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Preface

An operad is an algebraic device which encodes a type of algebras. Instead of study-
ing the properties of a particular algebra, we focus on the universal operations that
can be performed on the elements of any algebra of a given type. The information
contained in an operad consists in these operations and all the ways of composing
them. The classical types of algebras, that is associative algebras, commutative alge-
bras and Lie algebras, give the first examples of algebraic operads. Recently, there
has been much interest in other types of algebras, to name a few: Poisson algebras,
Gerstenhaber algebras, Jordan algebras, pre-Lie algebras, Batalin–Vilkovisky alge-
bras, Leibniz algebras, dendriform algebras and the various types of algebras up
to homotopy. The notion of operad permits us to study them conceptually and to
compare them.

The operadic point of view has several advantages. First, many results known for
classical types of algebras, when written in the operadic language, can be applied to
other types of algebras. Second, the operadic language simplifies both the statements
and the proofs. So, it clarifies the global understanding and allows one to go further.
Third, even for classical algebras, the operad theory provides new results that had
not been unraveled before. Operadic theorems have been applied to prove results
in other fields, like the deformation-quantization of Poisson manifolds by Maxim
Kontsevich and Dmitry Tamarkin for instance. Nowadays, operads appear in many
different themes: algebraic topology, differential geometry, noncommutative geom-
etry, C∗-algebras, symplectic geometry, deformation theory, quantum field theory,
string topology, renormalization theory, combinatorial algebra, category theory, uni-
versal algebra and computer science.

Historically, the theoretical study of compositions of operations appeared in the
1950s in the work of Michel Lazard as “analyseurs”. Operad theory emerged as
an efficient tool in algebraic topology in the 1960s in the work of Frank Adams,
J. Michael Boardmann, André Joyal, Gregory Kelly, Peter May, Saunders McLane,
Jim Stasheff, Rainer Vogt and other topologists and category theorists. In the 1990s,
there was a “renaissance” of the theory in the development of deformation theory
and quantum field theory, with a shift from topology to algebra, that can be found
in the work of Ezra Getzler, Victor Ginzburg, Vladimir Hinich, John Jones, Mikhail
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viii Preface

Kapranov, Maxim Kontsevich, Yuri I. Manin, Martin Markl, Vadim Schechtman,
Vladimir Smirnov and Dmitry Tamarkin for instance. Ten years later, a first mono-
graph [MSS02] on this subject was written by Martin Markl, Steve Shnider and Jim
Stasheff in which one can find more details on the history of operad theory.

Now, 20 years after the renaissance of the operad theory, most of the basic aspects
of it have been settled and it seems to be the right time to provide a comprehensive
account of algebraic operad theory. This is the purpose of this book.

One of the main fruitful problems in the study of a given type of algebras is
its relationship with algebraic homotopy theory. For instance, starting with a chain
complex equipped with some compatible algebraic structure, can this structure be
transferred to any homotopy equivalent chain complex? In general, the answer is
negative. However, one can prove the existence of higher operations on the homo-
topy equivalent chain complex, which endow it with a richer algebraic structure. In
the particular case of associative algebras, this higher structure is encoded into the
notion of associative algebra up to homotopy, alias A-infinity algebra, unearthed by
Stasheff in the 1960s. In the particular case of Lie algebras, it gives rise to the notion
of L-infinity algebras, which was successfully used in the proof of the Kontsevich
formality theorem. It is exactly the problem of governing these higher structures that
prompted the introduction of the notion of operad.

Operad theory provides an explicit answer to this transfer problem for a large
family of types of algebras, for instance those encoded by Koszul operads. Koszul
duality was first developed at the level of associative algebras by Stewart Priddy in
the 1970s. It was then extended to algebraic operads by Ginzburg and Kapranov,
and also Getzler and Jones in the 1990s (part of the renaissance period). The duality
between Lie algebras and commutative algebras in rational homotopy theory was
recognized to coincide with the Koszul duality theory between the operad encod-
ing Lie algebras and the operad encoding commutative algebras. The application of
Koszul duality theory for operads to homotopical algebra is a far-reaching general-
ization of the ideas of Dan Quillen and Dennis Sullivan.

The aim of this book is, first, to provide an introduction to algebraic operads, sec-
ond, to give a conceptual treatment of Koszul duality, and, third, to give applications
to homotopical algebra.

We begin by developing the general theory of twisting morphisms, whose main
application here is the Koszul duality theory for associative algebras. We do it in
such a way that this pattern can be adapted to the operad setting. After giving the
definition and the main properties of the notion of operad, we develop the operadic
homological algebra. Finally, Koszul duality theory of operads permits us to study
the homotopy properties of algebras over an operad.

We are very grateful to the many friends and colleagues who have helped us and
in particular to pioneers of the subject Jim Stasheff, Dennis Sullivan, and Yuri I.
Manin. We owe thanks to Olivia Bellier, Alexander Berglund, Emily Burgunder,
Damien Calaque, Yongshan Chen, Pierre-Louis Curien, Vladimir Dotsenko, Gabriel
Drummond-Cole, Clément Dupont, Yaël Frégier, Benoit Fresse, Hidekazu Furusho,
Ezra Getzler, Darij Grinberg, Moritz Groth, Li Guo, Kathryn Hess, Joseph Hirsh,
Laurent Hofer, Eric Hoffbeck, Ralf Holkamp, Magdalena Kȩdziorek, Muriel Liver-
net, Joan Millès, Nikolay Nikolov, Todor Popov, Maria Ronco, Henrik Strohmayer,
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Antoine Touzé, Christine Vespa, Yong Zhang, and to the referees for their helpful
and critical comments.

We wish to express our appreciation to the Centre National de Recherche Sci-
entifique, the Eidgenössische Technische Hochschule (Zürich), and the Max-Planck
Institut für Mathematik (Bonn) for their support.

Last but not least, nous sommes heureux de remercier tout particulièrement
Eliane et Catherine pour avoir su créer autour de nous l’environnement idéal à la
rédaction d’un tel ouvrage.

Jean-Louis Loday
Bruno Vallette

Strasbourg, France
18th January 2012
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Introduction

The broad scheme of this book is as follows:

• Koszul duality of associative algebras: Chaps. 1, 2, 3, 4.
• Algebraic operads and their Koszul duality: Chaps. 5, 6, 7, 8.
• Homotopy theory of algebras over an operad: Chaps. 9, 10, 11, 12.
• Examples of operads: Chaps. 9, 13.

Koszul Duality of Associative Algebras

Koszul duality theory is a homological method whose aim is to provide an explicit
quasi-free resolution (in fact the minimal model) for quadratic algebras. The algo-
rithm for such a construction splits into two steps. First, from the data defining a
quadratic algebra A, we construct a quadratic coalgebra A¡. Second, we apply to
this coalgebra the cobar construction � in order to get a differential graded algebra
�A¡. When some condition is fulfilled,�A¡ is the expected quasi-free resolution. In
that case A is called a Koszul algebra. The main feature of our treatment of Koszul
duality is to keep algebras and coalgebras on the same footing.

Before treating Koszul duality of quadratic algebras, we fully develop the homo-
logical algebra properties of twisting morphisms. By definition, a twisting morphism
is a linear map α : C→A from a differential graded associative (dga) coalgebra C
to a dga algebra A, satisfying the Maurer–Cartan equation:

∂(α)+ α � α = 0.

It gives rise to a chain complex structure on C ⊗A, called the twisted tensor prod-
uct. The set Tw(C,A), made up of the twisting morphisms, is a bifunctor which is
representable both in C and in A by the cobar construction � and the bar construc-
tion B respectively. The key point of this general theory is the characterization of
the twisted morphisms whose associated twisted tensor product is acyclic. They are
called Koszul morphisms and they form the set Kos(C,A). Under the bijections of
the adjunction, they correspond to quasi-isomorphisms:

xvii



xviii Introduction

Homdga alg (�C, A) ∼= Tw(C, A) ∼= Homdga coalg (C, BA)
⋃ ⋃ ⋃

q-Isodga alg (�C, A)
∼= Kos(C, A) ∼= q-Isodga coalg (C, BA).

Then, Koszul duality of quadratic algebras consists in applying this general the-
ory to the following situation. Let (V ,R ⊂ V⊗2) be a quadratic data, where V is a
vector space. It gives rise to a quadratic algebra A= T (V )/(R), which is a quotient
of the free algebra over V . It also gives rise to a quadratic coalgebra A¡, which is a
subcoalgebra of the cofree coalgebra over V . It is called the Koszul dual coalgebra.
There is a natural twisting morphism κ : A¡ → A to which we apply the preceding
theory: if the twisting morphism κ is a Koszul morphism, then A is a Koszul algebra
and �A¡ is its minimal model.

We first treat the homogeneous case R ⊂ V⊗2 and then we show how to extend
the results to the inhomogeneous case R ⊂ V ⊕V⊗2. The toy model is the universal
enveloping algebra A = U(g) of a Lie algebra g, which was studied originally by
Jean-Louis Koszul.

In the last chapter of this first part, we provide methods (Poincaré–Birkhoff–Witt
and Gröbner bases, rewriting method) to prove the Koszulity for quadratic algebras
and we introduce the Manin products of quadratic algebras. Since this presentation
of the Koszul duality theory of associative algebras relies only on the universal
properties of the various objects, it paves the way to other settings, in particular to
operads as treated in the next part.

Algebraic Operads and Their Koszul Duality

Let us consider a “type of algebras” P for which there is a notion of free algebra
P(V ) over a generic vector space V . From the universal properties of a free object,
one can deduce immediately that P , considered as an endofunctor of the category of
vector spaces Vect, inherits a monoid structure γ :P ◦P →P . This is the notion
of algebraic operad. Since the underlying object of this monoid is an endofunctor,
which is therefore a monad in Vect, there is a notion of algebraA over P determined
by a map γA : P(A)→ A. The notion of cooperad C is obtained similarly by
replacing monoid by comonoid in the definition of an operad.

In fact, in this book, we work with a more specific notion. We suppose that, as an
endofunctor of Vect, P is a Schur functor. It means that P is supposed to be built
out of a collection of modules P(n) over the symmetric group Sn, for n≥ 0, as

P(V ) :=
⊕

n≥0

P(n)⊗Sn V
⊗n.

The elements of P(n) are the n-ary operations acting on the algebras of type P :

(μ;a1, . . . , an) ∈P(A) �→ γA(μ;a1, . . . , an) ∈A.
The action of the group Sn on P(n) encodes their symmetries.
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From the specific form of the underlying endofunctor that we have assumed, it
follows that the definition of an operad can be formalized into several guises:

 MONOIDAL DEFINITION. It is a monoid (P, γ, η) in the monoidal category of
S-modules.

 CLASSICAL DEFINITION. It consists in making the monoid structure on P ex-
plicit on the spaces P(n) of n-ary operations.

 PARTIAL DEFINITION. A presentation of an operad using the so-called partial
operations ◦i involving only two operations.

 COMBINATORIAL DEFINITION. It consists in viewing an operad as an algebra
over some monad. This monad is built on “rooted trees” and “substitution”. It
allows for several variations of the notion of operad.

The rooted trees are naturally involved in the theory of operads since they de-
scribe the free operad over an S-module.

We also study, along the same lines, algebraic operads such that the functor P
is built out of a collection of vector spaces Pn, for n≥ 0, as

P(V ) :=
⊕

n≥0

Pn ⊗K V
⊗n.

In this case, there is no involvement of the symmetric groups. They are called non-
symmetric operads. They encode types of algebras for which the generating oper-
ations do not satisfy any symmetry properties, and, in the relations, the variables
stay in the same order in each monomial. The combinatorial objects involved in the
description of a free nonsymmetric operad are the planar rooted trees. Associative
algebras and dendriform algebras are examples giving rise to nonsymmetric oper-
ads.

Taking advantage of the fact that an operad (symmetric or nonsymmetric) is a
monoid in a certain linear category, we can extend the notions of twisting morphism
and Koszul morphism to the operad setting. This generalization of the Koszul duality
theory is not straightforward because of the following phenomenon. In the monoidal
category of vector spaces, in which the definition of an associative algebra takes
place, the tensor product V ⊗W is linear in both variables, for instance V ⊗ (W ⊕
W ′) = (V ⊗W)⊕ (V ⊗W ′). However, in the category of endofunctors, in which
the definition of an operad takes place, the composite P ◦Q is linear in the left vari-
able, but not in the right variable. So several constructions, like the convolution prod-
uct � and the notion of derivation, have to be adapted for the final results to hold true.

Once this generalization has been made, we develop homological algebra at the
operadic level: there are notions of twisting morphisms, twisted composite product,
Koszul morphisms, bar and cobar constructions in the operadic context. The main
theorem gives rise to the following bijections:

Homdg Op (�C ,P) ∼= Tw(C ,P) ∼= Homdg coOp (C , BP)

⋃ ⋃ ⋃

q-Isodg Op (�C ,P) ∼= Kos(C ,P) ∼= q-Isodg coOp (C , BP),
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where the set of Koszul morphisms Kos(C ,P) is made up of the twisting mor-
phisms whose associated twisted composite product is acyclic.

Koszul duality theory consists in applying the preceding general theory to a spe-
cific twisting morphism κ :P ¡ →P . Here P is the quadratic operad associated
to a given operadic quadratic data (generating operations and quadratic relations).
A similar construction, in the cooperad setting, gives rise to the quadratic coop-
erad P ¡, called the Koszul dual cooperad. We first treat the homogeneous case and
then we extend it to the inhomogeneous case. The paradigm of this last case is the
operad encoding Batalin–Vilkovisky algebras.

The ultimate consequence and useful result of this Koszul duality theory is to
provide an explicit algorithm to construct a quasi-free resolution (in fact the minimal
model) of the quadratic operad P , whenever it is Koszul. This quasi-free resolution
is the differential graded operad �P ¡. So the algorithm consists in

 constructing the cooperad P ¡ out of the quadratic data,
 taking the free operad on the underlying S-module of P ¡,
 constructing the differential on the free operad out of the cooperad structure

of P ¡.

We adopt the notation P∞ := �P ¡ and the terminology P∞-algebras, also
called homotopy P-algebras. It provides a generalization up to homotopy of the
notion of P-algebra.

We give several methods for proving Koszulity of operads. They rely either on
rewriting systems, PBW and Gröbner bases, distributive laws (Diamond Lemma),
or combinatorics (partition poset method). The notion of shuffle operad (Vladimir
Dotsenko, Eric Hoffbeck, Anton Khoroshkin) plays a key role in this respect. We
also introduce the Manin products constructions for operads.

Homotopy Theory of Algebras over an Operad

Knowing about the Koszul resolution of a given operad enables us to answer many
questions. For instance, it permits us to construct a “small” chain complex for com-
puting the homology and the cohomology of an algebra over an operad. Of course,
in the classical cases of associative algebras, commutative algebras and Lie algebras,
that is for the operads As, Com, and Lie, one recovers the complex of Hochschild,
Harrison and Chevalley–Eilenberg respectively. In the Leibniz case, we recover the
complex constructed by the first author. Surprisingly, in the Poisson case it gives
a complex different from the one which was used by the specialists, as shown by
Benoit Fresse.

The Koszul resolution permits us to give a precise meaning to the notion of ho-
motopy algebra of a given type. Again in the classical cases As, Com, and Lie, we
recover the known structures of A∞-algebra, C∞-algebra and L∞-algebra:

As∞ =A∞, Com∞ = C∞, Lie∞ = L∞.
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We devote an independent and almost self-contained chapter to the properties of
A∞-algebras.

The advantage of this treatment of operad theory is that we can extend known
results on some specific operads to all Koszul operads at once. This is the case for
the Homotopy Transfer Theorem, long known for associative algebras. It takes the
following form.

Let

(A,dA)h

p

(V, dV ),
i

IdA−ip = dAh+ hdA, i = quasi-isomorphism,

be a homotopy retract of chain complexes. Let P be a Koszul operad and suppose
that (A,dA) is a differential graded P-algebra. It is natural to ask oneself whether
we can transfer the P-algebra structure of (A,dA) to (V , dV ). In general we cannot,
however we can transfer it into a P∞-algebra structure. In fact, the answer to the
first question would be positive if the operad P were quasi-free, for instance by
replacing P by P∞ (recall that a P-algebra is a particular case of P∞-algebra).
This transferred P∞-algebra structure is homotopically equivalent to the first one.

An example of a homotopy retract is given by (V , dV ) := (H(A),0), that is the
homology of the underlying chain complex (A,dA), called the homotopy of the
differential graded P-algebra A. As a result, we obtain higher operations on the
homotopy of A, which encompass and generalize the notion of Massey products.

Examples of Operads and of Types of Operads

Throughout the aforementioned theoretical chapters, we illustrate the various results
with the three classical operads As, Com and, Lie (the “three graces”) encoding
respectively the associative algebras, the commutative algebras and the Lie algebras.

We treat in detail the case of the operad As in a separate chapter (Chap. 9), not
only because it is the most common type of algebras, but also because it serves as a
paradigm for the other Koszul operads. The notion of A∞-algebra is related to the
Stasheff polytope, also known as the associahedron. We give a detailed treatment of
the Homotopy Transfer Theorem in this case.

In Chap. 13, on top of the Com and Lie case, we treat many examples of operads
together with their inter-relationship:

 POISSON ALGEBRA and GERSTENHABER ALGEBRA: it mixes both Lie and
Com. It comes from Poisson geometry and deformation theory.

 PRE-LIE ALGEBRA: it permits us to analyze the properties of Hochschild ho-
mology and also the properties of derivations. It is closely related to the notion of
operad itself, since the convolution algebra of maps from a cooperad to an operad
is a pre-Lie algebra.
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 LEIBNIZ ALGEBRA and ZINBIEL ALGEBRA: it comes as a natural generalization
of Lie algebras with nonantisymmetric bracket. Zinbiel algebras (the Koszul dual)
play a salient role in the analysis of divided power algebras.

 DENDRIFORM ALGEBRA: it arises naturally when the product of an associative
algebra splits into the sum of two binary operations. It models a sort of “noncom-
mutative shuffle”. Many combinatorial Hopf algebras bear a dendriform struc-
ture.

 BATALIN–VILKOVISKY ALGEBRA: it is a particular class of Gerstenhaber alge-
bras endowed with a extra square-zero unary operator. It plays a crucial role in
mathematical physics (Batalin–Vilkovisky formalism in quantum field theory),
in string topology (homology of the free loop spaces) and in the study of double
loop spaces (cyclic Deligne conjecture).

 MAGMATIC ALGEBRA: it is an algebra with no relation. This type of algebras is
important for operad theory because the operad encoding magmatic algebras is
free and any operad is a quotient of a free operad. Though their Koszul duality is
obvious, it gives a nice explanation of the inversion of power series formula.

 JORDAN ALGEBRA: coming from the properties of the symmetrized product in
an associative algebra, they play a key role in differential geometry (symmetric
spaces). The analysis of the associated operad, which is cubic, is still to be done.

 MULTI-ARY ALGEBRA: there are various types of algebras with generating op-
erations of higher arity. The higher structure encoded in the Koszul resolution
P∞ is of this form. Several other examples appear in Deligne conjecture (brace
operations) and Gromov–Witten invariants (moduli space of curves).

We have seen that the term algebra, which, most often, means “associative alge-
bra” has been broadened to encompass many other types of algebras. So we have
“commutative algebras”, “Lie algebras”, “Poisson algebras”, “Leibniz algebras” and
so forth. The same fact occurs for the term “operad”. A priori it means what is
more accurately called “symmetric operad”. But its meaning has been broadened.
We have already mentioned the notions of “nonsymmetric operad” and “shuffle op-
erad”. Replacing the rooted trees by other combinatorial objects gives rise to other
types of operads: “colored operad”, “cyclic operad”, “permutad”, “modular operad”,
“properad”. We only briefly mention the definition of these structures in the last sec-
tion of the last chapter. The conceptual presentation of Koszul duality given in this
book has the advantage of being applicable to some of these other types of operads.

Recent Literature on Operads

The operad theory is connected to many subjects in mathematics and, so, can be
treated in different guises as in the following books, which appeared since 2000:

 in [Smi01] Vladimir Smirnov aims at applications to algebraic topology,
 in [MSS02] Martin Markl, Steve Shnider and Jim Stasheff gave applications in

algebra, topology and geometry,
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 in [Lei04] Tom Leinster treats operad theory from the higher category point of
view,

 in [Fre09a] Benoit Fresse studies the modules over algebraic operads.

Various Ways of Reading This Book

 The reader interested in operad theory can begin right away with Chap. 5: “Alge-
braic operad”. We treat both symmetric operads and nonsymmetric operads. We
give five equivalent definitions of an operad, we introduce the notion of algebra
over an operad and we study the notion of free operad in detail. The reader may
refer to Chap. 1 for classical notions, notations and results in elementary alge-
bra, if necessary. Then, in Chap. 13: “Examples of algebraic operads” he/she will
find a lot of examples. After this reading, the reader should be fluent in “operadic
calculus”.

 The study of homology and homotopy theory of algebras over an operad is first
done in Chap. 9 in the associative algebra case, and in Chaps. 10, 11, 12 in the
general case. A priori, it requires the knowledge of Koszul duality of operads.
However, one need not know all the details of this theory but only the statement
of the main results. In particular, we treat the Homotopy Transfer Theorem, which
reveals hidden structures in homological algebra.

 Koszul duality of operads is done in Chaps. 6 and 7. Chapter 6 is devoted to
twisting morphisms and the characterization of Koszul morphisms in general.
Chapter 7 is devoted to the Koszul morphism associated to an operadic quadratic
data. As said before, the overall presentation of results and proofs is analogous
to the algebra case. So the reader not familiar with Koszul duality is advised to
read Chaps. 2 and 3 first. Chapter 8 provides effective methods to prove that an
operad is Koszul.

 The reader interested in Koszul duality of algebras should read Chaps. 2, 3 and 4,
which give a new point of view of this classical theory. This part is a self-
contained study of Koszul duality of associative algebras. For examples and ap-
plications, we refer the reader to the monograph [PP05] by Alexander Polishchuk
and Leonid Positselski.

There are three appendices dealing respectively with the representations of the
symmetric groups, notions of category theory, and constructions on trees, including
the marvelous Stasheff polytope.

Notation and Conventions

The ground field (resp. commutative ring) is denoted by K. The category of vec-
tor spaces over K is denoted by VectK or by Vect. We often say space instead of
vector space, and map instead of linear map. We also say K-module, whenever the
constructions and results are valid for K a commutative ring, not necessarily a field.
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The linear dual of the K-vector space V is V ∗ := Hom(V ,K). When V is finite
dimensional, it is canonically isomorphic to the dual of its dual. In the sign-graded
case, this isomorphism Φ : V → V ∗∗ is given by Φ(x)(f ) := (−1)|x||f |f (x).

The tensor product of two K-vector spaces V and W is denoted by V ⊗KW or,
more often, by V ⊗W . The tensor product of n copies of V is denoted by

V⊗n := V ⊗ · · · ⊗ V︸ ︷︷ ︸
n

.

The monomial v1 ⊗ · · · ⊗ vn ∈ V⊗n is also written (v1, . . . , vn) or, more simply,
v1 · · ·vn (concatenation of the vectors) when there is no ambiguity. The homoge-
neous element v1 · · ·vn is said to be of weight n. The tensor module over V is by
definition the direct sum

T (V ) :=K⊕ V ⊕ V⊗2 ⊕ · · · ⊕ V⊗n ⊕ · · · .
The reduced tensor module is defined as

T (V ) := V ⊕ V⊗2 ⊕ · · · ⊕ V⊗n ⊕ · · · .
It can be viewed either as a subspace or as a quotient of T (V ). The terminology
“tensor module” will prove helpful, because this module can be equipped with many
different kinds of algebraic structures. The tensor algebra structure is only one of
them.

The symmetric group Sn is the automorphism group of the set {1, . . . , n}. An
element of Sn is called a permutation. A permutation σ ∈ Sn is denoted by

[
σ(1)σ (2) · · ·σ(n)].

We also sometimes adopt the classical cycle notation with parentheses, so, for in-
stance, (12)= [2 1]. The action on the right of Sn on V⊗n is given by

(v1 · · ·vn)σ := vσ(1) · · ·vσ(n).
The action on the left is given by σ · (v1 · · ·vn) := vσ−1(1) · · ·vσ−1(n).

We freely use the language of categories and functors, see for instance [ML98]
and Appendix B.1. While we review some elementary homological algebra in the
first chapter, the reader is expected to be familiar with the theory; see for instance
[ML95].

The exercises labeled � are more advanced.



Chapter 1
Algebras, Coalgebras, Homology

C’est de l’algèbre, se dit d’une chose à laquelle on ne comprend
rien.

Petit Littré

In this chapter we recall elementary facts about algebras and homological algebra,
essentially to establish the terminology and the notation. We first review the no-
tions of associative, commutative and Lie algebra. Then we deal with the notion of
coalgebra, which is going to play a key role in this book. This leads to the notion of
convolution. The last sections cover bialgebras, pre-Lie algebras, differential graded
objects and convolution algebra.

1.1 Classical Algebras (Associative, Commutative, Lie)

We review the classical notions of associative algebra, commutative algebra (mean-
ing commutative and associative), and Lie algebra.

1.1.1 Associative Algebras

An associative algebra over K is a vector space A equipped with a binary operation
(linear map)

μ :A⊗A→A

which is associative, i.e. μ ◦ (μ ⊗ id) = μ ◦ (id⊗μ). Here id is the identity map
from A to A (sometimes denoted by idA), and the operation μ is called the product.
Denoting ab := μ(a⊗ b), associativity reads:

(ab)c= a(bc).
J.-L. Loday, B. Vallette, Algebraic Operads,
Grundlehren der mathematischen Wissenschaften 346,
DOI 10.1007/978-3-642-30362-3_1, © Springer-Verlag Berlin Heidelberg 2012
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An associative algebra A is said to be unital if there is a map u :K→ A such that
μ ◦ (u⊗ id)= id= μ ◦ (id⊗u). We denote by 1A or simply by 1 the image of 1K
in A under u. Under this notation unitality reads:

1a = a = a1.

Associativity and unitality can be viewed as commutative diagrams:

A⊗A⊗A id⊗μ

μ⊗id

A⊗A
μ

A⊗A μ
A

K⊗A u⊗id

�

A⊗A
μ

A⊗K
id⊗u

�
A.

It is sometimes helpful to picture the binary operation μ as a graph

μ or simply as if there is no ambiguity on μ.

The associativity relation becomes:

=

and the unitality relations become:

• •
= = .

As usual we sometimes abbreviate (unital) associative algebra as algebra if no
confusion can arise, and we abbreviate (A,μ,u) as (A,μ) or even just A.

Equivalently a unital associative algebra is a monoid in the tensor category
(Vect,⊗,K) (cf. Appendix B.3).

An algebra morphism (or simply morphism) is a linear map f : A→ A′ such
that f (ab)= f (a)f (b). If A is also unital, then we further assume f (1)= 1.

The category of nonunital associative algebras is denoted by As-alg, and the cat-
egory of unital associative algebras by uAs-alg (or by As-alg if there is no risk of
confusion).

An algebra is augmented when there is given a morphism of algebras ε :A→K,
called the augmentation map. In particular ε(1A)= 1K. If A is augmented, then A
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is canonically isomorphic, as a vector space, to K1⊕Ker ε. The ideal Ker ε is called
the augmentation ideal, which we denote by Ā, so

A=K1A ⊕ Ā.

On the other hand, starting with a (not necessarily unital) algebra I , one can
construct an augmented algebra I+ :=K1⊕ I . The product is given by

(λ1+ a)(λ′1+ a′)= λλ′1+ (λa′ + λ′a + aa′).

Therefore the category of nonunital associative algebras is equivalent to the category
of unital augmented associative algebras.

For an augmented algebra I+ the space of indecomposables is

Indec(I+) := I/I 2.

1.1.2 Free Associative Algebra

The free associative algebra over the vector space V is an associative algebra F (V )
equipped with a linear map i : V →F (V ) which satisfies the following universal
condition:

Any map f : V → A, where A is an associative algebra, extends uniquely into
an algebra morphism f̃ :F (V )→A such that the following diagram commutes:

V
i

f

F (V )

f̃

A.

Observe that the free algebra over V is well-defined up to a unique isomorphism.
Categorically, F is a functor from the category of vector spaces to the category
of associative algebras (or unital associative algebras depending on the context we
choose), which is left adjoint to the forgetful functor assigning to A its underlying
vector space:

HomAs-alg
(
F (V ),A

)∼=HomVect(V ,A).

There are forgetful functors As-alg→ Vect→ Set and sometimes it is useful to
consider the free associative algebra over a set X. This is the same as the associative
algebra over the space KX spanned by X since the functor given by X �→ KX is
left adjoint to the functor Vect→ Set.
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1.1.3 Tensor Module, Tensor Algebra

By definition the tensor algebra over the vector space V is the tensor module

T (V ) :=K1⊕ V ⊕ · · · ⊕ V⊗n ⊕ · · ·
equipped with the concatenation product T (V )⊗ T (V )→ T (V ) given by

v1 · · ·vp ⊗ vp+1 · · ·vp+q �→ v1 · · ·vpvp+1 · · ·vp+q .
This operation is clearly associative and 1 ∈ V⊗0 =K1 is taken as a unit. Observe
that T (V ) is augmented by ε(v1 · · ·vn) = 0 for n ≥ 1 and ε(1) = 1. The map ε :
T (V )→ K is called the augmentation. For a homogeneous element x ∈ V⊗n, the
integer n is called the weight of x. We say that T (V ) is weight graded.

The reduced tensor algebra �T (V ) is the reduced tensor module

�T (V ) := V ⊕ · · · ⊕ V⊗n ⊕ · · ·
equipped with the concatenation product. It is a nonunital associative algebra (aug-
mentation ideal of T (V )).

Proposition 1.1.1. The tensor algebra (resp. reduced tensor algebra) is free in the
category of unital associative algebras (resp. nonunital associative algebras).

Proof. Let f : V →A be a map. If the extension f̃ exists, then we should have

f̃ (1)= 1 by unitality,
f̃ (v)= f (v) by compatibility with f ,
f̃ (v1 · · ·vn)= f (v1) · · ·f (vn), since f̃ is a morphism.

These equalities define a map f̃ : T (V )→ A. We immediately check that it is a
morphism. Since it is unique we have proved that T (V ), equipped with the inclusion
i : V � T (V ), is free over V . �

1.1.4 Noncommutative Polynomial Algebra

Let V = Kx1 ⊕ · · · ⊕ Kxn be a finite dimensional vector space with basis
{x1, . . . , xn}. The tensor algebra T (V ) is simply the algebra of noncommutative
polynomials in n variables and is denoted by K〈x1, . . . , xn〉.

1.1.5 Module and Bimodule

A left moduleM over an algebra A is a vector space equipped with a linear map

λ :A⊗M→M, λ(a,m)= am,
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called the left action, which is compatible with the product and the unit of A, in the
sense that the following diagrams commute

A⊗A⊗M Id⊗λ

μ⊗Id

A⊗M
λ

A⊗M λ
A

K⊗M u⊗Id

�

A⊗M
λ

M.

There is a similar notion of right module involving a right action λ′ :M ⊗A→
M , λ′(m,a′) = ma′. Finally, a bimodule M over the algebra A is a vector space
which is both a left module and a right module and which satisfies (am)a′ = a(ma′)
for any a, a′ ∈A and m ∈M .

If A is unital, then 1 is required to act by the identity.
For any vector space V the free left A-module over V is M := A⊗ V equipped

with the obvious left operation. Similarly the free A-bimodule over V is M :=A⊗
V ⊗A.

Let

0→M→A′ →A→ 0

be an exact sequence of associative algebras such that the product in M is 0. Then
it is easy to check thatM is a bimodule over A.

1.1.6 Derivations

Let M be a bimodule over an algebra A. A linear map d :A→M is a derivation if
the Leibniz rule holds:

d(ab)= d(a)b+ ad(b) for any a, b ∈A.
Graphically we get:

d d

d = +
.

Any element m ∈M defines a derivation dm(a)= [a,m] := am−ma called an
inner derivation. We denote by Der(A,M) the space of derivations of A with values
in M . We remark that d(1)= 0. In the case where M = A with its usual bimodule
structure we denote the space of derivations simply by Der(A).

Proposition 1.1.2. Let M be a bimodule over the free algebra T (V ). Any linear
map f : V →M can be extended uniquely into a derivation df : T (V )→M . More
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precisely, there is an isomorphism:

Hom(V ,M)∼=Der
(
T (V ),M

)
, f �→ df ,

given by df (v1, . . . , vn)=∑n
i=1 v1 · · ·f (vi) · · ·vn.

Proof. Since T (V ) is free, the extension of f into a derivation from T (V ) to M is
unique. The above formula is obtained by induction on n. On the other hand, any
derivation from T (V ) to M gives, by restriction, a linear map from V to M . These
two constructions are inverse to each other. �

1.1.7 Universality of the Free Algebra

We have seen that any linear map f : V → A extends uniquely into a map f :
�T (V )→A which satisfies f (xy)= f (x)f (y) (morphism of associative algebras).
We have also seen that any linear map d : V → A extends uniquely into a map
d : �T (V )→ A which satisfies d(xy) = d(x)y + xd(y). More generally, if we are
given some formula expressing f (xy) in terms of f (x), f (y), the sum and the
product, then the extension to �T (V ), when it exists, is going to be unique.

1.1.8 Commutative Algebra

By definition a commutative algebra is a vector space A over K equipped with
a binary operation μ : A ⊗ A→ A, μ(a, b) = ab, which is both associative and
commutative (i.e. symmetric):

ab= ba.
In terms of the switching map

τ :A⊗A→A⊗A
defined by τ(x, y) := (y, x) (in the nongraded context; see Sect. 1.5.3 for the defini-
tion in the graded context), the commutation condition reads μ ◦ τ = μ. Sometimes
one needs to work with algebras whose binary operation satisfies this symmetry
condition but is not associative. We propose calling them commutative magmatic
algebras (cf. Sect. 13.8.4), since we call magmatic algebra an algebra equipped
with a binary operation.

The free unital commutative algebra over the vector space V (cf. Sect. 5.2.5 for
the general definition of a free algebra) is the symmetric algebra

S(V )=
⊕

n≥0

Sn(V ) :=
⊕

n≥0

(
V⊗n
)
Sn
.
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Recall that if M is a right Sn-module the space MSn is the quotient of M by the
action of Sn. It is also called the space of coinvariants ofM since

MSn =M ⊗K[Sn] K

where K is equipped with the trivial action of Sn. The right action of the symmetric
group on V⊗n is by permutation of the variables (v1, . . . , vn)

σ := (vσ(1), . . . , vσ(n)).
If V = Kx1 ⊕ · · · ⊕ Kxk , then S(V ) is isomorphic to the algebra of polynomials
K[x1, . . . , xk].

The category of nonunital commutative algebras is denoted by Com-alg, and the
category of unital commutative algebras is denoted by uCom-alg. Since a commu-
tative algebra is associative, there is a forgetful functor

Com-alg−→ As-alg.

The free object in the category of nonunital commutative algebras is the reduced
symmetric algebra:

�S(V ) :=
⊕

n≥1

Sn(V ).

1.1.9 Lie Algebras

A Lie algebra is a vector space g over K equipped with a binary operation c :
g ⊗ g→ g, c(x, y) := [x, y], (c for “crochet” in French), called bracket, which
is antisymmetric:

[x, y] = −[y, x], equivalently c ◦ τ =−c,
and satisfies the Leibniz identity

[[x, y], z]= [x, [y, z]]+ [[x, z], y],
equivalently c ◦ (c⊗ id)= c ◦ (id⊗c)+ c ◦ (c⊗ id) ◦ (id⊗τ).

In the literature this relation is, most of the time, replaced by the Jacobi identity

[[x, y], z]+ [[y, z], x]+ [[z, x], y]= 0.

The Jacobi relation and the Leibniz relation are equivalent under the anti-symmetry
condition, but not otherwise. Observe that the Leibniz identity is equivalent to say-
ing that the map Adz := [−, z] : g→ g is a derivation for the bracket, since it can be
written

Adz
([x, y])= [x,Adz(y)

]+ [Adz(x), y
]
.
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Sometimes one needs to work with algebras whose binary operation is antisym-
metric but is not a Lie bracket. We propose calling them antisymmetric magmatic
algebras.

If the bracket operation satisfies the Leibniz identity, but not necessarily the anti-
symmetry condition, then the algebra is called a Leibniz algebra (this notion was
first introduced and studied in [Lod93]), cf. Sect. 13.5.1.

Any associative algebraA can be made into a Lie algebra, denoted byALie, under
the formula

[x, y] := xy − yx,
since an inner derivation satisfies the Leibniz relation. It gives a forgetful functor

(−)Lie : As-alg−→ Lie-alg.

See Proposition 9.1.1 for an explanation of the “forgetfulness”. The free Lie algebra
over the vector space V (cf. Sect. 5.2.5) is denoted by Lie(V ). It will be studied in
Sect. 1.3.

1.1.10 Universal Enveloping Algebra

We construct a functor U : Lie-alg−→ As-alg as follows. Let g be a Lie algebra and
let T (g) be the tensor algebra over the vector space g. By definition, the universal
enveloping algebra U(g) is the quotient of T (g) by the two-sided ideal generated
by the elements

x ⊗ y − y ⊗ x − [x, y], for all x, y ∈ g.

Proposition 1.1.3. The functor U : Lie-alg−→ As-alg is left adjoint to the functor
(−)Lie : As-alg−→ Lie-alg.

Proof. We prove that for any Lie algebra g and any associative algebra A there is
an isomorphism

HomAs
(
U(g),A

)∼=HomLie(g,ALie).

To any morphism f : U(g)→ A we associate its restriction to g, which is a Lie
algebra morphism g→ ALie. To any Lie algebra morphism g : g→ ALie we asso-
ciate the unique extension as associative algebra morphism g̃ : T (g)→ A. Since
g̃(x⊗y−y⊗x)= g(x)g(y)−g(y)g(x)= [g(x), g(y)] = g([x, y]), it follows that
g̃ is trivial on the two-sided ideal generated by the elements x⊗ y− y⊗ x− [x, y].
So it gives a map g̃ : U(g)→ A. It is immediate to check that these two construc-
tions are inverse to each other. �
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1.1.11 Lie Module

A Lie module, that is a module over a Lie algebra g, is a vector space M equipped
with a linear map g⊗M →M,(x,m) �→ [x,m], which satisfies the Jacobi iden-
tity whenever one of the variables is in M and the other two are in g (convention
[m,x] := −[x,m]). It is well known that a module over g is equivalent to a left
module over the associative algebra U(g).

1.2 Coassociative Coalgebras

Formally the notion of coalgebra is obtained by linearly dualizing the notion of al-
gebra. But these two notions are not equivalent, because, though a coalgebra gives
an algebra by dualization, an algebra gives a coalgebra only under a finiteness hy-
pothesis. In analysis this phenomenon gives rise to the notion of “distribution”.

1.2.1 Definition

A coassociative coalgebra (or associative coalgebra) over K is a vector space C
equipped with a binary cooperation (linear map):

� : C→ C ⊗C
which is coassociative, i.e. (� ⊗ id) ◦ � = (id⊗�) ◦ �. The map � is called a
coproduct. Sometimes we use Sweedler’s notation:

�(x)=
∑
x(1) ⊗ x(2), (�⊗ id) ◦�(x)=

∑
x(1) ⊗ x(2) ⊗ x(3).

More generally, we define the iterated coproduct �n : C → C⊗n+1 by �0 = id,
�1 =� and

�n := (�⊗ id⊗· · · ⊗ id) ◦�n−1.

We write �n(x) =∑x(1) ⊗ · · · ⊗ x(n+1) ∈ C⊗n+1. Since � is coassociative, we
have �n = (id⊗· · · ⊗ id⊗�⊗ id⊗· · · ⊗ id) ◦�n−1.

A coassociative coalgebra is said to be counital if it is equipped with a map
ε : C→ K called the counit (or the augmentation map) such that (ε ⊗ id) ◦ � =
id = (id⊗ε) ◦ �. Coassociativity and counitality can be viewed as commutative
diagrams:

C
�

�

C ⊗C
id⊗�

C ⊗C �⊗id
C ⊗C ⊗C
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C

�
�

�

C ⊗K C ⊗Cid⊗ε ε⊗id
K⊗C.

Observe that K itself is a counital coassociative coalgebra for �(1)= 1⊗ 1. We
often abbreviate (counital) coassociative coalgebra into coalgebra if no confusion
can arise, and we abbreviate the notation (C,�,ε) into (C,�) or even just C.

Pictorially the coproduct is represented as

and the coassociativity by

= .

A morphism of coalgebras f : C→ C′ is a linear map which commutes with
the coproducts, i.e. (f ⊗ f ) ◦�C = �C′ ◦ f , and with the counits. The category
of associative coalgebras is denoted by As-coalg (counital or not, depending on the
context).

A coalgebra is coaugmented if there is given a morphism of coalgebras u :K→
C; in particular ε ◦ u= IdK. If C is coaugmented, then C is canonically isomorphic
to Ker ε⊕K1. The kernel Ker ε is often denoted by �C, so

C = �C ⊕K1.

The reduced coproduct �̄ : �C→ �C ⊗ �C is the map given by

�̄(x) :=�(x)− x ⊗ 1− 1⊗ x.
The iterated reduced coproduct is denoted by �̄n : �C→ �C⊗n+1. So �̄n is an (n+1)-
ary cooperation.

The coproduct � is said to be cocommutative (or simply commutative) if it sat-
isfies the relation �= τ ◦�, where τ is the switching map.

1.2.2 From Algebra to Coalgebra and Vice Versa

Let V ∗ := Hom(V ,K) be the linear dual of the space V . There is a canonical map
ω : V ∗ ⊗ V ∗ → (V ⊗ V )∗ given by ω(f ⊗ g)(x ⊗ y)= f (x)g(y) (we work in the
nongraded framework). When V is finite dimensional, ω is an isomorphism.

If (C,�) is a coalgebra, then (C∗,�∗ ◦ ω) is an algebra (no need of finiteness
hypothesis).

If (A,μ) is an algebra which is finite dimensional, then (A∗,ω−1 ◦ μ∗) is a
coalgebra.
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1.2.3 Structure Constants

Let us suppose that A is a finite dimensional algebra with basis x1, x2, . . . . The
product is completely determined by constants azxy ∈ K such that xy =∑z a

z
xyz,

where x, y, z run over all basis vectors. For C := A∗ let us choose the dual basis
x∗1 , x∗2 , . . . . Then the coproduct in C is given by the following formula on this basis:

�
(
z∗
)=
∑

x,y

azxyx
∗ ⊗ y∗.

1.2.4 Conilpotency, Primitive Elements

Let C = K1 ⊕ �C be a coaugmented coalgebra. The coradical filtration on C is
defined as follows:

F0C :=K1,
FrC :=K1⊕ {x ∈ �C | �̄n(x)= 0, for any n≥ r} for a given r ≥ 1.

A coalgebra C is said to be conilpotent (or sometimes connected in the literature)
if it is coaugmented and if the filtration is exhaustive, that is C =⋃r FrC.

Observe that, under this hypothesis, any element in �C is conilpotent i.e. for any
x ∈ �C there exists n such that �̄m(x)= 0 for any m ≥ n. By definition an element
x ∈ C is said to be primitive if

�(x)= x ⊗ 1+ 1⊗ x,

or, equivalently, x ∈ �C and �̄(x) = 0. The space of primitive elements of C is de-
noted by PrimC. It is clear that F1(C)=K1⊕ PrimC.

Under finite dimensional assumption the dual of the primitives are the indecom-
posables:

(PrimC)∗ = IndecC∗.

1.2.5 Cofree Associative Coalgebra

By definition the cofree associative coalgebra over the vector space V is a conilpo-
tent associative coalgebra F c(V ) equipped with a linear map p :F c(V )→ V , so
that 1 �→ 0 and which satisfies the following universal condition:

Any linear map ϕ : C → V , where C is a conilpotent associative coalgebra,
satisfying ϕ(1) = 0, extends uniquely into a coaugmented coalgebra morphism:
ϕ̃ : C→F c(V ):
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C

ϕ
ϕ̃

F c(V )
p

V .

Observe that the cofree coalgebra over V is well-defined up to a unique isomor-
phism. Categorically, F c is a functor from the category of vector spaces to the
category of conilpotent coalgebras. It is right adjoint to the forgetful functor which
assigns to C the underlying vector space of �C:

HomVect(�C,V )∼=Homconil-As-coalg
(
C,F c(V )

)
.

It is important to notice that here the conilpotency condition is part of the def-
inition of cofree. The cofree object in the category of not necessarily conilpotent
coalgebras is completely different.

1.2.6 Tensor Coalgebra, Cofree Coalgebra

By definition the tensor coalgebra over the vector space V , denoted by T c(V ), is
the tensor module

T c(V ) :=K1⊕ V ⊕ · · · ⊕ V⊗n ⊕ · · ·

equipped with the deconcatenation coproduct T c(V )→ T c(V )⊗ T c(V ) given by

�(v1 · · ·vn) :=
n∑

i=0

v1 · · ·vi ⊗ vi+1 · · ·vn and �(1)= 1⊗ 1,

and the counit T c(V )→ K which is the identity on K and 0 otherwise. The co-
operation � is clearly coassociative and counital. Observe that T c(V ) is coaug-
mented by the inclusion i : K → T (V ). It is conilpotent and the filtration is
Fr(T

c(V )) :=⊕n≤r V⊗n.
Observe that in the noncounital context the deconcatenation is given by the for-

mula:

�̄(v1 · · ·vn) :=
n−1∑

i=1

v1 · · ·vi ⊗ vi+1 · · ·vn.

We denote by projV : T c(V )→ V the projection map which is the identity on V
and 0 otherwise.

Proposition 1.2.1. The tensor coalgebra is cofree in the category of conilpotent
coalgebras.
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Proof. We equip T c(V ) with the map projV : T c(V )→ V . For ω ∈ T c(V ) we de-
note by ωn its component in V⊗n. Observe that only finitely many components are
nonzero since T c(V ) is a “sum”.

Let ϕ : C→ V be a map such that ϕ(1)= 0. If there exists ϕ̃ : C→ T c(V )which
is a morphism of coaugmented coalgebras and which lifts ϕ, then, for any x ∈ �C,
we should have

ϕ̃(1)= 1 by coaugmentation,
ϕ̃(x)0 = 0 by counitality,
ϕ̃(x)1 = ϕ(x) by compatibility with ϕ,
ϕ̃(x)n =∑ϕ(x(1))⊗ · · · ⊗ ϕ(x(n)), since ϕ̃ is a coalgebra morphism.

Here we use Sweedler’s notation for �̄, that is �̄n−1(x) =∑x(1) ⊗ · · · ⊗ x(n).
This argument proves the uniqueness of ϕ̃. Let us define ϕ̃(x)n by the aforemen-
tioned formula. Since C is supposed to be conilpotent, there is only a finite number
of nontrivial elements ϕ̃(x)n. Therefore ϕ̃(x) :=∑n ϕ̃(x)n belongs to T c(V ), and
so we have defined a map ϕ̃ : C→ T c(V ).

It is immediate to check that ϕ̃ is a coalgebra map whose projection onto V
coincides with ϕ. So, we have proved the universal condition. �

1.2.7 Coderivation

Let C = (C,�) be a conilpotent coalgebra. By definition a coderivation is a linear
map d : C→ C such that d(1)= 0 and

� ◦ d = (d ⊗ id) ◦�+ (id⊗d) ◦�.
We denote by Coder(C) the space of coderivations of C.

Proposition 1.2.2. If C is cofree, i.e. C = T c(V ) for some vector space V , then a
coderivation d ∈ Coder(T c(V )) is completely determined by its weight 1 component

T c(V )
d−→ T c(V )

projV−−−→ V.

Proof. Let us denote by f (x) := d(x)(1) = projV (d(x)) the weight-one compo-
nent of d(x). Since T c(V ) is cofree, the weight n component of d(x), denoted by
d(x)(n) ∈ V⊗n, is given by

d(x)(n) =
n∑

i=1

∑

(x)

projV (x(1))⊗ · · · ⊗ f (x(i))⊗ · · · ⊗ projV (x(n)),

where
∑
(x) x(1) ⊗ · · · ⊗ x(n) := �̄n−1(x) and d(x)(0) = 0. So the coderivation d is

completely determined by f := projV ◦ d : T c(V )→ V . �
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1.2.8 Comodule

A left comodule N over a coalgebra C is a vector space endowed with a linear map

�l :N→ C ⊗N,
which is compatible with the coproduct and the counit

N
�l

�l

C ⊗N
Id⊗�l

C ⊗N �⊗Id
C ⊗C ⊗N

N

�l
�

C ⊗N ε⊗id
K⊗N.

It is called a coaction map. The notion of a right comodule using �r :N→N ⊗C
is analogous. A co-bimodule is a left and right comodule such that the two coaction
maps satisfy the coassociativity condition:

(
idC⊗�r

) ◦�l = (�l ⊗ idC
) ◦�r.

For instance, any coalgebra is a co-bimodule over itself.

1.2.9 Cocommutative Coalgebra

An associative coalgebra (C,�) is said to be cocommutative (or sometimes simply
commutative) if the coproduct � satisfies the following symmetry condition:

�= τ ◦�.
In other words we assume that the image of � lies in the invariant space (C ⊗C)S2

where the generator of S2 acts via the switching map τ . The cofree commutative
coalgebra over the space V (taken in the category of conilpotent commutative coal-
gebras of course) can be identified, in characteristic zero, to the symmetric module
S(V ) equipped with the following coproduct:

�′(v1 · · ·vn)=
∑
vi1 · · ·vip ⊗ vj1 · · ·vjq ,

where the sum is extended to all the (p, q)-shuffles (i1 · · · ip, j1 · · · jq), see
Sect. 1.3.2 below for details. It is denoted by Sc(V ).

1.3 Bialgebra

We introduce the classical notions of bialgebra and Hopf algebra, which are char-
acterized by the Hopf compatibility relation. We make explicit the coproduct in the
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tensor bialgebra in terms of shuffles and we characterize the space of primitive ele-
ments (CMM theorem and PBW theorem). We introduce the notion of convolution
and the Eulerian idempotents.

1.3.1 Definition

A bialgebra H = (H ,μ,�,u, ε) over K is a vector space H equipped with an al-
gebra structure H = (H ,μ,u) and a coalgebra structure H = (H ,�, ε) related
by the Hopf compatibility relation

�(xy)=�(x)�(y),
where xy := μ(x⊗ y) and the product on H ⊗H is given (in the nongraded case)
by (x⊗ y)(x′ ⊗ y′)= xx′ ⊗ yy′. It is often better to write the compatibility relation
in terms of � and μ. Then one has to introduce the switching map

τ :H ⊗H →H ⊗H , τ (x ⊗ y) := y ⊗ x.
With this notation the compatibility relation reads:

� ◦μ= (μ⊗μ) ◦ (id⊗τ ⊗ id)
︸ ︷︷ ︸

μH ⊗H

◦(�⊗�) :H ⊗H −→H ⊗H .

It can be represented by the following picture:

= .

It is also assumed that ε is a morphism of algebras and u is a morphism of
coalgebras.

1.3.2 The Tensor Bialgebra, Shuffles

Consider the free associative algebra (T (V ),μ) over the space V . Since T (V ) is
free, there is only one algebra morphism �′ : T (V )→ T (V )⊗ T (V ) such that

�′(v)= v⊗ 1+ 1⊗ v for v ∈ V.
It is immediate to check (again from the freeness property) that �′ is coassocia-
tive and counital. Hence (T (V ),μ,�′) is a conilpotent bialgebra. Observe that it
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is cocommutative, that is �′ = τ ◦�′. It is called the shuffle coproduct for reasons
explained below.

Dually, on the cofree associative coalgebra (T c(V ),�), there is a unique coaug-
mented coalgebra morphism

μ′ : T c(V )⊗ T c(V )→ T c(V )

whose projection onto V is 0 except on (V ⊗K)⊕ (K⊗ V ) where it is given by:

μ′(v⊗ 1)= v, μ′(1⊗ v)= v for v ∈ V.
It is immediate to check (again from the cofreeness property) that μ′ is associative
and unital. Hence (T c(V ),μ′,�) is a conilpotent bialgebra. Observe that it is com-
mutative, that is μ′ = μ′ ◦ τ . It is called the shuffle product for reasons explained
below.

One can make the coproduct�′ of T (V ) and the product μ′ of T c(V ) explicit as
follows.

By definition a (p, q)-shuffle is a sequence of integers

[i1 · · · ip | j1 · · · jq ]
which is a permutation of {1, . . . , p+ q} such that

i1 < · · ·< ip and j1 < · · ·< jq.
The associated permutation σ ∈ Sp+q given by

σ(1)= i1, . . . , σ (p)= ip and σ(p+ 1)= j1, . . . , σ (p+ q)= jq
is also called a (p, q)-shuffle by abuse of terminology. We denote by Sh(p,q)
the subset of (p, q)-shuffles in Sp+q . For instance the three (1,2)-shuffles are
[1 | 2 3], [2 | 1 3] and [3 | 1 2]. Observe that the identity permutation [1 2 3] is
both a (1,2)-shuffle and a (2,1)-shuffle. The notion of (i1, . . . , ik)-shuffle and the
set Sh(i1, . . . , ik) are defined analogously.

Following Jim Stasheff, we call unshuffle the inverse of a shuffle. For instance
the three (1,2)-unshuffles are [1 2 3], [2 1 3] and [2 3 1]. We denote the set of
(p, q)-unshuffles by Sh−1

p,q .

Lemma 1.3.1. For any integers p and q and any σ ∈ Sp+q there exist unique per-
mutations α ∈ Sp,β ∈ Sq and ω ∈ Sh(p,q) such that:

σ = ω · (α× β).

Proof. The permutation α is the unique element of Aut{1, . . . , p} such that
σ(α−1(i)) < σ(α−1(i + 1)) for any i = 1, . . . , p − 1. The permutation β is the
unique element of Aut{p+ 1, . . . , p+ q} such that σ(β−1(i)) < σ(β−1(i + 1)) for
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any i = p + 1, . . . , p + q − 1. Since ω := σ · (α × β)−1 is a (p, q)-shuffle, we are
done. �

The composite

Sh(p,q)� Sp+q � Sp+q/(Sp × Sq)

is a bijection by the preceding lemma. Hence Sh(p,q) gives a preferred splitting to
the surjective map Sp+q � Sp+q/(Sp × Sq). In other words, for any σ ∈ Sp+q the
class [σ ] (modulo Sp × Sq ) contains one and only one (p, q)-shuffle.

Proposition 1.3.2. The coproduct �′ of the bialgebra T (V ) is given by

�′(v1 · · ·vn)=
∑
vi1 · · ·vip ⊗ vj1 · · ·vjq ,

=
∑

p+q=n
σ∈Sh(p,q)

vσ(1) · · ·vσ(p) ⊗ vσ(p+1) · · ·vσ(p+q).

The product μ′(a, b) of the bialgebra T c(V ) is given by

μ′(v1 · · ·vp, vp+1 · · ·vp+q)=
∑

σ∈Sh(p,q)
vσ−1(1) · · ·vσ−1(p+q)

=
∑

σ∈Sh(p,q)
σ · (v1 · · ·vp+q).

Proof. The proof is by direct inspection. �

The tensor module equipped with the product μ′ constructed out of the shuffles
in the above proposition is called the shuffle algebra and often denoted by T sh(V ).

Proposition 1.3.3. [Qui69, Wig89] Let K be a characteristic zero field and let
(T (V ),μ,�′) be the tensor bialgebra. Denote by L(V ) the Lie subalgebra of T (V )
generated by V under the bracket operation. Then, for any x ∈ V⊗n, the following
are equivalent:

(a) x ∈ L(V ),
(b) x is primitive,
(c) γ (x)= nx,

where γ : T (V )→ T (V ) is given by right bracketing:

γ (v1 · · ·vn) :=
[
v1,
[
v2, . . . , [vn−1, vn] . . .

]]
.

Proof. For this proof we use the convolution product which is recalled in Sect. 1.6.1.
Let E : T (V )→ T (V ) be the Euler operator defined by x �→ nx for x ∈ V⊗n. By
induction it is easy to check that γ � id=E.
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(a) ⇒ (b). If n= 1, that is x ∈ V , then �′(x)= x ⊗ 1+ 1⊗ x, so x is primitive.
If x and y are primitive, then so is [x, y]. Therefore we are done by induction.

(b) ⇒ (c). From the definition of the convolution we have, for any primitive
element x,

nx =E(x)= (μ ◦ (γ ⊗ id) ◦�′)(x)
= μ ◦ (γ ⊗ id)(x ⊗ 1+ 1⊗ x)
= μ(γ (x),1)= γ (x).

(c) ⇒ (a). It is immediate since we are in characteristic 0. �

Let us mention that the map γ (suitably normalized) is called the Dynkin idem-
potent.

Theorem 1.3.4 (Structure Theorem for cocommutative bialgebras). Let K be a
characteristic zero field. For any cocommutative bialgebra H over K the following
are equivalent:

(a) H is conilpotent,
(b) H ∼=U(PrimH ) as a bialgebra,
(c) H ∼= Sc(PrimH ) as a conilpotent coalgebra.

Proof. This is a classical result for which we refer to the “classics”: [Car56, MM65,
Qui69]. �

This statement contains several classical results, namely:
(a) ⇒ (b) is essentially the Cartier–Milnor–Moore theorem.
(b) ⇒ (c) is the Poincaré–Birkhoff–Witt theorem. A nice history of it can be

found in [Gri04].
So we call it the CMM-PBW theorem. A far reaching generalization of this struc-

ture theorem can be found in [Lod08].

Corollary 1.3.5. In the tensor algebra T (V ) we have the following identification:

Lie(V )= L(V )= PrimT (V )

where Lie(V ) is the free Lie algebra on V .

Proof. Recall that the subspace L(V ) generated by V under the bracket is a Lie
algebra which contains V . So there is a natural map Lie(V )→ L(V ). Proposi-
tion 1.3.3 shows that L(V )= PrimT (V ). Applying the structure theorem to T (V )
we get Lie(V ) = PrimT (V ) since U(Lie(V )) = T (V ) (the composite of two left
adjoint functors is a left adjoint functor). Therefore we obtain the expected identifi-
cations. �
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1.3.3 The Module Lie(n)

Let Vn be the space spanned by the variables {x1, . . . , xn}. We denote by Lie(n) the
subspace of Lie(Vn)⊂ T (Vn) which is linear in each variable xi . For instance Lie(2)
is one-dimensional spanned by [x1, x2] = x1x2 − x2x1. The action of Sn makes it
into an Sn-module and we have

Lie(V )=
⊕

n

Lie(n)⊗Sn V
⊗n.

We introduce the space of nontrivial shuffles Shn ⊂K[Sn] as follows. Let �T sh(V )
be the augmentation ideal of the shuffle algebra T sh(V ), cf. Proposition 1.3.2. We
consider the quotient T sh(V )/(�T sh(V ))2. The space Shn is the Sn-submodule of
K[Sn] such that T sh(V )/(�T sh(V ))2 =⊕n≥0Shn⊗Sn V

⊗n. For instance Sh1 is one-
dimensional spanned by [1 2] − [2 1].
Theorem 1.3.6. [Ree58] Let Lie(n)� K[Sn] be the inclusion deduced from the
functorial inclusion

Lie(V )=
⊕

n

Lie(n)⊗Sn V
⊗n� T (V )=

⊕

n

K[Sn] ⊗Sn V
⊗n.

Under the isomorphism K[Sn] ∼=K[Sn]∗ obtained by taking the dual basis, the ker-
nel Ker(K[Sn]∗ → Lie(n)∗) is the subspace Shn of K[Sn] spanned by the nontrivial
shuffles:

Ker
(
K[Sn]∗ → Lie(n)∗

)= Shn.
Proof. Since the graded dual of T (V ) is T (V )∗ = T c(V ∗), and since the dual of
the space of primitives is the space of indecomposables (cf. Sect. 1.2.2), the map
T c(V ∗)→ Lie(V )∗ gets identified with the map T c(V ∗)→ T c(V ∗)/(�T c(V ∗))2. By
Proposition 1.3.2 it follows that this kernel is spanned by the nontrivial shuffles. �

1.3.4 Hopf Algebra

Let (H ,μ,�) be a bialgebra. If f and g are two linear maps from H to itself,
then one can construct a third one, called the convolution of f and g, as

f � g := μ ◦ (f ⊗ g) ◦�.
For the properties of the convolution product, see Sect. 1.6.

A Hopf algebra is a bialgebra H equipped with a linear map S : H → H
which is an inverse of the identity under the convolution product:

S � id= uε = id�S.

It is called an antipode.
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Observe that a conilpotent bialgebra has automatically an antipode S given by

S(x) := −x +
∑

n≥1

(−1)n+1μn ◦ �̄n−1(x),

where �̄n−1 is the iterated reduced coproduct. Hence any conilpotent bialgebra is a
Hopf algebra.

1.3.5 Eulerian Idempotents

Let T (V ) be the tensor algebra considered as a bialgebra, cf. Sect. 1.3.2. Since
it is both an algebra and a coalgebra we can consider its convolution algebra
(Hom(T (V ),T (V )), �,uε). Let us write Id = uε + J so that J is the identity on
V⊗n except for n= 0 on which it is 0. We define

e(1) := log�(Id)= log�(uε+ J )=
∑

n≥1

(−1)n+1 J
�n

n
.

In weight n we get e(1) : V⊗n → V⊗n. Since it is functorial in V , by the Schur
Lemma, cf. Sect. A.2.3, it is given by

e(1)(v1 · · ·vn)= e(1)n · (v1 · · ·vn)

for some uniquely defined element e(1)n ∈Q[Sn]. These elements are called the (first)
Eulerian idempotents.

It can be shown that Im e(1)(V )= Lie(V )⊂ T (V ).
For any i ≥ 1 let us define

e(i) := (e
(1))�i

i! .

It can be shown that the elements e(i)n ∈ Q[Sn], i = 1, . . . , n, are orthogonal idem-
potents. Hence the tensor product V⊗n splits as

V⊗n =
n⊕

i=1

Im e(i)n (V ).

We refer to [Reu93] and [Lod94] for proofs and details.

1.4 Pre-Lie Algebras

The notion of pre-Lie algebra appeared in a work of Cayley on trees and then,
later on, in differential geometry (Hochschild homology, flat affine connections on
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a given manifold). Nowadays it is also present in many topics, including algebraic
topology, algebraic combinatorics and theoretical physics (renormalization).

1.4.1 Pre-Lie Algebra

By definition a (right) pre-Lie algebra is a vector space A equipped with a binary
operation {x, y} which satisfies the following relation, called pre-Lie relation:

{{x, y}, z}− {x, {y, z}}= {{x, z}, y}− {x, {z, y}}.
In plain words, the associator (left-hand side part of the equality) is right-symmetric.
For the opposite type (i.e. 〈x, y〉 := {y, x}) the associator is left-symmetric. It ap-
peared in the work of Gerstenhaber [Ger63] and Vinberg [Vin63] in differential
geometry and in several other papers subsequently. So it appears in the literature
under various names, for instance: Vinberg algebras, right-symmetric algebras. The
paper [Bur06] is a survey on this notion.

The notion of morphism of pre-Lie algebras is obvious. The category of pre-Lie
algebras is denoted by preLie-alg.

Lemma 1.4.1. The antisymmetrization of a pre-Lie operation is a Lie bracket. As a
consequence there is a forgetful functor

(−)Lie : preLie-alg→ Lie-alg.

Proof. The product [x, y] := {x, y} − {y, x} is antisymmetric by definition. The
jacobiator is the sum of 12 elements that can be grouped into 3 × 4. The pre-Lie
relators for (x, y, z), (y, z, x), (z, x, y) account for these 3 packets. �

1.4.2 Remark

The aforementioned lemma is valid for both the right pre-Lie product and the left
pre-Lie product. Observe that for left pre-Lie algebras the linear map L(x) defined
by L(x)(y) := {x, y} satisfies the following functional equation:

L
([x, y])= [L(x),L(y)].

1.4.3 Examples

(a) An associative algebra is an example of a pre-Lie algebra since the associator is
trivial.



22 1 Algebras, Coalgebras, Homology

(b) Faà di Bruno. On L−1 =⊕n≥−1 Kxn the operation:

{xp, xq} := (p+ 1)xp+q

is a pre-Lie product since

{{xp, xq}, xr
}− {xp, {xq, xr}

}= p(p+ 1)xp+q+r

is symmetric in q and r . The associated Lie bracket is given by

[xp, xq ] = (p− q)xp+q,
hence L−1 (also denotedW1 in the literature) is the Lie algebra of polynomial vector
fields on the affine line K

1. Taking the universal algebra of the associated Lie alge-
bra, we get a Hopf algebra U(L−1), which turns out to be the dual of the celebrated
Faà di Bruno Hopf algebra [JR82].

When n ranges over Z we get a pre-Lie algebra whose associated Lie algebra is
well known. For K = R it is the Lie algebra of polynomial vector fields over the
circle (Virasoro algebra without center). For K being a finite field it is called the
Witt algebra.

(c) Derivations. Let Di, i = 1, . . . , k, be commuting derivations of a commuta-
tive algebra A. On the free right A-module spanned by the Di one defines

{Dia,Djb} :=DiDj (a)b.
Since we assumed that the derivations are commuting, it is immediate to verify that
this is a pre-Lie product. The previous case is a particular example.

1.4.4 Module over a Pre-Lie Algebra

For any pre-Lie algebra A, there is an obvious notion of module M over A. It is
given by two operations {−,−} :M ⊗A→M and {−,−} :A⊗M→M such that
the pre-Lie relation holds whenever one of the variables is in M and the other two
are in A.

But, due to the peculiar form of the pre-Lie relation, there is also a notion of left
pre-Lie module. It is given by one operation {−,−} :M ⊗ A→M such that the
pre-Lie relation holds whenever x ∈M and y, z ∈A.

1.5 Differential Graded Algebra

We present the notions of algebra and coalgebra in the differential graded frame-
work.
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1.5.1 Graded Vector Space

A graded vector space V is a family of vector spaces {Vn}n∈Z. The direct sum is
denoted by

V• := · · · ⊕ V−n ⊕ · · · ⊕ V0 ⊕ V1 ⊕ · · · ⊕ Vn ⊕ · · · ,
and the product is denoted by

V̂• :=
∏

n∈Z
Vn.

By abuse of notation we often write V in place of V• (resp. V̂ in place of V̂•). The
degree of v ∈ Vn is denoted by |v|, so here |v| = n. Most of the time the index will
run over N only. A morphism of degree r , say f : V →W , of graded vector spaces
is a family of maps fn : Vn→Wn+r for all n. The integer r is called the degree of f
and denoted by |f |. So we have |f (v)| = |f | + |v|. If the nonnegative components
are all zero, then it is helpful to write V n := V−n. We will say that V• =⊕n Vn is
homologically graded, and that V • =⊕n V

n is cohomologically graded.
There are obvious notions of subvector space and quotient vector space in the

graded framework. The grading of the tensor product V ⊗W of two graded spaces
V and W is described explicitly as:

(V ⊗W)n :=
⊕

i+j=n
Vi ⊗Wj .

Hence V⊗n is graded and so is the tensor module T (V ). Any element v = v1 · · ·vn ∈
V⊗n admits a degree and a weight:

|v| := |v1| + · · · + |vn|, weight( v ) := n.
Let Ks be the one-dimensional graded vector space spanned by s with |s| = 1.

By definition the suspension of the graded space V is

sV :=Ks ⊗ V.
In particular (sV )i = Vi−1. Any v ∈ Vn determines an element sv ∈ (sV )n+1 of
degree n+ 1. Alternative notations for sV used in the literature are V [1] and ↑ V .

Similarly let Ks−1 be the graded vector space spanned by s−1 put in degree −1.
By definition the desuspension of the graded space V is s−1V := Ks−1 ⊗ V . In
particular (s−1V )i = Vi+1. Any v ∈ Vn determines an element s−1v ∈ (sV )n−1 of
degree n− 1.

If V = {Vn}n≥0 is a graded vector space, then its dual is the graded vector
space V ∗ = {V ∗−n}n≤0 = {V ∗n}n≤0 = {Hom(V−n,K)}n≤0. Observe that the direct
sum ⊕nV ∗n is not in general the dual of the direct sum ⊕nVn (unless there is only
finitely many nonzero summands). By abuse of terminology we say that the infinite
sum ⊕i≥0V

∗
i is the graded dual of ⊕i≥0Vi .
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1.5.2 Switching Map

The category of graded vector spaces (gVect,⊗,K) is a monoidal category. It is
usually equipped with a symmetric structure given by the switching map

τ : V ⊗W →W ⊗ V, τ(v⊗w) := (−1)|v||w|w⊗ v.
In this formula the elements v and w are supposed to be homogeneous. Then τ is
extended by linearity. The category gVect, equipped with this symmetry, is called
the category of sign-graded vector spaces.

Observe that there is another choice of symmetry: τ(v⊗w) :=w⊗ v. Equipped
with this symmetry gVect is simply called the category of graded vector spaces.

1.5.3 Koszul Convention

When working in the symmetric monoidal category of sign-graded vector spaces
with switching map τ , there are signs involved in the formulas. Indeed the isomor-
phism τ : V ⊗W →W ⊗V is given by v⊗w �→ (−1)|v||w|w⊗ v on homogeneous
elements. In plain words, the rule (called sign rule) is the following: when two vari-
ables switch in a formula, they create a sign which is minus one to the power the
product of the degrees.

For any maps f : V → V ′ and g : W → W ′ between graded spaces the map
V ⊗W → V ′ ⊗W ′ coming from the symmetric monoidal structure is given by

v⊗w �→ (−1)|g||v|f (v)⊗ g(w).
Hence it is convenient to introduce the notation f ⊗ g : V ⊗W → V ′ ⊗W ′ defined
as

(f ⊗ g)(v⊗w) := (−1)|g||v|f (v)⊗ g(w).
This trick is the Koszul convention. It permits us to avoid complicated signs in the
formulas provided one works with the maps (or functions) without evaluating them
on the elements. When all the involved operations are of degree 0, the formulas in
the nongraded case apply mutatis mutandis to the graded case.

As a consequence the sign rule is also valid for morphisms:

(f ⊗ g) ◦ (f ′ ⊗ g′)= (−1)|g||f ′|f ◦ f ′ ⊗ g ◦ g′.

1.5.4 Differential Graded Vector Space (Chain Complex)

A differential graded vector space (V , d), abbreviated into dg vector space and also
called a chain complex, is a graded space V• equipped with a linear map d = dV :
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V• → V•−1 of degree −1, called the differential, satisfying d2 = 0,

· · · d← V−1
d← V0

d← V1
d← V2

d← ·· · d← Vn
d← ·· · .

Observe that, if we write Vn−1 in place of (sV )n in the suspended space, then the
new differential is −d since d(sv) = (−1)|d|sd(v) = −sd(v). If Vn = 0 for n <
0 we say that the complex is nonnegatively graded. If the complex is negatively
graded, then we sometimes adopt the cohomological grading and write V n := V−n:

· · ·→ V −1 → V 0 → V 1 → V 2 → ·· ·→ V n→ ·· · ,
and (V •, d) is called a cochain complex. By definition the dual of the chain
complex C = (V , d) is the cochain complex C• whose module of n-cochains is
Cn := Hom(Vn,K) and the boundary map dn : Cn→ Cn+1 is given by dn(f ) :=
(−1)n+1f dn+1, for f : Vn→K and dn+1 : Vn+1 → Vn. This is a particular case of
the derivative of a graded linear map, see below. A degree r morphism of chain com-
plexes, denoted by f : V →W , is a morphism of graded vector spaces of degree r
such that dW ◦ f = (−1)rf ◦ dV .

A bicomplex is a bigraded vector space V = {Vpq}p≥0,q≥0 equipped with a hor-
izontal differential dh : Vpq → Vp−1q and a vertical differential dv : Vpq → Vpq−1

satisfying

dh ◦ dv + dv ◦ dh = 0.

The total complex associated to a bicomplex (V , dh, dv) is defined by

(TotV )n :=
⊕

p+q=n
Vpq and d = dh + dv.

It is immediate to verify that d2 = 0.
Let (V , dV ) and (W,dW ) be two differential graded vector spaces. Their tensor

product (V ⊗W)n :=⊕p+q=n Vp ⊗Wq is equipped with the differential

dV⊗W := dV ⊗ IdW + IdV ⊗dW ,
that is

dV⊗W(v⊗w) := dV (v)⊗w+ (−1)pv⊗ dW (w),
for v⊗w ∈ Vp ⊗Wq .

The suspension sV of the chain complex V is by definition the tensor product
of sK with V . Here sK is considered as a chain complex concentrated in degree 1
with 0 differential: (sV )n = Vn−1 and dsV =−dV .

The derivative (or boundary) of a graded linear map f : V• →W•+r of degree r
is the graded map

∂(f )= [d,f ] := dW ◦ f − (−1)rf ◦ dV ,
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which is of degree r − 1. So f is a morphism of chain complexes if and only if
∂(f )= 0. The derivative is a differential on the space of graded morphisms from V
toW , that is ∂2 = 0. Under this definition, a morphism f of chain complexes of de-
gree r is an element of Hom(V ,W)r :=∏p∈Z Hom(Vp,Wp+r ) such that ∂(f )= 0.
Remark that both (V ⊗W,d) and (Hom(V ,W), ∂) are total complexes associated
to bicomplexes.

The Hom complex bifunctor and the tensor complex bifunctor satisfy the follow-
ing adjunction property:

Hom
(
U,Hom(V ,W)

)∼=Hom(U ⊗ V,W),
for any complexes U,V,W .

1.5.5 Homology and Cohomology

Given a chain complex (V , d) its nth homology group is by definition

Hn(V,d) :=Ker(d : Vn→ Vn−1)/ Im(d : Vn+1 → Vn).

The inclusion Imd ⊂Kerd is a consequence of d2 = 0. We also adopt the notation
H•(V , d) :=⊕n∈ZHn(V,d), orH•(V ) for short. A morphism f : V →W of chain
complexes induces a morphism on homology denoted either by f• or by H•(f ).

For a “cohomological chain complex” (V , d) (that is the differential map d is of
degree +1), the nth cohomology group is by definition

Hn(V,d) := (Kerd : V n→ V n+1)/
(
Imd : V n−1 → V n

)
.

We also adopt the notation H •(V , d) :=⊕n∈ZHn(V,d), or H •(V ) for short.
When K is a field, we recall that the Künneth formula asserts that the homology

of the tensor product of two chain complexes is the tensor product of their homol-
ogy: H•(V ⊗W)∼=H•(V )⊗H•(W), cf. [ML95, Chapter V].

By definition a quasi-isomorphism is a morphism of chain complexes which in-
duces an isomorphism on homology (or cohomology). We denote quasi-isomorphi-
sms by the symbol

∼−→.
A chain complex is said to be acyclic if its homology is 0 everywhere. A nonneg-

atively graded chain complex is said to be augmented if there is given a map to the
chain complex which is 0 everywhere except in degree 0 where it is K. By abuse of
terminology we say that this augmented chain complex is acyclic when the augmen-
tation map is a quasi-isomorphism. In other words the homology is 0 everywhere
except in degree 0 where it is K.

Let f and g be two chain maps between the two graded chain complexes (V , d)
and (V ′, d ′). A homotopy between f and g is a map h : V → V ′ of degree +1 such
that

f − g = d ′h+ hd =: ∂(h).
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It is easy to check that the induced maps on homology are equal: f• = g•. Applied
to Id and 0, it provides a way to prove that a chain complex is acyclic.

A homotopy equivalence between two chain complexes (W,dW ) and (V , dV ) is
a chain map i :W → V such that there exists a chain map p : V →W , with i ◦ p
homotopic to IdV and p ◦ i homotopic to IdW .

(W,dW )h′
i

(V , dV ) h
p

IdV −i ◦ p = dV ◦ h+ h ◦ dV , IdW −p ◦ i = dW ◦ h′ + h′ ◦ dW .
In this case, the chain complexes W and V are homotopy equivalent. If h′ = 0 (i.e.
IdW = p ◦ i), then i is injective, p is surjective and the chain complexW is called a
deformation retract of V .

There is an intermediate notion called homotopy retract consisting in

(W,dW )
i

(V , dV ) h
p

where it is assumed that i and p are chain maps, that h is a homotopy and that
i is a quasi-isomorphism. Obviously a deformation retract is a particular case of
homotopy retract.

1.5.6 Spectral Sequence

Let

C : · · ·→ Cn
d−→ Cn−1 → ·· ·

be a chain complex. We suppose that it is equipped with a filtration:

· · · ⊂ F−1Cn ⊂ F0Cn ⊂ F1Cn ⊂ · · · ⊂ Cn,
compatible with the differential, that is, FpC is a chain sub-complex of C, d :
FpCn→ FpCn−1.

Given such a filtered complex, we can either take the homology and then take
the graded associated module, or, take the graded module and then the homology
of the induced differential. It turns out that, in this second case, there is a hidden
structure. It takes the form of a new differential. Therefore we can again take the
homology. But, again, there is a hidden structure: a new differential, and so on and
so forth. This family of complexes, usually denoted by (Er, dr)r≥0, are related by
the formula H(Er, dr) = Er+1. It is called a spectral sequence. The relationship
between the two ways of handling the filtration and the differential is, under some
mild assumptions, the following:

grH(C•, d)=E∞.
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This remarkable discovery is due to Jean Leray [Ler46] and was made available
through the seminal paper [Kos47] by Jean-Louis Koszul.

More precisely, starting with a filtered chain complex F•C•, we put E0
pq :=

FpCp+q/Fp−1Cp+q . The boundary map of C induces a boundary map on E0 that
we denote by d0. It is of bidegree (0,−1). We denote by E1 the homology of
(E0, d0). The first key point is the existence of a boundary map d1 onE1 of bidegree
(−1,0). It is constructed by the so-called staircase argument (diagram chasing), see
for instance [Kos47], [ML95, Chapter XI], [Lod98, Appendix D], [BT82, Sect. 14],
[Wei94, Chapter 5]. Since d1 is a boundary map, we can take its homology to get
E2 := H(E1, d1). The theory of spectral sequences, cf. loc. cit., asserts that there
is an infinite sequence of bigraded chain complexes (Erpq, d

r)r≥0, where dr is of

bidegree (−r, r − 1) satisfying Er+1 =H(Er, dr). For any pair (p, q), the spaces
Erpq give rise to a limit E∞pq .

The filtration F is said to be bounded below whenever, for each n, there exists
k such that FpCn = 0, for any p < k. The filtration F is said to be exhaustive if
Cn =∪pFpCn.

Theorem 1.5.1 (Classical convergence theorem of spectral sequences). If the filtra-
tion F•C of the chain complex C = (C•, d) is exhaustive and bounded below, then
the spectral sequence converges. This means that there is an isomorphism

FpHp+q(C)/Fp−1Hp+q(C)∼=E∞pq.

When the differential maps dr are 0 for r ≥ k, the spectral sequence is said to
degenerate at page k (or to collapse at rank k). In this case, we get

Ekpq =Ek+1
pq = · · · =E∞pq.

COMMENT. The aforementioned theorem will be the main tool to prove the various
homological results throughout this book. The spectral sequence argument is used
as follows. We will encounter many chain complexes with differential maps made
up of the sum of several terms. In these cases, we will introduce a suitable filtration
to investigate their homology via its associated spectral sequence.

1.5.7 Differential Graded Algebra

A graded algebraA is a graded vector space {An}n≥0 equipped with a unital product
μ of degree 0. Hence it sends Ap ⊗ Aq into Ap+q . For instance, if we put V in
degree 1, then the tensor algebra T (V ) is a graded algebra (cf. Sect. 1.1.3). In this
case the degree coincides with the weight. Throughout the book, we will mainly
consider nonnegatively graded algebras.

A differential graded associative algebra (A,d) (dga algebra for short) is a
graded algebra equipped with a differential map d : A→ A of degree −1 which
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is a derivation for the product, that is, satisfies the identity:

d(ab)= (da)b+ (−1)|a|a(db).

This identity is better written as follows:

d ◦μ= μ ◦ (d ⊗ id+ id⊗d)
where μ is the product in A. It means that the product μ :A⊗A→A is a morphism
of chain complexes. Observe that the unit 1 belongs to A0. The dga algebra A is said
to be connected if A0 =K1.

A dga algebra is said to be a quasi-free algebra if, as a graded algebra, it is free
over some graded vector space V . Observe that, in the notation “dga”, the letter “a”
stands for “associative” not for algebra in this book.

1.5.8 Minimal Models

Let p :M � A be a surjective map of dga algebras. If p is a quasi-isomorphism,
then (M,p) is called a model of A.

A dga algebra (M,d) is called quasi-free ifM is free as a graded algebra, that is
after forgetting the differential:M ∼= T (V ). By definition, a minimal dga algebra is
a quasi-free dga algebra (T (V ), d)

1. whose differential is decomposable, that is d : V → T (V )(≥2), and
2. such that the generating graded module V admits a decomposition into

V =
⊕

k≥1

V (k)

satisfying

d
(
V (k+1))⊂ T

(
k⊕

i=1

V (i)

)

.

Finally, a minimal model of a dga algebra A is the data of a minimal algebra
(T (V ), d) together with a quasi-isomorphism of dga algebras

(
T (V ), d

) ∼
A ,

which is an epimorphism. Notice that this last condition is always satisfied when the
differential of A is trivial.

Theorem 1.5.2 (Fundamental theorem of minimal models [DGMS75]). Let A be
a dga algebra. When A admits a minimal model, it is unique up to a (non-unique)
isomorphism.
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Proof. Let M = (T (V ), d) ∼
A and M ′ = (T (V ′), d ′) ∼

A be two mini-
mal models of a dga algebra A. Using the decompositions of the spaces of gen-
erators, one develops an obstruction theory to prove that there exists a quasi-
isomorphism f :M ∼−→M ′ of dga algebras. It induces a quasi-isomorphism of chain
complexes between the space of generators (V , dV )

∼−→ (V ′, dV ′). Since the differ-
entials d and d ′ are decomposable, we get dV = 0 and dV ′ = 0. So the aforemen-
tioned quasi-isomorphism is actually an isomorphism of graded modules V ∼= V ′.
Therefore, the map f is an isomorphism of dga algebras. �

The proof shows that the generating space V of minimal models is uniquely de-
termined up to isomorphism. The study of the automorphism group of minimal mod-
els is an interesting domain of study. The Koszul duality theory, developed in this
book, produces minimal models with differential maps satisfying d(V )⊂ T (V )(2).
In this case, the differential is called quadratic and the minimal model is called a
quadratic model.

1.5.9 Differential Graded Coalgebra

A graded coalgebra C is a graded vector space {Cn}n∈Z equipped with a counital
coproduct � of degree 0, that is sending Cn into

⊕
p+q=n Cp ⊗ Cq . For instance,

if we put V in homological degree 1, then the tensor coalgebra T c(V ) is a graded
coalgebra. We will almost always work with nonnegatively graded coalgebras.

A differential graded associative coalgebra (C,d) (dga coalgebra for short) is a
graded coalgebra equipped with a differential map d : C→ C (of degree −1) which
is a coderivation for the coproduct, that is, satisfies the identity:

� ◦ d = (d ⊗ id+ id⊗d) ◦�.
Equivalently, a dga coalgebra is a chain complex endowed with a coproduct which
is a morphism of chain complexes. Observe that the counit sends Cn to 0 for n > 0
and C0 to K.

Since the differential d is a coderivation, it preserves the coradical filtration of
Sect. 1.2.4: d : Fr → Fr . The dga coalgebra is said to be conilpotent if the underly-
ing coalgebra C is conilpotent in the sense of Sect. 1.2.4, that is when the coradical
filtration is exhaustive. A nonnegatively graded dga coalgebra C is called connected
if C0 =K1. A connected dga coalgebra is conilpotent since Cr ⊂ Fr in this case.

A dga coalgebra is said to be a quasi-cofree coalgebra if, as a graded coalgebra,
it is cofree over some graded vector space V .

1.5.10 Weight Graded Framework

We will often need the assumption that dg modules, algebras and coalgebras have
an extra grading, which we call the weight to avoid confusion with the homological
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degree. This means that a weighted dg moduleM is a direct sum of sub-dg modules
M(n) indexed by the weight n. A weight-graded dga algebra A, wdga algebra for
short, is an associative algebra structure on a weight-graded dg module A. Its prod-
uct is supposed to preserve the homological degree as well as the weight grading.
We denote A(n)d the sub-module of degree d and weight n of A. Similarly, there is
the notion of weight-graded dg associative coalgebra C, wdga coalgebra for short,
which is an associative coalgebra structure on a weight graded dg module C. In this
context the morphisms are supposed to respect the weight grading.

EXAMPLE. Let V be a graded vector space and let T (V ) be the tensor module. An
element in V⊗n is said to be of weight n. Therefore the element ω= v1 . . . vn ∈ V⊗n
has weight n (the number of factors) and degree |ω| = |v1| + · · · + |vn|.

In this book, the homological degree and the weight grading are supposed to be
nonnegative gradings. A wdga algebra A is called connected if it decomposes as

A :=K1⊕A(1) ⊕ · · · ⊕A(n) ⊕ · · ·
with A(0) = K1 concentrated in degree 0. In particular we assume A(0)d = 0 for
d �= 0. Dually, a wdga coalgebra is called connected if it satisfies the same decom-
position. Notice that in the weight graded case, the word “connected” refers to the
weight and not to the homological degree. A connected wdga coalgebra is conilpo-
tent with coradical filtration FrC =⊕r

n=0C
(r).

1.5.11 Differential Graded Module and Comodule

Let A be an associative algebra equipped with a derivation dA (for instance a graded
differential algebra). An A-derivation (or simply a derivation by abuse of language)
on a right A-moduleM is a linear map dM :M→M which satisfies:

dM(ma)= dM(m)a ±mdA(a)
for any m ∈M and any a ∈A. If A is a dga algebra andM is a chain complex such
that dM is an A-derivation, thenM is called a differential graded A-module.

Analogously one can define the notion of C-coderivation on a left comodule (for
C a coalgebra equipped with a coderivation) and the notion of differential graded
C-comodule (for C a dga coalgebra).

Proposition 1.5.3. Let A be an associative algebra and let N be a vector space.
There is a one-to-one correspondence between A-derivations on the free A-module
N ⊗A and linear maps from N to N ⊗A:

Der(N ⊗A)∼=Hom(N,N ⊗A), df = (Id⊗μ) ◦ (f ⊗ Id)↔ f.
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Dually, let C be a coassociative coalgebra and let N be a vector space. There is a
one-to-one correspondence between coderivations on the cofree C-module C ⊗N
and linear maps from C ⊗N to N :

Coder(C ⊗N)∼=Hom(C ⊗N,N), df = (Id⊗f ) ◦ (�⊗ Id)↔ f.

Proof. First statement. In one direction it is simply the restriction to N . In the other
direction, the unique derivation which extends a map f : N → N ⊗ A is equal to
the following composite

df :N ⊗A f⊗Id−−−→N ⊗A⊗A Id⊗μ−−−→N ⊗A.

Second statement. In one direction it is simply the projection onto N . In the other
direction, the unique coderivation which extends a map f : C ⊗N→N is equal to
the following composite

df : C ⊗N �⊗Id−−−→ C ⊗C ⊗N Id⊗f−−−→ C ⊗N. �

This proposition extends to differential graded objects by adding the underlying
differential of the tensor modules: df + dN⊗A and df + dC⊗N respectively.

1.6 Convolution

1.6.1 Convolution Algebra

Let (C,�,ε) be a coalgebra and (A,μ,u) be an algebra. Let f,g : C→ A be two
linear maps. The composite

f � g := μ ◦ (f ⊗ g) ◦� : C −→A

is called the convolution of f and g.

Proposition 1.6.1. The convolution product � is associative. The composite u ◦ ε is
the unit for �.

Proof. Associativity of μ and coassociativity of � imply that the convolution oper-
ation � is an associative operation on Hom(C,A). �

The associative algebra (Hom(C,A), �,u ◦ ε) is called a convolution algebra.
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dα ◦ dβ =

β

α

= α β = α β

= dα�β .

Fig. 1.1 Electronic proof

1.6.2 From Convolution Algebra to Tensor Product

Any linear map α : C→A from a graded coalgebraC to a graded algebraA, defines
a morphism

C
�−→ C ⊗C Id⊗α−−−→ C ⊗A

which induces a unique derivation on C ⊗A and a morphism

C ⊗A α⊗Id−−−→A⊗A μ−→A

which induces a unique coderivation on C⊗A by Proposition 1.5.3. Both extended
maps are equal to

dα := (IdC⊗μ) ◦ (IdC⊗α⊗ IdA) ◦ (�⊗ IdA).

The following result gives a condition under which dα is a boundary map.

Proposition 1.6.2. For any α,β ∈Hom(C,A) one has

dα�β = dα ◦ dβ and duε = IdC⊗A .

So, d− : (Hom(C,A), �)→ (End(C⊗A),◦) is a morphism of associative algebras.
If α � α = 0, then (dα)2 = 0.

Proof. The last assertion follows immediately from the first. Under some obvious
convention (see Sect. 1.3.1), Fig. 1.1 (to be read from top to bottom) is a proof of
the first assertion.

Observe that we use only associativity and coassociativity to prove these equali-
ties. The second picture is a proof of the second assertion.
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duε =
•
• = = IdC⊗A.

�

As a consequence we get a chain complex (C ⊗A,dα). We will begin the next
chapter with a differential graded version of this result.

1.7 Résumé

Unital associative algebra: A= (A,μ,u), augmentation ε :A→K.

Counital coassociative coalgebra: C = (C,�,ε), coaugmentation u :K→ C.

Linear duality: C∗ is an algebra, A∗ is a coalgebra if A is finite-dimensional.

Free unital associative algebra over V : T (V ) with concatenation product.

Cofree counital coassociative coalgebra over V : T c(V ) with deconcatenation co-
product.

Bialgebra: H = (H ,μ,�,u, ε) algebra + coalgebra + Hopf compatibility con-
dition:

� ◦μ= (μ⊗μ) ◦ (id⊗τ ⊗ id) ◦ (�⊗�).

Pre-Lie algebra: (A, {−,−}) where the associator of {−,−} is left-symmetric.

Derivative of a linear map: ∂(f )= [d,f ] := d ◦ f − (−1)|f |f ◦ d .

Convolution: f,g ∈Hom(C,A),f � g := μ ◦ (f ⊗ g) ◦�.

Twisted tensor product: C ⊗α A := (C ⊗A,dα), for α : C→A where

dα := (IdC⊗μ) ◦ (IdC⊗α⊗ IdA) ◦ (�⊗ IdA).

Theorem. If α � α = 0, then (dα)2 = 0.

1.8 Exercises

Exercise 1.8.1 (Action of the symmetric group). Prove that the formula

σ · (v1 · · ·vn) := vσ−1(1) · · ·vσ−1(n)

defines a left action of the symmetric group Sn on the tensor product V⊗n.
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Show that applying σ on the left to v1 · · ·vn means putting vi at the place num-
ber σ(i).

Exercise 1.8.2 (Uniqueness of free algebra). Let V be a vector space. Let A and A′
be two associative algebras which are free over V . Show that there exists a unique
isomorphism A→A′ under V .

Exercise 1.8.3 (Coproduct on a basis). Prove the assertion of Sect. 1.2.3.

Exercise 1.8.4 (Small coalgebras). Make explicit the coalgebra which is the lin-
ear dual of the dual numbers algebra K[t]/(t2 = 0), resp. the group algebra K[t]/
(t2 = 1). Are they conilpotent?

Exercise 1.8.5 (Polynomial algebra). Let K[x] =K1⊕Kx⊕· · ·⊕Kxn⊕· · · . It is
a unital commutative algebra for the product xnxm = xn+m. Show that the product

xn ∗ xm :=
(
n+m
n

)

xn+m

makes it also a unital commutative algebra, that we denote by �(Kx). Compute
explicitly:

a) the dual coalgebra of K[x] and of �(Kx),
b) the coalgebra structure of K[x], resp. �(Kx), which makes it a bialgebra and

which is uniquely determined by �(x)= x ⊗ 1+ 1⊗ x.
c) Compare the results of a) and b).

Exercise 1.8.6 (Polynomial algebra continued). Same as in the preceding exercise
but with several variables, i.e. for the algebra of coinvariants S(V )=⊕n((V

⊗n)Sn)
and the algebra of invariants �(V )=⊕n((V

⊗n)Sn) over the vector space V .

Exercise 1.8.7 (Symmetric algebra as bialgebra). Show that S(V ) is a Hopf algebra
for � uniquely determined by �(v)= v ⊗ 1+ 1⊗ v. Show that the linear dual of
the coalgebra (S(V ),�) is �(V ∗).

Exercise 1.8.8 (Universal enveloping algebra). Show that the universal algebra
U(g) of a Lie algebra g is a conilpotent Hopf algebra.

Exercise 1.8.9 (Group algebra). Show that for any groupG the group algebra K[G]
is a Hopf algebra. Show that it is not conilpotent in general.

Exercise 1.8.10 (Shuffles). Show that for σ ∈ Sp+q the class [σ ] ∈ Sp+q/Sp × Sq ,
contains one and only one (p, q)-shuffle.

Exercise 1.8.11 (Nonunital Hopf relation). Show that the restriction of the product
and the reduced coproduct on the augmentation ideal �H of a bialgebra H satisfy
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the following relation:

= + + + + + + .

Exercise 1.8.12 (Unital infinitesimal bialgebra). Let T (V ) be the tensor algebra
over V . Its product (concatenation) is denoted by μ. Let us denote by � the
deconcatenation coproduct. Show that they satisfy the following compatibility re-
lation:

=− + + .

Let �T (V ) be the augmentation ideal and let �̄ be the reduced diagonal. What is
the compatibility relation between μ and �̄ on �T (V )?

Exercise 1.8.13 (Baker–Campbell–Hausdorff �). Show that the polynomials
Hn(x, y) appearing in the BCH formula

exp(x) exp(y)= exp
(
x + y + · · · +Hn(x, y)+ · · ·

)

can be computed out of the Eulerian idempotent e(1)n (see for instance [Lod94]).

Exercise 1.8.14 (Relative tensor product �). Let A be a K-algebra, M be a right
A-module and N be a left A-module. Show that the surjection map π :M ⊗KN→
M ⊗A N is the coequalizer (cokernel of the difference map):

M ⊗K A⊗K N M ⊗K N
π

M ⊗A N
where the two maps on the left-hand side are using the right A-module structure of
M and the left A-module structure of N respectively.
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Twisting Morphisms

. . . remember young fellow, � is left adjoint . . .
Dale Husemöller, MPIM (Bonn),

private communication

In this chapter, we introduce the bar construction and the cobar construction as fol-
lows. A twisting morphism is a linear map f : C→A, from a dga coalgebra C to a
dga algebra A, which satisfies the Maurer–Cartan equation:

∂(f )+ f � f = 0.

The set of twisting morphisms Tw(C,A) is shown to be representable both in C
and in A. More precisely, the cobar construction is a functor � from dga coalgebras
to dga algebras and the bar construction is a functor B from dga algebras to dga
coalgebras which satisfy the following properties: there are natural isomorphisms

Homdga alg(�C,A)∼= Tw(C,A)∼=Homdga coalg(C,BA).

As an immediate consequence the functors cobar and bar are adjoint to each
other. Then we investigate the twisting morphisms which give rise to quasi-isomor-
phisms under the aforementioned identifications. We call them Koszul morphisms.

The main point is the following characterization of the Koszul morphisms. Any
linear map α : C→ A gives rise to a map dα : C ⊗A→ C ⊗A, which is a differ-
ential if and only if α is a twisting morphism. Moreover, α is a Koszul morphism if
and only if the chain complex (C⊗A,dα) is acyclic. This is the first step of Koszul
duality theory, which will be treated in the next chapter.

As a corollary, it is shown that the unit and the counit of the bar–cobar adjunction

C→ B�C and �BA→A,

are quasi-isomorphisms. Hence, the latter provides a canonical free resolution of A.
This chapter is inspired by H. Cartan [Car55], E. Brown [Bro59], J.C. Moore

[Moo71], Husemoller–Moore–Stasheff [HMS74], A. Prouté [Pro86] and K. Lefèvre-
Hasegawa [LH03].
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2.1 Twisting Morphisms

We introduce the Maurer–Cartan equation in the convolution algebra. Its solutions
are called twisting morphisms (sometimes called twisting cochains in the literature).
To such a twisting morphism we associate a twisted structure on the convolution
algebra and on the tensor product, thereby introducing the notion of twisted tensor
product of chain complexes.

In this section (C,dC) is a differential graded coaugmented coalgebra and
(A,dA) is a differential graded augmented algebra, where the differentials are both
of degree −1.

2.1.1 Convolution in the DG Framework

We extend the result of Sect. 1.6.1 to graded vector spaces, that is Hom(C,A) is
a graded associative algebra under the convolution product � (called cup-product
in [HMS74]). The derivative ∂ of graded linear maps defined in p. 25 makes
Hom(C,A) into a dg vector space.

Proposition 2.1.1. The convolution algebra (Hom(C,A), �, ∂) is a dga algebra.

Proof. It suffices to prove that the derivative ∂ is a derivation for the convolution
product �. Let f and g be two maps of degree p and q respectively. We have

∂(f � g)= dA ◦ (f � g)− (−1)p+q(f � g) ◦ dC
= dA ◦μ ◦ (f ⊗ g) ◦�− (−1)p+qμ ◦ (f ⊗ g) ◦� ◦ dC
= μ ◦ (dA ⊗ id+ id⊗dA) ◦ (f ⊗ g) ◦�
−(−1)p+qμ ◦ (f ⊗ g) ◦ (dC ⊗ id+ id⊗dC) ◦�

= μ ◦ ((dA ◦ f )⊗ g+ (−1)pf ⊗ (dA ◦ g)
−(−1)p(f ◦ dC)⊗ g− (−1)p+qf ⊗ (g ◦ dC)

) ◦�
= μ ◦ (∂(f )⊗ g+ (−1)pf ⊗ ∂(g)) ◦�
= ∂(f ) � g+ (−1)pf � ∂(g). �

2.1.2 Maurer–Cartan Equation, Twisting Morphism

In the dga algebra Hom(C,A) we consider the Maurer–Cartan equation

∂(α)+ α � α = 0.

By definition a twisting morphism (terminology of John Moore [Moo71], “fonc-
tions tordantes” in H. Cartan [Car58]) is a solution α : C→ A of degree −1 of the
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Maurer–Cartan equation, which is null when composed with the augmentation of A
and also when composed with the coaugmentation of C.

We denote by Tw(C,A) the set of twisting morphisms from C to A. Recall from
Sect. 1.1.9 that a graded associative algebra is a graded Lie algebra, with the graded
bracket defined by [a, b] := a � b − (−1)|a|.|b|b � a. When 2 is invertible in the
ground ring K, we have α � α = 1

2 [α,α], when α has degree −1. Therefore, the
“associative” Maurer–Cartan equation, written above, is equivalent to the “classi-
cal” Maurer–Cartan equation ∂(α) + 1

2 [α,α] = 0 in the Lie convolution algebra
(Hom(C,A), [−,−]).

Until the end of next section, we assume that the characteristic of the ground field
is not equal to 2.

2.1.3 Twisted Structure on the Hom Space

Let α ∈ Hom(C,A) be a map of degree −1. We define a twisted derivation ∂α on
Hom(C,A) by the formula

∂α(f ) := ∂(f )+ [α,f ].

Lemma 2.1.2. Let (Hom(C,A), [,], ∂) be the dg Lie convolution algebra. For any
map α ∈ Hom(C,A) of degree −1 the twisted derivation ∂α(x) := ∂(x) + [α,x]
satisfies

∂2
α(x)=

[
∂(α)+ α � α,x].

Proof. We have

∂2
α(x)= ∂α

(
∂(x)+ [α,x])

= ∂2(x)+ ∂([α,x])+ [α, ∂(x)]+ [α, [α,x]]

= [∂(α), x]+ [α, [α,x]] (∂ is a derivation for [,])

= [∂(α), x]+ [α � α,x] (graded Jacobi relation)

= [∂(α)+ α � α,x]. �

As a consequence, when α is a twisting morphism in Hom(C,A), the map ∂α is
a differential. We denote by Homα(C,A) := (Hom(C,A), ∂α) this chain complex.

Proposition 2.1.3. Let α be a twisting morphism. The convolution algebra
(Homα(C,A), �, ∂α) is a dga algebra.

Proof. The twisted derivation ∂α is the sum of a derivation ∂ with [α,−]. Therefore,
it is enough to prove that the latter is a derivation with respect to the convolution
product �:
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[α,f ] � g+ (−1)pf � [α,g]
= α � f � g − (−1)pf � α � g+ (−1)pf � α � g − (−1)p+qf � g � α
= [α,f � g],

for f of degree p and g of degree q . �

The dga algebras of the form (Homα(C,A), �, ∂α) are called twisted convolution
algebras. We leave it to the reader to prove that (Homα(C,A), [,], ∂α) is a dg Lie
algebra twisted by the twisting morphism α.

2.1.4 Twisted Tensor Product

We saw in Sect. 1.6.2 that the differential on the free A-module (resp. cofree C-
comodule) C ⊗A is a derivation (resp. coderivation). Any map α : C→A induces
a unique (co)derivation on C ⊗A, which we denote by drα here. Since C and A are
dga (co)algebras, we consider the total (co)derivation

dα := dC⊗A + drα = dC ⊗ IdA+ IdC⊗dA + drα.
So dα is a perturbation of the differential of the tensor product.

Lemma 2.1.4. The (co)derivation dα satisfies

dα
2 = dr∂(α)+α�α.

Therefore, α satisfies the Maurer–Cartan equation if and only if the (co)derivation
dα satisfies dα2 = 0.

Proof. The first relation comes from dα
2 = (dC⊗A + drα)2 = dC⊗A ◦ drα + drα ◦

dC⊗A + drα2. We saw in Proposition 1.6.2 that drα
2 = drα�α . And we have dC⊗A ◦

drα + drα ◦ dC⊗A = drdA◦α+α◦dC = dr∂(α).
Hence, if α ∈ Tw(C,A), then dα2 = dr0 = 0. Conversely, we notice that the

restriction of drf on C ⊗ K1A → K1C ⊗ A is equal to f . So if dα2 = 0, then
∂(α)+ α � α = 0. �

From the preceding lemma, it follows that, when α : C→ A is a twisting mor-
phism, there exists a chain complex

C ⊗α A := (C ⊗A,dα)
which is called the (right) twisted tensor product (or twisted tensor complex). Since
the tensor product is symmetric, this construction is also symmetric in A and C.
So we can define a left twisted tensor product A ⊗α C. Warning: even if the two
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underlying modules C⊗A and A⊗C are isomorphic, the left and the right twisted
tensor products are not isomorphic as chain complexes in general. The twisting term
of the differential is not symmetric; it uses one particular side of the coproduct of
the coalgebra and one particular side of the product of the algebra but not the same
ones. If C were cocommutative and if A were commutative, then they would be
isomorphic. Since the two constructions are symmetric, we will only state the related
properties for the right twisted tensor product in the rest of this chapter.

This construction is functorial both in C and in A. Let g :A→A′ be a morphism
of dga algebras and f : C→ C′ be a morphism of dga coalgebras. Consider C⊗α A
and C′ ⊗α′ A′ two twisted tensor products. We say that the morphisms f and g are
compatible with the twisting morphisms α and α′ if α′ ◦ f = g ◦ α. One can show
that f ⊗ g : C ⊗α A→ C′ ⊗α′ A′ is then a morphism of chain complexes.

In the weight-graded context, we require that the twisting morphisms preserve
the weight. In this case, the following lemma states that if two among these three
morphisms are quasi-isomorphisms, then so is the third one. This result first ap-
peared in the Cartan seminar [Car55].

Lemma 2.1.5 (Comparison Lemma for twisted tensor product). Let g :A→A′ be
a morphism of wdga connected algebras and f : C→ C′ be a morphism of wdga
connected coalgebras. Let α : C→A and α′ : C′ →A′ be two twisting morphisms,
such that f and g are compatible with α and α′.

If two morphisms among f , g and f ⊗ g : C ⊗α A→ C′ ⊗α′ A′ (or g ⊗ f :
A⊗α C→A′ ⊗α′ C′) are quasi-isomorphisms, then so is the third one.

Proof. We postpone the proof to the end of the chapter (see Sect. 2.5). �

2.2 Bar and Cobar Construction

We construct the cobar and bar functors and we prove that they give representing
objects for the twisting morphisms bifunctor Tw(−,−). As a consequence the bar
and cobar functors form a pair of adjoint functors. The bar construction goes back
to Samuel Eilenberg and Saunders Mac Lane [EML53] and the cobar construction
goes back to Franck Adams [Ada56].

2.2.1 Bar Construction

We are going to construct a functor from the category of augmented dga algebras to
the category of conilpotent dga coalgebras:

B : {aug. dga algebras} −→ {con. dga coalgebras}
called the bar construction.



42 2 Twisting Morphisms

Let A be an augmented algebra: A = K1 ⊕ Ā (concentrated in degree 0) with
product μ. The bar construction of A is a differential graded coalgebra defined on
the cofree coalgebra T c(sĀ) over the suspension sĀ = K s ⊗ Ā as follows. We
denote it by BA, using a slight but usual abuse of notation.

Consider the mapΠs :K s⊗K s→K s of degree−1 induced byΠs(s⊗ s) := s.
The restriction μĀ of the product of the algebra A to Ā induces the following map

f : T c(sĀ)�K s ⊗ Ā⊗K s ⊗ Ā Id⊗τ⊗Id−−−−−→K s ⊗K s ⊗ Ā⊗ Ā Πs⊗μĀ−−−−→K s ⊗ Ā.
Since T c(sĀ) is cofree, by Proposition 1.2.2 there is a unique coderivation d2 :
T c(sĀ)→ T c(sĀ) which extends the map f : T c(sĀ)→ sĀ:

(0) (1) (2) (3)

T c(sĀ) =
d2

K Ā

0

Ā⊗2 Ā⊗3 · · ·

T c(sĀ) = K Ā Ā⊗2 Ā⊗3 · · ·

Proposition 2.2.1. The associativity ofμ implies that (d2)
2 = 0, hence (T c(sĀ), d2)

is a chain complex.

Proof. We will give the proof in the dual case in Proposition 2.2.4. It is also a direct
consequence of the next lemma. �

The complex BA := (T c(sĀ), d2) is a conilpotent differential graded coalgebra,
called the bar construction of the augmented graded algebra A. It is obviously a
functor from the category of augmented graded algebras to the category of conilpo-
tent differential graded coalgebras.

Lemma 2.2.2. For any augmented associative algebra A, concentrated in degree 0,
the bar complex of A can be identified with the nonunital Hochschild complex of Ā:

· · · → Ā⊗n b
′−→ Ā⊗n−1 → ·· ·→ Ā→K,

where b′[a1 | . . . | an] =∑n−1
i=1 (−1)i−1[a1 | . . . | μ(ai, ai+1) | . . . | an].

Proof. Here we have adopted Mac Lane’s notation [a1 | . . . | an] ∈ Ā⊗n. Since Ā is
in degree 0, the space sĀ is in degree 1 and (sĀ)⊗n is in degree n. So the module of
n-chains can be identified with Ā⊗n. Let us identify the boundary map. Since d2 is
induced by the product and is a derivation, it has the form indicated in the statement.
The signs come from the presence of the shift s. For instance:

[a1 | a2 | a3] = (sa1, sa2, sa3) �→
(
d2(sa1, sa2), sa3

)− (sa1, d2(sa2, sa3)
)

= [μ(a1, a2) | a3
]− [a1 | μ(a2, a3)

]
.

The minus sign appears because d2 “jumps” over sa1 which is of degree one. �
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In general, the formula is the same with only the following change of sign:

d2(sa1 ⊗ · · ·⊗ san)=
n−1∑

i=1

(−1)i−1+|a1|+···+|ai |sa1 ⊗ · · ·⊗ sμ(ai, ai+1)⊗ · · ·⊗ san.

One can extend this functor to the case where (A,dA) is an augmented differ-
ential graded algebra. Indeed, the differential dA : A→ A induces a differential on
A⊗n by

d1 :=
n∑

i=1

(id, . . . , id, dA, id, . . . , id).

We denote by d1 the differential on T c(sĀ). Since μA is a morphism of differential
graded vector spaces, one can check that d1 and d2 anticommute: d1 ◦d2+d2 ◦d1 =
0. The chain complex associated to the total differential d1 + d2 is called the bar
construction of the augmented differential graded algebra

BA := (T c(sĀ), dBA = d1 + d2
)
.

The analogous construction in algebraic topology (classifying space of a topo-
logical group) is also called bar construction and denoted by B.

Proposition 2.2.3. For any quasi-isomorphism f : A→ A′ of augmented dga al-
gebras, the induced morphism Bf : BA→ BA′ is a quasi-isomorphism.

Proof. We consider the filtration on BA defined by

FpBA :=
{∑

sa1 ⊗ · · · ⊗ san | n≤ p
}
.

It is stable under dBA, d1 : Fp→ Fp and d2 : Fp→ Fp−1. This filtration is increas-
ing, bounded below and exhaustive. Hence, the classical convergence theorem of
spectral sequences (Theorem 1.5.1) applies. The first page is equal to

E0
pqBA= (FpBA)p+q/(Fp−1BA)p+q ∼=

{
sa1 ⊗ · · · ⊗ sap | |a1| + · · · + |ap| = q

}
.

Finally E0
p•(f )= (sf )⊗p is a quasi-isomorphism by Künneth formula. �

2.2.2 Cobar Construction

Analogously one can construct a functor from the category of coaugmented dga
coalgebras to the category of augmented dga algebras:

� : {coaug. dga coalgebras} −→ {aug. dga algebras}
called the cobar construction, as follows.
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Let C be a coaugmented graded coalgebra: C = �C ⊕K1 with coproduct �. The
reduced coproduct �̄ : �C→ �C ⊗ �C is defined by the equality �(x)= x ⊗ 1+ 1⊗
x + �̄(x) for any x ∈ �C. It is obviously coassociative and of degree 0.

Consider now K s−1 equipped with the diagonal map�s(s−1) := −s−1⊗ s−1 of
degree −1, see Exercise 2.7.3. Then, one defines a map f on s−1�C =K s−1 ⊗ �C as
the composite

f :K s−1 ⊗ �C �s⊗�̄−−−→K s−1 ⊗K s−1 ⊗ �C ⊗ �C Id⊗τ⊗Id−−−−−→K s−1 ⊗ �C ⊗K s−1 ⊗ �C.

Consider the free algebra T (s−1�C) over the desuspension s−1�C. Since it is free, the
degree −1 map f : s−1�C→ s−1�C ⊗ s−1�C has a unique extension to T (s−1�C) as a
derivation by Proposition 1.1.2. We denote it by

d2 : T
(
s−1�C )→ T

(
s−1�C ),

(0) (1) (2) (3)

T (s−1�C) =
d2

K

0

�C �C⊗2 �C⊗3 · · ·

T (s−1�C) = K �C �C⊗2 �C⊗3 · · ·

Proposition 2.2.4. The coassociativity of �̄ implies that d2 ◦ d2 = 0 on s−1�C.
Therefore d2 is a differential and (T (s−1�C),d2) is a chain complex.

Proof. For any x ∈ �C, let us write �̄(x)=∑x(1)⊗x(2). We also adopt the notation

(�̄⊗ id)�̄(x)=
∑
x(1) ⊗ x(2) ⊗ x(3) = (id⊗�̄)�̄(x).

We have defined

d2
(
s−1x

) := −
∑
(−1)|x(1)|s−1x(1) ⊗ s−1x(2) ∈ �C⊗2.

Let us prove that d2 ◦ d2 = 0. Let p := |x(1)|, q := |x(2)|, r := |x(3)|. The term
s−1x(1) ⊗ s−1x(2) ⊗ s−1x(3) coming from (�̄ ⊗ id)�̄ under d2 ◦ d2 comes with
the sign (−1)p+q(−1)p . Indeed, the first one comes from the application of the first
copy of d2, the second one comes from the application of the second copy of d2. The
term s−1x(1)⊗ s−1x(2)⊗ s−1x(3) coming from (id⊗�̄)�̄ under d2 ◦ d2 comes with
the sign (−1)p+q(−1)1+p+q(−1)q . Indeed, the first one comes from the application
of the first copy of d2, the second one comes from the fact that d2, which is of degree
−1, jumps over a variable of degree p− 1, the third one comes from the application
of the second copy of d2.

Adding up these two elements we get 0 as expected. �
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By definition the cobar construction of the coaugmented graded coalgebra C is
the augmented dga algebra

�C := (T (s−1�C), d2
)
.

It obviously gives a functor � from the category of coaugmented graded coalgebras
to the category of augmented differential graded algebras.

One easily extends this functor to coaugmented differential graded coalgebras
(C,�,dC) by adding to d2 the differential d1 induced by the differential dC . Since
� is a morphism of chain complexes, d1 and d2 anticommute and one has a well-
defined bicomplex. The chain complex associated to this total differential is called
the cobar construction of the coaugmented coalgebra

�C := (T (s−1�C), d�C = d1 + d2
)
.

The notation� is by analogy with the loop space construction in algebraic topol-
ogy.

A nonnegatively graded dga coalgebra C is called 2-connected if C0 = K1 and
C1 = 0.

Proposition 2.2.5. Let f : C → C′ be a quasi-isomorphism between two 2-
connected dga coalgebras. The induced morphism �f : �C→ �C′ between the
cobar constructions is a quasi-isomorphism.

Proof. We consider the following filtration on the cobar construction

Fp�C :=
{∑

s−1c1 ⊗ · · · ⊗ s−1cn | n≥−p
}
.

This increasing filtration is preserved by the differential of the cobar construction,
d1 : Fp→ Fp and d2 : Fp→ Fp−1. So the first term of the associated spectral se-
quence is equal to

E0
pq = (Fp�C)p+q/(Fp−1�C)p+q
∼=
{∑

s−1c1 ⊗ · · · ⊗ s−1cp||c1| + · · · + |cp| = 2p+ q
}
,

with d0 = d1. Since E0
p•(�f ) = (s−1f )⊗p , it is a quasi-isomorphism by Kün-

neth formula. Since C (respectively C′) is 2-connected, the degree of an element
s−1c ∈ s−1�C is at least 1 and (Fp�C)n = 0 for p < −n. The filtration being ex-
haustive and bounded below, this spectral sequence converges to the homology of
the cobar construction by the classical convergence theorem of spectral sequences
(Theorem 1.5.1), which concludes the proof. �

This result does not hold when the dga coalgebras are not 2-connected. We give
a counterexample in Proposition 2.4.3. Beyond the 2-connected case, the relation-
ship between the cobar construction and quasi-isomorphisms is more subtle. This
question is fully studied in Sect. 2.4.
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2.2.3 Bar–Cobar Adjunction

We show that the bar and cobar constructions form a pair of adjoint functors

� : {con. dga coalgebras}� {aug. dga algebras} : B.

More precisely, this adjunction is given by the space of twisting morphisms.
When A is augmented and C coaugmented, a twisting morphism between C and
A is supposed to send K to 0 and �C to Ā.

Theorem 2.2.6. For every augmented dga algebra A and every conilpotent dga
coalgebra C there exist natural bijections

Homdga alg(�C,A)∼= Tw(C,A)∼=Homdga coalg(C,BA).

Proof. Let us make the first bijection explicit. Since �C = T (s−1�C) is a free al-
gebra, any morphism of algebras from �C to A is characterized by its restriction
to �C (cf. Proposition 1.1.1). Let ϕ be a map from �C to A of degree −1. Define
the map ϕ̄ : s−1�C → A of degree 0 by the formula ϕ̄(s−1c) := ϕ(c). Similarly,
ϕ̄ induces a unique morphism Φ of algebras from �C to A. The map Φ com-
mutes with the differentials, meaning dA ◦ Φ = Φ ◦ (d1 + d2), or equivalently to
dA ◦ ϕ =−ϕ ◦ dC − ϕ � ϕ. Finally, we get ∂(ϕ)+ ϕ � ϕ = 0. Notice that the map ϕ
lands in Ā since the map Φ is a morphism of augmented algebras.

The second bijection is given by the same method, so the rest of the proof is left
to the reader as an exercise. Notice that we need the coalgebra C to be conilpotent
in order to be able to extend a map C→ sA into a morphism of coalgebras C→
BA= T c(sĀ) (see Sect. 1.2.6). �

As a consequence of this proposition � and B form a pair of adjoint functors (�
is left adjoint and B is right adjoint), which represent the bifunctor Tw.

2.2.4 Universal Twisting Morphisms

Several universal morphisms appear from this pair of adjoint functors. Applying
Theorem 2.2.6 to C = BA we get the counit of the adjunction ε : �BA→ A (see
Appendix B.2.1) and the universal twisting morphism π : BA→A. Then applying
Theorem 2.2.6 to A=�C we get the unit of the adjunction υ : C→ B�C (this is
upsilon not v) and the universal twisting morphism ι : C→�C.

By Theorem 2.2.6 the twisting morphisms π and ι have the following property.

Proposition 2.2.7. Any twisting morphism α : C→ A factorizes uniquely through
π and ι:
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�C

gα

C
α

ι

fα

A

BA

π

where gα is a dga algebra morphism and fα is a dga coalgebra morphism.

2.2.5 Augmented Bar and Cobar Construction

The universal twisting morphism π : BA = T c(sĀ)� sĀ ∼= Ā� A gives rise to
the twisted tensor product BA⊗π A (cf. Sect. 2.1.4). It is called the augmented bar
construction of A.

Dually, the universal twisting morphism ι : C� �C ∼= s−1�C� T (s−1�C) = �C
gives rise to the coaugmented cobar construction of C denoted C ⊗ι �C = (C ⊗
�C,dι).

Proposition 2.2.8. The chain complexes BA⊗π A (resp. A⊗π BA) and C ⊗ι �C
(resp. �C ⊗ι C) are acyclic.

Proof. Once made explicit, the chain complex is the nonunital Hochschild complex
with coefficients in A whose module of n-chains is Ā⊗n ⊗A and whose boundary
map is b′ given by

b′
([a1 | . . . | an]an+1

)=
n−1∑

i=1

(−1)i−1[a1 | . . . | aiai+1 | . . . | an]an+1

+ (−1)n−1[a1 | . . . | an−1]anan+1.

We consider the kernel K of the augmentation map

K� BA⊗π A�K.

It is immediate to check that the map h :K→K given by

[a1 | . . . | an]an+1 �→ (−1)n
[
a1 | . . . | an | an+1 − ε(an+1)

]

is a homotopy from idK to 0:

b′h+ hb′ = idK.

Hence the twisted tensor complex BA⊗π A is acyclic.
The proof for the other case is similar. �
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2.3 Koszul Morphisms

We have just seen that the twisted tensor products associated to the two universal
twisting morphisms π and ι are acyclic. When the twisted complex C ⊗α A, or
equivalently A ⊗α C, happens to be acyclic, the twisting morphism α is called a
Koszul morphism. We denote the set of Koszul morphisms by Kos(C,A).

In this section, we give the main theorem of this chapter which relates Koszul
morphisms with bar and cobar resolutions. As a corollary, we prove that the unit
and the counit of the bar–cobar adjunction are quasi-isomorphisms.

2.3.1 Koszul Criterion

Here we give the main result of this section, which is a criterion about Koszul mor-
phisms. It comes from E. Brown’s paper [Bro59].

Theorem 2.3.1 (Twisting morphism fundamental theorem). Let A be a connected
wdga algebra and let C be a connected wdga coalgebra. For any twisting morphism
α : C→A the following assertions are equivalent:

1. the right twisted tensor product C ⊗α A is acyclic,
2. the left twisted tensor product A⊗α C is acyclic,
3. the dga coalgebra morphism fα : C ∼−→ BA is a quasi-isomorphism,
4. the dga algebra morphism gα :�C ∼−→A is a quasi-isomorphism.

Proof. Since we require A to be connected, we have A = Ā⊕K1, where the ele-
ments of the augmentation ideal Ā have positive degree and positive weight. There
is a similar statement for C. Recall that wdga (co)algebras were introduced in
Sect. 1.5.10.

We first notice that the bar construction of a wgda connected algebra is a wgda
connected coalgebra. And dually, the cobar construction of a wgda connected coal-
gebra is a wgda connected algebra. The weight of an element of BA is equal to the
total weight ω(sa1, . . . , sak)= ω(a1)+ · · · +ω(ak).

We consider the commutative diagram of Sect. 2.2.4, where fα : C→ BA, resp.
gα :�C→A, is the morphism of wdga coalgebras, resp. algebras, associated to the
twisting morphism α and respecting the weight grading. Notice that the universal
twisting morphisms π and ι also preserve the weight.

(1)⇔ (3). Consider the tensor map fα⊗ IdA : C⊗A→ BA⊗A. Since π ◦fα =
α = IdA ◦α, the map fα ⊗ IdA is a morphism of chain complexes from C ⊗α A to
BA⊗π A. We have seen in Proposition 2.2.8 that the augmented bar construction
is always acyclic. Therefore, the twisted complex C ⊗α A is acyclic if and only
if fα ⊗ IdA is a quasi-isomorphism. The Comparison Lemma 2.1.5 implies that
C ⊗α A is acyclic if and only if fα is a quasi-isomorphism.
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(1)⇔ (4). We use the same method with the tensor map IdC⊗gα : C⊗ι �(C)→
C⊗α A. Since gα ◦ ι= α = α ◦ IdC , the map IdC⊗gα is a morphism of chain com-
plexes. The acyclicity of the coaugmented cobar construction (Proposition 2.2.8)
and the Comparison Lemma 2.1.5 imply that the twisted chain complex C ⊗α A is
acyclic if and only if gα is a quasi-isomorphism.

The proof of the equivalence (2)⇔ (3)⇔ (4) is similar and uses the two other
cases of Proposition 2.2.8 and Lemma 2.1.5. �

2.3.2 Bar–Cobar Resolution

We consider the counit ε :�BA→ A and the unit υ : C→ B�C of the bar–cobar
adjunction. The counit is a canonical resolution of A which is called the bar–cobar
resolution. The following statement shows that it provides a quasi-free model for A,
which is not minimal in general.

Corollary 2.3.2. Let A be an augmented dga algebra and let C be a conilpotent
dga coalgebra.

The counit ε : �BA
∼−→ A is a quasi-isomorphism of dga algebras. Dually, the

unit υ : C ∼−→ B�C is a quasi-isomorphism of dga coalgebras.

Proof. We give a proof under the hypothesis that A (resp. C) is a connected wdga
algebra (resp. connected wdga coalgebra). However the result holds in full general-
ity (see [HMS74]). We apply Theorem 2.3.1 to the following diagram

�BA
ε

BA
π

ιBA

IdBA

A

BA.

π

Since IdBA is an isomorphism, it follows that the counit ε is a quasi-isomorphism.
Following the same method, since Id�C is an isomorphism, the unit υ is a quasi-

isomorphism. �

2.4 Cobar Construction and Quasi-isomorphisms

Using the previous results, we study the relationship between the cobar construction
and quasi-isomorphisms. The main source of inspiration for this section is Lefèvre-
Hasegawa’s thesis [LH03].

To any dga coalgebra C, we consider the graded modules associated to the corad-
ical filtration: grr C := FrC/Fr−1C. Let f : C→ C′ be a morphism of conilpotent
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dga coalgebras. Since the map f and the differentials preserve the coradical filtra-
tions, f induces a morphism of chain complexes [f ] : grC→ grC′ between the
associated graded modules. If [f ] is a quasi-isomorphism, then f is called a graded
quasi-isomorphism.

Proposition 2.4.1. For any morphism f : C→ C′ of conilpotent dga coalgebras
which is a graded quasi-isomorphism the induced morphism �f :�C ∼−→�C′ is a
quasi-isomorphism.

Proof. We consider the following grading for any element c in a conilpotent coalge-
bra C, gr c :=min{r | c ∈ FrC}. We consider the filtration of the cobar construction
�C defined by

Fp�C :=
{
s−1c1 ⊗ · · · ⊗ s−1cn | gr c1 + · · · + gr cn ≤ p

}
.

The increasing filtration is bounded below and exhaustive so the associated spectral
sequence converges to the homology of �C. Its first term is equal to

E0
pq�C = (Fp�C)p+q/(Fp−1�C)p+q ∼= (�grC)(p)p+q,

where

(�grC)(p) = {s−1c1 ⊗ · · · ⊗ s−1cn | gr c1 + · · · + gr cn = p
}
.

Hence E0(�f ) = �[f ], under the preceding notation. For any fixed p, we now
prove that E0

p•(�C)→ E0
p•(�C′) is quasi-isomorphism. On E0

p•(�C), we define

the filtration Fk as follows: an element s−1c1 ⊗ · · · ⊗ s−1cn is in Fk if and only if
n ≥ −k. This filtration is increasing. Since C is conilpotent the grading gr of the
elements of �C is strictly greater than 0, and we have F−p−1 = 0. Since it is bounded
below and exhaustive, the associated spectral sequence converges by Theorem 1.5.1.
The first term E0

k• is isomorphic to the sub-module of (s−1 grC)⊗k of grading p and
degree k + • with differential d0 induced by the differential of grC. The morphism
f being a graded quasi-isomorphism, E0(�[f ]) is also a quasi-isomorphism by
Künneth formula, which concludes the proof. �

2.4.1 Weak Equivalence

Any morphism f : C → C′ of dga coalgebras, such that the induced morphism
�f :�C→�C′ is a quasi-isomorphism, is called a weak equivalence.

Proposition 2.4.2. Any weak equivalence f : C→ C′ of conilpotent dga coalge-
bras is a quasi-isomorphism.
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Proof. Since f is a weak equivalence, �f is a quasi-isomorphism and by Propo-
sition 2.2.3, the morphism of dga coalgebras B�f : B�C → B�C′ is a quasi-
isomorphism. We conclude with the following commutative diagram, where all the
maps are quasi-isomorphisms by Proposition 2.3.2

C
υC

f

B�C

B�f

C′
υC′

B�C′. �

In conclusion, the exact relationship between these notions is the following:

graded quasi-isomorphisms⊆weak equivalences � quasi-isomorphisms.

Proposition 2.4.3. There exist quasi-isomorphisms of dga coalgebras which are not
weak equivalences.

Proof. Let A be a unital dga algebra A, which is not acyclic. Consider its augmenta-
tion A+ :=A⊕K1, where 1 acts as a unit. The dga coalgebra C := BA+ ∼= T c(sA)
is isomorphic to K⊕ BA⊗π A. So it is quasi-isomorphic to the trivial dga coalge-
bra K by Proposition 2.2.8. But the cobar construction of K is acyclic, whereas the
cobar construction �BA+ is quasi-isomorphic to A+ by Corollary 2.3.2, which is
not acyclic. �

Notice that C = BA+ is connected but not 2-connected since C1 contains s1A,
the suspension of the unit of A. So Proposition 2.2.5 does not hold for connected
dga coalgebras in general. For 2-connected dga coalgebras, a quasi-isomorphism is
a weak equivalence and vice versa.

2.5 Proof of the Comparison Lemma

In this section, we prove the Comparison Lemma 2.1.5 used in the proof of the
fundamental theorem of twisting morphisms (Theorem 2.3.1). We assume here that
the reader is familiar with the following notions of homological algebra: long ex-
act sequences, cones, filtrations and spectral sequences. We refer the reader to any
textbook on homological algebra, for instance [ML95] by Saunders MacLane.

Lemma 2.5.1 (Comparison Lemma for twisted tensor product, Cartan [Car55]).
Let g : A→ A′ be a morphism of wdga connected algebras and f : C→ C′ be a
morphism of wdga connected coalgebras. Let α : C→ A and α′ : C′ → A′ be two
twisting morphisms, such that f and g are compatible with α and α′.

If two morphisms among f , g and f ⊗ g : C ⊗α A→ C′ ⊗α′ A′ (or g ⊗ f :
A⊗α C→A′ ⊗α′ C′) are quasi-isomorphisms, then so is the third one.
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Fig. 2.1 The page E2
st of the

spectral sequence

Proof. Recall that the notion of weight-graded dga algebra was defined in
Sect. 1.5.10. We denote by M = ⊕n≥0M

(n) (resp. M ′ = ⊕n≥0M
′(n)) the weight-

graded chain complex C ⊗α A (resp. C′ ⊗α′ A′). We define a filtration Fs on M(n),
where n ∈N is the weight, by the formula

Fs
(
M(n)

) :=
⊕

d+m≤s

(
C
(m)
d ⊗A)(n) =

⊕

d+m≤s
C
(m)
d ⊗A(n−m).

The differential dα onM = C⊗α A is the sum of three terms IdC⊗dA, dC ⊗ IdA
and drα . One has IdC⊗dA : Fs → Fs , dC ⊗ IdA : Fs → Fs−1 and drα : Fs → Fs−2.
Therefore, Fs is a filtration on the chain complex M(n). We consider the associated
spectral sequence {E•st }s,t . One has

E0
st = Fs

(
M(n)

)
s+t /Fs−1

(
M(n)

)
s+t =

n⊕

m=0

C
(m)
s−m ⊗A(n−m)t+m .

The study of the differential dα on the filtration Fs of M shows that d0 = IdC⊗dA
and that d1 = dC ⊗ IdA. It follows that

E2
st =

n⊕

m=0

Hs−m
(
C(m)•
)⊗Ht+m

(
A(n−m)•

)
.

SinceA andC are weight graded and connected, the partm= 0 is concentrated in
s = 0 and t ≥ 0, where it is equal to E2

0t =Ht(A(n)• ). The partm= n is concentrated

in t =−n and s ≥ n, where it is equal to E2
s−n =Hs−n(C(n)• ). For any 0<m< n,

the nonvanishing part of Hs−m(C(m)• )⊗Ht+m(A(n−m)• ) is in s ≥ 1 and t ≥−n+ 1.
See Fig. 2.1.

The filtration Fs is exhaustive M(n) = ⋃s≥0Fs(M
(n)) and bounded below

F−1(M
(n)) = {0}, so the spectral sequence converges to the homology of M(n) by
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the classical convergence theorem 1.5.1:

E∞st
(
M(n)

)∼= Fs
(
Hs+t

(
M(n)

))
/Fs−1

(
Hs+t

(
M(n)

))
.

We consider the same filtration on M ′ and we denote by Φ the morphism of
chain complexes Φ := f ⊗ g. We treat the three cases one after the other.

(1) If f and g are quasi-isomorphisms, then Φ = f ⊗ g is a quasi-isomorphism.

For every s, t and n, the maps E2
st (M

(n))
H•(f )⊗H•(g)−−−−−−−−→ E2

st (M
′(n)) are isomor-

phisms. By the convergence of the two spectral sequences, the maps

E∞st
(
M(n)

) ∼−→E∞st
(
M ′(n))

are again isomorphisms. So the map Φ is a quasi-isomorphism.

(2) If Φ = f ⊗ g and g are quasi-isomorphisms, then f is a quasi-isomorphism.

Let us work by induction on the weight n. When n = 0, the map f (0) : K→ K,
which is the identity, is a quasi-isomorphism. Suppose now that the result is true up
to weight n− 1. We consider the mapping cone of Φ(n) : cone(Φ(n)) := s−1M(n)⊕
M ′(n) and the associated filtration Fs(cone(Φ(n))) := Fs−1(M

(n)
) ⊕ Fs

(
M ′(n)),

which satisfies E1•t (cone(Φ(n))) = cone(E1•t (Φ(n))). The long exact sequence of
the mapping cone reads

· · ·→Hs+1
(
cone

(
E1•t
(
Φ(n)
)))→Hs

(
E1•t
(
M(n)

))

Hs(E
1•t (Φ(n)))−−−−−−−−→Hs

(
E1•t
(
M ′(n)))→Hs

(
cone

(
E1•t
(
Φ(n)
)))→ ·· · .

Therefore there is a long exact sequence (ξt )

(ξt ) · · · →E2
s+1t

(
cone

(
Φ(n)
))→E2

st

(
M(n)

)

E2
st (Φ

(n))−−−−−→E2
st

(
M ′(n))→E2

st

(
cone

(
Φ(n)
))→ ·· ·

where E2
st (Φ

(n)) is given by H•(f )⊗H•(g).
When t >−n, we have seen that only C(m) (and C′(m)) with m< n are involved

in E2
st . In that case, since E2

st (M
(n)) =⊕n−1

m=0Hs−m(C
(m)• ) ⊗ Ht+m(A(n−m)• ), the

induction hypothesis implies that

E2
st

(
M(n)

) H•(f )⊗H•(g)−−−−−−−−→E2
st

(
M ′(n))

is an isomorphism for every s and every t > −n. Using the long exact sequence
(ξt ) for t > −n, it gives E2

st

(
cone(Φ(n))

) = 0 for every s and every t �= −n. The
collapsing of the spectral sequence E•st (cone(Φ(n))) at rank 2 implies the equal-
ity E∞st (cone(Φ(n)))=E2

st (cone(Φ
(n))). The convergence of the spectral sequence

E•st (cone(Φ(n))) shows that

E2
st

(
cone

(
Φ(n)
))= Fs

(
Hs+t

(
cone

(
Φ(n)
)))
/Fs−1

(
Hs+t

(
cone

(
Φ(n)
)))= 0
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since Φ(n) is a quasi-isomorphism. Since E2
s−n(cone(Φ(n))) = 0, the long exact

sequence (ξ−n) gives the isomorphism

Hs−n
(
C(n)•
)=E2

s−n
(
M(n)

) H•(f )−−−→E2
s−n
(
M ′(n))=Hs−n

(
C′(n)•

)
,

for every s. So f is a quasi-isomorphism as expected.

(3) If Φ = f ⊗ g and f are quasi-isomorphisms, then g is a quasi-isomorphism.

Once again, we work by induction on the weight n. For n= 0, the map g(0) :K→K

is an isomorphism. Suppose that the result is true up to weight n− 1. When s ≥ 1,
we have seen that only A(n−m) (and A′(n−m)) with m> 0 are involved in E2

st ,

E2
st

(
M(n)

)=
n⊕

m=1

Hs−m
(
C(m)•
)⊗Ht+m

(
A(n−m)•

)
.

In this case, the induction hypothesis implies that E2
st (M

(n))
H•(f )⊗H•(g)−−−−−−−−→

E2
st (M

′(n)) is an isomorphism for every s ≥ 1 and every t . The long exact sequence
(ξt ) shows that E2

st (cone(Φ
(n))) = 0 for s ≥ 2 and every t . The spectral sequence

of the cone of Φ(n) converges to its homology, which is null since Φ(n) is a quasi-
isomorphism. Therefore, E2

1,t−1(cone(Φ
(n))) = E2

0,t (cone(Φ
(n))) = 0 for every t .

This implies E2
st (cone(Φ

(n)))= 0 for every t and s. Finally, the beginning (s = 0)
of the exact sequence (ξt ) gives the isomorphism

Ht
(
A(n)•
)=E2

0t

(
M(n)

) H•(g)−−−→E2
0t

(
M ′(n))=Ht

(
A′(n)•

)
.

So g is a quasi-isomorphism as expected. �

2.5.1 Comparison with Algebraic Topology

The Comparison Lemma is the algebraic avatar of the following result in algebraic
topology. Let

F

fF

X

fX

B

fB

F ′ X′ B ′

be a morphism between two fibrations of simply-connected spaces. If two of the
morphisms fF ,fX,fB are isomorphisms in homology, then so is the third. Us-
ing the Whitehead theorem it can be proved as follows: homology isomorphism is
equivalent to homotopy isomorphism for simply-connected CW-complexes. When
two of the morphisms are homotopy isomorphisms, then so is the third by the long
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Serre exact homotopy sequence. Since a homotopy isomorphism is also a homology
isomorphism, we are done.

In order to translate this result into homological algebra one needs some extra
idea since the trick of passing to homotopy is not available anymore. The idea goes
back to the Cartan seminar [Car55] and was later generalized to any first quadrant
spectral sequence by Zeeman [Zee57]. This latter one applies to Leray–Serre spec-
tral sequence of fiber spaces, whence the name base for the x-axis terms E2

s0 (E2
s−n

in the present proof) and fiber for the y-axis terms E2
0t . More precisely, there is

a twisting morphism between the singular chain complex S(B) of the base space,
which is a dg coalgebra, and the singular chain complex S(F ) of the fiber space
which is a module over the algebra of the singular chain complex S(�B) of the
loops of B . The induced twisted tensor product is shown to be quasi-isomorphic to
the singular chain complex S(X) of the total space, under certain hypotheses, by
E.H. Brown in [Bro59]. The spectral sequence introduced in the core of this proof
is an algebraic analog of the Leray–Serre spectral sequence.

2.6 Résumé

2.6.1 Twisting Morphism and Twisted Tensor Products

Convolution dga algebra: C dga coalgebra and A dga algebra:
(
Hom(C,A), �, ∂

)
,

f � g = μ ◦ (f ⊗ g) ◦�, ∂(f )= dAf − (−1)|f |f dC.
Twisting morphism, Tw(C,A): Solution of degree −1 to the Maurer–Cartan equa-

tion

∂(α)+ α � α ≡ ∂(α)+ 1

2
[α,α] = 0.

Any α ∈ Tw(C,A) induces

� a twisted differential ∂α := ∂ + [α,−] in Hom(C,A),
� a differential dα := dC⊗A + drα on the tensor product C ⊗ A defining the right

twisted tensor product C ⊗α A,
� a differential dα := dA⊗C + dlα on the tensor product A ⊗ C defining the left

twisted tensor product A⊗α C.

Table 2.1 summarizes this hierarchy of notions.

2.6.2 Bar and Cobar Constructions

Bar construction:

BA := (T c(sĀ), d1 + d2
)
, d2(sx ⊗ sy)= (−1)|x|s(xy).
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Table 2.1 Hierarchy of
notions α ∈ Determines:

Hom(C,A)−1 dα : C ⊗A→ C ⊗A
⋃

Tw(C,A) chain complex C ⊗α A, d2
α = 0

⋃

Kos(C,A) acyclicity of C ⊗α A

Cobar construction:

�C := (T (s−1�C ), d1 + d2
)
, d2

(
s−1x

)=−
∑
(−1)|x(1)|s−1x(1) ⊗ s−1x(2).

Summary of Theorem 2.2.6 (second row) and Theorem 2.3.1 (third row):

Homga alg
(
T
(
s−1�C ) ,A) ∼= Hom(�C, Ā)−1 ∼= Homga coalg

(
C,T c(sĀ)

)

⋃ ⋃ ⋃

Homdga alg (�C,A) ∼= Tw(C,A) ∼= Homdga coalg (C,BA)

⋃ ⋃ ⋃

q-Isodga alg (�C,A)
∼= Kos(C,A) ∼= q-Isodga coalg (C,BA) .

With C = BA, we get

�BA
ε−→A↔ BA

π−→A↔ BA
Id−→ BA,

and with A=�C, we get

�C
Id−→�C↔ C

ι−→�C↔ C
υ−→ B�C.

2.6.3 Universal Twisting Morphisms and Fundamental Theorem

Universal twisting morphisms: ι : C→�C and π : BA→A, which are Koszul.

Factorization of any twisting morphism α : C→A:
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�C

gα

∼

C

fα

∼

ι∈Kos(C,�(C))

α∈Kos(C,A)
A

BA.

π∈Kos(BA,A)

� gα :�C→A morphism of dg algebras,
� fα : C→ BA morphism of dg coalgebras.

Twisting Morphisms Fundamental Theorem. The following assertions are equiv-
alent

� a twisting morphism α : C→A is Koszul,
� the morphism of dg algebras gα :�C ∼−→A is a quasi-isomorphism,
� the morphism of dg coalgebras fα : C ∼−→ BA is a quasi-isomorphism.

Corollary. ε :�BA
∼−→A and υ : C ∼−→ B�C.

2.6.4 Quasi-isomorphisms Under Bar and Cobar Constructions

Proposition. The bar construction B preserves quasi-isomorphisms between dga
algebras.

Proposition. The cobar construction � preserves quasi-isomorphisms between 2-
connected dga coalgebras.

Weak equivalence: f : C→ C′ such that �f :�C ∼−→�C′.

graded quasi-isomorphisms⊆weak equivalences � quasi-isomorphisms.

2.7 Exercises

Exercise 2.7.1 (Convolution dga algebra). Draw a picture proof of Proposi-
tion 2.1.1, as in Proposition 1.6.2.
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Exercise 2.7.2 (Bar construction as an algebra). We know that the cofree coalgebra
can be endowed with a commutative algebra structure through the shuffle product,
cf. Sect. 1.3.2. Show that the bar construction of a dga algebra is a dg commutative
Hopf algebra.

Exercise 2.7.3 (Application of the sign rule). Let K s be the vector space of degree 1
equipped with the degree −1 product s ⊗ s �→ s. Show that the transpose of the
product on the linear dual K s∗ is given by �(s∗)=−s∗ ⊗ s∗.

Exercise 2.7.4 (Universal twisting morphism). Verify directly that ι : C→�C is a
twisting morphism.

Exercise 2.7.5 (Functoriality). Prove that Tw : dga coalgop × dga alg → Set is a
bifunctor.

Exercise 2.7.6 (Cotangent complex). Let A be a dga algebra, C a dga coalgebra
and let α : C→ A be a twisting morphism. We consider the following twisted dif-
ferential on A⊗C ⊗A, the free A-bimodule on C:

dα := dA⊗C⊗A + IdA⊗drα − dlα ⊗ IdA,

where

drα := (IdC⊗μ) ◦ (IdC⊗α⊗ IdA) ◦ (�⊗ IdA),

and

dlα := (μ⊗ IdC) ◦ (IdA⊗α⊗ IdC) ◦ (IdA⊗�).

 Prove that dα2 = 0.
We denote this chain complex by

A⊗α C ⊗α A := (A⊗C ⊗A,dα).
 Show that there is an isomorphism of chain complexes

(
Homα(C,A), ∂α

)∼= (HomA−biMod(A⊗α C ⊗α A,A), ∂
)
.

 Show that the following composite

ξ : A⊗C ⊗A Id⊗ε⊗Id−−−−−→A⊗K⊗A∼=A⊗A μ−→A

is a morphism of dg A-bimodules.
 Under the same weight grading assumptions as in Theorem 2.3.1, prove that ξ :
A⊗α C⊗α A ∼−→A is a quasi-isomorphism if and only if α is a Koszul morphism.
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Exercise 2.7.7 (Naturality). Prove that the bijections given in Theorem 2.2.6 are
functorial in A and C.

Exercise 2.7.8 (Fundamental Theorem). Using the Comparison Lemma 2.1.5,
prove directly the equivalence (2)⇐⇒ (3) of Theorem 2.3.1.

Exercise 2.7.9 (Unit of adjunction). Use the same kind of filtrations as in the proof
of Proposition 2.4.1 to prove that the unit of adjunction υ : C→ B�C is a quasi-
isomorphism, when C is a conilpotent dga coalgebra.



Chapter 3
Koszul Duality for Associative Algebras

In the process of its internal development and prompted by its
inner logic, mathematics, too, creates virtual worlds of great
complexity and internal beauty which defy any attempt to
describe them in natural language but challenge the imagination
of a handful of professionals in many successive generations.

Yuri I. Manin in “Mathematics as metaphor”

A minimal model for the associative algebra A is a quasi-free resolution (T (W), d)
such that the differential map d maps W into ⊕n≥2W

⊗n. We would like to find a
method to construct this minimal model when A is quadratic, that is A= T (V )/(R)
where the ideal (R) is generated by R ⊂ V⊗2 (this is the quadratic hypothesis). We
will see that the quadratic data (V ,R) permits us to construct explicitly a coalgebra
A¡ and a twisting morphism κ :A¡ →A. Then, applying the theory of Koszul mor-
phisms given in the previous chapter, we obtain a simple condition which ensures
that the cobar construction on the Koszul dual coalgebra, that is�A¡, is the minimal
model of A.

If one tries to construct by hand the spaceW , then one is led to takeW = V ⊕R⊕
(R⊗V ∩V ⊗R)⊕· · · . In fact, K⊕V ⊕R⊕ (R⊗V ∩V ⊗R) is the beginning of a
certain sub-coalgebra of the cofree coalgebra over V , which is uniquely determined
by V and R. This is precisely the expected coalgebra A¡, up to suspension. The
twisting morphism κ is simply the compositeA¡ � V �A. The expected condition
is the acyclicity of the Koszul complex A¡ ⊗κ A. This is the Koszul duality theory
for homogeneous quadratic algebras as introduced by Stewart Priddy in [Pri70]. In
practice it is easier to work with algebras instead of coalgebras. When V is finite
dimensional we consider the “graded linear dual” of A¡ which is, up to suspension,
a quadratic algebra A!, usually called the Koszul dual algebra of A.

The quadratic hypothesis R ⊂ V⊗2 can be weakened by only requiring R ⊂
V⊗2 ⊕ V . In this case, we say that the algebra is inhomogeneous quadratic. We
show how to modify the preceding method to handle the inhomogeneous quadratic
case, also done in [Pri70]. Two examples are: the universal enveloping algebra U(g)
of a Lie algebra g (original example due to J.-L. Koszul) and the Steenrod algebra.

J.-L. Loday, B. Vallette, Algebraic Operads,
Grundlehren der mathematischen Wissenschaften 346,
DOI 10.1007/978-3-642-30362-3_3, © Springer-Verlag Berlin Heidelberg 2012
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Inhomogeneous Koszul duality theory gives a proof of a general Poincaré–Birkhoff–
Witt theorem, which, applied to U(g), gives the classical one.

