
Chapter 4
Methods to Prove Koszulity of an Algebra

“Là, tout n’est qu’ordre et beauté, Luxe, calme et volupté.
Charles Baudelaire

After having introduced the notion of Koszul algebra in the preceding chapter, we
give here methods to prove that an algebra is Koszul together with constructions to
produce new Koszul algebras.

We begin by describing a short algorithmic method, called rewriting method. It
amounts to choosing first an ordered basis of the generating space. Then, we inter-
pret the relations as rewriting rules, replacing each leading term by a sum of lower
terms, with respect to a suitable ordering on monomials. If applying the rewriting
rules to the critical monomials leads to the same element (confluence property), then
the algebra is Koszul.

This method is the simplest case of a general one, which relies on an extra data:
a decomposition of the generating space V ∼= V1 ⊕ · · · ⊕ Vk of a quadratic algebra
A = A(V,R) and a suitable order on the set of tuples in {1, . . . , k}. Such a data
induces a filtration on the algebra A. When the associated graded algebra grA is
Koszul, the algebra A itself is also Koszul. So the problem reduces to the graded
algebra grA, whose product is simpler than the product of A. What about its under-
lying module? We have a tentative quadratic presentation Å := A(V,Rlead)� grA,
where the module Rlead is made up of the leading terms of the relations. The Dia-
mond Lemma asserts that it is enough to prove the injectivity of this map in weight 3
and that the algebra Å is Koszul, to get the isomorphism of algebras Å ∼= grA. It
implies that A is Koszul. This method reduces the problem to proving the Koszulity
of the simpler quadratic algebra Å.

The particular case where each component Vi is one-dimensional gives rise to
the notion of Poincaré–Birkhoff–Witt (PBW) basis of a quadratic algebra. Here the
quadratic algebra Å is a quadratic monomial algebra, which is always a Koszul al-
gebra, thereby simplifying the theory. For instance, any quadratic algebra admitting
a PBW basis is a Koszul algebra. In this case, we refine even further the Diamond
Lemma to give a simple way to check whether a quadratic algebra admits a PBW
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90 4 Methods to Prove Koszulity of an Algebra

basis. This is the aforementioned rewriting method. We also introduce the notion of
quadratic Gröbner basis for the ideal (R) and prove that it is equivalent to a PBW
basis for the quotient algebra T (V )/(R).

The last method uses a family of lattices associated to any quadratic data. The
Backelin criterion states that these lattices are distributive if and only if the quadratic
data is Koszul.

Finally, we introduce the two Manin products, white � and black �, in the cate-
gory of quadratic data. They are sent to one another under the Koszul dual functor
and they preserve the Koszul property by Backelin’s criterion. This allows us to con-
struct a new chain complex, called the Manin complex, on the white product A�A!
of a quadratic algebra and its Koszul dual algebra (not coalgebra). Dually, the black
product A�A! is endowed with a Hopf algebra structure.

This chapter is essentially extracted from Priddy [Pri70], Bergman [Ber78],
Backelin [Bac83], Manin [Man87, Man88] and Polishchuk–Positselski [PP05].

4.1 Rewriting Method

In this section, we give a short algorithmic method, based on the rewriting rules
given by the relations, to prove that an algebra is Koszul. We give no proof here
since this method is a particular case of a more general theory explained in detail in
the next two sections.

Let A(V,R) be a quadratic algebra, for instance

A
(
v1, v2, v3;v2

1 − v1v2, v2v3 + v2v2, v1v3 + 2v1v2 − v2
1

)
.

Step 1. We choose a basis {vi}i=1,...,k for the space of generators V . We consider
the ordering v1 < v2 < · · · < vk .

Step 2. We consider the induced basis of V ⊗2, which we order lexicographically:

v1v1 < v1v2 < · · · < v1vk < v2v1 < · · · .

(One can choose other suitable orders, like

v1v1 < v1v2 < v2v1 < v1v3 < v2v2 < v3v1 < v1v4 < · · ·
see the discussion at the end of Sect. 4.2.1.)

We choose a basis of R. Any one of its elements is of the form

r = λvivj −
∑

(k,l)<(i,j)

λ
i,j
k,lvkvl, λ �= 0.

The monomial vivj is called the leading term of r . We can always change this basis
for one with the following normalized form. First, the coefficient of the leading term
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Fig. 4.1 Pentagonal diamond v1v2v3

−v1v2v2

v1v1v3

−v1v1v2

−v1v1v1

can always be supposed to be 1 since K is a field. Then, we can always suppose that
two different relators in the basis have different leading terms and that the sum in
the right-hand side of any relator contains no leading term of any other relator.

In the example at hand, the space of relations R admits the following normalized
basis:

{
v1v2 − (

v2
1

)
, v2v3 − (−v2v2), v1v3 − (−v2

1

)}
.

The three leadings terms are v1v2, v2v3 and v1v3.

Step 3. These choices provide rewriting rules of the form

vivj �→
∑

(k,l)<(i,j)

λ
i,j
k,lvkvl,

leading term �→ sum of lower terms,

for any relator r in the normalized basis of R. A monomial vivj vk is called critical
if both vivj and vjvk are leading terms. Any critical monomial gives rise to a graph
made up of the successive application of the aforementioned rewriting rule.

In the example at hand, we have the following rewriting rules

v1v2 �→ v2
1, v2v3 �→ −v2v2, v1v3 �→ −v2

1 .

There is only one critical monomial: v1v2v3.

Step 4. Any critical monomial vivj vk gives a graph under the rewriting rules. It
is confluent, if it has only one terminal vertex.

In the example at hand, the only critical monomial induces the confluent graph
shown in Fig. 4.1.

Conclusion. If each critical monomial is confluent, then the algebra A is Koszul.
This assertion is a consequence of the following result.
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Theorem 4.1.1 (Rewriting method). Let A = A(V,R) be a quadratic algebra. If
its generating space V admits an ordered basis, for which there exists a suitable
order on the set of tuples, such that every critical monomial is confluent, then the
algebra A is Koszul.

Proof. This result is Theorem 4.3.7. �

In this case, the algebra A is equipped with an induced basis sharing nice prop-
erties, called a PBW basis, see Sect. 4.3. For other examples, like the symmetric
algebra, and for more details, we refer the reader to Sect. 4.3.5.

4.2 Reduction by Filtration

The idea of the “reduction by filtration” method can be shortened as follows: when a
quadratic algebra A = A(V,R) admits a filtration with nice properties, there exists
a morphism of algebras

Å := A(V,Rlead)� grA := gr
(
A(V,R)

)

from the quadratic algebra defined by the associated graded presentation to the as-
sociated graded algebra. If the quadratic algebra Å is Koszul and if this map is an
isomorphism (in weight 3), then the algebra A itself is Koszul. This reduces the
problem of the Koszulity of the algebra A to the algebra Å. Koszulity of Å is easier
to check in general.

4.2.1 Extra Ordered Grading

The aim of this section is to endow the free algebra T (V ) with an extra grading,
which refines the weight grading, such that the product is strictly increasing: a < a′,
b < b′ implies ab < a′b′.

Let A = A(V,R) = T (V )/(R) be a quadratic algebra, i.e. R ⊂ V ⊗2. We suppose
here that V is equipped with an extra grading V ∼= V1 ⊕ · · · ⊕ Vk , which is finite.
This induces the following grading on T (V ):

V ⊗n ∼=
⊕

(i1,...,in)∈{1,...,k}n
Vi1 ⊗ · · · ⊗ Vin,

under the lexicographical order

0 < 1 < · · · < k < (1,1) < (1,2) < · · · < (k, k) < (1,1,1) < (1,1,2) < · · · ,

where K1 is in degree 0. This lexicographical order induces a bijection of totally
ordered sets between the set of tuples in {1, . . . , k} and the set of integers N. For any
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tuple (i1, . . . , in) sent to p ∈N, we will denote the sub-space Vi1 ⊗· · ·⊗Vin of V ⊗n

simply by T (V )p . Under this bijection, there exists a map χ which corresponds to
the concatenation of tuples:

((i1, . . . , in), (j1, . . . , jm))

∼=

(i1, . . . , in, j1, . . . , jm)

∼=

(p, q)
χ

χ(p,q).

Under the lexicographical order on N × N, the map χ : N × N → N is strictly in-
creasing. The concatenation product on the free associative algebra T (V ) satisfies

μ : T (V )p ⊗ T (V )q → T (V )χ(p,q).

Hence, this grading (N, χ) refines the weight grading of T (V ). Notice that the map
χ defines a monoid structure (N, χ,0).

