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Twisting Morphisms
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In this chapter, we introduce the bar construction and the cobar construction as fol-
lows. A twisting morphism is a linear map f : C → A, from a dga coalgebra C to a
dga algebra A, which satisfies the Maurer–Cartan equation:

∂(f ) + f � f = 0.

The set of twisting morphisms Tw(C,A) is shown to be representable both in C

and in A. More precisely, the cobar construction is a functor � from dga coalgebras
to dga algebras and the bar construction is a functor B from dga algebras to dga
coalgebras which satisfy the following properties: there are natural isomorphisms

Homdga alg(�C,A) ∼= Tw(C,A) ∼= Homdga coalg(C,BA).

As an immediate consequence the functors cobar and bar are adjoint to each
other. Then we investigate the twisting morphisms which give rise to quasi-isomor-
phisms under the aforementioned identifications. We call them Koszul morphisms.

The main point is the following characterization of the Koszul morphisms. Any
linear map α : C → A gives rise to a map dα : C ⊗ A → C ⊗ A, which is a differ-
ential if and only if α is a twisting morphism. Moreover, α is a Koszul morphism if
and only if the chain complex (C ⊗ A,dα) is acyclic. This is the first step of Koszul
duality theory, which will be treated in the next chapter.

As a corollary, it is shown that the unit and the counit of the bar–cobar adjunction

C → B�C and �BA → A,

are quasi-isomorphisms. Hence, the latter provides a canonical free resolution of A.
This chapter is inspired by H. Cartan [Car55], E. Brown [Bro59], J.C. Moore

[Moo71], Husemoller–Moore–Stasheff [HMS74], A. Prouté [Pro86] and K. Lefèvre-
Hasegawa [LH03].
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2.1 Twisting Morphisms

We introduce the Maurer–Cartan equation in the convolution algebra. Its solutions
are called twisting morphisms (sometimes called twisting cochains in the literature).
To such a twisting morphism we associate a twisted structure on the convolution
algebra and on the tensor product, thereby introducing the notion of twisted tensor
product of chain complexes.

In this section (C,dC) is a differential graded coaugmented coalgebra and
(A,dA) is a differential graded augmented algebra, where the differentials are both
of degree −1.

2.1.1 Convolution in the DG Framework

We extend the result of Sect. 1.6.1 to graded vector spaces, that is Hom(C,A) is
a graded associative algebra under the convolution product � (called cup-product
in [HMS74]). The derivative ∂ of graded linear maps defined in p. 25 makes
Hom(C,A) into a dg vector space.

Proposition 2.1.1. The convolution algebra (Hom(C,A), �, ∂) is a dga algebra.

Proof. It suffices to prove that the derivative ∂ is a derivation for the convolution
product �. Let f and g be two maps of degree p and q respectively. We have

∂(f � g) = dA ◦ (f � g) − (−1)p+q(f � g) ◦ dC

= dA ◦ μ ◦ (f ⊗ g) ◦ � − (−1)p+qμ ◦ (f ⊗ g) ◦ � ◦ dC

= μ ◦ (dA ⊗ id+ id⊗dA) ◦ (f ⊗ g) ◦ �

−(−1)p+qμ ◦ (f ⊗ g) ◦ (dC ⊗ id+ id⊗dC) ◦ �

= μ ◦ (
(dA ◦ f ) ⊗ g + (−1)pf ⊗ (dA ◦ g)

−(−1)p(f ◦ dC) ⊗ g − (−1)p+qf ⊗ (g ◦ dC)
) ◦ �

= μ ◦ (
∂(f ) ⊗ g + (−1)pf ⊗ ∂(g)

) ◦ �

= ∂(f ) � g + (−1)pf � ∂(g). �

2.1.2 Maurer–Cartan Equation, Twisting Morphism

In the dga algebra Hom(C,A) we consider the Maurer–Cartan equation

∂(α) + α � α = 0.

By definition a twisting morphism (terminology of John Moore [Moo71], “fonc-
tions tordantes” in H. Cartan [Car58]) is a solution α : C → A of degree −1 of the
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Maurer–Cartan equation, which is null when composed with the augmentation of A

and also when composed with the coaugmentation of C.
We denote by Tw(C,A) the set of twisting morphisms from C to A. Recall from

Sect. 1.1.9 that a graded associative algebra is a graded Lie algebra, with the graded
bracket defined by [a, b] := a � b − (−1)|a|.|b|b � a. When 2 is invertible in the
ground ring K, we have α � α = 1

2 [α,α], when α has degree −1. Therefore, the
“associative” Maurer–Cartan equation, written above, is equivalent to the “classi-
cal” Maurer–Cartan equation ∂(α) + 1

2 [α,α] = 0 in the Lie convolution algebra
(Hom(C,A), [−,−]).

Until the end of next section, we assume that the characteristic of the ground field
is not equal to 2.

2.1.3 Twisted Structure on the Hom Space

Let α ∈ Hom(C,A) be a map of degree −1. We define a twisted derivation ∂α on
Hom(C,A) by the formula

∂α(f ) := ∂(f ) + [α,f ].

Lemma 2.1.2. Let (Hom(C,A), [,], ∂) be the dg Lie convolution algebra. For any
map α ∈ Hom(C,A) of degree −1 the twisted derivation ∂α(x) := ∂(x) + [α,x]
satisfies

∂2
α(x) = [

∂(α) + α � α,x
]
.

Proof. We have

∂2
α(x) = ∂α

(
∂(x) + [α,x])

= ∂2(x) + ∂
([α,x]) + [

α, ∂(x)
] + [

α, [α,x]]

= [
∂(α), x

] + [
α, [α,x]] (

∂ is a derivation for [,])

= [
∂(α), x

] + [α � α,x] (graded Jacobi relation)

= [
∂(α) + α � α,x

]
. �

As a consequence, when α is a twisting morphism in Hom(C,A), the map ∂α is
a differential. We denote by Homα(C,A) := (Hom(C,A), ∂α) this chain complex.

Proposition 2.1.3. Let α be a twisting morphism. The convolution algebra
(Homα(C,A), �, ∂α) is a dga algebra.

