
Chapter 9
The Operads As and A∞

For me it all begins with Poincaré.
Jim Stasheff in “The pre-history of operads”

Contemp Math 202 (1997), 9–14

In this chapter, we first treat in detail the operad encoding the category of associative
algebras along the lines of the preceding chapters. This is a particularly important
example, because associative algebras are everywhere in mathematics, and because
it will serve as a toy-model in the theory of operads.

In Sect. 9.1, we describe the nonsymmetric operad As and then the symmetric
operad Ass, where the action of the symmetric group is taken into account. They
both encode the category of associative algebras. Then we compute the Koszul dual
cooperad As¡. We show that As is a Koszul operad by analyzing in detail the Koszul
complex. We show that the operadic homology of associative algebras is precisely
Hochschild homology.

In Sect. 9.2, we proceed with the computation of the minimal model of As, that
is �As¡. We show that this operad is exactly the operad A∞, constructed by Jim
Stasheff, encoding the category of “homotopy associative algebras”, also known as
A∞-algebras. We describe this differential graded operad in terms of the Stasheff
polytope (associahedron).

In Sect. 9.3, we study the bar–cobar construction on As, denoted �B As. We show
that this ns operad can be understood in terms of a cubical decomposition of the
Stasheff polytope (Boardman–Vogt W -construction). We compare �B As and A∞.

In Sect. 9.4, we deal with the Homotopy Transfer Theorem. In its simplest form
it says that, starting with a dga algebra, any homotopy retract acquires a structure
of A∞-algebra. More generally A∞-algebras are invariant under homotopy equiva-
lence. These results are due to the work of V.K.A.M. Gugenheim, Hans Munkholm,
Jim Stasheff, Tornike Kadeishvili, Alain Prouté, Serguei Merkulov, Martin Markl,
Maxim Kontsevich and Yan Soibelman. In the next chapter this theorem is extended
to any Koszul operad.

We make this chapter as self-contained as possible, so there is some redundancy
with other parts of the book. We refer to Stasheff’s paper [Sta10] for historical refer-
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326 9 The Operads As and A∞

ences on the subject, linking twisting morphisms, also known as twisting cochains,
to A∞-algebra structures, and giving tribute to N. Berikashvili, K.T. Chen and
T. Kadeishvili.

9.1 Associative Algebras and the Operad Ass

We study the nonsymmetric operad As encoding the category of (nonunital) asso-
ciative algebras. We show that its Koszul dual is itself: As! = As and that it is a
Koszul nonsymmetric operad. We also study the associated symmetric operad, de-
noted by Ass.

9.1.1 Associative Algebra

By definition an associative algebra over K is a vector space A equipped with a
binary operation

μ : A ⊗ A → A, μ(x, y) = xy

satisfying the associativity relation

(xy)z = x(yz)

for any x, y, z ∈ A. This relation may also be written as

μ ◦ (μ, id) = μ ◦ (id,μ),

and, in terms of partial compositions, as

μ ◦1 μ = μ ◦2 μ.

There is an obvious notion of morphism between associative algebras and we denote
by As-alg the category of associative algebras.

Here we work in the monoidal category Vect of vector spaces over K, but, be-
cause of the form of the relation, we could as well work in the monoidal category of
sets, resp. topological sets, resp. simplicial sets. Then we would obtain the notion of
monoid, resp. topological monoid, resp. simplicial monoid.

It is sometimes helpful to assume the existence of a unit, cf. Sect. 1.1.1, but here
we work with nonunital associative algebras.

9.1.2 The Nonsymmetric Operad As

Since, in the definition, of an associative algebra, the generating operation μ does
not satisfy any symmetry property, and since, in the associativity relation, the vari-
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ables stay in the same order, the category of associative algebras can be encoded by
a nonsymmetric operad, that we denote by As.

Let us denote by μn the n-ary operation defined as

μn(x1, . . . , xn) := x1 . . . xn.

The space of n-ary operations Asn is one-dimensional spanned by μn, because the
free associative algebra over V is �T (V ) = ⊕

n V ⊗n. Therefore Asn = Kμn. Since
dim Asn = 1, the generating series of the ns operad As is

f As(t) =
∑

n≥1

tn = t

1 − t
.

CLASSICAL DEFINITION OF As. Under the classical definition of a nonsymmetric
operad the composition

γ : Ask ⊗ Asi1 ⊗ · · · ⊗ Asik → Asi1+···+ik

is simply given by the identification

K⊗K⊗ · · · ⊗K ∼=K, μk ⊗ μi1 ⊗ · · · ⊗ μik 
→ μi1+···+ik .

It simply follows from the composition of noncommutative polynomials.

PARTIAL DEFINITION OF As. The partial composition is given by

μm ◦i μn = μm−1+n

for any i because

x1 · · ·xi−1(xi · · ·xm−1)xm · · ·xm−1+n = x1 · · ·xm−1+n.

QUADRATIC PRESENTATION. The free ns operad on a binary operation μ = μ2
is spanned by the planar binary trees (each internal vertex being labeled by μ):
T (Kμ)n = K[PBTn] (cf. Sect. 5.9.5). The space T (Kμ)3 = K[PBT3] is 2-

dimensional and spanned by the trees and corresponding to the

operation μ ◦ (μ, id) and μ ◦ (id,μ) respectively. The relator is the associator

as := −μ ◦ (μ, id) + μ ◦ (id,μ) ∈ T (Kμ)(2),

i.e. − + . There is an identification

As = P(Kμ,Kas) = T (Kμ)/(as)

where (as) is the operadic ideal generated by the associator. In the quotient any tree
with n leaves gives rise to the same element, that we have denoted by μn.
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9.1.3 The Operad Ass

We denote by Ass the symmetric operad encoding the category of associative al-
gebras. The categories of As-algebras and Ass-algebras are the same, that is the
category of associative algebras, since the action of Sn on Ass(n) is free (see be-
low).

The free associative algebra over the vector space V is known to be the reduced
tensor module �T (V ) = ⊕

n≥1 V ⊗n equipped with the concatenation product. It is
called the reduced tensor algebra, cf. Sect. 1.1.3. So we have Ass(V ) = �T (V ). If V

is generated by the elements x1, . . . , xn, then �T (V ) is the algebra of noncommuta-
tive polynomials in x1, . . . , xn modulo the constants: K〈x1, . . . , xn〉/K1. The com-
position γ on Ass, i.e. the map γ (V ) : �T (�T (V )) → �T (V ), is given by substitution
of polynomials: if P(X1, . . . ,Xk) is a polynomial in the variables Xi and if each Xi

is a polynomial in the variables xj , then P(X1(x1, . . . , xn), . . . ,Xk(x1, . . . , xn)) is a
polynomial in the variables xj called the composite. This composition is obviously
associative.

From the polynomial description of the free associative algebra it follows that the
space of n-ary operations is Ass(n) ∼=K[Sn] equipped with the right action given by
multiplication in Sn. The n-ary operation μσ ∈ Ass(n) corresponding to the permu-
tation σ ∈ Sn is

μσ (x1, . . . , xn) := μn(xσ−1(1), . . . , xσ−1(n)) = xσ−1(1) · · ·xσ−1(n).

Hence Ass(n) is the regular representation of Sn:

Ass(n) ⊗Sn
V ⊗n =K[Sn] ⊗Sn

V ⊗n = V ⊗n.

