equations is consequently decoupled into NH independent problems. Such
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a decomposition has been observed already in early publications on SHE [4],
but it has been of no practical relevance since inelastic scattering processes are
essential for predictive device simulation.

Inelastic scattering processes like optical phonon scattering couple different
energy levels. As devices are scaled down, the average number of scattering events
of a carrier while moving through the device decreases and weakens the coupling
between different energy levels. At the algebraic level this can be reasoned as
follows: Using a box integration scheme as proposed by Hong et al. [9], the
volume integral over the free streaming operator Ll,m is transformed to a surface
integral due to the divergence operator with respect to the spatial variable x.
Therefore, if the typical device length d is scaled to d′ := αd with 0 < α < 1, the
contributions from the free streaming operator scale as αn−1, where n denotes the
spatial dimension considered in the simulation. However, the scattering terms
are obtained by an integration over the control volume, which scales as αn.
Therefore, in the limit of extremely scaled devices, the coupling between different
energy levels is negligible.

While the preconditioner is motivated by physical arguments at the continu-
ous level, a discretization still has to be employed. Following the discretization
proposed by Hong et al. [9], the even order expansion coefficients are associated
with grid nodes and represent densities, while odd order expansion coefficients
are associated with edges and represent fluxes. Odd order expansion coefficients
can be condensed [10,16], such that one finally obtains a linear system of equa-
tions for the even order expansion coefficients at discrete locations in the (x, H)
domain. Let Sfull denote this condensed system matrix and Selastic the system
matrix of the decoupled problem obtained in the same way by ignoring any con-
tributions from inelastic scattering processes. Then we propose to construct the
preconditioner P full for Sfull as

P full ≈ (Sfull)
−1 ≈ (Selastic)

−1 ≈ P elastic . (4)

Since the elastic problem is decoupled into NH subproblems, Selastic decomposes
into NH independent blocks. For each of these blocks, a (possibly serial) pre-
conditioner can be efficiently set up as well as applied to the residual vector in
parallel. Moreover, due to the decoupling of the system matrix into independent
blocks, the proposed scheme is also perfectly suitable for distributed memory
architectures.

4 Symmetrization of the Scattering Processes

Due to the exponential decay of the distribution function with respect to carrier
energy, the scattering rate from higher energy to lower energy is much higher
than vice versa. This asymmetry of inelastic scattering processes for energies Hi

and Hj , i < j, with respect to energy manifests itself in the system matrix in the
form of large values in the block with energy index (Hi, Hj), and small entries in
the block (Hj , Hi), cf. Fig. 2. Therefore, the upper triangular part of the system
matrix is populated with much larger values than the lower triangular part. It
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Fig. 2. Structure of the system matrix for total energy levels H1 < H2 < . . . < HNH

before (left) and after (right) symmetrization. Unknowns at the same total energy Hi

are enumerated consecutively, inducing a block-structure of the system matrix. For
simplicity, scattering is depicted between energy levels H1 and H2 only, using arrows
with thickness proportional to the magnitude of the entries. As devices are scaled down,
the entries in off-diagonal blocks become small compared to the entries in the diagonal
blocks.

should be noted that this asymmetry ensures that the equilibrium solution is a
Maxwell (or more generally, a Fermi-Dirac) distribution.

The large values in the upper triangular part of the matrix are a hindrance
for the construction of the preconditioner by neglecting off-diagonal blocks. We
reduce this asymmetry by rescaling the unknowns of the discrete system accord-
ing to the expected exponential decay. The new discrete unknowns f ′

l,m(xi, Hi, t)
are obtained from the old discrete unknowns fl,m(xi, Hi, t) by

f ′
l,m(xi, Hi, t) := exp

(
εi

kBT

)
fl,m(xi, Hi, t) , (5)

where εi denotes the kinetic energy at point (xi, Hi), kB is the Boltzmann con-
stant and T denotes a scaling temperature which is either set to room tempera-
ture, lattice temperature or can be seen as a numerical parameter. The benefit
of this rescaling is that in equilibrium the primed unknowns are then of similar
order and show little to no exponential behavior. It should be noted that the
proposed rescaling can be written in matrix form equivalently as

Sf = b ⇔ SDf ′ = b ,

where D is a diagonal matrix with the diagonal terms given by the reciprocals
of the exponentials in (5). The matrix S′ := SD represents the system matrix
with rebalanced off-diagonal scattering blocks. Here, symmetrization refers to
rescaling the unknowns such that the entries in the off-diagonal blocks (Hi, Hj)
and (Hj , Hi) are of similar magnitude – it does not denote symmetry of the
system matrix in the strict mathematical sense.
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5 Practical Considerations

For the construction of the preconditioner it is not necessary to set up another
system matrix Selastic explicitly. Since the contribution of inelastic scattering
operators to the diagonal blocks is positive, it is of advantage to use the block
diagonal of Sfull for setting up the preconditioner. Thereby, extra memory for a
second system matrix is avoided.

It has been observed in numerical experiments that the rescaling of unknowns
leads to better results if the temperature T in (5) is set above room temperature.
The physical interpretation is that carriers are heated in areas of large electric
fields, thus having a lower exponential decay rate, which relates to a higher
temperature. Good results are obtained with T = 400K and only a low sensitivity
of the number of iterations on the parameter T is observed.

The rows of the system matrix S′ can be normalized prior to the block-
factorization. This leads to a matrix S′′ given as

S′′ = ES′ = ESD ,

where the diagonal matrix E consists of the inverses of the row norms. Thus,
a two-sided diagonal preconditioner is applied to the initial system matrix S
before launching the block-preconditioning scheme.