Proof. The twisted derivation ∂α is the sum of a derivation ∂ with [α,−]. Therefore,
it is enough to prove that the latter is a derivation with respect to the convolution
product �:
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[α,f ] � g + (−1)pf � [α,g]
= α � f � g − (−1)pf � α � g + (−1)pf � α � g − (−1)p+qf � g � α

= [α,f � g],
for f of degree p and g of degree q . �

The dga algebras of the form (Homα(C,A), �, ∂α) are called twisted convolution
algebras. We leave it to the reader to prove that (Homα(C,A), [,], ∂α) is a dg Lie
algebra twisted by the twisting morphism α.

2.1.4 Twisted Tensor Product

We saw in Sect. 1.6.2 that the differential on the free A-module (resp. cofree C-
comodule) C ⊗ A is a derivation (resp. coderivation). Any map α : C → A induces
a unique (co)derivation on C ⊗ A, which we denote by dr

α here. Since C and A are
dga (co)algebras, we consider the total (co)derivation

dα := dC⊗A + dr
α = dC ⊗ IdA + IdC ⊗dA + dr

α.

So dα is a perturbation of the differential of the tensor product.

Lemma 2.1.4. The (co)derivation dα satisfies

dα
2 = dr

∂(α)+α�α.

Therefore, α satisfies the Maurer–Cartan equation if and only if the (co)derivation
dα satisfies dα

2 = 0.

Proof. The first relation comes from dα
2 = (dC⊗A + dr

α)2 = dC⊗A ◦ dr
α + dr

α ◦
dC⊗A + dr

α
2. We saw in Proposition 1.6.2 that dr

α
2 = dr

α�α . And we have dC⊗A ◦
dr
α + dr

α ◦ dC⊗A = dr
dA◦α+α◦dC

= dr
∂(α).

Hence, if α ∈ Tw(C,A), then dα
2 = dr

0 = 0. Conversely, we notice that the
restriction of dr

f on C ⊗ K1A → K1C ⊗ A is equal to f . So if dα
2 = 0, then

∂(α) + α � α = 0. �

From the preceding lemma, it follows that, when α : C → A is a twisting mor-
phism, there exists a chain complex

C ⊗α A := (C ⊗ A,dα)

which is called the (right) twisted tensor product (or twisted tensor complex). Since
the tensor product is symmetric, this construction is also symmetric in A and C.
So we can define a left twisted tensor product A ⊗α C. Warning: even if the two
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underlying modules C ⊗ A and A ⊗ C are isomorphic, the left and the right twisted
tensor products are not isomorphic as chain complexes in general. The twisting term
of the differential is not symmetric; it uses one particular side of the coproduct of
the coalgebra and one particular side of the product of the algebra but not the same
ones. If C were cocommutative and if A were commutative, then they would be
isomorphic. Since the two constructions are symmetric, we will only state the related
properties for the right twisted tensor product in the rest of this chapter.

This construction is functorial both in C and in A. Let g : A → A′ be a morphism
of dga algebras and f : C → C′ be a morphism of dga coalgebras. Consider C ⊗α A

and C′ ⊗α′ A′ two twisted tensor products. We say that the morphisms f and g are
compatible with the twisting morphisms α and α′ if α′ ◦ f = g ◦ α. One can show
that f ⊗ g : C ⊗α A → C′ ⊗α′ A′ is then a morphism of chain complexes.

In the weight-graded context, we require that the twisting morphisms preserve
the weight. In this case, the following lemma states that if two among these three
morphisms are quasi-isomorphisms, then so is the third one. This result first ap-
peared in the Cartan seminar [Car55].

Lemma 2.1.5 (Comparison Lemma for twisted tensor product). Let g : A → A′ be
a morphism of wdga connected algebras and f : C → C′ be a morphism of wdga
connected coalgebras. Let α : C → A and α′ : C′ → A′ be two twisting morphisms,
such that f and g are compatible with α and α′.

If two morphisms among f , g and f ⊗ g : C ⊗α A → C′ ⊗α′ A′ (or g ⊗ f :
A ⊗α C → A′ ⊗α′ C′) are quasi-isomorphisms, then so is the third one.

Proof. We postpone the proof to the end of the chapter (see Sect. 2.5). �

2.2 Bar and Cobar Construction

We construct the cobar and bar functors and we prove that they give representing
objects for the twisting morphisms bifunctor Tw(−,−). As a consequence the bar
and cobar functors form a pair of adjoint functors. The bar construction goes back
to Samuel Eilenberg and Saunders Mac Lane [EML53] and the cobar construction
goes back to Franck Adams [Ada56].

2.2.1 Bar Construction

We are going to construct a functor from the category of augmented dga algebras to
the category of conilpotent dga coalgebras:

B : {aug. dga algebras} −→ {con. dga coalgebras}
called the bar construction.
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Let A be an augmented algebra: A = K1 ⊕ Ā (concentrated in degree 0) with
product μ. The bar construction of A is a differential graded coalgebra defined on
the cofree coalgebra T c(sĀ) over the suspension sĀ = K s ⊗ Ā as follows. We
denote it by BA, using a slight but usual abuse of notation.

Consider the map Πs : K s ⊗K s → K s of degree −1 induced by Πs(s ⊗ s) := s.
The restriction μĀ of the product of the algebra A to Ā induces the following map

f : T c(sĀ) �K s ⊗ Ā ⊗K s ⊗ Ā
Id⊗τ⊗Id−−−−−→ K s ⊗K s ⊗ Ā ⊗ Ā

Πs⊗μĀ−−−−→ K s ⊗ Ā.

Since T c(sĀ) is cofree, by Proposition 1.2.2 there is a unique coderivation d2 :
T c(sĀ) → T c(sĀ) which extends the map f : T c(sĀ) → sĀ:

(0) (1) (2) (3)

T c(sĀ) =
d2

K Ā

0

Ā⊗2 Ā⊗3 · · ·

T c(sĀ) = K Ā Ā⊗2 Ā⊗3 · · ·

Proposition 2.2.1. The associativity of μ implies that (d2)
2 = 0, hence (T c(sĀ), d2)

is a chain complex.

Proof. We will give the proof in the dual case in Proposition 2.2.4. It is also a direct
consequence of the next lemma. �

The complex BA := (T c(sĀ), d2) is a conilpotent differential graded coalgebra,
called the bar construction of the augmented graded algebra A. It is obviously a
functor from the category of augmented graded algebras to the category of conilpo-
tent differential graded coalgebras.