Associated to this grading, we consider the increasing and exhaustive filtration
FpT (V ) := ⊕p

q=0 T (V )q on T (V ). The image of this filtration under the canonical
projection T (V ) � A defines an increasing filtration

F0A ⊂ F1A ⊂ F2A ⊂ · · · ⊂ FpA ⊂ Fp+1A ⊂ · · ·

of the underlying module of A. The strictly increasing map χ allows us to define a
χ -graded product on the associated graded module grp A := FpA/Fp−1A:

μ̄ : grp A ⊗ grq A → grχ(p,q) A.

This algebra is denoted by grχ A, or simply by grA, when there is no possible
confusion. Since the extra grading refines the weight grading, the algebra grA is
also weight graded.

There are two ways of generalizing the aforementioned arguments. First, one
can allow k to be infinite, that is V can admit an extra grading labeled by N:
V ∼= ⊕

i∈N Vi . Then, one need not work only with the lexicographical order. Let
I := {1, . . . , k} denote the labeling set of the extra grading on V . We consider any
bijection

⊔
n≥0 In ∼= N. This endows the set of tuples

⊔
n≥0 In with a total order

isomorphic to N. To define the graded algebra grA, it is enough to require that
the map χ , or equivalently the concatenation product, be strictly increasing. In this
case, we call the total order on the set of tuples a suitable order. For instance, when
k = ∞, we can consider the following suitable total order

0 < 1 < 2 < (1,1) < 3 < (1,2) < (2,1) < (1,1,1) < 4 < (1,3) < (2,2) < · · · ,

isomorphic to N.
Such a data, the decomposition of V and the suitable order on tuples, is called an

extra ordered grading.
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4.2.2 The Koszul Property

Recall from Sect. 3.4.3 that a connected weight graded algebra is called Koszul if
the cohomology of its bar construction is concentrated in syzygy degree 0.

Proposition 4.2.1. Let A = A(V,R) be a quadratic algebra equipped with an extra
ordered grading. If the algebra grA is Koszul, then the algebra A is also Koszul.

Proof. We consider the bar construction B−•A as a chain complex with the opposite
of the syzygy degree (see Sect. 3.3.1). We extend the filtration on the free algebra
T (V ) to its bar construction BT (V ) as follows:

FpBT (V ) := {
sx1 ⊗ · · · ⊗ sxm | x1x2 . . . xm ∈ FpT (V )

}
.

This filtration is stable under the differential map. The canonical projection T (V ) �
A induces an epimorphism of dg coalgebras BT (V ) � BA between the bar con-
structions. The image under this map of the preceding filtration defines a filtration
FpBA of the bar construction of A. The first page of the associated spectral se-
quence E0

pq
∼= FpB−p−qA/Fp−1B−p−qA is isomorphic to the bar construction of

the associated graded algebra grA:

(
E0

pq, d0) ∼= B−p−q
p grA,

where the index p refers to the total grading induced by the finer grading on the bar
construction, see Fig. 4.2.

Fig. 4.2 The page E0 of the
spectral sequence
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This latter algebra being Koszul, the homology of its bar construction is con-
centrated in syzygy degree p + q = 0. This implies the collapsing of the spectral
sequence at rank 1. The filtration being bounded below and exhaustive, it converges
by Theorem 1.5.1:

E∞
pq

∼= E1
pq

∼= grp H−p−q
(
B•A

) = 0, for p + q �= 0.

Since the homology of the bar construction of A is concentrated in syzygy degree
0, the algebra A is a Koszul algebra. �

Thanks to the finer filtration, we have reduced the Koszul problem for the algebra
A to the algebra grA, whose product is simpler. But the underlying module of grA
might be difficult to describe. However, Exercise 3.8.1 implies that if the algebra
grA is Koszul, then it admits a quadratic presentation.

4.2.3 Quadratic Analog and Leading Space of Relations

By the universal property of the free algebra, there exists a morphism of algebras
T (V ) � grA, which is an epimorphism of χ -graded algebras. Hence, it also pre-
serves the weight grading. It is obviously an isomorphism in weights 0 and 1. Let
us denote by Rlead the kernel of its restriction to V ⊗2. We consider the quadratic
algebra defined by

Å := T (V )/(Rlead).

Let us now make Rlead explicit. Any element r ∈ R decomposes according to the
finer grading as r = X1 + · · · + Xp , with Xi ∈ V ⊗2 and where Xp �= 0 is the term
of greatest grading. We call Xp the leading term of r . The space Rlead is spanned
by the leading terms of all the elements of R. Hence, we call it the leading space of
relations.

Proposition 4.2.2. Let A = A(V,R) be a quadratic algebra equipped with an extra
ordered grading. We have the following commutative diagram of epimorphisms of
χ -graded, thus weight graded, algebras

T (V )

ψ : Å = T (V )/(Rlead) grA,

where the space of relations Rlead is equal to

Rlead = 〈Xp, r = X1 + · · · + Xp︸︷︷︸
�=0

∈ R〉 = 〈
Leading Term (r), r ∈ R

〉
.
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By definition, the canonical projection of weight graded algebras ψ : Å � grA
is bijective in weights 0, 1 and 2. Therefore the algebra Å is the best candidate
for a quadratic presentation of the weight graded algebra grA. Before studying this
situation, let us give the following straightforward but useful result.

Proposition 4.2.3. Let A = A(V,R) be a quadratic algebra equipped with an extra
ordered grading. If the algebra Å := T (V )/(Rlead) is Koszul and if the canonical
projection Å ∼= grA is an isomorphism of algebras, then the algebra A is Koszul.

Proof. In this case, the algebra grA is Koszul and we conclude with Theo-
rem 4.2.1. �

4.2.4 The Diamond Lemma

Under the assumption that the quadratic algebra Å is Koszul, the Diamond Lemma
asserts that it is enough for the canonical projection ψ : Å � grA to be injective in
weight 3, to ensure that it is an isomorphism.

Theorem 4.2.4 (Diamond Lemma for quadratic algebras). Let A = A(V,R) be a
quadratic algebra equipped with an extra ordered grading. Suppose that the qua-
dratic algebra Å := T (V )/(Rlead) is Koszul.

If the canonical projection Å� grA is injective in weight 3, then it is an isomor-
phism. In this case, the algebra A is Koszul.

Proof. We prove this theorem in two steps. We first filter the bar construction to get
an isomorphism on the level of the Koszul dual coalgebras. Then we filter the cobar
construction, in the same way, to get the final isomorphism.

Step 1. We consider the same filtration of the bar construction B−•A as in the
proof of Theorem 4.2.1. Since the canonical projection ψ is an isomorphism in
weight less than 3, the first page of the associated spectral sequence is equal to

(
E0

pq, d0) ∼= B−p−q
p grA ∼= B−p−q

p Å,

for p + q ≥ −2 (the syzygy degree being defined by the weight grading minus 1).
The algebra Å being Koszul, we get E1

pq = 0 for p + q = −1 and E1
p−p = Å

¡
p , see

Fig. 4.3.
We conclude by the same argument as in the proof of Theorem 4.2.1: the conver-

gence of the spectral sequence shows that there is an isomorphism grp A
¡ ∼= Å

¡
p .

Step 2. Dually, we apply the same method and consider the same kind of filtration
on T c(sV ) as on T (V ) and on �T c(sV ) as on BT (V ):

Fp�T c(sV ) := {
s−1x1 ⊗ · · · ⊗ s−1xm | x1x2 . . . xm ∈ FpT (V )

}
.
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Fig. 4.3 The page E1 of the
spectral sequence

Since A
¡

is a sub-coalgebra of T c(sV ), this filtration restricts to a filtration Fp�A
¡

on the cobar construction of A
¡
. We consider the cobar construction �•A

¡
with its

syzygy degree, see Sect. 3.3.2. The first page of the associated spectral sequence
E0

pq
∼= Fp�p+qA

¡
/Fp−1�p+qA

¡
is isomorphic to the cobar construction of the

Koszul dual coalgebra Å
¡
:

(
E0

pq, d0) ∼= (
�p+q grA

¡)
p

∼= (
�p+qÅ

¡)
p
.

The isomorphism between the underlying modules is induced by the aforementioned
isomorphism grp A

¡ ∼= Å
¡
p . The part d0 of the boundary map of �A

¡
is the part

which preserves the extra grading. Hence it is given by the deconcatenation of the
leading terms of the elements of A

¡
or equivalently by the coproduct of the coal-

gebra Å
¡

under the above isomorphism. This proves that d0 is in one-to-one corre-
spondence with the differential of �Å

¡
. Since the quadratic algebra Å is Koszul, the

homology of �Å
¡

is concentrated in syzygy degree p + q = 0. Therefore, E1
pq = 0

for p + q �= 0 and E1
p−p = Åp . The convergence theorem for spectral sequences

(Theorem 1.5.1) finally gives the desired isomorphism:

ψ : Åp
∼= E1

p−p
∼= E∞

p−p
∼= grp H0

(
�•A

¡) = grp A. �

Notice that in the proof, we have proved the same isomorphism of χ -graded
modules: grp A

¡ ∼= Å
¡
p , but on the level of the Koszul dual coalgebras.