Within ViennaCL, the call to the iterative solver is given in the mnemonic
form

x = solve(A, b, solver_tag , precond);

where A denotes the system matrix, x and b the result and the right hand side
vector respectively, the solver_tag allows to select the respective solver and
precond specifies the optional preconditioner. For the case of SHE using the
BiCGStab [20] iterative solver and the custom parallel block preconditioner, the
respective code lines for the user are

x = solve(A, b, bicgstab_tag (), she_block_precond );

where she_block_precond is a functor that applies the preconditioner to the resid-
ual in each iterative solver step. Therefore, the user can focus all development
efforts on the preconditioner only, without having to deal with other details
of the underlying iterative solver. In particular, comparisons with the built-in
ILU factorization with threshold (ILUT) preconditioner in ViennaCL are carried
out by

// MatrixType denotes the type of the matrix A

ilut_precond <MatrixType > ilut(A, ilut_tag ());

x = solve(A, b, bicgstab_tag (), ilut);

thus allowing a simple means to switch between different iterative solvers as well
as different preconditioners.
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6 Results

As a benchmark for the proposed block preconditioning scheme, we consider the
spatially two-dimensional simulation of an n+nn+ diode with different lengths of
the intrinsic region. ILUT is used as a preconditioner for each block. As outlined
in Sec. 5, the same preconditioner is used as a single-threaded preconditioner
for the full system matrix, since ILU-type preconditioners have been employed
in other recent works. It has to be emphasized that the preconditioner used for
each block in our scheme can be chosen arbitrarily, thus we aim at confirming the
applicability of the physically motivated scheme only, since it then enables the
use of any possibly serial preconditioner in a highly parallel fashion. BiCGStab
[20] is used as linear solver, since it provides a lower memory footprint than the
GMRES method [17] used in [10].

Execution times of the iterative BiCGStab solver are compared for a single
CPU core using ILUT for the full system matrix, and for the proposed parallel
scheme using multiple CPU cores of a quad-core Intel Core i7 960 CPU with
eight logical cores. In addition, comparisons for a NVIDIA Geforce GTX 580
GPU are found in Figs. 3. The parallelization on the CPU is achieved using the
Boost.thread library [1], and the same development time was allotted for the
OpenCL kernel on the GPU. This allows for a comparison of the results not
only in terms of execution speed, but also in terms of productivity.

As can be seen in Figs. 3, the performance increase for each linear solver step is
more than one order of magnitude compared to the single-core implementation.
This super-linear scaling with respect to the number of cores on the CPU is due
to the better caching possibilities obtained by the higher data locality within
the block-preconditioner.

The required number of iterations using the block-preconditioner decreases
with the device size. For a 25 nm intrinsic region, the number of iterations is
only twice than that of an ILUT preconditioner for the full system. At an intrinsic
region of 200 nm, four times the number of iterations are required. This is a very
small price to pay for the excellent parallelization possibilities.

Overall, the multi-core implementation is by a factor of three to ten faster
than the single core-implementation even though a slightly larger number of
solver iterations is required. The purely GPU-based solver with hundreds of
simultaneous lightweight threads is by up to one order of magnitude faster than
the single-core CPU implementation.

The comparison in Fig. 3 further shows that the SHE order does not have
a notable influence on the block-preconditioner efficiency compared to the full
preconditioner. The slightly larger number of solver iterations for third order
expansions is due to the higher number of unknowns in the linear system. The
performance gain is almost uniform over the length of the intrinsic region and
slightly favors shorter devices, thus making the scheme an ideal candidate for
current and future scaled-down devices.
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Fig. 3. Execution times per solver iteration, number of solver iterations and total
solver execution time for a first-order (left) and a third-order (right) SHE simulation of
n+nn+ diodes with different lengths of the intrinsic region. As expected from physical
arguments, the parallel preconditioner performs the better the smaller the length of the
intrinsic region gets. The GPU version performs particularly well for the computation-
ally more challenging third-order SHE. A reduction of total execution times compared
to a single-threaded implementation by one order of magnitude is obtained.

7 Conclusions

Our case-study of employing a problem-specific parallel preconditioner within
ViennaCL for the acceleration of a semiconductor device simulator readily shows
that library-centric design for algorithms on GPUs and multi-core CPUs based
on OpenCL allows for high productivity. A development of the full GPU solver
from scratch for the particular problem at hand would have resulted in devel-
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opment effort that is at least an order of magnitude larger than a comparable
implementation for multi-core CPUs in e.g. C++, while only a performance gain
of about an additional factor of two would have been obtained.

The parallel block-preconditioning scheme is proposed and demonstrated to
be very efficient especially for scaled-down devices. In contrast to black-box block
preconditioners, the proposed scheme is based on a sound physical principle. The
number of iterations compared to a single-threaded ILUT preconditioner for the
full system matrix is two to four times as large, but this is only a minor price
to pay for the huge degree of parallelism provided for the crucial precondition-
ing step. On the whole, an overall performance improvement of one order of
magnitude is obtained for our test case.
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Abstract. Multigrid methods are efficient and fast solvers for problems
typically modeled by partial differential equations of elliptic type. We use
the approach of matrix-based geometric multigrid that has high flexibil-
ity with respect to complex geometries and local singularities. Further-
more, it adapts well to the exigences of modern computing platforms. In
this work we investigate multi-colored Gauß-Seidel type smoothers, the
power(q)-pattern enhanced multi-colored ILU(p,q) smoothers with fill-
ins, and factorized sparse approximate inverse (FSAI) smoothers. These
approaches provide efficient smoothers with a high degree of parallelism.
We describe the configuration of our smoothers in the context of the
portable lmpLAtoolbox and the HiFlow3 parallel finite element package.
In our approach, a single source code can be used across diverse platforms
including multicore CPUs and GPUs. Highly optimized implementations
are hidden behind a unified user interface. Efficiency and scalability of
our multigrid solvers are demonstrated by means of a comprehensive
performance analysis on multicore CPUs and GPUs.