In our treatment of Koszul duality of associative algebras, we keep algebras and
coalgebras on the same footing. Working with coalgebras allows us to avoid the fi-
nite dimensional hypothesis. Moreover we give conceptual proofs so that they can
be generalized to other monoidal categories. Our interest for Koszul duality of as-
sociative algebras is to serve as a paradigm for Koszul duality of algebraic operads.

Koszul algebras have applications in many fields of mathematics, which will
not be discussed at all here (see the introduction of [PP05]). Classical references
on Koszul duality of associative algebras include: S. Priddy [Pri70], Yu.I. Manin
[Man87, Man88], R. Fröberg [Frö99], A. Polishchuk and L. Positselski [PP05].

3.1 Quadratic Data, Quadratic Algebra, Quadratic Coalgebra

We start with a quadratic data (V ,R) to which we associate an algebra and a coal-
gebra

(V ,R)

A(V,R) C(V,R).

In this chapter we suppose that K is a field, though most of the definitions and
constructions are valid over a commutative ring.

3.1.1 Quadratic Data

By definition a quadratic data (V ,R) is a graded vector space V and a graded sub-
space R ⊆ V ⊗ V . A morphism of quadratic data f : (V ,R)→ (W,S) is a graded
linear map f : V →W such that (f ⊗ f )(R)⊆ S.

3.1.2 Quadratic Algebra

The quadratic algebra A(V,R) := T (V )/(R) is, by definition, the quotient of the
free associative algebra over V by the two-sided ideal (R) generated byR ⊆ V⊗2. In
other words, A(V,R) is the quotient of T (V ) which is universal among the quotient
algebras A of T (V ) such that the composite

R� T (V )�A
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is 0. It means that, for any such algebra A, there is a unique algebra morphism
A(V,R)→A which makes the following diagram commutative:

T (V ) A

A(V,R).

Since (R) is a homogeneous ideal, it follows that A(V,R) is graded and aug-
mented. This degree is called the weight and denoted as a superscript in parentheses.
Explicitly it is given by:

A=
⊕

n∈N
A(n) =K1⊕V ⊕(V⊗2/R

)⊕· · ·⊕
(

V⊗n
/ ∑

i+2+j=n
V⊗i⊗R⊗V⊗j

)

⊕· · · .

Any basis of V is called a set of generators of A. Any basis {ri} of R determines
a set of relations ri = 0 in A. By abuse of terminology ri , which should be called a
relator, is often called a relation.

A morphism of quadratic data, f : (V ,R)→ (W,S) induces a natural morphism
of weight graded algebras A(V,R)→ A(W,S). Any morphism of algebras which
respects the weight grading is of this form. But it is not the case for every morphism
of algebras.

3.1.3 Quadratic Coalgebra

The quadratic coalgebra C(V,R) is, by definition, the sub-coalgebra of the cofree
coassociative coalgebra T c(V ) which is universal among the sub-coalgebras C of
T c(V ) such that the composite

C� T c(V )� V⊗2/R

is 0. It means that, for any such coalgebra C, there is a unique coalgebra morphism
C→ C(V,R) which makes the following diagram commutative:

C(V,R)

C T c(V ).

The coalgebra C(V,R) is weight graded. Explicitly it is given by:

C =
⊕

n∈N
C(n) =K1⊕ V ⊕R⊕ · · · ⊕

( ⋂

i+2+j=n
V⊗i ⊗R⊗ V⊗j

)

⊕ · · · .
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Observe that the restriction of the coproduct of C (that is the deconcatenation) to
the weight 2 component C(2) =R is given by

r = r1 ⊗ r2 �→ r ⊗ 1+ r1 ⊗ r2 + 1⊗ r ∈ (V⊗2 ⊗K
)⊕ (V ⊗ V )⊕ (K⊗ V⊗2).

We will say thatC(V,R) is cogenerated by V with corelationsR in T c(V ). Observe
that the coalgebra C(V,R) is conilpotent, cf. Sect. 1.2.4.

A morphism of quadratic data, f : (V ,R)→ (W,S) induces a natural morphism
of weight graded coalgebras C(V,R)→ C(W,S). Any morphism of coalgebras
which respects the weight grading is of this form. But it is not the case for every
morphism of coalgebras.

3.1.4 The Graded Framework

Both constructions A(V,R) and C(V,R) can be extended to the category of graded
vector spaces. In this framework, V is a graded module and R is a graded sub-
module of the graded module V⊗2. Then the algebra A(V,R), resp. the coalge-
bra C(V,R), is bigraded by degree and weight (cf. Sect. 1.5.1). Both A(V,R) and
C(V,R) are connected weight graded in the sense of Sect. 1.5.10, with trivial dif-
ferential.

3.2 Koszul Dual of a Quadratic Algebra

We construct the Koszul dual coalgebra and the Koszul dual algebra of a quadratic
algebra. We work here in the homogeneous framework. The inhomogeneous frame-
work, where it is only supposed that R ⊂ V ⊕ V⊗2, is treated in Sect. 3.6.

3.2.1 Koszul Dual Coalgebra of a Quadratic Algebra

Let (V ,R) be a graded quadratic data. By definition the Koszul dual coalgebra of
the quadratic algebra A(V,R) is the coalgebra

A¡ := C(sV, s2R
)
,

where s2R is the image of R in (sV )⊗2 under the map V⊗2 → (sV )⊗2, vw �→
svsw. The upside down exclamation point ¡ (left exclamation point in the Spanish
language) is usually pronounced “anti-shriek”. If V is a graded space concentrated
in degree 0, then sV is concentrated in degree 1. Observe thatC(sV, s2R) is equal to
C(V,R) as a coalgebra. The decoration “s” is modifying the degree of the objects.
It plays a role when we apply the Koszul sign rule to morphisms. We can omit it in
the notation at the expense of changing the signs of the maps accordingly.
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3.2.2 Koszul Dual Algebra of a Quadratic Algebra

The algebra obtained as the linear dual of the coalgebra A¡ carries a desuspension
sign. In the literature, one sometimes finds its unsuspended analog, denoted by A!
and called the Koszul dual algebra of the quadratic algebra A. Explicitly it is de-
fined by

(
A!
)(n) := sn(A¡∗)(n)

and carries the obvious associative algebra structure.
Dualizing linearly the exact sequence

0→R� V⊗2 � V⊗2/R→ 0,

provides the exact sequence

0←R∗ �
(
V ∗
)⊗2 �R⊥ ← 0.

In other words the orthogonal space R⊥ is defined as the image of (V⊗2/R)∗ in
(V ∗)⊗2 under the isomorphism (V⊗2)∗ ∼= V ∗ ⊗ V ∗, cf. Sect. 1.2.2.

Proposition 3.2.1. The Koszul dual algebra A! admits the following quadratic pre-
sentation

A! =A(V ∗,R⊥).

Proof. First notice that the linear dual of the quadratic coalgebra A¡ = C(sV, s2R)

is the quadratic algebra A¡∗ =A(s−1V ∗, s−2R⊥). The last step can be proved either
directly or by using the notion of Manin products of Sect. 4.5.1: the Koszul dual
algebra is equal to A! = (A¡∗)�T (sK)=A(V ∗,R⊥). �

3.2.3 Koszul Dual Algebra of a Coalgebra

It is also useful to introduce the Koszul dual algebra of a quadratic coalgebra

C¡ :=A(s−1V, s−2R
)

for C = C(V,R).
It follows immediately that

(
A¡)¡ =A and

(
C¡)¡ = C.

As an immediate consequence we have, under finite dimensionality assumption:

(
A!
)! =A.

Observe that the coalgebra A¡ is well-defined even in the graded framework and
without any finiteness hypothesis.
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3.2.4 Examples

1. Let V be a finite dimensional vector space and let R = 0. Then we have A =
T (V ). Its Koszul dual algebra is the algebra of dual numbers A! = D(V ∗) :=
K1⊕ V ∗, with trivial multiplication.

2. The symmetric algebra S(V ) is the quadratic algebra T (V )/(R), where the space
of relations R is the subvector space of V⊗2 spanned by the elements x⊗y−y⊗
x for x, y ∈ V . The coalgebra Λc(sV ) is the subcoalgebra of T c(sV ) satisfying
the universal property of Sect. 3.1.3 with the subspace s2R = 〈sx⊗ sy− sy⊗ sx|
x, y ∈ V 〉. Therefore, its component of weight n is equal to

Λc(sV )(n) =
〈∑

σ∈Sn
sgn(σ )snxσ(1) ⊗ · · · ⊗ xσ(n)

∣
∣
∣ x1, . . . , xn ∈ V

〉

.

The coalgebra structure is given by the deconcatenation coproduct and is cocom-
mutative. When V is an n-dimensional vector space with basis {x1, . . . , xn} in
degree 0, one gets the polynomial algebra S(V )=K[x1, . . . , xn]. In this case, its
Koszul dual algebra is the exterior algebra S(V )! =Λ(V ∗), since R⊥ is spanned
by the elements x∗i x∗j + x∗j x∗i , where {x∗1 , . . . , x∗n} is the dual basis.

3. We refer to [Pri70, Man87, Man88, Frö99, PP05] for many more examples.

3.3 Bar and Cobar Construction on a Quadratic Data

We make explicit the dga coalgebra BA and the dga algebra �C in the quadratic
case. The Koszul dual objects are shown to be equal to the syzygy degree 0 homol-
ogy group in both cases.

3.3.1 Bar Construction on a Quadratic Algebra

The bar construction BA := T c(sĀ) over the quadratic dga algebra A = A(V,R)
(whose differential is trivial) is equipped with a homological degree and a weight
grading. We now introduce the syzygy degree.

The weight grading on BA is defined by the sum of the weight of each element:
ω(sa1, . . . , sak) := ω(a1)+ · · · + ω(ak). Since A is a connected wgda algebra, the
augmentation ideal Ā is concentrated in weight grading ≥ 1. We define another
degree on Ā by the weight grading of A minus 1. It induces a new nonnegative
degree on the bar construction, called the syzygy degree which is equal to ω(a1)+
· · · + ω(ak) − k. The component of syzygy degree d of BA is denoted by BdA,
whereas the homological degree r component is denoted by (BA)r .

Since A has trivial internal differential, the differential on BA reduces to d2,
which raises the syzygy degree by 1 and preserves the weight grading. So it forms a
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cochain complex with respect to the syzygy degree, which splits with respect to the
weight grading. Hence the associated cohomology groups will be bigraded, by the
syzygy degree and by the weight grading.

The following diagram depicts this decomposition. The syzygy degree is in-
dicated on the last row, so we delete the notation s for simplicity. We write
Ā= V ⊕V 2/R⊕V 3/(RV +VR)⊕· · · for more clarity, the tensor product notation
being reserved for the one in BA only.

· · · · · · · · · · · · (4)

0 ← V 3/(VR+RV ) ← (
V 2/R⊗ V )⊕ (V ⊗ V 2/R

) ← V ⊗ V ⊗ V (3)

0 ← V 2/R ← V ⊗ V (2)

0 ← V (1)

K (0)

3 2 1 0

On the weight (3) row the map from V ⊗ V ⊗ V is

u⊗ v⊗w �→ [uv] ⊗w− u⊗ [vw]
where [−] denotes the class in the quotient. The other map on this row is

([uv] ⊗w,u′ ⊗ [v′w′]) �→ [uvw] + [u′v′w′].
From this description we see immediately that the syzygy degree 0 column forms
the cofree coalgebra T c(sV ). Hence the Koszul dual coalgebra A¡ = K ⊕ sV ⊕
s2R⊕ · · · is a subspace of this column.

Let x ∈A¡ and �̄(x)=∑x(1)⊗x(2). The boundary map of �A¡ is given explic-
itly by the formula

d2
(
s−1x

)=
∑
(−1)|x(1)|s−1x(1) ⊗ s−1x(2).

The next proposition shows that A¡ is equal to the kernel of the boundary map.

Proposition 3.3.1. Let (V ,R) be a quadratic data, A= A(V,R) the quadratic al-
gebra and A¡ = C(sV, s2R) its Koszul dual coalgebra. The natural coalgebra in-
clusion i :A¡ � BA induces an isomorphism of graded coalgebras:

i :A¡ ∼=−→H 0(B•A
)
, i.e. A¡(n) ∼=H 0(B•A

)(n)
for any n.

Proof. We claim that, for each n, the inclusionA¡(n)→ (sV )⊗n is exactly the kernel
of the horizontal differential, that is H 0(B•A)(n). It is obvious for n= 0 and n= 1.
For n= 2 the boundary map in (BA)(2) is the quotient map V⊗2 → V⊗2/R, hence
its kernel is R. More generally, since the boundary map is a derivation, it is given in
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degree 0 by the sum of the maps (sV )⊗n→ (sV )⊗i ⊗ sV⊗2/R ⊗ (sV )⊗j . So the
kernel is

⋂

i+2+j=n
(sV )⊗i ⊗ s2R⊗ (sV )⊗j =A¡(n). �

3.3.2 Cobar Construction on a Quadratic Coalgebra

Like the bar construction, the cobar construction�C = T (s−1�C) over the quadratic
dga coalgebra C = C(V,R) (whose differential is trivial) has several gradings.

We introduce the same definitions as for the bar construction. We consider the
weight grading (�C)(n), which is the sum of the weights of the elements of �C. The
syzygy degree of �C is induced by the weight of elements of �C minus 1 in the same
way. We denote it by �dC.

Since the internal differential of the coalgebra C is trivial, the differential of the
cobar construction �C reduces to d2, which lowers the syzygy degree by 1. Hence,
(�•C,d2) becomes a chain complex. Since the differential d2 preserves the weight
of the elements of C, this chain complex splits with respect to the weight: it is iso-
morphic to the following direct sum of sub-chain complexes �C ∼=⊕n≥0(�C)

(n).
The diagram below represents this weight decomposition. The syzygy degree is

indicated on the last row, so we delete the notation s−1 for simplicity.

· · · · · · · · · · · · (4)

0 → VR ∩RV → (V ⊗R)⊕ (R⊗ V ) → V ⊗ V ⊗ V (3)

0 → R → V ⊗ V (2)

0 → V (1)

K (0)

3 2 1 0

In degrees 0 and 1, the maps R→ V⊗2 and (V ⊗ R) ⊕ (R ⊗ V )→ V⊗3 are
simply the inclusions. The map VR ∩ RV → (V ⊗ R)⊕ (R ⊗ V ) is inc1 − inc2

where inc1, resp. inc2 is the inclusion of the first, resp. second, summand. From
this description we see immediately that the syzygy degree 0 column forms the free
algebra T (s−1V ) and that the algebra

C¡ =K⊕ s−1V ⊕ (s−1V
)⊗2
/s−2R⊕ · · ·

is a quotient of it.

Proposition 3.3.2. Let C = C(V,R) be the quadratic coalgebra associated to the
quadratic data (V ,R), and let C¡ := A(s−1V, s−2R) be its Koszul dual algebra.



3.4 Koszul Algebras 69

The natural algebra projection p : �C � C¡ induces an isomorphism of graded
algebras:

p :H0(�•C)
∼=−→ C¡, i.e. H0(�•C)(n) ∼= C¡(n) for any n.

Proof. The proof is analogous to the proof of Proposition 3.3.1. �

3.4 Koszul Algebras

For any quadratic data, we define a twisting morphism from the Koszul dual coal-
gebra to the quadratic algebra. This gives a twisted tensor product, called the Koszul
complex, which plays a central role in the Koszul duality theory. We state and prove
the main theorem of this chapter which says that the Koszul complex is acyclic if
and only if the cobar construction over the Koszul dual coalgebra gives the minimal
model of the algebra. The other definitions of a Koszul algebra appearing in the
literature are given and we conclude with examples.

3.4.1 The Koszul Complex of a Quadratic Data

Starting with a quadratic data (V ,R) we define κ : C(sV, s2R)→ A(V,R) as the
linear map of degree −1 which is 0 everywhere except on V where it identifies sV
to V :

κ : C(sV, s2R
)
� sV

s−1−−→ V �A(V,R).

Observe that the shift s in the definition of A¡ makes κ a degree −1 map. The
following result shows that κ is a twisting morphism.

Lemma 3.4.1. We have κ � κ = 0, and therefore κ ∈ Tw(A¡,A).

Proof. Since κ is 0 almost everywhere, the convolution product κ � κ is 0 except
maybe on V⊗2. Computing κ � κ explicitly on V⊗2 we find that it is equal to the
composite

C(2) =R→ V ⊗ V → V⊗2/R =A(2),
hence it is 0 as expected.

So the map κ is a twisting morphism by Sect. 2.1.2. �

Proposition 3.4.2. The twisting morphism κ : C(sV, s2R) � V � A(V,R) in-
duces a map dκ which makes

A¡c⊗κ A :=
(
C
(
sV, s2R

)⊗A(V,R), dκ
)

(respectively A⊗κ A¡) into a weight graded chain complex.
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Proof. The differential dκ was constructed out of κ in Sect. 1.6.1. It is a differential
by Lemmas 3.4.1 and 1.6.2. Since κ has degree −1 and weight 0, it is the same
for the differential dκ . Hence this chain complex splits with respects to the total
weight. �

The chain complex A¡ ⊗κ A (resp. A⊗κ A¡) is called the Koszul complex, or left
Koszul complex (resp. right Koszul complex) of the quadratic algebra A(V,R). Its
summand (A¡ ⊗κ A)(n) of weight (n) is equal to:

0→A¡(n)→A¡(n−1) ⊗A(1)→ ·· ·→A¡(1) ⊗A(n−1)→A¡(n)→ 0.

3.4.2 Koszul Criterion

In this section, we derive the main theorem of Koszul duality theory for associative
algebras from the preceding chapter.

Proposition 3.4.3. The maps corresponding to the twisting morphism κ : A¡ → A

under the isomorphisms of Theorem 2.2.6 are exactly i = fκ : A¡ � BA and p =
gκ :�A¡ �A.

Proof. By direct inspection. �

Theorem 3.4.4 (Koszul criterion). Let (V ,R) be a quadratic data. Let A :=
A(V,R) be the associated quadratic algebra and let A¡ := C(sV, s2R) be the as-
sociated quadratic coalgebra. Then the following assertions are equivalent:

1. the right Koszul complex A¡ ⊗κ A is acyclic,
2. the left Koszul complex A⊗κ A¡ is acyclic,
3. the inclusion i :A¡�BA is a quasi-isomorphism,
4. the projection p :�A¡�A is a quasi-isomorphism.

When these assertions hold, the cobar construction onA¡ gives a minimal resolution
of A.

Proof. Theorem 2.3.1 can be applied to A :=A(V,R), C :=A¡ = C(sV, s2R) and
to α = κ since by Lemma 3.4.1 κ is a twisting morphism and since the connectivity
and weight grading assumptions are satisfied.

Let us verify that �A¡ is the minimal model of A when the Koszul complex
is acyclic. First, the dga algebra �A¡ is free as a graded algebra by construction
(but not as a dga algebra). Second, its differential d�A¡ = d2 satisfies the minimal
hypothesis d(W) ⊂⊕n≥2W

⊗n also by construction. Third, by Proposition 3.3.2
we have H0(�•A¡) = A and by (4) the resulting map p : �A¡�A is a quasi-
isomorphism. �
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Observe that starting with C(V,R) instead of A(V,R) with the following twist-
ing morphism

C = C(V,R) V
s−1

s−1V C¡ =A(s−1V, s−2R
)

gives the same result up to a shift of grading. So we get Koszul duality theory for
coalgebras.

3.4.3 Definition of a Koszul Algebra

A quadratic data (resp. quadratic algebra, resp. quadratic coalgebra) is said to be
Koszul if its Koszul complex is acyclic.

By Theorem 3.4.4 we see that A is Koszul if and only if there is an isomorphism
A¡ ∼=H •(BA) (resp.H•(�A!)∼=A). By Propositions 3.3.1 and 3.3.2, this is equiva-
lent to the vanishing of the (co)homology groups: Hd(B•A) and Hd(�•A¡)= 0 for
d > 0. More generally, a connected weight graded algebra A is said to be Koszul if
the cohomology Hd(B•A)= 0 of its bar construction is concentrated in syzygy de-
gree d = 0. In this case, Exercise 3.8.1 shows thatA admits a quadratic presentation.
Therefore, there is no restriction to treat only the quadratic case.

The bar–cobar construction �BA is always a resolution of A. To simplify it, one
idea is to apply the cobar construction to the homology H •(BA) rather than to BA.
When A is Koszul, the homology of BA is exactly A¡ and one gets the resolution
�A¡ of A. For any quadratic algebra we have the following commutative diagrams:

�A¡ �BA ∼
A

A¡ ∼ B�A¡ BA

The algebra A is Koszul if and only if all these maps are quasi-isomorphisms by
Corollary 2.3.2 and Theorem 3.4.4. Both �A¡ and �BA are models of A and �A¡

is the minimal model.
With the aforementioned definitions, a quadratic algebra A is Koszul if and only

if its Koszul dual coalgebra A¡ is Koszul. The following proposition states the same
property with the Koszul dual algebra.

Proposition 3.4.5. Let (V ,R) be a finite dimensional quadratic data. The qua-
dratic algebra A = A(V,R) is Koszul if and only if its Koszul dual algebra
A! =A(V ∗,R⊥) is Koszul.

Proof. The left Koszul complex A! ⊗κ ′ A!¡ associated to the twisting morphism κ ′ :
A!¡ →A! is made up of finite dimensional vector spaces in each degree and weight.
Its linear dual is equal to the right Koszul complex A¡ ⊗κ A, up to suspension.
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Therefore one is acyclic if and only if the other one is acyclic and we conclude by
Theorem 3.4.4. �

3.4.4 Other Equivalent Definitions

In the literature [Löf86, Frö99], one encounters the following equivalent definitions
of a Koszul algebra.

Lemma 3.4.6. Let A = A(V,R) be a quadratic algebra. It is a Koszul algebra
if and only if the homology of its bar construction H •(BA) is a sub-coalgebra of
T c(sV ).

Proof. It is a direct consequence of Proposition 3.3.1 and Theorem 3.4.4. �

Let A = A(V,R) be a finitely generated quadratic algebra. Recall that the de-
rived Ext-functor Ext•A(K,K) is defined as the homology H•(HomA(R,K)), where

R
∼−→ K is any projective resolution of K in the category of A-modules. It can be

endowed with an associative algebra structure called the Yoneda algebra. Consid-
ering the quasi-free resolution A ⊗ι BA

∼−→ K, the Ext-functor can be computed
by Ext•A(K,K)=H•((BA)∗), where (BA)∗ is the degreewise and weightwise dual
of BA. Since it is the homology of the linear dual of a dga coalgebra, the Yoneda
algebra structure is easily described.

Proposition 3.4.7. A finitely generated quadratic algebra A(V,R) is Koszul if and
only if its Yoneda algebra Ext•A(K,K) is generated by its weight 1 elements.

Proof. This proposition is linear dual to the previous lemma. �

Another equivalent definition of a Koszul algebra amounts to saying that the
ground field K has a “linear minimal graded resolution of K with free A-modules”.
Such a resolution is provided by the Koszul complex A⊗κ A¡. For the definitions
of these terms and a proof of the equivalence, we refer the reader to [Frö99].

3.4.5 Examples

The symmetric algebra S(V ) and the exterior coalgebra Λc(sV ) are Koszul dual
to each other. The tensor algebra and the dual numbers coalgebra are also Koszul
dual to each other. Here are the proofs of the acyclicity of the associated Koszul
complexes, which proves that they are Koszul.

Proposition 3.4.8. The Koszul complex (Λc(sV )⊗ S(V ), dκ) is acyclic.
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Proof. Though this statement is true over Z, we will prove it only over a charac-
teristic zero field. We represent any element

∑
σ∈Sp sgn(σ )spxσ(1) ⊗ · · · ⊗ xσ(p)

of Λc(sV )(p) simply by x1 ∧ · · · ∧ xp , keeping in mind that x1 ∧ · · · ∧ xp =
sgn(σ )xσ(1) ∧ · · · ∧ xσ(p) holds for any σ ∈ Sp , like in the Koszul dual algebra
Λ(V ∗). (This identification is nothing but the isomorphism between (Λc(sV ))∗ and
Λ(V ∗), up to suspension.)

The boundary map

d = dκ :Λc(sV )(p) ⊗ S(V )(q) −→Λc(sV )(p−1) ⊗ S(V )(q+1)

is given by

d(x1 ∧ · · · ∧ xp ⊗ y1 · · ·yq)=
p∑

j=1

(−1)p−j x1 ∧ · · · ∧ x̂j ∧ · · · ∧ xp ⊗ xjy1 · · ·yq.

Define

h :Λc(sV )(p) ⊗ S(V )(q) −→Λc(sV )(p+1) ⊗ S(V )(q−1)

by the formula

h(x1 ∧ · · · ∧ xp ⊗ y1 · · ·yq) :=
q∑

i=1

x1 ∧ · · · ∧ xp ∧ yi ⊗ y1 · · · ŷi · · ·yq.

One checks that hd+dh= (p+q) id. Since we work in characteristic zero it shows
that id is homotopic to 0 and therefore the complex is acyclic. �

Proposition 3.4.9. For any graded vector space V , the Koszul complex ((K⊕V )⊗
T (V ), dκ) of the quadratic algebra T (V ) is acyclic.

Proof. Since T (V ) = A(V,0), we get R = 0 and therefore C(V,R) ∼= K ⊕ V ,
where �(1)= 1⊗ 1, �(v)= v⊗ 1+ 1⊗ v.

The boundary map d = dκ of the Koszul complex (K⊕ V )⊗ T (V ) is zero on
the component K⊗ T (V ) and is the identification of V ⊗ T (V ) with K⊗ T (V )≥1

on the other component. Indeed, it is a consequence of the formulas for � and of
κ(1)= 0, κ(v)= v.

So, the homology of the Koszul complex is Kerd/ Imd = T (V )/T (V )≥1 = K

concentrated in bidegree (0,0). Hence the Koszul complex is acyclic. �

3.5 Generating Series

Let (V ,R) be a quadratic data such that V is finite dimensional. The weight-graded
algebra A(V,R)=⊕n≥0A

(n) is such that A0 =K1 and A(n) is finite dimensional.



74 3 Koszul Duality for Associative Algebras

By definition the generating series or Hilbert–Poincaré series of A is

f A(x) :=
∑

n≥0

dimA(n)xn.

Theorem 3.5.1. If (V ,R) is a finite dimensional quadratic data which is Koszul,
then the following identity holds between the generating series of A and A!:

f A
!
(x)f A(−x)= 1.

Proof. The Euler–Poincaré characteristic of the sub-chain complex of weight (n) of
the Koszul complex of A is equal to

∑n
k=0(−1)k dimA(k) dimA¡(n−k). By defini-

tion, it is equal to the coefficient of xn of f A
!
(x)f A(−x). When the quadratic data

(V ,R) is Koszul, the Koszul complex is acyclic. It implies that the Euler–Poincaré
characteristic is equal to 0, for n > 0, and it is equal to 1, for n= 0, which concludes
the proof. �

Notice that one can also define the generating series of a quadratic coalgebra. In
that case, we have f A

¡ = f A! .
Let us apply this theorem to the examples of Sect. 3.4.5. When the dimension of

V is equal to k, we have

f T (V )(x)= 1

1− kx and fD(V
∗)(x)= 1+ kx,

which satisfy fK⊕V (x)f T (V )(−x) = 1. In the case of the symmetric algebra, we
have

f S(V )(x)= 1

(1− x)k and fΛ(V
∗)(x)= (1+ x)k,

which satisfy fΛ(V
∗)(x)f S(V )(−x)= 1.

Theorem 3.5.1 provides a method to prove that an algebra is not Koszul. One first
computes the Hilbert–Poincaré series f A(x) of the quadratic algebra A and then its
inverse series f A(−x)−1. If this last one has at least one strictly negative coeffi-
cient, then it cannot be the series associated to a quadratic algebra. Therefore, the
algebraA is not a Koszul algebra. (See [PP05, Sect. 2.2] for an example.) For a more
exhaustive treatment of generating series, we refer the reader to [PP05, Ufn95].

If a chain complex is acyclic, then its Euler–Poincaré characteristic is equal to
zero; but the converse is not true. This motivates us to look for quadratic algebras
satisfying the functional equation of Theorem 3.5.1 but which fail to be Koszul.
Such examples are given in [Pos95, Roo95, Pio01]. In the next section, we give a
necessary and sufficient combinatorial condition for an algebra to be Koszul and in
Sect. 4.3 we give a sufficient algebraic condition for an algebra to be Koszul.
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3.6 Koszul Duality Theory for Inhomogeneous Quadratic
Algebras

In the preceding sections, we dealt with Koszul duality of homogeneous quadratic
algebras. In [Pri70] Priddy considered more general objects: inhomogeneous qua-
dratic algebras with quadratic and linear relations. They are algebras whose relators
contain not only quadratic terms but also possibly linear terms. The main example
is the universal enveloping algebra of a Lie algebra: U(g) = T (g)/(R) where the
relator is [x, y] − x ⊗ y + y ⊗ x. The purpose of this section is to adapt our treat-
ment of Koszul duality theory to this more general framework. The modification
consists in adding a suitable internal differential in the construction of the Koszul
dual coalgebra.

There exists an even more general case allowing also constant terms in the space
of relations, cf. [PP05].

3.6.1 Quadratic-Linear Algebra

A quadratic-linear data (V ,R) is a graded vector space V together with a degree
homogeneous subspace

R ⊂ V ⊕ V⊗2.

So, there may be linear terms in the space of relations. We still denote by A =
A(V,R) = T (V )/(R) the associated quotient. We consider q : T (V )� V⊗2 the
projection onto the quadratic part of the tensor algebra. The image of R under q ,
denoted qR, is homogeneous quadratic, so (V , qR) is a quadratic data in the sense
of Sect. 3.1. We denote by qA its associated algebra: qA :=A(V,qR). We assume
that R satisfies the property

(ql1) :R ∩ V = {0}.
If it is not the case, by removing some elements of V one can choose another pre-
sentation of A which does satisfy (ql1). This condition amounts to the minimality of
the space of generators of A. Under this assumption, there exists a map ϕ : qR→ V

such that R is the graph of ϕ:

R = {X− ϕ(X) |X ∈ qR}.
For instance, if A=U(g), then ϕ(x⊗y−y⊗x)= [x, y] and qA= Sg. The weight
grading on T (V ) induces a filtration which is compatible with the ideal (R). Hence
the quotient algebra A is filtered by FnA := Im(

⊕
k≤n V⊗k). The assumption R ∩

V = {0} implies F1A=K⊕ V . We denote by grA the graded algebra associated to
the filtration of A, grn A := FnA/Fn−1A. We denote by

p : qA� grA
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the resulting epimorphism. It is obviously an isomorphism in weight 0 and 1, but
not necessarily in weight 2. A corollary of the present theory shows that p is an
isomorphism provided that qA is Koszul, see Theorem 3.6.4. In the example A =
U(g) the map p : S(g)→ grU(g) is the PBW isomorphism.

3.6.2 Koszul Dual Coalgebra

The map ϕ permits us to construct the composite map

ϕ̃ : (qA)¡ = C(sV, s2qR
)
� s2qR

s−1ϕ−−→ sV .

By Proposition 1.2.2 there exists a unique coderivation, dϕ̃ : (qA)¡ → T c(sV ),
which extends this composite.

Lemma 3.6.1.

(a) If {R ⊗ V + V ⊗ R} ∩ V⊗2 ⊂ qR, then the image of the coderivation dϕ̃ lives
in (qA)¡ = C(sV, s2qR) ⊂ T c(sV ), thereby defining a coderivation dϕ of the
coalgebra (qA)¡.

(b) If the condition

(ql2) : {R⊗ V + V ⊗R} ∩ V⊗2 ⊂R ∩ V⊗2

is satisfied, then the coderivation dϕ squares to 0.

Proof. If {R⊗V +V ⊗R}∩V⊗2 ⊂ qR, then we prove that dϕ̃(C(sV, s2qR)(3))⊂
C(sV, s2qR)(2) = s2qR. The proof of the general case is done in the same way with
the formula (qA)¡(n) =⋂i+2+j=n(sV )⊗i⊗ s2qR⊗ (sV )⊗j . Since C(sV, s2qR)(3)

is equal to s2qR⊗sV ∩sV ⊗s2qR, any of its elements can be written Y =∑ s2X⊗
sv =∑ sv′ ⊗ s2X′, with v, v′ ∈ V and X,X′ ∈ qR. The formula for the unique
coderivation on the cofree coalgebra T c(sV ) of Proposition 1.2.2 gives

dϕ̃(Y )=
∑
ϕ̃
(
s2X
)⊗ sv −

∑
(−1)|v′|sv′ ⊗ ϕ̃(s2X′

)

=
∑(

sϕ(X)− s2X
)⊗ sv +

∑
sv′ ⊗ (s2X′ − (−1)|v′|sϕ

(
X′
))
.

Hence, forgetting the suspension for simplicity, we have

dϕ̃(Y )=
∑(

ϕ(X)−X)⊗ v+
∑
v′ ⊗ (X′ − ϕ(X′))

∈ {R⊗ V + V ⊗R} ∩ V⊗2 ⊂ qR = C(V,qR)(2).
Since kerϕ = R ∩ V⊗2, we get dϕ2(C(V,qR)(3))= {0} if {R ⊗ V + V ⊗R} ∩

V⊗2 ⊂ R ∩ V⊗2. Once again, the proof of the general case follows from the same
pattern using the explicit formula of the coalgebra (qA)¡. �
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Since R ∩ V⊗2 ⊂ qR, condition (ql2) implies {R ⊗ V + V ⊗ R} ∩ V⊗2 ⊂ qR.
Condition (ql2) amounts to saying that one cannot create new quadratic relations in
R by adding an element to the relations of the presentation.

Let (V ,R) be a quadratic-linear data satisfying the conditions (ql1) and (ql2).
By definition the Koszul dual dga coalgebra of A=A(V,R) is the dga coalgebra

A¡ := ((qA)¡, dϕ
)= (C(sV, s2qR

)
, dϕ
)
.

3.6.3 Koszulity in the Inhomogeneous Quadratic Framework

A quadratic-linear data (resp. a quadratic-linear algebra) is said to be Koszul if it
satisfies conditions (ql1), (ql2) and if the quadratic data (V , qR), or equivalently
the quadratic algebra qA, is Koszul in the sense of Sect. 3.4.

Notice that for a homogeneous quadratic data, Koszul in the classical sense is
Koszul in this sense. In this case, the conditions (ql1), (ql2) are trivially satisfied
and the inner coderivation dϕ vanishes.

3.6.4 Cobar Construction in the Inhomogeneous Quadratic Framework

Under the hypotheses (ql1) and (ql2), we have constructed a conilpotent dga coal-
gebra A¡. Applying the cobar construction of Sect. 2.2.2, we get a dga algebra �A¡,
whose differential is of the form d1 + d2. The internal derivation d1 is the unique
derivation which extends dϕ . The derivation d2 is induced by the coalgebra structure
of A¡.

We consider the same map κ in this context

κ :A¡ = C(sV, s2qR
)
� sV

s−1−−→ V �A.

Lemma 3.6.2. The map κ is a twisting morphism in Hom(A¡,A), that is ∂(κ)+κ �
κ = 0.

Proof. We refine the proof of Lemma 3.4.1, taking care of the internal differential
dϕ of A¡. The Maurer–Cartan equation becomes −κ ◦ dϕ + κ � κ = 0. The map
−κ ◦ dϕ + κ � κ is equal to 0 everywhere except on (A¡)(2) = s2qR where its image
is {−ϕ(X)+X |X ∈ qR} =R, which vanishes in A. �

The twisting morphism κ induces a morphism of dga algebras gκ :�A¡ →A by
Theorem 2.2.6.
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Theorem 3.6.3. Let A be an inhomogeneous quadratic Koszul algebra satisfying
the conditions (ql1) and (ql2). Let A¡ = ((qA)¡, dϕ) be its Koszul dual dga coalge-

bra. The morphism of dga coalgebras gκ :�A¡ ∼−→A is a quasi-isomorphism.

Proof. In this proof, we consider the cobar construction as a chain complex graded
by the syzygy degree as in Sect. 3.3.2: both the internal differential d1 of �A¡ in-
duced by dϕ and the differential d2 induced by the coproduct of the coalgebra (qA)¡

lower the syzygy degree by 1. So we have a well-defined nonnegatively graded chain
complex.

Since (qA)¡ is a weight graded coalgebra, the underlying module �A¡ =
T (s−1(qA)¡) of the bar construction is weight-graded. We consider the filtration
Fr of �A¡ defined by its weight: the elements of Fr are the elements of weight less
than r . The two components of the differential map d = d1 + d2 satisfy

d2 : Fr → Fr and d1 : Fr → Fr−1.

The filtration Fr is therefore stable under the boundary map d . Since it is bounded
below and exhaustive, the associated spectral sequence E•rs converges to the ho-
mology of �A¡ by the classical convergence theorem of spectral sequences [ML95,
Proposition 3.2, Chap. 11]. Hence, Fr induces a filtration Fr on the homology of
�A¡ such that

E∞rs ∼= Fr
(
Hr+s

(
�A¡))/Fr−1

(
Hr+s

(
�A¡))=: grr

(
Hr+s

(
�A¡)).

The first term of this spectral sequence is equal to E0
rs = T (s−1(qA)¡)

(r)
r+s , which

is made up of the elements of syzygy degree equal to r+ s and grading equal to (r).
The differential map d0 is given by d2. Since the algebra qA is Koszul, the spectral
sequence is equal to E1

rs = qA(r) at rank 1. More precisely E1
rs is concentrated in

the line r+ s = 0: E1
rs
∼= qA(r), for r+ s = 0 and E1

rs = 0, for r+ s �= 0. Therefore,
the spectral sequence collapses at rank 1.

In conclusion, the convergence theorem gives

E1
r−r ∼= qA(r) ∼=E∞r−r ∼= grr

(
H0
(
�A¡)),

E1
rs
∼= 0∼=E∞rs ∼= grr

(
Hr+s

(
�A¡)), for r + s �= 0.

The result of Proposition 3.3.2 still holds in the inhomogeneous case, that is
H0(�A

¡)∼= A, with the syzygy degree. Hence the quotient grr (H0(�A
¡)) is equal

to grrA and the morphism �A¡ ∼−→A is a quasi-isomorphism. �

Notice that, in the inhomogeneous case, this resolution is not minimal because
of the internal differential d1.

3.6.5 Poincaré–Birkhoff–Witt Theorem

Theorem 3.6.4 (Poincaré–Birkhoff–Witt Theorem). When a quadratic-linear alge-
bra A is Koszul, then the epimorphism p : qA� grA is an isomorphism of graded
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algebras

qA∼= grA.

Proof. This theorem was already proved in the proof of the previous theorem, where
the convergence of the spectral sequence gave

E1
r−r ∼= qA(r) ∼=E∞r−r ∼= grrA. �

Another proof of this theorem, based on deformation theory, can be found in
[BG96]. Even if the Poincaré–Birkhoff–Witt theorem is a direct consequence of
the proof of Proposition 3.6.3, it has the following two nontrivial consequences:
Corollary 3.6.5 and Proposition 3.6.6.

Corollary 3.6.5. Let A(V,R) be an algebra with the quadratic-linear presentation
(V ,R). If the quadratic algebra qA = A(V,qR) is Koszul, then conditions (ql1)
and (ql2) are equivalent to conditions

(
ql1

′) : (R)∩ V = {0} and
(
ql2

′) :R = (R)∩ {V ⊕ V⊗2}.

Proof. Condition (ql1′) is the generalization of condition (ql1) from R to (R). Con-
dition (ql2′) is the generalization of condition (ql2) from R ⊗ V + V ⊗ R to (R).
In the other way round, if conditions (ql1) and (ql2) are satisfied and if the algebra
A(V,R) is Koszul, then we get the Poincaré–Birkhoff–Witt isomorphism qA∼= grA
of Theorem 3.6.4. In weight 1, it implies condition (ql1′). In weight 2, it implies
qR = q((R) ∩ {V ⊕ V⊗2}), which is equivalent to condition (ql2′) by condition
(ql1

′). �

Conditions (ql1′) and (ql2′) amount to say that the ideal generated by R does
not create any new quadratic-linear relation. It is equivalent to the maximality of the
space of relations in the presentation of the inhomogeneous quadratic algebra. Such
conditions can be hard to check in practice because one would have to compute the
full ideal generated by R. But this proposition shows that if one finds a quadratic-
linear presentation of an algebra satisfying conditions (ql1), (ql2) and whose homo-
geneous quadratic data is Koszul, then the space of relations R is maximal.

REMARK. This result is “Koszul dual” to the Diamond Lemma 4.2.4, since we
work with the cobar construction � instead of the bar construction B in Sect. 4.2.4.
Here it gives, under condition (ql1),

(qA)¡ Koszul & (ql2) ⇒ A¡ Koszul &
(
ql2

′),

where condition (ql2) has to be seen as the particular case of condition (ql2′) in
weight 3. These two conditions refer to the ideal generated by R, whereas the con-
dition of the Diamond Lemma refers to the quotient by some ideal associated to R.
Also, in a similar way, we get the following isomorphism between the Koszul dual
algebras (of the aforementioned coalgebras): qA∼= grA∼=A as a direct byproduct.
This result is better seen as a Diamond Lemma for Gröbner bases, see Sect. 4.3.7.
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3.6.6 Acyclicity of the Koszul Complex

As in the quadratic case, the Koszul complex associated to an inhomogeneous
Koszul algebra is acyclic.

Proposition 3.6.6. When A(V,R) is a quadratic-linear Koszul algebra, its Koszul
complexes A¡ ⊗κ A and A⊗κ A¡ are acyclic.

Proof. We consider the Koszul complex as a chain complex graded by the weight
of the elements of A¡. The two parts dϕ ⊗ idA and drκ of the differential map lower
this degree by −1, so it is a well-defined chain complex.

The natural filtration onA plus the weight grading on (qA)¡ induce an exhaustive
and bounded below filtration Fr on A¡ ⊗κ A. The differential maps satisfy drκ :
Fr → Fr and dϕ ⊗ idA : Fr → Fr−1. Therefore, E0 is equal to A¡ ⊗κ̄ grA where
κ̄ :A¡ → grA is the associated twisting morphism and where d0 = drκ̄ .

By the Poincaré–Birkhoff–Witt Theorem, E0 is equal to the twisted tensor prod-
uct (qA)¡ ⊗κ̃ qA of the Koszul quadratic algebra qA, with κ̃ : (qA)¡ → qA being
the Koszul twisting morphism. Therefore, it is acyclic and we conclude by the con-
vergence theorem for spectral sequences [ML95, Proposition 3.2, Chap. 11]). �

In [Pri70], Priddy called Koszul resolutions, the resolution A ⊗κ A¡ (resp.
A¡ ⊗κ A) of K by free A-modules. They provide chain complexes, smaller than
the augmented bar construction A ⊗π BA, which allow one to compute the Tor
functors TorA• (K,M) for any A-module M (see [CE56, ML95] for the definition
of Tor functors). In the example of the universal enveloping algebra of a Lie al-
gebra, Priddy recovers the original Koszul resolution [CE56], which computes the
Chevalley–Eilenberg homology of Lie algebras, see Sect. 3.6.7. Applied to restricted
Lie algebras, this gives May resolutions [May66]. For the Steenrod algebra, it pro-
vides resolutions based on the Λ (co)algebra of [BCK+66], see Sect. 3.6.8 for more
details.

Dually, the twisted convolution algebra Homκ(A¡,A) computes the homology
functors Ext•A(K,A) as in [BCK+66] (see Exercise 3.8.11).

3.6.7 The Example of the Universal Enveloping Algebra

The universal enveloping algebra of a Lie algebra g is U(g) := T (g)/(x ⊗ y − y ⊗
x − [x, y]). So it is defined as a quadratic-linear algebra with V = g. Its associated
quadratic algebra is the symmetric algebra on g: q(U(g))∼= S(g).

Proposition 3.6.7. When the characteristic of the ground field is not 2, the universal
enveloping algebra U(g) of a Lie algebra g is a Koszul algebra.

Proof. A direct inspection shows that condition (ql1) is satisfied. Let us prove that
condition (ql2) is also satisfied. The subspaceR∩V⊗2 of V⊗2 is equal to {∑x⊗y |
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∑[x, y] = 0}. Let ξ =∑(x⊗ y⊗ z− y⊗ x⊗ z−[x, y]⊗ z)+∑(t ⊗u⊗ v− t ⊗
v⊗u− t⊗[u,v]) be an element of (R⊗V +V ⊗R). It belongs to V⊗2 if and only
if
∑
(x⊗ y⊗ z− y⊗ x⊗ z)+∑(t ⊗u⊗ v− t ⊗ v⊗u)= 0. In this case, applying

[[−,−],−] to this element, we get 2
∑[[x, y], z] + 2

∑[[t, u], v] = 0. This proves
that ξ ∈R∩V⊗2 and that (ql2) holds, when the characteristic of K is not 2. Finally,
Proposition 3.4.8 shows that S(g) is a Koszul algebra, therefore U(g) is a Koszul
algebra. �

Among other consequences, Theorem 3.6.4 can be applied and gives the “classi-
cal” Poincaré–Birkhoff–Witt theorem: there is an isomorphism of graded algebras

S(g)∼= grU(g),

which is sometimes stated in terms of the monomial basis of the symmetric algebra.

Proposition 3.6.8. The Koszul dual dga coalgebra of the universal enveloping al-
gebra U(g) is the following dga coalgebra

U(g)¡ ∼= (Λc(sg), dϕ
)
,

where dϕ is the Chevalley–Eilenberg boundary map defining the homology of the
Lie algebra g.

Proof. First, we have q(U(g))¡ = S(g)¡ = Λc(sg). Recall that Λc(sg) is linearly
spanned by the elements

∑
σ∈Sn sgn(σ )snxσ(1) ⊗ · · · ⊗ xσ(n), which we denote by

x1 ∧ · · · ∧ xn. The internal differential dϕ is the unique coderivation which extends
ϕ : x ⊗ y − y ⊗ x �→ [x, y]. Therefore it is equal to

dϕ(x1 ∧ · · · ∧ xn)=
∑

i<j

(−1)i+j−1[xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xn,

which is the Chevalley–Eilenberg differential [CE48, Kos50], see Sect. 13.2.7. �

Corollary 3.6.9. The twisted tensor product U(g)⊗κ Λc(sg) is a resolution of K
by free U(g)-modules.

Proof. Direct corollary of Proposition 3.6.6 and Proposition 3.6.7. �

This is the original Koszul resolution which computes Chevalley–Eilenberg ho-
mology of Lie algebras [CE56].

3.6.8 The Example of the Steenrod Algebra

The Steenrod algebra A2 is the quadratic-linear algebra

A2 :=A
({
Sqi
}
i≥1,RAdem

)
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over the characteristic 2 field K= F2, where |Sqi | = i and where RAdem stands for
the Adem relations

SqiSqj =
(
j − 1

i

)

Sqi+j

+
[ i2 ]∑

k=1

(
j − k − 1

i − 2k

)

Sqi+j−kSqk, ∀i, j > 0 with i < 2j.

The quadratic analog qA2 is obtained by omitting the linear term
(
j−1
i

)
Sqi+j .

The images of the elements {Sqi1 · · ·Sqik ; il ≥ 2il+1} form a basis of qA2 and A2,
called the Cartan–Serre basis of admissible monomials.

The degree-wise linear dual of the Koszul dual dga coalgebra A
¡

2 is a dga algebra,
which is anti-isomorphic to the Λ algebra of [BCK+66]. Notice that its homology
gives the second page of the Adams spectral sequence which computes homotopy
groups of spheres. The dga algebraΛ is generated by the elements {λi}i≥0 of degree
|λi | = i and satisfies the relations

λiλ2i+1+j =
∑

k≥0

(
j − k − 1

k

)

λi+j−kλ2i+1+k.

Its differential is the unique derivation extending

λj �→
∑

k≥0

(
j − k− 1

k + 1

)

λj−k−1λk.

The mod-p Steenrod algebra can be treated in the same way. For more details,
we refer the reader to [Wan67, Pri70].

3.7 Résumé

3.7.1 Quadratic Data and Koszul Dual Constructions

(V ,R)
quadratic data

A=A(V,R)
quadratic algebra

C = C(V,R)
quadratic coalgebra
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The quadratic algebra:

A=A(V,R)= T (V )/(R)∼=
⊕

n∈N
A(n)

=K1⊕ V ⊕ (V⊗2/R
)⊕ · · · ⊕

(

V⊗n
/ ∑

i+2+j=n
V⊗i ⊗R⊗ V⊗j

)

⊕ · · · .

The quadratic coalgebra:

C = C(V,R)⊂ T c(V )∼=
⊕

n∈N
C(n)

=K1⊕ V ⊕R⊕ · · · ⊕
( ⋂

i+2+j=n
V⊗i ⊗R⊗ V⊗j

)

⊕ · · · .

Koszul dual coalgebra of an algebra:

A(V,R)¡ := C(sV, s2R
)
.

Koszul dual algebra of a coalgebra:

C(V,R)¡ :=A(s−1V, s−2R
)
,

(
A¡)¡ ∼=A.

Koszul dual algebra of an algebra: When V is finite dimensional, the linear dual of
the desuspension of A¡ is the quadratic algebra A! ∼=A(V ∗,R⊥).

EXAMPLES: T (V )! ∼=D(V ∗) and S(V )! ∼=Λ(V ∗).

3.7.2 Koszul Duality Theory

Twisting morphism:

κ :A¡ = C(sV, s2R
)
� sV

s−1−−→ V �A(V,R)=A.
Koszul complexes: A⊗κ A¡ and A¡ ⊗κ A,

A¡ � BA and �A¡ �A,

with the syzygy degree: H 0(B•A)∼=A¡ and H0(�•A¡)∼=A.

The quadratic data (V ,R) is Koszul when one of the following equivalent asser-
tions is satisfied.

1. the right Koszul complex A¡ ⊗κ A is acyclic,
2. the left Koszul complex A⊗κ A¡ is acyclic,
3. the inclusion i :A¡�BA is a quasi-isomorphism,
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4. the projection p :�A¡�A is a quasi-isomorphism,
5. Hn(B•A)= 0 for n≥ 1,
6. Hn(�•A¡)= 0 for n≥ 1,
7. H •(B•A) is a sub-coalgebra of T c(sV ),
8. the Yoneda algebra ExtA(K,K) is generated by its weight 1 elements [when V

is finite dimensional].

EXAMPLES: T (V ), D(V ), S(V ), Λ(V ).

3.7.3 Generating Series or Hilbert–Poincaré Series

f A(t) :=
∑

n≥0

dimA(n)tn,

A Koszul =⇒ f A
!
(t)f A(−t)= 1.

3.7.4 Inhomogeneous Koszul Duality Theory

Quadratic-linear data: (V ,R), with R ⊂ V ⊕ V⊗2.

Quadratic analog: qR := projV⊗2(R) and qA :=A(V,qR).
(ql1) :R ∩ V = {0} ⇒ R =Graph(ϕ : qR→ V ),

(ql2) : {R⊗ V + V ⊗R} ∩ V⊗2 ⊂R ∩ V⊗2.

(qA)¡ � qR
ϕ−→ V induces a coderivation dϕ(qA)¡ → T c(V ), (ql1) and (ql2) im-

ply dϕ well-defined and (dϕ)2 = 0.

Koszul dual dga coalgebra: A¡ := ((qA)¡, dϕ).
A(V,R) Koszul algebra when (ql1), (ql2) and qA quadratic Koszul algebra. In

this case:

• quasi-free resolution: �A¡ ∼
�A,

• Poincaré–Birkhoff–Witt theorem: qA∼= grA,
• Koszul complex: A⊗κ A¡ acyclic.

EXAMPLE: A=U(g), universal enveloping algebra of a Lie algebra g,

• U(g)¡ = (Λc(sg),Chevalley–Eilenberg differential),
• Original Poincaré–Birkhoff–Witt theorem: S(V )∼= grU(g),
• Original Koszul complex: U(g)⊗κ Λc(sg) acyclic.

EXAMPLE: A=A2, the mod-2 Steenrod algebra,

• Cartan–Serre basis,
• the dga algebra (A2

¡)∗ is the Λ algebra.
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3.8 Exercises

Exercise 3.8.1 (Koszul implies quadratic). Let A be a connected weight graded al-
gebra (see Sect. 1.5.10). Its bar construction BA splits with respect to the weight and
we consider the same syzygy degree as in Sect. 3.3.1. Show that if the homology of
BA is concentrated in syzygy degree 0, then the algebra has a quadratic presentation.

Exercise 3.8.2 (Two-sided Koszul complex). Let (V ,R) be a quadratic data. Under
the notation of Sect. 2.1.4, we define the two-sided Koszul complex on A⊗A¡ ⊗A
by the differential dlκ ⊗ IdA+ IdA⊗drκ and we denote it by A⊗κ A¡ ⊗κ A. Show
that the quadratic data is Koszul if and only if the morphism of dg A-bimodules

A⊗A¡ ⊗A IdA⊗ε⊗IdA−−−−−−−→A⊗K⊗A∼=A⊗A μ−→A

is a resolution of A.
(�) When (V ,R) is a quadratic-linear data satisfying conditions (ql1) and (ql2),

we add the term IdA⊗dϕ ⊗ IdA to the differential defining the two-sided Koszul
complex. Prove the same result in this case.

Exercise 3.8.3 (Dual numbers algebra). Show that, for the quadratic algebra of dual
numbers A = K[ε]/(ε2 = 0), with ε of degree 0, the cobar construction of A¡ is
isomorphic to the dga algebra �A¡ = K〈t1, t2, . . . , tn, . . .〉, where |tn| = n− 1 and
d(tn)=−∑i+j=n(−1)i ti tj .

Exercise 3.8.4 (Inhomogeneous algebra �). Let A be an inhomogeneous quadratic
algebra. Show that if A is Koszul, then fκ :A! → BA is a quasi-isomorphism of dga
coalgebras.

Exercise 3.8.5 (Koszul complex of the symmetric algebra). Prove that (Λc(sV )⊗
S(V ), dκ) is acyclic over Z.

HINT. Use a suitable filtration.

Exercise 3.8.6 (Koszul complexes �). Consider the three functors S, Λ and � (cf.
Exercise 1.8.6). Show that there are acyclic complexes Λ⊗ S, � ⊗Λ. Show that
S ⊗Λ is not acyclic in characteristic p and defines the Cartier homomorphism, see
for instance [Pir02b].

Exercise 3.8.7 (Koszul complex in local cohomology �). Let A be a commutative
algebra concentrated in degree 0. Let x be an element of A. We define the “Koszul
complex” by

KA• (x) : 0→A→A→ 0,

concentrated in degrees 0 and 1, where the boundary map defined by d(a) := ax.
More generally, for n elements {x1, . . . , xn} of A, the “Koszul complex” is defined
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by the tensor product

KA• (x1, . . . , xn) :=KA• (x1)⊗ · · · ⊗KA• (xn)

of chain complexes.
Show that the degree −1 map

τ :Λc(sx1, . . . , sxn)�Ksx1 ⊕ · · · ⊕Ksxn
s−1−−→Kx1 ⊕ · · · ⊕Kxn→A

is a twisting morphism from the symmetric cofree coalgebra on the suspension of
the basis {x1, . . . , xn} to the algebra A.

Prove that the “Koszul complex” KA• (x1, . . . , xn) is isomorphic to the twisted
tensor product Λc(sx1, . . . , sxnK)⊗τ A.

Considering the canonical twisting morphism κ :Λc(sx1, . . . , sxn)→ S(x1, . . . ,

xn), show that the “Koszul complex” KA• (x1, . . . , xn) is isomorphic to the relative
tensor product

(
Λc(sx1, . . . , sxn)⊗κ S(x1, . . . , xn)

)⊗S(x1,...,xn) A,

where A is considered a left S(x1, . . . , xn)-module.
We say that {x1, . . . , xn} is a regular sequence when the image of xi in

A/(x1, . . . , xi−1)A has no nonzero divisor, for 1≤ i ≤ n. When it is the case, prove
that the Koszul complex KA• (x1, . . . , xn) is a resolution of A/(x1, . . . , xn)A by free
A-modules.

This chain complex is used to compute local cohomology (see [Wei94, Sects. 4.5–
4.6]).

Exercise 3.8.8 (Homological degree). Let (V ,R) be a quadratic data such that V
is concentrated in degree 0. We consider the bar construction B•A of the quadratic
algebra A=A(V,R) as a chain complex with the homological degree.

Show that this chain complex splits with respect to the weight grading: B•A =⊕
n∈N(B•A)(n). For n ≥ 1, prove that the sub-chain complex (B•A)(n) is finite,

concentrated in degrees 1≤ • ≤ n and that Hn((B•A)(n))∼=A¡(n).
Show that the quadratic data (V ,R) is Koszul if and only if the homology of the

bar construction B•A is concentrated on the diagonal
⊕
n∈NHn((B•A)(n)).

Exercise 3.8.9 (Double Hilbert–Poincaré series). Pursuing the preceding exercise,
we require here the vector space V to be finite dimensional. In this case, show that
all the components (BmA)(n) of the bar construction of A are finite dimensional, for
any m,n ∈N.

We define the double Hilbert–Poincaré series of A by

FA(x, t) :=
∑

m,n≥0

dimHm
(
(B•A)(n)

)
xmtn.
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Show that the quadratic data is Koszul if and only if the double Hilbert–Poincaré
series has only nontrivial coefficients in powers xmtn for m= n. Prove that it is also
equivalent to FA(x, t)= f A!(xt).

Prove the functional equation f A(t)FA(−1, t) = 1 and recover the equation of
Theorem 3.5.1.

Exercise 3.8.10 (Every augmented algebra is inhomogeneous Koszul). Let A be an
augmented associative algebra.

1. Show that V := Ā and R := {a ⊗ b− ab | a, b ∈ Ā⊗2} is a quadratic-linear pre-
sentation of A satisfying conditions (ql1) and (ql2).

2. Prove that qA is nilpotent and that the Koszul dual dg coalgebra A¡ ∼= BA is
isomorphic to the bar construction of the algebra A.

3. Finally, show that this quadratic-linear presentation is Koszul and that the Koszul
resolution is nothing but the bar–cobar resolution.

Exercise 3.8.11 (BCKQRS spectral sequence as twisted convolution algebra �).
Show that the first page E1X of the spectral sequence of [BCK+66] for any spec-
trum X is equal to the convolution algebra Homκ (A2

¡,A2) as follows: H•(X) and
Homκ(A2

¡,A2) are A2-modules and

E1X ∼=Homκ
(
A2

¡,A2
)⊗A2 H•(X).

Show that E2X ∼= Ext•A2
(K,H•(X)).



Chapter 4
Methods to Prove Koszulity of an Algebra

“Là, tout n’est qu’ordre et beauté, Luxe, calme et volupté.
Charles Baudelaire

After having introduced the notion of Koszul algebra in the preceding chapter, we
give here methods to prove that an algebra is Koszul together with constructions to
produce new Koszul algebras.

We begin by describing a short algorithmic method, called rewriting method. It
amounts to choosing first an ordered basis of the generating space. Then, we inter-
pret the relations as rewriting rules, replacing each leading term by a sum of lower
terms, with respect to a suitable ordering on monomials. If applying the rewriting
rules to the critical monomials leads to the same element (confluence property), then
the algebra is Koszul.

This method is the simplest case of a general one, which relies on an extra data:
a decomposition of the generating space V ∼= V1 ⊕ · · · ⊕ Vk of a quadratic algebra
A = A(V,R) and a suitable order on the set of tuples in {1, . . . , k}. Such a data
induces a filtration on the algebra A. When the associated graded algebra grA is
Koszul, the algebra A itself is also Koszul. So the problem reduces to the graded
algebra grA, whose product is simpler than the product of A. What about its under-
lying module? We have a tentative quadratic presentation Å :=A(V,Rlead)� grA,
where the module Rlead is made up of the leading terms of the relations. The Dia-
mond Lemma asserts that it is enough to prove the injectivity of this map in weight 3
and that the algebra Å is Koszul, to get the isomorphism of algebras Å ∼= grA. It
implies that A is Koszul. This method reduces the problem to proving the Koszulity
of the simpler quadratic algebra Å.

The particular case where each component Vi is one-dimensional gives rise to
the notion of Poincaré–Birkhoff–Witt (PBW) basis of a quadratic algebra. Here the
quadratic algebra Å is a quadratic monomial algebra, which is always a Koszul al-
gebra, thereby simplifying the theory. For instance, any quadratic algebra admitting
a PBW basis is a Koszul algebra. In this case, we refine even further the Diamond
Lemma to give a simple way to check whether a quadratic algebra admits a PBW
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basis. This is the aforementioned rewriting method. We also introduce the notion of
quadratic Gröbner basis for the ideal (R) and prove that it is equivalent to a PBW
basis for the quotient algebra T (V )/(R).

The last method uses a family of lattices associated to any quadratic data. The
Backelin criterion states that these lattices are distributive if and only if the quadratic
data is Koszul.

Finally, we introduce the two Manin products, white � and black �, in the cate-
gory of quadratic data. They are sent to one another under the Koszul dual functor
and they preserve the Koszul property by Backelin’s criterion. This allows us to con-
struct a new chain complex, called the Manin complex, on the white product A�A!
of a quadratic algebra and its Koszul dual algebra (not coalgebra). Dually, the black
product A�A! is endowed with a Hopf algebra structure.

This chapter is essentially extracted from Priddy [Pri70], Bergman [Ber78],
Backelin [Bac83], Manin [Man87, Man88] and Polishchuk–Positselski [PP05].

4.1 Rewriting Method

In this section, we give a short algorithmic method, based on the rewriting rules
given by the relations, to prove that an algebra is Koszul. We give no proof here
since this method is a particular case of a more general theory explained in detail in
the next two sections.

Let A(V,R) be a quadratic algebra, for instance

A
(
v1, v2, v3;v2

1 − v1v2, v2v3 + v2v2, v1v3 + 2v1v2 − v2
1

)
.

Step 1. We choose a basis {vi}i=1,...,k for the space of generators V . We consider
the ordering v1 < v2 < · · ·< vk .

Step 2. We consider the induced basis of V⊗2, which we order lexicographically:

v1v1 < v1v2 < · · ·< v1vk < v2v1 < · · · .
(One can choose other suitable orders, like

v1v1 < v1v2 < v2v1 < v1v3 < v2v2 < v3v1 < v1v4 < · · ·
see the discussion at the end of Sect. 4.2.1.)

We choose a basis of R. Any one of its elements is of the form

r = λvivj −
∑

(k,l)<(i,j)

λ
i,j
k,lvkvl, λ �= 0.

The monomial vivj is called the leading term of r . We can always change this basis
for one with the following normalized form. First, the coefficient of the leading term
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Fig. 4.1 Pentagonal diamond v1v2v3

−v1v2v2

v1v1v3

−v1v1v2

−v1v1v1

can always be supposed to be 1 since K is a field. Then, we can always suppose that
two different relators in the basis have different leading terms and that the sum in
the right-hand side of any relator contains no leading term of any other relator.

In the example at hand, the space of relations R admits the following normalized
basis:

{
v1v2 −

(
v2

1

)
, v2v3 − (−v2v2), v1v3 −

(−v2
1

)}
.

The three leadings terms are v1v2, v2v3 and v1v3.

Step 3. These choices provide rewriting rules of the form

vivj �→
∑

(k,l)<(i,j)

λ
i,j
k,lvkvl,

leading term �→ sum of lower terms,

for any relator r in the normalized basis of R. A monomial vivj vk is called critical
if both vivj and vjvk are leading terms. Any critical monomial gives rise to a graph
made up of the successive application of the aforementioned rewriting rule.

In the example at hand, we have the following rewriting rules

v1v2 �→ v2
1, v2v3 �→ −v2v2, v1v3 �→ −v2

1 .

There is only one critical monomial: v1v2v3.

Step 4. Any critical monomial vivj vk gives a graph under the rewriting rules. It
is confluent, if it has only one terminal vertex.

In the example at hand, the only critical monomial induces the confluent graph
shown in Fig. 4.1.

Conclusion. If each critical monomial is confluent, then the algebra A is Koszul.
This assertion is a consequence of the following result.
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Theorem 4.1.1 (Rewriting method). Let A = A(V,R) be a quadratic algebra. If
its generating space V admits an ordered basis, for which there exists a suitable
order on the set of tuples, such that every critical monomial is confluent, then the
algebra A is Koszul.

Proof. This result is Theorem 4.3.7. �

In this case, the algebra A is equipped with an induced basis sharing nice prop-
erties, called a PBW basis, see Sect. 4.3. For other examples, like the symmetric
algebra, and for more details, we refer the reader to Sect. 4.3.5.

4.2 Reduction by Filtration

The idea of the “reduction by filtration” method can be shortened as follows: when a
quadratic algebra A= A(V,R) admits a filtration with nice properties, there exists
a morphism of algebras

Å :=A(V,Rlead)� grA := gr
(
A(V,R)

)

from the quadratic algebra defined by the associated graded presentation to the as-
sociated graded algebra. If the quadratic algebra Å is Koszul and if this map is an
isomorphism (in weight 3), then the algebra A itself is Koszul. This reduces the
problem of the Koszulity of the algebra A to the algebra Å. Koszulity of Å is easier
to check in general.

4.2.1 Extra Ordered Grading

The aim of this section is to endow the free algebra T (V ) with an extra grading,
which refines the weight grading, such that the product is strictly increasing: a < a′,
b < b′ implies ab < a′b′.

LetA=A(V,R)= T (V )/(R) be a quadratic algebra, i.e. R ⊂ V⊗2. We suppose
here that V is equipped with an extra grading V ∼= V1 ⊕ · · · ⊕ Vk , which is finite.
This induces the following grading on T (V ):

V⊗n ∼=
⊕

(i1,...,in)∈{1,...,k}n
Vi1 ⊗ · · · ⊗ Vin,

under the lexicographical order

0< 1< · · ·< k < (1,1) < (1,2) < · · ·< (k, k) < (1,1,1) < (1,1,2) < · · · ,
where K1 is in degree 0. This lexicographical order induces a bijection of totally
ordered sets between the set of tuples in {1, . . . , k} and the set of integers N. For any
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tuple (i1, . . . , in) sent to p ∈N, we will denote the sub-space Vi1 ⊗· · ·⊗Vin of V⊗n
simply by T (V )p . Under this bijection, there exists a map χ which corresponds to
the concatenation of tuples:

((i1, . . . , in), (j1, . . . , jm))

∼=

(i1, . . . , in, j1, . . . , jm)

∼=

(p, q)
χ

χ(p,q).

Under the lexicographical order on N× N, the map χ : N× N→ N is strictly in-
creasing. The concatenation product on the free associative algebra T (V ) satisfies

μ : T (V )p ⊗ T (V )q→ T (V )χ(p,q).

Hence, this grading (N, χ) refines the weight grading of T (V ). Notice that the map
χ defines a monoid structure (N, χ,0).

Associated to this grading, we consider the increasing and exhaustive filtration
FpT (V ) :=⊕p

q=0 T (V )q on T (V ). The image of this filtration under the canonical
projection T (V )�A defines an increasing filtration

F0A⊂ F1A⊂ F2A⊂ · · · ⊂ FpA⊂ Fp+1A⊂ · · ·

of the underlying module of A. The strictly increasing map χ allows us to define a
χ -graded product on the associated graded module grp A := FpA/Fp−1A:

μ̄ : grp A⊗ grq A→ grχ(p,q) A.

This algebra is denoted by grχ A, or simply by grA, when there is no possible
confusion. Since the extra grading refines the weight grading, the algebra grA is
also weight graded.

There are two ways of generalizing the aforementioned arguments. First, one
can allow k to be infinite, that is V can admit an extra grading labeled by N:
V ∼=⊕i∈N Vi . Then, one need not work only with the lexicographical order. Let
I := {1, . . . , k} denote the labeling set of the extra grading on V . We consider any
bijection

⊔
n≥0 I

n ∼= N. This endows the set of tuples
⊔
n≥0 I

n with a total order
isomorphic to N. To define the graded algebra grA, it is enough to require that
the map χ , or equivalently the concatenation product, be strictly increasing. In this
case, we call the total order on the set of tuples a suitable order. For instance, when
k =∞, we can consider the following suitable total order

0< 1< 2< (1,1) < 3< (1,2) < (2,1) < (1,1,1) < 4< (1,3) < (2,2) < · · · ,

isomorphic to N.
Such a data, the decomposition of V and the suitable order on tuples, is called an

extra ordered grading.
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4.2.2 The Koszul Property

Recall from Sect. 3.4.3 that a connected weight graded algebra is called Koszul if
the cohomology of its bar construction is concentrated in syzygy degree 0.

Proposition 4.2.1. Let A=A(V,R) be a quadratic algebra equipped with an extra
ordered grading. If the algebra grA is Koszul, then the algebra A is also Koszul.

Proof. We consider the bar construction B−•A as a chain complex with the opposite
of the syzygy degree (see Sect. 3.3.1). We extend the filtration on the free algebra
T (V ) to its bar construction BT (V ) as follows:

FpBT (V ) := {sx1 ⊗ · · · ⊗ sxm | x1x2 . . . xm ∈ FpT (V )
}
.

This filtration is stable under the differential map. The canonical projection T (V )�
A induces an epimorphism of dg coalgebras BT (V )� BA between the bar con-
structions. The image under this map of the preceding filtration defines a filtration
FpBA of the bar construction of A. The first page of the associated spectral se-
quence E0

pq
∼= FpB−p−qA/Fp−1B−p−qA is isomorphic to the bar construction of

the associated graded algebra grA:

(
E0
pq, d

0)∼= B−p−qp grA,

where the index p refers to the total grading induced by the finer grading on the bar
construction, see Fig. 4.2.

Fig. 4.2 The page E0 of the
spectral sequence
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This latter algebra being Koszul, the homology of its bar construction is con-
centrated in syzygy degree p + q = 0. This implies the collapsing of the spectral
sequence at rank 1. The filtration being bounded below and exhaustive, it converges
by Theorem 1.5.1:

E∞pq ∼= E1
pq
∼= grp H

−p−q(B•A
)= 0, for p+ q �= 0.

Since the homology of the bar construction of A is concentrated in syzygy degree
0, the algebra A is a Koszul algebra. �

Thanks to the finer filtration, we have reduced the Koszul problem for the algebra
A to the algebra grA, whose product is simpler. But the underlying module of grA
might be difficult to describe. However, Exercise 3.8.1 implies that if the algebra
grA is Koszul, then it admits a quadratic presentation.

4.2.3 Quadratic Analog and Leading Space of Relations

By the universal property of the free algebra, there exists a morphism of algebras
T (V )� grA, which is an epimorphism of χ -graded algebras. Hence, it also pre-
serves the weight grading. It is obviously an isomorphism in weights 0 and 1. Let
us denote by Rlead the kernel of its restriction to V⊗2. We consider the quadratic
algebra defined by

Å := T (V )/(Rlead).

Let us now make Rlead explicit. Any element r ∈R decomposes according to the
finer grading as r =X1 + · · · +Xp , with Xi ∈ V⊗2 and where Xp �= 0 is the term
of greatest grading. We call Xp the leading term of r . The space Rlead is spanned
by the leading terms of all the elements of R. Hence, we call it the leading space of
relations.

Proposition 4.2.2. Let A=A(V,R) be a quadratic algebra equipped with an extra
ordered grading. We have the following commutative diagram of epimorphisms of
χ -graded, thus weight graded, algebras

T (V )

ψ : Å= T (V )/(Rlead) grA,

where the space of relations Rlead is equal to

Rlead = 〈Xp, r =X1 + · · · + Xp
︸︷︷︸
�=0

∈R〉 = 〈Leading Term (r), r ∈R〉.
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By definition, the canonical projection of weight graded algebras ψ : Å� grA
is bijective in weights 0, 1 and 2. Therefore the algebra Å is the best candidate
for a quadratic presentation of the weight graded algebra grA. Before studying this
situation, let us give the following straightforward but useful result.

Proposition 4.2.3. Let A=A(V,R) be a quadratic algebra equipped with an extra
ordered grading. If the algebra Å := T (V )/(Rlead) is Koszul and if the canonical
projection Å∼= grA is an isomorphism of algebras, then the algebra A is Koszul.

Proof. In this case, the algebra grA is Koszul and we conclude with Theo-
rem 4.2.1. �

4.2.4 The Diamond Lemma

Under the assumption that the quadratic algebra Å is Koszul, the Diamond Lemma
asserts that it is enough for the canonical projection ψ : Å� grA to be injective in
weight 3, to ensure that it is an isomorphism.

Theorem 4.2.4 (Diamond Lemma for quadratic algebras). Let A = A(V,R) be a
quadratic algebra equipped with an extra ordered grading. Suppose that the qua-
dratic algebra Å := T (V )/(Rlead) is Koszul.

If the canonical projection Å� grA is injective in weight 3, then it is an isomor-
phism. In this case, the algebra A is Koszul.

Proof. We prove this theorem in two steps. We first filter the bar construction to get
an isomorphism on the level of the Koszul dual coalgebras. Then we filter the cobar
construction, in the same way, to get the final isomorphism.

Step 1. We consider the same filtration of the bar construction B−•A as in the
proof of Theorem 4.2.1. Since the canonical projection ψ is an isomorphism in
weight less than 3, the first page of the associated spectral sequence is equal to

(
E0
pq, d

0)∼= B−p−qp grA∼= B−p−qp Å,

for p + q ≥−2 (the syzygy degree being defined by the weight grading minus 1).
The algebra Å being Koszul, we get E1

pq = 0 for p + q =−1 and E1
p−p = Å¡

p , see
Fig. 4.3.

We conclude by the same argument as in the proof of Theorem 4.2.1: the conver-
gence of the spectral sequence shows that there is an isomorphism grp A

¡ ∼= Å¡
p .

Step 2. Dually, we apply the same method and consider the same kind of filtration
on T c(sV ) as on T (V ) and on �T c(sV ) as on BT (V ):

Fp�T
c(sV ) := {s−1x1 ⊗ · · · ⊗ s−1xm | x1x2 . . . xm ∈ FpT (V )

}
.



4.2 Reduction by Filtration 97

Fig. 4.3 The page E1 of the
spectral sequence

Since A
¡

is a sub-coalgebra of T c(sV ), this filtration restricts to a filtration Fp�A
¡

on the cobar construction of A
¡
. We consider the cobar construction �•A

¡
with its

syzygy degree, see Sect. 3.3.2. The first page of the associated spectral sequence
E0
pq
∼= Fp�p+qA

¡
/Fp−1�p+qA

¡
is isomorphic to the cobar construction of the

Koszul dual coalgebra Å
¡
:

(
E0
pq, d

0)∼= (�p+q grA
¡)
p
∼= (�p+qÅ¡)

p
.

The isomorphism between the underlying modules is induced by the aforementioned
isomorphism grp A

¡ ∼= Å¡
p . The part d0 of the boundary map of �A

¡
is the part

which preserves the extra grading. Hence it is given by the deconcatenation of the
leading terms of the elements of A

¡
or equivalently by the coproduct of the coal-

gebra Å
¡

under the above isomorphism. This proves that d0 is in one-to-one corre-
spondence with the differential of�Å

¡
. Since the quadratic algebra Å is Koszul, the

homology of �Å
¡

is concentrated in syzygy degree p+ q = 0. Therefore, E1
pq = 0

for p + q �= 0 and E1
p−p = Åp . The convergence theorem for spectral sequences

(Theorem 1.5.1) finally gives the desired isomorphism:

ψ : Åp ∼= E1
p−p ∼= E∞p−p ∼= grp H0

(
�•A

¡)= grp A.
�

Notice that in the proof, we have proved the same isomorphism of χ -graded
modules: grp A

¡ ∼= Å¡
p , but on the level of the Koszul dual coalgebras.

4.2.5 The Inhomogeneous Case

When the associative algebra A is inhomogeneous quadratic, we choose, if possible,
a presentation A = A(V,R) with R ⊂ V ⊕ V⊗2 satisfying conditions (ql1) and
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(ql2) of Sect. 3.6. Applying the previous propositions to the quadratic algebra qA :=
A(V,qR), we get the same kind of results.

We start with the same refining data. Let the generating module V be endowed
with an extra grading V ∼= V1 ⊕ · · · ⊕ Vk together with a suitable order on tuples.
As above, this defines a filtration of the algebra A. It induces a χ -graded algebra,
denoted grχ A, whose underlying module refines that of the weight graded algebra
grA of Sect. 3.6. This extra grading also induces a filtration on the quadratic algebra
qA and the canonical projection qA� grA refines as follows

˚qA

grχ qA
∼=

qA

grχ A
∼= grA

∼=
A,

where the vertical maps are epimorphisms of algebras and where the horizontal
maps are linear isomorphisms. The first column is made up of χ -graded algebras and
the second column is made up of weight graded algebras. We only state the last the-
orem in the inhomogeneous case, leaving the details of the other ones to the reader.

Theorem 4.2.5 (Diamond Lemma for inhomogeneous quadratic algebras). Let
A = A(V,R) be a quadratic-linear algebra with a presentation satisfying condi-
tions (ql1) and (ql2). We suppose that T (V ) comes equipped with an extra ordered
grading.

If the quadratic algebra ˚qA is Koszul and if the canonical projection ˚qA�
grχ qA is injective in weight 3, then the algebra A is Koszul and all the maps of the
above diagram are isomorphisms, in particular:

˚qA∼= grχ qA∼= qA∼= grA∼=A.
Proof. The Diamond Lemma 4.2.4, applied to the quadratic algebra qA, gives that
the algebra qA is Koszul and the isomorphism ˚qA ∼= grχ qA. It implies that the
inhomogeneous algebra A is Koszul. The last isomorphism is given by the PBW
Theorem 3.6.4. �

In this case, we can compute the Koszul dual dg coalgebra of A from the isomor-
phism of weight graded modules ( ˚qA)

¡ ∼= qA¡ ∼=A¡
.

4.2.6 Koszul Dual Algebra

In this section, we suppose that the generating space V is finite dimensional to
be able to consider the Koszul dual algebra A! = T (V ∗)/(R⊥), see Sect. 3.2.2. The
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extra grading on V ∼= V1⊕· · ·⊕Vk induces a dual grading V ∗ ∼= V ∗k ⊕· · ·⊕V ∗1 , that
we choose to order as indicated. To any suitable order on the tuples indexing T (V ),
we consider the locally reversed order for T (V ∗): we keep the global ordering but
completely reverse the total order on the subset of n-tuples, for any n. For example,
with the lexicographic order, it gives the following grading on T (V ∗):

T
(
V ∗
)=K

⊕
V ∗k ⊕· · ·⊕V ∗1

⊕
V ∗k ⊗V ∗k ⊕· · ·⊕V ∗1 ⊗V ∗1

⊕
V ∗k ⊗V ∗k ⊗V ∗k ⊕· · ·.

This order allows us to consider the graded algebra gr(A!), as in Sect. 4.2.1, which

comes with its quadratic analog ˚(A!) :=A(V ∗, (R⊥)lead)� gr(A!).

Lemma 4.2.6. LetA=A(V,R) be a finitely generated quadratic algebra equipped
with an extra ordered grading. The isomorphism (R⊥)lead ∼= (Rlead)

⊥ of sub-

modules of (V ∗)⊗2 induces the isomorphism of quadratic algebras ˚(A!)∼= (Å)!.

Proof. We write the proof for the lexicographic order, the general case being sim-
ilar. Let us denote Ri := Rlead ∩ T (V )k+i , for 1 ≤ i ≤ k2. Therefore, Rlead =
R1⊕· · ·⊕Rk2 . Since the vector space V is finite dimensional, each T (V )k+i is finite
dimensional and we can consider a direct summand R̆i such that T (V )k+i ∼= Ri⊕R̆i .
Hence the linear dual is equal to (T (V )k+i )∗ ∼= R⊥i ⊕ R̆⊥i .

By definition of Rlead, the space of relations R is linearly spanned by elements
of the form r =X1 + · · · +Xp with Xi ∈ R̆i , for 1≤ i < p ≤ k2 and Xp �= 0, Xp ∈
Rp . Dually, any element ρ ∈ R⊥ decomposes as ρ = Yq − Yq+1 − · · · − Yk2 with
Yq �= 0, Yq ∈ R⊥q and Yi ∈ R̆⊥i , for q < i ≤ k2. This implies finally the isomorphism

(R⊥)lead ∼= R⊥1 ⊕ · · · ⊕R⊥
k2
∼= (Rlead)

⊥. �

Proposition 4.2.7. Let A = A(V,R) be a finitely generated quadratic algebra
equipped with an extra ordered grading. Suppose that the quadratic algebra
Å := T (V )/(Rlead) is Koszul. If the canonical projection Å� grA is injective in

weight 3, then the dual canonical projection ˚(A!)∼= gr(A!) is an isomorphism.

Proof. We pursue the proof of Theorem 4.2.4. The proper desuspension of the linear
dual of the isomorphism grp A

¡ ∼= Å¡
p gives the isomorphism grp A

! ∼= (Å)!p . We
conclude with the isomorphism of Lemma 4.2.6. �

4.3 Poincaré–Birkhoff–Witt Bases and Gröbner Bases

In this section, we study the particular case of the preceding section when the gen-
erating space V is equipped with an extra grading V ∼= V1 ⊕ · · · ⊕ Vk such that
each sub-space Vi is one-dimensional. This gives rise to the notion of Poincaré–
Birkhoff–Witt basis, or PBW basis for short. Quadratic algebras which admit such
a basis share nice properties. For instance, they are Koszul algebras.



100 4 Methods to Prove Koszulity of an Algebra

We introduce the equivalent notion of quadratic Gröbner basis (also called
Gröbner–Shirshov basis), which is to the ideal (R)what PBW basis is to the quotient
algebra T (V )/(R).

The notion of PBW basis comes from Sect. 5 of the original paper of S. Priddy
[Pri70]. We refer the reader to Chap. 4 of the book [PP05] for more details on the
subject.

4.3.1 Ordered Bases

We now restrict ourself to the case where the generating space V of a quadratic alge-
bra A(V,R) is equipped with an extra grading V ∼= V1 ⊕ · · · ⊕Vk such that each Vi
is one-dimensional. This datum is equivalent to a totally ordered basis {vi}i∈{1,...,k}
of V , which is a basis labeled by a totally ordered set, by definition. Let us denote
I := {1, . . . , k} and let us use the convention I 0 := {0}. As in Sect. 4.2.1, we con-
sider the set J :=⊔n≥0 I

n of tuples ī = (i1, . . . , in) in {1, . . . , k} equipped with
a suitable order, for instance the lexicographic order. With this definition, the set
{vī = vi1vi2 · · ·vin}ī∈J becomes a totally ordered basis of T (V ). In this case, we say
that T (V ) is equipped with a suitable ordered basis.

Written in this basis, the space of relations R is equal to

R =
{

λvivj −
∑

(k,l)<(i,j)

λ
i,j
k,lvkvl; λ �= 0

}

.

Proposition 4.3.1. Let A be a quadratic algebra A(V,R), with T (V ) equipped
with a suitable ordered basis {vī}ī∈J . The associated quadratic algebra Å is equal
to A(V,Rlead), with Rlead ∼= 〈vivj , (i, j) ∈ �L(2)〉, where the set �L(2) is the set of
labels of the leading terms of the relations of R.

Proof. It is a direct corollary of Proposition 4.2.2. �

Notice that the space of relations admits a normalized basis of the form

R =
〈

vivj −
∑

(k,l)/∈�L(2),(k,l)<(i,j)
λ
i,j
k,lvkvl; (i, j) ∈ �L(2)

〉

.

The algebra Å depends only on the ordered basis of V and on the suitable order
on tuples, but it is always a quadratic algebra whose ideal is generated by monomial
elements.

4.3.2 Quadratic Monomial Algebras

We introduce the notion of quadratic monomial algebra, which is the structure car-
ried by the quadratic algebra Å in the PBW bases theory.
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A quadratic monomial algebra is a quadratic algebra Å=A(V,R)= T (V )/(R)
with a (non-necessarily ordered) basis {vi}i∈I of V such that the space of relations
R is linearly spanned by a set {vivj }(i,j)∈�L(2) , where �L(2) ⊂ I 2. We denote by L(2)

the complement of �L(2) in I 2, L(2) := I 2\�L(2), which labels a basis of the quotient
Å(2) = V⊗2/R. We set L(0) := {0} and L(1) := I . We will prove that a quadratic
monomial algebra is Koszul by making its Koszul complex explicit and by comput-
ing its homology.

Proposition 4.3.2. For any quadratic monomial algebra Å = A(V,R), the subset
L=⊔n∈NL(n) ⊂ J defined by

ī = (i1, . . . , in) ∈ L(n) ⇐⇒ (im, im+1) ∈ L(2), ∀1≤m< n
labels a basis of the monomial algebra Å.

Though this statement is obvious, it will play a key role in the definition of PBW
bases. Dually, we make explicit a monomial basis for the Koszul dual coalgebra.

Proposition 4.3.3. For any quadratic monomial algebra Å = A(V,R), the subset
�L=⊔n∈N�L(n) ⊂ J defined by

ī = (i1, . . . , in) ∈ �L(n) ⇐⇒ (im, im+1) ∈ �L(2), ∀1≤m< n
labels a basis of its Koszul dual coalgebra Å

¡
.

When the generating space V is finite dimensional, the Koszul dual algebra Å!
is also a monomial algebra, with presentation

Å! ∼=A(V ∗,R⊥), with R⊥ = 〈v∗i v∗j , (i, j) ∈ L(2)
〉

and basis labeled by �L.

Proof. The elements snvī for ī ∈ �L(n) form a basis of (Å
¡
)(n) by the intersection

formula (Å
¡
)(n) =⋂i+2+j=n(sV )⊗i ⊗ s2R⊗ (sV )⊗j of Sect. 3.1.3. �

Theorem 4.3.4. Any quadratic monomial algebra is a Koszul algebra.

Proof. By the two preceding propositions, the Koszul complex Å
¡ ⊗κ Å admits a

basis of the form skvī⊗vj̄ with ī ∈ �L(k) and with j̄ ∈ L(l). In this basis, its boundary
map is equal to

dκ
(
skvī ⊗ vj̄

)=±sk−1vi1 . . . vik−1 ⊗ vik vj1 . . . vjl , when (ik, j1) ∈ L(2), and

dκ
(
skvī ⊗ vj̄

)= 0, when (ik, j1) ∈ �L(2).
In the latter case, such a cycle is a boundary since (i1, . . . , ik, j1) ∈ �L(k+1) and
dκ(s

k+1vi1 . . . vik vj1 ⊗ vj2 . . . vjl ) = ±skvī ⊗ vj̄ . Finally the Koszul complex is

acyclic and the algebra Å is Koszul. �
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This result is a key point in the PBW basis theory. It says that when the decom-
position V ∼= V1⊕· · ·⊕Vk is made up of one-dimensional sub-spaces, the quadratic
analog Å is always a Koszul algebra.

4.3.3 PBW Basis

The image of the monomial basis {vī}ī∈L of Å, given in Proposition 4.3.2, under the
successive morphisms of graded modules Å� grA ∼= A provides a family of ele-
ments {aī}ī∈L, which linearly span the algebra A. When these elements are linearly
independent, they form a basis of the algebra A, called a Poincaré–Birkhoff–Witt
basis, or PBW basis for short. This condition corresponds to the bijection of the
canonical projection ψ : Å� grA. We say that an algebra A = A(V,R) admits a
PBW basis if there exists a totally ordered basis of V and a suitable order on tuples
such that the associated elements {aī}ī∈L form a basis of the algebra A.

EXAMPLE. The symmetric algebra S(v1, . . . , vk) admits the following PBW basis,
with the lexicographic order: {vν1

1 . . . v
νk
k } with ν1, . . . , νk ∈N.

The main property of PBW bases lies in the following result.

Theorem 4.3.5. Any quadratic algebra endowed with a PBW basis is Koszul.

Proof. Since the monomial algebra Å is always Koszul by Proposition 4.3.4, it is a
direct corollary of Proposition 4.2.3. �

The existence of a PBW basis gives a purely algebraic condition to prove that an
algebra is Koszul, without having to compute any homology group.

There are Koszul algebras which do not admit any PBW basis. The quadratic
algebra A(V,R) generated by V :=Kx ⊕Ky ⊕Kz with the two relations x2 − yz
and x2 + 2zy is Koszul but does not admit a PBW basis. This example comes from
Sect. 4.3 of [PP05] and is due to J. Backelin.

4.3.4 Diamond Lemma for PBW Bases

Since the canonical projection ψ : Å� grA is bijective in weights 0, 1 and 2, the
elements {aī}ī∈L(n) form a basis of A(n), for n ≤ 2. It is enough to check only the
next case, n= 3, as the following theorem shows.

Theorem 4.3.6 (Diamond Lemma for PBW bases). Let A = A(V,R) be a qua-
dratic algebra, with T (V ) equipped with a suitable ordered basis {vī}ī∈J . If the
elements {aī}ī∈L(3) are linearly independent in A(3), then the elements {aī}ī∈L form
a PBW basis of A. In that case, the algebra A is Koszul.
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Proof. It is a direct corollary of Theorems 4.3.4 and 4.2.4. �

EXAMPLE. Let us consider the quadratic algebra A := A(V,R) generated by a
two-dimensional vector space V := Kv1 ⊕Kv2 with relation R := K(v1v2 − v2

1).
With the lexicographic order 1 < 2 < (1,1) < · · · , we have Rlead = Kv1v2,
�L(2) = {(1,2)} and L(2) = {(1,1), (2,1), (2,2)}. One easily verifies that the ele-
ments a2a2a2, a2a2a1, a2a1a1 and a1a1a1 are linearly independent in A. There-
fore, the family of monomial elements {aī}ī∈L indexed by L(n) = {(2,2, . . . ,2),
(2,2, . . . ,2,1), . . ., (1,1, . . . ,1)}, for n ∈N, form a PBW basis of the algebra A.

COUNTER-EXAMPLE. Let us consider the same quadratic algebra with the extra
relation v2

2 − v2
1 . In this case, Rlead = Kv1v2 ⊕ Kv2

2 , �L(2) = {(1,2), (2,2)} and
L(2) = {(1,1), (2,1)}. Therefore, the monomial basis of the quadratic algebra Å is
indexed by L(n) = {(2,1, . . . ,1), (1,1, . . . ,1)}. In weight 3, the relation a1a1a1 =
a2a1a1, obtained by calculating a2a2a2 by two different methods, shows that it does
not form a PBW basis.

4.3.5 Recollection with the Classical Diamond Lemma

The aforementioned result can also be seen as a direct consequence of the classi-
cal Diamond Lemma of G.M. Bergman [Ber78], which comes from graph theory
[New42].

Let us first recall the statement. Starting from a vertex in an oriented graph, one
might have the choice of two outgoing edges. Such a configuration is called an am-
biguity in rewriting systems. An ambiguity is called solvable or confluent if, starting
from each of these two edges, there exists one path ending at a common vertex. In
this case, we get a diamond shape graph like in Fig. 4.4. Under the condition that
any path has an end (termination hypothesis), the classical Diamond Lemma asserts
that, if every ambiguity is confluent, then any connected component of a graph has
a unique terminal vertex.

The relationship with ring theory comes from the following graphical represen-
tation. We depict the elements of T (V ) by vertices of a graph with edges labeled
by the relations of R oriented from the leading term to the rest. In the case of PBW
bases, we restrict ourself to the generating relations given at the end of Sect. 4.3.1:

vivj �−→
∑

(k,l)∈L(2),(k,l)<(i,j)
λ
i,j
k,lvkvl, (i, j) ∈ �L(2).

EXAMPLE. For instance, in the symmetric algebra

S(v1, v2, v3)

:=A({v1, v2, v3}, {r12 = v2v1 − v1v2, r23 = v3v2 − v2v3, r13 = v3v1 − v1v3}
)

(see Fig. 4.4).
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Fig. 4.4 Hexagonal diamond v3v2v1

v3r12r23v1

v2v3v1

v2r13

v3v1v2

r13v2

v2v1v3

r12v3

v1v3v2

v1r23

v1v2v3

In this example, there are two ways (ambiguity) of rewriting the monomial
v3v2v1, which finally end up on the same element (confluence). Notice that this
diamond is exactly the Yang–Baxter equation.

Therefore, the connected graphs depict the successive relations applied to ele-
ments in A(n). The terminal vertices correspond to linear combinations of monomi-
als labeled by elements of L(n); there is no more leading term of any relation inside
them. Having two different terminal vertices would imply that the two associated
elements are equal in A. Therefore, the set L labels a PBW basis of the algebra A if
and only if every connected graph has a unique terminal vertex. The PBW basis is
then made up of the labels of these terminal vertices, like the element v1v2v3 in the
above example.

To prove the Diamond Lemma for PBW bases from the classical Diamond
Lemma, one has just to prove that any path is finite, which is given by the bounded
below suitable order, and that any ambiguity is confluent. There are here only two
types of ambiguities: the square type ambiguities where one applies two relations to
two distinct sub-monomials, of the same monomial or of two different monomials
of a sum, and the ones starting from a sub-monomial of length 3, where one either
applies a relation to the two first elements or to the two last elements. The first type
is obviously confluent. The confluence of the second type of ambiguities is precisely
given by the assumption that the elements labeled by L(3) are linearly independent.
These weight 3 monomials vivj vk are called critical. They are such that vivj and
vjvk are both leading terms of some relator.

Bergman in [Ber78] extended the Diamond Lemma beyond the set theoretic case
of graph theory and showed that it is enough to check the confluence condition on
monomials as the next proposition shows.

Theorem 4.3.7. LetA=A(V,R) be a quadratic algebra, with T (V ) equipped with
an extra ordered basis {vī}ī∈J . If the ambiguities coming from the critical monomi-
als are confluent, then the elements {aī}ī∈L form a PBW basis of A and A is Koszul.

Proof. The monomial elements with the second type of ambiguities are the elements
labeled �L(3). Suppose that there exists a nontrivial linear combination between ele-



4.3 Poincaré–Birkhoff–Witt Bases and Gröbner Bases 105

ments labeled by L(3). In terms of graph, it corresponds to a zig-zag like

X←•←•→•← · · ·← •→ •→ Y,

where X = Y is the relation, with X and Y two sums of elements labeled by L(3).
Since all the ambiguities are confluent by hypothesis, we can find another zig-zag,
where the distance betweenX and the first←•→ is strictly less than in the first zig-
zag. By iteration, we prove the existence of a zig-zag of the shape X← •→ · · · .
Finally, by confluence, there exists an edge leaving X, which is impossible. We
conclude with the Diamond Lemma 4.3.6. �

Finally, to prove that one has a PBW basis, it is enough to draw the graphs gen-
erated by elements of �L(3) only and to show that each of them has only one terminal
vertex. We refer to the above figure for the example of the symmetric algebra. In the
counterexample of Sect. 4.3.4, the element v2v2v2 gives the following graph

v2v2v2

v1v1v2 v2v1v1

v1v1v1

We have finally proved here the rewriting method Theorem 4.1.1 given in
Sect. 4.1.

4.3.6 Product of Elements of a PBW Basis

The canonical projection ψ : Å� A is an epimorphism of graded modules, but
not of algebras in general. Therefore, the product of two elements of the generating
family {aī}ī∈L is not always equal to an element of this family, but to a sum of lower
terms, as the following proposition shows.

Proposition 4.3.8. The elements {aī}ī∈L satisfy the following property: for any pair
ī, j̄ ∈ L, if (ī, j̄ ) /∈ L the product aīaj̄ in A can be written as a linear combination
of strictly lower terms labeled by L:

aīaj̄ =
∑

l̄∈L,l̄<(ī,j̄ )
λ
ī,j̄

l̄
al̄ ,

with λī,j̄
l̄
∈K.
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Proof. The proof is done by a simple induction argument with the suitable order on
tuples. �

In the example of Sect. 4.3.4, we have (a2a1)(a2a1) = a2a1a1a1. The original
definition of a PBW basis given by Priddy in [Pri70] is a basis made up of a family of
monomial elements {aī}ī∈L ofA labeled by a set L⊂ J , which satisfies the property
of Proposition 4.3.8 and: any ī = (i1, . . . , in) ∈ L if and only if (i1, . . . , im) ∈ L and
(im+1, . . . , in) ∈ L for any 1≤m< n.

We leave it to the reader to check that this definition of a PBW basis is equivalent
to the one given in Sect. 4.3.3.

4.3.7 Gröbner Bases

In this section, we introduce the notion of (noncommutative) Gröbner basis for an
ideal I of the free algebra, see [Buc06]. In the quadratic case, when I = (R), it is
equivalent to a PBW basis for the quotient algebra A= T (V )/(R).

Any element P in T (V ) is a linear combination of monomials. When T (V ) is
equipped with a suitable ordered basis, we denote by Plead the leading term of P .
For any subset M ⊂ T (V ), we consider the set made up of the leading terms of
any element of M and we denote it by Lead(M). Under this notation, the space of
relations Rlead of Proposition 4.3.1 is equal to the linear span of Lead(R): Rlead =
〈Lead(R)〉.

A (noncommutative) Gröbner basis of an ideal I in T (V ) is a set G⊂ I which
generates the ideal I , i.e. (G)= I , such that the leading terms of G and the leading
terms of the elements of I generate the same ideal: (Lead(G))= (Lead(I )).

Proposition 4.3.9. Let A = A(V,R) be a quadratic algebra such that T (V ) is
equipped with a suitable ordered basis {vī}ī∈J . The elements {al̄}l̄∈L form a PBW
basis of A if and only if the elements

{

vivj −
∑

(k,l)∈L(2),(k,l)<(i,j)
λ
i,j
k,lvkvl

}

(i,j)∈�L(2)
,

spanning R, form a Gröbner basis of the ideal (R) in T (V ).

Proof. (⇒)When L labels a PBW basis, the elements

{

vī −
∑

l̄∈L,l̄<ī
λī
l̄
vl̄

}

ī∈J\L
,

form a linear basis of (R). The leading terms of (R) are Lead(R)= {Kvī}ī∈J\L and

Lead(vivj −∑(k,l)∈L(2),(k,l)<(i,j) λ
i,j
k,lvkvl) = vivj . Condition (2) implies that ī =
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(i1, . . . , in) ∈ J\L if and only if there exists 1≤m< n such that (im, im+1) ∈ �L(2).
Therefore, the two following ideals are equal (vivj , (i, j) ∈ �L(2))= (vī , ī ∈ J\L).
(⇐) We show that any l̄ ∈ L, al̄ is not equal in A to a linear combination of

strictly lower terms labeled by L. Suppose that there is an l̄ ∈ L such that al̄ =∑
k̄∈L,k̄<l̄ λl̄k̄ak̄ , with λī

l̄
∈K. This is equivalent to vl̄−

∑
k̄∈L,k̄<l̄ λl̄k̄vk̄ ∈ (R), whose

leading term is vl̄ . By definition, this element belongs to the ideal generated by the
elements vivj with (i, j) ∈ �L(2), which is impossible by condition (2). �

In the quadratic case, the two notions of PBW basis and Gröbner basis are equiv-
alent dual notions. The terminology “PBW basis” refers to the basis of the quo-
tient algebra while the terminology “noncommutative Gröbner basis” refers to the
ideal (R).

We refer to Sect. 2.12 of [Ufn95] for the history of the Gröbner–Shirshov bases.

4.3.8 PBW Bases for Inhomogeneous Quadratic Algebras

Following Sect. 4.2.5, we say that an inhomogeneous quadratic algebra A admits
a PBW basis if there exists a presentation A=A(V,R), satisfying conditions (ql1)
and (ql2), such that the associated quadratic algebra qA=A(V,qR) admits a PBW
basis. In this case, the image {aī}ī∈L ⊂ A of the basis elements {vī}ī∈L of the qua-
dratic monomial algebra ˚qA gives a basis of the inhomogeneous quadratic alge-
braA. Such a result is once again proved using the following version of the Diamond
Lemma.

Theorem 4.3.10. Let A = A(V,R) be an inhomogeneous quadratic algebra with
a quadratic-linear presentation satisfying conditions (ql1) and (ql2) and such that
T (V ) is equipped with a suitable ordered basis {vī}ī∈J .

If the images of the elements {vī}ī∈L(3) in qA are linearly independent, then the
images {aī}ī∈L of the elements {vī}ī∈L form a basis of A and the algebra A is
Koszul.

Proof. It is a particular case of Theorem 4.2.5. �

In the example of the universal enveloping algebra U(g) of a Lie algebra g (cf.
Sect. 3.6.7), the symmetric monomials basis of S(g) induces a PBW basis of U(g).
With the suitable order

0< 1< 2< (1,1) < 3< (2,1) < (1,2) < (1,1,1) < 4< (3,1) < (2,2) < · · · ,

the Cartan–Serre basis of Sect. 3.6.8 is a PBW basis of the Steenrod algebra.
In the inhomogeneous case too, the notion of PBW basis is equivalent and dual

to that of Gröbner basis.
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Proposition 4.3.11. LetA be an inhomogeneous quadratic algebra with a quadratic-
linear presentationA=A(V,R) satisfying conditions (ql1) and (ql2) and such that
T (V ) is equipped with a suitable ordered basis {vī}ī∈J . Let ϕ : qR→ V be the lin-
ear map whose graph gives R. The elements {al̄}l̄∈L form a PBW basis of A if and
only if the elements

{

(Id−ϕ)
(

vivj −
∑

(k,l)∈L(2),(k,l)<(i,j)
λ
i,j
k,lvkvl

)}

(i,j)∈�L(2)

spanning R, form a Gröbner basis of the ideal (R) in T (V ).

Proof. The proof of the inhomogeneous case is similar but uses the PBW Theo-
rem 3.6.4. �

4.3.9 PBW Basis of the Koszul Dual Algebra

Proposition 4.2.7 shows that any PBW basis of a quadratic algebra induces a dual
PBW basis on the Koszul dual algebra. In this section, we provide further details.

Let {vi}i∈I be a finite ordered basis of the vector space V and consider a suitable
order on tuples. The elements {akal}(k,l)∈L(2) form a basis of V⊗2/R. In this case,
there are elements

{

vivj −
∑

(k,l)∈L(2),(k,l)<(i,j)
λ
i,j
k,lvkvl

}

(i,j)∈�L(2)
,

which form a basis of R. So the complement set �L(2) = I 2 \ L(2) labels a basis of
R, which is not {vivj }(i,j)∈�L(2) itself in general. The dual elements {v∗i }i∈I provide
a dual basis of V ∗ and the elements

{

v∗k v∗l +
∑

(i,j)∈�L(2),(i,j)>(k,l)
λ
i,j
k,lv

∗
i v
∗
j

}

(k,l)∈L(2)

provide a basis of R⊥. Therefore the image of the elements {v∗i v∗j }(i,j)∈�L(2) in A! =
A(V ∗,R⊥), denoted a∗i a∗j , form a basis of V ∗⊗2/R⊥. We consider the opposite
order i 	op j , defined by i 
 j , on the labeling set I of the dual basis of V ∗.

Theorem 4.3.12. Let A = A(V,R) be a quadratic algebra endowed with a PBW
basis {aī}ī∈L. Its Koszul dual algebra A! admits the PBW basis {a∗̄

j
}j̄∈�L, with oppo-

site order.

Proof. It is a direct corollary of Proposition 4.2.7. �
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When the algebra A = A(V,R) admits a PBW basis labeled by a set L, the
Koszul dual coalgebra A

¡
admits a basis indexed by the set �L by Proposition 4.2.3.

More precisely, the Koszul dual coalgebra admits a basis of the form

{

snvī +
∑

j̄<ī, j̄∈L(n)
snλī

j̄
vj̄ , ī ∈ �L(n)

}

n∈N
.

4.4 Koszul Duality Theory and Lattices

We introduce a combinatorial criterion for Koszulity. It states that a certain family
of lattices associated to a quadratic data is distributive if and only if the quadratic
data is Koszul (Backelin criterion). It will allow us to prove that the Koszul property
is stable under Manin products in the next section.

4.4.1 Poset and Lattice

This section recalls the basic properties of posets (partially ordered sets) and lattices.
It mainly comes from R.P. Stanley’s book [Sta97a].

In a poset with a partial order denoted 	, a least upper bound z for two elements
x and y, when it exists, is an upper bound, meaning x 	 z and y 	 z, which is less
than any other upper bound. When it exists, it is unique. It is denoted by x∨y and is
called the join. Dually, there is the notion of greatest lower bound which is denoted
by x ∧ y and called the meet.

A lattice is a poset where the join and the meet exist for every pair of elements.
These two operations are associative, commutative and idempotent, that is x ∨ x =
x = x ∧ x. They satisfy the absorption law x ∧ (x ∨ y) = x = x ∨ (x ∧ y) and
the partial order can be recovered by x 	 y ⇐⇒ x ∧ y = x ⇐⇒ x ∨ y = y. A
sublattice generated by a subset of a lattice L is the smallest sublattice of L stable
for the operations join and meet. It is explicitly composed by the elements obtained
by composing the generating elements with the operations join and meet.

A lattice is distributive if it satisfies the equivalent distributivity relations

x ∨ (y ∧ z)= (x ∨ y)∧ (x ∨ z) ⇐⇒ x ∧ (y ∨ z)= (x ∧ y)∨ (x ∧ z).
The subsets of a set form a distributive lattice where the partial order is defined
by the inclusion ⊂ and where the join and meet are given by the union ∪ and the
intersection ∩ respectively. Actually, any finite distributive lattice is of this form
(fundamental theorem for finite distributive lattices). Notice also that a distributive
sublattice generated by a finite number of elements is finite.

In the linear context, we will consider the lattice of sub-spaces of a vector space.
The order is given by the inclusion ⊂ and the join and meet are given by the sum
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+ and the intersection ∩ respectively. In the sequel, we will study finitely generated
sublattices of such a lattice. Our main tool will be the following result, which is
the analog, in the linear setting, of the fundamental theorem for finite distributive
lattices.

Lemma 4.4.1. Let U be a vector space and let L be a finitely generated sublattice
of the lattice of sub-spaces of U . The lattice L is distributive if and only if there
exists a basis B of U such that, B ∩X is a basis of X, for any X ∈ L.

In this case, we say that the basis B distributes the sublattice L.

4.4.2 Lattice Associated to a Quadratic Data

Let (V ,R) be a quadratic data. For every n ∈ N, we consider the lattice of sub-
spaces of V⊗n, where the order is given by the inclusion: X 	 Y if X ⊂ Y . The
join of two sub-spaces X and Y is their sum X ∨ Y :=X + Y and their meet is the
intersection X ∧ Y :=X ∩ Y .

For every n ∈ N, we denote by L(V,R)(n) the sublattice of the lattice of sub-
spaces of V⊗n generated by the finite family {V⊗i ⊗R⊗ V⊗n−2−i}i=0,...,n−2.

The example of L(V,R)(3) is depicted below.

V⊗3

V ⊗R +R⊗ V

V ⊗R R⊗ V

V ⊗R ∩R⊗ V

{0}

4.4.3 Backelin’s Criterion

The following result belongs to the long list of properties between the Koszul duality
theory and the poset theory.

Theorem 4.4.2 (Backelin [Bac83]). A quadratic data (V ,R) is Koszul if and only
if the lattices L(V,R)(n) are distributive, for every n ∈N.
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In this case, the lattices L(V,R)(n), n ≥ 0 are finite. We refer the reader to the
Ph.D. thesis of J. Backelin [Bac83] and to the book of A. Polishchuk and L. Posit-
selski [PP05] for the proof of this result and for more details about this subject.

4.5 Manin Products for Quadratic Algebras

In this section, extracted from Yu.I. Manin [Man87, Man88], we define two products� and � for quadratic data. They share nice properties with respect to Koszul duality
theory. The black product is shown to produce Hopf algebras, some of which appear
in quantum group theory.

4.5.1 Black and White Manin Products

Let (V ,R) and (W,S) be two quadratic data. We denote by τ23 the isomorphism
induced by the switching of the two middle terms:

τ23 := IdV ⊗τ ⊗ IdW : V ⊗ V ⊗W ⊗W ∼−→ V ⊗W ⊗ V ⊗W.
By definition Manin’s white product of (V ,R) and (W,S) is the quadratic data

given by

(V ,R)� (W,S) := (V ⊗W,τ23
(
R⊗W⊗2 + V⊗2 ⊗ S)).

By definition Manin’s black product of (V ,R) and (W,S) is the quadratic data
given by

(V ,R)� (W,S) := (V ⊗W,τ23(R⊗ S)
)
.

The quadratic data (Kx,0) is the unit object for the white product �, where Kx

stands for a one-dimensional vector space spanned by x. Dually, the quadratic data
(Kx, (Kx)⊗2) is the unit object for the black product �. The associated algebras are
the free associative algebra on one generator K[x] and the algebra of dual numbers
D(Kx)=K[x]/(x2) on one generator respectively.

We denote by A(V,R)�A(W,S) and by A(V,R)�A(W,S) the algebras asso-
ciated to the quadratic data obtained by white and black products. Notice that there
is a morphism of quadratic algebras

A(V,R)�A(W,S)→A(V,R)�A(W,S),
for any pair of quadratic data. The algebra associated to the white product is iso-
morphic to the Hadamard (or Segre) product

A(V,R)�A(W,S)∼=A(V,R)⊗
H
A(W,S) :=

⊕

n∈N
A(V,R)(n) ⊗A(W,S)(n),

which is the weight-wise tensor product.
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4.5.2 Manin Products and Koszul Duality

Manin’s black and white products behave well with respect to Koszul duality theory.

Proposition 4.5.1. Let (V ,R) and (W,S) be two quadratic data, where V and W
are finite dimensional. Black and white products are sent one to the other under the
Koszul duality functor

(
A(V,R)�A(W,S))! =A(V,R)!�A(W,S)!.

Proof. The quadratic algebra on the left-hand side is equal to

A
(
(V ⊗W)∗, (τ23

(
R⊗W⊗2 + V⊗2 ⊗ S))⊥)

∼=A(V ∗ ⊗W ∗, τ23
(
R⊥ ⊗W ∗⊗2 ∩ V ∗⊗2 ⊗ S⊥))

∼=A(V ∗ ⊗W ∗, τ23
(
R⊥ ⊗ S⊥)). �

Theorem 4.5.2. [BF85] If two quadratic data are Koszul, then their white product
and their black product are Koszul.

Proof. First we prove the white product property.
Let (V ,R) and (W,S) denote two Koszul quadratic data. By Theorem 4.4.2, the

sublattices L(V,R)(n) of V⊗n and L(W,S)(n) of W⊗n are distributive, for any n ∈
N. By Lemma 4.4.1, there exist bases B′

(n) and B′′
(n) of V⊗n andW⊗n respectively

that distribute L(V,R)(n) and L(W,S)(n). For any n ∈ N, the sublattice L(V ⊗
W,τ23(R ⊗W⊗2 + V⊗2 ⊗ S))(n) of (V ⊗W)⊗n is isomorphic to the sublattice of
V⊗n ⊗W⊗n generated by the finite family

{
V⊗i ⊗R⊗ V⊗n−2−i ⊗W⊗n,V⊗n ⊗W⊗i ⊗ S ⊗W⊗n−2−i}

i=0,...,n−2.

Therefore, the basis B(n) := {β ′ ⊗ β ′′ | β ′ ∈ B′
(n), β

′′ ∈ B′′
(n)} distributes L(V ⊗

W,τ23(R⊗W⊗2+V⊗2⊗S))(n). We conclude by using Theorem 4.4.2 in the other
way round.

To prove the same result for the black product, we consider the Koszul dual
algebras and apply Proposition 4.5.1 and Proposition 3.4.5. �

4.5.3 Adjunction and Internal (Co)Homomorphism

The white and black products satisfy the following adjunction formula.

Proposition 4.5.3. There is a natural bijection in the category Quad-alg of quadra-
tic algebras (or equivalently quadratic data):

Homquad alg(A�B,C)∼=Homquad alg
(
A,B !�C),

when B is a finitely generated algebra.
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Proof. Let A, B and C be the three algebras associated to the three quadratic data
(V ,R), (W,S) and (X,T ) respectively. There is a one-to-one correspondence be-
tween the maps f : V ⊗W →X and the maps f̃ : V →W ∗ ⊗X. Such a map satis-
fies f⊗2 : τ23(R⊗S)→ T if and only if f̃⊗2 :R→ τ23(S

⊥⊗X+ (W ∗)⊗2⊗T ). �

In other words, Hom(B,C) := B !�C is the internal ‘Hom’ functor in the mo-
noidal category of finitely generated quadratic algebras with the black product as
tensor product. Dually, CoHom(A,B) := A�B ! is the internal ‘coHom’ (or inner)
functor in the monoidal category of finitely generated quadratic algebras with the
white product as tensor product.

4.5.4 Manin Complexes

Let us apply this adjunction to the three quadratic algebras (Kx, (Kx)⊗2), A(V,R),
A(V,R), where V is finite dimensional. As usual we write A=A(V,R). Since the
first one is the unit object for the black product, we get the bijection

Homquad alg(A,A)∼=Homquad alg
(
K[x]/(x2),A!�A).

To the identity of A on the left-hand side corresponds a natural morphism of qua-
dratic algebras K[x]/(x2)→A!�A=A! ⊗

H
A, which is equivalent to a square zero

element ξ in A!�A. We define a differential dξ by multiplying elements of A! ⊗
H
A

by ξ , that is dξ (α) := αξ . The chain complex (A! ⊗
H
A,dξ ) thereby obtained is called

the first Manin complex denoted by L(A) in [Man88, Chap. 9]. If we choose a basis
{vi}i=1,...,n for V and denote by {v∗i }i=1,...,n the dual basis of V ∗, the square zero
element ξ is equal to

∑n
i=1 v

∗
i ⊗ vi .

The second Manin complex L̃(A) is defined on the tensor product A! ⊗ A by
the differential d̃ξ (α) := α �→ ξα − (−1)|α|αξ , where the cohomological degree is
given by the weight of A!. Under this degree convention, there is a isomorphism of
graded modules

A! ⊗A∼=Hom
(
A

¡
,A
)
,

which sends the squarezero element ξ to the twisting morphism κ and the afore-
mentioned differential to ∂κ(f ) = [f,κ]. This induces an isomorphism of cochain
complexes

L̃(A)= (A! ⊗A, d̃ξ
)∼=Homκ

(
A

¡
,A
)
.

So, when the algebra A is Koszul, the second Manin complex computes the ho-
mology functor Ext•A(K,A) and likewise the Hochschild cohomology of A with
coefficients into itself, see Sect. 9.1.7.
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4.5.5 Hopf Algebras

We show that the black product construction gives rise to Hopf algebras.

Proposition 4.5.4. Let (V ,R) be a quadratic data with V finite dimensional and
let A=A(V,R). The algebra A!�A is a Hopf algebra.

Proof. By general properties of adjunction (see Appendix B.2.1), A!�A is a co-
monoid in the monoidal category (quad alg,� = ⊗

H
,K[ε]). Since A! ⊗

H
A embeds

into A! ⊗ A, the space A!�A is a comonoid in the monoidal category of graded
algebras with the classical tensor product, which makes it into a bialgebra. Since it
is conilpotent, the antipode comes for free. �

This method was used by Yu.I. Manin to study quantum groups in [Man87,
Man88].

4.6 Résumé

4.6.1 Rewriting Method

Let A(V,R) be a quadratic algebra such that V = ⊕ni=1Kvi is a vector space
equipped with a finite ordered basis. We order V⊗2 by using, for instance, the lexi-
cographical order:

v1v1 < v1v2 < · · ·< v1vn < v2v1 < · · ·< vnvn.
Typical relation:

vivj =
∑

(k,l)<(i,j)

λ
i,j
k,lvkvl, λ

i,j
k,l ∈K.

The element vivj is called a leading term. The monomial vivj vk is called critical if
both vivj and vjvk are leading terms.

Theorem. Confluence for all the critical monomials ⇒ Koszulity of the algebra.

4.6.2 Reduction by Filtration and Diamond Lemma

LetA=A(V,R) be a quadratic algebra. Any grading on V ∼= V1⊕· · ·⊕Vk together
with a suitable order on tuples induce a filtration on the algebra A and

ψ : Å :=A(V,Rlead)� grA,

with Rlead = 〈Leading Term(r), r ∈R〉.
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DIAMOND LEMMA FOR QUADRATIC ALGEBRAS.

Å Koszul and Å(3)� (grA)(3) =⇒ A Koszul and Å∼= grA

INHOMOGENEOUS CASE.

˚qA Koszul and

˚qA
(3)� (grχ qA)(3)

=⇒ A Koszul and
˚qA∼= grχ qA∼= qA∼= grA∼=A.

4.6.3 PBW Basis, Gröbner Basis and Diamond Lemma

Particular case:

∀i ∈ I = {1, . . . , k}, dim(Vi)= 1 ⇔ {vi}i∈I basis of V,

Å monomial algebra ⇒ Å Koszul and basis {vī}ī∈L.
PBW basis of A(V,R): basis {aī}ī∈L:= image of {vī}ī∈L under Å� grA.

MAIN PROPERTIES OF PBW BASES.

A(V,R) PBW basis ⇒ A(V,R) Koszul algebra.

DIAMOND LEMMA.

{aī}ī∈L(3) linearly independent =⇒ {aī}ī∈L PBW basis.

GRÖBNER BASIS.

Gröbner basis of (R)⊂ T (V ) ⇐⇒ PBW basis of T (V )/(R).

PBW bases for inhomogeneous quadratic algebras:

qA=A(V,qR) PBW basis ⇒ A(V,R) PBW basis.

PBW bases on Koszul dual algebra:

A=A(V,R) PBW basis ⇐⇒ A! =A(V ∗,R⊥) PBW basis.

4.6.4 Backelin Criterion

L(V,R)(n): lattice of sub-spaces of V⊗n generated by
{
V⊗i ⊗R⊗ V⊗n−2−i}

i=0,...,n−2,

(V ,R) Koszul quadratic data ⇐⇒ L(V,R)(n) distributive lattice, ∀n ∈N.
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4.6.5 Manin Black and White Products

(V ,R)� (W,S) := (V ⊗W,τ23
(
R⊗W⊗2 + V⊗2 ⊗ S)),

(V ,R)� (W,S) := (V ⊗W,τ23(R⊗ S)
)
.

Unit for the white product: K[x]. Unit for the black product: K[x]/(x2).

(A�B)! =A!�B !,
Theorem. Manin products preserve the Koszul property.

Homquad alg(A�B,C)∼=Homquad alg
(
A,B !�C),

A!�A :Manin chain complex; A!�A :Hopf algebra.

4.7 Exercises

Exercise 4.7.1 (An example). Show that the quadratic algebra presented by the
generators x, y, z and the relators xy − yz, zy − yx, xz− zx, y2 − zx is Koszul by
the rewriting method.

Exercise 4.7.2 (Distributive law �). Apply the method of Sect. 4.2 to the following
case. Let A(V ⊕W,R⊕Dλ⊕S) be a quadratic algebra, where R ⊂ V⊗2, S ⊂W⊗2

and where Dλ ⊂ V ⊗ W⊕W ⊗ V is the graph of a linear morphism λ : W ⊗
V → V ⊗W . Let us use the following notations A :=A(V,R), B :=A(W,S) and
A∨λ B :=A(V ⊕W,R⊕Dλ ⊕ S).

We consider the following ordered grading V1 := V and V2 :=W together with
the lexicographic order. In this case, prove that Rlead = R⊕W ⊗ V⊕S and that
Å = A ∨0 B . Show that the underlying module satisfies Å ∼= A(V,R)⊗ A(W,S)
and make the product explicit. Dually, show that the underlying module satisfies
Å

¡ ∼=A(W,S)¡ ⊗A(V,R)¡ and make the coproduct explicit. We now suppose that
the two quadratic data (V ,R) and (W,S) are Koszul. Show that the quadratic data
(V ⊕W,R⊕W ⊗ V⊕S) is also Koszul.

Finally, show that if the maps V⊗2/R⊗W →A and V ⊗W⊗2/S→A are injec-
tive, then the algebra A is Koszul and its underlying graded module is isomorphic
to A∼=A(V,R)⊗A(W,S).

Extra question: when the generating spaces V and W are finite dimensional,
prove that the Koszul dual algebra has the same form:

A! =A(V ∗ ⊕W ∗,R⊥ ⊕Dtλ ⊕ S⊥
)=A! ∨t λ B !,

where t λ : V ∗ ⊗W ∗ →W ∗ ⊗ V ∗ is the transpose map.

Exercise 4.7.3 (Equivalent definitions of PBW bases �). Let A= (V ,R) be a qua-
dratic algebra endowed with a family of elements {aī}ī∈L of A labeled by a set
L⊂ J . Prove that, under condition (2) of Sect. 4.3.6, condition (1) is equivalent to
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(1′) for any pair (i, j) ∈ I 2, if (i, j) /∈ L(2), the product aiaj in A can be written as
a linear combination of strictly lower terms labeled by L(2):

aiaj =
∑

(k,l)∈L(2),(k,l)<(i,j)
λ
i,j
k,lakal,

with λi,jk,l ∈K.

In the same way, prove that, under condition (2), condition (1) and (1′) are equiv-
alent to

(1′′) for any ī ∈ J , if ī /∈ L, then the element aī ∈ A can be written as a linear
combination of strictly lower terms labeled by L:

aī =
∑

l̄∈L,l̄<ī
λī
l̄
al̄ ,

with λī
l̄
∈K.

Exercise 4.7.4 (Hilbert–Poincaré series and PBW bases �). Compute the Hil-
bert–Poincaré series of a quadratic algebra endowed with a PBW basis, see [PP05,
Sect. 4.6].

Exercise 4.7.5 (From PBW to Koszul �). A quadratic algebra A(V,R) is called n-
PBW if it admits an extra ordered grading V ∼= V1 ⊕ · · · ⊕ Vk such that dimVi ≤ n,
for any i, if the algebra Å is Koszul and if the isomorphism Å∼= grA holds. Notice
that 1-PBW algebra are the algebras having a PBW basis.

Prove the following inclusions of categories

PBW= 1-PBW⊂ 2-PBW⊂ · · · ⊂ fg Koszul,

where the last category is the category of finitely generated Koszul algebras.
Show that the quadratic algebra A(x,y, z;x2 − yz, x2 + 2zy) is 2-PBW but not

1-PBW.

Exercise 4.7.6 (Inhomogeneous Koszul duality theory with PBW-bases �). Let
A(V,R) be an inhomogeneous Koszul algebra endowed with a PBW basis. Make
the constructions of Sect. 3.6 explicit with this basis.

For instance, the degree-wise linear dual of the Koszul dual dg coalgebra A
¡ =

((qA)
¡
, dϕ) is a dga algebra. Make it explicit with its differential. In the case of the

Steenrod algebra, show that this gives theΛ algebra (see [BCK+66, Wan67, Pri70]).

Exercise 4.7.7 (PBW bases and Manin products �). Let A := A(V,R) and B :=
A(W,S) be two quadratic algebras with ordered bases of V and W labeled by IA
and IB respectively. Suppose that we have a PBW basis on A and on B labeled
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respectively by LA and LB . We denote by ī = (i1, . . . , in) the elements of InA and
by j̄ = (j1, . . . , jn) the elements of InB .

Show that the following set labels a PBW basis of the white product A�B:

LA�B =
⋃

n∈N

{
(i1, j1, i2, j2, . . . , in, jn) | ī ∈ L(n)A and j̄ ∈ L(n)B

}

∼=
⋃

n∈N
L
(n)
A ×L(n)B .

Dually, show that the following set labels a PBW basis of the black product
A�B:

LA�B =
{
(i1, j1, i2, j2, . . . , in, jn) | ∀1≤ k < n, (ik, ik+1) ∈ L(2)A

or (jk, jk+1) ∈ L(2)B
}
.

Exercise 4.7.8 (Coproduct �). Let A and B be two nonunital associative algebras.
Show that their coproduct A∨B in the category of nonunital associative algebras is
given by a suitable product on

A∨B =A
⊕

B
⊕

A⊗B
⊕

B ⊗A
⊕

A⊗B ⊗A
⊕

B ⊗A⊗B
⊕

· · · .

Let (V ,R) and (W,S) be two quadratic data. Show that they admit a coproduct
in the category of quadratic data, which is given by (V ⊕W,R ⊕ S). Prove that
the quadratic algebra A(V ⊕W,R ⊕ S) is the coproduct of the quadratic algebras
A(V,R) and A(W,S) in the category of unital associative algebras. When V and
W are finite dimensional, compute its Koszul dual algebra.

Consider now the example of Exercise 4.7.2 and show that A(V ⊕W,R⊕Dλ⊕
S)∼=A∨B/(Dλ), whence the notation A∨λ B .

Prove that if (V ,R) and (W,S) are Koszul quadratic data, then so is their coprod-
uct. [Give several different proofs, using the Koszul complex and the distributive
lattices for instance.]

Prove that if A :=A(V,R) and B :=A(W,S) admit a PBW basis, then they can
be used to construct a PBW basis on A∨B .



Chapter 5
Algebraic Operad

The name ‘operad’ is a word that I coined myself, spending a
week thinking about nothing else.

J.P. May in “Operads, algebras and modules”

An algebra of a certain type is usually defined by generating operations and rela-
tions, see for instance the classical definition of associative algebras, commutative
algebras, Lie algebras. Given a type of algebras there is a notion of “free” algebra
over a generic vector space V . Let us denote it by P(V ). Viewed as a functor from
the category Vect of vector spaces to itself, P is equipped with a monoid structure,
that is a transformation of functors γ :P ◦P →P , which is associative, and an-
other one η : I→P which is a unit. The existence of this structure follows readily
from the universal properties of free algebras. Such a data (P, γ, η) is called an
algebraic operad.

On the other hand, any algebraic operad P determines a type of algebras: the
P-algebras. The main advantage of this point of view on types of algebras is that
operads look like associative algebras but in a different monoidal category (see Ta-
ble 5.1).

So most of the constructions for associative algebras can be translated into this
new context. This is exactly what we intend to do with Koszul duality theory in the
following chapters.

Depending on further properties of the type of algebras, the associated operad
might be of a special kind. For instance, if the generating operations are not sup-
posed to satisfy any symmetry, if the relations are multilinear and if, in these rela-
tions, the variables stay in the same order, then the functor P is of the form

P(V )=
⊕

n

Pn ⊗ V⊗n

and the composition map γ is completely determined by K-linear maps

γ :Pk ⊗Pi1 ⊗ · · · ⊗Pik −→Pi1+···+ik .
Then P is called a nonsymmetric operad.

J.-L. Loday, B. Vallette, Algebraic Operads,
Grundlehren der mathematischen Wissenschaften 346,
DOI 10.1007/978-3-642-30362-3_5, © Springer-Verlag Berlin Heidelberg 2012
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Table 5.1 Operads as
monoids Category Product Unit

monoid Set × {∗}
algebra Vect ⊗ K

operad EndoFunctVect ◦ I

More generally, if the relations are multilinear, without any further hypothesis,
then the functor P is completely determined by a family of Sn-modules {P(n)}n≥0,

P(V ) :=
⊕

n

P(n)⊗Sn V
⊗n

and the composition map γ is completely determined by K-linear maps

γ :P(k)⊗P(i1)⊗ · · · ⊗P(ik)−→P(i1 + · · · + ik).
Then P is called a symmetric operad.

Another interesting case, leading to the study of algebras with divided powers,
consists in taking

�P(V ) :=
⊕

n

(
P(n)⊗ V⊗n)Sn .

Of course, taking invariants instead of coinvariants leads to a different type of alge-
bras only in positive characteristic.

In this book we are going to work mainly with symmetric operads, that we simply
call operads. Since S-modules (family of representations over all the finite symmet-
ric groups) play a prominent role in this case, we devote Sect. 5.1 of this chapter to
their study and to the Schur functors that they determine. For symmetric operads the
monoidal definition can be made explicit in several ways.

The classical definition consists in describing an operad in terms of the spaces
P(n) of n-ary operations. This family of spaces forms the S-module, which is
equipped with “compositions of operations”. They satisfy some properties which
reflect functoriality, associativity and unitality of the monoidal definition.

The partial definition is a variation of the classical definition which takes ad-
vantage of the fact that we only need to know how to compose two operations to
describe the whole structure. It is a description by generators and relations.

There is also a combinatorial way of describing an operad. It is based on the
combinatorial objects which crop up in the description of a free operad, namely the
rooted trees. One can construct a monad in the monoidal category of S-modules
out of the rooted trees, and an operad is simply a representation of this monad (i.e.
an algebra over the monad). It has the advantage of deserving many variations by
changing these combinatorial objects. For instance, nonsymmetric operads, shuffle
operads, cyclic operads, modular operads, properads, permutads and several others
can be described analogously by replacing the rooted trees by some other combina-
torial objects, see Sect. 13.14.
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One should keep in mind that the most economical way of defining a concrete
operad is, most often, by describing the type of algebras that it determines. The rela-
tionship with the monoidal definition is via the notion of “free algebra” as mentioned
above. Another way is the following. A type of algebras is determined by generating
operations (possibly with symmetries) and relations (supposed to be multilinear).
The generating operations and their symmetries determine the S-module. Taking
all the formal compositions of operations gives the free operad on the generating
operations. The relations can be translated as relators which are operations in the
free operad. The relators determine an operadic ideal and the expected operad is the
quotient of the free operad by this ideal. The algebras over the quotient operad are
exactly the algebras of the starting type.

Historically one can say that operad theory began with composition of functions.
Let us mention the seminal paper of Michel Lazard “Lois de groupes et analyseurs”
[Laz55] where a system of compositions was called an “analyseur” (in French). It
gave rise to the notion of formal groups. For more about the history of “operads” we
refer to the first chapter of [MSS02].

Here is the content of this chapter. In Sect. 5.1 we introduce the notions of S-
module and of Schur functor, and various constructions on them. In Sect. 5.2 we
give the monoidal definition of an operad, and we define the notion of algebra (and
also of coalgebra) over an operad. Then we restrict ourselves for the rest of the book
to symmetric operads and nonsymmetric operads. In Sect. 5.3 we give the classical
and the partial definitions of a symmetric operad. In Sects. 5.4 and 5.5 we describe
in detail the free operad over an S-module. In Sect. 5.6 we give the combinatorial
definition of an operad. Then we make explicit the relationship between “types of
algebras” and algebraic operads in Sect. 5.7.

In Sect. 5.8 we introduce the notion of cooperad which will play a prominent role
in Koszul duality theory of quadratic operads.

In Sect. 5.9 we treat the notion of nonsymmetric operad. It can be read indepen-
dently of the first eight sections of this chapter. It consists in replacing the starting
S-modules by graded vector spaces. So, it is a simpler object and it can be consid-
ered as a toy-model in the operad theory.

Then we give a brief résumé of all the definitions and we end this chapter with a
list of exercises.

Though we work over a ground field K, many of the notions presented in this
chapter are valid when K is a commutative ring.

5.1 S-Module and Schur Functor

We introduce S-modules upon which the notion of algebraic operad is based in this
book. Composition of S-modules is the core of operad theory. To any S-module
is associated an endofunctor of Vect, called the Schur functor, and vice versa. The
interplay between both structures is a fruitful game.
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5.1.1 S-Module

By definition an S-module over K is a family

M = (M(0),M(1), . . . ,M(n), . . . ),
of right K[Sn]-modules M(n) (cf. Appendix A). It is sometimes called a “collec-
tion” in the literature. An S-module is said to be finite dimensional if M(n) is a
finite dimensional vector space for any n. For μ ∈M(n) the integer n is called the
arity of μ. A morphism of S-modules f :M → N is a family of Sn-equivariant
maps fn :M(n)→ N(n). When all the maps fn are injective the S-module M is
said to be a sub-S-module of N .

WhenM(0)= 0, the S-module is called reduced.

5.1.2 Schur Functor

To any S-moduleM we associate its Schur functor M̃ : Vect→ Vect defined by

M̃(V ) :=
⊕

n≥0

M(n)⊗Sn V
⊗n.

Here V⊗n = V ⊗ · · · ⊗ V︸ ︷︷ ︸
n

is viewed as a left Sn-module under the left action

σ · (v1, . . . , vn) := (vσ−1(1), . . . , vσ−1(n)).

So the tensor product over Sn (i.e. over the ring K[Sn]) used in the definition of
M̃ is well-defined. Equivalently M̃(V ) is the sum over n of the coinvariants of
M(n)⊗ V⊗n by the diagonal right action of Sn.

Any morphism of S-modules α :M→N gives rise to a transformation of func-
tors α̃ : M̃→ Ñ .

Sometimes we need to work with the product instead of the sum of the compo-
nents. We call complete Schur functor the infinite product:

M̂(V ) :=
∏

n≥0

M(n)⊗Sn V
⊗n.

If the S-module M is concentrated in arity 0 (resp. 1, resp. n), then the func-
tor M̃ is constant (resp. linear, resp. homogeneous polynomial of degree n). Ob-
serve that we get the identity functor, denoted Ĩ, by taking the Schur functor of
I := (0,K,0,0, . . . ), so Ĩ(V )= IdVect(V )= V .

In this subsection we use the two notations M and M̃ , but later on we will use
onlyM for both notions.

There are three important constructions on endofunctors of Vect: the direct sum,
the tensor product and the composition.



5.1 S-Module and Schur Functor 123

The direct sum of two functors F,G : Vect→ Vect is given by

(F ⊕G)(V ) := F(V )⊕G(V ).
The tensor product (F ⊗G) is given by

(F ⊗G)(V ) := F(V )⊗G(V ).
The composition of functors, denoted F ◦G, is given by

(F ◦G)(V ) := F (G(V )).
We are going to show that in each case, if the functors F and G are Schur func-

tors, then the resulting functor is also a Schur functor. We also unravel the S-module
from which it comes.

For the direct sum, it is immediate: for any S-modulesM and N their direct sum
is the S-moduleM ⊕N defined by

(M ⊕N)(n) :=M(n)⊕N(n).
It is obvious that

˜(M ⊕N)= M̃ ⊕ Ñ .

Lemma 5.1.1. Let M be an S-module. For any n ≥ 0 the multilinear part of
M̃(Kx1 ⊕ · · · ⊕Kxn) is isomorphic, as an Sn-module, toM(n).

Proof. First, it is clear that the multilinear part of M̃(Kx1 ⊕ · · · ⊕Kxn) inherits a
structure of Sn-module from the action of the symmetric group on the set of vari-
ables {x1, . . . , xn}. Second, the identification of these two Sn-modules is given by
μ �→ (μ⊗ x1 · · ·xn) for μ ∈M(n). �

5.1.3 Tensor Product of S-Modules

For any S-modules M and N their tensor product is the S-module M ⊗N defined
by

(M ⊗N)(n) :=
⊕

i+j=n
Ind Sn

Si×SjM(i)⊗N(j).

In this formula we use the notion of induced representation, cf. Appendix A.1. Since
the subset Sh(i, j) of (i, j)-shuffles of Sn is a convenient set of representatives of
the quotient Si × Sj\Sn (cf. 1.3.2), we have:

(M ⊗N)(n)∼=
⊕

i+j=n
M(i)⊗N(j)⊗K

[
Sh(i, j)

]
.
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This tensor product of S-modules is sometimes called in the literature the Cauchy
product.

Proposition 5.1.2. The tensor product of S-modules is associative with unit the S-
module (K,0,0, . . .). There is an equality of Schur functors:

˜(M ⊗N)= M̃ ⊗ Ñ .

Proof. The first part is straightforward. The proof of the equality follows from the
identities (where i + j = n):

(
Ind Sn

Si×SjM(i)⊗N(j)
)⊗Sn V

⊗n

= ((M(i)⊗N(j))⊗Si×Sj K[Sn]
)⊗Sn

(
V⊗i ⊗ V⊗j )

= (M(i)⊗N(j))⊗Si×Sj
(
V⊗i ⊗ V⊗j )

= (M(i)⊗Si
V⊗i
)⊗ (N(j)⊗Sj

V⊗j
)
. �

5.1.4 Composite of S-Modules

By definition the composite of the two S-modulesM and N is the S-module

M ◦N :=
⊕

k≥0

M(k)⊗Sk
N⊗k.

The notation N⊗k stands for the tensor product of k copies of the S-module N .
Observe that Sk is acting on N⊗k , that is Sk is acting on N⊗k(n) for all n and this
action commutes with the action of Sn.

For instance, let k = 2. Then N⊗2(n)= (N ⊗N)(n)=⊕i+j=nN(i)⊗N(j)⊗
K[Sh(i, j)]. The transposition [2 1] ∈ S2 is acting on the direct sum by sending

(μ, ν, σ ) ∈N(i)⊗N(j)⊗K
[
Sh(i, j)

]

to

(ν,μ,σ ′) ∈N(j)⊗N(i)⊗K
[
Sh(j, i)

]
where σ ′ = σ [j + 1 · · · i + j 1 · · · j ].

When M and N are determined by only one representation, the operation ◦ is
called the plethysm in representation theory.

Proposition 5.1.3. The composite of the two S-modules M and N satisfies the for-
mula

˜(M ◦N)= M̃ ◦ Ñ,
where, on the right-hand side, the symbol ◦ stands for the composition of functors.
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Proof. We want to prove M̃(Ñ(V ))= M̃ ◦N(V ). We get:

M̃ ◦ Ñ(V ) =⊕k M(k)⊗Sk
Ñ(V )⊗k

=⊕k M(k)⊗Sk
Ñ⊗k(V ) by compatibility of ⊗

=⊕k,p M(k)⊗Sk

(
N⊗k(p)⊗Sp V

⊗p) by inspection

=⊕k,p

(
M(k)⊗Sk

N⊗k(p)
)⊗Sp V

⊗p by associativity

=⊕p(M ◦N)(p)⊗Sp V
⊗p by definition of ◦

= M̃ ◦N(V ). �

Corollary 5.1.4. For any two S-modulesM and N one has

(M ◦N)(n)=
⊕

k≥0

M(k)⊗Sk

(⊕
Ind Sn

Si1×···×Sik
(
N(i1)⊗ · · · ⊗N(ik)

))

where the second sum is extended, for fixed k and n, to all the nonnegative k-tuples
(i1, . . . , ik) satisfying i1 + · · · + ik = n.

Recall that a positive k-tuple (i1, . . . , ik) such that i1 + · · · + ik = n is called a
k-composition of n.

The action of Sk on the right-hand side factor is on the set of k-tuples
{(i1, . . . , ik)}. This action is well-defined since the tensor product of vector spaces
is associative and commutative.

Proof. It follows from the preceding propositions. �

5.1.5 Example

Suppose thatM(0)=N(0)= 0 andM(1)=N(1)=K. Then we get

(M ◦N)(2)∼=M(2)⊕N(2),
(M ◦N)(3)∼=M(3)⊕ (M(2)⊗ IndS3

S2

(
N(2)

))⊕N(3),
where, as a vector space, IndS3

S2
(N(2)) is the sum of three copies of N(2). Indeed,

for k = 3, we get the component M(3)⊗S3 N(1)
⊗3 which is isomorphic to M(3).

For k = 1, we get the componentM(1)⊗S1 N(3) which is isomorphic to N(3). For
k = 2, we get the component

M(2)⊗S2

(
IndS3

S1×S2

(
N(1)⊗N(2))⊕ IndS3

S2×S1

(
N(2)⊗N(1))).

Since S2 is exchanging the two summands, we get the expected result.
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5.1.6 Notation

From now on we abandon the notation˜ and so we denote by the same symbol
the S-module and its associated Schur functor. Hence we freely treat an S-module
as an endofunctor of Vect. Accordingly a morphism of S-modules α :M → N is
sometimes called a transformation of functors (meaning: transformation of Schur
functors).

If f : F → F ′ and g : G→ G′ are two morphisms of S-modules (equivalently
natural transformations of Schur functors), then we denote sometimes the mor-
phisms

f ⊕ g : F
⊕

G→ F ′
⊕

G′, (5.1)

f ⊗ g : F ⊗G→ F ′ ⊗G′, (5.2)
f ◦ g : F ◦G→ F ′ ◦G′ (5.3)

by (f, g) when there is no confusion.

5.1.7 On the Notation of Elements in a Composite S-Module

As a consequence of Corollary 5.1.4 the space (M ◦N)(n) is spanned by the equiv-
alence classes of the elements

(μ;ν1, . . . , νk;σ)
(under the action of Sk) where μ ∈ M(k), ν1 ∈ N(i1), . . . , νk ∈ N(ik), σ ∈
Sh(i1, . . . , ik). When σ = idn ∈ Sn (the identity permutation), we denote the rel-
evant class either by

μ ◦ (ν1, . . . , νk)

or by

(μ;ν1, . . . , νk).

5.1.8 Associativity Isomorphism of the Composite [Sign Warning]

The composition of Schur functors is associative. It implies that the composition of
S-modules is associative too. We would like to insist on the following phenomenon
which does not happen in the algebra case (versus the operad case): in the associa-
tivity isomorphism (M ◦N) ◦P ∼=M ◦ (N ◦P) of S-modules, the switching map τ
(see Sect. 1.5.2) plays a role. Indeed, in the identification of the component

(
M(a)⊗N(b)⊗N(c))⊗ P(d)⊗ P(e)⊗ P(f )⊗ P(g)
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in (M ◦N) ◦ P with the component

M(a)⊗ ((N(b)⊗ P(d)⊗ P(e))⊗ (N(c)⊗ P(f )⊗ P(g))

inM ◦ (N ◦P) we need to use the switching map to carry N(c) over P(d)⊗P(e).
As said above this phenomenon1 does not occur in the algebra case and on the
left-hand side because the product ⊗ is bilinear and the product ◦ is linear on the
left-hand side. This phenomenon is important to notice in the sign-graded case since
the occurrence of τ may result in signs in the formulas.

5.1.9 Composite of Morphisms

For any pair f :M→M ′, g :N→N ′ of morphisms of S-modules, their composite
product f ◦ g :M ◦N→M ′ ◦N ′ is given explicitly by the formula

(f ◦ g)(μ;ν1, . . . , νk) :=
(
f (μ);g(ν1), . . . , g(νk)

)
,

where (μ;ν1, . . . , νk) represents an element of

M(k)⊗Sk

(⊕
Ind Sn

Si1×···×Sik
(
N(i1)⊗ · · · ⊗N(ik)

))
.

Beware: f ◦ g does not mean the composite of g and f in the sense of composition
in a category, which has no meaning here anyway.

Observe that this composite is not linear in the right-hand side variable.

Proposition 5.1.5. The category of S-modules (S-Mod,◦, I) is a monoidal category.

Proof. It follows from the comparison to Schur functors. �

In a first reading, the rest of this section can be bypassed and the reader can move
to the beginning of Sect. 5.2.

1If the grandfather J wants to make a picture of his family, then he has two choices. He can put
his children E, H and S on his right side, and then the grandchildren Y, B, A further right. Or, he
can put the grandchildren on the right side of their parent: E, Y, B and H, A, and then put these
subfamilies on his right. That gives two different pictures since JEHSYBA �=JEYBHAS. If J had
only one child, the pictures would have been the same.
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5.1.10 Generating Series

To any finite dimensional S-module M = {M(n)}n≥0 we associate its generating
series (also called Hilbert–Poincaré series) defined by

fM(x) :=
∑

n≥0

dimM(n)

n! xn.

Proposition 5.1.6. Let M and N be two finite dimensional S-modules. The follow-
ing equalities hold:

fM⊕N(x)= fM(x)+ f N(x),
fM⊗N(x)= fM(x)f N(x),
fM◦N(x)= fM(f N(x)),

assuming N(0)= 0 in the last equality.

Proof. The first equality is immediate. The second one follows from Sect. 5.1.3.
The third one (with N(0)= 0) follows from Corollary 5.1.4. �

5.1.11 Symmetric Function Indicator

There is a finer invariant than the generating series: the Frobenius characteristic.
Starting with an S-moduleM , it consists in taking the isomorphism class of the Sn-
representation M(n) in the Grothendieck group of the representations of Sn. The
sum over n gives an element in

∏
n Rep(Sn) which is known to be isomorphic to

the algebra of symmetric functions. The image of this element, denoted by FM , is
called the Frobenius characteristic. The operations ⊕, ⊗, ◦ on S-modules commute
with their counterpart in the algebra of symmetric functions, cf. [Mac95].

5.1.12 Hadamard Product of S-Modules

By definition the Hadamard product of the two S-modules P and Q is the S-
module P ⊗

H
Q given by

(
P ⊗

H
Q
)
(n) :=P(n)⊗Q(n),

where the action of Sn is the diagonal action.
The generating series of P ⊗

H
Q is not the Hadamard product of the generating

series of P and Q, but it will be it in the nonsymmetric framework, see Sect. 5.9.10
for a discussion on this matter.
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5.1.13 Linear Species

A right S-module M can be viewed as a functor from the groupoid S of symmet-
ric groups to the category Vect (or the category of K-modules if K is a commuta-
tive ring). As a consequence it can be extended as a contravariant functor from the
groupoid Bij of finite sets and all bijections to the category of vector spaces. We
suppose that the empty set is an object of Bij. If X is a finite set, then the extended
functor, still denoted byM , is given by the coinvariant space:

M(X) :=
( ⊕

f :n→X
M(n)

)

Sn

where the sum is over all the bijections from n := {1, . . . , n} to X. The right action
of σ ∈ Sn on (f ;μ) for μ ∈M(n) is given by (f ;μ)σ = (f σ ;μσ ).