The composition in the operad Ass is given by the composition of polynomials. It is
induced by the maps

γ (i1, . . . , ik) : Sk × Si1 × · · · × Sik → Si1+···+ik

given by concatenation of the permutations and block permutation by the elements
of Sk . Here is an example with k = 2, i1 = 2, i2 = 3:

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 
→

1 2 3 4 5 1 2 3 4 5

([21]; [21], [231]) 
→ [54321].
The partial composition ◦i is easily deduced from the composition map γ in

the polynomial framework. It simply consists in substituting the ith variable for a
polynomial.
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As a symmetric operad, Ass is presented as Ass = T (EAss,RAss), where EAss ∼=
K[S2]. We have denoted by μ the operation corresponding to idS2 and so the other
linear generator is μ(12). Under our convention, these two operations correspond
to xy and yx respectively. The space of relations RAss is the sub-S3-module of
T (EAss)

(2) generated by μ ◦1 μ − μ ◦2 μ. It is clear that T (EAss)
(2) is 2 × 6 = 12-

dimensional spanned by the elements (μ◦1 μ)σ , (μ◦2 μ)σ , for σ ∈ S3 and that RAss

is 6-dimensional spanned by the elements (μ ◦1 μ − μ ◦2 μ)σ , for σ ∈ S3.
The characteristic of Ass in the algebra of symmetric functions is

F Ass = 1 + p1 + · · · + pn
1 + · · · = 1

1 − p1

where p1 is the classical power symmetric function (cf. for instance [Mac95]).

9.1.4 Other Presentations of Ass

There are other presentations of the symmetric operad Ass which might be useful in
certain problems. We will give only two of them. The second one has the advantage
of showing that the Poisson operad is the limit, in a certain sense, of a family of op-
erads all isomorphic to Ass (so Pois is a “tropical” version of Ass), see Sect. 13.3.4.

First, we take a generating operation μn of arity n for any n ≥ 2. We take the
following relations:

μn ◦ (μi1, . . . ,μin) = μi1+···+in

for any tuples (i1, . . . , in). Then obviously the associated operad is As. Considering
the analogy with the presentation of groups, it is like presenting a group by taking
its elements as generators and taking the table of multiplication as relations.

Here is another presentation in the symmetric framework.

Proposition 9.1.1 (Livernet–Loday, unpublished). If 2 is invertible in K, then the
operad Ass admits the following presentation:

– a symmetric operation x · y and an antisymmetric operation [x, y] as generating
operations,

– the following relations:

[x · y, z] = x · [y, z] + [x, z] · y,

(x · y) · z − x · (y · z) = [
y, [x, z]].

Proof. The equivalence between the two presentations is simply given by

x · y = xy + yx,

[x, y] = xy − yx,
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and, of course, 2xy = x · y +[x, y]. Observe that the Jacobi relation need not be put
as an axiom in this presentation since it is a consequence of the second axiom and
the commutativity property of the operation x · y. �

For more information about the operation x · y see Sect. 13.10.

9.1.5 The Cooperad As¡ and Koszul Duality

We compute the Koszul dual ns cooperad As¡ of the ns operad As. By definition As
is the quotient of the free ns operad generated by one binary operation μ, that is
T (Kμ), quotiented by the operadic ideal generated by the relator

as := −μ ◦ (μ, id) + μ ◦ (id,μ) ∈ T (Kμ)3.

Let us denote by μc := sμ. So μc is a cooperation of arity 2 and degree 1. The
cofree ns cooperad over M = (0,0,Kμc,0, . . .), that is T c(Kμc), can be identified,
as a graded vector space, with the vector space spanned by the planar binary trees,
cf. Appendix C.1.1. The isomorphism

ψ :K[PBTn] ∼= T c
(
Kμc

)
n

is given by

ψ(|) := id, ψ
( ) := μc, ψ(r ∨ s) := (

μc;ψ(r),ψ(s)
)
.

For instance we have ψ( ) = (μc;μc,μc).

Since the generator μc has homological degree 1, there are signs involved in the
explicitation of ψ , see Sect. 5.9.7. Let us consider the map ϕ : Sn−1 → PBTn con-
structed in Appendix C.1.3 which follows from the identification of the symmetric
group Sn−1 with the set of planar binary trees with levels P̃BTn. We denote by t̃

the permutation in the pre-image of t ∈ PBTn which corresponds to the planar bi-
nary tree with upward levels. It means that, among the leveled trees representing
t , we choose the tree whose levels of the vertices, which are at the same level in

t , go upward when moving from left to right. For instance, if t = , then

t̃ = and the permutation is [231].

Observe that the element t̃ is easy to interpret in terms of the construction de-
scribed in Sect. 5.5.5. We define

μc
1 := |, μc

2 := , and μc
n := −

∑

t∈PBTn

sgn(t̃)t for n ≥ 3.
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In low dimension we get

μc
3 = − + ,

μc
4 = − + − − + .

In this example, the involved permutations are [123], [213], [231], [312], [321]. The
degree of μc

n is n − 1.

Lemma 9.1.2. Let � be the decomposition map of the cofree ns cooperad
T c(Kμc). We have

�
(
μc

n

) =
∑

i1+···+ik=n

(−1)
∑

(ij +1)(k−j)
(
μc

k;μc
i1
, . . . ,μc

ik

)
.

Proof. This is a tedious but straightforward computation. The necessity of the sign
sgn(t̃) in the definition of μc

n comes from the formula for � in the graded framework
(cf. Sect. 5.8.6), which is

�(r ∨ s) = ( r ∨ s) + (−1)|t (2)||s(1)|(t (1) ∨ s(1); t (2), s(2)
)
.

Here are examples of this computation in low dimension under the convention
�(t) = (|; t) + �̄(t) + (t; | · · · |):

�̄

( )

=
(

; |
)
,

�̄

( )

=
(

; |
)
.

As a consequence we get �̄(μc
3) = −(μc

2;μc
2,μ

c
1) + (μc

2;μc
1,μ

c
2).

Then

�̄

( )

=
(

; | |
)

+
(

; |
)

,

�̄

( )

=
(

; | |
)

−
(

; |
)

,

�̄

( )

= −
(

; | |
)

+
(

; | |
)

+
(

;
)
,

�̄

( )

=
(

; | |
)

+
(

; |
)

,

�̄

( )

=
(

; | |
)

+
(

; |
)

.
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As a consequence we get

�̄
(
μc

4

) = (
μc

2;μc
3,μ

c
1

) + (
μc

3;μc
2,μ

c
1,μ

c
1

) − (
μc

3;μc
1,μ

c
2,μ

c
1

)

+ (
μc

2;μc
1,μ

c
3

) + (
μc

3;μc
1,μ

c
1,μ

c
2

) − (
μc

2;μc
2,μ

c
2

)
. �

Proposition 9.1.3. The ns cooperad As¡ ⊂ T c(Kμc) is such that

(
As¡)

n
=Kμc

n.

Proof. By Lemma 9.1.2 the elements μc
n, n ≥ 1, span a sub-cooperad of T c(Kμc).

Since μc
3 = as, this sub-cooperad is universal among the sub-cooperads whose pro-

jection to the quotient space T c(Kμc)(2)/Kas vanishes. Therefore this cooperad is
As¡. �

Proposition 9.1.4. The quadratic ns operad As is self-dual for Koszul duality, that is

As! = As.

Proof. Recall from Sect. 7.7.1 that As! = (S c ⊗
H

As¡)∗. Denoting by the gener-

ator and the cogenerator (depending on the context) the relation (or the corelation)
can be written:

As! − by definition,

S c ⊗
H

As¡ + by sign rule,

(
S c ⊗

H
As¡

)∗ − by linear duality.

Hence As! = As.
Of course we could as well apply directly Theorem 7.7.1 as follows. Since, in

the presentation of As, the space of weight two operations in the free operad is
of dimension 2 and the dimension of the space of relators R is of dimension 1,
the orthogonal space R⊥ is of dimension 1. Since R is orthogonal to itself for the

quadratic form
[

1 0
0 −1

]
, it follows that R⊥ = R and therefore As! = As. �

We now study the Koszulity of the ns operad As.

Theorem 9.1.5. The ns operad As is a Koszul ns operad.