Keywords: Parallel smoothers, matrix-based geometric multigrid,
multi-coloring, power(q)-pattern method, FSAI, multi-core, GPUs.

1 Introduction

The need for high accuracy and short simulation times relies both on efficient
numerical schemes and appropriate scalable parallel implementations. The lat-
ter point is crucial in the context of fine-grained parallelism in the prospect of
the manycore era. In particular, graphics processing units (GPUs) open new
potentials in terms of computing power and internal bandwidth values. These
new architectures have a significant impact on the design and implementation of
parallel algorithms in numerical simulation. Furthermore, portability of solver
concepts, codes and performance across several platforms is a major issue in the
era of highly capable multicore and accelerator platforms.
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Multigrid methods rely on the decomposition of the error in low- and high-
frequency contributions. The smoothers damp out the high frequency contribu-
tions of the error at a given level. Adequate prolongation and restriction oper-
ators allow to address the considered problem on a hierarchy of discretizations
and by this means cover the full spectral range of error contributions only on
the basis of these smoothers (see [21] and references therein for further details).
For full flexibility of the solvers in the context of complex geometries, stencil-
based multigrid methods – typically used on equidistant Cartesian grids and
for partial differential equations (PDEs) with constant coefficients – need to be
replaced by more flexible concepts. We use the approach of matrix-based geo-
metric multigrid where all operations – i.e. smoothers, grid transfers and residual
computation – are represented by sparse matrix-vector multiplications (SpMV).
This approach has been shown to work well on modern multicore platforms and
GPUs [2]. Moreover, the restriction to basic algorithmic building blocks is the
key technique for building portable solvers. The major challenge with respect to
parallelism is related to the definition and implementation of adequate parallel
smoothers.

Parallel multigrid smoothers and preconditioners on CPUs and GPUs for
regularly structured tensor-product meshes are considered in [8]. The author
discusses parallel implementation aspects for several platforms and shows inte-
gration of accelerators into a finite element package. The references there also
give a historic overview of multigrid on GPUs up to 2009. In [7], geometric
multigrid on unstructured meshes for higher order finite element methods is in-
vestigated. A parallel Jacobi smoother and grid transfer operators are assembled
into sparse matrix representations leading to efficient solvers on multicore CPUs
and GPUs. In [6] performance results for multigrid solvers based on the sparse
approximate inverse (SPAI) technique are presented. The corresponding SPAI
techniques for parallel multigrid smoothers and preconditioners are described in
[9,5,19,4,3]. An implementation and performance results of algebraic multigrid
methods on GPUs are discussed in [10].

In this work we evaluate a new smoothing algorithm based on the power(q)-
pattern enhanced multi-colored ILU(p,q) factorization [16] with respect to its
smoothing properties and its parallel speedup on multicore CPUs and GPUs.
We compare it to multi-colored splitting-type smoothers and FSAI smoothers.
Various hardware platforms can be easily used in the context of these solvers by
means of the portable implementation based on the lmpLAtoolbox in the paral-
lel finite element software package HiFlow3 [1]. The capability of the proposed
approach is demonstrated in a comprehensive performance analysis.

This paper is organized as follows. In Section 2 we describe the context of
matrix-based geometric multigrid methods. Section 3 describes the proposed
parallel concepts for efficient and scalable smoothers. The setup and integration
of the described multigrid solvers in the HiFlow3 finite element method package
is described in Section 4. The numerical test problem is the Poisson problem on
an L-shaped domain where a statically adapted and locally refined mesh is used
for the discretizations. The impact of the choice and the configuration of the
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smoothers on the MG convergence is investigated in Section 5. A performance
analysis with respect to solver times and parallel speedups on multicore CPUs
and GPUs is the central theme of Section 6. We conclude in Section 7.

2 Matrix-Based Geometric Multigrid Methods

Multigrid (MG) methods are usually used to solve large sparse linear systems
of equations arising from finite element discretizations (or related techniques) of
PDEs – typically of elliptic type. Due to the ability to achieve asymptotically
optimal complexity, MG has been proven to be one of the most efficient solvers
for this type of problems. The main idea of MG methods is based on coarse grid
corrections and the smoothing properties of classical iterative schemes. High
frequency error components can be eliminated efficiently by using elementary
iterative solvers – such as Jacobi or Gauß-Seidel. On the other hand, smooth
error components cannot be reduced efficiently on fine grids. This effect can
be mitigated by performing a sequence of coarsening steps and transferring the
smooth errors by restricting the defect to coarser mesh levels. Details on the
basic properties of the MG method as well as error analysis and programming
remarks can be found in [21,11] and in references provided therein. Aspects of
parallel MG on distributed memory systems are e.g. discussed in [18].