Such a functor is sometimes called a linear species, cf. [Joy86], [AM10,
Sect. B.1.1]. Here is the translation of the above constructions into this language.
LetM and N be functors from Bij to Vect. For any set X we have:

(M ⊕N)(X)=M(X)⊕N(X),
(M ⊗N)(X)=

⊕

X=Y'Z
M(Y )⊗N(Z),

where the sum is over all the ordered disjoint unionsY 'Z of X,

(M ◦N)(X)=
⊕

B∈PART(X)

M(B)⊗
⊗

b∈B

N(Xb),

where PART(X)= set of decompositions of X(see below)
(
M ⊗

H
N
)
(X)=M(X)⊗N(X).

See for instance [AM10, Appendix B].

5.1.14 On the Notation
⊗

b∈B N(Xb)

A decomposition of the finite set X is a family of subsets {Xb}b∈B of X such that
their disjoint union is X. We let n be the number of elements in B . For any con-
travariant functor N : Bij→ Vect we define

⊗

b∈B
N(Xb) :=

( ⊕

f :n→B
N(Xf (1))⊗ · · · ⊗N(Xf (n))

)

Sn

where the sum is over all the bijections from n to B . As usual, the right action of Sn
on the direct sum is given by

(f ;μ1, . . . ,μn)
σ = (f σ ;μσ(1), . . . ,μσ(n)),

where σ ∈ Sn and μi ∈N(Xf (i)).
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5.1.15 Invariants Versus Coinvariants

The Schur functor P(V ) can be written as a sum of coinvariant spaces

P(V )=
⊕

n

(
P(n)⊗ V⊗n)

Sn

where the symmetric group is acting diagonally on the tensor product. Here we use
the fact that V⊗n is a right module over Sn.

Instead of working with coinvariants we could choose to work with invariants,
that is to define

�P(V ) :=
⊕

n

(
P(n)⊗ V⊗n)Sn .

Everything would work, because the direct sum, the tensor product and the compo-
sition of such functors are of the same type. In particular, there exists a composition
◦̄ of S-modules such that, for any two S-modules P and Q, one has

�P ◦ �Q = �(P ◦̄Q).

This composite is given by

(P ◦̄Q)(n) :=
⊕

r

(
P(r)⊗Q⊗r)Sr (n).

Recall that the norm map of an Sn-moduleM is given by

MSn →MSn , x �→
∑

σ∈Sn
xσ .

The norm map induces an S-module map P ◦Q→P ◦̄Q since we took coinvari-
ants on the left-hand side and invariants on the right-hand side. Whenever Q(0)= 0
the induced transformation of functors

Φ : �(P ◦Q)→ �(P ◦̄Q)

is an isomorphism since Sr is acting freely on Q⊗r (cf. [Sto93, Fre00]).
In characteristic zero the norm map is an isomorphism, so P(V )→ �P(V ) is

an isomorphism (see Appendix A). However in positive characteristic we get two
different functors.

5.2 Algebraic Operad and Algebra over an Operad

We define a symmetric operad as a monoid in the monoidal category of symmetric
modules. Since this is a monad, that is a monoid in the category of endofunctors of
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Vect, one can define the notion of an algebra over an operad. Replacing S-modules
by arity graded vector spaces we get the notion of nonsymmetric operad. Taking
invariants in place of coinvariants we get the notion of divided power operad. We
call them collectively “algebraic operads”.

5.2.1 Monoidal Definition of an Operad

By definition a symmetric operad P = (P, γ, η) is an S-module P = {P(n)}n≥0
endowed with morphisms of S-modules

γ :P ◦P →P

called composition map, and

η : I→P

called the unit map, which make P into a monoid.
Explicitly, the morphisms γ and η satisfy the classical axioms for monoids, that

is associativity:

P ◦ (P ◦P)
Id◦γ

P ◦P

γ

(P ◦P) ◦P

∼=

γ ◦Id

P ◦P
γ

P

and unitality:

I ◦P
η◦Id

=

P ◦P

γ

P ◦ I
Id◦η

=
P.

Hence for any vector space V one has linear maps

γ (V ) :P(P(V )
)→P(V ) and η(V ) : V →P(V ).

In the literature a monoid structure on an endofunctor is often called a monad,
cf. Appendix B.4. Interpreting the S-module P as a Schur functor, the monoid
structure on P is nothing but a monad in the category of vector spaces.
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Let Q be another symmetric operad. A morphism of operads from P to Q is
a morphism of S-modules α :P →Q, which is compatible with the composition
maps. In other words, the following diagrams are supposed to be commutative:

P ◦P
(α,α)

γP

Q ◦Q

γQ

I
ηP ηQ

P
α

Q P
α

Q.

The category of operads over VectK is denoted by OpK or Op.
In order to differentiate between the notion of composition in the operadic frame-

work (the map γ ) and the classical notion of composition of functors in category
theory (denoted by ◦), we will sometimes say “operadic composition” for the first
one.

Here we are mainly interested in the notion of operads in the category of vector
spaces, or modules over a commutative ring, or in the category of chain complexes
(dg spaces), but it is immediate to verify that it makes sense in any symmetric mo-
noidal category with infinite sums such that finite sums commute with the monoidal
structure.

When P(0)= 0, the operad is called reduced.

5.2.2 Operadic Module

A left module over the symmetric operad P is an S-module M together with an S-
module morphism P ◦M→M satisfying associativity and unitality with respect
to the operad structure on P . The terminology varies a lot in the literature. It is
sometimes called a “twisted P-algebra”, or sometimes simply a “P-algebra” ; see
[Fre09a] for a thorough study of this structure. There is a particular case which is
important: whenM is constant, that is concentrated in arity 0. This gives rise to the
notion of algebra over an operad, see below.

Observe that the notion of right module, which is obvious to define, gives rise to
a completely different structure.

A bimodule (or two-sided module) over P is an S-module M together with
morphisms of S-modules P ◦M →M and M ◦P →M satisfying the classical
axioms of associativity and unitality for two-sided modules.

5.2.3 Algebra over an Operad

By definition an algebra over the operad P , or a P-algebra for short, is a vec-
tor space A equipped with a linear map γA : P(A)→ A such that the following
diagrams commute:



5.2 Algebraic Operad and Algebra over an Operad 133

P(P(A))
P(γA)

P(A)

γA(P ◦P)(A)

=

γ (A)

I(A)
η(A)

=

P(A)

γA

P(A)
γA

A A.

The transformation of functors γ applied to A, that is γ (A), is not to be confused
with P(γA) which is the functor P applied to the map γA. They have the same
source and the same target, but they are different.

Let A′ be another P-algebra. A morphism of P-algebras is a linear map f :
A→A′ which makes the following diagram commutative:

P(A)
γA

P(f )

A

f

P(A′)
γA′

A′.
We denote by P-alg the category of P-algebras.

Observe that if P is interpreted as a monad, then this is the classical notion of
an algebra over a monad, see Appendix B.4.

5.2.4 Functors Between Categories of Algebras

Let α :P →Q be a morphism of operads. Then there is a well-defined functor

α∗ :Q-alg−→P-alg.

Indeed, the P-algebra associated to the Q-algebra A has the same underlying vec-
tor space structure and the composition map is the composite

P(A)
α(A)−→Q(A)→A.

Observe that the functor which assigns to an operad the category of algebras over
this operad is contravariant.

We give in Proposition 5.2.2 an interpretation of a P-algebra as a morphism of
operads.

5.2.5 Free P-Algebra

In the category of P-algebras, a P-algebra F (V ), equipped with a linear map
η : V →F (V ) is said to be free over the vector space V if it satisfies the following
universal condition:
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For any P-algebraA and any linear map f : V →A there is a unique P-algebra
extension f̃ :F (V )→A of f :

V
η

f

F (V )

f̃

A.

Observe that a free algebra is unique up to a unique isomorphism, cf. Ap-
pendix B.2.2.

In other words, F is a functor Vect→P-alg which is left adjoint to the forgetful
functor:

HomP-alg

(
F (V ),A

)∼=HomVect(V ,A).

For any vector space V one can equip P(V ) with a P-algebra structure as
follows. Define

γP(V ) := γ (V ) :P
(
P(V )

)→P(V ).

The axioms defining the operad P show that (P(V ), γ (V )) is a P-algebra.

Proposition 5.2.1. The P-algebra (P(V ), γ (V )) equipped with η(V ) : V →
P(V ) is the free P-algebra over V .

Proof. For any linear map f : V → A, where A is a P-algebra, we consider the

composition f̃ :P(V )
P(f )−−−→P(A)

γA→A. It extends f since the composite

V
η(V )−−→P(V )

P(f )−−−→P(A)
γA−→A

is f by P(f ) ◦ η(V )= η(A) ◦ f and γA ◦ η(A)= IA.
The following diagram is commutative by functoriality and the fact that A is a

P-algebra:

P(P(V )) P(V )

f̃P(P(A)) P(A)

P(A) A.

It implies that the map f̃ is a P-algebra morphism.
Let us show that the map f̃ is unique. Since we want f̃ to coincide with f on V

and we want f̃ to be an algebra morphism, there is no other choice by f̃ . �
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5.2.6 Endofunctors of Vect

In Sect. 5.1 we showed that any S-module gives rise to an endofunctor of Vect, called
the associated Schur functor. Similarly any graded vector space P = {Pn}n≥0 gives
rise to an endofunctor of Vect by the formula

P(V ) :=
⊕

n≥0

Pn ⊗ V⊗n.

We remark immediately that this endofunctor is the Schur functor associated to the
S-module, still denoted by P , given by

P(n) :=Pn ⊗K[Sn].
Writing P(n) or Pn suffices to indicate which framework we are working in.
Moreover, most of the time, it is only the endofunctor which is relevant.

A third interesting case consists in starting with an S-module and taking the
invariants instead of the coinvariants when forming the endofunctor:

�P(V ) :=
⊕

n≥0

(
P(n)⊗ V⊗n)Sn .

5.2.7 Symmetric Operads

In a symmetric operad (P, γ, η) the composition map γ is made up of linear maps

γ (i1, . . . , ik) :P(k)⊗P(i1)⊗ · · · ⊗P(ik)−→P(i1 + · · · + ik)
that will be studied in the next section.

If A is a P-algebra, then the structure map γA determines maps

P(n)⊗A⊗n� P(n)⊗Sn A
⊗n γA(n)−−−→A.

Therefore, any element μ ∈P(n) and any n-tuple a1 . . . an ∈ A⊗n give rise to an
element

γA(n)(μ;a1 . . . an) ∈A.
Such an element μ is called an n-ary operation and P(n) is called the space of
n-ary operations. By abuse of notation we write

μ(a1 . . . an) := γA(n)(μ;a1 . . . an),

and we call μ an operation on A.
The unit functor η : I→P defines a particular element in P(1), namely the im-

age of 1 ∈K= I(1), which we denote by id ∈P(1) and call the identity operation.
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Indeed we have id(a) = a for any a ∈ A. For any symmetric operad P the space
P(1) inherits the structure of a unital associative algebra over K. It is given by the
map γ (1) :P(1)⊗P(1)→P(1) and id is the unit of P(1).

5.2.8 Nonsymmetric Operads

A nonsymmetric operad (ns operad for short) is an arity graded vector space
P = {Pn}n≥0 endowed with morphisms γ :P ◦P →P and η : I →P which
make it into a monoid in the monoidal category of arity graded vector spaces. The
composition map γ is completely determined by maps

γi1,...,ik :Pk ⊗Pi1 ⊗ · · · ⊗Pik −→Pi1+···+ik

for n= i1 + · · · + ik and η is determined by an element id ∈P1. See Sect. 5.9 for
more.

A nonsymmetric operad P gives rise to an operad, usually still denoted by P ,
such that P(n) =Pn ⊗K[Sn]. The action of the symmetric group is induced by
the Sn-module structure of the regular representation K[Sn]. The composition map
is the tensor product

γ (i1, . . . , ik)= γi1,...,ik ⊗ γ Ass(i1, . . . , ik)

where γ Ass is the composition map of the operad Ass that will be described below.
Such a symmetric operad is sometimes called a regular operad.

5.2.9 Operads with Divided Powers

Definitions and results of this subsection come from Benoit Fresse’s paper [Fre00]
in which the reader will find the details. Let {P(n)}n≥0 be an S-module with
P(0)= 0. Recall that there is defined an endofunctor �P by using invariants in-
stead of coinvariants:

�P(V ) :=
⊕

n≥1

(
P(n)⊗ V⊗n)Sn .

An operad with divided powers is a monoid structure on �P , that is a composition
map γ̄ : �P ◦ �P → �P which is associative and unital.

If P = (P, γ, η) is a symmetric operad, then it determines an operad with di-
vided powers as follows. First, recall from Sect. 5.1.15 that the norm map permits
us to construct a map Φ : �(P ◦P)→ �(P ◦̄P) which happens to be an isomor-
phism. The composition map γ̄ is defined as the composite

�P ◦ �P = �(P ◦̄P)
Φ−1−−→ �(P ◦P)

�(γ )−−→ �P.
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An algebra over �P is called a P-algebra with divided powers. It can be shown
that if P(n) is Sn-projective, e.g. P(n) is the regular representation, then a P-
algebra with divided powers is the same as a P-algebra. It is also the case in char-
acteristic zero since the norm map is then an isomorphism.

From this construction it follows that there is a forgetful functor from the cate-
gory of P-algebras with divided powers to the category of P-algebras. It is often
a challenge to find a presentation of the first out of a presentation of the second.

One of the interests of the notion of algebras with divided powers is the following
result, proved in [Fre00]. Let A• be a simplicial P-algebra. If A• is 2-reduced (that
is A0 =A1 = 0), then its homotopy π∗(A•) is a graded �P-algebra. For P = Com
it is a result of Henri Cartan (cf. loc.cit.).

5.2.10 First Examples of Operads

We show that a unital associative algebra can be interpreted as an operad. Then we
introduce the “three graces”, the operads Ass,Com and Lie. In the next section we
treat the endomorphism operad which can be seen as a toy-model for the operad
structure.

EXAMPLE 0. A unital associative algebra is an example of an operad. Indeed, let
R be a unital associative algebra and consider the S-moduleM given byM(1)=R
and M(n) = 0 otherwise. Then we have M(V ) = R ⊗ V , and an operad structure
on M is equivalent to a unital associative algebra structure on R. The composition
map γ is induced by the product on R:

γ (V ) :M ◦M(V )→M(V ),

R⊗R⊗ V →R⊗ V, (r, s, v) �→ (rs, v).

The unit map η is induced by the unit of R. An algebra over this operad is simply
a left R-module. So any unital associative algebra is an example of an algebraic
operad.

In particular, if R = K, then we get the identity operad I, that we sometimes
denote by V ect to emphasize the fact that its category of algebras is simply the
category of vector spaces Vect.

EXAMPLE 1. Let Ass : Vect → Vect be the Schur functor given by Ass(V ) :=
�T (V ) = ⊕n≥1V

⊗n (reduced tensor module). As an S-module we have Ass(n) =
K[Sn] (regular representation), since K[Sn] ⊗Sn V

⊗n = V⊗n for n ≥ 1, and
Ass(0) = 0. The map γ (V ) : Ass(Ass(V ))→ Ass(V ) is given by “composition of
noncommutative polynomials”. This is the symmetric operad encoding associative
algebras since an algebra over Ass is a nonunital associative algebra. So the free
Ass-algebra over the vector space V is nothing but the reduced tensor algebra �T (V )
(cf. Sect. 1.1.3).

The symmetric operad Ass comes from a nonsymmetric operad, denoted As, for
which Asn =Kμn (one-dimensional space) for n≥ 1. On associative algebras, μn
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is the n-ary operation μn(x1, . . . , xn) = x1 · · ·xn. This basic example is treated in
more detail in Chap. 9.

The operad of unital associative algebras, denoted uAss, is the same except that
uAss(0) = K. The image of 1 ∈ uAss(0), in the unital associative algebra A, is the
unit of A. The free algebra is the tensor algebra: uAss(V )= T (V ).

In the process which associates a symmetric operad to a nonsymmetric operad
the composition map is given by

γ (i1, . . . , ik)= γP
i1,...,ik

⊗ γ Ass(i1, . . . , ik)

up to a reordering of the factors on the source space.
Since Ass(n) is the regular representation, there is no difference between asso-

ciative algebras with divided powers and associative algebras.

EXAMPLE 2. Let Com : Vect→ Vect be the Schur functor given by

Com(V ) := �S(V )=
⊕

n≥1

SnV =
⊕

n≥1

(
V⊗n
)
Sn
.

As an S-module we have Com(n)=K with trivial action, since

K⊗Sn V
⊗n = (V⊗n)

Sn
= SnV for n≥ 1,

and Com(0)= 0. The map γ (V ) : Com(Com(V ))→ Com(V ) is given by “composi-
tion of polynomials”. This is the symmetric operad encoding commutative algebras
since an algebra over Com is a nonunital commutative algebra (in the sense commu-
tative and associative). So the free Com-algebra over the vector space V is nothing
but the (nonunital) symmetric algebra �S(V ) (cf. Sect. 1.1.8).

Since any commutative algebra is an associative algebra, there is a functor
Com-alg−→ Ass-alg. It is induced by the morphism of operads Ass→ Com, which,
in degree n, is the augmentation map K[Sn]→K, σ �→ 1 (projection onto the trivial
representation). This case is treated in more details in Chap. 13.

It is proved in [Fre00] that the notion of “divided power commutative algebras”
is the classical one, see Sect. 13.1.12 for the precise presentation.

EXAMPLE 3. Let Lie : Vect → Vect be the functor such that the space Lie(V ) ⊂
�T (V ) is generated by V under the bracket operation [x, y] := xy−yx. We know by
Corollary 1.3.5 that this is the free Lie algebra on V . Let Lie(n) be the multilinear
part of degree n in the free Lie algebra Lie(Kx1 ⊕ · · · ⊕Kxn). One can show that
there is an operad structure on the Schur functor Lie induced by the operad structure
on Ass (Lie polynomials of Lie polynomials are again Lie polynomials). An algebra
over the operad Lie is a Lie algebra.

Any associative algebra is a Lie algebra under the antisymmetrization of the
product [x, y] = xy − yx. This functor Ass-alg−→ Lie-alg is induced by the mor-
phism of operads Lie→ Ass, which, in arity n, is the inclusion Lie(n)� Ass(n)=
K[Sn] mentioned above. This case is treated in more detail in Sect. 13.2.
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It is proved in [Fre00] that the notion of “divided power Lie algebras” over a field
with positive characteristic coincides with the notion of restricted Lie algebras in-
troduced by Nathan Jacobson [Jac62], see Sect. 13.2.15 for the precise presentation.

5.2.11 Endomorphism Operad

For any vector space V the endomorphism operad EndV is given by

EndV (n) :=Hom
(
V⊗n,V

)
,

where, by convention, V⊗0 =K. The right action of Sn on EndV (n) is induced by
the left action on V⊗n. The composition map γ is given by composition of endo-
morphisms:

V⊗i1⊗
f1

· · · ⊗V⊗ik
fk

= V⊗n

f1⊗···⊗fk

V⊗ · · ·
f

⊗V = V⊗k

f

V = V

γ (f ;f1, . . . , fk) := f
(
f1 ⊗ · · · ⊗ fk

)
.

It is immediate to verify that EndV is an algebraic operad.

Proposition 5.2.2. A P-algebra structure on the vector space A is equivalent to a
morphism of operads P → EndA.

Proof. This statement follows from the natural isomorphism

HomSn

(
P(n),Hom

(
A⊗n,A

))=Hom
(
P(n)⊗Sn A

⊗n,A
)
. �

By definition a graded P-algebra over the graded operad P is a graded vector
space A (i.e. an object in the sign-graded category gVect) and a morphism of graded
operads P → EndA. We leave it to the reader to write down the compatibility
conditions in terms of the map γA :P(A)→A.

5.2.12 Algebras over an Operad: Functorial Properties

By abuse of notation, we often denote by μ : A⊗n→ A the image of μ ∈ P(n)

under γA in EndA(n). It follows immediately from the interpretation of an algebra
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over an operad given in Proposition 5.2.2 that if α : P → Q is a morphism of
operads, then any Q-algebra A has a P-algebra structure via the composition of
operad morphisms

P →Q→ EndA.

Hence we get the functor

α∗ :Q-alg−→P-alg.

This functor, which is analogous to the restriction functor for modules, admits a left
adjoint, analogous to the induced functor for modules. It is denoted by

α! :P-alg→Q-alg

and constructed as follows. For any P-algebra A, the Q-algebra α!(A) is the quo-
tient of the free Q-algebra Q(A)which identifies the two different P-algebra struc-
tures. It is a particular case the relative composite product which will appear in
Sect. 11.2.1. Explicitly it is given by the coequalizer:

Q ◦P ◦A
ρ◦IdA

IdQ ◦γA
Q ◦A Q ◦P A=: α!(A),

where the right P-action ρ on Q is the composition Q ◦P
IdQ ◦α−−−−→Q ◦Q

γQ

−−→Q.
In the particular case of the morphism α : Lie→ Ass we obtain the universal algebra
of a Lie algebra: α!(g)=U(g).

5.2.13 Ubiquity of the Elements of P(n)

Let Vn =Kx1 ⊕ · · · ⊕Kxn be an n-dimensional vector space with preferred basis.
The element

x1 ⊗ · · · ⊗ xn ∈ V⊗nn ⊂P(Vn)
⊗n

is called the generic element. Applying the n-ary operation μ ∈P(n) to the generic
element gives an element of the free P-algebra over Vn:

γP(Vn) :P(n)⊗P(Vn)
⊗n→P(Vn),

μ⊗ (x1 ⊗ · · · ⊗ xn) �→ μ(x1, . . . , xn)

(this is a slight abuse of notation since we do not mention γ ). The resulting map

P(n)→P(Vn),

μ �→ μ(x1, . . . , xn)
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is one-to-one onto the multilinear part of degree n of P(Vn). The relationship with
the action of the symmetric group is as follows. For σ ∈ Sn, we have

μσ (x1, . . . , xn)= μ
(
σ · (x1, . . . , xn)

)= μ(xσ−1(1), . . . , xσ−1(n))

in P(Vn).
So, any such μ can be viewed either as an n-ary operation or as an element of

some specific free P-algebra.
In practice we will often talk about “the operation x ∗ y” to mean “the operation

μ ∈ P(2) determined by μ(x, y) := x ∗ y”. Similarly we will allow ourselves to
say “the relation (x ∗ y) ∗ z = x ∗ (y ∗ z)”, when we really mean “the relator μ ◦
(μ, id)−μ ◦ (id,μ) ∈T (E)(3)”, see Sect. 5.5 for the notation T .

5.2.14 Operadic Ideal and Quotient Operad

An operadic ideal (or simply ideal) of an operad P is a sub-S-module I of P
such that the operad structure of P passes to the quotient P/I . Explicitly it is
equivalent to the following conditions. For any family of operations {μ;ν1, . . . , νk},
if one of them is in I , then we require that the composite γ (μ;ν1, . . . , νk) is also
in I .

5.2.15 Coalgebra over an Operad

Let V be a vector space. By definition the co-endomorphism operad over V , denoted
coEndV , is given by

coEndV (n) :=Hom
(
V,V⊗n

)
.

The right action of Sn on coEndV (n) is induced by the right action on V⊗n. The
composition map is given by composition of morphisms:

V = V

V⊗ · · · ⊗V = V⊗k

V⊗i1⊗ · · · ⊗V⊗ik = V⊗n.

By definition a coalgebra C over the operad P is a vector space C and a mor-
phism of operads

P −→ coEndC.
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Explicitly, for any n, the data is an Sn-equivariant map

P(n)⊗C −→ C⊗n.

The image of μ ∈ P(n), that is the map C→ C⊗n, is called an n-ary coopera-
tion and, often, still denoted by μ by abuse of notation. In order to simplify the
terminology we allow ourselves to call C a P-coalgebra.

When P is the associative operad Ass, an Ass-coalgebra is a coassociative
coalgebra (also called associative coalgebra) as defined in Sect. 1.2.1. In the case
P = Com it is a cocommutative (and coassociative) coalgebra. We simply say
commutative coalgebra. When P = Lie we get the notion of Lie coalgebra (some-
times referred to as coLie coalgebra). Explicitly a Lie coalgebra is a vector space L
equipped with a linear map � : L→ L⊗L which is antisymmetric, i.e. τ�=−�,
and satisfies the co-Leibniz rule:

(�⊗ Id)�= (Id⊗�)�+ (Id⊗τ)(�⊗ Id)�.

5.3 Classical and Partial Definition of an Operad

From now on, by “operad” we mean symmetric operad. So we suppose that the
endofunctor is in fact a Schur functor induced by an S-module.

The classical definition of an operad is quite technical, but it is the most common
form appearing in algebraic topology papers on operads. For the third definition
one takes advantage of the fact that the operadic structure can be determined out of
some elementary compositions called “partial compositions”. It is very helpful in
some frameworks because it has the minimal number of generators.

5.3.1 Classical Definition of an Operad (J.P. May [May72])

Let us now describe explicitly the operad structure on S-modules. By Corollary 5.1.4
the vector space (P ◦P)(n) is a quotient of the direct sum of all the possible tensor
products P(k)⊗P(i1)⊗ · · · ⊗P(ik) for i1 + · · · + ik = n. So, the composition
map γ of the operad P defines linear maps

γ (i1, . . . , ik) :P(k)⊗P(i1)⊗ · · · ⊗P(ik)−→P(i1 + · · · + ik).

Pictorially this composition looks as follows:



5.3 Classical and Partial Definition of an Operad 143

μ1 μ2 · · · μk

μ

�→

· · ·

μ ◦ (μ1, . . . ,μk)

The next proposition gives the conditions under which a family of linear maps
γ (i1, . . . , ik) gives rise to an operad.

Proposition 5.3.1. Let P = {P(n)}n≥0 be an S-module. The maps

γ (i1, . . . , ik) :P(k)⊗P(i1)⊗ · · · ⊗P(ik)−→P(i1 + · · · + ik)

define an operad structure on P if and only if they satisfy the following conditions:
(a) for any integers k and n, the map

∑
γ (i1, . . . , ik) :P(k)⊗

(⊕
P(i1)⊗ · · · ⊗P(ik)

)

−→P(n),

where the direct sum is over all k-tuples (i1, . . . , ik) such that i1 + · · · + ik = n,
factors through the tensor product over Sk . Moreover it is equivariant with respect
to the action of Si1 × · · · × Sik (we use the natural embedding of this group product
into Sn),

(b) for any set of indices (j1,1, . . . , j1,i1 , j2,1, . . . , j2,i2, . . . , jn,1, . . . , jn,in) the
following square is commutative (we leave out the ⊗ signs):

P(n)P(r1) · · ·P(rn)

P(n)P(i1)P(j1,1) · · ·P(j1,i1)P(i2)P(j2,1) · · · · · ·P(jn,in)

∼=

P(n)P(i1) · · ·P(in)P(j1,1) · · ·P(j1,i1)P(j2,1) · · · · · ·P(jn,in)

P(m)P(j1,1) · · ·P(j1,i1)P(j2,1) · · · · · ·P(jn,1) · · ·P(jn,in) P(�)

where rk = jk,1 + · · · + jk,ik for k = 1 to n, m = i1 + · · · + in and � = r1 +
· · · + rn,
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(c) there is an element id in P(1) such that the evaluation of γ (n) : P(1) ⊗
P(n)→P(n) on (id,μ) is equal to μ, and the evaluation of γ on (μ; id . . . , id) is
equal to μ.

Proof. Starting with an algebraic operad (P, γ, η), we get the maps γ (i1, . . . , ik)
by restriction to the identity shuffle. The unit map defines an inclusion η : K→
P(1), whose image of 1 = 1K is the identity operation id. Then, it is clear that
the axioms of functoriality, associativity and unitality of the operad data imply the
properties (a), (b) and (c).

On the other hand, starting with an S-module P and maps γ (i1, . . . , ik), we
construct a monoid structure on the Schur functor as follows. Condition (a) provides
a transformation of functors γ :P ◦P →P . Condition (b) ensures associativity
of γ . Condition (c) ensures unitality. �

As a consequence of Proposition 5.3.1 one can define an operad as an S-module
{P(n)}n≥0 equipped with maps γ (i1, . . . , ik) for all k-tuples (i1, . . . , ik) satisfy-
ing the equivariance conditions (a), the associativity condition (b), and the unitality
condition (c). This is what we call the classical definition of an operad.

5.3.2 Hadamard Product of Operads

Let P and Q be two operads. The Hadamard tensor product P ⊗
H

Q of the under-

lying S-modules (cf. Sect. 5.1.12) has a natural operad structure:

(P ⊗
H

Q)(k)⊗ (P ⊗
H

Q)(n1)⊗ · · · ⊗ (P ⊗
H

Q)(nk)

=P(k)⊗Q(k)⊗P(n1)⊗Q(n1)⊗ · · · ⊗P(nk)⊗Q(nk)

∼=P(k)⊗P(n1)⊗ · · · ⊗P(nk)⊗Q(k)⊗Q(n1)⊗ · · · ⊗Q(nk)

−→P(n)⊗Q(n)= (P ⊗
H

Q)(n)

for n= n1 + · · · + nk . Observe that we use the switching map in the category Vect
to put the factors Q(i) in the correct position. Therefore, when Vect is replaced by
another symmetric monoidal category (cf. Appendix B.3) signs might be involved.
The operad uCom is obviously a unit for this operation.

The operad P ⊗
H

Q is the Hadamard product of the operads P and Q.

Proposition 5.3.2. Let A be a P-algebra and let B be a Q-algebra. The tensor
product A⊗B is a P ⊗

H
Q-algebra.

Proof. Let us denote by γA : P → EndA and by γB : Q → EndB the respective
actions of P on A and of Q on B . Then the action of P ⊗

H
Q on A⊗ B is given
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by the following composite

P ⊗
H

Q
γA⊗

H
γB

−−−−→ EndA ⊗
H

EndB→ EndA⊗B,

where the last map is defined by

Hom
(
A⊗n,A

)⊗Hom
(
B⊗n,B

)→Hom
(
A⊗n ⊗B⊗n,A⊗B)

∼= Hom
(
(A⊗B)⊗n,A⊗B).

We leave it to the reader to verify that this map is a morphism of operads. �

5.3.3 Hopf Operads

A Hopf operad is a reduced operad P with a morphism of operads �P : P →
P ⊗

H
P called the coproduct of P and a morphism of operads εP : P → Com

called the counit. This structure is supposed to be coassociative and counital. Since
�P and εP are determined by their arity n components

�P (n) :P(n)→ (P⊗
H

P)(n)=P(n)⊗P(n), εP :P(n)→ Com(n)=K,

a Hopf operad is equivalently defined as an operad in the category of counital coal-
gebras. The main purpose of this definition lies in the following result.

Proposition 5.3.3. When P is a Hopf operad, the tensor product A ⊗ B of two
P-algebras A and B is again a P-algebra, and there is a natural isomorphism

(A⊗B)⊗C ∼=A⊗ (B ⊗C)
where C is also a P-algebra.

Proof. Proposition 5.3.2 asserts thatA⊗B is a P⊗
H

P-algebra. Then the following

composite

P
�P−−→P ⊗

H
P → EndA⊗B

defines a P-algebra structure on A⊗ B as explained above in Sect. 5.2.11. Coas-
sociativity of �P ensures the validity of the last assertion. �

The operads Ass and Com are Hopf operads, their diagonals are given by
�Ass : σ ∈ Sn �→ σ ⊗ σ ∈K[Sn] ⊗K[Sn] and by �Com : Com(n)=K

∼−→K⊗K=
Com(n)⊗ Com(n) respectively. (It is a good basic exercise to prove that they are
morphisms of operads.) With these definitions in mind, we get an operadic inter-
pretation of the fact that the tensor product of two associative (resp. commutative)
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algebras is again an associative (resp. commutative) algebra with the product given
by μ(a⊗ b, a′ ⊗ b′)= μ(a, a′)⊗μ(b, b′).

It is also a good exercise to show directly that the operad Lie has no nontrivial
diagonal, that is Lie is not a Hopf operad.

5.3.4 Partial Definition of an Operad

Let P be an operad and let μ ∈P(m), ν ∈P(n) be two operations. By definition
the partial composition (μ, ν) �→ μ ◦i ν ∈P(m− 1+ n) is defined, for 1≤ i ≤m,
by “substitution”:

− ◦i − :P(m)⊗P(n)−→P(m− 1+ n),
μ ◦i ν := γ (μ; id, . . . , id, ν, id, . . . , id).

Pictorially it is represented by the following grafting of trees, where the root of
ν is grafted onto the ith leaf of μ:

ν

i

μ

The relationship between this partial composition and the action of the symmetric
groups is given by the following two relations. First, for any σ ∈ Sn we have:

μ ◦i νσ = (μ ◦i ν)σ ′

where σ ′ ∈ Sm−1+n is the permutation which acts by the identity, except on the
block {i, . . . , i − 1+ n} on which it acts via σ . Second, for any σ ∈ Sm we have:

μσ ◦i ν = (μ ◦σ(i) ν)σ ′′

where σ ′′ ∈ Sm−1+n is acting like σ on the block {1, . . . ,m− 1+n}\{i, . . . , i− 1+
n} with values in {1, . . . ,m−1+n}\{σ(i), . . . , σ (i)−1+n} and identically on the
block {i, . . . , i − 1+ n} with values in {σ(i), . . . , σ (i)− 1+ n}.

There are two different cases for two-stage partial compositions, depending on
the relative positions of the two graftings:
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ν

μ

j

λ

i

(I)

μ · · · · · · ν

λ

i k

(II)

In both cases associativity of the composition in an operad leads to some relation
for the partial composition:

{
(I) (λ ◦i μ) ◦i−1+j ν = λ ◦i (μ ◦j ν), for 1≤ i ≤ l, 1≤ j ≤m,
(II) (λ ◦i μ) ◦k−1+m ν = (λ ◦k ν) ◦i μ, for 1≤ i < k ≤ l,

for any λ ∈P(l), μ ∈P(m), ν ∈P(n). Relation (I) is called the sequential com-
position axiom and relation (II) is called the parallel composition axiom.

Conversely an operad can be defined as being an S-module P equipped with
partial compositions ◦i satisfying the compatibility with the action of the symmetric
groups, and the two associativity relations (I) and (II) described above. It is also
assumed that there is an element id in P(1) satisfying id◦1ν = ν and μ ◦i id= μ.
This gives the partial definition of an operad.

In case where the S-modules are graded, there is a sign in formula (II) (because
μ and ν are exchanged):

(λ ◦i μ) ◦k−1+m ν = (−1)|μ||ν|(λ ◦k ν) ◦i μ.

Proposition 5.3.4. The partial definition of an operad is equivalent to the classical
definition of an operad, and so to all the other definitions.

Proof. We already remarked that, starting with an operad P , we get the partial
compositions which satisfy the aforementioned properties. In the other direction,
starting with partial compositions − ◦i − one constructs maps

γ (i1, . . . , in) :P(n)⊗P(i1)⊗ · · · ⊗P(in)−→P(i1 + · · · + in)

as

γ (i1, . . . , in)=
(− ◦1

(· · · (− ◦n−1 (− ◦n −)
)·)).

It is a tedious, but straightforward, task to verify that the axioms of the classical
definition of an operad are fulfilled. �
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5.3.5 Set Operads and Other Types of Operads

In this monograph we are mainly concerned with algebraic operads, that is operads
in the category of vector spaces and dg vector spaces (or dg modules). The proper-
ties of the category Vect which are used here are: the tensor product is associative,
commutative, unital (symmetric monoidal category) and distributive with respect
to the direct sum. Notice that the classical and the partial definitions of an operad
do not require that, in the underlying symmetric monoidal category, the monoidal
product commutes with the coproduct.

One can define operads with values in other symmetric monoidal categories (for
instance tensor categories). For instance, the category of sets (resp. simplicial sets,
resp. topological sets) equipped with the cartesian product is a symmetric monoidal
category. Here are some details for the category Set.

By definition a set operad (sometimes called set-theoretic operad) is a family of
Sn-sets P(n) such that the functor

P : Set→ Set, X �→
⊔

n

P (n)×Sn X
n

is equipped with a monoid structure. Here Xn denotes the cartesian product of n
copies of the set X. The composition map gives rise to maps

γ (i1, . . . , ik) : P(k)× P(i1)× · · · × P(ik)→ P(i1 + · · · + ik),
which satisfy properties analogous to those of the linear case (cf. Sect. 5.3.1).

To any set X we can associate the vector space K[X] based on X. This functor is
the left adjoint to the forgetful functor from vector spaces to sets. Any set operad P
gives rise to an algebraic operad P under this functor: P(n) :=K[P(n)]. We will
meet some algebraic operads coming from set operads in the sequel. For instance
the operad Ass comes from the set operad P(n) = Sn and the operad Com comes
from the set operad P(n)= {∗}.

The category of S-modules can be equipped with an associative and commutative
tensor product M ⊗N , cf. Sect. 5.1.3. So we can define an operad in this symmet-
ric monoidal category. Such an object is sometimes ambiguously called a twisted
operad.

Starting with the category of topological spaces (resp. simplicial spaces)
equipped with the cartesian product, one can define analogously the notion of topo-
logical operads (resp. simplicial operads). There is a large amount of literature on
these objects, see for instance [May72, MSS02]. In the next section we give an
example, which has the advantage of exposing the main feature of the operadic
calculus.

5.3.6 The Little Discs Operad

The little discs operad D is a topological symmetric operad defined as follows. The
topological space D(n) is made up of the unit disc (in C) with n non-intersecting
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Fig. 5.1 Little discs
configuration in D(3)

subdiscs in its interior. So, an element on D(n) is completely determined by a family
of n continuous maps fi : S1 → D2, i = 1, . . . , n, satisfying the non-intersecting
condition, see Fig. 5.1.

The enumeration of the interior discs is part of the structure. The operadic com-
position is given by insertion of a disc in an interior disc. The symmetric group
action is given by permuting the labels. Figure 5.2 gives an example of a partial
composition.

It is clear how to proceed to define the little k-discs operad or the little k-cubes
operad. For k = 1 it is called the little interval operad.

The main property of the little k-discs operad is the following “recognition prin-
ciple” proved by Boardman and Vogt in [BV73] and May in [May72]:

Claim. If the connected topological space X is an algebra over the little discs op-
erad, then it is homotopy equivalent to the k-fold loop space of some other pointed
space Y :

X ∼�k(Y ).

5.4 Various Constructions Associated to an Operad

From an operad, one can construct a symmetric monoidal category, a group, a preLie
algebra and a Hopf algebra.

5.4.1 Category Associated to an Operad [BV73]

Let P be an algebraic operad. We associate to it a symmetric monoidal cate-
gory denoted catP as follows. The objects of catP are the natural numbers:
0,1, . . . , n, . . .. It will prove helpful to consider n as the set {1,2, . . . , n}, so 0= ∅.
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Fig. 5.2 Example of partial composition in the little discs operad

The morphisms of catP are defined as

catP(m,n ) :=
⊕

f :m→n

n⊗

i=1

P
(
f−1(i)

)

where f is a set map from {1,2, . . . ,m} to {1,2, . . . , n}. Here we use the extension
of the functor n �→P(n) to the category of finite sets, cf. Sect. 5.1.13. Observe that
for n= 1 we get catP(m,1 )=P(m).

Here is an example of a morphism in catP :

m= 6 2 3 6 1 4 5

μ ν

n= 3 1 2 3

where μ ∈P(3), ν ∈P(2).
Observe that there is no harm in taking the finite sets as objects.
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Proposition 5.4.1. The operad structure of P induces on cat P a structure of
symmetric monoidal category which is the addition of integers on objects.

Proof. The composition of morphisms in the category catP is obtained through the
compositions in P , see [MT78, Sect. 4] for an explicit formula.

Associativity of the composition in catP follows readily from associativity of
the composition in P .

The Sn-module structure of P(n) accounts for the action of the automorphism
group of n.

The symmetric monoidal structure of catP is given by the addition of integers on
objects, and therefore by concatenation of morphisms. We see by direct inspection
that it is compatible with composition. �

Observe that the symmetric monoidal category catP is completely determined
by the Hom-spaces HomcatP ( n,1 ) = P(n) under the composition product (and
concatenation). So even among the symmetric monoidal categories based on N they
are very special categories. There are examples of more general symmetric monoidal
categories called “props”, which code for the “generalized bialgebras”, cf. [Lod08].

Proposition 5.4.2. Let P be an algebraic operad. A P-algebra A is equivalent to
a symmetric monoidal functor catP → Vect of the form n �→A⊗n.

Proof. The functor in the other direction is simply given by evaluation at 1. The
properties are verified straightforwardly. �

EXAMPLE 1 (cat uCom). Let P = uCom be the operad of unital commutative al-
gebras. The category cat uCom is the linearization of the category of finite sets,
denoted Fin:

cat uCom=K[Fin].
Indeed, it suffices to show that cat CMon = Fin, where CMon is the set operad
of unital commutative monoids. Since CMon(n) = {∗} (one element), we have
cat CMon(m,n)= {f :m→ n} = Fin(m,n ) and we are done.

EXAMPLE 2 (cat uAss). Let P = uAss be the operad of unital associative alge-
bras. As in the previous case we can work in the set operad framework. The op-
erad cat Mon of unital monoids admits the following description. Its objects are
the integers n, n ∈ N, and the morphisms, elements of cat Mon(m,n), are the lin-
ear maps f : {1, . . . ,m} → {1, . . . , n} equipped with a total ordering on each fiber
f−1(i),1≤ i ≤ n, see Appendix B.5.3. Observe that for any composite g ◦f the set
(g ◦f )−1(i) inherits a total ordering. See [Pir02a] for more details. This category is
denoted by �S in [FL91, Lod98] because any morphism can be written uniquely as
a composite of a morphism in the simplicial category � and an isomorphism (i.e. a
permutation).
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It is an example of a “matched pair of categories”. Hence we have

cat uAss=K[�S].
Note that there is a shift of notation: in � the object with n+ 1 elements is usually
denoted by [n].

5.4.2 Group Associated to a Symmetric Operad

We consider a partition P of n := {1, . . . , n} into k subsets. We order this partition
by the minimum of each subset: P= (P1, . . . ,Pk) with

min(P1) <min(P2) < · · ·<min(Pk).

Let ij = #Pj . We denote by (i1, . . . , ik) the set of ordered partitions whose
j th part has cardinal ij (see Sect. 8.2.1 for examples). Any ordered partition
P ∈ (i1, . . . , ik) defines a (i1, . . . , ik)-unshuffle σP.

Let P be a reduced operad, i.e. P(0)= 0. We consider the series

a := (a0, a1, . . . , an, . . .)

where an ∈P(n+ 1). We denote by G(P) the set of series for which a0 is invert-
ible for the multiplication in P(1). We define a binary operation a b on this set as
follows:

( a b )n :=
∑

k

∑

(i1,...,ik)
i1+···+ik=n

∑

P∈ (i1,...,ik)

γ > (ak−1;bi1−1, . . . , bik−1) ◦ σP.

Proposition 5.4.3. [LN12] The binary operation ( a, b ) �→ a b makes G(P) into
a group with unit 1= (id,0,0, . . .).

Proof. First, we remark that the symmetric group Sk is acting freely on the set

⋃

(i1,...,ik)
i1+···+ik=n

Sh−1(i1, . . . , ik).

Second, the quotient of this set by Sk is precisely

⋃

(i1,...,ik)
i1+···+ik=n

(i1, . . . , ik).

Hence the associativity property of the product follows readily from the associativity
property of γ .
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The existence of an inverse, that is for any a there exists b such that a b = 1, is
achieved by induction. For instance, when a0 = id, we get

b1 =−a1, b2 =−a2 + a1 ◦1 a1 + (a1 ◦1 b1)
[132] + a1 ◦2 a1. �

Observe that for P = Com, the group G(P) is isomorphic, in characteristic
zero, to the group of power series in one variable with no constant term and with
first coefficient invertible, under the composition. More precisely the isomorphism
is given by

(a0, a1, . . . , an, . . . ) �→ a0x + a1

2! x
2 + a2

3! x
3 + · · · + an−1

n! x
n + · · · ,

where ai ∈K.

5.4.3 Pre-Lie Algebra Associated to a Symmetric Operad

Let P be an operad with P(0) = 0 and consider the space
⊕
n≥1 P(n), resp.∏

n≥1 P(n). We construct a bilinear operation {−,−} as follows:

{μ,ν} :=
i=m∑

i=1

∑

P

(μ ◦i ν)σP

for μ ∈P(m), ν ∈P(n) and the sum is extended over the ordered partitions P ∈
(1, . . . ,1, n− i + 1︸ ︷︷ ︸

ith position

,1, . . . ,1).

Proposition 5.4.4. The binary operation {−,−} makes
⊕
nP(n), resp.

∏
nP(n),

into a pre-Lie algebra, and hence into a Lie algebra.

Proof. From the properties of the partial operations it follows that the binary op-
eration {−,−} is pre-Lie (cf. definition Sect. 1.4). Indeed, computing explicitly the
associator {{λ,μ}, ν}−{λ, {μ,ν}}we get a sum over trees of type II (see Sect. 5.3.4)
where the vertices at the upper level are decorated by either μ or ν. So this sum is
symmetric in μ and ν and, as a consequence, the associator is symmetric in the last
two variables as expected. �

5.4.4 Hopf Algebra Associated to a Symmetric Operad

Since the space
⊕
n≥1 P(n) is a pre-Lie algebra, a fortiori it is a Lie algebra. Tak-

ing the universal enveloping algebra of this Lie algebra gives a Hopf algebra (cf.
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Sect. 1.1.10). This is in fact a combinatorial Hopf algebra in the sense of [LR10],
which is cofree (by PBW theorem) and left-sided. So one can recover the pre-Lie al-
gebra structure on the primitive part from this data. A direct construction of the Hopf
algebra from the operad can also be performed, see for instance [Moe01, vdLM06].

5.5 Free Operad

By definition the free operad over the S-module M is an operad F (M) equipped
with an S-module morphism η(M) :M→F (M) which satisfies the following uni-
versal condition:

Any S-module morphism f :M→P , where P is an operad, extends uniquely
into an operad morphism f̃ :F (M)→P :

M
η(M)

f

F (M)

f̃

P.

In other words the functor F : S-Mod → OpK is left adjoint to the forgetful func-
tor OpK → S-Mod. We will show that the free operad exists and we will construct
it explicitly. Observe that the free operad over M is well-defined up to a unique
isomorphism.

Another, less ad hoc, construction is given in Sect. 5.5.5.

5.5.1 The Tree Module and the Free Operad

We give an explicit construction of the free operad following [BJT97, Rez96]. We
rely on the fact that the composition of S-modules − ◦− is linear on the left-hand
side. The classical “tensor algebra” construction does not work here because−◦− is
not linear on the right-hand side. For a more general construction which works when
no linearity is assumed whatsoever, see Sect. 5.5.5 and [Val09]. In the following
construction, one takes advantage of the left linearity to produce a particular colimit
which gives the free operad.

Let M be an S-module. By induction we define the functor TnM : Vect→ Vect
as follows:

T0M := I,

T1M := I⊕M,
T2M := I⊕ (M ◦ (I⊕M)),

· · ·
TnM := I⊕ (M ◦Tn−1M),

· · ·
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The transformation of functors in : Tn−1M → TnM is defined inductively by
i1 : I ↪→ I⊕M (inclusion in the first factor) for n= 1, and by in = IdI⊕(IdM ◦in−1)

higher up. Observe that in is a split monomorphism. By definition the tree module
T M over the S-moduleM is:

T M :=
⋃

n

TnM = colimnTnM.

Observe that TnM contains M◦n but is strictly larger in general. In terms of trees
(cf. Sect. 5.6) TnM is the space of trees with at most n levels, whose vertices are
labeled by I andM . We write i for any of the inclusion maps TnM� TmM and jn
or simply j for the inclusion of the second factor M ◦ Tn−1M� TnM . This last
map induces a transformation of functors j :M→T M .

Theorem 5.5.1 (The free operad construction). There is an operad structure γ on
T M such that T (M) := (T M,γ, j) is the free operad onM , so F (M)∼=T M .

Proof. We follow Appendix B of [BJT97] by Baues, Tonks and Jibladze word for
word. In order not to confuse the composition of functors ◦ with the composition of
transformations of functors, we denote this latter one by juxtaposition. The identity
transformation of a functor F is denoted by IdF or simply by Id.

The steps of the proof are as follows:

(1) we construct the map γ :T M ◦T M→T M ,
(2) we prove that γ is associative and unital,
(3) we prove that (T M,γ, j) satisfies the universal property of a free operad.

(1) First, we construct the composition map γ : T M ◦ T M → T M . For any
integers n and m we construct a map

γn,m :TnM ◦TmM→Tn+mM

by induction on n as follows. For n= 0 ,

γ0,m := Id : I ◦TmM =TmM→TmM.

For higher n, γn,m is the composite

TnM ◦TmM = (I⊕ M ◦Tn−1M) ◦TmM ∼=TmM ⊕ (M ◦Tn−1M) ◦TmM

∼=TmM ⊕M ◦ (Tn−1M ◦TmM)

(Id,Id◦γn−1,m)−−−−−−−−→TmM ⊕M ◦Tn+m−1M
i+j−−→Tn+mM.

Observe that, in this definition of the composite, we use the associativity isomor-
phism (cf. Sect. 5.1.8)

(M ◦Tn−1M) ◦TmM ∼=M ◦ (Tn−1M ◦TmM).
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We prove that the map γ is compatible with the colimits on n and onm by induction.
For n = 0 it is immediate since γ0,m = Id. From n− 1 to n it is a consequence of
the commutativity of the following diagrams:

TmM ⊕M ◦Tn−1M ◦TmM
i+j (Id◦γn−1,m)

i

Tn+mM

i

TmM ⊕M ◦TnM ◦TmM
i+j (Id◦γn,m)

Tn+m+1M

TmM ⊕M ◦Tn−1M ◦TmM
i+j (Id◦γn−1,m)

i

Tn+mM

i

Tm+1M ⊕M ◦Tn−1M ◦Tm+1M
i+j (Id◦γn−1,m+1)

Tn+m+1M.

So we have proved that γn+1,m(i ◦ Id)= i(γn,m)= γn,m+1(Id◦i). By passing to
the colimit we get a well-defined map γ :T M ◦T M→T M .

(2) Let us show now that γ is associative. It is sufficient to prove that for any p,
q , r we have the equality

γp+q,r (γp,q ◦ Id)= γp,q+r (Id◦γq,r ) :TpM ◦TqM ◦TrM→Tp+q+rM.

We work by induction on p. For p = 0 it is immediate since γ0,m = Id. We leave
it to the reader to write down the diagram which shows that associativity for p − 1
implies associativity for p.

The map i : I=T0M→T M is the unit. Indeed, it is sufficient to prove that the
following diagram is commutative

I ◦Tm+1M
(i,Id)

i

TnM ◦Tm+1M

γn,m+1

Tm+1M ⊕M ◦Tn−1M ◦Tm+1M
i+j (Id◦γn−1,m+1)

Tn+m+1M.

(3) Finally we prove that (T M,γ, j) is the free operad over M . Let P be an
operad with composition γP and unit ηP . It is sufficient to prove that there are mor-
phisms of operads φP : T P →P and ψP :P → T P natural in the variable
P such that both composites

P
ψP−→T P

φP−→P, T M
T (ψM)−→ T T M

φT M−→ T M

are the identity (T left adjoint to the forgetful functor). The first one shows the
existence of the extension of f :M → P to T M and the second one shows its
uniqueness.

We construct φP : T P →P as follows. For n = 0, take φ0 = ηP : T0P =
I→P . For n= 1, take φ1 = ηP + IdP :T1P = I⊕P →P . By induction, take
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φn = ηP + γP (IdP ◦φn−1) : TnP = I ⊕ (P ◦ Tn−1P)→ P . Since φn ◦ i =
φn−1, we get at the colimit a transformation of functors φP : T P → P . The
expected properties of φP are straightforward to prove by induction. �

5.5.2 Examples

(a) Let M = (0,W,0, . . . ,0, . . .) where W is a vector space. The Schur functor is
M(V )=W ⊗V . SinceM is linear, that isM(V ⊕V ′)=M(V )⊕M(V ′), it follows
that

TnM = I⊕M ⊕M ◦M ⊕ · · · ⊕M◦n,

and therefore T M = (0, T (W),0, . . .). We recover that the free associative algebra
is the tensor algebra, cf. Sect. 1.1.3.

(b) LetM = (0,0,K[S2],0, . . . ,0, . . .)where K[S2] is the regular representation.
From the description of the free operad in terms of trees (see Sect. 5.6.1) it follows
that

TnM =
⊕

k≤n
(T M)(k) ∼=

⊕

k≤n
K[PBTk] ⊗K[Sk], n≥ 1,

where PBTk is the set of planar binary rooted trees with k leaves, cf. Appendix C.2.
See Sect. 5.9.6 for the precise identification with trees.

(c) Let M = (0,0,M2 ⊗K[S2],0, . . . ,0, . . .). The same argument as in the pre-
vious example shows that (TM)(n)= (M2)

⊗n−1 ⊗K[PBTn] ⊗K[Sn]. It is helpful
to think of its elements as binary operations decorating the vertices of a tree:

λ ν

μ

5.5.3 Weight-Grading of the Free Operad

We introduce a weight grading on the free operad: the weight is the number of
generating operations needed in the construction of a given operation of the free
operad.

LetM be an S-module and let T (M) be the free operad onM . By definition the
weight w(μ) of an operation μ of T (M) is defined as follows:

w(id)= 0, w(μ)= 1 when μ ∈M(n),
and more generally

w(ν;ν1, . . . , νn)=w(ν)+w(ν1)+ · · · +w(νn).
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We denote by T (M)(r) the S-module of operations of weight r . So we get
T (M)(0) =K id (concentrated in arity 1) and T (M)(1) =M .

EXAMPLE 1. Suppose that M = (0,W,0, . . . ,0, . . .). Then T (M) is simply
(0, T (W),0, . . . ,0, . . .) where T (W) is the tensor algebra. The weight grading
of the tensor operad corresponds to the weight grading of the tensor algebra, cf.
Sect. 1.1.3.

EXAMPLE 2. Suppose that M = (0,0,E,0, . . . ,0, . . .) where E is an S2-module.
So the free operad T (M) is generated by binary operations. Then T (M)(r) is con-
centrated in arity r + 1 and is exactly T (M)(r + 1). Indeed, an operation on r + 1
variables in T (M) needs r binary operations to be constructed. This is the reason
why, when dealing with binary operads, the weight is, in general, not mentioned.

5.5.4 Presentation of an Operad

Let M be an S-module generated (as an S-module) by elements μi . Let I be an
ideal in the free operad T (M) and let rj be generators of the ideal I . Then a
(T (M)/I )-algebra is determined by the set of operations μi (with their symmetry)
and the set of relations rj = 0.

5.5.5 Another Construction of the Free Operad

In this subsection, taken out of [Val08], we give an outline of a construction of the
free operad which has the advantage of working in any monoidal category satisfying
some mild assumptions.

We denote byM+ the augmented S-module ofM , that is

M+ := I⊕M,
and we writeMn := (M+)◦n = (· · · ((M+ ◦M+) ◦M+) ◦ · · · ◦M+︸ ︷︷ ︸

n

). The inclusions

of I andM inM+ are denoted respectively by η : I→M+ and ηM :M→M+. The
map

ηi :Mn ∼=Mi ◦ I ◦Mn−i Id◦η◦Id−−−−→Mi ◦M+ ◦Mn−i ∼=Mn+1

is called the ith degeneracy map.
The colimit over the degeneracy maps, that is

I=M0 M1 M2 M3 · · · ,
is too large to be the free object, essentially because, in the composition ((xy)(zt)),
the order of parenthesizing (xy first or zt first?) should be irrelevant. So we are
going to make a quotient of these spaces.
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Since I is a unit for ◦ there are isomorphisms λ : I ◦M ∼=M and ρ :M ◦ I∼=M .
We consider the composite

τ :M λ−1⊕ρ−1

−−−−−→ I ◦M ⊕M ◦ I
η◦ηM−ηM◦η−−−−−−−→ (M+)◦2 =M2.

For any S-modules A and B there is a well-defined S-module

RA;B := Im
(
A ◦ (M ⊕M2) ◦B IdA◦(τ+Id

M2 )◦IdB−−−−−−−−−−−→A ◦M2 ◦B
)
.

We put

M̃n :=Mn/

n−2∑

i=0

RMi ;Mn−2−i .

It can be shown that, under this quotient, the degeneracy maps ηi , for i = 1, . . . , n,

are equal and define η : M̃n→ M̃n+1. By definition F (M) is the (sequential) col-
imit of

M̃
η−→ M̃2 η−→ M̃3 η−→ · · · .

Theorem 5.5.2 [Val08] In any monoidal category such that the monoidal product
preserves sequential colimits and reflexive coequalizers, F (M) can be equipped
with a monoid structure that is free overM .

The advantage of this construction lies in its generalization to some types of
bialgebras. In order to develop the same kind of arguments, the notion of an operad
has to be replaced by the notion of properad, see Sect. 13.14.9. The aforementioned
result produces the free properad, cf. [Val07b].

5.6 Combinatorial Definition of an Operad

In this section we give a fourth definition of an operad based on some combinatorial
objects: the rooted trees. The main advantage of this presentation is to admit several
important variations by changing the combinatorial objects and/or by decorating
them. For instance, if we replace the rooted trees by ladders, then we get unital
associative algebras in place of operads. If we take planar rooted trees, then we get
nonsymmetric operads. If we take nonrooted trees, then we get cyclic operads, cf.
Sect. 13.14 and [GK95a]. A far-reaching generalization has been given by Borisov
and Manin in [BM08], see also [Lei04].

5.6.1 The Monad of Trees

A reduced rooted tree is a nonplanar rooted tree such that each vertex has one input
or more, cf. Appendix C.3. Let X be a finite set. For any tree t ∈ RT (X) (i.e. we
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are given a bijection from the set of leaves of t to X) we denote by vert(t) the set
of vertices of t and by in(v) the set of inputs of the vertex v ∈ vert(t). Let M be an
S-module with M(0) = 0 or, equivalently, a functor M : Bij → Vect, X �→M(X),
such thatM(∅)= 0, cf. Sect. 5.1.13.

We define the treewise tensor product M(t) as follows:

M(t) :=
⊗

v∈vert(t)

M
(
in(v)

)
.

See Sect. 5.1.14 for the precise meaning of ⊗v∈vert(t). Using this notation we define
a functor

T : S-Mod→ S-Mod

by

T(M)(X) :=
⊕

t∈RT (X)
M(t).

It is helpful to think about an element of T(M)(X) as a sum of rooted trees where
each vertex v is decorated by an element of M(in(v)) and each leaf is decorated by
an element of X.

First, we construct a transformation of functors

ι : IdS-Mod → T

as follows. For any S-module M we have to say what is the S-module morphism
M → T(M), i.e. for any finite set X a linear map M(X)→ T(M)(X). In the set
of trees RT (X), there is a particular one t = cor which is the corolla. We have
M(cor)=M(X) by definition, since the corolla has only one vertex. Hence M(X)
is a direct summand of T(M)(X). The expected map is the corresponding inclusion.

Second, we construct a transformation of functors

α : T ◦T→ T

as follows. The substitution of trees consists in replacing the vertices of a tree by
given trees (with matching inputs) like in Fig. 5.3.

In order to perform the substitution in the tree t we need, for any v ∈ vert(t) a
tree tv and a bijection in(v)∼= leaves(tv).

Lemma 5.6.1. The substitution of trees defines a transformation of functors α :
T ◦T→ T which is associative and unital. So (T, α, ι) is a monad.

Proof. From the definition of T we get
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Fig. 5.3 Substitution

T
(
T(M)

)
(X)=

⊕

t∈RT (X)
T(M)(t)

=
⊕

t∈RT (X)

( ⊗

v∈vert(t)

T(M)
(
in(v)

)
)

=
⊕

t∈RT (X)

( ⊗

v∈vert(t)

( ⊕

s∈RT (in(v))
M(s)

))

.

The decoration of the vertex v in t is an element of T(M)(in(v)), that is a tree
whose leaves are labeled by in(v). This is exactly the data which permits us to per-
form the substitution. So we get an element of T(M)(X). As a result we have defined
an S-module morphism α(M) : T(T(M))→ T(M). Obviously this morphism is
functorial inM so we have constructed a transformation of functors α : T ◦T→ T.
The substitution process is clearly associative, so α is associative.

Recall that the unit ι consists in identifying an element μ of M(X) with the
corolla with vertex decorated by μ. Substituting a vertex by a corolla does not
change the tree. Substituting a corolla by a vertex gives the former tree. Hence α
is also unital.

We have proved that (T, α, ι) is a monad. �

5.6.2 Combinatorial Definition

The combinatorial definition of an operad consists in defining it as an algebra over
the monad (T, α, ι), cf. Appendix B.4. In other words an operad is an S-module
P together with an S-module map T(P)→P compatible with α in the obvious
sense.

Proposition 5.6.2. [GJ94] The combinatorial definition of an operad is equivalent
to the partial definition of an operad, and therefore to all the other definitions.
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Proof. It suffices to verify that the partial operation is indeed a substitution and that
the substitution of trees satisfies the two axioms (I) and (II) of partial operations
defining an operad. �

Proposition 5.6.3. For any S-module M , T(M) is an operad which is the free op-
erad T (M) overM .

Proof. Since T(M) is an algebra over the monad (T, α, ι), by Proposition 5.6.2 it is
an operad. Checking that it is free is analogous to the proof of Proposition 5.2.1. �

5.6.3 Comparison of the Two Constructions of the Free Operad

Recall that in Theorem 5.5.1 we constructed the free operad on M inductively as a
colimit: T (M)= colimnTnM , where

T0M := I,

T1M := I⊕M,
TnM := I⊕ (M ◦Tn−1M).

Since T (M) and T(M) are both the free operad on M we know that they are iso-
morphic. We make this isomorphism explicit as follows.

The map T0M = I → T(M) is given by the operation id ∈ T(M)(1). The map
M→ T(M) is given by μ �→ corolla, where the number of leaves of the corolla is
the arity of μ, and the single vertex is decorated by μ. By induction we suppose that
Tn−1M → T(M) has been constructed. The map M ◦ Tn−1M → T(M) is obvi-
ously given by the composition in T(M) of the images ofM and of Tn−1M . Notice
that, under the above isomorphism, the Sn-module TnM corresponds to linear com-
bination of trees with at most n levels. More details are given in Sect. 5.9.6.

5.7 Type of Algebras

We make explicit the relationship between the notion of algebraic operad and some
types of algebras. We suppose that we are in characteristic zero.

5.7.1 Type of Algebras and Presentation of an Operad

Let P-alg be a category of algebras presented as follows. An object of P-alg is a
vector space A equipped with some n-ary operations μi : A⊗n→ A (possibly for
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various n’s), called the generating operations satisfying some relations rj = 0. Let
us suppose that the relations are multilinear, that is of the form

∑

φ

φ(a1, . . . , an)= 0 for all a1, . . . , an ∈A,

where φ is a composite of the generating operations μi . An element like r =∑φ is
called a relator. Let us denote byM the S-module which is, in arity n, the Sn-module
spanned by the generating n-ary operations. We take into account the symmetries
of these operations to determine the Sn-module structure. A relator determines an
operation in the free operad T M . Let R be the sub-S-module of T M spanned by
all the relators, and let (R) be the operadic ideal of T M generated by R. Then we
get the operad T M/(R).

Let us denote by P(V ) the free P-algebra over V . It defines a functor P :
Vect→ Vect.

Lemma 5.7.1. The functor P is a Schur functor whose arity n component is the
multilinear part of the free P-algebra P(Kx1 ⊕ · · · ⊕ Kxn). Moreover P is an
algebraic operad.

Proof. Let us first prove that the free algebra P(V ) of the given type P is equipped
with a monoid structure. Since P(V ) is free over V , it comes with a natural map
V →P(V ) that we denote by η(V ). Consider the map IdP(V ) :P(V )→P(V )

as a well-defined map from the vector space W =P(V ) to the algebra P(V ) of
type P. By the universal property, there exists a lifting of IdP(V ) denoted γ (V ) :
P(P(V ))=P(W)→P(V ). It is clear that this morphism of algebras of type P
is functorial in V .

Again, from the universal property of free algebras, we deduce that γ is associa-
tive. From the fact that γ (V ) is a lifting of IdP(V ) we deduce that γ is unital. Hence
(P, γ, η) is a monoid in the category of endofunctors of Vect.

Let us now show that P is a Schur functor. Since the relations are multilinear,
the free P-algebra over V is the direct sum of its homogeneous components. By
the Schur Lemma (cf. Sect. A.2.3) the homogeneous component of degree n (in
characteristic zero) is of the form P(n)⊗Sn V

⊗n for some Sn-module P(n). Taking
V = Vn =Kx1 ⊕ · · · ⊕Kxn we verify that P(n) is the multilinear part of the free
P-algebra over Vn as an Sn-module, cf. Lemma 5.1.1. So it follows that the free
P-algebra over V is of the form

P(V )=
⊕

n≥0

P(n)⊗Sn V
⊗n,

as expected. �

Lemma 5.7.2. Let P be a type of algebras defined by the S-module of generating
operations M and the S-module of relators R ⊂ T M . Then the operad P con-
structed above coincides with the quotient operad T M/(R).
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Proof. By definition of the operad T M/(R) out of the type of algebras P, it follows
that (T M/(R))(V ) is the free P-algebra over V . By construction we also know that
P(V ) is a free P-algebra over V . Since the identification (T M/(R))(V )=P(V )

is functorial in V , we are done. �

Proposition 5.7.3. In characteristic zero, a type of algebras whose relations are
multilinear determines an operad. The category of algebras over this operad is
equivalent to the category of algebras of the given type.

Proof. From the preceding results we know that the type P determines the operad
P . From the identification of P with T M/(R) it follows that the two categories
of algebras P-alg and P-alg are equivalent. �

5.7.2 Examples

The associative algebras, the commutative algebras and the Lie algebras are exam-
ples of types of algebras with multilinear relations. The operad that they determine
is denoted by Ass, Com and Lie respectively. Though they will be studied in de-
tail later on, let us make some comments on the cases of commutative algebras and
associative algebras.

Since the free commutative algebra over {x1, . . . , xn} is the polynomial algebra
(modulo the constants), it follows that Com(n)=K for n≥ 1, and its generator μn
is the n-ary operation determined by

μn(x1, . . . , xn)= x1 · · ·xn ∈K[x1, . . . , xn].

The action of Sn is trivial, hence Com(n) is the one-dimensional trivial representa-
tion. From the classical “composition” of polynomials, it follows that

γ (μk;μi1, . . . ,μik )= μi1+···+ik .
Since the free associative algebra over {x1, . . . , xn} is the noncommutative poly-

nomial algebra (modulo the constants), it follows that Ass(n)=K[Sn], and the n-ary
operation μσ corresponding to σ ∈ Sn is determined by

μσ (x1, . . . , xn)= xσ−1(1) . . . xσ−1(n) ∈K〈x1, . . . , xn〉.
The action of Sn is by multiplication, so Ass(n) is the regular representation. From
the classical “composition” of noncommutative polynomials, it follows that

γ (σ ;σ1, . . . , σk)= σ̃ ◦ (σ1, . . . , σk),

where σ̃ is the block permutation associated to σ .
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5.7.3 Kernels

Let Q-alg→P-alg be a functor between two types of algebras, which is supposed
to commute with the forgetful functor to vector spaces:

Q-alg P-alg

VectK.

By looking at the free algebras, we check that it comes from a morphism of
operads α :P →Q. We know that I⊕ Kerα is an operad, so there is a new type
of algebras (I⊕ Kerα)-alg. In many examples P and Q are presented by a small
number of generators and relations, but no such small presentation is known for
I⊕Kerα in general. These are examples where the use of operads is a necessity.

5.7.4 A Universal Presentation

We know that a group can always be presented as follows: the generators are its
elements and the relations are given by the table of multiplication. Similarly an
operad can always be presented as follows. Choose a linear basis for P(n), n≥ 1,
and take the composite products as relations.

5.7.5 Non-examples (?)

Here are two examples of types of algebras, which, a priori, do not fall directly into
the operad theory because the relations are not multilinear. However minor changes
will make them accessible.

A Jordan algebra A is a vector space equipped with a binary operation which
satisfies the relation

(
a2b
)
a = a2(ba).

It seems to lie outside our framework since the relation fails to be multilinear. How-
ever it suffices to multilinearize it and we get the following type of algebras: one
binary symmetric operation ab and one relation

(ab)(dc)+ (ac)(db)+ (bc)(da)= ((ab)d)c+ ((ac)d)b+ ((bc)d)a.
More information is to be found in Sect. 13.10.

A divided power algebra is an augmented commutative algebra equipped with
unary operations γn(x) which bear the formal properties of the operations xn/n!. A
priori such a structure cannot be encoded by an operad, however taking invariants
in place of coinvariants in the construction of the Schur functor permits us to solve
the problem. See Sect. 13.1.12 for more details.
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5.8 Cooperad

In our treatment of Koszul duality for associative algebras we put algebras and coal-
gebras on the same footing. In order to play the same game with operads we need
to introduce the notion of cooperad.

We define the notion of cooperad as a comonoid in the monoidal category of
S-modules with the composite product. Cooperads are used to encode categories of
coalgebras. We introduce the important notion of conilpotent cooperad. In the same
way as for operads, we give an equivalent combinatorial definition of a conilpotent
cooperad in terms of trees.

5.8.1 Algebraic Cooperad

Let C be an S-module. A cooperad is a structure of comonoid on C in the mo-
noidal category (S-Mod, ◦̄, I), where (P ◦̄Q)(n) :=⊕r (P(r) ⊗Q⊗r )Sr (n), see
Sect. 5.1.15. Explicitly it consists into two morphisms of S-modules (equivalently
transformations of Schur functors)

� : C → C ◦̄C (decomposition) and ε : C → I (counit),

which satisfy the axioms of coassociativity:

C
�

�

C ◦̄C

Id◦̄�

C ◦̄ (C ◦̄C )
∼=

C ◦̄C
�◦̄ Id

(C ◦̄C )◦̄C
and counitality:

C
∼=

�
∼=

I ◦̄C C ◦̄C
ε◦̄ Id Id◦̄ε C ◦̄ I.

We observe that the S-module I associated to identity functor Vect → Vect is a
cooperad.

From Corollary 5.1.4, it follows that � is made up of Sn-module morphisms
�(n):

C (n)→ C ◦̄C (n)=
⊕

k≥0

(
C (k)⊗

(⊕
Ind Sn

Si1×···×Sik
(
C (i1)⊗ · · · ⊗C (ik)

)))Sk



5.8 Cooperad 167

where the second sum is extended to all the k-tuples (i1, . . . , ik) satisfying i1+· · ·+
ik = n. So a cooperad concentrated in arity 1 is a coassociative coalgebra.

A cooperad is said to be coaugmented if there is a cooperad morphism η : I→ C
such that εη = IdI. The image of 1 ∈ I (1) = K is denoted id ∈ C (1) and is called
the identity cooperation. The cokernel of η is denoted by �C and C ∼= I⊕ �C .

Observe that, by the counitality assumption, the component of �(n)(μ) in the
two extreme summands (k = 1 and k = n respectively) is (id;μ) and (μ; id⊗n)
respectively. We will sometimes adopt the following abuse of notation

�(μ)=
∑
(ν;ν1, . . . , νk)

where ν ∈ C (k), νj ∈ C (ij ) for the image of the cooperation μ by the decomposi-
tion map, and

�(μ)= (id;μ)+ (μ; id⊗n
)+ �̄(μ).

The map �̄ is called the reduced decomposition map.
To define the exact dual of the notion of operad, one should instead consider the

monoidal product

C ◦̂C (n)=
∏

k≥0

(
C (k)⊗

(∏
Ind Sn

Si1×···×Sik
(
C (i1)⊗ · · · ⊗C (ik)

)))Sk

in the category of S-modules, where the sums are replaced by products. In that case,
a cooperad is defined as a comonoid � : C → C ◦̂C .

When C (0) = 0, the right-hand side product is equal to a sum. The decompo-
sition map � : C → C ◦̄C ⊂ C ◦̂C of some cooperads is made up of sums of el-
ements. In this case, we are back to the previous definition. In this book, we will
mainly encounter cooperads of this first type, so we work with this definition.

Working over a field of characteristic 0, we can identify invariants with coin-
variants, see Appendix A.1, and work with ◦ instead of ◦̄. But this more general
definition plays a key role in characteristic p, for instance.

5.8.2 From Cooperads to Operads and Vice Versa

Let C be a cooperad and let P(n)= C (n)∗ =Hom(C (n),K). Since C (n) is a right
Sn-module, its dual P(n) is a left Sn-module. We make it into a right Sn-module
by the classical formula μσ := σ−1 · μ, for μ ∈P(n) and σ ∈ Sn. The transpose
of the counit ε gives a unit η. The decomposition map � gives a composition map
γ by dualization followed by the natural map from invariants to coinvariants, cf.
Sect. 5.1.15.

In the other way round, let P be an operad such that each P(n) is finite di-
mensional. This condition ensures that P(n)∗ ⊗P(m)∗ → (P(n)⊗P(m))∗ is
an isomorphism, as in Sect. 1.2.2. So the linear dual C :=P∗ of P gives rise to
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a cooperad C → C ◦̂C . If we further suppose that P(0)= 0 and that the preimage
under the composition map of any element in P is finite, then the decomposition
map of C lives in C ◦̄C .

5.8.3 Coalgebra over a Cooperad

By definition a coalgebra over the cooperad C , or C -coalgebra for short, is a vector
spaceC equipped with a map�C : C→ Ĉ (C), where Ĉ (C)=∏n(C (n)⊗C⊗n)Sn ,
such that the following diagrams commute:

C
�C

�C

Ĉ (C)

Ĉ (�C)

Ĉ (C)
�(C)

Ĉ (Ĉ (C))

C

�(C) =

Ĉ (C)
η(C)

C.

So for any n, we have a map �n : C→ (C (n)⊗C⊗n)Sn .
Let C ∗ be the operad obtained by linear dualization. The map �n gives rise to

an Sn-equivariant map

C ∗(n)−→Hom
(
C,C⊗n

)
,

and it is immediate to check that C is a coalgebra over the operad C ∗ in the sense
of Sect. 5.2.15.

5.8.4 Conilpotent Coalgebra, Primitive Part

Let C be a coalgebra over a coaugmented cooperad C . We denote the image under
its structure map by

�C(x)= (x1, x2, . . .) ∈
∏

n≥1

(
C (n)⊗C⊗n)Sn .

We define the coradical filtration of C as follows:

F1C := PrimC := {x ∈ C | x1 = x, and xk = 0 for any k > 1}.
The space PrimC is called the primitive part of C, and its elements are said to be
primitive. Then we define the filtration by:

FrC := {x ∈ C | xk = 0 for any k > r}.
We say that the coalgebra C is conilpotent, if this filtration is exhaustive C =⋃
r≥1FrC.
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Proposition 5.8.1. The coalgebra C is conilpotent if and only if the decomposition
map �C : C→ Ĉ (C) factors through C (C).

Proof. By direct inspection. �

Any coaugmented coassociative coalgebra C is equivalent to an As∗-coalgebra
structure on �C. In this case, the above definitions of filtration and conilpotent coal-
gebra coincide with the ones given in Sect. 1.2.4.

5.8.5 Conilpotent Cooperad

Let (C ,�, ε, η) be a coaugmented cooperad. Under the isomorphism C ∼= I⊕ �C ,
we consider the map �̃ : C → C ◦̄C defined by

{
I → I ◦̄ I,

id �→ �̃(id) := id ◦̄ id
and

{ �C → �C ◦̄C ,

μ �→ �̃(μ) := �̄(μ)+ (μ; id⊗n
)
.

We iterate the map �̃ on the right-hand side:

�̃0 := IdC , �̃1 := �̃, and �̃n := (Id◦�̃)�̃n−1 : C → C ◦(n+1).

EXAMPLE. Representing the elements of the cooperad As∗ by corollas, we get:

�̃0

( )

= ,

�̃1

( )

= + + ,

�̃2

( )

= + + .

Higher up, no new term appears. We get the same three trees but with the top levels
filled with trivial trees |. So in this example, the iteration of �̃ on the element of
As∗(3) stabilizes at rank 2.

The composite

(Id ◦̄η)�̃n−1 : C → C ◦̄n ∼= C ◦̄n ◦ I→ C ◦̄(n+1)

amounts to adding a level made up of identities id= | to the trees produced by �̃n−1.
So the difference

�̂n := �̃n − (Id ◦̄η)�̃n−1
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contains the new leveled trees between the nth iteration of �̃ and the (n − 1)th
iteration. Up to identification of the target spaces, we have �̃n =∑n

k=0 �̂
k .

We define the coradical filtration of a coaugmented cooperad as follows.

F0C := I and FnC := ker �̂n, for n≥ 1.

Since for n = 1, �̃1 − (Id ◦̄η)�̃0 = �̄, we get F1C = I⊕ ker �̄. We call the ele-
ments of �C which live in the kernel of �̄ the primitive elements of the cooperad C .
So we get a filtration of the cooperad C :

F0C ⊂ F1C ⊂ F2C ⊂ · · · ⊂ FnC ⊂ Fn+1C ⊂ · · · .

A coaugmented cooperad C is called conilpotent when the coradical filtration is
exhaustive: colimn FnC = C . This is equivalent to requiring that, for any element c
of C , the iteration of �̂ on c stabilizes at some point.

5.8.6 The Cofree Cooperad

By definition the cofree cooperad on M is the cooperad F c(M), which is cofree in
the category of conilpotent cooperads (cf. Sect. 1.2.5). Explicitly it means that for
any S-module morphism ϕ : C →M sending id to 0, there exists a unique cooperad
morphism ϕ̃ : C →F c(M) which renders the following diagram commutative

C
ϕ

ϕ̃

F c(M) M.

By dualizing what we have done for free operads in Sect. 5.5, we can prove
the existence of the cofree cooperad and give an explicit construction by induction,
which we denote by T c(M).

The underlying S-module of the cofree cooperad T c(M) is the S-module T M
constructed in Sect. 5.5.1 and called the tree module. Let us recall that T M =
colimnTnM , where TnM = I⊕ (M ◦̄Tn−1M). The decomposition map

� :T M→T M ◦̄T M

is defined inductively on TnM as follows. First we put

�(id) := id ◦̄ id,

and for any μ ∈M of arity n we put

�(μ) := id ◦̄μ+μ ◦̄ id⊗n ∈ I ◦̄M ⊕M ◦̄ I⊂T1M ◦̄T1M.
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This formula defines � on T1M . Then we proceed by induction. We suppose that
� : Tn−1M→ Tn−1M ◦̄Tn−1M is defined and we construct � on TnM . For λ=
(μ;ν1, . . . , νk) ∈M ◦̄Tn−1M ⊂TnM , we put

�(λ)=�(μ;ν1, . . . , νk) := id ◦̄ (μ;ν1, . . . , νk)+�+(μ;ν1, . . . , νk),

where �+ is the following composite:

M ◦̄Tn−1M
IdM ◦̄�−−−−→ M ◦̄(Tn−1M ◦̄Tn−1M)

∼= (M ◦̄Tn−1M) ◦̄Tn−1M
jn ◦̄ in−−−→TnM ◦̄TnM.

Adopting the operadic version �(νi) = ∑ν(1)i ◦̄ν(2)i of Sweedler’s notation,

where ν(2)i is in fact a tensor product of elements of M : ν(2)i = (ν(2)i,1 , . . . , ν(2)i,r ), we
get

�(μ;ν1, . . . , νk)= id ◦̄ (μ;ν1, . . . , νk)+
∑(

μ;ν(1)1 , . . . , ν
(1)
k

) ◦̄ (ν(2)1 , . . . , ν
(2)
k

)
.

So we have written�(λ) as
∑
λ(1) ◦̄λ(2). Observe that�(λ) contains id ◦̄λ but also

λ ◦̄ (id, . . . , id) as a summand. Indeed, by induction,�(νi) contains a summand with
ν
(1)
i = νi and ν(2)i = (id, . . . , id), hence in the sum we get a summand of the form

(μ;ν1, . . . , νk) ◦̄ (id, . . . , id)= λ ◦̄ (id, . . . , id).

Observe that the construction of � involves the associativity isomorphism, see
Sect. 5.1.8. So, in the graded case there is a sign appearing in front of the sum. It is
(−1) to the power

∣
∣ν
(2)
1

∣
∣
∣
∣ν
(1)
2

∣
∣+ (∣∣ν(2)1

∣
∣+ ∣∣ν(2)2

∣
∣
)∣
∣ν
(1)
3

∣
∣+ · · · + (∣∣ν(2)1

∣
∣+ · · · + ∣∣ν(2)k−1

∣
∣
)∣
∣ν
(1)
k

∣
∣.

Here is an example for which we allow ourselves to leave out the commas to

ease the notation. Let | be the tree representing the identity and let ∈M(2) be

a binary operation. Since �( )= | ◦̄ + ◦̄ (|, |), we get

�

( )

= | ◦̄ +�+
(

;
)

where
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�+
(

;
)

= ◦̄
(
�
( )

,�
( ))

= ◦̄
((
|;

)
+
(

; ||
)
,
(
|;

)
+
(

; ||
))

= ◦̄
(((

|;
)
,
(
|;

))
+
((
|;

)
,
(

; ||
))

+
((

; ||
)
,
(
|;

))
+
((

; ||
)
,
(

; ||
)))

=
(

; ||
)
◦̄
(

,
)
+
(

; |
)
◦̄
(

, |
)

+
(

; |
)
◦̄
(
|,

)
+
(

;
)
◦̄ (|, |, |, |)

= ◦̄
(

,
)
+ ◦̄

(
, |, |
)

+ ◦̄
(
|, |,

)
+ ◦̄ (|, |, |, |).

The map ε :T M→M is defined by T1M = I⊕M�M . The coaugmentation
map η :M→T M is equal to the map j .

Proposition 5.8.2. The above maps induce a coaugmented cooperad structure on
T c(M) := (T M,�,ε,η).

Proof. We have constructed maps TnM→T M ◦̄T M . Since they commute with
the map in :TnM→Tn+1M , they give rise to � on T M = colimnTnM .

Coassociativity, counitality and coaugmentation can be proved by induction, by a
check similar to the one done in Theorem 5.5.1. These properties can also be proved
by using the explicit form given in Proposition 5.8.4. �

Theorem 5.8.3. The conilpotent cooperad T c(M) := (T M,�,ε,η) is cofree on
M among conilpotent cooperads.

The proof is postponed to the end of the next section.

5.8.7 Description of the Cofree Cooperad in Terms of Trees

Recall from Sect. 5.6.3 that the S-module T M is isomorphic to the treewise tensor
module T(M) made up of trees with vertices labeled by elements ofM .
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The decomposition � on such a tree t is constructed by “degrafting” as follows.
A cut of the tree is admissible if the grafting of the pieces gives the original tree back.
The degrafting �(t) of t is the sum of all the admissible cuttings (r; s1, . . . , sk),
where r is the piece containing the root, and k is the number of leaves of r . Of
course each vertex keeps its labeling.

EXAMPLE.

t =

r s1 s2 s3 s4 s5

�→ | | | | |

�→ | | |

�→ | |

�→

�→ |

Proposition 5.8.4. The cooperad (T cM,�,ε) is isomorphic to the treewise tensor
module equipped with the decomposition map given by the admissible cuttings.

Proof. Recall that TnM is isomorphic to labeled trees with at most n levels. We
prove the assertion by induction on n. For n = 0 and n = 1, the explicit form of
� on T0M = I and on T0M = I ⊕M allows to conclude. Suppose that the re-
sult holds up to n− 1. Let t be a labeled tree in TnM . If not trivial, this tree can
be written t = (μ; t1, . . . , tk), where t1, . . . , tk are labeled sub-trees. By definition,
�(t) := id ◦̄ t + �+(μ; t1, . . . , tk). The first component gives the bottom cutting.
The second component is given by the cuttings �(ti) of the sub-trees ti , where the
bottom part is then grafted onto μ. Finally, we get all the admissible cuttings of the
tree t . �

With this description of T c(M), it is easy to see thatM is the space of primitive
elements. The coradical filtration is equal to FnT c(M) = TnM , that is coincides
with the defining filtration. So the coaugmented cooperad T c(M) is conilpotent.
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Proof of Theorem 5.8.3. Let C be a conilpotent cooperad and let ϕ : C →M be an
S-module map, which sends id to 0. We claim that there is a unique morphism of
cooperads

ϕ̃ : C →T c(M)

which extends ϕ. We construct ϕ̃n : C → TnM by induction on n. For n = 0, we
put ϕ̃0(id)= id and ϕ̃0 is 0 in the other components. For n= 1, we put ϕ̃1(id)= id
and ϕ̃ = ϕ : C →M ⊂ T1M . Let us suppose that ϕ̃n−1 has been constructed. The
image of id by ϕ̃n is id ∈ I⊂ I⊕M ◦̄Tn−1M =TnM . The component in the other
summand is equal to the composite

(ϕ ◦̄ ϕ̃n−1)� : C → C ◦̄C →M ◦̄Tn−1M =TnM.

One can see that the map ϕ̃n is equal to the following composite

ϕ̃n : C �̃n−1−−−→ C ◦̄n ϕ̃1−→ (I⊕M)◦̄n� TnM,

where the last map is the projection of n-leveled trees into non-leveled trees.
Since the cooperad C is conilpotent, this process stabilizes, that is for any c ∈ C ,

the image under the composite maps C
ϕ̃n−→ TnM� T M give the same image in

the colimit T M , for n≥N . So the map ϕ̃ is well defined.
Since we want ϕ̃ to be a map of cooperads and to coincide with ϕ in the compo-

nent M , we have no choice for ϕ̃. By the definition of ϕ̃ in terms of �̃ and by the
coassociativity of �, the map ϕ̃ is a morphism of cooperads. �

5.8.8 Combinatorial Definition of a Cooperad

In the same way as in Sect. 5.5, we give an equivalent definition of a conilpotent
cooperad using a comonad of trees.

The adjunction

U : conil coOp S-Mod :T c

of the previous sections induces a comonad denoted by T
c . Explicitly it is a como-

noid in the category of endofunctors of S-modules, see Appendix B.4.1. The under-
lying endofunctor is the same as in Sect. 5.6.1: Tc :M �→T M . The coproduct and
the counit maps

� : Tc→ T
c ◦Tc and ε : Tc→ IdS-Mod

are given as follows. For any S-module M , Tc ◦ Tc(M) = T (T M) is made up
of “trees of trees” with vertices labeled by M . Equivalently, it coincides with trees
labeled by M equipped with a partition into subtrees. The map �(M) associates to
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a tree t labeled by M , the sum of all the partitioned trees coming from t . The map
ε(M) :T M→M is the projection onto corollas.

Similarly we consider the comonad �Tc made up of trees �T c without the trivial
tree.

Proposition 5.8.5. Let �C be an S-module. A coalgebra structure on �C over the
comonad �Tc is equivalent to a conilpotent cooperad structure on C := �C ⊕ I.

Proof. (⇐) Let (C = �C ⊕ I,�, ε, η) be a conilpotent cooperad. The map � �C :
�C →�Tc( �C )= �T �C is given by the universal property of the conilpotent free coop-

erad applied to

�C
Id �C

� �C

�T c �C �C .
(⇒) In the other way round, let� �C : �C →�Tc( �C )= �T �C be a coalgebra over the

comonad�Tc. We view the trees of �T2 �C as 2-leveled trees by adding trivial trees | if
necessary. By projecting onto this summand, we get a coassociative decomposition
map � : C → C ◦̄C , where the image of id is defined by id◦ id. The unit and the
coaugmentation maps come for free. In the end, it defines a conilpotent cooperad
structure on C . �

When C is a conilpotent cooperad, we denote by �C : C → T c( �C ) the mor-
phism of cooperads IdI⊕� �C . In conclusion, we get the following result, which will
play a crucial role in Sect. 10.3.

Proposition 5.8.6. Let (C ,�, ε, η) be a conilpotent cooperad and let ϕ : C →
M be a morphism of S-modules such that ϕ(id) = 0. Its unique extension into a
morphism of cooperads ϕ̃ : C →T c(M) is equal to the composite

ϕ̃ : C
�C−−→T c( �C ) T c(ϕ)−−−−→T c(M),

where the map �C is given by the iterations �̃n =∑n
k=0 �̂

k .

Proof. It is direct consequence of the above results. �

5.9 Nonsymmetric Operad

Replacing the category of S-modules by the category of arity graded vector spaces
gives the notion of nonsymmetric operad (called ns operad for short). To any ns
operad one can associate an operad by tensoring with the regular representation in
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each arity. This section can be read independently of the rest of the chapter. We work
over a field K though most of the notions and results of this section are valid over a
commutative ring.

5.9.1 More on Arity Graded Modules

Let

M· = {Mn}n≥0

be a graded vector space (or graded module). We denote by N-Mod the category
of graded vector spaces (or graded K-modules if K is a commutative ring). The
integer n is called the arity in this framework. The Schur functor M : Vect → Vect
associated toM· is, by definition,

M(V ) :=
⊕

n≥0

Mn ⊗K V
⊗n.

In literature the object M· is sometimes called a collection. We refrain to call
it a nonsymmetric S-module. Recall that the sum, tensor product, composition and
Hadamard product of arity graded spaces are given by

(M· ⊕N·)n :=Mn ⊕Nn,
(M· ⊗N·)n :=

⊕

i+j=n
Mi ⊗Nj ,

(M· ◦N·)n :=
⊕

k

Mk ⊗
(⊕

Ni1 ⊗ · · · ⊗Nik
)
,

(M· ⊗
H
N·)n :=Mn ⊗Nn,

where the second sum in line 3 is over all the k-tuples (i1, . . . , ik) satisfying i1 +
· · · +ik = n. Observe that the associativity property of the composition of graded
modules involves the switching map, cf. Sect. 5.1.8. For any vector space V we have
natural isomorphisms:

(M ⊕N)(V ) = M(V )⊕N(V ),
(M ⊗N)(V ) = M(V )⊗N(V ),
(M ◦N)(V ) :=M(N(V )).

The Hilbert–Poincaré series of the arity graded moduleM· is:

fM(x) :=
∑

n≥0

dimMnx
n.
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The generating series of a sum (resp. product, composition, Hadamard product) of
arity graded modules is the sum (resp. product, composition, Hadamard product)
of their respective generating series.

In the sequel we simply writeM instead ofM· whenever there is no ambiguity.

5.9.2 Monoidal Definition of a Nonsymmetric Operad

By definition a nonsymmetric operad (also called non-Σ -operad in the literature)
P = (P, γ, η) is an arity graded vector space P = {Pn}n≥0 equipped with com-
position maps

γi1,...,ik :Pk ⊗Pi1 ⊗ · · · ⊗Pik −→Pi1+···+ik

and an element id ∈P1, such that the transformations of functors γ :P ◦P →P
and η : I→P , deduced from this data, make (P, γ, η) into a monoid.

We often abbreviate “nonsymmetric operad” into “ns operad”.

5.9.3 Classical Definition of a NS Operad

Obviously a nonsymmetric operad can be defined as an arity graded module P
equipped with linear maps

γi1,...,ik :Pk ⊗Pi1 ⊗ · · · ⊗Pik −→Pi1+···+ik

and an element id ∈P1, such that the following diagram (in which the tensor signs
are omitted) is commutative

PnPr1 · · ·Prn

PnPi1Pj1,1 · · ·Pj1,i1
Pi2Pj2,1 · · · · · ·Pin · · ·Pjn,in

∼=

PnPi1 · · ·PinPj1,1 · · ·Pj1,i1
Pj2,1 · · · · · ·Pjn,1 · · ·Pjn,in

PmPj1,1 · · ·Pj1,i1
Pj2,1 · · · · · ·Pjn,1 · · ·Pjn,in

P�

where rk = jk,1 + · · · + jk,ik for k = 1 to n, m= i1 + · · · + in and �= r1 + · · · + rn.
Moreover the element id is such that the evaluation of γn : P1 ⊗ Pn→ Pn on
(id,μ) is μ, and the evaluation of γ1,...,1 on (μ; id, . . . , id) is μ.

The equivalence between the monoidal definition and the classical definition is a
straightforward check.
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5.9.4 Partial Definition of a NS Operad

A nonsymmetric operad can be defined as an arity graded vector space P equipped
with partial compositions:

◦i :Pm ⊗Pn→Pm−1+n, for 1≤ i ≤m,
satisfying the relations

{
(I) (λ ◦i μ) ◦i−1+j ν = λ ◦i (μ ◦j ν), for 1≤ i ≤ l, 1≤ j ≤m,
(II) (λ ◦i μ) ◦k−1+m ν = (λ ◦k ν) ◦i μ, for 1≤ i < k ≤ l,

for any λ ∈Pl , μ ∈Pm, ν ∈Pn.
This definition (with different notations and grading) appears in Gerstenhaber’s

paper [Ger63] under the name “pre-Lie system”.
The equivalence with the monoidal definition is given by constructing the map

γi1,...,in as an iteration of the partial operations. In the other direction the partial
operation ◦i is obtained by restriction:

λ ◦i μ= γ (λ; id, . . . , id,μ, id, . . . , id)

where μ is at the ith position.

5.9.5 Combinatorial Definition of a NS Operad

For any planar rooted tree t we denote by vert(t) its set of vertices and by |v| the
number of inputs of the vertex v ∈ vert(t), see Appendix C for details. Let M be an
arity graded space withM0 = 0. Recall that the integer n is called the arity of t and
the integer k = #vert(t) is called the weight of t . For any tree t we define

Mt :=
⊗

v∈vert(t)

M|v|.

We get a functor

PT :N-Mod→N-Mod

by PT(M)n :=⊕t∈PTn Mt . It is helpful to think about an element of PT(M)n as a
planar rooted tree where each vertex v is decorated by an element ofM|v|.

In the following example we have τ ∈M3, λ ∈M2, μ ∈M1, ν ∈M3:

λ μ ν

τ
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In particular the corolla enables us to define the transformation of functors η :
IN-Mod → PT.

The substitution of trees consists in replacing the vertices by given trees (with
matching inputs). The substitution of trees defines a transformation of functors α :
PT ◦ PT→ PT as follows. From the definition of PT we get

PT(PT(M))n =
⊕

t∈PTn
PT(M)t

=
⊕

t∈PTn

( ⊗

v∈vert(t)

PT(M)|v|
)

=
⊕

t∈PTn

( ⊗

v∈vert(t)

( ⊕

s∈PT|v|
Ms

))

.

Under the substitution of trees we get an element of PT(M)n, since at any vertex
v of t we have an element of PT(M)|v| =⊕s∈PT|v|Ms , that is a tree s and its
decoration. We substitute this data at each vertex of t to get a new decorated tree.
Therefore we have defined an S-module morphism α(M) : PT(PT(M))→ PT(M).

The transformation of functors α is obviously associative and unital, so
(PT, α, η) is a monad.

The combinatorial definition of a ns operad consists in defining it as a unital
algebra over the monad (PT, α, η), cf. Appendix B.4. In other words a ns operad is
an arity graded module P together with a map PT(P)→P which is compatible
with α and η in the usual sense.

The combinatorial definition of a ns operad is equivalent to the partial definition
of a ns operad, and therefore to all the other definitions.

5.9.6 Free NS Operad and Planar Trees

By definition the free nonsymmetric operad over the arity graded moduleM is the ns
operad T (M) equipped with a graded module morphismM→T (M) which satis-
fies the classical universal property. Explicitly it can be constructed inductively as in
Sect. 5.5.1, i.e. T M =⋃nTnM , where T0M := I and TnM := I⊕ (M ◦Tn−1M).
It can also be constructed as a quotient as in Sect. 5.5.5, or, more explicitly, by using
planar trees. In fact the graded module PT(M) constructed above is endowed with a
ns operad structure as follows. Let t and s be two decorated trees. The partial com-
position t ◦i s is the decorated tree obtained by grafting the tree s on the ith leaf of
t and keeping the decorations.

◦3 = .

It is immediate to check that this partial composition makes PT(M) into a ns
operad, and that this ns operad is free overM . The map η :M→ PT(M) consists in
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sending the operation μ ∈Mn to the nth corolla decorated by μ. The isomorphism
ϕ :T (M)→ PT(M) is made explicit as follows. First, we have ϕ(id)= |. Second,
the generating operation μ ∈Mk is sent to the kth corolla decorated by μ. Third, for
ωi ∈ Tn−1M , i = 1, . . . , k, the generic element (μ;ω1, . . . ,ωk) ∈M ◦ Tn−1M ⊂
TnM is mapped under ϕ to the tree ϕ(μ;ω1, . . . ,ωk) obtained by grafting the dec-
orated trees ϕ(ωi) to the leaves of the kth corolla (image of μ). It is immediate to
check that we get an isomorphism.

5.9.7 Free NS Operad in the Graded Framework

In the construction of the free ns operad in terms of trees in the sign-graded frame-
work, signs show up in the computation of composition. Here is an explicit example.

Let λ,μ, ν ∈M be three binary graded operations. In T M the tree

μ ν

λ

corresponds to the element (λ;μ,ν) ∈M ◦M which is to be interpreted as an ele-
ment in T2M = I⊕M ◦ (I⊕M). Viewed as an element of T3M via i : T2M→
T3M it becomes

(
λ; (μ; id, id), (ν; id, id)

) ∈M ◦ (I⊕M ◦ (I⊕M)).
Now, let us identify the two composites from bottom to top that is

μ

(λ ◦2 ν) ◦1 μ= ν

λ

resp.

ν

(λ ◦1 μ) ◦3 ν = μ

λ
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corresponding to the composite ((λ; id, ν);μ, id, id), resp. ((λ;μ, id); id, id, ν). Un-
der the associativity isomorphism, they are equal to

(−1)|ν||μ|
(
λ; (id;μ), (ν; id, id)

)
, resp.

(
λ; (μ; id, id), (id;ν)), that is

(−1)|ν||μ|
(
λ; (μ; id, id), (ν; id, id)

)
, resp.

(
λ; (μ; id, id); (ν; id, id)

)
.

In conclusion we get

(λ ◦2 ν) ◦1 μ= (−1)|ν||μ|(λ;μ,ν) and (λ ◦1 μ) ◦3 ν = (λ;μ,ν).

5.9.8 Algebra over a Nonsymmetric Operad

For any vector space A the graded module End(A), defined by End(A)n :=
Hom(A⊗n,A), is a ns operad for the composition of maps (cf. Sect. 5.2.11). By defi-
nition an algebra over the ns operad P is a morphism of ns operads P → End(A).
Equivalently, a P-algebra structure onA is a family of linear maps Pn⊗A⊗n→A

compatible with the ns operad structure of P .

5.9.9 Nonsymmetric Operad, Type of Algebras

Let us consider a type of algebras for which the generating operations have no sym-
metry, the relations are multilinear and, in these relations, the variables stay in the
same order. Then this type of algebras can be faithfully encoded by a nonsymmetric
operad.

The relationship between types of algebras and operads is slightly simpler in the
nonsymmetric case, as shown by the following result.

Proposition 5.9.1. A nonsymmetric operad P is completely determined by the free
P-algebra on one generator.

Proof. For a nonsymmetric operad P the free algebra on one generator is

P(K)=
⊕

n≥0

Pn ⊗K
⊗n =

⊕

n≥0

Pn.

Hence Pn is the n-multilinear part of P(K). Using the ubiquity of the operations,
see Sect. 5.2.13, it follows that the composition maps are completely determined by
the P-algebra structure of P(K). �

Remark that this statement is not true for symmetric operads. For instance Ass
and Com have the same free algebra on one generator, namely the ideal (x) in the
polynomial algebra K[x]. It determines As, but not Com.
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5.9.10 Hadamard Product of NS Operads

Let P and Q be two ns operads. The Hadamard tensor product P ⊗
H

Q of the

underlying graded modules has a natural operad structure:

(P ⊗
H

Q)k ⊗ (P ⊗
H

Q)i1 ⊗ · · · ⊗ (P ⊗
H

Q)ik

=Pk ⊗Qk ⊗Pi1 ⊗Qi1 ⊗ · · · ⊗Pik ⊗Qik

∼=Pk ⊗Pi1 ⊗ · · · ⊗Pik ⊗Qk ⊗Qi1 ⊗ · · · ⊗Qik

−→Pn ⊗Qn = (P ⊗
H

Q)n

for n = i1 + · · · + ik . Observe that we use the switching map in the category Vect
to put the factors Qi in the correct position. Therefore, when Vect is replaced by
another tensor category (cf. Appendix B.3) signs might be involved. The operad
uAs is obviously a unit for this operation.

The ns operad P ⊗
H

Q is called the Hadamard product of the ns operads P
and Q.

5.9.11 From NS Operads to Symmetric Operads and Vice Versa

Let P be a ns operad with Pn as the space of n-ary operations. The category of
P-algebras can be encoded by a symmetric operad. We still denote it by P and the
space of n-ary operations by P(n). It is immediate that

P(n)=Pn ⊗K[Sn]
where the action of the symmetric group on P(n) is given by the regular repre-
sentation K[Sn]. Indeed we have (Pn ⊗ K[Sn]) ⊗K[Sn] V⊗n = Pn ⊗ V⊗n. The
composition map γ (i1, . . . , ik) in the symmetric framework is given, up to a per-
mutation of factors, by the tensor product of the composition map γi1,...,ik in the
ns framework with the composition map of the symmetric operad Ass. Considered
as a symmetric operad P is sometimes called a regular operad. Observe that the
categories of algebras over a ns operad and over its associated operad are the same,
so they encode the same type of algebras. We usually take the same notation for
the ns operad and its associated symmetric operad, except in the case of associative
algebras where we use As and Ass respectively in this book.

In conclusion we have constructed a functor

nsOpK −→OpK.

This functor admits a right adjoint:

OpK −→ nsOpK, P �→ P̃.
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Explicitly we have P̃n =P(n), in other words we forget the Sn-module structure.
We have P̃(n) = P(n) ⊗ K[Sn] where the Sn-module structure is given by the
action on K[Sn] (not the diagonal action). The composition maps

γ̃i1,...,ik = γ (i1, . . . , ik) :P(k)⊗P(i1)⊗ · · · ⊗P(ik)−→P(i1 + · · · + ik)
satisfy the axioms of a ns operad.

EXAMPLES. By direct inspection we see that C̃om= As. In [ST09] Salvatore and
Tauraso show that the operad L̃ie is a free ns operad. In [BL10] Bergeron and Liv-

ernet show that p̃reLie is also free.

5.9.12 Nonsymmetric Operads as Colored Algebras

A colored algebra is a graded vector space A= {An}n≥0 equipped with operations
which are only defined under some conditions depending on the colors (elements of
an index set). For instance let us suppose that we have operations (i.e. graded linear
maps) ◦i : Am ⊗ A→ A defined only when 1 ≤ i ≤ m + 1 and a map K→ A0,
1K �→ 1. Let us suppose that they satisfy the relations:

{
(I) (x ◦i y) ◦i−1+j z= x ◦i (y ◦j z), i ≤ j ≤ i +m− 1,

(II) (x ◦i y) ◦j+m−2 z= (x ◦j z) ◦i y, i +m≤ j ≤ l +m− 1,

for any x ∈Al−1, y ∈Am−1, z ∈A and unital relations with respect to 1. It appeared
in Gerstenhaber’s paper [Ger63] as a pre-Lie system (our notation ◦i corresponds to
his notation ◦i−1). It also appears in [Ron11] by M. Ronco, where such a colored
algebra is called a grafting algebra. Compared to that paper we have taken the op-
posite products and we have shifted the numbering of the operations by 1. Then it
is obvious that under the change of notation An = Pn+1, this is nothing but the
notion of nonsymmetric operad. This point of view permits us to look at variations
of colored algebras as variations of operads, cf. [Ron11], Sect. 13.14, and also to
introduce the notion of colored operads, cf. [vdL03].

5.9.13 Category Associated to a NS Operad

As in Sect. 5.4.1 one can associate to any ns operad a category whose objects are
indexed by the natural numbers. When the operad is set-theoretic, this construction
can be done in the set-theoretic framework. The category associated to uAs can be
identified to the linearized simplicial category K[�] (cf. [Pir02a]). The category as-
sociated to As can be identified with the linearized presimplicial category K[�pre]
(i.e. � without degeneracies).
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5.9.14 Group Associated to a NS Operad

Let P be a ns operad such that P0 = 0 and P1 =K id. We consider the series

a := (a0, a1, . . . , an, . . .)

where an ∈ Pn+1 for any n and a0 = id ∈ P1. We denote by G(P) this set of
series. We define a binary operation a b on this set as follows:

( a b )n :=
∑

k

∑

i1+···+ik=n
γ (ak−1;bi1−1, . . . , bik−1).

Proposition 5.9.2. The binary operation ( a, b ) �→ a b makes G(P) into a group
with unit 1= (id,0,0, . . .).

Proof. The associativity property follows readily from the associativity property of
γ . The existence of an inverse, that is for any a there exists b such that a b = 1,
is achieved by induction. For instance b1 = −a1, b2 = −a2 − a1 ◦ (id, b1) − a1 ◦
(b1, id), etc. �

Observe that for P = As, the group G(P) is nothing but the group of power
series in one variable with constant coefficient equal to 1. This construction has been
used in several instances, cf. [Fra08, Cha01a, vdL02, LN12].

5.9.15 Pre-Lie Algebra Associated to a NS Operad

Let P be a ns operad with P(0)= 0 and consider the space P(K) :=⊕n≥1 Pn,
resp. P̂(K) :=∏n≥1 Pn. We construct a bilinear operation {−,−} as follows:

{μ,ν} :=
i=m∑

i=1

(μ ◦i ν)

for μ ∈ Pm, ν ∈ Pn. As in the case of symmetric operads, cf. Sect. 5.4.3, the
relations satisfied by the partial operations imply that the binary operation {−,−}
makes P(K), resp. P̂(K), into a pre-Lie algebra, and hence a Lie algebra by anti-
symmetrization.

We check easily that in the case of the ns operad As we get the pre-Lie algebra
of polynomial vector fields on the affine line, cf. Sect. 1.4.3.

When P = End(A), this Lie bracket on C•Hoch(A,A) was first constructed by
Gerstenhaber in [Ger63] in his study of Hochschild cohomology of an associative
algebra A with coefficients into itself, cf. Sect. 13.3.11.
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5.9.16 Hopf Algebra Associated to a NS Operad

Let P be a ns operad with P0 = 0 and P1 =K id. We put P̂ :=∏n≥2 Pn. On the
cofree coalgebra T c(P̂ ) we define a product, compatible in the Hopf sense with the
coproduct, as follows. Since T c(P̂ ) is cofree, by Sect. 1.2.5 it suffices to construct
the map

T c(P̂ )⊗ T c(P̂ )→ P̂.

On T c(P̂ )≥2 ⊗ T c(P̂ )≥1 it is trivial, on P̂ ⊗ T c(P̂ ) it is given by

μ⊗(μ1, . . . ,μk) �→
∑
γ (μ; id, . . . , id,μ1, id, . . . , id,μ2, id, . . . ,μk, id, . . .) ∈ P̂,

whenever μ ∈Pk and where the sum is over all possibilities. The associativity of
this product on T c(P̂ ) follows from the associativity property of γ . One way of
proving this result without too many tedious computations is to use the notion of
brace algebra, see Propositions 13.11.4 and 13.11.5. As a result we get a cofree
Hopf algebra. It is an example of a combinatorial Hopf algebra which is cofree and
left-sided in the sense of [LR10].

Similarly, starting from a conilpotent ns cooperad one can construct a combina-
torial Hopf algebra which is free and left-sided, see [vdLM02].

5.9.17 Nonsymmetric Cooperad and Cutting

It is clear that all the cooperadic definitions and constructions can be performed in
the nonsymmetric framework, that is over arity graded spaces instead of S-modules
as done in Sect. 5.8.7. Let us just give some details on the free nonsymmetric co-
operad over an arity graded space of the formM = (0,0,M2,M3, . . .). As a graded
module T c(M) is spanned by the planar rooted trees whose vertices are labeled by
elements ofM . In fact, if the vertex has k inputs (arity k), then its label is inMk . The
decomposition � on such a tree t is constructed by “degrafting” as follows. A cut
of the tree is admissible if the grafting of the pieces gives the original tree back. The
degrafting�(t) of t is the sum of all the admissible cuttings (r; s1, . . . , sk), where r
is the piece containing the root, and k is the number of leaves of r . Of course each
vertex keeps its labeling.

The explicit formula given in Sect. 5.8.6 is valid only when M is in even de-
gree. Indeed, since the associativity isomorphism for composition is involved (cf.
Sect. 5.1.8) signs appear in the formula in the general graded case. For instance

if is in degree 1, then the formula becomes:
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| ◦ + ◦
(

,
)
+ ◦

(
|, |,

)

− ◦
(

, |, |
)
+ ◦ (|, |, |, |).

More generally, if t and s are elements of T c(M), then the coproduct of t ∨ s =
( ; t, s) is given by

�(t ∨ s)=�( ; t, s)

= (|; t ∨ s)+
(

; (t (1); t (2)), (s(1); s(2))
)

= (|; t ∨ s)+ (−1)|t (2)| |s(1)|
((

; t (1), s(1)
)
; t (2), s(2)

)

= (|; t ∨ s)+ (−1)|t (2)| |s(1)|
(
t (1) ∨ s(1); t (2), s(2)),

where�(t)= (t(1); t (2)) and�(s)= (s(1); s(2)). The sign comes from the exchange
of s(1) and t (2).

For instance we get

�̄

( )

= ◦
( )

− ◦
(

| |
)

+ ◦
(
| |

)

and

�̄(1)

( )

=− ◦
(

| |
)
+ ◦

(
| |

)
.

5.10 Résumé

We gave several equivalent definitions of an operad, which can be summarized as
follows.

Definition 0. Given a type of algebras the algebraic operad is given by the functor
“free algebra”, which is a monad in Vect. If the relations are multilinear, then the
endofunctor is a Schur functor.
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Definition 1. The monoidal definition. An algebraic operad is a monoid (P, γ, η)

in the monoidal category of S-modules (resp. arity graded spaces). So γ :P ◦P →
P is associative and η : I → P is its unit. It is called a symmetric operad (resp.
nonsymmetric operad).

Definition 2. The classical definition. A symmetric operad is a family of Sn-
modules P(n), n≥ 1, and linear maps

γ (i1, . . . , ik) :P(k)⊗P(i1)⊗ · · · ⊗P(ik)−→P(i1 + · · · + ik)
satisfying some axioms expressing equivariance under the action of the symmetric
group and associativity of the composition. They ensure that the associated functor
V �→P(V ) :=⊕nP(n)⊗Sn V

⊗n is a monoid.

Definition 3. The partial definition. A symmetric operad is a family of Sn-modules
P(n), n≥ 0, and partial compositions

◦i :P(m)⊗P(n)→P(m− 1+ n), for 1≤ i ≤m,
satisfying equivariance with respect to the symmetric groups and the axioms:

{
(I) (λ ◦i μ) ◦i−1+j ν = λ ◦i (μ ◦j ν), for 1≤ i ≤ l, 1≤ j ≤m,
(II) (λ ◦i μ) ◦k−1+m ν = (λ ◦k ν) ◦i μ, for 1≤ i < k ≤ l,

for any λ ∈P(l), μ ∈P(m), ν ∈P(n). One assumes the existence of a unit ele-
ment id ∈P(1).

Definition 4. The combinatorial definition. There exists a monad T over the cate-
gory of S-modules made out of rooted trees and substitution, such that a symmetric
operad is an algebra (i.e. a representation) over T. Nonsymmetric operads are ob-
tained by replacing trees by planar trees.

Observe that Definitions 2, 3 and 4 can be thought of as various presentations
of the monad T. In Definition 2 the generators have two levels, in Definition 3 they
involve only two variables, in Definition 4 every element is a generator.

Algebra over an Operad. A P-algebra is a vector space A equipped with a linear
map γA :P(A)→ A compatible with the operadic structure γ and η. It is equiva-
lent to a morphism of operads

P → EndA.

In order to get the analogous definitions for nonsymmetric operads, it suffices
to replace the S-modules by the arity graded modules (no action of the symmetric
group anymore) where degree = arity. In definition 0 the relations should be such
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Table 5.2 Various algebras
over combinatorial monads Category Product Unit Combinatorial objects

monoid Set × {∗} ladders

algebra Vect ⊗ K ladders

operad S-Mod ◦ I rooted trees

ns operad N-Mod ◦ I planar rooted trees

that the variables stay in the same order in the involved monomials. In Definition 4
the trees are supposed to be planar.

Monoids, unital associative algebras, symmetric operads, nonsymmetric operads,
are all monoids in an ad hoc monoidal category. They can also be interpreted as
algebras over a combinatorial monad (see Table 5.2).

5.11 Exercises

Exercise 5.11.1 (Identity operad). Let I be the S-module corresponding to the iden-
tity functor from Vect to itself. What is I(n)?

Exercise 5.11.2 (On EndK). Show that EndK = uCom as an operad, and End(K)=
uAs as a ns operad.

Exercise 5.11.3 (A graded operad). Show that the category of algebras over the
operad EndsK can be described as follows. An EndsK-algebra is a graded vector
space A with a bilinear map An ⊗Am→ An+m+1, x ⊗ y �→ xy for any n,m ≥ 0,
such that

xy =−(−1)|x||y|yx, (xy)z= (−1)|x|x(yz).

Exercise 5.11.4 (Shifting degrees). Let M and N be two endofunctors of the cate-
gory of graded vector spaces related by the formulaM(V )=N(sV ) for any graded
space V . Show that

s−1N = (Ends−1K)⊗
H
M.

Exercise 5.11.5 (From Ass to Com). Show that the forgetful functor Com-alg →
Ass-alg induces, on the space of n-ary operations, the augmentation map K[Sn] →
K, σ �→ 1 for σ ∈ Sn.

Exercise 5.11.6 (Explicit free operad). Show that a functor F : Vect→P-alg gives
a free P-algebra F(V ) if and only if there exists φA : F(A)→A for any P-algebra
A, and ψV : V → F(V ) for any vector space V , such that φA is natural in A, ψV is
natural in V , and both composites

F(V )
F(ψV )−−−−→ F

(
F(V )

) φF(V )−−−→ F(V ) and A
ψA−→ F(A)

φA−→A

give the identity.
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Exercise 5.11.7 (Free operad). Show directly from the definition of a free operad
that T M can be described in terms of planar binary trees when M = (0,0,M2 ⊗
K[S2],0, . . . ,0, . . .).

Exercise 5.11.8 (Plethysm). Let E, resp. F , be a representation of Sn, resp. Sm. Let
Ẽ, resp. F̃ , be the associated Schur functor. Show that Ẽ ◦ F̃ is the Schur functor
of a certain representationG of Smn and describe it explicitly. This representation is
called the plethysm of E and F .

Exercise 5.11.9 (Ass explicit). Describe explicitly the map

γ (i1, . . . , ik) : Sk × Si1 × · · · × Sik −→ Si1+···+ik

which induces the map

γ (i1, . . . , ik) : Ass(k)⊗ Ass(i1)⊗ · · · ⊗ Ass(ik)−→ Ass(i1 + · · · + ik)
of the operad Ass.

Exercise 5.11.10 (Induction). Let E be an S2-module. Let S2 act on E ⊗E via its
action on the second variable only. Show that, as a vector space, IndS3

S2
(E ⊗ E) =

3E ⊗E. Describe explicitly the action of S3 on 3E ⊗E.

Exercise 5.11.11 (Arity 3). Describe explicitly the S3-representation T (Kμ)(3)
when μ is a binary operation, resp. a symmetric binary operation, resp. an antisym-
metric binary operation.

HINT. You should obtain a space of dimension 12, resp. 3, resp. 3. The multiplici-
ties of the isotypic components (trivial, hook, signature) are (2,4,2), resp. (1,1,0),
resp. (0,1,1).

Exercise 5.11.12 (Poisson algebra). A Poisson algebra is determined by a com-
mutative product (x, y) �→ x · y and a Lie bracket (x, y) �→ [x, y] related by the
derivation property (Leibniz rule):

[x · y, z] = x · [y, z] + [x, z] · y.
This gives a presentation of the operad Pois of Poisson algebras. Show that there is
another presentation involving only one operation xy with no symmetry and only
one relation (see Sect. 13.3.3 for the solution).

Exercise 5.11.13 (Invariants). Show that the map

V⊗n→ (K[Sn] ⊗ V⊗n
)Sn , v1 · · ·vn �→

∑

σ∈Sn
σ ⊗ (v1 · · ·vn)σ

is an isomorphism. Deduce that the categories �Ass-alg and Ass-alg are the same.
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Exercise 5.11.14 (From operad to cooperad). Let P be an algebraic operad and let
P∗ := {P(n)∗}n≥1 be the linear dual cooperad. Suppose we are given a linear basis
for all the spaces P(n). The composition is completely determined by the constants
aλμν1···νk appearing in the formulas

γ (μ;ν1, . . . , νk)=
∑
aλμν1···νkλ

where λ,μ, ν1, . . . , νk are basis elements. Show that the decomposition map of the
cooperad P∗ is completely determined by the formulas:

�(λ∗)=
∑
aλμν1···νk

(
μ∗;ν∗1 , . . . , ν∗k

)
.

Exercise 5.11.15 (On Ãss �). Find a presentation for the Ãss-algebras (notation
introduced in 5.9.11).

HINT. Use [Pir03].

Exercise 5.11.16 (Möbius basis �). Let {Mσ }σ∈Sn be the basis of K[Sn] defined
as

Mσ :=
∑

σ≤τ
μ(σ, τ )τ.

Here ≤ stands for the weak Bruhat order on the symmetric group and μ(σ, τ) is the
Möbius function. Show that for any integer i satisfying 1≤ i ≤ n there are uniquely
determined permutations (σ, τ )i and (σ, τ )i such that

Mσ ◦i Mτ =
∑

(σ,τ )i≤ω≤(σ,τ )i
Mω.

Cf. [AL07].

Exercise 5.11.17 (Category associated to uMag�). Let uMag be the set-theoretic
ns operad with one binary operation and a unit. Give a presentation of catuMag
analogous to the classical presentation of the simplicial category K[�] = cat uAss
(cf. [Pir02a]) in terms of faces and degeneracies.

HINT. Same but delete the relations σjσi = σiσj+1, i ≤ j .

Exercise 5.11.18 (Regular S-modules �). Let M and N be two S-modules such
thatM(n)=Mn⊗K[Sn] and N(n)=Nn⊗K[Sn], n≥ 1. Show thatM ◦N is such
that (M ◦N)(n)= (M ◦N)n ⊗K[Sn]. Compute (M ◦N)n out of the components
Mi and Nj .

Exercise 5.11.19 (Right adjoint of Schur functor �). Let F : Vect → Vect be an
endofunctor of the category of vector spaces. Let

RFn :=HomEnd
(
T (n),F

)
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where the endofunctor T (n) : Vect → Vect is given by T (n)(V ) := V⊗n. Show that
R is right adjoint to the Schur functor S-mod→ End(Vect).

Exercise 5.11.20 (Non-morphism �). Show that there is a morphism of Sn-modu-
les F(n) : Com(n)→ Ass(n), which identifies the trivial representation to its copy
in the regular representation. Show that the resulting morphism of S-modules F :
Com→ Ass is not a morphism of operads, i.e. F(μ ◦1 μ) �= F(μ) ◦1 F(μ).

HINT. It follows from the fact that, in an associative algebra, the symmetrized prod-
uct a · b := ab+ ba is not associative in general.

Exercise 5.11.21 (Composite with Ass �). Let M be an S-module and let Reg be
the regular S-module, that is Reg(n) :=K[Sn]. This is the S-module underlying the
operad Ass (and several others). Show that the composite S-moduleM ◦Reg can be
described as follows:

(M ◦ Reg)(n)=
⊕

k

M(k)

( ⊕

i1+···+ik=n
K[Sn]

)

where the action of Sk on the right sum is explicitly given by

σ · (i1, . . . , ik;ω)= (iσ−1(1), . . . , iσ−1(k);σω)
for σ ∈ Sk , ω ∈ Sn, i1+· · ·+ ik = n. The permutation σω ∈ Sn is the precomposition
of ω by the action of σ on the “blocks” of size i1, . . . , ik .

Exercise 5.11.22 (Trees and free operad �). Let α, β , γ , δ be binary operations in
M . Show that the element corresponding to the tree

α δ

β

γ

is (γ ; (β;α, id), (δ; id, id)) ∈T3M .

Exercise 5.11.23 (Free operad and automorphisms of trees �). Extend the results
of Sect. 5.6 (combinatorial definition and free operad) to the case where the S-
moduleM has a nontrivial componentM(0).

HINT. In this case, the trees are not reduced and hence they have nontrivial auto-
morphism groups, see Appendix C.4.
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Exercise 5.11.24 (Hopf operad �). Show that any set operad gives rise to a Hopf
operad.

Exercise 5.11.25 (Modules over a Hopf operad �). Show that the tensor product
of left modules over a Hopf operad is still a left module.

Exercise 5.11.26 (Explicit enveloping algebra �). Let α :P →Q be a morphism
of operads and let (A,γA) be a P-algebra. Suppose that the operad P comes with a
presentation P =P(E,R). Show that the relative free Q-algebra α!(A)=Q◦PA

introduced in Sect. 5.2.12 is isomorphic to the quotient of the free Q-algebra over
the space A by the relation which identifies the two P-algebra structures. More
precisely we have

Q(A)/
(
(α(μ);a1, . . . , ak)− γA(μ;a1, . . . , ak);μ ∈E(k), a1, . . . , ak ∈A

)
,

where the right-hand side stands for the ideal generated by the listed elements for
any k.

Exercise 5.11.27 (Convolution operad �). Show that any symmetric, resp. ns, op-
erad P is isomorphic to the convolution operad HomS(uAssc,P), resp.
Hom(uAsc,P).



Chapter 6
Operadic Homological Algebra

If I could only understand the beautiful consequence following
from the concise proposition d2 = 0.

Henri Cartan on receiving the degree of Doctor
Honoris Causa, Oxford University, 1980

The aim of this chapter is to develop homological algebra in the operadic context.
We introduce the notions of differential graded S-module, differential graded

operad, differential graded P-algebra, differential graded cooperad, etc. Since the
composite product ◦ defining operads is not linear on the right-hand side, these
generalizations are not automatic. We define the infinitesimal composite product,
as a linearization of the composite product, and the infinitesimal composite of mor-
phisms, as a linearization of the composite of morphisms. This latter one plays a
crucial role in the definition of the differential of the composite product of two dg
S-modules.

In the second part of this chapter, we transpose the results on twisting morphisms
from the algebra setting to the operad setting. From a dg cooperad C and a dg
operad P , we construct a convolution dg operad Hom(C ,P), which induces a
dg (pre-)Lie convolution algebra HomS(C ,P). In this setting, we can consider the
Maurer–Cartan equation, whose solutions are the operadic twisting morphisms.

As in the algebra case, the main homological constructions for dg operads come
from this notion. First, with an operadic twisting morphism, one can twist the dif-
ferential of the composite product C ◦P to produce a twisted composite product.
Then, the operadic twisting morphism bifunctor is represented by the operadic bar
and cobar constructions. These constructions generalize the ones encountered in
Chap. 2 at the algebra level. Once again, since the composite product is not bilinear,
these constructions are more involved. We make this “adaptation” explicit.

As in the algebra case, an operadic Koszul morphism is defined as an operadic
twisting morphism whose twisted composite product is acyclic. In the last part of
the chapter, we state and prove the fundamental theorem of operadic twisting mor-
phisms which says that a Koszul morphism corresponds to a quasi-isomorphism to

J.-L. Loday, B. Vallette, Algebraic Operads,
Grundlehren der mathematischen Wissenschaften 346,
DOI 10.1007/978-3-642-30362-3_6, © Springer-Verlag Berlin Heidelberg 2012
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the bar construction and to a quasi-isomorphism from the cobar construction respec-
tively.

The material of this chapter mainly comes from Ginzburg and Kapranov [GK94],
Getzler and Jones [GJ94], and Fresse [Fre04].

In this chapter, we work over a ground field K of characteristic 0. Notice that all
the constructions and some of the results hold true without this hypothesis.

6.1 Infinitesimal Composite

Whereas the tensor product ⊗ of K-modules is linear on the left and on the right,
the composite product ◦ of S-modules is linear on the left but not on the right be-
cause the right hand side of the composite M ◦ N involves several components
of N . In order to do homological algebra for S-modules and operads, we will need
a linearized version of the composite product and of the composite product of mor-
phisms. First, we linearize the composite product of S-modules to define the notion
called infinitesimal composite product of S-modules. We also need to introduce the
infinitesimal composite of S-module morphisms, for which the composite product
remains unchanged but where the composite of two morphisms is linearized.

6.1.1 Infinitesimal Composite Product

In this section, we introduce the right linear part of the composite product as a
particular case of a more general construction.

Let M , N1 and N2 be three S-modules. The composite M ◦ (N1 ⊕ N2) defines
a functor (S-Mod)3 → S-Mod. We consider the sub-functor which is linear in N2.
We denote the image of (M,N1,N2) under this sub-functor by M ◦ (N1;N2). This
notation has to be taken as a whole, because (N1;N2) has no meaning by itself.
Explicitly,M ◦ (N1;N2) is the sub-S-module of

⊕
nM(n)⊗Sn (N1⊕N2)

⊗n where
N2 appears once and only once in each summand (see Sect. 5.1.4).

Graphically a typical element is of the form:

N1 N1 N1 N2 N1

M

This functorial construction is linear in the variableM and in the variable N2.

Proposition 6.1.1. For any S-modulesM ,M ′, N1, N2 and N ′
2, we have

(
M ⊕M ′) ◦ (N1;N2)=M ◦ (N1;N2)⊕M ′ ◦ (N1;N2) and

M ◦ (N1;N2 ⊕N ′
2

)=M ◦ (N1;N2)⊕M ◦ (N1;N ′
2

)
.
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Proof. The first formula is obvious because ◦ is linear on the left hand side. The
second one follows from the definition ofM ◦ (N1;N2). �

Notice thatM ◦ (N;N) is not isomorphic toM ◦N . There exists an epimorphism
M ◦ (N;N)�M ◦ (N⊕N)�M ◦N , where the second map is IdM ◦(IdN + IdN).

We now apply this construction to the particular case N1 = I (identity functor).
Let M and N be two S-modules. By definition, the infinitesimal composite of M
and N is defined by the formula

M ◦(1) N :=M ◦ (I;N).
Elements ofM ◦(1) N are of the form (μ; id, . . . , id, ν, id, . . . , id).

N

M

Notice that the infinitesimal composite of M with itself is naturally isomorphic,
as S-module, to the weight 2 part of the free operad on M , i.e. the treewise tensor
module overM :

M ◦(1) M ∼=T M(2).

The main property of the infinitesimal composite product is the following linearity
property on both sides.

Corollary 6.1.2. For any S-modulesM ,M ′, N and N ′, we have
(
M ⊕M ′) ◦(1) N =M ◦(1) N ⊕M ′ ◦(1) N,
M ◦(1)

(
N ⊕N ′)=M ◦(1) N ⊕M ◦(1) N ′,

I ◦(1) N =N and M ◦(1) I=M.

To any pair f :M1 →M2 and g : N1 → N2 of morphisms of S-modules, we
define a morphism f ◦(1) g :M1 ◦(1) N1 →M2 ◦(1) N2 by the formula

(f ◦(1) g)(μ; id, . . . , ν, . . . , id) := (f (μ); id, . . . , g(ν), . . . , id
)
.

6.1.2 Infinitesimal Composition Map of an Operad

When (P, γ, η) is an operad, we use the notion of infinitesimal composite product
to define the infinitesimal part of the composition map. By definition, the infinitesi-
mal composition map γ(1) :P ◦(1) P →P of P is given by

γ(1) :P ◦(1) P =P ◦ (I;P)�P ◦ (I⊕P)
IdP ◦(η+IdP)−−−−−−−−−→P ◦P

γ−→P.
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It is the restriction of the composition map of the operad P where we only compose
two operations of P .

6.1.3 Infinitesimal Composite of Morphisms

Instead of linearizing the underlying composite product of two S-modules, we keep
it unchanged but we linearize the composite of two morphisms.

Recall from Sect. 5.1.9 that for any pair f :M1 →M2, g : N1 → N2 of mor-
phisms of S-modules, their composite product f ◦ g :M1 ◦N1 →M2 ◦N2 is given
explicitly by the formula

f ◦ g(μ;ν1, . . . , νk) :=
(
f (μ);g(ν1), . . . , g(νk)

)
,

where (μ;ν1, . . . , νk) represents an element of

M1(k)⊗Sk

(⊕
Ind Sn

Si1×···×Sik
(
N1(i1)⊗ · · · ⊗N1(ik)

))
,

cf. Sect. 5.1.7.
We define the infinitesimal composite of morphisms

f ◦′ g :M1 ◦N1 →M2 ◦ (N1;N2)

by the formula

f ◦′ g :=
∑

i

f ⊗ ( IdN1 ⊗· · · ⊗ IdN1 ⊗ g
︸︷︷︸

ith position

⊗ IdN1 ⊗· · · ⊗ IdN1

)
.

The notation f ◦′ g, with the prime symbol, is called the infinitesimal composite
of f and g. This notion should not be confused with f ◦(1) g :M1 ◦(1) N1 →M2 ◦(1)
N2. For instance, the involved domains are different. The main property of this
infinitesimal composite of morphisms is the following additivity property.

Proposition 6.1.3. For any morphisms f : M1 → M2 and g,h : N1 → N2 of S-
modules, we have

f ◦′ (g + h)= f ◦′ g+ f ◦′ h in Hom
(
M1 ◦N1,M2 ◦ (N1;N2)

)
.

When N1 =N2 =N , we still denote the composite

M1 ◦N→M2 ◦ (N;N)→M2 ◦N

by f ◦′ g since the context is obvious.
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6.1.4 Infinitesimal Decomposition Map of a Cooperad

Dually, for any cooperad (C ,�,η), we consider the projection of the decomposition
map to the infinitesimal part of the composite product C ◦C . This map is called the
infinitesimal decomposition map of C and is defined by the following composite

�(1) := C
�−→ C ◦C

IdC ◦′ IdC−−−−−−→ C ◦ (C ;C ) IdC ◦(η;IdC )−−−−−−−−→ C ◦ (I;C )= C ◦(1) C .
This map can be seen as a decomposition of an element of C into two parts.

6.2 Differential Graded S-Module

In this section, we extend the notion of S-module to the graded framework and to the
differential graded framework. The notion of infinitesimal composite of morphisms
plays a crucial role in the definition of the differential of the composite product.

6.2.1 Graded S-Module

A graded S-module M is an S-module in the category of graded vector spaces. So
the component of arity n is a graded Sn-module {Mp(n)}p∈Z for any n. Equivalently
M can be considered as a family of S-modules {Mp}p∈Z. By abuse of notation, the
direct sum is also denoted byM :

M =M• := · · · ⊕M0 ⊕M1 ⊕ · · · ⊕Mp ⊕ · · · .
Notice that a graded S-module M is a family indexed by two labels: the degree p
and the arity n. The degree of an element μ ∈M(n) is denoted by |μ|.

A morphism f :M(n)→ N(n) of degree r of graded Sn-modules is a family
{fp}p∈Z of Sn-equivariant maps fp :Mp(n)→Np+r (n). A morphism f :M→N

of degree r of graded S-modules is a family {f (n) : M(n)→ N(n)}n≥0 of mor-
phisms of degree r of graded Sn-modules. The degree of f is the integer r and
is denoted by |f |. We denote by Homr

S
(M,N) the set of morphisms of graded S-

modules of degree r .
The tensor product of S-modules is extended to graded S-modules by the for-

mula:

(M ⊗N)p(n) :=
⊕

i+j=n,q+r=p
Ind Sn

Si×Sj
(
Mq(i)⊗Nr(j)

)
.

The composite product of two S-modules is extended to graded S-modules by the
following formula:

(M ◦N)p(n) :=
⊕

k≥0

Mq(k)⊗Sk

(⊕
Ind Sn

Si1×···×Sik
(
Nr1(i1)⊗ · · · ⊗Nrk (ik)

))
,
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where the first sum also runs over the k+ 1 tuples (q, r1, . . . , rk) such that q + r1 +
· · · + rk = p and where the second sum runs over the k-tuples (i1, . . . , ik) such that
i1 + · · · + ik = n.

The S-module I := (0,K,0,0, . . .) is considered as a graded S-module concen-
trated in degree 0.

Proposition 6.2.1. With these definitions, the category of graded S-modules, with
the product ◦ and the unit I, form a monoidal category (see Appendix B.4) denoted
gr S-Mod.

We denote by Ks the graded S-module (Ks,0,0, . . .), where Ks is concentrated
in degree 1 and arity 0. By definition the suspension of a graded S-moduleM is the
shifted graded S-module sM :=Ks⊗M , that is sMp(n)=Mp−1(n). We denote an
elementary tensor s ⊗m by sm.

Similarly let Ks−1 be the graded S-module (Ks−1,0,0, . . .) concentrated in de-
gree −1 and arity 0. By definition, the desuspension of a graded S-moduleM is the
shifted graded S-module s−1M := Ks−1 ⊗M , that is s−1Mp(n) =Mp+1(n). We
denote an elementary tensor s−1 ⊗m by s−1m.

6.2.2 Differential Graded S-Module

A differential graded Sn-module (M(n), d) is a graded Sn-module M(n) equipped
with a differential d of Sn-modules

· · · d←M0(n)
d←M1(n)

d←M2(n)
d← ·· · d←Mp(n)

d← ·· ·
such that d2 = 0. A dg S-module is a family {M(n)}n≥0 of differential graded Sn-
modules. The differential d has degree −1. The homology groups H•(M) of a dg
S-module form a graded S-module.

A morphism f : (M,dM)→ (N,dN) of differential graded S-modules is a mor-
phism f of graded S-modules of degree 0 which commutes with the differentials,
that is dN ◦ f = f ◦ dM . The differential S-modules with their morphisms form a
category denoted by dg S-Mod.

Let (M,dM) and (N,dN) be two dg S-modules. Their composite productM ◦N
is a graded S-module that we endow with a differential dM◦N defined as follows

dM◦N := dM ◦ IdN + IdM ◦′dN .
Observe that the second summand uses the infinitesimal composite of morphisms.
Explicitly we get:

dM◦N(μ;ν1, . . . , νk)=
(
dM(μ);ν1, . . . , νk

)

+
k∑

i=1

(−1)εi
(
μ;ν1, . . . , dN(νi), . . . , νk

)
,
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where εi = |μ| + |ν1| + · · · + |νi−1|. It is an easy exercise to check that
dM◦N 2 = 0.

Proposition 6.2.2. Under these definitions, the composite of dg S-modules is a mo-
noidal product. So the category (dg S-Mod,◦, I) is a monoidal category (see Ap-
pendix B.4).

The notions of infinitesimal composite products and infinitesimal composite
of morphisms extend to the differential graded framework. Their definitions are
straightforward and require only the use of the Koszul sign rule. Hence, we leave it
to the reader to fill in the details.

Proposition 6.2.3 (Operadic Künneth formula). Let M,N be two dg S-modules.
Over a field K of characteristic 0, we have the following isomorphism of graded
S-modules

H•(M ◦N)∼=H•(M) ◦H•(N).

Proof. Since we work over a characteristic zero field K, the ring K[Sn] is semi-
simple by Maschke’s theorem. Therefore every K[Sn]-module is projective, see, for
instance, Chap. 4.2 of [Wei94]. We apply this result to the explicit formula of the
composite product ◦. �

Corollary 6.2.4. Let M be a dg S-module. Over a field K of characteristic 0, we
have the following equivalence

H•(M)∼= I ⇐⇒ H•
(
M(V )

)∼= V, ∀V ∈ModK.

Proof. By the preceding proposition, we have H•(M(V )) ∼= H•(M)(V ), for any
K-module V . We conclude with the Schur Lemma, see Appendix A.2.3. �

6.3 Differential Graded Operad

We extend the notions of operad, algebra over an operad, cooperad and coalgebra
over a cooperad to the differential graded context. This is a generalization of the dga
algebra case of Sect. 1.5.

6.3.1 Differential Graded Operad

A graded operad P is a monoid in the monoidal category of graded S-modules. The
composition map γ :P ◦P →P and the unit map η : I→P are supposed to be
of degree 0. LetM be a graded S-module concentrated in weight 1. The grading on
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M induces a natural grading on the free operad T (M) onM , see Sect. 5.5.3. Since
the composition product of the free operad preserves this grading, the free operad is
a graded operad.

A differential graded operad (P, γ, η), dg operad for short, is a monoid in the
monoidal category (dg S-Mod,◦, I), that is (P, γ, η) is a graded operad structure on
a dg S-module (P, dP ) such that γ :P ◦P →P and η : I→P are morphisms
of dg S-modules of degree 0. The composite map γ is a morphism of dg S-modules
if and only if the following diagram commutes

P ◦P

dP◦P

γ
P

dP

P ◦P
γ

P.

Explicitly, it means that dP is a derivation on the graded operad P :

dP (γ )= γ (dP◦P )= γ (dP ◦ IdP )+ γ (IdP ◦′dP ),
where ◦′ is the infinitesimal composite introduced in Sect. 6.1.3. Observe that we
have written the composition of morphisms as concatenation to avoid confusion
with the two different meanings of ◦.

Applied to operations, it gives

dP
(
γ (μ;μ1, . . . ,μk)

) := γ (dP (μ);μ1, . . . ,μk
)

+
k∑

i=1

(−1)εi γ
(
μ;μ1, . . . , dP (μi), . . . ,μk

)
,

where εi = |μ| + |μ1| + · · · + |μi−1|. So a dg operad is a graded operad endowed
with a square-zero derivation.

For example, let (A,dA) be a chain complex. The differential of EndA(n) is given
by

∂A(f ) := [dA,f ] = dA ◦ f − (−1)|f |f ◦ dA⊗n :A⊗n→A,

where dA⊗n is, as usual, induced by dA,

dA⊗n := (dA, id, . . . , id)+ · · · + (id, . . . , id, dA, id, . . . , id)+ · · · + (id, . . . , id, dA).
With this definition, (EndA, ∂A) becomes a dg operad.

Proposition 6.3.1. When the characteristic of the ground field K is 0, the underly-
ing homology groups H(P) of a dg operad P carry a natural operad structure.

Proof. It is a direct application of the Künneth formula for the tensor product ⊗. �

An augmented dg operad is a dg operad P equipped with a morphism ε :P → I
of dg operads (of degree 0), called the augmentation morphism. It sends id ∈P(1)
to id ∈ I(1).
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The notion of infinitesimal composition product of Sect. 6.1 extends naturally to
the differential graded framework.

6.3.2 Infinitesimal Tree Module

Like in Sect. 6.1, we need to linearize the tree module functor in order to do homo-
logical algebra with operads.

LetM andN be two S-modules. The tree module on their direct sum T (M⊕N)
defines a functor from (S-Mod)2 to S-Mod. We consider the sub-functor whose im-
age is defined by the linear part of T (M ⊕N) in N and we denote it by �T (M;N).
In fact, we will work with its augmented version

T (M;N) := I⊕ �T (M;N)= I⊕N ⊕ (M ◦(1) N ⊕N ◦(1) M)⊕ · · · .
We call this construction the infinitesimal tree module. It is explicitly given by the
sum of trees whose vertices are indexed by elements ofM except exactly one which
is indexed by an element of N .

Proposition 6.3.2. For any graded S-modulesM , N and N ′, we have

I ⊕T
(
M;N ⊕N ′)=T (M;N)⊕T

(
M;N ′).

Let E be an S-module. The natural diagonal map, diag : E→ E ⊕ E, induces
the following morphism

�E :=T (E)
T (diag)−−−−→T (E ⊕E)� T (E;E).

This application singles out every vertex of a tree together with its indexing element
of E.

6.3.3 Quasi-free Operad

We make explicit the notion of derivation on free operads.

Proposition 6.3.3. Let E be a graded S-module. Any derivation on the free operad
T (E) is completely characterized by the image of the generators: E → T (E).
Explicitly, the unique derivation on T (E), which extends a morphism ϕ : E →
T (E), is given by the following composite

dϕ =T (E)
�E−−→T (E;E) T (IdE;ϕ)−−−−−→T

(
E;T (E))→T

(
T (E)

)→T (E),

where the last map is the composition in the free operad, i.e. grafting of trees.
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Proof. We prove by induction on n that the image under any derivation d of any ele-
ment of T (E)(n) is characterized by the restriction d|E :E→T (E). The property
obviously holds for n= 1. Suppose that it is true up to n. Any element of T (E)(n+1)

is the image under the composition map T (E) ◦ T (E)→ T (E) of elements of
T (E)(k) with k ≤ n. Hence the value of d on T (E)(n+1) is well-determined.

Since the restriction of dϕ on E is equal to ϕ, it is enough to verify that dϕ
is a derivation, which is left to the reader. Then one concludes by the uniqueness
property. �

When representing an element of T (E) by a labeled tree, its image under dϕ is
the sum of labeled trees, where ϕ has been applied once and only once to any vertex.

Such dg operads are called quasi-free operads. It means that the underlying
graded operad, forgetting the differential, is free.

6.3.4 Minimal Model for Operads

Let P be a dg operad. A model for P is a dg operad M with a given epimorphism
of dg operads M � P that induces an isomorphism in homology.

By definition, a minimal operad is a quasi-free operad (T (E), d)

1. whose differential is decomposable, that is d :E→T (E)(≥2), and
2. such that the generating graded S-module E admits a decomposition into

E =
⊕

k≥1

E(k)

satisfying

d
(
E(k+1))⊂T

(
k⊕

i=1

E(i)

)

.

A minimal model for the dg operad P is the data of a minimal operad (T (E), d)
together with a quasi-isomorphism of dg operads

(
T (E), d

) ∼
P ,

which is an epimorphism. Notice that this last condition is always satisfied when the
differential of P is trivial.

Theorem 6.3.4 (Fundamental theorem of minimal models for operads [DCV11]).
When P admits a minimal model, it is unique up to a (non-unique) isomorphism.

Proof. The proof follows the same steps as in the algebra case, see the proof
of Theorem 1.5.2. Given two minimal models M = (T (E), d) ∼ P and
M ′ = (T (E′), d ′) ∼ P of a common dg operad P , one first proves the ex-
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istence of a quasi-isomorphism f :M ∼−→M ′ of dg operads. Since the differentials
d and d ′ are decomposable, this induces an isomorphism of graded modulesE ∼=E′.
Therefore, the map f is an isomorphism of dg operads. �

As in the algebra case, the proof shows that the generating space E of minimal
models is uniquely determined up to isomorphism. The automorphism groups of
minimal models produce interesting groups to study. For instance, in the case of
the Gerstenhaber operad, it is related to the Grothendieck–Teichmüller group, see
[Kon99]. The Koszul duality theory for operads, developed in this book, induces
minimal models with differential maps satisfying d(E)⊂ T (E)(2). In this case, the
differential is called quadratic and the minimal model is called a quadratic model.

The special case where M (0)= 0 and M (1)=K is treated in the literature by
M. Markl in [Mar96b].

6.3.5 P-Algebra in the Differential Graded Framework

In Sect. 5.2.3, we defined the notion of an algebra over an operad. We extend this
definition to the dg framework here.

By definition, a dg P-algebra is a chain complex A = (A,dA) endowed with
a morphism of dg operads f : P → EndA. When (P, dP ) is a dg operad, each
P(n) is a chain complex whose differential is still denoted by dP .

Hence the differential maps are related by the formula

f
(
dP (μ)

)= [dA,f (μ)
] := dA ◦ f (μ)− (−1)|μ|f (μ) ◦ dA⊗n :A⊗n→A,

with μ ∈P(n).
The underlying homology H(A,dA) of a dg P-algebra is called the homotopy

of the dg P-algebra A.

Proposition 6.3.5. Let P be an operad. The homotopy H(A) of a dg P-algebra
A carries a natural P-algebra structure.

Proof. There is a natural induced map P → EndH(A), which makes the homotopy
H(A) into a P-algebra. �

When P is a dg operad and when the characteristic of the ground field K is 0,
the homotopy H(A) is an H(P)-algebra.

6.3.6 Derivation of a P-Algebra

Since

Homdg S-Mod(P,EndA)∼=Homdg Mod
(
P(A),A

)
,
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a structure of dg P-algebra onA is equivalently given by a morphism of dg modules
γA :P(A)→ A, which satisfies the same commutative diagrams as in Sect. 5.2.3.
Recall that the differential on P(A)=P ◦A is equal to dP ◦ IdA+ IdP ◦′dA. The
linear map dA : A→ A is called a derivation of the P-algebra A if it makes the
following diagram commutative:

P ◦A
dP◦IdA+ IdP ◦′dA

γA
A

dA

P ◦A γA
A.

In other words, a dg P-algebra is a P-algebra with a square-zero derivation.
We denote the space of derivations on a P-algebra A by Der(A). The com-

posite dd ′ of two derivations does not give a derivation in general. But it is the
case of the associated Lie bracket [d, d ′] := dd ′ − (−1)|d||d ′|d ′d , obtained by anti-
symmetrization. In the particular case of the free P-algebra over an n-dimensional
vector space, we denote by

gln(P) := (Der
(
P(Kx1 ⊕ · · · ⊕Kxn)

)
, [ , ])

the Lie algebra of derivations.

Proposition 6.3.6. Any derivation d on a free P-algebra P(V ) is completely
characterized by its restriction on the generators, V →P(V ):

Der
(
P(V )

)∼=Hom
(
V,P(V )

)
.