4.2.5 The Inhomogeneous Case

When the associative algebra A is inhomogeneous quadratic, we choose, if possible,
a presentation A = A(V,R) with R ⊂ V ⊕ V ⊗2 satisfying conditions (ql1) and
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(ql2) of Sect. 3.6. Applying the previous propositions to the quadratic algebra qA :=
A(V,qR), we get the same kind of results.

We start with the same refining data. Let the generating module V be endowed
with an extra grading V ∼= V1 ⊕ · · · ⊕ Vk together with a suitable order on tuples.
As above, this defines a filtration of the algebra A. It induces a χ -graded algebra,
denoted grχ A, whose underlying module refines that of the weight graded algebra
grA of Sect. 3.6. This extra grading also induces a filtration on the quadratic algebra
qA and the canonical projection qA� grA refines as follows

˚qA

grχ qA
∼=

qA

grχ A
∼= grA

∼=
A,

where the vertical maps are epimorphisms of algebras and where the horizontal
maps are linear isomorphisms. The first column is made up of χ -graded algebras and
the second column is made up of weight graded algebras. We only state the last the-
orem in the inhomogeneous case, leaving the details of the other ones to the reader.

Theorem 4.2.5 (Diamond Lemma for inhomogeneous quadratic algebras). Let
A = A(V,R) be a quadratic-linear algebra with a presentation satisfying condi-
tions (ql1) and (ql2). We suppose that T (V ) comes equipped with an extra ordered
grading.

If the quadratic algebra ˚qA is Koszul and if the canonical projection ˚qA �
grχ qA is injective in weight 3, then the algebra A is Koszul and all the maps of the
above diagram are isomorphisms, in particular:

˚qA ∼= grχ qA ∼= qA ∼= grA ∼= A.

Proof. The Diamond Lemma 4.2.4, applied to the quadratic algebra qA, gives that
the algebra qA is Koszul and the isomorphism ˚qA ∼= grχ qA. It implies that the
inhomogeneous algebra A is Koszul. The last isomorphism is given by the PBW
Theorem 3.6.4. �

In this case, we can compute the Koszul dual dg coalgebra of A from the isomor-
phism of weight graded modules ( ˚qA)

¡ ∼= qA
¡ ∼= A

¡
.

4.2.6 Koszul Dual Algebra

In this section, we suppose that the generating space V is finite dimensional to
be able to consider the Koszul dual algebra A! = T (V ∗)/(R⊥), see Sect. 3.2.2. The
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extra grading on V ∼= V1 ⊕· · ·⊕Vk induces a dual grading V ∗ ∼= V ∗
k ⊕· · ·⊕V ∗

1 , that
we choose to order as indicated. To any suitable order on the tuples indexing T (V ),
we consider the locally reversed order for T (V ∗): we keep the global ordering but
completely reverse the total order on the subset of n-tuples, for any n. For example,
with the lexicographic order, it gives the following grading on T (V ∗):

T
(
V ∗)=K

⊕
V ∗

k ⊕· · ·⊕V ∗
1

⊕
V ∗

k ⊗V ∗
k ⊕· · ·⊕V ∗

1 ⊗V ∗
1

⊕
V ∗

k ⊗V ∗
k ⊗V ∗

k ⊕· · ·.

This order allows us to consider the graded algebra gr(A!), as in Sect. 4.2.1, which

comes with its quadratic analog ˚(A!) := A(V ∗, (R⊥)lead)� gr(A!).

Lemma 4.2.6. Let A = A(V,R) be a finitely generated quadratic algebra equipped
with an extra ordered grading. The isomorphism (R⊥)lead ∼= (Rlead)

⊥ of sub-

modules of (V ∗)⊗2 induces the isomorphism of quadratic algebras ˚(A!) ∼= (Å)!.

Proof. We write the proof for the lexicographic order, the general case being sim-
ilar. Let us denote Ri := Rlead ∩ T (V )k+i , for 1 ≤ i ≤ k2. Therefore, Rlead =
R1 ⊕· · ·⊕Rk2 . Since the vector space V is finite dimensional, each T (V )k+i is finite
dimensional and we can consider a direct summand R̆i such that T (V )k+i

∼= Ri ⊕R̆i .
Hence the linear dual is equal to (T (V )k+i )

∗ ∼= R⊥
i ⊕ R̆⊥

i .
By definition of Rlead, the space of relations R is linearly spanned by elements

of the form r = X1 + · · · + Xp with Xi ∈ R̆i , for 1 ≤ i < p ≤ k2 and Xp �= 0, Xp ∈
Rp . Dually, any element ρ ∈ R⊥ decomposes as ρ = Yq − Yq+1 − · · · − Yk2 with
Yq �= 0, Yq ∈ R⊥

q and Yi ∈ R̆⊥
i , for q < i ≤ k2. This implies finally the isomorphism

(R⊥)lead ∼= R⊥
1 ⊕ · · · ⊕ R⊥

k2
∼= (Rlead)

⊥. �

Proposition 4.2.7. Let A = A(V,R) be a finitely generated quadratic algebra
equipped with an extra ordered grading. Suppose that the quadratic algebra
Å := T (V )/(Rlead) is Koszul. If the canonical projection Å � grA is injective in

weight 3, then the dual canonical projection ˚(A!) ∼= gr(A!) is an isomorphism.

Proof. We pursue the proof of Theorem 4.2.4. The proper desuspension of the linear
dual of the isomorphism grp A

¡ ∼= Å
¡
p gives the isomorphism grp A! ∼= (Å)!p . We

conclude with the isomorphism of Lemma 4.2.6. �

4.3 Poincaré–Birkhoff–Witt Bases and Gröbner Bases

In this section, we study the particular case of the preceding section when the gen-
erating space V is equipped with an extra grading V ∼= V1 ⊕ · · · ⊕ Vk such that
each sub-space Vi is one-dimensional. This gives rise to the notion of Poincaré–
Birkhoff–Witt basis, or PBW basis for short. Quadratic algebras which admit such
a basis share nice properties. For instance, they are Koszul algebras.
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We introduce the equivalent notion of quadratic Gröbner basis (also called
Gröbner–Shirshov basis), which is to the ideal (R) what PBW basis is to the quotient
algebra T (V )/(R).

The notion of PBW basis comes from Sect. 5 of the original paper of S. Priddy
[Pri70]. We refer the reader to Chap. 4 of the book [PP05] for more details on the
subject.

4.3.1 Ordered Bases

We now restrict ourself to the case where the generating space V of a quadratic alge-
bra A(V,R) is equipped with an extra grading V ∼= V1 ⊕ · · · ⊕ Vk such that each Vi

is one-dimensional. This datum is equivalent to a totally ordered basis {vi}i∈{1,...,k}
of V , which is a basis labeled by a totally ordered set, by definition. Let us denote
I := {1, . . . , k} and let us use the convention I 0 := {0}. As in Sect. 4.2.1, we con-
sider the set J := ⊔

n≥0 In of tuples ī = (i1, . . . , in) in {1, . . . , k} equipped with
a suitable order, for instance the lexicographic order. With this definition, the set
{vī = vi1vi2 · · ·vin}ī∈J becomes a totally ordered basis of T (V ). In this case, we say
that T (V ) is equipped with a suitable ordered basis.

Written in this basis, the space of relations R is equal to

R =
{
λvivj −

∑

(k,l)<(i,j)

λ
i,j
k,lvkvl; λ �= 0

}
.

Proposition 4.3.1. Let A be a quadratic algebra A(V,R), with T (V ) equipped
with a suitable ordered basis {vī}ī∈J . The associated quadratic algebra Å is equal
to A(V,Rlead), with Rlead ∼= 〈vivj , (i, j) ∈ �L(2)〉, where the set �L(2) is the set of
labels of the leading terms of the relations of R.

Proof. It is a direct corollary of Proposition 4.2.2. �

Notice that the space of relations admits a normalized basis of the form

R =
〈
vivj −

∑

(k,l)/∈�L(2),(k,l)<(i,j)

λ
i,j
k,lvkvl; (i, j) ∈ �L(2)

〉
.