The MG cycle u
(n)
h =MG(u

(n−1)
h , Lh, fh, ν1, ν2, γ) is an iterative method with

recursive MG iterations where Lhuh = fh is the discrete version of the under-
lying PDE on the refinement level with mesh size h. On each level, pre- and

post-smoothing is applied in the form u
(n)
h = RELAXνi(u

(n−1)
h , Lh, fh). The pa-

rameters νi, i = 1, 2, denote the number of pre- and post-smoothing iterations.
Grid transfer operators are denoted by IHh (restriction) and IhH (prolongation)
where h is representing the fine grid size and H is the coarse grid size. The trans-
ferred residual rH = IHh rh = IHh (fh − Lhuh) is the input to the MG iteration

e
(n)
H =MG(0, LH , r

(n)
H , ν1, ν2, γ) on the coarser level. The parameter γ specifies

the number of two-grid cycle iterations on each level and thus specifies how of-
ten the coarsest level is visited. For γ = 1 we obtain so called V-cycles whereas
γ = 2 results in W-cycles. The coarse grid correction is uh := uh + IhHeH . The
obtained solution after each cycle serves as the input for the successive cycle.

In this work, we consider matrix-based geometric MG methods. In contrast to
stencil-based geometric MG methods, all differential operators and grid transfer
operators are not expressed by fixed stencils on equidistant grids but have the full
flexibility of sparse matrix representations. This approach gives us full flexibility
with respect to complex geometries, non-uniform grids resulting from local mesh
refinements, and space-dependent coefficients in the underlying PDE. Moreover,
the solvers can be built upon standard building blocks of numerical libraries.

3 Matrix-Based Parallel Smoothers

Stencil-based geometric MG methods can be efficiently performed in parallel by
domain sub-structuring and halo exchange for the stencils [18]. In contrast, the
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parallel implementation of a matrix-based geometric MG requires more work.
While the grid transfer operators are explicit updates with sufficient locality,
parallel smoothers rely on implicit steps where often triangular systems need
to be solved, e.g. in Gauß-Seidel or ILU-type smoothers. And as the objective
is full flexibility on unstructured meshes, straightforward parallelization strate-
gies like wave-front or simple red-black-coloring cannot be applied. Therefore,
the focus of our work is directed to fine-grained parallelism for the smooth-
ing step based on multi-coloring approaches. The considered smoothers are
based on the block-wise decomposition into small sub-matrices. In the addi-
tive and multiplicative splittings, typically a large amount of forward and back-
ward sweeps in triangular solvers needs to be processed. For the description
of the proposed parallel smoothers we point out the link between smoothers
and preconditioning techniques. Iterative solvers can generally be interpreted
in fixed point form by xk+1 = Gxk + f where the linear system of the type
Ax = b is transformed by the additive splitting A = M + N and taking
G = M−1N = M−1(M − A) = I − M−1A and f = M−1b. This version can
be reformulated in an algebraic manner as a preconditioned defect correction
scheme

xk+1 = xk + ωM−1(b−Axk) (1)

where an additional damping parameter ω is introduced. In this context, we
apply preconditioners M as smoothers for the linear system Ax = b where the
smoothers should reduce highly-ocsillating error contributions. Smoothing prop-
erties of our applied schemes are demonstrated in [14]. Additive preconditioners
are standard splitting schemes typically based on the block-wise decomposition
A = D+L+R where L is a strictly lower triangular matrix, R is a strictly upper
triangular matrix, and D is the matrix containing the diagonal blocks of A. We
choose M = D (Jacobi), M = D+L (Gauß-Seidel) or M = (D+L)D−1(D+R)
(symmetric Gauß-Seidel). For multiplicative splittings we choose M = LU in (1)
where L is a lower triangular and U is an upper triangular matrix. For incom-
plete LU (ILU) factorizations with or without fill-ins we decompose the system
matrix A into the product A = LU +R with a remainder matrix R that absorbs
unwanted fill-in elements. Typically, diagonal entries of L are taken to be one
and both matrices L and U are stored in the same data structure (omitting
the ones). The quality of the approximation in this case depends on the num-
ber of fill-in elements. The third class of considered parallel smoothers consists
of approximate inverse schemes. Here, we are focusing on the factorized sparse
approximate inverse (FSAI) algorithms [20] that compute a direct approxima-
tion of A−1. These schemes are based on the minimization of the Frobenius
norm |I − GA|F where one looks for a symmetric preconditioner in the form
G := GT

LGL. In other words, one builds an approximation of the Cholesky de-
composition based on a given sparse matrix structure. FSAI(1) uses the sparsity
pattern of A, FSAI(q), q ≥ 2, uses the sparsity pattern of |A|q respectively.

In order to harness parallelism within each block of the decomposition we ap-
ply multi-coloring techniques [15,16] as a preprocessing step. The applied changes
to the sparsity pattern are then kept during the preconditioner factorization.
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For splitting-based methods (like Gauß-Seidel and SOR) and ILU(0) decompo-
sitions without fill-ins the sparsity pattern of the system matrix is preserved in
the additive or multiplicative decompositions. Here, only the original sparsity
pattern is populated and no additional matrix elements are inserted. Before ap-
plying the smoother, the matrix is re-organized such that diagonal blocks in the
block decomposition are diagonal itself. Then, inversion of the diagonal blocks is
just an easy vector operation [15]. Furthermore, we allow fill-ins (i.e. additional
matrix elements) in the ILU(p) factorization for achieving a higher level of cou-
pling in terms of increased numerical efficiency. The power(q)-pattern method
is applied to ILU(p) factorizations with fill-ins [16]. This method is based on an
incomplete factorization of the system matrix A subject to a predetermined non-
zero pattern derived from a multi-color analysis of the matrix power |A|q (where
|A| = (|aij |)i,j) and its associated multi-color permutation π. It has been proven
in [16] that the obtained sparsity pattern is a superset of the modified ILU(p)
factorization applied to the re-ordered matrix πAπ−1. As a result, for q = p+ 1
this modified ILU(p,q) scheme applied to the multi-colored system matrix has
no fill-ins into its diagonal blocks. This leads to an inherently parallel execution
of triangular ILU(p,q) sweeps and hence to a parallel and efficient smoother.
The degree of parallelism can be increased by taking q < p + 1 at the expense
of some fill-ins into the diagonal blocks. In this scenario (e.g. for the ILU(1,1)
smoother in our experiments) we use a drop-off technique that erases fill-ins into
the diagonal blocks. These techniques have already been successfully tested in
the context of parallel preconditioners [16]. See this reference for further details
of the algorithms.