Lemma 2.2.2. For any augmented associative algebra A, concentrated in degree 0,
the bar complex of A can be identified with the nonunital Hochschild complex of Ā:

· · · → Ā⊗n b′−→ Ā⊗n−1 → ·· · → Ā → K,

where b′[a1 | . . . | an] = ∑n−1
i=1 (−1)i−1[a1 | . . . | μ(ai, ai+1) | . . . | an].

Proof. Here we have adopted Mac Lane’s notation [a1 | . . . | an] ∈ Ā⊗n. Since Ā is
in degree 0, the space sĀ is in degree 1 and (sĀ)⊗n is in degree n. So the module of
n-chains can be identified with Ā⊗n. Let us identify the boundary map. Since d2 is
induced by the product and is a derivation, it has the form indicated in the statement.
The signs come from the presence of the shift s. For instance:

[a1 | a2 | a3] = (sa1, sa2, sa3) 	→ (
d2(sa1, sa2), sa3

) − (
sa1, d2(sa2, sa3)

)

= [
μ(a1, a2) | a3

] − [
a1 | μ(a2, a3)

]
.

The minus sign appears because d2 “jumps” over sa1 which is of degree one. �
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In general, the formula is the same with only the following change of sign:

d2(sa1 ⊗ · · · ⊗ san) =
n−1∑

i=1

(−1)i−1+|a1|+···+|ai |sa1 ⊗ · · · ⊗ sμ(ai, ai+1) ⊗ · · ·⊗ san.

One can extend this functor to the case where (A,dA) is an augmented differ-
ential graded algebra. Indeed, the differential dA : A → A induces a differential on
A⊗n by

d1 :=
n∑

i=1

(id, . . . , id, dA, id, . . . , id).

We denote by d1 the differential on T c(sĀ). Since μA is a morphism of differential
graded vector spaces, one can check that d1 and d2 anticommute: d1 ◦d2 +d2 ◦d1 =
0. The chain complex associated to the total differential d1 + d2 is called the bar
construction of the augmented differential graded algebra

BA := (
T c(sĀ), dBA = d1 + d2

)
.

The analogous construction in algebraic topology (classifying space of a topo-
logical group) is also called bar construction and denoted by B.

Proposition 2.2.3. For any quasi-isomorphism f : A → A′ of augmented dga al-
gebras, the induced morphism Bf : BA → BA′ is a quasi-isomorphism.

Proof. We consider the filtration on BA defined by

FpBA :=
{∑

sa1 ⊗ · · · ⊗ san | n ≤ p
}
.

It is stable under dBA, d1 : Fp → Fp and d2 : Fp → Fp−1. This filtration is increas-
ing, bounded below and exhaustive. Hence, the classical convergence theorem of
spectral sequences (Theorem 1.5.1) applies. The first page is equal to

E0
pqBA = (FpBA)p+q/(Fp−1BA)p+q

∼= {
sa1 ⊗ · · · ⊗ sap | |a1| + · · · + |ap| = q

}
.

Finally E0
p•(f ) = (sf )⊗p is a quasi-isomorphism by Künneth formula. �

2.2.2 Cobar Construction

Analogously one can construct a functor from the category of coaugmented dga
coalgebras to the category of augmented dga algebras:

� : {coaug. dga coalgebras} −→ {aug. dga algebras}
called the cobar construction, as follows.
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Let C be a coaugmented graded coalgebra: C = �C ⊕K1 with coproduct �. The
reduced coproduct �̄ : �C → �C ⊗ �C is defined by the equality �(x) = x ⊗ 1 + 1 ⊗
x + �̄(x) for any x ∈ �C. It is obviously coassociative and of degree 0.

Consider now K s−1 equipped with the diagonal map �s(s
−1) := −s−1 ⊗ s−1 of

degree −1, see Exercise 2.7.3. Then, one defines a map f on s−1�C =K s−1 ⊗ �C as
the composite

f :K s−1 ⊗ �C �s⊗�̄−−−→ K s−1 ⊗K s−1 ⊗ �C ⊗ �C Id⊗τ⊗Id−−−−−→ K s−1 ⊗ �C ⊗K s−1 ⊗ �C.

Consider the free algebra T (s−1�C) over the desuspension s−1�C. Since it is free, the
degree −1 map f : s−1�C → s−1�C ⊗ s−1�C has a unique extension to T (s−1�C) as a
derivation by Proposition 1.1.2. We denote it by

d2 : T (
s−1�C ) → T

(
s−1�C )

,

(0) (1) (2) (3)

T (s−1�C) =
d2

K

0

�C �C⊗2 �C⊗3 · · ·

T (s−1�C) = K �C �C⊗2 �C⊗3 · · ·

Proposition 2.2.4. The coassociativity of �̄ implies that d2 ◦ d2 = 0 on s−1�C.
Therefore d2 is a differential and (T (s−1�C),d2) is a chain complex.

Proof. For any x ∈ �C, let us write �̄(x) = ∑
x(1) ⊗x(2). We also adopt the notation

(�̄ ⊗ id)�̄(x) =
∑

x(1) ⊗ x(2) ⊗ x(3) = (id⊗�̄)�̄(x).

We have defined

d2
(
s−1x

) := −
∑

(−1)|x(1)|s−1x(1) ⊗ s−1x(2) ∈ �C⊗2.

Let us prove that d2 ◦ d2 = 0. Let p := |x(1)|, q := |x(2)|, r := |x(3)|. The term
s−1x(1) ⊗ s−1x(2) ⊗ s−1x(3) coming from (�̄ ⊗ id)�̄ under d2 ◦ d2 comes with
the sign (−1)p+q(−1)p . Indeed, the first one comes from the application of the first
copy of d2, the second one comes from the application of the second copy of d2. The
term s−1x(1) ⊗ s−1x(2) ⊗ s−1x(3) coming from (id⊗�̄)�̄ under d2 ◦ d2 comes with
the sign (−1)p+q(−1)1+p+q(−1)q . Indeed, the first one comes from the application
of the first copy of d2, the second one comes from the fact that d2, which is of degree
−1, jumps over a variable of degree p − 1, the third one comes from the application
of the second copy of d2.

Adding up these two elements we get 0 as expected. �
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By definition the cobar construction of the coaugmented graded coalgebra C is
the augmented dga algebra

�C := (
T

(
s−1�C)

, d2
)
.