Explicitly, given a map ϕ : V → P(V ), the unique derivation dϕ on the free P-
algebra P(V ), which extends ϕ, is given by

dϕ = dP ◦ IdV +(γ(1) ◦ IdV )(IdP ◦′ϕ),
where the last term is equal to the following composite

P(V )
IdP ◦′ϕ−−−−→P ◦ (V ;P(V )

)∼= (P ◦(1) P)(V )
γ(1)◦IdV−−−−→P(V ).

Proof. By the definition of a derivation, the following diagram commutes

P ◦ I(V )

dP◦IdV + IdP ◦′d

γ ◦IdV
P(V )

d

P(V )⊕P ◦ (V ;P(V )) (P ◦(1) P)(V )
γ(1)◦IdV

P(V ).

Since the top map P ◦ I(V )→ P(V ) is an isomorphism, d is characterized by
the image of the generators I(V ) = V . This diagram also shows that, if we denote
by ϕ this restriction, then the total differential is equal to d = dP ◦ IdV +(γ(1) ◦
IdV )(IdP ◦′ϕ). �
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6.3.7 Differential Graded Cooperad

Dually, a graded cooperad C is a comonoid in the monoidal category (gr S-Mod,
◦, I). It is defined by a coassociative decomposition map � : C → C ◦ C and a
counit map ε : C → I, both of degree 0, on a graded S-module C . Consider a
graded S-module M concentrated in weight 1. This induces a natural grading on
the cofree connected cooperad on M , see Sect. 5.8.6, which makes it into a graded
cooperad.

A differential graded cooperad (C ,�, ε), dg cooperad for short, is a comonoid
in the monoidal category (dg S-Mod,◦, I). The structure map � and ε commute
with the respective differentials. It means, for instance, that the following diagram
is commutative

C

dC

�
C ◦C

dC◦C

C
�

C ◦C .

We define a coderivation dC on a graded cooperad C to be a morphism of S-
modules C → C such that

�(dC )= dC ◦C (�)= dC ◦ IdC (�)+ IdC ◦′dC (�).

Recall that for (C ,�) a cooperad, the image of an element c ∈ C under the decom-
position map � is written

�(c)=
∑
(c; c1, . . . , ck),

see Sect. 5.8.1. Under this notation, dC is a coderivation if and only if

�
(
dC (c)

)=
∑((

dC (c); c1, . . . , ck
)

+
k∑

i=1

(−1)νi
(
c; c1, . . . , dC (ci), . . . , ck

)
)

,

where νi = |c| + |c1| + · · · + |ci−1|. The decomposition map � : C → C ◦C com-
mutes with the differential dC if and only if dC is a coderivation of C .

When a dg cooperad C is equipped with a coaugmentation, that is a morphism
η : I→ C of dg cooperads of degree 0, C is called a coaugmented dg cooperad. A
coaugmented dg cooperad is conilpotent when its coradical filtration is exhaustive,
as in Sect. 5.8.5.

The notion of infinitesimal decomposition coproduct of Sect. 6.1.4 extends natu-
rally to the differential graded framework.
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6.3.8 Quasi-cofree Cooperad

We make explicit coderivations on cofree cooperads as follows.
Let E be a graded S-module. Recall from Sect. 5.8.8, that the S-module

T c( �T c(E)) is made up of trees of nontrivial trees, whose vertices are labeled by
elements of E. The map

�(E) :T c(E)→T c
( �T c(E)

)

associates to a tree t labeled by E, the sum of all the partitioned trees coming from t .

Proposition 6.3.7. Let E be a graded S-module. Any coderivation on the cofree
cooperad T c(E) is completely characterized by its projection on the cogenerators
projE ◦ d :T c(E)→E.

Explicitly, the unique coderivation on T c(E) which extends a morphism ϕ :
T c(E)→E is given by the following composite

dϕ =T c(E)
�(E)−−−→T c

( �T c(E)
) � �T c(E)−−−−→T c

( �T c(E); �T c(E)
)

T c(projE;ϕ)−−−−−−−→T c(E;E)→T c(E).

Proof. The proof of this proposition is dual to the proof of Proposition 6.3.3. �

With the tree representation of T c(E), the coderivation dϕ consists in applying
the map ϕ to any sub-tree of T c(E). A square-zero coderivation is called a codif-
ferential.

Any cooperad, whose underlying graded cooperad is cofree, is called a quasi-
cofree cooperad.

6.3.9 C -Coalgebra in the Differential Graded Framework

By definition, a dg C -coalgebra is a chain complex C = (C,dC) equipped with a
morphism �C : C→ Ĉ (C) of chain complexes which satisfies the same commuta-
tive diagrams as in Sect. 5.8.3. If the map �C factors though C → C (C), then the
dg C -coalgebra is called conilpotent.

Any map dC on C such that the following diagram commutes

C

dC

�C
Ĉ (C)= C ◦̂C

dC ◦IdC + IdC ◦̂′dC

C
�C

Ĉ (C)= C ◦̂C
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is called a coderivation of the C -coalgebra C. A square-zero coderivation of a C -
coalgebra is called a codifferential. Hence a dg C -coalgebra is a C -coalgebra with
a square-zero coderivation. We denote the set of coderivations on a C -coalgebra C
by Coder(C) and the set of codifferentials by Codiff(C).

Proposition 6.3.8. Any coderivation d on a cofree C -coalgebra C (V ) is com-
pletely characterized by its projection onto the space of the cogenerators projV ◦ d :
C (V )→ V .

Coder
(
C (V )

)∼=Hom
(
C (V ),V

)

Explicitly, given a map ϕ : C (V )→ V , the unique coderivation dϕ on the cofree
C -coalgebra C (V ) which extends ϕ is given by

dϕ = dC ◦ IdV +
(
IdC ◦(IdV ;ϕ)

)
(�(1) ◦ IdV ),

where the last term is equal to the following composite

C (V )
�(1)◦IdV−−−−−→ (C ◦(1) C )(V )∼= C ◦ (V ;C (V )) IdC (IdV ;ϕ)−−−−−−→ C ◦ (V ;V )→ C (V ).

Proof. This proposition is the exact dual of Proposition 6.3.6. �

6.3.10 P-Module in the Differential Graded Framework

In this section, we extend the notion of module over an operad of Sect. 5.2.2 to the
dg framework. This notion will play an important role in the next section.

A differential graded left (resp. right) module over a dg operad (P, dP ) is a dg
S-module (M,dM) equipped with a left action λ :P ◦M→M (resp. right action
ρ :M ◦P →M) which commutes with the respective differentials. In this case, the
boundary map dM is called a derivation. A dg left P-module concentrated in arity
0 is nothing but a dg P-algebra (see Sect. 6.3.5).

LetN be a dg S-module. The free dg left (resp. right) P-module onN is given by
(P ◦N,dP◦N) (resp. (N ◦P, dN◦P )). The following proposition extends Proposi-
tions 6.3.6 and 1.5.3. It shows that any derivation on a free P-module is completely
characterized by its restriction to the generators.

Proposition 6.3.9. Let (P, dP ) be a dg operad and let N be a graded S-module.
There is a one-to-one correspondence between derivations on the dg free P-
modules P ◦N or N ◦P and their restriction to the space of generators N . More
precisely,

 the unique derivation dϕ :P ◦ N →P ◦ N which extends ϕ : N →P ◦ N is
given by

dϕ = dP ◦ IdN +(γ(1) ◦ IdN)(IdP ◦′ϕ);



208 6 Operadic Homological Algebra

 the unique derivation dϕ : N ◦P → N ◦P which extends ϕ : N → N ◦P is
given by

dϕ = IdN ◦′dP + (IdN ◦γ )(ϕ ◦ IdP ).

Proof. The proof is similar to the ones of Propositions 6.3.6 and 1.5.3. �

6.3.11 Weight Grading

In the next section, we will need an extra grading to prove the main theorem 6.6.1.
We will require that the underlying S-module of an operad, of a cooperad or of
a module, has an extra grading, which we call weight grading to avoid confusion
with the homological degree. This means that every dg S-module is a direct sum of
sub-dg S-modules indexed by this weight. For instance, a weight-graded dg operad,
wgd operad for short, is an operad structure on a weight-graded dg S-module P .
Its product is supposed to preserve the weight grading. We denote by P(ω)

p the sub-
module of degree p and weight ω of P . Similarly, there is the notion of weight-
graded dg cooperad C , wgd cooperad for short, which is a cooperad structure on a
weight graded dg S-module C . In this context, morphisms are supposed to respect
the weight grading.

In this book, the weight grading and the homological degree are nonnegative
gradings. A wdg operad is called connected if it decomposes as

P :=K id⊕P(1) ⊕ · · · ⊕P(ω) ⊕ · · ·
with P(0) =K id concentrated in degree 0. The same definition holds for wdg co-
operad if it satisfies the same decomposition. A connected wdg cooperad is conilpo-
tent, cf. Sect. 5.8.5.

6.4 Operadic Twisting Morphism

In this section, we define the notion of twisting morphism from a dg cooperad C to
a dg operad P . It is a solution of the Maurer–Cartan equation in the convolution dg
(pre-)Lie algebra HomS(C ,P). Then, we show how to twist the differential of the
composite products C ◦P , P ◦C , and P ◦C ◦P with such a twisting morphism
to obtain an operadic twisted complex.

6.4.1 Convolution Operad

Let (C ,�, ε) be a cooperad and (P, γ, η) be an operad. We consider the graded
module

Hom(C ,P) := {HomK

(
C (n),P(n)

)}
n≥0.
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It becomes a right S-module under the action by conjugation:

(
f σ
)
(x) := (f (xσ−1))σ

,

for f ∈Hom(C (n),P(n)), σ ∈ Sn and x ∈ C (n).

Proposition 6.4.1. The S-module Hom(C ,P) is an operad.

Proof. The proof is a generalization of the arguments of Sect. 1.6.1. Let f ∈
Hom(C (k),P(k)) and let gi ∈ Hom(C (il),P(il)) for 1 ≤ l ≤ k. As usual n =
i1 + · · · + ik . We define the composition map γ (f ;g1, . . . , gk) by the formula

C (n)
�C−−→ (C ◦C )(n)� C (k)⊗C (i1)⊗ · · · ⊗C (ik)⊗K[Sn]

f⊗g1⊗···⊗gk⊗Id−−−−−−−−−−→P(k)⊗P(i1)⊗ · · · ⊗P(ik)⊗K[Sn]→ (P ◦P)(n)
γP−−→P(n). �

The operad Hom(C ,P) is called the convolution operad and is due to C. Berger
and I. Moerdijk [BM03a]. This construction generalizes to operads the convolution
algebra Hom(C,A) of Sect. 1.6.1 from a coalgebra C and an algebra A.

We suppose now that (P, dP ) is a dg operad and that (C , dC ) is a dg cooperad,
For a homogeneous morphism f : C → P of dg S-modules of degree |f |, we
define its derivative ∂(f ) by the classical formula

∂(f )= [d,f ] := dP ◦ f − (−1)|f |f ◦ dC .

Proposition 6.4.2. The convolution operad (Hom(C ,P), ∂) is a dg operad.

Proof. The map ∂ squares to zero, ∂2 = 0, and it is a derivation with respect to the
operadic composition on Hom(C ,P). The proof is a straightforward generalization
of Proposition 2.1.1. �

6.4.2 Operadic Convolution DG Lie Algebra

Recall from Sect. 5.4.3 the composite of functors

Op→ preLie-alg→ Lie-alg,

where the underlying objects are P �→∏n≥0 P(n). It extends to the differential
graded framework

dg Op→ dg preLie-alg→ dg Lie-alg.

In the case of convolution operads, the pre-Lie product can be made explicit as
follows.
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Proposition 6.4.3. The pre-Lie product f � g of two elements f and g in∏
n≥0 Hom(C ,P)(n) is equal to the following composite

f � g = C
�(1)−−→ C ◦(1) C f ◦(1)g−−−→P ◦(1) P γ(1)−−→P.

Proof. The proof is a straightforward application of the definition of the compo-
sition map in the convolution operad, Proposition 6.4.1, with the definition of the
pre-Lie product associated to an operad, Proposition 5.4.3. �

The space of invariant elements of Hom(C (n),P(n)) under the conjugation ac-
tion of the symmetric group Sn is equal to the subspace HomSn(C (n),P(n)) of
Sn-equivariant morphisms from C (n) to P(n). We denote by

HomS(C ,P) :=
∏

n≥0

HomSn

(
C (n),P(n)

)

the associated product of S-equivariant maps.

Lemma 6.4.4. The space HomS(C ,P) is stable under the pre-Lie product associ-
ated to the convolution operad Hom(C ,P).

Proof. The pre-Lie product was proved to be equal to the composite of S-equivariant
maps in the previous proposition. �

To sum up, we have proved the following result.

Proposition 6.4.5. Let P be a dg operad and C be a dg cooperad. The product
space of S-equivariant maps

(
HomS(C ,P), �, ∂

)

is a dg pre-Lie algebra. The associated Lie bracket induces a dg Lie algebra struc-
ture

(
HomS(C ,P), [ , ], ∂).

The latter dg Lie algebra associated to the convolution operad is called the con-
volution dg Lie algebra.

6.4.3 Maurer–Cartan Equation, Operadic Twisting Morphism

As usual, the Maurer–Cartan equation in the dg pre-Lie algebra HomS(C ,P) reads

∂(α)+ α � α = 0.
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A solution α : C →P of degree −1 of this equation is called an operadic twist-
ing morphism. We denote by Tw(C ,P) the space of twisting morphisms for C
to P . We will simply say twisting morphism if no confusion can arise. When C is
a coaugmented dg cooperad, we require that the composition of an operadic twisting
morphism with the coaugmentation map vanishes: αη = 0. Respectively, when P
is an augmented dg operad, we require that the composition of an operadic twisting
morphism with the augmentation map vanishes: εα = 0.

Since 2 is invertible in the ground ring, we have α � α = 1
2 [α,α], this equation is

equivalent to the classical Maurer–Cartan equation ∂(α)+ 1
2 [α,α] = 0 in the asso-

ciated dg Lie algebra. When C and P are concentrated in arity 1, we recover the
notion of twisting morphism between dga algebras and dga coalgebras of Sect. 2.1.

6.4.4 Twisted Structure on the Hom Space

Recall from Lemma 2.1.2 that, in any dg Lie algebra, every solution α of the
Maurer–Cartan equation gives rise to a twisted differential ∂α(f ) := ∂(f )+ [α,f ]
on HomS(C ,P). We denote this twisted chain complex by Homα

S
(C ,P) :=

(HomS(C ,P), ∂α).

Proposition 6.4.6. The triple (Homα
S
(C ,P), [ , ], ∂α) is a dg Lie algebra.

Proof. It is a direct corollary of Lemma 2.1.2. �

We call this new dg Lie algebra the twisted convolution Lie algebra.

6.4.5 Twisted Composite Products

In this section, we study dg free P-modules over C .
In Proposition 6.3.9, we showed that the derivations on P ◦C and on C ◦P are

characterized by their restrictions to C . To any map α : C →P , of degree −1, we
associate the following derivations.

On C ◦P: we consider the unique derivation which extends

C
�(1)−−→ C ◦(1) C IdC ◦(1)α−−−−−→ C ◦(1) P → C ◦P.

It is explicitly given by drα = (IdC ◦γ )([(IdC ◦(1)α)�(1)] ◦ IdP ), that is

drα : C ◦P
�(1)◦IdP−−−−−−→ (C ◦(1) C ) ◦P

(IdC ◦(1)α)◦IdP−−−−−−−−−−→ (C ◦(1) P) ◦P

∼= C ◦ (P;P ◦P)
IdC ◦(IdP;γ )−−−−−−−−→ C ◦ (P;P)∼= C ◦P.
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Using the tree representation, without the top leaves, it has the following form

P P P

C
�(1)−−→

P P P

C

C

α−→

P P P

P

C

∼=

P P

P P

C

γ−→
P P

C ,

where the dotted box stands for �(1), the dashed box stands for α and the final
box stands for γ .
We consider the full derivation

dα = dC ◦ IdP + IdC ◦′dP + drα,

where dr is the twisting term.
On P ◦C : we consider the unique derivation which extends

C
�−→ C ◦C

α◦IdC−−−−→P ◦C .

It is explicitly given by dlα = (γ(1) ◦ IdC )(IdP ◦′[(α ◦ IdC )�]). We consider the
full derivation

dα = dP ◦ IdC + IdP ◦′dC + dlα,
where dlα is the twisting term.

Lemma 6.4.7. On P ◦C , the derivation dα satisfies

dα
2 = dl∂(α)+α�α

and on C ◦P , the derivation dα satisfies

dα
2 = dr∂(α)+α�α.

In both cases, α ∈ Tw(C ,P) if and only if dα2 = 0.
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Proof. The proof is based on the relations [dlα, dlβ ] = dl[α,β] and [drα, drβ ] = dr[α,β]
and is similar to the proof of Lemma 2.1.4. �

When α : C →P is a twisting morphism, the map dα is a differential defining
the chain complex

P ◦α C := (P ◦C , dα = dP◦C + dlα
)
,

which is called the left twisted composite product. In the other way round, the chain
complex

C ◦α P := (C ◦P, dα = dC ◦P + drα
)

is called the right twisted composite product. Since the context is obvious, we de-
note the two differentials by the same symbol. It is a direct generalization of the
twisted tensor product of Sect. 2.1.4. As in the case of dga (co)algebras, these two
constructions are not isomorphic. In the operadic case, the underlying S-modules
P ◦ C and C ◦ P are not even isomorphic since the composite product is not
symmetric.

These constructions are functorial as follows. We consider C ◦αP and C ′ ◦α′ P ′
two twisted composite products. Let g :P →P ′ be a morphism of dg operads and
let f : C → C ′ be a morphism of dg cooperads. These morphisms are compatible
with the twisting morphisms if α′ ◦ f = g ◦ α:

C
f

α

C ′

α′

P
g

P ′.

We leave it to the reader to show that, in this case, f ◦ g : C ◦α P → C ′ ◦α′ P ′
induces a morphism of chain complexes.

When C and P are weight graded, we ask that the twisting morphisms α pre-
serve the weight. In this case, if two among these three morphisms are quasi-
isomorphisms, then so is the third one. This result comes essentially from Fresse
[Fre04].

Lemma 6.4.8 (Comparison Lemma for twisted composite products). Let g :P →
P ′ be a morphism of wdg connected operads and f : C → C ′ be a morphism
of wdg connected cooperads. Let α : C → P and α′ : C ′ → P ′ be two twisting
morphisms, such that f and g are compatible with α and α′.

Right: If two morphisms among f , g and f ◦ g : C ◦α P → C ′ ◦α′ P ′ are quasi-
isomorphisms, then so is the third one.

Left: If two morphisms among f , g and g ◦ f :P ◦α C →P ′ ◦α′ C ′ are quasi-
isomorphisms, then so is the third one.

Proof. We prove this theorem later in Sect. 6.7. �
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6.5 Operadic Bar and Cobar Construction

Are the functors Tw(C ,−) and Tw(−,P) representable ? In this section, we define
the bar and the cobar constructions, which give a positive answer to this question.
A direct corollary proves that they form a pair of adjoint functors. The constructions
are the generalization to the operadic case of the constructions given in Sect. 2.2 in
the algebra context. This section comes from [GJ94, GK94].

6.5.1 Bar Construction

In this section, we define a functor

B : {aug. dg operads} −→ {conil. dg cooperads}
from the category of augmented dg operads to the category of conilpotent dg coop-
erads called the bar construction.

Let P := (P, γ, η, ε) be an augmented operad. Consider its augmentation ideal,
that is �P := ker(ε : P → I ). The S-module P is naturally isomorphic to P =
I ⊕ �P . The bar construction BP of P is a dg cooperad, whose underlying space
is the cofree cooperad T c(s �P) on the suspension of �P .

We consider the map γs :Ks⊗Ks→Ks of degree−1 defined by γs(s⊗ s) := s.
The infinitesimal composition map, that is the restriction of the composition map of
P on two operations, see Sect. 6.1.2, induces the following map

d2 :T c(s �P)� T c(s �P)(2) ∼= (Ks ⊗ �P) ◦(1) (Ks ⊗ �P)

Id⊗τ⊗Id−−−−−→ (Ks ⊗Ks)⊗ ( �P ◦(1) �P)

γs⊗γ(1)−−−−→Ks ⊗ �P.

Since T c(s �P) is a cofree cooperad, there exists a unique coderivation T c×
(s �P)→ T c(s �P) which extends d2 by Proposition 6.3.7. By a slight abuse of
notation, we still denote it by d2.

Proposition 6.5.1. The map d2 is a differential: d2
2 = 0.

Proof. It is a direct consequence of the relation satisfied by the infinitesimal com-
position map γ(1) and the Koszul sign rules. �

The chain complex BP := (T c(s �P), d2) is a conilpotent dg cooperad, called
the bar construction of the augmented operad P . It is a functor from the category
of augmented operads to the category of coaugmented dg cooperads.

We extend this definition to dg operads as follows. Let P = (P, dP ) be a dg
operad. The differential dP on P induces an internal differential d1 on T c(s �P),
that is d1

2 = 0. Since (P, dP ) is a dg operad, the infinitesimal composition map
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Fig. 6.1 The boundary map
d2 of the operadic bar
construction

commutes with the differential dP . The differentials d1 and d2 anti-commute: d1 ◦
d2+d2 ◦d1 = 0. The total complex of this bicomplex is called the bar construction:

BP := (T c(s �P), d = d1 + d2
)

of the augmented dg operad (P, dP ).

Proposition 6.5.2. Under the tree representation of the cofree cooperad, the bound-
ary map d2 is the sum of the contractions of the internal edges with the composition
of the two elements indexing the two extremal vertices of each edge, see Fig. 6.1.

Proof. Since the differential d2 is the unique coderivation extending the (sus-
pended) infinitesimal product of �P , the proposition is a direct corollary of Proposi-
tion 6.3.7. �

Such a chain complex is an example of graph complex à la Kontsevich [Kon03],
see Appendix C.4.2.

Proposition 6.5.3. When the characteristic of the ground field K is 0, the operadic
bar construction preserves quasi-isomorphisms.

Proof. We use the same kind of filtration as in the proof of Proposition 2.2.3, but
based on the number of vertices of trees this time. The characteristic 0 assumption
ensures that we can apply the Künneth formula. �

6.5.2 Cobar Construction

Dually we construct a functor

� : {coaug. dg cooperads} −→ {aug. dg operads}
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from the category of coaugmented dg cooperads to the category of augmented dg
operads called the cobar construction.

Let C := (C ,�, ε, η) be a cooperad. Recall that the coaugmentation coideal of
C is �C := coker(η : I → C ). In this case, C splits naturally as C ∼= I ⊕ �C . The
cobar construction �C of C is an augmented dg operad defined on the free operad
T (s−1 �C ) over the desuspension of �C .

Consider Ks−1 equipped with the diagonal map �s : Ks−1 → Ks−1 ⊗ Ks−1

defined by the formula �s(s−1) := −s−1 ⊗ s−1 of degree −1. The infinitesimal
decomposition map �(1) of C , defined in Sect. 6.1.4 by the projection of � on
C ◦(1) C , induces a map d2 on s−1 �C =Ks−1 ⊗ �C as follows

d2 :Ks−1 ⊗ �C �s⊗�(1)−−−−−→ (Ks−1 ⊗Ks−1)⊗ (C ◦(1) C )
Id⊗τ⊗Id−−−−−→ (Ks−1 ⊗ �C ) ◦(1)

(
Ks−1 ⊗ �C )

∼=T
(
s−1 �C )(2)�T

(
s−1 �C ).

Since we work with the free operad T (s−1 �C ) over the desuspension s−1 �C ,
the map d2 : s−1 �C → T (s−1 �C ) extends to a unique derivation on T (s−1 �C ) by
Proposition 6.3.3. We still denote it by d2 :T (s−1 �C )→T (s−1 �C ).
Proposition 6.5.4. The map d2 is a differential: d2

2 = 0.

Proof. The infinitesimal decomposition map �(1) shares dual relations with the in-
finitesimal composition map of an operad. These relations and Koszul sign rules
give the result. �

Finally, �C := (T (s−1 �C ), d2) is a dg operad, called the cobar construction of
the cooperad C . It is a functor from the category of coaugmented cooperads to the
category of augmented dg operads.

One easily extends this functor to coaugmented dg cooperads C = (C , dC ) by
adding to d2 the internal differential d1 induced by the differential dC . Since the
infinitesimal decomposition map �(1) of C is a morphism of chain complexes, the
differentials d2 and d1 anticommute and one has a well-defined bicomplex. The total
complex of this bicomplex is called the cobar construction of the dg cooperad

�C := (T (s−1 �C ), d := d1 + d2
)
.

Proposition 6.5.5. The elements of the free operad T (s−1 �C ) can be represented
by trees with vertices indexed by elements of s−1 �C . The image of such a tree under
the boundary map d2, is the sum over the vertices ν of the (desuspended) infinites-
imal decomposition map of �C applied to the element indexing the vertex ν, see
Fig. 6.2.

Proof. It is a direct corollary of the description of the free derivation on a free operad
of Proposition 6.3.3. �

Once again, the cobar construction of a cooperad is a graph homology à la Kont-
sevich. The boundary map consists in expanding each vertex into two.
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Fig. 6.2 The boundary map
d2 of the operadic cobar
construction

A nonnegatively graded dg cooperad C is called 2-connected if C0 = I and
C1 = 0.

Proposition 6.5.6. The operadic cobar construction preserves quasi-isomorphisms
between 2-connected dg cooperads.

Proof. We use the same kind of filtration as in the proof of Proposition 2.2.5, but
based on the number of vertices of trees this time. �

This result does not hold when the dg cooperads are not 2-connected as Proposi-
tion 2.4.3 shows.

6.5.3 Bar–Cobar Adjunction

We show that the operadic bar and cobar constructions form a pair of adjoint func-
tors

� : {aug. dg cooperads}� {coaug. dg operads} : B.

More precisely, this adjunction is given by the set of twisting morphisms.

Theorem 6.5.7. For every augmented dg operad P and every conilpotent dg co-
operad C , there exist natural isomorphisms

Homdg Op (�C ,P)∼= Tw(C ,P)∼=Homdg coOp (C ,BP) .

Proof. We make explicit the first isomorphism, the second one being dual. If we
forget the differentials, then �C is the free operad T (s−1 �C ). Therefore any mor-
phism of operads f :�C →P is characterized by its restriction f̄ on the genera-
tors s−1 �C . We denote by s−1f̄ : �C →P the induced map of degree −1. The map
f is a morphism of dg operads. It means that it commutes with the differentials:
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s−1 �C f̄

d1+d2

P

dP

s−1 �C ⊕ s−1 �C ◦(1) s−1 �C f̄+γ(1)(f̄ ◦(1)f̄ )
P.

This is equivalent to ∂(s−1f̄ )+ (s−1f̄ ) � (s−1f̄ )= 0, which is the Maurer–Cartan
equation for s−1f̄ . �

Otherwise stated, the functor Tw(C ,−) is represented by �C and the functor
Tw(−,P) is represented by BP .

6.5.4 Universal Twisting Morphisms

We denote by υ : C → B�C the unit of this adjunction, obtained with P = �C
and Id�C on the left-hand side. In this case, the corresponding twisting morphism
is denoted by ι : C →�C . It is universal among the set of twisting morphisms: any
twisting morphism α : C →P factorizes uniquely through ι.

Dually, we denote by ε : �BP → P the counit, obtained with C = BP and
IdBP on the right-hand side. The associated twisting morphism is denoted by π :
BP →P . It satisfies the following universal property: any twisting morphism α :
C →P factors uniquely through π .

Proposition 6.5.8. Any twisting morphism α : C →P factorizes uniquely through
the universal twisting morphisms π and ι as follows

�C
gα

C

fα

ι

α
P

BP

π

where gα is a dg operad morphism and where fα is a dg cooperads morphism.

6.5.5 Augmented Bar and Cobar Construction

Let P be an augmented dg operad. Recall that its bar construction BP is a dg
cooperad whose underlying space is T c(s �P). The universal twisting morphism π
is equal to the following composite

π :T c(s �P)� s �P s−1−−→ �P � P.
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The associated twisted composite product BP ◦π P is a dg S-module, with the
twisted differential dπ of Sect. 6.4.5, and is called the augmented bar construction
of P .

Dually, let C be a coaugmented dg cooperad. Its cobar construction �C =
(T (s−1 �C ), d) is a dg operad and the universal twisting morphism ι is given ex-
plicitly by the composite

C � �C s−1−−→ s−1 �C � T
(
s−1 �C ).

The resulting dg S-module (C ◦ι �C , dι) is called the coaugmented cobar construc-
tion of C .

Lemma 6.5.9. The chain complexes

P ◦π BP, BP ◦π P, C ◦ι �C , �C ◦ι C
are acyclic.

Proof. Left composite product P ◦π BP . Since the composite product ◦ is lin-
ear on the left, we can use the same kind of contracting homotopy h as in the
proof of Proposition 2.2.8. Let (μ; t1, . . . , tk) represent an element of �P ◦ BP =
�P ◦T c(s �P). We define its image under h by the formula h(μ; t1, . . . , tk) := (I; t ′),

where t ′ is the tree obtained by grafting t1, . . . , tk above the vertex sμ. The restric-
tion of h to I ◦ BP is null. Therefore, the map h is well defined from P ◦ BP to
itself and has degree 1. We leave it to the reader to verify that it is a homotopy from
Id to 0: hdπ + dπh= Id.

Right composite product BP ◦π P . We need to refine the arguments since there
is more than one element of P on the right-hand side of the product. For any n ∈N,
we consider the subspace (BP ◦π P)(n) made up of trees with exactly n nontrivial
vertices, that is vertices indexed by elements of �P . We define the following increas-
ing filtration Fi :=⊕n�i (BP ◦π P)(n). Since it is stable under the differential dπ ,
it induces a spectral sequence E•pq such that

E0
pq = Fp

(
(BP ◦π P)p+q

)
/Fp−1

(
(BP ◦π P)p+q

)= (BP ◦π P)
(p)
p+q .

The first differential d0 is equal to d0 = d1 ◦ IdP + IdBP ◦′dP + d ′π , where d ′π is
the part of dπ which does not change the number of �P . That is, d ′π consists only
in extracting an element of BP = T c(s �P), desuspending it and composing it on
the right with only units I in P . For p = 0, we have (E0

0q, d
0)= (I,0). Therefore,

E1
00 = I and E1

0q = 0 for q �= 0.
When p > 0, we introduce again a contracting homotopy h. For any element of

BP ◦πP , we choose a representative (t;p1, . . . , pk). For instance, with the species
notation of Sect. 5.1.13, we choose p1 to be the element with a leaf labeled by 1.
We define its image under the map h as follows. If p1 = I, then h(t;p1, . . . , pk) :=
0. Otherwise, when p1 ∈ �P , h(t;p1, . . . , pk) := (−1)|t |(t ′; I, . . . , I,p2, . . . , pk),



220 6 Operadic Homological Algebra

where t ′ is the element of BP obtained by grafting the tree t with sp1 above. This
map has degree 1 and is a homotopy between Id and 0: hd0 + d0h = Id, on E0

p•
for any p > 0. Therefore, the spectral sequence collapses, that is E1

pq = 0 for p > 0
and any q .

Since the spectral sequence Fi is bounded below F−1 = 0 and exhaustive⋃
i≥0Fi = BP ◦π P , we can apply the classical theorem of convergence of spec-

tral sequences (Theorem 1.5.1). It implies that E•pq converges to the homology of
BP ◦π P . Hence, this homology is equal to I.

The proof of the other case is completely dual and left to the reader. �

This proof is extracted from E. Getzler and J.D.S. Jones [GJ94], see also
B. Fresse [Fre04] and [Val07b].

6.6 Operadic Koszul Morphisms

We define operadic Koszul morphisms and state their main property, which relates
them to the operadic bar and cobar constructions. As a corollary, we prove that the
unit and the counit of the bar–cobar adjunction are quasi-isomorphisms. The proofs
follow the same pattern as the ones of Chap. 2 for algebras.

6.6.1 Operadic Koszul Criterion

A twisting morphism α : C →P is called a Koszul morphism when either its left
twisted complex P ◦α C or its right twisted complex C ◦αP is acyclic. We denote
the set of Koszul morphisms by Kos(C ,P). Under this terminology, the result of
the previous section states that the universal twisting morphisms π ∈Kos(BP,P)

and ι ∈Kos(C ,�C ) are Koszul morphisms.
The main theorem about operadic twisting morphisms is the following criterion

for Koszul morphisms.

Theorem 6.6.1 (Operadic twisting morphisms fundamental theorem). Let P be a
connected wgd operad and let C be a connected wgd cooperad. Let α : C →P be
an operadic twisting morphism. The following assertions are equivalent:

1. the right twisted composite product C ◦α P is acyclic,
2. the left twisted composite product P ◦α C is acyclic,
3. the morphism of dg cooperads fα : C ∼−→ BP is a quasi-isomorphism,
4. the morphism of dg operads gα :�C

∼−→P is a quasi-isomorphism.

Proof. The proof of this theorem is similar to the proof of Theorem 2.3.1. First
notice that the bar and the cobar constructions are weight graded and connected.
The universal twisting morphisms π and ι preserve the weight. Therefore, we can
apply Lemma 6.4.8.
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Let us first prove (1)⇔ (3)⇔ (4).
To prove (1)⇔ (3), we apply Lemma 6.7.1 to fα , IdP and fα ◦IdP : C ◦αP →

BP ◦π P . Since BP ◦π P is always acyclic by Lemma 6.5.9, fα ◦ IdP is a quasi-
isomorphism if and only if C ◦α P is acyclic, which happens if and only if fα is a
quasi-isomorphism.

To prove (1)⇔ (4), we apply Lemma 6.7.1 to IdC , gα and IdC ◦gα : C ◦ι �C →
C ◦α P . In this case, C ◦ι �C is acyclic by Lemma 6.5.9. Therefore, IdC ◦gα is a
quasi-isomorphism if and only if the twisted composite product C ◦α P is acyclic.
Since IdC is a quasi-isomorphism, Lemma 6.5.9 shows that C ◦α P is acyclic if
and only if gα is a quasi-isomorphism.

The proof of the equivalence (1)⇔ (2)⇔ (3) is similar and uses the two other
cases of Lemma 6.5.9 and Lemma 6.7.2 this time. �

Corollary 6.6.2. In the weight graded case, the right twisted composite product
C ◦αP is acyclic if and only if the left twisted composite product P ◦αC is acyclic.

This corollary shows that, under the weight grading assumption, the notion of
Koszul morphism is equivalently defined with the left or with the right twisted com-
posite product.

6.6.2 Bar–Cobar Resolution

Theorem 6.6.3. The counit ε :�BP
∼−→P is a quasi-isomorphism of dg operads.

Dually, the unit υ : C ∼−→ B�C is a quasi-isomorphism of dg cooperads.

Proof. We prove this result in the weight graded case as a corollary of Theo-
rem 6.6.1 but this result holds in full generality, see [Fre04]. As in the proof of
Corollary 2.3.2, we apply the Koszul criterion (Theorem 6.6.1) to the following di-
agram

�BP

ε

BP

IdBP

ιBP

π
P

BP.

π

Since IdBP is a quasi-isomorphism, or equivalently since π is a Koszul mor-
phism, the morphism of dg operads ε is a quasi-isomorphism. The dual statement is
proved with the same arguments applied to the Koszul morphism ι : C →�C . �

Hence the counit of adjunction provides a canonical functorial resolution of dg
operads. It is called the bar–cobar resolution. It is a quasi-free resolution which is
not minimal in general.



222 6 Operadic Homological Algebra

Let us make it explicit. We denote by proj the projection T c(s �P) � s �P
and by γP the morphism T ( �P)→ �P coming from the combinatorial definition
(Sect. 5.6) of the operad P . It is explicitly given by the composition under γ of the
operations of �P along the tree composition scheme.

Lemma 6.6.4. The unit ε :�BP →P of the adjunction is equal to the composite

ε :T (s−1 �T c(s �P)
) T (s−1 proj)−−−−−−−→T

(
s−1s �P )∼=T ( �P)

γP−−→ �P.

Proof. The proof follows directly from the definition of ε given in Sect. 6.5.4 and
is left to the reader. �

6.7 Proof of the Operadic Comparison Lemmas

In this section, we prove the Comparison Lemmas at the level of operads. The re-
sults are the operadic generalizations of the Comparison Lemma for twisted tensor
product (Lemma 2.5.1). Since the right twisted composite product is not isomorphic
to the left twisted composite product, we give the following two versions of this
theorem. It comes essentially from [Fre04], with slightly different hypotheses.

Lemma 6.7.1 (Comparison Lemma for right twisted composite product). Let g :
P →P ′ be a morphism of wdg connected operads and f : C → C ′ be a morphism
of wdg connected cooperads. Let α : C → P and α′ : C ′ → P ′ be two twisting
morphisms, such that f and g are compatible with α and α′.

If two morphisms among f , g and f ◦ g are quasi-isomorphisms, then so is the
third one.

Proof. We denote by M (resp. M ′) the weight-graded chain complex C ◦α P
(resp. C ′ ◦α′ P ′). We define a filtration Fs on M (n), where n ∈N is the weight, by
the formula

Fs
(
M (n)

) :=
⊕

d+m≤s

(
C (m)d ◦P

)(n) =
⊕

d+m≤s
C (m)d ◦ P︸︷︷︸

(n−m)
,

where the total weight of the elements of P on the right-hand side of ◦ is equal to
(n−m). The differential dα on M = C ◦α P is the sum of three terms IdC ◦′dP ,
dC ◦ IdP and drα . One has IdC ◦′dP : Fs → Fs , dC ◦ IdP : Fs → Fs−1 and drα :
Fs→ Fs−2. Therefore, Fs is a filtration of the chain complex M (n) and we consider
the associated spectral sequence E•st . One has

E0
st = Fs

(
M (n)

)
s+t /Fs−1

(
M (n)

)
s+t =

n⊕

m=o
C (m)s−m ◦ P︸︷︷︸

t+m;(n−m)
.
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The notation means that the total homological degree of elements of P is equal to
t + m and their total weight is equal to (n − m). The study of the differential dα
on the filtration Fs of M shows that d0 = IdC ◦′dP and that d1 = dC ◦ IdP . Since
we are working over a field of characteristic 0, Maschke’s theorem applies, which
proves that any K[S∗]-module is flat. It follows that

E2
st =

n⊕

m=o
Hs−m

(
C (m)•

) ◦ H︸︷︷︸
t+m

(
P•︸︷︷︸
(n−m)

)
.

Since P and C are weight graded and connected, the part m= 0 is concentrated
in s = 0 and t ≥ 0, where it is equal to E2

0t = Ht(P(n)• ). The part m = n is con-

centrated in t = −n and s ≥ n, where it is equal to E2
s−n = Hs−n(C (n)• ). For any

0<m< n, the nonvanishing part of Hs−m(C (m)• )⊗Ht+m(P(n−m)• ) is in s ≥ 1 and
t ≥−n+ 1.

The filtration Fs is exhaustive M (n) = ⋃s≥0Fs(M
(n)) and bounded below

F−1(M (n)) = {0}, so the spectral sequence converges to the homology of M (n)

by the classical convergence Theorem 1.5.1.

E∞st
(
M (n)

)=Hs+t
(
M (n)

)
.

We consider the same filtration on M ′ and we denote by Φ the morphism of
chain complexes Φ := f ◦ g. We treat the three cases one after the other.

(1) If f and g are quasi-isomorphisms, then Φ = f ◦ g is a quasi-isomorphism.

For every s, t and n, the maps E2
st (M

(n))
H•(f )⊗H•(g)−−−−−−−−→ E2

st (M
′(n)) are isomor-

phisms. By the convergence of the two spectral sequences, the maps

Hs+t
(
M (n)

)=E∞st
(
M (n)

) H•(Φ)−−−→E∞st
(
M ′(n))=Hs+t

(
M ′(n))

are again isomorphisms. So the map Φ is a quasi-isomorphism.

(2) If Φ = f ◦ g and g are quasi-isomorphisms, then f is a quasi-isomorphism.

Let us work by induction on the weight n. When n = 0, the map f (0) : K→ K

is a quasi-isomorphism. Suppose now that the result is true up to rank n − 1.
We consider the mapping cone of Φ(n): cone(Φ(n)) := s−1M (n) ⊕M ′(n) and the
associated filtration Fs(cone(Φ(n))) := Fs−1(M (n)) ⊕ Fs(M ′(n)), which satisfies
E1•t (cone(Φ(n)))= cone(E1•t (Φ(n))). The long exact sequence of the mapping cone
reads

· · ·→Hs+1
(

cone
(
E1•t
(
Φ(n)
)))→Hs

(
E1•t
(
M (n)

))

Hs(E
1•t (Φ(n)))−−−−−−−−→Hs

(
E1•t
(
M ′(n)))→Hs

(
cone

(
E1•t
(
Φ(n)
)))→ ·· · .
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Therefore there is a long exact sequence (ξt )

(ξt ) · · · →E2
s+1t

(
cone
(
Φ(n)
))→E2

st

(
M (n)

)

E2
st

(
Φ(n)
)

−−−−−−→E2
st

(
M ′(n))→E2

st

(
cone
(
Φ(n)
))→ ·· ·

where E2
st (Φ

(n)) is given by H•(f )⊗H•(g).
When t >−n, we have seen that only C (m) (and C ′(m)) with m< n are involved

in E2
st . In that case, since

E2
st

(
M (n)

)=
n−1⊕

m=o
Hs−m

(
C(m)•
) ◦ H︸︷︷︸

t+m

(
P•︸︷︷︸
(n−m)

)
,

the induction hypothesis gives that

E2
st

(
M (n)

) H•(f )⊗H•(g)−−−−−−−−→E2
st

(
M ′(n))

is an isomorphism for every s and every t > −n. Using the long exact sequence
(ξt ) for t > −n, it gives E2

st (cone(Φ(n))) = 0 for every s and every t �= −n. The
collapsing of the spectral sequence E•st (cone(Φ(n))) at rank 2 implies the equal-
ity E∞st (cone(Φ(n)))= E2

st (cone(Φ(n))). The convergence of the spectral sequence
E•st (cone(Φ(n))) shows that

E2
st

(
cone
(
Φ(n)
))=Hs+t

(
cone
(
Φ(n)
))= 0

since Φ(n) is a quasi-isomorphism. Since E2
s−n(cone(Φ(n))) = 0, the long exact

sequence (ξ−n) gives the isomorphism

Hs−n
(
C (n)•
)=E2

s−n
(
M (n)

) H•(f )−−−→E2
s−n
(
M ′(n))=Hs−n

(
C ′(n)•

)
,

for every s.

(3) If Φ = f ◦ g and f are quasi-isomorphisms, then g is a quasi-isomorphism.

Once again, we work by induction on the weight n. For n= 0, the map g(0) :K→K

is an isomorphism. Suppose that the result if true up to rank n− 1. When s ≥ 1, we
have seen that only P(n−m) (and P ′(n−m)) with m> 0 are involved in E2

st ,

E2
st

(
M (n)

)=
n⊕

m=1

Hs−m
(
C (m)•

) ◦ H︸︷︷︸
t+m

(
P•︸︷︷︸
(n−m)

)
.

In this case, the induction hypothesis implies thatE2
st (M

(n))
H•(f )◦H•(g)−−−−−−−→E2

st (M
′(n))

is an isomorphism for every s ≥ 1 and every t . The long exact sequence (ξt ) shows
that E2

st (cone(Φ(n)))= 0 for s ≥ 2 and every t . The spectral sequence of the cone
of Φ(n) converges to its homology, which is null since Φ(n) is a quasi-isomorphism.
Therefore, E2

1,t−1(cone(Φ(n))) = E2
0,t (cone(Φ(n))) = 0 for every t . This implies
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E2
st (cone(Φ(n))) = 0 for every t and s. Finally, the beginning (s = 0) of the exact

sequence (ξt ) gives the isomorphism

Ht
(
P(n)•

)=E2
ot

(
M (n)

) H•(g)−−−→E2
0t

(
M ′(n))=Ht

(
P ′(n)•

)
. �

Lemma 6.7.2 (Comparison Lemma for left twisted composite product). Let g :
P → P ′ be a morphism of wdg connected operads and f : C → C ′ be a mor-
phism of wdg connected cooperads. Let α : C → P and α′ : C ′ → P ′ be two
twisting morphisms, such that f and g are compatible with α and α′.

If two morphisms among f , g and g ◦ f are quasi-isomorphisms, then so is the
third one.

Proof. The proof of this case is similar to the previous one. We consider the follow-
ing filtration this time

Fs
(
(P ◦C )(n)

) :=
⊕

d+m≤s

(

P(n−m) ◦ C︸︷︷︸
d;(m)

)(n)
,

where the total weight of the elements of C on the right-hand side of the composite
product ◦ is equal to (m) and where the total degree of these elements is equal to d .

From now on, the same arguments apply and we leave it to the reader, as a good
exercise to finish to proof. �

6.8 Résumé

6.8.1 Infinitesimal Notions

� M ◦ (N1;N2):= sub-S-module ofM ◦ (N1 ⊕N2) linear in N2.

M ◦(1) N :=M ◦ (I,N).

� Infinitesimal composition map of an operad: P ◦(1) P γ(1)−−→P .
� Infinitesimal composite of morphisms f :M1 →N1 and g :M2 →N2

f ◦′ g :M1 ◦N1 →M2 ◦ (N1;N2).

EXAMPLE: dM◦N = dM ◦ IdN + IdM ◦′dN .

6.8.2 Differential Operadic Notions

� dg S-modules,
� dg operads, quasi-free operads, dg P-algebras,
� dg cooperads, quasi-free cooperads, dg C -coalgebras.
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Table 6.1 Hierarchy of
notions α ∈ Defines:

HomS(C ,P)−1 dα : C ◦P → C ◦P
⋃

Tw(C ,P) (dα)
2 = 0, chain complex C ◦α P

⋃

Kos(C ,P) acyclicity of C ◦α P

6.8.3 Operadic Twisting Morphism

Convolution dg (pre-)Lie algebra: C dg cooperad and P dg operad:

(
HomS(C ,P), �, ∂

)
.

Operadic twisting morphism, Tw(C ,P): solution of degree −1 to the Maurer–
Cartan equation

∂(α)+ α � α = ∂(α)+ 1

2
[α,α] = 0.

6.8.4 Twisted Composite Products

Any α ∈ Tw(C ,P) induces

� a twisted differential ∂α := ∂ + [α,–] in HomS(C ,P),
� a differential dα := dC ◦P + drα on the right composite product C ◦P defining

the right twisted composite product C ◦α P .

Table 6.1 summarizes this hierarchy of notions.

6.8.5 Operadic Bar and Cobar Constructions and Koszul Criterion

HomOp
(
T
(
s−1 �C ),P) ∼= HomS( �C , �P)−1 ∼= HomcoOp

(
C ,T c(s �P)

)

⋃ ⋃ ⋃

Homdg Op(�C ,P) ∼= Tw(C ,P) ∼= Homdg coOp(C ,BP)
⋃ ⋃ ⋃

q-Isodg Op(�C ,P) ∼= Kos(C ,P) ∼= q-Isodg coOp(C ,BP).

Universal twisting morphisms: ι : C →�C and π : BP →P , which are Koszul.
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Factorization of any operadic twisting morphism α : C →P :

�C

gα

∼

C

fα

∼

ι∈Kos(C ,�C )

α∈Kos(C ,P)
P

BP.

π∈Kos(BP,P)

� gα :�C →P morphism of dg operads,
� fα : C → BP morphism of dg cooperads.

Operadic Twisting Morphism Fundamental Theorem. The following assertions
are equivalent

� a twisting morphism α : C →P is Koszul,
� the morphism of dg operads fα :�C

∼−→P is a quasi-isomorphism,
� the morphism of dg cooperads gα : C ∼−→ BP is a quasi-isomorphism.

Corollary. Bar–cobar resolutions: ε :�BP
∼−→P and υ : C ∼−→ B�C .

6.9 Exercises

Exercise 6.9.1 (Infinitesimal composite product). Let M , N and P be three S-
modules. Prove the following isomorphism

(M ◦(1) N) ◦ P ∼=M(P,N ◦ P).
Make the same isomorphism explicit when the S-modules are differential graded

S-modules. (Be careful at the nontrivial signs appearing in this case.)

Exercise 6.9.2 (Cofree dg C -comodule). The aim of this exercise is to prove the
dual of Proposition 6.3.9. Let C be a dg cooperad and let N be an S-module. Prove
that any coderivation on the cofree dg C -comodule C ◦N (resp. N ◦ C ) is charac-
terized by its projection onto generators: C ◦ N → N (resp. N ◦ C → N ). In the
other way round, give the formulas for the unique coderivations which extend such
maps.
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Exercise 6.9.3 (Two-sided twisted composite product �). Let P be a dg operad,
C a dg cooperad and let α : C → P be a twisting morphism. We consider the
following twisted differential on P ◦C ◦P , the free P-bimodule on C :

dα := dP◦C ◦P + IdP ◦′drα − dlα ◦ IdP ,

where drα and dlα were defined in Sect. 6.4.5.

 Prove that dα2 = 0.
We denote this chain complex by

P ◦α C ◦α P := (P ◦C ◦P, dα).

 Show that there is an isomorphism of chain complexes
(
Homα

S
(C ,P), ∂α

)∼= (HomP−biMod(P ◦α C ◦α P,P), ∂
)
.

 Show that the following composite

ξ :P ◦C ◦P
Id◦ε◦Id−−−−→P ◦ I ◦P ∼=P ◦P

γ−→P

is a morphism of dg P-bimodules.
 Under the same weight grading assumptions as in Theorem 6.6.1, prove that
ξ : P ◦α C ◦α P

∼−→ P is a quasi-isomorphism if and only if α is a Koszul
morphism.

Exercise 6.9.4 (Unital convolution pre-Lie algebra �). Let (C ,�, ε) be a cooperad
and let (P, γ, η) be an operad.

Show that the composite η◦ε : C →P is a unit for the pre-Lie product � defined
in Sect. 6.4.2 on the convolution pre-Lie algebra HomS(C ,P).

Exercise 6.9.5 (Operadic cobar construction and quasi-isomorphisms �). Extend
the results of Sect. 2.4 from conilpotent dg coalgebras to conilpotent dg cooperads,
see [SV12].



Chapter 7
Koszul Duality of Operads

Les maths, c’est comme l’amour, ça ne s’apprend pas dans les
livres mais en pratiquant.

Adrien Douady (private communication)

One of the aims of this chapter is to construct an explicit minimal model for a qua-
dratic operad P . The key point is the construction of the Koszul dual cooperad of
P , denoted by P ¡. It permits to us to construct the Koszul complex (P ¡ ◦P, dκ)

out of a certain twisting morphism κ :P ¡ →P , and also to construct a differen-
tial graded operad �P ¡ by using the cobar construction. If the Koszul complex is
acyclic, then �P ¡ is a minimal model of P . So, under this assumption, we have
a concrete algorithm to construct the minimal model of a quadratic operad. In this
case we say that P is a Koszul operad. We will show in the following chapters that
the dg operad �P ¡ plays an important role in several topics (homotopy transfer of
structure for instance).

This result is in fact a corollary of the general theorem about operadic twisting
morphisms and operadic Koszul morphisms proved in Chap. 6, when applied to κ .

The Koszul dual operad of P , denoted by P !, is defined as being, up to suspen-
sion, the graded linear dual of the Koszul dual cooperad P ¡. We make explicit the
presentation of P ! out of a presentation of P in the binary case. Later on in the
book we present several examples, among them the classical ones:

As! = As, Com! = Lie, Lie! = Com, Pois! = Pois, Leib! = Zinb.

Koszul duality theory for binary quadratic operads is due to Victor Ginzburg and
Mikhail Kapranov [GK94], see also Ezra Getzler and John D.S. Jones [GJ94]. The
extension to quadratic operads (not necessarily binary) is due to Getzler [Get95]
(see also Benoit Fresse [Fre04] and Martin Markl [Mar96a]).

Section 7.1 starts with operadic quadratic data and the construction of quadra-
tic operads and quadratic cooperads out of them. In Sect. 7.2 we make precise
the Koszul dual cooperad of a quadratic operad. In Sect. 7.3 we work out the bar
and cobar constructions in this framework. Section 7.4 contains the main theorem

J.-L. Loday, B. Vallette, Algebraic Operads,
Grundlehren der mathematischen Wissenschaften 346,
DOI 10.1007/978-3-642-30362-3_7, © Springer-Verlag Berlin Heidelberg 2012
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of the Koszul duality theory which asserts the equivalence between the acyclicity
of the Koszul complexes P ¡ ◦κ P , P ◦κ P ¡ and the fact that the natural maps
P ¡ � BP ,�P ¡ � P are quasi-isomorphisms. In Sect. 7.5 we show that the gen-
erating series of a quadratic operad and its Koszul dual are related by a functional
equation whenever the operad is Koszul. It is a criterion which is helpful for testing
the Koszulity of an operad. In Sect. 7.6 we treat in detail the case of binary quadratic
operads. In particular we show that if P is determined by the quadratic data (E,R)
then its Koszul dual operad P ! is determined by (E∗ ⊗ sgn,R⊥), where R⊥ is ex-
plicitly described. In Sect. 7.7 we briefly treat the case of nonsymmetric quadratic
operads along the same lines. Section 7.8 is devoted to quadratic-linear operads, that
is quadratic operads whose space of relations is non-necessarily homogeneous.

In this chapter, we work over a ground field K of characteristic 0. Notice that all
the constructions and some of the results hold true without this hypothesis.

7.1 Operadic Quadratic Data, Quadratic Operad and Cooperad

We start with an operadic quadratic data (E,R) to which we associate an operad
and a cooperad

(E,R)

P(E,R) C (E,R).

7.1.1 Operadic Quadratic Data

By definition, an operadic quadratic data (E,R) is a graded S-module E and a
graded sub-S-module R ⊆T (E)(2). Recall that the weight two part T (E)(2) of the
free operad is the graded sub-S-module of the free operad T (E) which is spanned
by the composites of two elements of E, see Sect. 5.5.3. The elements of E are
called the generating operations. The elements ofR are called the relations (or more
appropriately the relators). A morphism of quadratic data f : (E,R)→ (E′,R′) is
a morphism of graded S-modules f :E→E′ such that T (f )(R)⊆R′.

In many cases E is simply an S-module, that is E is concentrated in degree 0.
In terms of “type of algebras”, i.e. when the operad is presented by generators

and relations, the quadraticity hypothesis says that the relators are made of elements
involving only two compositions. For instance, if there are only binary generating
operations, then the relations involve only three variables. The associative algebra
case is a typical example (see Sects. 1.1.1 and 9.1). The interchange relation, cf.
Sect. 13.10.4, and the Jordan algebra relation, cf. Sect. 13.10, are examples of a
nonquadratic relation (they are cubic).
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7.1.2 Quadratic Operad

The quadratic operad

P(E,R) :=T (E)/(R)

associated to the quadratic data (E,R) is, by definition, the quotient of the free
operad T (E) over E by the operadic ideal (R) generated by R ⊆ T (E)(2), cf.
Sect. 5.2.14. In other words, P(E,R) is the quotient operad of T (E) which is
universal among the quotient operads P of T (E) such that the composite

R�T (E)�P

is 0. Since (R) is a homogeneous ideal with respect to the weight, it follows that
P(E,R) is weight graded (cf. Sect. 5.5.3). We say that (E,R) is a presentation
of the operad P(E,R). Explicitly, for E = (0,E(1),E(2),E(3), . . .) we obtain
T (E)=⊕kT (E)(k), where

T (E)(0) = I = (0,K id,0,0, . . .),

T (E)(1) =E = (0,E(1),E(2),E(3), . . .),
T (E)(2) = (0,E(1)⊗2, . . .

)
.

If, moreover, E(1)= 0, then we get

T (E)(2) = (0,0,0,3(E(2)⊕E(2)), . . .).

Indeed, if μ and ν are two binary operations, then one can form three different
ternary operations:

μ
(
ν(x, y), z

)
, μ

(
ν(z, x), y

)
, μ

(
ν(y, z), x

)
.

The action of S3 is by permutation of the variables (x, y, z), see Sect. 7.6.2 for more
details. The quotient P(E,R) of T (E) is such that

P(E,R)(0) = I,
P(E,R)(1) =E,
P(E,R)(2) = (0,E(1)⊗2/R(1), . . .

)
.

If, moreover, E(1)= 0, then we get

P(E,R)(2) = (0,0,0,3(E(2)⊕E(2))/R(3), . . .).
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7.1.3 Degree, Arity and Weight Gradings

Recall that an operation μ ∈P(n) is said to be of “arity” n. When P is a quadra-
tic operad, μ has also a “degree” d (sometimes called homological degree) which
comes from the fact that the space of generating operations E is graded. Moreover,
since the ideal of relations is weight homogeneous, the space P(n) is also graded
by the “weight” k which is the number of generating operations necessary to con-
struct μ. So, any operation μ ∈ P(n) has three different degrees called “arity”,
“degree” and “weight”.

It should be noted that, in some papers (cf. for instance [GK95a, MSS02]), a qua-
dratic operad stands for what we call here a binary quadratic operad, that is an op-
erad which is generated by binary operations (E concentrated in arity 2), and which
is quadratic (the relators belong to the weight 2 part). It turns out that for these op-
erads the space P(n) is concentrated in weight n− 1, so the weight is completely
determined by the arity (and so is not mentioned in general). We prefer to dissociate
the two hypotheses, because Koszul duality works for quadratic operads which are
not necessarily binary, as shown in [Get95] (see also [Fre04]).

7.1.4 Quadratic Cooperad

The quadratic cooperad C (E,R) associated to the quadratic data (E,R) is, by def-
inition, the sub-cooperad of the cofree cooperad T c(E) which is universal among
the sub-cooperads C of T c(E) such that the composite

C �T c(E)�T c(E)(2)/R

is 0 (see Sect. 5.8.6 for the notion of cofree cooperad). More precisely it means
that there exists a unique morphism of cooperads C → C (E,R) which makes the
following diagram commutative:

C T c(E) T c(E)(2)/R

C (E,R).

The cooperad C (E,R) is weight graded. In this framework, the elements of E
are called the generating cooperations and the elements of R are called the corela-
tors.

The cooperad T c(E) has the same underlying S-module as T (E), cf. Sect. 7.1.2.
The weight graded sub-S-module C (E,R) of T c(E) is such that

C (E,R)(0) = I,
C (E,R)(1) =E,
C (E,R)(2) = (0,R(1),R(2),R(3), . . .).
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If, moreover, E(1)= 0, then we get

C (E,R)(2) = (0,0,0,R(3), . . .).
The cooperad structure of C (E,R) is induced by the cooperad structure of T c(E),
cf. Sect. 5.8.6.

7.2 Koszul Dual (Co)Operad of a Quadratic Operad

We construct the Koszul dual cooperad and the Koszul dual operad of a quadratic
operad.

7.2.1 Koszul Dual Cooperad

By definition, the Koszul dual cooperad of the quadratic operad P =P(E,R) is
the quadratic cooperad

P ¡ := C
(
sE, s2R

)

introduced in Sect. 7.1.4. The sign ¡ is usually pronounced “anti-shriek”. Here sE
denotes the S-module E whose degree is shifted by 1, cf. Sect. 6.2.1. Observe that,
as an S-module, P ¡ can be identified with C (E,R). The decoration s indicates the
change of grading. In diagrams the grading is usually clear and we do not mention
s at the expense of modifying the signs in the explicitation of the formulas.

7.2.2 Operadic Suspension

Let S := EndsK be the operad of endomorphisms of the one-dimensional space put
in degree one. As a representation of Sn the space S (n)=Hom((sK)⊗n, sK) is the
signature representation concentrated in degree −n+1 (since its generator sends sn

to s). See Exercise 5.11.3 for the description of algebras over this operad. Denote by
μ ∈S (2) the generator of arity 2. The associativity relation μ◦ (μ, id)= μ◦ (id,μ)
implies the following equality when evaluated on (s, s, s):

μ
(
μ(s, s), s

)=−μ(s,μ(s, s)).
Indeed, under the isomorphism

S (2)⊗S (2)⊗ (sK)⊗3 ∼=S (2)⊗ sK⊗S (2)⊗ (sK)⊗2

the image of (μ,μ, s, s, s) is −(μ, s,μ, s, s) because |μ| = −1, |s| = 1.
We also adopt the notation S −1 := Ends−1K.
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Let P be an operad. In general the suspension of the underlying S-module is not
an operad, however the Hadamard product S ⊗

H
P is indeed an operad. We call it

the operadic suspension of P . It has the following property. For any graded vector
space V one has an isomorphism

sP(V )=
(
S ⊗

H
P
)
(sV ).

Therefore, the space V is equipped with a P-algebra structure if and only if the
suspended space sV is equipped with a S ⊗

H
P-algebra structure. Similarly if C

is a cooperad we define its suspension as being the cooperad S c ⊗
H

C , where S c

is the cooperad EndcsK. So, the space C is equipped with a C -coalgebra structure if
and only if the suspended space sC is equipped with a S c⊗

H
C -coalgebra structure.

7.2.3 Koszul Dual Operad

For any quadratic operad P we consider the operadic suspension of the coop-
erad P ¡, that is the cooperad S c ⊗

H
P ¡. Taking the linear dual of this cooperad,

we get an operad. By definition the Koszul dual operad of the quadratic operad P
is the quadratic operad

P ! :=
(
S c ⊗

H
P ¡
)∗
.

We recall that the linear dualization mentioned here is the “arity-graded lineariza-
tion”, that is, we dualize each arity component individually. We observe that P ! is
quadratic.

Proposition 7.2.1. For any quadratic operad P = P(E,R), generated by a re-
duced S-module E of finite dimension in each arity, the Koszul dual operad P !
admits a quadratic presentation of the form

P ! =P
(
s−1S −1 ⊗

H
E∗,R⊥

)
.

The proof of this statement is going to use the notions of Manin product and
shuffle trees that will be introduced later (see Sects. 8.8.1 and 8.2 respectively). An
ad hoc proof in the binary case will be given in Sect. 7.6.

Proof. The Koszul dual operad P ! is equal to (S c ⊗
H

P ¡)∗ =S −1 ⊗
H
(P ¡)∗. The

main point is to use the following quadratic-linear presentation of S −1: S −1 =
T (F )/(U), where F =⊕n≥2 Kνn, with Kνn = Hom((s−1

K)n, s−1
K), that is
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|νn| = 1−n, and whereU is made of all the relations of the form νn ◦i νm = νn+m−1,
for n,m≥ 2 and 1≤ i ≤ n.

Then we use the same ideas as in the proof of Proposition 8.8.1. For any shuffle
tree T (not necessarily binary here), the maps

C S
T
: T(F )→T (F )(n)�S −1(n)

are surjective. It follows that the Hadamard product is equal to the Manin white
product:

P ! =S −1 ⊗
H

(
P ¡)∗ =S −1 � (P ¡)∗.

Since the generating space E has finite dimensional arity components, we can
use the identification (T (sE)(2))∗ ∼= T (s−1E∗)(2). To this extent, we choose a
tree basis of the free operad and the isomorphism reduces to (E(n) ⊗ E(m))∗ ∼=
E(n)∗ ⊗ E(m)∗. In general, one can use the basis provided by shuffle trees, see
Sect. 8.2.5. Under this isomorphism, the submodule s2R ⊂ T (sE)(2) gives the
orthogonal submodule (s2R)⊥ ⊂ T (s−1E∗)(2). Since the Koszul dual cooperad
P

¡ = C (sE, s2R) is a quadratic cooperad, its linear dual is a quadratic operad
with presentation P ! =P(s−1E∗, (s2R)⊥).

By definition, Manin’s white product S −1 � (P ¡)∗ is equal to the operad with
presentation T (F⊗

H
s−1E∗)/(Φ−1(U⊗

H
T (s−1E∗)+T (F )⊗

H
(s2R)⊥)). The space

of generators is equal to s−1S −1 ⊗
H
E∗. Since U is quadratic and linear and since

R is quadratic, this latter operad is quadratic. The space of relations, denoted R⊥,
is obtained from (s2R)⊥ by proper (de)suspension of the operations indexing the
vertices of the trees and by induced sign rule. �

If E is concentrated in degree 0, then so is P and sE is in degree +1. As a result
P ! is concentrated in degree 0.

In Sect. 7.6 we describe an explicit way to construct a quadratic presentation of
P ! out of a presentation of P in the binary case. In particular we will show that

Ass! = Ass, Com! = Lie, Lie! = Com,

Pois! = Pois, Leib! = Zinb, Dend! =Dias.

More examples will be worked out in Chap. 13.

Proposition 7.2.2. For any quadratic operad P , generated by a reduced S-module
E of finite dimension in each arity, we have

(
P !)! =P.

Proof. By direct inspection. The hypothesis about finite dimensionality ensures, as
usual, that the natural map E→ (E∗)∗ is an isomorphism. �
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7.3 Bar and Cobar Construction on an Operadic Quadratic Data

We make explicit the dg cooperad BP and the dg operad �C in the quadratic case.
The Koszul dual objects are shown to be equal to the syzygy degree 0 homology
group in both cases. From now on “quadratic data” means “operadic quadratic data”.

7.3.1 Bar Construction on a Quadratic Operad

The bar construction BP :=T c(s �P) over the quadratic dg operad P =P(E,R)

is equipped with a weight grading and with a syzygy grading.
Since E has trivial internal differential, the differential on BP reduces to d2,

which raises the syzygy degree by 1 and preserves the weight grading. So it forms a
cochain complex with respect to the syzygy degree, which splits with respect to the
weight grading. Hence the associated cohomology group is a direct sum over the
weight grading.

The following diagram depicts this decomposition.

0 ← ·· · ← · · · ← T (E)(3) (3)

0 ← T (E)(2)/R ← T (E)(2) (2)

0 ← E (1)

I (0)

3 2 1 0

Proposition 7.3.1. Let (E,R) be a quadratic data, P =P(E,R) the associated
quadratic operad and P¡ = C (sE, s2R) its Koszul dual cooperad. The natural
cooperad inclusion i :P¡ � BP induces an isomorphism of graded cooperads:

i :P¡ ∼=−→H 0(B•P
)
.

Proof. The proof is mimicked on the proof of the algebra case, i.e. Proposi-
tion 3.3.1. �

7.3.2 Cobar Construction on a Quadratic Cooperad

Like the bar construction, the cobar construction�C = T (s−1 �C ) over the quadratic
dg cooperad C = C (V ,R) has several degrees.

We introduce the same definitions as for the bar construction. We consider the
weight grading �C (n)and the syzygy degree of �C denoted by �dC .
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Since the internal differential of the cooperad C is trivial, the differential of the
cobar construction �C reduces to d2, which lowers the syzygy degree by 1. Hence,
(�•C , d2) becomes a chain complex. Its associated cohomology is a direct sum
over the weight grading.

The following diagram depicts this decomposition.

0 → ·· · → · · · → T c(E)(3) (3)

0 → R → T c(E)(2) (2)

0 → E (1)

I (0)

3 2 1 0

Proposition 7.3.2. Let C = C (E,R) be the quadratic cooperad associated to the
quadratic data (E,R), and let C ¡ :=P(s−1E, s−2R) be its Koszul dual operad.
The natural operad projection p : �C � C ¡ induces an isomorphism of graded
operads:

p :H0(�•C )
∼=−→ C ¡.

7.4 Koszul Operads

We construct the Koszul complexes of a quadratic operad and we define the notion
of “Koszul operad”. Then we apply the theory of twisting morphisms to show that
the Koszul dual cooperad permits us to construct the minimal model of an operad,
when it is a Koszul operad.

7.4.1 The Natural Twisting Morphism κ

Since, for a given quadratic data (E,R), we have P(E,R)(1)=E and C (E,R)(1) =
E, we can define the morphism κ as the composite

κ : C (sE, s2R
)
� sE

s−1−−→E� P(E,R).

Because of the degree shift the map κ is of degree −1.

Lemma 7.4.1. We have κ � κ = 0, and therefore κ is a twisting morphism.

Proof. Since κ is 0 except in weight 1, the convolution product κ � κ is 0 except
maybe on weight 2. Computing κ � κ explicitly in weight 2 we find that it is equal
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to the composite

C
(
sE, s2R

)(2) s−2−−→R→T (E)(2)→T (E)(2)/R =P(E,R)(2),

which is 0 by definition.
Hence, the map κ is a twisting morphism in the framework of S-modules by

Sect. 6.4.3. �

7.4.2 The Koszul Complex of an Operad

By Sect. 6.4.5 there is, associated to the twisting morphism κ , a chain complex of
S-modules

P ¡ ◦κ P := (P ¡ ◦P, dκ
)

that we call the Koszul complex of the operad P . So, for any n≥ 0, we have a chain
complex of Sn-modules ((P ¡ ◦P)(n), dκ), which we call the Koszul complex in
arity n. We can also construct another Koszul complex, namely P ◦κ P ¡, which
is completely different, in general, from the first one. They both come from the
complex P ◦κ P ¡ ◦κ P .

7.4.3 Koszul Operad

By definition, a quadratic operad P is called a Koszul operad if its associated
Koszul complex (P ¡ ◦P, dκ) is acyclic (here we mean that its homology is the
identity functor).

We will show later that there exist many Koszul operads, namely the three graces
Ass, Com, Lie, but also Pois, Leib, Zinb, Dend and many more.

7.4.4 The Minimal Model

The main advantage of the Koszul dual construction is to give the minimal model
for P when P is Koszul. Recall that the advantage for a model to be minimal is
that it is unique up to isomorphism, see Sect. 6.3.4.

Theorem 7.4.2 (Koszul criterion). Let (E,R) be an operadic quadratic data, let
P := P(E,R) be the associated operad, let P¡ := C (sE, s2R) be the Koszul
dual cooperad and let κ :P¡ →P be the associated twisting morphism. Then the
following assertions are equivalent:

1. the right Koszul complex P¡ ◦κ P is acyclic,
2. the left Koszul complex P ◦κ P¡ is acyclic,
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3. the inclusion i :P¡ � BP is a quasi-isomorphism of dg cooperads,
4. the projection p :�P¡ � P is a quasi-isomorphism of dg operads.

Proof. First we remark that, by Theorem 6.6.3, the assertions (3) and (4) are equiv-
alent. Let us prove the equivalence (1) ⇔ (3). Consider the tensor map i ◦ Id :
P ¡ ◦P → BP ◦P . Since π ◦ i = Id◦κ , the map i ◦ Id is a morphism of chain
complexes from P ¡ ◦κ P to BP ◦π P . We have seen in Sect. 6.5.4 that the aug-
mented bar construction is always acyclic. Therefore, the Koszul complex P ¡ ◦κ P
is acyclic if and only if i ◦ Id is a quasi-isomorphism. The comparison Lemma 6.4.8
in the operadic framework implies that P is a Koszul operad if and only if i is a
quasi-isomorphism. �

Corollary 7.4.3. Let P be a quadratic operad. If P is Koszul, then �P¡ is the
minimal model of P .

Proof. By Theorem 7.4.2 the dg operad �P ¡ is a model of P . By construction
�P ¡ is a free operad, hence it is a quasi-free dg operad. Also by construction
the differential of �P ¡ is quadratic (cf. Sect. 6.5.2), therefore we get a minimal
model. �

EXAMPLE. If E is concentrated in arity one, then the operad P is completely de-
termined by the associative algebra P(1). We recover the theory of Koszul duality
for associative algebras as a particular case of the theory of Koszul duality for oper-
ads as done in Chap. 3.

Proposition 7.4.4. Let P = P(E,R) be a finitely generated quadratic operad.
The operad P is Koszul if and only if its Koszul dual operad P ! is Koszul.

Proof. Since P is a Koszul operad, the morphism of weight graded dg cooper-
ads i : P ¡ ∼−→ BP is a quasi-isomorphism by Theorem 7.4.2. Since E is finitely
generated, the chain sub-complexes of fixed weight of BP are finitely generated.
Taking the weight graded linear dual, we get a quasi-isomorphism �P∗ ∼−→ (P

¡
)∗.

Again by Theorem 7.4.2, it proves that S ⊗
H

P ! is Koszul. One can prove that the

bar constructions B(S ⊗
H

P !) and BP !, considered with their syzygy degree, are

quasi-isomorphic. It proves that P ! is Koszul.
In the other way round, we use Proposition 7.2.2: (P !)! ∼=P . �

7.4.5 Homotopy P-Algebras

Let P be a Koszul operad. By definition a homotopy P-algebra is an algebra over
the dg operad �P

¡
of P . Such an algebra is also called a P-algebra up to homo-

topy or a P∞-algebra, where P∞ stands for �P
¡
.
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Hence, a homotopy P-algebra structure on a dg module A is a morphism of
dg operads �P

¡ → EndA. Notice that any P-algebra can be considered as a ho-
motopy P-algebra concentrated in degree 0. The P∞-structure is given by the
composition:

P∞ =�P
¡ p−→P → EndA,

where ε is the augmentation map.
The dg operad P∞ has a lot of properties which will be analyzed in Chap. 10.

7.4.6 Operadic Homology

LetA be an algebra over the Koszul operad P . It is the quotient of a free P-algebra
P(V ) for some space V . The boundary map dκ(V ) on P ¡ ◦P(V )=P ¡(P(V ))

passes to the quotient to give a boundary map d and so a chain complex CP• (A) :=
(P ¡(A), d(A)). By definition the operadic homology of A (with trivial coefficients)
is the homology of the chain complex CP• (A):

HP• (A) :=H•
(
CP• (A)

)
.

It will be studied in detail in Chap. 12. We only mention here a criterion for the
operad P to be Koszul.

Proposition 7.4.5. The acyclicity of the Koszul complex of a quadratic operad P is
equivalent to the vanishing of the operadic homology of the free P-algebra P(V )

for any vector space V , more precisely:

HP
1

(
P(V )

)= V, and HP
n

(
P(V )

)= 0, for n≥ 2.

Proof. This is essentially a rephrasing of the definition of Koszulity. Indeed one has
CP• (P(V ))=P ¡(P(V ))=P ¡ ◦P(V ) and d(P(V ))= dκ(V ). The vanishing
of the homology for any V is equivalent to the vanishing of the (right) Koszul com-
plex by Corollary 6.2.4. �

7.4.7 Koszul Theory in the Cooperad Setting

Though we are not going to work in this framework in the rest of the book, let us
mention briefly the Koszul duality theory for cooperads.

By dualizing the preceding theory, we obtain the following results. An operadic
quadratic data (E,R) gives rise to a cooperad C = C (E,R), which has a Koszul
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dual operad C ¡ :=P(s−1E, s−2R). There is a twisting morphism κ which is the
composite:

κ : C (E,R)�E
s−1−−→ s−1E�P

(
s−1E, s−2R

)
.

Its Koszul complex is C ◦κ C ¡ := (C ◦ C ¡, dκ). The cooperad C is said to be
Koszul if its Koszul complex is acyclic. Dually one can also define another Koszul
complex: C ¡ ◦κ C .

The Koszul criterion in this case says that the following assertions are equivalent:

1. the Koszul complex C ◦κ C ¡ is acyclic,
2. the Koszul complex C ¡ ◦κ C is acyclic,
3. the inclusion i : C � BC ¡ is a quasi-isomorphism of dg operads,
4. the projection p :�C � C ¡ is a quasi-isomorphism of dg cooperads.

As a corollary, if C is a Koszul cooperad, then BC ¡ is a minimal model of C .
Observe that, for any quadratic operad P , there is a natural identification

(
P ¡)¡ =P,

which does not require any finite dimensionality assumption.

7.5 Generating Series

The generating series of an S-module is a formal power series which bears nice
properties when the S-module underlies a Koszul operad. It can be used to prove
some relations between formal power series. It can also be used to prove that an
operad is not a Koszul operad (but not the other way round).

7.5.1 Generating Series

Let P =P(E,R) be a reduced quadratic operad (i.e. E(0)= 0), which is finitely
generated, that is, dimE(n) is finite. From its presentation we deduce that P is
weight graded, E being of weight 1. By convention the identity operation id is of
weight 0. We denote by P(r)(n) the subspace of n-ary operations of weight r . By
definition the generating series (or Hilbert–Poincaré series) of the weight graded
operad P is

fP (x, y) :=
∑

r≥0,n≥1

dimP(r)(n)

n! yrxn.

Observe that fP depends only on the weight graded S-module P . If P is binary,
then P(n) =P(n−1)(n) and therefore there is no need for two variables. Putting
y = 1 we recover the definition given in Sect. 5.1.10.
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Theorem 7.5.1. Let P = P(E,R) be a connected quadratic operad. If P is
Koszul, then the generating series of P and of its Koszul dual operad P ! are re-
lated by the following functional equation:

fP !(
fP (x, y),−y)= x.

Proof. From the definition of P ! out of P ¡ it follows that these two weight graded
S-modules have the same generating series: fP ! = fP¡

. The Koszul complex K
of P splits has a sum of chain complexes, indexed by arity and weight:

K =
⊕

r,n

K (r)(n),

where we have

K (r)(n) : 0→P ¡(r)(n)→ ·· ·→ (P ¡(k) ◦P
)(r)
(n)→ ·· ·→P(r)(n).

By the Koszulity of P these complexes are acyclic (in the unital sense). Hence the
Euler–Poincaré characteristic is trivial. Putting all these identities together amounts
to the formula:

fP !(
fP (x, y),−y)= x.

In fact it is a particular case of a more general formula of the same type valid for
“properads”, cf. Sect. 13.14.9, and proved in [Val07b]. �

7.5.2 Generating Series of Quadratic Algebras

Let us suppose that the operad P is in fact a quadratic algebra R, that is P(n)= 0
when n �= 1 and P(1)=R. Let f R be the generating series of the quadratic algebra
R (cf. Sect. 3.5). It follows that fP (x, y) = f R(y)x and fP !

(x, y) = f R!(y)x.
The functional equation reads

f R
!
(−y)f R(y)x = x

and so we recover the functional equation for the generating series of Koszul alge-
bras given in Sect. 3.5.

7.5.3 Example and Counterexample

In Proposition 13.11.7 we will show how to use Theorem 7.5.1 to compute the
coefficients of the inverse of the generic formal power series.

The operad PreLie •Nil is an example of an operad which is not Koszul. This is
proved by showing that its generating series and the generating series of its Koszul
dual do not satisfy the functional equation, see [Val08].
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7.6 Binary Quadratic Operads

We make explicit the Koszul dual operad of an operad presented by (finitely many)
binary operations and quadratic relations.

7.6.1 Explicitation of a Binary Quadratic Operad

Let E be an S2-module (put in degree 0) and let E be the S-module

E := (0,0,E,0, . . . ,0, . . .).
The free operad on E is denoted by T (E) instead of T (E). It is clear from its
construction, cf. Sect. 5.5, that T (E)(0)= 0,T (E)(1)=K,T (E)(2)=E. Since
we are in the binary case we have T (E)(2) =T (E)(3).

Proposition 7.6.1. The S3-module T (E)(3) is

T (E)(3)=E ⊗ IndS3
S2
E ∼= 3E ⊗E.

Proof. From the explicit construction of the free operad given in Sect. 5.5, we get

T (E)(3)= ( Id⊕E ◦ (Id⊕E ))(3)=E ⊗ IndS3
S2
E.

Indeed, it suffices to look for the V⊗3 component of T (E)(V ). Since the quotient
S2\S3 is a set with three elements, we get the second assertion (see Sect. 7.6.2 for
more details on this isomorphism). �

7.6.2 The Space T (E)(3) Made Explicit

In the proof of Proposition 7.6.1 we use the “tensor type” construction of the free
operad. If, instead, we use the “combinatorial” type as done in Sect. 5.6, then we
can make explicit the isomorphism T (E)(3)∼= 3E⊗E as follows. Let μ,ν ∈E be
two binary operations. We denote by

μ ◦I ν, μ ◦II ν, μ ◦III ν ∈T (E)(3)

respectively the three operations on three variables defined by:

(μ ◦I ν)(x, y, z) := μ
(
ν(x, y), z

)
,

(μ ◦II ν)(x, y, z) := μ
(
ν(z, x), y

)
,

(μ ◦III ν)(x, y, z) := μ
(
ν(y, z), x

)
.
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ν

μ

(μ ◦I ν)

ν

μ

(μ ◦II ν)

ν

μ

(μ ◦III ν)

These formulas determine the three copies of E ⊗ E. If λ denotes the cyclic
permutation on three variables defined by λ(x, y, z)= (y, z, x), then we have

μ ◦I ν = (μ ◦1 ν)
λ0
, μ ◦II ν = (μ ◦1 ν)

λ1
, μ ◦III ν = (μ ◦1 ν)

λ2
.

Let us now describe the action of S3 on 3E⊗E = (E⊗E)I⊕ (E⊗E)II⊕ (E⊗
E)III. It suffices to describe the action of the two cycles (12) and λ= (123). If ω is
a ternary operation, then ωσ (x, y, z)= ω(σ · (x, y, z)). Hence we get

(μ ◦I ν)
(12) = μ ◦I ν

(12)

(μ ◦II ν)
(12) = μ ◦III ν

(12)

(μ ◦III ν)
(12) = μ ◦II ν

(12)

and

(μ ◦I,II or III ν)
(123) = μ ◦II,III or I ν,

i.e. cyclic permutation of the indices.

7.6.3 Dualizing the Quadratic Data

For any finite dimensional right S2-module E its linear dual vector space E∗ =
Hom(E,K) is a left S2-module. We make it into a right S2-module as usual (it is
purely formal here since K[S2] is commutative). Then we define

E∨ :=E∗ ⊗ sgn2 .

So, as a vector space,E∨ is isomorphic toE∗ and the action of σ ∈ S2 on f :E→K

is given by

f σ (e)= sgn(σ )f
(
eσ

−1)
.

We identify the S3-module T (E∨)(3) to the dual of T (E)(3) by means of the
following scalar product:

〈−,−〉 :T (E∨)(3)⊗T (E)(3)−→K,
〈
α∗ ◦u β∗,μ ◦v ν

〉 := α∗(μ)β∗(ν) ∈K if u= v,
〈
α∗ ◦u β∗,μ ◦v ν

〉 := 0 otherwise.
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Here the indices u and v take values in the set {I, II, III}.
By definition the orthogonal space R⊥ ⊂T (E∨)(3) is

R⊥ := {x ∈T
(
E∨
)
(3) | 〈x,R〉 = 0

}
.

Theorem 7.6.2 (Koszul dual operad of a binary quadratic operad). For any (finitely
generated) binary quadratic operad P =P(E,R) its Koszul dual operad is given
by

P ! =P
(
E∨,R⊥

)
.

We first prove a property of the scalar product introduced in Sect. 7.6.3.

Lemma 7.6.3. The scalar product 〈−,−〉 is nondegenerate and S3-sign-invariant:

〈
Φσ ,ωσ

〉= sgn(σ )〈Φ,ω〉

for any σ ∈ S3.

Proof. The first assertion is obvious. To prove the second one, it suffices to check it
for σ = (12) and σ = (123),Φ ∈T (E∨)(3) and ω ∈T (E)(3).

Case σ = (12). We use the following equality, which is a consequence of the defi-
nition of the action of S2 on E∨:

(
β∗
)(12) =−(β(12))∗, for any β ∈E.

We also use the action of S3 on T (E)(3) as described in Sect. 7.6.2. We compute:

〈(
α∗ ◦u β∗

)∗(12)
, (μ ◦v ν)(12)

〉 = 〈α∗ ◦u(12) β∗(12),μ ◦v(12) ν(12)
〉

= 〈α∗ ◦u β∗,μ ◦v ν
〉
.

The last equality holds because the two elements are equal to 0 or 1 under the same
conditions.

Case σ = (123). The action of σ = (123) on the index u of the element α ◦u β is the
cyclic permutation among I, II, III. The two elements 〈(α∗ ◦u β∗)σ , (μ ◦v ν)σ 〉 =
〈α∗ ◦uσ β∗,μ ◦vσ ν〉 and 〈α∗ ◦u β∗,μ ◦v ν〉 are equal because they are equal to 0 or
1 under the same conditions. Since the signature of σ is +1 we are done. �

Proof of Theorem 7.6.2. Let us recall from Sect. 7.2.3 that the Koszul dual operad
P ! is

P ! :=
(
S c ⊗

H
P ¡
)∗
.
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We claim that

P ¡ = C
(
sE, s2R

)
,

S c ⊗
H

P ¡ = C
(
E ⊗ sgn2,R

′),
(
S c ⊗

H
P ¡
)∗ =P

(
E∨,R⊥

)
.

Since S c(n) = EndsK(n) = Hom((sK)⊗n, sK), the generator in arity 2 is s−1.
Moreover, the action of S2 on this generator is by the signature representation.
Therefore the space of cogenerators of the cooperad S c ⊗

H
P ¡ is E ⊗ sgn2, which

is in degree 0. By hypothesis R is a sub-S3-space of T (E)(3) = 3E ⊗ E. Since
sgn2⊗ sgn2 is the trivial representation, there is a canonical isomorphism

T (E)(3)= 3E ⊗E ≈−→ 3E ⊗ sgn2⊗E ⊗ sgn2 =T (E ⊗ sgn2)(3).

The space R′ ⊂T (E ⊗ sgn2)(3) is the image of R under this isomorphism.
For a quadratic cooperad C (E,R), the associated linear dual operad C (E,R)∗

is a quadratic operad P(E∗, S), where S ⊂T (E∗)(3) is obtained as follows:

R∗ T (E)(3)∗

∼=

Ker

∼=

T (E∗)(3) S.

The middle vertical isomorphism is obtained through the nondegenerate bilinear
form

〈−,−〉 :T (E∗)(3)⊗T (E)(3)−→K,
〈
α∗ ◦u β∗,μ ◦v ν

〉 := α∗(μ)β∗(ν) ∈K if u= v,
〈
α∗ ◦u β∗,μ ◦v ν

〉 := 0 otherwise.

Here the indices u and v take values in the set {I, II, III}.
Applying this process to C (E ⊗ sgn2,R

′) we get P ! = P(E∨,R⊥) as ex-
pected. �

7.6.4 Examples of Computations: Com,Ass and More

The operad Com=P(E,R) of commutative algebras is generated by a binary sym-
metric operation μ, i.e. E =Kμ. Let us denote by uI, respectively uII and uIII, the
elementsμ◦Iμ, respectivelyμ◦IIμ andμ◦IIIμ, in T (Kμ)(3). Its space of relations
R admits the following K-linear basis made of two elements uI − uII and uII − uIII.

The Koszul dual operad of Com is generated by the space E∨ =Kμ∗ ⊗ sgn2
∼=

Kν, where ν(12) = −ν. Again, we denote by vI, respectively vII and vIII, the ele-
ments ν ◦I ν, respectively ν ◦II ν and ν ◦III ν in T (Kν)(3). The orthogonal space of
R under the scalar product 〈−,−〉 has dimension one with basis vI + vII + vIII. De-
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Fig. 7.1 The permutoassociahedron

noting the skew-symmetric generating operation ν by a bracket [ , ] the latter relation
is nothing but the Jacobi relation: [[a, b], c] + [[b, c], a] + [[c, a], b] = 0. Therefore
we obtain Com! = Lie.

More generally, when the generators of the binary quadratic operad P(E,R)

form the regular representationE =K[S2] =Kμ⊕Kμ′, with μ′ := μ(12), we adopt
the following convention. Denote by u1, . . . , u12 the corresponding 12 elements of
T (E)(3):

1 μ ◦I μ ↔ (xy)z 5 μ ◦III μ ↔ (zx)y 9 μ ◦II μ ↔ (yz)x

2 μ′ ◦II μ ↔ x(yz) 6 μ′ ◦I μ ↔ z(xy) 10 μ′ ◦III μ ↔ y(zx)

3 μ′ ◦II μ
′ ↔ x(zy) 7 μ′ ◦I μ

′ ↔ z(yx) 11 μ′ ◦III μ
′ ↔ y(xz)

4 μ ◦III μ
′ ↔ (xz)y 8 μ ◦II μ

′ ↔ (zy)x 12 μ ◦I μ
′ ↔ (yx)z

This labeling corresponds to the labeling of the permutoassociahedron [Kap93].
Figure 7.1 represents it with the action of the symmetric group S3. Thanks to
Lemma 7.6.3 one needs only to verify the orthogonality of a few elements (4 out of
36 in the next example).
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Under these notations, the symmetric operad Ass which encodes associative al-
gebras, has a quadratic presentation P(Kμ ⊕ Kμ′,RAss), where the space of re-
lations RAss has the following K-linear basis {ui − ui+1, for i = 1,3,5,7,9,11}.
Its Koszul dual operad is generated by E∨ = (Kμ∗ ⊕K(μ′)∗)⊗ sgn2

∼=Kν ⊕Kν′,
where ν(12) = −ν′. We consider the associated basis v1, . . . , v12 of T (E∨)(3). In
this basis, the orthogonal space R⊥Ass is linearly spanned by {vi + vi+1, for i =
1,3,5,7,9,11}. The latter operad is isomorphic to Ass under the unique morphism
of operads such that ν �→ μ and ν′ �→ −μ′. Therefore we obtain the isomorphism
Ass! ∼= Ass.

The associative case is a particular case of the following one.

Proposition 7.6.4. Let P =P(K[S2],R) be the operad generated by one binary
operation (without symmetry) and relation

(xy)z=
∑

σ∈S3

aσ σ ·
(
x(yz)

)
, aσ ∈K.

Its Koszul dual operad is also presented by one operation and one relation. This
relation is

(
x(yz)

)=
∑

σ∈S3

sgn(σ )aσ σ
−1 · ((xy)z).

Proof. We apply the same argument as in the associative case. �

Poisson algebras, Leibniz algebras and Zinbiel algebras give operads of this
form.

7.6.5 Lie Structure on a Tensor Product of Algebras

Proposition 7.6.5. Let P =P(E,R) be a binary quadratic operad, supposed to
be finitely generated, let P ! be its Koszul dual operad. Let A be a P-algebra and
let B be a P !-algebra. The binary operation on A⊗B defined by

[
a⊗ b, a′ ⊗ b′] :=

∑

μ

μ
(
a, a′
)⊗μ∨(b, b′),

where the sum is extended to a basis of E made of operations which are either
symmetric (μ(12) = μ) or antisymmetric (μ(12) = −μ), is a Lie bracket. In other
wordsA⊗B is naturally a Lie algebra. Equivalently, there is a morphism of operads

Lie−→P ⊗
H

P !.
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Proof. We suppose that E is equipped with a basis and E∗ is equipped with the
dual basis. The dual of μ ∈ E is denoted μ∨ ∈ E∨. First, we know that when μ
is symmetric (resp. antisymmetric), then μ∨ is antisymmetric (resp. symmetric).
Hence the bracket is antisymmetric.

The Jacobi identity is a consequence of Lemma 7.6.6 below. A more concep-
tual explanation of the existence of the functor Lie −→P ⊗P ! will be given in
Sect. 8.8 in terms of Manin products. �

Lemma 7.6.6. Let L be a finite dimensional vector space, with linear dual L∗. Let
R ⊂ L be a subvector space and let R⊥ ⊂ L∗ be its orthogonal. The element u ∈
L∗ ⊗ L, corresponding to idL under the isomorphism End(L) ∼= L∗ ⊗ L, satisfies
the following property:

u ∈R⊥ ⊗L+L∗ ⊗R.
Proof. The image of an endomorphism f : L→ L in L∗ ⊗ L is denoted by f̃ .
So we have u = ĩdL. Let π : L� R be a section of the inclusion map R� L.
So we have π |R = idR , Imπ ⊂ R and Ker(idL−π) ⊂ R. It follows that we have
π̃ ∈ L∗ ⊗ R and (idL−π)̃ ∈ R⊥ ⊗ L. From the identity idL = (idL−π) − π it
follows that u= ĩdL ∈R⊥ ⊗L+L∗ ⊗R. �

REMARK. In practice, an efficient way to unravel a presentation of the dual operad
P !, when P is given through a (small) presentation, consists in writing the Jacobi
identity in A⊗B for generic algebras A and B .

7.6.6 Generating Series of a Binary Quadratic Operad

By definition the generating series of a binary quadratic operad is the generating
series of its underlying S-module (cf. Sect. 5.1.10):

fP (t) :=
∑

n≥1

dimP(n)

n! tn.

Theorem 7.6.7. Let P be a binary quadratic operad. If P is Koszul, then the
generating series of P and of its Koszul dual operad P ! are related by the following
functional equation:

fP !(−fP (t)
)=−t.

Proof. Formerly it is a particular case of Theorem 7.5.1. Indeed, since P is bi-
nary we have P(n) = P(n−1)(n). Taking x = t and y = 1, resp. y = −1, in the
generating series with two variables we get fP (t)= fP (t,1), resp. −fP !

(−t)=
fP (t,−1). The functional equation reads:

−fP !(−fP (t)
)= t.
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Of course one can show this formula directly by splitting the Koszul complex ac-
cording to the arity and take the Euler–Poincaré characteristic. �

EXAMPLES. For the operad Ass of associative algebras we get

f Ass(t)=
∑

n≥1

tn = t

1− t .

It is immediate to check that f Ass(−f Ass(t))=−t .
For the operad Com of commutative algebras (resp. Lie of Lie algebras) we get

f Com(t)=
∑

n≥1

tn

n! = exp(t)− 1,

f Lie(t)=
∑

n≥1

tn

n
=− log(1− t).

It is immediate to check that f Com(−f Lie(t))=−t .

More examples are treated in Chap. 13.
Theorem 7.6.7 is helpful in proving that some operads are not Koszul. For in-

stance the operad with one binary generating operation and with relation (xy)z =
2x(yz) (2 supposed to be invertible in K) is not Koszul. Another example is the
operad Nil • preLie, see Exercise 8.10.16 and [Val08].

7.7 Nonsymmetric Binary Quadratic Operad

A nonsymmetric binary quadratic operad P = P(F,R) is completely deter-
mined by the space of generating operations P2 = F and the space of relations
R ⊂T (F )(2) =T (F )(3)= F⊗2 ⊕ F⊗2. Its Koszul dual operad is also a nonsym-
metric binary quadratic operad, that we are going to make explicit.

7.7.1 Nonsymmetric Binary Quadratic Koszul Dual Operad

By convention, an element (μ, ν) in the first (resp. second) copy of F⊗2 in the sum
F⊗2 ⊕ F⊗2 corresponds to the composition μ ◦ (ν, id), resp. μ ◦ (id, ν):

ν

μ
resp.

ν

μ .
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Consider S := EndsK (resp. S c := (EndsK)c) as a ns operad (resp. ns coop-
erad). An algebra over S is a graded vector spaceAwith a bilinear mapAn⊗Am→
An+m+1, x ⊗ y �→ xy for any n,m≥ 0, such that (xy)z= (−1)|x|x(yz).

By definition the Koszul dual ns operad of a binary quadratic ns operad P is

P ! :=
(
S c ⊗

H
P ¡
)∗
.

Theorem 7.7.1. Let P = P(F,R) be a (finitely generated) binary quadratic ns
operad. Its Koszul dual ns operad is

P ! =P
(
F ∗,R⊥

)
,

where R⊥ is the orthogonal space of R in F ∗ ⊗ F ∗⊕F ∗ ⊗ F ∗ for the scalar
product

[
1 0
0 −1

]
.

Proof. We claim that, in the ns framework,

P ¡ = C
(
sF, s2R

)
,

S c ⊗
H

P ¡ = C
(
F,R′

)
,

(
S c ⊗

H
P ¡
)∗ =P

(
F ∗,R⊥

)
.

Since S c
n = (EndsK)n = Hom((sK)⊗n, sK), the generator in arity 2 is s−1.

Therefore the space of cogenerators of the cooperad S c ⊗
H

P ¡ is F , which is in

degree 0. By hypothesis R is a subspace of T (F )3 = 2F ⊗F and there is a canon-
ical isomorphism

T (F )3 = 2F ⊗ F ≈−→T (F ⊗ sgn2)3.

The space R′ ⊂T (F )3 is the image of R under this isomorphism.
For a quadratic cooperad C (F,R), the associated linear dual operad C (F,R)∗

is a quadratic operad P(F ∗, S), where S ⊂T (F ∗)3 is obtained as follows:

R∗ T (F )∗3
∼=

Ker

∼=

T (F ∗)3 S.

The middle vertical isomorphism is obtained through the nondegenerate bilinear
form 〈−,−〉 :T (F ∗)3 ⊗T (F )3 →K:

〈(
μ∗, ν∗

)
1, (μ, ν)1

〉 = 1,
〈(
μ∗, ν∗

)
2, (μ, ν)2

〉 = −1,
〈(
α∗, β∗

)
i
, (μ, ν)j

〉 = 0 in all other cases.
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Here the index 1 or 2 indicates the copy in which the element lies (first or sec-
ond).

Applying this process to C (F,R′) we get P ! =P(F ∗,R⊥) as expected. �

7.7.2 The Example of the NS Operad As

The binary generating operation of As is xy. The relator is the associator as(x, y,
z) := (xy)z − x(yz). Let us still denote the dual operation by xy. The relator of
the dual operad is of the form a(xy)z − bx(yz). Since 〈(xy)z, (xy)z〉 = +1 and
〈x(yz), x(yz)〉 = −1, we get the condition a = b. So As is self-dual.

Proposition 7.7.2. Let P = P(F,R) be a (finitely generated) nonsymmetric bi-
nary quadratic operad and let P ! be its Koszul dual ns operad. Let A be a P-
algebra and let B be a P !-algebra. Then the binary operation on A⊗B defined by

(a ⊗ b)(a′ ⊗ b′) :=
∑

μ

μ
(
a, a′
)⊗μ∗(b, b′)

where the sum is extended to a basis of F , is associative. In other wordsA⊗B is nat-
urally an associative algebra, that is, there is a morphism of nonsymmetric operads

As−→P ⊗
H

P !.

Proof. In the formula we use a basis of F and the dual basis for F ∗. The asso-
ciativity property is a consequence of Lemma 7.6.6. See Sect. 8.8 for a conceptual
explanation. �

REMARK. Under the notation of Theorem 7.7.2 the algebra A (resp. B) can be
considered as an algebra over the symmetric operad associated to P (resp. P !).
Hence, by Theorem 7.6.5,A⊗B has a Lie algebra structure. It is immediate to verify
that this is exactly the Lie algebra structure coming from the associative structure
(see Sect. 1.1.9).

7.8 Koszul Duality for Inhomogeneous Quadratic Operads

So far we supposed that the operadic data (E,R) was weight homogeneous quadra-
tic, that is R ⊂T (E)(2). In this section, we suppose that (E,R) is only inhomoge-
neous quadratic, that is

R ⊂T (E)(1) ⊕T (E)(2).

There exists an even more general case allowing also constant terms in the space of
relations, cf. [HM10].

A Koszul duality theory still exists under this hypothesis. It generalizes to oper-
ads the results exposed in Sect. 3.6 for associative algebras. In this section, we state
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the results without proofs and refer the reader to [GCTV09] for details. As in the
case of algebras, the main change from quadratic operad to quadratic-linear operad
consists in the appearance of a differential in the Koszul dual cooperad. This gen-
eralization of Koszul duality theory was developed in order to treat the case of the
operad BV encoding Batalin–Vilkovisky algebras, see Sect. 13.7.

7.8.1 Quadratic-Linear Operad

An operadic quadratic-linear data (E,R) is a graded S-module E together with
a degree homogeneous sub-S-module R ⊂ E ⊕ T (E)(2). So, there may be linear
terms in the space of relations. We still denote by P = P(E,R) = T (E)/(R)
the associated quotient operad. We consider q : T (E)� T (E)(2) the projection
onto the quadratic part of the free operad. The image of R under q , denoted qR, is
homogeneous quadratic, so (E,qR) is a quadratic data in the sense of Sect. 7.1.1.
We denote by qP its associated quadratic operad: qP :=P(E,qR). We assume
that R satisfies the relation

(ql1) :R ∩E = {0}.
If it is not the case, removing some elements of E, one can choose another presen-
tation of P which satisfies (ql1). This condition amounts to the minimality of the
space of generators of P . Under this assumption, there exists a map ϕ : qR→ E

such that R is the graph of ϕ:

R = {X− ϕ(X) |X ∈ qR}.
The weight grading on T (E) induces a filtration which is compatible with the
operadic ideal (R). Hence the quotient operad P is filtered: FnP = Im(

⊕
k≤nT ×

(E)(k)). Since we assumed R ∩E = {0}, we get F1P = I⊕E. We denote by grP
the graded operad associated to this filtration of P , grnP := FnP/Fn−1P . We
denote by

p : qP � grP

the resulting epimorphism. It is obviously an isomorphism in weights 0 and 1, but
not necessarily in weight 2. A corollary of the present theory shows that p is an
isomorphism provided that qP is Koszul, see Theorem 7.8.5.

7.8.2 Koszul Dual DG Cooperad in the Inhomogeneous Quadratic
Framework

The map ϕ permits us to construct the composite map

ϕ̃ : (qP)
¡ = C

(
sE, s2qR

)
� s2qR

s−1ϕ−−→ sE.
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By Sect. 6.3.8, there exists a unique coderivation, d̃ϕ : (qP)
¡ → T c(sE), which

extends this composite.

Lemma 7.8.1.

(a) The coderivation d̃ϕ restricts to a coderivation dϕ on the sub-cooperad

(qP)
¡ = C (sE, s2qR)⊂T c(sE) if {R ◦(1) E +E ◦(1) R} ∩T (E)(2) ⊂ qR.

(b) The coderivation dϕ squares to 0 if R satisfies the condition

(ql2) : {R ◦(1) E +E ◦(1) R} ∩T (E)(2) ⊂R ∩T (E)(2).

Since R ∩T (E)(2) ⊂ qR, condition (ql2) implies the inclusion

{R ◦(1) E +E ◦(1) R} ∩T (E)(2) ⊂ qR.
Condition (ql2) amounts to saying that one cannot create new quadratic relations
in R by adding an element to the relations of the presentation.

Let (E,R) be a quadratic-linear data satisfying the conditions (ql1) and (ql2).
By definition, the Koszul dual dg cooperad of P =P(E,R) is the dg cooperad

P ¡ := ((qP)
¡
, dϕ
)= (C (sE, s2qR

)
, dϕ
)
.

7.8.3 Koszulity in the Inhomogeneous Quadratic Operad Framework

An operadic quadratic-linear data (resp. a quadratic-linear operad) is said to be
Koszul if it satisfies the conditions (ql1) and (ql2) and if the quadratic data (E,qR),
or equivalently the quadratic operad qP , is Koszul in the sense of Sect. 7.4.

Notice that for a homogeneous quadratic-linear data, Koszul in the classical sense
is Koszul in this sense. In this case, the conditions (ql1), (ql2) are trivially satisfied
and the inner coderivation dϕ vanishes.

7.8.4 Cobar Construction in the Inhomogeneous Quadratic Operadic
Framework

Under the hypotheses (ql1) and (ql2), we have constructed a conilpotent dg coop-
erad P ¡. Applying the cobar construction of Sect. 6.5.2, we get a dg operad �P ¡,
whose differential is of the form d1 + d2. The internal derivation d1 is the unique
derivation which extends dϕ . The derivation d2 is induced by the cooperad structure
of P ¡.

We consider the same map κ in this context

κ :P ¡ = C
(
sE, s2qR

)
� sE

s−1−−→E�P.
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Lemma 7.8.2. The map κ is a twisting morphism in HomS(P
¡
,P), that is ∂(κ)+

κ � κ = 0.

The twisting morphism κ induces a morphism of dg operads gκ :�P
¡ →P by

Theorem 6.5.7.

Theorem 7.8.3. Let P be a quadratic-linear Koszul operad. The cobar construc-
tion of its Koszul dual dg cooperad is a resolution of P : the morphism of dg coop-
erads gκ :�P

¡ ∼−→P is a quasi-isomorphism.

Notice that, in the inhomogeneous case, this resolution is not minimal because
of the internal differential d1.

7.8.5 Operadic Poincaré–Birkhoff–Witt Theorem

Theorem 7.8.4 (Operadic Poincaré–Birkhoff–Witt theorem). When a quadratic-
linear operad P is Koszul, then the epimorphism p : qP � grP is an isomor-
phism of graded operads

qP ∼= grP.

Even if the Poincaré–Birkhoff–Witt theorem is a direct consequence of the
proof of Proposition 7.8.3, it has the following two nontrivial consequences: Corol-
lary 7.8.5 and Proposition 7.8.6.

Corollary 7.8.5. Let P(E,R) be a quadratic-linear operad. If the quadratic op-
erad qP =P(E,qR) is Koszul, then conditions (ql1) and (ql2) are equivalent to
conditions

(
ql1

′) : (R)∩E = {0} and
(
ql2

′) :R = (R)∩ {E ⊕E⊗2}.

Conditions (ql1′) and (ql2′) amount to saying that the ideal generated by R does
not create any new quadratic-linear relation. It is equivalent to the maximality of the
space of relations in the presentation of the inhomogeneous quadratic operad. Such
conditions can be hard to check in practice because one would have to compute the
full ideal generated by R. But this proposition shows that if one finds a quadratic-
linear presentation of an operad satisfying conditions (ql1), (ql2) and whose homo-
geneous quadratic data is Koszul, then the space of relations R is maximal.

REMARK. As in Sect. 3.6.5, this result can be interpreted as a Diamond Lemma for
Gröbner bases, see Sect. 8.5.6.

(qP)
¡

Koszul & (ql2) ⇒ P
¡

Koszul &
(
ql2

′).
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7.8.6 Acyclicity of the Koszul Complex

As in the quadratic case, the Koszul complex associated to an inhomogeneous
Koszul operad is acyclic.

Proposition 7.8.6. If the quadratic-linear operad P(E,R) is Koszul, then the
Koszul complexes P

¡ ◦κ P and P ◦κ P
¡

are acyclic.

This result induces functorial quasi-free resolutions for P-algebras, see Chap. 11,
which are used to compute the (co)homology of P-algebras, see Chap. 12.

7.8.7 Koszulity of the Operad BV

A Batalin–Vilkovisky algebra is a Gerstenhaber algebra (A, ·, 〈–,–〉) with a square-
zero degree 1 unary operator � satisfying the following quadratic-linear relation

〈–,–〉 :=�(– · –)− (�(–) · –)− (– ·�(–)).
We refer the reader to Sect. 13.7 for more details. Therefore the operad BV

encoding BV-algebras admits the following quadratic-linear presentation: BV ∼=
T (E)/(R). The space of generators is equal to

E =Km⊕Kc⊕K�,

where Km is a trivial representation of S2 of degree 0, Kc a trivial representation
of S2 of degree 1, and K� is a one-dimensional graded vector space (S1-module)
concentrated in degree 1. The space of relations R is the K[S3]-module generated
by the relators

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m ◦1 m−m ◦2 m,

c ◦1 c+ (c ◦1 c)
(123) + (c ◦1 c)

(321),

�2,

c ◦1 m−m ◦2 c− (m ◦1 c)
(23),

c−� ◦1 m+m ◦1 �+m ◦2 �,

� ◦1 c+ c ◦1 �+ c ◦2 �.

Since there is no pure linear relation, this presentation satisfies condition (ql1).
The last relator is obtained from the previous one as follows. Denoting ρ := c −
� ◦1 m+m ◦1 �+m ◦2 � the last relator is equal to the composite of ρ ⊗ (�⊗
id+ id⊗�)+�⊗ρ in the operad BV . Therefore, it is not necessary in the definition
of the operad BV , but we have to consider it to satisfy condition (ql2).

To obtain the quadratic analog qBV , one has just to change the inhomogeneous
relation c−� ◦1 m+m ◦1 �+m ◦2 � by � ◦1 m−m ◦1 �−m ◦2 �. Hence, in
the operad qBV , the operator � is a derivation with respect to both the product m
and the bracket c. We view these relations as rewriting rules
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m

�

�−→
�

m +
�

m

c

�

�−→
�

c +
�

c .

Theorem 7.8.7. [GCTV09] The operad BV is a Koszul operad.

Proof. The aforementioned presentation of the operad BV satisfies conditions (ql1)
and (ql2). The quadratic analog qBV satisfies the conditions of the Distributive Law
method (Sect. 8.6), so it is a homogeneous quadratic Koszul operad. �

Since the quadratic operad qBV is made of the operad Gerst, encoding Gersten-
haber algebras, and the algebra of dual number D := T (�)/(�2) by means of a
distributive law, it is isomorphic to

qBV ∼=Gerst ◦D ∼= Com ◦S −1Lie ◦D,
where S −1Lie∼= Lie⊗

H
Ends−1K.

So the operadic PBW theorem (Sect. 7.8.5) gives the form of the underlying
module of the operad BV .

Proposition 7.8.8. [Get94] There is an isomorphism of S-modules

BV ∼= Com ◦S −1Lie ◦D.
As a corollary of the distributive law method (Sect. 8.6), we get also

qBV
¡ ∼=D¡ ◦Gerst

¡ ∼= T c(δ) ◦ (S −2)cComc ◦ (S −1)cLiec,

where δ := s� has degree 2 and where (S −i )cC = Endc
s−iK⊗HC . Under this

isomorphism, we denote the elements of qBV
¡

simply by δd ⊗ L1 , · · · , Lt ,
where each Li ∈ Liec(ni) and where , stands for the symmetric tensor product
x , y = (−1)|x||y|y , x.

Proposition 7.8.9. [GCTV09] The square-zero coderivation dϕ of the cooperad

qBV
¡

is explicitly given by

dϕ
(
δd ⊗L1 , · · · ,Lt

)=
t∑

i=1

(−1)εi δd−1 ⊗L1 , · · · ,L′i ,L′′i , · · · ,Lt ,

where L′i ,L′′i is Sweedler-type notation for the image of Li under the binary part

(
S −1)cLiec→ (S −1)cLiec(2)⊗ ((S −1)cLiec ⊗ (S −1)cLiec

)
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of the decomposition map of the cooperad (S −1)cLiec . The sign is given by εi =
n1 + · · · + ni−1 + i− 1. The image of dϕ is equal to 0 when the exponent d = 0 and
when Li ∈ (S −1)cLiec(1)=K id for all i.

Proof. Let us denote by l the generator of (S −1)cLiec(2). Inside qBV
¡
, the element

δ ⊗ I ⊗ l is the homotopy for the derivation relation between � and m. So the
coderivation dϕ of BV

¡
is the unique coderivation which sends δ⊗ id⊗l to id⊗μ⊗

id, where μ is the generator of (S −2)cComc(2). �

Notice that, up to the term δd , the transpose of dϕ is equal to the Chevalley–
Eilenberg boundary map defining the homology of the free Lie algebra, see
Sect. 13.2.7:

t dϕ
((
δ∗
)d ⊗L∗1 , · · · ,L∗t

)

=
∑

1≤i<j≤t
±(δ∗)d+1 ⊗ [L∗i ,L∗j

],L∗1 , · · · , L̂∗i , · · · , L̂∗j , · · · ,L∗t .

Finally, the Koszul dg cooperad of BV is

BV
¡ = (qBV

¡
, dϕ
)

and Theorem 7.8.3 provides a quasi-free, but not minimal resolution,

BV∞ :=�BV
¡ ∼−→ BV

for the operad BV . This defines the notion of homotopy BV-algebra. We refer the
reader to Sect. 13.7.7 for more details and applications.

7.9 Résumé

7.9.1 Quadratic Data and Koszul Dual Constructions for Operads

(E,R)

quadratic data

P =P(E,R)

quadratic operad
C = C (E,R)

quadratic cooperad

The quadratic operad: P =P(E,R)=T (E)/(R).
The quadratic cooperad: C = C (E,R)⊂T c(E).
Koszul dual cooperad of an operad: P(E,R)

¡ := C (sE, s2R).
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Koszul dual operad of a cooperad: C (E,R)
¡ :=P(s−1E, s−2R),

(
P

¡)¡ ∼=P.

Koszul dual operad of an operad: when E is finite dimensional,

P ! :=
(
S c ⊗

H
P ¡
)∗ ∼=P

(
s−1S −1 ⊗

H
E∗,R⊥

)
.

7.9.2 Koszul Duality Theory

Twisting morphism κ: P
¡ = C

(
sE, s2R

)
� sE

s−1−−→E� P(E,R)=P .

Koszul complexes: P ◦κ P
¡

and P
¡ ◦κ P ,

P
¡ � BP and �P

¡ � P,

with the syzygy degree: H 0(B•P)∼=P
¡

and H0(�•P
¡
)∼=P .

The quadratic data (E,R) is Koszul when one of the following equivalent asser-
tions is satisfied:

1. the right Koszul complex P ¡ ◦κ P is acyclic,
2. the left Koszul complex P ◦κ P ¡ is acyclic,
3. the inclusion i :P ¡�BP is a quasi-isomorphism,
4. the projection p :�P ¡�P is a quasi-isomorphism,
5. Hn(B•P)= 0 for n≥ 1,
6. Hn(�•P

¡
)= 0 for n≥ 1,

7. H •(B•P) is a sub-cooperad of T c(sE).

7.9.3 Generating Series or Hilbert–Poincaré Series

fP (t) :=
∑

n≥0

dimP(n)

n! tn,

P binary, quadratic and Koszul =⇒ fP !(−fP (−t))= t.

7.9.4 Binary Quadratic Operads

Quadratic data: (E,R) where E ∈T (E)(2).
Koszul dual operad of P =P(E,R):

P ! =P
(
E∨,R⊥

)

where R⊥ is the orthogonal of R for some bilinear form.
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7.9.5 Inhomogeneous Koszul Duality Theory

Quadratic-linear data: (E,R), with R ⊂T (E)(1) ⊕T (E)(2).
Quadratic analogs: qR := projT (E)(2) (R) and qP :=P(E,qR).

(ql1) :R ∩E = {0} ⇒ R =Graph(ϕ : qR→E)

(ql2) : {R ◦(1) E +E ◦(1) R} ∩T (E)(2) ⊂R ∩T (E)(2)

⇒ dϕ codifferential on qP
¡
.

Koszul dual dg cooperad: P
¡ := (qP ¡

, dϕ).

P(E,R) Koszul operad when (ql1), (ql2) and qP homogeneous quadratic
Koszul operad. In this case:

• quasi-free resolution: �P
¡ ∼
�P ,

• Poincaré–Birkhoff–Witt theorem: qP ∼= grP ,
• Koszul complex: P ◦κ P

¡
acyclic.

EXAMPLE: The operad coding the Batalin–Vilkovisky algebras.

7.10 Exercises

Exercise 7.10.1 (On the bilinear form 〈−,−〉). Let E be an S-module concentrated
in arity 2. Show that the space T (E)(3) is a quotient of the sum of two copies of

E ⊗E, one corresponding to the tree (i.e. − ◦1 −) and the other one corre-

sponding to the tree (i.e. −◦2 −). Show that the quotient map is equivariant

for the action of the symmetric group S3.
Under this description of T (E)(3) show that the bilinear form 〈−,−〉 used in

the construction of the orthogonal space R⊥ is sign-invariant under the action of S3
and satisfies

〈
α∗ ◦i β∗,μ ◦j ν

〉= δijα∗(μ)β∗(ν)
for any α∗, β∗ ∈E∨; μ,ν ∈E; i, j = 1 or 2; δij being the Kronecker symbol.

Exercise 7.10.2 (Other choice of basis). Rewrite Sect. 7.6 by choosing the follow-
ing basis for T (E)(3):

μ ◦1 ν, (μ ◦1 ν)
(23), μ ◦2 ν.

Exercise 7.10.3 (An example with graded operation). Show that the operad with
one generating operation xy and one relation

(xy)z=−x(yz)
is not Koszul by looking at the generating series.
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Show that if the product is supposed to be of degree one, then the operad is
Koszul.

Exercise 7.10.4 (Koszul dual ns operads). Describe the Koszul dual operad of the
following ns operads:

1. One binary generating operation, no relation (cf. Sect. 13.8.2).
2. Two generating operations ≺ and ., three relations (cf. Sect. 13.13.2):

(x ≺ y)≺ z= x ≺ (y ≺ z),
(x . y)≺ z= x . (y ≺ z),
(x . y). z= x . (y . z).

3. Two generating operations ≺ and ., three relations (cf. Sect. 13.6):

(x ≺ y)≺ z= x ≺ (y ≺ z+ y . z),
(x . y)≺ z= x . (y ≺ z),

(x ≺ y + x . y). z= x . (y . z).
4. n generating operations ◦i for i = 1, . . . , n, and many relations:

(x ◦i y) ◦j z= x ◦i (y ◦j z), for any i, j.

Exercise 7.10.5 (Koszul dual symmetric operads). Describe the Koszul dual operad
of the following symmetric operads:

1. One binary generating operation [x, y], one relation (cf. Sect. 13.5.1):

[[x, y], z]= [[x, z], y]+ [x, [y, z]].

2. One binary generating operation x ≺ y, one relation (cf. Sect. 13.5.2):

(x ≺ y)≺ z= x ≺ (y ≺ z+ z≺ y).

3. One binary generating operation {x, y}, one relation (cf. Sect. 13.4.1):

{{x, y}, z}− {x, {y, z}}= {{x, z}, y}− {x, {z, y}}.

4. One binary generating operation xy, two relations (cf. Sect. 13.4.6):

(xy)z= x(yz)= x(zy).

Exercise 7.10.6 (From Koszul ns operads to Koszul operads). Show that the functor
ns Op−→Op of Sect. 5.9.11 commutes with the Koszul dual functor P �→P ! and
that it preserves the Koszul property.
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Exercise 7.10.7 (Every augmented operad is inhomogeneous Koszul). Extend Ex-
ercise 3.8.10 to reduced augmented operads.

Exercise 7.10.8 (Inhomogeneous operad �). Let P be an inhomogeneous quadra-
tic operad. Show that, if P is Koszul, then fκ :P ! → BP is a quasi-isomorphism
of dga coalgebras.



Chapter 8
Methods to Prove Koszulity of an Operad

Nous voulons, tant ce feu nous brûle le cerveau, Plonger au
fond du gouffre, Enfer ou Ciel, qu’importe? Au fond de
l’Inconnu pour trouver du nouveau!

Charles Baudelaire

This chapter extends to the operadic level the various methods, obtained in Chap. 4,
to prove that algebras are Koszul. In Chap. 7, we have already given one method,
based on the vanishing of the homology of the free P-algebra.

We begin by generalizing the rewriting method for associative algebras given in
Sect. 4.1 to nonsymmetric operads. To extend it much further to symmetric operads,
we need to introduce the notion of shuffle operad, which sits in between the notion of
operad and nonsymmetric operad. It consists of the same kind of compositions as in
an operad but without the symmetric groups action. For instance, the free symmetric
operad is isomorphic to the free shuffle operad as K-modules, thereby providing a
K-linear basis in terms of shuffle trees for the first one.

With this notion of shuffle operad at hand, we adapt the rewriting method, the re-
duction by filtration method, the Diamond Lemma, the PBW bases and the Gröbner
bases of Chap. 4 from associative algebras to operads.

We give then yet another method. Starting from two operads A and B, one can
sometimes cook up a third one on the underlying S-module A ◦B, by means of a
distributive law B ◦A →A ◦B. One can interpret this data as a rewriting rule,
which pulls the elements of B above those of A . This interpretation allows us to
show the same kind of results as the ones obtained by the aforementioned methods.
For instance, we give a Diamond Lemma for distributive laws which proves that an
operad obtained from two Koszul operads by means of a distributive law is again
Koszul. Notice that, retrospectively, such a method applies to associative algebras
as well.

Instead of Backelin’s lattice criterion used in the algebra case, we introduce a
partition poset method in the operad case. The idea is to associate a family of par-
tition type posets to a set operad. The main theorem asserts that the linear operad

J.-L. Loday, B. Vallette, Algebraic Operads,
Grundlehren der mathematischen Wissenschaften 346,
DOI 10.1007/978-3-642-30362-3_8, © Springer-Verlag Berlin Heidelberg 2012
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generated by the set operad is Koszul if and only if the homology groups of the op-
eradic partition posets are concentrated in top dimension (Cohen–Macaulay posets).
On the one hand, the many combinatorial criteria to show that a poset is Cohen–
Macaulay provide ways to prove that an operad is Koszul. On the other hand, it
gives a method to compute explicitly the homology groups of some partition type
posets as S-modules since the top homology groups are isomorphic to the Koszul
dual cooperad.

In a last section, we extend the definition and the properties of Manin products
to operads.

The material of this chapter mainly comes from Hoffbeck [Hof10c], Dot-
senko and Khoroshkin [DK10], Markl [Mar96a], [Val07b], Ginzburg and Kapranov
[GK94, GK95b], and [Val08].

In the first five sections of this chapter, we work with reduced S-modules M :
M(0)= 0, respectivelyM(0)= ∅ in the set theoretic case.

8.1 Rewriting Method for Binary Quadratic NS Operads

In this section, we explain how the rewriting method for associative algebras of
Sect. 4.1 extends to binary quadratic ns operads. It provides a short algorithmic
method, based on the rewriting rules given by the relations, to prove that an op-
erad is Koszul. The general theory for operads (not necessarily binary) requires new
definitions that will be given in the following sections.

Let P(E,R) be a binary quadratic ns operad.

Step 1. We consider an ordered basis {μ1,μ2, . . . ,μk} for the generating space
E of binary operations. The ordering μ1 <μ2 < · · ·<μk will play a key role in the
sequel.

Step 2. The ternary operations, which span the weight 2 part of the free ns operad,
are of the form μi ◦a μj , where a = 1,2. We put a total order on this set as follows:
⎧
⎨

⎩

μi ◦2 μj < μi ◦1 μj , for any i, j,
μi ◦a μj < μk ◦a μl, whenever i < k, a = 1 or 2, and for any j, l,
μi ◦a μj < μi ◦a μl, whenever j < l, a = 1 or 2.

The operad P is determined by the space of relations R, which is spanned by a
set of relators written in this basis as

r = λμi ◦a μj −
∑
λ
i,a,j
k,b,l μk ◦b μl, λ,λ

i,a,j
k,b,l ∈K and λ �= 0,

so that the sum runs over the indices satisfying μi ◦a μj > μk ◦b μl . The operation
μi ◦a μj is called the leading term of the relator (r). One can always suppose that
λ is equal to 1, that the leading terms of the set of relators are all distinct and that
there is no leading term of any other relator in the sum in the right-hand side. This
is called a normalized form of the presentation.
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Step 3. Observe that such a relator gives rise to a rewriting rule in the operad P :

μi ◦a μj �→
∑
λ
i,a,j
k,b,l μk ◦b μl.

Given three generating binary operations μi , μj , μk , one can compose them in
5 different ways: they correspond to the 5 planar binary trees with 3 vertices. Such
a monomial, i.e. decorated planar tree, is called critical if the two sub-trees with 2
vertices are leading terms.

Step 4. There are at least two ways of rewriting a critical monomial ad libitum,
that is, until no rewriting rule is applicable any more. If all these ways lead to the
same element, then the critical monomial is said to be confluent.

Conclusion. If each critical monomial is confluent, then the ns operad P is
Koszul.

This assertion is a consequence of the following result.

Theorem 8.1.1 (Rewriting method for ns operads). Let P(E,R) be a reduced qua-
dratic ns operad. If its generating space E admits an ordered basis for which there
exists a suitable order on planar trees such that every critical monomial is confluent,
then the ns operad P is Koszul.

In this case, the ns operad P admits a K-linear basis made up of some planar
trees called a PBW-basis, see Sect. 8.5. The proof is analogous to the proof of The-
orem 4.1.1; it follows from Sect. 8.5.4.

EXAMPLE. Consider the ns operad As encoding associative algebras, see Chap. 9.
It is generated by one operation of arity 2: . The rewriting rule expressing asso-
ciativity reads:

�→ .

There is only one critical monomial (the left comb), which gives the following con-
fluent graph (Fig. 8.1).

Therefore, the nonsymmetric operad As is Koszul. It admits a PBW basis made
up of the right combs:

.
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Fig. 8.1 The diamond for the
nonsymmetric operad As

REMARK. Notice first that one recovers the associativity pentagon of monoidal cat-
egories, see Appendix B.3. Moreover, the Diamond Lemma applied to the ns operad
As is exactly Mac Lane’s coherence theorem for (nonunital) monoidal categories.
The first one states that any graph built out of the left combs, under the associativity
relation, is confluent. The second one states that any graph built with the associa-
tivity relation is commutative. With this remark in mind, the reading of [ML95,
Sect. VII-2] enjoys another savor.

COUNTER-EXAMPLE. We consider the same example but with the modified asso-
ciativity relation

= 2 .

In this case, the above graph is not confluent because 23 �= 22. Whatever the suitable
order is, the graph will never be confluent since it can be proved that this ns operad
is not Koszul, see Exercise 8.10.9.

8.2 Shuffle Operad

The forgetful functor Op→ ns Op, from symmetric operads to nonsymmetric oper-
ads, forgets the action of the symmetric groups, see Sect. 5.9.11. It factors through
the category of shuffle operads Op . Shuffle operads have the advantage of being
based on arity-graded vector spaces like nonsymmetric operads, while retaining the
whole structure of a symmetric operad.
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The notion of shuffle operad is due to Dotsenko–Khoroshkin [DK10] after ideas
of Hoffbeck [Hof10c].

8.2.1 Shuffle Composite Product

For any subset X of n := {1, . . . , n} we denote by min(X) the smallest element of
X. Any partition P of n into k subsets can be written uniquely

P= (P1, . . . ,Pk)

under the requirement

min(P1) <min(P2) < · · ·<min(Pk).

Writing the elements of Pi in order and concatenating them for all i, it defines the
preimages of {1, . . . , n} under a permutation σP of Sn.

{1,3,4}< {2,7}< {5,6,8} �→ [1 4 2 3 6 7 5 8].
The associated permutation σP is a (i1, . . . , ik)-unshuffle, cf. Sect. 1.3.2, where
ij := |Pj |,

σ−1(1) < · · ·< σ−1(i1),

σ−1(i1 + 1) < · · ·< σ−1(i1 + i2),
...

σ−1(i1 + · · · + ik−1 + 1) < · · ·< σ−1(n),

satisfying the extra property

σ−1(1) < σ−1(i1 + 1) < · · ·< σ−1(i1 + · · · + ik−1 + 1).

Such unshuffles are called pointed (i1, . . . , ik)-unshuffles, or simply pointed un-
shuffles when the underlying type is understood. We denote the associated set by
(i1, . . . , ik). For instance, the set (2,1) has two elements, namely [1 2 3] and

[1 3 2]; the set (1,2) has only one element, namely [1 2 3].
For any arity-graded spaces M and N , we define the shuffle composite product

M ◦ N as follows:

(M ◦ N)n :=
⊕

k≥1,(i1,...,ik )
i1+···+ik=n

Mk ⊗Ni1 ⊗ · · · ⊗Nik ⊗K
[
(i1, . . . , ik)

]
.

Proposition 8.2.1. The shuffle composition product makes the category of arity-
graded spaces (N-Mod,◦ , I) into a monoidal category.
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Proof. The associativity of ◦ is proved by direct inspection, see [DK10, Sect. 2]
for more details. �

8.2.2 Shuffle Trees

A shuffle tree is a reduced planar rooted tree equipped with a labeling of the leaves
by integers {1,2, . . . , n} satisfying some condition stated below. First, we label each
edge of the tree as follows. The leaves are already labeled. Any other edge is the
output of some vertex v. We label this edge by min(v) which is the minimum of
the labels of the inputs of v. Second, the condition for a labeled tree to be called a
shuffle tree is that, for each vertex, the labels of the inputs, read from left to right,
are increasing.

EXAMPLE. See Fig. 8.2.

The relationship between shuffle trees and pointed unshuffles is the following:
Any shuffle tree with two levels corresponds to a partition written in order and vice
versa.

EXAMPLE. See Fig. 8.3.

Fig. 8.2 Example of a
shuffle tree

Fig. 8.3 Example of a
2-leveled shuffle tree
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8.2.3 Monoidal Definition of Shuffle Operad

By definition a shuffle operad is a monoid (P, γ , η) in the monoidal category
(N-Mod,◦ , I). Explicitly, it is an arity-graded vector space P equipped with an
associative composition map γ :P ◦ P →P and a unit map η : I→P .

Equivalently a shuffle operad can be defined by maps

γσ :Pk ⊗Pi1 ⊗ · · · ⊗Pik →Pn

for any pointed unshuffle σ ∈ (i1, . . . , ik). Assembling these maps, we get γ :
P ◦ P →P . Associativity of γ can be written explicitly in terms of the individ-
ual maps γσ as in Proposition 5.3.1.

8.2.4 Partial Definition of Shuffle Operad

Let m and i, 1≤ i ≤m, be positive integers. Any monotonic injection

{i + 1, i + 2, . . . , i + n− 1}→ {i + 1, i + 2, . . . ,m+ n− 1}
is completely determined by a (n− 1,m− i)-unshuffle ω that we let act on the set
{i + 1, . . . ,m+ n− 1}. This data is equivalent to a partition of type

P = ({1}, . . . , {i − 1},{i,ω−1(i + 1), . . . ,ω−1(i + n− 1)
}
,

{
ω−1(i + n)}, . . . ,{ω−1(m+ n− 1)

})
, (8.1)

where all the subsets but one are made up of one element.
Such a partition is equivalent to a shuffle tree with two vertices:

3 ω−1(4) ω−1(5)

1 2 ω−1(6) ω−1(7)

The associated pointed unshuffle σP is of type (1, . . . ,1, n,1, . . . ,1) and it deter-
mines a map

γσP :P(m)⊗P(1)⊗· · ·⊗P(1)⊗P(n)⊗P(1)⊗· · ·⊗P(1)→P(m+n−1).

By evaluating γσP on the elements id ∈P(1) we get a map:

◦i,ω :P(m)⊗P(n)→P(m+ n− 1).

They are called the partial shuffle products in the shuffle operad framework.



270 8 Methods to Prove Koszulity of an Operad

The partial operations ◦i,ω generate, under composition, all the shuffle composi-
tions. They satisfy some relations. For instance if the permutation shuffles

σ ∈ Sh(m,n), λ ∈ Sh(m+ n, r), δ ∈ Sh(n, r), γ ∈ Sh(m,n+ r)
satisfy the relation

(σ × 1r )λ= (1m × δ)γ in Sm+n+r ,

then the partial operations satisfy the relation

(x ◦1,σ y) ◦1,λ z= x ◦1,γ (y ◦1,δ z)

for any x ∈P1+m, y ∈P1+n, z ∈P1+r .
We leave it to the reader to find the complete set of relations, which presents a

shuffle operad out of the partial shuffle products.

8.2.5 Combinatorial Definition of Shuffle Operad

The combinatorial definition of a shuffle operad is the same as the combinatorial
definition of a ns operad, cf. Sect. 5.9.5, except that we have to replace the planar
rooted trees by the shuffle trees. The only subtle point is the substitution of shuffle
trees, which is obtained as follows.

Let t be a shuffle tree and v be a vertex of t whose inputs are labeled by
(i1, . . . , ik). So we have i1 < i2 < · · · < ik . Let s be a shuffle tree with k leaves
and let (j1, . . . , jk) be the sequence of labels of the leaves. So (j1, . . . , jk) is a per-
mutation of k. Then, the substitution of s at v gives a new planar rooted tree, cf.
Sect. 5.9.5, whose labeling is obtained as follows: each label jl is changed into ijl
for l = 1, . . . , k and the other labels are unchanged.

EXAMPLE. See Fig. 8.4.

Proposition 8.2.2. An algebra over the monad of shuffle trees is a shuffle operad.

Proof. The proof is left to the reader as a good exercise. �

As a result we get a description of the free shuffle operad over a reduced arity
graded module M as follows. The underlying reduced arity-graded module T M

is spanned by the shuffle trees with vertices indexed by elements of M , respecting
the number of inputs. Its shuffle composition γ is defined by the grafting of shuffle
trees, as the example of Fig. 8.5 shows.

Theorem 8.2.3. The shuffle operad (T M,γ ) is free over M among the shuffle
operads.
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Fig. 8.4 Example of substitution of shuffle trees

Fig. 8.5 Example of shuffle composition in the free shuffle operad
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Proof. The shuffle tree space is equal to the same colimit as in Sect. 5.5.1 or equiv-
alently as in Sect. 5.5.5 but applied to the shuffle composite product ◦ instead of
the composite product ◦. Thus, the proof of the present case follows from the same
arguments. �

8.2.6 Group and Pre-Lie Algebra Associated to a Shuffle Operad

In Sect. 5.4.2, resp. Sect. 5.4.3, we associate to any symmetric operad a group, resp.
a pre-Lie algebra. These constructions consist in summing over operations which are
determined by two-level shuffle trees. Hence they make sense for shuffle operads as
well.

8.2.7 From Symmetric Operads to Shuffles Operads

For any S-module P = {P(n)}n≥1, we denote by Pf the underlying arity-graded
module:

(
Pf
)
n
:=P(n).

This is the forgetful functor from S-Mod to N-Mod. The crucial property of the
shuffle composite product states that for any S-modules P and Q there is an iso-
morphism

(P ◦Q)f ∼=Pf ◦ Qf .

Recall that the set of unshuffles Sh−1
i1,...,ik

provides representatives for the quotient of
Sn under the left action by Si1 ×· · ·×Sik . The set of pointed unshuffles (i1, . . . , ik)

provides representatives for the quotient of Sh−1
i1,...,ik

by the action of Sk .
This equality enables us to define the composite

γ :Pf ◦ Pf ∼= (P ◦P)f
γ−→Pf ,

when P = (P, γ, η) is an operad. Then, it is straightforward to see that (Pf, γ , η)

is a shuffle operad.

Proposition 8.2.4. The forgetful functor

(S-Mod,◦)−→ (N-Mod,◦ )

is a strong monoidal functor, see Appendix B.3.3. Therefore it induces the following
functor

Op−→Op , (P, γ, η) �→ (Pf , γ , η
)
.

Proof. It is straightforward to check the axioms of strong monoidal functors with
the previous discussion. �
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8.2.8 From Shuffle Operads to NS Operads

For any partition n = i1 + · · · + ik , the identity permutation is an element of
(i1, . . . , ik). Hence, for any arity graded modules M and N we have M ◦ N ⊂
M ◦ N and
⊕

Mk ⊗Ni1 ⊗ · · · ⊗Nik ⊂
⊕

Mk ⊗Ni1 ⊗ · · · ⊗Nik ⊗K
[
(i1, . . . , ik)

]
.

Proposition 8.2.5. The functor

(N-Mod,◦ )−→ (N-Mod,◦)
is a monoidal functor, see Appendix B.3.3. Therefore it induces the following func-
tor

Op −→ nsOp.

Proof. It is a straightforward to check the axioms of monoidal functors with the
previous discussion. �

Finally, we have two functors

Op−→Op −→ nsOp,

whose composite is the forgetful functor P → P̃ mentioned in Sect. 5.9.11.

8.2.9 From Shuffle Operads to Permutads

Some families of shuffle trees are closed under substitution. The first example, men-
tioned above, is the set of planar trees which is in bijection with the shuffle trees
with numbering {1,2,3, . . .}. The associated monad defines the nonsymmetric op-
erads.

Another example of a family of shuffle trees closed under substitution is made
up of the “shuffle left combs”, that is shuffle trees whose underlying planar tree is a
left comb, see Fig. 8.6.

Fig. 8.6 Example of a left
comb
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An algebra over this monad is a permutad, see Sect. 13.14.7. It can be shown to
coincide with the notion of shuffle algebra introduced by M. Ronco in [Ron11].

8.2.10 Koszul Duality Theory for Shuffle Operads

In the preceding chapters, we have developed the Koszul duality theory for sym-
metric and nonsymmetric operads following a certain pattern (twisting morphisms,
bar and cobar constructions, twisting composite products, Koszul morphisms, com-
parison lemma). The same scheme applies to shuffle operads mutatis mutandis. In
this way, one can develop the Koszul duality theory for shuffle operads as well. We
leave the details to the reader as a very good exercise.

8.3 Rewriting Method for Operads

With the help of shuffle trees, we settle the rewriting method of Sects. 4.1 and 8.1
for (symmetric) operads. It works in the same way as in the algebra case except that
one has to use a suitable order on shuffle trees in this case.

Let P(E,R) be a quadratic operad (not necessarily binary), for instance, the
operad Lie encoding Lie algebras

Lie=P
(
Ksgnc, c ◦ (c⊗ id)+ c ◦ (c⊗ id)(123) + c ◦ (c⊗ id)(321)),

where Ksgn stands for the signature representation of S2.

Step 1. We choose an ordered K-linear basis {ei}i=1,...,m for the S-module of
generators E.

Step 2. We consider, for instance, the induced path-lexicographic ordered basis
on the shuffle trees T (2) with 2 vertices, see Fig. 8.7. (For the complete definition
of the path-lexicographic order, we refer the reader to Sect. 8.4.) Notice that one can
use any other suitable order on shuffle trees, see loc. cit.

We consider the induced K-linear basis of the S-module R. Any element is of
the form

r = λt(ei, ej )−
∑

t ′(k,l)<t(i,j)
λ
t (i,j)

t ′(k,l) t
′(ek, el); λ �= 0,

where the notation t (i, j) (resp. t (ei , ej )) represents a shuffle tree with 2 vertices
labeled by i and j (resp. by ei and ej ). The monomial tree t (ei , ej ) is called the
leading term of r . As usual, we can always change this basis for one with normalized
form.
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1

< · · · .

Fig. 8.7 Path-lexicographic order on 2-vertices binary shuffle trees

In the example of the operad Lie, the space of relations R admits the following
normalized basis:

1 2

3 −

1 3

2 −

2 3

1
.

Since there is only one label e1 = c for the vertices, we do not mention it here.

Step 3. These choices provide rewriting rules of the form

t (ei , ej ) �→
∑

t ′(k,l)<t(i,j)
λ
t (i,j)

t ′(k,l) t
′(ek, el),

leading term �→ sum of lower and non-leading terms,

for any relator r in the normalized basis of R. A tree monomial t (ei , ej , ek) with
3 vertices is called critical if its two shuffle subtrees with 2 vertices are leading
terms.
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In the case of the operad Lie, there is one rewriting rule

1 2

3 �→

1 3

2 +

2 3

1

and only one critical tree monomial

1 2

3

4

.

Step 4. Any critical tree monomial gives rise to a graph made up of the successive
applications of the rewriting rules aforementioned. Any critical monomial is called
confluent if the associated graph has only one terminal vertex (confluent graph).

In the guiding example of the operad Lie, the graph associated to the only critical
monomial is confluent, see Fig. 8.8.

REMARK. Notice that the graph given here is a compact version of the full rewrit-
ing graph of the operad Lie: when it is possible to apply the rewriting rule to two
different trees of a sum, we have only drawn one arrow, applying the two rewriting
rules at once. There is yet another way to draw this rewriting diagram, which gives
the Zamolodchikov tetrahedron equation. It leads to the categorical notion of Lie
2-algebra, see Baez–Crans [BC04, Sect. 4].

Conclusion. If each critical monomial is confluent, then the operad P is Koszul.
It is a consequence of the following result.

Theorem 8.3.1 (Rewriting method for operads). Let P(E,R) be a quadratic op-
erad. If its generating space E admits a K-linear ordered basis, for which there
exists a suitable order on shuffle trees, such that every critical monomial is conflu-
ent, then the operad P is Koszul.

In this case, the operad P admits an induced shuffle tree basis sharing nice
properties, called a PBW basis, see Sect. 8.5.

Therefore, the operad Lie is Koszul and admits a PBW basis, see Sect. 13.2.4 for
more details.



8.4 Reduction by Filtration 277

Fig. 8.8 The diamond for the operad Lie

8.4 Reduction by Filtration

In this section, we extend to operads the “reduction by filtration” method for alge-
bras as described in Sect. 4.2. The only real new points lie in the use of the notion of
shuffle operad and in suitable orders for the free (shuffle) operad. The proofs follow
the same pattern as in Chap. 4 for associative algebras, so we skip most of them.

8.4.1 Suitable Order on Shuffle Trees

We consider the set of shuffle trees with vertices labeled by {1, . . . ,m}, wherem can
be infinite. We denote it simply by T . Notice that it labels a basis of the shuffle
operad T (E), on a reduced arity-graded module such that dimEn = m, for any
n≥ 1. We choose a bijection between this set and the set of nonnegative integers N,
with its total order. (We require the identity tree | being sent to 0.) It endows the set
of labeled shuffle trees with a total order denoted by T p . We consider the partial
shuffle products

◦i,ω :T p ×T q→T χ(σ ;p,q).
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We ask that all these maps are strictly increasing, with respect to the lexicographic
order on the left-hand side. In this case, we say that the order on labeled shuffle trees
is a suitable order.

EXAMPLE (Path-lexicographic order). For simplicity, we restrict ourselves to the
set of labeled shuffle trees whose vertices are at least trivalent, and such that m is
finite. To any tree of arity n, we associate a sequence of n + 1 words as follows.
The n first words are obtained by reading the tree from the root to each leaf and
by recording the labels indexing the vertices. The last word is given by the ordered
labeling of the leaves, or equivalently by the image of the inverse of the associated
pointed unshuffle. For example, one associates to the following tree

1 2 4

1 3

2

the sequence

(21,21,2,21;1324).

We leave it to the reader to verify that such a sequence characterizes the reduced
labeled shuffle tree. We consider the following total order on this type of sequences.

1. We order them according to the number of elements of the sequence, that is the
arity.

2. We consider the lexicographic order, with reversed order for the last word.

The example m = 2 is given in Fig. 8.9. This ordering endows the set of reduced
labeled shuffle trees with a suitable order, see [Hof10c, Proposition 3.5] and [DK10,
Proposition 5]. These two references provide other examples of suitable orders on
reduced trees. We refer the reader to Exercise 8.10.4 for an example of a suitable
order on labeled shuffle trees.

8.4.2 Associated Graded Shuffle Operad

Let P(E,R)=T (E)/(R) be a homogeneous quadratic operad, i.e. the S-module
of relations satisfies R ⊂ T (E)(2). Suppose that the generating space E comes
equipped with an extra datum: a decomposition into S-modules E ∼=E1⊕· · ·⊕Em.
Notice that E and the Ei can be degree graded S-modules.
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Fig. 8.9 Path-lexicographic order in the case m= 2

Since the forgetful functor (S-Mod,◦)→ (N-Mod,◦ ), M �→M f , is a strong
monoidal functor by Proposition 8.2.4, we automatically get the isomorphisms of
arity-graded modules

(
T (E)

)f ∼=T
(
Ef
)

and
(
P(E,R)

)f ∼=P
(
Ef ,Rf

)
.

In other words, the underlying space of the free operad is equal to the free shuffle
operad and the underlying space of the quadratic operad P is equal to the quadratic
shuffle operad, which we denote by P .

We consider a suitable order on the set of labeled shuffle trees. In this case,
we say that the operad P is equipped with an extra ordered grading. Notice that
if the generating space E is concentrated in some arities, it is enough to con-
sider a suitable order only on the induced trees. For example, if E(1) = 0, then
the shuffle trees are reduced and the aforementioned path-lexicographic order ap-
plies.
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The total order on shuffle trees induces the following filtration of the free shuf-
fle operad FpT (E) :=⊕p

q=0 T (E)q . This image under the canonical projec-
tion T (E)�P =P (E,R) defines a filtration on the quadratic shuffle operad
denoted by FpP . The associated χ -graded arity-graded module is denoted by
grχ P or simply by grP .

Proposition 8.4.1. Any quadratic operad P(E,R) equipped with an extra order
grading induces a shuffle operad structure on the χ -graded arity-graded mod-
ule grP .

Proof. By the definition of a suitable order, any partial shuffle product of the shuf-
fle operad P induces a well-defined partial shuffle product on the graded mod-
ule grP :

◦̄i,ω : grpP ⊗ grq P → grχ(σ ;p,q)P ,

for any i and ω. These data endow the graded module grP with a shuffle operad
structure. �

Notice that, since the extra grading on T (E) refines the weight grading, the
shuffle operad grP is also weight graded.

8.4.3 The Koszul Property

Theorem 8.4.2. Let P =P(E,R) be a quadratic operad equipped with an extra
ordered grading. If the shuffle operad grP is Koszul, then the operad P is also
Koszul.

Proof. The proof is essentially the same as the proof of Theorem 4.2.1, once the
following point is understood. The isomorphism

BP ∼= B P

from the bar construction of the operad P to the shuffle bar construction of the asso-
ciated shuffle operad P , as differential graded arity-graded module, follows from
Proposition 8.2.4 again. So if the homology of B P is concentrated in syzygy
degree 0, then so is the homology of BP . To conclude, it is enough to apply the
methods of Theorem 4.2.1 to the shuffle operad P to prove that grP Koszul
implies P Koszul. �

From now on, we concentrate on trying to prove that the shuffle operad grP is
Koszul in order to show that the operad P is Koszul.
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8.4.4 Quadratic Analog

We consider the kernel Rlead of the restriction to R of the projection T (E)�
grP . Any relator in R can be written r = T1 + · · · + Tp , where any Ti is a tree
monomial in T (E)(2), and such that Ti < Ti+1 and Tp �= 0. This latter term Tp
is called the leading term or r . The space Rlead is linearly spanned by the leading
terms of the elements of R.

We consider the following quadratic shuffle algebra

P̊ :=T (E)/(Rlead),

which is the best candidate for being a quadratic presentation of the shuffle operad
grP .

Proposition 8.4.3. Let P =P(E,R) be a quadratic operad equipped with an ex-
tra ordered grading. There is a commutative diagram of epimorphisms of χ -graded,
thus weight graded, shuffle operads

T (E)

ψ : P̊ =T (E)/(Rlead) grP .