4 Integration of the Multigrid Solvers into HiFlow3

Flexibility of solution techniques and software is a decisive factor in the current
computing landscape. We have incorporated the described multigrid solvers and
parallel smoothers into the multi-platform and multi-purpose parallel finite ele-
ment software package HiFlow3 [12,1]. With the concept of object-oriented pro-
gramming in C++, HiFlow3 provides a flexible, generic and modular framework
for building efficient parallel solvers and preconditioners for PDEs of various
types. HiFlow3 tackles productivity and performance issues by its conceptual
approach. It is structured in several modules where its linear algebra opera-
tions are based on two communication and computation layers: the LAtoolbox
for inter-node operations and the lmpLAtoolbox for intra-node operations in a
parallel system. The lmpLAtoolbox has backends for multiple platforms with
highly optimized implementations – hiding all hardware details from the user
while maintaining optimal usage of resources. Numerical solvers in HiFlow3 are
built on the basis of unified interfaces to the different hardware backends and
parallel programming approaches – where only a single code base is required for
all platforms. In such a way, no specific and platform-adapted optimizations are
necessary since we rely on efficient and tested library implementations of basic
kernels. By this means, HiFlow3 is portable across diverse computing systems in-
cluding multicore CPUs, CUDA-enabled GPUs and OpenCL-capable platforms.
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The modular approach also allows an easy extension to emerging systems with
heterogeneous configuration. The SpMV implementations for the GPU used in
this work are the scalar SpMV kernels in the CSR data format presented in [2].
In this work we are only focusing on single node parallelism. Therefore, we do not
consider the global MPI level. Based on the matrix and vector classes HiFlow3

offers several Krylov subspace solvers and local additive and multiplicative pre-
conditioners. Further information about this library, solvers and preconditioners
can be found e.g. in [16,13,15,17].

Starting on an initial mesh, the HiFlow3 mesh module refines the grid in order
to reach the requested number of cells according to the demands for accuracy.
The current version supports quadrilateral elements as well as triangles for two
dimensional problems. In the three-dimensional case tetrahedrons and hexahe-
drons are used. On each refinement level, the corresponding stiffness matrix and
the right hand side are assembled for the given equation. Our implementation
performs a bi-linear interpolation to ascend to a finer level and a full weighting
restriction to descend to a coarser level respectively. The multigrid solver can
also be applied on unstructured meshes. Our coarse grid solver is the parallel
version of the conjugated gradient (CG) solver running on the respective device.
The sparsity pattern of the original stiffness matrix and of the FSAI approxima-
tion is determined by the enumeration procedure in HiFlow3. In our scenario,
the degrees of freedom are ordered by the local numbering and by the iterator
over the finite elements. However, for the additive and multiplicative decompo-
sition we use the multi-color re-ordering that also affects the sparsity pattern
and locality of interactions, and hence performance of the solver [13].

5 Numerical Experiments and Smoother Efficiency

As a numerical test problem we are solving the Poisson problem

−Δu = f in Ω (2)

in the two-dimensional L-shaped domain Ω := (0, 1)2 \ (0, 0.5)2 with a reentrant
corner with homogeneous Dirichlet boundary conditions, i.e. u = 0 on ∂Ω. For
our test case we choose the right hand side f = 8π2 cos(2πx) cos(2πy). We solve
(2) by means of bilinear Q1 elements on quadrilaterals and linear P1 elements
on triangles [12,1]. A locally refined mesh for discretization of the L-shaped do-
main is depicted in Figure 1 (left). The numerical solution of (2) with boundary
layers is detailed in Figure 1 (right). Due to the steep gradients at the re-entrant
corner we are using a locally refined mesh in order to obtain a proper prob-
lem resolution. Figure 2 (left) shows a zoom-in into a uniformly refined coarse
mesh. In the mesh in Figure 2 (right) we are using additional triangular and
quadrilateral elements for local refinement and avoiding hanging nodes and de-
formed elements. Our coarsest mesh in the MG hierarchy is this locally refined
mesh based on triangular and quadrilateral cells with Q1 and P1 elements sum-
ming up to 3,266 degrees of freedom (DoF). By applying six global refinement
steps to this coarse mesh we obtain the hierarchy of nested grids where the
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Fig. 1. Locally refined mesh for discretization of the L-shaped domain (left) and the
discrete solution of the Poisson problem (2) (right)

Fig. 2. Zoom-in to a uniform mesh with 3,201 DoF (left) and a locally refined mesh
with 3,266 DoF (right) of the L-shaped domain around the reentrant corner – our
coarsest MG mesh with level 1

finest mesh has 3,211,425 DoF. In this work we study the behavior of parallel
smoothers based on additive splittings (Jacobi, multi-colored Gauß-Seidel and
multi-colored symmetric Gauß-Seidel), incomplete factorizations (multi-colored
ILU(0) and power(q)-pattern enhanced multi-colored ILU(p,q) with fill-ins) and
FSAI smoothers. We investigate their properties with respect to high-frequency
error reduction and convergence behavior of the V- and W-cycle parallel MG. In
our tests performed here we did not consider damping in order to reduce com-
plexity of the parameter space (except for the Jacobi smoother where damping
is necessary).