Proof. We give here a proof based on the analysis of the Koszul complex. Let us
describe the Koszul complex of the ns operad As following p. 70. We consider the
arity n sub-chain complex of As¡ ◦ As, that is (As¡ ◦ As)n. It is a finite complex of
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length n which reads:

As¡
n ⊗ As1 ⊗ · · · ⊗ As1 → ·· · →

⊕
As¡

k ⊗ Asi1 ⊗ · · · ⊗ Asik → ·· · → As¡
1 ⊗ Asn

where i1 + · · · + ik = n and ij ≥ 1. Observe that each component As¡
k ⊗ Asi1 ⊗

· · · ⊗ Asik is one-dimensional.
In order to describe the boundary map we need to compute (Id◦(1)κ)(�(1)(μ

c
k)).

It is the coproduct of μc
k , but keeping on the right side only the terms which involve

copies of id and one copy of μc (identified to μ under κ). So we get
∑

j ±μc
k−1 ◦

(id, . . . , id,μ, id, . . . , id). Then we have to apply the associativity isomorphism to
∑

j

±(
μc

k−1 ◦ (id, . . . , id,μ, id, . . . , id)
) ◦ (μi1, . . . ,μik )

to get
∑

j

±μc
k−1 ◦ (

id◦μi1, . . . , id◦μij−1,μ ◦ (μij ,μij+1), id◦μij+2, . . . , id◦μik

)

=
∑

j

±μc
k−1 ◦ (μi1, . . . ,μij−1,μij +ij+1 ,μij+2, . . . ,μik ).

There is no ambiguity to denote the generator of As¡
k ⊗ Asi1 ⊗ · · · ⊗ Asik by

[i1, . . . , ik], and we get

d
([i1, . . . , ik]

) =
∑

j

±[i1, . . . , ij + ij+1, . . . , ik].

The boundary map of this Koszul complex can be identified with the boundary
map of the augmented chain complex (shifted by one) of the cellular simplex �n−2:

Cn−2
(
�n−2) → ·· · → Ck−2

(
�n−2) → ·· · → C0

(
�n−2) → K.

Compared to the classical way of indexing the vertices of the simplex �n−2 by
integers 0, . . . , n− 1, the vertex number i corresponds to the chain [i + 1, n− i − 1]
in (As¡ ◦ As)n. Here is the simplex �2:

[13]

[112] [121]

[1111]

[22] [31]

[211]
Since the simplex is contractible, its associated augmented chain complex is

acyclic for any n ≥ 2. For n = 1 the complex reduces to the space As¡
1 ⊗As1 = K. �
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REMARK. We could have also use the poset method (cf. Sect. 8.7), to prove the
acyclicity of the Koszul complex. Or (see below), we could compute the Hochschild
homology of the free algebra �T (V ) by providing an explicit homotopy.

Modulo all the apparatus, the shortest proof is the rewriting system method (cf.
Sect. 8.1) since the only critical monomial is ((xy)z)t and the confluent property is
immediate to verify:

– on one hand ((xy)z)t 
→ (x(yz))t 
→ x((yz)t) 
→ x(y(zt)) (left side of the pen-
tagon),

– one the other hand ((xy)z)t 
→ (xy)(zt) 
→ x(y(zt)) (right side of the pentagon).

((xy)z)t

(x(yz))t

(xy)(zt)

x((yz)t)

x(y(zt))

9.1.6 Hochschild Homology of Associative Algebras

Since we know that As! = As, we can describe explicitly the chain complex CAs• (A),
which gives the operadic homology of the associative algebra A, cf. Sect. 12.1.2.
Let us introduce the boundary map

b′ : A⊗n → A⊗n−1

by the formula

b′(a1, . . . , an) =
n−1∑

i=1

(−1)i−1(a1, . . . , aiai+1, . . . , an).

It is well known (and easy to check from the associativity of the product) that (b′)2 =
0. The resulting chain complex (A⊗•, b′) is the nonunital Hochschild complex, up
to a shift of degree.

Proposition 9.1.6. The operadic chain complex of the associative algebra A is the
nonunital Hochschild complex of A:

CAs
•−1(A) = (

A⊗•, b′).
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Therefore the operadic homology of an associative algebra is the Hochschild ho-
mology up to a shift of degree.

Proof. By definition (Sect. 12.1.2) the complex CAs• (A) is given by

· · · → As¡
n ⊗ A⊗n → ·· · → As¡

1 ⊗ A.

Since As¡
n is one-dimensional, we get A⊗n in degree n − 1. The boundary map is

obtained as follows (cf. Sect. 6.6): we consider all the possibilities of “splitting” μc
n

using one copy of μc on the right-hand side (infinitesimal decomposition map), that
is

�(1)

(
μc

n

) =
∑

±μc
n−1 ⊗ (

id, . . . , id,μc, id, . . . , id
)

and then we apply the element (id, . . . , id,μc, id, . . . , id) to (a1, . . . , an) after re-
placing the cooperation μc by the operation μ under κ . This gives precisely the
boundary map b′ since μ(ai, ai+1) = aiai+1. �

9.1.7 Homology and Cohomology with Coefficients

In the literature, homology and cohomology with coefficients appear most of the
time for unital associative algebras. The comparison between unital and nonunital
cases is not completely straightforward, see for instance [LQ84, Lod98] Sect. 1.4.
We describe briefly the unital case.

In order to construct a homology or cohomology with coefficients one needs a
notion of “representation” (the coefficients). In the associative case it is the notion of
bimodule because of the following fact. For any (unital) algebra A and any abelian
extension

0 → M → A′ → A → 0

the space M is a (unital) bimodule over A. Recall that here A′ is a (unital) algebra
and the product of two elements of M is 0 (abelian hypothesis).

Let A be a unital associative algebra and M a unital A-bimodule. The Hochschild
complex C•(A,M) is defined as Cn(A,M) := M ⊗ A⊗n and the boundary map
b : Cn(A,M) → Cn−1(A,M) is given by the formula b = ∑i=n

i=0(−1)idi , where

d0(m,a1, . . . , an) := (ma1, a2, . . . , an),

di(m,a1, . . . , an) := (m,a1, . . . aiai+1, . . . , an), 1 ≤ i ≤ n − 1,

dn(m,a1, . . . , an) := (anm,a1, . . . , an−1).

The homology groups of C•(A,M) are called the Hochschild homology groups
of the unital algebra A with coefficients in the bimodule M .

The Hochschild complex of cochains C•(A,M) is defined as Cn(A,M) :=-
Hom(A⊗n,M) and the boundary map b : Cn(A,M) → Cn+1(A,M) is given by
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the formula b = ∑i=n
i=0(−1)idi , where

d0(f )(a1, . . . , an+1) := a1f (a2, . . . , an+1),

di(f )(a1, . . . , an+1) := f (a1, . . . aiai+1, . . . , an+1), 1 ≤ i ≤ n,

dn(f )(a1, . . . , an+1) := f (a1, . . . , an)an+1.

The homology groups of C•(A,M) are called the Hochschild cohomology
groups of the unital algebra A with coefficients in the bimodule M .

These groups appear as obstruction groups in many questions and there is an
extensive literature about them (for a first approach see for instance [Lod98]). For
instance there is a classification theorem for abelian extensions of A by M :

H 2(A,M) ∼= E xt (A,M).

Similarly there is a classification theorem for crossed modules of A by M :

H 3(A,M) ∼= X Mod(A,M).

Historically these complexes were constructed by hand by Hochschild. Of course
they can be viewed as coming from the operad theory. The advantage is to produce
similar complexes and theorems for Koszul operads without having to do ad hoc
constructions and proofs in each case. This is the theme of Chap. 12.