It obviously gives a functor � from the category of coaugmented graded coalgebras
to the category of augmented differential graded algebras.

One easily extends this functor to coaugmented differential graded coalgebras
(C,�,dC) by adding to d2 the differential d1 induced by the differential dC . Since
� is a morphism of chain complexes, d1 and d2 anticommute and one has a well-
defined bicomplex. The chain complex associated to this total differential is called
the cobar construction of the coaugmented coalgebra

�C := (
T

(
s−1�C)

, d�C = d1 + d2
)
.

The notation � is by analogy with the loop space construction in algebraic topol-
ogy.

A nonnegatively graded dga coalgebra C is called 2-connected if C0 = K1 and
C1 = 0.

Proposition 2.2.5. Let f : C → C′ be a quasi-isomorphism between two 2-
connected dga coalgebras. The induced morphism �f : �C → �C′ between the
cobar constructions is a quasi-isomorphism.

Proof. We consider the following filtration on the cobar construction

Fp�C :=
{∑

s−1c1 ⊗ · · · ⊗ s−1cn | n ≥ −p
}
.

This increasing filtration is preserved by the differential of the cobar construction,
d1 : Fp → Fp and d2 : Fp → Fp−1. So the first term of the associated spectral se-
quence is equal to

E0
pq = (Fp�C)p+q/(Fp−1�C)p+q

∼=
{∑

s−1c1 ⊗ · · · ⊗ s−1cp||c1| + · · · + |cp| = 2p + q
}
,

with d0 = d1. Since E0
p•(�f ) = (s−1f )⊗p , it is a quasi-isomorphism by Kün-

neth formula. Since C (respectively C′) is 2-connected, the degree of an element
s−1c ∈ s−1�C is at least 1 and (Fp�C)n = 0 for p < −n. The filtration being ex-
haustive and bounded below, this spectral sequence converges to the homology of
the cobar construction by the classical convergence theorem of spectral sequences
(Theorem 1.5.1), which concludes the proof. �

This result does not hold when the dga coalgebras are not 2-connected. We give
a counterexample in Proposition 2.4.3. Beyond the 2-connected case, the relation-
ship between the cobar construction and quasi-isomorphisms is more subtle. This
question is fully studied in Sect. 2.4.
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2.2.3 Bar–Cobar Adjunction

We show that the bar and cobar constructions form a pair of adjoint functors

� : {con. dga coalgebras} � {aug. dga algebras} : B.

More precisely, this adjunction is given by the space of twisting morphisms.
When A is augmented and C coaugmented, a twisting morphism between C and
A is supposed to send K to 0 and �C to Ā.

Theorem 2.2.6. For every augmented dga algebra A and every conilpotent dga
coalgebra C there exist natural bijections

Homdga alg(�C,A) ∼= Tw(C,A) ∼= Homdga coalg(C,BA).

Proof. Let us make the first bijection explicit. Since �C = T (s−1�C) is a free al-
gebra, any morphism of algebras from �C to A is characterized by its restriction
to �C (cf. Proposition 1.1.1). Let ϕ be a map from �C to A of degree −1. Define
the map ϕ̄ : s−1�C → A of degree 0 by the formula ϕ̄(s−1c) := ϕ(c). Similarly,
ϕ̄ induces a unique morphism Φ of algebras from �C to A. The map Φ com-
mutes with the differentials, meaning dA ◦ Φ = Φ ◦ (d1 + d2), or equivalently to
dA ◦ ϕ = −ϕ ◦ dC − ϕ � ϕ. Finally, we get ∂(ϕ) + ϕ � ϕ = 0. Notice that the map ϕ

lands in Ā since the map Φ is a morphism of augmented algebras.
The second bijection is given by the same method, so the rest of the proof is left

to the reader as an exercise. Notice that we need the coalgebra C to be conilpotent
in order to be able to extend a map C → sA into a morphism of coalgebras C →
BA = T c(sĀ) (see Sect. 1.2.6). �

As a consequence of this proposition � and B form a pair of adjoint functors (�
is left adjoint and B is right adjoint), which represent the bifunctor Tw.

2.2.4 Universal Twisting Morphisms

Several universal morphisms appear from this pair of adjoint functors. Applying
Theorem 2.2.6 to C = BA we get the counit of the adjunction ε : �BA → A (see
Appendix B.2.1) and the universal twisting morphism π : BA → A. Then applying
Theorem 2.2.6 to A = �C we get the unit of the adjunction υ : C → B�C (this is
upsilon not v) and the universal twisting morphism ι : C → �C.

By Theorem 2.2.6 the twisting morphisms π and ι have the following property.

Proposition 2.2.7. Any twisting morphism α : C → A factorizes uniquely through
π and ι:
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�C

gα

C
α

ι

fα

A

BA

π

where gα is a dga algebra morphism and fα is a dga coalgebra morphism.

2.2.5 Augmented Bar and Cobar Construction

The universal twisting morphism π : BA = T c(sĀ) � sĀ ∼= Ā � A gives rise to
the twisted tensor product BA ⊗π A (cf. Sect. 2.1.4). It is called the augmented bar
construction of A.

Dually, the universal twisting morphism ι : C � �C ∼= s−1�C � T (s−1�C) = �C

gives rise to the coaugmented cobar construction of C denoted C ⊗ι �C = (C ⊗
�C,dι).

Proposition 2.2.8. The chain complexes BA ⊗π A (resp. A ⊗π BA) and C ⊗ι �C

(resp. �C ⊗ι C) are acyclic.

Proof. Once made explicit, the chain complex is the nonunital Hochschild complex
with coefficients in A whose module of n-chains is Ā⊗n ⊗ A and whose boundary
map is b′ given by

b′([a1 | . . . | an]an+1
) =

n−1∑

i=1

(−1)i−1[a1 | . . . | aiai+1 | . . . | an]an+1

+ (−1)n−1[a1 | . . . | an−1]anan+1.

We consider the kernel K of the augmentation map

K � BA ⊗π A � K.

It is immediate to check that the map h : K → K given by

[a1 | . . . | an]an+1 	→ (−1)n
[
a1 | . . . | an | an+1 − ε(an+1)

]

is a homotopy from idK to 0:

b′h + hb′ = idK.