In particular, we consider the multigrid behavior on different test platforms.
Our numerical experiments are performed on a hybrid platform, a dual-socket
Intel Xeon Harpertown (E5450) quad-core system (with eight cores in total)
that is accelerated by an NVIDIA Tesla S1070 GPU system with four GPUs
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attached pairwise by PCIe to one socket each where we only use a single GPU in
our experiments. The memory capacity of a single CPU and GPU device is 16GB
and 4GB respectively. We are only using double precision for the computations.

We perform several tests with different configurations for the pre- and post-
smoothing steps. We determine the number of cycles required to achieve a rel-
ative residual less than 10−6. In Table 1 the iteration counts are shown for the
V-cycle based MG. Note, that the iteration counts in this table do not reflect the
total amount of work. Some smoothing steps, e.g. ILU(p,q), need more work than
others. From a theoretical point of view, a Gauß-Seidel smoothing step is half as
costly as a symmetric Gauß-Seidel step; ILU(0) is cheaper than ILU(1,1) which
is cheaper than ILU(1,2). For the MG solver, ν1+ν2 is the number of smoothing
steps on each level and should be kept low in order to reduce the total amount
of work (and hence the solver time). For estimation of the corresponding work
load, computing times are included for the MG solver on the GPU platform.

Table 1. Number of MG V-cycles for different smoothers and total run times of the
V-cycle based MG solver on the GPU for different smoother configurations; ν1 is the
number of pre-smoothing steps, ν2 is the post-smoothing step count. (Best run time
results highlighted in boldface.)

(ν1, ν2) (0,1) (0,2) (0,3) (0,4) (1,0) (1,1) (1,2) (1,3) (1,4) (2,0) (2,1) (2,2) (2,3)

GS [#it] 30 14 10 8 35 16 10 8 7 20 12 9 7
time [sec] 5.75 3.89 3.62 3.58 6.44 4.43 3.63 3.59 3.73 5.33 4.34 4.03 3.74

SGS [#it] 23 13 9 8 28 14 10 8 7 17 11 9 7
time[sec] 4.89 4.17 3.88 4.28 5.71 4.49 4.28 4.28 4.51 5.29 4.69 4.80 4.49

ILU(0) [#it] 18 11 8 6 25 11 8 7 6 15 8 7 6
time [sec] 3.80 3.49 3.40 3.19 5.00 3.50 3.40 3.72 3.82 4.59 3.42 3.72 3.83

ILU(1,1) [#it] 18 10 7 6 23 11 8 7 6 14 8 7 6
time [sec] 4.30 3.73 3.56 3.85 5.26 4.10 4.06 4.49 4.66 5.06 4.06 4.49 4.65

ILU(1,2) [#it] 10 6 5 5 12 7 5 5 5 9 6 5 5
time [sec] 2.93 2.75 3.08 3.86 3.36 3.20 3.10 3.87 4.65 3.98 3.69 3.87 4.66

FSAI(1) [#it] 17 9 7 6 22 10 7 6 6 14 8 7 6
time [sec] 4.14 3.35 3.46 3.69 5.41 3.72 3.47 3.70 4.39 5.18 3.94 4.27 4.39

FSAI(2) [#it] 14 7 6 5 15 8 6 5 5 10 6 6 5
time [sec] 4.54 4.08 4.96 5.36 5.71 4.64 4.96 5.38 6.59 6.30 4.96 6.42 6.60

FSAI(3) [#it] 9 6 5 5 12 6 5 5 5 8 6 5 5
time [sec] 4.04 5.15 6.40 8.42 6.58 5.20 6.39 8.45 10.50 7.77 7.63 8.44 10.49

For the damped Jacobi smoother with (ω < 1) the run times are larger than
20 seconds and therefore not competitive. Multi-colored symmetric Gauß-Seidel
(SGS) is better than multi-colored Gauß-Seidel (GS) in terms of iteration count.
Multi-colored ILU smoothers are better than additive factorizations (GS, SGS).
The quality of the ILU(p) schemes in terms of iteration counts gets better with
increasing p. The drop-off technique for ILU(1,1) is providing only little im-
provements compared to ILU(0). Iteration counts for the FSAI smoothers are
in the same range as the ILU smoothers. Best candidates with respect to re-
duced iteration counts are ILU(1,2) and FSAI(2). Minima with respect to the
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iteration count can be found for configurations where ν1 + ν2 = 2, 3 or 4. For
larger values there are no more significant improvements. The run time results
show that the benefits for the SGS smoother in terms of smoothing properties
and reduced iteration count are canceled with respect to the run time due to the
additional overhead in each smoothing step and an additional V-cycle. For the
ILU smoothers the additional work complexity still yields improvements in run
time. The best performance is obtained for the ILU(1,2) smoother. The drop-
off technique for ILU(1,1) has some diminishment in performance. The FSAI
smoothers give no particular improvements in run time compared to the other
smoothers. All timing considerations exclude the setup times for multi-coloring,
factorizations or building FSAI. A more detailed parameter study – also for W-
cycle-based multigrid – can be found in [14]. Although the chosen Poisson test
problem in an L-shaped domain is not a complex scenario that requires strong
smoothers by all means, our investigation for this problem already shows that
there are benefits from higher level smoothers such as ILU(p,q). While our focus
here is to demonstrate applicability of parallel smoothers and flexible multigrid
on GPUs and multicore CPUs, the consideration of more complicated problems
in terms of anisotropies are subject of future work.