The algebra Å depends only on the ordered basis of V and on the suitable order
on tuples, but it is always a quadratic algebra whose ideal is generated by monomial
elements.

4.3.2 Quadratic Monomial Algebras

We introduce the notion of quadratic monomial algebra, which is the structure car-
ried by the quadratic algebra Å in the PBW bases theory.
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A quadratic monomial algebra is a quadratic algebra Å = A(V,R) = T (V )/(R)

with a (non-necessarily ordered) basis {vi}i∈I of V such that the space of relations
R is linearly spanned by a set {vivj }(i,j)∈�L(2) , where �L(2) ⊂ I 2. We denote by L(2)

the complement of �L(2) in I 2, L(2) := I 2\�L(2), which labels a basis of the quotient
Å(2) = V ⊗2/R. We set L(0) := {0} and L(1) := I . We will prove that a quadratic
monomial algebra is Koszul by making its Koszul complex explicit and by comput-
ing its homology.

Proposition 4.3.2. For any quadratic monomial algebra Å = A(V,R), the subset
L = ⊔

n∈N L(n) ⊂ J defined by

ī = (i1, . . . , in) ∈ L(n) ⇐⇒ (im, im+1) ∈ L(2), ∀1 ≤ m < n

labels a basis of the monomial algebra Å.

Though this statement is obvious, it will play a key role in the definition of PBW
bases. Dually, we make explicit a monomial basis for the Koszul dual coalgebra.

Proposition 4.3.3. For any quadratic monomial algebra Å = A(V,R), the subset
�L = ⊔

n∈N �L(n) ⊂ J defined by

ī = (i1, . . . , in) ∈ �L(n) ⇐⇒ (im, im+1) ∈ �L(2), ∀1 ≤ m < n

labels a basis of its Koszul dual coalgebra Å
¡
.

When the generating space V is finite dimensional, the Koszul dual algebra Å!
is also a monomial algebra, with presentation

Å! ∼= A
(
V ∗,R⊥)

, with R⊥ = 〈
v∗
i v∗

j , (i, j) ∈ L(2)
〉

and basis labeled by �L.

Proof. The elements snvī for ī ∈ �L(n) form a basis of (Å
¡
)(n) by the intersection

formula (Å
¡
)(n) = ⋂

i+2+j=n(sV )⊗i ⊗ s2R ⊗ (sV )⊗j of Sect. 3.1.3. �

Theorem 4.3.4. Any quadratic monomial algebra is a Koszul algebra.

Proof. By the two preceding propositions, the Koszul complex Å
¡ ⊗κ Å admits a

basis of the form skvī ⊗vj̄ with ī ∈ �L(k) and with j̄ ∈ L(l). In this basis, its boundary
map is equal to

dκ

(
skvī ⊗ vj̄

) = ±sk−1vi1 . . . vik−1 ⊗ vik vj1 . . . vjl
, when (ik, j1) ∈ L(2), and

dκ

(
skvī ⊗ vj̄

) = 0, when (ik, j1) ∈ �L(2).

In the latter case, such a cycle is a boundary since (i1, . . . , ik, j1) ∈ �L(k+1) and
dκ(sk+1vi1 . . . vik vj1 ⊗ vj2 . . . vjl

) = ±skvī ⊗ vj̄ . Finally the Koszul complex is

acyclic and the algebra Å is Koszul. �



102 4 Methods to Prove Koszulity of an Algebra

This result is a key point in the PBW basis theory. It says that when the decom-
position V ∼= V1 ⊕· · ·⊕Vk is made up of one-dimensional sub-spaces, the quadratic
analog Å is always a Koszul algebra.

4.3.3 PBW Basis

The image of the monomial basis {vī}ī∈L of Å, given in Proposition 4.3.2, under the
successive morphisms of graded modules Å � grA ∼= A provides a family of ele-
ments {aī}ī∈L, which linearly span the algebra A. When these elements are linearly
independent, they form a basis of the algebra A, called a Poincaré–Birkhoff–Witt
basis, or PBW basis for short. This condition corresponds to the bijection of the
canonical projection ψ : Å � grA. We say that an algebra A = A(V,R) admits a
PBW basis if there exists a totally ordered basis of V and a suitable order on tuples
such that the associated elements {aī}ī∈L form a basis of the algebra A.

EXAMPLE. The symmetric algebra S(v1, . . . , vk) admits the following PBW basis,
with the lexicographic order: {vν1

1 . . . v
νk

k } with ν1, . . . , νk ∈ N.

The main property of PBW bases lies in the following result.

Theorem 4.3.5. Any quadratic algebra endowed with a PBW basis is Koszul.

Proof. Since the monomial algebra Å is always Koszul by Proposition 4.3.4, it is a
direct corollary of Proposition 4.2.3. �

The existence of a PBW basis gives a purely algebraic condition to prove that an
algebra is Koszul, without having to compute any homology group.

There are Koszul algebras which do not admit any PBW basis. The quadratic
algebra A(V,R) generated by V := Kx ⊕Ky ⊕Kz with the two relations x2 − yz

and x2 + 2zy is Koszul but does not admit a PBW basis. This example comes from
Sect. 4.3 of [PP05] and is due to J. Backelin.

4.3.4 Diamond Lemma for PBW Bases

Since the canonical projection ψ : Å � grA is bijective in weights 0, 1 and 2, the
elements {aī}ī∈L(n) form a basis of A(n), for n ≤ 2. It is enough to check only the
next case, n = 3, as the following theorem shows.

Theorem 4.3.6 (Diamond Lemma for PBW bases). Let A = A(V,R) be a qua-
dratic algebra, with T (V ) equipped with a suitable ordered basis {vī}ī∈J . If the
elements {aī}ī∈L(3) are linearly independent in A(3), then the elements {aī}ī∈L form
a PBW basis of A. In that case, the algebra A is Koszul.
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Proof. It is a direct corollary of Theorems 4.3.4 and 4.2.4. �

EXAMPLE. Let us consider the quadratic algebra A := A(V,R) generated by a
two-dimensional vector space V := Kv1 ⊕ Kv2 with relation R := K(v1v2 − v2

1).
With the lexicographic order 1 < 2 < (1,1) < · · · , we have Rlead = Kv1v2,
�L(2) = {(1,2)} and L(2) = {(1,1), (2,1), (2,2)}. One easily verifies that the ele-
ments a2a2a2, a2a2a1, a2a1a1 and a1a1a1 are linearly independent in A. There-
fore, the family of monomial elements {aī}ī∈L indexed by L(n) = {(2,2, . . . ,2),
(2,2, . . . ,2,1), . . ., (1,1, . . . ,1)}, for n ∈ N, form a PBW basis of the algebra A.

COUNTER-EXAMPLE. Let us consider the same quadratic algebra with the extra
relation v2

2 − v2
1 . In this case, Rlead = Kv1v2 ⊕ Kv2

2 , �L(2) = {(1,2), (2,2)} and
L(2) = {(1,1), (2,1)}. Therefore, the monomial basis of the quadratic algebra Å is
indexed by L(n) = {(2,1, . . . ,1), (1,1, . . . ,1)}. In weight 3, the relation a1a1a1 =
a2a1a1, obtained by calculating a2a2a2 by two different methods, shows that it does
not form a PBW basis.

4.3.5 Recollection with the Classical Diamond Lemma

The aforementioned result can also be seen as a direct consequence of the classi-
cal Diamond Lemma of G.M. Bergman [Ber78], which comes from graph theory
[New42].

Let us first recall the statement. Starting from a vertex in an oriented graph, one
might have the choice of two outgoing edges. Such a configuration is called an am-
biguity in rewriting systems. An ambiguity is called solvable or confluent if, starting
from each of these two edges, there exists one path ending at a common vertex. In
this case, we get a diamond shape graph like in Fig. 4.4. Under the condition that
any path has an end (termination hypothesis), the classical Diamond Lemma asserts
that, if every ambiguity is confluent, then any connected component of a graph has
a unique terminal vertex.

The relationship with ring theory comes from the following graphical represen-
tation. We depict the elements of T (V ) by vertices of a graph with edges labeled
by the relations of R oriented from the leading term to the rest. In the case of PBW
bases, we restrict ourself to the generating relations given at the end of Sect. 4.3.1:

vivj �−→
∑

(k,l)∈L(2),(k,l)<(i,j)

λ
i,j
k,lvkvl, (i, j) ∈ �L(2).