If the shuffle operad P̊ is Koszul and if the canonical projection P̊ ∼= grP is
an isomorphism, then the operad P is Koszul.

8.4.5 Diamond Lemma

When the quadratic shuffle operad P̊ is Koszul, it is enough to check that the
canonical projection ψ : P̊ � grP is injective in weight 3, to show that it is an
isomorphism.

Theorem 8.4.4 (Diamond Lemma for quadratic operads). Let P =P(E,R) be a
quadratic operad equipped with an extra ordered grading. Suppose that the qua-
dratic shuffle operad P̊ = T (E)/(Rlead) is Koszul. If the canonical projection
P̊ � grP is injective in weight 3, then it is an isomorphism. In this case,
the operad P is Koszul and its underlying arity-graded module is isomorphic to
P ∼= P̊ .

8.4.6 The Inhomogeneous Case

For an inhomogeneous quadratic operad P =P(E,R), that is R ⊂E⊕T (E)(2),
we require that the presentation satisfies the conditions (ql1) and (ql2) of Sect. 7.8.
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We suppose that the associated homogeneous quadratic operad qP :=P(E,qR)

admits an extra ordered grading. In this case, there exists a commutative diagram

˚qP

Op

grχ qP
∼=

N-Mod

Op

qP

Op

grχ P
∼=

N-Mod
grP

∼=
S-Mod

P,

where the type of the morphisms is indicated on the arrows. The morphisms of
the first column preserve the χ -grading and the morphisms of the second column
preserve the weight grading.

Theorem 8.4.5 (Diamond Lemma for inhomogeneous quadratic operads). Let P =
P(E,R) be a quadratic-linear operad with a presentation satisfying conditions
(ql1) and (ql2). We suppose that T (E) comes equipped with an extra ordered
grading.

If the quadratic operad ˚qP is Koszul and if the canonical projection ˚qP �
grχ qP is injective in weight 3, then the operad P is Koszul and all the maps of
the above diagram are isomorphisms, in particular:

˚qP ∼= grχ qP ∼= qP ∼= grP ∼=P.

8.4.7 Reduction by Filtration Method for Nonsymmetric Operads

The same theory holds for nonsymmetric operads. In this simpler case, there is no
need to use the notions of shuffle operad and shuffle trees. One works with the
set of planar trees PT from the very beginning and one remains in the context of
nonsymmetric operads. The only point is to consider a suitable order on planar trees,
that is a total order such that any partial composite product

◦i : PTk × PTl→ PTn

is an increasing map. The adaptation of the path-lexicographic order gives an exam-
ple of such a suitable order. Notice that reduced planar trees are particular examples
of shuffle trees and that partial composite products are particular examples of partial
shuffle products. We leave the details to the reader as a good exercise.
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8.5 PBW Bases and Gröbner Bases for Operads

In this section, we study the particular case of the preceding section when the gen-
erating space E is equipped with an extra grading E ∼= E1 ⊕ · · · ⊕ Em such that
each sub-space Ei is one-dimensional. This gives rise to the notion of Poincaré–
Birkhoff–Witt basis for (shuffle) operads. Quadratic operads which admit such a
basis share nice properties. For instance, they are Koszul operads.

We introduce the equivalent notion of (quadratic) Gröbner basis, which is to the
(quadratic) ideal (R) what PBW basis is to the quotient operad T (E)/(R).

For operads, the notion of PBW basis is due to Hoffbeck [Hof10c] and the notion
of Gröbner basis is due to Dotsenko and Khoroshkin [DK10].

8.5.1 Ordered Bases

Let P =P(E,R) be a quadratic operad with a decomposition of the generating
spaceE ∼=E1⊕· · ·⊕Em into one-dimensional vector spaces. This data is equivalent
to an ordered basis {e1, . . . , em} of the K-module E. Together with a suitable order
on shuffle trees T , it induces a totally ordered basis of T (E), made up of tree
monomials. In this case, we say that T (E) is equipped with a suitable ordered
basis.

In this basis, the space of relations is equal to

R =
{

λt(ei, ej )−
∑

t ′(k,l)<t(i,j)
λ
t (i,j)

t ′(k,l) t
′(ek, el);λ �= 0

}

,

where the notation t (i, j) (resp. t (ei , ej )) stands for a shuffle tree with two vertices
indexed by i and j (resp. by ei and ej ). We denote by �T (2) the subset of T made up
of labeled shuffle trees which appear as leading terms of some relators. We denote
by T (2) the complement of �T (2) in T (2). Notice that the space of relations admits a
normalized basis of the form

R =
〈

t (ei , ej )−
∑

t ′(k,l)∈T (2)<t (i,j)
λ
t (i,j)

t ′(k,l) t
′(ek, el)

〉

.

Proposition 8.5.1. Let P be a quadratic operad P(E,R), with T (E) equipped
with a suitable ordered basis. The associated quadratic shuffle operad P̊ is equal
to the quadratic shuffle operad P (E,Rlead), withRlead ∼= 〈t (ei , ej ); t (i, j)∈�T (2)〉.

8.5.2 Quadratic Monomial Shuffle Operads

A quadratic monomial shuffle operad is a quadratic shuffle operad P̊ =P (E,R)

with a (non-necessarily ordered) basis {ei}1≤i≤m of E such that the space of rela-
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tions R is linearly spanned by a set of trees {t (ei , ej )}t (i,j)∈�T (2) , where �T (2) ⊂T (2).

Hence the complement T (2) of �T (2) in T (2) labels a basis of the quotient P̊(2) =
T (E)(2)/R.

We set T (0) := {|} and T (1) := T (1). For any n ≥ 2, we define the subset
T (n) ⊂ T (n) as the set of labeled shuffle trees with n vertices such that for any
internal edge, the associated two-vertices subtree is in T (2). Finally, we consider
T =⊔n∈N T (n) ⊂T . We define the subset �T ⊂T in the same way, that is a tree

lives in �T (n) ⊂ T (n) if for any internal edge, the associated two-vertices subtree is
in �T (2).

Proposition 8.5.2. Any quadratic monomial shuffle operad P̊ =P (E,R) ad-
mits a basis labeled by the subset T ⊂T . Its Koszul dual shuffle cooperad (P̊ )

¡

admits a basis labeled by �T ⊂T .

Theorem 8.5.3. Any quadratic monomial shuffle operad is Koszul.

Proof. By the preceding proposition, the underlying space of the Koszul complex is
equal to (P̊ )

¡ ◦ P̊ , which admits a basis of the following form. We consider the
set of labeled shuffle trees with a horizontal partition into two parts; any two-vertices
subtrees in the upper part belong to T (2) and any two-vertices subtrees in the lower
part belong to �T (2). Finally, we conclude with the same argument as in the proof
of Theorem 4.3.4. The differential map amounts to pulling up one top vertex from
the lower part to the upper part. When it is 0, it produces a cycle element, which is
easily shown to be a boundary element. Hence, this chain complex is acyclic. �

This result is a key point in the PBW basis theory because it simplifies the state-
ments of Sect. 8.4. When the decomposition E ∼= E1 ⊕ · · · ⊕ Em is made up of
one-dimensional sub-spaces, the quadratic analog P̊ is always a Koszul shuffle
operad.

8.5.3 PBW Basis

The image of the monomial basis {t (eī )}t∈T of the shuffle operad P̊ , given in
Proposition 8.5.2, under the successive morphisms of graded (and also arity-graded)
modules P̊ � grP ∼= P ∼= P provides a family of elements {t̄ (eī )}t∈T ,
which span the operad P . When these elements are linearly independent, they form
a basis of the operad P , called a Poincaré–Birkhoff–Witt basis, or PBW basis for
short. This is equivalent to having an isomorphism ψ : P̊ ∼= grP . We say that
an operad P = P(E,R) admits a PBW basis if the free shuffle operad T (E)

admits a suitable ordered basis such that the associated elements {t̄ (eī )}t∈T form a
basis of the operad P .
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EXAMPLE. The operad Com is generated by a one-dimensional space concentrated
in arity 2: E = K•. We consider the suitable order obtained by restriction of the
path-lexicographic order Sect. 8.4.1 on binary shuffle trees. On trees with 2 vertices,
it is equal to

2 3

1 •
•

︸ ︷︷ ︸
T (2)

<

1 3

• 2

•
<

1 2

• 3

•
︸ ︷︷ ︸

�T (2)

.

The space of relations is the linear span of the three terms made up of the difference
of such two trees. Hence the set T (2) is made up of the first tree. It generates the set
T made up of the left combs:

· · · n

•
2

1 •
•

Since dimK Com(n)= 1, this forms a PBW basis of the operad Com.

Theorem 8.5.4. Any quadratic operad endowed with a PBW basis is Koszul.

As for algebras, the existence of a PBW basis gives a purely algebraic condition
to prove that an algebra is Koszul, without having to compute any homology group.

8.5.4 Diamond Lemma for PBW Bases

The following Diamond Lemma gives an easy way to prove that one has a PBW
basis.

Theorem 8.5.5 (Diamond Lemma for PBW bases of operads). Let P =P(E,R)

be a quadratic operad, with T (E) equipped with a suitable ordered basis
{t (eī )}t∈T . If the associated elements {t̄}t∈T (3) are linearly independent in P(3),
then the elements {t̄ (eī )}t∈T form a PBW basis of P . In that case, the operad P is
Koszul.
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To check the assumption of this theorem, one uses the rewriting method of
Sect. 8.3: one shows that every critical monomial is confluent. Notice that this the-
orem and Theorem 4.3.7 give a proof of the rewriting method Theorem 8.3.1.

8.5.5 Partial Shuffle Product of Elements of a PBW Basis

The composite P̊ � grP ∼=P ∼=P is an epimorphism of arity-graded mod-
ules, but not of (shuffle) operads. Therefore, the partial shuffle product of two ele-
ments of the generating family {t̄ (eī )}t∈T is not always equal to an element of this
family, but sometimes to a sum of lower terms.

Proposition 8.5.6. The elements {t̄ (eī )}t∈T satisfy the following properties.

(1) Let σ be a partial pointed shuffle and let t, s ∈ T be a pair of trees with matching
arity. If the partial shuffle product of trees is not in T , t ◦σ s /∈ T , then the partial
shuffle product t̄ ◦σ s̄ in the operad P is equal to a linear combination of strictly
lower terms labeled by T :

t̄ ◦σ s̄ =
∑

u∈T ,u<t◦σ s
λt,su ū,

with λt,su ∈K.
(2) Any shuffle tree lies in T , if and only if any shuffle subtree s ⊂ t lies in T .

In the above example of the operad Com, only the partial shuffle composite i = k
and σ = id produces an element of the basis. The other composites are equal to the
left comb in Com, which is a strictly lower but in the basis.

We leave it to the reader to prove that a tree basis T satisfying conditions (1) and
(2) is a PBW basis. This equivalent definition is the definition originally given by
Hoffbeck in [Hof10c].

8.5.6 Gröbner Bases for Operads

Following [DK10], we introduce the notion of Gröbner basis for an operadic ideal
I of the free (shuffle) operad. In the quadratic case, when I = (R), it is equivalent
to a PBW basis for the quotient operad P =T (E)/(R).

Any element t ∈T (E) of the free shuffle operad is a linear combination of tree
monomials. When T (E) is equipped with a suitable ordered basis, we denote by
tlead the leading term of t . For any subset M ⊂ T (E), we consider the set made
up of the leading terms of any element of M and we denote it by Lead(M). Under
this notation, the space of relations Rlead of Sect. 8.5.1 is equal to the linear span of
Lead(R): Rlead = 〈Lead(R)〉.



8.5 PBW Bases and Gröbner Bases for Operads 287

A Gröbner basis of an ideal I in T (E) is a set G ⊂ I which generates the
ideal I , i.e. (G)= I , such that the leading terms of G and the leading terms of the
elements of I generate the same ideal: (Lead(G))= (Lead(I )).

Proposition 8.5.7. Let P =P(E,R) be a quadratic operad such that T (E) is
equipped with a suitable ordered basis. The elements {t̄ (eī )}t∈T form a PBW basis
of P if and only if the elements

{

t (ei , ej )−
∑

t ′(k,l)∈T (2)<t (i,j)
λ
t (i,j)

t ′(k,l) t
′(ek, el)

}

t (i,j)∈�T (2)
,

spanning R, form a Gröbner basis of the ideal (R) in T (E).

In the quadratic case, the two notions of PBW basis and Gröbner basis are equiv-
alent dual notions. The terminology “PBW basis” refers to the basis of the quotient
operad while the terminology “Gröbner basis” refers to the ideal (R). We refer to
[DK10] for more details on Gröbner bases for operads.

8.5.7 PBW Bases for Inhomogeneous Quadratic Operads

Following Sect. 8.4.6, we say that an inhomogeneous quadratic operad P admits
a PBW basis if there exists a presentation P = P(E,R), satisfying conditions
(ql1) and (ql2), such that the associated quadratic algebra qP = P(E,qR) ad-
mits a PBW basis. In this case, the image {t̄ (eī )}t∈T ⊂P of the tree basis elements
{t (eī )}ī∈T of the quadratic monomial shuffle operad ˚qP gives a basis of the in-
homogeneous quadratic operad P . Such a result is once again proved using the
following version of the Diamond Lemma.

Theorem 8.5.8 (Diamond Lemma for PBW bases of inhomogeneous operads). Let
P =P(E,R) be an inhomogeneous quadratic operad with a quadratic-linear pre-
sentation satisfying conditions (ql1) and (ql2) and such that T (E) is equipped
with a suitable ordered basis.

If the images of the tree elements {t (eī )}ī∈T (3) in qP are linearly independent,
then the images {t̄ (eī )}t∈T of the elements {t (eī )}t∈T form a basis of P , and the
operad P is Koszul.

In the inhomogeneous case too, the notion of PBW basis is equivalent and dual
to that of Gröbner basis.

Proposition 8.5.9. Let P be an inhomogeneous quadratic operad with a quadra-
tic-linear presentation P = P(E,R) satisfying conditions (ql1) and (ql2) and
such that T (E) is equipped with a suitable ordered basis. Let ϕ : qR→ E be
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the linear map whose graph gives R. The elements {t̄ (eī )}t∈T ⊂ P form a PBW
basis of P if and only if the elements

{

(Id−ϕ)
(

t (ei , ej )−
∑

t ′(k,l)∈T (2)<t (i,j)
λ
t (i,j)

t ′(k,l) t
′(ek, el)

)}

t (i,j)∈�T (2)

spanning R, form a Gröbner basis of the ideal (R) in T (E).

8.5.8 PBW/Gröbner Bases for Nonsymmetric Operads

Once again, the same results hold for nonsymmetric operads. One has just to replace
the set of shuffle trees by the one of planar trees.

8.6 Distributive Laws

In this section, we show how to build a new operad out of two operads by means
of an extra datum, called distributive law. When the two first operads are quadra-
tic, we describe how to get a distributive law from these presentations. The main
result states that, in this case, the resulting operad is Koszul if the two first ones are
Koszul.

The notion of distributive law goes back to Jon Beck [Bec69]. Its application to
Koszul operads was first introduced by Martin Markl in [Mar96a, FM97] and then
refined in [Val07b, Dot07].

8.6.1 Definition of a Distributive Law

Let A = (A , γA , ιA ) and B = (B, γB, ιB) be two operads. In order to put an
operad structure on the composite A ◦B, one needs a morphism of S-modules

Λ :B ◦A →A ◦B.

It is called a distributive law if the following diagrams are commutative:

(I) B ◦A ◦A

IdB ◦γA

Λ◦IdA
A ◦B ◦A

IdA ◦Λ
A ◦A ◦B

γA ◦IdB

B ◦A
Λ

A ◦B,
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(II) B ◦B ◦A

γB◦IdA

IdB ◦Λ
B ◦A ◦B

Λ◦IdB
A ◦B ◦B

IdA ◦γB

B ◦A
Λ

A ◦B,

(i)

B
ιA ◦IdBIdB ◦ιA

B ◦A
Λ

A ◦B

(ii)

A
IdA ◦ιBιB◦IdA

B ◦A
Λ

A ◦B.

The associativity isomorphisms and the identifications like B ◦ I ∼=B ∼= I ◦B
are implicit in these diagrams.

Proposition 8.6.1. If Λ : B ◦ A → A ◦ B is a distributive law for the operad
structures of A and B, then A ◦B is an operad for the composition

γΛ := (γA ◦ γB)(IdA ◦Λ ◦ IdB) : (A ◦B) ◦ (A ◦B)→A ◦B,

and for the unit

ιΛ := ιA ◦ ιB : I→A ◦B.

Proof. In order to simplify the notation we write A B in place of A ◦ B. The
associativity condition for γΛ is the commutativity of the outer square diagram. It
follows from the commutativity of the inner diagrams, which are either straightfor-
ward, or follows from the associativity of γA and γB , or from the hypothesis.

A BA BA B A BA A BB A BA BB

(I)

A BA B

A A BBA B

(II)

A A BA BB

A A A BBB A A BBB A A BB

A A BA B A A A BB Ass. of γA , γB

A BA B A A BB A B.

In this diagram the maps are composite products ofΛ, γA , γB and the identities.
The exact combination is clear from the source and the target. For instance the
leftmost arrow of the first row is IdA ◦ IdB ◦ IdA ◦Λ ◦ IdB .
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The left unit property is proved in the same way by the following commutative
diagram.

A ◦B

ιA ◦IdA ◦ιB◦IdB

ιA ◦ιB◦IdA ◦ IdB
A ◦B ◦A ◦B

IdA ◦Λ◦idB

(ii)

unit A ◦ unit B

A ◦B A ◦A ◦B ◦B.
γA ◦γB

The proof of the right unit property uses (i). �

This notion of distributive law is the exact application to Schur functors of the
general one for monads due to Beck [Bec69]. For a converse result, we refer the
reader to Exercise 8.10.10.

8.6.2 Distributive Laws for Quadratic Data

Let A :=P(V ,R) = T (V )/(R) and B :=P(W,S) = T (W)/(S) be two qua-
dratic operads. Their coproduct A ∨B in the category of operads is again a qua-
dratic operad with presentation A ∨B =P(V ⊕W,R⊕S). We suppose now that
there exists a compatibility relation between the generating operations V of A and
the generating operationsW of B of the following form.

Under the notation ◦(1), introduced in Sect. 6.1.1, we have a natural isomorphism
of S-modules:

T (V ⊕W)(2) =T (V )(2) ⊕ V ◦(1) W ⊕W ◦(1) V ⊕T (W)(2).

Let λ :W ◦(1) V → V ◦(1)W be a morphism of S-modules that we call a rewriting
rule. The graph of λ gives the weight 2 space of relation

Dλ :=
〈
T − λ(T ), T ∈W ◦(1) V

〉⊂T (V ⊕W)(2).
Finally, we consider the operad A ∨λ B which is, by definition, the quotient of the
coproduct A ∨B by the ideal generated by Dλ. This operad admits the following
quadratic presentation:

A ∨λ B =P(V ⊕W,R⊕Dλ ⊕ S).
So, in this operad, the map λ has to been seen as a rewriting rule, which allows us to
move the operations of V under the operations of W , see the figures of Sect. 8.6.3
below. It remains to see whether this local rewriting rule induces or not a global
distributive law B ◦A →A ◦B.
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The composite T (V ) ◦ T (W)→ T (V ⊕W)� T (V ⊕W)/(R ⊕ Dλ ⊕ S)
induces the following epimorphism of S-modules

p :A ◦B � A ∨λ B.

Similarly, there exists a morphism of S-modules B ◦A →A ∨λ B.

Proposition 8.6.2. Let A = P(V ,R) and B = P(W,S) be two quadratic op-
erads. For any morphism of S-modules λ : W ◦(1) V → V ◦(1) W , such that p :
A ◦B � A ∨λ B is an isomorphism, the composite

Λ :B ◦A →A ∨λ B
p−1

−−→A ◦B

is a distributive law.
In that case, the map p : (A ◦ B, γΛ, ιΛ)→ A ∨λ B is an isomorphism of

operads.

Proof. Conditions (i) and (ii) of Sect. 8.6.1 are trivially satisfied. The inclusion
i : A � A ∨ B � A ∨λ B satisfies properties like the following commutative
diagram:

B ◦A ◦A
p◦IdA

IdB◦γA

(A ∨λ B) ◦A
Id◦i

(A ∨λ B) ◦ (A ∨λ B)

γ

B ◦A
p

(A ∨λ B),

where Id and γ refer to A ∨λ B.
Therefore, “Condition (I) of a distributive law” is a consequence of the commu-

tativity of the diagram:

BA A (A ∨λ B)A A BA A (A ∨λ B) A A B

(A ∨λ B)(A ∨λ B) (A ∨λ B)(A ∨λ B)

BA A ∨λ B A B.

The commutativity of the middle square comes from the associativity of the com-
posite of A ∨λ B: A BA � (A ∨λ B)◦3 →A ∨λ B. �

Notice the similarity with the rewriting method: the elements of A ◦ B play
the same role as the chosen monomials which can form a PBW basis. They always
linearly span the final operad but it remains to prove that they actually form a basis
of it. The rest of this section is written in the same way as the previous sections.

For a more general study of distributive laws, see P.-L. Curien [Cur12].
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8.6.3 The Example of the Operad Pois

Let us consider the example of the operad Pois encoding Poisson algebras, see
Sect. 13.3 for more details. A Poisson algebra is a vector space (or dg module)
endowed with an associative and commutative product • and with a Lie bracket [ , ],
which satisfy the Leibniz relation [x • y, z] = [x, z] • y + x • [y, z]. The graphical
representation of this relation is

x y

• z

[ , ]
=

x z

[ , ] y

•
+

y z

x [ , ]
•

.

It is an example of the preceding definition. Here the operad A = Com is the operad
of commutative algebras with V = K•, the operad B = Lie is the operad of Lie
algebras withW =K[ , ] and the rewriting rule λ is equal to

λ :

1 2

• 3

[ , ]
�−→

1 3

[ , ] 2

•
+

2 3

1 [ , ]
•

.

Hence the S-module Com ◦ Lie linearly spans the operad Pois. Actually, the rewrit-
ing rule λ induces a distributive law and the S-module Com ◦ Lie is isomorphic to
Pois. Since the proof is quite involved, we postpone it to Sect. 8.6.7 after Theo-
rem 8.6.5.

8.6.4 Koszul Duality of Operads with Trivial Distributive Law

Let A =P(V ,R) and B =P(W,S) be two quadratic operads and consider the
trivial rewriting rule λ ≡ 0. On the level of S-modules A ∨0 B ∼= A ◦ B, so it
induces a global distributive law, which is the trivial one Λ ≡ 0. This yields the
isomorphism of operads A ∨0 B ∼= (A ◦B, γ0).

Proposition 8.6.3. Let A =P(V ,R) and B =P(W,S) be two quadratic oper-
ads. The underlying module of the Koszul dual cooperad of the operad defined by
the trivial rewriting rule is equal to

(A ∨0 B)
¡ ∼=B

¡ ◦A
¡
.

If moreover, the operads A , B are Koszul, then the operad A ∨0 B is Koszul.
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Proof. The isomorphism (A ∨0 B)
¡ ∼=B

¡ ◦A
¡

is a direct consequence of Proposi-
tion 7.3.1. The Koszul complex of the operad A ∨0 B is isomorphic to (B

¡ ◦A
¡
)◦

(A ◦B). We filter this chain complex by the weight of the elements of B
¡
. Hence

the first term of the associated spectral sequence is equal to

(
E0, d0)∼=B

¡ ◦ (A ¡ ◦κA A
) ◦B.

So its homology is equal to (E1, d1) ∼=B
¡ ◦κB B. It finally gives E2 ∼= I and we

conclude by the convergence theorem of spectral sequences (Theorem 1.5.1). �

8.6.5 Distributive Law Implies Koszul

The Koszul property is stable under the construction of operads via distributive laws.

Theorem 8.6.4. Let A =P(V ,R) and B =P(W,S) be two quadratic operads
endowed with a rewriting rule λ :W ◦(1) V → V ◦(1) W which induces a distributive
law.

The operads A and B are Koszul if and only if the operad A ∨λ B is Koszul.

Proof. (⇒)We follow the same ideas as in the proof of Theorem 4.2.1. We consider
the bar construction B−•(A ∨λB) with the opposite of the syzygy degree as homo-
logical degree and we introduce the following filtration. Since λ defines a distribu-
tive law, the operad A ∨λ B is isomorphic to (A ◦B, γΛ). The bar construction
B(A ◦B, γΛ) is made up of linear combinations of trees with vertices labeled by
2-leveled trees made up of elements of A in the bottom part and elements of B in
the top part. We say that one internal edge carries an inversion if it links a nontrivial
element of B in the lower vertex with a nontrivial element of A in the upper ver-
tex. For such a tree, we define its number of inversions by the sum, over the internal
edges, of inversions. The filtration Fp of B(A ∨λ B) is equal to the sub-S-module
generated by trees with number of inversions less than or equal to p. This filtration
is stable under the boundary map. The first term of the associated spectral sequence
(E0, d0) is isomorphic to the bar construction B(A ◦B, γ0)∼= B(A ∨0 B) of the
operad defined by the trivial rewriting rule. Since this latter operad is Koszul by
Proposition 8.6.3, the homology of its bar construction is concentrated in syzygy
degree 0. Therefore, the second page E1 is concentrated on the diagonal E1

p−p .
So it collapses at rank 1 and the limit E∞ is also concentrated on the diagonal
E∞p−p . The filtration Fp being exhaustive and bounded below, the classical conver-
gence theorem of spectral sequences (Theorem 1.5.1) ensures that the homology
of B(A ∨λ B) is concentrated in syzygy degree 0. Hence the operad A ∨λ B is
Koszul.
(⇐) The bar constructions BA and BB are sub-chain complexes of the bar

construction B(A ∨λB). If the homology of the latter one is concentrated in syzygy
degree 0 (A ∨λ B Koszul operad), it is also true for BA and BB (A , B Koszul
operads). �
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8.6.6 The Diamond Lemma for Distributive Laws

We prove an analog of the Diamond Lemma for distributive laws. We denote by
(A ◦B)(ω) the sub-S-module of A ◦B made up of elements of total weight ω.
The map p :A ◦B � A ∨λB is always injective on the components of weight 0,
1 and 2. As in the case of the Diamond Lemma for PBW bases (Theorem 8.5.5), if
we have an isomorphism in weight (3), then we have an isomorphism in any weight.

Theorem 8.6.5 (Diamond Lemma for distributive laws). Let A = P(V ,R) and
B =P(W,S) be two Koszul operads endowed with a rewriting rule λ :W ◦(1) V →
V ◦(1)W such that the restriction of p :A ◦B � A ∨λB on (A ◦B)(3) is injective.
In this case, the morphism p is an isomorphism, the map λ defines a distributive law
and the induced operad (A ◦B, γΛ) is Koszul.

Proof. We use the same filtration as in the proof of Theorem 8.6.4, together with
the ideas of the proof of Theorem 4.2.4.

Step 1. Since the map p :A ◦B � A ∨λ B is an isomorphism in weight 1, 2
and 3, the underlying S-modules of the components of syzygy degree 0, 1 and 2 of
the bar constructions B•(A ∨λB) and B•(A ∨0 B) are isomorphic. Therefore the
three first lines of the first term of the spectral sequence are equal to

⊕
p∈NE0

pp+q ∼=
B−•(A ∨0 B), for p+ q =−•= 0,1,2. It implies the isomorphisms of S-modules
⊕
p∈NE1

p−p ∼= B
¡ ◦ A

¡
and
⊕
p∈NE1

p−p ∼= 0. Finally, the convergence of the
spectral sequence, Theorem 1.5.1, gives the isomorphisms

H 0(B•(A ∨λ B)
)∼= (A ∨λ B)

¡ ∼=
⊕

p∈N
E∞p−p ∼=

⊕

p∈N
E1
p−p ∼=B

¡ ◦A
¡
.

Step 2. Let us first construct the induced decomposition coproduct on B
¡ ◦A

¡

from the one of the cooperad (A ∨0 B)
¡
. It is given by the following composite

B
¡ ◦A

¡ �◦Id−−→B
¡ ◦B

¡ ◦A
¡ �B

¡ ◦ (I ◦A
¡ ⊕ �B ¡ ◦A

¡) Id◦(Id◦�+Id)−−−−−−−−→
B

¡ ◦ (I ◦A
¡ ◦A

¡ ⊕ �B ¡ ◦A
¡)∼=B

¡ ◦ (A ¡ ◦ I ◦A
¡ ⊕ I ◦ �B¡ ◦A

¡)

→ (B¡ ◦A
¡) ◦ (B¡ ◦A

¡)
.

This is proved using the following commutative diagram of cooperads

(A ∨0 B)
¡

∼=

T c(sV ⊕ sW)

B
¡ ◦A

¡
T c(sW) ◦T c(sV ).

We consider the same kind of number of inversions, changing this time B by �, A

by B
¡

and B by A
¡
. We consider the decreasing filtration induced by the num-
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ber of inversions on the components of fixed total weight of the cobar construction
�((A ∨λ B)

¡
) ∼= �(B¡ ◦ A

¡
), so that the induced spectral sequence converges.

One concludes by the same arguments as before. The first term of the spectral se-
quence is equal to (E0, d0) ∼= �((A ∨0 B)

¡
), since d0 corresponds to the afore-

mentioned cooperad structure on B
¡ ◦A

¡
. Since the operad A ∨0 B is Koszul, the

spectral sequence collapses at rank 1 and

A ∨λ B ∼=H0
(
�
(
(A ∨λ B)

¡))∼=
⊕

p∈N
E∞p−p

∼=
⊕

p∈N
E1
p−p ∼=H0

(
�(A ∨0 B)

)∼=A ◦B.
�

This methods gives an easy way to prove that the operad A ∨λ B is isomorphic
to (A ◦B, γΛ, ιΛ).

8.6.7 Example: The Poisson Operad

In the case of the operad Pois introduced in Sect. 8.6.3, we leave it to the reader
to check that Com ◦ Lie(4)∼= Pois(4). Hence the Diamond Lemma implies that the
operad Pois is isomorphic to the operad defined on Com ◦ Lie by the distributive
law.

8.6.8 Counter-Example

The following operad, introduced in [Mer04], gives an example of an operad defined
by a rewriting rule λ but which does not induce a distributive law Λ.

We consider noncommutative Poisson algebras, whose definition is the same as
Poisson algebras except that we do not require the associative product ∗ to be com-
mutative. So this related operad is equal to NCPois∼= Ass∨λ Lie.

There are two ways to rewrite the critical monomial [x ∗ y, z ∗ t] depending on
which side we apply the relation first:

[x ∗ y, z ∗ t]
==

[x, z ∗ t] ∗ y + x ∗ [y, z ∗ t] [x ∗ y, z] ∗ t + z ∗ [x ∗ y, t]

[x, z] ∗ t ∗ y + z ∗ [x, t] ∗ y
+x ∗ [y, z] ∗ t + x ∗ z ∗ [y, t]

[x, z] ∗ y ∗ t + x ∗ [y, z] ∗ t
+z ∗ x ∗ [y, t] + z ∗ [x, t] ∗ y.
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This yields the relation

[x, z] ∗ t ∗ y + x ∗ z ∗ [y, t] = [x, z] ∗ y ∗ t + z ∗ x ∗ [y, t],
which produces a nontrivial element in the kernel of the map (Ass◦Lie)(3)→ Ass∨λ
Lie ∼= NCPois. Therefore the map λ does not induce a distributive law in this case
and the S-module NCPois∼= Ass∨λ Lie is not isomorphic to Ass ◦ Lie.

We refer the reader to Exercise 8.10.12 for another counterexample.

8.6.9 Distributive Laws and the Koszul Duals

When an operad is given by a distributive law, it is also the case for its Koszul dual
operad.

Proposition 8.6.6. Let A = P(V ,R) and B = P(W,S) be two quadratic op-
erads endowed with a rewriting rule λ : W ◦(1) V → V ◦(1) W which induces a
distributive law.

The underlying S-module of the Koszul dual cooperad of A ∨λ B is isomorphic
to

(A ∨λ B)
¡ ∼=B

¡ ◦A
¡
.

Proof. It is a direct corollary of the preceding proof and Proposition 8.6.3:
⊕

p∈N
E∞p,−p ∼= (A ∨λ B)

¡ ∼=
⊕

p∈N
E0
p,−p ∼= (A ∨0 B)

¡ ∼=B
¡ ◦A

¡
.

�

Proposition 8.6.7. Let A :=P(V ,R) and B :=P(W,S) be two finitely gener-
ated binary quadratic operads and let λ :W ◦(1) V → V ◦(1) W be a rewriting rule.
The Koszul dual operad of A ∨λ B has the following presentation:

(A ∨λ B)! ∼=B! ∨t λ A !,

where t λ is the transpose of λ.

Proof. We apply the general formula of Theorem 7.6.2 for the Koszul dual operad
of a finitely generated binary quadratic operad: (A ∨λ B)! ∼=P(V ∨ ⊕W∨,R⊥ ⊕
D⊥
λ ⊕ S⊥). The space D⊥

λ is isomorphic to the graph Dtλ of the transpose map t λ,
which concludes the proof. �

Theorem 8.6.8. Under the hypotheses of the previous proposition, if, moreover,
the rewriting rule λ induces a distributive law, then the transpose rewriting rule t λ
induces a distributive law on the Koszul dual operad

B! ◦A ! ∼=B! ∨t λ A !.
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Proof. By the definition of the Koszul dual operad of Sect. 7.2.3 (linear dual of the
Koszul dual cooperad up to suspension and signature representations), it is a direct
corollary of the two previous propositions. �

8.7 Partition Poset Method

In this section, we construct a family of posets associated to a set operad. Since
they are a generalization of the poset of partitions of a set, they are called operadic
partition posets. The main theorem asserts that the induced linear operad is Koszul
if and only if every poset of the family is Cohen–Macaulay, i.e. its homology is
concentrated in top dimension. When it is the case, these top homology groups
are isomorphic to the Koszul dual cooperad. Notice that the proof relies on the
properties of the simplicial bar construction of operads.

On the one hand, the various combinatorial ways to prove that a poset is Cohen–
Macaulay give simple ways of proving that an operad is Koszul. On the other hand,
this result provides a means to compute the homology of partition type posets.

The construction of the operadic partition posets was first described by M. Mén-
dez and J. Yang in [MY91]. The case of the operad Com and the properties of the
simplicial bar construction of operads were studied by B. Fresse in [Fre04]. The
Koszul–Cohen–Macaulay criterion was proved in [Val07a].

8.7.1 Partition Poset

We denote by n the set {1, . . . , n}. Recall that a partition of the set n is a non-ordered
collection of subsets I1, . . . , Ik , called blocks, which are nonempty, pairwise disjoint
and whose union is equal to n.

For any integer n, there is a partial order 	 on the set of partitions of n defined
by the refinement of partitions. Let π and ρ be two partitions of n. We have π 	 ρ
when π is finer than ρ, that is when the blocks of π are contained in the blocks of ρ,
for instance, {{1}, {3}, {2, 4}}	 {{1, 3}, {2, 4}}. This partially ordered set is called
the partition poset (or partition lattice) and denoted by Π(n). See Fig. 8.10 for the
example of Π(3).

Fig. 8.10 Hasse diagram
of Π(3)

123

1|23 2|13 3|12

1|2|3
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The single block partition {{1, . . . , n}} is the maximal partition of n, and the
collection {{1}, . . . , {n}} is the minimal partition.

The set of partitions of n is equipped with a left action of the symmetric group Sn.
Let σ : n → n be a permutation, the image of the partition {{i11 , . . . , i1j1}, . . . ,
{ik1 , . . . , ikjk }} under σ is the partition

{{
σ
(
i11
)
, . . . , σ

(
i1j1

)}
, . . . ,

{
σ
(
ik1
)
, . . . , σ

(
ikjk

)}}
.

8.7.2 Operadic Partitions

We introduce the notion of partitions enriched with operadic elements.
Let P be a set operad. Recall from Sects. 5.1.13, 5.3.5 and 5.6.1 that it can be

either considered as a functor Bij→ Set or as an S-set, together with an associative
and unital composition product. In one way, we use P(n) := P( n ) and, in the other
way round, we use

P(X) := P(n)×Sn Bij( n,X)=
⎛

⎜
⎝
⊔

f :bijection
n→X

P(n)

⎞

⎟
⎠

Sn

,

where the action of σ ∈ Sn on (f ;μ) for μ ∈M(n) is given by (f σ ;μσ ).
An element of Bij( n,X) can be seen as an ordered sequence of elements of X,

each element appearing only once. Therefore, an element in P(X) can be thought of
as a sequence of elements of X indexed by an operation of P(n) with respect to the
symmetry of this operation.

A P-partition of n is a set of elements called blocks {B1, . . . ,Bk} such that each
Bj belongs to P(Ij ), for {I1, . . . , Ik} a partition of n. A P-partition of n corresponds
to a classical partition of n enriched by the operations of P.

EXAMPLES.

1. The operad Com for commutative algebras comes from a set operad which has
only one element in arity n ≥ 1, with trivial action of the symmetric group.
Therefore, Com(X) has only one element, which corresponds to the set X itself.
As a consequence, a Com-partition of n is a classical partition of n.

2. The set operad Perm is defined by the set Perm(n) := {en1 , . . . , enn} of n ele-
ments in arity n, where the action of the symmetric group is enk · σ := enσ−1(k)

,
see Sect. 13.4.6. The operadic composition is given by

enk ◦i eml :=

⎧
⎪⎪⎨

⎪⎪⎩

en+m−1
k+m−1 for i < k,

en+m−1
k+l−1 for i = k,
en+m−1
k for i > k.
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We leave it to the reader as a good exercise to check that Perm is an operad.
As a species, Perm(X) can represented by the set of pointed sets associated to
X = {x1, . . . , xn}:

{{x̄1, . . . , xn}, {x1, x̄2, . . . , xn}, . . . , {x1, . . . , x̄n}
}
.

The element enk “singles out the kth element of X”. Finally a Perm-partition is a
pointed partition like 13̄4|2̄6|578̄.

The natural action of the symmetric group on n induces a right action of Sn on
the set of P-partitions of n. For instance,

{13̄4|2̄6|578̄}(123) = 2̄34|1̄6|578̄.

8.7.3 Operadic Partition Poset

We now define a partial order on the set of operadic partitions as follows. We con-
sider the following natural map on P-partitions. Let {B1, . . . ,Bt } be a P-partition
of a set X associated to a partition {I1, . . . , It }. Each element Bj in P(Ij ) can be
represented as the class of an element [νj × (xj1 , . . . , xjij )], where νj ∈ P(ij ) and

Ij = {xj1 , . . . , xjij }.

Lemma 8.7.1. The map γ̃ given by the formula

γ̃ : P(t)× (P(I1)× · · · × P(It )
)→ P(I ),

ν × (B1, . . . ,Bt ) �→
[
γ (ν;ν1, . . . , νt )×

(
x1

1 , . . . , x
t
it

)]
,

is well defined and equivariant under the action of St .

Proof. It is a direct consequence of the equivariance, under the action of the sym-
metric groups, in the definition of the composition of a set operad, see Sect. 5.3.5. �

Let π = {B1, . . . ,Br } and ρ = {C1, . . . ,Cs} be two P-partitions of n associated
to two partitions {I1, . . . , Ir} and {J1, . . . , Js} of n. The P-partition π is a refine-
ment of ρ if, for any k ∈ {1, . . . , s}, there exist {p1, . . . , pt } ⊂ {1, . . . , r} such that
{Ip1, . . . , Ipt } is a partition of Jk and if there exists an element ν in P(t) such that
Ck = γ̃ (ν × (Bp1 , . . . ,Bpt )). We denote this relation by π 	 ρ.

Proposition 8.7.2. When P is a reduced set operad, P(0)= ∅, such that P(1)= {id},
the relation 	 defines a partial order on the set of P-partitions.

Proof. The symmetry of 	 comes from the unit of the operad, the reflexivity comes
from P(1)= {id} and the transitivity comes from the associativity of the operad. �
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1̄23 12̄3 123̄

1̄|2̄3 1̄|23̄ 2̄|1̄3 2̄|13̄ 3̄|1̄2 3̄|12̄

1̄|2̄|3̄
Fig. 8.11 Hasse diagram of ΠPerm(3)

We call this poset the P-partition poset associated to the operad P and we denote
it by ΠP(n), for any integer n≥ 1.

EXAMPLES.

1. In the case of the operad Com, the Com-partition poset is exactly the classical
partition poset.

2. In the case of the operad Perm, a pointed partition π is less than a pointed par-
tition ρ if the underlying partition of π refines that of ρ and if the pointed ele-
ments of ρ belong to the pointed elements of π . See Fig. 8.11 for the example
of ΠPerm(3).

Since the set P(1) is reduced to the identity, the poset ΠP(n) has only one min-
imal element corresponding to the partition {{1}, . . . , {n}}, where {i} represents the
unique element of P({i}). Following the classical notations, we denote this ele-
ment by 0̂. The set of maximal elements is P( n ) ∼= P(n). Hence, the number of
maximal elements of ΠP(n) is equal to the number of elements of P(n).

8.7.4 Graded Posets

We denote by Min(Π) and Max(Π) the sets of minimal and maximal elements
of Π . When Min(Π) and Max(Π) have only one element, the poset is said to be
bounded. In this case, we denote the unique element of Min(Π) by 0̂ and the unique
element of Max(Π) by 1̂. For a pair x 	 y in Π , we consider the closed interval
{z ∈Π | x 	 z 	 y}, denoted by [x, y], and the open interval {z ∈Π | x < z < y},
denoted by (x, y). For any α ∈ Min(Π) and any ω ∈ Max(Π), the closed interval
[α,ω] is a bounded poset. If Π is a bounded poset, the proper part �Π of Π is the
open interval (0̂, 1̂).
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For two elements x < y, we say that y covers x if there is no z such that x <
z < y. The covering relation is denoted by x ≺ y. A chain λ0 < λ1 < · · · < λl is
a totally ordered sequence of elements of Π . Its length is equal to l. A maximal
chain between x and y, is a chain x = λ0 ≺ λ1 ≺ · · · ≺ λl = y which cannot be
lengthened. A maximal chain of Π is a maximal chain between a minimal element
of Π and a maximal element of Π . A poset is pure if, for any x 	 y, all maximal
chains between x and y have the same length. If a poset is both bounded and pure,
it is called a graded poset. For example, the partition poset of Sect. 8.7.1 is graded.

For more details on posets, we refer the reader to Chap. 3 of [Sta97a].
If the operad P is quadratic and generated by a homogeneous S-set E concen-

trated in arity k, that is En = ∅ for n �= k, then we have P(n)= ∅ for n �= i(k−1)+1
with i ∈ N. Therefore, the P-partitions have restricted block size. The possible
lengths for the blocks are i(k − 1)+ 1 with i ∈N.

Proposition 8.7.3. Let P be a set-theoretic quadratic operad generated by a homo-
geneous S-set E concentrated in arity k, with k ≥ 2, then all the maximal chains of
ΠP have the same length.

For any ω ∈Max(ΠP(n))= P( n ), the subposets [0̂,ω] are graded posets.

Proof. If the operad P is generated by operations of arity k with k ≥ 2, the set P(1)
is reduced to the identity operations and the P-partition poset is well defined. Since
P is generated only by operations of arity k, every block of size i(k− 1)+ 1 can be
refined if and only if i > 1.

The length of maximal chains between 0̂ and ω is equal to i + 1 if n = i(k −
1)+1. Hence, each closed interval of the form [0̂,ω], for ω ∈Max(ΠP(n))= P( n )
is bounded and pure. It is also graded by definition. �

8.7.5 Order Complex

We consider the set of chains λ0 < λ1 < · · ·< λl of a poset (Π,	) such that λ0 ∈
Min(Π) and λl ∈ Max(Π). This set is denoted by �•(Π), or simply by �(Π).
More precisely, a chain λ0 < λ1 < · · ·< λl of length l belongs to �l(Π).

The set �(Π) is equipped with the following face maps. For 0< i < l, the face
map di :�l(Π)→�l−1(Π) is given by the omission of λi

di(λ0 < λ1 < · · ·< λl) := λ0 < λ1 < · · ·< λi−1 < λi+1 < · · ·< λl.
On the free module K[�(Π)], we consider the induced linear maps still denoted
di and we define the maps d0 = dl = 0 by convention. The module K[�(Π)]
(resp. the set �(Π)) is a presimplicial module (resp. a presimplicial set), that is
di ◦ dj = dj−1 ◦ di , for i < j . These relations ensure that d :=∑0≤i≤l (−1)idi sat-
isfies d2 = 0. The chain complex (K[�•(Π)], d) is called the order complex of Π .
By definition, the homology of a poset (Π,	) is the homology of its order complex,
denoted by H(Π).
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The reduced homology of a poset is defined as follows. We denote by �̃l(Π) the
set of chains λ0 < λ1 < · · · < λl , with no restriction on λ0 and λl . The face maps
di are defined by the omission of λi , for 0 ≤ i ≤ l. By convention, this complex is
augmented by �̃−1(Π) = {∅}, that is K[�̃−1(Π)] = K. The associated homology
groups are denoted by H̃ (Π).

The relation between the two definitions is given by the following formula

�l(Π)=
⊔

(α,ω)∈Min(Π)×Max(Π)

�̃l−2
(
(α,ω)

)
,

which induces a canonical isomorphism of presimplicial complexes. Therefore, we
have

Hl(Π)=
⊕

(α,ω)∈Min(Π)×Max(Π)

H̃l−2
(
(α,ω)

)
.

If Π is bounded, its homology is equal to the reduced homology of its proper part,
up to a degree shift.

The action of a group G on a poset (Π,	) is compatible with the partial order
	 if for every g ∈ G and for every pair x 	 y, we still have g · x 	 g · y. In this
case, the modules K[�l(Π)] are G-modules. Since, the chain map commutes with
the action of G, the homology groups H(Π) are also G-modules.

For example, the action of the symmetric group on the operadic partition posets
is compatible with the partial order. So the module K[�•(ΠP(n))] is an Sn-
presimplicial module and H•(ΠP(n)) is an Sn-module.

8.7.6 Cohen–Macaulay Poset

Let Π be a graded poset. It is said to be Cohen–Macaulay over K if the homology
of each interval is concentrated in top dimension, i.e. for every x 	 y, if m is the
length of maximal chains between x and y, we have

Hl
([x, y])= H̃l−2

(
(x, y)

)= 0, for l �=m.
There are many sufficient combinatorial conditions for a poset to be Cohen–

Macaulay, e.g. modular, distributive, shellable. For a comprehensive survey on these
notions, we refer the reader to the article by A. Björner, A.M. Garsia and R.P. Stan-
ley [BGS82]. We recall the one used in the sequel.

A pure poset is semi-modular if for every triple x, y and t such that x and y
cover t , there exists z covering both x and y. A totally semi-modular poset is a pure
poset such that each interval is semi-modular.

Proposition 8.7.4. [Bac76, Far79] A totally semi-modular poset is Cohen–Macau-
lay.
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For instance, the partition posets are totally semi-modular (it is actually much
more). We also leave it to the reader to prove that the pointed partition posets, com-
ing from the operad Perm, are semi-modular.

8.7.7 Koszul–Cohen–Macaulay Criterion

The main theorem of this section requires the following assumption. For any ele-
ment (ν1, . . . , νt ) of P(i1) × · · · × P(it ), we denote by γν1,...,νt the following map
defined by the composition of the set operad P:

γν1,...,νt : P(t)→ P(i1 + · · · + it ),
ν �→ γ (ν;ν1, . . . , νt ).

A set operad P is called a basic-set operad if the maps γν1,...,νt are injective, for
any (ν1, . . . , νt ) in P(i1)× · · · × P(it ). The operads Com and Perm are examples of
basic-set operads.

Theorem 8.7.5 (Koszul–Cohen–Macaulay criterion). Let P be a quadratic basic-
set operad generated by a homogeneous S-set concentrated in arity k, with k ≥ 2.

1. The linear operad P(n) = K[P(n)] is a Koszul operad if and only if, for every
n≥ 1 and every ω ∈Max(ΠP(n)), the interval [0̂,ω] is Cohen–Macaulay.

2. The top homology groups are isomorphic to the Koszul dual cooperad

Htop
(
ΠP(n)

)∼=P
¡
(n).

We postpone the proof until after the next section about the simplicial bar con-
struction of operads, on which it relies.

EXAMPLE. The aforementioned theorem provides a proof that the operads Com
and Perm are Koszul. On the level of poset homology, it shows that the homology
groups of the partition posets and of the pointed partition posets are concentrated
in top dimension. The last point of Theorem 8.7.5 shows that they are respectively
isomorphic to

Hn−1
(
ΠCom(n)

)∼= Lie(n)∗ ⊗ sgnSn and Hn−1
(
ΠPerm(n)

)∼= preLie(n)∗ ⊗ sgnSn

as Sn-modules. The first result has already been proved with more classical methods.
(We refer the reader to the prolog of [Fre04] for complete reference.) The second
result was proved in [Val07a] using this operadic method. We refer the reader to
Sect. 13.4 for more details about the operad preLie encoding pre-Lie algebras. For
instance, this operad admits a basis labeled by rooted trees, which, in turn, induces
a basis for the homology groups of the pointed partition poset.
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4 2 5 1 7 6 3

1 ν1 ν2 ν3 ν4

2 ν5 ν6

3 ν7

Fig. 8.12 An example of a 3-leveled tree with vertices indexed by elements of P

8.7.8 Simplicial and Normalized Bar Construction of Operads

In order to prove the Koszul–Cohen–Macaulay criterion, we introduce the simplicial
and normalized bar construction of an operad.

Let (P, γ, ι) be an operad. Its simplicial bar construction is the simplicial S-
module defined by (CP)l :=P◦l , equipped with the face and degeneracy maps

di = Id◦(i−1) ◦γ ◦ Id◦(l−i−1) :P◦l→P◦(l−1),

for 1≤ l ≤ l − 1, d0 = dl = 0, and by the face maps

sj = Id◦j ◦ι ◦ Id◦(l−j) :P◦l→P◦(l+1),

for 0≤ j ≤ l.
Such a definition CP also holds for a set operad P, except for the face maps d0

and dl . The set (CP)l(n), which provides a basis for (CP)l(n), is made up of l-
leveled trees where the vertices are indexed by operations of P and where the leaves
are labeled by 1, . . . , n. See Fig. 8.12 for an example.

We consider the normalized bar construction NP , given as usual by the quotient
of the simplicial bar construction under the images of the degeneracy maps. Recall
that the two chains complexes associated to the simplicial and to the normalized bar
construction respectively are quasi-isomorphic.

Let (NP)l(n) be the subset of (CP)l(n) made up of l-leveled trees with at least
one nontrivial operation on each level. When P is an augmented set operad, it means
that there is at least one nontrivial operation on each level. This set is stable under
the face maps and is a presimplicial set.

Lemma 8.7.6. The presimplicial S-set NP provides a basis for the normalized bar
construction NP , where P(n)=K[P(n)] is the linear operad associated to P.
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1 4 3 6 5 2 7

λ0 = 1|4|3|6|5|2|7

λ1 = 14|3|6|257

λ2 = 1346|257

λ3 = 1234567

Fig. 8.13 An example of the image of Ψ in the case of the operad Com

8.7.9 Normalized Bar Construction and Order Complex

Theorem 8.7.7. Let P be an augmented basic-set operad. For any n≥ 1, the pres-
implicial Sn-set �(ΠP(n)) (resp. the presimplicial Sn-module K[�(ΠP(n))]) is in
bijection with (resp. is isomorphic to) the presimplicial Sn-set N(P)(n) (resp. the
normalized bar construction N(P)(n)).

Proof. We define a bijection Ψ between Nl(P)( n ) and �l(ΠP(n)) as follows.
Let T be a non-planar tree with l levels and n leaves whose vertices are indexed
by elements of P. To such a tree, we associate a maximal chain of P-partitions
of n: we cut the tree T along the ith level and look upward. We get t indexed
and labeled subtrees. By composing the operations indexing the vertices along the
scheme given by the subtree, each of them induces an element of P(Ij ), where
{I1, . . . , It } is a partition of n. For every 0 ≤ i ≤ l, the union of these blocks
forms a P-partition λi of n. Figure 8.13 shows an example in the case of the op-
erad Com.

When T is a tree of N(P)( n ), that is with at least one nontrivial operation on
each level, λi is a strict refinement of λi+1. Since λ0 = 0̂ and λl ∈ P( n ), the chain
λ0 < λ1 < · · · < λl is maximal. The image of the tree T under Ψ is this maximal
chain λ0 < λ1 < · · ·< λl .

The surjectivity of the map Ψ comes from the definition of the partial order
between the P-partitions. Since P is a basic-set operad, the injectivity of the maps
γν1,...,νt induces the injectivity of Ψ . Therefore, Ψ is a bijection.

Composing the ith and the (i + 1)th levels of the tree T corresponds, via Ψ , to
removing the ith partition of the chain λ0 < λ1 < · · · < λl . Therefore, the map Ψ
commutes with the face maps. Moreover Ψ preserves the action of the symmetric
group Sn. �
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8.7.10 Bar Construction and Normalized Bar Construction

In [Fre04], Fresse defined the following morphism L : BP → NP of dg S-
modules between the bar construction and the normalized bar construction of an
operad. Recall that an element of BP is a tree T with l vertices labeled by elements
of s �P . Its image under the map L is given by the sum over all l-leveled trees with
one and only one nontrivial vertex on each level and which give T after forgetting
the levels (together with proper desuspension and sign convention). We consider
here the bar construction as a chain complex with the homological degree given by
the number of vertices of the underlying tree.

Proposition 8.7.8. For any reduced operad P , such that P(1) = K id, the lev-
elization morphism L : BP →NP is a quasi-isomorphism of dg S-modules.

Proof. The idea of the proof is to apply an adequate version of the Comparison
Lemma 6.7.1 to the quasi-isomorphism L ◦ Id : BP ◦P → NP ◦P . The nor-
malized bar construction is not a cooperad but a right P-comodule. We refer the
reader to Sect. 4.7 of [Fre04] for the details. �

8.7.11 Proof of the Koszul–Cohen–Macaulay Criterion

Lemma 8.7.9. Let P be a quadratic basic-set operad generated by a homogeneous
S-set E concentrated in arity k with k ≥ 2.

1. The operad P is Koszul if and only if Hl(ΠP(m(k − 1)+ 1))= 0 for l �=m.
2. We have Hm(ΠP(m(k − 1)+ 1))∼= (P¡

)(m).

Proof. Since the operad is quadratic, it is weight graded and both the bar and the
simplicial bar constructions split with respect to this extra grading denoted by (m).
In both cases, the part of weight (m) is equal to the part of arity m(k − 1) + 1.
The levelization morphism L of Sect. 8.7.10 preserves this grading. Therefore
L (m) : (BP(m(k − 1)+ 1))(m)→NP(m(k − 1)+ 1)(m) is a quasi-isomorphism,
for every m ≥ 0, by Proposition 8.7.8. Recall from the Koszul criterion (Theo-
rem 7.4.2) that the operad P is Koszul if and only ifHl((B•P(m(k−1)+1))(m))=
0 for l �= m. By the preceding quasi-isomorphism, it is equivalent to asking that
Hl((N•P(m(k−1)+1))(m))= 0 for l �=m. And by Theorem 8.7.7, it is equivalent
to Hl(ΠP(m(k − 1)+ 1))= 0 for l �=m.

The levelization quasi-isomorphism L (m) and the isomorphism of Theo-
rem 8.7.7 show thatHm(ΠP(m(k−1)+1))∼=Hm((B•P(m(k−1)+1))(m)). Recall
from Proposition 7.3.1 that the top homology group of (B•P(m(k − 1)+ 1))(m) is
equal to the Koszul dual cooperad H 0((B•P)(m))= (P ¡

)(m). �

This lemma implies the equivalence between Koszul set operads and Cohen–
Macaulay posets.
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Proof of Theorem 8.7.5. (⇒) Proposition 8.7.3 shows that ΠP is pure. Hence each
interval [0̂,ω] is graded.

If the operad P is Koszul, then Lemma 8.7.9 implies that the homology of each
poset ΠP(m(k − 1)+ 1) is concentrated in top dimension m. Since

Hl
(
ΠP
(
m(k − 1)+ 1

))=
⊕

ω∈Max(ΠP(m(k−1)+1)

H̃l−2
(
(0̂,ω)

)
,

we have Hl([0̂,ω]) = H̃l−2((0̂,ω)) = 0 for every ω ∈ Max(ΠP(m(k − 1) + 1))
and every l �= m. Let x 	 y be two elements of ΠP(m(t − 1) + 1). We denote
the P-partition x by {B1, . . . ,Br } and the P-partition y by {C1, . . . ,Cs}. Each
Ct ∈ P(It ) is refined by some Bp . For 1 ≤ t ≤ s, we consider the subposet [xt , yt ]
of ΠP(It ), where yt = Ct and yt the corresponding set of Bp . There exists one
ωt ∈ Max(ΠP(|xt |)) such that the poset [xt , yt ] is isomorphic to [0̂,ω], which is a
subposet of ΠP(|xt |). (The notation |xt | stands for the number of Bp in xt .) This
decomposition gives, with Künneth Theorem, the following formula

H̃l−1
(
(x, y)

)∼=
⊕

l1+···+ls=l

s⊗

t=1

H̃lt−1
(
(xt , yt )

)∼=
⊕

l1+···+ls=l

s⊗

t=1

H̃lt−1
(
(0̂,ω)

)
.

(We can apply Künneth formula since we are working with chain complexes of
free modules over an hereditary ring K. The extra Tor terms in Künneth formula
come from homology groups of lower dimension which are null.) If we define mt
by |xt | =mt(k− 1)+ 1, the homology groups H̃lt−1((0̂,ω)) vanish for lt �=mt − 1.
Therefore, if l is different from

∑s
t=1(mt − 1), we have H̃l−1((x, y)) = 0. Since

the length of maximal chains between x and y is equal to m=∑s
t=1(mt − 1)+ 1,

see Proposition 8.7.3, the homology of the interval [x, y] is concentrated in top
dimension.
(⇐) Conversely, if the poset ΠP is Cohen–Macaulay over the ring K, we have

H̃l−2((0̂,ω))= 0, for every m
 1, l �=m, and every ω ∈Max(ΠP(m(k − 1)+ 1)).
Therefore, we get

Hl
(
ΠP
(
m(k − 1)+ 1

))=
⊕

ω∈Max(ΠP(m(k−1)+1))

H̃l−2
(
(0̂,ω)

)= 0,

for l �=m. Finally we conclude by (1) of Lemma 8.7.9. �

Recall that one can generalize the Koszul duality of operads over a Dedekind
ring, see [Fre04] for more details. The proof of the Koszul–Cohen–Macaulay crite-
rion also holds in that case. So it provides a method for proving that an operad is
Koszul over Dedekind rings, not only fields.
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8.7.12 Applications

 The triptych made up of the operad Com, the partition poset and the operad Lie
plays a fundamental role in Goodwillie calculus in homotopy theory; we refer the
reader to G. Arone and M. Mahowald [AM99] and to M. Ching [Chi05].

 M. Mendez in his thesis [Mén89] and F. Chapoton and M. Livernet in [CL07]
explained (independently) how to associate incidence Hopf algebras to operadic
partition posets. In the particular case of the operad NAP of [Liv06], these two
last authors recover Connes–Kreimer Hopf algebra involved in renormalization
theory [CK98].

 In [DK07], V. Dotsenko and A. Khoroshkin introduced the operad encoding a
pair of compatible Lie brackets, which is an algebraic structure related to inte-
grable Hamiltonian equations, like the KdV-equations. The Koszul dual operad
is a basic-set operad, which was shown to be Koszul by H. Strohmayer in [Str08]
using the present poset method. Notice that the associated posets are not totally
semimodular this time, but only CL-shellable, that is yet another sufficient condi-
tion for being Cohen–Macaulay. Furthermore, he applied this result in the context
of bi-Hamiltonian geometry in [Str10].

8.8 Manin Products

In this section, we extend the definition of Manin black and white products for qua-
dratic algebras (Sect. 4.5) to operads. The conceptual approach followed here allows
us to define the Manin products of pairs of operads given by any presentation, not
necessarily quadratic. We explain how to compute some black products of operads.
Finally, we study the behavior of Manin products of operads under Koszul duality;
for instance, we state in the operadic context, the adjunction property between the
black product and the white product.

Manin products for operads were first defined in the binary quadratic case by
V. Ginzburg and M.M. Kapranov in [GK94, GK95b]. The more conceptual and
general definition given here comes from [Val08].

8.8.1 White Product for Operads

Let V and W be two S-modules. Let us denote by iV : V � T (V ) the canonical
inclusion of V into the free operad on V . There is a natural map iV ⊗

H
iW : V ⊗

H
W →

T (V )⊗
H

T (W). Recall from Sect. 5.3.2 that the Hadamard product of two operads

is again an operad. So the Hadamard product T (V )⊗
H

T (W) is an operad. By the
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universal property of the free operad, there exists a (unique) morphism of operads
Φ completing the following commutative diagram

V ⊗
H
W

iV⊗
H
iW

iV⊗
H
W

T (V ⊗
H
W)

∃!Φ

T (V )⊗
H

T (W).

Let P = T (V )/(R) and Q = T (W)/(S) be two operads defined by genera-
tors and relations (not necessarily quadratic). We denote by πP :T (V )� P and
by πQ : T (W)� Q the respective projections. The composite (πP ⊗

H
πQ) ◦ Φ

is a morphism of operads. Hence its kernel is an operadic ideal and it admits the
following factorization

T (V ⊗
H
W)

Φ
T (V )⊗

H
T (W)

πP⊗
H
πQ

P ⊗
H

Q

T (V ⊗
H
W)/Ker((πP ⊗

H
πQ) ◦Φ).

�Φ

A direct inspection shows that the kernel of (πP ⊗
H
πQ) ◦Φ is the ideal generated

by Φ−1(R⊗
H

T (W)+T (V )⊗
H
S), that is

Ker
((
πP ⊗

H
πQ

)
◦Φ
)
=
(
Φ−1
(
R⊗

H
T (W)+T (V )⊗

H
S
))
.

We define the Manin white product of P and Q as being the quotient operad

P �Q :=T
(
V ⊗

H
W
)
/
(
Φ−1
(
R⊗

H
T (W)+T (V )⊗

H
S
))
.

By definition, the white product comes equipped with a natural monomorphism of
operads �Φ :P �Q �P ⊗

H
Q.

The map Φ has the following form. The image of a tree, with vertices labeled
by elements of V ⊗

H
W , under the map Φ is the tensor product of two copies of the

same tree, with vertices labeled by the corresponding elements of V , resp. W .

Φ :
v2 ⊗w2

v1 ⊗w1

�→
v2

v1

⊗
w2

w1
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This description allows us to show that, in some cases, the white product of two
operads is equal to their Hadamard product.

We suppose now that the generating space V is concentrated in arity 2, i.e. the
operad P is binary. To any shuffle binary tree T of arity n, we associate the K-
module T(V ), made up of copies of T with vertices labeled by elements of V . We
consider the following map

C P
T
: T(V )→T (V )(n)� P(n),

which consists in composing in P the operations of V along the composition
scheme given by the tree T. (Recall that the set of binary shuffle trees provides a
basis of the free operad over an S-module concentrated in arity 2, see Sect. 8.2.5.)

Proposition 8.8.1. Let P =P(V ,R) be a binary operad. If the maps CT are sur-
jective for any shuffle binary tree T, then, for any binary operad Q =P(W,S), the
white product with P is isomorphic to the Hadamard product:

P �Q ∼=P ⊗
H

Q.

Proof. From the definition of the white product, we only have to show that the
composite (πP ⊗

H
πQ) ◦ Φ is surjective in this case. Let μ⊗ ν be an elementary

tensor of P(n)⊗
H

Q(n). There exists a shuffle binary tree T of arity n such that ν

lives in the image of C Q
T

. By the assumption, the element μ lives in the image of
C P
T

. Therefore, the element μ⊗ ν is the image of the tree T with vertices labeled
by elements of V ⊗

H
W under the map (πP ⊗

H
πQ) ◦Φ . �

The operads Com and Perm satisfy the assumption of this proposition. Therefore,
the operad Com is the unit object with respect to the white product P �Com =
P ⊗

H
Com=P in the category of binary operads.

The category of binary quadratic operads is stable under Manin white product.
Since it is associative and symmetric, the category of binary quadratic operads, en-
dowed with the white product and the operad Com as a unit, forms a symmetric
monoidal category.

Let A = A(V,R) and B = A(W,S) be two quadratic algebras, which we con-
sider as operads concentrated in arity 1. We leave it to the reader to check that the
white product of A and B as operads is equal to their white product as algebras,
defined in Sect. 4.5.1.

8.8.2 Black Product for Cooperads

Dualizing the previous arguments and working in the opposite category, we get the
notion of black product for cooperads as follows.
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Let (C ,�C ) and (D,�D ) be two cooperads. Their Hadamard product C ⊗
H

D
is again a cooperad. The coproduct is given by the composite

C ⊗
H

D
�C⊗

H
�D

−−−−−→ (C ◦C )⊗
H
(D ◦D)� (C ⊗

H
D) ◦ (D ⊗

H
C ),

where the second map is a treewise projection. We denote by pV :T c(V )� V the
canonical projection from the conilpotent cofree cooperad to V . Since T c(V ) ⊗

H
T c(W) is a conilpotent cooperad, by the universal property of the conilpotent cofree
cooperad, there exists a (unique) morphism of cooperads Ψ :T c(V )⊗

H
T c(W)→

T c(V ⊗
H
W) which factors the map pV ⊗

H
pW .

V ⊗
H
W T c(V ⊗

H
W)

pV⊗
H
W

T c(V )⊗
H

T c(W).

∃!Ψ
pV⊗

H
pW

Let C = C (V ,R) and D = C (W,S) be two cooperads defined by cogenerators
and corelators, not necessarily quadratic. Let us denote by ιC : C � T c(V ) and
by ιD : D � T c(W) the canonical inclusions. The composite of morphisms of
cooperads Ψ ◦ (ιC ⊗

H
ιD ) factors through its image

T c(V ⊗
H
W) T c(V )⊗

H
T c(W)

Ψ
C ⊗

H
D

�Ψ

ιC⊗
H
ιD

C �D

which we define to be Manin black product of the cooperads C and D . It is the
cooperad cogenerated by V ⊗

H
W with corelations Ψ (R⊗

H
S):

C �D := C
(
V ⊗

H
W,Ψ

(
R⊗

H
S
))
.

8.8.3 Black Products for Operads

Since it is easier to work with operads than cooperads, we will consider the linear
dual of the previous definition. This provides a notion of black product for operads.
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From now on, we will work in the category of finitely generated binary quadratic
operads (concentrated in degree 0).

Recall from Sect. 7.6.3 the notation V ∨ := V ∗ ⊗ sgn2, where the S-module
V is concentrated in arity 2. In that section, we introduced a basis of T (V )(3)

and a scalar product 〈−,−〉, which induces an isomorphism θV : T (V )(3)
�−→

T (V ∨)(3)∗. We define the morphism Ψ̃ by the following composite

T (V )(3)⊗
H

T (W)(3) Ψ̃

θV⊗
H
θW

T (V ⊗
H
W ⊗

H
sgnS2

)(3)

T (V ∨)(3)∗ ⊗
H

T (W∨)(3)∗

�

T ((V ⊗
H
W ⊗

H
sgnS2

)∨)(3)∗

θ−1
V⊗

H
W

(T (V ∨)(3)⊗
H

T (W∨)(3))∗
tΦ

T (V ∨ ⊗
H
W∨)(3)∗,

�

where � stands for the natural isomorphism for the linear dual of a tensor prod-
uct, since the modules are finite dimensional, and where Φ is the map defined in
Sect. 8.8.1 applied to V ∨ and W∨. The morphism Ψ̃ defined here is a twisted ver-
sion of Ψ .

The black product of two finitely generated binary quadratic operads P =
P(V ,R) and Q =P(W,S) is equal to

P �Q :=T
(
V ⊗

H
W ⊗

H
sgnS2

)
/
(
Ψ̃
(
R⊗

H
S
))
.

8.8.4 Examples of Computations of Black Products

In order to compute black products for operads (and white products by Koszul du-
ality), we use the basis and notations given in Sect. 7.6.4.

Proposition 8.8.2. The following isomorphism holds

PreLie�Com∼= Zinb.

Proof. We denote by μ the generating operation of the operad PreLie. In a pre-Lie
algebra the binary operation is such that its associator is right symmetric, that is
μ(μ(a, b), c)− μ(a,μ(b, c))= μ(μ(a, c), b)− μ(a,μ(c, b)). This relation corre-
sponds to vi − vi+1 + vi+2 − vi+3 for i = 1,5,9 with our conventions. We denote
by ν the commutative generating operation of Com and by w1, w5, w9 the asso-
ciated generators of T (Kν)(3). The associativity relation of ν reads in this basis:



8.8 Manin Products 313

w1 −w5 = 0 and w5 −w9 = 0. We have

(1) Ψ̃ ((v1 − v2 + v3 − v4)⊗ (w1 −w5))= Ψ̃ (v1 ⊗w1 + v4 ⊗w5),

(2) Ψ̃ ((v1 − v2 + v3 − v4)⊗ (w5 −w9))= Ψ̃ ((v2 − v3)⊗w9 − v4 ⊗w5),

(3) Ψ̃ ((v5 − v6 + v7 − v8)⊗ (w1 −w5))= Ψ̃ ((v7 − v6)⊗w1 − v5 ⊗w5),

(4) Ψ̃ ((v5 − v6 + v7 − v8)⊗ (w5 −w9))= Ψ̃ (v5 ⊗w5 + v8 ⊗w9),

(5) Ψ̃ ((v9−v10+v11−v12)⊗ (w1−w5))= Ψ̃ (−v12 ⊗w1 + (v10 − v11)⊗w5),

(6) Ψ̃ ((v9 − v10 + v11 − v12)⊗ (w5 −w9))= Ψ̃ ((v11 − v10)⊗w5 − v9 ⊗w9).

Using for instance Fig. 7.1, one can see that the action of (132) sends (1) to (4),
(3) to (6) and (5) to (2). The image of (1) under (13) is (3). Therefore, we only
need to make (1) and (2) explicit. If we identify (Kμ⊕Kμ′)⊗Kν⊗K sgnS2

with
Kγ ⊕Kγ ′ via the isomorphism of S2-modules

μ⊗ ν ⊗ 1 �→ γ,

μ′ ⊗ ν ⊗ 1 �→ −γ ′,
the morphism Ψ̃ becomes

Ψ̃
(
(μ ◦I μ)⊗ (ν ◦I ν)

)= Ψ̃ (v1 ⊗w1)= γ ◦I γ = z1 and

Ψ̃
(
(μ′ ◦II μ)⊗ (ν ◦II ν)

)= Ψ̃ (v2 ⊗w1)=−γ ′ ◦I γ =−z2.

The images of the other elements are obtained from these two by the action of S3.
For instance, we have Ψ̃ (v3 ⊗w1)=−z3, Ψ̃ (v4 ⊗w1)= z4 and Ψ̃ (v5 ⊗w5)= z5.

So, we get

Ψ̃ (v1 ⊗w1 + v4 ⊗w5)= γ ◦I γ − γ ◦III γ
′,

Ψ̃
(
(v2 − v3)⊗w9 − v4 ⊗w5

)=−γ ′ ◦II γ − γ ′ ◦II γ
′ + γ ◦III γ

′.

Finally, if we represent the operation γ (x, y) by x ≺ y, then we have

(x ≺ y)≺ z= (x ≺ z)≺ y,
(x ≺ z)≺ y = x ≺ (z≺ y)+ x ≺ (y ≺ z),

where we recognize the axioms of a Zinbiel algebra, see Sect. 13.5.2. �

8.8.5 Manin Products and Koszul Duality

Theorem 8.8.3. For any pair of finitely generated binary quadratic operads P =
P(V ,R) and Q =P(W,S), their black and white products are sent to one another
under Koszul duality

(P �Q)! =P !�Q!.
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Proof. Let us denote by 〈−,−〉E the scalar product on T (E∨)(3) ⊗ T (E)(3).
The orthogonal space of Ψ̃ (R ⊗

H
S) for 〈−,−〉V⊗

H
W⊗

H
sgn is Φ−1(R⊥ ⊗

H
T (W∨) +

T (V ∨)⊗
H
S⊥). By definition of the transpose of Φ , we have

〈
X, Ψ̃

(
r ⊗

H
s
)〉

V⊗
H
W⊗

H
sgn
=
〈
Φ(X), r ⊗

H
s
〉

(T (V )⊗
H
T (V ∨))×(T (W)⊗

H
T (W∨))

= (〈−, r〉V .〈−, s〉W
) ◦Φ(X),

for every (r, s) ∈R× S and every X ∈T (V ∨ ⊗
H
W∨).

Therefore, we have

Ψ̃
(
R⊗

H
S
)⊥

=
{
X ∈T

(
V ∨ ⊗

H
W∨)(3) | ∀(r, s) ∈R× S(〈−, r〉V .〈−, s〉W

) ◦Φ(X)= 0
}

=
{
X ∈T

(
V ∨ ⊗

H
W∨)(3) |Φ(X) ∈R⊥ ⊗

H
T
(
W∨)+T

(
V ∨
)⊗

H
S⊥
}

=Φ−1
(
R⊥ ⊗

H
T
(
W∨)+T

(
V ∨
)⊗

H
S⊥
)
. �

Since the operad Com is the unit object for the white product, the operad Lie is
the unit object for the black product, that is

Lie �P =P,

for any finitely generated binary quadratic operad P . The black product is also an
associative product. Therefore the category of finitely generated binary quadratic
operads, equipped with the black product and the operad Lie as unit, is a symmetric
monoidal category.

Corollary 8.8.4. The following isomorphism holds

Perm�Lie∼= Leib.

Proof. It is a direct corollary of Proposition 8.8.2 and Theorem 8.8.3. �

Contrarily to associative algebras, Manin black or white product of two Koszul
operads is not necessarily a Koszul operad. A counterexample is given in Exer-
cise 8.10.16.

8.8.6 Remark

In Sect. 7.2.3, we defined the Koszul dual operad as P ! := (S c⊗
H

P ¡)∗. Let Com−1

be the operad which is spanned by sgnn (signature representation) of degree n− 1
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in arity n. Then we have P ! = (P ¡)∗�Com−1. This formula explains the presen-
tation of P ! in terms of the presentation of P given in Proposition 7.2.1.

8.8.7 Adjunction and Internal (Co)Homomorphism

Theorem 8.8.5. There is a natural bijection

HomQuad-Op(P �Q,R)∼=HomQuad-Op
(
P,Q!�R

)
,

where Quad-Op stands for the category of finitely generated binary quadratic oper-
ads.

In other words, the functors

−�Q :Quad-Op Quad Op :Q!�−
form a pair of adjoint functors, for any finitely generated binary quadratic operad Q.

Proof. Let P , Q and R be three operads presented by P = P(V ,R), Q =
P(W,S) and R = P(X,T ). There is a bijection between maps f : V ⊗

H
W ⊗

H
sgnS2

→X and maps g : V →W∨ ⊗
H
X. Using the same arguments as in the proof

of Theorem 8.8.3, we can see that
〈(
Φ−1
(
S⊥ ⊗

H
T (X)+T

(
W∨)⊗

H
T
))⊥

,T (g)(R)
〉

W∨⊗
H
X

=
〈
Ψ̃
(
S ⊗

H
T ⊥
)
,T (g)(R)

〉

W∨⊗
H
X

=
〈
T ⊥,T (f )

(
Ψ̃
(
R⊗

H
S)
)〉

X
.

Therefore T (f )(Ψ̃ (R⊗
H
S))⊂ T is equivalent to T (g)(R)⊂Φ−1(S⊥ ⊗

H
T (X)+

T (W∨)⊗
H
T ), which concludes the proof. �

In other words, Hom(B,C) := B !�C is the internal “Hom” functor in the mono-
idal category of finitely generated binary quadratic operads with the black product.
Dually, CoHom(A,B) := A�B ! is the internal “coHom” (or inner) functor in the
monoidal category of finitely generated binary quadratic operads with the white
product.

For another point of view on this type of adjunction and coHom objects in the
general operadic setting, we refer the reader to the paper [BM08] by D. Borisov and
Yu.I. Manin.

Let P = P(V ,R) be any finitely generated binary quadratic operad. We ap-
ply Proposition 8.8.5 to the three operads Lie, P and P . Since Lie is the unit
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object for the black product, we have a natural bijection HomQuad Op(P,P) ∼=
HomQuad Op(Lie,P !�P). The image of the identity of P under this bijection
provides a canonical morphism of operads Lie → P !�P . The composite with
�Φ :P !�P →P ⊗

H
P ! gives a morphism of operads from Lie →P ⊗

H
P !. We

leave it to the reader to verify that this morphism of operads is equal to the one given
in Theorem 7.6.5, thereby providing a more conceptual proof of this property.

8.8.8 Hopf Operads

Proposition 8.8.6. Let P =P(V ,R) be a finitely generated binary quadratic op-
erad. The black product P !�P is a Hopf operad.

Proof. The proof is similar to the proof of Proposition 4.5.4. �

8.8.9 Manin Products for Nonsymmetric Operads

We can perform the same constructions in the category of arity-graded vector
spaces. Some constructions of this type have been devised in [EFG05]. This defines
Manin black and white products for nonsymmetric operads, which we denote by �
and by �. (The details are left to the reader.) Notice that the black or white product
of two ns operads does not give in general the “same” result as the black or white
product of the associated symmetric operads. One can also introduce the notion of
Manin products for shuffle operads. In this case, the forgetful functor from operads
to shuffle operads commutes with Manin white product, see Exercise 8.10.17.

The black and white products for ns operads are associative products. For any
finitely generated binary quadratic ns operad P , the ns operad As of associative
algebras is the unit object for both products, that is As�P = As�P =P . There-
fore, the category of finitely generated binary quadratic ns operads carries two sym-
metric monoidal category structures provided by the black and white product and
the operad As.

The following result is proved with the same argument as in the symmetric op-
erad framework.

Theorem 8.8.7. There is a natural bijection

HomQuad-nsOp(P �Q,R)∼=HomQuad-nsOp
(
P,Q!�R

)
,

where Quad-nsOp stands for the category of finitely generated binary quadratic ns
operads.

As a direct corollary, there exists a morphism of ns operads As →P !�P for
any finitely generated binary quadratic ns operad P . This yields a canonical mor-
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phism of ns operads As→P ! ⊗
H

P , which is the one given in Theorem 7.7.2. This

result will be crucial in the study of operations on the cohomology of algebras over
a ns operad, see Sect. 13.3.11.

8.9 Résumé

8.9.1 Shuffle Operads

Shuffle monoidal product ◦ on N-Mod: Monoidal functors

(S-Mod,◦)−→ (N-Mod,◦ )−→ (N-Mod,◦),
the first one being strong. Induced functors

Op−→Op −→ ns Op.

Shuffle trees T : K-linear basis of the free shuffle operad and free operad.

Partial shuffle product:

◦σ : Pk ⊗ Pl→ Pn,

μ⊗ ν �→ μ ◦σ ν.

8.9.2 Rewriting Method

Let P(E,R) be a quadratic operad such that E = ⊕mi=1Kei is a vector space
equipped with a finite ordered basis. We consider a suitable order on shuffle trees
with 2 vertices T (2) indexed by the {1, . . . ,m}.

Typical relation:

t (ei , ej )=
∑

t ′(k,l)<t(i,j)
λ
t (i,j)

t ′(k,l) t
′(ek, el).

The element t (ei, ej ) is called a leading term. A tree monomial with 3 vertices
t (ei , ej , ek) is called critical if both 2-vertices subtrees t ′(ei, ej ) and t ′′(ej , ek) are
leading terms.

Theorem. Confluence for all the critical tree monomials⇒ Koszulity of the operad.

8.9.3 Reduction by Filtration and Diamond Lemma

Let P = P(E,R) be a quadratic operad. Any grading on E ∼= E1 ⊕ · · · ⊕ Em
together with a suitable order on shuffle trees induce a filtration on the shuffle op-
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erad P and

ψ : P̊ =T (E)/(Rlead)� grP ,

with Rlead = 〈leading term(r), r ∈R〉.

DIAMOND LEMMA FOR QUADRATIC OPERADS.

P̊ Koszul and (P̊ )(3)� (grP )(3) =⇒ P Koszul and P ∼= grP ∼= P̊ .

INHOMOGENEOUS CASE.

˚qP Koszul and

( ˚qP )(3)� (grχ qP )(3)
=⇒ P Koszul and

˚qP ∼= grχ qP ∼= qP ∼= grP ∼=P.

8.9.4 PBW Basis, Gröbner Basis and Diamond Lemma

Particular case:

∀i ∈ I = {1, . . . ,m},dim(Ei)= 1 ⇔ {ei}i∈I K-linear basis of E,

P̊ monomial shuffle operad ⇒ P̊ Koszul and basis {t (eī )}t∈T .
PBW basis of P(E,R):

basis {t̄ (eī )}t∈T := image of {t (eī )}t∈T under P̊ � grP ∼=P ∼=P.

MAIN PROPERTIES OF PBW BASES.

P(E,R) PBW basis ⇒ P(E,R) Koszul algebra.

DIAMOND LEMMA.

{t̄ (eī )}t∈T (3) linearly independent =⇒ {t̄ (eī )}t∈T PBW basis.

GRÖBNER BASIS.

Gröbner basis of (R)⊂T (E) ⇐⇒ PBW basis of T (E)/(R).

PBW bases for inhomogeneous quadratic algebras:

qP =P(E,qR) PBW basis ⇒ P(E,R) PBW basis.

PBW/Gröbner bases for nonsymmetric operads: We consider planar trees instead
of shuffle trees.
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8.9.5 Distributive Laws

A distributive law Λ :B ◦A →A ◦B induces an operad structure on A ◦B by

γΛ := (γA ◦ γB)(IdA ◦Λ ◦ IdB).

LOCAL TO GLOBAL. For A :=P(V ,R) and B :=P(W,S), any (local) rewrit-
ing rule λ :W ◦(1) V → V ◦(1) W induces (global) distributive laws if p :A ◦B �
A ∨λ B is an isomorphism.

DIAMOND LEMMA FOR DISTRIBUTIVE LAW.

A ,B Koszul and

(A ◦B)(3)� (A ∨λ B)(3)
=⇒ A ∨λ B Koszul and

A ∨λ B ∼= (A ◦B, γΛ).

8.9.6 Partition Poset Method

Set operad P−→ family of operadic partition posets {ΠP(n)}n.

Theorem.

 P :=K[P] Koszul iff ΠP(n) Cohen–Macaulay, for all n,
 Htop(ΠP)∼=P

¡
.

8.9.7 Manin Black and White Products for Operads

P(V ,R)�P(W,S) :=P
(
V ⊗

H
W,Φ−1

(
R⊗

H
T (W)+T (V )⊗

H
S
))
,

C (V ,R)�C (W,S) := C
(
V ⊗

H
W,Ψ

(
R⊗

H
S
))
,

P(V ,R)�P(W,S) = P
(
V ⊗

H
W ⊗

H
sgnS2

, Ψ̃
(
R⊗

H
S
))
.

For finitely generated quadratic operads:

(P �Q)! =P !�Q!.

Among finitely generated binary quadratic operads:
Unit for the white product: Com. Unit for the black product: Lie.

Theorem. HomQuad-Op(P �Q,R)∼=HomQuad-Op(P,Q!�R).

Lie→P !�P; P !�P is a Hopf operad.

Manin black and white product for nonsymmetric operads: � and �.
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8.10 Exercises

Exercise 8.10.1 (Dendriform operad). Using the method described in Sect. 8.1,
show that the dendriform operad, see Sect. 13.6.1, is a Koszul operad.

Exercise 8.10.2 (Unshuffles and pointed unshuffles). For a given partition n= i1 +
· · · + ik , show that the set of unshuffles

{
σ ∈ Sh−1

iτ (1),...,iτ (k)
; τ ∈ Sk

}

admits a left action of Sk and that the set of pointed unshuffles (i1, . . . , ik) gives
one representative in every orbit.

Exercise 8.10.3 (From shuffle operads to symmetric operads). We denote byM �→
Mtr the functor from arity-graded modules to S-modules, which associates to M ,
the same underlying module, with the trivial action of the symmetric groups.

There is a natural isomorphism of arity-graded modulesMtr ◦Ntr∼=(M ◦ N)tr

given by
⊕

Mtr(k)⊗Sk

(
Ntr(i1)⊗ · · · ⊗Ntr(ik)⊗Si1×···×Sik K[Sn]

)

∼=−→
⊕

Mtr(k)⊗Sk

(
Ntr(i1)⊗ · · · ⊗Ntr(ik)⊗K[Si1 × · · · × Sik\Sn]

)

∼=−→
⊕

Mtr(k)
(
Ntr(i1)⊗ · · · ⊗Ntr(ik)⊗K[ i1,...,ik ]

)
.

Show that this isomorphism does not commute with the action of the symmetric
groups. (Therefore, it does not induce a monoidal functor and does not send a shuffle
operad to a symmetric operad.)

Exercise 8.10.4 (Suitable order on trees �). We consider the following generaliza-
tion of the path-lexicographic ordering of Sect. 8.4.1. It applies to the set of shuffle
trees with bivalent vertices and whose vertices are labeled by {1, . . . ,m}, m being
finite. To any such tree of arity n, we associate a sequence of n+1 words as follows.
The n first words are obtained by reading the tree from the root to each leaf and by
recording the labels indexing the vertices. If one encounters an arity 4 vertex labeled
by 2, for instance, then the letter will be 24. The last word is given by the ordered la-
beling of the leaves, or equivalently the image of the inverse of the associate pointed
unshuffle.

Prove that a such a sequence characterizes the labeled shuffle tree.
We say that ij < kl when (i, j) < (k, l) with the lexicographic order. We consider

the following total order on this type of sequences.

1. We order them according to the total number of “letters” composing the words
of the sequence.

2. We use the length of the last word (arity).
3. We consider the lexicographic order.
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For m= 2, it gives

|<
1

1
<

1

2
<

1

1

1

< · · ·<

1

2

2

<

1 2

1
< · · · .

Show that this provides a suitable order.

Exercise 8.10.5 (Koszul dual operad with extra ordered grading). Let P =
P(E,R) be a finitely generated binary quadratic operad endowed with an extra
ordered grading. Give a presentation of the Koszul dual operad P ! of P following
the methods of Sect. 4.2.6.

Refine this result as in Sect. 4.3.9: when P =P(E,R) is a finitely generated bi-
nary quadratic operad endowed with a PBW basis, give a presentation of the Koszul
dual operad P ! of P .

Exercise 8.10.6 (Reduction by filtration method for nonsymmetric operads). Write
the entire Sect. 8.4 for nonsymmetric operads as proposed in Sect. 8.4.7.

Exercise 8.10.7 (Computations of PBW bases). Describe a PBW basis for the qua-
dratic operad Pois of Poisson algebras (Sect. 13.3), for the quadratic operad Perm
of permutative algebras and for the quadratic operad preLie of pre-Lie algebras
(Sect. 13.4).

Exercise 8.10.8 (Computations of PBW bases in the inhomogeneous frame-
work �). Describe a PBW basis for the inhomogeneous operad BV encoding
Batalin–Vilkovisky algebras, see Sects. 7.8.7 or 13.7 for the definition.

Exercise 8.10.9 (Parametrized operad As). We consider the nonsymmetric operad
�As generated a binary product , which satisfies the associativity relation

= λ

with parameter λ.
Show that the ns operad λAs is Koszul if and only if λ = 0,1 or ∞, where the

latter case means

= 0.
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Exercise 8.10.10 (From operad structure to distributive law). Let A = (A , γA , ιA )
and B = (B, γB, ιB) be two operads. Let A ◦B be endowed with an operad struc-
ture (γ, ιA ◦B) such that ιA ◦B = ιA ◦ ιA .

Suppose that

A
IdA ◦ιB

A ◦B B
ιA ◦IdB

are morphisms of operads and that the following diagram commutes

A ◦B
IdA ◦ιB◦ιA ◦IdB =

A ◦B ◦A ◦B
γ

A ◦B.

Prove that

Λ :=B ◦A
ιA ◦IdB ◦ IdA ◦ιB−−−−−−−−−−−→A ◦B ◦A ◦B

γ−→A ◦B

is a distributive law (cf. [Bec69]).
Give another proof of Proposition 8.6.2 using this result. (Define the operadic

composition on A ◦B by transporting the operadic composition of A ∨λB under
the isomorphism p.)

Exercise 8.10.11 (Distributive law for the operad Pois). Prove the isomorphism
Com ◦ Lie(4)∼= Pois(4).

Exercise 8.10.12 (Counter-Example, [Vladimir Dotsenko]). Let A = Com and
B = Nil, where a Nil-algebra is a vector space equipped with an antisymmetric
nilpotent operation [x, y], i.e. satisfying the quadratic relation [[x, y], z] = 0 for any
x, y, z. We denote by x · y the commutative binary operation of Com. We consider
the rewriting law λ given by the Leibniz relation:

[x · y, z] = x · [y, z] + [x, z] · y
like in the Poisson case.

Show that this rewriting rule does not induce a distributive law.

HINT. Compute [[x · y, z], t] in two different ways.

Exercise 8.10.13 (Multi-pointed partition posets �). A multi-pointed partition
{B1, . . . ,Bk} of n is a partition of n on which at least one element of each block
Bi is pointed, like 13̄4̄|2̄6|5̄78̄ for instance. Let π and ρ be two multi-pointed par-
titions. We say the ρ is larger than π , π 	 ρ, when the underlying partition of π
is a refinement of the underlying partition of ρ and when, for each block of π , its
pointed elements are either all pointed or all unpointed in ρ. For instance

13̄4̄|2̄6|5̄78̄ 	 123̄4̄6|5̄78̄.
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Prove that it is a graded poset and compute its top homology groups.

HINT. Introduce the operad ComTrias encoding commutative trialgebras, see
[Val07a]. It is an algebraic structure defined by two binary operations ∗ and • such
that the product ∗ is permutative (encoded by the operad Perm)

(x ∗ y) ∗ z= x ∗ (y ∗ z)= x ∗ (z ∗ y),
the product • is associative and commutative

{
x • y = y • x,
(x • y) • z= x • (y • z),

and such that the two operations ∗ and • satisfy the following compatibility relations
{
x ∗ (y • z) = x ∗ (y ∗ z),
(x • y) ∗ z = x • (y ∗ z).

Equivalently it is a triassociative algebra, cf. [LR04], satisfying some commutativity
property.

Exercise 8.10.14 (Nijenhuis operad �). Consider the following quadratic operad

Nij :=P
(
K[S2]m⊕Kc,RpreLie ⊕RJacobi ⊕Rcomp

)
,

where Kc stands for the trivial representation of S2 and where |m| = 0 and |c| = 1.
The space of relations are given by

⎧
⎪⎨

⎪⎩

RpreLie: m ◦1 m−m ◦2 m− (m ◦1 m)
(23) − (m ◦2 m)

(23),

RJacobi: c ◦1 c+ (c ◦1 c)
(123) + (c ◦1 c)

(321),

Rcomp: m ◦1 c+m ◦2 c+ (m ◦1 c)
(12) − c ◦2 m− (c ◦2 m)

(12).

In plain words, the binary product m is a pre-Lie product and the binary product c
is a “degree 1 Lie bracket”.

Show that this operad is Koszul. For all the methods proposed in this chapter, try
to see whether they can be applied. Notice that this operad provides the first example
which requires the use of PBW bases.

REMARK. The introduction and the study of this operad are prompted by Nijen-
huis geometry. For more details on the application of its Koszul resolution in this
direction, we refer the reader to [Mer05, Str09].

Exercise 8.10.15 (Computations of Manin products �). Prove that Perm�Ass ∼=
Dias. Then conclude that preLie�Ass ∼= Dend. Prove this last isomorphism by a
direct computation. (We refer to Sect. 13.6 for the definitions of the operads Dias
and Dend.)
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Exercise 8.10.16 (Counter-example �). Consider the operad

Nil :=P
(
sgnS2

,T (sgnS2
)(3)
)

of skew-symmetric nilpotent algebras. It is generated by the signature representation
in arity 2, with all possible relations.

Compute the black product Nil�preLie. (We refer to Exercise 8.10.14 and to
Sect. 13.4 for the definition of the operad preLie.)

Show that the operad Nil�preLie is not Koszul, though the two operads Nil and
preLie are.

Exercise 8.10.17 (Manin products for shuffle operads �). Following the same
method as in Sect. 8.8, define the notion of Manin white product � for shuffle
operads with presentation.

Prove the existence of a canonical isomorphism of shuffle operads of the form

(P �Q)f ∼=Pf � Qf ,

for any pair of (symmetric) operads P =P(V ,R) and Q =P(W,S).



Chapter 9
The Operads As and A∞

For me it all begins with Poincaré.
Jim Stasheff in “The pre-history of operads”

Contemp Math 202 (1997), 9–14

In this chapter, we first treat in detail the operad encoding the category of associative
algebras along the lines of the preceding chapters. This is a particularly important
example, because associative algebras are everywhere in mathematics, and because
it will serve as a toy-model in the theory of operads.

In Sect. 9.1, we describe the nonsymmetric operad As and then the symmetric
operad Ass, where the action of the symmetric group is taken into account. They
both encode the category of associative algebras. Then we compute the Koszul dual
cooperad As¡. We show that As is a Koszul operad by analyzing in detail the Koszul
complex. We show that the operadic homology of associative algebras is precisely
Hochschild homology.

In Sect. 9.2, we proceed with the computation of the minimal model of As, that
is �As¡. We show that this operad is exactly the operad A∞, constructed by Jim
Stasheff, encoding the category of “homotopy associative algebras”, also known as
A∞-algebras. We describe this differential graded operad in terms of the Stasheff
polytope (associahedron).

In Sect. 9.3, we study the bar–cobar construction on As, denoted�B As. We show
that this ns operad can be understood in terms of a cubical decomposition of the
Stasheff polytope (Boardman–VogtW -construction). We compare �B As and A∞.

In Sect. 9.4, we deal with the Homotopy Transfer Theorem. In its simplest form
it says that, starting with a dga algebra, any homotopy retract acquires a structure
of A∞-algebra. More generally A∞-algebras are invariant under homotopy equiva-
lence. These results are due to the work of V.K.A.M. Gugenheim, Hans Munkholm,
Jim Stasheff, Tornike Kadeishvili, Alain Prouté, Serguei Merkulov, Martin Markl,
Maxim Kontsevich and Yan Soibelman. In the next chapter this theorem is extended
to any Koszul operad.

We make this chapter as self-contained as possible, so there is some redundancy
with other parts of the book. We refer to Stasheff’s paper [Sta10] for historical refer-

J.-L. Loday, B. Vallette, Algebraic Operads,
Grundlehren der mathematischen Wissenschaften 346,
DOI 10.1007/978-3-642-30362-3_9, © Springer-Verlag Berlin Heidelberg 2012
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ences on the subject, linking twisting morphisms, also known as twisting cochains,
to A∞-algebra structures, and giving tribute to N. Berikashvili, K.T. Chen and
T. Kadeishvili.

9.1 Associative Algebras and the Operad Ass

We study the nonsymmetric operad As encoding the category of (nonunital) asso-
ciative algebras. We show that its Koszul dual is itself: As! = As and that it is a
Koszul nonsymmetric operad. We also study the associated symmetric operad, de-
noted by Ass.

9.1.1 Associative Algebra

By definition an associative algebra over K is a vector space A equipped with a
binary operation

μ :A⊗A→A, μ(x, y)= xy
satisfying the associativity relation

(xy)z= x(yz)
for any x, y, z ∈A. This relation may also be written as

μ ◦ (μ, id)= μ ◦ (id,μ),
and, in terms of partial compositions, as

μ ◦1 μ= μ ◦2 μ.

There is an obvious notion of morphism between associative algebras and we denote
by As-alg the category of associative algebras.

Here we work in the monoidal category Vect of vector spaces over K, but, be-
cause of the form of the relation, we could as well work in the monoidal category of
sets, resp. topological sets, resp. simplicial sets. Then we would obtain the notion of
monoid, resp. topological monoid, resp. simplicial monoid.

It is sometimes helpful to assume the existence of a unit, cf. Sect. 1.1.1, but here
we work with nonunital associative algebras.

9.1.2 The Nonsymmetric Operad As

Since, in the definition, of an associative algebra, the generating operation μ does
not satisfy any symmetry property, and since, in the associativity relation, the vari-
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ables stay in the same order, the category of associative algebras can be encoded by
a nonsymmetric operad, that we denote by As.

Let us denote by μn the n-ary operation defined as

μn(x1, . . . , xn) := x1 . . . xn.

The space of n-ary operations Asn is one-dimensional spanned by μn, because the
free associative algebra over V is �T (V ) =⊕n V

⊗n. Therefore Asn = Kμn. Since
dim Asn = 1, the generating series of the ns operad As is

f As(t)=
∑

n≥1

tn = t

1− t .

CLASSICAL DEFINITION OF As. Under the classical definition of a nonsymmetric
operad the composition

γ : Ask ⊗ Asi1 ⊗ · · · ⊗ Asik → Asi1+···+ik

is simply given by the identification

K⊗K⊗ · · · ⊗K∼=K, μk ⊗μi1 ⊗ · · · ⊗μik �→ μi1+···+ik .

It simply follows from the composition of noncommutative polynomials.

PARTIAL DEFINITION OF As. The partial composition is given by

μm ◦i μn = μm−1+n

for any i because

x1 · · ·xi−1(xi · · ·xm−1)xm · · ·xm−1+n = x1 · · ·xm−1+n.

QUADRATIC PRESENTATION. The free ns operad on a binary operation μ = μ2
is spanned by the planar binary trees (each internal vertex being labeled by μ):
T (Kμ)n = K[PBTn] (cf. Sect. 5.9.5). The space T (Kμ)3 = K[PBT3] is 2-

dimensional and spanned by the trees and corresponding to the

operation μ ◦ (μ, id) and μ ◦ (id,μ) respectively. The relator is the associator

as := −μ ◦ (μ, id)+μ ◦ (id,μ) ∈T (Kμ)(2),

i.e. − + . There is an identification

As=P(Kμ,Kas)=T (Kμ)/(as)

where (as) is the operadic ideal generated by the associator. In the quotient any tree
with n leaves gives rise to the same element, that we have denoted by μn.
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9.1.3 The Operad Ass

We denote by Ass the symmetric operad encoding the category of associative al-
gebras. The categories of As-algebras and Ass-algebras are the same, that is the
category of associative algebras, since the action of Sn on Ass(n) is free (see be-
low).

The free associative algebra over the vector space V is known to be the reduced
tensor module �T (V ) =⊕n≥1 V

⊗n equipped with the concatenation product. It is
called the reduced tensor algebra, cf. Sect. 1.1.3. So we have Ass(V )= �T (V ). If V
is generated by the elements x1, . . . , xn, then �T (V ) is the algebra of noncommuta-
tive polynomials in x1, . . . , xn modulo the constants: K〈x1, . . . , xn〉/K1. The com-
position γ on Ass, i.e. the map γ (V ) : �T (�T (V ))→ �T (V ), is given by substitution
of polynomials: if P(X1, . . . ,Xk) is a polynomial in the variables Xi and if each Xi
is a polynomial in the variables xj , then P(X1(x1, . . . , xn), . . . ,Xk(x1, . . . , xn)) is a
polynomial in the variables xj called the composite. This composition is obviously
associative.

From the polynomial description of the free associative algebra it follows that the
space of n-ary operations is Ass(n)∼=K[Sn] equipped with the right action given by
multiplication in Sn. The n-ary operation μσ ∈ Ass(n) corresponding to the permu-
tation σ ∈ Sn is

μσ (x1, . . . , xn) := μn(xσ−1(1), . . . , xσ−1(n))= xσ−1(1) · · ·xσ−1(n).

Hence Ass(n) is the regular representation of Sn:

Ass(n)⊗Sn V
⊗n =K[Sn] ⊗Sn V

⊗n = V⊗n.
The composition in the operad Ass is given by the composition of polynomials. It is
induced by the maps

γ (i1, . . . , ik) : Sk × Si1 × · · · × Sik → Si1+···+ik

given by concatenation of the permutations and block permutation by the elements
of Sk . Here is an example with k = 2, i1 = 2, i2 = 3:

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 �→

1 2 3 4 5 1 2 3 4 5

([21]; [21], [231]) �→ [54321].
The partial composition ◦i is easily deduced from the composition map γ in

the polynomial framework. It simply consists in substituting the ith variable for a
polynomial.
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As a symmetric operad, Ass is presented as Ass=T (EAss,RAss), where EAss ∼=
K[S2]. We have denoted by μ the operation corresponding to idS2 and so the other
linear generator is μ(12). Under our convention, these two operations correspond
to xy and yx respectively. The space of relations RAss is the sub-S3-module of
T (EAss)

(2) generated by μ ◦1 μ−μ ◦2 μ. It is clear that T (EAss)
(2) is 2× 6= 12-

dimensional spanned by the elements (μ◦1μ)
σ , (μ◦2μ)

σ , for σ ∈ S3 and that RAss

is 6-dimensional spanned by the elements (μ ◦1 μ−μ ◦2 μ)
σ , for σ ∈ S3.

The characteristic of Ass in the algebra of symmetric functions is

F Ass = 1+ p1 + · · · + pn1 + · · · =
1

1− p1

where p1 is the classical power symmetric function (cf. for instance [Mac95]).

9.1.4 Other Presentations of Ass

There are other presentations of the symmetric operad Ass which might be useful in
certain problems. We will give only two of them. The second one has the advantage
of showing that the Poisson operad is the limit, in a certain sense, of a family of op-
erads all isomorphic to Ass (so Pois is a “tropical” version of Ass), see Sect. 13.3.4.

First, we take a generating operation μn of arity n for any n ≥ 2. We take the
following relations:

μn ◦ (μi1, . . . ,μin)= μi1+···+in
for any tuples (i1, . . . , in). Then obviously the associated operad is As. Considering
the analogy with the presentation of groups, it is like presenting a group by taking
its elements as generators and taking the table of multiplication as relations.

Here is another presentation in the symmetric framework.

Proposition 9.1.1 (Livernet–Loday, unpublished). If 2 is invertible in K, then the
operad Ass admits the following presentation:

– a symmetric operation x · y and an antisymmetric operation [x, y] as generating
operations,

– the following relations:

[x · y, z] = x · [y, z] + [x, z] · y,
(x · y) · z− x · (y · z)= [y, [x, z]].

Proof. The equivalence between the two presentations is simply given by

x · y = xy + yx,
[x, y] = xy − yx,
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and, of course, 2xy = x · y+[x, y]. Observe that the Jacobi relation need not be put
as an axiom in this presentation since it is a consequence of the second axiom and
the commutativity property of the operation x · y. �

For more information about the operation x · y see Sect. 13.10.

9.1.5 The Cooperad As¡ and Koszul Duality

We compute the Koszul dual ns cooperad As¡ of the ns operad As. By definition As
is the quotient of the free ns operad generated by one binary operation μ, that is
T (Kμ), quotiented by the operadic ideal generated by the relator

as := −μ ◦ (μ, id)+μ ◦ (id,μ) ∈T (Kμ)3.

Let us denote by μc := sμ. So μc is a cooperation of arity 2 and degree 1. The
cofree ns cooperad overM = (0,0,Kμc,0, . . .), that is T c(Kμc), can be identified,
as a graded vector space, with the vector space spanned by the planar binary trees,
cf. Appendix C.1.1. The isomorphism

ψ :K[PBTn] ∼=T c
(
Kμc
)
n

is given by

ψ(|) := id, ψ
( ) := μc, ψ(r ∨ s) := (μc;ψ(r),ψ(s)).

For instance we have ψ( )= (μc;μc,μc).
Since the generator μc has homological degree 1, there are signs involved in the

explicitation of ψ , see Sect. 5.9.7. Let us consider the map ϕ : Sn−1 → PBTn con-
structed in Appendix C.1.3 which follows from the identification of the symmetric
group Sn−1 with the set of planar binary trees with levels P̃BTn. We denote by t̃
the permutation in the pre-image of t ∈ PBTn which corresponds to the planar bi-
nary tree with upward levels. It means that, among the leveled trees representing
t , we choose the tree whose levels of the vertices, which are at the same level in

t , go upward when moving from left to right. For instance, if t = , then

t̃ = and the permutation is [231].

Observe that the element t̃ is easy to interpret in terms of the construction de-
scribed in Sect. 5.5.5. We define

μc1 := |, μc2 := , and μcn := −
∑

t∈PBTn

sgn(t̃)t for n≥ 3.
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In low dimension we get

μc3 =− + ,

μc4 =− + − − + .

In this example, the involved permutations are [123], [213], [231], [312], [321]. The
degree of μcn is n− 1.

Lemma 9.1.2. Let � be the decomposition map of the cofree ns cooperad
T c(Kμc). We have

�
(
μcn
)=

∑

i1+···+ik=n
(−1)

∑
(ij+1)(k−j)(μck;μci1, . . . ,μcik

)
.

Proof. This is a tedious but straightforward computation. The necessity of the sign
sgn(t̃) in the definition of μcn comes from the formula for� in the graded framework
(cf. Sect. 5.8.6), which is

�(r ∨ s)= ( r ∨ s)+ (−1)|t (2)||s(1)|
(
t (1) ∨ s(1); t (2), s(2)).

Here are examples of this computation in low dimension under the convention
�(t)= (|; t)+ �̄(t)+ (t; | · · · |):

�̄

( )

=
(

; |
)
,

�̄

( )

=
(

; |
)
.

As a consequence we get �̄(μc3)=−(μc2;μc2,μc1)+ (μc2;μc1,μc2).
Then

�̄

( )

=
(

; | |
)

+
(

; |
)

,

�̄

( )

=
(

; | |
)

−
(

; |
)

,

�̄

( )

=−
(

; | |
)

+
(

; | |
)

+
(

;
)
,

�̄

( )

=
(

; | |
)

+
(

; |
)

,

�̄

( )

=
(

; | |
)

+
(

; |
)

.
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As a consequence we get

�̄
(
μc4
)= (μc2;μc3,μc1

)+ (μc3;μc2,μc1,μc1
)− (μc3;μc1,μc2,μc1

)

+ (μc2;μc1,μc3
)+ (μc3;μc1,μc1,μc2

)− (μc2;μc2,μc2
)
. �

Proposition 9.1.3. The ns cooperad As¡ ⊂T c(Kμc) is such that

(
As¡)

n
=Kμcn.

Proof. By Lemma 9.1.2 the elements μcn, n≥ 1, span a sub-cooperad of T c(Kμc).
Since μc3 = as, this sub-cooperad is universal among the sub-cooperads whose pro-
jection to the quotient space T c(Kμc)(2)/Kas vanishes. Therefore this cooperad is
As¡. �

Proposition 9.1.4. The quadratic ns operad As is self-dual for Koszul duality, that is

As! = As.

Proof. Recall from Sect. 7.7.1 that As! = (S c⊗
H

As¡)∗. Denoting by the gener-

ator and the cogenerator (depending on the context) the relation (or the corelation)
can be written:

As! − by definition,

S c ⊗
H

As¡ + by sign rule,

(
S c ⊗

H
As¡
)∗ − by linear duality.

Hence As! = As.
Of course we could as well apply directly Theorem 7.7.1 as follows. Since, in

the presentation of As, the space of weight two operations in the free operad is
of dimension 2 and the dimension of the space of relators R is of dimension 1,
the orthogonal space R⊥ is of dimension 1. Since R is orthogonal to itself for the

quadratic form
[

1 0
0 −1

]
, it follows that R⊥ =R and therefore As! = As. �

We now study the Koszulity of the ns operad As.

Theorem 9.1.5. The ns operad As is a Koszul ns operad.

Proof. We give here a proof based on the analysis of the Koszul complex. Let us
describe the Koszul complex of the ns operad As following p. 70. We consider the
arity n sub-chain complex of As¡ ◦ As, that is (As¡ ◦ As)n. It is a finite complex of
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length n which reads:

As¡
n ⊗ As1 ⊗ · · · ⊗ As1 → ·· ·→

⊕
As¡

k ⊗ Asi1 ⊗ · · · ⊗ Asik → ·· ·→ As¡
1 ⊗ Asn

where i1 + · · · + ik = n and ij ≥ 1. Observe that each component As¡
k ⊗ Asi1 ⊗· · · ⊗ Asik is one-dimensional.

In order to describe the boundary map we need to compute (Id◦(1)κ)(�(1)(μck)).
It is the coproduct of μck , but keeping on the right side only the terms which involve
copies of id and one copy of μc (identified to μ under κ). So we get

∑
j ±μck−1 ◦

(id, . . . , id,μ, id, . . . , id). Then we have to apply the associativity isomorphism to
∑

j

±(μck−1 ◦ (id, . . . , id,μ, id, . . . , id)
) ◦ (μi1, . . . ,μik )

to get
∑

j

±μck−1 ◦
(

id◦μi1, . . . , id◦μij−1,μ ◦ (μij ,μij+1), id◦μij+2, . . . , id◦μik
)

=
∑

j

±μck−1 ◦ (μi1, . . . ,μij−1,μij+ij+1 ,μij+2, . . . ,μik ).

There is no ambiguity to denote the generator of As¡
k ⊗ Asi1 ⊗ · · · ⊗ Asik by

[i1, . . . , ik], and we get

d
([i1, . . . , ik]

)=
∑

j

±[i1, . . . , ij + ij+1, . . . , ik].

The boundary map of this Koszul complex can be identified with the boundary
map of the augmented chain complex (shifted by one) of the cellular simplex�n−2:

Cn−2
(
�n−2)→ ·· ·→ Ck−2

(
�n−2)→ ·· ·→ C0

(
�n−2)→K.

Compared to the classical way of indexing the vertices of the simplex �n−2 by
integers 0, . . . , n− 1, the vertex number i corresponds to the chain [i+ 1, n− i− 1]
in (As¡ ◦ As)n. Here is the simplex �2:

[13]

[112] [121]

[1111]

[22] [31]

[211]
Since the simplex is contractible, its associated augmented chain complex is

acyclic for any n≥ 2. For n= 1 the complex reduces to the space As¡
1⊗As1 =K. �
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REMARK. We could have also use the poset method (cf. Sect. 8.7), to prove the
acyclicity of the Koszul complex. Or (see below), we could compute the Hochschild
homology of the free algebra �T (V ) by providing an explicit homotopy.

Modulo all the apparatus, the shortest proof is the rewriting system method (cf.
Sect. 8.1) since the only critical monomial is ((xy)z)t and the confluent property is
immediate to verify:

– on one hand ((xy)z)t �→ (x(yz))t �→ x((yz)t) �→ x(y(zt)) (left side of the pen-
tagon),

– one the other hand ((xy)z)t �→ (xy)(zt) �→ x(y(zt)) (right side of the pentagon).

((xy)z)t

(x(yz))t

(xy)(zt)

x((yz)t)

x(y(zt))

9.1.6 Hochschild Homology of Associative Algebras

Since we know that As! = As, we can describe explicitly the chain complex CAs• (A),
which gives the operadic homology of the associative algebra A, cf. Sect. 12.1.2.
Let us introduce the boundary map

b′ :A⊗n→A⊗n−1

by the formula

b′(a1, . . . , an)=
n−1∑

i=1

(−1)i−1(a1, . . . , aiai+1, . . . , an).

It is well known (and easy to check from the associativity of the product) that (b′)2 =
0. The resulting chain complex (A⊗•, b′) is the nonunital Hochschild complex, up
to a shift of degree.

Proposition 9.1.6. The operadic chain complex of the associative algebra A is the
nonunital Hochschild complex of A:

CAs
•−1(A)=

(
A⊗•, b′

)
.
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Therefore the operadic homology of an associative algebra is the Hochschild ho-
mology up to a shift of degree.

Proof. By definition (Sect. 12.1.2) the complex CAs• (A) is given by

· · ·→ As¡
n ⊗A⊗n→ ·· ·→ As¡

1 ⊗A.
Since As¡

n is one-dimensional, we get A⊗n in degree n− 1. The boundary map is
obtained as follows (cf. Sect. 6.6): we consider all the possibilities of “splitting” μcn
using one copy of μc on the right-hand side (infinitesimal decomposition map), that
is

�(1)
(
μcn
)=
∑

±μcn−1 ⊗
(
id, . . . , id,μc, id, . . . , id

)

and then we apply the element (id, . . . , id,μc, id, . . . , id) to (a1, . . . , an) after re-
placing the cooperation μc by the operation μ under κ . This gives precisely the
boundary map b′ since μ(ai, ai+1)= aiai+1. �

9.1.7 Homology and Cohomology with Coefficients

In the literature, homology and cohomology with coefficients appear most of the
time for unital associative algebras. The comparison between unital and nonunital
cases is not completely straightforward, see for instance [LQ84, Lod98] Sect. 1.4.
We describe briefly the unital case.

In order to construct a homology or cohomology with coefficients one needs a
notion of “representation” (the coefficients). In the associative case it is the notion of
bimodule because of the following fact. For any (unital) algebra A and any abelian
extension

0→M→A′ →A→ 0

the space M is a (unital) bimodule over A. Recall that here A′ is a (unital) algebra
and the product of two elements ofM is 0 (abelian hypothesis).

LetA be a unital associative algebra andM a unitalA-bimodule. The Hochschild
complex C•(A,M) is defined as Cn(A,M) := M ⊗ A⊗n and the boundary map
b : Cn(A,M)→ Cn−1(A,M) is given by the formula b=∑i=n

i=0(−1)idi , where

d0(m,a1, . . . , an) := (ma1, a2, . . . , an),

di(m,a1, . . . , an) := (m,a1, . . . aiai+1, . . . , an), 1≤ i ≤ n− 1,

dn(m,a1, . . . , an) := (anm,a1, . . . , an−1).

The homology groups of C•(A,M) are called the Hochschild homology groups
of the unital algebra A with coefficients in the bimoduleM .

The Hochschild complex of cochains C•(A,M) is defined as Cn(A,M) :=-
Hom(A⊗n,M) and the boundary map b : Cn(A,M)→ Cn+1(A,M) is given by
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the formula b=∑i=n
i=0(−1)idi , where

d0(f )(a1, . . . , an+1) := a1f (a2, . . . , an+1),

di(f )(a1, . . . , an+1) := f (a1, . . . aiai+1, . . . , an+1), 1≤ i ≤ n,
dn(f )(a1, . . . , an+1) := f (a1, . . . , an)an+1.

The homology groups of C•(A,M) are called the Hochschild cohomology
groups of the unital algebra A with coefficients in the bimoduleM .

These groups appear as obstruction groups in many questions and there is an
extensive literature about them (for a first approach see for instance [Lod98]). For
instance there is a classification theorem for abelian extensions of A byM :

H 2(A,M)∼= E xt (A,M).

Similarly there is a classification theorem for crossed modules of A byM :

H 3(A,M)∼=X Mod(A,M).

Historically these complexes were constructed by hand by Hochschild. Of course
they can be viewed as coming from the operad theory. The advantage is to produce
similar complexes and theorems for Koszul operads without having to do ad hoc
constructions and proofs in each case. This is the theme of Chap. 12.

9.1.8 Other Homology Theories for Associative Algebras

The operad As has more structure: it is a cyclic operad (cf. Sect. 13.14.6). As
such there exists a homology theory for associative algebras which takes into ac-
count this extra structure, it is called cyclic homology. It was first devised by Alain
Connes [Con85] and further studied in [LQ84] and [Tsy83] (see also the monograph
[Lod98]), mainly for unital associative algebras. Cyclic homology is encoded by the
cyclic category, denoted by �C. This notation accounts for the structure of this cat-
egory which is made up of the simplicial category � and the cyclic groups. There
is a similar category, where the cyclic groups are replaced by the symmetric groups:
�S, cf. [FL91, Lod98]. It turns out that �S is precisely the category associated to
the operad uAs encoding the category of unital associative algebras by the method
in Sect. 5.4.1, as shown by Pirashvili in [Pir02a], cf. Example 2.

The operad As can also be considered as a permutad (cf. Sect. 13.14.7). We refer
to [LR12] for more on this theme.

9.2 Associative Algebras Up to Homotopy

In the 1960s, Jim Stasheff introduced in [Sta63] the notion of A∞-algebra, also
called “associative algebra up to strong homotopy”. The idea is that associativity of
the binary operation m2 is satisfied only “up to higher homotopy”. It has a meaning



9.2 Associative Algebras Up to Homotopy 337

algebraically whenever one works with a chain complex (A,d). It means that the
associator of m2 is not zero, but there exists a ternary operation m3 (the homotopy)
such that

m2 ◦ (m2, id)−m2 ◦ (id,m2)= d ◦m3+m3 ◦
(
(d, id, id)+ (id, d, id)+ (id, id, d)).

But then, mixing m2 and m3 leads to introduce a 4-ary operation m4 satisfying
some relation, and so on, and so on. The whole algebraic structure, discovered by
Jim Stasheff, is encoded into the notion of A∞-algebra, that we recall below. The
relevant operad, denoted A∞, can be described in terms of the Stasheff polytope.

On the other hand the operad theory gives an algorithm to construct explicitly
the minimal model of As, which is the dgns operad As∞ := �As¡. It gives rise to
the notion of “homotopy associative algebra”. It turns out that, not surprisingly,
A∞ = As∞.

9.2.1 A∞-Algebra [Sta63]

We have seen in Sect. 2.2.1 that any associative algebra A gives rise to a dga coal-
gebra (�T c(sA), d), which is its bar construction. It is natural to look for a converse
statement. Given a graded vector space A together with a codifferential m on the
cofree coalgebra �T c(sA), what kind of structure do we have on A? The answer is
given by the notion of A∞-algebra. Here are the details.

By definition an A∞-algebra is a graded vector space A = {Ak}k∈Z equipped
with a codifferential mapm : �T c(sA)→�T c(sA) (so |m| = −1,m◦m= 0) andm is
a coderivation, cf. Sect. 1.2.7. Observe that, since �T c(sA) is cofree, the coderivation
m is completely determined by its projection proj ◦m : �T c(sA)→ sA, that is by a
family of maps A⊗n→A,n≥ 1.

To any A∞-algebra (A,m), we associate an n-ary operation mn on A as the
following composite:

(sa1) · · · (san) (sA)⊗n
m|

sA

∼=

sa

a1 · · ·an A⊗n mn

∼=

A a

where m| is the restriction of m to (sA)⊗n composed with the projection onto sA.
The map mn is of degree n− 2 since the degrees of the involved maps in the com-
position are n− 1 and −1 respectively.

Lemma 9.2.1. An A∞-algebra is equivalent to a graded vector space A= {Ak}k∈Z
equipped with an n-ary operation

mn :A⊗n→A of degree n− 2 for all n≥ 1,
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which satisfy the following relations:

(reln)
∑

p+q+r=n
(−1)p+qrmk ◦p+1 mq = 0, n≥ 1,

where k = p+ 1+ r .

Proof. First, recall that

mk ◦p+1 mq =mk ◦
(
id⊗p⊗ mq ⊗ id⊗r

)
.

Let (A,m) be an A∞-algebra as defined above. Since m is a coderivation, and since
�T c(sA) is cofree over sA, by Proposition 1.2.2, m is completely determined by its
composite

�T c(sA) m−→ �T c(sA) proj−−→ sA.

The condition m2 = 0 is equivalent to the vanishing of the composite

�T c(sA) m−→ �T c(sA) m−→ �T c(sA)� sA.

For each n ≥ 1, its restriction to the n-tensors gives the relation (rel)n. The signs
come from the fact that we establish the formula on A⊗n instead of (sA)⊗n. �

We sometimes write mAn in place of mn if it is necessary to keep track of the
underlying chain complex. Let us make the relation (reln) explicit for n= 1,2,3:

m1 ◦m1 = 0,

m1 ◦m2 −m2 ◦ (m1, id)−m2 ◦ (id,m1)= 0,

m1 ◦m3 +m2 ◦ (m2, id)−m2 ◦ (id,m2)

+m3 ◦ (m1, id, id)+m3 ◦ (id,m1, id)+m3 ◦ (id, id,m1)= 0.

9.2.2 Homotopy and Operadic Homology of an A∞-Algebra

Let A be an A∞-algebra, e.g. a dga algebra. The relation (rel)1 implies that (A,m1)

is a chain complex. We prefer to denote the differential m1 by −d and consider an
A∞-algebra as being a chain complex (A,d) equipped with higher operations, see
below. The homology of the underlying chain complex (A,d) is called the homotopy
of the A∞-algebra A. The homology of the chain complex (�T c(sA),mA) is called
the operadic homology of the A∞-algebra A. If A is a dga algebra, then the operadic
homology is the Hochschild homology (of the nonunital dga algebra).

Proposition 9.2.2. The homotopy of an A∞-algebra is a graded associative alge-
bra.
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Proof. This is an immediate consequence of the relations (rel2) and (rel3) recalled
in the introduction of this section and in Sect. 9.2.4. �

A finer statement can be found in Corollary 9.4.5.

9.2.3 Examples

We already mentioned that a (nonunital) dga algebra (A,d) is an example of A∞-
algebra. Indeed it suffices to take m1 =−d , m2 = μ and mn = 0 for n≥ 3. Observe
that if A is a dga algebra, then (T c(sĀ),m) is precisely the cobar construction on A.

When A = C•sing(X) is the singular cochain complex of a topological space X,
it is endowed with an associative cup product. This associative algebra structure
transfers to an A∞-algebra structure on the singular cohomology H •

sing(X). These
operations were originally defined by Massey in [Mas58].

The singular chains on a based loop space�X of the connected topological space
X is an A∞-algebra, cf. [Sta63].

9.2.4 The Operad A∞

Let A be an A∞-algebra. For n= 1 the relation (reln) reads as follows:

m1 ◦m1 = 0.

So d :=m1 is a differential on A. The derivative (cf. p. 25) of the map mn is

∂(mn) := dmn − (−1)n−2mn
(
(d, id, . . . , id)+ · · · + (id, . . . , id, d)).

Using this notation the relations (reln) become:
(
rel′2
) : ∂(m2)= 0,

(
rel′3
) : ∂(m3)=−m2 ◦ (m2, id)+m2 ◦ (id,m2),

(
rel′4
) : ∂(m4)=−m2 ◦ (m3, id)+m3 ◦ (m2, id, id)−m3 ◦ (id,m2, id)

+m3 ◦ (id, id,m2)−m2 ◦ (id,m3).

More generally, for any n≥ 2, the relation (reln) can be written as:

(rel′n) : ∂(mn)=−
∑

n= p+ q + r
k = p+ 1+ r
k > 1, q > 1

(−1)p+qrmk ◦
(
id⊗p⊗ mq ⊗ id⊗r

)
.

Therefore an A∞-algebra can be seen as a chain complex (A,d) equipped with
linear maps: mn : (A,d)⊗n→ (A,d), for n≥ 2, satisfying some relations. In other
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words, an A∞-algebra is an algebra over some dgns operad, denoted A∞. The gen-
erating operations of this operad correspond to the operations mn ∈ End(A), n≥ 2,
of degree n − 2. So, the nonsymmetric operad A∞ is free over these operations:
A∞ = T (⊕n≥2Kμn). The differential structure is precisely given by the relations
(rel′n), n≥ 2.

Here we work in the homological framework (degree of d is −1), but one can
of course define A∞-algebras in the cohomological framework, see for instance
[Kel01].

9.2.5 The Associahedron (Stasheff Polytope)

Let us recall from Appendix C that the associahedron K n is a cell complex of
dimension n homeomorphic to a ball, whose cells are in bijection with the planar
trees with n+2 leaves. The chain complex associated to K n is denoted byC•(K n).
A tree t ∈ PTn+2,n−k+1 has n+ 2 leaves and (n− k + 1) internal vertices. It gives
a chain in Ck(K n). Since K n is contractible, the homology of C•(K n) is trivial
except in dimension 0, where it is K. We will identify the dg vector space of n-ary
operations of the operad A∞ (and of the operad As∞) to C•(K n−2).

Proposition 9.2.3. The dg operad A∞ encoding the category of A∞-algebras is
a dgns operad whose dg module of n-ary operations is the chain complex of the
associahedron:

(A∞)n = C•
(
K n−2).

Proof. Since, as an operad, A∞ is free with one generator in each arity n≥ 2, there
is an isomorphism (A∞)n ∼= K[PTn], where PTn is the set of planar trees with n
leaves. The generating operationmn corresponds to the n-corolla under this isomor-
phism. On the other hand, the cells of the associahedron K n−2 are in bijection with
PTn, whence the identification of vector spaces K[PTn] = C•(K n−2). The bound-
ary map of (A∞)n is given by formula (rel′n). Once translated in terms of cells of
the associahedron it gives precisely the boundary of the big cell of K n−2 since the
facettes are labeled by the planar trees with two internal vertices. �

EXAMPLES. (rel′3) and (rel′4):

∂

( )

=− + ,

∂

( )

=− + − + − .
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Fig. 9.1 Interval

Fig. 9.2 Pentagon

These formulas are the algebraic translation of the cell boundaries shown in
Figs. 9.1 and 9.2.

Proposition 9.2.4. The operad As∞ :=�As¡ is a dgns operad whose space of n-ary
operations is the chain complex of the associahedron:

(
�As¡)

n
= (As∞)n = C•

(
K n−2).

Proof. We work in the nonsymmetric operad context. As a ns operad As∞ =
T (s−1As¡) is free on As¡, that is free on the generating operations μ̃cn := s−1μcn,n≥
2 of degree n− 2. Hence, as in the previous case, there is an isomorphism of vector
spaces (As∞)n ∼=K[PTn] = C•(K n−2). By definition of the cobar construction, the
boundary map on T (sAs¡)n is induced by the cooperad structure of As¡, more pre-
cisely by the infinitesimal decomposition map�(1), cf. Sect. 6.1.4. Let us show that
this boundary map is precisely the boundary map of the chain complex C•(K n−2).

As a linear generator of T (s−1As¡)n the element μ̃cn corresponds to the big cell
(n-corolla) t (n). The degree of μ̃cn is n− 2. It is mapped to μn ∈ (A∞)n. The image
of μcn under the map �(1) is

�(1)
(
μcn
)=

∑

p+1+r=k
(−1)(q+1)rμck ⊗

(
id, . . . , id
︸ ︷︷ ︸

p

,μcq, id, . . . , id︸ ︷︷ ︸
r

)
,

for n= p+q+ r by Lemma 9.1.2. Under the isomorphism T (sAs¡)n ∼= C•(K n−2)

this is precisely the boundary map of the associahedron. The evaluation of the
boundary on the other cells follows from this case. �

Corollary 9.2.5. The categories of A∞-algebras and As∞-algebras are the same:

A∞ = As∞ :=�As¡.

Proof. From the description of the operad A∞ given in Proposition 9.2.3 and the
description of the operad As∞ given in Proposition 9.2.4 it is clear that we have
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a bijection

(A∞)n =K[PTn] = (As∞)n
which is compatible with the operad structure. Moreover both differentials coincide
with the differential map in the chain complex of the associahedron, therefore the
two dgns operads are identical. �

9.2.6 Infinity-Morphism

Let A and B be two A∞-algebras. An ∞-morphism f : A� B (sometimes called
A∞-morphism in the literature) is by definition a morphism of dga coalgebras

f : (�T c(sA),mA)→ (�T c(sB),mB).
We adopt the notation � to avoid confusion between morphism and ∞-morphism
between two A∞-algebras. Since �T c(sB) is cofree, an ∞-morphism is equivalent
to a map �T c(sA)→ sB , that is a family of maps of degree n− 1

fn :A⊗n→ B, n≥ 1,

such that f1 is a chain map, i.e. dB ◦ f1 = f1 ◦ dA and such that
∑

p+1+r=k
p+q+r=n

(−1)p+qrfk ◦
(

IdA, . . . , IdA︸ ︷︷ ︸
p

,mAq , IdA, . . . , IdA︸ ︷︷ ︸
r

)

−
∑

k≥2
i1+···+ik=n

(−1)εmBk ◦ (fi1, . . . , fik )= ∂(fn),

in Hom(A⊗n,B), for n≥ 2. The sign ε is given by the formula

ε = (k − 1)(i1 − 1)+ (k − 2)(i2 − 1)+ · · · + 2(ik−2 − 1)+ (ik−1 − 1).

Under the tree notation, this relation becomes

∂(fn)

=
∑
(−1)p+qr

mAq

fk

−
∑
(−1)ε

fi1 fi2 · · · fik

mBk

From the definition, it follows that the composite of two ∞-morphisms is again
an ∞-morphism. The category of A∞-algebras equipped with the ∞-morphisms is
denoted ∞-A∞-alg. It is a good exercise to write down the explicit formulas for

(g ◦ f )n in terms of the fi and gi for A
f� B

g� C.



9.3 The Bar–Cobar Construction on As 343

An ∞-morphism f is called an ∞-quasi-isomorphism when f1 is a quasi-
isomorphism. One can prove that ∞-quasi-isomorphisms are homotopy invertible.
We refer to Chap. 10 for details on ∞-morphisms.

9.2.7 A∞-Coalgebra

By definition a conilpotent A∞-coalgebra in the monoidal category of sign-graded
vector spaces is a graded vector space C equipped with a degree −1 square zero
derivation on the tensor algebra:

� : �T (s−1C
)→�T (s−1C

)
.

Since the tensor algebra is free, the differential map � is completely determined by
a family of maps

�n : C→ C⊗n

of degree −n+ 2 for all n≥ 1. These maps satisfy the following relations
∑

p+q+r=n
(−1)p+qr

(
id⊗p⊗ �q ⊗ id⊗r

)
�k = 0,

where k = p+ 1+ q .
In the case where �n = 0 for n > 2, C is a noncounital dga coalgebra and

(T (s−1C),�) is its bar construction.

9.3 The Bar–Cobar Construction on As

In this section, we study the bar–cobar construction on the ns operad As, that is the
dgns operad �B As. We give a geometric interpretation of the operad monomor-
phism As∞ =�As¡ ��B As.

9.3.1 The NS Operad �B As

The operad �B As is a dgns operad which is free as a ns operad. We will describe
the chain complex (�B As)n in terms of the cubical realization K n−2

cub of the as-
sociahedron (Boardman–Vogt W -construction, see also [BM03a]), as described in
Appendix C.2.2.

Proposition 9.3.1. The chain complex (�B As)n is precisely the chain complex of
the cubical realization of the associahedron:

(�B As)n = C•
(
K n−2
cub

)
.
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Fig. 9.3 The boundary map
of C•(K 1

cub)

Proof. In Appendix C.2.2, it is shown that the chain complex C•(K n−2
cub ) is spanned

by the circled trees with n leaves:

C•
(
K n−2
cub

)=K[CPTn].

We construct a map (�B As)n → K[CPTn] as follows. Since �B As = T (s−1 ×
B As) ∼= T (s−1T c(sAs)), a linear generator is a planar tree whose vertices are
labeled by linear generators of B As. Since B As is spanned by planar trees, we
get trees of trees, that is circled trees. The trees inside the circles are elements
of B As.

We need now to show that the differential structure of �B As corresponds ex-
actly to the boundary map of the chain complex C•(K n−2

cub ). By definition (cf.
Sect. 6.5), the boundary map in �B As has two components: d1 coming from the
boundary map of B As and d2 coming from the cooperad structure of B As. Since
B As is dual to �As¡, it follows that (B As)n can be identified with the chain com-
plex C•(K n−2).

On the geometric side, the boundary map of C•(K n−2
cub ) is made up of two com-

ponents d ′1 and d ′2. Let us focus on the top-cells of C•(K n−2
cub ), which are encoded

by planar binary trees with one circle. Its boundary is made up of two kinds of ele-
ments: those which have only one circle (and one edge less), and those which have
two circles (and the same number of edges). The elements of the first type account
for d1 and the elements of the second type account for d2. Under the identification
of linear generators we verify that d1 = d ′1 and d2 = d ′2. An example is given in
Fig. 9.3. �

Proposition 9.3.2. There is a sequence of dgns operad morphisms

As∞ =�As¡ ∼−→�B As
∼−→ As

which are quasi-isomorphisms. In arity n they are given by the quasi-isomorphisms

C•
(
K n−2) ∼−→ C•

(
K n−2
cub

) ∼−→Kμn

where the first one is given by the cellular homeomorphism K n−2 →K n−2
cub and

the second one is the augmentation map.

Proof. The augmentation map �As¡ → As has a dual which is As¡ → B As. Taking
the cobar construction gives�As¡ →�B As. Under the identification with the chain
complex of the two cellular decompositions of the associahedron, we get, in arity
n+ 2, a chain map C•(K n)→ C•(K n

cub). It is given by the identification of K n

with itself, i.e. the big cell of K n is sent to the sum of the top-cells K n
cub.
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The augmentation map �As¡ → As is obtained by taking the homology. Since
the associahedron is a convex polytope, it is homeomorphic to a ball and so its
homology is the homology of a point. In degree 0, each vertex (i.e. each planar
binary tree) is sent to μn, the generator of Asn. �

9.4 Homotopy Transfer Theorem for the Operad As

The notion of associative algebra is not stable under homotopy equivalence in gen-
eral. Indeed, if V is a chain complex homotopy equivalent to a dga algebra A, the
product induced on V is not necessarily associative. However the algebra structure
on A can be transferred to an A∞-algebra structure on V . We will see that, more
generally, an A∞-algebra structure on A can be transferred to an A∞-algebra struc-
ture on V . So the category of A∞-algebras is stable under homotopy equivalence.
An interesting particular case is when V is the homotopy ofA, that is V =H•(A,d).
Then, we obtain some new operations onH(A) which generalize the higher Massey
products.

9.4.1 Transferring the Algebra Structure

Let (A,dA) be a dga algebra. We suppose that (V , dV ) is a homotopy retract of the
chain complex (A,dA):

(A,dA)h

p

(V, dV ),
i

IdA−ip = dAh+ hdA,
the map i : V → A being a quasi-isomorphism. From this hypothesis it follows
immediately that the homology of (V , dV ) is the same as the homology of (A,dA)
and so H•(V , dV ) is a graded associative algebra. It is natural to ask oneself what
kind of algebraic structure there exists on V which implies that its homology is a
graded associative algebra. One can define a binary operation m2 : V ⊗ V → V by
the formula

m2(u, v) := pμ
(
i(u), i(v)

)

where μ stands for the product in A:

i i

m2 = μ

p



346 9 The Operads As and A∞

It is straightforward to see that there is no reason for m2 to be associative. How-
ever the obstruction to associativity is measured as follows.

Lemma 9.4.1. The ternary operation m3 on V defined by the formula

m3(u, v,w) := −pμ
(
i(u),hμ

(
i(v), i(w)

))+ pμ(hμ(i(u), i(v)), i(w)),

i i i

μ

m3 =+ h

μ

p

i i i

μ

− h

μ

p

satisfies the relation

∂(m3)=−m2 ◦ (m2, id)+m2 ◦ (id,m2)

(as already mentioned ∂(m3) := dVm3 +m3dV⊗3 ).

Proof. In order to ease the computation, we write the proof in the case of a deforma-
tion retract. So we think of V as a subspace of A (whence suppressing the notation
i), so p becomes an idempotent of A satisfying dh= id−p − hd . Let us compute
∂(pμ(hμ(i, i), i)), that is ∂(pμ(hμ, id)) under our convention:

∂
(
pμ(hμ, id)

)

= dpμ(hμ, id)+ [(pμ(hμ(d, id), id))+ (pμ(hμ(id, d)), id)+ (pμ(hμ,d))]

= pμ(dhμ, id)− pμ(hμ,d)+ [· · · ]
= pμ(μ, id)− pμ(pμ, id)
− (pμ(hμ(d, id), id))− (pμ(hμ(id, d)), id)− pμ(hμ,d)+ [· · · ]

= pμ(μ, id)−m2(m2, id).

Similarly one gets

∂
(
pμ(id, hμ)

)= p(μ(id,μ))−m2(id,m2).

Since μ is associative the terms pμ(μ, id) and pμ(id,μ) are equal, and we get
the expected formula. �

9.4.2 Geometric Interpretation of m3

Let us consider the cubical decomposition of the interval, whose cells are labeled
by the “circled trees”, cf. Appendix C.2.2.
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The two summands of m3 correspond to the two 1-cells of this cubical decom-
position and the formula ∂(m3)=m2 ◦ (id,m2)−m2 ◦ (m2, id) is simply the com-
putation of this boundary.

9.4.3 Higher Structure on the Homotopy Retract

Lemma 9.4.1 suggests that (V , d) inherits an A∞-structure from the associative
structure of (A,d). The geometric interpretation shows us the route to construct mn
explicitly: use the cubical decomposition of the Stasheff polytope:

mn :=
∑

t∈PBTn+2

±mt,

where, for any planar binary tree (pb tree) t , the n-ary operation mt is obtained by
putting i on the leaves, μ on the vertices, h on the internal edges and p on the root,
as in the case

m3 =−m +m .

Theorem 9.4.2 (T. Kadeishvili [Kad80]). Let

(A,dA)h

p

(V, dV ),
i

IdA−ip = dAh+ hdA,
be a retract. If (A,dA) is a dga algebra, then (V , dV ) inherits an A∞-algebra struc-
ture {mn}n≥2, which extends functorially the binary operation of A.

Proof. The proof is analogous to the proof of Lemma 9.4.1. It is done by induction
on the size of the trees. �

This statement is a particular case of Theorem 9.4.7 which gives an even more
precise result.
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Corollary 9.4.3. Let

(A,dA)h

p

(V, dV ),
i

i = quasi-isomorphism, IdA−ip = dAh+ hdA,
be a homotopy retract (e.g. deformation retract). The homotopy class of the dga
algebra (A,d) (considered as an A∞-algebra) is equal to the homotopy class of the
A∞-algebra (V , d).

Lemma 9.4.4. Let K be a field. Under a choice of sections any chain complex
admits its homology as a deformation retract.

Proof. Since we are working over a field, we can choose sections in the chain com-
plex (A,d) so that An ∼= Bn ⊕Hn ⊕ Bn−1 where Hn is the homology and Bn the
space of boundaries in degree n. The boundary map is 0 on Bn ⊕ Hn and identi-
fies Bn−1 with its copy in An−1. The homotopy h is 0 on Hn ⊕Bn−1 and identifies
Bn with its copy in An+1. These choices make (H•(A),0) a deformation retract
of (A,d):

Id −ip dh hd

Bn Id 0 Id 0
Hn Id − Id 0 0
Bn−1 Id 0 0 Id

�

Corollary 9.4.5 (T. Kadeishvili [Kad80]). For any dga algebra (A,d), there is an
A∞-algebra structure on H•(A,d), with 0 differential, such that these two A∞-
algebras are homotopy equivalent.

Proof. We apply Theorem 9.4.2 to the deformation retract constructed in Lem-
ma 9.4.4. The homotopy equivalence of these two A∞-algebras follows from the
existence of an ∞-quasi-isomorphism. �

9.4.4 MacLane Invariant of a Crossed Module

Though it was constructed decades before m3, the MacLane invariant of a crossed
module can be interpreted as a nonlinear variation of m3. Let us recall the frame-
work. A crossed module is a group homomorphism μ :M → N together with an
action of N onM , denoted nm, such that the following relations hold

a) μ
(
nm
)= nμ(m)n−1,

b) μ(m)m′ =mm′m−1.
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Let Q := Cokerμ and L := Kerμ. From the axioms it is easily seen that L is
abelian and equipped with a Q-module structure. In [ML95, Chap. IV, Sect. 8],
MacLane constructed an element α ∈ H 3(Q,L) as follows. Let P be the image
of μ. We choose set-theoretic sections i and j such that i(1)= 1, j (1)= 1:

L M
μ

N Q.

i

P
j

They permit us to construct set bijections: N ∼= P ×Q and M ∼= L × P . Hence,
viewing the crossed module as a nonabelian chain complex (so μ plays the role

of the differential) its homology L
0−→Q can be seen as a (nonlinear) deformation

retract:

M

p

μ

L

0

N

h

Q

i

where p and h are the following composites:

p :M ∼= L× P � L, h :N ∼= P ×Q� P
j−→M.

For u,v ∈Q we define

ϕ(u, v) := h(i(u)i(v))= j(i(u)i(v)i(uv)−1) ∈M,
so that i(u)i(v)= μ(ϕ(u, v))i(uv). We compute as in the linear case:

(
i(u)i(v)

)
i(w)= μ(ϕ(u, v))μ(ϕ(uv,w))i(uvw),

i(u)
(
i(v)i(w)

)= μ(uϕ(v,w))μ(ϕ(u, vw))i(uvw).
Comparing these two equalities, it follows that there exists a unique element
m3(u, v,w) ∈ L=Kerμ such that

uϕ(v,w)ϕ(u, vw)=m3(u, v,w)ϕ(u, v)ϕ(uv,w) ∈M.
MacLane showed that this element is a 3-cocycle and that its cohomology class in
H 3(Q,L) does not depend on the choice of the sections i and j . Moreover any mor-
phism of crossed modules inducing an isomorphism on the kernel and the cokernel
gives rise to the same invariant.

The topological interpretation is the following, cf. [Lod82]. The crossed mod-
ule μ :M→N defines a simplicial group whose classifying space is a topological
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space with only π1, equal to Q, and π2, equal to L. So its homotopy type is com-
pletely determined by the Postnikov invariant which is an element of H 3(BQ,L)=
H 3(Q,L). It is precisely the MacLane invariant. So, as in the linear case, the triple
(Q,L,m3) completely determines the homotopy type of the crossed module.

9.4.5 Massey Product

We know that the homology of a dga algebra (A,d) is a graded associative algebra
H•(A). Corollary 9.4.5 tells us that we have more structure: for any n ≥ 3 there
is an n-ary operation mn which is nontrivial in general. They are called Massey
products because they generalize the classical Massey products constructed in al-
gebraic topology (cf. [Mas58, Kra66, May69]). Let X be a connected topological
space, and let C•sing(X) be the singular cochain complex with homology H •

sing(X).
The product structure is given by the cup product of cochains. Then the triple
Massey product 〈x, y, z〉 is classically defined for homology classes x, y, z such
that x ∪ y = 0= y ∪ z as follows. Let us still denote by x, y, z the cycles represent-
ing the homology classes. Because of the hypothesis there exist chains a and b such
that (−1)|x|x ∪ y = da, (−1)|y|y ∪ z= db. Then the chain

〈x, y, z〉 := (−1)|x|x ∪ b+ (−1)|a|a ∪ z
is a cycle. Its homology class is well-defined in the quotient H/(xH + Hz) and
called the triple Massey product of x, y, z.

The prototypical example of a nonzero triple Massey product is given by the
Borromean rings. We consider the complement (in the 3-sphere) of the Borromean
rings:

Each “ring” (i.e. solid torus) determines a 1-cocycle: take a loop from the base-
point with linking number one with the circle. Since any two of the three circles are
disjoint, the cup product of the associated cohomology classes is 0. The nontriviality
of the triple Massey product of these three cocycles detects the entanglement of the
three circles (cf. [Mas58, Sta97b]).
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Lemma 9.4.6. For any cohomology classes x, y, z such that x ∪ y = 0= y ∪ z the
triple Massey product is given by the operation m3:

〈x, y, z〉 = −(−1)|x|+|y|m3(x, y, z).

Proof. Let (A,d) be a dga algebra. We denote by ∪ its product (formerly denoted
by μ) as well as the product induced on homology (formerly denoted by m2). We
use the homotopy equivalence data described in the proof of Lemma 9.4.5. If x, y, z
are cycles and a, b chains such that (−1)|x|x ∪ y = d(a), (−1)|y|y ∪ z= d(b), then
we can choose a and b such that hd(a)= a, hd(b)= b. Therefore one has

−m3(x, y, z)= pμ
(
i(x), hμ

(
i(y), i(z)

))− pμ(hμ(i(x), i(y)), i(z))
= x ∪ h(y ∪ z)− h(x ∪ y)∪ z
= (−1)|y|x ∪ hd(b)− (−1)|x|hd(a)∪ z
= (−1)|y|x ∪ b− (−1)|x|a ∪ z
= (−1)|x|+|y|〈x, y, z〉. �

9.4.6 A Quadruple Massey Product

Let x, y, z, t be cycles in the dga algebra (A,d) such that there exist chains a, b, c
satisfying

(−1)|x|xy = d(a), (−1)|y|yz= d(b), (−1)|z|zt = d(c),
and such that there exist chains α, β , β ′, γ satisfying:

(−1)|a|az= d(α), (−1)|x|xb= d(β),
(−1)|b|bt = d(β ′), (−1)|y|yc= d(γ ).

One can check that the element

〈x, y, z, t〉 := (−1)|x|αt + (−1)|x|βt + (−1)|x|ac+ (−1)|x|xβ ′ + (−1)|x|xγ

is a cycle and defines a homology class in H•(A,d). The five elements of this sum
correspond to the five 0-cells of the cellular decomposition of the pentagon, cf.
Fig. 9.2. In fact one can check that

〈x, y, z, t〉 = ±m4(x, y, z, t).

9.4.7 Homotopy Invariance of A∞-Algebras

The homotopy transfer theorem for dga algebras can be generalized into a homotopy
transfer theorem for A∞-algebras.
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Theorem 9.4.7. [Kad82] Let

(A,dA)h

p

(V, dV ),
i

i = quasi-isomorphism, IdA−ip = dAh+ hdA,
be a homotopy retract. If (A,dA) is an A∞-algebra, then (V , dV ) inherits a A∞-
algebra structure {mn}n≥2 such that the quasi-isomorphism i extends to an ∞-
quasi-isomorphism.