In Table 2 the run times and iteration counts for the best V-cycle and W-
cycle based smoother configurations for the parallel MG solvers on the GPU are
summarized. The first column in this table specifies the optimal values for the
parameters ν1 and ν2 that correspond to the number of pre- and post-smoothing
steps on each refinement level. The third column gives the number of necessary
MG cycle iterations. The iteration counts for the W-cycles are reduced compared
to the V-cycle based MG solver. However, the run times show that the W-cycle
based MG solver is by a factor of 2 to 3 slower than the V-cycle based MG
solver. The W-cycle based MG solver is slower because more smoothing steps
are performed on coarser grids. This involves a larger number of calls to SpMV
routines for small matrices with significant overhead (in particular kernel call
overheads on the GPU). The best results for W-cycle based MG are obtained

Table 2. Minimal run times and corresponding iteration counts for the V-cycle and
W-cycle based parallel MG solvers on the GPU for various smoothers and optimal
configurations of the corresponding number of pre- and post-smoothing steps (ν1, ν2)

V-cycle based MG W-cycle based MG
Smoother (ν1, ν2) time [sec] #its (ν1, ν2) time [sec] #its

GS (0,4) 3.58 8 (2,3) 7.01 6
SGS (0,3) 3.88 9 (2,3) 8.20 6

ILU(0) (0,4) 3.19 6 (2,3) 6.84 5
ILU(1,1) (0,3) 3.56 7 (1,3) 8.01 6
ILU(1,2) (0,2) 2.75 6 (2,2) 8.15 4
FSAI(1) (0,2) 3.35 9 (1,3) 9.39 5
FSAI(2) (0,2) 4.08 7 (1,3) 10.64 4
FSAI(3) (0,1) 4.04 9 (0,2) 11.73 5



Parallel Smoothers for Matrix-Based Geometric Multigrid Methods 167

for the ILU(0) smoother with Gauß-Seidel following next. Except of the FSAI
smoothers, all other smoothers are on the same performance level.

In some problem scenarios the necessary multigrid hierarchy may not be ac-
cessible and only the system matrix is available. In such cases, algebraic multi-
grid methods or preconditioned Krylow subspace solvers are a good alternative.
Since the considered smoothers can also be used as preconditioners, we present
a performance comparison for our model problem. In Table 3 the run times are
listed for the preconditioned conjugated gradient (CG) method on the CPU and
GPU test platforms using various preconditioning schemes. The number of CG
iterations is given in the first row. We find that all preconditioners significantly
reduce the number of iterations. Run times are presented for the sequential CPU
version, the eight-core OpenMP parallel CPU version, and the GPU version. We
see that the MG solver on the GPU is faster by a factor of up to 60 than the pre-
conditioned CG solver on the GPU – which expresses asymptotic predominance
since MG has an h-independent convergence behavior. The best preconditioner
for CG on the GPU is ILU(1,2).

Table 3. Run times in seconds and iteration counts for the preconditioned CG solver
for various preconditioners on the CPU (sequential and eight-core OpenMP parallel)
and on the GPU

Precond None Jacobi SGS ILU(0) ILU(1,1) ILU(1,2) FSAI(1) FSAI(2) FSAI(3)

# iter 5,650 4,167 2,323 2,451 2,066 1,387 2,198 1,493 1,139

Sequential 1492s 1134s 1433s 1472s 1347s 1498s 1271s 950.4s 1082.5s
OpenMP 604.4s 573.4s 662.6s 676.9s 630.0s 589.7s 435.5s 438.5s 500.3s
GPU 273.0s 218.3s 186.6s 195.1s 206.7s 158.0s 204.1s 280.0s 359.7s

6 Performance Analysis on Multicore CPUs and GPUs

In this section we conduct a performance analysis with respect to the differ-
ent test platforms. We assess the corresponding solver times and the parallel
speedups. In Figure 3 we compare run times of the V-cycle (left) and W-cycle
(right) MG solver with various smoothers for the Poisson problem on the L-
shaped domain. It shows the results for the sequential version and the OpenMP
parallel version on eight cores of the CPU as well as for the GPU version. For
this test problem, there are no significant differences in performance for the
tested smoothers on a specific platform. The multiplicative ILU-type smoothers
are slightly faster than the additive splitting-type smoothers. The ILU-based
smoothers are more efficient in terms of smoothing properties and reduced iter-
ation counts, but they are more expensive to be executed. In total, both effects
interact such that the total execution time is only slightly better. Best perfor-
mance results are obtained for the ILU(1,2) smoother based MG solver on the
GPU. In this 2D Poisson test problem with unstructured grids based on Q1
and P1 elements, the resulting stiffness matrix has only six colors in the multi-
coloring decomposition. By increasing the sparsity pattern with respect to the
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structure of |A|2 used for building the ILU(1,2) decomposition, we obtain 16
colors. In this case the triangular sweeps can still be performed with a high de-
gree of parallelism. However, on the CPU the FSAI algorithms perform better
due to the utilization of cache effects. The FSAI algorithms are performed by
relying on parallel matrix-vector multiplications only. This is in contrast to the
multi-coloring technique which re-orders the matrix by grouping the unknowns.
This distribution is performing better on the GPU due to the lack of bank con-
flicts in the sparse matrix-vector multiplications. On the other hand, the FSAI
algorithm is performing better on the cache-based architecture due to the large
number of elements that can benefit from data reuse.