Hence the twisted tensor complex BA ⊗π A is acyclic.
The proof for the other case is similar. �
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2.3 Koszul Morphisms

We have just seen that the twisted tensor products associated to the two universal
twisting morphisms π and ι are acyclic. When the twisted complex C ⊗α A, or
equivalently A ⊗α C, happens to be acyclic, the twisting morphism α is called a
Koszul morphism. We denote the set of Koszul morphisms by Kos(C,A).

In this section, we give the main theorem of this chapter which relates Koszul
morphisms with bar and cobar resolutions. As a corollary, we prove that the unit
and the counit of the bar–cobar adjunction are quasi-isomorphisms.

2.3.1 Koszul Criterion

Here we give the main result of this section, which is a criterion about Koszul mor-
phisms. It comes from E. Brown’s paper [Bro59].

Theorem 2.3.1 (Twisting morphism fundamental theorem). Let A be a connected
wdga algebra and let C be a connected wdga coalgebra. For any twisting morphism
α : C → A the following assertions are equivalent:

1. the right twisted tensor product C ⊗α A is acyclic,
2. the left twisted tensor product A ⊗α C is acyclic,
3. the dga coalgebra morphism fα : C ∼−→ BA is a quasi-isomorphism,
4. the dga algebra morphism gα : �C

∼−→ A is a quasi-isomorphism.

Proof. Since we require A to be connected, we have A = Ā ⊕ K1, where the ele-
ments of the augmentation ideal Ā have positive degree and positive weight. There
is a similar statement for C. Recall that wdga (co)algebras were introduced in
Sect. 1.5.10.

We first notice that the bar construction of a wgda connected algebra is a wgda
connected coalgebra. And dually, the cobar construction of a wgda connected coal-
gebra is a wgda connected algebra. The weight of an element of BA is equal to the
total weight ω(sa1, . . . , sak) = ω(a1) + · · · + ω(ak).

We consider the commutative diagram of Sect. 2.2.4, where fα : C → BA, resp.
gα : �C → A, is the morphism of wdga coalgebras, resp. algebras, associated to the
twisting morphism α and respecting the weight grading. Notice that the universal
twisting morphisms π and ι also preserve the weight.

(1) ⇔ (3). Consider the tensor map fα ⊗ IdA : C ⊗A → BA⊗A. Since π ◦fα =
α = IdA ◦α, the map fα ⊗ IdA is a morphism of chain complexes from C ⊗α A to
BA ⊗π A. We have seen in Proposition 2.2.8 that the augmented bar construction
is always acyclic. Therefore, the twisted complex C ⊗α A is acyclic if and only
if fα ⊗ IdA is a quasi-isomorphism. The Comparison Lemma 2.1.5 implies that
C ⊗α A is acyclic if and only if fα is a quasi-isomorphism.
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(1) ⇔ (4). We use the same method with the tensor map IdC ⊗gα : C ⊗ι �(C) →
C ⊗α A. Since gα ◦ ι = α = α ◦ IdC , the map IdC ⊗gα is a morphism of chain com-
plexes. The acyclicity of the coaugmented cobar construction (Proposition 2.2.8)
and the Comparison Lemma 2.1.5 imply that the twisted chain complex C ⊗α A is
acyclic if and only if gα is a quasi-isomorphism.

The proof of the equivalence (2) ⇔ (3) ⇔ (4) is similar and uses the two other
cases of Proposition 2.2.8 and Lemma 2.1.5. �

2.3.2 Bar–Cobar Resolution

We consider the counit ε : �BA → A and the unit υ : C → B�C of the bar–cobar
adjunction. The counit is a canonical resolution of A which is called the bar–cobar
resolution. The following statement shows that it provides a quasi-free model for A,
which is not minimal in general.

Corollary 2.3.2. Let A be an augmented dga algebra and let C be a conilpotent
dga coalgebra.

The counit ε : �BA
∼−→ A is a quasi-isomorphism of dga algebras. Dually, the

unit υ : C ∼−→ B�C is a quasi-isomorphism of dga coalgebras.

Proof. We give a proof under the hypothesis that A (resp. C) is a connected wdga
algebra (resp. connected wdga coalgebra). However the result holds in full general-
ity (see [HMS74]). We apply Theorem 2.3.1 to the following diagram

�BA

ε

BA
π

ιBA

IdBA

A

BA.

π

Since IdBA is an isomorphism, it follows that the counit ε is a quasi-isomorphism.
Following the same method, since Id�C is an isomorphism, the unit υ is a quasi-

isomorphism. �

2.4 Cobar Construction and Quasi-isomorphisms

Using the previous results, we study the relationship between the cobar construction
and quasi-isomorphisms. The main source of inspiration for this section is Lefèvre-
Hasegawa’s thesis [LH03].

To any dga coalgebra C, we consider the graded modules associated to the corad-
ical filtration: grr C := FrC/Fr−1C. Let f : C → C′ be a morphism of conilpotent
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dga coalgebras. Since the map f and the differentials preserve the coradical filtra-
tions, f induces a morphism of chain complexes [f ] : grC → grC′ between the
associated graded modules. If [f ] is a quasi-isomorphism, then f is called a graded
quasi-isomorphism.

Proposition 2.4.1. For any morphism f : C → C′ of conilpotent dga coalgebras
which is a graded quasi-isomorphism the induced morphism �f : �C

∼−→ �C′ is a
quasi-isomorphism.

Proof. We consider the following grading for any element c in a conilpotent coalge-
bra C, gr c := min{r | c ∈ FrC}. We consider the filtration of the cobar construction
�C defined by

Fp�C := {
s−1c1 ⊗ · · · ⊗ s−1cn | gr c1 + · · · + gr cn ≤ p

}
.

The increasing filtration is bounded below and exhaustive so the associated spectral
sequence converges to the homology of �C. Its first term is equal to

E0
pq�C = (Fp�C)p+q/(Fp−1�C)p+q

∼= (�grC)
(p)
p+q,

where

(�grC)(p) = {
s−1c1 ⊗ · · · ⊗ s−1cn | gr c1 + · · · + gr cn = p

}
.