Proof. In the proof of Lemma 9.4.1 we used the fact that the binary product μ= μ2
on A is associative. Suppose now that it is only associative up to homotopy, that is,
there exists a ternary operation μ3 on A such that

∂(μ3)=−μ2 ◦ (id,μ2)+μ2 ◦ (μ2, id).

Then one needs to modify the ternary operation m3 on V by adding the extra
term pμ3i:

m3 := −pμ2
(
i, hμ2(i, i)

)+ pμ2
(
hμ2(i, i), i

)+ pμ3(i, i, i).

After this modification we get the formula

∂(m3)=−m2 ◦ (m2, id)+m2 ◦ (id,m2)

as in Lemma 9.4.1. Observe that the term which has been added corresponds to the
corolla of the figure in Sect. 9.4.2.

Similarly the higher order operationsmn are defined by using not only the binary
trees, but all the planar trees, with vertices indexed by the operationsμn given by the
A∞-algebra structure of A. The proof is done by induction on the size of the trees,
see for instance [KS00] by Kontsevich and Soibelman or [Mer99] by Merkulov.
It uses the fact that the homotopy retract determines a morphism of dg cooperads
B EndA→ B EndV . The A∞-structure of A is encoded by a morphism of dg coop-
erads As¡ → B EndA. By composition we get the expected A∞-structure on V . �

This result is a particular case of a more general statement valid for any Koszul
operad. Its complete proof is given in Theorem 10.3.1.

9.4.8 Variations on the Homotopy Transfer Theorem

There are various proofs and several generalizations of the Homotopy Transfer
Theorem. The proof given here follows the method of Kontsevich and Soibelman
[KS00], see also [Mer99] by Sergei Merkulov. Another method, closer to the origi-
nal proof of Kadeishvili, consists in applying the Perturbation Lemma, see [HK91].

In [Mar06], Martin Markl showed that p can also be extended to an ∞-quasi-
isomorphism, and h to an ∞-homotopy.
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Table 9.1 The binary
operation m2 on (α,β)

α\β a∗ b∗ c∗ d∗ e∗ u∗ v∗ w∗ x∗ y∗ Z∗

a∗ a∗ u∗ v∗ Z∗
b∗ b∗ w∗
c∗ c∗ x∗
d∗ d∗ y∗
e∗ e∗

u∗ u∗ Z∗ Z∗
v∗ v∗ −Z∗
w∗ w∗ Z∗
x∗ x∗
y∗ y∗

Z∗ Z∗

9.5 An Example of an A∞-Algebra with Nonvanishing m3

Let us consider the cochain complex of the Stasheff polytope K 2 (pentagon).
We denote by a∗, . . . , u∗, . . . ,Z∗ the cochains which are linear dual of the cells
a, . . . , u, . . . ,Z of K 2:

a

u v

b

w Z c

d

y x

e

We make it into an A∞-algebra as follows. First, we put mn = 0 for any n ≥ 4.
Second, m3 is zero except on the triple of 1-cochains (u∗,w∗, y∗) where

m3
(
u∗,w∗, y∗

)= Z∗.
Third, the binary operation m2 on (α,β) is given by Table 9.1.

In Table 9.1, empty space means 0. This defines a cohomologically graded A∞-
algebra: |∂| = +1 and |m3| = +1. We leave it to the reader to verify the relations,
that is

∂(m3)=m2 ◦ (m2, id)−m2 ◦ (id,m2)

and, since ∂(m4)= 0,

m2(m3, id)−m3(m2, id, id)+m3(id,m2, id)−m3(id, id,m2)+m2(id,m3)= 0.
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For the first relation, it suffices to evaluate the two sides on (u∗,w∗, y∗). For the
second relation there are six cases to consider (one per face of the cube).

The topological interpretation of these formulas is better seen on the dual state-
ment, that is C•(K 2) is an A∞-coalgebra. The coproducts �2 and �3 applied to
the 2-cell Z are shown in the following pictures:

aZ

uw

uy vx

wy

Ze

u

w

y

The identity
(
�3, id

)
�2 − (�2, id, id

)
�3 + (id,�2, id

)
�3 − (id, id,�2)�3 + (id,�3)�2 = 0

which is equivalent to
(
�2, id, id

)
�3 + (id, id,�2)�3 = (�3, id

)
�2 + (id,�2, id

)
�3 + (id,�3)�2

amounts to the identification of the following unions of cells:

=
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More generally, the cochain complex C•(K n) can be shown to be an A∞-
algebra for any n, cf. [Lod12].

9.6 Résumé

9.6.1 The Operad Ass

Symmetric operad Ass encoding associative algebras: Ass(n)=K[Sn].
Nonsymmetric operad As encoding associative algebras: Asn =Kμn.
Composition rule: μm ◦i μn = μm−1+n.

9.6.2 Homotopy Associative Algebras

A an A∞-algebra: (T c(sA),mA)= dg coalgebra, equivalently, the chain complex
(A,d) is equipped with an n-ary operation mn : A⊗n→ A,n≥ 2, satisfying the
relations:

∂(mn)=
∑
(−1)p+qrmk ◦

(
id⊗p⊗ mq ⊗ id⊗r

)
.

Dgns operad A∞: A∞ =�As¡, (A∞)n = C•(K n−2).

9.6.3 Cobar–Bar Construction

(
�B As¡)

n
= C•

(
K n−2
cub

)
.

9.6.4 Homotopy Transfer Theorem

If (V , d) is a homotopy retract (e.g. deformation retract) of (A,d), then any A∞-
algebra structure on (A,d) can be transferred through explicit formulas to an A∞-
algebra structure on (V , d), so that they represent the same homotopy class. Whence
the slogan

“A∞-algebras are stable under homotopy equivalence”.

EXAMPLE. If (A,d) is a dga algebra, then H•(A) is an A∞-algebra with trivial
differential. This structure induces the Massey products.
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9.7 Exercises

Exercise 9.7.1 (Explicit homotopy). Construct the homotopy from Id to 0 for the
Koszul complex (As

¡ ◦ As, dκ).

Exercise 9.7.2 (Acyclicity again). Consider the small chain complex of length one

C• : · · · → 0→ C1 =K
id−→ C0 =K.

Show that the arity n part of the Koszul complex of As is isomorphic to (C•)⊗n.
Deduce another proof of the acyclicity of the Koszul complex of As. Compare with
Exercise 3.8.7.

Exercise 9.7.3 (An explicit computation). Let As∗ be the linear dual cooperad of
As. Compute explicitly �(μc4), �̄(μ

c
4) and �(1)(μc4).

Exercise 9.7.4 (Totally diassociative algebras [Zha12]). A totally diassociative al-
gebra is defined by two binary operations x ∗ y and x · y such that any composition
is associative:

(x ∗ y) ∗ z= x ∗ (y ∗ z),
(x · y) ∗ z= x · (y ∗ z),
(x ∗ y) · z= x ∗ (y · z),
(x · y) · z= x · (y · z).

We denote by As(2) the ns operad encoding these algebras. Show that As(2)n is of
dimension 2n−1. Show that As(2) is self-dual for Koszul duality and is Koszul (apply
the rewriting method). Describe explicitly the chain complex (As(2)∞ )n in terms of the
associahedron. What is an As(2)∞ -algebra?

Exercise 9.7.5 (Higher Massey products �). In [Kra66], David Kraines defines
higher Massey products for families of cochains a = {a(i, j)}1≤i≤j≤k , in a cochain
complex, satisfying

d
(
a(i, j)

)=
j−1∑

r=i
(−1)|a(i,r)|a(i, r)a(r + 1, j)

as

c( a ) :=
k−1∑

r=1

(−1)|a(1,r)|a(i, r)a(r + 1, k).

Interpret this construction and its properties in terms of A∞-algebras. Compare with
[May69, BM03b].
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Exercise 9.7.6 (Classifying space of a crossed module �). Let G· be a simplicial
group whose homotopy groups are trivial except π0G=Q and πnG= L for some
fixed n. Show that one can construct an analog mn :Gn→ L of MacLane invariant,
which is a cocycle and gives a well-defined element in Hn(Q,L) (cohomology of
the discrete group Q with values in the Q-module L). Show that it is the Postnikov
invariant of the classifying space B|G·|.



Chapter 10
Homotopy Operadic Algebras

The theory of algebras up to homotopy defined by operad action
is a subject whose time has come.

J.-P. May 1995, review of Hinich–Schechtman
“Homotopy Lie algebra”

When a chain complex is equipped with some compatible algebraic structure, its
homology inherits this algebraic structure. The purpose of this chapter is to show
that there is some hidden algebraic structure behind the scene. More precisely if the
chain complex contains a smaller chain complex, which is a deformation retract,
then there is a finer algebraic structure on this small complex. Moreover, the small
complex with this new algebraic structure is homotopy equivalent to the starting
data.

The operadic framework enables us to state explicitly this transfer of structure
result as follows. Let P be a quadratic operad. Let A be a chain complex equipped
with a P-algebra structure. Let V be a deformation retract of A. Then the P-
algebra structure of A can be transferred into a P∞-algebra structure on V , where
P∞ =�P ¡. If P is Koszul, then the two objects are homotopy equivalent. Over
a field, the homology can be made into a deformation retract, whence the hidden
algebraic structure on the homology.

In fact this result is a particular case of a more general result, called the Homo-
topy Transfer Theorem, which will be stated in full in this chapter. This HTT has a
long history and, in a sense, it goes back to the discovery of spectral sequences by
Jean Leray and Jean-Louis Koszul in the 1940s.

This chapter is organized as follows. In Sect. 10.1, we define the notion of homo-
topy P-algebra as an algebra over the Koszul resolution P∞ :=�P

¡
. Using the

operadic bar–cobar adjunction, we give three equivalent definitions. The definition
in terms of twisting morphisms is treated in details, as well as the definition in terms
of square-zero coderivation on the cofree P

¡
-coalgebra.

Using this last definition, we define the notion of infinity morphism, also denoted
∞-morphism, between homotopy P-algebras. An ∞-morphism is not only a map

J.-L. Loday, B. Vallette, Algebraic Operads,
Grundlehren der mathematischen Wissenschaften 346,
DOI 10.1007/978-3-642-30362-3_10, © Springer-Verlag Berlin Heidelberg 2012
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but is made up of a collection of maps parametrized by P
¡
. This notion is well

suited to the homotopy theory of P∞-algebras.
The aforementioned Homotopy Transfer Theorem is the subject of Sect. 10.3. It

states precisely that any P∞-algebra structure can be transferred through a homo-
topy retract to produce a homotopy equivalent P∞-algebra structure. It is proved
by explicit formulas.

In Sect. 10.4, we study the properties of ∞-morphisms. When the first compo-
nent of an ∞-morphism is invertible (respectively is a quasi-isomorphism), then it
is called an ∞-isomorphism (respectively an ∞-quasi-isomorphism). We prove that
the class of ∞-isomorphisms is the class of invertible ∞-morphisms. Any P∞-
algebra is shown to be decomposable into the product of a minimal P∞-algebra
and an acyclic trivial P∞-algebra. Using this result, we prove that being ∞-quasi-
isomorphic is an equivalence relation, called the homotopy equivalence.

In Sect. 10.5, we study the same kind of generalization “up to homotopy” but
for operads this time. We introduce the notions of homotopy operad and infinity
morphism, or ∞-morphism, of homotopy operads. One key ingredient in the HTT
is actually an explicit ∞-morphism between endomorphism operads. The functor
from operads to Lie algebras is extended to a functor between homotopy operads to
homotopy Lie algebras. This allows us to show that the relations between associative
algebras, operads, pre-Lie algebra, and Lie algebras extend to the homotopy setting.
Finally, we study homotopy representations of operads.

Throughout this chapter, we apply the various results to A∞-algebras, already
treated independently in the previous chapter, and to L∞-algebras. In this chapter,
the generic operad P is a Koszul operad.

The general study of homotopy algebras using the Koszul resolution P∞ =
�P

¡
of P goes back to Ginzburg and Kapranov in [GK94] and to Getzler and

Jones in [GJ94]. Many particular cases have been treated in the literature; we refer
the reader to the survey given in Part I of the book [MSS02] of Markl, Shnider and
Stasheff.

In this chapter, we work over a ground field K of characteristic 0. Notice that all
the constructions and some of the results hold true without this hypothesis.

10.1 Homotopy Algebras: Definitions

In this section, we introduce the notion of homotopy P-algebra, i.e. P∞-algebra,
for a Koszul operad P . We give four equivalent definitions. We treat in detail the
examples of homotopy associative algebras, or A∞-algebras, and homotopy Lie
algebras, or L∞-algebras.

10.1.1 P∞-Algebras

A homotopy P-algebra is an algebra over the Koszul resolution �P
¡

of P . It is
sometimes called a P-algebra up to homotopy or strong homotopy P-algebra in
the literature. We also call it a P∞-algebra, where P∞ stands for the dg operad
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�P
¡
. Hence, a homotopy P-algebra structure on a dg module A is a morphism of

dg operads P∞ =�P
¡ → EndA. The set of homotopy P-algebra structures on A

is equal to Homdg Op(�P
¡
,EndA).

Notice that a P-algebra is a particular example of homotopy P-algebra. It oc-
curs when the structure morphism factors through P :

�P
¡ ∼−→P → EndA.

10.1.2 Interpretation in Terms of Twisting Morphism

Let us now make this notion explicit. We saw in Proposition 6.5.7 that a morphism
of dg operads from the quasi-free operad �P

¡
to EndA is equivalent to a twisting

morphism in the convolution algebra

g= gP,A :=HomS

(
P

¡
,EndA

)
.

Explicitly, we recall from Sect. 6.5.3 the following correspondence

HomOp
(
�P

¡
,EndA

) ∼= HomS

( �P ¡
,EndA

)
−1⋃ ⋃

Homdg Op
(
�P

¡
,EndA

) ∼= Tw
(
P

¡
,EndA

)
.

As a direct consequence, we get the following description of homotopy algebra
structures.

Proposition 10.1.1. A homotopy P-algebra structure on the dg module A is equiv-
alent to a twisting morphism in Tw(P

¡
,EndA).

Let us make explicit the notion of twisting morphism Tw(P
¡
,EndA). Suppose

first that the operad P is homogeneous quadratic. The internal differential of P
¡

is trivial. For any element ϕ ∈HomS(P
¡
,EndA) and for any element μc ∈P

¡
, the

Maurer–Cartan equation becomes ∂A(ϕ(μc)) + (ϕ � ϕ)(μc) = 0, where ∂A stands
for the differential of EndA induced by the differential of A. Using Sweedler type
notation of Sect. 6.1.4, we denote by

∑
(μc(1) ◦i μc(2))σ the image of μc under the

infinitesimal decomposition map �(1) :P ¡ →P
¡ ◦(1) P ¡

of the cooperad P
¡
. If

we denote by m the image of μc under ϕ, we get the following equation in EndA:
∑

±(m(1) ◦i m(2))σ = ∂A(m).
This formula describes the general relations satisfied by the operations of a homo-
topy P-algebra.

Proposition 10.1.2. The convolution pre-Lie algebra g is endowed with a weight
grading such that g∼=∏n≥0 g

(n).
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Proof. The Koszul dual dg cooperad P
¡

is weight graded, P
¡ =⊕n≥0 P

¡ (n)
.

Therefore the convolution pre-Lie algebra g is graded by

g
(n) :=HomS

(
P

¡ (n)
,EndA

)

and the direct sum on P gives the product g∼=∏n≥0 g
(n). �

Hence, any twisting morphism ϕ in g decomposes into a series ϕ = ϕ1 + · · · +
ϕn + · · · with ϕn ∈ g

(n)
−1, since I = P

¡ (0)
and ϕ0 = 0. Under this notation, the

Maurer–Cartan equation is equivalent to

−
∑

k+l=n
k,l<n

ϕk � ϕl = ∂(ϕn),

for any n≥ 1.

Proposition 10.1.3. The differential of the convolution dg pre-Lie algebra g splits
into two terms ∂ = ∂0 + ∂1, where ∂0 = ∂A preserves the weight grading and where
∂1 raises it by 1.

Proof. The term ∂1 is equal to ∂1(ϕ) := −(−1)|ϕ|ϕ(d
P

¡ ). Since d
P

¡ lowers the

weight grading of the Koszul dual dg cooperad P
¡

by one, ∂1 raises the weight
grading of the convolution pre-Lie algebra by one. �

Under the weight grading decomposition, the Maurer–Cartan equation reads

−∂1(ϕn−1)−
∑

k+l=n
k,l<n

ϕk � ϕl = ∂A(ϕn),

so the left-hand side relation holds up to the homotopy ϕn in g(n).

10.1.3 The Example of P-Algebras

The P-algebras are characterized among the P∞-algebras by the following partic-
ular solutions to the Maurer–Cartan equation.

Proposition 10.1.4. A P∞-algebra is a P-algebra if and only if its twisting mor-
phism is concentrated in weight 1.

Proof. Let P =P(E,R) be a quadratic operad. A P-algebra A is a P∞-algebra
whose structure map factors through P . The map �P

¡ � P sends the elements

of P
¡ (n)

to 0 for n≥ 2. So the nontrivial part under this morphism is the image of



10.1 Homotopy Algebras: Definitions 363

P
¡ (1) �→P(1) = E, that is the generating operations of P . In this case, the only

nontrivial components of the Maurer–Cartan equation are for μc ∈P
¡ (1) ∼= E and

for μc ∈P
¡ (2) ∼=R. The first one is equivalent, for the internal differential of A, to

be a derivation with respect to the operations of E, and the second one is equivalent
for these operations to satisfy the relations of R. �

The following proposition gives a first result on the algebraic structure of the
homotopy H(A) of a P∞-algebra A.

Proposition 10.1.5. The homotopy of a P∞-algebra A, that is the homologyH(A)
of the underlying chain complex, has a natural P-algebra structure.

Proof. Let A be a P∞-algebra with structure map ϕ ∈ Tw(P
¡
,EndA). The image

under ϕ of any element in P
¡ (1)

gives operations in EndA for which d is a deriva-
tion. Therefore these operations are stable on homology. Since the differential on
H(A) is null, they define a P-algebra structure on H(A). �

Considering only the P-algebra structure on H(A), we are losing a lot of data.
We will see in Sect. 10.3 that we can transfer a full structure of P∞-algebra on
H(A), which faithfully contains the homotopy type of A.

10.1.4 P(n)-Algebras

The preceding section motivates the following definition. A P(n)-algebra A is a ho-

motopy P-algebra such that the structure map ϕ :P ¡ → EndA vanishes on P
¡ (k)

for k > n. It is equivalent to a truncated solution of the Maurer–Cartan equation in
the convolution algebra g. Under this definition a P-algebra is a P(1)-algebra.

10.1.5 Example: Homotopy Associative Algebras, Alias A∞-Algebras

We pursue the study of homotopy associative algebras, started in Sec. 9.2, but in
terms of twisting morphism this time.

Consider the nonsymmetric Koszul operad As, see Sect. 9.1.5. We proved in
Sect. 9.2 that an algebra over �As

¡
, i.e. a homotopy associative algebra or A∞-

algebra, is a chain complex (A,dA) equipped with maps mn : A⊗n→ A of degree
n− 2, for any n≥ 2, which satisfy

∑

p+q+r=n
k=p+r+1>1, q>1

(−1)p+qr+1mk ◦p+1 mq = ∂A(mn)= dA ◦mn − (−1)n−2mn ◦ dA⊗n .
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Notice that an associative algebra is an A∞-algebra such that the higher homo-
topies mn vanish for n≥ 3.

The Koszul dual nonsymmetric cooperad of As is one-dimensional in each arity
As

¡
n = Kμcn, where the degree of μcn is n − 1. The image under the infinitesimal

decomposition map of μcn is

�(1)
(
μcn
)=

∑

p+q+r=n
k=p+r+1>1, q>1

(−1)r(q+1)(μck; id, . . . , id
︸ ︷︷ ︸

p

,μcq, id, . . . , id︸ ︷︷ ︸
r

)
.

Since the operad As is a nonsymmetric operad, the convolution algebra is given
by Hom(As

¡
,EndA), without the action of the symmetric groups. It is isomorphic to

the following dg module

∏

n≥1

Hom
(
As

¡
,EndA

)
(n)∼=

∏

n≥1

Hom
(
(sA)⊗n, sA

)∼=
∏

n≥1

s−n+1 Hom
(
A⊗n,A

)
.

The right-hand side is the direct product of the components of the nonsymmetric
operad EndsA. Therefore, it is endowed with the pre-Lie operation of Sect. 5.9.15.
For an element f ∈Hom(A⊗n,A) and an element g ∈Hom(A⊗m,A), it is explicitly
given by

f � g :=
n∑

i=1

(−1)(i−1)(m+1)+(n+1)|g|f ◦i g.

This particular dg pre-Lie algebra was constructed by Murray Gerstenhaber in
[Ger63].

Proposition 10.1.6. The convolution dg pre-Lie algebra gAs,A = Hom(As
¡
,EndA)

is isomorphic to the dg pre-Lie algebra (
∏
n≥1 s

−n+1 Hom(A⊗n,A), �), described
above.

Proof. We denote by f̃ ∈Hom(As
¡
,EndA)(n) and by g̃ ∈ Hom(As

¡
,EndA)(m) the

maps which send μcn to f and μcm to g. Then the only nonvanishing component of
the pre-Lie product f̃ � g̃ in the convolution algebra Hom(As

¡
,EndA) is equal to the

composite

μcn+m−1 �→
n∑

i=1

(−1)(n−i)(m+1)(μcn; id, . . . , id, μcm︸︷︷︸
ith place

, id, . . . , id
)

�→
n∑

i=1

(−1)(n−i)(m+1)+(n−1)(|g|−m+1)f ◦i g = f � g. �

Under this explicit description of the convolution pre-Lie algebra Hom(As
¡
,

EndA), one can see that a twisting morphism in Tw(As
¡
,EndA) is exactly an A∞-

algebra structure on the dg module A.
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10.1.6 Example: Homotopy Lie Algebras, Alias L∞-Algebras

Applying Definition 10.1.1 to the operad P = Lie, a homotopy Lie algebra is an
algebra over the Koszul resolution �Lie

¡ ∼−→ Lie of the operad Lie. It is also called
an L∞-algebra, or strong homotopy Lie algebra in the literature.

Recall that an n-multilinear map f is called skew-symmetric if it satisfies the
condition f = sgn(σ )f σ for any σ ∈ Sn.

Proposition 10.1.7. An L∞-algebra structure on a dg module (A,dA) is a family
of skew-symmetric maps �n :A⊗n→A of degree |�n| = n− 2, for all n≥ 2, which
satisfy the relations

∑

p+q=n+1
p,q>1

∑

σ∈Sh−1
p,q

sgn(σ )(−1)(p−1)q(�p ◦1 �q)
σ = ∂A(�n),

where ∂A is the differential in EndA induced by dA.

Proof. Recall that there is a morphism of operads Lie → Ass defined by [ , ] �→
μ− μ(12). Its image under the bar construction functor induces a morphism of dg
cooperads BLie → BAss. By Proposition 7.3.1, the morphism between the syzygy
degree 0 cohomology groups of the bar constructions gives a morphism between
the Koszul dual cooperads Lie

¡ → Ass
¡
. If we denote the elements of these two

cooperads by Lie
¡
(n)∼=K�cn ⊗ sgnSn and by Ass

¡
(n)∼= Kμcn ⊗K[Sn] with |�cn| =

|μcn| = n− 1, this map is explicitly given by �cn �→
∑
σ∈Sn sgn(σ )(μcn)

σ . Hence, the

formula for the infinitesimal decomposition map of the cooperad Ass
¡

induces

�(1)
(
�cn
)=

∑

p+q=n+1
p,q>1

∑

σ∈Sh−1
p,q

sgn(σ )(−1)(p+1)(q+1)(�cp ◦1 �
c
q

)σ
,

since the (p, q)-unshuffles split the surjection Sp+q � (Sp × Sq)\Sp+q , cf.
Sect. 1.3.2. Let us denote by �n the image under the structure morphism Φ :
�Lie

¡ → EndA of the generators −s−1�cn. The Sn-module Lie
¡
(n) being the one-

dimensional signature representation, the map �n is skew-symmetric. The commu-
tation of the structure morphism Φ with the differentials reads

∑

p+q=n+1
p,q>1

∑

σ∈Sh−1
p,q

sgn(σ )(−1)(p−1)q (�p ◦1 �q)
σ = ∂A(�n).

�

As in the case of A∞-algebras, we can denote the differential of A by �1 := −dA,
and include it in the relations defining an L∞-algebra as follows

∑

p+q=n+1

∑

σ∈Sh−1
p,q

sgn(σ )(−1)(p−1)q(�p ◦1 �q)
σ = 0.
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This way of writing the definition of a homotopy Lie algebra is more compact but
less explicit about the role of the boundary map �1 =−dA.

In the next proposition, we extend to homotopy algebras the anti-symmetriza-
tion construction of Sect. 1.1.9, which produces a Lie bracket from an associative
product.

Proposition 10.1.8. [LS93] Let (A,dA, {mn}n≥2) be an A∞-algebra structure on a
dg module A. The anti-symmetrized maps �n :A⊗n→A, given by

�n :=
∑

σ∈Sn
sgn(σ )mn

σ ,

endow the dg module A with an L∞-algebra structure.

Proof. It is a direct corollary of the proof of the previous proposition. The map
of cooperads Lie

¡ → Ass
¡

induces a morphism of dg operads �Lie
¡ → �Ass

¡
,

given by �cn �→
∑
σ∈Sn sgn(σ )(μcn)

σ . Hence, the pullback of a morphism �Ass
¡ →

EndA, defining an A∞-algebra structure on A, produces a morphism of dg operads
�Lie

¡ → EndA, which is the expected L∞-algebra structure on A. �

10.1.7 The Convolution Algebra Encoding L∞-Algebras

The underlying module of the convolution pre-Lie algebra HomS(Lie
¡
,EndA) is

isomorphic to

∏

n≥1

HomS

(
Lie

¡
,EndA

)
(n)∼=

∏

n≥1

Hom
(
Sn(sA), sA

)∼=
∏

n≥1

s−n+1 Hom
(
ΛnA,A

)
,

where ΛnA is the coinvariant space of A⊗n with respect to the signature represen-
tation. Explicitly, it is the quotient of A⊗n by the relations

a1 ⊗ · · · ⊗ an − sgn(σ )εaσ(1) ⊗ · · · ⊗ aσ(n)
for a1, . . . , an ∈ A and for σ ∈ Sn with ε the Koszul sign given by the permutation
of the graded elements a1, . . . , an.

We endow the right-hand side with the following binary product

f � g :=
∑

p+q=n+1
p,q>1

∑

σ∈Sh−1
p,q

sgn(σ )(−1)(p−1)|g|(f ◦1 g)
σ ,

for f ∈Hom(ΛpA,A) and g ∈Hom(ΛqA,A).
This product is called the Nijenhuis–Richardson product from [NR66, NR67].
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Proposition 10.1.9. For any dg module A, the Nijenhuis–Richardson product en-
dows the space

∏
n≥1 s

−n+1 Hom(ΛnA,A) with a dg pre-Lie algebra structure,

which is isomorphic to the convolution dg pre-Lie algebra HomS(Lie
¡
,EndA).

Proof. The proof is similar to the proof of Proposition 10.1.6 with the explicit form
of the infinitesimal decomposition map of the cooperad Lie

¡
given above. We first

check that the two products are sent to one another under this isomorphism. As a
consequence, the Nijenhuis–Richardson product is a pre-Lie product. �

Under this explicit description of the convolution pre-Lie algebra HomS(Lie
¡
,

EndA), we leave it to the reader to verify that a twisting element is exactly an L∞-
algebra structure on the dg module A.

For other examples of homotopy algebras, we refer to Chap. 13, where examples
of algebras over operads are treated in detail.

10.1.8 Equivalent Definition in Terms of Square-Zero Coderivation

In this section, we give a third equivalent definition of the notion of P∞-algebra. A
structure of P∞-algebra can be faithfully encoded as a square-zero coderivation as
follows.

By Proposition 6.3.8, we have the following isomorphisms

HomS

(
P

¡
,EndA

)∼=HomModK

(
P

¡
(A),A

)∼= Coder
(
P

¡
(A)
)
,

where Coder(P
¡
(A)) stands for the module of coderivations on the cofree P

¡
-

coalgebra P
¡
(A). Let us denote by ϕ �→ drϕ the induced isomorphism from left to

right.

Proposition 10.1.10. The map HomS(P
¡
,EndA) ∼= Coder(P

¡
(A)) is an isomor-

phism of Lie algebras:
[
drα, d

r
β

]= dr[α,β].

Proof. Let ϕ̄ be the image of ϕ under the first isomorphism HomS(P
¡
,EndA) ∼=

HomModK(P
¡
(A),A). If we denote by projA the canonical projection P

¡
(A)�

A, then Proposition 6.3.8 gives projA(d
r
ϕ) = ϕ̄. A direct computation shows that

projA([drα, drβ ])= [α,β], which concludes the proof. �

We consider the sum

dϕ := dP¡
(A)

+ drϕ
of drϕ with the internal differential on P

¡
(A).
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Proposition 10.1.11. A structure of P∞-algebra on a dg module A is equivalent
to a square-zero coderivation on the cofree P

¡
-coalgebra P

¡
(A).

Explicitly, an element ϕ ∈ HomS(P
¡
,EndA), such that ϕ(id) = 0, satisfies the

Maurer–Cartan equation ∂(ϕ)+ ϕ � ϕ = 0 if and only if dϕ2 = 0.

Proof. Any ϕ ∈ Tw(P
¡
,EndA) induces a coderivation drϕ of degree −1 on P

¡
(A).

Since ϕ is a twisting morphism, it vanishes on the counit of P
¡
. As a consequence

drϕ vanishes on A⊂P
¡
(A). Under the same notation as in Proposition 10.1.10, we

have

projA
(
dϕ

2)= projA
(
d
P

¡
(A)

◦ drϕ + drϕ ◦ dP¡
(A)

+ (drϕ
)2)

= dA ◦ ϕ̄ + ϕ̄ ◦ dP¡
(A)

+ ϕ � ϕ
in HomModK(P

¡
(A),A). We conclude with the relation

∂(ϕ)+ ϕ � ϕ = ∂(ϕ̄)+ ϕ � ϕ = dA ◦ ϕ̄ + ϕ̄ ◦ dP¡
(A)

+ ϕ � ϕ. �

In this case, (P
¡
(A), dϕ) becomes a quasi-cofree P

¡
-coalgebra. This proposi-

tion shows that a homotopy P-algebra structure on a dg module A is equivalent
to a dg P

¡
-coalgebra structure on P

¡
(A), where the structure maps are encoded

into the coderivation. We call codifferential any degree −1 square-zero coderiva-
tion on a P

¡
-coalgebra. So the set of P∞-algebra structures is equal to the set of

codifferentials Codiff(P
¡
(A)).

For example, we get the definitions of A∞-algebras and of L∞-algebras in terms
a square-zero coderivations.

Proposition 10.1.12. An A∞-algebra structure on a dg module A is equivalent to
a codifferential on the noncounital cofree associative coalgebra �T c(sA).

Similarly, an L∞-algebra structure on A is equivalent to a codifferential on the
noncounital cofree cocommutative coalgebra �Sc(sA).

Proof. Since the Koszul dual nonsymmetric cooperad As
¡

is isomorphic to As∗ ⊗
H

Endc
s−1K

by Sect. 7.2.3, the quasi-cofree As
¡
-coalgebra As

¡
(A) is isomorphic to the

desuspension of the noncounital cofree associative coalgebra s−1�T c(sA).
In the same way, since the Koszul dual cooperad Lie

¡
is isomorphic to Com∗ ⊗

H

Endc
s−1K

by Sect. 7.2.3, the quasi-cofree Lie
¡
-coalgebra Lie

¡
(A) is isomorphic to the

desuspension of the noncounital cofree cocommutative coalgebra s−1�Sc(sA). �

10.1.9 Rosetta Stone

Using the bar–cobar adjunction of Sect. 6.5.3, a P∞-algebra structure on a dg mod-
ule A is equivalently defined by a morphism of dg cooperads P

¡ → B EndA.
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Notice that the endomorphism operad EndA is unital but non-necessarily aug-
mented. So by the bar construction of EndA, we mean B EndA :=T c(s EndA), en-
dowed with the same differential map as in Sect. 6.5.1. With this definition, the
bar–cobar adjunction still holds.

The four equivalent definitions of homotopy P-algebras are summed up in the
following theorem.

Theorem 10.1.13 (Rosetta Stone). The set of P∞-algebra structures on a dg mod-
ule A is equivalently given by

Homdg Op
(
�P

¡
,EndA

)∼= Tw
(
P

¡
,EndA

)

∼=Homdg Coop
(
P

¡
,B EndA

)∼= Codiff
(
P

¡
(A)
)
.

10.2 Homotopy Algebras: Morphisms

In this section, we make the notion of morphism of P∞-algebras explicit. Then
we introduce and study the more general notion of infinity-morphism, denoted ∞-
morphism, of P∞-algebras, which will prove to be more relevant to the homotopy
theory of P∞-algebras. The data of an ∞-morphism does not consist in only one
map but in a family of maps parametrized by the elements of the Koszul dual co-
operad P

¡
. More precisely, these maps live in EndAB := {Hom(A⊗n,B)}n∈N, the

space of multilinear maps between two P∞-algebras.
The examples of ∞-morphisms of A∞-algebras and of L∞-algebras are given.

10.2.1 Morphisms of P∞-Algebras

A morphism f :A→ B between P∞-algebras is a morphism of algebras over the
operad P∞ as in Sect. 5.2.3.

In terms of twisting morphisms, they are described as follows. Let A and B be
two P∞-algebras, whose associated twisting morphisms are denoted by ϕ :P ¡ →
EndA and ψ :P ¡ → EndB respectively. We denote by EndAB the S-module defined
by

EndAB :=
{

Hom
(
A⊗n,B

)}
n∈N.

In other words, a morphism of P∞-algebras is map f : A→ B such that the fol-
lowing diagram commutes

P
¡ ϕ

ψ

EndA

f∗

EndB
f ∗

EndAB,
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where f∗ is the pushforward by f

g ∈Hom
(
A⊗n,A

) �→ f∗(g) := fg ∈Hom
(
A⊗n,B

)
,

and where f ∗ is the pullback by f

g ∈Hom
(
B⊗n,B

) �→ f ∗(g) := g(f, . . . , f ) ∈Hom
(
A⊗n,B

)
.

In this case, the two homotopy P-algebra structures strictly commute under f .

10.2.2 Infinity-Morphisms of P∞-Algebras

We use the third equivalent definition of homotopy algebras to define the notion of
∞-morphism of homotopy algebras, which is an enhancement of the previous one.

By Proposition 10.1.11, a homotopy P-algebra structure on A (resp. on B) is
equivalent to a dg P

¡
-coalgebra structure on P

¡
(A) (resp. on P

¡
(B)), with codif-

ferential denoted by dϕ (resp. dψ ).
By definition, an ∞-morphism of P∞-algebras is a morphism

F : (P ¡
(A), dϕ

)→ (P ¡
(B), dψ

)

of dg P
¡
-coalgebras. The composite of two ∞-morphisms is defined as the com-

posite of the associated morphisms of dg P
¡
-coalgebras:

F ◦G :=P
¡
(A)→P

¡
(B)→P

¡
(C).

Therefore P∞-algebras with their ∞-morphisms form a category, which is de-
noted by ∞-P∞-alg. An ∞-morphism between P∞-algebras is denoted by

A� B

to avoid confusion with the above notion of morphism.

Proposition 10.2.1. Let C be a cooperad. Any morphism F : C (V )→ C (W) of
cofree C -coalgebras is completely characterized by its projection f̄ onto the co-
generators f̄ := projW ◦ F : C (V )→W .

Explicitly, the unique morphism F : C (V )→ C (W) of C -coalgebras which ex-
tends a map f̄ : C (V )→W is given by the following composite

F = C (V )= C ◦ V �◦IdV−−−→ C ◦C ◦ V IdC ◦f̄−−−−→ C ◦W = C (W).

Proof. The proof uses the same ideas as in Proposition 6.3.8. So it is left to the
reader as an exercise. �
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This proposition shows that an ∞-morphism of P∞-algebras is equivalently
given by a map f̄ :P ¡

(A)→ B , whose induced morphism F :P ¡
(A)→P

¡
(B)

of P
¡
-coalgebras commutes with the differentials. Any such map f̄ is equivalent to

a map f :P ¡ → EndAB . So an ∞-morphism is made out of a family of maps, from

A⊗n→ B , parametrized by P
¡
(n), for any n.

The next section makes the relation satisfied by an∞-morphism explicit in terms
of this associated map f .

10.2.3 Infinity-Morphisms in Terms of Twisting Morphisms

The module HomS(P
¡
,EndA) with its pre-Lie convolution product � form the pre-

Lie algebra gA := (HomS(P
¡
,EndA), �).

The module HomS(P
¡
,EndB) is an associative algebra with the associative

product  defined by

ψ  ξ :=P
¡ �−→P

¡ ◦P
¡ ψ◦ξ−−→ EndB ◦ EndB

γEndB−−−→ EndB.

(In general, this is not a graded associative algebra.) We denote this associative
algebra by

gB :=
(
HomS

(
P

¡
,EndB

)
,
)
.

Observe that the convolution product � is defined by the infinitesimal decomposition
map �(1), while the product  is defined by the total decomposition map �.

The composite of maps endows the S-module EndAB with a left module structure
over the operad EndB :

λ : EndB ◦ EndAB→ EndAB,

and an infinitesimal right module structure over the operad EndA,

ρ : EndAB ◦(1) EndA→ EndAB.

They induce the following two actions on gAB :=HomS(P
¡
,EndAB):

 for ϕ ∈ gA and f ∈ EndAB , we define f ∗ ϕ :P ¡ → EndAB by

f ∗ ϕ :=P
¡ �(1)−−→P

¡ ◦(1) P ¡ f ◦(1)ϕ−−−→ EndAB ◦(1) EndA
ρ−→ EndAB;

 for ψ ∈ gB and f ∈ EndAB , we define ψ � f :P ¡ → EndAB by

ψ � f :=P
¡ �−→P

¡ ◦P
¡ ψ◦f−−→ EndB ◦ EndAB

λ−→ EndAB.
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Proposition 10.2.2. The module (gAB,∗) is a right module over the pre-Lie algebra
(gA, �), see Sect. 1.4.4. The module (gAB,�) is a left module over the associative
algebra (gB,).

Proof. The right action ∗ coincides with the pre-Lie subalgebra structure on gA⊕gAB
of the pre-Lie algebra (gA⊕B, �). In the same way, the left action � coincides
with the associative subalgebra structure on gB ⊕ gAB of the associative algebra
(gA⊕B,). �

Theorem 10.2.3. Let ϕ ∈ Tw(P
¡
,EndA) and ψ ∈ Tw(P

¡
,EndB) be two P∞-

algebras. An ∞-morphism F :P¡
(A)→P

¡
(B) of P∞-algebras is equivalent to

a morphism of dg S-modules f :P¡ → EndAB such that

f ∗ ϕ −ψ � f = ∂(f )
in HomS(P

¡
,EndAB):

P
¡ �

�(1)
∂(f )

P
¡ ◦P

¡

ψ◦f

EndB ◦EndAB

λ

P
¡ ◦(1) P¡ f ◦(1)ϕ

EndAB ◦(1) EndA
ρ

EndAB .

Proof. The morphism F :P ¡
(A)→P

¡
(B) of dg P

¡
-coalgebras commutes with

the differentials dϕ and dψ if and only if projB(dψ ◦ F − F ◦ dϕ) = 0. Using the
explicit form of F given by the previous lemma, this relation is equivalent to the
following commutative diagram

P
¡
(A)

�◦Id

dϕ

P
¡ ◦P

¡
(A)

Id◦f̄
P

¡
(B)

dB+ψ̄

P
¡
(A)

f̄
B.

We conclude with the explicit form of dϕ given in Proposition 6.3.8. �

Proposition 10.2.4. Let ϕ ∈ Tw(P
¡
,EndA),ψ ∈ Tw(P

¡
,EndB), and ζ ∈ Tw(P

¡
,

EndC) be three P∞-algebras. Let f ∈ HomS(P
¡
,EndAB) and g ∈ HomS(P

¡
,

EndBC) be two ∞-morphisms.

Under the isomorphism between codifferentials on cofree P
¡
-coalgebras and

twisting morphisms from P
¡
, the composite of the two ∞-morphisms f and g is
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equal to

g  f :=P
¡ �−→P

¡ ◦P
¡ g◦f−−→ EndBC ◦ EndAB→ EndAC,

where the last map is the natural composition of morphisms.

Proof. By the adjunction HomS(P
¡
,EndAB)

∼=Hom(P
¡
(A),B), f is equivalent to

a map f̄ : P ¡
(A)→ B . This latter one is equivalent to a morphism of dg P

¡
-

coalgebras F : P ¡
(A)→ P

¡
(B) by Proposition 10.2.1. Respectively, g : P ¡ →

EndBC is equivalent to a morphism of dg P
¡
-coalgebras G :P ¡

(B)→P
¡
(C). By

the formula given in Proposition 10.2.1, the projection of the composite G ◦F onto
the space of cogenerators C is equal to

P
¡
(A)∼=P

¡ ◦A �◦IdA−−−→P
¡ ◦P

¡ ◦A Id◦f̄−−−→P
¡
(B)

ḡ−→ C.

We conclude by using the adjunction HomS(P
¡
,EndAC)

∼= Hom(P
¡
(A),C) once

again. �

Since the cooperad P
¡

is weight graded, any map f ∈ HomS(P
¡
,EndAB) de-

composes according to this weight, f(n) : P ¡ (n)→ EndAB . Since � preserves this

weight, the square in the diagram of Theorem 10.2.3 applied to P
¡ (n)

involves only
the maps f(k) up to k = n−1. Therefore, the term f(n) is a homotopy for the relation

f ∗ ϕ −ψ � f = ∂(f(n)) in HomS(P
¡ (n)
,EndAB).

The first component f(0) : I → Hom(A,B) of an ∞-morphism is equivalent to
a chain map f(0)(id) :A→ B between the underlying chain complexes. In order to
lighten the notation, we still denote this latter map by f(0).

10.2.4 Infinity-Isomorphism and Infinity-Quasi-isomorphism

An ∞-morphism f is called an ∞-isomorphism (resp. ∞-quasi-isomorphism) if
its first component f(0) : A→ B is an isomorphism (resp. a quasi-isomorphism) of
chain complexes. We will show later in Sect. 10.4.1 that ∞-isomorphisms are the
isomorphisms of the category ∞-P∞-alg.

10.2.5 Infinity-Morphisms and P-Algebras

Proposition 10.2.5. A morphism of P∞-algebras is an∞-morphism with only one
nonvanishing component, namely the first one f(0) :A→ B .
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Proof. Let f : P ¡
(A)→ B be a morphism of dg modules such that f(n) = 0 for

n≥ 1. Since P(0) = I, the first component f(0) of f is morphism of dg mod-
ules from A to B . In this particular case, the relation ρ((f ◦(1) ϕ)(�r))− λ((ψ ◦
f )(�l))= ∂(f ) applied to P

¡ (n)
for n≥ 1 is equivalent to f∗(ϕ)=ψ(f ∗). �

The category of P∞-algebras with their morphisms forms a non-full subcate-
gory of the category of P∞-algebras with the ∞-morphisms.

One can also consider the category of P-algebras with ∞-morphisms. It forms
a full subcategory of ∞-P∞-alg, which is denoted by ∞-P-alg. Altogether these
four categories assemble to form the following commutative diagram

P-alg
not full

f.f.

∞-P-alg

f.f.

P∞-alg
not full ∞-P∞-alg,

where the vertical functors are full and faithful.

10.2.6 Infinity-Morphisms of A∞-Algebras and L∞-Algebras

Proposition 10.2.6. An ∞-morphism f : A� B of A∞-algebras is a family of
maps {fn : A⊗n→ B}n≥1 of degree n− 1 which satisfy: dB ◦ f1 = f1 ◦ dA, that is
f1 is a chain map, and for n≥ 2,

∑

p+1+r=k
p+q+r=n

(−1)p+qrfk ◦
(

IdA, . . . , IdA︸ ︷︷ ︸
p

,mAq , IdA, . . . , IdA︸ ︷︷ ︸
r

)

−
∑

k≥2
i1+···+ik=n

(−1)εmBk ◦ (fi1, . . . , fik )= ∂(fn),

in Hom(A⊗n,B).

Under the tree representation, this relation becomes

∂(fn)

=
∑
(−1)p+qr

mAq

fk

−
∑
(−1)ε

fi1 fi2 · · · fik

mBk

.



10.2 Homotopy Algebras: Morphisms 375

Proof. Let ϕ ∈ Tw(As
¡
,EndA) and ψ ∈ Tw(As

¡
,EndB) be two A∞-algebra struc-

tures. Recall that As
¡
n =Kμcn with |μcn| = n− 1. We denote by mAn ∈Hom(A⊗n,A)

the image of μcn under ϕ and by mBn ∈Hom(B⊗n,B) the image of μcn under ψ .
An ∞-morphism f : As

¡ → EndAB between A and B is a family of maps
{fn : A⊗n→ B}n≥1 of degree n − 1. For n ≥ 2, the formula of the infinitesimal
decomposition map �(1) of the cooperad As

¡
shows that the image of μcn under

f ∗ ϕ in EndAB is equal to

(f ∗ ϕ)(μcn
)=

∑

p+1+r=k
p+q+r=n

(−1)p+qrfk ◦
(

IdA, . . . , IdA︸ ︷︷ ︸
p

,mAq , IdA, . . . , IdA︸ ︷︷ ︸
r

)
.

On the other hand, the formula of the decomposition map � of the cooperad As
¡
,

given in Lemma 9.1.2, shows that the image of μcn under ψ � f in EndAB is equal to

(ψ � f )
(
μcn
)=

∑

k≥2
i1+···+ik=n

(−1)εmBk ◦ (fi1, . . . , fik ),

where ε = (k−1)(i1−1)+(k−2)(i2−1)+· · ·+2(ik−2−1)+(ik−1−1). Therefore
we find the same formula as in Sect. 9.2.6. �

The case of L∞-algebras is similar.

Proposition 10.2.7. An ∞-morphism f : A� B of L∞-algebras, is a family of
maps {fn :ΛnA→ B}n≥1 of degree n− 1 which satisfy: dA ◦ f1 = f1 ◦ dA, that is
f1 is a chain map, and for n≥ 2,

∑

p+q=n+1
p,q>1

∑

σ∈Sh−1
p,q

sgn(σ )(−1)(p−1)|q|(fp ◦1 �
A
q

)σ

−
∑

k≥2
i1+···+ik=n

∑

σ∈Sh−1
(i1,...,ik )

sgn(σ )(−1)ε�Bk ◦ (fi1, . . . , fik )σ = ∂(fn),

in Hom(ΛnA,B).

Proof. The proof relies on the explicit morphism of cooperads Lie
¡ → Ass

¡
given in

the proof of Proposition 10.1.7. The results for A∞-algebras transfer to L∞ under
this morphism. �

So far, we can see why L∞-algebras are very close to A∞-algebras: the Koszul
dual cooperad Lie

¡
of Lie is the antisymmetrized version of Ass

¡
.
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10.3 Homotopy Transfer Theorem

In this section, we prove that a homotopy P-algebra structure on a dg module in-
duces a homotopy P-algebra structure on any homotopy equivalent dg module,
with explicit formulas. This structure is called “the” transferred P∞-algebra struc-
ture. We make the examples of A∞-algebras and L∞-algebras explicit.

When A is a P∞-algebra, we have seen in Proposition 10.1.5 that its homotopy
H(A) carries a natural P-algebra structure. When working over a field, the homo-
topy H(A) can be made into a deformation retract of A. It enables us to transfer
the P∞-algebra structure from A to H(A). These higher operations, called the op-
eradic Massey products, extend the P-algebra structure of H(A). They contain the
full homotopy data ofA, since this P∞-algebraH(A) is homotopy equivalent to A.

A meaningful example is given by applying the Homotopy Transfer Theorem to
P =D, the algebra of dual numbers on one generator. In this case, a D-algebra A
is a bicomplex and the transferred structured onH(A) corresponds to the associated
spectral sequence.

Recall that the particular case P = As has been treated independently in
Sect. 9.4. It serves as a paradigm for the general theory developed here.

The Homotopy Transfer Theorem for A∞-algebras and L∞-algebras has a long
history in mathematics, often related to the Perturbation Lemma. We refer the reader
to the survey of Jim Stasheff [Sta10] and references therein. Its extension to the gen-
eral operadic setting has been studied in the PhD thesis of Charles Rezk [Rez96].
One can find in the paper [Bat98] of Michael Batanin the case of algebras over non-
symmetric simplicial operads. A version of HTT was recently proved for algebras
over the bar–cobar construction �BP by Joseph Chuang and Andrey Lazarev in
[CL10] and by Sergei Merkulov in [Mer10a]. Using a generalization of the Pertur-
bation Lemma, it was proved for P∞-algebras by Alexander Berglund in [Ber09].
The existence part of the theorem can also be proved by model category arguments,
see Clemens Berger and Ieke Moerdijk [BM03a] and Benoit Fresse [Fre09b].

10.3.1 The Homotopy Transfer Problem

Let (V , dV ) be a homotopy retract of (W,dW ):

(W,dW )h

p

(V, dV ),
i

IdW −ip = dWh+ hdW ,
where the chain map i is a quasi-isomorphism.

The transfer problem is the following one: given a structure of P∞-algebra
on W , does there exist a P∞-algebra structure on V such that i extends to an
∞-quasi-isomorphism of P∞-algebras? We will show that this is always possible
and we say that the P∞-algebra structure of W has been transferred to V .
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Theorem 10.3.1 (Homotopy Transfer Theorem). Let P be a Koszul operad and
let (V , dV ) be a homotopy retract of (W,dW ). Any P∞-algebra structure on W
can be transferred into a P∞-algebra structure on V such that i extends to an
∞-quasi-isomorphism.

Proof. To prove this theorem, we use the third definition of a P∞-algebra given in
the Rosetta Stone (Theorem 10.1.13):

Homdg Op
(
�P

¡
,EndA

)∼= Tw
(
P

¡
,EndA

)∼=Homdg Coop
(
P

¡
,B EndA

)
.

The plan of the proof is the following one. First, we show in Proposition 10.3.2 that
the homotopy retract data between V and W induces a morphism of dg cooperads
B EndW → B EndV . Since a P∞-algebra structure onW is equivalently given by a
morphism of dg cooperads P

¡ → B EndW , the composite

P
¡ → B EndW → B EndV

defines a P∞-algebra structure on V .
We give an explicit formula for this transferred structure in Theorem 10.3.3. The

extension of i into an∞-quasi-isomorphism is provided through an explicit formula
in Theorem 10.3.6. �

10.3.2 The Morphism of DG Cooperads B EndW → B EndV

Let (V , dV ) be a homotopy retract of (W,dW ). We consider the map defined by
μ ∈ EndW(n) �→ pμi⊗n ∈ EndV (n). Since i and p are morphisms of dg modules,
this map is a morphism of dg S-modules. But it does not commute with the operadic
composition maps in general. For μ1 ∈ EndW(k) and μ2 ∈ EndW(l), with k + l −
1= n, and for 1≤ j ≤ k, we have

(
pμ1i

⊗k) ◦j
(
pμ2i

⊗l)= p(μ1 ◦j (ipμ2)
)
i⊗n,

which is not equal to p(μ1 ◦j μ2)i
⊗n because ip is not equal to IdW . Since ip is

homotopic to IdW , we will show that this morphism commutes with the operadic
composition maps only up to homotopy. In the previous example, we have to con-
sider the homotopy μ1 ◦j (hμ2) to get

p
(
μ1 ◦j

(
∂(h)μ2

))
i⊗n = p(μ1 ◦j μ2)i

⊗n − p(μ1 ◦j (ipμ2)
)
i⊗n.

Therefore the idea for defining the morphism of dg cooperads Ψ : B EndW →
B EndV is to label the internal edges by the homotopy h as follows. A ba-
sis of T c(s EndW) is given by trees labeled by elements of s EndW . Let t :=
t (sμ1, . . . , sμk) be such a tree, where the vertices 1, . . . , k are read for bottom to top
and from left to right. The image of T under Ψ is defined by the suspension of the
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following composite: we label every leaf of the tree t (μ1, . . . ,μk) with i : V →W ,
every internal edge by h and the root by p.

sμ4

sμ2 sμ3

sμ1

�→s

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

i i

i i i i

μ4
h

μ2
h

μ3
h

μ1

p

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

This composite scheme defines a map in s EndV . Since T c(s EndV ) is a conilpo-
tent cofree cooperad, this map T c(s EndW)→ s EndV extends to a unique mor-
phism of cooperads Ψ :T c(s EndW)→T c(s EndV ). Since the degree of h is +1,
the degree of Ψ is 0. The next result states that this morphism of cooperads com-
mutes with the differentials.

Proposition 10.3.2. [vdL03] Let (V , dV ) be a homotopy retract of (W,dW ). The
map Ψ : B EndW → B EndV , defined above, is a morphism of dg cooperads.

Proof. In this proof, by a slight abuse of notation, we denote the above defined map
T c(s EndW)→ s EndV by Ψ . By Proposition 10.5.3, we have to check that

(ξ) : ∂(Ψ )−ΨT c(Id;γEndW )�′ + γEndV T c(Ψ )�̄= 0,

where the map

γEndV :T c(sEndV )� T c(sEndV )
(2)→ sEndV

(respectively γEndW ) is given by the partial compositions of the operad EndV (re-
spectively EndW ), see Sect. 10.5.1. So it vanishes on T c(s EndV )(≥3) (respectively
on T c(s EndW)(≥3)). We apply Equation (ξ) to a tree t = t (sμ1, . . . , sμk).

1. The first term ∂(Ψ )(t) is equal to the sum over the internal edges e of t of trees
st (μ1, . . . ,μk), where every internal edge is labeled by h except e, which is
labeled by ∂(h)= dWh+ hdW .

2. In the second term, one singles out a subtree with two vertices out of t , composes
it in EndW and then one applies Ψ to the resulting tree. Therefore it is equal to the
sum over the internal edges e of t of trees st (μ1, . . . ,μk), where every internal
edge is labeled by h except e, which is labeled by IdW .

3. The third term consists in splitting the tree t into two parts, applying Ψ to the two
induced subtrees and then composing the two resulting images in EndV . Hence
it is equal to the sum over all internal edges e of t of trees st (μ1, . . . ,μk), where
every internal edge is labeled by h except e, which is labeled by ip.
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Finally, Equation (ξ) applied to the tree t is equal to the sum, over all internal edges
e of t , of trees st (μ1, . . . ,μk), where every internal edge is labeled by h except e,
which is labeled by

dWh+ hdW − IdW +ip = 0.

It concludes the proof. �

10.3.3 Transferred Structure

Let ϕ ∈ Tw(P
¡
,EndW) be a P∞-algebra structure on W . We define a transferred

structure of P∞-algebra ψ ∈ Tw(P
¡
,EndV ) on V as follows.

By Sect. 6.5.4, the twisting morphism ϕ is equivalent to a morphism of dg co-
operads fϕ : P ¡ → B EndW . We compose it with the morphism of dg cooperads
Ψ : B EndW → B EndV . The resulting composite Ψfϕ is a morphism of dg cooper-
ads, which gives the expected twisting morphism ψ ∈ Tw(P

¡
,EndV ) by Sect. 6.5.4

again.

P
¡

fψ

fϕ
B EndW

Ψ

B EndV .

The associated twisting morphism ψ : P ¡ → EndV is equal to the projection of
Ψfϕ on EndV . By a slight abuse of notation, we still denote it by

ψ = Ψfϕ :P ¡ → EndV .

Theorem 10.3.3 (Explicit formula). Let P be a Koszul operad, let ϕ ∈ Tw(P
¡
,

EndW) be a P∞-algebra structure onW , and let (V , dV ) be a homotopy retract of
(W,dW ).

The transferred P∞-algebra structure ψ ∈ Tw(P
¡
,EndV ), defined above, on

the dg module V is equal to the composite

P
¡ �

P
¡−−−→T c

( �P¡) T c(sϕ)−−−−→T c(sEndW)
Ψ−→ EndV ,

where � �P¡ is the structure map corresponding to the combinatorial definition of

the cooperad P
¡
, see Sect. 5.8.8.

Proof. By Proposition 5.8.6, the unique morphism of dg cooperads fϕ : P ¡ →
B EndW =T c(s EndW), which extends sϕ :P ¡ → s EndW , is equal to

P
¡ �P

¡
−−−→T c

( �P ¡) T c(sϕ)−−−−→T c(sEndW). �
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So the transferred structure given here is the composite of three distinct maps.
The first map depends only on the cooperad P

¡
, that is on the type of algebraic

structure we want to transfer. The second map depends only the starting P∞-
algebra structure. And the third map depends only on the homotopy retract data.

10.3.4 Examples: A∞ and L∞-Algebras Transferred

In the case of A∞-algebras, we recover the formulas given in Sect. 9.4.

Theorem 10.3.4. Let {mn :W⊗n→W }n≥2 be an A∞-algebra structure onW . The
transferred A∞-algebra structure {m′n : V⊗n→ V }n≥2 on a homotopy retract V is
equal to

m′n =
∑

PTn

±

i i

i i i i

m2
h

m3
h

m2
h

m2

p

,

where the sum runs over the set PTn of planar rooted trees with n leaves.

Proof. The combinatorial definition of the (nonsymmetric) cooperad As
¡

is given
by

�
As

¡ : μcn �→
∑

t∈PT n

±t(μc) ∈T c
(

As
¡)
,

where the sum runs over planar rooted trees t with n leaves and whose vertices with
k inputs are labeled by μck . We conclude with Theorem 10.3.3. �

Theorem 10.3.5. Let {�n :W⊗n→W }n≥2 be an L∞-algebra structure on W . The
transferred L∞-algebra structure {ln : V⊗n→ V }n≥2 on a homotopy retract V is
equal to

ln =
∑

t∈RTn
±pt(�,h)i⊗n,

where the sum runs over rooted trees t with n leaves and where the notation t (�, h)
stands for the n-multilinear operation on V defined by the composition scheme t
with vertices labeled by the �k and internal edges labeled by h.
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Proof. By Sect. 7.2.3, the Koszul dual cooperad Lie
¡

is isomorphic to Endc
s−1K

⊗
H

Com∗. Therefore, the decomposition map of the combinatorial definition of the co-
operad Lie

¡
is given, up to signs, by the one of Com∗, which is made up of nonplanar

rooted trees. �

10.3.5 Infinity-Quasi-isomorphism

We define a map Ψ̃ : T c(sEndW)→ EndVW by the same formula as Ψ except for
the root, which is labeled by the homotopy h and not by p this time. We consider
the map i∞ :P ¡ → EndVW defined by the following composite:

i∞ :P ¡
�

P
¡

−−−→T
(
P

¡ ) T (sϕ)−−−−→T (sEndW)
Ψ̃−→ EndVW

and by id ∈ I �→ i ∈Hom(V ,W)⊂ EndVW .

Theorem 10.3.6. Let P be a Koszul operad, let (W,ϕ) be a P∞-algebra, and let
(V , dV ) be a homotopy retract of (W,dW ).

The map i∞ : P
¡ → EndVW is an ∞-quasi-isomorphism between the P∞-

algebra (V ,ψ), with the transferred structure, and the P∞-algebra (W,ϕ).

Proof. Using Theorem 10.2.3, we have to prove that i∞ ∗ψ − ϕ � i∞ = ∂(i∞).
The first term i∞ ∗ψ is equal to

((
Ψ̃T c(sϕ)�

P
¡
) ◦(1)

(
ΨT c(sϕ)�

P
¡
))
�(1) + i∗ΨT c(sϕ)�

P
¡ .

It is equal to the composite Ψ̂T c(sϕ)�
P

¡ , where Ψ̂ is defined as Ψ̃ , except that
either one internal edge or the root is labeled by ip instead of h. To prove this, we
use the formula of �

P
¡ given in Sect. 5.8 in terms of the iterations of �̃.

The second term −ϕ � i∞ is equal to −(ϕ ◦ (Ψ̃T c(sϕ)�
P

¡ ))�. It is equal to

−Ψ̆T c(sϕ)�
P

¡ , where Ψ̆ is defined as Ψ , except for the root, which is labeled by
the identity of W .

The right-hand side ∂(i∞) is equal to dEndVW
i∞− i∞ dP¡ . The latter term i∞ dP¡

is equal to Ψ̃T c(sϕ)�
P

¡ d
P

¡ . Since d
P

¡ is a coderivation of the cooperad P
¡
,

we get i∞ dP¡ = Ψ̃T c(sϕ; sϕ d
P

¡ )�
P

¡ , where the notation T c(f ;g) was intro-
duced in Sect. 6.3.2. The other term dEndVW

i∞ is equal to

−Ψ̃T c(sϕ; sdEndW ϕ)�P
¡ −Ψ̊T c(sϕ)�

P
¡ +i∗ΨT c(sϕ)�

P
¡ −Ψ̆T c(sϕ)�

P
¡ ,

where Ψ̊ is defined as Ψ̃ , except that one internal edge is labeled by [dW ,h] instead
of h. Since ϕ is a twisting morphism, ϕ ∈ Tw(P

¡
,EndW), it satisfies the Maurer–

Cartan equation −dEndW ϕ − ϕ dP¡ = (ϕ ◦(1) ϕ)�(1). Therefore

−Ψ̃T c(sϕ; sdEndW ϕ)− Ψ̃T c(sϕ; sϕ d
P

¡ )= �ΨT c(sϕ)�
P

¡ ,
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where �Ψ is defined as Ψ̃ except that one internal edge is labeled by the identity of
W instead of h.

We conclude by using [dW ,h] = IdW −ip. �

This theorem provides a homotopy control of the transferred structure: the
starting P∞-algebra and the transferred one are related by an explicit ∞-quasi-
isomorphism. Therefore the two P∞-algebras are homotopy equivalent, see
Sect. 10.4.4.

Theorem 10.3.7. Let P be a Koszul operad and let i : V ∼−→ W be a quasi-iso-
morphism. Any P∞-algebra structure onW can be transferred into a P∞-algebra
structure on V such that i extends to an ∞-quasi-isomorphism.

Proof. Since we work over a field, any quasi-isomorphism i : V ∼−→W extends to a
homotopy retract

(W,dW )h

p

(V, dV ).
i

One shows this fact by refining the arguments of Lemma 9.4.4. So this result is
equivalent to Theorem 10.3.1. �

10.3.6 Operadic Massey Products

In this section, we suppose the characteristic of the ground field K to be 0. Let (A,d)
be a chain complex. Recall from Lemma 9.4.4, that, under a choice of sections, the
homology (H(A),0) is a deformation retract of (A,d)

(A,dA)h

p (
H(A),0

)
.

i

Lemma 10.3.8. By construction, these maps also satisfy the following side condi-
tions:

h2 = 0, ph= 0, hi = 0.

Proof. It is a straightforward consequence of the proof of Lemma 9.4.4. �

As a consequence, when A carries a P∞-algebra structure, its homotopy H(A)
is endowed with a P∞-algebra structure, such that the map i extends to an ∞-
quasi-isomorphism, by Theorem 10.3.1. In this case, we can prove the same result
for the map p as follows.
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To the homotopy h relating IdA and ip, we associate the degree one map hn :
A⊗n→A⊗n defined by

hn := 1

n!
∑

σ∈Sn
hσ ,

where

hσ := id⊗· · · ⊗ id⊗ h︸︷︷︸
σ(1)

⊗ id⊗· · · ⊗ id

+ id⊗· · · ⊗ id⊗ ip
︸︷︷︸
σ(1)

⊗ id⊗· · · ⊗ id⊗ h︸︷︷︸
σ(2)

⊗ id⊗· · · ⊗ id+· · ·

+ i ◦ p⊗ · · · ⊗ ip⊗ h︸︷︷︸
σ(n)

⊗ ip⊗ · · · ⊗ ip.

The map hn is a symmetric homotopy relating Id⊗nA and (ip)⊗n, that is

∂(hn)= Id⊗nA −(ip)⊗n and hnσ = σhn, ∀σ ∈ Sn.

We denote by H the sum H :=∑n≥1 h
n : �T (A)→�T (A).

We define the map �lev as follows. To any element μc ∈ P
¡
, its image under

�
P

¡ is a sum of trees. To any of these trees, we associate the sum of all the leveled
trees obtained by putting one and only one nontrivial vertex per level. (Notice that
this operation might permute vertices and therefore it might yield signs.) The image
of μc under �lev is the sum of all these leveled trees.

Proposition 10.3.9. Let K be a field of characteristic 0. Let P be a Koszul operad
and let (A,ϕ) be a P∞-algebra. The chain map p : A→H(A) extends to an ∞-
quasi-isomorphism p∞ given by the formula

p∞ := p∗T c
lev(ϕ,H)�

lev

on P
¡ and by id ∈ P

¡ �→ p. The map T c
lev(ϕ,H) first labels the vertices of a

leveled tree by ϕ and the levels (including the leaves) by H and then composes the
associated maps in EndAH(A).

Proof. The map p∞ given by this formula is well defined thanks to the conilpotency
of the Koszul dual cooperad P

¡
. Let us denote by ψ the transferred P∞-algebra

structure on H(A). By Theorem 10.2.3, we have to prove that p∞ ∗ ϕ−ψ �p∞ =
∂(p∞). The arguments are similar to the arguments used in the proofs of Theo-
rem 10.3.6 and Theorem 10.4.1 but use the side conditions of Lemma 10.3.8. The
computations are left to the reader as a good exercise. �

Theorem 10.3.10 (Higher structures). Let K be a field of characteristic 0. Let P
be a Koszul operad and let A be a P∞-algebra.
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 There is a P∞-algebra structure on the homology H(A) of the underlying chain
complex of A, which extends its P-algebra structure.

 The embedding i : H(A)� A and the projection p : A� H(A), associated
to the choice of sections for the homology, extend to ∞-quasi-isomorphisms of
P∞-algebras.

 The P∞-algebra structure on the homotopy H(A) is independent of the choice
of sections ofH(A) into A in the following sense: any two such transferred struc-
tures are related by an ∞-isomorphism, whose first map is the identity on H(A).

Proof. The explicit form of the transferred P∞-algebra structure on H(A), given
in Theorem 10.3.3, proves that it extends the P-algebra structure given in Proposi-
tion 10.1.5.

The embedding H(A) � A extends to an ∞-quasi-isomorphism by Theo-
rem 10.3.6. The projection A � H(A) extends to an ∞-quasi-isomorphism by
Proposition 10.3.9.

Let (i,p) and (i′,p′) be the maps associated to two decompositions of the chain
complex A. They induce two P∞-algebra structures on H(A) such that i, i′, p
and p′ extend to∞-quasi-isomorphisms by Theorem 10.3.6 and Proposition 10.3.9.
The composite p′∞ i∞ defines an ∞-quasi-isomorphism, from H(A) with the first
transferred structure to H(A) with the second transferred structure, such that the
first component is equal to p′i = IdH(A). �

These higher P∞-operations on the homotopy of a P∞-algebra are called the
operadic Massey products.

EXAMPLES. The case of the operad As has already been treated in Sect. 9.4.5.
The terminology “Massey products” comes from the example given by the singu-
lar cochains C•sing(X) of a topological space X endowed with its associative cup
product [Mas58]. The case of the operad Lie was treated by Retakh in [Ret93].

Though the differential on H(A) is equal to 0, the P∞-algebra structure on
H(A) is not trivial in general. In this case, the relations satisfied by the P∞-algebra
operations on H(A) do not involve any differential. Hence the operations of weight
1 satisfy the relations of a P-algebra. But the higher operations exist and contain
the homotopy data of A.

10.3.7 An Example: HTT for the Dual Numbers Algebra

The homotopy transfer theorem (HTT) can be applied to reduced operads which are
concentrated in arity 1, that is to unital associative algebras. Recall that for such
an operad, an algebra over it is simply a left module. The algebra of dual numbers
D := K[ε]/(ε2 = 0) is obviously Koszul and its Koszul dual coalgebra is the free
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coalgebra on one cogenerator D¡ := K[sε]. Observe that the element (sε)n is in
degree n and that the coproduct is given by

�
(
(sε)n

)=
∑

i+j=n
i≥0,j≥0

(sε)i(sε)j .

From Sect. 2.2.2 we can compute D∞ := �D¡. It follows that a D∞-module is a
chain complex (A,d) equipped with linear maps

tn :A→A, for n≥ 1, |tn| = n− 1,

such that for any n≥ 1 the following identities hold

∂(tn)=−
∑

i+j=n
i≥1,j≥1

(−1)i ti tj .

Observe that, denoting t0 := d , this identity becomes
∑

i+j=n
i≥0,j≥0

(−1)i ti tj = 0, for any n≥ 0.

Such a structure (A, t0, . . . , tn, . . .) is called a chain multicomplex. As expected
a D-module is a particular case of chain multicomplex for which tn = 0 for n≥ 2.

The HTT can be written for any homotopy retract whose big chain complex is a
chain multicomplex (A, {tn}n≥0) and it gives a chain multicomplex structure on the
small chain complex (V , {t ′n}n≥0). The explicit formulas are as follows:

t ′n := p
(∑

±tj1htj2h · · ·htjk
)
i,

for any n ≥ 1, where the sum runs over all the families (j1, . . . , jk) such that j1 +
· · · + jk = n.

SPECTRAL SEQUENCE. Let us look at a particular case. Any first quadrant bicom-
plex (C•,•, dv, dh) gives rise to a chain complex (A,d), which is a left module over
D by declaring that An :=⊕p Cp,n, d := dv and the action of ε is induced by dh.

More precisely, since dhdv + dhdv = 0, the restriction of ε to An is (−1)ndh.
It is well known that any first quadrant bicomplex gives rise to a spectral sequence

{(En, dn)}n≥1 where E1 = H•(C,dv) and En = H•(En−1, dn−1). We claim that,
after choosing sections which make (E1,0) into a deformation retract of (C,dv), cf.
Lemma 9.4.4, the chain multicomplex structure of E1 gives the spectral sequence.
More precisely the map dn is induced by t ′n.

The advantage of this point of view on bicomplexes, versus spectral sequences,
is that the HTT can be applied to bicomplexes equipped with a deformation retract
whose boundary map is not necessarily trivial.

For instance the cyclic bicomplex of a unital associative algebra, which involves
the boundary maps b, b′ and the cyclic operator, cf. [LQ84, Lod98], admits a de-



386 10 Homotopy Operadic Algebras

formation retract made up of the columns involving only b. Applying the HTT to it
gives a chain multicomplex for which

t ′0 = b, t ′1 = 0, t ′2 = B, t ′n = 0, for n≥ 3.

So, we get automatically Connes’ boundary map B and we recover the fact that,
in cyclic homology theory, the (b,B)-bicomplex is quasi-isomorphic to the cyclic
bicomplex.

The details for this section can be found in [LV12], where direct explicit proofs
are given. Similar results based simplicial technics can be found in [Mey78] and
based on the perturbation lemma in [Lap01].

10.4 Inverse of ∞-Isomorphisms and ∞-Quasi-isomorphisms

In this section, we first prove that the ∞-isomorphisms are the invertible ∞-mor-
phisms in the category ∞-P∞-alg. We give the formula for the inverse of an ∞-
morphism. Then we show that any P∞-algebra is ∞-isomorphic to the product of
a P∞-algebra whose internal differential is null, with a P∞-algebra whose struc-
ture operations are null and whose underlying chain complex is acyclic. Applying
these two results, we prove that any ∞-quasi-isomorphism admits an ∞-quasi-
isomorphism in the opposite direction. So, being ∞-quasi-isomorphic defines an
equivalence relation among P∞-algebras, which is called the homotopy equiva-
lence.

10.4.1 Inverse of Infinity-Isomorphisms

Here we find the formula for the inverse of an ∞-isomorphism. We use the maps
�̂k :P ¡ → (P

¡
)◦(k+1) introduced in Sect. 5.8.5.

Theorem 10.4.1. Let P be a Koszul operad and let A and B be two P∞-
algebras. Any ∞-isomorphism f : A� B admits a unique inverse in the category
∞-P∞-alg. When f is expressed in terms of f :P¡ → EndAB , its inverse is given
by the formula (f−1)(0) := (f(0))−1 : B→A and by

f−1 :=
∞∑

k=0

(−1)k+1(f−1
(0)

)
∗
((
f−1
(0)

)∗
(f )
)◦(k+1)

�̂k,

on P
¡ , where the right-hand side is equal to the composite

P
¡ �̂k−→ (P¡)◦(k+1) ((f

−1
(0) )

∗(f ))◦(k+1)

−−−−−−−−−−→ (EndB)
◦(k+1)→ EndB

(f−1
(0) )∗−−−−→ EndBA.
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For example, when �̂ produces an element of the form

μ

ν
,

the associated composite in EndBA is

f−1
(0) f−1

(0) f−1
(0)

f (μ) f(0)

f (ν)

f−1
(0)f−1

(0)

f−1
(0) .

Proof. Let us denote by g :P ¡ → EndBA the above defined map. It is well defined

thanks to the conilpotency (Sect. 5.8.5) of the Koszul dual cooperad P
¡
.

We first show that g is an∞-morphism. Let us denote by ϕ ∈ Tw(P
¡
,EndA) and

by ψ ∈ Tw(P
¡
,EndB) the respective P∞-algebra structures. By Theorem 10.2.3,

we prove now that g ∗ψ−ϕ�g = ∂(g) in HomS(P
¡
,EndBA). By Proposition 5.8.6,

the map g is equal to the composite

P
¡ �P

¡
−−−→T c

(
P

¡) T c(f )−−−−→T c
(
EndAB

) Θ−→ EndBA,

where the map Θ amounts to labeling the leaves, the internal edges and the root
of the trees by f−1

0 and to composing all the maps along the tree scheme. It also
multiplies the elements by (−1)k , where k is the minimal number of levels on which
the tree can be put.

The derivative ∂(g) is equal to

∂(g)= dEndBA
ΘT c(f )�

P
¡ −ΘT c(f )�

P
¡ d

P
¡ .

Since d
P

¡ is a coderivation for the cooperad P
¡
, we get

∂(g)=ΘT c(f ;dEndAB
f − f d

P
¡ )�

P
¡ .
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By Theorem 10.2.3, since the map f is an ∞-morphism, it satisfies ∂(f )= f ∗ϕ−
ψ � f . So we get

∂(g)=ΘT c(f ;f ∗ ϕ)�
P

¡ −ΘT c(f ;ψ � f )�
P

¡ .

In f ∗ ϕ, there are two kinds of terms involving either f(0) or f(>1). Therefore
the term ΘT c(f ;f ∗ ϕ)�

P
¡ splits into two sums on the trees produced by �

P
¡ .

Because of the sign based on the number of levels, almost all the terms cancel. Only
remains the trees with ϕ labeling the vertex above the root. Hence, we get

ΘT c(f ;f ∗ ϕ)�
P

¡ =−ϕ � g.
Using the same kind of arguments, one proves that ΘT c(f ;ψ � f )�

P
¡ is made

up of trees with ψ labeling any vertex at the top of the tree, that is

ΘT c(f ;ψ � f )�
P

¡ = g ∗ψ.
By Proposition 10.2.4, it is enough to prove that f  g = IdB and that g  f =

IdA. Since g(0) := (f(0))−1, these two relations are satisfied on I =P
¡ (0)

. Higher
up, since �(μ)= �̃(μ)+ (id;μ), for any μ ∈P

¡
, we have

(f  g)(μ)=
∞∑

k=0

(−1)k
((
f−1
(0)

)∗
(f )
)◦(k+1)

�̂k(μ)

+
∞∑

k=0

(−1)k+1((f−1
(0)

)∗
(f )
)◦(k+1)

�̂k(μ)= 0.

In the same way, since�(μ)= �̄(μ)+ (id;μ)+ (μ; id, . . . , id), for any μ ∈P
¡
,

we have

(g  f )(μ)=
∞∑

k=1

(−1)k
((
f−1
(0)

)
∗(f )
)◦(k+1)

�̂k(μ)

+ (f−1
(0)

)
∗(f )(μ)

+
∞∑

k=0

(−1)k+1((f−1
(0)

)
∗(f )
)◦(k+1)

�̂k(μ)= 0. �

REMARK. The formula which gives the inverse of an ∞-isomorphism is related
to the inverse under composition of power series as follows. Let us consider the
nonsymmetric cooperad As∗ and the K-modules A = B = K. There is a bijection
between the power series f (x)= a0x+a1x

2+· · · with coefficients in K and the ele-
ments of Hom(As∗,EndK), given by f̃ := μcn �→ an−11n, whereμcn is the generating
element of As∗(n) and where 1n is the generating element of EndK(n). This map is
an isomorphism of associative algebras: g̃ ◦ f = g̃  f̃ . So a power series is invert-
ible for the composition if and only if a0 is invertible. This condition is equivalent
to f̃(0) invertible in Hom(K,K). When a1 = 1, the formula given in Theorem 10.4.1
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induces the formula for the inverse of the power series f . For yet another approach
to this formula, see Sect. 13.11.7.

10.4.2 Decomposition: Minimal ⊕ Acyclic Trivial

By definition, a P∞-algebra (A,dA,ϕ) is called

 minimal when dA = 0;
 acyclic when the underlying chain complex (A,dA) is acyclic;
 trivial when the structure map is trivial: ϕ = 0.

Lemma 10.4.2. Let (H,0, ϕ) be a minimal P∞-algebra and let (K,dK,0) be an
acyclic trivial P∞-algebra. Their product in the category∞-P∞-alg exists and its
underlying chain complex is the direct sum H ⊕K .

Proof. We consider the following P∞-structure on H ⊕K :

P
¡ ϕ−→ EndH � EndH⊕K.

It satisfies the Maurer–Cartan equation in HomS(P
¡
,EndH⊕K), since ϕ satisfies

the Maurer–Cartan equation in HomS(P
¡
,EndH ). To any P∞-algebra B with two

∞-morphisms, f ∈ HomS(P
¡
,EndBH ) from B to H and g ∈ HomS(P

¡
,EndBK)

from B to K respectively, we associate the following morphism

P
¡ f+g−−→ EndBH ⊕ EndBK ∼= EndBH⊕K.

We leave it to the reader to check that this composite is an ∞-morphism, which
satisfies the universal property of products. �

Theorem 10.4.3 (Minimal model for P∞-algebras). Let K be a field of charac-
teristic 0 and let P be a Koszul operad. In the category of P∞-algebras with
∞-morphisms, any P∞-algebra is∞-isomorphic to the product of a minimal P∞-
algebra, given by the transferred structure on its homotopy, with an acyclic trivial
P∞-algebra.

Proof. Let (A,dA,ϕ) be a P∞-algebra. As in Lemma 9.4.4, we decompose the
chain complex A with respect to its homology and boundary: An ∼= Bn ⊕ Hn ⊕
Bn−1. We denote by Kn := Bn ⊕Bn−1 the acyclic sub-chain complex of A, so that
A is the direct sum of the two dg modules A ∼= H(A)⊕ K . By Theorems 10.3.1
and 10.3.10, the homotopy H(A) is endowed with a minimal P∞-algebra structure
and we consider the trivial P∞-algebra structure on K .

We define an ∞-morphism f from A to K as follows. Let q denote the pro-
jection from A to K and let of f(0) be equal to q . Higher up, f is given by the
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composite f = (qh)∗ ϕ

f :P ¡ ϕ−→ EndA
(qh)∗−−−→ EndAK.

Since the P∞-algebra structure on K is trivial, we only have to check the equality

f ∗ ϕ = ∂(f ), by Theorem 10.2.3. This equation reads on P
¡ :

(qh)∗ (ϕ ◦(1) ϕ)�(1) + q∗ ϕ = dEndAK
(q h)∗ ϕ − (qh)∗ ϕ dP¡ .

Since μ is a twisting morphism, we have

(qh)∗ (ϕ ◦(1) ϕ)(�(1))=−(qh)∗ dEndA ϕ − (qh)∗ ϕ dP¡ .

We conclude by using the equality q(h ◦ dA + dA ◦ h)= q .
The ∞-morphism p∞ from A to H(A) of Proposition 10.3.9 together with the

∞-morphism f from A to K induce an ∞-morphism from A to H(A)⊕K , since
this latter space is the product of H(A) and K by Lemma 10.4.2. The first compo-
nent of this ∞-morphism is equal to p + q : A∼=H(A)⊕K , which is an isomor-
phism. �

10.4.3 Inverse of Infinity-Quasi-isomorphisms

Theorem 10.4.4. Let P be a Koszul operad and let A and B be two P∞-
algebras. If there exists an ∞-quasi-isomorphism A

∼� B , then there exists an
∞-quasi-isomorphism in the opposite direction B

∼� A, which is the inverse of

H(A)
∼=−→H(B) on the level on holomogy.

Proof. Let f : A ∼� B denote an ∞-quasi-isomorphism. By Theorem 10.3.6 and
Proposition 10.3.9, the following composite g of ∞-quasi-isomorphisms

H(A)
iA∞

A
f

B
pB∞

H(B)

is an ∞-isomorphism. It admits an inverse ∞-isomorphism g−1 : H(B)� H(A)

by Theorem 10.4.1. The ∞-quasi-isomorphism B
∼� A is given by the following

composite of ∞-quasi-isomorphisms

B
pB∞

H(B)
g−1

H(A)
iA∞

A . �

10.4.4 Homotopy Equivalence

We define the following relation among P∞-algebras: a P∞-algebra A is homo-
topy equivalent to a P∞-algebra B if there exists an ∞-quasi-isomorphism from
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A to B . The previous section shows that it is an equivalence relation. We denote it
by A∼ B .

Under this terminology, the Higher Structure Theorem 10.3.10 implies that in the
homotopy class of any P∞-algebra, there is a minimal P∞-algebra.

10.5 Homotopy Operads

In this section, we relax the notion of operad, up to homotopy, thereby defining
homotopy operads. As for associative algebras and homotopy associative algebras,
the relations satisfied by the partial compositions of an (nonunital) operad are re-
laxed up to a full hierarchy of higher homotopies. We introduce the notion of ∞-
morphism for homotopy operads. We have already used this notion, without saying
it, in Proposition 10.3.2, where the morphism Ψ is an ∞-morphism of operads.

We describe a functor from homotopy operads to homotopy Lie algebras.
Finally, we show that a homotopy representation of an operad, that is a homotopy

morphism from P to EndA, is equivalent to a �BP-algebra structure on A.
The notions of homotopy operad and∞-morphism come from the work of Pepijn

Van der Laan [vdL02, vdL03].

10.5.1 Definition

A homotopy operad is a graded S-module P with a square-zero coderivation d
of degree −1 on the cofree conilpotent cooperad T c(sP). By extension, we call
the dg cooperad (T c(sP), d) the bar construction of the homotopy operad P
and we denote it by BP . Hence any nonunital operad P is a homotopy operad
and the associated bar construction coincides with the classical bar construction of
Sect. 6.5.1.

For any graded S-moduleM , recall from Proposition 6.3.7 that any coderivation
dγ on the cofree cooperad T c(M) is completely characterized by its projection onto
the space of cogenerators γ = proj ◦ dγ : �T c(M)→M .

Let α and β be maps in HomS( �T c(M),M). Their convolution product α � β is
defined by the composite

α � β := �T c(M)
�′−→ �T c

(
M; �T c(M)

) �T c(IdM ;β)−−−−−−→ �T c(M;M)→ �T c(M)
α−→M,

where the first map �′ singles out every nontrivial subtree of a tree whose vertices
are indexed byM , see Sect. 6.3.8.

Lemma 10.5.1. For any map γ of degree −1 in HomS( �T c(M),M), the associated
coderivation dγ on the cofree cooperad T c(M) satisfies

(dγ )
2 = dγ �γ .
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Proof. Since γ has degree −1, the composite dγ ◦ dγ is equal to 1
2 [dγ , dγ ]; so it is

a coderivation of �T c(M). By Proposition 6.3.7, it is completely characterized by its
projection ontoM : proj((dγ )2)= γ � γ . �

Any degree −1 square-zero coderivation d on the cofree cooperad T c(sP) is
equal to the sum d = d1+dγ , where d1 is the coderivation which extends an internal
differential dP on P and where dγ is the unique coderivation which extends the
restriction γ := proj(d) :T c(sP)(≥2)→ sP .

Proposition 10.5.2. Let (P, dP ) be a dg S-module. A structure of homotopy op-
erad on P is equivalently defined by a map γ :T c(sP)(≥2)→ sP of degree −1
such that

∂(γ )+ γ � γ = 0

in HomS( �T c(sP), sP).

Proof. Any coderivation d : T c(sP)→ T c(sP) defining a structure of homo-
topy operad satisfies d2 = 0, which is equivalent to d1 dγ + dγ d1 + dγ dγ = 0. By
projecting onto the space of cogenerators, this relation is equivalent to dsP γ +
γ d1 + γ � γ = 0 in HomS( �T c(sP), sP). �

Hence a structure of homotopy operad on a dg S-module P is a family of maps
{γn :T c(sP)(n)→ sP}n≥2, which “compose” any tree with n vertices labeled by
elements of sP . The map γ � γ composes first any nontrivial subtree of a tree with
γ and then composes the remaining tree with γ once again.

When the S-module P is concentrated in arity 1, a homotopy operad structure
on P is nothing but a homotopy associative algebra on P(1). If the structure map
γ vanishes on T c(sP)(≥3), then the only remaining product

γ2 :T c(sP)(2) ∼= sP ◦(1) sP → sP

satisfies the same relations as the partial compositions (Sect. 5.3.4) of an operad. In
this case P is a nonunital operad.

One can translate this definition in terms of operations {T (n)(P)→ P}n≥2,
without suspending the S-module P . This would involve extra signs as usual.

10.5.2 Infinity-Morphisms of Homotopy Operads

Let (P, γ ) and (Q, ν) be two homotopy operads. By definition, an ∞-morphism
of homotopy operads between P and Q is a morphism

F : BP := (T c(sP), d
)→ BQ := (T c(sQ), d ′

)
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of dg cooperads. We denote it by P � Q. Homotopy operads with their ∞-
morphisms form a category, which is denoted by ∞-Op∞.

For any S-moduleM , we consider the morphism of S-modules

�′ :T c(M)→T c
(
M;T c(M)(≥2)),

which singles out one subtree with at least two vertices. We also consider the mor-
phism of S-modules

�̄ :T c(M)→T c
( �T c(M)

)(≥2)

which is defined by the projection of �(M) : T c(M) → T c( �T c(M)), see
Sect. 6.3.8, onto T c( �T c(M))(≥2). In words, it splits a tree into all partitions of
subtrees with at least two nontrivial subtrees.

Proposition 10.5.3. Let (P, γ ) and (Q, ν) be two homotopy operads. An ∞-
morphism of homotopy operads between P and Q is equivalently given by a mor-
phism f : �T c(sP)→ sQ of graded S-modules, which satisfies

fT c(Id;γ )�′ − νT c(f )�̄= ∂(f )
in HomS( �T c(sP), sQ):

T c(sP)
�̄

�′
∂(f )

T c( �T c(sP))(≥2)

T c(f )

T c(sQ)(≥2)

ν

T c(sP; �T c(sP)(≥2))
T c(Id;γ )

T c(sP)
f

sQ.

Proof. The universal property of cofree conilpotent cooperads states that every mor-
phism F : T c(sP)→ T c(sQ) of cooperads is completely characterized by its
projection onto the space of the cogenerators f : �T c(sP)→ sQ. Explicitly, the
unique morphism of cooperads F which extends a map f : �T c(sP)→ sQ is equal
to the composite

F :T c(sP)
�(sP)−−−−→T c

( �T c(sP)
) T c(f )−−−−→T c(sQ).

The map f defines an ∞-morphism of homotopy operads if and only if the map F
commutes with the differentials d1 + dγ on T c(sP) and d ′1 + dν on T c(sQ) re-
spectively. Since F is a morphism of cooperads and since d1 + dγ and d ′1 + dν
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are coderivations, the relation (d ′1 + dν)F = F(d1 + dγ ) holds if and only if
proj((d ′1 + dν)F − F(d1 + dγ )) = 0. By the aforementioned universal property of
cofree cooperads and by Proposition 6.3.7, we have

proj
((
d ′1 + dν

)
F − F(d1 + dγ )

)= ∂(f )+ νT c(f )�̄− fT c(Id;γ )�′. �

Therefore an ∞-morphism P � Q of homotopy operads is a family of maps,
which associate to any tree t labeled by elements of sP an element of sQ. Since
an operad is a particular case of homotopy operad, one can consider ∞-morphism
of operads. Proposition 10.3.2 gives such an example.

Proposition 10.5.4. A morphism of operads is an ∞-morphism with only one non-
vanishing component, namely the first one:

sP ∼= �T c(sP)(1)→ sQ.

Proof. By straightforward application of the definitions. �

As for homotopy algebras, one can define four categories by considering either
operads or homotopy operads for the objects and morphisms or infinity morphisms
for the maps.

Op
not full

f.f.

∞-Op

f.f.

Op∞
not full ∞-Op∞

(A morphism of homotopy operads is an ∞-morphism with nonvanishing compo-
nents except for the first one.)

10.5.3 From Homotopy Operads to Homotopy Lie Algebras

We define a functor from homotopy operads to L∞-algebras, which extends the
functor from operads to Lie-algebras constructed in Proposition 5.4.3

Op Lie-alg

∞-Op∞ ∞-L∞-alg.

Let P be a dg S-module. We consider either the direct sum of its components⊕
nP(n) or the direct product

∏
nP(n). By a slight abuse of notation, we still

denote it by P in this section.
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By Proposition 10.1.12, an L∞-algebra structure on P is equivalent to a de-
gree −1 square-zero coderivation on the cofree cocommutative coalgebra �Sc(sP).
Recall that its underlying space is the space of invariant elements of the cofree
coalgebra �T c(sP) under the permutation action. We denote its elements with the
symmetric tensor notation:

�Sc(sP)(n) := sμ1 , · · · , sμn ∈ (sP),n.

Let t be a tree with n vertices and let μ1, . . . ,μn be n elements of P . We denote
by t (sμ1, . . . , sμn) the sum of all the possible ways of labeling the vertices of T
with sμ1, . . . , sμn according to the arity. We consider the following morphism

Θ : �Sc(sP)→ �T c(sP); Θn(sμ1 , · · · , sμn) :=
∑

t

t (sμ1, . . . , sμn),

where t runs over the set of n-vertices trees.

Proposition 10.5.5. Let (P, γ ) be a homotopy operad. The maps �n : Sc(sP)(n)→
sP of degree −1, defined by the composite �n := γ ◦Θn, endow the dg modules⊕
nP(n), respectively

∏
nP(n), with an L∞-algebra structure.

Proof. We consider the “partial” coproduct δ′ on the cofree cocommutative coalge-
bra �Sc(sP) defined by

δ′ : �Sc(sP)→�Sc(sP;�Sc(sP)
)
,

sμ1 , · · · , sμn �→
n−1∑

p=1

∑

σ∈Shp,q
±(sμσ(1) , · · · , sμσ(p))

, sμσ(p+1) , · · · , sμσ(n),
where the sign comes from the permutation of the graded elements, as usual. The
unique coderivation on �Sc(sP), which extends dsP + � is equal to the following
composite

d1 + d� := �Sc(sP)
δ′−→�Sc(sP,�Sc(sP)

) �Sc(Id,dsP+�)−−−−−−−−→�Sc(sP, sP)→�Sc(sP).

Under the isomorphism sP ∼=P , the map � defines an L∞-algebra structure on P
if and only if this coderivation squares to zero.

The following commutative diagram

�Sc(sP)

Θ

δ′ �Sc(sP, Sc(sP)(≥2))
�Sc(Id,�) �Sc(sP, sP) �Sc(sP)

Θ

�T c(sP)
�′ �T c(sP,T c(sP)(≥2))

�T c(Id,γ ) �T c(sP; sP) �T c(sP)
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proves thatΘ commutes with the coderivations d� and dγ . HenceΘ commutes with
the full coderivations d1+d� and d1+dγ . Since d1+d� is a coderivation, it squares
to zero if and only if the projection of (d1+ dl)2 onto the space of cogenerators sP
vanishes. This projection is equal to the projection of (d1+ dγ )2Θ on sP , which is
equal to zero, by the definition of a homotopy operad. �

This proposition includes and generalizes Proposition 10.1.8. If P is concen-
trated in arity 1, then it is an A∞-algebra. In this case, the class of trees considered
are only ladders. We recover the formula of Proposition 10.1.8, which associates an
L∞-algebra to an A∞-algebra.

Proposition 10.5.6. Let (P, γ ) and (Q, ν) be two homotopy operads and let
F : BP → BQ be an ∞-morphism. The unique morphism of cocommutative coal-
gebras, which extends

�Sc(sP)
Θ−→ �T c(sP)

F−→ �T c(sQ)� sQ,

commutes with the differentials. In other words, it defines an ∞-morphism of L∞-
algebras. So there is a well-defined functor ∞-Op∞→∞-L∞-alg.

Proof. Let us denote by F̃ : �Sc(sP)→�Sc(sQ) this unique morphism of cocom-
mutative coalgebras. We first prove that the mapΘ commutes with the morphisms F
and F̃ respectively. Let us introduce the structure map δ : �Sc(sP)→�Sc(�Sc(sP)),
defined by

δ(sμ1 , · · · , sμn)
:=
∑

±(sμσ(1) , · · · , sμσ(i1)), · · · , (sμσ(i1+···+in−1+1) , · · · , sμσ(n)),
where the sum runs over k ≥ 1, i1 + · · · + ik = n and σ ∈ Shi1,...,ik . If we denote
by f the projection of F onto the space of cogenerators, then the unique morphism
of cocommutative coalgebras F̃ extending fΘ is equal to F̃ = �Sc(fΘ)δ. Since
the morphism F is equal to the composite F = �T c(f )�, the following diagram is
commutative

�Sc(sP)
δ

F̃

Θ

�Sc(�Sc(sP))
�Sc(f )

Θ(Θ)

�Sc(sQ)

Θ

�T c(sP)

F

� �T c( �T c(sP))
�T c(f ) �T c(sQ).

Let us denote by d̃γ , and by d̃ν respectively, the induced square-zero coderiva-
tions on �Sc(sP), and on �Sc(sQ) respectively. Since F̃ is a morphism of cocom-
mutative coalgebras, to prove that it commutes with the coderivations d̃1 + d̃γ and
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d̃ ′1 + d̃ν respectively, it is enough to prove by projecting onto the space sQ of co-
generators. To this end, we consider the following commutative diagram.

�Sc(sP)
F̃

d̃1+d̃γ

Θ

�Sc(sQ)
Θ

d̃ ′1+d̃ν�T c(sP)
F

d1+dγ

�T c(sQ)

d ′1+dν

�T c(sP)
F

�T c(sQ) �Sc(sQ)

�Sc(sP)
F̃

Θ

�Sc(sQ) sQ.

Since the internal diagram is commutative, the external one also commutes, which
concludes the proof. �

10.5.4 From Homotopy Operads to Homotopy pre-Lie Algebras

The two aforementioned Propositions 10.5.5 and 10.5.6 extend from Lie-algebras
and L∞-algebras to preLie-algebras and preLie∞-algebras respectively, see
Sect. 13.4.

Finally, we have the following commutative diagram of categories, which sums
up the relations between the various algebraic structures encountered so far.

As-alg

Op PreLie-alg Lie-alg

∞-A∞-alg

∞-Op∞ ∞-PreLie∞-alg ∞-L∞-alg.

10.5.5 Homotopy Algebra Structures vs ∞-Morphisms of Operads

Since a P-algebra structure on a dg moduleA is given by a morphism of dg operads
P → EndA, it is natural to ask what ∞-morphisms P � EndA between P and
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EndA do model, cf. [Lad76, vdL03]. The next proposition shows that a homotopy
representation of an operad P is a �BP-algebra.

Proposition 10.5.7. For any operad P and any dg module A, there is a natural
bijection between ∞-morphisms from P to EndA and �BP-algebra structures
on A:

Hom∞-Op(P,EndA)∼=Homdg Op(�BP,EndA).

Proof. By definition, the first set is equal to Homdg Coop(BP,B EndA). The nat-
ural bijection with Homdg Op(�BP,EndA) given by the bar–cobar adjunction of
Theorem 6.5.7 concludes the proof. �

By pulling back along the morphism of dg operads �P
¡ →�BP , any �BP-

algebra A determines a P∞-algebra. So an ∞-morphism of operads from P to
EndA induces a P∞-algebra structure on A.

Any P∞-algebra structure on A is a morphism of dg operads �P
¡ → EndA,

which is a particular ∞-morphism of operads from �P
¡

to EndA by Proposi-
tion 10.5.4.

B :Homdg Op
(
�P

¡
,EndA

)→Homdg coOp
(
B�P

¡
,B EndA

)

∼=Hom∞-Op
(
�P

¡
,EndA

)
.

Again, what do∞-morphisms�P
¡ � EndA model? Any∞-morphism of operads

B�P
¡ → B EndA induces a P∞-algebra structure on A by pulling back along the

unit of adjunction υ
P

¡ :P ¡ → B�P
¡

and by using the bar–cobar adjunction. Let
us denote this map by

υ∗ :Hom∞-Op
(
�P

¡
,EndA

)→Homdg Op
(
�P

¡
,EndA

)
.

So the set of P∞-algebra structures on A is a “retract” of the set of ∞-morphisms
from P∞ =�P

¡
to EndA.

We sum up the hierarchy of homotopy notions in the following table.

{P-algebra structures on A} HomOp(P,EndA)

Hom∞-Op(P,EndA)
∼=

{�BP-algebra structures on A} Homdg Op(�BP,EndA)

{P∞-algebra structures on A} Homdg Op(�P
¡
,EndA)

Hom∞-Op(�P
¡
,EndA)

υ∗
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10.6 Résumé

10.6.1 Homotopy P-Algebras

Homotopy P-algebra: algebra over P∞ :=�P
¡
.

ROSETTA STONE. The set of P∞-algebra structures on A is equal to

HomdgOp
(
�P

¡
,EndA

)∼= Tw
(
P

¡
,EndA

)

∼=HomdgCoop
(
P

¡
,B EndA

)∼= Codiff
(
P

¡
(A)
)
.

10.6.2 Infinity-Morphisms

Let (A,ϕ) and (B,ψ) be two P∞-algebras.

Infinity-morphism or ∞-morphism A� B: morphism of dg P
¡
-coalgebras

F : (P ¡
(A), dϕ

)→ (P ¡
(B), dψ

) ⇐⇒ f :P ¡ → EndAB,

such that f ∗ ϕ −ψ  f = ∂(f ) in HomS

(
P

¡
,EndAB

)
.

Category of P∞-algebras with ∞-morphisms denoted ∞-P∞-alg.

P-alg
not full

f.f.

∞-P-alg

f.f.

P∞-alg
not full ∞-P∞-alg

∞-isomorphism: when f(0) :A→ B is an isomorphism.

Theorem. ∞-isomorphisms are the isomorphisms of the category ∞-P∞-alg.

∞-quasi-isomorphism: when f(0) :A→ B is a quasi-isomorphism.

10.6.3 Homotopy Transfer Theorem

Homotopy data: let (V , dV ) be a homotopy retract of (W,dW )

(W,dW )h

p

(V, dV ).
i

Proposition. Any homotopy retract gives rise to a morphism Ψ : B EndW →
B EndV of dg cooperads.

Algebraic data: let ϕ be a P∞-algebra structure on W .
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HOMOTOPY TRANSFER THEOREM. There exists a P∞-algebra structure on V
such that i extends to an ∞-quasi-isomorphism.

P
¡

fψ

fϕ
B EndW

Ψ

B EndV .

EXPLICIT TRANSFERRED STRUCTURE.

P
¡ �P

¡
−−−→T c

( �P ¡) T c(sϕ)−−−−→T c(sEndW)
Ψ−→ EndV .

OPERADIC MASSEY PRODUCTS. They are the higher operations in the particular
case:W =A, a P∞-algebra, and V =H(A).

CHAIN MULTICOMPLEX. Particular case where P =D :=K[ε]/(ε2).

D-algebra on A ←→ bicomplex,
transferred D∞-algebra on H(A) ←→ spectral sequence.

10.6.4 Homotopy Theory of Homotopy Algebras

DECOMPOSITION: MINIMAL ⊕ ACYCLIC TRIVIAL. Any P∞-algebra A is ∞-
isomorphic to a product

A
∼=�M ⊕K

in ∞-P∞-alg, whereM is minimal, i.e. dM = 0, and where K is acyclic trivial, i.e.
acyclic underlying chain complex and trivial P∞-algebra structure.

HOMOTOPY EQUIVALENCE. If there exists an∞-quasi-isomorphismA
∼� B , then

there exists an ∞-quasi-isomorphism B
∼�A.

10.6.5 Homotopy Operads

Homotopy operad: degree −1 square-zero coderivation on T c(sP)

⇐⇒ γ :T c(P)(≥2)→P, such that ∂(γ )+ γ � γ = 0.

Infinity-morphisms of homotopy operads: morphism of dg cooperads

BP = (T c(sP), d1 + dγ
)→ BQ = (T c(sQ), d ′1 + dν

)
,
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As-alg

Op PreLie-alg Lie-alg

∞-A∞-alg

∞-Op∞ ∞-PreLie∞-alg ∞-L∞-alg.

HOMOTOPY REPRESENTATION OF OPERAD.

Hom∞-Op(P,EndA)∼=Homdg Op(�BP,EndA)

= {�BP-algebra structures on A}.

10.7 Exercises

Exercise 10.7.1 (Homotopy P-algebra concentrated in degree 0). Let A be a K-
module. We consider it as a dg module concentrated in degree 0 with trivial differ-
ential. Prove that a P∞-algebra structure on A is a P-algebra structure.

Exercise 10.7.2 (Universal enveloping algebra of an L∞-algebra [LM95]). In
Proposition 10.1.8, we introduced a functor from A∞-algebras to L∞-algebras,
which is the pullback functor f ∗ associated to the morphism of operads f :
�Lie

¡ →�Ass
¡
, see Sect. 5.2.12.

Show that this functor admits a left adjoint functor provided by the universal
enveloping algebra of an L∞-algebra (A,dA, {�n}n≥2):

U(A) := Ass∞(A)/I,

where I is the ideal generated, for n≥ 2, by the elements
∑

σ∈Sn
sgn(σ )ε

(
μcn;aσ−1(1), . . . , aσ−1(n)

)− �n(a1, . . . , an),

where ε is the sign induced by the permutation of the graded elements a1, . . . , an∈A.

HINT. It is a direct consequence of Sect. 5.2.12 and Exercise 5.11.26, where
U(A)= f!(A).

Exercise 10.7.3 (Homotopy pre-Lie-algebra). Make explicit the notion of homo-
topy pre-Lie algebra, see Sect. 13.4, together with the convolution algebra gpreLie,A,
which controls it.
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HINT. The Koszul dual operad of preLie is Perm, which admits a simple presenta-
tion, see Sect. 13.4.6.

Exercise 10.7.4 (Equivalent Maurer–Cartan equation �). Let C be a coaugmented
cooperad, with coaugmentation η : I→ C , and let (A,dA) be a dg module. To any
morphism α : C → EndA of S-modules, such that α ◦ η = 0, we associate the mor-
phism of S-modules α̃ : C → EndA defined by α̃ ◦ η(id) := dA and α̃ := α other-
wise. If α has degree −1, then α̃ has also degree −1.

1. Prove that α satisfies the Maurer–Cartan equation ∂(α)+ α � α = 0 if and only
if α̃ squares to zero, α̃ � α̃ = 0.

Let (B,dB) be another chain complex and let ϕ ∈ Tw(P
¡
,EndA) and ψ ∈ Tw(P

¡
,

EndB) be two P∞-algebra structures on A and B respectively.

2. Show that any morphism of dg S-modules f :P ¡ → EndAB is an ∞-morphism
if and only if f ∗ ϕ̃ = ψ̃ � f .

Let f :P ¡ → EndAB and g :P ¡ → EndBC be two ∞-morphisms.

3. Show directly that the composite

g  f =P
¡ �−→P

¡ ◦P
¡ g◦f−−→ EndBC ◦ EndAB→ EndAC

of Proposition 10.2.4 is an ∞-morphism.

Exercise 10.7.5 (Action of the convolution algebra �). Let A and B be two dg
modules and let P be a Koszul operad. We denote by gB := HomS(P

¡
,EndB)

the convolution pre-Lie algebra and we consider gAB = HomS(P
¡
,EndAB), as in

Sect. 10.2.3. We defined the action ψ � f , for ψ ∈ gB and f ∈ gAB and the action
ψ  ξ on gB by the following composite

ψ  ξ :=P
¡ �−→P

¡ ◦P
¡ ψ◦ξ−−→ EndB ◦ EndB

γEndB−−−→ EndB.

1. Show that  defines an associative algebra structure on gB , where the unit is the
composite of the coaugmentation of P

¡
followed by the unit of EndB : P

¡ →
I→ EndA.

2. Show that � defines a left module action of the associative algebra (gB,) on m.
3. In the same way, show that the action ∗ of gA := HomS(P

¡
,EndA) on m is a

right pre-Lie action.

Exercise 10.7.6 (Kleisli category [HS10]).

1. Let α : C → P be an operadic twisting morphism between a dg cooperad C
and a dg operad P . Show that one can define a comonad Kα in the category of
P-algebras by setting

Kα(A) :=P ◦α C ◦α A.
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(We refer to Sect. 11.3 for more details about the construction P ◦α C ◦α A=
�αBαA. Notice that the comonad Kα =�αBα is the comonad arising from the
bar–cobar adjunction.)

2. Let C be a category and let (K,�,ε) be a comonad on C. Show that one can
define a category CK on the following data. The objects of the category CK are
the ones of the category C. The morphisms in the category CK between two
objects A, A′ are the morphisms in the category C between K(A) and A′:

HomCK

(
A,A′

) :=HomC
(
K(A),A′

)
.

This category is called the Kleisli category CK associated to the comonad K .
3. Prove that there is an isomorphism of categories

CKκ
∼=∞-P-alg.

4. Prove that there is an isomorphism of categories

CKι
∼=∞-P∞-alg.

For more details, we refer to the paper [HS10] of K. Hess and J. Scott.

Exercise 10.7.7 (Inverse of ∞-isomorphisms �). Make explicit the inverse of ∞-
isomorphisms given in Theorem 10.4.1 in the particular cases where the operad P
is the ns operad As, the operad Com, and the operad PreLie.

Exercise 10.7.8 (Homotopy Transfer Theorem, Solution II). This exercise proposes
another proof to the Homotopy Transfer Theorem.

1. Let C be a dg cooperad and let P and Q be two dg operads. Show that any
∞-morphism Φ :P � Q between the dg operads P and Q naturally induces
an ∞-morphism

Φ∗ :Hom(C ,P)� Hom(C ,Q)

between the associated convolution operads.
By Proposition 10.5.6, the ∞-morphism Φ∗ induces an ∞-morphism be-

tween the dg Lie algebras
∏
nHom(C (n),P(n)) and

∏
nHom(C (n),Q(n)).

2. Show that this ∞-morphism passes to invariant elements, i.e. it induces an
∞-morphism φ between the convolution dg Lie algebras HomS(C ,P) and
HomS(C ,Q).

Hence, the∞-morphism Ψ : EndW → EndV of operads of Proposition 10.3.2
induces a natural ∞-morphism

ψ• : gW =HomS

(
P

¡
,EndW

)→ gV =HomS

(
P

¡
,EndV

)

between the associated convolution dg Lie algebras.
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3. Let α be a Maurer–Cartan element in gW , which vanishes on the coaugmentation
of P

¡
. Show that

∑∞
n=1

1
n!ψ(α, . . . , α) defines a Maurer–Cartan element in gV ,

which vanishes on the coaugmentation of P
¡
.

4. Compare this proof of the Homotopy Transfer Theorem with the one given in
Proposition 10.3.3.



Chapter 11
Bar and Cobar Construction of an Algebra
over an Operad

La mathématique est une science dangereuse: elle dévoile les
supercheries et les erreurs de calcul.

Galileo Galilei

In the algebra case, a twisting morphism is defined as a particular map from a dg
coassociative coalgebra to a dg associative algebra. Starting with dg associative al-
gebras, why should one consider the category of dg coassociative coalgebras? The
conceptual explanation is given by the Koszul duality theory for operads: the op-
erad As is Koszul and its Koszul dual operad is itself. In order to generalize the
notion of twisting morphism to dg P-algebras, one needs to work with dg P

¡
-

coalgebras. Such a phenomenon has already been noticed in the literature. For in-
stance, in rational homotopy theory the case P = Lie and P

¡ = Comc was treated
by Quillen in [Qui69] and the case P = Com and P

¡ = Liec was treated by Sulli-
van in [Sul77].

In this chapter, we extend to dg P-algebras the notions of twisting morphism, bar
and cobar constructions introduced in the context of dga algebras and dga coalgebras
in Chap. 2. When the operad P is Koszul, this allows us to define functorial quasi-
free resolutions for P-algebras and P∞-algebras. They will be used in the next
chapter to compute homology groups.

Another application is the rectification of homotopy P-algebras, which states
that any homotopy P-algebra is naturally and universally ∞-quasi-isomorphic to a
dg P-algebra. This proves that the homotopy category of dg P-algebras is equiv-
alent to the homotopy category of P∞-algebras with their ∞-morphisms.

This chapter essentially follows [Pro86, GJ94, Liv98b, DTT07, HM10, Mil11].
In this chapter, we work over a ground field K of characteristic 0. Notice that all

the constructions and some of the results hold true without this hypothesis. All the
coalgebras over a cooperad considered here are conilpotent by assumption.

J.-L. Loday, B. Vallette, Algebraic Operads,
Grundlehren der mathematischen Wissenschaften 346,
DOI 10.1007/978-3-642-30362-3_11, © Springer-Verlag Berlin Heidelberg 2012
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11.1 Twisting Morphism for P-Algebras

One can work at two different levels: the level of operads (Chap. 6) or the level of
algebras. In Chap. 2, we defined the notion of twisting morphism between a dga
coalgebra and a dga algebra and in Sect. 6.4, we defined the notion of operadic
twisting morphism between a dg cooperad and a dg operad.

In this section, we go much further at the algebra level. Associated to an operadic
twisting morphism α : C →P from a dg cooperad C to a dg operad P , we define
the notion of twisting morphism between a dg conilpotent C -coalgebra and a dg
P-algebra with respect to α.

When P is a quadratic operad, we consider the canonical twisting morphism
κ :P ¡ →P . If, moreover, P is binary, we give a Lie theoretic interpretation of
twisting morphisms between dg P

¡
-coalgebras and dg P-algebras.

11.1.1 Definition

Let α : C →P be an operadic twisting morphism from a dg cooperad C to a dg
operad P (see Sect. 6.4). Let A be a dg P-algebra and let C be a dg C -coalgebra.
We consider the following unary operator �α of degree −1 on Hom(C,A):

�α(ϕ) : C �C−−→ C ◦C α◦ϕ−−→P ◦A γA−→A, for ϕ ∈Hom(C,A).

A twisting morphism with respect to α is a linear map ϕ : C→A of degree 0 which
is a solution to the Maurer–Cartan equation

∂(ϕ)+ �α(ϕ)= 0.

We denote the space of twisting morphisms with respect to α by Twα(C,A).
Let us recall the three main examples of operadic twisting morphisms between

a dg cooperad and a dg operad, to which we will apply this definition. One can ei-
ther work with the universal twisting morphism π : BP → P , associated to any
augmented dg operad P , or with the universal twisting morphism ι : C → �C ,
associated to any conilpotent dg cooperad. When P is a quadratic operad, we can
also consider the twisting morphisms with respect to the canonical twisting mor-
phism κ :P ¡ →P , defined in Sect. 7.4.

11.1.2 Lie Theoretical Interpretation

In the binary quadratic case, the term �α(ϕ) becomes quadratic. It allows us to in-
terpret the previous equation as a Maurer–Cartan equation in a dg Lie algebra as
follows.
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Proposition 11.1.1. Let P be a binary quadratic operad. For any conilpotent dg
P

¡
-coalgebra C and any dg P-algebra A, the space sHom(C,A) is a dg Lie

algebra.

Proof. Let us give a proof when P is finitely generated. Recall from Sect. 7.2.2
that C is a P

¡
-coalgebra if and only if sC is a P

¡ ⊗
H

EndcsK-coalgebra, that is a

P !∗-coalgebra. Proposition 7.6.5 provides a morphism of operads Lie→P ! ⊗
H

P .

Since Hom(sC,A) ∼= sHom(C,A) is an algebra over P ! ⊗
H

P , it carries a Lie

algebra structure. The result holds in full generality since we are working with a
space of maps, see formula below. �

When P =P(E,R) is a binary quadratic operad, the Lie bracket is explicitely
given by the composite [f,g]:

sC
s�C−−→ sP

¡
(C)�s

(
sE(2)⊗C⊗2)S2 →E(2)⊗ (sC)⊗2

IdE ⊗f⊗g−(−1)|f ||g| IdE ⊗g⊗f−−−−−−−−−−−−−−−−−−−→E(2)⊗A⊗2 γA−→A,

for f,g ∈Hom(sC,A).

Corollary 11.1.2. When P is a binary quadratic operad, the equation ∂(ϕ) +
�κ(ϕ) = 0 in Hom(C,A) is equivalent to the Maurer–Cartan equation ∂(s−1ϕ)+
1
2 [s−1ϕ, s−1ϕ] = 0 in the dg Lie algebra sHom(C,A), under the desuspension iso-
morphism

Hom(C,A)
∼=−→ s−1 Hom(sC,A),

ϕ �→ (s−1ϕ : sc �→ (−1)|ϕ|ϕ(c)
)
.

Proof. When P =P(E,R) is a binary quadratic operad, the above formula for the
Lie bracket on sHom(C,A)∼=Hom(sC,A) allows us to compute 1

2 [s−1ϕ, s−1ϕ] as
the following composite

sC
s�C−−→ sP

¡
(C)�E(sC)

IdE ◦s−1ϕ−−−−−→E(A)�P(A)
γA−→A.

The map between P
¡
(C) and P(A) is equal to the composite κ(ϕ), up to the degree

shift. �

Moreover, when P is a nonsymmetric operad, Proposition 7.7.2 shows that the
Lie algebra structure on sHom(C,A) comes from an associative algebra structure,
whose product is denoted by �. In this case, the Maurer–Cartan equation ∂(ϕ) +
�κ(ϕ)= 0 reads

∂(s−1ϕ)+ 1

2

[
s−1ϕ, s−1ϕ

]≡ ∂(s−1ϕ
)+ (s−1ϕ

)
�
(
s−1ϕ

)= 0.
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11.1.3 Recollection with the Classical Notion

In the case of the operadic twisting morphism κ : As
¡ → As, we recover the classical

notion of twisting morphisms between coaugmented dga coalgebras and augmented
dga algebras of Chap. 2.

Recall that C is a dg As
¡
-coalgebra if and only if sC is a dg As

¡ ⊗
H

EndcsK-

coalgebra. Since the cooperads As
¡ ⊗

H
EndcsK

∼= As∗ are isomorphic, sC is a dga

coalgebra without counit. A dg As-algebra A is a dga algebra without unit. The dga
algebra structure (without unit) on sHom(C,A)∼=Hom(sC,A) described above is
equal to the dg convolution algebra of Proposition 2.1.1.

Recall the equivalences of categories between dga coalgebras without counit sC
and coaugmented dga coalgebras sC+ := sC ⊕K1 and between dga algebras with-
out unit A and augmented dga algebras A+ := A⊕K1. Under these equivalences,
the twisting morphisms with respect to κ are nothing but the classical twisting mor-
phisms of dga (co)algebras:

Twκ(C,A)∼= Tw(sC+,A+).

11.2 Bar and Cobar Construction for P-Algebras

Are the covariant functor Twα(C,−) and the contravariant functor Twα(−,A) rep-
resentable? The bar and cobar constructions of this section provide an affirmative
answer to that question. They are the direct generalizations of the constructions of
Sect. 2.2.

11.2.1 Relative Composite Product

In this section, we generalize to operads and modules over an operad the notion of
relative tensor product of modules over an algebra, see Exercise 1.8.14.

Let P be an operad. Let ρ :M ◦P →M be a right P-module structure on
the S-module M and λ : P ◦ N → N be a left P-module structure on N , see
Sect. 5.2.2.

The relative composite product M ◦P N of M and N over P is defined by the
following coequalizer, i.e. the cokernel of the difference of the two maps,

M ◦P ◦N
ρ◦IdN

IdM ◦λ
M ◦N M ◦P N.

WhenM =M ′ ◦P is a free P-module, the relative composite productM ◦P N

is naturally isomorphic to (M ′ ◦P) ◦P N ∼=M ′ ◦N . The same statement holds on
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the right-hand side. This construction extends naturally to the differential graded
case.

We dualize the arguments to define the relative composite product for comodules
over a cooperad. Let C be a cooperad, ρ :M→M ◦C be a right C -comodule and
λ : N → C ◦N be a left C -comodule. The relative composite product M ◦C N of
M and N under C is defined by the following equalizer

M ◦C ◦N M ◦N
ρ◦IdN

IdM ◦λ
M ◦C N.

In the same way, we have (M ′ ◦ C ) ◦C N ∼=M ′ ◦ N , for M =M ′ ◦ C being any
cofree C -comodule.

11.2.2 Definition of the Bar Construction

To any twisting morphism α : C →P from a dg cooperad C to a dg operad P , we
associate a functor

Bα : {dg P-algebras} −→ {conil. dg C -coalgebras}.
Let A be a P-algebra. We consider the cofree C -coalgebra C (A) on A and we

denote by d1 the square zero coderivation dC ◦ IdA. Since it is a cofree C -coalgebra,
there is a unique coderivation d2 which extends the degree −1 map

C (A)= C ◦A α◦IdA−−−→P ◦A γA−→A,

by Proposition 6.3.8. The coderivation d2 is equal to the composite

C ◦A �(1)◦IdA−−−−−→ (C ◦(1) C ) ◦A
(IdC ◦(1)α)◦IdA−−−−−−−−−→ (C ◦(1) P) ◦A∼= C ◦ (A;P ◦A) IdC ◦(IdA;γA)−−−−−−−−→ C ◦A.

Lemma 11.2.1. There is a natural isomorphism
(
C (A), d1 + d2

)∼= ((C ◦α P) ◦P A,dα
)
.

Hence, the coderivation d1 + d2 is a square zero coderivation, (d1 + d2)
2 = 0.

Proof. The underlying modules C ◦A∼= (C ◦P) ◦P A are naturally isomorphic.
The formula for the twisted differential dα given in Sect. 6.4.5 shows that it is equal
to d1 + d2. Actually, the maps drα and d2 are defined as the unique coderivation
extending the same kind of map. �

The dg C -coalgebra BαA := (C (A), d1 + d2) is called the bar construction of A
with respect to α.
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We extend this functor to dg P-algebras as follows. When (A,dA) is a dg P-
algebra, the differential dA induces a square zero coderivation on C (A): it is the
unique coderivation on C (A) which extends

C (A)
ε(A)−−→ I(A)∼=A dA−→A.

It is explicitly given by IdC ◦′dA. Now we consider the square zero coderivation
d1 := dC ◦A = dC ◦IdA+ IdC ◦′dA. Since dA is a derivation, d1 and d2 anticommute,
that is d1 ◦ d2 + d2 ◦ d1 = 0. And the coderivation d1 + d2 still squares to zero.

In this case, the total complex is called the bar construction of the dg P-algebra
(A,dA) with respect to α, which is denoted by

BαA :=
(
C (A), d = d1 + d2

)
.

The isomorphism of chain complexes BαA∼= (C ◦α P) ◦P A still holds in this
case. When P is a quadratic operad, we consider the bar construction for dg P-
algebras associated to the canonical twisting morphism κ : P ¡ → P denoted by
BκA := (P ¡

(A), d1 + d2). It is equal to the relative composite product of the right
Koszul complex with A:

BκA∼=
(
P

¡ ◦κ P
) ◦P A.

11.2.3 Recollection with the Classical Notion

In the case of the Koszul operad As, we recover the classical bar construction
of Eilenberg–Mac Lane, introduced in Sect. 2.2.1, with the twisting morphism
κ : As

¡ → As, as follows.

Proposition 11.2.2. For any augmented dga algebra A, the bar construction BA
of Sect. 2.2.1 is related to BκA by the following isomorphism of dga coaugmented
coalgebras

BA∼=K⊕ sBκ Ā,
under the isomorphism of categories C �→ sC+ = sC ⊕ K1 between dg As

¡
-

coalgebras and coaugmented dga coalgebras.

Proof. The bar construction BA is given by the cofree coalgebra T c(sĀ). The
counit splits and �T c(sĀ) is isomorphic to s As

¡
(Ā), since As

¡ ⊗
H

EndcsK
∼= As∗. The

coderivation d2 consists in extracting an element of As
¡
(2) from As

¡
, transform it

into an element of As(2) via κ and make it act on Ā. This composite is equal to the
coderivation d2 defining BA. �

Notice that, in the definition of the bar construction given in this section, there is
no extra suspension of the algebra A. The sign and the degree shift are all encoded
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into the dg cooperad C , which is often P
¡
. The bar construction Bκ produces a

dg P
¡
-coalgebra. To recover the classical cases, like the ones arising in rational

homotopy theory (Sect. 11.3.5), one can equivalently consider sBκA which is a dg
P !∗-coalgebra, with underlying space P !∗(sA). Since these two definitions are
equivalent, we prefer the first one which is more intrinsic to the Koszul duality
theory of operads.

11.2.4 Bar Construction and Quasi-isomorphisms

Proposition 11.2.3. Let α : C → P be an operadic twisting morphism and let
f : A ∼−→ A′ be a quasi-isomorphism of dg P-algebras. The induced morphism
Bαf : BαA

∼−→ BαA′ is a quasi-isomorphism of dg C -coalgebras.

Proof. We consider the filtration on BαA defined by FpBαA := C≤p(A), where
C≤p is the sub-S-module of C made up of elements of homological degree less than
p: C≤p(n) :=⊕d≤p Cd(n). This filtration is stable under the differential of the bar
construction: IdC ◦′dA : Fp → Fp , dC ◦ IdA : Fp → Fp−1 and d2 : Fp → F≤p−1
since C and P are nonnegatively graded. Hence, the first term of the associated
spectral sequence is equal to E0

pqBαA∼= (Cp(A))p+q with d0 = IdC ◦′dA. The map

E0
p•(f ) is a quasi-isomorphism by Künneth formula. Since this filtration is increas-

ing, bounded below and exhaustive it converges to the homology of the bar con-
struction by Theorem 1.5.1. The map E∞•• (f ) being an isomorphism, it proves that
Bαf is a quasi-isomorphism. �

11.2.5 Definition of the Cobar Construction

Dually, to any operadic twisting morphism α : C →P , we associate a functor in
the opposite direction

�α : {conil. dg C -coalgebras} −→ {dg P-algebras}.
Let C be a conilpotent C -coalgebra, the underlying module of �αC is the free

P-algebra on C, that is P(C). It is endowed with a first square zero derivation
d1 := −dP ◦ C. By Proposition 6.3.6, there is a unique derivation −d2 which ex-
tends

C
�C−−→ C ◦C α◦IdC−−−→P ◦C.

It is explicitly given by

P ◦C IdP ◦′�C−−−−−−→P ◦ (C;C ◦C)
IdP ◦(IdC ;α◦IdC)−−−−−−−−−−→P ◦ (C;P ◦C)∼= (P ◦(1) P)(C)

γ(1)◦IdC−−−−→P ◦C.
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Lemma 11.2.4. There is a natural isomorphism

(
P(C),−d1 − d2

)∼= ((P ◦α C ) ◦C C,dα
)
.

Hence, the derivation d1 + d2 is a square zero derivation, (d1 + d2)
2 = 0.

Proof. The underlying modules P ◦C ∼= (P ◦ C ) ◦C C are naturally isomorphic.
The explicit formula for the twisted differential dα given in Sect. 6.4.5 shows that
it is equal to the one given above for d2. Both of them are defined as the unique
derivation extending the same kind of map. �

The dg P-algebra �αC := (P(C), d1 + d2) is called the cobar construction of
C with respect to α.

We extend this functor to dg C -coalgebras as follows. When (C,dC) is a dg C -
coalgebra, the differential dC induces a square zero derivation IdP ◦′dC on P(C).
By definition, the derivations dP ◦ IdC and IdP ◦′dC anticommute. We denote their
sum by d1 := −dP ◦ IdC + IdP ◦′dC . Since dC is a coderivation, d1 and d2 anti-
commute, that is d1 ◦ d2 + d2 ◦ d1 = 0 and d1 + d2 is still a square zero derivation.

The total complex of this bicomplex is called the cobar construction of the dg
C -coalgebra (C,dC) with respect to α. We denote it by

�αC :=
(
P(C), d = d1 + d2

)
.

The isomorphism of chain complexes �αC ∼= (P ◦α C ) ◦C C still holds in this
case. Given a quadratic operad P , we can consider the cobar construction �κ , for
conilpotent dg P

¡
-coalgebras, associated to the twisting morphism κ :P ¡ →P .

It is given by the left Koszul complex

�κC ∼=
(
P ◦κ P

¡) ◦P
¡
C.

11.2.6 Recollection with the Classical Notion

In the case of the operad As, with the twisting morphism κ : As
¡ → As, we recover

the cobar construction of J.F. Adams [Ada56], introduced in Sect. 2.2.2.
In this case, since the twisting morphism κ vanishes outside As

¡
(2), the cobar

construction also applies to any dg As
¡
-coalgebras, non-necessarily conilpotent.

Proposition 11.2.5. Let C be a coaugmented dga coalgebra. Its cobar construction
is isomorphic to the augmented dg algebra

�C ∼=K⊕�κ
(
s−1�C ),

where s−1�C is a dg As
¡
-coalgebra.
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Proof. The underlying module of K⊕�κ(s−1�C)∼=K⊕ As(s−1�C) is the counital
cofree coalgebra T c(s−1�C)∼=K⊕ �T c(s−1�C). The derivation d2 defining �κ is the
unique derivation which extends the coproduct of C. Therefore it agrees with the
derivation d2 of the classical bar construction �C. �

11.2.7 Cobar Construction and Quasi-isomorphisms

A non-negatively graded dg C -coalgebra C is called connected if C0 = 0.

Proposition 11.2.6. Let α : C →P be an operadic twisting morphism which van-
ishes on C (1). Let f : C → C′ be a quasi-isomorphism between connected dg
C -coalgebras. The induced morphism �αf : �αC ∼−→ �αC

′ between the cobar
constructions is a quasi-isomorphism.

Proof. We consider the following filtration on the cobar construction

Fp�αC :=
⊕

n≥−p
P(n)⊗Sn C

⊗n.

This increasing filtration is preserved by the differential of the cobar construction:
d1 : Fp → Fp and d2 : Fp → F≤p−1. Hence the first term of the associated spec-
tral sequence is equal to E0

pq = (P(−p)⊗S−p C
⊗−p)p+q , with d0 = d1. By Kün-

neth formula, E0
p•(�αf )= IdP ⊗f⊗−p is a quasi-isomorphism. Since C (respec-

tively C′) is a connected dg C -coalgebra, the degree of the elements of C⊗−p is
at least −p. Therefore (Fp�αC)d = 0 for p <−d . The filtration being exhaustive
and bounded below, this spectral sequence converges to the homology of the cobar
construction by Theorem 1.5.1, which concludes the proof. �

This result is the generalization of Proposition 2.2.5. Notice that C is a connected
dg C -coalgebra if and only if sC is a 2-connected dg C ⊗EndcsK-coalgebra. So the
hypotheses are the same. Without this assumption, the result does not hold anymore,
as Proposition 2.4.3 shows.

11.3 Bar–Cobar Adjunction for P-Algebras

The bar and the cobar constructions are shown to form a pair of adjoint functors
which represent the two functors associated to twisting morphisms with respect to
the operadic twisting morphism α : C →P .

�α : {conil. dg C -coalgebras} � {dg P-algebras} : Bα.

From this adjunction arise universal twisting morphisms. When the twisting mor-
phism α is a Koszul morphism, the adjunction unit and counit are quasi-iso-
morphisms.
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11.3.1 The Adjunction

Proposition 11.3.1. Let α : C →P be an operadic twisting morphism. For any dg
P-algebra A and any conilpotent dg C -coalgebra C, there are natural bijections

Homdg P-alg (�αC,A)
∼= Twα(C,A)∼=Homdg C -coalg (C,BαA) .

Proof. Since P(C) is a free P-algebra, any morphism of P-algebras Φ :
P(C)→ A is characterized by its restriction ϕ : C → A on C, under the for-
mula Φ = γA(IdP ◦ϕ). The map Φ is a morphism of dg P-algebras if and
only if Φ ◦ (d1 + d2) = dA ◦ Φ . Since d1 and d2 are derivations on the free P-
algebra P(C), it is enough to check this relation on the space of generators C of
P(C), that is (Φ ◦ (d1 + d2))|C = dA ◦ ϕ. We have (Φ ◦ d2)|C = − �α (ϕ) and
∂(ϕ)= dA ◦ ϕ − (Φ ◦ d1)|C . So the previous equation is equal to ∂(ϕ)+ �αϕ = 0,
which is the Maurer–Cartan equation. Therefore a map Φ : �αC → A is a mor-
phism of dg P-algebras if and only if its restriction ϕ : C→ A is a twisting mor-
phism with respect to α.

The bijection on the right-hand side can be made explicit using the same argu-
ments. Any map ϕ : C→ A extends to a unique morphism of C -coalgebras by the
formula (IdC ◦ϕ)(�C) : C→ C ◦ C→ C ◦ A, see Proposition 10.2.1. This mor-
phism commutes with the differential if and only if ϕ is a twisting morphism with
respect to α. �

11.3.2 Universal Twisting Morphisms for P-Algebras

As a corollary to the preceding adjunction, we define several canonical morphisms.
When C = BαA, associated to the identity IdBαA on the right-hand side, there is a
universal twisting morphism πα(A) : BαA→A and a morphism of dg P-algebras
εα(A) :�αBαA→A, which is the counit of the adjunction. (For simplicity, we will
often forget the letter A in the notation.) The former is equal to the composite with
the counit of C

πα : BαA= C ◦A ε◦IdA−−−→ I ◦A=A,
and the latter is equal to the composite

εα :�αBαA=P ◦C ◦A IdP ◦πα−−−−−→P ◦A γA−→A.

Dually, letA=�αC. Associated to the identity Id�αC on the left hand side, there
is a universal twisting morphism ια : C→�αC and a morphism of dg C -coalgebras
υα : C→ Bα�αC, which is the unit of the adjunction. The former is equal to the
composite with the unit of η : I→P of the operad

ια : C ∼= I ◦C η◦IdC−−−→P ◦C =�αC,
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and the latter is equal to the composite

υα : C �C−−→ C ◦C ∼= C ◦ I ◦C IdC ◦η◦IdC−−−−−−→ C ◦P ◦C = Bα�αC.

Both πα and ια satisfy the following universal property.

Proposition 11.3.2. Any twisting morphism ϕ : C→ A with respect to α factors
uniquely through the universal twisting morphisms πα and ια :

�αC

gϕ

C

ια

fϕ

ϕ
A,

BαA

πα

where the map g :�αC→ A is a morphism of dg P-algebras and where the map
f : C→ BαA is a morphism of dg C -coalgebras.

11.3.3 Bar–Cobar Resolutions

Theorem 11.3.3. Let α : C →P be an operadic twisting morphism. Suppose that
C and P are connected weight graded and that α preserves this weight grading.

The twisting morphism α is a Koszul morphism if and only if the counit of the
adjunction εα(A) : �αBαA

∼−→ A is a quasi-isomorphism of dg P-algebras, for
every dg P-algebra A.

Proof.

(⇒) The underlying module of �αBαA is isomorphic to P ◦ C ◦A. We consider
the increasing filtration Fp made up of the elements of P ◦ C ◦ A whose
total weight in P and C is less than p. On A, we consider the trivial fil-
tration, where F′pA := A, for any p ∈ N. The counit of adjunction preserves

this weight grading. The first page E0 is isomorphic to the chain complex
P ◦α C ◦A. Since α is a Koszul morphism, the spectral sequence collapses at
rank one, E1 ∼=H(A), by the operadic Künneth Formula (Proposition 6.2.3).
Therefore E1εα is an isomorphism. The respective filtrations are bounded be-
low and exhaustive; so we conclude by the classical convergence theorem of
spectral sequences (Theorem 1.5.1).

(⇐) We apply the result to the trivial P-algebra V tr, where V is any dg module
concentrated in degree 0. In this case, the bar–cobar construction is quasi-
isomorphic to �αBαV tr ∼=P ◦α C ◦V . Hence, we get H(P ◦α C ) ◦V ∼= V ,
for any K-module V . We conclude that P ◦α C is acyclic by the Schur’s
lemma (Corollary 6.2.4). �
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Theorem 11.3.4. Let α : C → P be an operadic twisting morphism, which van-
ishes on C (1).

The twisting morphism α is a Koszul morphism if and only if the unit of the
adjunction υα(C) : C ∼−→ Bα�αC is a quasi-isomorphism of dg C -coalgebras, for
every dg conilpotent C -coalgebra C.

Proof.

(⇒) The underlying module of Bα�αC is isomorphic to C ◦αP ◦C. We consider
the increasing filtration Fp :=⊕n≤p(C ◦P)(n) ⊗Sn C

⊗n. It is increasing,
bounded below and exhaustive. We conclude with the same arguments as in
the previous proof.

(⇐) We apply the result to the trivial C -coalgebraW tr, whereW is any dg module
concentrated in degree 0. �

When these theorems apply, we call the resulting functorial resolutions provided
by the counit (respectively by the unit) of the bar–cobar adjunction, the bar–cobar
resolution of A (respectively of C).

Corollary 11.3.5. Let P be a Koszul operad. For every dg P-algebraA, the counit
of the adjunction

εκ :�κBκA=P ◦κ P
¡
(A)

∼−→A

is a quasi-isomorphism of dg P-algebras.
Dually, for every conilpotent dg P

¡
-coalgebra C, the unit of the adjunction

υκ : C ∼−→ Bκ�κC =P
¡ ◦κ P(C)

is a quasi-isomorphism of dg P
¡
-coalgebras.

Proof. It is a direct corollary of Theorem 11.3.3. �

When P is not a Koszul operad, one can still apply Theorem 11.3.3 to the Koszul
morphism π : BP →P to get functorial quasi-free resolutions

επ :�πBπA=P ◦BP ◦A ∼−→A,

for any dg P-algebra A.

11.3.4 Recollection with the Classical Case

In the case of the Koszul operad As with its Koszul morphism κ : As
¡ → As, we

recover the classical bar–cobar resolutions for (co)augmented dga (co)algebras of
Proposition 2.3.2.
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Proposition 11.3.6. For any augmented dga algebra A, there is an isomorphism of
augmented dga algebras

�BA∼=K⊕�κBκĀ
∼−→A.

Dually, for any conilpotent dga coalgebra C, there is an isomorphism of coaug-
mented dga coalgebras

C
∼−→ B�C ∼=K⊕ sBκ�κ

(
s−1�C ).

Proof. It is a direct corollary of Propositions 11.2.2 and 11.2.5. �

11.3.5 Rational Homotopy Theory

When P is the Koszul operad Lie encoding Lie algebras, the bar construction Bκ is
the functor “C ” in Quillen [Qui69] and the cobar construction�κ is his functor “L ”
(see Sect. 22 of [FHT01]).

When P is the Koszul operad Com encoding commutative algebras, the bar
construction Bκ was introduced and used by Sullivan in [Sul77] to define algebraic
models which compute rational homotopy groups of topological spaces. The bar
construction Bκ is the functor � and the cobar construction �κ is the functor A
introduced in [SS85] by Schlessinger and Stasheff. These authors also made the
induced bar–cobar resolution explicit and used it to compute Harrison and André–
Quillen cohomology for commutative algebras. For more details on this subject, we
refer the reader to the next chapter.

In the case of the Koszul operad Leib encoding Leibniz algebras, see Sect. 13.5,
the bar and the cobar constructions were made explicit in [Liv98b] by Livernet.

11.3.6 Koszul Duality Theory for Quadratic P-Algebras

In the light of Chaps. 2 and 3, one can define the notion of Koszul morphisms for P-
algebras and then prove a Koszul duality theory for P-algebras. The main difficulty
here is to define the proper analog of the twisted tensor product, i.e. the Koszul com-
plex, for P-algebras. This problem has been solved by Joan Millès in [Mil10]. This
theory allows one to simplify the bar–cobar resolutions for quadratic P-algebras. It
provides smaller and minimal resolutions for some quadratic P-algebras, naturally
called Koszul P-algebras.

11.4 Homotopy Theory of P-Algebras

Let P be a Koszul operad. We apply the previous results to the Koszul morphisms
κ :P ¡ →P and ι :P ¡ →�P

¡ =P∞.
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P P
¡κ

ι

P∞ =�P
¡
.

∼

The induced bar construction BιA∼=P
¡
(A) coincides with the third definition of

P∞-algebras. The counit of adjunction gives a functorial quasi-free resolution for
P∞-algebras. Combining the two adjunctions associated to κ and ι, we define a pair
of adjoint functors between dg P-algebras and P∞-algebras with ∞-morphisms.
The unit of this adjunction allows us to rectify universally P∞-algebras: any P∞-
algebra is universally ∞-quasi-isomorphic to a dg P-algebra. As a corollary, it
proves that the homotopy categories of the dg P-algebras and P∞-algebras, with
∞-morphisms, are equivalent.

11.4.1 Third Definition of Homotopy P-Algebras

Let us consider the operadic twisting morphism ι : P
¡ → �P

¡
. By Proposi-

tion 11.3.1, it induces the following adjunction

�ι :
{
conil. dg P

¡
-coalgebras

}
� {P∞-algebras} : Bι.

The bar construction BιA = P
¡
(A) is the third equivalent definition of a P∞-

algebra, see Sect. 10.1.8. The ∞-morphisms between two P∞-algebras were ac-
tually defined in Sect. 10.2.2 as the morphisms of dg P

¡
-coalgebras between their

images under the bar construction Bι. This result translates exactly into the follow-
ing proposition.

Proposition 11.4.1. The bar construction Bι, associated to the operadic twisting
morphism ι :P¡ →�P

¡
, extends to an isomorphism of categories

B̃ι : ∞-P∞-alg
∼=−→ quasi-free P

¡
-coalg

between the category of P∞-algebras with their ∞-morphisms and the full sub-
category of P

¡
-coalgebras composed by quasi-free ones.

11.4.2 Bar–Cobar Resolution of P∞-Algebras

Proposition 11.4.2. Let A be a P∞-algebra. The bar–cobar construction asso-
ciated to the operadic twisting morphism ι : P¡ → �P

¡
provides a quasi-free
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P∞-algebra quasi-isomorphic to A:

�ιBιA∼=P∞
(
P

¡
(A)
) ∼−→A.

Proof. We proved in Lemma 6.5.9 that ι :P ¡ → �P
¡

is a Koszul morphism. So
this proposition is a direct corollary of Theorem 11.3.3. �

This result gives a functorial quasi-free resolution to any P∞-algebra. It will
be used in the next chapter to compute the (co)homology theories of P∞-algebras,
see Sect. 12.4.4. In fact, the assumption that P is Koszul is not necessary, one can
apply it to any quadratic operad and to any �P

¡
-algebra.

Notice that the morphism between �ιBιA and A is a “strict” morphism of P∞-
algebras as defined in Sect. 10.2.1.

11.4.3 Rectification

To sum up, the Koszul morphisms κ and ι induce the following diagram.

dg P-alg
Bκ

conil dg P
¡
-coalg

�κ

�ι

P∞-alg

Bι

∞-P∞-alg
∼=
B̃ι

�κ B̃ι

quasi-free P
¡
-coalg.

Let us denote by j : dg P-alg � P∞-alg and by i : dg P-alg �∞−P∞-alg
the two “inclusions”. Notice that the bar constructions Bι and B̃ι extend the bar
construction Bκ in the following sense: Bκ = Bι ◦ j = B̃ι ◦ i.

Proposition 11.4.3. Let P be a Koszul operad. The functors

�κ B̃ι : ∞−P∞-alg � dg P-alg : i
form a pair of adjoint functors.
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Proof. We use the characterization of adjoint functors given in terms of the unit and
the counit of adjunction, see Proposition B.2.1.

To any P∞-algebra A, we apply the unit of the adjunction associated to the
twisting morphism κ to the dg P

¡
-coalgebra BιA:

υκ(BιA) : BιA→ Bκ�κ(BιA)= Bι
(
i�κ B̃ι(A)

)
.

Equivalently, this defines an∞-morphism denoted by υ(A) :A� i�κ B̃ι(A), which
in turn induces a transformation of functors υ : Id−→ i�κ B̃ι.

In the other way round, the unit of the adjunction associated to κ gives, for any
dg P-algebra A′, the following morphism of dg P-algebras

εκ
(
A′
) :�κ B̃ιi

(
A′
)=�κBκ

(
A′
)→A′.

This induces the transformation of functors ε :�κ B̃ιi −→ Id.
For any P∞-algebra A, the composite ε(�κ B̃ι(A)) ◦�κ B̃ι(υ(A)) is equal to

�κ(BιA)
�κ(υκ (BιA))

�κ
(
Bκ�κ(BιA)

) εκ (�κ (BιA))
�κ(BιA)

which is the identity by the adjunction associated to κ .
In the same way, for any dg P-algebra A′, the composite i(ε(A′)) ◦ υ(i(A′))

is an ∞-morphism, whose image under the functor B̃ι is equal to the following
morphism of dg P

¡
-coalgebras

BκA′
υκ (BκA′)

(Bκ�κ)BκA′
Bκ (εκ (A′))

BκA′.

Once again, it is the identity by the adjunction associated to κ . �

We use this adjunction to rectify P∞-algebras in a natural way.

Theorem 11.4.4 (Rectification). Let P be a Koszul operad. Any homotopy P-
algebra A is naturally ∞-quasi-isomorphic to the dg P-algebra �κBιA:

A
∼��κBιA.

Proof. To any P∞-algebra A, we apply the unit of the adjunction defined in Propo-
sition 11.4.3: A� i�κ B̃ιA, whose right-hand side is equal to the dg P-algebra
�κBιA. Since it is defined by the unit υκ(BιA) of the adjunction associated to the
twisting morphism κ applied to BιA, its first component is equal to the chain mor-
phism A∼= I ◦ I(A)→P ◦κ P

¡
(A)∼=�κBιA.

We filter the right-hand side by the total weight of P ◦P
¡
. This defines an in-

creasing, bounded below and exhaustive filtration, whose first page is isomorphic
to E0 ∼= (qP ◦κ qP ¡

) ◦ A. By the operadic Künneth formula (Proposition 6.2.3),
the second page is isomorphic to E1 ∼=H•(A). We conclude by the classical conver-
gence theorem of spectral sequences (Theorem 1.5.1). �
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Together with Theorem 10.3.10, this theorem proves that in the homotopy class
of any P∞-algebra, there are a minimal P∞-algebra and a dg P-algebra

(H,0, transferred structure)∼ (A,dA,ϕ)∼ (�κ B̃ιA, d,P-algebra structure).

Proposition 11.4.5 (Universal property (U )). Any ∞-morphism F : A � V from
a P∞-algebra A to a dg P-algebra V factors uniquely through υ(A) : A ∼�
�κBιA

A

F

υ(A)
�κBιA

∃! �F

V,

(U )

where �F :�κBιA→ V is a morphism of dg P-algebras.

Proof. Since this rectification of P∞-algebras is produced by a left adjoint functor,
it satisfies this universal property. �

Proposition 11.4.6 (Universality of the rectification). Under the property (U ), any
P∞-algebra admits an ∞-quasi-isomorphic dg P-algebra, which is unique up to
unique isomorphism.

Proof. By the left adjoint property (Sect. B.2.2), there is a unique dg P-algebra
associated, in a natural way, to any P∞-algebra, which satisfies the property (U ).
Moreover, it is unique up to unique isomorphism. �

Notice moreover that, for any P∞-algebra A, any such dg P-algebra F (A) is
actually ∞-quasi-isomorphic to it since one of them is

F (A)

A

∼

∼
υ(A)

�κBιA.

∼

11.4.4 Equivalence of Homotopy Categories

Recall that the homotopy category Ho(dg P-alg) is obtained by localizing the
category of dg P-algebras with respect to the class of quasi-isomorphisms, see
Appendix B.6.1. Respectively the homotopy category Ho(∞-P∞-alg) is obtained
by localizing the category of P∞-algebras with respect to the class of ∞-quasi-
isomorphisms Ho(∞-P∞-alg). The two previous results show that the adjunction
(Proposition 11.4.3) induces an equivalence between these two homotopy cate-
gories.
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A morphism of dg P
¡
-coalgebras g : C→D is called a weak equivalence if its

image�κg :�κC ∼−→�κD under the cobar construction�κ is a quasi-isomorphism
of dg P-algebras.

Proposition 11.4.7. Let P be a Koszul operad and let f : A � A′ be an ∞-
morphism of P∞-algebras. It is an ∞-quasi-isomorphism if and only if its image
B̃ιf : B̃ιA→ B̃ιA′ under the bar construction B̃ι is a weak equivalence of dg P

¡
-

coalgebras.

Proof. Since the unit υ of the adjunction (Proposition 11.4.3) is a transformation of
functors, the following diagram of ∞-morphisms commutes

�κ B̃ιA
�κ B̃ιf

�κ B̃ιA′

A
f

υ(A)∼

A′.