Fig. 3. Run times of V-cycle (left) and W-cyle (right) MG solver with various
smoothers for the Poisson problem on the L-shaped domain: sequential version and
OpenMP parallel version on eight cores on the CPU and GPU version

The parallel speedups of the V-cycle and W-cycle based MG solvers are de-
tailed in Figure 4. The OpenMP parallel speedup is slightly above two. In the
sequential run on a single CPU core, about less than one third of the eight
core peak bandwidth can be utilized (see measurements in [15]). The bandwidth
is already saturated with three cores. Therefore, the speedup of the eight-core
OpenMP parallel version is technically limited by a factor of less than three on
this particular test platform. This performance expectations are reflected by our
measurements reported here. There is no difference in performance for different
core allocation since our platform is a UMA architecture. The GPU version is by
a factor of two to three faster than the OpenMP parallel version. These factors
are in good conformance with experience for GPU acceleration of bandwidth-
bound kernels. For the FSAI smoothers, the speedup on the GPU falls a little
bit behind since it is better suited for CPU architectures. The presented par-
allel speedup results demonstrate the scalability of our parallel approach for
efficient multigrid smoothers. Parallel multigrid solvers are typically affected by
bad communication/computation ratios and load imbalance on coarser grids. As
we are working on shared memory type devices, these influences do not occur.
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Fig. 4. Parallel speedup of the V-cycle (left) andW-cycle (right) based multigrid solvers
for various smoothers

In contrast however, our matrix-based geometric multigrid solver depends by
construction on the calls to SpMV kernels. On coarser grids, these kernels have
a significant call overhead at the expense of parallel efficiency. This has a direct
impact on the speedups of the W-cycle based MG solvers on the GPU.

Similar results are obtained for the performance numbers and speedups of the
preconditioned CG solver. In the left part of Figure 5 run time results are listed
for various preconditioners. The right figure details corresponding speedups for
the OpenMP parallel version and the GPU implementation. Speedups for the
CG are larger than those for the MG solver. Although both solvers consist of
the same building blocks, CG is more efficient since it fully relies on the finest
grid of the MG hierarchy with huge sparse matrices. In contrast, the MG solver
is doing work on coarser grids where call overheads for SpMV kernels have a
significant influence on the results.

Fig. 5. Run times and parallel speedups for the preconditioned CG solvers on the CPU
(sequential and eight-core OpenMP parallel version) and on the GPU
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7 Conclusion

Matrix-based geometric multi-grid solvers on locally refined and unstructured
meshes are efficient numerical schemes for solving complex and highly relevant
problems. The paradigm shift towards manycore devices brings up new challenges
in two dimensions: first, the algorithms need to express fine-grained parallelism
and need to be designed with respect to scalability to hundreds and thousands of
cores. Secondly, software solutions and implementations need to be designed flex-
ible and portable in order to exploit the potential of various platforms in a uni-
fied approach.The proposed techniques for parallel smoothers and preconditioners
provide both efficient and scalable parallel schemes. We have demonstrated how
sophisticated mathematical techniques can be extended with respect to scalable
parallelism and how these techniques can harness the computing power of modern
manycore platforms. In particular, with the formulation in terms of SpMV ker-
nels the capabilities of GPUs can be exploited.With the described solvers, solution
times for realistic problems can be kept at a moderate level. And with the concept
of our generic and portable softwarepackage, numerical solvers can be used on a va-
riety of platforms on a single code base. The users are freed from specific hardware
knowledge and platform-oriented optimizations. We have reported speedups and
we have demonstrated that even complex algorithms can be successfully ported to
GPUs with additional performance gains. The proposed ILU(1,2) smoother and
the FSAI(2) smoother show convincing performance and scalability results for par-
allel matrix-based geometric MG. The proposed V-cycle based MG solvers with
parallel smoothers on the GPU are by a factor of 60 faster than the preconditioned
CG solvers on the GPU. But due to the absence of coarse grid operations, the CG
solvers have slightly better scalability properties on GPUs.
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4. Bröker, O., Grote, M.: Sparse approximate inverse smoothers for geometric and
algebraic multigrid. Applied Numerical Mathematics 41 (2002)
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Alexander, M. (eds.) Euro-Par-Workshop 2010. LNCS, vol. 6586, pp. 389–397.
Springer, Heidelberg (2011)

16. Heuveline, V., Lukarski, D., Weiss, J.P.: Enhanced parallel ILU(p)-based precondi-
tioners for multi-core CPUs and GPUs – the power(q)-pattern method. Tech. Rep.
2011-08, EMCL, KIT (2011),
http://www.emcl.kit.edu/preprints/emcl-preprint-2011-08.pdf

17. Heuveline, V., Subramanian, C., Lukarski, D., Weiss, J.P.: A multi-platform linear
algebra toolbox for finite element solvers on heterogeneous clusters. In: PPAAC
2010, IEEE Cluster 2010 Workshops (2010)

18. Hülsemann, F., Kowarschik, M., Mohr, M., Rüde, U.: Parallel geometric multigrid.
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