Hence E0(�f ) = �[f ], under the preceding notation. For any fixed p, we now
prove that E0

p•(�C) → E0
p•(�C′) is quasi-isomorphism. On E0

p•(�C), we define

the filtration Fk as follows: an element s−1c1 ⊗ · · · ⊗ s−1cn is in Fk if and only if
n ≥ −k. This filtration is increasing. Since C is conilpotent the grading gr of the
elements of �C is strictly greater than 0, and we have F−p−1 = 0. Since it is bounded
below and exhaustive, the associated spectral sequence converges by Theorem 1.5.1.
The first term E0

k• is isomorphic to the sub-module of (s−1 grC)⊗k of grading p and
degree k + • with differential d0 induced by the differential of grC. The morphism
f being a graded quasi-isomorphism, E0(�[f ]) is also a quasi-isomorphism by
Künneth formula, which concludes the proof. �

2.4.1 Weak Equivalence

Any morphism f : C → C′ of dga coalgebras, such that the induced morphism
�f : �C → �C′ is a quasi-isomorphism, is called a weak equivalence.

Proposition 2.4.2. Any weak equivalence f : C → C′ of conilpotent dga coalge-
bras is a quasi-isomorphism.
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Proof. Since f is a weak equivalence, �f is a quasi-isomorphism and by Propo-
sition 2.2.3, the morphism of dga coalgebras B�f : B�C → B�C′ is a quasi-
isomorphism. We conclude with the following commutative diagram, where all the
maps are quasi-isomorphisms by Proposition 2.3.2

C
υC

f

B�C

B�f

C′ υC′
B�C′. �

In conclusion, the exact relationship between these notions is the following:

graded quasi-isomorphisms ⊆ weak equivalences � quasi-isomorphisms.

Proposition 2.4.3. There exist quasi-isomorphisms of dga coalgebras which are not
weak equivalences.

Proof. Let A be a unital dga algebra A, which is not acyclic. Consider its augmenta-
tion A+ := A⊕K1, where 1 acts as a unit. The dga coalgebra C := BA+ ∼= T c(sA)

is isomorphic to K⊕ BA ⊗π A. So it is quasi-isomorphic to the trivial dga coalge-
bra K by Proposition 2.2.8. But the cobar construction of K is acyclic, whereas the
cobar construction �BA+ is quasi-isomorphic to A+ by Corollary 2.3.2, which is
not acyclic. �

Notice that C = BA+ is connected but not 2-connected since C1 contains s1A,
the suspension of the unit of A. So Proposition 2.2.5 does not hold for connected
dga coalgebras in general. For 2-connected dga coalgebras, a quasi-isomorphism is
a weak equivalence and vice versa.

2.5 Proof of the Comparison Lemma

In this section, we prove the Comparison Lemma 2.1.5 used in the proof of the
fundamental theorem of twisting morphisms (Theorem 2.3.1). We assume here that
the reader is familiar with the following notions of homological algebra: long ex-
act sequences, cones, filtrations and spectral sequences. We refer the reader to any
textbook on homological algebra, for instance [ML95] by Saunders MacLane.

Lemma 2.5.1 (Comparison Lemma for twisted tensor product, Cartan [Car55]).
Let g : A → A′ be a morphism of wdga connected algebras and f : C → C′ be a
morphism of wdga connected coalgebras. Let α : C → A and α′ : C′ → A′ be two
twisting morphisms, such that f and g are compatible with α and α′.

If two morphisms among f , g and f ⊗ g : C ⊗α A → C′ ⊗α′ A′ (or g ⊗ f :
A ⊗α C → A′ ⊗α′ C′) are quasi-isomorphisms, then so is the third one.
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Fig. 2.1 The page E2
st of the

spectral sequence

Proof. Recall that the notion of weight-graded dga algebra was defined in
Sect. 1.5.10. We denote by M = ⊕n≥0M

(n) (resp. M ′ = ⊕n≥0M
′(n)) the weight-

graded chain complex C ⊗α A (resp. C′ ⊗α′ A′). We define a filtration Fs on M(n),
where n ∈N is the weight, by the formula

Fs

(
M(n)

) :=
⊕

d+m≤s

(
C

(m)
d ⊗ A

)(n) =
⊕

d+m≤s

C
(m)
d ⊗ A(n−m).

The differential dα on M = C ⊗α A is the sum of three terms IdC ⊗dA, dC ⊗ IdA

and dr
α . One has IdC ⊗dA : Fs → Fs , dC ⊗ IdA : Fs → Fs−1 and dr

α : Fs → Fs−2.
Therefore, Fs is a filtration on the chain complex M(n). We consider the associated
spectral sequence {E•

st }s,t . One has

E0
st = Fs

(
M(n)

)
s+t

/Fs−1
(
M(n)

)
s+t

=
n⊕

m=0

C
(m)
s−m ⊗ A

(n−m)
t+m .

The study of the differential dα on the filtration Fs of M shows that d0 = IdC ⊗dA

and that d1 = dC ⊗ IdA. It follows that

E2
st =

n⊕

m=0

Hs−m

(
C(m)•

) ⊗ Ht+m

(
A(n−m)•

)
.

Since A and C are weight graded and connected, the part m = 0 is concentrated in
s = 0 and t ≥ 0, where it is equal to E2

0t = Ht(A
(n)• ). The part m = n is concentrated

in t = −n and s ≥ n, where it is equal to E2
s−n = Hs−n(C

(n)• ). For any 0 < m < n,

the nonvanishing part of Hs−m(C
(m)• ) ⊗ Ht+m(A

(n−m)• ) is in s ≥ 1 and t ≥ −n + 1.
See Fig. 2.1.

The filtration Fs is exhaustive M(n) = ⋃
s≥0 Fs(M

(n)) and bounded below
F−1(M

(n)) = {0}, so the spectral sequence converges to the homology of M(n) by
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the classical convergence theorem 1.5.1:

E∞
st

(
M(n)

) ∼= Fs

(
Hs+t

(
M(n)

))
/Fs−1

(
Hs+t

(
M(n)

))
.

We consider the same filtration on M ′ and we denote by Φ the morphism of
chain complexes Φ := f ⊗ g. We treat the three cases one after the other.

(1) If f and g are quasi-isomorphisms, then Φ = f ⊗ g is a quasi-isomorphism.

For every s, t and n, the maps E2
st (M

(n))
H•(f )⊗H•(g)−−−−−−−−→ E2

st (M
′(n)) are isomor-

phisms. By the convergence of the two spectral sequences, the maps

E∞
st

(
M(n)

) ∼−→ E∞
st

(
M ′(n)

)

are again isomorphisms. So the map Φ is a quasi-isomorphism.