υ(A′)∼

The ∞-morphisms υ(A) and υ(A′) are ∞-quasi-isomorphisms by the Rectifica-
tion Theorem 11.4.4. The restriction of this diagram to the first components of the
respective ∞-morphisms gives the following diagram of chain morphisms

�κ B̃ιA
�κ B̃ιf

�κ B̃ιA′

A
f(0)

∼

A′.

∼

Therefore�κ B̃ιf is a quasi-isomorphism if and only if f(0) is a quasi-isomorphism,
which concludes the proof. �

As in Sect. 2.4, one can prove that weak equivalences of dg P
¡
-coalgebras form

a strict sub-class of quasi-isomorphisms.

Theorem 11.4.8 (Equivalence of homotopy categories). Let P be a Koszul op-
erad. The homotopy category of dg P-algebras and the homotopy category of P∞-
algebras with the ∞-morphisms are equivalent

Ho(dg P-alg)∼= Ho(∞-P∞-alg).

Proof. We consider the adjunction of Proposition 11.4.3. The functor i sends quasi-
isomorphisms between dg P-algebras to∞-quasi-isomorphisms by definition. The
functor�κ B̃ι sends∞-quasi-isomorphisms of P∞-algebras to quasi-isomorphisms
by Proposition 11.4.7. So this pair of functors induces a pair of adjoint functors
between the homotopy categories.
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Since the counit of adjunction is equal to εκ(A) : �κ B̃ιi(A) = �κBκ (A)→ A

for any dg P-algebra A, it is a quasi-isomorphism by Corollary 11.3.5. This result
and Theorem 11.4.4 prove that the unit and the counit of adjunction induce isomor-
phisms on the level of the homotopy categories, which concludes the proof. �

These two homotopy categories Ho(dg P-alg) and Ho(∞-P∞-alg) are also
equivalent to the homotopy category Ho(∞-P-alg) of dg P-algebras with the ∞-
morphisms. This theorem proves that the homotopy theory of dg P-algebras is “the
same as” the homotopy theory of P∞-algebras or of P-algebras but taken with the
∞-morphisms. The main gain lies in the fact that ∞-quasi-isomorphisms are “in-
vertible” on the opposite to quasi-isomorphisms, see Theorem 10.4.4 and the next
proposition.

11.4.5 Quasi-isomorphisms vs ∞-Quasi-isomorphisms

Theorem 11.4.9. Let P be a Koszul operad and let A and B be two dg P-
algebras. The following assertions are equivalent:

1. there exists a zig-zag of quasi-isomorphisms of dg P-algebras

A
∼← • ∼→ • ∼← •· · · • ∼→ B,

2. there exist two quasi-isomorphisms of dg P-algebras

A
∼← • ∼→ B,

3. there exists an ∞-quasi-isomorphism of dg P-algebras

A
∼� B.

Proof.

(2)⇒ (1) Obvious.
(1)⇒ (3) The quasi-isomorphism A

∼← • of dg P-algebras is a particular case
of ∞-quasi-isomorphism. Theorem 10.4.4 shows that there is an ∞-quasi-
isomorphism A

∼� •. Its composite with • ∼→ B provides the required ∞-quasi-
isomorphism A

∼� B .
(3)⇒ (2) Since A and B are dg P-algebras, they satisfy BιA∼= BκA. By Propo-

sition 11.4.7, an ∞-quasi-isomorphism A
∼� B induces a quasi-isomorphism

�κBκA
∼→�κBκB of dg P-algebras. Finally, the bar–cobar resolution (Corol-

lary 11.3.5) proves

A
∼←�κBκA

∼→�κBκB
∼→ B. �
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11.4.6 Formality

Let P be an operad that we consider as a dg operad with trivial differential. A dg
P-algebra A is called formal when A and the graded P-algebra H(A) of Proposi-
tion 6.3.5 satisfy the above theorem.

Proposition 11.4.10. Let P be a Koszul operad and let A be a dg P-algebra. If
the operadic Massey products on H(A) vanish, then A is formal.

Proof. Since we work over a field,H(A) can be considered as a deformation retract
ofA. By Theorem 10.3.10 the quasi-isomorphism i can be extended into a∞-quasi-
isomorphism i∞ : H(A)� A. It is an ∞-quasi-isomorphism of P-algebras since
the operadic Massey products are trivial. So, assertion (3) of Theorem 11.4.9 is
fulfilled. As a consequence A is formal. �

11.5 Résumé

11.5.1 Twisting Morphism for P-Algebras

Let α : C →P be an operadic twisting morphism, let C be a dg C -coalgebra C,
and let A be a dg P-algebra A.

Twisting morphism with respect to α, Twα(C,A): solution ϕ ∈ Hom(C,A) to the
Maurer–Cartan equation

∂(ϕ)+ �α(ϕ)= 0.

11.5.2 Bar and Cobar Construction for P-Algebras

There is a pair of adjoint functors

�α : {conil. dg C -coalgebras}� {dg P-algebras} : Bα,

which represent the twisting morphism bifunctor

Homdg P-alg (�αC,A)
∼= Twα(C,A)∼=Homdg C -coalg (C,BαA) .

BAR–COBAR RESOLUTION.

α ∈Kos(C ,P) ⇐⇒ εα :�αBαA
∼−→A ⇐⇒ υα : C ∼−→ Bα�αC.
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11.5.3 Homotopy Theory of Homotopy P-Algebras

Let P be a Koszul operad. The twisting morphisms κ and ι induce the following
diagrams.

P P
¡κ

ι

P∞ =�P
¡

∼

dg P-alg
Bκ

dg P
¡
-coalg

�κ

�ι

P∞-alg

Bι

∞-P∞-alg
∼=
B̃ι

�κ B̃ι

quasi-free P
¡
-coalg

BAR–COBAR RESOLUTION OF P -ALGEBRAS.

εκ :�κBκA∼=P
(
P

¡
(A)
) ∼−→A.

BAR–COBAR RESOLUTION OF P∞-ALGEBRAS.

ει :�ιBιA∼=P∞
(
P

¡
(A)
) ∼−→A.

Proposition. The following functors are adjoint to each other.

�κ B̃ι : ∞-P∞-alg � dg P-alg : i.

Theorem. The counit of this adjunction

A
∼��κBιA

provides a natural and universal rectification for homotopy P-algebras.

HOMOTOPY CLASS OF A P∞-ALGEBRA.

(H,0, transferred structure)∼ (A,dA,ϕ)∼ (�κ B̃ιA, d,P-algebra structure).

Theorem.

Ho(P-alg)∼= Ho(∞-P-alg)∼= Ho(∞-P∞-alg).
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Theorem. The following assertions are equivalent

 ∃ A ∼← • ∼→ • ∼← •· · · • ∼→ B ,
 ∃ A ∼← • ∼→ B ,
 ∃ A ∼� B .

11.6 Exercises

Exercise 11.6.1 (Bar–cobar adjunction). Prove that Twα(C,−), Twα(−,A), Bα
and �α are indeed functors. Show that the bijections given in Proposition 11.3.1
are natural.

Exercise 11.6.2 (Bar–cobar resolutions). When P is a Koszul operad, prove that
the two resolutions ε :P ◦P

¡
(A)

∼−→A and επ :P ◦BP(A)
∼−→A are homotopy

equivalent.

Exercise 11.6.3 (Quasi-isomorphisms vs weak equivalences). Let P be a Koszul
operad such that P(1)= I. Prove that weak equivalences of dg P

¡
-coalgebras form

a strict sub-class of quasi-isomorphisms.

Exercise 11.6.4 (Lie〈k〉-interpretation of twisting morphisms with respect to k-
ary (co)operads �). Let P = P(E,R) be a quadratic operad generated by k-
ary operations, with the integer k fixed. Interpret the Maurer–Cartan equation
∂(ϕ)− �κ(ϕ)= 0 in terms of a Maurer–Cartan equation

∂(s−1ϕ)+ 1

k!
[
s−1ϕ, . . . , s−1ϕ

]= 0

in a dg Lie〈k〉-algebra, see Sect. 13.11.3 for a definition.

Exercise 11.6.5 (Relative composite product �). Prove the isomorphism (M ′ ◦
P) ◦P N ∼=M ′ ◦ N for the relative composite product where M =M ′ ◦P is a
free P-module.

Dually, prove the isomorphism (M ′ ◦ C ) ◦C N ∼=M ′ ◦ N for the relative com-
posite product whereM =M ′ ◦C is a cofree C -comodule.



Chapter 12
(Co)Homology of Algebras over an Operad

Les mathématiques ne sont pas une moindre immensité que la
mer.

Victor Hugo

Given an algebra A over a quadratic operad P , one can construct a chain complex
CP• (A) := (P ¡(A), d) out of the Koszul dual cooperad P ¡, whence homology
groups HP• (A). On the other hand, there is a general theory called André–Quillen
(co)homology theory, which provides homological invariants for an algebra over an
operad. It plays a role in many classification problems, like for instance deformation
theory. We show that, when P is Koszul, the operadic homology coincides with
André–Quillen homology, thus providing a small explicit complex to compute it.

In this chapter, we introduce the André–Quillen cohomology and homology of
algebras over an operad. The classical method in homological algebra to define
(co)homology theories is to use the notion of derived functors between abelian cate-
gories. Since the various categories involved here are not abelian, we have to use the
general framework of model categories, Quillen adjunctions and total derived func-
tors, recalled in Appendix B.6. Thanks to this conceptual approach, we can compute
the associated (co)homology groups with any cofibrant resolution. We use the res-
olutions provided by the Koszul duality theory and made explicit in the previous
chapter.

In the first section, we consider the Quillen homology of algebras with trivial co-
efficients. It is defined conceptually by deriving the non-abelian functor of indecom-
posable elements. When the underlying operad is Koszul, the Quillen homology is
equal to the homology of the bar construction of the algebra. This gives yet another
way to prove that an operad is Koszul: one has just to check whether the homol-
ogy of the bar construction of the free algebra is trivial, see Ginzburg and Kapranov
[GK94] and Getzler and Jones [GJ94].

The deformation theory of algebras over an operad is the subject of the second
section. It is governed by the convolution dg Lie algebra

g := (HomS

(
P

¡
,EndA

)
, [, ], ∂),

J.-L. Loday, B. Vallette, Algebraic Operads,
Grundlehren der mathematischen Wissenschaften 346,
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introduced in Sect. 10.1.2. First, the set of P-algebra structures on a space A is
in one-to-one correspondence with the set of Maurer–Cartan elements of g. Then,
given such an element, one can twist this dg Lie algebra to obtain another one.
Maurer–Cartan elements in this twisted dg Lie algebra correspond to deformations
of the original structure. The underlying cochain complex of the twisted dg Lie
algebra is called the deformation complex. Its cohomology groups are isomorphic
to the André–Quillen cohomology of the P-algebra A with coefficients into itself.
The particular case of associative algebras, as treated by Gerstenhaber in [Ger63],
serves as a paradigm for this general theory. This treatment applies as well to study
the deformation theory of P∞-algebras.

In the third section, we give the complete definition of André–Quillen cohomol-
ogy and homology of algebras over an operad after Hinich [Hin97] and Goerss and
Hopkins [GH00]. It follows the method used by Quillen in [Qui70] and André in
[And74] defining the (co)homology theory of commutative algebras, but extended
to any category of algebras over an operad. It involves several general construc-
tions like the enveloping algebra, the module of Kähler differential forms and the
cotangent complex for example. This latter plays a key role since it represents the
André–Quillen cohomology theory.

In the last section, we define an operadic cohomology theory with coefficients
for any algebra over an operad by an explicit cochain complex. When the operad is
Koszul, this is proved to coincide with the André–Quillen cohomology. So this pro-
vides a cochain complex which computes the André–Quillen cohomology groups.

This chapter mainly comes from Ginzburg–Kapranov [GK94], Getzler–Jones
[GJ94], Hinich [Hin97], Balavoine [Bal97, Bal98], Goerss–Hopkins [GH00], Millès
[Mil11], and Fresse [Fre09a].

12.1 Homology of Algebras over an Operad

In this section, we introduce the homology of an algebra over an operad, with trivial
coefficients. When the governing operad P is quadratic, we define the operadic
homology of P-algebras by an explicit chain complex made out of the Koszul dual
cooperad. For any augmented operad P , we define the Quillen homology of P-
algebras by a total derived functor. We show that the operadic homology is equal to
the Quillen homology if and only if the operad is Koszul.

This section comes from Ginzburg–Kapranov [GK94] and from Getzler–Jones
[GJ94], see also Livernet [Liv98a].

12.1.1 Operadic Chain Complex of a P-Algebra

For any homogeneous quadratic operad P =P(E,R) and any P-algebra A, we
consider the chain complex given by the bar construction of A

CP• (A) := BκA=
(
P

¡ ◦κ P
) ◦P A∼= (P ¡

(A), d
)
.
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By definition, it forms a dg P
¡
-coalgebra. Recall from Sect. 11.2.2 that the dif-

ferential map d = d2 is the unique coderivation which extends the composite of
the twisting morphism κ : P ¡ → P with the composition product γA of A. It is
explicitly given by the following composite

P
¡
(A)=P

¡ ◦A �(1)◦IdA−−−−−→ (P ¡ ◦(1) P ¡) ◦A
(Id◦(1)κ)◦IdA−−−−−−−−→ (P ¡ ◦(1) P

) ◦A�P
¡ ◦P ◦A

Id◦γA−−−→P
¡ ◦A=P

¡
(A).

When E and A are concentrated in degree 0, the homological degree of P
¡ (n)

is
n and the chain complex has the following form

CP• (A) : · · · →P
¡ (3)
(A)→P

¡ (2)
(A)→P

¡ (1)
(A)→A.

In low degree, we have explicitly,

· · · → s2R(A)→ sE(A)→A.

This definition extends in two directions: to dg P-algebras (A,dA) and to in-
homogeneous quadratic operads P , satisfying the conditions (ql1) and (ql2) of
Sect. 7.8. In this case, the differential map in the bar construction is the sum of
several terms, as explained in Sect. 11.2.2.

Proposition 12.1.1. If the operad P =P(E,R) is binary and quadratic, then the
Koszul complex CP• (A) of the P-algebra A is

CP
n (A)=P¡(n+ 1)⊗Sn+1 A

⊗n+1,

with differential

d
(
δ⊗ (a1, . . . , an+1)

)

=
∑
ξ ⊗ (aσ−1(1), . . . , aσ−1(i−1),μ(aσ−1(i), aσ−1(i+1)), aσ−1(i+2), . . . , aσ−1(n+1)

)
,

for

�(1)(δ)=
∑
(ξ ; id, . . . , id,μ, id, . . . , id;σ),

δ ∈P¡(n+ 1), ξ ∈P¡(n), μ ∈P¡(2)=E, and σ ∈ Sn+1.

Proof. Since P is binary, the infinitesimal decomposition map splits the n + 1-
cooperation δ of P

¡
into an n-cooperation and a binary cooperation of P

¡
. By κ

this latter cooperation is viewed as a binary operation of P . The sum is over all
these possibilities of splitting. �

EXAMPLE. In the case of the operad As encoding associative algebras, we recover
the Hochschild chain complex introduced in Sect. 9.1.6.
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12.1.2 Operadic Homology of a P-Algebra

By definition, the homology of the chain complex CP• (A) is called the operadic
homology of the P-algebra A and we denote the homology groups by HP• (A).

Proposition 12.1.2. For any quadratic operad P and any dg P-algebra A, the
operadic homologyHP• (A) of A is a graded P

¡
-coalgebra. EquivalentlyHP•+1(A)

is a graded P !-coalgebra.

Proof. Since the chain complex CP• (A) is a dg P
¡
-coalgebra, its homology is a

graded P
¡
-coalgebra. The second statement follows from Sect. 7.2.3. �

Let P be an augmented operad P = I⊕ �P and letA be a P-algebra. The space
of indecomposable elements of A is the cokernel of

γA : �P(A)→A.

We denote it by Indec(A). For instance, the indecomposable elements of the free
P-algebra P(V ) is equal to the generating space V . When P is binary, we have
Indec(A)= A/A2, where A2 := γ (E(2)⊗A⊗2), since any product of elements of
A is an iterated composition of binary operations.

Proposition 12.1.3. For any quadratic operad P and for any P-algebra A, we
have HP

0 (A)= Indec(A).

Proof. It comes from the explicit form of the operadic complex given above. �

This homology theory permits us to rephrase the Koszul property of an operad.

Theorem 12.1.4. Let K be a field of characteristic zero. A quadratic operad P
is Koszul if and only if, for any vector space V , the operadic homology of the free
P-algebra P(V ) is equal to

HP
n

(
P(V )

)=
{

0 if n≥ 1,
V if n= 0.

Proof. The bar construction of a free P-algebra P(V ) is equal to

CP•
(
P(V )

)= BκP(V )= (P ¡ ◦κ P
) ◦ V.

We conclude with Corollary 6.2.4, which states thatH•((P
¡ ◦κ P)◦V )= V if and

only if H•(P
¡ ◦κ P)= I. �

This result provides a method to prove that an operad is Koszul. Several examples
are made explicit in Chap. 13.
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REMARK. Recall that the Koszul duality theory for operads holds over a ring of
positive characteristic [Fre04]. In this case, if the operadic homology of any free P-
algebra is concentrated in degree 0, then the operad is Koszul (see Proposition 5.3.5.
of loc. cit.). But the converse does not hold true because of the torsion phenomenon.
For instance Harrison homology of free commutative algebras is not always trivial
in positive characteristic, see Barr [Bar68] and Harrison [Har62]. But the operad
Com is Koszul in positive characteristic, by the rewriting method (Sect. 8.3), for
instance.

12.1.3 Quillen Homology of a P-Algebra

To give a conceptual definition of the homology of a P-algebra, we apply to operads
the same method as the one which defines the T or functors of modules over an
associative algebra, see Appendix B.7.2. However, since we work in a non-additive
setting, we need to use the formalism of model categories: total derived functors and
cofibrant objects, see Appendix B.6. We show that it coincides with the previous
operadic homology when the operad P is Koszul.

Let f : P → Q be a morphism of operads. The pullback along f defines a
functor f ∗ : dg Q-alg→ dg P-alg.

Lemma 12.1.5. The functor f! : dg P-alg→ dg Q-alg, given by the relative com-
posite product f!(A) :=Q ◦P A is left adjoint to f ∗.

f! : dgP-alg � dgQ-alg : f ∗.

Proof. The proof is left to the reader as a good exercise. �

The notation f! is common in the literature and should not be confused with any
Koszul dual.

In general, neither the category of dg P-algebras nor the functor f! are addi-
tive, therefore we cannot try to derive it in the classical sense. Instead, we have
to consider its total derived functor à la Quillen, see Appendix B.7.3. Under some
assumptions, for instance when the ground ring K is a characteristic 0 field, the
two categories of dg algebras can be endowed with model category structures, see
Proposition B.6.5, and the aforementioned adjunction is a Quillen functor. So the
two functors can be derived to induce the following adjunction

Lf! : Ho(dgP-alg)� Ho(dgQ-alg) :Rf ∗.
We apply these results to the augmentation map ε : P → I of an augmented

operad P . In this case, the functor ε∗ : dg ModK → dg P-alg amounts just to
restricting the action to the scalars. Its left adjoint ε! : dg P-alg → dg ModK is
equal to ε!(A) := I ◦P A= Indec(A), the space of indecomposable elements of the
P-algebra A.
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The Quillen homology of a dg P-algebra A is defined as being the homology
H•(L Indec(A)) of the total left derived functor of the indecomposable elements
functor.

As usual, one computes it as the homology H•(Indec)(R), for any cofibrant re-
placement R

∼−→ A of the dg P-algebra A. Recall from Sect. 11.3.3 that, when the
operad P is Koszul, the bar–cobar construction �κBκA, associated to the Koszul
morphism κ , provides a functorial quasi-free resolution for dg P-algebras A.

Theorem 12.1.6. Let P be a Koszul operad over a field K of characteristic 0. For
any dg P-algebra A, the operadic homology of A is equal to its Koszul homology

H•
(
L Indec(A)

)=HP• (A).

Proof. It is enough to prove that the resolution

�κBκA=
(
P ◦κ P

¡ ◦κ P
) ◦P A

∼−→A

is cofibrant. One considers the filtration on P
¡
(A) given by the weight of P

¡
.

It is straightforward to see that the boundary map lowers the weight filtration. So
this dg P-algebra is quasi-free and triangulated, according to the terminology of
Appendix B.6.6. Therefore, it is cofibrant. �

REMARK. Recall from Sect. 11.3.3 that

�πBπA= (P ◦π BP ◦π P) ◦P ◦A ∼−→A

is always a quasi-free resolution of A. Among graded P-algebras A, i.e. with trivial
differential, the dg P-algebra �πBπA provides a functorial cofibrant replacement.
To prove it, it is enough to consider the filtration on (BP)(A) given by the num-
bers of elements of �P , see Appendix B.6.6. This resolution gives an explicit chain
complex which computes the Quillen homology of graded P-algebras, even when
the operad P fails to be Koszul.

Moreover, the converse of the above theorem is also true.

Proposition 12.1.7. Let P be a quadratic operad over a field K of characteris-
tic 0. If the operadic homology of any graded P-algebra A is equal to its Koszul
homology

H•
(
L Indec(A)

)=HP• (A),

then the operad P is Koszul.

Proof. We apply the assumption to the free P-algebra P(V ) and we compute its
operadic homology with the aforementioned bar–cobar construction �πBπP(V ).
It is equal to H•(BP ◦π P)(V )= V . We conclude with Theorem 12.1.4. �
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12.1.4 Operadic Homology of a P∞-Algebra

In the same way, we define the operadic homology of a P∞-algebra A by the
homology of its bar construction

HP∞• (A) :=H•(BιA).
Recall from Sect. 11.2.2, that the bar construction BιA of a P∞-algebra A is the dg
P

¡
-coalgebra

BιA=
(
P

¡ ◦ι P∞
) ◦P∞ A=

(
P

¡
(A), d

)
.

Over a field of characteristic 0 and over nonnegatively graded dg modules, it
computes the Quillen homology of P∞-algebras, which is defined as the homology
of the derived functor of the indecomposable functor. This uses the model category
structure on the category P∞-alg of P∞-algebras with “strict” morphisms. Notice
that we do not need P to be a Koszul operad to obtain these results.

12.2 Deformation Theory of Algebra Structures

In this section, we use the convolution dg Lie algebra

g := (HomS

(
P

¡
,EndA

)
, [, ], ∂)

introduced in Sect. 10.1.2 to study the deformation theory of P-algebra and P∞-
algebra structures. We use the general framework of deformation theory associated
to a dg Lie recalled in Sect. 13.2.14. First, we study the case of P-algebra struc-
tures: moduli space, deformation complex, deformation functor, infinitesimal and
formal deformations. Since all the proofs are based on general arguments using
“Lie calculus” in the convolution dg Lie algebra, we show that they extend mutatis
mutandis to the P∞-algebra case.

The deformation theory of algebraic structures was initiated by Murray Gersten-
haber on the level of associative algebras in [Ger63, Ger64]. It was extended to Lie
algebras by Nijenhuis and Richardson [NR66, NR67]. The case of algebras over a
binary quadratic operads was treated by Balavoine in [Bal97].

For more details and applications on the deformation theory of algebraic struc-
tures, we refer the reader to the book of Kontsevich and Soibelman [KS10] and to
the survey of Keller [Kel05].

12.2.1 Moduli Space of P-Algebra Structures

Recall that in Sect. 10.1.2, we have associated a convolution dg Lie algebra

g= gP,A :=
(

HomS

(
P

¡
,EndA

)
, [, ], ∂)
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to any a pair (P,A), where P =P(E,R) is a quadratic operad and where A is
a dg K-module. When A is concentrated in degree 0, we consider the following
cohomological degree on g induced by the weight grading

Hom(A,A)
∂−→ HomS

(
P

¡ (1)
,EndA

) ∂−→ HomS

(
P

¡ (2)
,EndA

) · · · ,

0 1 2

where HomS(I,EndA) is identified with Hom(A,A). The coboundary map ∂ is null
when the operad P is homogeneous quadratic and is equal to the pullback of the
differential of P

¡
in the inhomogeneous case. Under this convention of grading,

g becomes a cohomological dg Lie algebra. Its set MC(g) of degree 1 elements
ϕ, which satisfy the Maurer–Cartan equation ∂(ϕ)+ 1

2 [ϕ,ϕ] = 0, is in one-to-one
correspondence with the set of P-algebra structures on A by Proposition 10.1.4.

A finer object to study is the coset of P-algebra structures on A modulo isomor-
phisms. It is called the moduli space of P-algebra structures on A and denoted by
P-alg(A)/∼. Let us now apply the general deformation theory associated to a dg
Lie algebra, as recalled in Sect. 13.2.14. The degree 0 Lie subalgebra is here equal
to g0 =Hom(A,A)= gl(A). Its Lie group, under proper hypotheses, is the general
Lie group GL(A). It acts on the set of Maurer–Cartan elements to give the moduli
space

MC (gP,A) :=MC(gP,A)/GL(A).

Proposition 12.2.1. Over the field C of complex numbers, for any quadratic op-
erad P and any finite dimensional module A, there is a natural bijection of moduli
spaces

MC (gP,A)
∼=P-alg(A)/∼ .

Proof. By definition of the gauge group action, two Maurer–Cartan elements ϕ
and ψ are equivalent if and only if there exists a λ ∈ Hom(A,A) such that ψ =
eadλ(ϕ) in HomS(P

¡ (1)
,EndA). A short computation shows that this is equivalent

to ψ(μ)= eλ ◦ψ(μ) ◦ (e−λ, . . . , e−λ) in Hom(A⊗m,A), for any μ ∈P
¡ (1)
(m). It

means that there exists f = eλ ∈ GL(A) such that ψ(μ) ◦ (f, . . . , f ) = f ◦ ϕ(μ),
that is f is an isomorphism of P-algebras. �

The set of P-algebra structures on a module A carries the following geometrical
structure.

Proposition 12.2.2. When the spaces P
¡ (1) = sE and A are finite dimensional,

the set of P-algebra structures MC(g) is an algebraic variety in the affine space

g1 =HomS(P
¡ (1)
,EndA), which is an intersection of quadrics.

Proof. Under these assumptions, the vector space of g1 =HomS(sE,EndA) is finite
dimensional. We conclude with Proposition 13.2.7. �
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As a quotient, the moduli space MC (gP,A) might be a singular space. In gen-
eral, it forms an algebraic stack.

12.2.2 Deformation Complex of a P-Algebra

Given any P-algebra structure ϕ ∈MC(g) on A, we associate its deformation com-
plex given by the cochain complex

(
HomS

(
P

¡
,EndA

)
, ∂ϕ
)
,

where ∂ϕ(f ) := ∂(f )+ [ϕ,f ] is the twisted differential introduced in Sect. 6.4.4.
The homology groups of the deformation complex are often called the tangent

homology. Later in Sect. 12.2.6, we will explain why the homology of the deforma-
tion complex can be interpreted as the tangent space at point ϕ of the algebraic stack
MC (gP,A).

12.2.3 Intrinsic Lie Bracket

Before analyzing the associated cohomology groups, let us recall that, by its very
definition, the deformation complex carries a Lie bracket. It is called the intrinsic
Lie bracket by Stasheff in [SS85, Sta93].

Proposition 12.2.3. The deformation complex forms a dg Lie algebra

g
ϕ = g

ϕ

P,A
:= (HomS

(
P

¡
,EndA

)
, [, ], ∂ϕ

)
.

Proof. See Proposition 6.4.6. �

Proposition 12.2.4. For any P-algebra structure ϕ ∈ MC(g) on A, the following
equivalence holds

α ∈MC
(
g
ϕ
) ⇐⇒ α+ ϕ ∈MC(g).

Proof. Under ∂(ϕ)+ 1
2 [ϕ,ϕ] = 0, the equation ∂(α)+[ϕ,α]+ 1

2 [α,α] = 0 is equiv-
alent to ∂(α)+ ∂(ϕ)+ 1

2 [α + ϕ,α + ϕ] = 0. �

The sum α + ϕ of two P-algebra structures on A is not in general a P-algebra
structure. This proposition shows that α+ϕ is indeed a P-algebra structure on A if
and only if α is a Maurer–Cartan element in the twisted convolution dg Lie algebra
gϕ .

Equivalently, the algebraic variety MC(gϕ) is the translation under−ϕ of MC(g)
in the affine space g1.
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12.2.4 Deformation Complex of Associative Algebras

The convolution dg Lie algebra associated to the nonsymmetric operad As has al-
ready been made explicit in Sect. 10.1.5. In the case where the dg module A is
concentrated in degree 0, it coincides with the Hochschild cochain complex of A
with coefficients into itself, endowed with the Lie bracket defined by Gerstenhaber
in [Ger63].

When the nonsymmetric operad P = As, the Koszul dual ns cooperad As
¡

is
one-dimensional in each arity, so the underlying graded module of the deformation
complex is

gAs,A =Hom
(
As

¡
,EndA

)∼= {Hom
(
A⊗n,A

)}
n∈N∗ ,

where Hom(A⊗n,A) lies in cohomological degree n− 1. The intrinsic Lie bracket
is equal to

[f,g] =
n∑

i=1

(−1)(i−1)(m−1)f ◦i g− (−1)(n−1)(m−1)
m∑

j=1

(−1)(j−1)(n−1)g ◦j f

for f ∈Hom(A⊗n,A) and g ∈Hom(A⊗m,A). Since the operad As and the dg mod-
ule A are concentrated in degree 0, the cohomological degree considered here is the
opposite of the homological degree considered in Sect. 10.1.5. Therefore the signs
are the same and this Lie bracket is equal to the one defined by Gerstenhaber in
[Ger63].

An element μ ∈ Hom(A⊗2,A) satisfies the Maurer–Cartan equation if and only
if it is associative

[μ,μ] =
(

−
)

+
(

−
)

= 2

(

−
)

= 0,

when the characteristic of the ground field is not equal to 2.
Given such an associative product μ, the twisted differential ∂μ on

Hom(A,A)
∂μ−→ Hom

(
A⊗2,A

) ∂μ−→ Hom
(
A⊗3,A

) · · · ,

0 1 2

is equal to
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∂μ(f ) := [μ,f ]

= f + (−1)n−1
f

− (−1)(n−1)
n∑

j=1

(−1)j−1 j

f

for f ∈Hom(A⊗n,A). Up to a factor (−1)n−1, we recover the differential map

(df )(a1, . . . , an+1)= a1.f (a2, . . . , an+1)

+
n∑

j=1

(−1)j f (a1, . . . , aj .aj+1, . . . , an+1)

+ (−1)n+1f (a1, . . . , an).an+1

of the Hochschild cochain complex C•(A,A), see Sect. 9.1.7.
In the case of the operad Lie, we recover the Chevalley–Eilenberg cochain com-

plex together with the Nijenhuis–Richardson bracket. For more details, we refer the
reader to Exercise 12.6.2.

12.2.5 Deformation of P-Algebra Structures

Let R be a local commutative algebra (or ring) with maximal ideal m and with
residue field K, i.e. R∼=K⊕m. Later on we will work in detail on the case of the
algebra of dual numbers R=K[t]/(t2) and the case of the algebra of formal power
series R=K[[t]].

Extending the scalars, one can consider operads and algebras in the symmetric
monoidal category (ModR,⊗R,R) of R-modules. Any S-module M in the cate-
gory of K-modules extends to an S-module

M ⊗K R := (M(0)⊗K R,M(1)⊗K R, . . .
)

in the category of R-modules. When (P, γ, ι) is a K-linear operad, then P ⊗K R

is endowed with the following R-linear operad structure

(μ⊗ r;ν1 ⊗ r1, . . . , νk ⊗ rk) �→ γ (μ;ν1, . . . , νk)⊗ rr1 . . . rk.
For instance, any K-linear quadratic operad P =P(E,R) extends to an R-linear
quadratic operad P ⊗K R∼=P(E ⊗K R,R ⊗K R) since the composition map of
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operads is R-linear in the latter case. From now on and as usual, we simplify the
notation ⊗K into ⊗.

In the same way, the extension of scalars provides an R-module A⊗R, whose
endomorphism operad is equal to

EndA⊗R = {HomR

(
(A⊗R)⊗Rn,A⊗R

)}
n∈N

∼= {HomK

(
A⊗n,A

)⊗R
}
n∈N ∼= EndA ⊗R

by R-linearity.

Lemma 12.2.5. The convolution dg Lie algebra gP⊗R,A⊗R is isomorphic to the
R-linear extension of the convolution dg Lie algebra gP,A

gP⊗R,A⊗R
∼= gP,A ⊗R= (HomS

(
P

¡
,EndA

)⊗R, [, ], ∂).

Proof. We have seen that the operad P ⊗ R is equal to the R-linear quadratic
operad P(E ⊗R,R ⊗R). Its Koszul dual cooperad C (sE ⊗R, s2R ⊗R) is iso-
morphic to C (sE, s2R)⊗R=P

¡ ⊗R by R-linearity.
By definition, the convolution dg Lie algebra gP⊗R,A⊗R is made up of R-linear

Sn-equivariant morphisms from (P⊗R)
¡
(n) to HomR((A⊗R)⊗Rn,A⊗R). Such

morphisms are equivalent to K-linear Sn-equivariant morphisms from P
¡
(n) to

Hom(A⊗n,A)⊗R, which concludes the proof. �

Recall that the tensor product of a dg Lie algebra with a commutative algebra is
endowed with a dg Lie algebra structure, where [α⊗X,β ⊗ Y ] := [α,β] ⊗XY .

In the other way round, one recovers g from g ⊗R ∼= g ⊕ g ⊗ m by reducing
modulo m: g∼= (g⊗K R)⊗R K.

Let ϕ ∈MC(g) be a P-algebra structure on A. An R-deformation of ϕ is an R-
linear P ⊗R-algebra structure on A⊗R, that is Φ ∈MC(g⊗R), which reduces
to ϕ modulo m. We denote by Defϕ(R) the set of R-deformations of ϕ.

When m2 = 0, the associated deformations are called infinitesimal deformations.
The paradigm of infinitesimal deformation is the one-parameter case given by the
algebra of dual numbers D =K[t]/(t2).

When the local algebra R is complete, i.e. when R is equal to the limit R =
lim←−R/mn, the associated deformations are called formal deformations. The one-
parameter case is given by the algebra of formal power series K[[t]].

Any P-algebra structure ϕ ∈ MC(g) admits a trivial R-deformation ϕ + 0 ∈
MC(g⊗R), which corresponds to the trivial R-linear extension of the P-algebra
structure. The following result shows that the R-deformations of ϕ are controlled
by the dg Lie algebra gϕ ⊗m.

Proposition 12.2.6. For any P-algebra structure ϕ onA, its set of R-deformations
is naturally in bijection with the set of Maurer–Cartan elements in the dg Lie algebra
gϕ ⊗m:

Defϕ(R)∼=MC
(
g
ϕ ⊗m

)
.
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Proof. Since ϕ + 0 ∈MC(g⊗R), Proposition 12.2.4 shows that Φ = ϕ + �Φ , with
�Φ ∈ g1 ⊗m, is in MC(g⊗R) if and only if �Φ belongs to MC((g⊗R)ϕ+0). This
condition is equivalent to �Φ ∈MC(gϕ ⊗m). �

An R-deformation Φ is equivalent to another R-deformation Ψ if there exists
an R-linear isomorphism of P ⊗R-algebras (A⊗R,Φ)→ (A⊗R,Ψ ), whose
restriction modulo m is equal to the identity of (A,ϕ). Notice that it forms an equiv-
alence relation denoted Φ ∼ Ψ . The associated deformation functor is denoted by

Def ϕ(R) :=Defϕ(R)/∼ .

12.2.6 Infinitesimal Deformations and Tangent Homology

In this section, we consider the case of the algebra of dual numbers R = D =
K[t]/(t2).

In this case, a (one-parameter) infinitesimal deformation of ϕ is an element of
the form Φ = ϕ + ϕ1t in g1 ⊕ g1 ⊗ t . By Proposition 12.2.6, this latter element is
an infinitesimal deformation if and only if

∂(ϕ1)t + [ϕ,ϕ1]t + 1

2
[ϕ1, ϕ1]t2 =

(
∂(ϕ1)+ [ϕ,ϕ1]

)
t = ∂ϕ(ϕ1)t = 0.

So the set of infinitesimal deformations of ϕ is canonically in bijection with the set
of 1-cocycles in gϕ .

Two infinitesimal deformations Φ = ϕ + ϕ1t and Ψ = ϕ +ψ1t are equivalent if
and only if there exists an isomorphism of P ⊗D-algebras, whose restriction to A
reads

f = IdA+f1t :A→A⊕A⊗ t.
Notice that an R-linear endomorphism f = IdA+f1t : A→ A⊕A⊗ t of A⊗R

is always an isomorphism with inverse IdA−f1t . So the condition for the deforma-
tions Φ and Ψ depends only on the endomorphism f1 ∈Hom(A,A) as follows.

Theorem 12.2.7. There are canonical bijections

Defϕ
(
K[t]/(t2))∼= Z1(

g
ϕ
)

and Defϕ
(
K[t]/(t2))∼=H 1(gϕ

)
.

Proof. An endomorphism f1 ∈Hom(A,A) induces a morphism of P⊗D-algebras
f = IdA+f1t if and only if the following diagram commutes

μ ∈ sE =P
¡ (1) Φ

Ψ

ϕ(μ)+ ϕ1(μ)t ∈ EndA⊗D
f∗

ϕ(μ)+ψ1(μ)t ∈ EndA⊗D f ∗ ϕ(μ)+(ϕ1(μ)+f1◦ϕ(μ))t
=ϕ(μ)+(ψ1(μ)+∑ϕ(μ)◦(IdA⊗···⊗f1⊗···⊗IdA))t
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for any μ ∈ sE and where the last sum runs over all the possible positions of f1. If
μ ∈ sE(m), then ϕ(μ) ∈Hom(A⊗m,A). Therefore, it is equivalent to

ϕ1(μ)−ψ1(μ)=−f1 ◦ ϕ(μ)+
∑
ϕ(μ) ◦ (IdA⊗· · · ⊗ f1 ⊗ · · · ⊗ IdA).

It remains to show that the right-hand side is equal to ∂ϕ(f1)(μ). By definition, this
latter element is equal to

∂ϕ(f1) :P ¡ (1) �(1)−−→ I ◦P
¡ (1) ⊕P

¡ (1) ◦(1) I
−f1◦ϕ+ϕ◦(1)f1−−−−−−−−−→ EndA.

This concludes the proof. �

When t tends to 0, any infinitesimal deformation ϕ + ϕ1t tends to ϕ in the di-
rection given by ϕ1. With the aforementioned results, this explains why Z1(gϕ) can
be interpreted as the tangent space at ϕ of the algebraic variety MC(g) and why
H 1(gϕ) can be interpreted as the tangent space at ϕ of the algebraic stack MC (g).
For more details on this interpretation, we refer the reader to [CFK01].

12.2.7 Formal Deformations

Let us now work with R = K[[t]] and (one-parameter) formal deformations Φ =
ϕ +∑n≥1 ϕnt

n, where each ϕn ∈ g1, for n≥ 1. Denoting �Φ :=∑n≥1 ϕnt
n, Propo-

sition 12.2.6 shows that Φ is a formal deformation if and only if

∂(�Φ)+ [ϕ, �Φ] + 1

2
[�Φ, �Φ] = 0.

By t-linearity, this latter equation is equivalent to the following system

∂(ϕn)+ [ϕ,ϕn] + 1

2

n−1∑

k=1

[ϕk,ϕn−k] = 0, for n≥ 1.

For n= 1, it gives ∂(ϕ1)+ [ϕ,ϕ1] = 0, that is ϕ1 is a 1-cocycle of gϕ . More gener-
ally, the first nontrivial element ϕk of a formal deformation ϕ +∑n≥k ϕntn of ϕ is
a 1-cocycle of gϕ . For n≥ 2, it can be rewritten as

∂ϕ(ϕn)=−1

2

n−1∑

k=1

[ϕk,ϕn−k].

Theorem 12.2.8 (Obstructions). If H 2(gϕ) = 0, then any 1-cocycle of gϕ extends
to a formal deformation of ϕ.



12.2 Deformation Theory of Algebra Structures 441

Proof. It is enough to prove that, for any n≥ 2, if ϕ ∈MC(g) and if ϕ1, . . . , ϕn−1 ∈
g1 satisfy the above equations up to n− 1, then the element

∑n−1
k=1[ϕk,ϕn−k] is a

2-cocycle in gϕ .
Since ∂ϕ is a derivation with respect to the Lie bracket, we have

∂ϕ

( n−1∑

k=1

[ϕk,ϕn−k]
)

=
n−1∑

k=1

[
∂ϕ(ϕk),ϕn−k

]− [ϕk, ∂ϕ(ϕn−k)
]

= 2
n−1∑

k=1

[
∂ϕ(ϕk),ϕn−k

]
.

Using the equations satisfied by the element ϕk , we get

∂ϕ

( n−1∑

k=1

[ϕk,ϕn−k]
)

=−
n−1∑

k=1

k−1∑

l=1

[[ϕl, ϕk−l], ϕn−k
]=

∑

a+b+c=n,
a,b,c≥1

[[ϕa,ϕb], ϕc
]
,

which vanishes by the Jacobi identity. �

In other words, the second cohomology group H 2(gϕ) of the deformation com-
plex carries the obstructions to formal deformations.

An equivalence between two formal deformations is a K[[t]]-linear isomorphism
of P ⊗K[[t]]-algebras, whose first component is the identity of A. It amounts to a
family of K-linear maps

f = IdA+
∑

n≥1

fnt
n :A→A⊕A⊗ t ⊕A⊗ t2 ⊕ · · · .

Since the first component is invertible, the induced K[[t]]-linear endomorphism of
A⊗K[[t]] is always invertible, see Exercise 12.6.4. So it is an equivalence of de-
formations if and only if it is a morphism of P ⊗K[[t]]-algebras.

Theorem 12.2.9 (Rigidity). If H 1(gϕ) = 0, then any formal deformation of ϕ is
equivalent to the trivial one.

Proof. Let Φ = ϕ +∑n≥1 ϕnt
n be a formal deformation of ϕ. The same kind

of commutative diagram as in the proof of Theorem 12.2.7 shows that f =
IdA+∑n≥1 fnt

n is an equivalence between the deformation Φ and the trivial de-
formation ϕ + 0 if and only if for any μ ∈ sE(m)

∑

k,l≥0

fk ◦ ϕl(μ)tk+l =
∑

i1,...,im≥0

ϕ(μ) ◦ (fi1 ⊗ · · · ⊗ fim)t i1+···+im,

where f0 = IdA and ϕ0 = ϕ by convention. Therefore, f is an equivalence if and
only if for any n≥ 1 and for any μ ∈ sE(m):

∑

k+l=n
fk ◦ ϕl(μ)=

∑

i1+···+im=n
ϕ(μ) ◦ (fi1 ⊗ · · · ⊗ fim).
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This latter relation can be rewritten as

Θn(μ) :=
n−1∑

k=0

fk ◦ ϕn−k(μ)−
∑

i1+···+im=n
i1,...,im<n

ϕ(μ) ◦ (fi1 ⊗ · · · ⊗ fim)

= −fn ◦ ϕ(μ)+
∑
ϕ(μ) ◦ (IdA⊗· · · ⊗ fn ⊗ · · · ⊗ IdA)

= ∂ϕ(fn)(μ).
We now prove by induction on n ≥ 1 that Θn ∈ HomS(P

¡ (1)
,EndA) is a 1-

cocycle, i.e. ∂ϕ(Θn) = 0. Since H 1(gϕ) = 0, this will imply that there exists an
element fn ∈Hom(A,A) such that ∂ϕ(fn)=Θn, and thus concludes the proof.

For n= 1, we have Θ1 = ϕ1, which is a 1-cocycle since Φ is a deformation of ϕ,
see above.

We suppose that the result is true up to n− 1 and we prove it at rank n. It is a
straightforward computation and we leave it to the reader. �

12.2.8 Deformation Functor

To study the general case, we have to consider the deformations Defϕ(R) over Artin
local algebras R, see Sect. 13.2.14. In this case, the dg Lie algebra gϕ ⊗m becomes
nilpotent. So the Lie subalgebra g0 admits a Lie group G, called the gauge group,
which acts on the set of Maurer–Cartan elements. This yields a Deligne groupoid
and a moduli space MC (gϕ ⊗m) :=MC(gϕ ⊗m)/G.

Theorem 12.2.10. Let ϕ be a P-algebra structure on A. For any Artin local al-
gebra R=K⊕m, there is a natural bijection, respectively equivalence of Deligne
groupoids

Def ϕ(R)=Defϕ(R)/∼∼=MC
(
g
ϕ ⊗m

) :=MC
(
g
ϕ ⊗m

)
/G.

Proof. We have already proved in Proposition 12.2.6 the bijection between the de-
formations and the Maurer–Cartan elements. Let us now prove that the equivalence
relation corresponds to the gauge group action.

Let Φ = ϕ + �Φ and Ψ = ϕ + �Ψ be two R-deformations of ϕ. Let λ ∈
Hom(A,A) ⊗ m such that eλ.�Φ = �Ψ in HomS(P

¡ (1)
,EndA) ⊗ m. Since λ is a

nilpotent element in the associative algebra Hom(A,A)⊗m, this equality is equiv-
alent to
(
eλ.�Φ )(μ)= eλ ◦ �Φ(μ) ◦ (e−λ, . . . , e−λ)+ eλ ◦ ϕ(μ) ◦ (e−λ, . . . , e−λ)− ϕ(μ)

= �Ψ (μ),
for any μ ∈P

¡ (1)
. Therefore, the two Maurer–Cartan elements �Φ and �Ψ are gauge

equivalent if and only if there exists λ ∈ Hom(A,A) ⊗ m such that eλ ◦ Φ(μ) =
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Ψ (μ) ◦ (eλ, . . . , eλ). In this case, the two deformations Φ and Ψ are equivalent
under the R-linear isomorphism f = eλ, whose reduction modulo m is equal to
the identity on A. In the other way round, an R-linear isomorphism f = IdA+f̄
between (A ⊗ R,Φ) and (A ⊗ R,Ψ ) is a morphism of P ⊗ R-algebras if and

only if f ◦ Φ(μ) = Ψ (μ) ◦ (f, . . . , f ), for any μ ∈P
¡ (1)

. The one-to-one corre-
spondence f ↔ λ is given by f = eλ and λ= log(IdA+f̄ ) in the nilpotent algebra
Hom(A,A)⊗m.

We leave it to the reader to verify that this construction is natural. Notice that
here, we actually consider a functor from the category of Artin local algebras to
groupoids. �

This result shows that the dg Lie algebra gϕ faithfully encodes the deformation
problem of the P-algebra structure ϕ on A, according to the philosophy recalled in
Sect. 13.2.14.

Notice that the algebra of formal power series is not an Artin algebra. One ap-
proximates its deformations by the following limit Defϕ(K[[t]])∼= lim←−Defϕ(K[t]/
(tn)), where K[t]/(tn) is an Artin local algebra.

12.2.9 Obstruction Theory for P∞-Algebra Structures

At this point, the reader might ask: how do we treat the case of dg P-algebras?

what is the use of the higher components HomS(P
¡ (n)
,EndA), for n≥ 2? and why

have we not used the hypothesis that P is a Koszul operad? The answer is: when
the operad P is Koszul, the full convolution dg Lie algebra

g= (HomS

(
P

¡
,EndA

)
, [, ], ∂)

controls the deformations of the P∞-algebra structures on the chain complex
(A,dA).

When (A,dA) is a chain complex, we consider the convolution dg Lie algebra
g, with the usual homological degree. Proposition 10.1.1 shows that a P∞-algebra
structure on (A,dA) is equivalent to a twisting morphism, i.e. a degree −1 Maurer–
Cartan element ∂ϕ + 1

2 [ϕ,ϕ] = 0 in g, with vanishing component on I.
From that point, everything works mutatis mutandis as before in the P-algebra

case since we only used the properties of the convolution dg Lie algebra. For in-
stance, the following lemma states that the convolution dg Lie algebra g, which
controls the P∞-algebra structures, shares similar properties with the convolution
dg Lie algebra gϕ ⊗K[[t]] which controls formal deformations of P-algebras.

Lemma 12.2.11. The convolution dg Lie algebra

g= (HomS

(
P

¡
,EndA

)
, [, ], ∂)
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is a weight graded Lie algebra, g =∏n≥0 g
(n). Its differential map is the sum of

two anti-commuting square-zero derivations, ∂ = ∂0 + ∂1, such that the first one
preserves this grading, ∂0 : g(n)→ g(n), and such that the second one raises it by
one, ∂1 : g(n−1)→ g(n).

Proof. Since the Koszul dual cooperad is a weight graded cooperad, the convolution

Lie algebra is a weight graded Lie algebra g(n) := HomS(P
¡ (n)
,EndA), for n≥ 0.

The differential is the sum of the following two terms:

∂ϕ(f )= dEndA ◦ f − (−1)|f |f ◦ d
P

¡ .

The component ∂0(f ) := dEndA ◦f preserves the weight grading and the component
∂1(f ) := −(−1)|f |f ◦ d

P
¡ raises it by 1. �

As in Sect. 12.2.7, this result allows us to settle an obstruction theory for P∞-
algebra structures: we give below a criterion to say when a family of operations can
be extended to a full P∞-algebra structure.

Theorem 12.2.12. Let P be a Koszul operad and let (A,dA) be a dg module.

Suppose that we are given an element ϕ1 ∈ HomS(P
¡ (1)
,EndA), such that dA is a

derivation with respect to image operations, that is ∂0(ϕ1) := dEndA ◦ ϕ1 = 0.

If H−2(HomS(P
¡ (n)
,EndA), ∂0) = 0 for n ≥ 2, then ϕ1 extends to a P∞-

algebra structure on A.

Proof. Using Lemma 12.2.11, the proof is similar to that of Theorem 12.2.8. A
P∞-algebra structure ϕ on A is a Maurer–Cartan element in g of degree −1, which
vanishes on I, that is ϕ =∑n≥1 ϕn, where ϕn ∈ g

(n)
−1. The Maurer–Cartan equation

splits with respect to the weight grading; it is therefore equivalent to

ξn := ∂1(ϕn−1)+ 1

2

n−1∑

k=1

[ϕk,ϕn−k] = −∂0(ϕn),

in g
(n)
−2, for any n ≥ 1. As in the proof of Theorem 12.2.8, one proves by induction

on n that ξn is a ∂0-cycle and, since H−2(HomS(P
¡ (n)
,EndA), ∂0)= 0, there exists

ϕn ∈ g
(n)
−1 such that ξn =−∂0(ϕn). The induction is founded by the hypothesis of the

theorem:

∂0(ξ1)= ∂0

(
1

2
[ϕ1, ϕ1]

)

= [∂0(ϕ1), ϕ1
]= 0.

We leave the computations to the reader as a good exercise. The details can be found
in [GCTV09, Appendix C]. �

This method was used in the case of homotopy Lie algebras in [BFLS98]. In
[GCTV09], it plays also a crucial role in the proof of the Lian–Zuckerman con-
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jecture, which states that the BRST complex of a Vertex Operator Algebra is en-
dowed with a homotopy Batalin–Vilkovisky algebra structure. Notice that this gen-
eral method extends to Koszul properads as well, see [GCTV09, Appendix C], and
allows one to endow the differential forms of a closed oriented manifold with a
homotopy Frobenius bialgebra structure, see [Wil07, HM10].

12.2.10 Deformation Theory of P∞-Algebra Structures

In this section, we study the possible deformations of a given P∞-algebra structure.
The same “Lie calculus” holds and allows us to prove exactly the same results in the
P-algebra case. The only new point comes with the introduction of ∞-morphisms
in the definition of the equivalence relation. From that point, everything works mu-
tatis mutandis.

Given a P∞-algebra structure ϕ on A, we consider, as in Sect. 2.1.3, the twisted
differential ∂ϕ(f ) := ∂(f ) + [ϕ,f ], which squares to 0. The associated twisted
chain complex

(
HomS

(
P

¡
,EndA

)
, ∂ϕ
)

defines the deformation complex of the P∞-algebra (A,ϕ). Its homology groups
are again called the tangent homology and it is endowed with the same intrinsic Lie
bracket as before. Notice that when (A,ϕ) is concentrated in degree 0 and when ϕ is
a P-algebra structure on A, one recovers the deformation complex of the previous
sections.

Proposition 12.2.13. Let P be a Koszul operad and let (A,dA) be a chain com-
plex. For any P∞-algebra structure ϕ ∈ MC(g) on A, the following equivalence
holds

α ∈MC
(
g
ϕ
) ⇐⇒ α+ ϕ ∈MC(g).

Proof. Same as Proposition 12.2.4. �

Let (R,m) be a local commutative algebra. An R-deformation of a P∞-algebra
(A,ϕ) is an R-linear P∞ ⊗ R-algebra structure on A ⊗ R which reduces to ϕ
modulo m. The set of R-deformations of ϕ is denoted by Defϕ(R). By the preceding
proposition and Lemma 12.2.5, we still have a natural bijection

Defϕ(R)∼=MC
(
g
ϕ ⊗m

)
.

The only new point comes with the following definition of the equivalence rela-
tion. First we define the notion of an R-linear ∞-morphism between two P∞⊗R-
algebras (A ⊗R,Φ) and (A ⊗R,Ψ ) by R-linear extension of the arguments of
Sect. 10.2.
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One can extend Theorem 10.2.3 as follows. Since here the source and target
spaces are the same, (A⊗R,Φ), the operator ∗ is replaced by the R-linear exten-
sion of the preLie product in HomS(P

¡
,EndA)⊗R, still denoted by �:

f � g :=P
¡ �(1)−−→P

¡ ◦(1) P ¡ f ◦(1)g−−−→ (EndA ⊗R) ◦(1) (EndA ⊗R)→ EndA ⊗R,

where the last arrow stands for the composition of morphisms and the product in the
algebra R. In the same way, we replace the operator � by the R-linear extension of
the associative product, still denoted :

f  g :=P
¡ �(1)−−→P

¡ ◦P
¡ f ◦g−−→ (EndA ⊗R) ◦ (EndA ⊗R)→ EndA ⊗R.

Finally an R-linear ∞-morphism is equivalently given by an element f ∈
HomS(P

¡
,EndA)⊗R of degree 0, such that

f � Φ −Ψ  f = ∂(f ),
in g−1 ⊗R.

An R-deformationΦ is equivalent to another R-deformation Ψ if there exists an
R-linear ∞-isomorphism of P∞⊗R-algebras (A⊗R,Φ)� (A⊗R,Ψ ), whose
restriction modulo m is equal to the identity of A. By definition 10.2.4, it means that
the first component IdA /f̄ of f ,

f(0) : I→Hom(A,A)⊗R; id �→ IdA+f̄ ,
is invertible in Hom(A,A)⊗R. We leave it to the reader to prove that such an R-
linear ∞-isomorphism admits an inverse of the same form; see Exercise 12.6.5 for
more details.

In this case, this equivalence relation is denoted by Φ ∼ Ψ and the associated
deformation functor is denoted by

Def ϕ(R) :=Defϕ(R)/∼ .
Under these definitions, all the results proved in the case of P-algebras extend

to the case of P∞-algebras as follows.

Theorem 12.2.14. Let P be a Koszul operad and let ϕ be a P∞-algebra structure
on (A,dA).

 [Infinitesimal deformations] There are canonical bijections

Defϕ
(
K[t]/(t2))= Z−1

(
g
ϕ
)

and Defϕ
(
K[t]/(t2))=H−1

(
gϕ
)
.

 [Obstructions] If H−2(g
ϕ) = 0, then any (−1)-cycle of gϕ extends to a formal

deformation of ϕ.
 [Rigidity] If H−1(g

ϕ)= 0, then any formal deformation of ϕ is equivalent to the
trivial one.



12.3 André–Quillen (Co)Homology of Algebras over an Operad 447

 [Deformation functor] For any Artin local algebra (R,m), there is a natural
bijection, respectively equivalence of Deligne groupoids, between

Def ϕ(R)=Defϕ(R)/∼∼=MC
(
g
ϕ ⊗m

) :=MC
(
g
ϕ ⊗m

)
/G.

Proof. Mutatis mutandis, this proof is similar the previous proofs in the P-algebra
case. Therefore it is left to the reader as a good exercise. �

12.2.11 Deformation Theory of Morphisms of Operads

The reader may have noticed that we never used the particular form of the operad
EndA in the preceding sections. Actually the aforementioned methods apply as well
to study the deformation theory of morphisms from the operad P , respectively
P∞, to any operad Q. One just has to replace EndA by Q everywhere.

For instance, an operad Q is called multiplicative when it is endowed with a
morphism of operads ϕ : Ass → Q, where Ass is the operad encoding associative
algebras. The associated deformation complex of ϕ is often called the Hochschild
cohomology of Q. This complex plays a crucial role in the solutions of the Deligne
conjecture, see [GV95, MS02].

One can consider the operad Q = Pois encoding Poisson algebras, see Sect. 13.3.
It comes equipped with a canonical morphism Ass→ Pois of operads. The associ-
ated deformation complex is related to the rational homology of the long knots and
to Vassiliev invariants, as explained in [Tou04, Sin06, Sin09, LTV10].

12.2.12 Beyond the Koszul Case

When an operad P admits a quasi-free resolution T (C )
∼−→ P , not necessarily

quadratic, there exists a convolution algebra HomS(C ,EndA), which carries an L∞-
algebra in general. It is a strict dg Lie algebra only when the resolution is quadratic.
In the same way as before, this L∞-algebra controls the deformations of homotopy
P-algebra structures. For more details, we refer the reader to Van der Laan [vdL02],
Kontsevich–Soibelman [KS10] and Merkulov–Vallette [MV09a, MV09b].

12.3 André–Quillen (Co)Homology of Algebras over an Operad

This section is the generalization to algebras over an operad of the conceptual defi-
nition of the (co)homology of commutative algebras given by D. Quillen in [Qui70]
and M. André in [And74].

First, we define the notion of module over an algebra over an operad, which pro-
vides the space of coefficients of this cohomology theory. We consider the space



448 12 (Co)Homology of Algebras over an Operad

of derivations from an algebra to such a module. It gives rise to a Quillen adjunc-
tion, that we derive to define the André–Quillen cohomology. Since the functor of
derivations is represented on the left by the module of Kähler differential forms, the
André–Quillen cohomology theory is represented by an object called the cotangent
complex.

The category of modules over an algebra A is equivalent to the category of left
modules over the enveloping algebra of A. We define the André–Quillen homology
of A with coefficients into right modules over the enveloping algebra of A.

Throughout the section, we study the examples of the operads As, Com, and
Lie. In this way, we recover, up to a degree shift, the Hochschild (co)homology of
associative algebras, the Chevalley–Eilenberg (co)homology of Lie algebras and the
Harrison (co)homology of commutative algebras.

This section comes from V. Ginzburg and M.M. Kapranov [GK94], V. Hinich
[Hin97], D. Balavoine [Bal98], P. Goerss and M. Hopkins [GH00], J. Millès [Mil11]
and B. Fresse [Fre09a].

12.3.1 Module over a P-Algebra

Let (P, γ, η) be an operad and let (A,γA) be a P-algebra. Recall from Sect. 6.1.1
that to any K-module M , we associate the following linearized version of the com-
posite product

P ◦ (A;M) :=
⊕

n≥0

P(n)⊗Sn

( ⊕

1≤i≤n
A⊗ · · · ⊗A⊗ M︸︷︷︸

ith position

⊗A⊗ · · · ⊗A
)

.

An A-module over P , or A-module when the operad is understood, is a K-
moduleM endowed with two maps

γM :P ◦ (A;M)→M and ηM :M→P ◦ (A;M),
satisfying the following commutative diagrams

P ◦ (P(A);P ◦ (A;M)) Id◦(γA;γM)
P ◦ (A;M)

γM(P ◦P) ◦ (A;M)

∼=

γ ◦(Id;Id)

P ◦ (A;M) γM
M

and
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M
ηM

=

P ◦ (A;M)
γM

M.

A morphism of A-modules is a morphism of K-modules f :M→ N which com-
mutes to the structure maps γM , γN and ηM , ηN . The associated category of A-
modules over P is denoted by ModP

A .
The algebra A itself is the first example of an A-module.

Proposition 12.3.1.

 In the case of the (nonsymmetric) operad P = As and of an associative algebra
A, an A-module over As is an A-bimodule A⊗M→M ,M ⊗A→M over A.

 In the case of the operad P = Com and of a commutative algebra A, an A-
module over Com is a classical A-module A⊗M→M .

 In the case of the operad P = Lie and of a Lie algebra g, an g-module over Lie
is a classical Lie module g⊗M→M over g.

Proof. When the operad P(E,R) admits a presentation by generators and rela-
tions, the defining action γM :P ◦ (A;M)→M of an A-module includes an action
of the generating operations E ◦ (A,M)� P ◦ (A;M)→M . The relations that
they have to satisfy is given by the space R. In the other way round, one can re-
construct the action of any element of P(A;M) thanks to the composition map of
the operad P . These arguments, applied to the three above cases, give the classi-
cal notions of modules. The details are left to the reader as an easy but interesting
exercise. �

Recall that the notion of Lie module over a Lie algebra g is equivalent to the
notion of left module over the associative universal enveloping algebra U(g), see
Sect. 1.1.11.

12.3.2 Abelian Extension of A by M

An extension of A byM

0→M� B�A→ 0

is a short exact sequence in the category of P-algebras. A split extension is an
extension

0 M
i

B
p

A

s

0,
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endowed with a K-linear map s satisfying ps = IdA and so

B∼=A⊕M.
Suppose now that the operad P is augmented P ∼= �P ⊕ I. An abelian extension is
a split extension such that the P-algebra structure onM is trivial, i.e. �P(M)→M

is zero.
If P happens to be binary, then it is equivalent to requiring that any product of

two elements of M is zero. In this case, it is sometimes called a (split) square-zero
extension in the literature.

When M is an A-module, we consider the following P-algebra structure on
A⊕M :

P(A⊕M)�P(A)⊕P ◦ (A;M) γA+γM−−−−→A⊕M.
Such a P-algebra structure is denoted by A �M . It is the archetype of abelian
extensions of A byM ,

0→M�A�M�A→ 0,

as the following proposition shows.

Proposition 12.3.2. Let P be an augmented operad, let A be a P-algebra and let
M be a K-module. The data of an A-module on M is equivalent to the data of an
abelian extension of A byM .

Proof. (⇒) The commutative diagram in the definition of the P-algebra structure
on A�M is equivalent to

P ◦P(A⊕M) P ◦ (P(A);P ◦ (A;M)) Id◦(γA;γM)
P ◦ (A;M)

γM(P ◦P) ◦ (A;M)

∼=

γ ◦(Id;Id)

P ◦ (A;M) γM
M.

The other one is

A⊕M η(A⊕M)

=

P(A⊕M) P(A)⊕P(A;M)

γA+γM

A⊕M.
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Since A is already a P-algebra, it is equivalent to the second commutative diagram
satisfied by an A-module M . So A�M is a P-algebra, which induces an abelian
extension ofA byM . (Notice that we do not need the hypothesis P to be augmented
here.)
(⇐) In the other way round, let 0→M� B�A→ 0 be an abelian extension.

Under the isomorphism B ∼=A⊕M , the P-algebra structure map on B is given by
the composite

P ◦ (A;M)→P(B)
γB−→ B→M.

We leave it to the reader to check that it satisfies the axioms of an A-module. �

12.3.3 Free A-Module over P

The forgetful functor

U :ModP
A →ModK,

which forgets the A-module structure, admits a left adjoint

A⊗P − :ModK→ModP
A

as follows.
Let N be a K-module. We consider the following coequalizer in the category of

K-modules

P ◦ (P(A);N)
γ̃

γ̃A

P ◦ (A;N) A⊗P N,

where

γ̃ :P ◦ (P(A);N)→ (P ◦P) ◦ (A;N) γ ◦(Id,Id)−−−−−→P ◦ (A;N)

and

γ̃A :P ◦ (P(A);N) Id◦(γA,Id)−−−−−−→P ◦ (A;N).

Notice that the notation A⊗P N stands for a quotient of P(A;N), which is not in
general isomorphic to the tensor product A⊗N . However, in the case of the operad
Com, we will see that A⊗Com N ∼= (A⊕K)⊗N .
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Lemma 12.3.3. The composite

P ◦ (A;P ◦ (A;N)) → (P ◦P) ◦ (A;N)
γ ◦(Id;Id)−−−−−→P ◦ (A;N)

passes to the quotient P ◦ (A;N)� A ⊗P N and induces on A ⊗P N an A-
module structure.

Proof. In this proof, we use the shorter notations P(A;N) instead of P ◦ (A;N)
and PP instead of P ◦P .

The following diagram

P(A;P(P(A);N)) (PP)(P(A);N) γ (Id;Id)
P(P(A);N)

P(A; (PP)(A;N))

Id(Id;γ (Id;Id))

((PP)P)(A;N)
(γ Id)(Id:Id)∼=

(P(PP))(A;N)
(Idγ )(Id:Id)

(PP)(A;N)
γ (Id;Id)

P(A;P(A;N)) (PP)(A;N) γ (Id;Id)
P(A;N)

commutes by the associativity of the composition map γ of the operad P . The
following diagram

P(A;P(P(A);N))
Id(Id;Id(γA;Id))

(PP)(P(A);N) γ (Id;Id)
P(P(A);N)

Id(γA;Id)

P(A;P(A;N)) (PP)(A;N) γ (Id;Id)
P(A;N)

commutes by functoriality of the composite product ◦. It shows that the composite
of the lemma passes to the quotient A ⊗P N and induces a morphism γ̄ : P ◦
(A;A⊗P N)→A⊗P N .

Let us now show that γ̄ defines anA-module structure onA⊗P N . The top-right
composite in the commutative diagram defining an A-module lifts into
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P(P(A);P(A;A⊗P N))

Id(γA;γ̄ )

P(P(A);P(A;P(A;N))) P(P(A);P(A;N))

P(P(A); (PP)(A;N))

Id(γA;γ (Id;Id))

Id(Id;γ (Id;Id))

P(A;A⊗P N)

γ̄

P(A;P(A;N)) (PP)(P(A);N)

γ (Id;Id)

(PP)(A;N)

γ (Id;Id)

P(P(A);N)

Id(γA;Id)

A⊗P N P(A;N) (PP)(A;N),
γ (Id;Id)

where the bottom-right triangle is not commutative itself, but only after the com-
posite with P(A;N)� A⊗P N . The bottom-left composite in the commutative
diagram defining an A-module lifts into

(PP)(A;P(A;N))
γ (Id;Id)

(PP)(A;A⊗P N)

γ (Id;Id)

P(A;P(A;N)) P(A;A⊗P N)

γ̄(PP)(A;N)
γ (Id;Id)

P(A;N) A⊗P N.

The top-right composite of the former diagram is equal to the bottom-left compos-
ite of the latter diagram by associativity of the composition map γ of the operad
P .

We define the second structure map η̄ : A⊗P N→P(A;A⊗P N) of the A-
module structure on A⊗P N by
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P(A;N) ∼=
P(A; I(A;N)) Id(Id;η(Id;Id))

P(A;P(A;N))

A⊗P N
η̄

P(A;A⊗P N).

The last verifications are left to the reader. �

The following proposition shows that for any K-module N , the data (A ⊗P

N, γ̄ , ῑ) is the free A-module on N .

Theorem 12.3.4. For any operad P and any P-algebra A, the two functors

A⊗P − : ModK ModP
A : U

form an adjoint pair, i.e. there are natural linear isomorphisms

HomModP
A

(
A⊗P N,M

)∼=HomModK

(
N,U (M)

)
.

for any A-moduleM and any K-module N .

Proof. To any morphism f : A ⊗P N →M of A-modules, we associate its “re-
striction” defined by the following composite

f̄ :N ∼= I ◦ (A;N) ι◦(Id;Id)−−−−→P ◦ (A;N)�A⊗P N
f−→M.

In the other way round, given any morphism of K-modules g : N → U (M),
we extend it to a morphism of K-modules g̃ : A ⊗P N → M as follows. Let
μ(a1, . . . , n, . . . , ak) be an element of A ⊗P N represented by μ(a1, . . . , n, . . . ,

ak) ∈P ◦ (A;N). Its image under g̃ is equal to

g̃
(
μ(a1, . . . , n, . . . , ak)

) := γM
(
μ(a1, . . . , g(n), . . . , ak)

)
.

We leave it to the reader to verify that g̃ is actually a morphism of A-modules and
that the two aforementioned maps are natural linear isomorphisms. �

Notice that

P ◦ (A;N) :=
⊕

k≥0

P(k)⊗Sk

( ⊕

1≤i≤k
A⊗ · · · ⊗A⊗ N︸︷︷︸

ith position

⊗A⊗ · · · ⊗A
)

∼=
⊕

k≥0

P(k + 1)⊗Sk

(
A⊗k ⊗N).

We denote its elements simply by μ(a1, . . . , ak;n).
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Proposition 12.3.5. Let P be an operad and let (A,γA) be a P-algebra. The free
A-moduleA⊗P N overN is given by the quotient of P ◦ (A;N) under the relation

μ
(
a1, . . . , ai−1, γA

(
ν(ai, . . . , ai+l−1)

)
, ai+l , . . . , ak;n

)∼ (μ ◦i ν)(a1, . . . , ak;n),

for any k ≥ 1, i + l ≤ k + 1, μ ∈P(k + 1), ν ∈P(l), a1, . . . , ak ∈A and n ∈N .

Proof. It is a direct consequence of the partial definition 5.3.4 of an operad. �

EXAMPLES. To treat the examples As, Com and Lie below, one can either use
Proposition 12.3.1, and conclude by the well-known respective notions of free mod-
ule, or use Proposition 12.3.5 to compute the coequalizer A⊗P N , each time.

 In the case of the (nonsymmetric) operad P = As and of an associative (non-
necessarily unital) algebra A, the underlying K-module of the free A-module
over As is given by

A⊗As N ∼=N ⊕A⊗N ⊕N ⊗A⊕A⊗N ⊗A∼= (A⊕K)⊗N ⊗ (A⊕K).

To prove it, it is enough to notice that the composition of the following elements
gives

A A A N A A

�

A A A N A A

in the operad As. Therefore a1 ⊗ a2 ⊗ a3 ⊗ ν ⊗ a4 ⊗ a5 is equal to
a1.a2.a3 ⊗ ν ⊗ a4.a5 in A⊗As N .

 In the case of the operad P = Com and of a commutative algebra A, the under-
lying K-module of the free A-module over Com is given by

A⊗Com N ∼=N ⊕A⊗N ∼= (A⊕K)⊗N.

 In the case of the operad P = Lie and of a Lie algebra g, the underlying K-
module of the free g-module over Lie is given by

g⊗Lie N ∼=U(g)⊗N,

where U(g) is the universal enveloping algebra of the Lie algebra g.

This last example will be generalized in the next section.
Proposition B.4.1, applied to the above adjunction, endow the composite

U (A⊗P −) with a monad structure on ModK.
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Proposition 12.3.6. The category of A-modules over P is isomorphic to the cate-
gory of algebras over the monad U (A⊗P −).

Proof. This result follows from Beck’s Theorem, see [ML98, Chap. VI, Sect. 7] and
the study of reflexive coequalizers given in Goerss–Hopkins [GH00]. �

12.3.4 Enveloping Algebra of a P-Algebra

We consider the free A-module A⊗P
K over the ground ring K. It can be endowed

with the following binary operation

μ : (A⊗P
K
)⊗ (A⊗P

K
)∼= (A⊗P (A⊗P

K
))→A⊗P

K,

where the first map comes from the general isomorphism (A⊗P
K)⊗N ∼=A⊗P

N and where the second map is given by the composition product of the monad
U (A⊗P −). We denote by

u := η̄ :K→A⊗P
K

the second structure map of the free A-module over K.
The triple

UP (A) :=
(
A⊗P

K,μ,u
)

is called enveloping algebra of the P-algebra A .

Lemma 12.3.7. The enveloping algebra UP (A) of a P-algebra A is a unital as-
sociative algebra.

Proof. The associativity of the product μ is a direct consequence of the associativity
of the monad U (A⊗P −). �

Proposition 12.3.5 shows that the elements of the form ν(a1, . . . , ak;1) provide
representatives for the enveloping algebra UP (A) under the relation ∼. Under this
presentation, the product μ of the enveloping algebra is equal to

μ
(
ν(a1, . . . , ak;1), ξ(ak+1, . . . , ak+l;1)

)= (ν ◦k+1 ξ)(a1, . . . , ak+l;1).

The relation (I) of Sect. 5.3.4 satisfied by the partial products ◦i of an operad gives
another proof of the associativity of μ.
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EXAMPLES.

 The enveloping algebra UAs(A) of an associative (non-necessarily unital) algebra
A is equal to the classical enveloping algebra of the augmentation A+ :=A⊕K

of A:

UAs(A)∼=A+ ⊗Aop
+ ,

where Aop
+ is the opposite algebra associated to A+.

 The enveloping algebra UCom(A) of a commutative algebra A is equal to the
augmentation of A:

UCom(A)∼=A+ :=A⊕K.

 The enveloping algebra ULie(g) of a Lie algebra g is equal to the classical univer-
sal enveloping algebra:

ULie(g)∼=U(g).
Proposition 12.3.8. The category of A-modules over P is isomorphic to the cate-
gory of left modules over the enveloping algebra UP (A).

Proof. Using the isomorphism of K-modules (A ⊗P
K) ⊗M ∼= U (A ⊗P M),

we prove that the category of left modules over the enveloping algebra UP (A) is
isomorphic to the category of algebras over the monad U (A⊗P −). We conclude
with Proposition 12.3.6. �

The aforementioned isomorphism A⊗P N ∼= UP (A)⊗ N gives two ways of
making the free A-module on N explicit.

Proposition 12.3.9. For any operad P , the enveloping algebra construction pro-
vides a functor

UP :P-alg→ uAs-alg.

Proof. Let f : B→A be a morphism of P-algebras. The mapUP (f ) :UP (B)→
UP (A) induced by P ◦ (B;K) Id◦(f ;Id)−−−−−→P ◦ (A;K) is a morphism of unital asso-
ciative algebras. �

12.3.5 Relative Free Module

Any morphism f : B→A of P-algebras induces a functor

f ∗ :ModP
A →ModP

B ,

called restriction of scalars. We show that it admits a left adjoint

f! :ModP
B →ModP

A ,

as follows.
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By Proposition 12.3.9, the map UP (f ) : UP (B)→ UP (A) is a morphism of
unital associative algebras. It endowsUP (A)with a rightUP (B)-module structure.
For any B-module M , we define its free relative A-module f!(M) := A⊗P

B M by
the classical relative tensor product

A⊗P
B M :=UP (A)⊗UP(B) M,

which is defined by the following coequalizer

UP (A)⊗UP (B)⊗M UP (A)⊗M UP (A)⊗UP(B) M.

The notation f! is classical and should not be confused with any Koszul dual con-
struction.

Proposition 12.3.10. For any operad P and any morphism f : B → A of P-
algebras, the two functors

f! :ModP
B ModP

A : f ∗

form an adjoint pair, i.e. there are natural linear isomorphisms

HomModP
A

(
f!(N),M

)∼=HomModP
B

(
N,f ∗(M)

)
,

for any A-moduleM and any B-module N .

Proof. It is a direct corollary of Proposition 12.3.8. �

EXAMPLES. Using the classical relative tensor product ⊗B , we recover the classi-
cal cases as follows.

 In the case of the (nonsymmetric) operad P = As, the underlying K-module of
the free A-module over the algebra B is given by

A⊗As
B N

∼= (A⊕K)⊗B N ⊗B (A⊕K),

where the action of B on K is null.
 In the case of the operad P = Com, the underlying K-module of the free A-

module over the algebra B is given by

A⊗As
B N

∼= (A⊕K)⊗B N,
where the action of B on K is null.

 In the case of the operad P = Lie, the underlying K-module of the free g-module
over g′ is given by

g⊗Lie
g′ N

∼=U(g)⊗g′ N,

where U(g) is the universal enveloping algebra of the Lie algebra g.



12.3 André–Quillen (Co)Homology of Algebras over an Operad 459

12.3.6 The Category of P-Algebras over a Fixed P-Algebra

Let A be a fixed P-algebra. We consider the category P-alg/A of P-algebras
over A. Its objects are the morphisms of P-algebras f : B→A and its morphisms
are the commutative triangles

B

f

B ′

f ′

A

of P-algebras.
For instance, when M is an A-module, the abelian extension A�M→ A is a

P-algebra over A.

12.3.7 Derivations

Let f : B→A be a P-algebra over A and letM be an A-module. An A-derivation
from B to M is a morphism of K-modules d : B → M satisfying the following
commutative diagram

P(B)∼=P ◦B
γB

Id◦′d
P ◦ (B;M) Id◦(f ;Id)

P ◦ (A;M)
γM

B
d

M.

Recall that the infinitesimal composite of morphisms Id◦′d was defined in
Sect. 6.1.3. Notice that the linear combination of A-derivations is again an A-
derivation. The module of A-derivations from B toM is denoted by DerA(B,M). It
induces a bifunctor from the category (P-alg/A)op×ModP

A , which is representable
on the right-hand side by the functor of abelian extensions.

Proposition 12.3.11. For any operad P and any P-algebra A, there are natural
linear isomorphisms

DerA(B,M)∼=HomP-alg/A(B,A�M),

for any A-moduleM and any P-algebra B→A over A.

Proof. Let us denote f : B→ A the morphism of P-algebras. Any morphisms in
P-alg/A from B to A�M is of the form

B
f+d

f

A�M =A⊕M

A.
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The map f + d is a morphism of P-algebras if and only if the map d is an A-
derivation. �

EXAMPLES. In the examples of the operads As, Com and Lie, we recover the clas-
sical notions of derivations.

12.3.8 Module of Kähler Differential Forms

To represent the module of A-derivations on the left-hand side, we introduce the
module of Kähler differential forms as follows.

To any P-algebra A, we associate the coequalizer

A⊗P P(A)
γ̃(1)

γ̃A

A⊗P A �PA,

where the map γ̃(1) comes from

P ◦(A;P(A)
)→P ◦(A;P ◦(A;A))→ (P ◦(1)P)◦(A;A) γ(1)◦(Id;Id)−−−−−−→P ◦(A;A)

and where the map γ̃A comes from

P ◦ (A;P(A)
) Id◦(Id;γA)−−−−−−→P ◦ (A;A).

The A-module structure on A⊗P A passes to the quotient �PA. We call this A-
module the module of Kähler differential forms.

Lemma 12.3.12. The module of Kähler differential forms �PA of a P-algebra A
is given by the quotient of P(A;A), whose elements are denoted by μ(b1, . . . , dbi,

. . . , bk), under the relations

μ
(
a1, . . . , ai−1, γA

(
ν(ai, . . . , ai+l−1)

)
, ai+l , . . . , daj , . . . , ak

)

≈ (μ ◦i ν)(a1, . . . , daj , . . . , ak),

and

μ
(
a1, . . . , ai−1, dγA

(
ν(ai, . . . , ai+l−1)

)
, ai+l , . . . , ak

)

≈
l−1∑

j=0

(μ ◦i ν)(a1, . . . , dai+j , . . . , ak).

Proof. The first relation stands for the free module relation ∼ introduced in Propo-
sition 12.3.5. The second relation is equivalent to the above coequalizer. �
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When A=P(V ) is a free P-algebra, its module of Kähler differential forms is
equal to

�PP(V )∼=P(V ,V ).

EXAMPLES.

 In the case of the operad P = Com, the operadic module of Kähler differential
forms agrees with the classical module of Kähler differential forms

�ComA∼=�1
A,

where �1
A is the free A+-module on A modulo the derivation relation

a ⊗ d(b.c)= (a.b)⊗ dc+ (a.c)⊗ db,
see for instance [Lod98, Chap. 1] for more details.

 In the case of the (nonsymmetric) operad P = As, the module of Kähler dif-
ferential forms of an associative algebra agrees with the notion introduced in
noncommutative geometry [Con85, Kar87]. In this case, it is equal to

�AsA∼=A+ ⊗A⊗A+/≡,
that is the free A+-bimodule over A, modulo the relation

a⊗ d(bb′)⊗ c≡ (ab)⊗ db′ ⊗ c+ a⊗ db⊗ (b′c).
 In the case of the operad P = Lie, the module of Kähler differential forms of a

Lie algebra g is isomorphic to the augmentation ideal of its enveloping algebra

�Lie(g)∼= �U(g),
with its left U(g)-module structure, see [Fre09a, Sect. 4.4].

Proposition 12.3.13. For any operad P and any P-algebra A, there are natural
linear isomorphisms

HomModP
B

(
�PB,f

∗(M)
)∼=DerA(B,M),

for any A-moduleM and any P-algebra f : B→A over A.

Proof. We use the description of �PB given in Lemma 12.3.12. To any map d :
B→M , we associate the map D :P(B;B)→M defined by

μ(b1, . . . , dbi, . . . , bk) �→ γM
(
μ
(
f (b1), . . . , d(bi), . . . , f (bk)

))
.

Since d is an A-derivation, it factors through the quotient under the relations ≈ to
define a morphism of B-modules D̃ :�PB→ f ∗(M). In the other way round, the
restriction of any map �PB → f ∗(M) to I ◦ (db) gives a map B → M . If the
former is a morphism of B-modules, then the latter is an A-derivation. �



462 12 (Co)Homology of Algebras over an Operad

12.3.9 Quillen Adjunction

The two aforementioned propositions do not induce directly a pair of adjoint func-
tors because the underlying category of the left-hand side “representation” depends
on the P-algebra B . The final adjunction, which we are interested in, comes af-
ter considering the adjunction of Proposition 12.3.10 between the categories of B-
modules and A-modules.

Theorem 12.3.14. Let P be an operad and let A be a P-algebra. The following
two functors

A⊗P− �P− :P-alg/A ModP
A : A�−

form an adjoint pair. They represent the bifunctor of A-derivations, i.e. there exist
natural linear isomorphisms

HomModP
A

(
A⊗P

B �PB,M
)∼=DerA(B,M)∼=HomP-alg/A(B,A�M),

for any A-moduleM and any P-algebra B→A over A.

Proof. The proof follows directly from Propositions 12.3.11, 12.3.13 and 12.3.10. �

All the constructions of this section can be generalized in a straightforward way
from the category of K-modules to the category of dg modules. All the propositions,
like the adjunctions, generalize to the various categories of dg modules as follows.
Either one considers morphisms preserving the grading and then the linear isomor-
phisms of the various results extend to isomorphisms of dg modules. Or one can
consider morphisms of dg modules and then the linear isomorphisms extend only to
grading preserving linear isomorphisms.

Let us assume, from now on, that the ground ring K is a field of characteristic 0.
One can extend Proposition B.6.5 and show that the category of dg P-algebras
over a fixed dg P-algebra A, still denoted P-alg/A, can be endowed with a model
category structure such that the weak equivalences (resp. fibrations) are the quasi-
isomorphisms (resp. degree-wise epimorphisms).

In the same way, the category of dg A-modules over P , still denoted ModP
A ,

is endowed with a model category structure such that the weak equivalences (resp.
fibrations) are the quasi-isomorphisms (resp. degree-wise epimorphisms).

For these two results, we refer the reader to Hinich [Hin97]. For more refined
results, for instance with weaken assumptions on the ground ring, we refer the reader
to the monograph [Fre09a].

Proposition 12.3.15. Let P be a dg operad and let A be a dg P-algebra. The
adjoint pair of functors

A⊗P− �P− : P-alg/A ModP
A : A�−

is a Quillen adjunction.
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Proof. For the notion of Quillen adjunction, see Appendix B.7.3. It is enough to
show that the right adjoint functor A � − preserves the fibrations and the acyclic
fibrations. Since A�M = A⊕M , the proof is straightforward from the definition
of the two model category structures considered here. �

Therefore, we can consider the associated total derived functors

L
(
A⊗P− �P−) : Ho(P-alg/A) Ho

(
ModP

A

) : R(A�−) ,
which form an adjoint pair between the homotopy categories.

12.3.10 Cotangent Complex

The cotangent complex of A is the image under the total derived functor L(A⊗P−
�P−) of the dg P-algebra A→ A over A in the homotopy category of dg A-
modules.

To make explicit one representative, we consider a cofibrant replacement R
∼−→A

in the category of dg P-algebras. It provides a cofibrant replacement of A in the
category of dg P-algebras over A. The class of

LR/A :=A⊗P
R �PR

in Ho(ModP
A ) is a representative of the cotangent complex.

12.3.11 André–Quillen (Co)Homology

The André–Quillen cohomology of a dg P-algebra A with coefficients in a dg A-
moduleM is defined by

H •
AQ(A,M) :=H•

(
HomHo(ModP

A )(LR/A,M)
)
.

Proposition 12.3.15 shows that these homology groups are independent of the cofi-
brant resolution R

∼−→A of the P-algebra A.
Theorem 12.3.14 and Proposition 12.3.15 show that the André–Quillen coho-

mology is actually equal to the homology of the “derived” functor of A-derivations:

H •
AQ(A,M)

∼=H•
(
DerA(R,M)

)
.

Dually, the André–Quillen homology of a dg P-algebra A with coefficients in a
dg right UP (A)-moduleM is defined by

HAQ• (A,M) :=H•(M ⊗UP(A) LR/A).
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The André–Quillen homology can be seen as the homology of the derived functor
of the functor

(
B
f−→A
) �→ f ∗(M)⊗UP(B) �PB,

see [Fre09a, Chap. 13] for more details.
Notice that the coefficients for the André–Quillen cohomology live in the cat-

egory of left UP (A)-modules, whereas the coefficients for the André–Quillen ho-
mology live in the category of right UP (A)-modules. In the case the three operads
As, Com and Lie, the two categories of left and right UP (A)-modules are equiva-
lent. The first example of an operad for which it is not the case, was given in [LP93]
by the operad Leib encoding Leibniz algebras, see Exercise 12.6.10.

12.4 Operadic Cohomology of Algebras with Coefficients

To an algebra A over a quadratic operad P and to an A-module M , one can asso-
ciate the operadic cochain complex

C•P (A,M) :=
(
Hom

(
P ¡(A),M

)
, ∂πκ
)
.

When the underlying operad is Koszul, this cochain complex computes the
André–Quillen cohomology groups. It shows, for instance, that the first cohomol-
ogy group H 1

P (A,M) is in one-to-one correspondence with the coset of abelian
extension A byM . All these definitions apply as well to P∞-algebras to define the
André–Quillen (co)homology of homotopy P-algebras.

12.4.1 Operadic Cochain Complex of a P-Algebra with Coefficients

Let P =P(E,R) be a quadratic operad, let A be a P-algebra, and let M be an
A-module. Suppose first that P is homogeneous quadratic and that A and M are
concentrated in degree 0.

We define the operadic cochain complex by

C•P (A,M) :=
(
Hom

(
P ¡(A),M

)
, ∂πκ
)
,

where the differential map ∂πκ is given by

∂πκ (g) := ∂̄(g)− (−1)|g|gd.

The notation d stands for the differential of the bar construction BκA := (P ¡
(A), d)

of A, see Sect. 11.2.2 and the map ∂̄(g) is equal to the following composite

P
¡
(A)

�−→P
¡ ◦P

¡
(A)

κ◦(πκ ;g)−−−−−→P ◦ (A;M) γM−→M.
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The map πκ : P
¡
(A) � I ◦ A ∼= A is the universal twisting morphism, see

Sect. 11.3.2.
Considering the cohomological degree, which is the opposite of the homological

degree, we get the following cochain complex

Hom(A,M) −→ HomS

(
P

¡ (1)
(A),M

) −→ HomS

(
P

¡ (2)
(A),M

) · · · .

0 1 2

With the presentation P(E,R) of the operad P , it gives explicitly

Hom(A,M) −→ HomS

(
E(A),M

) −→ HomS

(
R(A),M

) · · · .

It can be checked by hand that (∂πκ )
2 = 0, but it is also a direct consequence of

the next section. The associated cohomology groups form the operadic cohomology
of A with coefficients intoM .

This definition extends in two directions. One can consider inhomogeneous qua-
dratic operads P , satisfying the conditions (ql1) and (ql2) of 7.8. Or one can con-
sider dg P-algebras (A,dA) and dg A-module M . (In this last case, the degree is
not given by the weight of the Koszul dual cooperad anymore.) In these cases, the
differential map is the sum of several terms

∂πκ (g) := ∂̄(g)+ dMg − (−1)|g|g(d2 + dP¡ ◦ Id+ Id◦′dA).

Proposition 12.4.1. Let P be a quadratic operad and let A andM be respectively
a P-algebra and an A-module. The operadic cohomology of A with coefficients
intoM is a subspace of the tangent homology of the P-algebra A�M .

Proof. Under the inclusion

Hom
(
P

¡
(A),M

)∼=HomS

(
P

¡
,EndAM

)⊂HomS

(
P

¡
,EndA⊕M

)= gA�M,

the chain complex

(
Hom

(
P

¡
(A),M

)
, ∂πκ
)⊂ (HomS

(
P

¡
,EndA⊕M

)
, ∂ϕ
)

is a chain subcomplex of the deformation complex. �

Since a P-algebra A is an example of a module over itself, we can consider the
operadic cohomology H •

P (A,A) of A with coefficients in A. These (co)homology
groups are isomorphic to the tangent homology of the P-algebra A, that is the
homology of the deformation complex of A, see Sect. 12.2.2.

EXAMPLES. We recover the classical cases, up to a degree shift.

 In the case of the operad As, the operadic (co)homology is isomorphic to the
Hochschild (co)homology of associative algebras, see Sect. 9.1.7.
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 In the case of the operad Com, the operadic (co)homology is isomorphic to the
Harrison (co)homology of commutative algebras, see Sect. 13.1.7 (recall that we
work over a field K of characteristic 0).

 In the case of the operad Lie, the operadic (co)homology is isomorphic to the
Chevalley–Eilenberg (co)homology of Lie algebras, see Sect. 13.2.8.

Proposition 12.4.2. For any P-algebra A and any A-module M , both concen-
trated in degree 0, there is a natural isomorphism

H 0
P (A,M)

∼=DerA(A,M).

Proof. A map d :A→M satisfies ∂πκ (d)= 0 if and only if d ∈DerA(A,M). �

12.4.2 Operadic Cohomology vs André–Quillen Cohomology

The goal of this section is to prove the following theorem.

Theorem 12.4.3. Working over nonnegatively graded chain complexes, if P is a
Koszul operad, then the André–Quillen cohomology is isomorphic to the operadic
cohomology

H •
AQ(A,M)

∼=H •
P (A,M)

∼=H•
(
Hom

(
P

¡
(A),M

)
, ∂πκ
)
,

and a representative of the cotangent complex of any dg P-algebra A is given by

L�κBκA/A
∼= (A⊗P P

¡
(A), dπκ

)
.

We suppose that the operad P is equipped with an operadic twisting morphism
α : C →P . We suppose that the dg P-algebra A admits a twisting morphism ϕ :
C→A, where C is a conilpotent dg C -coalgebra, such that the induced morphism
of dg P-algebras

fϕ :�αC :=P(C)
∼−→A

is a quasi-isomorphism, see Sect. 11.3.2. Let us assume that the dg P-algebra �αC
is cofibrant. Since it is a quasi-free dg P-algebra, it is cofibrant when working over
nonnegatively graded chain complexes by Proposition B.6.6.

As in the last section, we denote by α ◦ (ϕ; Id) : C (C)→P ◦ (A;C) the com-
posite

C (C)
α◦′Id−−−→P ◦ (C;C) Id◦(ϕ;Id)−−−−−→P ◦ (A;C).

Lemma 12.4.4. The above cofibrant resolution �αC of the dg P-algebra A gives
the following representative of the cotangent complex

L�αC/A
∼= (A⊗P C,dϕ

)
,
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where the differential map dϕ is the sum of dA⊗PC with the differential coming from
the composite

P ◦ (A;C) Id◦(Id;�C)−−−−−−→P ◦ (A;C (C)) Id◦(Id;α◦(ϕ;Id))−−−−−−−−−→P ◦ (A;P ◦ (A;C))

→ (P ◦(1) P) ◦ (A;C) γ(1)◦(Id;Id)−−−−−−→P ◦ (A;C).

Proof. The above composite passes to the quotient which defines the free A-module
A⊗P C on C. Tracing through the various coequalizers, we get an isomorphism of
graded K-modules

A⊗P
P(C) �PP(C)∼=A⊗P C.

Under this isomorphism, the differential on A⊗P
P(C)

�PP(C) is sent to the ex-
pected differential. �

FUNDAMENTAL EXAMPLE. We consider the case of the operad P = As, the co-
operad C = As

¡
and the Koszul morphism α = κ : As

¡ → As. In this case, we get
the following representative of the cotangent complex

A⊗As C ∼=A+ ⊗ϕ C ⊗ϕ A+,

which is nothing but the twisted bitensor product introduced in Exercise 2.7.6.
Let M be a dg A-module. We consider the following twisted differential ∂ϕ :=

∂ + ∂̄ϕ on the mapping space Hom(C,M), where

∂̄ϕ(g) := C �C−−→ C (C)
α◦(ϕ;g)−−−−→P ◦ (A;M) γM−→M.

Proposition 12.4.5. Under the above given data, any cofibrant resolution fϕ :
�αC

∼−→A gives rise to a natural isomorphisms of dg modules

(
DerA(�αC,M), ∂

)∼= (Hom(C,M), ∂ϕ
)
.

Proof. It is a consequence of Lemma 12.4.4. �

Hence the André–Quillen cohomology of a P-algebra A with coefficients in an
A-moduleM can be computed using this resolution:

H •
AQ(A,M)

∼=H•
(
Hom(C,M), ∂ϕ

)
.

When the operad P is Koszul, we take C =P
¡

to be the Koszul dual cooperad,
α = κ : P ¡ → P to be the Koszul morphism and C = BκA. This data induces
a universal twisting morphism πκ : C := BκA→ A, see Proposition 11.3.2, and
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provides a cofibrant replacement functor

�κBκA
∼−→A,

by Theorem 11.3.5.

Proof of Theorem 12.4.3. It is corollary of Lemma 12.4.4 and Proposition 12.4.5. �

12.4.3 Extensions and H 1
P (A,M)

Recall that we defined the notion of abelian extension

0→M� B�A→ 0

of a P-algebra A by an A-moduleM in Sect. 12.3.2.
Two abelian extensions are equivalent when there exists a morphism of P-

algebras f : B→ B ′ such that the following diagram is commutative

0 M B

f

A 0

0 M B ′ A 0.

Since such an f is an isomorphism, this defines an equivalence relation among ex-
tensions of A byM , whose coset is denoted by E xt (A,M). Using the cohomologi-
cal degree convention of the previous section, we have the following interpretation.

Theorem 12.4.6. Let P be a quadratic operad. Let A and M be respectively a
P-algebra and an A-module, both concentrated in degree 0. There is a canonical
bijection

H 1
P (A,M)

∼= E xt (A,M).

Proof. To any element ϕ ∈ HomS(P
¡ (1)
,EndAM), we associate a map s−1ϕ :

E(A)∼= s−1P
¡ (1)
(A)→M . When ϕ is a 1-cocycle, that is ∂πκ (ϕ)= 0, it induces a

map Φ :P(A)→M . From this data, we consider the following P-algebra struc-
ture on A⊕M :

P ◦ (A;M)� P(A)⊕P ◦ (A;M) γA⊕(Φ+γM)−−−−−−−→A⊕M.
We denote the associated abelian extension by A�ϕ M .

Let ϕ′ be another 1-cocycle such that ϕ′ = ϕ + ∂πκ (α), with α ∈ Hom(A,M).
Then the morphism of P-algebras A �ϕ′ M → A �ϕ M defined by (a,m) �→
(a,m+ α(a)) yields an equivalence of extensions.
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In the other way round, let 0→M� B�A→ 0 be an abelian extension. Un-
der the isomorphism B ∼= A ⊕M , the P-algebra structure on A ⊕M induces a

1-cocycle P
¡ (1)
(A) ∼= sE(A)→M . This defines a map, which passes to the re-

spective quotients. �

Notice the parallel with Theorem 12.2.7, which relates infinitesimal deformations
and the cohomology group H 1 of the deformation complex. In the present case, we
deform the P-algebra structure A�M in a certain way.

An interpretation of H 2
P (A,M) in terms of crossed modules is given in

[BMR04].

12.4.4 André–Quillen Cohomology of P∞-Algebras

One can apply the definition of the André–Quillen cohomology and homology to
P∞-algebras as well. In this case, we use the functorial cofibrant replacement

�ιBιA=P∞
(
P

¡
(A)
) ∼−→A

of P∞-algebras given in Proposition 11.4.2.

Proposition 12.4.7. With this resolution, the André–Quillen cohomology of P∞-
algebras is computed by

H •
AQ(A,M)

∼=H •
P∞(A,M) :=H•

(
Hom

(
P

¡
(A),M

)
, ∂πι
)
.

The same interpretation in terms of tangent homology as in Proposition 12.4.1
holds in the case of P∞-algebras. Notice that the operad P need not be Koszul;
this treatment holds for any operad of the form �C .

In the case of the operad A∞, one recovers the cohomology theory defined by
Markl in [Mar92]. For more details, see [Mil10, Sect. 3].

12.4.5 André–Quillen Cohomology and Classical Ext Functor

Since the notion of A-module is equivalent to the notion of left module over the
enveloping algebra UP (A), one can study the following question: is the André–
Quillen cohomology equal to the classical Ext-functor

H •
P∞(A,M)

∼= Ext•UP(A)(�PA,M)?

It is known to be the case for the Koszul operads As and Lie and it is not the case
for the Koszul operad Com. A general answer is given by the following result. An
operad satisfies the PBW property, when the graded module associated to the natural
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filtration of UP (A) is isomorphic to the enveloping algebra UP (A
tr) of the trivial

algebra on A: grUP (A)
∼=UP (A

tr), for any P-algebra A.

Proposition 12.4.8. [Mil10] To any Koszul operad P satisfying the PBW property,
there exists a chain complex of obstructions OP , such that OP is acyclic if and only
if the André–Quillen cohomology of P-algebras is isomorphic to the Ext-functor
over the enveloping algebra.

For instance, the author proves that OAs and OLie are acyclic. He exhibits non-
trivial homology groups in OCom.

Moreover he proves that O�C is acyclic, for any cooperad C , showing that the
André–Quillen cohomology of P∞-algebra is an Ext-functor. This induces the fol-
lowing result.

Theorem 12.4.9. [Mil10] Let P be a Koszul operad, let A be a P-algebra and let
M be an A-module. There are natural isomorphisms

H •
AQ(A,M)

∼=H •
P∞(A,M)

∼= Ext•UP∞ (A)(�P∞A,M).

12.4.6 Other Cohomology Theories

Cotriple Cohomology Since an operad P is a particular kind of monad, one
can consider the triple cohomology of P-algebras as defined by Barr and Beck in
[BB69]. The André–Quillen cohomology of P-algebras was proved to be isomor-
phic to the triple cohomology by Fresse in [Fre09a, Sect. 13].

Gamma Cohomology When the operad P fails to have nice enough proper-
ties so as to induce a model category structure on the category of P-algebras, one
cannot apply the aforementioned arguments. However, it was proved directly by
Hoffbeck in [Hof10a] that the various derived functors are well defined. This leads
to the definition of the �-cohomology of P-algebras. In the case of the operad Com,
one recovers the �-cohomology of Robinson and Whitehouse [RW02, Rob03]. The
first �-cohomology groups are interpreted as obstructions to lifting homotopy maps
of P-algebras in [Liv99, Hof10b].

12.5 Résumé

12.5.1 Homology of Algebras over an Operad

Operadic homology:

HP• (A) :=H•(BκA)∼=H•
(
P

¡
(A), d

) : graded P
¡
-coalgebra,

CP• (A) : · · ·→P
¡ (3)
(A)→P

¡ (2)
(A)→P

¡ (1)
(A)→A.
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Theorem.

H0(A)∼= Indec(A) & P Koszul ⇐⇒ HP•
(
P(V )

)∼= V.

Quillen homology: H•(L Indec(A)).

Theorem.

P Koszul ⇐⇒ operadic homology∼=Quillen homology.

12.5.2 Deformation Theory of Algebra Structures

Convolution dg Lie algebra:

g= gP,A :=
(

HomS

(
P

¡
,EndA

)
, [, ], ∂)

Proposition.

P-algebra structure on A
1−1←→ ϕ ∈MC(g),

MC (g) :=MC(g)/GL(A)∼=P-alg(A)/iso.

Twisted convolution dg Lie algebra: Given a P-algebra structure ϕ ∈MC(g) onA,
we consider the twisting dg Lie algebra

g
ϕ = g

ϕ

P,A
:= (HomS

(
P

¡
,EndA

)
, [, ], ∂ϕ

)

called the deformation complex.

Tangent homology: H •(gϕ).

R-deformation of ϕ: P ⊗R-algebra structure on A⊗R which reduces to ϕ mod-
ulo m.

Theorem. R Artin ring

MC
(
g
ϕ ⊗m

) :=MC
(
g
ϕ ⊗m

)
/G∼=Def ϕ(R)=Defϕ(R)/∼ .

Infinitesimal deformation: R=K[t]/(t2).

Theorem.

Defϕ
(
K[t]/(t2))∼=H 1(gϕ

)
.

Formal deformation: R=K[[t]].



472 12 (Co)Homology of Algebras over an Operad

Theorem (Obstructions). If H 2(gϕ) = 0, then any 1-cocycle of gϕ extends to a
formal deformation of ϕ.

(Rigidity). If H 1(gϕ)= 0, then any formal deformation of ϕ is equivalent to the
trivial one.

The full convolution dg Lie algebra g = gP,A encodes the P∞-algebra struc-
tures on A.

Theorem (Obstructions for P∞-algebras).. If H−2(HomS(P
¡ (n)
,EndA), ∂0) = 0

for n≥ 2, then any weight one ∂0-cocycle extends to a P∞-algebra structure on A.

By considering ∞-isomorphisms, the above results extend to P∞-algebras.

12.5.3 André–Quillen (Co)Homology of Algebras over an Operad

A-module over P: ModP
A .

Free A-module: A⊗P N .
Enveloping algebra: UP (A) :=A⊗P

K.

Proposition. ModP
A
∼=UP (A)-Mod.

Module of Kähler differential forms: �PA.

Theorem.

HomModP
A

(
A⊗P

B �PB,M
)∼=DerA(B,M)∼=HomP-alg/A(B,A�M).

It forms a Quillen adjunction that we derive to give the

Cotangent complex:

LR/A :=A⊗P
R �PR

in Ho
(
ModP

A

)
for a cofibrant resolution R

∼−→A.
André–Quillen cohomology of a P-algebra A with coefficients into a left UP (A)-
moduleM :

H •
P (A,M) :=H•

(
HomHo(ModP

A )(LR/A,M)
)∼=H•

(
DerA(R,M)

)
.
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André–Quillen homology of a P-algebra A with coefficients into a right UP (A)-
moduleM :

HP• (A,M) :=H•(M ⊗UP(A) LR/A).

12.5.4 Operadic (Co)Homology of Algebras over an Operad

When P is a Koszul operad:

H •
P (A,M)

∼=H•
(
Hom

(
P

¡
(A),M

)
, ∂πκ
)
,

H 0
P (A,M)

∼=DerA(A,M) & H 1
P (A,M)

∼= E xt (A,M).

12.6 Exercises

Exercise 12.6.1 (Chevalley–Eilenberg homology of the free Lie algebra). Compute
the Chevalley–Eilenberg homology of the free Lie algebra.

HINT. The Chevalley–Eilenberg homology (Sect. 13.2.7) is equal to the operadic
homology (and to the Quillen homology).

Exercise 12.6.2 (Deformation complex of Lie algebras). Make explicit the defor-
mation complex of Lie algebras, together with its intrinsic Lie bracket, in the same
way as Sect. 12.2.4 for associative algebras.

Show that one recovers the Chevalley–Eilenberg cochain complex of a Lie al-
gebra Sect. 13.2.8, up to a degree shift, endowed with the Nijenhuis–Richardson
bracket [NR66, NR67].

HINT. Use the description of the convolution dg Lie algebra associated to the op-
erad Lie given in Sect. 10.1.6.

Notice that the interpretation of the cohomology groupsH 1 andH 2 given in The-
orems 12.2.7, 12.2.8 and 12.2.9 in terms of infinitesimal and formal deformations
coincide with the results of [NR66, NR67] in the case of Lie algebras.

Exercise 12.6.3 (Equivalence of deformations). Using the fact that any R-linear
endomorphism of A⊗R is completely characterized by its restriction on A:

A→A⊗R∼=A⊕A⊗m,

prove that the equivalence of R-deformations defined in Sect. 12.2.5 is an equiva-
lence relation.
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Exercise 12.6.4 (Invertibility). Let A be a K-module. Show that a K[[t]]-linear
endomorphism f of A⊗K[[t]] is an isomorphism if and only if its first component
f0 (or reduction modulo t) is a K-linear isomorphism of A.

f|A = f0 +
∑

n≥1

fnt
n :A→A⊕A⊗ t ⊕A⊗ t2 ⊕ · · · .

Extend this result (with the same kind of proof), to any R-extension A⊗R of
A, where R is a local complete ring, i.e. R= lim←−R/mn.

What happens when R is an Artin local ring?

Exercise 12.6.5 (Equivalence and ∞-isomorphism). Let (R,m) be a local com-
plete ring. Using the result of the previous exercise, show that an R-linear ∞-
morphism between two P∞ ⊗R-algebras (A⊗R,Φ) and (A⊗R,Ψ ) is invert-

ible if and only if the reduction modulo m of its first component, I = P
¡ (0) →

Hom(A,A), is invertible in Hom(A,A).

HINT. Use the characterization of invertible∞-morphism given in Theorem 10.4.1.

From this, conclude that the relation ∼ between R-deformations of P∞-algebra
structures, defined in Sect. 12.2.10, is an equivalence relation.

Exercise 12.6.6 (Examples of deformation complexes). Make explicit the defor-
mation complexes of A∞-algebras, L∞-algebras, C∞-algebras, G∞-algebras and
BV∞-algebras.

Explain the relationship between them.

HINT. The last two cases are described in detail in [GCTV09].

Exercise 12.6.7 (Obstructions to P∞-algebra structure). Fulfill the missing com-
putations in the proof of Theorem 12.2.12.

Exercise 12.6.8 (Independence of the deformation functor). Show that the defor-
mation theory of P∞-algebras can equivalently be studied with the bar–cobar con-
struction as follows.

When P is a Koszul operad, prove that the convolution dg Lie algebra
HomS(P

¡
,EndA) is quasi-isomorphic to the convolution dg Lie algebra

HomS(BP,EndA) associated to the bar construction of P . Conclude that the as-
sociated deformation functors are isomorphic.

HINT. Do not forget to use Theorem 13.2.10.
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Exercise 12.6.9 (Modules over a P-algebra). Write the details of the proof of
Proposition 12.3.1, which states that for the three graces As, Com and Lie, the re-
spective notions of module over a P-algebra are equivalent to the classical notions
of modules, i.e. bimodule, module and Lie module respectively.

Give a similar equivalent definition for the notion of A-module over an op-
erad P , in the cases where P = PreLie, see Sect. 13.4 and [Dzh99], P = Perm,
see Sect. 13.4.6 and [Mil11], P = Leib, see Sect. 13.5 and [LP93], P = Zinb, see
Sect. 13.5.2 and [Bal98], P = Dias, see Sect. 13.6.7 and [Fra01], P = Pois, see
Sect. 13.3 and [Fre06].

HINT. The references given above provide solutions.

Exercise 12.6.10 (Left and right modules over ULeib(A) �). Give a Leibniz alge-
bra A for which the category of left modules over the enveloping algebra ULeib(A)
is not equivalent to the category of right modules over ULeib(A).

See Sect. 13.5 for the definition of Leibniz algebras.

Exercise 12.6.11 (Explicit module-enveloping algebra-Kähler �). Let P be an
operad given with the following presentation P =P(E,R)=T (E)/(R) by gen-
erators and relations. Let A be a P-algebra.

Make explicit the notions of free A-module A ⊗P N , enveloping algebras
UP (A) and module of Kähler differential forms �PA in terms of E and R.

Using this results, recover the examples of the operads As, Com and Lie.

Exercise 12.6.12 (Examples of André–Quillen (co)homology �). Make explicit
the André–Quillen (co)homology of algebras over the operads Dias [Fra01], Leib
[LP93] and Perm [Mil10].

Exercise 12.6.13 (Operadic homology with coefficients �). When the operad P

is Koszul, using the representation of the cotangent complex obtained in Theo-
rem 12.4.3, make explicit a chain complex which computes the André–Quillen ho-
mology with coefficients.

Since K is a right UP (A)-module, show that, in this case, we recover the op-
eradic (or equivalently the Quillen) homology of the P-algebra A, as defined in
Sect. 12.1.

Exercise 12.6.14 ((Co)homology of operads �). Let (P, γ ) be an operad. An
infinitesimal P-bimodule is an S-module M equipped with a left action λ : P ◦
(P;M)→M and a right action ρ :M ◦P → such that the following diagrams
commute
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M ◦P ◦P
Id◦γ

ρ◦Id

M ◦P

ρ

M ◦P
ρ

M

P ◦ (P ◦P;P ◦ (P;M)) Id◦(γ ;λ)

∼=
P ◦ (P;M)

λ(P ◦P) ◦ (P;M)
γ ◦(Id;Id)

P ◦ (P;M) λ
M

P ◦ (P ◦P;M ◦P)
Id◦(γ ;ρ)

∼=
P ◦ (P;M)

λP ◦ (P;M) ◦P

λ◦Id

M ◦P
ρ

M.

Show that such a data is equivalent to an operad structure on P ⊕M , where the
composite of at least two elements coming from M vanishes. This operad is called
an abelian extension of P byM and is denoted by P �M .

Give an equivalent definition of the notion of infinitesimal P-bimodule in terms
of two infinitesimal actions of the form

ρ̄ :M ◦(1) P →M and λ̄ :P ◦(1) M→M.

Show that the free infinitesimal P-bimodule over N is given by the S-module
P ◦ (P;N) ◦P .

Let f : Q → P be a morphism of operads and let M be an infinitesimal P-
bimodule. A P-derivation from Q to M is a morphism of S-modules d :Q →M

satisfying

Q ◦(1) Q
γQ
(1)

f ◦(1)d⊕d◦(1)f

Q

d

P ◦(1) M ⊕M ◦(1) P λ̄+ρ̄
M.

Show that there exist natural isomorphisms

DerP (Q,M)∼=Homop/P (Q,P �M),

where op/P denotes the category of operads over the fixed operad P .
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To any operad Q, make explicit a suitable notion of infinitesimal Kähler Q-
bimodule of differential forms �(Q), such that

Hominf-QbiMod

(
�(Q), f ∗(M)

)∼=DerP (Q,M),

where f ∗(M) stands for the infinitesimal P-bimodule structure on M obtained
under f .

Make explicit the left adjoint f! : inf-QbiMod → inf-PbiMod to f ∗ :
inf-PbiMod→ inf-QbiMod.

Show that

Hominf-PbiMod

(
f!
(
�(Q),M

))∼=DerP (Q,M)∼=Homop/P (Q,P �M)

forms a Quillen adjunction. Derive it to define the André–Quillen cohomology of
the operad P with coefficients intoM .

Let f :R ∼−→P be a cofibrant resolution of the operad P . Prove that the André–
Quillen cohomology of P is represented by the cotangent complex of P , whose
representative is given by

LR/P := f!
(
�(R)

)
.

Using either the bar–cobar resolution�BP of P or the Koszul resolution�P
¡

of P , make this cotangent complex explicit.
Let P is a Koszul operad and let A be a P-algebra P → EndA. Show that the

André–Quillen cohomology of P with coefficients in EndA is isomorphic to the
tangent homology of A, defined in Sect. 12.2.2.

This exercise comes from [MV09b, Sect. 2]; see also [Rez96, BJT97].



Chapter 13
Examples of Algebraic Operads

Autrement dit, voici un livre qui ne peut se conclure que sur un
‘et coetera’.

Umberto Eco
“Vertige de la liste”, Flammarion, 2009

In Chap. 9, we studied in detail the operad Ass encoding the associative algebras.
It is a paradigm for nonsymmetric operads, symmetric operads, cyclic operads. In
this chapter we present several other examples of operads. First, we present the
two other “graces”, the operads Com and Lie encoding respectively the commuta-
tive (meaning commutative and associative) algebras, and the Lie algebras. Second,
we introduce more examples of binary quadratic operads: Poisson, Gerstenhaber,
pre-Lie, Leibniz, Zinbiel, dendriform, magmatic, several variations like Jordan al-
gebra, divided power algebra, Batalin–Vilkovisky algebra. Then we present various
examples of operads involving higher ary-operations: homotopy algebras, infinite-
magmatic, brace, multibrace, Jordan triples, Lie triples. The choice is dictated by
their relevance in various parts of mathematics: differential geometry, noncommu-
tative geometry, harmonic analysis, algebraic combinatorics, theoretical physics,
computer science. Of course, this list does not exhaust the examples appearing in
the existing literature. The reader may have a look at the cornucopia of types of
algebras [Zin12] to find more examples.

In many cases the (co)homology theory of a given type of algebras was devised
before the operad theory told us how to construct an explicit chain complex. Some-
times the equivalence between the two is not immediate, the Com case for instance.
In general we first describe the known chain complex and then, we relate it with the
operadic chain complex. We leave it to the reader to figure out the notion of module
and the cohomology theory with coefficients. In fact, in many cases it already exists
in the literature.

We make this chapter as self-contained as possible concerning the definitions and
the statements. So there is some redundancy with other parts of this book. In most
cases we refer to the “general theorems” proved in the previous chapters or to the
literature. We work in the category of vector spaces over a field K. For symmetric

J.-L. Loday, B. Vallette, Algebraic Operads,
Grundlehren der mathematischen Wissenschaften 346,
DOI 10.1007/978-3-642-30362-3_13, © Springer-Verlag Berlin Heidelberg 2012
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operads the assumption “K is a characteristic zero field” is, in general, required.
However all the definitions make sense in the category of modules over a com-
mutative ring, like Z or a polynomial ring for instance. For many examples, the
interesting notion takes place in the category of graded vector spaces (supercase),
or even in the category of differential graded vector spaces. Most of the time we
leave it to the reader to make explicit the definitions in these cases since they are
straightforward.

Many of the operads presented in this chapter are Koszul operads. Therefore all
the results proved for Koszul operads in the preceding chapters can be applied. In
some specific cases, they have already been proved and published in the literature.
In general we leave it to the reader to state the exact statements, though they are not
always as straightforward as one could hope.

In this book we have presented four types of operads: symmetric operads, non-
symmetric operads, shuffle operads, unital associative algebras. In Sect.13.14 we
present, very briefly, other kinds of operads from the combinatorial point of view.

13.1 Commutative Algebras and the Operad Com

We study the operad Com which encodes the (nonunital) commutative algebras (as-
sociativity is understood). It is a binary, quadratic, Koszul symmetric operad, which
comes from a set-theoretic operad. Its Koszul dual operad is: Com! = Lie encoding
Lie algebras. The operadic homology is Harrison homology in characteristic zero.
The notion of homotopy commutative algebra in the operadic sense coincides with
the notion of C∞-algebra due to T. Kadeishvili [Kad82]. We compare commuta-
tive algebras with divided power algebras and in the last subsection we “split” the
commutative operation.

13.1.1 Commutative Algebra

By definition a commutative algebra over the field K is an associative algebra A
which satisfies the following commutativity symmetry:

xy = yx
for any x, y ∈ A. Let τ : V ⊗ V → V ⊗ V be the switching map (cf. Sect. 1.5.2).
Denoting by μ the associative binary operation, the commutativity relation reads

μτ = μ.
There is an obvious notion of morphism between commutative algebras and we
denote by Com-alg the category of commutative algebras.
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Here we work in the symmetric monoidal category of vector spaces over K, but,
because of the form of the relations, we could as well work in the symmetric mo-
noidal category of sets, resp. topological sets, resp. simplicial sets. Then we would
obtain the notion of commutative monoid, resp. topological commutative monoid,
resp. simplicial commutative monoid. If we replace the category Vect by the cate-
gory gVect of sign-graded vector spaces, the commutativity relation becomes

yx = (−1)|x||y|xy.

One can either work with nonunital commutative algebras or with unital commuta-
tive algebras. In this latter case we denote the operad by uCom.

It is sometimes necessary to work with algebras equipped with a binary operation
which satisfies the commutativity symmetry relation, but which is not associative.
We propose to call them commutative magmatic algebras and to denote the associ-
ated operad by ComMag, cf. Sect. 13.8.4.

13.1.2 Free Commutative Algebra

The free commutative algebra over the vector space V is known to be the reduced
symmetric module �S(V ) =⊕n≥1(V

⊗n)Sn equipped with the concatenation prod-
uct. It is called the reduced symmetric algebra. If V is spanned by the basis ele-
ments x1, . . . , xn, then �S(V ) is the algebra of polynomials in x1, . . . , xn modulo the
constants: K[x1, . . . , xn]/K1. The composition of polynomials γ (V ) : �S(�S(V ))→
�S(V ) is given by substitution of polynomials: if P(X1, . . . ,Xk) is a polynomial
in the variables Xis and if each Xi is a polynomial in the variables xj s, then
P(X1(x1, . . . , xn), . . . ,Xk(x1, . . . , xn)) is a polynomial in the variables xj s called
the composite. This composition is obviously associative and commutative.

In the unital case the free algebra is the symmetric algebra: uCom(V )= S(V ).

13.1.3 The Operad Com

We denote by Com the operad encoding the category Com-alg of commutative al-
gebras. From the polynomial description of the free commutative algebra it follows
that the space of n-ary operations is Com(n)∼=K equipped with the trivial action of
the symmetric group. The n-ary operation μn ∈ Com(n)∼=K, μn �→ 1, correspond-
ing to the generator is

μn(x1, . . . , xn) := x1 . . . xn.

In the nonunital case we have Com(0)= 0 and in the unital case uCom(0)=K1.
Since the composition γ in the operad Com is given by the substitution of poly-

nomials, we get

γ (μk;μi1, . . . ,μik )= μi1+···+ik .
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The generating series of the operad Com is given by

f Com(x)=
∑

n≥1

xn

n! = exp(x)− 1.

As a quadratic operad Com is presented by the quadratic data (ECom,RCom)

where ECom is the S-module concentrated in arity 2: ECom(2)=Kμ being the triv-
ial representation. Let us think of this generator as the operation xy, which sat-
isfies xy = yx. This operation determines the space T (ECom)

(2), which is three-
dimensional spanned by x(yz), y(zx), z(xy) or equivalently x(yz), (xz)y, (xy)z
(compare with the shuffle trees). The space of relations RCom is the sub-S3-space
of T (ECom)

(2) generated by the associator (xy)z− x(zy). Therefore it is spanned
(for instance) by the two elements x(yz)− y(zx), y(zx)− z(xy). Observe that the
quotient T (ECom)

(2)/RCom is the trivial representation of S3 as expected.

13.1.4 Relationship with Other Types of Algebras

The operad Com is obviously related to many operads: Ass, Pois, Gerst, Zinb, BV ,
ComMag and many others, see below.

By forgetting the commutativity property, a commutative algebra can be consid-
ered as an associative algebra. So there is an “inclusion” functor:

Com-alg→ Ass-alg

giving rise to a morphism of operads Ass � Com. In arity n the representation
Ass(n) is the regular representation of Sn, which is isomorphic to the sum of its
isotypic components. The isotypic component corresponding to the trivial represen-
tation is one-dimensional and the map

K[Sn] = Ass(n)� Com(n)=K,

is precisely the projection onto this component. It is the augmentation map σ �→ 1
for σ ∈ Sn. The relationship with other operads will be treated in the relevant sec-
tions.

13.1.5 Koszul Dual of Com

We show that the dual of Com is Lie and that both operads are Koszul operads.

Proposition 13.1.1. The Koszul dual operad of the operad Com encoding commu-
tative algebras is the operad Lie encoding Lie algebras:

Com! = Lie.
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Proof. Since Com is generated by a symmetric operation, Com! is generated by
an antisymmetric operation. Let us denote this operation by [x, y]. In arity 3 the
operations [[x, y], z], [[y, z], x], [[z, x], y] form a linear basis of the weight 2 part
of the free operad generated by [−,−]. As a representation of S3 we get a copy of
the signature representation and a copy of the hook representation:

⊕

The module of relations RCom defining Com is two-dimensional and spanned, for
instance, by (xy)z − x(yz) and (yz)x − y(zx). It follows that RCom

⊥ is one-
dimensional; so RCom

⊥ is the signature representation. It is spanned by the sum
of the three generators. Hence the relation defining Com! is

[[x, y], z]+ [[y, z], x]+ [[z, x], y]= 0.

This is the Jacobi relation, hence Com! = Lie. �

Proposition 13.1.2. The operad Com is a Koszul operad.

Proof. There are several ways to prove that Com (and therefore Lie) is Koszul. For
instance, it suffices by Proposition 7.4.5 to show that HCom• (Com(V )) = V con-
centrated in degree 1. We will show below that the operadic homology of Com is
Harrison homology. The computation of Harrison homology of the symmetric alge-
bra is well known. It follows from the computation of the Hochschild homology of
the symmetric algebra (cf. [Lod98] for instance).

Another proof would consist in computing the Lie algebra homology of the free
Lie algebra (cf. Sect. 13.2.7). The poset method (cf. Sect. 8.7) does not need the
characteristic zero hypothesis. The rewriting method (cf. Sect. 8.5.3) also works
pretty well. �

13.1.6 Comparison of Ass with Com and Lie

Since a commutative algebra is a particular case of associative algebra, there is
a well-defined morphism of operads Ass � Com. Taking the Koszul dual of this
operad morphism, we get of morphism of cooperads:

Ass¡ =H 0(B Ass)→H 0(B Com)= Com¡.

Translated to the Koszul dual operads we get

Lie= Com! → Ass.
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Proposition 13.1.3. The Koszul dual of the functor Com-alg→ Ass-alg is the func-
tor Ass-alg→ Lie-alg, A �→ALie.

Proof. For the purpose of this proof, we denote by μ ∈ Ass(2) the generating op-
eration of Ass and by ν ∈ Com(2) the generating operation of Com. We know
that both μ and μ(12) map to ν. As a consequence, the cooperad morphism
Ass¡ → Com¡ maps both μc and (μ(12))c to νc . Denoting by m the linear dual of
μc in Ass! = S ⊗

H
(Ass¡)∗ and by c (“crochet” in French) the linear dual of νc

in Lie = Com! = S ⊗
H
(Com¡)∗, we see that the map Lie(2)→ Ass(2) sends c to

m−m(12). In other words, we get [x, y] = xy − yx as expected. �

13.1.7 Harrison (Co)Homology

Let us recall the definition of Harrison homology [Har62] of a (nonunital) commu-
tative algebra A. Let C•(A) be the Hochschild complex of A, that is Cn(A)=A⊗n
and the Hochschild boundary map is b′, cf. Sect. 9.1.6. We denote by CHarr• (A)

the quotient of C•(A) by the nontrivial signed shuffles, that is by the (p1, . . . , pr)-
shuffles for pi ≥ 1,p1 + · · · + pr = n, and r ≥ 2. For instance

CHarr
2 (A)=A⊗2/{nontrivial shuffles}=A⊗2/{a ⊗ b− b⊗ a} = S2(A).

Thinking of C•(A) as the graded shuffle algebra over the space A of Sect. 1.3.2,
CHarr• (A) is the space of indecomposables. Since A is commutative, the boundary
operator b′ passes to the quotient and we get a chain complex called the Harrison
complex of A (for a conceptual explanation of this compatibility between b′ and the
shuffles, see [Lod89]). Its homology is Harrison homology HHarr• (A). Observe that
we are working here in the nonunital framework.

Proposition 13.1.4. In characteristic zero, the operadic homology of Com-algebras
is the Harrison homology of commutative algebras, up to a shift of degree.

Proof. Recall from Proposition 12.1.1 that the operadic chain complex of A is such
that CCom

n−1 (A) := Lie(n)∗ ⊗Sn A
⊗n. By Theorem 1.3.6, we know that Lie(n)∗ is iso-

morphic to the quotient of the regular representation K[Sn] by the nontrivial shuf-
fles. Hence we get Lie(n)∗ ⊗Sn A

⊗n = CHarr
n (A). By Proposition 12.1.1 it follows

that the operadic differential corresponds to the Hochschild boundary map under
this isomorphism, since the dual of the operad map Ass→ Com is the operad map

Lie
−−→ Ass. �

Corollary 13.1.5. The operadic homology HCom
•+1 (A) of a commutative algebra A

inherits a graded Lie-coalgebra structure.

Proof. This is an immediate consequence of Proposition 13.1.1. �
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13.1.8 Homotopy Commutative Algebra, Alias C∞-Algebra

From the general theory of homotopy algebras, cf. Chap. 10, we know that a ho-
motopy commutative algebra, also called strong homotopy commutative algebra, is
an algebra over the dg operad Com∞ :=�Com

¡
. From the computation of the dual

operad of Com we know that the cooperad Com
¡

is, up to suspension, the cooperad
Liec encoding Lie coalgebras.

As for homotopy associative algebras, the notion of homotopy commutative al-
gebra appeared in the literature in [Kad88] before the Koszul duality theory for
operads was set up. It is called C∞-algebra.

By definition a C∞-algebra is a graded vector space A= {Ak}k∈Z equipped with
a differential map d : Liec(sA)→ Liec(sA) (so |d| = −1 and d ◦ d = 0) which is
a coderivation (cf. Sect. 1.2.7). Recall that Liec is the cofree Lie coalgebra functor.
These two notions coincide since this last definition is the fourth one in the Rosetta
Stone (Sect. 10.1.9).

Proposition 13.1.6. A C∞-algebra structure on a dg module (A,dA) is an A∞-
algebra (A, {mn}n≥2) such that each map mn : A⊗n→ A is a Harrison cochain,
i.e. mn vanishes on the sum of all (p, q)-shuffles for p+ q = n, p ≥ 1.

Proof. The aforementioned morphism of cooperad Ass¡ → Com¡ shows that a C∞-
algebra induces an A∞-algebra:

Ass¡ Com¡

EndA.

Since Com¡ ∼= Endc
s−1K

⊗HLiec, we conclude with Ree’s theorem 1.3.6, which
states that the kernel of Assc→ Liec is spanned by the sums of the nontrivial shuf-
fles. �

Notice that, in the above definition of a C∞-algebra, only the associativity re-
lation of a commutative algebra has been relaxed up to homotopy. The symmetry
of the binary product remains strict. A differential graded commutative algebra, dgc
algebra for short, is a C∞-algebra whose higher operations vanish: cn = 0 for n≥ 3.
The linear dual notion of C∞-coalgebra, defined as a square-zero derivation on the
free Lie algebra, is ubiquitous in rational homotopy theory through Quillen’s con-
structions of [Qui69].

EXAMPLE. The Lie algebra L1 of polynomial vector fields over the line K
1,

mentioned in Sect. 1.4.3 (b) has a computable cohomology. It can be shown that
dimHnCE(L1)= 2 for any n ≥ 2. But, as a C∞-algebra it is generated by H 1

CE(L1)

as shown by Millionshchikov in [Mil09].
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13.1.9 Homotopy Transfer Theorem for C∞-Algebras

The structure of differential graded commutative (dgc) algebra is not stable under
homotopy equivalence, but the structure of C∞-algebra is. The homotopy transfer
theorem for commutative algebras takes the same form as the transfer theorem 9.4.7
for associative algebras mutatis mutandis. See for instance [CG08].

Proposition 13.1.7. Let

(A,dA)h

p

(V, dV )
i

be a homotopy retract, i.e. IdA−ip = dh+hd and i is a quasi-isomorphism, and let
{μn :A⊗n→A}n≥2 be a C∞-algebra structure on A. The transferred A∞-algebra
structure on V given by the tree-formula of Theorem 9.4.7

mn :=
∑

t∈PTn+2

±mt,

where, for any planar tree t , the n-ary operation mt is obtained by putting i on the
leaves, μk on the k-ary vertices, h on the internal edges and p on the root, is a C∞-
algebra structure. The ∞-A∞-morphism i∞ : V ∼�A, extending i, given by the tree
formula of Theorem 9.4.7 defines an ∞-C∞-quasi-isomorphism.

Proof. This statement follows from the general homotopy transfer theorem 10.3.1,
with the explicit formulas of Theorems 10.3.3 and 10.3.6. The relation between the
A∞-algebra structures and the C∞-algebra structures comes from the morphism of
cooperads Lie¡ → Ass¡. �

As an application, this proposition allows one [CG08] to transfer the dgc alge-
bra structure of the De Rham cochain complex of the differential forms �•�n on
the n-simplex �n to the normalized simplicial cochain complex N•�n through the
Dupont contraction [Dup76, Dup78]. This result has applications in deformation
theory [Get09] and renormalization theory [Mnë09].

13.1.10 E-Infinity Algebra

In algebraic topology, one also needs to relax the symmetry of the commutative
product “up to homotopy”. By definition, anE∞-operad is a dg operad E which is a
model for Com, that is endowed with a quasi-isomorphism of dg operads E

∼−→ Com.
Moreover, one often requires the underlying S-module of E to be projective, i.e.
E (n) is a projective K[Sn]-module, for any n ≥ 1. The property ensures that the
category of algebras over E has nice homotopy behavior, namely it admits a model
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category structure with quasi-isomorphisms as weak equivalences, see Sect. B.6.7.
Notice that this extra assumption is always satisfied over a field K of characteristic 0;
in that case Com∞ is an E∞-operad. In this framework, a projective quasi-free
model is cofibrant.

The notation E∞ stands for “everything up to homotopy” since everything, as-
sociativity and commutativity, has been relaxed up to homotopy. An E∞-algebra is
an algebra over an E∞-operad. Observe that, in this terminology, two E∞-algebras
may be defined over different E∞-operads E ′ and E ′′. However this is not too much
of a problem since there always exists another model E with quasi-isomorphisms

E
∼

∼ ∼
E ′′

∼

E ′ ∼ Com.

By the end, it is enough to consider a cofibrant E∞-operad E , see Proposition B.6.3.
So, by composition, the two E∞-algebras can be considered as algebras over the
same operad E .

Recall that, when the characteristic of the ground field is 0, rational homotopy
theory of Quillen [Qui69] and Sullivan [Sul77], tells us that the rational homotopy
type of a simply-connected CW-complex, satisfying mild assumptions, is faithfully
determined by the algebraic structure of some dg commutative algebra (resp. dg Lie
algebra). The main interest in E∞-algebra structures lies in the following results of
Mandell [Man06, Man01], which generalize the philosophy of rational homotopy
theory to modules over Z and in characteristic p. It asserts that the singular cochain
complex of a simply-connected CW-complex, satisfying finiteness and complete-
ness conditions, carries an E∞-algebra structure, which faithfully determines its
homotopy type, respectively its p-adic homotopy type.

13.1.11 Barratt–Eccles Operad

An example of an E∞-operad is given by the Barratt–Eccles operad E , introduced
in [BF04] and dubbed after [BE74]. For any k ≥ 1, one defines E (k) to be the
normalized bar construction of the symmetric group Sk . In other words, the space
Ed(k) is the quotient of the free K-module (K might be Z) on the set of d+1-tuples
(ω0, . . . ,ωd) of elements of Sk by the degenerate tuples such that ωi = ωi+1, for at
least one integer i, 0≤ i ≤ d−1. The differential map is the simplicial one given by

dE (ω0, . . . ,ωd) :=
d∑

i=0

(−1)i(ω0, . . . , ω̂i , . . . ,ωd).

The action of the symmetric group is diagonal

(ω0, . . . ,ωd)
σ := (ωσ0 , . . . ,ωσd

)
.
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The composite product of this operad is given by the combinatorics of the permu-
tations. We refer the reader to Sect. 1.1.3 of [BF04] for details. Notice that the
Barratt–Eccles operad is a Hopf operad with the coproduct

�(ω0, . . . ,ωd) :=
d∑

l=0

(ω0, . . . ,ωl)⊗ (ωl+1, . . . ,ωd).

One defines a quasi-isomorphism of dg operads E
∼−→ Com by the augmentation

(ω0, . . . ,ωd) �→ 0 for d > 0 and (ω0, . . . ,ωd) �→ 1 for d = 0.
The suboperad of E , made of the elements of degree 0, E0(k) = K[Sk], is the

symmetric operad Ass, inducing the following diagram of dg operads

Ass E

∼

Com.

Actually the Barratt–Eccles operad comes equipped with a filtration, defined by the
number of descents of permutations, such that

Ass= E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ · · · ⊂ colimnEn = E .

This gives intermediate ways to relax the notion of commutative algebra up to ho-
motopy. In [Fre11b], Fresse proved that, in a way, the operads En are Koszul, see
Sect. 13.3.17 for more details.

For each n≥ 1, the operad En is quasi-isomorphic over Z to the chains of the little
n-discs operad [Smi89, Kas93, Ber96]. Such a dg operad is called an En-operad.

13.1.12 Divided Power Algebras

Let K be a field, possibly of finite characteristic, or Z. A divided power algebra
A is an augmented commutative algebra A = K1 ⊕ Ā equipped with operations
γi : Ā→ Ā, i ≥ 1, called divided power operations, such that the following relations
hold:

γ1(x)= x, γi(λx)= λiγ (x) for λ ∈K,

γi(x + y)=
i∑

j=0

γj (x)γi−j (y),

γi(xy)= i!γi(x)γi(y),
γi(x)γj (x)= (i + j)!

i!j ! γi+j (x),

γi
(
γj (x)

)= (ij)!
i!(j !)i γij (x),
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for any x, y ∈ Ā and where, by convention γ0(x)= 1. Observe that, if K is a char-
acteristic zero field, then we have γn(x)= x∗n

n! , so there is no extra data. In charac-
teristic p the divided power algebra is completely determined by the associative and
commutative product and by γ (x) := γp(x).

We have mentioned in Sect. 5.2.9 that any symmetric operad P gives rise to
an operad �P encoding the P-algebras with divided powers. For Com we get
�Com. One can check, cf. [Fre00], that a �Com-algebra is a commutative algebra
with divided powers as defined above. In the literature, the divided power algebra
�Com(V ) over the vector space V is denoted �(V ).

EXAMPLE. On the space K[x] of polynomials in one variable, one can define two
different commutative algebra structures:

xnxm := xn+m,
xn ∗ xm :=

(
n+m
n

)

xn+m,

see Exercise 1.8.5. We denote the first algebra by K[x] and the second one by
�(Kx). In the second case, we observe that xn is not obtainable from x under the
product ∗, unless n! is invertible, since

x∗n := x ∗ x ∗ . . . ∗ x︸ ︷︷ ︸
n

= n!xn.

The unary operation γn(x) = xn obviously satisfies the formal properties of x∗n
n!

even when n! is not invertible in K, e.g. when K is of finite characteristic. This is
the free �Com-algebra on one generator x.

13.1.13 Splitting Associativity

The commutative algebra �(Kx), i.e. the polynomials in one variable equipped with
the product ∗, has the following property:

the associative product ∗ splits into the sum

xn ∗ xm = xn ≺ xm + xm ≺ xn,
where

xn ≺ xm :=
(
n+m− 1

n− 1

)

xn+m.

It is a consequence of the binomial formula
(
n+m
n

)= (n+m−1
n−1

)+ (n+m−1
m−1

)
. It is im-

mediate to check that the binary product xn ≺ xm satisfies the following relation
(
xn ≺ xm)≺ xp = xn ≺ (xm ≺ xp)+ xn ≺ (xp ≺ xm).

This is a particular case of a more general phenomenon that will be dealt with in
Sect. 13.5.
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13.2 Lie Algebras and the Operad Lie

The category of Lie algebras determines the operad Lie. It is a binary quadratic op-
erad which is Koszul. Its Koszul dual operad is Com. However, unlike Com, it does
not come from a set-theoretic operad. We mentioned various characterizations of
Lie(V ) as a subspace of T (V ) in Sect. 1.1.9. The representation Lie(n) is a rather
complicated one, which has been treated in several papers, cf. for instance [Reu93].
The operadic (co)homology theory is the classical Chevalley–Eilenberg theory. Ho-
motopy Lie algebras, or L∞-algebras, play a prominent role in many parts of mathe-
matics, for instance in the deformation quantization of Poisson manifolds by Maxim
Kontsevich [Kon03].

13.2.1 Lie Algebra

Let us recall that a Lie algebra g is a vector space equipped with a binary operation
called the bracket (or Lie bracket), which is skew-symmetric:

[x, y] = −[y, x]
and which satisfies the Jacobi identity

[[x, y], z]+ [[y, z], x]+ [[z, x], y]= 0.

See Sect. 1.1.9 for comments on this presentation. Its name comes from the Norwe-
gian mathematician Sophus Lie.

It is often helpful to adopt the notation c(x, y) := [x, y]. The symmetry property
and the Jacobi relation become:

c(12) =−c, c ◦ (c⊗ id)+ c ◦ (c⊗ id)(123) + c ◦ (c⊗ id)(321) = 0.

Applying these formulas in the sign graded vector space framework gives the notion
of “graded Lie algebra” (also called super Lie algebra).

13.2.2 Free Lie Algebra

There are several characterizations of the free Lie algebra Lie(V ) over the vector
space V as a subspace of T (V ). The following is a helpful result in the study of the
free Lie algebra and its associated representations.

Proposition 13.2.1. Each one of the following statements characterizes Lie(V ) as
a subspace of the tensor algebra T (V ):
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a) The subspace Lie(V ) of T (V ) is generated by V under the bracket operation.
b) Let D : V⊗n→ V⊗n (Dynkin bracketing) be the map defined by

D(v1 · · ·vn) :=
[
. . .
[[v1, v2], v3

]
, . . . , vn

]
.

The element ω ∈ V⊗n lies in Lie(V ) if and only if D(ω)= nω.
c) The space Lie(V ) is the image of the Eulerian idempotent defined as

e(1) := log�(Id) : T (V )→ T (V ),

where � is the convolution product of the Hopf algebra T (V ).
d) The space Lie(V ) is made of the primitive elements in the tensor algebra T (V )

(viewed as a cocommutative bialgebra).

Proof. We mentioned this result in Proposition 1.3.3. �

13.2.3 The Operad Lie

From the presentation of a Lie algebra it follows that the operad Lie encoding Lie
algebras is the quotient

Lie=T (ELie)/(RLie),

where ELie = K c, c being an antisymmetric operation, and RLie is the S3-
submodule of T (Kc)(2) generated by the Jacobiator. Recall that T (Kc)(2) is three-
dimensional spanned by c◦1 c, (c◦1 c)

(123), (c◦1 c)
(132) and the Jacobiator is the sum

of these three elements. As a consequence the quotient Lie(3)= T (Kc)(2)/RLie is
the two-dimensional hook representation.

From the various constructions of Lie(V ) it can be deduced that dim Lie(n) =
(n− 1)!. As a consequence the Poincaré series is

f Lie(x)=
∑

n≥1

xn

n
=− log(1− x).

As a complex representation of Sn, it can be shown (cf. [Klj74]) that Lie(n) is iso-
morphic to the induced representation IndSn

Z/nZ
(ρ), where (ρ) is the one-dimensional

representation of the cyclic group given by an irreducible nth root of unity.

13.2.4 A Basis for Lie(n)

For the operads Ass and Com we do know about a basis of the space of n-ary oper-
ations which behaves well with respect to the operadic composition and the action
of the symmetric group. For Lie(n) the situation is more complicated. This can be
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readily seen for n= 3. Indeed, Lie(3) is the unique two-dimensional irreducible rep-
resentation of S3 (hook representation S2,1). It can be constructed as the hyperplane
of Ku⊕Kv ⊕Kw orthogonal to the vector u+ v + w. The three vectors u− v,
v − w, w − u lie in this hyperplane and any pair forms a basis. A bijection with
Lie(3) can be obtained by

⎧
⎪⎨

⎪⎩

c ◦1 c= u− v,
(c ◦1 c)

(123) = v−w,
(c ◦1 c)

(321) =w− u,
where c is the Lie bracket and (123), resp. (321) are cyclic permutations.

Therefore in order to bypass this difficulty, in most cases the way to handle Lie(n)
is to view it as a subspace of Ass(n)=K[Sn], see Proposition 13.2.1. The construc-
tion of the Harrison chain complex is a typical example.

However there are several ways to construct an explicit basis of Lie(n) as ele-
ments of Lie(Kx1 ⊕ · · · ⊕Kxn). Here are two of them.

Dynkin Elements

Consider the element
[[
. . .
[[x1, x2], x3

]
, . . .
]
, xn
]
.

Let the symmetric group Sn−1 act on the index set {2, . . . , n}. The (n− 1)! elements
given by the action of Sn−1 span Lie(n), cf. [Reu93]. The behavior of this basis
under operadic composition is rather complicated (cf. Sect. 8.3).

Indexed Trees [MR96]

Let t be a planar binary tree with n leaves (cf. Appendix C.1.1). Index the leaves
by {1, . . . , n} such that, for any given vertex, the left-most (resp. right-most) index
is the smallest (resp. largest) index among the indices involved by this vertex. Any
such indexed tree determines an element in Lie(n) by bracketing. It is proved in loc.
cit. that one gets a basis of Lie(n). For instance (we write just i in place of xi ):

1 2 1 2 3 1 2 3

[1,2] ∈ Lie(2),
[[1,2],3], [

1, [2,3]] ∈ Lie(3),

in Lie(4):
[[[1,2],3],4], [[

1, [2,3]],4], [[1,2], [3,4]], [[1,3], [2,4]],
[
1,
[[2,3],4]], [

1,
[
2, [3,4]]].
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This basis behaves well with respect to partial composition. Indeed, if t and s
are two basis elements, then so is t ◦i s. It is obtained by grafting the root of s on
the leaf of t with label i and by shifting the indices accordingly (standardization).
Equivalently, the tree [t, s] is obtained by grafting the trees t and s and standardizing
the labels of s.

This basis is the PBW basis obtained in Sect. 8.3. It appears quite often in the lit-
erature when one wants to prove that some representation of the symmetric group,
coming either from algebraic topology or algebraic combinatorics, is indeed iso-
morphic to Lie(n), see for instance [Coh76, RW02, Tou06, ST09].

13.2.5 Relationship of Lie with Other Types of Algebras

The most important one is the “forgetful” functor:

Ass-alg
−−→ Lie-alg, A �→ALie

induced by the inclusion Lie � Ass and already mentioned (cf. Sect. 1.1.9). It is
called forgetful because, when dealing with the presentation of Ass by a symmet-
ric operation and an antisymmetric operation (cf. Proposition 9.1.1), then it simply
consists in forgetting the symmetric operation.

There is of course an obvious relationship with the operad Pois encoding Poisson
algebras, namely Lie � Pois, cf. Sect. 13.3.

In order for the “bracketing process” to give a Lie algebra, the starting binary
operation x · y need not be associative. In fact it suffices that the Jacobi identity
holds for [x, y] := x · y − y · x. It is easy to check that the “Jacobiator” (left part
of the Jacobi identity) is made of 12 monomials corresponding to the two ways of
parenthesizing the six permutations of xyz. A vector space equipped with a binary
operation satisfying this property is called a Lie-admissible algebra.

A pre-Lie algebra (cf. Sect. 1.4) is an example of a Lie-admissible algebra which
is not an associative algebra. So there are functors:

Ass-alg→ preLie-alg→ LieAdm-alg
−−→ Lie-alg,

giving rise to operadic morphisms

Lie→ LieAdm→ preLie→ Ass.

13.2.6 Koszul Dual of Lie

We know that the Koszul dual operad of Com is Lie, therefore, by Proposition 7.2.2,
the Koszul dual operad of Lie is Com:

Lie! = Com
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and Lie is a Koszul operad. By Theorem 7.6.7 the Poincaré series of Com and Lie
are inverse to each other under composition. This is no surprise since exp and log are
the respective Poincaré series. More interesting is the relationship for the Frobenius
characteristic, see [Mac95, p. 120].

We refer to Sect. 8.3 for a direct proof of the Koszulity of the Lie operad.

13.2.7 Chevalley–Eilenberg Homology

Chevalley and Eilenberg defined the homology of a Lie algebra g as follows [CE48].
The module of n-chains is CCE

n (g) :=Λn(g), the nth exterior power of the space g

(graded symmetric power of g placed in degree 1). The boundary map is induced by
the bracket:

d(x1 ∧ · · · ∧ xn)=
∑

i<j

(−1)i+j−1[xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xn.

The antisymmetry property of the bracket ensures that the map d is well-defined.
The Jacobi identity ensures that d2 = 0.

Proposition 13.2.2. In characteristic zero, the operadic homology theory of a Lie
algebra is the Chevalley–Eilenberg homology theory, up to a shift of degree.

Proof. Since the Koszul dual operad of Lie is Com, it follows that the operadic chain
complex computing the homology of g is such that CLie

n−1(g)= (sCom(n)∗)⊗Sn g
⊗n.

We have to remember that the symmetric group is acting via the signature represen-
tation. Since Com(n) is the one-dimensional trivial representation, it follows that

CLie
n−1(g)=Λn(g).

By Proposition 12.1.1 the differential of the operadic chain complex is, up to sus-
pension, the Chevalley–Eilenberg boundary map. �

Corollary 13.2.3. The operadic homology H Lie
•+1(g) of a Lie algebra g is a graded

commutative coalgebra.