EXAMPLE. For instance, in the symmetric algebra

S(v1, v2, v3)

:= A
({v1, v2, v3}, {r12 = v2v1 − v1v2, r23 = v3v2 − v2v3, r13 = v3v1 − v1v3}

)

(see Fig. 4.4).
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Fig. 4.4 Hexagonal diamond v3v2v1

v3r12r23v1

v2v3v1

v2r13

v3v1v2

r13v2

v2v1v3

r12v3

v1v3v2

v1r23

v1v2v3

In this example, there are two ways (ambiguity) of rewriting the monomial
v3v2v1, which finally end up on the same element (confluence). Notice that this
diamond is exactly the Yang–Baxter equation.

Therefore, the connected graphs depict the successive relations applied to ele-
ments in A(n). The terminal vertices correspond to linear combinations of monomi-
als labeled by elements of L(n); there is no more leading term of any relation inside
them. Having two different terminal vertices would imply that the two associated
elements are equal in A. Therefore, the set L labels a PBW basis of the algebra A if
and only if every connected graph has a unique terminal vertex. The PBW basis is
then made up of the labels of these terminal vertices, like the element v1v2v3 in the
above example.

To prove the Diamond Lemma for PBW bases from the classical Diamond
Lemma, one has just to prove that any path is finite, which is given by the bounded
below suitable order, and that any ambiguity is confluent. There are here only two
types of ambiguities: the square type ambiguities where one applies two relations to
two distinct sub-monomials, of the same monomial or of two different monomials
of a sum, and the ones starting from a sub-monomial of length 3, where one either
applies a relation to the two first elements or to the two last elements. The first type
is obviously confluent. The confluence of the second type of ambiguities is precisely
given by the assumption that the elements labeled by L(3) are linearly independent.
These weight 3 monomials vivj vk are called critical. They are such that vivj and
vjvk are both leading terms of some relator.

Bergman in [Ber78] extended the Diamond Lemma beyond the set theoretic case
of graph theory and showed that it is enough to check the confluence condition on
monomials as the next proposition shows.

Theorem 4.3.7. Let A = A(V,R) be a quadratic algebra, with T (V ) equipped with
an extra ordered basis {vī}ī∈J . If the ambiguities coming from the critical monomi-
als are confluent, then the elements {aī}ī∈L form a PBW basis of A and A is Koszul.

Proof. The monomial elements with the second type of ambiguities are the elements
labeled �L(3). Suppose that there exists a nontrivial linear combination between ele-



4.3 Poincaré–Birkhoff–Witt Bases and Gröbner Bases 105

ments labeled by L(3). In terms of graph, it corresponds to a zig-zag like

X ← • ← • → • ← · · · ← • → • → Y,

where X = Y is the relation, with X and Y two sums of elements labeled by L(3).
Since all the ambiguities are confluent by hypothesis, we can find another zig-zag,
where the distance between X and the first ← • → is strictly less than in the first zig-
zag. By iteration, we prove the existence of a zig-zag of the shape X ← • → · · · .
Finally, by confluence, there exists an edge leaving X, which is impossible. We
conclude with the Diamond Lemma 4.3.6. �

Finally, to prove that one has a PBW basis, it is enough to draw the graphs gen-
erated by elements of �L(3) only and to show that each of them has only one terminal
vertex. We refer to the above figure for the example of the symmetric algebra. In the
counterexample of Sect. 4.3.4, the element v2v2v2 gives the following graph

v2v2v2

v1v1v2 v2v1v1

v1v1v1

We have finally proved here the rewriting method Theorem 4.1.1 given in
Sect. 4.1.

4.3.6 Product of Elements of a PBW Basis

The canonical projection ψ : Å � A is an epimorphism of graded modules, but
not of algebras in general. Therefore, the product of two elements of the generating
family {aī}ī∈L is not always equal to an element of this family, but to a sum of lower
terms, as the following proposition shows.

Proposition 4.3.8. The elements {aī}ī∈L satisfy the following property: for any pair
ī, j̄ ∈ L, if (ī, j̄ ) /∈ L the product aīaj̄ in A can be written as a linear combination
of strictly lower terms labeled by L:

aīaj̄ =
∑

l̄∈L,l̄<(ī,j̄ )

λ
ī,j̄

l̄
al̄ ,

with λ
ī,j̄

l̄
∈ K.
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Proof. The proof is done by a simple induction argument with the suitable order on
tuples. �

In the example of Sect. 4.3.4, we have (a2a1)(a2a1) = a2a1a1a1. The original
definition of a PBW basis given by Priddy in [Pri70] is a basis made up of a family of
monomial elements {aī}ī∈L of A labeled by a set L ⊂ J , which satisfies the property
of Proposition 4.3.8 and: any ī = (i1, . . . , in) ∈ L if and only if (i1, . . . , im) ∈ L and
(im+1, . . . , in) ∈ L for any 1 ≤ m < n.

We leave it to the reader to check that this definition of a PBW basis is equivalent
to the one given in Sect. 4.3.3.

4.3.7 Gröbner Bases

In this section, we introduce the notion of (noncommutative) Gröbner basis for an
ideal I of the free algebra, see [Buc06]. In the quadratic case, when I = (R), it is
equivalent to a PBW basis for the quotient algebra A = T (V )/(R).

Any element P in T (V ) is a linear combination of monomials. When T (V ) is
equipped with a suitable ordered basis, we denote by Plead the leading term of P .
For any subset M ⊂ T (V ), we consider the set made up of the leading terms of
any element of M and we denote it by Lead(M). Under this notation, the space of
relations Rlead of Proposition 4.3.1 is equal to the linear span of Lead(R): Rlead =
〈Lead(R)〉.

A (noncommutative) Gröbner basis of an ideal I in T (V ) is a set G ⊂ I which
generates the ideal I , i.e. (G) = I , such that the leading terms of G and the leading
terms of the elements of I generate the same ideal: (Lead(G)) = (Lead(I )).

Proposition 4.3.9. Let A = A(V,R) be a quadratic algebra such that T (V ) is
equipped with a suitable ordered basis {vī}ī∈J . The elements {al̄}l̄∈L form a PBW
basis of A if and only if the elements

{
vivj −

∑

(k,l)∈L(2),(k,l)<(i,j)

λ
i,j
k,lvkvl

}

(i,j)∈�L(2)

,

spanning R, form a Gröbner basis of the ideal (R) in T (V ).

Proof. (⇒) When L labels a PBW basis, the elements

{
vī −

∑

l̄∈L,l̄<ī

λī

l̄
vl̄

}

ī∈J\L
,

form a linear basis of (R). The leading terms of (R) are Lead(R) = {Kvī}ī∈J\L and

Lead(vivj − ∑
(k,l)∈L(2),(k,l)<(i,j) λ

i,j
k,lvkvl) = vivj . Condition (2) implies that ī =
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(i1, . . . , in) ∈ J\L if and only if there exists 1 ≤ m < n such that (im, im+1) ∈ �L(2).
Therefore, the two following ideals are equal (vivj , (i, j) ∈ �L(2)) = (vī , ī ∈ J\L).

(⇐) We show that any l̄ ∈ L, al̄ is not equal in A to a linear combination of
strictly lower terms labeled by L. Suppose that there is an l̄ ∈ L such that al̄ =
∑

k̄∈L,k̄<l̄ λ
l̄

k̄
ak̄ , with λī

l̄
∈K. This is equivalent to vl̄ −

∑
k̄∈L,k̄<l̄ λ

l̄

k̄
vk̄ ∈ (R), whose

leading term is vl̄ . By definition, this element belongs to the ideal generated by the
elements vivj with (i, j) ∈ �L(2), which is impossible by condition (2). �

In the quadratic case, the two notions of PBW basis and Gröbner basis are equiv-
alent dual notions. The terminology “PBW basis” refers to the basis of the quo-
tient algebra while the terminology “noncommutative Gröbner basis” refers to the
ideal (R).

We refer to Sect. 2.12 of [Ufn95] for the history of the Gröbner–Shirshov bases.

4.3.8 PBW Bases for Inhomogeneous Quadratic Algebras

Following Sect. 4.2.5, we say that an inhomogeneous quadratic algebra A admits
a PBW basis if there exists a presentation A = A(V,R), satisfying conditions (ql1)

and (ql2), such that the associated quadratic algebra qA = A(V,qR) admits a PBW
basis. In this case, the image {aī}ī∈L ⊂ A of the basis elements {vī}ī∈L of the qua-
dratic monomial algebra ˚qA gives a basis of the inhomogeneous quadratic alge-
bra A. Such a result is once again proved using the following version of the Diamond
Lemma.

Theorem 4.3.10. Let A = A(V,R) be an inhomogeneous quadratic algebra with
a quadratic-linear presentation satisfying conditions (ql1) and (ql2) and such that
T (V ) is equipped with a suitable ordered basis {vī}ī∈J .