9.1.8 Other Homology Theories for Associative Algebras

The operad As has more structure: it is a cyclic operad (cf. Sect. 13.14.6). As
such there exists a homology theory for associative algebras which takes into ac-
count this extra structure, it is called cyclic homology. It was first devised by Alain
Connes [Con85] and further studied in [LQ84] and [Tsy83] (see also the monograph
[Lod98]), mainly for unital associative algebras. Cyclic homology is encoded by the
cyclic category, denoted by �C. This notation accounts for the structure of this cat-
egory which is made up of the simplicial category � and the cyclic groups. There
is a similar category, where the cyclic groups are replaced by the symmetric groups:
�S, cf. [FL91, Lod98]. It turns out that �S is precisely the category associated to
the operad uAs encoding the category of unital associative algebras by the method
in Sect. 5.4.1, as shown by Pirashvili in [Pir02a], cf. Example 2.

The operad As can also be considered as a permutad (cf. Sect. 13.14.7). We refer
to [LR12] for more on this theme.

9.2 Associative Algebras Up to Homotopy

In the 1960s, Jim Stasheff introduced in [Sta63] the notion of A∞-algebra, also
called “associative algebra up to strong homotopy”. The idea is that associativity of
the binary operation m2 is satisfied only “up to higher homotopy”. It has a meaning
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algebraically whenever one works with a chain complex (A,d). It means that the
associator of m2 is not zero, but there exists a ternary operation m3 (the homotopy)
such that

m2 ◦ (m2, id)−m2 ◦ (id,m2) = d ◦m3 +m3 ◦ (
(d, id, id)+ (id, d, id)+ (id, id, d)

)
.

But then, mixing m2 and m3 leads to introduce a 4-ary operation m4 satisfying
some relation, and so on, and so on. The whole algebraic structure, discovered by
Jim Stasheff, is encoded into the notion of A∞-algebra, that we recall below. The
relevant operad, denoted A∞, can be described in terms of the Stasheff polytope.

On the other hand the operad theory gives an algorithm to construct explicitly
the minimal model of As, which is the dgns operad As∞ := �As¡. It gives rise to
the notion of “homotopy associative algebra”. It turns out that, not surprisingly,
A∞ = As∞.

9.2.1 A∞-Algebra [Sta63]

We have seen in Sect. 2.2.1 that any associative algebra A gives rise to a dga coal-
gebra (�T c(sA), d), which is its bar construction. It is natural to look for a converse
statement. Given a graded vector space A together with a codifferential m on the
cofree coalgebra �T c(sA), what kind of structure do we have on A? The answer is
given by the notion of A∞-algebra. Here are the details.

By definition an A∞-algebra is a graded vector space A = {Ak}k∈Z equipped
with a codifferential map m : �T c(sA) → �T c(sA) (so |m| = −1, m◦m = 0) and m is
a coderivation, cf. Sect. 1.2.7. Observe that, since �T c(sA) is cofree, the coderivation
m is completely determined by its projection proj ◦ m : �T c(sA) → sA, that is by a
family of maps A⊗n → A,n ≥ 1.

To any A∞-algebra (A,m), we associate an n-ary operation mn on A as the
following composite:

(sa1) · · · (san) (sA)⊗n
m|

sA

∼=

sa

a1 · · ·an A⊗n mn

∼=

A a

where m| is the restriction of m to (sA)⊗n composed with the projection onto sA.
The map mn is of degree n − 2 since the degrees of the involved maps in the com-
position are n − 1 and −1 respectively.

Lemma 9.2.1. An A∞-algebra is equivalent to a graded vector space A = {Ak}k∈Z
equipped with an n-ary operation

mn : A⊗n → A of degree n − 2 for all n ≥ 1,
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which satisfy the following relations:

(reln)
∑

p+q+r=n

(−1)p+qrmk ◦p+1 mq = 0, n ≥ 1,

where k = p + 1 + r .

Proof. First, recall that

mk ◦p+1 mq = mk ◦ (
id⊗p ⊗ mq ⊗ id⊗r

)
.

Let (A,m) be an A∞-algebra as defined above. Since m is a coderivation, and since
�T c(sA) is cofree over sA, by Proposition 1.2.2, m is completely determined by its
composite

�T c(sA)
m−→ �T c(sA)

proj−−→ sA.

The condition m2 = 0 is equivalent to the vanishing of the composite

�T c(sA)
m−→ �T c(sA)

m−→ �T c(sA) � sA.

For each n ≥ 1, its restriction to the n-tensors gives the relation (rel)n. The signs
come from the fact that we establish the formula on A⊗n instead of (sA)⊗n. �

We sometimes write mA
n in place of mn if it is necessary to keep track of the

underlying chain complex. Let us make the relation (reln) explicit for n = 1,2,3:

m1 ◦ m1 = 0,

m1 ◦ m2 − m2 ◦ (m1, id) − m2 ◦ (id,m1) = 0,

m1 ◦ m3 + m2 ◦ (m2, id) − m2 ◦ (id,m2)

+ m3 ◦ (m1, id, id) + m3 ◦ (id,m1, id) + m3 ◦ (id, id,m1) = 0.

9.2.2 Homotopy and Operadic Homology of an A∞-Algebra

Let A be an A∞-algebra, e.g. a dga algebra. The relation (rel)1 implies that (A,m1)

is a chain complex. We prefer to denote the differential m1 by −d and consider an
A∞-algebra as being a chain complex (A,d) equipped with higher operations, see
below. The homology of the underlying chain complex (A,d) is called the homotopy
of the A∞-algebra A. The homology of the chain complex (�T c(sA),mA) is called
the operadic homology of the A∞-algebra A. If A is a dga algebra, then the operadic
homology is the Hochschild homology (of the nonunital dga algebra).

Proposition 9.2.2. The homotopy of an A∞-algebra is a graded associative alge-
bra.
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Proof. This is an immediate consequence of the relations (rel2) and (rel3) recalled
in the introduction of this section and in Sect. 9.2.4. �

A finer statement can be found in Corollary 9.4.5.

9.2.3 Examples

We already mentioned that a (nonunital) dga algebra (A,d) is an example of A∞-
algebra. Indeed it suffices to take m1 = −d , m2 = μ and mn = 0 for n ≥ 3. Observe
that if A is a dga algebra, then (T c(sĀ),m) is precisely the cobar construction on A.

When A = C•
sing(X) is the singular cochain complex of a topological space X,

it is endowed with an associative cup product. This associative algebra structure
transfers to an A∞-algebra structure on the singular cohomology H •

sing(X). These
operations were originally defined by Massey in [Mas58].

The singular chains on a based loop space �X of the connected topological space
X is an A∞-algebra, cf. [Sta63].

9.2.4 The Operad A∞

Let A be an A∞-algebra. For n = 1 the relation (reln) reads as follows:

m1 ◦ m1 = 0.

So d := m1 is a differential on A. The derivative (cf. p. 25) of the map mn is

∂(mn) := dmn − (−1)n−2mn

(
(d, id, . . . , id) + · · · + (id, . . . , id, d)

)
.

Using this notation the relations (reln) become:
(
rel′2

) : ∂(m2) = 0,
(
rel′3

) : ∂(m3) = −m2 ◦ (m2, id) + m2 ◦ (id,m2),
(
rel′4

) : ∂(m4) = −m2 ◦ (m3, id) + m3 ◦ (m2, id, id) − m3 ◦ (id,m2, id)

+ m3 ◦ (id, id,m2) − m2 ◦ (id,m3).

More generally, for any n ≥ 2, the relation (reln) can be written as:

(rel′n) : ∂(mn) = −
∑

n = p + q + r
k = p + 1 + r
k > 1, q > 1

(−1)p+qrmk ◦ (
id⊗p ⊗ mq ⊗ id⊗r

)
.

Therefore an A∞-algebra can be seen as a chain complex (A,d) equipped with
linear maps: mn : (A,d)⊗n → (A,d), for n ≥ 2, satisfying some relations. In other
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words, an A∞-algebra is an algebra over some dgns operad, denoted A∞. The gen-
erating operations of this operad correspond to the operations mn ∈ End(A), n ≥ 2,
of degree n − 2. So, the nonsymmetric operad A∞ is free over these operations:
A∞ = T (⊕n≥2Kμn). The differential structure is precisely given by the relations
(rel′n), n ≥ 2.