(2) If Φ = f ⊗ g and g are quasi-isomorphisms, then f is a quasi-isomorphism.

Let us work by induction on the weight n. When n = 0, the map f (0) : K → K,
which is the identity, is a quasi-isomorphism. Suppose now that the result is true up
to weight n− 1. We consider the mapping cone of Φ(n) : cone(Φ(n)) := s−1M(n) ⊕
M ′(n) and the associated filtration Fs(cone(Φ(n))) := Fs−1(M

(n)
) ⊕ Fs

(
M ′(n)),

which satisfies E1•t (cone(Φ(n))) = cone(E1•t (Φ(n))). The long exact sequence of
the mapping cone reads

· · · → Hs+1
(
cone

(
E1•t

(
Φ(n)

))) → Hs

(
E1•t

(
M(n)

))

Hs(E
1•t (Φ

(n)))−−−−−−−−→ Hs

(
E1•t

(
M ′(n)

)) → Hs

(
cone

(
E1•t

(
Φ(n)

))) → ·· · .

Therefore there is a long exact sequence (ξt )

(ξt ) · · · → E2
s+1t

(
cone

(
Φ(n)

)) → E2
st

(
M(n)

)

E2
st (Φ

(n))−−−−−→ E2
st

(
M ′(n)

) → E2
st

(
cone

(
Φ(n)

)) → ·· ·
where E2

st (Φ
(n)) is given by H•(f ) ⊗ H•(g).

When t > −n, we have seen that only C(m) (and C′(m)) with m < n are involved
in E2

st . In that case, since E2
st (M

(n)) = ⊕n−1
m=0 Hs−m(C

(m)• ) ⊗ Ht+m(A
(n−m)• ), the

induction hypothesis implies that

E2
st

(
M(n)

) H•(f )⊗H•(g)−−−−−−−−→ E2
st

(
M ′(n)

)

is an isomorphism for every s and every t > −n. Using the long exact sequence
(ξt ) for t > −n, it gives E2

st

(
cone(Φ(n))

) = 0 for every s and every t �= −n. The
collapsing of the spectral sequence E•

st (cone(Φ(n))) at rank 2 implies the equal-
ity E∞

st (cone(Φ(n))) = E2
st (cone(Φ(n))). The convergence of the spectral sequence

E•
st (cone(Φ(n))) shows that

E2
st

(
cone

(
Φ(n)

)) = Fs

(
Hs+t

(
cone

(
Φ(n)

)))
/Fs−1

(
Hs+t

(
cone

(
Φ(n)

))) = 0
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since Φ(n) is a quasi-isomorphism. Since E2
s−n(cone(Φ(n))) = 0, the long exact

sequence (ξ−n) gives the isomorphism

Hs−n

(
C(n)•

) = E2
s−n

(
M(n)

) H•(f )−−−→ E2
s−n

(
M ′(n)) = Hs−n

(
C′(n)

•
)
,

for every s. So f is a quasi-isomorphism as expected.

(3) If Φ = f ⊗ g and f are quasi-isomorphisms, then g is a quasi-isomorphism.

Once again, we work by induction on the weight n. For n = 0, the map g(0) :K → K

is an isomorphism. Suppose that the result is true up to weight n − 1. When s ≥ 1,
we have seen that only A(n−m) (and A′(n−m)) with m > 0 are involved in E2

st ,

E2
st

(
M(n)

) =
n⊕

m=1

Hs−m

(
C(m)•

) ⊗ Ht+m

(
A(n−m)•

)
.

In this case, the induction hypothesis implies that E2
st (M

(n))
H•(f )⊗H•(g)−−−−−−−−→

E2
st (M

′(n)) is an isomorphism for every s ≥ 1 and every t . The long exact sequence
(ξt ) shows that E2

st (cone(Φ(n))) = 0 for s ≥ 2 and every t . The spectral sequence
of the cone of Φ(n) converges to its homology, which is null since Φ(n) is a quasi-
isomorphism. Therefore, E2

1,t−1(cone(Φ(n))) = E2
0,t (cone(Φ(n))) = 0 for every t .

This implies E2
st (cone(Φ(n))) = 0 for every t and s. Finally, the beginning (s = 0)

of the exact sequence (ξt ) gives the isomorphism

Ht

(
A(n)•

) = E2
0t

(
M(n)

) H•(g)−−−→ E2
0t

(
M ′(n)) = Ht

(
A′(n)

•
)
.

So g is a quasi-isomorphism as expected. �

2.5.1 Comparison with Algebraic Topology

The Comparison Lemma is the algebraic avatar of the following result in algebraic
topology. Let

F

fF

X

fX

B

fB

F ′ X′ B ′

be a morphism between two fibrations of simply-connected spaces. If two of the
morphisms fF ,fX,fB are isomorphisms in homology, then so is the third. Us-
ing the Whitehead theorem it can be proved as follows: homology isomorphism is
equivalent to homotopy isomorphism for simply-connected CW-complexes. When
two of the morphisms are homotopy isomorphisms, then so is the third by the long
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Serre exact homotopy sequence. Since a homotopy isomorphism is also a homology
isomorphism, we are done.

In order to translate this result into homological algebra one needs some extra
idea since the trick of passing to homotopy is not available anymore. The idea goes
back to the Cartan seminar [Car55] and was later generalized to any first quadrant
spectral sequence by Zeeman [Zee57]. This latter one applies to Leray–Serre spec-
tral sequence of fiber spaces, whence the name base for the x-axis terms E2

s0 (E2
s−n

in the present proof) and fiber for the y-axis terms E2
0t . More precisely, there is

a twisting morphism between the singular chain complex S(B) of the base space,
which is a dg coalgebra, and the singular chain complex S(F ) of the fiber space
which is a module over the algebra of the singular chain complex S(�B) of the
loops of B . The induced twisted tensor product is shown to be quasi-isomorphic to
the singular chain complex S(X) of the total space, under certain hypotheses, by
E.H. Brown in [Bro59]. The spectral sequence introduced in the core of this proof
is an algebraic analog of the Leray–Serre spectral sequence.

2.6 Résumé

2.6.1 Twisting Morphism and Twisted Tensor Products

Convolution dga algebra: C dga coalgebra and A dga algebra:
(
Hom(C,A), �, ∂

)
,

f � g = μ ◦ (f ⊗ g) ◦ �, ∂(f ) = dAf − (−1)|f |f dC.