If the images of the elements {vī}ī∈L(3) in qA are linearly independent, then the
images {aī}ī∈L of the elements {vī}ī∈L form a basis of A and the algebra A is
Koszul.

Proof. It is a particular case of Theorem 4.2.5. �

In the example of the universal enveloping algebra U(g) of a Lie algebra g (cf.
Sect. 3.6.7), the symmetric monomials basis of S(g) induces a PBW basis of U(g).
With the suitable order

0 < 1 < 2 < (1,1) < 3 < (2,1) < (1,2) < (1,1,1) < 4 < (3,1) < (2,2) < · · · ,

the Cartan–Serre basis of Sect. 3.6.8 is a PBW basis of the Steenrod algebra.
In the inhomogeneous case too, the notion of PBW basis is equivalent and dual

to that of Gröbner basis.
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Proposition 4.3.11. Let A be an inhomogeneous quadratic algebra with a quadratic-
linear presentation A = A(V,R) satisfying conditions (ql1) and (ql2) and such that
T (V ) is equipped with a suitable ordered basis {vī}ī∈J . Let ϕ : qR → V be the lin-
ear map whose graph gives R. The elements {al̄}l̄∈L form a PBW basis of A if and
only if the elements

{
(Id−ϕ)

(
vivj −

∑

(k,l)∈L(2),(k,l)<(i,j)

λ
i,j
k,lvkvl

)}

(i,j)∈�L(2)

spanning R, form a Gröbner basis of the ideal (R) in T (V ).

Proof. The proof of the inhomogeneous case is similar but uses the PBW Theo-
rem 3.6.4. �

4.3.9 PBW Basis of the Koszul Dual Algebra

Proposition 4.2.7 shows that any PBW basis of a quadratic algebra induces a dual
PBW basis on the Koszul dual algebra. In this section, we provide further details.

Let {vi}i∈I be a finite ordered basis of the vector space V and consider a suitable
order on tuples. The elements {akal}(k,l)∈L(2) form a basis of V ⊗2/R. In this case,
there are elements

{
vivj −

∑

(k,l)∈L(2),(k,l)<(i,j)

λ
i,j
k,lvkvl

}

(i,j)∈�L(2)

,

which form a basis of R. So the complement set �L(2) = I 2 \ L(2) labels a basis of
R, which is not {vivj }(i,j)∈�L(2) itself in general. The dual elements {v∗

i }i∈I provide
a dual basis of V ∗ and the elements

{
v∗
k v∗

l +
∑

(i,j)∈�L(2),(i,j)>(k,l)

λ
i,j
k,lv

∗
i v∗

j

}

(k,l)∈L(2)

provide a basis of R⊥. Therefore the image of the elements {v∗
i v∗

j }(i,j)∈�L(2) in A! =
A(V ∗,R⊥), denoted a∗

i a∗
j , form a basis of V ∗⊗2/R⊥. We consider the opposite

order i �op j , defined by i � j , on the labeling set I of the dual basis of V ∗.

Theorem 4.3.12. Let A = A(V,R) be a quadratic algebra endowed with a PBW
basis {aī}ī∈L. Its Koszul dual algebra A! admits the PBW basis {a∗̄

j
}j̄∈�L, with oppo-

site order.

Proof. It is a direct corollary of Proposition 4.2.7. �
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When the algebra A = A(V,R) admits a PBW basis labeled by a set L, the
Koszul dual coalgebra A

¡
admits a basis indexed by the set �L by Proposition 4.2.3.

More precisely, the Koszul dual coalgebra admits a basis of the form

{
snvī +

∑

j̄<ī, j̄∈L(n)

snλī

j̄
vj̄ , ī ∈ �L(n)

}

n∈N
.

4.4 Koszul Duality Theory and Lattices

We introduce a combinatorial criterion for Koszulity. It states that a certain family
of lattices associated to a quadratic data is distributive if and only if the quadratic
data is Koszul (Backelin criterion). It will allow us to prove that the Koszul property
is stable under Manin products in the next section.

4.4.1 Poset and Lattice

This section recalls the basic properties of posets (partially ordered sets) and lattices.
It mainly comes from R.P. Stanley’s book [Sta97a].

In a poset with a partial order denoted �, a least upper bound z for two elements
x and y, when it exists, is an upper bound, meaning x � z and y � z, which is less
than any other upper bound. When it exists, it is unique. It is denoted by x ∨y and is
called the join. Dually, there is the notion of greatest lower bound which is denoted
by x ∧ y and called the meet.

A lattice is a poset where the join and the meet exist for every pair of elements.
These two operations are associative, commutative and idempotent, that is x ∨ x =
x = x ∧ x. They satisfy the absorption law x ∧ (x ∨ y) = x = x ∨ (x ∧ y) and
the partial order can be recovered by x � y ⇐⇒ x ∧ y = x ⇐⇒ x ∨ y = y. A
sublattice generated by a subset of a lattice L is the smallest sublattice of L stable
for the operations join and meet. It is explicitly composed by the elements obtained
by composing the generating elements with the operations join and meet.

A lattice is distributive if it satisfies the equivalent distributivity relations

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) ⇐⇒ x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

The subsets of a set form a distributive lattice where the partial order is defined
by the inclusion ⊂ and where the join and meet are given by the union ∪ and the
intersection ∩ respectively. Actually, any finite distributive lattice is of this form
(fundamental theorem for finite distributive lattices). Notice also that a distributive
sublattice generated by a finite number of elements is finite.

In the linear context, we will consider the lattice of sub-spaces of a vector space.
The order is given by the inclusion ⊂ and the join and meet are given by the sum
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+ and the intersection ∩ respectively. In the sequel, we will study finitely generated
sublattices of such a lattice. Our main tool will be the following result, which is
the analog, in the linear setting, of the fundamental theorem for finite distributive
lattices.

Lemma 4.4.1. Let U be a vector space and let L be a finitely generated sublattice
of the lattice of sub-spaces of U . The lattice L is distributive if and only if there
exists a basis B of U such that, B ∩ X is a basis of X, for any X ∈ L.

In this case, we say that the basis B distributes the sublattice L.

4.4.2 Lattice Associated to a Quadratic Data

Let (V ,R) be a quadratic data. For every n ∈ N, we consider the lattice of sub-
spaces of V ⊗n, where the order is given by the inclusion: X � Y if X ⊂ Y . The
join of two sub-spaces X and Y is their sum X ∨ Y := X + Y and their meet is the
intersection X ∧ Y := X ∩ Y .

For every n ∈ N, we denote by L(V,R)(n) the sublattice of the lattice of sub-
spaces of V ⊗n generated by the finite family {V ⊗i ⊗ R ⊗ V ⊗n−2−i}i=0,...,n−2.

The example of L(V,R)(3) is depicted below.

V ⊗3

V ⊗ R + R ⊗ V

V ⊗ R R ⊗ V

V ⊗ R ∩ R ⊗ V

{0}

4.4.3 Backelin’s Criterion

The following result belongs to the long list of properties between the Koszul duality
theory and the poset theory.

Theorem 4.4.2 (Backelin [Bac83]). A quadratic data (V ,R) is Koszul if and only
if the lattices L(V,R)(n) are distributive, for every n ∈N.
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In this case, the lattices L(V,R)(n), n ≥ 0 are finite. We refer the reader to the
Ph.D. thesis of J. Backelin [Bac83] and to the book of A. Polishchuk and L. Posit-
selski [PP05] for the proof of this result and for more details about this subject.

4.5 Manin Products for Quadratic Algebras

In this section, extracted from Yu.I. Manin [Man87, Man88], we define two products� and � for quadratic data. They share nice properties with respect to Koszul duality
theory. The black product is shown to produce Hopf algebras, some of which appear
in quantum group theory.

4.5.1 Black and White Manin Products

Let (V ,R) and (W,S) be two quadratic data. We denote by τ23 the isomorphism
induced by the switching of the two middle terms:

τ23 := IdV ⊗τ ⊗ IdW : V ⊗ V ⊗ W ⊗ W
∼−→ V ⊗ W ⊗ V ⊗ W.

By definition Manin’s white product of (V ,R) and (W,S) is the quadratic data
given by

(V ,R)� (W,S) := (
V ⊗ W,τ23

(
R ⊗ W⊗2 + V ⊗2 ⊗ S

))
.

By definition Manin’s black product of (V ,R) and (W,S) is the quadratic data
given by

(V ,R)� (W,S) := (
V ⊗ W,τ23(R ⊗ S)

)
.