Here we work in the homological framework (degree of d is −1), but one can
of course define A∞-algebras in the cohomological framework, see for instance
[Kel01].

9.2.5 The Associahedron (Stasheff Polytope)

Let us recall from Appendix C that the associahedron K n is a cell complex of
dimension n homeomorphic to a ball, whose cells are in bijection with the planar
trees with n+2 leaves. The chain complex associated to K n is denoted by C•(K n).
A tree t ∈ PTn+2,n−k+1 has n + 2 leaves and (n − k + 1) internal vertices. It gives
a chain in Ck(K n). Since K n is contractible, the homology of C•(K n) is trivial
except in dimension 0, where it is K. We will identify the dg vector space of n-ary
operations of the operad A∞ (and of the operad As∞) to C•(K n−2).

Proposition 9.2.3. The dg operad A∞ encoding the category of A∞-algebras is
a dgns operad whose dg module of n-ary operations is the chain complex of the
associahedron:

(A∞)n = C•
(
K n−2).

Proof. Since, as an operad, A∞ is free with one generator in each arity n ≥ 2, there
is an isomorphism (A∞)n ∼= K[PTn], where PTn is the set of planar trees with n

leaves. The generating operation mn corresponds to the n-corolla under this isomor-
phism. On the other hand, the cells of the associahedron K n−2 are in bijection with
PTn, whence the identification of vector spaces K[PTn] = C•(K n−2). The bound-
ary map of (A∞)n is given by formula (rel′n). Once translated in terms of cells of
the associahedron it gives precisely the boundary of the big cell of K n−2 since the
facettes are labeled by the planar trees with two internal vertices. �

EXAMPLES. (rel′3) and (rel′4):

∂

( )

= − + ,

∂

( )

= − + − + − .
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Fig. 9.1 Interval

Fig. 9.2 Pentagon

These formulas are the algebraic translation of the cell boundaries shown in
Figs. 9.1 and 9.2.

Proposition 9.2.4. The operad As∞ := �As¡ is a dgns operad whose space of n-ary
operations is the chain complex of the associahedron:

(
�As¡)

n
= (As∞)n = C•

(
K n−2).

Proof. We work in the nonsymmetric operad context. As a ns operad As∞ =
T (s−1As¡) is free on As¡, that is free on the generating operations μ̃c

n := s−1μc
n,n ≥

2 of degree n − 2. Hence, as in the previous case, there is an isomorphism of vector
spaces (As∞)n ∼=K[PTn] = C•(K n−2). By definition of the cobar construction, the
boundary map on T (sAs¡)n is induced by the cooperad structure of As¡, more pre-
cisely by the infinitesimal decomposition map �(1), cf. Sect. 6.1.4. Let us show that
this boundary map is precisely the boundary map of the chain complex C•(K n−2).

As a linear generator of T (s−1As¡)n the element μ̃c
n corresponds to the big cell

(n-corolla) t (n). The degree of μ̃c
n is n− 2. It is mapped to μn ∈ (A∞)n. The image

of μc
n under the map �(1) is

�(1)

(
μc

n

) =
∑

p+1+r=k

(−1)(q+1)rμc
k ⊗ (

id, . . . , id
︸ ︷︷ ︸

p

,μc
q, id, . . . , id

︸ ︷︷ ︸
r

)
,

for n = p+q + r by Lemma 9.1.2. Under the isomorphism T (sAs¡)n ∼= C•(K n−2)

this is precisely the boundary map of the associahedron. The evaluation of the
boundary on the other cells follows from this case. �

Corollary 9.2.5. The categories of A∞-algebras and As∞-algebras are the same:

A∞ = As∞ := �As¡.

Proof. From the description of the operad A∞ given in Proposition 9.2.3 and the
description of the operad As∞ given in Proposition 9.2.4 it is clear that we have
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a bijection

(A∞)n = K[PTn] = (As∞)n

which is compatible with the operad structure. Moreover both differentials coincide
with the differential map in the chain complex of the associahedron, therefore the
two dgns operads are identical. �

9.2.6 Infinity-Morphism

Let A and B be two A∞-algebras. An ∞-morphism f : A � B (sometimes called
A∞-morphism in the literature) is by definition a morphism of dga coalgebras

f : (�T c(sA),mA
) → (�T c(sB),mB

)
.

We adopt the notation � to avoid confusion between morphism and ∞-morphism
between two A∞-algebras. Since �T c(sB) is cofree, an ∞-morphism is equivalent
to a map �T c(sA) → sB , that is a family of maps of degree n − 1

fn : A⊗n → B, n ≥ 1,

such that f1 is a chain map, i.e. dB ◦ f1 = f1 ◦ dA and such that
∑

p+1+r=k
p+q+r=n

(−1)p+qrfk ◦ (
IdA, . . . , IdA︸ ︷︷ ︸

p

,mA
q , IdA, . . . , IdA︸ ︷︷ ︸

r

)

−
∑

k≥2
i1+···+ik=n

(−1)εmB
k ◦ (fi1, . . . , fik ) = ∂(fn),

in Hom(A⊗n,B), for n ≥ 2. The sign ε is given by the formula

ε = (k − 1)(i1 − 1) + (k − 2)(i2 − 1) + · · · + 2(ik−2 − 1) + (ik−1 − 1).

Under the tree notation, this relation becomes

∂(fn)

=
∑

(−1)p+qr

mA
q

fk

−
∑

(−1)ε

fi1 fi2 · · · fik

mB
k

From the definition, it follows that the composite of two ∞-morphisms is again
an ∞-morphism. The category of A∞-algebras equipped with the ∞-morphisms is
denoted ∞-A∞-alg. It is a good exercise to write down the explicit formulas for

(g ◦ f )n in terms of the fi and gi for A
f� B

g� C.
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An ∞-morphism f is called an ∞-quasi-isomorphism when f1 is a quasi-
isomorphism. One can prove that ∞-quasi-isomorphisms are homotopy invertible.
We refer to Chap. 10 for details on ∞-morphisms.

9.2.7 A∞-Coalgebra

By definition a conilpotent A∞-coalgebra in the monoidal category of sign-graded
vector spaces is a graded vector space C equipped with a degree −1 square zero
derivation on the tensor algebra:

� : �T (
s−1C

) → �T (
s−1C

)
.

Since the tensor algebra is free, the differential map � is completely determined by
a family of maps

�n : C → C⊗n

of degree −n + 2 for all n ≥ 1. These maps satisfy the following relations
∑

p+q+r=n

(−1)p+qr
(
id⊗p ⊗ �q ⊗ id⊗r

)
�k = 0,

where k = p + 1 + q .
In the case where �n = 0 for n > 2, C is a noncounital dga coalgebra and

(T (s−1C),�) is its bar construction.

9.3 The Bar–Cobar Construction on As

In this section, we study the bar–cobar construction on the ns operad As, that is the
dgns operad �B As. We give a geometric interpretation of the operad monomor-
phism As∞ = �As¡ ��B As.

9.3.1 The NS Operad �B As

The operad �B As is a dgns operad which is free as a ns operad. We will describe
the chain complex (�B As)n in terms of the cubical realization K n−2

cub of the as-
sociahedron (Boardman–Vogt W -construction, see also [BM03a]), as described in
Appendix C.2.2.

Proposition 9.3.1. The chain complex (�B As)n is precisely the chain complex of
the cubical realization of the associahedron:

(�B As)n = C•
(
K n−2

cub

)
.
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Fig. 9.3 The boundary map
of C•(K 1

cub)

Proof. In Appendix C.2.2, it is shown that the chain complex C•(K n−2
cub ) is spanned

by the circled trees with n leaves:

C•
(
K n−2

cub

) =K[CPTn].