Twisting morphism, Tw(C,A): Solution of degree −1 to the Maurer–Cartan equa-
tion

∂(α) + α � α ≡ ∂(α) + 1

2
[α,α] = 0.

Any α ∈ Tw(C,A) induces

� a twisted differential ∂α := ∂ + [α,−] in Hom(C,A),
� a differential dα := dC⊗A + dr

α on the tensor product C ⊗ A defining the right
twisted tensor product C ⊗α A,

� a differential dα := dA⊗C + dl
α on the tensor product A ⊗ C defining the left

twisted tensor product A ⊗α C.

Table 2.1 summarizes this hierarchy of notions.

2.6.2 Bar and Cobar Constructions

Bar construction:

BA := (
T c(sĀ), d1 + d2

)
, d2(sx ⊗ sy) = (−1)|x|s(xy).
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Table 2.1 Hierarchy of
notions α ∈ Determines:

Hom(C,A)−1 dα : C ⊗ A → C ⊗ A
⋃

Tw(C,A) chain complex C ⊗α A, d2
α = 0

⋃

Kos(C,A) acyclicity of C ⊗α A

Cobar construction:

�C := (
T

(
s−1�C )

, d1 + d2
)
, d2

(
s−1x

) = −
∑

(−1)|x(1)|s−1x(1) ⊗ s−1x(2).

Summary of Theorem 2.2.6 (second row) and Theorem 2.3.1 (third row):

Homga alg
(
T

(
s−1�C )

,A
) ∼= Hom(�C, Ā)−1 ∼= Homga coalg

(
C,T c(sĀ)

)

⋃ ⋃ ⋃

Homdga alg (�C,A) ∼= Tw(C,A) ∼= Homdga coalg (C,BA)

⋃ ⋃ ⋃

q-Isodga alg (�C,A) ∼= Kos(C,A) ∼= q-Isodga coalg (C,BA) .

With C = BA, we get

�BA
ε−→ A ↔ BA

π−→ A ↔ BA
Id−→ BA,

and with A = �C, we get

�C
Id−→ �C ↔ C

ι−→ �C ↔ C
υ−→ B�C.

2.6.3 Universal Twisting Morphisms and Fundamental Theorem

Universal twisting morphisms: ι : C → �C and π : BA → A, which are Koszul.

Factorization of any twisting morphism α : C → A:
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�C

gα

∼

C

fα

∼

ι∈Kos(C,�(C))

α∈Kos(C,A)
A

BA.

π∈Kos(BA,A)

� gα : �C → A morphism of dg algebras,
� fα : C → BA morphism of dg coalgebras.

Twisting Morphisms Fundamental Theorem. The following assertions are equiv-
alent

� a twisting morphism α : C → A is Koszul,
� the morphism of dg algebras gα : �C

∼−→ A is a quasi-isomorphism,
� the morphism of dg coalgebras fα : C ∼−→ BA is a quasi-isomorphism.

Corollary. ε : �BA
∼−→ A and υ : C ∼−→ B�C.

2.6.4 Quasi-isomorphisms Under Bar and Cobar Constructions

Proposition. The bar construction B preserves quasi-isomorphisms between dga
algebras.

Proposition. The cobar construction � preserves quasi-isomorphisms between 2-
connected dga coalgebras.

Weak equivalence: f : C → C′ such that �f : �C
∼−→ �C′.

graded quasi-isomorphisms ⊆ weak equivalences � quasi-isomorphisms.

2.7 Exercises

Exercise 2.7.1 (Convolution dga algebra). Draw a picture proof of Proposi-
tion 2.1.1, as in Proposition 1.6.2.
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Exercise 2.7.2 (Bar construction as an algebra). We know that the cofree coalgebra
can be endowed with a commutative algebra structure through the shuffle product,
cf. Sect. 1.3.2. Show that the bar construction of a dga algebra is a dg commutative
Hopf algebra.

Exercise 2.7.3 (Application of the sign rule). Let K s be the vector space of degree 1
equipped with the degree −1 product s ⊗ s 	→ s. Show that the transpose of the
product on the linear dual K s∗ is given by �(s∗) = −s∗ ⊗ s∗.

Exercise 2.7.4 (Universal twisting morphism). Verify directly that ι : C → �C is a
twisting morphism.

Exercise 2.7.5 (Functoriality). Prove that Tw : dga coalgop × dga alg → Set is a
bifunctor.

Exercise 2.7.6 (Cotangent complex). Let A be a dga algebra, C a dga coalgebra
and let α : C → A be a twisting morphism. We consider the following twisted dif-
ferential on A ⊗ C ⊗ A, the free A-bimodule on C:

dα := dA⊗C⊗A + IdA ⊗dr
α − dl

α ⊗ IdA,

where

dr
α := (IdC ⊗μ) ◦ (IdC ⊗α ⊗ IdA) ◦ (� ⊗ IdA),

and

dl
α := (μ ⊗ IdC) ◦ (IdA ⊗α ⊗ IdC) ◦ (IdA ⊗�).

� Prove that dα
2 = 0.

We denote this chain complex by

A ⊗α C ⊗α A := (A ⊗ C ⊗ A,dα).

� Show that there is an isomorphism of chain complexes

(
Homα(C,A), ∂α

) ∼= (
HomA−biMod(A ⊗α C ⊗α A,A), ∂

)
.

� Show that the following composite

ξ : A ⊗ C ⊗ A
Id⊗ε⊗Id−−−−−→ A ⊗K⊗ A ∼= A ⊗ A

μ−→ A

is a morphism of dg A-bimodules.
� Under the same weight grading assumptions as in Theorem 2.3.1, prove that ξ :

A⊗α C ⊗α A
∼−→ A is a quasi-isomorphism if and only if α is a Koszul morphism.
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Exercise 2.7.7 (Naturality). Prove that the bijections given in Theorem 2.2.6 are
functorial in A and C.

Exercise 2.7.8 (Fundamental Theorem). Using the Comparison Lemma 2.1.5,
prove directly the equivalence (2) ⇐⇒ (3) of Theorem 2.3.1.

Exercise 2.7.9 (Unit of adjunction). Use the same kind of filtrations as in the proof
of Proposition 2.4.1 to prove that the unit of adjunction υ : C → B�C is a quasi-
isomorphism, when C is a conilpotent dga coalgebra.
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