The quadratic data (Kx,0) is the unit object for the white product �, where Kx

stands for a one-dimensional vector space spanned by x. Dually, the quadratic data
(Kx, (Kx)⊗2) is the unit object for the black product �. The associated algebras are
the free associative algebra on one generator K[x] and the algebra of dual numbers
D(Kx) =K[x]/(x2) on one generator respectively.

We denote by A(V,R)�A(W,S) and by A(V,R)�A(W,S) the algebras asso-
ciated to the quadratic data obtained by white and black products. Notice that there
is a morphism of quadratic algebras

A(V,R)�A(W,S) → A(V,R)�A(W,S),

for any pair of quadratic data. The algebra associated to the white product is iso-
morphic to the Hadamard (or Segre) product

A(V,R)�A(W,S) ∼= A(V,R) ⊗
H

A(W,S) :=
⊕

n∈N
A(V,R)(n) ⊗ A(W,S)(n),

which is the weight-wise tensor product.
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4.5.2 Manin Products and Koszul Duality

Manin’s black and white products behave well with respect to Koszul duality theory.

Proposition 4.5.1. Let (V ,R) and (W,S) be two quadratic data, where V and W

are finite dimensional. Black and white products are sent one to the other under the
Koszul duality functor

(
A(V,R)�A(W,S)

)! = A(V,R)! �A(W,S)!.

Proof. The quadratic algebra on the left-hand side is equal to

A
(
(V ⊗ W)∗,

(
τ23

(
R ⊗ W⊗2 + V ⊗2 ⊗ S

))⊥)

∼= A
(
V ∗ ⊗ W ∗, τ23

(
R⊥ ⊗ W ∗⊗2 ∩ V ∗⊗2 ⊗ S⊥))

∼= A
(
V ∗ ⊗ W ∗, τ23

(
R⊥ ⊗ S⊥))

. �

Theorem 4.5.2. [BF85] If two quadratic data are Koszul, then their white product
and their black product are Koszul.

Proof. First we prove the white product property.
Let (V ,R) and (W,S) denote two Koszul quadratic data. By Theorem 4.4.2, the

sublattices L(V,R)(n) of V ⊗n and L(W,S)(n) of W⊗n are distributive, for any n ∈
N. By Lemma 4.4.1, there exist bases B′

(n) and B′′
(n) of V ⊗n and W⊗n respectively

that distribute L(V,R)(n) and L(W,S)(n). For any n ∈ N, the sublattice L(V ⊗
W,τ23(R ⊗ W⊗2 + V ⊗2 ⊗ S))(n) of (V ⊗ W)⊗n is isomorphic to the sublattice of
V ⊗n ⊗ W⊗n generated by the finite family

{
V ⊗i ⊗ R ⊗ V ⊗n−2−i ⊗ W⊗n,V ⊗n ⊗ W⊗i ⊗ S ⊗ W⊗n−2−i

}
i=0,...,n−2.

Therefore, the basis B(n) := {β ′ ⊗ β ′′ | β ′ ∈ B′
(n), β

′′ ∈ B′′
(n)} distributes L(V ⊗

W,τ23(R ⊗W⊗2 +V ⊗2 ⊗S))(n). We conclude by using Theorem 4.4.2 in the other
way round.

To prove the same result for the black product, we consider the Koszul dual
algebras and apply Proposition 4.5.1 and Proposition 3.4.5. �

4.5.3 Adjunction and Internal (Co)Homomorphism

The white and black products satisfy the following adjunction formula.

Proposition 4.5.3. There is a natural bijection in the category Quad-alg of quadra-
tic algebras (or equivalently quadratic data):

Homquad alg(A�B,C) ∼= Homquad alg
(
A,B ! �C

)
,

when B is a finitely generated algebra.
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Proof. Let A, B and C be the three algebras associated to the three quadratic data
(V ,R), (W,S) and (X,T ) respectively. There is a one-to-one correspondence be-
tween the maps f : V ⊗W → X and the maps f̃ : V → W ∗ ⊗X. Such a map satis-
fies f ⊗2 : τ23(R ⊗S) → T if and only if f̃ ⊗2 : R → τ23(S

⊥ ⊗X+ (W ∗)⊗2 ⊗T ). �

In other words, Hom(B,C) := B ! �C is the internal ‘Hom’ functor in the mo-
noidal category of finitely generated quadratic algebras with the black product as
tensor product. Dually, CoHom(A,B) := A�B ! is the internal ‘coHom’ (or inner)
functor in the monoidal category of finitely generated quadratic algebras with the
white product as tensor product.

4.5.4 Manin Complexes

Let us apply this adjunction to the three quadratic algebras (Kx, (Kx)⊗2), A(V,R),
A(V,R), where V is finite dimensional. As usual we write A = A(V,R). Since the
first one is the unit object for the black product, we get the bijection

Homquad alg(A,A) ∼= Homquad alg
(
K[x]/(x2),A! �A

)
.

To the identity of A on the left-hand side corresponds a natural morphism of qua-
dratic algebras K[x]/(x2) → A! �A = A! ⊗

H
A, which is equivalent to a square zero

element ξ in A! �A. We define a differential dξ by multiplying elements of A! ⊗
H

A

by ξ , that is dξ (α) := αξ . The chain complex (A! ⊗
H

A,dξ ) thereby obtained is called

the first Manin complex denoted by L(A) in [Man88, Chap. 9]. If we choose a basis
{vi}i=1,...,n for V and denote by {v∗

i }i=1,...,n the dual basis of V ∗, the square zero
element ξ is equal to

∑n
i=1 v∗

i ⊗ vi .
The second Manin complex L̃(A) is defined on the tensor product A! ⊗ A by

the differential d̃ξ (α) := α �→ ξα − (−1)|α|αξ , where the cohomological degree is
given by the weight of A!. Under this degree convention, there is a isomorphism of
graded modules

A! ⊗ A ∼= Hom
(
A

¡
,A

)
,

which sends the squarezero element ξ to the twisting morphism κ and the afore-
mentioned differential to ∂κ(f ) = [f,κ]. This induces an isomorphism of cochain
complexes

L̃(A) = (
A! ⊗ A, d̃ξ

) ∼= Homκ
(
A

¡
,A

)
.

So, when the algebra A is Koszul, the second Manin complex computes the ho-
mology functor Ext•A(K,A) and likewise the Hochschild cohomology of A with
coefficients into itself, see Sect. 9.1.7.
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4.5.5 Hopf Algebras

We show that the black product construction gives rise to Hopf algebras.

Proposition 4.5.4. Let (V ,R) be a quadratic data with V finite dimensional and
let A = A(V,R). The algebra A! �A is a Hopf algebra.

Proof. By general properties of adjunction (see Appendix B.2.1), A! �A is a co-
monoid in the monoidal category (quad alg,� = ⊗

H
,K[ε]). Since A! ⊗

H
A embeds

into A! ⊗ A, the space A! �A is a comonoid in the monoidal category of graded
algebras with the classical tensor product, which makes it into a bialgebra. Since it
is conilpotent, the antipode comes for free. �

This method was used by Yu.I. Manin to study quantum groups in [Man87,
Man88].

4.6 Résumé

4.6.1 Rewriting Method

Let A(V,R) be a quadratic algebra such that V = ⊕n
i=1Kvi is a vector space

equipped with a finite ordered basis. We order V ⊗2 by using, for instance, the lexi-
cographical order:

v1v1 < v1v2 < · · · < v1vn < v2v1 < · · · < vnvn.

Typical relation:

vivj =
∑

(k,l)<(i,j)

λ
i,j
k,lvkvl, λ

i,j
k,l ∈K.

The element vivj is called a leading term. The monomial vivj vk is called critical if
both vivj and vjvk are leading terms.

Theorem. Confluence for all the critical monomials ⇒ Koszulity of the algebra.

4.6.2 Reduction by Filtration and Diamond Lemma

Let A = A(V,R) be a quadratic algebra. Any grading on V ∼= V1 ⊕· · ·⊕Vk together
with a suitable order on tuples induce a filtration on the algebra A and

ψ : Å := A(V,Rlead)� grA,

with Rlead = 〈Leading Term(r), r ∈ R〉.
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DIAMOND LEMMA FOR QUADRATIC ALGEBRAS.

Å Koszul and Å(3) � (grA)(3) =⇒ A Koszul and Å ∼= grA

INHOMOGENEOUS CASE.

˚qA Koszul and

˚qA
(3) � (grχ qA)(3)

=⇒ A Koszul and
˚qA ∼= grχ qA ∼= qA ∼= grA ∼= A.

4.6.3 PBW Basis, Gröbner Basis and Diamond Lemma

Particular case:

∀i ∈ I = {1, . . . , k}, dim(Vi) = 1 ⇔ {vi}i∈I basis of V,

Å monomial algebra ⇒ Å Koszul and basis {vī}ī∈L.