We construct a map (�B As)n → K[CPTn] as follows. Since �B As = T (s−1 ×
B As) ∼= T (s−1T c(sAs)), a linear generator is a planar tree whose vertices are
labeled by linear generators of B As. Since B As is spanned by planar trees, we
get trees of trees, that is circled trees. The trees inside the circles are elements
of B As.

We need now to show that the differential structure of �B As corresponds ex-
actly to the boundary map of the chain complex C•(K n−2

cub ). By definition (cf.
Sect. 6.5), the boundary map in �B As has two components: d1 coming from the
boundary map of B As and d2 coming from the cooperad structure of B As. Since
B As is dual to �As¡, it follows that (B As)n can be identified with the chain com-
plex C•(K n−2).

On the geometric side, the boundary map of C•(K n−2
cub ) is made up of two com-

ponents d ′
1 and d ′

2. Let us focus on the top-cells of C•(K n−2
cub ), which are encoded

by planar binary trees with one circle. Its boundary is made up of two kinds of ele-
ments: those which have only one circle (and one edge less), and those which have
two circles (and the same number of edges). The elements of the first type account
for d1 and the elements of the second type account for d2. Under the identification
of linear generators we verify that d1 = d ′

1 and d2 = d ′
2. An example is given in

Fig. 9.3. �

Proposition 9.3.2. There is a sequence of dgns operad morphisms

As∞ = �As¡ ∼−→ �B As
∼−→ As

which are quasi-isomorphisms. In arity n they are given by the quasi-isomorphisms

C•
(
K n−2) ∼−→ C•

(
K n−2

cub

) ∼−→ Kμn

where the first one is given by the cellular homeomorphism K n−2 → K n−2
cub and

the second one is the augmentation map.

Proof. The augmentation map �As¡ → As has a dual which is As¡ → B As. Taking
the cobar construction gives �As¡ → �B As. Under the identification with the chain
complex of the two cellular decompositions of the associahedron, we get, in arity
n + 2, a chain map C•(K n) → C•(K n

cub). It is given by the identification of K n

with itself, i.e. the big cell of K n is sent to the sum of the top-cells K n
cub.
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The augmentation map �As¡ → As is obtained by taking the homology. Since
the associahedron is a convex polytope, it is homeomorphic to a ball and so its
homology is the homology of a point. In degree 0, each vertex (i.e. each planar
binary tree) is sent to μn, the generator of Asn. �

9.4 Homotopy Transfer Theorem for the Operad As

The notion of associative algebra is not stable under homotopy equivalence in gen-
eral. Indeed, if V is a chain complex homotopy equivalent to a dga algebra A, the
product induced on V is not necessarily associative. However the algebra structure
on A can be transferred to an A∞-algebra structure on V . We will see that, more
generally, an A∞-algebra structure on A can be transferred to an A∞-algebra struc-
ture on V . So the category of A∞-algebras is stable under homotopy equivalence.
An interesting particular case is when V is the homotopy of A, that is V = H•(A,d).
Then, we obtain some new operations on H(A) which generalize the higher Massey
products.

9.4.1 Transferring the Algebra Structure

Let (A,dA) be a dga algebra. We suppose that (V , dV ) is a homotopy retract of the
chain complex (A,dA):

(A,dA)h

p

(V, dV ),
i

IdA −ip = dAh + hdA,

the map i : V → A being a quasi-isomorphism. From this hypothesis it follows
immediately that the homology of (V , dV ) is the same as the homology of (A,dA)

and so H•(V , dV ) is a graded associative algebra. It is natural to ask oneself what
kind of algebraic structure there exists on V which implies that its homology is a
graded associative algebra. One can define a binary operation m2 : V ⊗ V → V by
the formula

m2(u, v) := pμ
(
i(u), i(v)

)

where μ stands for the product in A:

i i

m2 = μ

p
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It is straightforward to see that there is no reason for m2 to be associative. How-
ever the obstruction to associativity is measured as follows.

Lemma 9.4.1. The ternary operation m3 on V defined by the formula

m3(u, v,w) := −pμ
(
i(u),hμ

(
i(v), i(w)

)) + pμ
(
hμ

(
i(u), i(v)

)
, i(w)

)
,

i i i

μ

m3 = + h

μ

p

i i i

μ

− h

μ

p

satisfies the relation

∂(m3) = −m2 ◦ (m2, id) + m2 ◦ (id,m2)

(as already mentioned ∂(m3) := dV m3 + m3dV ⊗3 ).

Proof. In order to ease the computation, we write the proof in the case of a deforma-
tion retract. So we think of V as a subspace of A (whence suppressing the notation
i), so p becomes an idempotent of A satisfying dh = id−p − hd . Let us compute
∂(pμ(hμ(i, i), i)), that is ∂(pμ(hμ, id)) under our convention:

∂
(
pμ(hμ, id)

)

= dpμ(hμ, id) + [(
pμ

(
hμ(d, id), id

)) + (
pμ

(
hμ(id, d)

)
, id

) + (
pμ(hμ,d)

)]

= pμ(dhμ, id) − pμ(hμ,d) + [· · · ]
= pμ(μ, id) − pμ(pμ, id)

− (
pμ

(
hμ(d, id), id

)) − (
pμ

(
hμ(id, d)

)
, id

) − pμ(hμ,d) + [· · · ]
= pμ(μ, id) − m2(m2, id).

Similarly one gets

∂
(
pμ(id, hμ)

) = p
(
μ(id,μ)

) − m2(id,m2).

Since μ is associative the terms pμ(μ, id) and pμ(id,μ) are equal, and we get
the expected formula. �

9.4.2 Geometric Interpretation of m3

Let us consider the cubical decomposition of the interval, whose cells are labeled
by the “circled trees”, cf. Appendix C.2.2.
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The two summands of m3 correspond to the two 1-cells of this cubical decom-
position and the formula ∂(m3) = m2 ◦ (id,m2) − m2 ◦ (m2, id) is simply the com-
putation of this boundary.

9.4.3 Higher Structure on the Homotopy Retract

Lemma 9.4.1 suggests that (V , d) inherits an A∞-structure from the associative
structure of (A,d). The geometric interpretation shows us the route to construct mn

explicitly: use the cubical decomposition of the Stasheff polytope:

mn :=
∑

t∈PBTn+2

±mt,

where, for any planar binary tree (pb tree) t , the n-ary operation mt is obtained by
putting i on the leaves, μ on the vertices, h on the internal edges and p on the root,
as in the case

m3 = −m + m .

Theorem 9.4.2 (T. Kadeishvili [Kad80]). Let

(A,dA)h

p

(V, dV ),
i

IdA −ip = dAh + hdA,

be a retract. If (A,dA) is a dga algebra, then (V , dV ) inherits an A∞-algebra struc-
ture {mn}n≥2, which extends functorially the binary operation of A.

Proof. The proof is analogous to the proof of Lemma 9.4.1. It is done by induction
on the size of the trees. �

This statement is a particular case of Theorem 9.4.7 which gives an even more
precise result.
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Corollary 9.4.3. Let

(A,dA)h

p

(V, dV ),
i

i = quasi-isomorphism, IdA −ip = dAh + hdA,

be a homotopy retract (e.g. deformation retract). The homotopy class of the dga
algebra (A,d) (considered as an A∞-algebra) is equal to the homotopy class of the
A∞-algebra (V , d).

Lemma 9.4.4. Let K be a field. Under a choice of sections any chain complex
admits its homology as a deformation retract.

Proof. Since we are working over a field, we can choose sections in the chain com-
plex (A,d) so that An

∼= Bn ⊕ Hn ⊕ Bn−1 where Hn is the homology and Bn the
space of boundaries in degree n. The boundary map is 0 on Bn ⊕ Hn and identi-
fies Bn−1 with its copy in An−1. The homotopy h is 0 on Hn ⊕ Bn−1 and identifies
Bn with its copy in An+1. These choices make (H•(A),0) a deformation retract
of (A,d):

Id −ip dh hd

Bn Id 0 Id 0
Hn Id − Id 0 0
Bn−1 Id 0 0 Id

�

Corollary 9.4.5 (T. Kadeishvili [Kad80]). For any dga algebra (A,d), there is an
A∞-algebra structure on H•(A,d), with 0 differential, such that these two A∞-
algebras are homotopy equivalent.

Proof. We apply Theorem 9.4.2 to the deformation retract constructed in Lem-
ma 9.4.4. The homotopy equivalence of these two A∞-algebras follows from the
existence of an ∞-quasi-isomorphism. �

9.4.4 MacLane Invariant of a Crossed Module

Though it was constructed decades before m3, the MacLane invariant of a crossed
module can be interpreted as a nonlinear variation of m3. Let us recall the frame-
work. A crossed module is a group homomorphism μ : M → N together with an
action of N on M , denoted nm, such that the following relations hold

a) μ
(
nm

) = nμ(m)n−1,

b) μ(m)m′ = mm′m−1.
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Let Q := Cokerμ and L := Kerμ. From the axioms it is easily seen that L is
abelian and equipped with a Q-module structure. In [ML95, Chap. IV, Sect. 8],
MacLane constructed an element α ∈ H 3(Q,L) as follows. Let P be the image
of μ. We choose set-theoretic sections i and j such that i(1) = 1, j (1) = 1:

L M
μ

N Q.

i

P
j

They permit us to construct set bijections: N ∼= P × Q and M ∼= L × P . Hence,
viewing the crossed module as a nonabelian chain complex (so μ plays the role

of the differential) its homology L
0−→ Q can be seen as a (nonlinear) deformation

retract:

M

p

μ

L

0

N

h

Q

i

where p and h are the following composites:

p : M ∼= L × P � L, h : N ∼= P × Q � P
j−→ M.

For u,v ∈ Q we define

ϕ(u, v) := h
(
i(u)i(v)

) = j
(
i(u)i(v)i(uv)−1) ∈ M,

so that i(u)i(v) = μ(ϕ(u, v))i(uv). We compute as in the linear case:
(
i(u)i(v)

)
i(w) = μ

(
ϕ(u, v)

)
μ

(
ϕ(uv,w)

)
i(uvw),

i(u)
(
i(v)i(w)

) = μ
(
uϕ(v,w)

)
μ

(
ϕ(u, vw)

)
i(uvw).

Comparing these two equalities, it follows that there exists a unique element
m3(u, v,w) ∈ L = Kerμ such that

uϕ(v,w)ϕ(u, vw) = m3(u, v,w)ϕ(u, v)ϕ(uv,w) ∈ M.

MacLane showed that this element is a 3-cocycle and that its cohomology class in
H 3(Q,L) does not depend on the choice of the sections i and j . Moreover any mor-
phism of crossed modules inducing an isomorphism on the kernel and the cokernel
gives rise to the same invariant.

The topological interpretation is the following, cf. [Lod82]. The crossed mod-
ule μ : M → N defines a simplicial group whose classifying space is a topological
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space with only π1, equal to Q, and π2, equal to L. So its homotopy type is com-
pletely determined by the Postnikov invariant which is an element of H 3(BQ,L) =
H 3(Q,L). It is precisely the MacLane invariant. So, as in the linear case, the triple
(Q,L,m3) completely determines the homotopy type of the crossed module.

9.4.5 Massey Product

We know that the homology of a dga algebra (A,d) is a graded associative algebra
H•(A). Corollary 9.4.5 tells us that we have more structure: for any n ≥ 3 there
is an n-ary operation mn which is nontrivial in general. They are called Massey
products because they generalize the classical Massey products constructed in al-
gebraic topology (cf. [Mas58, Kra66, May69]). Let X be a connected topological
space, and let C•

sing(X) be the singular cochain complex with homology H •
sing(X).

The product structure is given by the cup product of cochains. Then the triple
Massey product 〈x, y, z〉 is classically defined for homology classes x, y, z such
that x ∪ y = 0 = y ∪ z as follows. Let us still denote by x, y, z the cycles represent-
ing the homology classes. Because of the hypothesis there exist chains a and b such
that (−1)|x|x ∪ y = da, (−1)|y|y ∪ z = db. Then the chain

〈x, y, z〉 := (−1)|x|x ∪ b + (−1)|a|a ∪ z

is a cycle. Its homology class is well-defined in the quotient H/(xH + Hz) and
called the triple Massey product of x, y, z.

The prototypical example of a nonzero triple Massey product is given by the
Borromean rings. We consider the complement (in the 3-sphere) of the Borromean
rings:

Each “ring” (i.e. solid torus) determines a 1-cocycle: take a loop from the base-
point with linking number one with the circle. Since any two of the three circles are
disjoint, the cup product of the associated cohomology classes is 0. The nontriviality
of the triple Massey product of these three cocycles detects the entanglement of the
three circles (cf. [Mas58, Sta97b]).
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Lemma 9.4.6. For any cohomology classes x, y, z such that x ∪ y = 0 = y ∪ z the
triple Massey product is given by the operation m3:

〈x, y, z〉 = −(−1)|x|+|y|m3(x, y, z).

Proof. Let (A,d) be a dga algebra. We denote by ∪ its product (formerly denoted
by μ) as well as the product induced on homology (formerly denoted by m2). We
use the homotopy equivalence data described in the proof of Lemma 9.4.5. If x, y, z

are cycles and a, b chains such that (−1)|x|x ∪ y = d(a), (−1)|y|y ∪ z = d(b), then
we can choose a and b such that hd(a) = a, hd(b) = b. Therefore one has

−m3(x, y, z) = pμ
(
i(x), hμ

(
i(y), i(z)

)) − pμ
(
hμ

(
i(x), i(y)

)
, i(z)

)

= x ∪ h(y ∪ z) − h(x ∪ y) ∪ z

= (−1)|y|x ∪ hd(b) − (−1)|x|hd(a) ∪ z

= (−1)|y|x ∪ b − (−1)|x|a ∪ z

= (−1)|x|+|y|〈x, y, z〉. �

9.4.6 A Quadruple Massey Product

Let x, y, z, t be cycles in the dga algebra (A,d) such that there exist chains a, b, c

satisfying

(−1)|x|xy = d(a), (−1)|y|yz = d(b), (−1)|z|zt = d(c),

and such that there exist chains α, β , β ′, γ satisfying:

(−1)|a|az = d(α), (−1)|x|xb = d(β),

(−1)|b|bt = d
(
β ′), (−1)|y|yc = d(γ ).

One can check that the element

〈x, y, z, t〉 := (−1)|x|αt + (−1)|x|βt + (−1)|x|ac + (−1)|x|xβ ′ + (−1)|x|xγ

is a cycle and defines a homology class in H•(A,d). The five elements of this sum
correspond to the five 0-cells of the cellular decomposition of the pentagon, cf.
Fig. 9.2. In fact one can check that

〈x, y, z, t〉 = ±m4(x, y, z, t).

9.4.7 Homotopy Invariance of A∞-Algebras

The homotopy transfer theorem for dga algebras can be generalized into a homotopy
transfer theorem for A∞-algebras.
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Theorem 9.4.7. [Kad82] Let

(A,dA)h

p

(V, dV ),
i

i = quasi-isomorphism, IdA −ip = dAh + hdA,

be a homotopy retract. If (A,dA) is an A∞-algebra, then (V , dV ) inherits a A∞-
algebra structure {mn}n≥2 such that the quasi-isomorphism i extends to an ∞-
quasi-isomorphism.

Proof. In the proof of Lemma 9.4.1 we used the fact that the binary product μ = μ2
on A is associative. Suppose now that it is only associative up to homotopy, that is,
there exists a ternary operation μ3 on A such that

∂(μ3) = −μ2 ◦ (id,μ2) + μ2 ◦ (μ2, id).