PBW basis of A(V,R): basis {aī}ī∈L:= image of {vī}ī∈L under Å � grA.

MAIN PROPERTIES OF PBW BASES.

A(V,R) PBW basis ⇒ A(V,R) Koszul algebra.

DIAMOND LEMMA.

{aī}ī∈L(3) linearly independent =⇒ {aī}ī∈L PBW basis.

GRÖBNER BASIS.

Gröbner basis of (R) ⊂ T (V ) ⇐⇒ PBW basis of T (V )/(R).

PBW bases for inhomogeneous quadratic algebras:

qA = A(V,qR) PBW basis ⇒ A(V,R) PBW basis.

PBW bases on Koszul dual algebra:

A = A(V,R) PBW basis ⇐⇒ A! = A(V ∗,R⊥) PBW basis.

4.6.4 Backelin Criterion

L(V,R)(n): lattice of sub-spaces of V ⊗n generated by
{
V ⊗i ⊗ R ⊗ V ⊗n−2−i

}
i=0,...,n−2,

(V ,R) Koszul quadratic data ⇐⇒ L(V,R)(n) distributive lattice, ∀n ∈ N.
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4.6.5 Manin Black and White Products

(V ,R)� (W,S) := (
V ⊗ W,τ23

(
R ⊗ W⊗2 + V ⊗2 ⊗ S

))
,

(V ,R)� (W,S) := (
V ⊗ W,τ23(R ⊗ S)

)
.

Unit for the white product: K[x]. Unit for the black product: K[x]/(x2).

(A�B)! = A! �B !,

Theorem. Manin products preserve the Koszul property.

Homquad alg(A�B,C) ∼= Homquad alg
(
A,B ! �C

)
,

A! �A : Manin chain complex; A! �A : Hopf algebra.

4.7 Exercises

Exercise 4.7.1 (An example). Show that the quadratic algebra presented by the
generators x, y, z and the relators xy − yz, zy − yx, xz − zx, y2 − zx is Koszul by
the rewriting method.

Exercise 4.7.2 (Distributive law �). Apply the method of Sect. 4.2 to the following
case. Let A(V ⊕W,R⊕Dλ ⊕S) be a quadratic algebra, where R ⊂ V ⊗2, S ⊂ W⊗2

and where Dλ ⊂ V ⊗ W
⊕

W ⊗ V is the graph of a linear morphism λ : W ⊗
V → V ⊗ W . Let us use the following notations A := A(V,R), B := A(W,S) and
A ∨λ B := A(V ⊕ W,R ⊕ Dλ ⊕ S).

We consider the following ordered grading V1 := V and V2 := W together with
the lexicographic order. In this case, prove that Rlead = R

⊕
W ⊗ V

⊕
S and that

Å = A ∨0 B . Show that the underlying module satisfies Å ∼= A(V,R) ⊗ A(W,S)

and make the product explicit. Dually, show that the underlying module satisfies
Å

¡ ∼= A(W,S)
¡ ⊗ A(V,R)

¡
and make the coproduct explicit. We now suppose that

the two quadratic data (V ,R) and (W,S) are Koszul. Show that the quadratic data
(V ⊕ W,R

⊕
W ⊗ V

⊕
S) is also Koszul.

Finally, show that if the maps V ⊗2/R⊗W → A and V ⊗W⊗2/S → A are injec-
tive, then the algebra A is Koszul and its underlying graded module is isomorphic
to A ∼= A(V,R) ⊗ A(W,S).

Extra question: when the generating spaces V and W are finite dimensional,
prove that the Koszul dual algebra has the same form:

A! = A
(
V ∗ ⊕ W ∗,R⊥ ⊕ Dtλ ⊕ S⊥) = A! ∨t λ B !,

where t λ : V ∗ ⊗ W ∗ → W ∗ ⊗ V ∗ is the transpose map.

Exercise 4.7.3 (Equivalent definitions of PBW bases �). Let A = (V ,R) be a qua-
dratic algebra endowed with a family of elements {aī}ī∈L of A labeled by a set
L ⊂ J . Prove that, under condition (2) of Sect. 4.3.6, condition (1) is equivalent to
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(1′) for any pair (i, j) ∈ I 2, if (i, j) /∈ L(2), the product aiaj in A can be written as
a linear combination of strictly lower terms labeled by L(2):

aiaj =
∑

(k,l)∈L(2),(k,l)<(i,j)

λ
i,j
k,lakal,

with λ
i,j
k,l ∈ K.

In the same way, prove that, under condition (2), condition (1) and (1′) are equiv-
alent to

(1′′) for any ī ∈ J , if ī /∈ L, then the element aī ∈ A can be written as a linear
combination of strictly lower terms labeled by L:

aī =
∑

l̄∈L,l̄<ī

λī

l̄
al̄ ,

with λī

l̄
∈K.

Exercise 4.7.4 (Hilbert–Poincaré series and PBW bases �). Compute the Hil-
bert–Poincaré series of a quadratic algebra endowed with a PBW basis, see [PP05,
Sect. 4.6].

Exercise 4.7.5 (From PBW to Koszul �). A quadratic algebra A(V,R) is called n-
PBW if it admits an extra ordered grading V ∼= V1 ⊕ · · · ⊕ Vk such that dimVi ≤ n,
for any i, if the algebra Å is Koszul and if the isomorphism Å ∼= grA holds. Notice
that 1-PBW algebra are the algebras having a PBW basis.

Prove the following inclusions of categories

PBW = 1-PBW ⊂ 2-PBW ⊂ · · · ⊂ fg Koszul,

where the last category is the category of finitely generated Koszul algebras.
Show that the quadratic algebra A(x,y, z;x2 − yz, x2 + 2zy) is 2-PBW but not

1-PBW.

Exercise 4.7.6 (Inhomogeneous Koszul duality theory with PBW-bases �). Let
A(V,R) be an inhomogeneous Koszul algebra endowed with a PBW basis. Make
the constructions of Sect. 3.6 explicit with this basis.

For instance, the degree-wise linear dual of the Koszul dual dg coalgebra A
¡ =

((qA)
¡
, dϕ) is a dga algebra. Make it explicit with its differential. In the case of the

Steenrod algebra, show that this gives the Λ algebra (see [BCK+66, Wan67, Pri70]).

Exercise 4.7.7 (PBW bases and Manin products �). Let A := A(V,R) and B :=
A(W,S) be two quadratic algebras with ordered bases of V and W labeled by IA

and IB respectively. Suppose that we have a PBW basis on A and on B labeled
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respectively by LA and LB . We denote by ī = (i1, . . . , in) the elements of In
A and

by j̄ = (j1, . . . , jn) the elements of In
B .

Show that the following set labels a PBW basis of the white product A�B:

LA�B =
⋃

n∈N

{
(i1, j1, i2, j2, . . . , in, jn) | ī ∈ L

(n)
A and j̄ ∈ L

(n)
B

}

∼=
⋃

n∈N
L

(n)
A × L

(n)
B .

Dually, show that the following set labels a PBW basis of the black product
A�B:

LA�B = {
(i1, j1, i2, j2, . . . , in, jn) | ∀1 ≤ k < n, (ik, ik+1) ∈ L

(2)
A

or (jk, jk+1) ∈ L
(2)
B

}
.

Exercise 4.7.8 (Coproduct �). Let A and B be two nonunital associative algebras.
Show that their coproduct A∨B in the category of nonunital associative algebras is
given by a suitable product on

A ∨ B = A
⊕

B
⊕

A ⊗ B
⊕

B ⊗ A
⊕

A ⊗ B ⊗ A
⊕

B ⊗ A ⊗ B
⊕

· · · .

Let (V ,R) and (W,S) be two quadratic data. Show that they admit a coproduct
in the category of quadratic data, which is given by (V ⊕ W,R ⊕ S). Prove that
the quadratic algebra A(V ⊕ W,R ⊕ S) is the coproduct of the quadratic algebras
A(V,R) and A(W,S) in the category of unital associative algebras. When V and
W are finite dimensional, compute its Koszul dual algebra.

Consider now the example of Exercise 4.7.2 and show that A(V ⊕ W,R ⊕ Dλ ⊕
S) ∼= A ∨ B/(Dλ), whence the notation A ∨λ B .

Prove that if (V ,R) and (W,S) are Koszul quadratic data, then so is their coprod-
uct. [Give several different proofs, using the Koszul complex and the distributive
lattices for instance.]

Prove that if A := A(V,R) and B := A(W,S) admit a PBW basis, then they can
be used to construct a PBW basis on A ∨ B .
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