Then one needs to modify the ternary operation m3 on V by adding the extra
term pμ3i:

m3 := −pμ2
(
i, hμ2(i, i)

) + pμ2
(
hμ2(i, i), i

) + pμ3(i, i, i).

After this modification we get the formula

∂(m3) = −m2 ◦ (m2, id) + m2 ◦ (id,m2)

as in Lemma 9.4.1. Observe that the term which has been added corresponds to the
corolla of the figure in Sect. 9.4.2.

Similarly the higher order operations mn are defined by using not only the binary
trees, but all the planar trees, with vertices indexed by the operations μn given by the
A∞-algebra structure of A. The proof is done by induction on the size of the trees,
see for instance [KS00] by Kontsevich and Soibelman or [Mer99] by Merkulov.
It uses the fact that the homotopy retract determines a morphism of dg cooperads
B EndA → B EndV . The A∞-structure of A is encoded by a morphism of dg coop-
erads As¡ → B EndA. By composition we get the expected A∞-structure on V . �

This result is a particular case of a more general statement valid for any Koszul
operad. Its complete proof is given in Theorem 10.3.1.

9.4.8 Variations on the Homotopy Transfer Theorem

There are various proofs and several generalizations of the Homotopy Transfer
Theorem. The proof given here follows the method of Kontsevich and Soibelman
[KS00], see also [Mer99] by Sergei Merkulov. Another method, closer to the origi-
nal proof of Kadeishvili, consists in applying the Perturbation Lemma, see [HK91].

In [Mar06], Martin Markl showed that p can also be extended to an ∞-quasi-
isomorphism, and h to an ∞-homotopy.
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Table 9.1 The binary
operation m2 on (α,β)

α\β a∗ b∗ c∗ d∗ e∗ u∗ v∗ w∗ x∗ y∗ Z∗

a∗ a∗ u∗ v∗ Z∗
b∗ b∗ w∗
c∗ c∗ x∗
d∗ d∗ y∗
e∗ e∗

u∗ u∗ Z∗ Z∗
v∗ v∗ −Z∗
w∗ w∗ Z∗
x∗ x∗
y∗ y∗

Z∗ Z∗

9.5 An Example of an A∞-Algebra with Nonvanishing m3

Let us consider the cochain complex of the Stasheff polytope K 2 (pentagon).
We denote by a∗, . . . , u∗, . . . ,Z∗ the cochains which are linear dual of the cells
a, . . . , u, . . . ,Z of K 2:

a

u v

b

w Z c

d

y x

e

We make it into an A∞-algebra as follows. First, we put mn = 0 for any n ≥ 4.
Second, m3 is zero except on the triple of 1-cochains (u∗,w∗, y∗) where

m3
(
u∗,w∗, y∗) = Z∗.

Third, the binary operation m2 on (α,β) is given by Table 9.1.
In Table 9.1, empty space means 0. This defines a cohomologically graded A∞-

algebra: |∂| = +1 and |m3| = +1. We leave it to the reader to verify the relations,
that is

∂(m3) = m2 ◦ (m2, id) − m2 ◦ (id,m2)

and, since ∂(m4) = 0,

m2(m3, id) − m3(m2, id, id) + m3(id,m2, id) − m3(id, id,m2) + m2(id,m3) = 0.
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For the first relation, it suffices to evaluate the two sides on (u∗,w∗, y∗). For the
second relation there are six cases to consider (one per face of the cube).

The topological interpretation of these formulas is better seen on the dual state-
ment, that is C•(K 2) is an A∞-coalgebra. The coproducts �2 and �3 applied to
the 2-cell Z are shown in the following pictures:

aZ

uw

uy vx

wy

Ze

u

w

y

The identity
(
�3, id

)
�2 − (

�2, id, id
)
�3 + (

id,�2, id
)
�3 − (

id, id,�2)�3 + (
id,�3)�2 = 0

which is equivalent to
(
�2, id, id

)
�3 + (

id, id,�2)�3 = (
�3, id

)
�2 + (

id,�2, id
)
�3 + (

id,�3)�2

amounts to the identification of the following unions of cells:

=
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More generally, the cochain complex C•(K n) can be shown to be an A∞-
algebra for any n, cf. [Lod12].

9.6 Résumé

9.6.1 The Operad Ass

Symmetric operad Ass encoding associative algebras: Ass(n) =K[Sn].
Nonsymmetric operad As encoding associative algebras: Asn =Kμn.
Composition rule: μm ◦i μn = μm−1+n.

9.6.2 Homotopy Associative Algebras

A an A∞-algebra: (T c(sA),mA) = dg coalgebra, equivalently, the chain complex
(A,d) is equipped with an n-ary operation mn : A⊗n → A,n ≥ 2, satisfying the
relations:

∂(mn) =
∑

(−1)p+qrmk ◦ (
id⊗p ⊗ mq ⊗ id⊗r

)
.

Dgns operad A∞: A∞ = �As¡, (A∞)n = C•(K n−2).

9.6.3 Cobar–Bar Construction

(
�B As¡)

n
= C•

(
K n−2

cub

)
.

9.6.4 Homotopy Transfer Theorem

If (V , d) is a homotopy retract (e.g. deformation retract) of (A,d), then any A∞-
algebra structure on (A,d) can be transferred through explicit formulas to an A∞-
algebra structure on (V , d), so that they represent the same homotopy class. Whence
the slogan

“A∞-algebras are stable under homotopy equivalence”.

EXAMPLE. If (A,d) is a dga algebra, then H•(A) is an A∞-algebra with trivial
differential. This structure induces the Massey products.
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9.7 Exercises

Exercise 9.7.1 (Explicit homotopy). Construct the homotopy from Id to 0 for the
Koszul complex (As

¡ ◦ As, dκ).

Exercise 9.7.2 (Acyclicity again). Consider the small chain complex of length one

C• : · · · → 0 → C1 =K
id−→ C0 =K.

Show that the arity n part of the Koszul complex of As is isomorphic to (C•)⊗n.
Deduce another proof of the acyclicity of the Koszul complex of As. Compare with
Exercise 3.8.7.

Exercise 9.7.3 (An explicit computation). Let As∗ be the linear dual cooperad of
As. Compute explicitly �(μc

4), �̄(μc
4) and �(1)(μ

c
4).

Exercise 9.7.4 (Totally diassociative algebras [Zha12]). A totally diassociative al-
gebra is defined by two binary operations x ∗ y and x · y such that any composition
is associative:

(x ∗ y) ∗ z = x ∗ (y ∗ z),

(x · y) ∗ z = x · (y ∗ z),

(x ∗ y) · z = x ∗ (y · z),
(x · y) · z = x · (y · z).

We denote by As(2) the ns operad encoding these algebras. Show that As(2)
n is of

dimension 2n−1. Show that As(2) is self-dual for Koszul duality and is Koszul (apply
the rewriting method). Describe explicitly the chain complex (As(2)∞ )n in terms of the
associahedron. What is an As(2)∞ -algebra?

Exercise 9.7.5 (Higher Massey products �). In [Kra66], David Kraines defines
higher Massey products for families of cochains a = {a(i, j)}1≤i≤j≤k , in a cochain
complex, satisfying

d
(
a(i, j)

) =
j−1∑

r=i

(−1)|a(i,r)|a(i, r)a(r + 1, j)

as

c( a ) :=
k−1∑

r=1

(−1)|a(1,r)|a(i, r)a(r + 1, k).

Interpret this construction and its properties in terms of A∞-algebras. Compare with
[May69, BM03b].
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Exercise 9.7.6 (Classifying space of a crossed module �). Let G· be a simplicial
group whose homotopy groups are trivial except π0G = Q and πnG = L for some
fixed n. Show that one can construct an analog mn : Gn → L of MacLane invariant,
which is a cocycle and gives a well-defined element in Hn(Q,L) (cohomology of
the discrete group Q with values in the Q-module L). Show that it is the Postnikov
invariant of the classifying space B|G·|.
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