Proof. It is a consequence of Theorem 12.1.2 applied to the Koszul operad Lie and
to the fact that the Koszul dual operad of Lie is Com, cf. Sect. 13.2.6. �

13.2.8 Lie Homology and Cohomology with Coefficients

In Chap. 12 we have shown that for any Koszul operad one can construct a small
chain complex to construct (co)homology with coefficients. In the Lie case it gives
precisely the Chevalley–Eilenberg complex (cf. for instance [CE48]).
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13.2.9 Homotopy Lie Algebras, Alias L∞-Algebras

From the general theory of homotopy algebras, cf. Chap. 10, we know that a ho-
motopy Lie algebra, also called L∞-algebra (or strong homotopy Lie algebra) in
the literature, is an algebra over the operad Lie∞ :=�Lie

¡
. From the computation

of the dual operad of Lie, we know that the cooperad Lie
¡

is, up to suspension, the
cooperad Comc encoding commutative coalgebras.

Using the Rosetta Stone (Sect. 10.1.9), an L∞-algebra can equivalently be de-
fined in the following three ways.

By definition, an L∞-algebra is a dg module (A,dA) equipped with skew-sym-
metric operations ln : A⊗n→ A of degree n− 2, for n ≥ 2, which satisfy the rela-
tions

∑

p+q=n+1
p,q>1

∑

σ∈Sh−1
p,q

sgn(σ )(−1)(p−1)q(lp ◦1 lq)
σ = ∂A(ln),

for n ≥ 1, where ∂A is the differential in EndA induced by dA and where Sh−1
p,q

denotes the set of (p, q)-unshuffles, cf. Sect. 1.3.2. See Proposition 10.1.7 for more
details.

The second definition is given by a square-zero coderivation d : �Sc(sA)→
�Sc(sA) of degree −1 on the non-counital cofree cocommutative coalgebra of the
suspension of a graded module A = {Ak}k∈Z. Hence the coderivation d gives rise,
for each n≥ 1, to a map

ln :Λn(A)→A

of degree n− 2, which corresponds to the n-ary operation. The proof was given in
Proposition 10.1.12. An ∞-morphism between two L∞-algebras A and A′ is de-
fined as a morphism of dg cocommutative coalgebras between �Sc(sA) and �Sc(sA′).
It is sometimes called an L∞-morphism in the literature.

A third equivalent definition is given by solutions to the Maurer–Cartan equation
in the Nijenhuis–Richardson dg (pre-)Lie algebra

(∏
n s

−n+1 Hom(ΛnA,A), �
)
, see

Proposition 10.1.9. This latter one is the Chevalley–Eilenberg cochain complex with
trivial Lie algebra structure on A.

13.2.10 Formal Manifold

The second definition of an L∞-algebra allows Kontsevich [Kon03, Sect. 4] to de-
scribe this notion with the geometrical language of formal manifolds as follows.

One can think of the vector space A as a manifold. When it is finite dimensional,
the linear dual of �Sc(sA), is up to suspension, isomorphic to �S(A∗), the structure
sheaf formed by the algebra of formal functions on A which vanish at 0. Under
this isomorphism, square-zero coderivations are in one-to-one correspondence with
square-zero derivations. A derivation on the free commutative algebra without unit
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�S(A∗) is completely characterized by its restriction to the generators, that is A∗ →
�S(A∗), which corresponds to a vector field in the geometrical language. When it
squares to zero, it is called a homological vector field.

Proposition 13.2.4. The data of a homological vector field on a formal manifold is
equivalent an L∞-algebra structure on a finite dimensional chain complex.

13.2.11 Comparison of L∞-Algebras with A∞-Algebras

The morphism of quadratic operads Lie � Ass induces the following morphism of
Koszul dual cooperads Lie¡ � Ass¡. Since the cobar construction � is a functor, it
induces the following morphism of dg operads Lie∞ � Ass∞.

Proposition 13.2.5. The functor

A∞-alg→ L∞-alg

consists in anti-symmetrizing the operations mn to get the operations ln.

Proof. See the proof of Proposition 10.1.8. �

Together with Proposition 13.1.6, we get the following functors

L∞-alg←A∞-alg← C∞-alg,

where a C∞-algebra is viewed as an A∞-algebra whose operations vanish on the
sum of the shuffles.

13.2.12 The Notion of L∞-Algebra in the Literature

As for homotopy associative algebras, the notion of homotopy Lie algebra appeared
in the literature before the Koszul duality theory of operads was set up.

In the first place, the dual notion of L∞-coalgebra is ubiquitous in the ratio-
nal homotopy theory of Sullivan [Sul77] through the minimal model construction,
which is a quasi-free dg commutative algebra. It was used in the early 1980s in
deformation theory [SS85, GM88], extending the general philosophy of Deligne
and Grothendieck which states that a deformation problem should be governed by
a dg Lie algebra, see Sect. 13.2.14. This notion was explicitly used in mathemat-
ical physics at the beginning of the 1990s, see [LS93], for instance in string field
theory by Zwiebach [Zwi93]. The Koszul resolution L∞ of the operad Lie was ex-
plicitly given by Hinich and Schechtman in [HS93], before the general paper of
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Ginzburg and Kapranov [GK94] on the Koszul duality theory. The notion of ∞-
L∞-morphisms plays a crucial role in the proof the deformation-quantization of
Poisson manifolds by Kontsevich [Kon03], as explained below.

Notice that it should not be confused with the Lie algebra structure on the homo-
topy groups of a topological space [Whi41, Sam53], which is also called “homotopy
Lie algebra”.

13.2.13 Homotopy Theory of L∞-Algebras

The general results on homotopy algebras of Chaps. 10 and 11 can be applied toL∞-
algebras. Actually, they were first proved on the level of L∞-algebras by Sullivan
[Sul77] and Kontsevich [Kon03].

Proposition 13.2.6. For any homotopy retract an L∞-algebra structure can be
transferred so that the resulting L∞-algebra is homotopy equivalent to the start-
ing one.

Proof. It is the HTT 10.3.1 applied to the Koszul operad Lie. �

An explicit formula, based on labeled trees, is given in Proposition 10.3.5. In the
case of the homology of a dg Lie algebra, the induced operations are sometimes
called the Lie–Massey products [Ret93] in the literature.

The other results are the following ones.

 Any L∞-algebra is ∞-isomorphic to the product (direct sum) of a minimal L∞-
algebra, its homology, with an acyclic trivial L∞-algebra by Theorem 10.4.3.

 For any ∞-quasi-isomorphism between two L∞-algebras, there exists an ∞-
quasi-isomorphism in the other way round, which extends the inverse of the iso-
morphism on the level of the homotopy groups (the homology of the underlying
chain complexes), see Theorem 10.4.4.

 One can universally rectify any homotopy Lie algebra by Proposition 11.4.6.
 Finally the homotopy category of dg Lie algebras is equivalent to the homotopy

category of L∞-algebras with ∞-morphisms by Theorem 11.4.8.

13.2.14 Deformation Theory

This section deals with deformation theory using dg Lie algebras over a ground field
K of characteristic 0. The philosophy of using dg Lie algebras to encode deforma-
tion problems goes back to Deligne and Grothendieck according to [GM88, SS85].

The general idea of deformation theory is to study the possible deformations,
up to some equivalence relation, of a given structure, which can be algebraic as in
Sect. 12.2 or geometric. There are basically two approaches.

The first one, due to M. Schlessinger [Sch68] and Grothendieck, relies on a func-
tor which associates the coset of equivalent deformations to a ring made up of the
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possible parameters of deformation. Such a functor is called the deformation func-
tor. This method forgets the data of the equivalences themselves to keep track only
of the equivalence classes. It might also give rise to singular spaces.

The other approach due to Deligne encodes the two data of the possible defor-
mations and their equivalences into a category. By definition, the objects are the de-
formations themselves and the morphism sets between two deformations is made of
the equivalences between them. Since one works with an equivalence relation, every
morphism of the category is an isomorphism. So this category is a groupoid called
the Deligne groupoid. Deligne groupoids are often obtained as sets of deformations
with a group action encoding the equivalences. In this language, two deformation
problems are equivalent if the associated Deligne groupoids are equivalent.

Ultimately a deformation problem is encoded by a dg Lie algebra as follows. To
any dg Lie algebra (g, [ , ], d), one can associate the set MC(g) of Maurer–Cartan
elements:

MC(g) :=
{

α ∈ g
1 | dα+ 1

2
[α,α] = 0

}

.

Here we use the cohomological convention |d| = |α| = +1, which is often the case
in the literature, for instance in Sect. 12.2.

Proposition 13.2.7. When the dimension of g1 is finite, the set of MC(g) of Maurer–
Cartan elements forms an algebraic variety in the affine space g1, which is an inter-
section of quadrics.

Proof. Choosing a finite basis {ei}1≤i≤m for g1 and a finite basis {fj }1≤j≤n for the
images of the differential and the bracket in g2, we have

dei =
∑

1≤j≤m
λijfj and [ei, ei′ ] =

∑

1≤j≤m
λ
i,i′
j fj .

Therefore, an element α =X1e1+· · ·+Xnen lies in MC(g) if and only if it satisfies
the quadratic relations

∑

1≤i≤n
λijXi +

1

2

∑

1≤i,i′≤n
λ
i,i′
j XiXi′ = 0,

for any 1≤ j ≤m. �

We denote the quadratic mapping g1 → g2 by α �→ Q(α) := dα + 1
2 [α,α]. It

satisfies MC(g)=Q−1(0).

Lemma 13.2.8. The map

λ ∈ g
0 �→ dλ+ [−, λ] ∈ �(MC(g), T MC(g)

)

is a morphism of Lie algebras from g0 to the Lie algebra of affine vector fields
of MC(g).



13.2 Lie Algebras and the Operad Lie 499

Proof. Since the set MC(g) is the zero locus of the mapQ, it is enough to compute
its derivative: dαQ(β)= dβ + [α,β]. So the tangent space at the point α of MC(g)
is equal to

TαMC(g) := {β ∈ g
1 | dβ + [α,β] = 0

}
.

For any α ∈MC(g) and any λ ∈ g0, we have

dαQ
(
dλ+ [α,λ])= [dα,λ] − [α,dλ] + [α,dλ] + [α, [α,λ]]

= [dα,λ] + 1

2

[[α,α], λ]= [Q(α),λ]= 0.

This proves that the aforementioned map lands into the vector fields of MC(g). We
leave it to the reader to verify that this map is a morphism of Lie algebras. �

The idea now is to look for an equivalence relation on Maurer–Cartan elements
using the differential equation associated to flow given by elements of g0: two ele-
ments α,β ∈MC(g) are equivalent if there exist λ ∈ g0 and a curve ξ(t) in MC(g)
such that

dξ(t)

dt
= dλ+ [ξ(t), λ], ξ(0)= α and ξ(1)= β.

To do so, we suppose that the Lie algebra g is nilpotent, i.e. the lower central
series g⊃ [g,g] ⊃ [g, [g,g]] ⊃ · · · vanishes eventually. In this case, the Lie subal-
gebra g0 is the tangent Lie algebra of a Lie group G, called the gauge group. Its
underlying set is in bijection with g0 and explicitly given by elements of the form
{eλ,λ ∈ g0}. The neutral element is e0 and the group law is given by the Baker–
Campbell–Hausdorff formula (cf. Exercise 1.8.13)

eλ ∗ eμ := eBCH(λ,μ) = eλ+μ+ 1
2 [λ,μ]+ 1

12 [λ,[λ,μ]]− 1
12 [μ,[λ,μ]]+···.

For more details on this point, we refer to [Ser06]. The one-parameter subgroups
etλ of G associated to λ ∈ g0 acts on MC(g) by the formula

etλ.α := et adλ(α)+ Id−et adλ

adλ
(dλ),

where adλ(α) = [λ,α]. Therefore, two elements α,β ∈ MC(g) are defined to be
equivalent if there exists λ ∈ g0 such that eλ.α = β .

The cosets under this action form the moduli space of Maurer–Cartan elements
of g:

MC (g) :=MC(g)/G.

One can also consider the associated Deligne groupoid. The objects are the Maurer–
Cartan elements and the morphism sets are given by the elements of the gauge
group.
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Recall that, in an Artin ring R, any descending chain of ideals stabilizes

· · · = In+1 = In ⊂ In−1 ⊂ · · · I1 ⊂ I0.
To satisfy the nilpotency condition, one considers the nilpotent dg Lie algebras g⊗
m, where m is the maximal ideal of a local Artin ring R. In the end, the deformation
functor

Def g : local Artin ring → Set

R=K⊕m �→MC (g⊗m)

faithfully encompasses the global moduli space of Maurer–Cartan elements of g.
The idea of tensoring with a nilpotent maximal ideal is the same as that of distribu-
tion in Analysis, as explained below.

Lemma 13.2.9. By linear dualization, the category of local Artin rings is equivalent
to the category of conilpotent coalgebras

conilpotent coalgebra → local Artin ring

C �→ C∗.

Proof. The linear dual of a coaugmented coalgebra is a local ring. Under dualiza-
tion, a conilpotent coalgebra gives an Artin ring. �

So, one can equivalently consider the deformation functor

conilpotent coalgebra → Set

C =K⊕ �C �→ T W (�C,g),
where T W (�C,g) stands for the moduli space of twisting morphisms, that is
Maurer–Cartan elements in the nilpotent convolution Lie algebra Hom(�C,g), see
Sect. 11.1.

A deformation problem is encoded by a dg Lie algebra when the possible struc-
tures that one wants to consider are in one-to-one correspondence with the set of
Maurer–Cartan elements and when the equivalence between them corresponds to the
gauge group action. One can consider deformation functors with value in Deligne
groupoids, which we do not work out in this book.

Deformation functors are invariant under quasi-isomorphisms of dg Lie algebras.

Theorem 13.2.10. [GM88] Any quasi-isomorphism g
∼−→ g′ of dg Lie algebras in-

duces an isomorphism between the deformation functors Def g
∼=Def g′ .

Theorem 13.2.11. [Kon03] Any ∞-quasi-isomorphism g
∼� g′ of dg Lie algebras

induces an isomorphism between the deformation functors Def g
∼=Def g′ .

Proof. The rectification theorem 11.4.4 gives the following commutative diagram
of ∞-quasi-isomorphisms
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g
∼

g′

�κBι g
∼

∼

�κBι g′,

∼

where the three solid arrows are quasi-isomorphisms of dg Lie algebras. The state-
ment is a consequence of the previous proposition. �

So, it is enough to show that two dg Lie algebras are ∞-quasi-isomorphic to
prove the equivalence of the associated deformation functors. This method was used
in a crucial way by Kontsevich in [Kon03] to prove that any Poisson manifold can
be quantized by deformation. More precisely, he extended the Hochschild–Kostant–
Rosenberg quasi-isomorphism into an explicit ∞-quasi-isomorphism

ΛADerA
∼� C•(A,A)

of L∞-algebras, when A= C∞(M) is the algebra of smooth functions on a Poisson
manifoldM . This result proves the formality of the Hochschild cochain complex as
a dg Lie algebra.

For more exhaustive accounts on deformation theory, we refer the reader to
[Man99a, Kon03, Kel05, KS10].

13.2.15 Restricted Lie Algebras

Let A be an associative algebra over a characteristic p field K. The bracket [x, y]
and the pth power xp are operations related by the following relation:

(x + y)p = xp + yp +
p−1∑

i=1

si(x, y),

where the polynomial si(x, y) is of degree i in x. It turns out that these polynomials
are Lie polynomials in x and y, that is, when A= T (V ) they lie in Lie(V ). So they
are universally determined as Lie polynomials.

By definition, cf. [Jac62], a restricted Lie algebra is a pair (L, [p]) where L is a
Lie algebra over a characteristic p �= 0 field K and [p] : L→ L, x �→ x[p] is a map,
called the Frobenius map, which satisfies the following relations:

(αx)[p] = αpx[p], α ∈K, x ∈ L,
[
x, y[p]

]= [· · · [[x, y], y] · · · , y
︸ ︷︷ ︸

p

]
, x, y ∈ L,

(x + y)[p] = x[p] + y[p] +
p−1∑

i=1

si(x, y),
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where si(x, y) is the aforementioned Lie polynomial. A morphism f : L→ L′ of
restricted Lie algebras is a Lie morphism such that f (x[p])= f (x)[p].

The relationship with operads is the following. We have mentioned in Sect. 5.2.9
that any symmetric operad P gives rise to a divided powers operad �P . Applied
to P = Lie we get the notion of �Lie-algebra. It is proved in [Fre00] that the notion
of �Lie-algebra coincides with the notion of restricted Lie algebra.

EXAMPLE. Any associative algebra A over a characteristic p field K has the struc-
ture of restricted Lie algebra with Frobenius map given by a �→ ap . In the case of
n× n-matrices over A this Lie algebra is usually denoted by gln(A). The Lie sub-
algebra of trace zero matrices, denoted by sln(A), is also a restricted Lie algebra.

Let A be a magmatic algebra. The space of derivations D on A is a Lie algebra
for the bracket [D,D′] =D ◦D′ −D′ ◦D. It is also a restricted Lie algebra for the
Frobenius map D �→Dp .

13.3 Poisson Algebras, Gerstenhaber Algebras and Their
Operad

Poisson algebras mix a commutative operation and a Lie bracket by means of a dis-
tributive law. They appeared in differential geometry as the structure of the space of
real valued functions on a symplectic manifold, and more generally Poisson mani-
fold. A Gerstenhaber algebra is a Poisson algebra with the Lie bracket in degree 1.
This notion plays a crucial role in current mathematics: the Hochschild cohomol-
ogy of an associative algebra with coefficients in itself and the polyvector fields of
a smooth manifold carry a structure of Gerstenhaber algebra. The Poisson operad is
a sort of trivial extension of the operads Com and Lie.

13.3.1 Poisson Algebra

By definition, a Poisson algebra A is a vector space equipped with a symmetric
operation x · y and an antisymmetric operation [x, y], which satisfy the following
relations:

⎧
⎪⎨

⎪⎩

[[x, y], z]+ [[y, z], x]+ [[z, x], y] = 0,

[x · y, z] = x · [y, z] + [x, z] · y,
(x · y) · z = x · (y · z).

In other words, one has a commutative operation and a Lie bracket entwined by the
Leibniz relation. Its name comes from the French mathematician Siméon Poisson.
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13.3.2 Free Poisson Algebra

The free Poisson algebra Pois(V ) over V is the reduced tensor module �T (V ) as
a vector space. The commutative structure and the Lie structure are obtained as
follows. Recall that there is an isomorphism of coalgebras (Eulerian isomorphism)
�T (V ) ∼= �S(Lie(V )). From this isomorphism we deduce the structure of commuta-
tive algebra. The structure of Lie algebra on Lie(V ) is obvious. It is extended to
�S(Lie(V )) by means of the Leibniz relation (distributive law), and then transferred
to T (V ).

13.3.3 The Operad Pois

The operad encoding Poisson algebras is denoted by Pois. By definition, the operad
Pois fits into the two following sequences of operads

Com � Pois � Lie,

Lie � Pois � Com.

The operad Pois can be constructed out of Lie and Com by means of a distributive
law, see Sect. 8.6,

Pois∼= Com ◦ Lie.

This distributive law Lie ◦ Com→ Com ◦ Lie is given by the second relation in the
presentation of the Poisson operad.

1 2

· 3

[ , ]
=

1 3

[ , ] 2

·
+

2 3

1 [ , ]

·

By Proposition 8.6.1, it makes the composite Com ◦ Lie into an operad. This is
precisely the operad Pois.

From this isomorphism and the isomorphism Ass ∼= Com ◦ Lie, it follows that
Pois(n)∼=K[Sn] (regular representation).

13.3.4 Parametrized Poisson Operad

The Poisson operad and the associative operad are related by a family of operads
as follows. Let q ∈ K be a parameter. Consider the algebras having a symmetric
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operation x · y and an antisymmetric operation [x, y] satisfying the relations:

⎧
⎪⎨

⎪⎩

[[x, y], z]+ [[y, z], x]+ [[z, x], y] = 0,

[x · y, z] = x · [y, z] + [x, z] · y,
(x · y) · z− x · (y · z) = q[y, [x, z]].

For q = 0 we get the Poisson operad. We have seen in Proposition 9.1.1 that for
q = 1 we get the associative operad. It is easy to show that, if (

√
q )−1 exists in K,

then the associated operad is isomorphic to Ass.
The parametrized Poisson operad Poisq can also be presented by a unique oper-

ation without symmetry, denoted ab, with relation

(ab)c= a(bc)+ q − 1

q + 3

(−a(cb)+ c(ab)+ b(ac)− b(ca)).

Hence, taking q = 0, a Poisson algebra is defined by a binary operation ab satisfying

(ab)c= a(bc)− 1

3

(−a(cb)+ c(ab)+ b(ac)− b(ca)).

The relationship with the previous presentation is given by ab= a · b+ [a, b].

13.3.5 Koszul Dual of Pois

From the duality exchanging Com and Lie and from the distributive law, one can
check that the Poisson operad is Koszul self-dual: Pois! = Pois. It is an example of
Koszul duality for distributive laws, cf. Sect. 8.6.

More generally the Koszul dual operad of the parametrized Poisson operad is
generated by a binary operation ab with relation

a(bc)= (ab)c+ q − 1

q + 3

(
(ac)b+ (bc)a − (ba)c− (ca)b).

This is precisely the opposite type of Poisq .

13.3.6 Poisson Homology and Eulerian Idempotents

Let A be a Poisson algebra. Since the operad Pois is Koszul self-dual, the module
of n-chains of A is Cn(A) :=A⊗n.

Denote by

Cn(A)= C(1)n (A)⊕ · · · ⊕C(n)n (A)
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the Eulerian decomposition (Sect. 1.3.5), cf. [Lod89], of Cn(A) (sometimes called
the Hodge decomposition). Operadically it is obtained as

C(i)n (A)=
(
Comc(i) ◦ Liec

)
(A).

Benoit Fresse has shown in [Fre06] that there is a differential map dh : C(p)p+q(A)→
C
(p−1)
p+q−1(A) induced by the bracket operation, and a differential map dv :C(p)p+q(A)→
C
(p)

p+q−1(A) induced by the commutative operation (dot operation), which define a
bicomplex:

· · ·

C
(1)
3

dv

· · ·
dv

C
(1)
2

dv

C
(2)
3

dh

dv

· · ·dh

C
(1)
1 C

(2)
2

dh
C
(3)
3

dh · · ·dh

In low dimension the equality dhdh = 0, resp. dvdh + dhdv = 0, resp. dvdv = 0, is
precisely the first, resp. second, resp. third, relation of a Poisson algebra. Fresse
has shown that the total complex of this bicomplex is the operadic chain com-
plex CPois

•−1(A). The vertical complex C(1)• (A)= (Comc(1)◦Lie)c(A) is the Harrison
complex of the underlying commutative algebra A, and the bottom horizontal com-
plex
⊕
n C

(n)
n (A)=⊕n(Comc(n) ◦ I)(A)=⊕n Λ

n(A) is the Chevalley–Eilenberg
complex of the Lie algebra ALie.

13.3.7 Poisson Homology and Straight Shuffles

From the presentation of Poisson algebras by one binary operation ab without sym-
metry it follows that the boundary map of the chain complex

CPois
•−1(A) · · ·→A⊗n dn−→A⊗n−1 → ·· ·→A⊗3 d3−→A⊗2 d2−→A

is as follows in low dimension:

d2(a, b)= ab,
d3(a, b, c)= 3(ab)⊗ c− 3a⊗ (bc)+ a⊗ (cb)− c⊗ (ab)− b⊗ (ac)+ b⊗ (ca).
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Making dn explicit higher up is a challenge, but can be done using the notion
of straight shuffles and the computations of the Koszul dual cooperad Pois¡, see
[GCTV09, Sect. 2].

13.3.8 Poisson Homology of Smooth Algebras

Before the operad theory told us about the correct chain complex to compute the
(co)homology of a Poisson algebra, people were using a different complex for Pois-
son homology with coefficients, defined as follows. Let A be the Poisson algebra
and M be a Poisson module. There is a well-defined differential map on M ⊗A �•A
induced by the bracket operation. Here �•A stands for the space of classical differ-
ential forms of the commutative algebra A. When A is smooth as a commutative
algebra, it turns out that the bicomplex (with coefficients inM) is quasi-isomorphic
to its lower row which is the complexM ⊗A �•A (cf. [Fre06, Sect. 1.4]).

13.3.9 Graded Poisson Algebras

If we denote by m the generator of the operad Pois corresponding to the commu-
tative operation, resp. c for the Lie bracket, of a Poisson algebra, then the relations
read:

c ◦1 c+ (c ◦1 c)
(123) + (c ◦1 c)

(321) = 0,

c ◦1 m=m ◦2 c+ (m ◦1 c)
(23),

m ◦1 m=m ◦2 m.

A graded Poisson algebra is a graded vector space A equipped with two binary
operations m and c of degree 0 satisfying the aforementioned relations. When ap-
plying these relations on homogeneous elements, the degree comes into play. For
instance the second relation gives:

[x · y, z] = x · [y, z] + (−1)|y| |z][x, z] · y.

13.3.10 Gerstenhaber Algebras

A Gerstenhaber algebra [Ger63] is a graded vector space A equipped with a (sign-
graded) symmetric associative product x · y of degree 0 on A and a (sign-graded)
symmetric operation 〈x, y〉 of degree +1, that is |〈x, y〉| = |x| + |y| + 1, which
satisfies the Jacobi relation. They are related by the Leibniz relation. In plain words,
a Gerstenhaber algebra is a graded Poisson algebra, except that the skew-symmetric
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degree 0 bracket becomes a symmetric degree 1 binary operation. The assumption
that 〈 , 〉 has homological degree 1 does not change the appearing signs because of
the permutation of the variables. For instance, one has 〈y, x〉 = (−1)|x||y|〈x, y〉 and

〈〈x, y〉, z〉+ (−1)|x|(|y|+|z|)
〈〈y, z〉, x〉+ (−1)|z|(|x|+|y|)

〈〈z, x〉, y〉= 0.

One sometimes defines equivalently a Gerstenhaber algebra by Lie bracket [ , ]
of degree 0 on sA, the suspension of A, see [Get94, TT00] for instance. It is sup-
posed to satisfy the Leibniz relation with the commutative product, but since they
do not act on the same space, we need the preceding refinement to make that re-
lation precise. Moreover, to encode the category of Gerstenhaber algebras with an
operad, we need it to act on the same space. A Lie bracket [ , ] on sA is equivalent
to a commutative operation 〈 , 〉 of degree +1 on A under the formula

〈–,– 〉 := s−1[–,–] ◦ (s ⊗ s),
which gives 〈x, y〉 := (−1)|x|s−1[sx, sy] on elements. The commutativity follows
from

〈 , 〉(12) = (s−1[ , ] ◦ s ⊗ s)(12) =−s−1([ , ](12)) ◦ s ⊗ s = s−1[ , ] ◦ s ⊗ s = 〈 , 〉,
which, applied to homogeneous elements, reads

〈y, x〉 = (−1)|y|s−1[sy, sx] = (−1)|y|+1+(|x|+1)(|y|+1)s−1[sx, sy]
= (−1)|x||y|〈x, y〉.

EXAMPLE. Let M be a smooth manifold and let �(M,TM) denote the space of
vector fields, i.e. the sections of the tangent bundle, endowed with the classical
Lie bracket. The space of polyvector fields �(M,�S(sTM)) ∼= �(M,Λ(TM)) is
equipped with a Gerstenhaber algebra structure, whose Lie bracket is obtained from
the previous one under the Leibniz rule.

13.3.11 Gerstenhaber Algebra Structure on Hochschild Cohomology

The origin of this algebraic structure lies in the following result.

Proposition 13.3.1. [Ger63] For any associative algebra A, the Hochschild coho-
mology of A with coefficients in itself inherits a Gerstenhaber algebra structure
whose product is induced by the cup product and whose bracket comes from the
pre-Lie product.

Proof. The Hochschild cochain complex of an associative algebra (A,μ) with co-
efficients into itself is equal to the convolution dg pre-Lie algebra

gAs,A =Hom
(
As

¡
,EndA

)∼=
∏

n≥1

s−n+1 Hom
(
A⊗n,A

)
.
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Under this homological degree convention, the cup product f ∪ g := μ ◦ (f ⊗ g)
endows the desuspension s−1gAs,A with a degree 0 associative product. Recall that
the boundary map is given by ∂(f )= [μ,f ]. The relation

f ∪ g − (−1)|f ||g|g ∪ f = ∂(f ) � g+ (−1)|f | − ∂(f � g)
shows that the induced associative product on homology is commutative. One can
write the Leibniz relation in terms ∂({f }{g,h}), showing that this relation holds on
homology. �

This result is a consequence of a more refined algebraic structure on the cochain
level, namely that of a multiplicative operad, which induces the brace operations
{–;–, . . . ,–}, cf. Sect. 13.11.4. Notice that in the literature, the cohomological de-
gree conventionCnHoch(A,A)= snHom(A⊗n,A) is often used. In this case, the Ger-
stenhaber algebra operations have opposite degree.

One applies this structure as follows to compute the Hochschild cohomology of
smooth algebras. The cycles of C1(A,A)=Hom(A,A) are exactly the derivations
HH 1(A,A)∼= DerA of the algebra A, which form a Lie sub-algebra. One extends
this Lie algebra structure on the free commutative algebra ΛADerA by the Leibniz
relation. This endows ΛADerA with a Gerstenhaber algebra structure. (This is the
algebraic analog of the Gerstenhaber polyvector fields algebra.)

Proposition 13.3.2. [HKR62] Let A= C∞(M) be the algebra of smooth functions
on a manifold M or let A= S(V ) be a free commutative algebra on a finite vector
space V . The natural morphism of Gerstenhaber algebras

Λ•ADerA
�−→HH •(A,A)

is an isomorphism.

Since the cup product is not commutative on the cochain level, one de-
fines a direct quasi-isomorphism Λ•ADerA

∼−→ C•(A,A) by anti-symmetrization
(d1, . . . , dn) �→∑σ∈Sn ±dσ(1) ∪ · · · ∪ dσ(n).

13.3.12 The Operad Gerst

A Gerstenhaber algebra is an algebra over the graded operad Gerst, which admits
the following quadratic presentation. The space of generators isEGerst =Km⊕ K c,
which is the direct sum of two one-dimensional trivial representations of S2, one in
degree 0 denoted by m and one in degree 1 denoted by c. The space of relations
RGerst is the K[S3]-module generated by

⎧
⎪⎨

⎪⎩

c ◦1 c+ (c ◦1 c)
(123) + (c ◦1 c)

(321),

c ◦1 m−m ◦2 c− (m ◦1 c)
(23),

m ◦1 m−m ◦2 m.
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Recall that sA is a Lie algebra if and only if A= s−1(sA) is a Lie⊗
H

Ends−1K =
S −1Lie-algebra. The operad S −1Lie admits the quadratic presentation P(Kc, c◦1
c+ (c◦1 c)

(123)+ (c◦1 c)
(321)). Like the operad Pois, the operad Gerst is isomorphic

to an operad obtained by means of a distributive law:

Gerst∼= Com ◦S −1Lie.

13.3.13 Relationship with the Little Discs Operad

We introduced the little discs operad D in Sect. 5.3.6.

Theorem 13.3.3. [Coh76] The singular homology H•(D) of the little discs operad
is isomorphic to the operad Gerst.

Roughly speaking, the little discs operad D is made of the configurations of n
discs inside the unit disc of the plane. The operadic composition is given by shrink-
ing and inserting discs. Since a double loop space �2X is an algebra over the little
discs operad, this theorem proves that the homology of a double loop space car-
ries a natural structure of Gerstenhaber algebra, where the product is the Pontryagin
product and the bracket is the Browder bracket, see [Get94] for details.

13.3.14 Homotopy Gerstenhaber Algebras

As well as for the operad Pois, the Koszul duality theory applies to the graded op-
erad Gerst. The Koszul resolution G∞ :=�Gerst¡

∼−→ Gerst produces the minimal
model of Gerst.

Proposition 13.3.4. [GJ94] The operad Gerst is a Koszul operad, whose Koszul
dual operad is given by

Gerst! ∼=S Gerst=Gerst⊗
H

EndsK.

As usual, an algebra over the operad G∞ is called a G∞-algebra or a homo-
topy Gerstenhaber algebra. This notion is different from that of “homotopy G-
algebra” [GV95]. To avoid any confusion, we call this later one “GV -algebra”, see
Sect. 13.11.4. AG∞-algebra can be equivalently defined by a square-zero coderiva-
tion on the cofree “Gerstenhaber coalgebra”

G
¡
(A)∼= s−1Gerstc(sA)∼= s−2Comc

(
sLiec(sA)

)
.

Up to suspension, the right-hand side is given by the cofree cocommutative coalge-
bra (without counit) on the cofree Lie coalgebra�Sc(sLiec(A)). The explicit structure
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of Gerstenhaber coalgebra on such a space was described in [GCTV09, Sect. 2]. As
a corollary, it gives the explicit definition of a G∞-algebra in terms of generating
operations and relations [GCTV09, Proposition 16].

13.3.15 Deligne’s Conjecture

Theorems 13.3.1 and 13.3.3 led Deligne [Del93] to ask the following question,
which is now called Deligne’s conjecture.

Is there an action of an operad, homotopy equivalent to the operad of sin-
gular chains of the little discs operad D , on the Hochschild cochain complex
of an associative algebra, which induces the Gerstenhaber algebra structure
on cohomology?

The “homotopy equivalence” refers to the homotopy category of dg operads Ap-
pendix B.6; it means that the two operads should be related by a zig-zag of quasi-
isomorphisms. This conjecture has now been proved by many authors [Tam99,
Vor00, KS00, MS02, BF04, Kau07, Tam07, BB09] for instance. Here we just men-
tion the proof given by Tamarkin using the Koszul model.

Theorem 13.3.5. [Tam99] There is an action of the operad G∞ on the Hochschild
cochain complex of an associative algebra, which induces the Gerstenhaber algebra
on cohomology.

We also refer the reader to [TT00, Hin03] for more details. To fully answer
Deligne’s question, Tamarkin proved the formality of the little discs operad.

Theorem 13.3.6. [Tam03] There is a zig-zag of quasi-isomorphisms of dg operads

C•(D)
∼←− · ∼−→H•(D).

Since H•(D)∼= Gerst by Cohen’s theorem 13.3.3, the operad G∞ is homotopy
equivalent to the chain operad C•(D) of the little discs operad.

C•(D)
∼←− · ∼−→H•(D)∼=Gerst

∼←−G∞ −→ EndC•(A,A).

These two results allowed Tamarkin in [Tam99] to give another proof of Kont-
sevich formality theorem, which implies the deformation-quantization of Poisson
manifolds. For a polynomial algebra A = S(V ), with V finite-dimensional, he
proved the vanishing of the obstructions to extending the Hochschild–Kostant–
Rosenberg quasi-isomorphism Λ•ADerA

∼−→ C•(A,A) into an ∞-quasi-isomor-
phism of G∞-algebras. Since there is an inclusion S −1L∞ � G∞, it implies
the existence of an ∞-quasi-isomorphism of L∞-algebras. Contrary to Kontsevich
proof, this one is not explicit. In [DTT07], the authors refine these arguments and
construct a zig-zag of∞-quasi-isomorphisms ofG∞-algebras. The method depends
on the rectification theorem 11.4.4.
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13.3.16 The Operads en

The Gerstenhaber operad is defined as the Poisson operad but with a twisting of sign
and a degree shift on one generator. More generally, for n≥ 2, we define the operads
en by the following quadratic presentation. The space of generators is Een :=Km⊕
K cn−1, which is the direct sum of two one-dimensional representations of S2, Km
of degree 0 with trivial action and K cn−1 of degree n− 1 and with sgn⊗n

S2
-action,

that is trivial for n even and sgnS2
for n odd. The space of relations Ren is the

K[S3]-module generated by
⎧
⎪⎨

⎪⎩

cn−1 ◦1 cn−1 + (cn−1 ◦1 cn−1)
(123) + (cn−1 ◦1 cn−1)

(321),

cn−1 ◦1 m−m ◦2 cn−1 − (m ◦1 cn−1)
(23),

m ◦1 m−m ◦2 m.

For n= 1, the convention is e1 := Ass, the symmetric operad encoding associative
algebras. For n= 2, we find e2 =Gerst as expected.

These operads allow one [Coh76] to extend Theorem 13.3.3 to higher dimen-
sions: the homology operads of the little n-discs operads are isomorphic to en:

H•(Dn)∼= en, for n≥ 1.

There is a sequence of morphisms of operads

Ass= e1 → e2 → ·· ·→ en→ ·· ·→ colimn en = Com,

where in : en→ en+1 is given by m �→m and cn−1 �→ 0. At the limit n→∞, one
recovers the operad Com and the operads en interpolate between Ass and Com.

By the same proof as in Proposition 13.3.4, one can show that the operad en is
Koszul [GJ94] and satisfies

en
! ∼=S n−1en = EndsK ⊗

H
· · · ⊗

H
EndsK

︸ ︷︷ ︸
n−1

⊗
H
en.

Let us denote by κn : en¡ → en the Koszul morphism, which is given by sm �→m

and scn−1 �→ cn−1. We define the following morphisms of quadratic cooperads

jn : en¡ → en+1
¡

by sm �→ sm and scn−1 �→ 0,

making the following diagram to commute

en
¡ jn

κn

en+1
¡

κn+1

en
in

en+1.
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They correspond to the morphisms S en+1 → en given by s−1m �→ 0 and by
s−1cn �→ cn−1 at the level of the Koszul dual operads. Finally, they induce the fol-
lowing commutative diagram of dg operads

A∞

∼

· · · �en
¡

∼

�en+1
¡

∼

· · · C∞

∼

Ass · · · en en+1 · · · Com.

Therefore, the operads �e
¡
n interpolate between A∞ and C∞.

13.3.17 Koszul Duality of the Operads En

Recall from Sect. 13.1.11 that the Barratt–Eccles dg operad E comes equipped with
a filtration of suboperads

Ass= E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ · · · ⊂ ColimnEn = E .

Passing to homology, we get H•(En) = en and so we recover the aforementioned
sequence of morphisms

Ass= e1 → e2 → ·· ·→ en→ ·· ·→ colimnen = Com.

Fresse in [Fre11b] has extended the above results to the level of the operads En
as follows. By a slight abuse of notation, let us take the following convention for the
dg cooperads

En
¡ := Endc

s−1K
⊗
H
· · · ⊗

H
Endc

s−1K

︸ ︷︷ ︸
n

⊗
H

E ∗
n .

Proposition 13.3.7. [Fre11b] For any n ≥ 1, there exists a Koszul morphism κn :
E

¡
n → En.

It gives the quasi-free model �E
¡
n

∼−→ En. Moreover, there exist morphisms of dg
cooperads E

¡
n → E

¡
n+1 such that

En
¡

κn

En+1
¡

κn+1

En En+1.
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They imply the following commutative diagram of operads.

�Ass
¡

∼

· · · �En
¡

∼

�En+1
¡

∼

· · · �E
¡

∼

Ass · · · En En+1 · · · E ,

where E
¡

is the colimit of the En
¡
.

The quasi-free, thus cofibrant, resolution�E
¡
n

∼−→ En provides a small chain com-
plex which computes the homology of En-algebras. This last one is equal to the ho-
mology of the n-fold iterated bar construction [Fre11a]. Applied to the normalized
singular chain complex of a topological space X, it also computes the homology of
its n-fold loop space �nX. The case of the spheres X = Sm is treated in [Fre10].

13.3.18 Lie–Rinehart Algebras

Let A be a commutative algebra and let L be a Lie algebra. We suppose that L is
equipped with a module structure over A:

A⊗L→ L, (a,X) �→ aX,

and we suppose that there is given a Lie algebra morphism

ω : L→Der(A), X �→ (a �→X(a)
)

where Der(A) is the Lie algebra of derivations of the algebra A. The pair (A,L) is
called a Lie–Rinehart algebra with anchor ω, provided the following relations hold:

{
(aX)(b)= a(X(b)), X ∈ L,a, b ∈A,
[X,aY ] = a[X,Y ] +X(a)Y, X,Y ∈ L,a ∈A.

There is an obvious notion of morphism of Lie–Rinehart algebras and therefore
a category of Lie–Rinehart algebras.

Any associative algebra R gives rise to a Lie–Rinehart algebra (A,L) as follows:
A = Rab := R/([R,R]), and L = RLie is the vector space R considered as a Lie
algebra for the usual bracket [r, s] = rs − sr .
Proposition 13.3.8. Any Lie–Rinehart algebra (A,L) gives rise to a Poisson alge-
bra P =A⊕L such that the two operations · and [ , ] take values as follows:

A ⊗ A ·−→A, A ⊗ A [ , ]−→ 0,

A ⊗ L ·−→ L, L ⊗ A [ , ]−→A,

L ⊗ L ·−→ 0, L ⊗ L [ , ]−→ L.
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Conversely, any Poisson algebra P , whose underlying vector space can be split
as P = A ⊕ L and such that the two operations take values as indicated above,
defines a Lie–Rinehart algebra. The two constructions are inverse to each other.

Proof. Let us start with a Lie–Rinehart algebra (A,L). We define the two operations
x · y and [x, y] on A⊕L as follows

(a +X) · (b+ Y) := ab+ (aY + bX),
[a +X,b+ Y ] := (X(b)− Y(a))+ [X,Y ],

for any a, b ∈ A and any X,Y ∈ L. Checking the axioms of a Poisson algebra is
straightforward.

The rest of the proof is straightforward. �

Let us mention that one can also study Lie–Rinehart algebras operadically by
constructing a two-colored Koszul operad whose algebras are the Lie–Rinehart al-
gebras, cf. Sect. 13.14.1.

13.4 Pre-Lie Algebras and Perm-Algebras

The notion of pre-Lie algebra appeared first in the study of Hochschild cohomology
and in differential geometry (flat affine connections on a given manifold), but nowa-
days it is also present in algebraic combinatorics and theoretical physics (renor-
malization). It also plays a role in operad theory since the convolution algebra of
the morphisms from a cooperad to an operad is a pre-Lie algebra. We introduced
pre-Lie algebras in Chap. 1, see Sect. 1.4.

13.4.1 Pre-Lie Algebra

By definition a (right) pre-Lie algebra is a vector space A equipped with a binary
operation {x, y} which satisfies the following relation:

{{x, y}, z}− {x, {y, z}}= {{x, z}, y}− {x, {z, y}}.
In plain words, the associator is right-symmetric. For the opposite type (i.e. 〈x, y〉 :=
{y, x}) the associator is left-symmetric.

13.4.2 Rooted Trees and Free Pre-Lie Algebra

For the purpose of this section we consider the set of rooted trees which have no
leaves and such that the number of inputs is nonnegative (so 0 input is allowed). We
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denote by rT (n) the set of such trees endowed with an enumeration of the n vertices
(see figures below). The change of enumeration gives an action of the symmetric
group. For any space V there is defined a binary operation on

⊕
nK[rT (n)] ⊗Sn

V⊗n as follows. The parameters v1, . . . , vn are labelings of the vertices of the tree.
The following pictures represent the elements x, {x, y}, {x, {y, z}}, {{x, y}, z} −
{x, {y, z}} respectively:

z •
y • y • y • z •

x • x • x • x •
The operation {−,−} on two decorated trees is constructed as follows: draw

an edge from any vertex of the first tree to the root of the second one, keep the
decorations, keep the root of the first tree as the root of the new tree, add all the
elements so obtained.

Proposition 13.4.1 (Chapoton–Livernet [CL01]). The product {−,−} is pre-Lie
and
⊕
n≥1 K[rT (n)] ⊗Sn V

⊗n is the free pre-Lie algebra over V .

Proof. We refer to the original article [CL01] for the proof of this result. �

13.4.3 The Operad preLie

The operad which encodes the pre-Lie algebras is denoted by preLie (without
“dash”). From the description of the free pre-Lie algebra given above it follows
that preLie(n) is spanned by the rooted trees with vertices labeled by {1, . . . , n}.

For n = 1, there is only one tree (and no edges), which codes for the identity
operation

�1

For n = 2, there are two trees coding respectively for the operations {x1, x2} and
{x2, x1}:

�

�

1

2

�

�

2

1

For n = 3 there are nine trees, six of them code for the operation {x1, {x2, x3}}
and its analogs under the action of S3 and the other three code for {x1, {x2, x3}} −
{{x1, x2}, x3} and its analogs:

�

�

�

1

2

3

�

�

�

1

3

2

�

�

�

2

3

1

�

�

�

2

1

3

�

�

�

3

1

2

�

�

�

3

2

1

�

� �

��
1

2 3

�

� �

��
2

1 3

�

� �

��
3

1 2

The action of Sn is by permutation of the labels (recall that the trees are not
planar).
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13.4.4 Relationship of preLie with Other Operads

The terminology “pre-Lie” comes from the following immediate property: the anti-
symmetrized operation [x, y] := {x, y} − {y, x} is a Lie bracket, cf. Lemma 1.4.1.
So there is a functor:

preLie-alg→ Lie-alg.

Proposition 13.4.2. The morphism of operads Lie → preLie induced by [x, y] :=
{x, y} − {y, x} is injective.

Proof. It can either be proved directly, or by using the following commutative dia-
gram of operads (cf. Lemma 13.6.4):

Lie preLie

Ass Dend.

Since the maps from Lie to Ass (CMM Theorem) and from As to Dend (Ronco’s
Theorem [Ron02]) are known to be injective, so is the map from Lie to preLie. �

In the case of commutative algebras it is known that the symmetrized product
satisfies some relations, for instance the Jordan relation (cf. Sect. 13.10). In the
pre-Lie case the situation is completely different. Let us recall that ComMag de-
notes the operad generated by one symmetric binary operation with no relation (cf.
Sect. 13.8.4).

Proposition 13.4.3 (Bergeron–Loday [BL11]). The morphism of operads
ComMag→ preLie induced by x · y := {x, y} + {y, x} is injective.

Proof. The proof follows from the comparison with the operads Dend and Dup. We
refer the reader to loc. cit. for the details of the proof. �

Proposition 13.4.4. Let P be a symmetric operad (resp. a nonsymmetric operad).
Composition in the operad P induces a pre-Lie algebra structure on the space⊕
nP(n) (resp.

⊕
nPn).

Proof. We have already mentioned and proved this result, cf. Sects. 5.4.3 and 5.9.15.
It is a particular case of a stronger one involving brace algebras, cf. Proposi-
tion 13.11.4. �

13.4.5 Symmetric Brace Algebras

Starting with a pre-Lie algebra A one can construct recursively an (1+ n)-ary oper-
ation for all n≥ 1 as follows:
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M11(x;y) := {x, y},
M1n(x;y1 . . . yn) :=M11

(
M1(n−1)(x;y1 . . . yn−1);yn

)

−
∑

1≤i≤n−1

M1(n−1)
(
x;y1 . . .M11(yi;yn) . . . yn−1

)
,

for x, y1, . . . , yn ∈ V . So for n = 1 this is the pre-Lie bracket. One can show that
these multi-ary operations satisfy some relations which make A into a brace algebra
(cf. Sect. 13.11.4).

By definition a symmetric brace algebra is a brace algebra such that the operation
M1n(x;y1 . . . yn) is symmetric in the variables yis. The aforementioned formulas
construct a symmetric brace algebra out of a pre-Lie algebra. On the other hand,
any symmetric brace algebra gives rise to a pre-Lie algebra by taking onlyM11 into
account.

Proposition 13.4.5 (Guin–Oudom). The notion of symmetric brace algebra is
equivalent to the notion of pre-Lie algebra in characteristic zero.

Proof. In arity 3 the brace relation reads
{{x, y}, z}− {x, {y, z}}= {x;y, z} + {x : z, y}.

Hence, if 2 is invertible in K and if the brace is symmetric, then the ternary operation
can be written in terms of the binary operation. The same phenomenon holds for the
other higher operations. The details of the proof can be found in [OG08, LM05]. �

13.4.6 Koszul Dual Operad of preLie: The Operad Perm

It is easy to check that the Koszul dual operad of preLie is the operad dubbed Perm
by Chapoton in [Cha01b]. A Perm-algebra is a vector space equipped with a binary
operation xy satisfying the following relations:

(xy)z= x(yz)= (xz)y.
In plain words, it is an associative algebra which is commutative on the right-hand
side as soon as there are at least three entries. The free Perm-algebra over the vector
space V is isomorphic to V ⊗ S(V ). It follows that dim Perm(n) = n. As a repre-
sentation of the symmetric group, Perm(n) = K

n, where the action is simply the
permutation of the coordinates. The basis is given by the operations

xix1x2 · · · x̂i · · ·xn, i = 1, . . . , n.

Since dim Perm(n) = n, the generating series is f Perm(x) = x exp(x). The
Koszulity of the operads preLie and Perm has been proved in [CL01]. It can also be
obtained through the poset method and by the rewriting process method. It implies
that the generating series of preLie, that is y = f preLie(x), satisfies the functional
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equation y = x exp(y). It follows that

f preLie(x)=
∑

n≥1

nn−1

n! x
n,

so dim preLie(n)= nn−1.

13.4.7 Pre-Lie Homology

Let A be a pre-Lie algebra. We construct a chain complex CpreLie• (A) as follows.
First we define CpreLie

n−1 (A) := A⊗Λn(A). Second we define the boundary map by
the formula:

d(x0;x1, . . . , xn)= b′
(∑

σ∈Sn
sgn(σ )(x0;xσ(1), . . . , xσ(n))

)

,

where b′(x0;x1, . . . , xn)=∑n−1
i=0 (−1)i(x0;x1, . . . , xixi+1, . . . , xn).

Proposition 13.4.6. The chain complex CpreLie• (A) constructed above is the op-
eradic chain complex of the pre-Lie algebra A.

Proof. The free Perm-algebra is Perm(V ) = V ⊗ S(V ). Hence the operadic chain
complex of a pre-Lie algebra A is such that CpreLie

n−1 (A)= A⊗Λn(A). The compu-
tation of the boundary map is straightforward from Proposition 12.1.1. �

13.4.8 Homotopy Pre-Lie Algebras

Since we know the Koszul dual operad of preLie, the notion of (strong) pre-Lie al-
gebra up to homotopy can be described explicitly. Since dim Perm(n)= n the space
preLie∞(n) contains n generating operations. The symmetric group Sn is acting
by permutation. We refer to [Mer05] for details and application of this structure in
geometry.

13.4.9 Splitting and preLie

According to [Val08] the black Manin product of operads (cf. Sect. 8.8.3) gives the
following isomorphisms of operads:

preLie�Com= Zinb, preLie�As=Dend, preLie�Lie= preLie,
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where Zinb is the operad encoding Zinbiel algebras (cf. Sect. 13.5.2) and Dend is
the operad encoding dendriform algebras (cf. Sect. 13.6.1). So, in a sense, the func-
tor preLie�− is “splitting” the binary operations when applied to binary operads.
This process is similar to the splitting of operations using a Rota–Baxter operator
[Uch10].

Dually, there is another way to split the operations of a P-algebra: one can
consider the new operad Perm�P obtained by taking the Manin white product
with the operad Perm.

One can also use the differential of a P-algebra to define derived products, like
[d(−),−] and [−, d(−)] for a dg Lie algebra. Such constructions play an impor-
tant role in differential geometry, see [KS96, KS04]. Uchino proved that these two
processes are the same [Uch10]. Interpreting the Rota–Baxter operator as the inte-

gration operator, this result gives a Koszul duality interpretation PreLie
!←→ Perm

of the classical integration–derivation duality.

13.4.10 From Pre-Lie Algebras to Hopf Algebras

Since, by antisymmetrization, a pre-Lie algebra gives rise to a Lie algebra, one can
then take the universal enveloping algebra of this Lie algebra to get a Hopf algebra.
It turns out that, first, many examples of this type arise in the literature, second,
these Hopf algebras are “cofree cocommutative right-sided combinatorial Hopf al-
gebras”, studied in [LR10]. For instance, if preLie(K) is the free preLie algebra on
one generator, then U(preLie(K)Lie) is the Grossman–Larson Hopf algebra, whose
graded linear dual is the Connes–Kreimer Hopf algebra (cf. [GL89, CK98, CL01]).
This latter Hopf algebra plays a prominent role in renormalization theory, because
there is a way to compute the counter-term of some divergent integrals by means of
the antipode of this Hopf algebra.

Another example is given by the vector space L1 := ⊕n≥1Kxn equipped with
the pre-Lie product

{xp, xq} := (p+ 1)xp+q

(cf. Sect. 1.4.3). The associated Hopf algebra is dual to the Faà di Bruno Hopf
algebra.

13.5 Leibniz Algebras and Zinbiel Algebras

As shown in Bourbaki, the main property of a Lie bracket is to be a derivation for
itself. So it is natural to introduce the algebras equipped with a not necessarily anti-
symmetric operation satisfying this derivation property. It turned out to be relevant
in many mathematical domains.
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13.5.1 Leibniz Algebra [Lod93]

By definition a (right) Leibniz algebra is a vector space A equipped with a linear
map (called bracket)

[–,–] :A⊗A→A

satisfying the Leibniz relation
[[x, y], z]= [x, [y, z]]+ [[x, z], y].

In the sign-graded case (cf. Sect. 1.5.3), this relation reads
[[x, y], z]= [x, [y, z]]+ (−1)|y||z|

[[x, z], y].
It is dubbed after George Wilhelm Leibniz (one of our ancestors) because of the
form of the relation which says that [−, z] is a derivation. It also appears some-
times in the literature under the name Loday algebra (a terminology due to Yvette
Kosmann-Schwarzbach). Obviously a Lie algebra is an example of a Leibniz alge-
bra. It is a Leibniz algebra whose bracket is antisymmetric.

It is shown in loc. cit. that the free Leibniz algebra over V is the reduced tensor
module �T (V ) equipped with a binary operation [–,–] such that

x1 · · ·xn =
[
. . .
[[x1, x2], x3

]
, . . . , xn

]
.

Here is an example of computation in this algebra (for x, y, z ∈ V ):

[x, yz] = [x, [y, z]]
= [[x, y], z]− [[x, z], y]
= xyz− xzy.

Though the space Leib(n) is the regular representation: Leib(n) = K[Sn], the
Leibniz algebras are not encoded by a nonsymmetric operad. This is because, in the
Leibniz relation, the variables do not stay in order, so the composition γ involves
the symmetric group.

We refer to Sect. 13.6.12 for the relationship of Leibniz algebras with other types
of algebras.

The Koszul dual operad of Leib is the Zinbiel operad denoted Zinb that we now
introduce.

13.5.2 Zinbiel Algebras [Lod95, Lod01]

By definition a Zinbiel algebra is a vector space A equipped with a binary opera-
tion ≺ verifying the Zinbiel relation

(x ≺ y)≺ z= x ≺ (y ≺ z+ z≺ y).
It is dubbed after the virtual mathematician G.W. Zinbiel.
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In loc. cit. the free Zinbiel algebra over V was shown to be the tensor module
�T (V ) equipped with the half-shuffle as operation ≺:

x1 · · ·xp ≺ xp+1 · · ·xp+q =
∑

σ∈Sh(p−1,q)

x1xσ(2) · · ·xσ(n).

As a consequence we deduce the structure of the operad Zinb encoding Zinbiel al-
gebras, namely Zinb(n)=K[Sn]. Using Proposition 7.6.4 it is easy to show that the
Koszul dual operad of Zinb is Leib. This is why Zinbiel algebras were first called
“dual Leibniz algebras” (cf. [Lod95]). As an immediate consequence of Proposi-
tion 7.6.5 the tensor product of a Leibniz algebra with a Zinbiel algebra has a Lie
structure. In fact it can be shown that it is even a pre-Lie algebra, cf. Sect. 13.9.

The Koszul dual of the functor Lie-alg → Leib-alg is the functor Zinb-alg →
Com-alg given by symmetrizing the binary operation. In other words on a Zinbiel
algebra the symmetrized operation xy := x ≺ y + y ≺ x is commutative and asso-
ciative. For instance the commutative algebra associated to the free Zinbiel algebra
is the shuffle algebra (cf. Sect. 1.3.2).

13.5.3 Zinbiel Algebras and Divided Powers

The commutative algebra obtained as the image of a Zinbiel algebra has more prop-
erties: it is a divided powers algebra (cf. Sect. 13.1.12). Indeed it is easy to show
that the operation

x �→ x≺n := (x ≺ (x ≺ · · · ≺ (x ≺ x) · · · ))
︸ ︷︷ ︸

n

is a divided power operation. Moreover, if we start with a free Zinbiel algebra
Zinb(V ) = �T sh(V ), then it is free as a divided powers algebra (cf. [Dok09]). If
V is one-dimensional generated by x, we get the algebra �(Kx) mentioned in Ex-
ercise 1.8.5. Its Zinbiel operation is given by xn ≺ xm = (n+m−1

m

)
xn+m.

13.5.4 Leibniz Homology

The chain complex of a Leibniz algebra was introduced in [Lod93] and was further
studied in [LP93]. Up to a shift it turns out to be the same as the operadic chain
complex (cf. Proposition 12.1.1), given as follows:

CLeib
•−1 : · · · −→ g

⊗n d−→ g
⊗n−1 −→ · · · −→ g

⊗2 → g,

where

d(x1, . . . , xn)=
∑

1≤i<j≤n
(−1)j

(
x1, . . . , xi−1, [xi, xj ], . . . , x̂j , . . . , xn

)
.
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The homology of this complex is denoted either by H Leib• (g) or by HL•(g). We
remark that it is a lifting of the Chevalley–Eilenberg complex. Indeed, the boundary
map in the CE complex can be written:

dCE(x1∧ . . .∧ xn)=
∑

1≤i<j≤n
(−1)j

(
x1∧ . . .∧ xi−1∧[xi, xj ]∧ . . .∧ x̂j ∧ . . .∧ xn

)
.

Its operadic interpretation is the following. The map of operads Leib → Lie in-
duces a map of cooperads Leib

¡ → Lie
¡
, whence a morphism of chain com-

plexes CLeib• (g)→ CLie• (g). This map is given by quotienting by the action of
the symmetric group. Leibniz (co)homology has been studied in various papers,
cf. [LP93, Pir94]. Let us just mention one peculiar feature: the Leibniz homology of
a finite dimensional semi-simple Lie algebra is trivial, cf. [Pir94, Nto94].

By Theorem 12.1.2 the homology (resp. cohomology) of a Leibniz algebra is a
graded Zinbiel coalgebra (resp. graded Zinbiel algebra), and hence a graded com-
mutative coalgebra (resp. graded commutative algebra). This result was proved in
[Lod95] by an ad hoc method.

13.5.5 Homotopy Leibniz Algebra, Homotopy Zinbiel Algebra

From the explicit description of the Leibniz operad (resp. Zinbiel operad) it is
straightforward to describe the notion of Zinbiel algebra up to homotopy (resp.
Leibniz algebra up to homotopy). The structure of Leib∞-algebra has been used for
instance in differential geometry and deformation theory by [AP10] and by [Mer08],
where this structure is made explicit.

13.6 Dendriform Algebras and Diassociative Algebras

Periodicity questions in algebraic K-theory led to the construction of “diassociative
algebras” [Lod95]. See [Lod97] for a survey on these problems. The explicitation
of the homology of a diassociative algebra led to the discovery of the Koszul dual
structure, which was later called “dendriform algebra” in [Lod01]. It turned out that
this notion found its way into several domains like combinatorial algebra, theoretical
physics, algebraic topology. It is not so surprising because, first, the dendriform
structure models the “noncommutative shuffles”, second, the dendriform operad is
closely related to planar binary trees [Lod02], third, the dendriform operations “split
associativity”. We will see that the dendriform operad comes from a nonsymmetric
operad.

13.6.1 Dendriform Algebra

By definition a dendriform algebra is a vector space A equipped with two linear
maps (binary operations)

≺:A⊗A→A and .:A⊗A→A
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called the left operation and the right operation respectively, satisfying the following
three relations

⎧
⎪⎨

⎪⎩

(x ≺ y)≺ z = x ≺ (y ≺ z)+ x ≺ (y . z),
(x . y)≺ z = x . (y ≺ z),

(x ≺ y). z+ (x . y). z = x . (y . z).
A morphism f :A→A′ of dendriform algebras is a linear map compatible with the
two operations:

f (a ≺ b)= f (a)≺ f (b) and f (a . b)= f (a). f (b) for any a, b ∈A.
Let us introduce the operation ∗ given by

x ∗ y := x ≺ y + x . y.
Adding the three relations shows that the operation ∗ is associative. So a dendriform
algebra is an associative algebra whose product splits as the sum of two operations.
The axioms imply that the associative algebra A has an extra bimodule structure
over itself:

⎧
⎪⎨

⎪⎩

(x ≺ y)≺ z = x ≺ (y ∗ z),
(x . y)≺ z = x . (y ≺ z),
(x ∗ y). z = x . (y . z).

As a consequence, a dendriform algebra structure on A gives rise to an abelian
extension of associative algebras

0→A→A⊕A→A→ 0

(the product on the kernel is 0 and the product on the cokernel is ∗).

13.6.2 The Free Dendriform Algebra

In order to describe explicitly the free dendriform algebra we need the notion of
planar binary trees (pb trees), cf. Appendix C.1.1. Recall that PBTn+1 denotes the
set of pb trees with n vertices (and so n + 1 leaves). We first describe the free
dendriform algebra on one generator. The free dendriform algebra on a vector space
V is easily deduced.

Proposition 13.6.1. The vector space
⊕
n>0 K[PBTn+1] equipped with the two bi-

nary operations ≺ and . is defined inductively by the formulas

t ≺ s := t l ∨ (t r ∗ s),
t . s := (t ∗ sl)∨ sr ,
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on the trees t = t l ∨ t r and s = sl ∨ sr , and | ∗ t = t = t ∗ | is a dendriform alge-
bra generated by the tree ∈ PBT2. It is the free dendriform algebra on one
generator Dend(K).

Proof. In the statement of the proposition we use the notation t = t l ∨ t r meaning
that any planar binary tree with at least two leaves can be written uniquely as the
grafting of two other trees (cf. Appendix C). For the proof of this proposition we
refer to the original article [Lod95, Lod01]. �

Corollary 13.6.2. The free dendriform algebra on the vector space V is

Dend(V )=
⊕

n>0

K[PBTn+1] ⊗ V⊗n

equipped with the operations

(t;v1 · · ·vp)≺ (s;vp+1 · · ·vp+q)= (t ≺ s;v1 · · ·vp+q),
(t;v1 · · ·vp). (s;vp+1 · · ·vp+q)= (t . s;v1 · · ·vp+q).

In particular, if V = K[X] for some set X, then the degree n component of
Dend(V ) is spanned by PBTn+1 ×Xn.

As an immediate consequence of this corollary the generating series of the operad
Dend is

f Dend(x)= 1− x −√1− 4x

2x
.

13.6.3 Examples of Computation

Let us denote by Y the generator of Dend(K) = Dend(KY), which corresponds to
the tree . In low dimension we get:

Y≺ Y= , Y. Y= ,

Y≺ (Y≺ Y)= ,Y≺ (Y. Y)= ,Y. Y≺ Y= ,

(Y≺ Y). Y= , (Y. Y). Y= .

Observe that the orientation of the leaves corresponds precisely to the operations
involved in the monomial.
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We know that on the set of pb trees there is a simple operation: the grafting t ∨ s.
It is not difficult to show that it corresponds to the following operation in Dend(K):

t ∨ s = t . Y≺ s.

13.6.4 Unital Dendriform Algebras

We know that associative algebras can be unitarized, cf. Sect. 1.1.1. Similarly den-
driform algebras can be unitarized as follows. By definition a unital dendriform
algebra is a vector space A :=K1⊕ Ā such that Ā is a dendriform algebra and the
left and right operations are (partially) extended to A by the formulas

{
1≺ a = 0, a ≺ 1= a,
1. a = a, a . 1= 0,

for any a ∈ A. Observe that one has 1 ∗ a = a = a ∗ 1, so A is a unital associative
algebra, but 1≺ 1 and 1. 1 are not defined.

A morphism of unital dendriform algebras is a linear map f : A→ A′ which
maps 1 to 1, Ā to Ā′ and f restricted to A is a dendriform morphism.

Observe that the three relations defining a dendriform algebra are still valid
whenever two of the variables are in Ā and the third is equal to 1.

13.6.5 The Operad Dend

Since the generating operations have no symmetry and, in the relations, the vari-
ables stay in the same order, the category of dendriform algebras is encoded by
a nonsymmetric operad. We denote it by Dend and we still denote by Dend, in-
stead of Dend⊗Ass, the associated symmetric operad if no confusion can arise. As
a consequence the operad Dend is completely determined by the free dendriform
algebra on one generator. By Proposition 13.6.1 we get Dendn =K[PBTn+1]. Con-
sidering Dend as a symmetric operad we get Dend(n) = K[PBTn+1] ⊗ K[Sn] =
K[PBTn+1 × Sn]. The operadic composition is deduced from the formula given in
this proposition.

The operad Dend does not come from a set-theoretic operad. However the family
of nonempty subsets of PBTn+1, for all n, do form a set-operad. It has been studied
in [Lod02].

13.6.6 Koszul Dual Operad of Dend

Since Dend is a binary quadratic nonsymmetric operad its Koszul dual operad can
be computed by applying Theorem 7.7.1. It gives rise to diassociative algebras that
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we now describe. Historically, diassociative algebras cropped up first, then dendri-
form algebras appeared in the construction of the homology theory for diassociative
algebras, cf. [Lod95].

13.6.7 Diassociative Algebra

By definition a diassociative algebra (or Dias-algebra) is a vector space A equipped
with two linear maps (binary operations)

2:A⊗A→A and 3:A⊗A→A

called the left operation and the right operation respectively, satisfying the following
five relations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(x 2 y) 2 z = x 2 (y 2 z),
(x 2 y) 2 z = x 2 (y 3 z),
(x 3 y) 2 z = x 3 (y 2 z),
(x 2 y) 3 z = x 3 (y 3 z),
(x 3 y) 3 z = x 3 (y 3 z).

The operad Dias comes from a set-theoretic nonsymmetric operad. The space
Diasn is n-dimensional and one can take, as linear generators, the operations

x1 3 · · · 3 xi−1 3 xi 2 xi+1 2 · · · 2 xn, for i = 1, . . . , n.

In the tensor algebra T (V ) the monomial x1 . . . xn is the generic element. Similarly,
in the free diassociative algebra Dias(V ) it is helpful to denote by

x1 . . . x̌i . . . xn

the generic element corresponding to the ith operation, i = 1, . . . , n. The left (resp.
right) operation is simply concatenation where one keeps the decoration indicated
by the pointer:

x1x2x̌3 3 x̌4x5 = x1x2x3x̌4x5.

Let us mention that the Milnor invariants of tangles have been interpreted by Olga
Kravchenko and Michael Polyak in [KP11] as a morphism of operads

Tangles→Dias.

Proposition 13.6.3. [Lod01] The operad Dend is a Koszul operad whose Koszul
dual operad is

Dend! =Dias.
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Proof. The dual basis of {≺,.} is denoted {2,3}. By Theorem 7.7.1 we only need
to verify that, in the eight-dimensional space spanned by (a ◦ b) ◦′ c and a ◦ (b ◦′ c),
where ◦ and ◦′ =≺ or ., the relators of Dend are dual to the relators of Dias. Since
the space of relations of Dend is of dimension 3, the space of relations of Dias is
going to be 5-dimensional. Now it suffices to check the orthogonality of the relators.
We only do it for two pairs, checking the other cases is similar:

〈
(a ≺ b)≺ c− a ≺ (b ≺ c)− a ≺ (b . c), (a 2 b) 2 c− a 2 (b 2 c)〉

=+1+ 0+ 0+ (−1)+ 0+ 0= 0,
〈
(a ≺ b)≺ c− a ≺ (b ≺ c)− a ≺ (b . c), (a 2 b) 2 c− a 2 (b 3 c)〉

=+1+ 0+ 0+ 0+ 0+ (−1)= 0.

The acyclicity of the Koszul complex of Dend was first proved in [Lod01]. But
it is easier to show the acyclicity of the Koszul complex of Dias as done in [Lod08]
(and apply Proposition 7.4.4). In fact most of the methods for proving Koszulness
(Gröbner basis, poset method, rewriting process) work pretty well in this case. �

13.6.8 Digroups

Because of the form of the relations we can define an object analogous to a diasso-
ciative algebra in the category of sets. A dimonoid is a set with two binary operations
satisfying the five diassociative axioms. Moreover we suppose the existence of an
element 1 which is a unit for the bar side:

x 2 1= x = 1 3 x.

There is even an analog of the notion of group as follows. A digroup is a dimonoid
D such that for any x ∈D we are given an element x−1 ∈D such that

x 3 x−1 = 1= x−1 2 x.

A group is an example of a digroup (for which 2=3).

13.6.9 Dendriform Homology

From the explicit description of the space Diasn given in Sect. 13.6.7 it follows that
the operadic chain complex of the dendriform algebra A is

CDend
•−1 · · ·→K

n ⊗A⊗n d−→K
n−1 ⊗A⊗n−1 → ·· ·→A
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where the boundary map d =∑i=n−1
i=1 (−1)idi is given as follows. First, we define

di on the set of indices {1, . . . , n} by

di(r)=
{
r − 1 if i ≤ r − 1,
r if i ≥ r.

Second, we define the operation ◦ri as

◦ri =

⎧
⎪⎪⎨

⎪⎪⎩

∗ if i < r − 1,
. if i = r − 1,
≺ if i = r,
∗ if i > r.

Recall that a ∗ b= a ≺ b+ a . b. Finally the map di is given by

di(r;a1, . . . , an)=
(
di(r);a1, . . . , ai ◦ri ai+1, . . . , an

)
.

From the general result on Koszul dual operad, see Proposition 12.1.2, it follows
that the operadic homology HDend

•+1 (A) is a graded diassociative coalgebra.

13.6.10 Dendriform Algebra up to Homotopy

Since we know an explicit presentation of Dias=Dend!, and therefore of Dend¡ it is
easy to describe the notion of Dend∞-algebra. It has n n-ary generating operations
denoted by mn,i , 1≤ i ≤ n, for any n≥ 2. The only relation is given by the explicit
expression of the boundary of mn,i , which is as follows:

∂(mn,i)=
∑
(−1)p+qrmp+1+r,�( id, · · · , id︸ ︷︷ ︸

p

,mq,j , id, · · · , id︸ ︷︷ ︸
r

)

where, for fixed n and i, the sum is extended to all the quintuples p,q, r, �, j sat-
isfying: p ≥ 0, q ≥ 2, r ≥ 0,p + q + r = n,1≤ �≤ p + 1+ q,1≤ j ≤ q and any
one of the following:

• i = q + �, when 1≤ p+ 1≤ �− 1,
• i = �− 1+ j , when p+ 1= �,
• i = �, when �+ 1≤ p+ 1.

For instance in low dimension we get the following relations:

∂(m2,1)= 0,

∂(m2,2)= 0,

∂(m3,1)=m2,1 ◦1 m2,1 −m2,1 ◦2 m2,1,

∂(m3,2)=m2,1 ◦1 m2,2 −m2,2 ◦2 m2,1,

∂(m3,3)=m2,2 ◦1 m2,2 −m2,2 ◦2 m2,2.
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So, as expected, the dendriform relations are valid only up to homotopy.
The presentation of Dias∞ algebra is slightly more complicated. It is given, up

to sign, in [Lod01].

13.6.11 Relationship with Other Types of Algebras

We already know that Dend is related to As since the operation x∗y = x ≺ y+x . y
is associative. So any dendriform algebra gives rise to an associative algebra (a
forgetful functor).

Let us define a commutative dendriform algebra as a dendriform algebra in which
the following symmetry condition holds: x ≺ y = y . x for any x and y. This new
type of algebras turns out to be the same as Zinbiel algebra which appears as dual of
the Leibniz algebra, cf. Sect. 13.5. Recall that the Zinbiel operad is the Manin black
product of preLie and Com. If one replaces Com by Ass, then it has been shown in
[Val08] that

preLie�Ass=Dend,

in the category of symmetric operads. Composing with the morphism Lie → Ass
and taking into account that Lie is neutral for the black product it gives a morphism
preLie→Dend. This result can be proved directly as follows.

Lemma 13.6.4. For any dendriform algebra A, the binary operation

{a, b} := a ≺ b− b . a
is a right pre-Lie product.

Proof. It suffices to check that the associator of the operation {−,−} is symmetric
in the last two variables:
{{a, b}, c}− {a, {b, c}}= (a ≺ b− b . a)≺ c− c . (a ≺ b− b . a)

− a ≺ (b ≺ c− c . b)+ (b ≺ c− c . b). a
= a ≺ (b . c)− (b . a)≺ c− c . (a ≺ b)+ (c ≺ b). a
+ a ≺ (c . b)+ (b ≺ c). a

= a ≺ (b . c)− b . a ≺ c+ (c ≺ b). a
+ a ≺ (c . b)− c . a ≺ b+ (b ≺ c). a. �

13.6.12 Butterfly Diagram and More

The following diagram summarizes the relationship between various types of alge-
bras. We use the short notation P to denote the category P-alg:
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Dend
+

Dias
−

4

Zinb
+

Ass
−

Leib 2

Com Lie 1

The integer on the right-hand side indicates the dimension of the space P(2).
Koszul duality is given by the symmetry around the vertical axis passing through
As. This “butterfly diagram” has been completed in [Lod06].

Here is another diagram, due to F. Chapoton [Cha01b], which includes the pre-
Lie operad (cf. Lemma 13.6.4):

Zinb Dend preLie

Com Ass Lie

Perm Dias Leib.

Koszul duality is given by central symmetry. The first column is the middle column
made commutative. The first row is the middle row blackproducted with preLie and
so the last row is the middle row whiteproducted with Perm (cf. Theorem 8.8.3).
However in several questions (for instance the study of generalized bialgebras) it is
better to put brace in place of preLie in this diagram.

13.6.13 Dendriform Variations

There are several variations of dendriform algebras. We already saw the commuta-
tive dendriform, i.e. Zinbiel. Here are some more (not an exhaustive list):

 Parametrized dendriform algebras. Let λ ∈K be a parameter. We slightly modify
the three relations of a dendriform algebra as follows:

⎧
⎪⎨

⎪⎩

(x ≺ y)≺ z = x ≺ (y ≺ z)+ λx ≺ (y . z),
(x . y)≺ z = x . (y ≺ z),

λ(x ≺ y). z+ (x . y). z = x . (y . z).
So, for λ = 1 we get the dendriform case. For λ = 0 we call them duplicial

algebras, cf. Sect. 13.13.2. It is easy to see that for any λ the operad can be
described by planar binary trees, like in the dendriform case.
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 Tridendriform algebras [LR04]. We have seen that the dendriform operad is
strongly related to the planar binary trees. In fact there is a way to enlarge this
operad so that it involves the planar trees (not just binary) under similar rules, as
follows.

We assume that the associative product ∗ splits into the sum of three opera-
tions: x ∗ y = x ≺ y + x . y + x · y, and that the associativity relation splits into
seven relations (one for each cell of the triangle, cf. loc. cit.):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x ≺ y)≺ z = x ≺ (y ∗ z),
(x . y)≺ z = x . (y ≺ z),
(x ∗ y). z = x . (y . z),
(x . y) · z = x . (y · z),
(x ≺ y) · z = x · (y . z),
(x · y)≺ z = x · (y ≺ z),
(x · y) · z = x · (y · z).

The ns operad Tridend can be described in terms of planar trees. We leave it to
the reader the pleasure of computing the Koszul dual operad Trias, cf. loc. cit.
The parametrized version of tridendriform algebras consists in putting

x ∗ y := x ≺ y + x . y + λx · y.
The case λ= 0, studied by Chapoton in [Cha02], see also [BR10], is interesting
because it is strongly related to the cell structure of the Stasheff polytope, when
the dot operation h has degree one.

 Commutative tridendriform algebras. They are tridendriform algebras such that
x ≺ y = y . x and x · y = y · x. They are strongly related to quasi-shuffle alge-
bras, cf. [Lod07].

 Quadrialgebras. We start with pairs of dendriform operations, that is four opera-
tions denoted ↖,↗,↘,↙, satisfying nine relations, cf. [AL04]. In this case the
associative product is split into the sum of four operations. It turns out to be the
Manin black product preLie�Dend in the category of symmetric operads and
the Manin black product Dend�Dend in the category of nonsymmetric operads,
cf. Sect. 8.8, [EFG05] and [Val08].

 Locally commutative dendriform algebras. One can impose a different kind of
symmetry property on dendriform operations, namely x ≺ y = y ≺ x and x .
y = y . x. They also imply that the associative operation x ∗ y is commutative.
It does not seem that locally commutative dendriform algebras have been studied
so far.

For all these operads the poset method is well adapted to prove their Koszulity.

13.7 Batalin–Vilkovisky Algebras and the Operad BV

A BV-algebra is a Gerstenhaber algebra with a compatible square-zero operator �.
Such an algebraic structure appears in differential geometry on polyvector fields, on
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the Hochschild cohomology of unital cyclic associative algebras, on the homology
of free loop spaces, on vertex operator algebras, on conformal field theories and,
of course, in mathematical physics with the Batalin–Vilkovisky formalism, see the
introduction of [DCV11]. The first example is due to Batalin and Vilkovisky. The
general definition is due to Jean-Louis Koszul and appeared in [Kos85].

The introduction of the operad BV with applications to double loop spaces and
topological conformal field theories was pioneered by Getzler in [Get94]. The ex-
tension of some results from BV-algebras to homotopy BV-algebras was done in
[GCTV09].

13.7.1 Definition of BV-Algebras

A Batalin–Vilkovisky algebra, BV-algebra for short, is a graded vector space equip-
ped with a commutative product of degree 0 denoted by x · y, and a unary operation
of degree 1 denoted by� (it is not a coproduct), satisfying�◦�= 0. These two op-
erations are supposed to satisfy the following relation, which is ternary (3 variables)
and cubical (composite of 3 generating operations):

�(– · – · –)− (�(– · –) · –)id+(123)+(321) + (�(–) · – · –)id+(123)+(321) = 0.

With such a structure at hand we can define the binary operation

〈–,–〉 :=�(– · –)− (�(–) · –)− (– ·�(–)).

In plain words: the bracket operation is the obstruction to � being a derivation for
the commutative product. As a consequence, the operation 〈–,–〉 is symmetric and
of degree one. The aforementioned relation between the commutative product and
the operator � implies that 〈–,–〉 satisfies the following Jacobi identity

〈〈–,–〉,–〉+ 〈〈–,–〉,–〉(123) + 〈〈–,–〉,–〉(132) = 0,

and the Leibniz relation with respect to the commutative product

〈– · –,– 〉 = (– · 〈–,– 〉)+ (〈–,– 〉 · –)(23)
.

An operator � on a commutative algebra, whose associated bracket satisfies the
Leibniz relation, is called an operator of order less than 2, see [GCTV09, Sect. 2.4].

Therefore a BV-algebra carries a Gerstenhaber algebra structure, see
Sect. 13.3.10. So forgetting the operator � but keeping the bracket 〈–,–〉, we get
the inclusion of categories

BV-alg→Gerst-alg.
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Proposition 13.7.1. [Get94] The data of a BV-algebra structure (A, ·,�) is equiva-
lent to that of a Gerstenhaber algebra structure (A, ·, 〈–,–〉) endowed with a square-
zero degree 1 unary operator �, such that

〈–,–〉 :=�(– · –)− (�(–) · –)− (– ·�(–)).

Proof. The proof is a straightforward checking and therefore left to the reader. �

Notice that, as a consequence of its definition and independently from the cubical
relation, the operator � is a derivation for the bracket

�
(〈–,– 〉)+ 〈�(–),– 〉+ 〈–,�(–)〉= 0.

EXAMPLE. Let M be a smooth oriented n-dimensional manifold equipped with
a volume form ω. Recall from Sect. 13.3.10, that the space of polyvector fields
�(M,Λ(TM)) is equipped with a Gerstenhaber algebra structure. The contraction
of ω along polyvector fields defines the following isomorphism with the differential
forms

Γ
(
M,Λ•(TM)

)→�n−•(M)
π �→ iπ (ω) := ω(π,–).

The transfer of the de Rham differential map dDR , from the differential forms
to polyvector fields, defines the divergence operator � := divω, which endows
�(M,Λ(TM)) with a BV-algebra structure [TT00].

13.7.2 Batalin–Vilkovisky Formalism

LetW be a finite dimensional chain complex. We consider it as a manifold with the
structure sheaf of formal functions which vanish at 0:

Ŝ
(
W ∗) :=

∏

n≥1

Sn
(
W ∗),

where the symmetric tensor product is the quotient Sn(W ∗) := ((W ∗)⊗n)Sn . To any
finite dimensional chain complex V , we associate its “cotangent bundle”W := V ⊕
sV ∗. (It is equipped with a canonical nondegenerate bilinear form, as any cotangent
bundle is endowed with a canonical symplectic manifold structure.) Its commutative
algebra of functions Ŝ(V ∗ ⊕ sV ) carries the following degree −1 operator �. Let
{vi}1≤i≤n and {νi}1≤i≤n denote respectively a basis of V and the dual basis of V ∗.
To any formal function α ∈ Ŝ(V ∗ ⊕ sV ), we associate

�(α) :=
n∑

i=1

∂α

∂vi

∂α

∂νi
.
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Proposition 13.7.2. The algebra of formal functions (Ŝ(V ∗ ⊕ sV ), ·,�) satisfies
the relations of a Batalin–Vilkolisky algebra with a differential map and the operator
� of same degree −1.

Then one considers the quantized version of this algebra, namely

Ŝ(V ∗ ⊕ sV )[[�]] := Ŝ(V ∗ ⊕ sV )⊗K
[[�]],

where the product and the operator � are extended by �-linearity. It is again a BV-
algebra. The Batalin–Vilkovisky formalism [BV81, Sch93] relies on the functions
which are solution to the master equation:

d(α)+ ��(α)+ 1

2
〈α,α〉 = 0.

Following the same ideas as in Chap. 10, S. Merkulov in [Mer10b] showed that
solutions to the master equations are in bijective correspondence with some ho-
motopy algebraic structure on V . He further interpreted the passage from classical
action to effective action in renormalization theory as a homotopy transfer theorem.
In this case, the famous Feynman diagrams correspond bijectively to the graphs
appearing in the formulas of the HTT.

REMARK. We have chosen the topological, or homological, definition of a BV-al-
gebra: the underlying differential map and the operator � have different signs. In
the Batalin–Vilkovisky formalism, the authors use another operad, called the BD
operad, after Beilinson and Drinfeld [BD04]. This operad can be obtained as the
Koszul dual operad of BV and by considering the sub-algebra K[[�]] as the ground
ring.

13.7.3 BV-Algebra Structure on Hochschild Cohomology of a Unital Cyclic
Associative Algebra

Since the notion of BV-algebra is a refinement of the notion of Gerstenhaber algebra,
the Gerstenhaber algebra structure on the Hochschild cohomology of an associative
algebra (cf. Proposition 13.3.1) lifts to a BV-algebra structure. For this extension we
need an extra structure on the associative algebra A.

Let A be a cyclic unital associative algebra, that is an algebra over the cyclic
operad uAss, cf. Sect. 13.14.6. By definition, A is a unital associative algebra en-
dowed with a symmetric nondegenerate bilinear form (–,–) : A ⊗ A→ K sat-
isfying the following invariance property (a.b, c) = (a, b.c), and thus (a.b, c) =
(−1)|a|(|b|+|c|)(b, c.a). In this case, A is finite dimensional and there is an isomor-
phism A→ A∗ of A-bimodules. (In representation theory such an algebraic struc-
ture is called a symmetric algebra.) This latter isomorphism allows us to transport
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Connes’ boundary map B (cf. Sect. 10.3.7) from homology to cohomology, giv-
ing the BV-operator �. This method is the algebraic analog of the aforementioned
polyvector fields case.

Proposition 13.7.3. [Tra08, Men09, Gin06] For any cyclic unital associative al-
gebra A, the Hochschild cohomology of A with coefficients into itself inherits a
BV-algebra structure, extending the Gerstenhaber algebra structure of Proposi-
tion 13.3.1.

Proof. When A is a cyclic unital associative algebra, with Φ :A→A∗ for isomor-
phism of A-bimodules, there are isomorphisms of chain complexes

C•Hoch(A,A)
∼= C•Hoch

(
A,A∗

)∼= (CHoch• (A,A)
)∗
.

The first one is given by f ∈ Hom(A⊗n,A) �→ Φ ◦ f ∈ Hom(A⊗n,A∗) and the
second is given by Hom(A⊗n,Hom(A,K))∼=Hom(A⊗n ⊗A,K). We consider the
dual of Connes’ boundary map B : CHoch

n (A,A)→ CHoch
n+1 (A,A) and transport it,

through these isomorphisms, on C•Hoch(A,A) to define a degree 1 operator (with the
homological convention), which commutes with the differential map. It induces a
square-zero degree 1 operator � on cohomology HH •(A,A), which satisfies the
axioms of a BV-algebra with the Gerstenhaber algebra. We refer the reader to the
aforementioned references for more details. �

The explicit formula of Connes’ boundary map B (cf. for instance [Lod98,
Chap. 2] ), induces the following formula for the operator � on the cochain level:

(
�(f )(a1, . . . , an−1), an

)=
n∑

i=1

(−1)i(n−1)(f (ai, . . . , an, a1, . . . , ai−1),1
)
.

Notice that this result still holds when there is only a quasi-isomorphismA→A∗
of A-bimodules [Gin06]; such an algebra is called a Calabi–Yau algebra.

13.7.4 The Operad BV

The previous equivalent definitions of BV-algebras allow us to give several presen-
tations by generators and relations for the operad BV . The first definition gives a
presentation with 2 generators m and �, under the convention of Sect. 13.3.9, and
3 homogeneous relations, two quadratic and one cubic. The other presentation is
made of 3 generators m, c and �. In that case, the relations are homogeneous qua-
dratic, except from the one expressing c as the obstruction for � to be a derivation
for m, which involves quadratic and linear terms. To be able to apply the inhomo-
geneous Koszul duality theory of Sect. 7.8, we choose this presentation, to which
we include in the space of relations, the derivation of � with c, so that it satisfies
condition (ql2).
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Finally, it gives BV ∼=T (EBV)/(RBV), with

EBV =Km⊕ K c⊕K�,

where K� is a one-dimensional graded vector space (S1-module) concentrated in
degree 1. The space of relations RBV is the K[S3]-module generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

m ◦1 m−m ◦2 m,

c ◦1 c+ (c ◦1 c)
(123) + (c ◦1 c)

(321),

�2,

c ◦1 m−m ◦2 c− (m ◦1 c)
(23),

c−� ◦1 m+m ◦1 �+m ◦2 �,

� ◦1 c+ c ◦1 �+ c ◦2 �.

The last two relations allow us to pull up the operator � in the operad BV . More
precisely, Proposition 7.8.8 shows that the underlying S-module of the operad BV
is given by following composite:

BV ∼= Com ◦S −1Lie ◦D,

where D = T (�)/(�2) is the algebra of dual numbers on a degree 1 element.
The operad structure on BV can be extended to a cyclic operad structure.

13.7.5 Relationship with the Framed Little Discs Operad

To extend Theorem 13.3.3 to the operad BV , we need to consider the following
refinement of the little discs operad. The framed little discs operad fD is made of
the configurations of n framed discs, that is with a point on the boundary, inside the
unit disc of the plane.

Proposition 13.7.4. [Get94] The singular homology H•(fD) of the framed little
discs operad is an algebraic operad isomorphic to the operad BV .

Proof. The framing induces the square-zero degree 1 operator � on homology. �

Since a double loop space �2X on a pointed topological space X endowed with
an action of the circle S1 is an algebra over the framed little discs operad, this
theorem proves that the homology of a double loop space carries a natural structure
of BV-algebra [Get94].
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13.7.6 Relationship with the Riemann Sphere Operad and TCFT

After Segal [Seg04], we consider the moduli space R of isomorphism classes of
connected Riemann surfaces of arbitrary genus with biholomorphic maps from the
disjoint union of n+m discs. The gluing along the boundaries endows this topo-
logical space with a properad structure, see Sect. 13.14.9. Segal proposed to define
a Conformal Field Theory, CFT for short, as an algebra over R. In the same way, a
Topological Conformal Field Theory, TCFT for short, is an algebra over the singular
chains C•(R) of R.

The Riemann spheres R, i.e. Riemann surfaces of genus 0, with n input discs
and 1 output disc, form the operadic part of R. The frame little discs operad is a
deformation retract of the operad R: look through the outgoing disc to see a config-
uration of n framed discs inside a unit disc. Therefore Proposition 13.7.4 induces
the isomorphism of operads H•(R)∼=H•(fD)∼= BV , which leads to the following
consequence.

Proposition 13.7.5. [Get94] The homology of a TCFT carries a natural BV-
algebra structure, whose product is given by the degree 0 homology class of R(2)
and whose degree 1 operator � is given by the fundamental class of the circle
R(1)∼ S1.

13.7.7 Homotopy BV-Algebras

The quadratic-linear presentation of the operad BV above in Sect. 13.7.4 satisfies
the conditions of the inhomogeneous Koszul duality theory (Sect. 7.8.7). Hence, it
provides a quasi-free, but not minimal, resolution

BV∞ :=�BV
¡ ∼−→ BV

of the operad BV . Algebras over this cofibrant resolution are called homotopy BV-
algebras. We refer the reader to Sect. 2.3 of [GCTV09] for the explicit definition in
terms of operations and relations.

This definition is a generalization of the notion of commutative BV∞-algebra
by O. Kravchenko [Kra00] and it is a particular case of a definition proposed by
D. Tamarkin and B. Tsygan in [TT00], which is an algebra over a properad. Contrary
to these two other definitions, the one given here comes from a cofibrant operad.
Therefore it shares the required homotopy properties, as shown by the following
examples.

REMARK. One gets the minimal model of the operad BV by first computing the ho-
motopy H•(BV

¡
), i.e. the underlying homology, of the dg cooperad (BV

¡
, dϕ). This

computation was done in [DCV11, DK09] and the result is related to the homology
of the moduli space of curves, which is the operad Gravity, see Sect. 13.11.2. Then,
one has to endow H•(BV

¡
) with a homotopy cooperad structure transferred from

the dg cooperad structure on BV
¡
, see [DCV11].
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We will need the following formality result, which extends Theorem 13.3.6.

Theorem 13.7.6. [Šev10, GS10] The framed little discs operad is formal, i.e. there
is a zig-zag of quasi-isomorphisms of dg operads

C•(fD)
∼←− · ∼−→H•(fD).

Together with the cofibrancy of BV∞, it implies the following theorem.

Theorem 13.7.7. [GCTV09] There exists a commuting diagram of quasi-isomor-
phisms

C•(R) C•(fD)

·

BV∞ BV ∼=H•(fD).

Proof. The proof relies on the left lifting property of cofibrant objects in the model
category of dg operads, see Proposition B.6.3. For the details, we refer the reader to
the proof of Theorem 11 of [GCTV09]. �

This theorem and its proof illustrate well how one can use homotopy properties
of dg operads to obtain results on algebraic structures.

Corollary 13.7.8. [GCTV09]

 The singular chains C•(�2X) of the double loop space on a topological space X
endowed with an action of the circle S1 carries a homotopy BV-algebra structure,
which is homotopy equivalent to that of C•(fD).

 Any TCFT carries a homotopy BV-algebra structure, which is homotopy equiva-
lent to the action of the operadic part C•(R).

Thus an important part of a TCFT structure is encoded in the algebraic notion
of homotopy BV-algebra structure. These two structures lift, on the chain level and
up to homotopy, the BV-algebra structures on homology. Then by the Homotopy
Transfer Theorem 10.3.10, one extends this BV-algebra structures on homology to
a homotopy BV-algebra structure, which defines new homotopy invariants.

13.7.8 Vertex Operator Algebras and Homotopy BV-Algebras

A vertex operator algebra is an algebraic structure introduced by Richard Borcherds
with motivation in conformal field theory and the monstrous moonshine. We refer to
[Kac98, FBZ04] for the full definition. Yi-Zhi Huang [Hua97] proved that a vertex
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operator algebra is a “partial” algebra over the Riemann sphere operad R. Hence
Theorem 13.7.7 motivates the following result.

Theorem 13.7.9 (Lian–Zuckerman conjecture [GCTV09]). Any topological vertex
operator algebra A, with nonnegatively graded conformal weight, carries an ex-
plicit homotopy BV-algebra structure, which extends the Lian–Zuckerman opera-
tions in conformal weight zero and which induces the Lian–Zuckerman BV-algebra
structure on H•(A).

Proof. The proof relies on the obstruction theory applied to the convolution dg Lie
algebra gBV,A := HomS(BV

¡
,EndA), see Sect. 10.1.2. Since the Koszul dual dg

cooperad BV
¡

is weight-graded, so is gBV,A. Starting from the Lian–Zuckerman
operations in weight 0, one shows that the obstructions, i.e some homology groups,
to extending them vanish. The definition of a topological vertex operator algebra
actually gives a contracting homotopy for this, which shows that one can explicitly
construct the homotopy BV-algebra structure inductively. �

13.7.9 Cyclic Deligne Conjecture

The cyclic Deligne conjecture is the generalization from the Gerstenhaber algebra
case to the BV-algebra case, of the Deligne conjecture [Tam99].

Theorem 13.7.10 (Cyclic Deligne conjecture [GCTV09]). Let A be a cyclic unital
associative algebra. There is a homotopy BV-algebra structure on its Hochschild
cochain complex, which lifts the BV-algebra structure on Hochschild cohomology.

Proof. Kaufmann proved in [Kau08] that the operad C•(fD), made of the singular
chains of the framed little discs operad, acts on C•(A,A). Finally, we conclude with
Theorem 13.7.7. �

This conjecture was proved with various topological models in [Kau08] (framed
little discs, cacti), in [TZ06] (cyclic Sullivan chord diagram), in [Cos07] (Riemann
sphere), and in [KS09] (configuration of points of the cylinder). Since the operad
BV∞ is cofibrant, it provides a canonical model for the cyclic Deligne conjecture.

13.8 Magmatic Algebras

The notion of associative algebra is so important that the algebras of any other type
used to be called “nonassociative algebras”. This terminology includes the algebras
which have one binary operation with no further relation. On the other hand, Bour-
baki calls “magma” a set equipped with a binary operation without any further rela-
tion. So we adopt the terminology magmatic for this precise type of nonassociative
algebras. It is an interesting case because the associated operad is free.
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13.8.1 Definition of a Magmatic Algebra

A magmatic algebra is a vector space equipped with a binary operation xy with no
relation. The free magmatic algebra on one generator x is spanned by the monomials
in x with a parenthesizing, for instance:

((
x(xx)

)
(xx)
)
.

It is often helpful to replace the parenthesizings by the planar binary trees,
therefore the free magmatic algebra Mag(K) on one generator x is Mag(K) =⊕
n≥1 K[PBTn]. Under this identification the generator is the tree | and the binary

product is the grafting: t1t2 = t1 ∨ t2.
As in the associative case we can work either in the unital case (existence of an

element 1 such that 1 · x = x = x · 1, played by the empty tree), or in the nonunital
case.

13.8.2 The Operad Mag

The category of magmatic algebras can be encoded by a nonsymmetric operad
which comes from a set-theoretic operad. We denote it by Mag. From the previ-
ous discussion we get:

Magn =K[PBTn].
As mentioned before the operad Mag is the free ns operad on one binary operation
that we have met in Sects. 5.5 and 5.9.6:

Mag=T
(
K

)
.

It is a nonsymmetric operad, which is binary and quadratic. In the unital case we
denote the associated ns operad by uMag.

13.8.3 Koszul Dual of Mag

The Koszul dual operad of Mag is the nilpotent operad Nil having one binary oper-
ation xy as generator and relations

(xy)z= 0= x(yz).

Since Mag is free, i.e. RMag = 0, its Koszul dual operad is the quotient of T (K )

by the operadic ideal generated by T (K )(2), that is the composites ◦1

and ◦2 . It is trivial to show that these operads are Koszul. As a

consequence we get, without any calculation, the algebraic expression of the Catalan
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series. The generating series for the nilpotent operad is simply f Nil(x)= x+x2, and
the generating series for the magmatic operad is fMag(x) =∑n≥1 cnx

n, where cn
is the Catalan number (number of planar binary trees). From the functional equation
relating the generating series of Koszul dual operads (cf. Theorem 7.6.7) we get

∑

n≥1

cnx
n = 1−√1− 4x

2
,

and therefore cn = 1
n+1

(2n
n

)
.

We have mentioned before that the black product with preLie amounts to some
dichotomization. In the case of Nil the following surprising phenomenon occurs: the
symmetric operad preLie�Nil is not Koszul. The proof can be done by computing
the generating series, cf. [Val08].

13.8.4 Commutative Magmatic Algebras

It is sometimes necessary to work with algebras having one commutative operation
without any further relation (so not associative for instance). We call it a commu-
tative magmatic algebra and we denote the operad by ComMag. The operad is de-
scribed by (non-planar) binary trees. The dimension of the space of n-ary operations
is

dim ComMag(n)= (2n− 1)!! = 1× 3× 5× 7× · · · × (2n− 1).

A basis of ComMag(n) is given by the binary shuffle trees introduced in
Sect. 8.2.2.

13.9 Parametrized Binary Quadratic Operads

Associative algebras, Poisson algebras, Leibniz algebras and Zinbiel algebras are
examples of types of algebras generated by one operation (without symmetry) with
one quadratic relation of the form

(xy)z=
∑

σ∈S3

aσ σ
(
x(yz)

)
for some coefficients aσ ∈K.

We have seen in Proposition 7.6.4 that the Koszul dual operad is generated by
one operation with the quadratic relation

x(yz)=
∑

σ∈S3

sgn(σ )aσ−1σ
(
(xy)z

)
.
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One passes from the type of algebras with relations of the form (xy)z =∑
(−(−−)) to those with relations of the form x(yz)=∑((−−)−) by taking the

“opposite type” given by x · y := yx.
If A is an algebra of the first type and B is an algebra of the dual type, then we

know by Theorem 7.6.5 that A⊗ B is a Lie algebra. In fact it has a finer structure
here.

Proposition 13.9.1. Under the aforementioned hypothesis the operation {a ⊗
b, a′ ⊗ b′} := aa′ ⊗ bb′ is a pre-Lie product.

Proof. The verification is a direct calculation. �

13.10 Jordan Algebras, Interchange Algebras

The symmetrization of an associative product motivates the introduction of the no-
tion of Jordan algebra. The associated operad is binary and cubic (relations involv-
ing 3 operations). It is a key tool in the analysis of symmetric spaces. We briefly
mention another type of cubic operad: the operad which encodes the interchange
algebras.

13.10.1 Definition of Jordan Algebras

A Jordan algebra is a vector space equipped with a symmetric binary operation x ·y
which satisfies the relation:

(
a·2
) · (b · a)= ((a·2) · b) · a.

A priori operads do not code for such types of algebras because the relation is not
multilinear. However, if 3 is invertible in K, the relation is equivalent to its multilin-
earized form which is the cubic relation:

(x · y) · (t · z)+ (x · z) · (t · y)+ (y · z) · (t · x)
= ((x · y) · t) · z+ ((x · z) · t) · y + ((y · z) · t) · x

which is symmetric in x, y, z. So, for the purpose of this book we call Jordan alge-
bra a vector space equipped with one binary operation satisfying this cubic relation.
The associated operad is denoted by Jord.

13.10.2 From Associative Algebras to Jordan Algebras

Let A be an associative algebra with product xy. We denote by x · y := xy + yx
the symmetrized product. It is well known, and easy to check, that the symmetrized
product satisfies the cubic relation of Jordan algebras. More precisely, in arity 3,
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there are 3 different operations, all of the type (x · y) · z, which are linearly indepen-
dent. In arity 4, there are 15 different operations, 12 of the type ((x · y) · z) · t and 3
of the type (x · y) · (z · t) (cf. Sect. 13.8.4). However the 15 operations in arity 4 are
not linearly independent, since they satisfy the cubic formula. As a consequence we
get a morphism of operads

Jord → Ass.

Contrary to the Lie case, this morphism is not injective. In other words there are re-
lations satisfied by the symmetrized associative product which are not consequences
of the Jordan relation. The first examples appear in arity 8: the Glennie relations, see
page 79 of [ZSSS82].

13.10.3 Jordan Triple

The relation which defines Jordan algebra is not quadratic. However there is a close
notion called Jordan triples, whose relation is quadratic. By definition a Jordan triple
(also called Jordan triple system) is a vector space A equipped with a ternary oper-
ation satisfying the symmetry relation

(xyz)= (zyx),
and the quadratic relation

(
uv(xyz)

)= ((uvx)yz)− (x(yuv)z)+ (xy(uvz)).
Because of the symmetry relation there are several ways of writing the quadratic
relation. The way we wrote it here is close to a Leibniz type relation. The operad
of Jordan triples is denoted by JT . The relation with Jordan algebras is as follows.
Any Jordan algebra gives rise to a Jordan triple by the formula:

(xyz) := x(yz)− y(xz)+ (xy)z.
Any associative algebra gives a Jordan triple by the formula:

(xyz) := xyz+ zyx.
In the next section we introduce the notion of ternary totally associative al-

gebra, denoted tAs〈3〉-algebra. There is a functor tAs〈3〉-alg → JT -alg, given by
〈xyz〉 := (xyz) + (zyx). Indeed, the operation 〈xyz〉 satisfies the symmetry prop-
erty of the Jordan triples by definition. It satisfies also the quadratic relation because
this quadratic relation is already fulfilled for (xyz) if this operation is totally asso-
ciative.

This functor is similar to the functor Ass-alg→ Lie-alg. In this Jordan framework
the role of commutative algebras is played by the totally associative ternary algebras
which satisfy the symmetry relation

(xyz)= (zyx).
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13.10.4 Interchange Algebra

Let x · y and x ∗ y be two binary operations. The following relation

(a · b) ∗ (c · d)= (a ∗ c) · (b ∗ d)
crops up in many places in mathematics. It is called the interchange relation. In
many examples the two operations are supposed to be associative. For instance, it
is the key formula to show that the higher homotopy groups are abelian (Eckmann–
Hilton argument). It also permits us to define the notion of “bicategory”. When
· = ∗, any idempotent x (i.e. x ∗ x = x) gives the identity

x ∗ (y ∗ z)= (x ∗ y) ∗ (x ∗ z).
This is called the “right-distributivity property”. It is related with many structures,
like braids and knots for instance.

The operad defined by these two binary operations and the interchange relation
is binary cubic and deserves to be studied.

13.11 Multi-ary Algebras

So far we have essentially dealt with examples of operads generated by binary op-
erations. Of course, there is no reason to study only these ones, and in fact there are
some very interesting operads generated by operations in any arity. We have already
met some, when working with P∞-algebras. Here are some others involved in the
study of moduli spaces, together with an elementary application to the inversion of
power series.

13.11.1 Totally and Partially Associative 〈k〉-Algebra

By definition a totally, resp. partially, associative 〈k〉-algebra is a vector space A
equipped with a k-ary operation:

( ) :A⊗k −→A

which satisfies
(
(x1 · · ·xk)xk+1 · · ·x2k−1

)= (x1 · · ·xi(xi+1 · · ·xi+k) · · ·x2k−1
)

for any i,

resp.
i=k−1∑

i=0

(−1)i(k−1)(x1 · · ·xi(xi+1 · · ·xi+k) · · ·x2k−1
)= 0.
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The category of totally, resp. partially, associative 〈k〉-algebras is encoded by a non-
symmetric operad denoted by tAs〈k〉, resp. pAs〈k〉 introduced by Victor Gnedbaye
in [Gne97]. The space on n-ary nonsymmetric operations of tAs〈k〉 is given by

tAs〈k〉ik−i−1 =K, tAs〈k〉n = 0 otherwise.

If we put the degree k−2 on the generating operation of pAs〈k〉, then the ns operads
tAs〈k〉 and pAs〈k〉 are Koszul dual to each other, cf. [MR09]. Moreover the Koszulity
can be proved by the rewriting method, cf. Sect. 8.1.

13.11.2 Hypercommutative Algebra and Gravity Algebra

A hypercommutative algebra A is a chain complex A equipped with a totally sym-
metric n-ary operation (x1, . . . , xn) of degree 2(n − 2) for any n ≥ 2. They are
supposed to satisfy the following generalized associativity relation:

∑

S1'S2={1,...,n}

(
(a, b, xS1), c, xS2

)=
∑

S1'S2={1,...,n}
(−1)|c||xS1 |(a, (b, xS1 , c), xS2

)
,

for any n≥ 0. We denote the associated operad by HyperCom.
Consider the moduli space Mg,n+1 of smooth projective curves of genus g with

n+ 1 marked points. It admits a compactification �Mg,n+1 made of stable curves,
which is due to Deligne, Mumford and Knudsen [DM69, Knu83]. The gluing of the
latter curves along one point defines an operad structure. Actually, it forms a cyclic
and a modular operad (see Sects. 13.14.6 and 13.14.8). Here we think of the first
marked point as the output.

Proposition 13.11.1. [KM94, Get95] The operad formed by the homology
H•( �M0,n+1) of the genus 0 part of the moduli space of stable curves is isomor-
phic to the operad encoding hypercommutative algebras.

Proof. The genus 0 moduli space �M0,n+1 is a compact manifold of dimension
2(n− 2). One sends its fundamental class to the generating n-ary operations of
the operad HyperCom. For the rest of the proof, we refer the reader to the original
papers. �

The Gromov–Witten invariants endow the cohomology of any symplectic man-
ifold or any smooth projective variety with a hypercommutative algebra structure.
(Notice that in the book [Man99b], this structure is called a Comm∞-algebra. To
avoid confusion with C∞ = Com∞-algebra, that is homotopy commutative algebra,
we stick to the notation HyperCom.)

A gravity algebra is a chain complex A endowed with (graded) skew-symmetric
operations [x1, . . . , xn] : A⊗n→ A of degree n− 2 for any n≥ 2. They satisfy the
following relations:
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∑

1≤i<j≤k
±[[xi, xj ], x1, . . . , x̂i , . . . , x̂j , . . . , xk, y1, . . . , yl

]

=
{ [[x1, . . . , xk], y1, . . . , yl] for l > 0,

0 for l = 0.

We denote the associated operad by Grav.
The gluing along one point of two smooth curves does not produce a smooth

curve anymore. However, this gluing endows the suspension of the homology
sH•(M0,n+1) with an operad structure.

Proposition 13.11.2. [Get94] The operad formed by the homology sH•(M0,n+1) of
the genus 0 part of the moduli space of smooth curves is isomorphic to the operad
encoding gravity algebras.

Theorem 13.11.3. [Get95] The operads HyperCom and Grav are Koszul dual to
each other.

Proof. This proof relies on the mixed Hodge structure of the moduli spaces of
curves, see [Get95]. �

13.11.3 Lie and Leibniz 〈k〉-Algebra

By definition a Leibniz 〈k〉-algebra is a vector space A equipped with a k-ary oper-
ation

[ ] :A⊗k −→A

satisfying the quadratic relation

[[x1 · · ·xk]y1 · · ·yk−1
]=

i=k−1∑

i=0

[
x1 · · ·xi−1[xiy1 · · ·yk−1]xi+1 · · ·xk

]
.

The notion was introduced and studied in [CLP02]. For k = 2 it is the notion of
Leibniz algebra mentioned in Sect. 13.5.

By definition a Lie 〈k〉-algebra [VV97] is a Leibniz 〈k〉-algebra whose k-ary
bracket satisfies the following symmetry property:

[xσ(1) · · ·xσ(k)] = sgn(σ )[x1 · · ·xk] for any permutation σ.

This notion has been used in combinatorics, see for instance [HW95].
For k = 2 this is the classical notion of Lie algebras. For k = 3 there is an in-

termediate structure studied in the literature, called Lie triple systems [Lis52]. It
consists in starting with a Leibniz 3-algebra and imposing the symmetry property:

[x1x2x3] + [x2x1x2] + [x3x1x2] = 0.

For higher k’s this notion is involved in the so-called Nambu mechanics [Tak94].
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13.11.4 Brace Algebras

A brace algebra is a vector space R equipped with a (1+ n)-ary operation denoted
either {–;–, . . . ,–} orM1n for n≥ 1 satisfying the following formulas:

{{x;y1, . . . , yn}; z1, . . . , zm
}=
∑{

x; . . . , {y1; . . .}, . . . , {yn; . . . , }, . . .
}
.

On the right-hand side the dots are filled with the variables zis (in order) with the
convention {yk; ∅} = yk . The first nontrivial relation, which relates the 2-ary opera-
tion and the 3-ary operation reads

{{x;y}; z}= {x; z, y} + {x; {y; z}}+ {x;y, z}.
Observe that, as a consequence of this relation, the binary operation {–;–} is a pre-
Lie product since its associator is right-symmetric:

{{x;y}; z}− {x; {y; z}}= {x;y, z} + {x; z, y}.
This notion was implicitly used in [Ger63] and was formally introduced by Ger-

stenhaber and Voronov in [GV95].
When the (1+ n)-ary brace operation {x;y1, . . . , yn} is symmetric in the y vari-

ables for any n, then the brace algebra is said to be symmetric. We mentioned the
equivalence between symmetric brace algebras and pre-Lie algebras in Sect. 13.4.5.

The pre-Lie structure of P(K) for a ns operad P mentioned in Sect. 5.9.15 can
be extended as follows.

Proposition 13.11.4. For any nonsymmetric operad P the free P-algebra on one
generator P(K)=⊕nPn, is a brace algebra, in particular it is a pre-Lie algebra.

Proof. The operad structure of P is determined by the composition maps

γi1···ik :Pk ⊗Pi1 ⊗ · · · ⊗Pik →Pi1+···+ik .

Since P(K)=⊕nPn we define

M1n :P(K)⊗P(K)⊗n→P(K)

as follows for μn ∈Pn and νij ∈Pij :

M1n(μn;νi1, . . . , νik )= 0 if n < k,

M1n(μn;νi1, . . . , νik )= γ (μk;νi1, . . . , νik ) if n= k,
M1n(μn;νi1, . . . , νik )=

∑
γ (μn; id, . . . , id, νi1, id, . . . , id, νik , . . .) if n > k.

Observe that the elements on the right-hand side lie in Pi1+···+ik+n−k .
The brace relations are a consequence of the associativity of γ . �
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The operad Brace encoding the brace algebras can be described by using the
planar rooted trees (see for instance [LR10]). It is related to many other types of
algebras. One of the main points is the following.

Proposition 13.11.5 (Ronco [Ron02]). For any brace algebra R the tensor module
T (R) is a unital dendriform algebra. Equipped with the deconcatenation coproduct,
this tensor module becomes a cofree Hopf algebra.

Proof. We refer to the original papers [Ron00, Ron02] for the proofs. Let us state
the main formula relating the dendriform structure of (T (R),≺,.) and the brace
structure of R. For any x1, . . . , xk ∈R we introduce Ronco’s elements

wi≺(x1, . . . , xk) :=
(
x1 ≺

(
x2 ≺ (. . .≺ xk)

))
,

wi.(x1, . . . , xk) :=
((
(x1 . x2). . . .

). xk
)
.

The brace operations and the dendriform operations are related by:

{x;y1, . . . , yn} =
n+1∑

i=1

(−1)iwi≺(y1, . . . , yi−1). x ≺wi.(yi, . . . , yn). �

REMARK. When P = End(A), for A an associative algebra, the Hochschild
cochain complex C•Hoch(A,A) := ⊕nHom(A⊗n,A) has an associative product and
a Lie bracket which make it into a GV-algebra. This structure plays a key role in the
proof of the Deligne conjecture, cf. Sect. 13.3.15.

13.11.5 Multibrace Algebra

The notion of brace algebra is a particular case of a more general notion, called
multibrace algebra, which is defined as follows.

A multibrace algebra is a vector space A equipped with (p + q)-ary operations
Mpq :A⊗p+q→A, p ≥ 0, q ≥ 0, such that

M00 = 0, M01 = id=M10, M0q = 0=Mp0, for p > 1, q > 1,

(Rijk) :
∑

1≤l≤i+j
Mlk ◦

(
Mi1j1 . . .Miljl ; id⊗k

)=
∑

1≤m≤j+k
Mim ◦

(
id⊗i;Mj1k1 . . .Mjmkm

)

where the left sum is extended to all sets of indices i1, . . . , il; j1, . . . , jl such that
i1 + · · · + il = i; j1 + · · · + jl = j , and the right sum is extended to all sets of
indices i1, . . . , im; j1, . . . , jm such that j1 + · · · + jm = j ; k1 + · · · + km = k. We
denote the associated operad by MB . The notion of differential graded multibrace
algebra first appeared under the name B∞-algebra in [GJ94], see also [GV95]. The
plain version was denoted B∞ in [LR06]. The relationship with brace algebras is
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given by the following statement: if, in a given B∞-algebra, the operationsMnm are
0 for n ≥ 2, then it is a brace algebra for {−;−, . . . ,−} :=M1,p . Our interest for
this structure is justified by the following proposition.

Proposition 13.11.6. For any multibrace algebra R the tensor module T (R) is a
unital 2-associative algebra. Equipped with the deconcatenation coproduct, this ten-
sor module becomes a cofree Hopf algebra. Conversely, any cofree Hopf algebra
equipped with an isomorphism with the tensor module over its primitive part is of
this form.

Proof. We refer to the original papers [LR06] for the proof. See also [LR10] for
more information. �

There is a strong relationship between brace algebras and multibrace algebras. A
brace algebra is nothing but a multibrace algebra such that Mpq = 0 for any p ≥ 2.
Moreover this vanishing condition is equivalent to a “right-sided property” of the
Hopf algebra, which reads as follows:

for any q ≥ 0 the space
⊕
n≥q R⊗n is a right ideal of T (R).

We refer to [LR10] for more on this subject.

13.11.6 From (Multi)Brace Algebras to Hopf Algebras

If one takes the tensor module over a multibrace algebra, then one gets a bialgebra
(in fact a Hopf algebra). The multibrace algebra is the primitive part of the bialgebra.
Starting with a brace algebra gives a bialgebra satisfying some special property
(rightsidedness), cf. Proposition 13.11.5. We refer to [LR10] and [MV09a] for more
information on this subject.

13.11.7 Magmatic-Infinity Algebras

We have seen in Sect. 13.8 that the magmatic operad is the free ns operad on a bi-
nary operation. Let us start with one operation in each arity n ≥ 2. We denote by
Mag∞ the free operad on this set of operations. So a Mag∞-algebra is simply a vec-
tor space equipped with one n-ary operation μn for each n≥ 2 without any further
relation. We recall that this is the beginning of the description of A∞. We have seen
in Sect. 9.2.4 that the free Mag∞-algebra on one generator is spanned by the planar
trees (with at least two inputs). As in the case of Mag, the dual operad is easy to de-
scribe since it is a nilpotent operad. The functional equation of the generating series
permits us to show that the number of planar trees is given by the little Schroeder
numbers. Instead of giving the details, we will show a refinement of this result as
follows. Given a generic formal power series, the next proposition make explicit the
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coefficients of its inverse for composition. It is a well-known result, but the proof
that we are going to provide is very simple and makes it clear why the number of
planar trees of a given type plays a role in the formula.

Proposition 13.11.7 (Lagrange inversion formula). et f (x) = x + a1x
2 + · · · +

an−1x
n + · · · be a generic formal power series, and let g(x) = x + b1x

2 + · · · +
bn−1x

n + · · · be its inverse for composition. The coefficient bn is a polynomial in
the coefficients a1, . . . , an given by the following formula:

b1 = −a1,

b2 = 2a1
2 − a2,

b3 = −5a1
3 + 5a1a2 − a3,

b4 = 14a1
4 − 21a1

2a2 + 6a1a3 + 3a2
2 − a4,

and more generally

bn =
∑

i1+2i2+···+kik=n
(−1)i1+i2+···+ik ci1···ik a1

i1a2
i2 . . . ak

ik ,

where the coefficient ci1···ik is the number of planar rooted trees having n+ 2 leaves
and ij vertices with j + 1 inputs (cf. [Sta97a]).

Proof. [Val07b, Lod06] First we remark that it is sufficient to prove this statement
under the hypothesis that the elements an are positive integers. Under this assump-
tion, let P be the free ns operad on an−1 n-ary operations (n ≥ 2). The space Pn

of n-ary operations is spanned by the compositions of these generating operations.
Therefore a linear basis of Pn is obtained by taking all the planar trees with n leaves
and decorating each vertex with j inputs by one of the aj−1 operations of arity j .
Recall that there are ij such vertices. Therefore the generating series of P is (up to
signs) g(x).

The dual of P is the nilpotent operad having an−1 n-ary operations (n≥ 2). Be-
cause of the nilpotency there is no new operation created by composition. Therefore
its generating series is f (x). Since P is a free operad, it is Koszul and the func-
tional equation between the two generating series (cf. Theorem 7.5.1 and [Val07b,
Sect. 4.3]) gives the expected result for y = 1 and x = t . �

Observe that ci1···ik is also the number of cells of the (k − 1)-dimensional asso-
ciahedron K k−1, which are of the form (K 0)i1 × · · · × (K k−1)ik .

13.12 Examples of Operads with 1-Ary Operations, 0-Ary
Operation

We first comment briefly on the case of associative algebras viewed as operads.
We have already seen one example of operad mixing unary operation and binary

operations: the Batalin–Vilkovisky operad, cf. Sect. 13.7. We briefly mention an-



13.12 Examples of Operads with 1-Ary Operations, 0-Ary Operation 551

other one: associative algebras with derivation. In the last subsection we give a brief
comment on operads with a 0-ary operation.

13.12.1 Unital Associative Algebras as Operads

We have already mentioned that a unital associative algebra R can be viewed as a ns
operad concentrated in arity one: P(1)=R and P(n)= 0 for n≥ 2. Therefore the
theorems of the general theory apply, in particular the Homotopy Transfer Theorem.
An algebra of this operad P is simply a left module over R. An algebra over �P ¡

is a left dg module over the dg algebra �R¡.
Surprisingly the case of the dual numbers R = K[ε]/(ε2 = 0) gives rise to a

structure which generalizes the notion of spectral sequence. We give details on this
case in Sect. 10.3.7.

In the case of the symmetric algebra the Koszul duality between S(V ) andΛc(V )
gives essentially the Bernstein–Gelfand–Gelfand [BGG78] correspondence.

13.12.2 Associative Algebras with Derivation

Let A be nonunital associative algebra over K. A derivation of A is a linear map
DA :A→A which satisfies the Leibniz relation

DA(ab)=DA(a)b+ aDA(b)

for any a, b ∈A. There is an obvious notion of morphism. The nonsymmetric operad
encoding the category of associative algebras with derivation is denoted by AsDer.
It admits the following presentation. There are two generating operations, one of
arity 1, that we denote by D, and one of arity 2 that we denote by μ. The relations
are:

{
μ ◦ (μ, id) = μ ◦ (id,μ),

D ◦μ = μ ◦ (D, id)+μ ◦ (id,D).
The ns operad AsDer is determined by a certain family of vector spaces AsDern,
n≥ 1, and composition maps

γi1,...,ik : AsDerk ⊗ AsDeri1 ⊗ · · · ⊗ AsDerik → AsDern

where n = i1 + · · · + ik . As a vector space AsDern is isomorphic to the space of
polynomials in n variables:

AsDern =K[x1, . . . , xn],
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so it is not finite dimensional. The composition map γ = γi1,...,ik is given by

γ (P ;Q1, . . . ,Qk)(x1, . . . , xn)

= P(x1 + · · · + xi1, xi1+1 + · · · + xi1+i2, xi1+i2+1 + · · · , . . .)
×Q1(x1, . . . , xi1)Q2(xi1+1, . . . , xi1+i2) · · · .

Under this identification the operations id,D,μ correspond to 11, x1 ∈ K[x1] and
to 12 ∈K[x1, x2] respectively. More generally the operation

(a1, . . . , an) �→Dj1(a1)D
j2(a2) · · ·Djn(an)

corresponds to the monomial xj11 x
j2
2 · · ·xjnn .

We refer to [Lod10] for the study of this operad and several generalizations of
this case. One of them is particularly interesting: it consists in replacing the poly-
nomials by the rational functions. So in arity one the operation x gets an inverse for
composition x−1. Since x corresponds to the derivation D, its inverse corresponds
to integration. So the integro-differential calculus can be written within this operad.

13.12.3 Some Examples of Operads with a 0-Ary Operation

So far, we have not worked out the operads with nontrivial 0-ary operation. In the
definition of a P-algebra A, any 0-ary operation u ∈P(0) induces a map K→A,
or equivalently a particular element in A.

The main example is unital associative algebras. The nonsymmetric operad uAs
encoding them is equal to the operad As for associative algebras plus one element in
arity 0: uAs(0)=Ku. The composition product of the ns operad uAs is given by the
composition product operad in As plus some composition involving the unit. Explic-
itly, the ns operad uAs admits the following presentation uAs = T (u,μ)/(RuAs).
The space of relations RuAs is generated by the associator of μ and

μ ◦1 u= id= μ ◦2 u :

•

= =

•

.

These relations involve binary (2-ary) and constant (0-ary) operations. Therefore
this example does not fit into the Koszul duality theory as developed here. We refer
the reader to the paper [HM10] of Joey Hirsh and Joan Millès for the suitable gen-
eralization. In this case, the Koszul dual cooperad is equipped with a “curvature”,
which makes it into a non dg object. This theory produces a notion of homotopy uni-
tal associative algebra, which is closely related to the ones appearing in symplectic
geometry [FOOO09a, FOOO09b, Sei08].

Other types of algebras admit a coherent unit, like commutative algebras, Perm-
algebras, for instance. In these cases, one has to use operads with a nontrivial 0-ary
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operation to encode them. There are also cases where it is useful to introduce a unit,
though composition is not everywhere defined. The case of dendriform algebras is a
paradigm, cf. Sect. 13.6.4. For an elementary introduction to operads with coherent
units, see [Lod04b]. Some further study can be found in [Hol06] and [EFG07].

13.13 Generalized Bialgebras and Triples of Operads

We have seen in Sect. 1.3.2 that the free associative algebra is in fact a cocommuta-
tive bialgebra. In other words it is naturally equipped with a structure of cocommu-
tative coalgebra satisfying the Hopf compatibility relation. A similar phenomenon
occurs in many other situations. For instance, if we replace the Hopf compatibil-
ity relation by the unital infinitesimal compatibility relation, then the cooperation
is the deconcatenation coproduct (which is coassociative). In this section we give
some more examples and we summarize the general results on the “generalized
bialgebras”. They consist in structure theorems which were stated and proved in
[LR06, Lod08].

13.13.1 Unital Infinitesimal Bialgebra

A unital infinitesimal bialgebra, u.i. bialgebra for short, is a vector space H
equipped with a unital associative product xy, and a counital coassociative coprod-
uct �(x), which satisfy the unital infinitesimal compatibility relation:

�(xy)=−x ⊗ y +�(x)(1⊗ y)+ (x ⊗ 1)�(y).

This compatibility relation can be pictured as:

=− + +

The main example is the following. Let T (V ) be the tensor module that we equip
with the concatenation product and the deconcatenation coproduct (see Sect. 1.2.6).
Then it can easily be proved that concatenation and deconcatenation satisfy the u.i.
compatibility relation. It turns out that if the u.i. bialgebra is supposed to be conilpo-
tent, then it is a tensor algebra:

Proposition 13.13.1 (Loday–Ronco [LR06]). Let H be a u.i. bialgebra over the
field K. Then the following are equivalent:

a) H is conilpotent,
b) H ∼= T (PrimH ) as a u.i. bialgebra.
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Here PrimH is the primitive part of H , that is the kernel of the reduced co-
product. This result is analogous to the Hopf–Borel theorem (a particular case of
the CMM theorem), which asserts that, over a characteristic zero field, a commu-
tative cocommutative Hopf algebra which is conilpotent is the symmetric algebra
over its primitive part. Observe that, in the associative case, the characteristic zero
hypothesis is not necessary. It comes from the fact that the involved operads are
nonsymmetric operads and the compatibility relation does not use the symmetric
groups.

The Hopf–Borel theorem admits a generalization: the CMM theorem. Similarly
the above mentioned structure theorem admits a generalization which involves “du-
plicial algebras”.

13.13.2 Duplicial Structures [Lod08, Chap. 5]

A duplicial algebra is a vector space A equipped with two operations x ≺ y and
x . y which satisfy the following axioms:

(x ≺ y)≺ z= x ≺ (y ≺ z),
(x . y)≺ z= x . (y ≺ z),
(x . y). z= x . (y . z).

A duplicial bialgebra is a duplicial algebra H equipped with a coassociative
coproduct � which satisfy the following n.u.i. compatibility relations:

≺ = +
≺

+
≺

. = +
.

+
.

Observe that, here, we work in a nonunital context. It can be shown, by an ar-
gument similar to the classical case, that the free duplicial algebra is naturally a
duplicial bialgebra. Let us introduce the operation “dot” defined by

x · y := x . y − x ≺ y.
It gives rise to a forgetful functor Dup-alg→Mag-alg from the category of duplicial
algebras to the category of magmatic algebras. Since it is a forgetful functor it admits
a left adjoint which we denote by U :Mag-alg→Dup-alg.
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Theorem 13.13.2 (Loday–Ronco [LR06]). Let H be a duplicial bialgebra over a
field K. The following conditions are equivalent:

a) H is conilpotent,
b) H ∼=U(PrimH ) as a duplicial bialgebra,
c) H ∼= �T c(PrimH ) as a coassociative coalgebra.

The key point of the proof is the property of the free duplicial algebra mentioned
above: it is naturally a duplicial bialgebra. Its coproduct is constructed as follows.
First, we remark that the tensor product of two duplicial algebras A and B can be
made into a duplicial algebra by taking

(x ⊗ y)≺ (x′ ⊗ y′) := (x ≺ x′)⊗ (y ≺ y′),
(x ⊗ y). (x′ ⊗ y′) := (x . x′)⊗ (y . y′).

The coproduct� :Dup(V )→Dup(V )⊗Dup(V ) is constructed as follows: it is the
unique extension of the map 0 : V → Dup(V )⊗ Dup(V ) which satisfies the n.u.i.
compatibility relations. Observe that � is not 0 since �(v ≺w)= v ⊗w =�(v .
w) for any v,w ∈ V .

As a corollary of the theorem we get the following isomorphism of functors (or
graded vector spaces):

Dup∼= As ◦Mag

which is the associative analog of As ∼= Com ◦ Lie. In particular the natural map
Mag(V )→Dup(V ) is injective. This fact plays a key role in the proof of the prop-
erty of the symmetrized pre-Lie product, cf. Sect. 13.4.4.

The structure theorem 13.13.2 is an analog of the CMM-PBW theorem in the
noncocommutative framework. Several other structure theorems of this type can be
proven. The general framework is as follows.

13.13.3 Generalized Bialgebras

Let A and C be two algebraic operads. We assume that A (0)= 0= C (0), A (1)=
K id= C (1) and that there is a finite number of generating operations in each arity.
As a consequence C (n) and A (n) are finite dimensional vector spaces.

By definition a (C c,�,A )-bialgebra, or C c-A -bialgebra for short, also called
generalized bialgebra, is a vector space H which is an A -algebra, a C -coalgebra,
and such that the operations of A and the cooperations of C acting on H satisfy
some compatibility relations, denoted �, read “between” (some equalities involving
composition of operations and cooperations valid for any elements of H ). This set
of relations is, of course, part of the structure. A category of generalized bialgebras
is governed by an algebraic prop (we simply say a prop). Props can be defined
as algebras over some combinatorial monad like in Sect. 13.14. Starting with any
presentation of the operad A and of the cooperad C , this prop is obtained as the
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quotient of the free prop generated by the generators of A and C (considered as
multivalued operations), modulo the relations between the operations, the relations
between the cooperations and the relations entwining operations and cooperations.
The algebras over this quotient are the generalized bialgebras.

A distributive compatibility relation between the operation μ and the cooperation
δ is a relation of the form

δ ◦μ=
∑

i

(
μi1 ⊗ · · · ⊗μim

) ◦ωi ◦ (δi1 ⊗ · · · ⊗ δin
)

(�)

where
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ ∈A (n), μi1 ∈A (k1), . . . ,μ
i
m ∈A (km),

δ ∈ C (m), δi1 ∈ C (l1), . . . , δin ∈ C (ln),

k1 + · · · + km = l1 + · · · + ln = ri ,
ωi ∈K[Sri ].

Hence, in a generalized bialgebra with distributive compatibility relations, the
composite of an operation and a cooperation can be re-written as cooperations first
and then operations. Observe that the identity is both an operation and a cooperation.

13.13.4 Hypothesis (H0)

There is a distributive compatibility relation for any pair (δ,μ) where μ is an oper-
ation and δ is a cooperation, which preserves the composition of the operad A and
of the cooperad C .

The distributive compatibility relations induce a mixed distributive law in the
sense of Fox and Markl [FM97], that is a map

P(m)⊗C (n)→
⊕

C (i1)⊗ · · · ⊗C (im)⊗Si K[SN ] ⊗Sj P(j1)⊗ · · · ⊗P(jn).

Here we used the multi-index notation for i = (i1, . . . , im) and for j , and Si :=
Si1 × · · · × Sim , N = i1 + · · · + im = j1 + · · · + jn.

Example of a compatibility relation for the pair (δ,μ) with n = 3, m = 4 and
r = 8:

μ

δ
= ω
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Here we have l1 = 1, l2 = 3, l3 = 4; k1 = 2, k2 = 1, k3 = 3, k4 = 2 and so
r = 1+ 3+ 4= 2+ 1+ 3+ 2. Observe that, in the general case, the right-hand side
term is a sum of such compositions.

When both operads A and C are nonsymmetric and, in the compatibility rela-
tions, there is no crossing (in particular the only permutations ω are the identity),
then we say that this is a nonsymmetric case and that C c-A is a nonsymmetric prop.

13.13.5 The Primitive Operad

Given a type of algebra (C ,�,A ) we assume the following hypothesis:

(H1) The free A -algebra A (V ) is equipped with a C c-A -bialgebra structure
which is functorial in V .

For instance we have seen in Sect. 1.3.2 that As(V ) = �T (V ) is a (Com,Hopf ,
Ass)-bialgebra and in Sect. 13.13.1 that it is also a (As, u.i.,As)-bialgebra (we refer
here to the nonunital cases, see Exercise 1.8.11). This hypothesis will prove useful
in constructing the operad which encodes the structure of the primitive part of a
generalized bialgebra. An operation in A (n) is said to be primitive if, for any co-
operation δ ∈ �C (m), we have δ ◦ μ= 0. This condition amounts to saying that for
any generic element v1 . . . vm ∈ V⊗m we have δ(μ(v1 . . . vm))= 0 ∈A (V )⊗m. We
denote by P(n) the sub-S-module of A (n) spanned by the primitive operations
and the identity. In [Lod08] we proved the following result.

Theorem 13.13.3. For any bialgebra type (C ,�, α) satisfying the hypotheses
(H0)and (H1)the sub-S-module P is a sub-operad of A .

It should be noted that, even when A and C are presented by a small number
of generating operations and relations, it is a challenge to find such a presentation
for P . So, in general, we cannot just stay with “ types of algebras”, we need to use
operads. The interest of the primitive operad lies in the following result.

Proposition 13.13.4. For any bialgebra type (C ,�,A ) satisfying hypotheses
(H0)and (H1), the primitive part PrimH of a (C ,�,A )-bialgebra H is a P-
algebra.

In the classical case we know that P = Lie, in the duplicial bialgebra case we
can prove that P =Mag.

13.13.6 Triples of Operads

For any generalized bialgebra type (C ,�,A ) satisfying hypotheses (H0)and
(H1), we call (C ,A ,P) a triple of operads (the compatibility relations � are
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understood, but part of the structure). In the classical case (Com,Ass,Lie) we know
that there is a nice structure theorem: the CMM-PBW theorem, cf. 1.3.4. We will
find some conditions which ensure that a similar structure theorem holds in more
generality.

Since A (V ) is a C c-A -bialgebra by hypothesis (H1)the natural projection map
ϕ(V ) :A (V )→ V determines a unique coalgebra map A (V )⊗C c(V ). Let us sup-
pose that there is a natural coalgebra splitting s(V ) : C c(V )→A (V ), ϕ ◦ s = idC .
This is called hypothesis (H2epi). Then the following structure theorem holds.

Theorem 13.13.5 (Structure Theorem for generalized bialgebras [Lod08]). Let
C c-A be a type of generalized bialgebras over a field of characteristic zero. As-
sume that hypotheses (H0), (H1), and (H2epi)hold. Then, for any C c-A -
bialgebra H , the following statements are equivalent:

a) the C c-A -bialgebra H is conilpotent,
b) there is an isomorphism of bialgebras H ∼=U(PrimH ),
c) there is an isomorphism of conilpotent coalgebras H ∼= C c(PrimH ).

In this statement the functor U : P-alg → A -alg is the left adjoint to the for-
getful functor A -alg→P-alg induced by the inclusion of operads P ⊂A . When
A and C are nonsymmetric operads and the compatibility relations do not involve
the symmetric groups, then P is also a nonsymmetric operad and the characteristic
zero hypothesis is not required.

When the structure theorem holds the triple (C ,A ,P) is called a good triple of
operads. We have seen that (Com,As,Lie) and (As,Dup,Mag) are good triples of
operads. More examples, like (As,Dend,Brace) (due to M. Ronco), and proofs can
be found in [Lod08].

13.13.7 Combinatorial Hopf Algebras

The PBW theorem says that a conilpotent cocommutative bialgebra is isomorphic,
as a coalgebra, to the cofree coalgebra over its primitive part. This isomorphism
is not unique. One can construct a specific iso by using the Eulerian idempotents
for instance, but other choices are possible. If, once such a choice has been made,
the product is “right-sided”, then one can prove that the primitive part has more
algebraic structure than being a Lie algebra: it is a pre-Lie algebra. Let us recall
the notion of “right-sidedness”. Let H = (Sc(R),∗) be a bialgebra structure on the
cofree cocommutative coalgebra over R. There is a natural grading H = ⊕nH n

given by H n := Sn(R). We say that it is right-sided if, for any integer q , the sub-
space

⊕
n≥q H n is a right-sided ideal of H .

If the conilpotent bialgebra H is not cocommutative, then there is no PBW the-
orem. However, if it happens that it is cofree as a coassociative coalgebra, then we
can find a structure theorem. Let us make it explicit in the “right-sided” case (re-
place Sn by T n in the previous definition). It can be shown that the primitive part
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of H is more than a Lie algebra: it is a brace algebra. Of course the Lie bracket is
obtained from the brace structure. It is the antisymmetrization of the binary brace.
Moreover one can show that there is also a finer algebra structure on H = T c(R)
than the associative structure: it is a dendriform algebra. So the good triple which
is governing these right-sided cofree coassociative bialgebras is (As,Dend,Brace)
(due to M. Ronco [Ron02]).

We have given in [LR10] more examples of this kind and we called them combi-
natorial Hopf algebras because they cover all the Hopf algebras appearing in alge-
braic combinatorics under this terminology.

One should remark that what we have done here for classical bialgebras, that is
extracting finer structures from explicit PBW iso, can also be done in the case of
generalized bialgebras. But explicit examples are still to be done.

13.14 Types of Operads

There are several variations of the notion of “symmetric operad”. First, one can re-
place the monoidal category of vector spaces by some other monoidal categories:
modules over a commutative ring, sets, simplicial sets, topological spaces, etc. (cf.
Sect. 5.3.5). Second, we know that a natural generalization of the notion of monoid
is the notion of category: the product of two elements can be performed only when
the source of one is equal to the target of the other one. In the operadic framework
it gives rise to the notion of “colored operad”: operations can be composed only
whenever the colors match. Among them we find the operad encoding morphisms
between algebras and also the planar algebras devised by Vaughn Jones in his anal-
ysis of knot theory. Third, as already mentioned, a symmetric operad can be seen
as an algebra over the monad of rooted trees. We have already seen that some other
combinatorial objects give rise to other types of operads: planar rooted trees give ns
operads, shuffle trees give shuffle operads, ladders give associative algebras. There
are many more and we only briefly comment on some of them: cyclic operads, per-
mutads, modular operads, properads. Sometimes Koszul duality theory, as devised
in this book, can be extended to these cases, though it is not yet always written in
full in the literature, see for instance [vdL03, Val07b].

13.14.1 Colored Operads

A colored operad is to an operad what a category is to a monoid. An operation in a
colored operad comes with a color for each input and a color for the output. A com-
position is going to be possible whenever the colors match. There is a notion of al-
gebra over a colored operad. It is a colored object and the evaluation of an operation
on a tuple of elements is possible only if the colors match. This generalization works
for symmetric operads, ns operads, shuffle operads and also for associative algebras.
In this last case a particular example gives rise to . . . ns operads, see Sect. 13.14.3.
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13.14.2 Morphism Operads

Let P be an operad. In order to encode the category of morphisms between two
P-algebras, we construct a colored operad, called morphism operad, as follows.
The colors are going to be 0 (light blue) and 1 (dark blue). If the operad P is
presented as P =P(E,R), then the morphism operad P0→1 admits the following
presentation:

P0→1 =P(E0 ⊕E1 ⊕Kf,R0 ⊕R1 ⊕Rf),
where the various ingredients are as follows. The space E0 (resp. E1) is a copy of
E with input and output colors 0 (resp. 1). The one-dimensional space Kf, of arity
1, has input color 0 and output color 1. The space R0 (resp. R1) is a copy of R. The
space Rf is spanned by the operations μ0 ◦ (f, . . . ,f)︸ ︷︷ ︸

n

−f ◦ μ1 where μ0 ∈ E0(n)

and μ1 ∈E1(n) are copies of the same operation μ ∈E(n). So, in P0→1 we have:

0 0 0

μ0

• f

1

=

0 0 0

•f •f • f
μ1

1

An algebra over P0→1 is determined by a P-algebra A0, a P-algebra A1, and
a morphism of P-algebras f :A0 →A1.

When P is a quadratic operad, the colored operad P0→1 admits a presentation
involving cubical terms. So Koszul duality theory, as developed in this book, cannot
be applied. However, when P is a Koszul operad, one can apply a generalization of
Koszul duality theory given in [MV09a, MV09b], called homotopy Koszul duality.
This gives the minimal model for the operad P0→1. An algebra over this resolu-
tion is the data of two P∞-algebras A0 and A1 together with an ∞-morphism, as
defined in Sect. 10.2.2, between them.

In the particular case P = As, the minimal model of As0→1, like the construction
done in Chap. 9 for As, see also [Mar04]. It turns out that, here, the role of Stasheff
polytope (alias associahedron) is taken by the multiplihedron, cf. [Sta63].

13.14.3 Grafting Algebras vs NS Operads

In [Ron11] M. Ronco introduced the notion of grafting algebra (and variations of
it). It is in fact a “colored” algebra for which the colors are the natural numbers. By
definition a grafting algebra is a graded vector space A =⊕n≥0An, where A0 =
K1, equipped with binary operations

•i :Am ⊗An→Am+n, for 0≤ i ≤m,



13.14 Types of Operads 561

satisfying:

(x •j y) •i+j z= x •j (y •i z), for 0≤ i ≤m,0≤ j ≤ l,
(x •j y) •j+n z= x •j (y •i z), for 0≤ i < j,

for any x ∈Al, y ∈Am and z ∈An. It is also supposed that 1 ∈A0 is a unit on both
sides of the operations.

Let us introduce another notation as follows. We put Pn :=An−1 and we let

◦i :Pm ⊗Pn→Pm+n−1

be equal to

•i−1 :Am−1 ⊗An−1 →Am+n−2

for 1≤ i ≤m under this identification. Strictly speaking there is one operation •i for
each pair of input colors (m,n) whenever i ≤m. The output color of this operation
is n+m. The description of grafting algebras given here differs from the one given
in [Ron11] by taking the “opposite” operations (our x •i y corresponds to her y •i x).

From the definition given in Sect. 5.9.4, it follows that a ns operad P such that
P0 = 0 and P1 =K is equivalent to a grafting algebra (compare with [Ger63]). So
the notion of ns operad can be seen as some type of colored algebra.

13.14.4 Tangle Operad, Planar Algebras

The notion of planar algebras was introduced in the late 1990s by Vaughan Jones
[Jon99] in connection with its famous invariants for knots. In [Jon10] he informally
defines them as follows:

A planar algebra consists of vector spaces together with multilinear op-
erations between them indexed by planar tangles–large discs with internal
(“input”) discs all connected up by non-intersecting curves called strings.

In fact a planar algebra is an algebra over a colored operad, called the operad of
tangles. This operad is a variation of the operad of little discs, where the region out-
side the little discs has been decorated. We recall here the version given in [Jon10,
Definition 2.1.1].

A tangle is a disc equipped with (disjoint) little discs with the following decora-
tion, see Fig. 13.1. Each disc (including the outside one) is equipped with an even
number of marked points, one of them being distinguished (base-point, pictured
as ∗). Each marked point is joined to another one by a path called string. Strings
without end points are also allowed (see picture), and all the strings are disjoint.
The regions formed by the strings are labeled either by + (left blank in the pic-
ture) or by − (shaded in the picture), so that adjacent regions are of different labels.
These objects are considered up to isotopy, so a tangle is really a combinatorial
object (unlike in the case of the little discs operad).
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Fig. 13.1 A tangle (Courtesy
of V.F.R. Jones)

Composition among tangles is defined as in the case of the little discs operad.
More precisely, let T be a tangle and choose an inside circle α with 2k marked
points on the outside circle. The (partial) composition T ◦α S is the tangle obtained
by plugging S in α while respecting the marked points, the distinguished points and
the labels. The fact that S has to have the same number of marked points as α in
order to achieve the composition implies that we get a colored operad instead of an
operad. It is called the operad of tangles. V. Jones defines a planar algebra as an
algebra over the operad of tangles.

The operad of tangles is a very rich operad which admits lots of possible varia-
tions. For instance there is an interesting suboperad made of the tangles with only
one interior disc (related to the Temperley–Lieb algebra).

13.14.5 Types of Operads Based on Combinatorial Objects

We have seen in Sect. 5.6, resp. Sect. 5.9.5, resp. Sect. 8.2, that a symmetric operad,
resp. nonsymmetric operad, resp. shuffle operad, can be viewed as an algebra over
some monad, namely the monad of nonplanar rooted trees, resp. planar rooted trees,
resp. shuffle trees. The key ingredient in the construction of these monads is the
notion of substitution of a tree at a vertex. A fourth example is given by the ladder
trees, which also form a monad under substitution. The algebras over this monad
are simply the unital associative algebras. In all these examples the basic tool is a
family of graphs (in fact trees here) for which there is a notion of “substitution”, see
for instance Sects. 5.6 and 8.2. We refer the reader to the paper of D. Borisov and
Y.I. Manin [BM08] for a complete study.
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There is a lot of examples of this kind, see for instance [Mer10b], and we provide
some of them in the following sections. We only describe the set of graphs which is
used and the substitution process on them. It is a good exercise to write down the
other types of definitions: monoidal, classical, partial, when they exist. One should
note that for some of these combinatorial monads, the type of operads that they
define (that is the algebras over this monad) are themselves monads, but over a
different category. For instance the monad giving rise to symmetric operads is a
monad on S-modules, while a symmetric operad is a monad on the category of
vector spaces. But it does not always happen that the algebras over a some fixed
combinatorial monad are themselves a monad.

There are many other types of operads like dioperads, properads, props, wheeled
props, to name but a few.

When a type of operads admits an equivalent definition as a monoid in a monoidal
category, one can develop a Koszul duality theory on that level, following the pattern
given in this book. The case of colored operad was treated by P. Van der Laan in
[vdL03], the case of dioperads was treated by W.L. Gan in [Gan03] and the case of
properads was treated in [Val07b].

13.14.6 Cyclic Operads

We consider finite trees (nonplanar nonrooted). Substitution is like in the case of
the monad T defining symmetric operads. We observe that in order to define the
monad we need more than an S-module, because among the edges pertaining to a
given vertex, there is no pointed one (no root). So, if the number of these edges is
n+1, then we need an Sn+1-module. It is customary, by comparison with symmetric
operads, to see this permutation group as generated by Sn and the cyclic group of
order n+1, whence the terminology cyclic operad for the algebras over this monad.
This notion is due to E. Getzler and M.M. Kapranov [GK95a].

It is interesting to look for a presentation of a cyclic operad by means of partial
operations. In fact, we first start with a symmetric operad P and unravel the extra
structure needed to make it into a cyclic operad as follows. First, we need an action
of the cyclic operator τ , of order n+1, on P(n) so that it becomes an Sn+1-module.
Second, we have to say how these operators behave with respect to composition in
the operad P . The trick is to think of τ as changing the last input into the output
and the output into the first input. Then the formulas relating the action of τ with
the partial compositions of the operad P

τ(μ ◦i ν)= τ(μ) ◦i+1 ν, for 1≤ i < m,
τ(μ ◦m ν)= τ(ν) ◦1 τ(μ),

follow from Fig. 13.2.
The symmetric operad Ass can be seen as a cyclic operad as follows. We endow

Ass(n)∼=K[Sn] with the following right action of the symmetric group S1+n. Con-



564 13 Examples of Algebraic Operads

Fig. 13.2 τ(μ ◦i ν)= τ(μ) ◦i+1 ν and τ(μ ◦m ν)= τ(ν) ◦1 τ(μ)

sider the set S1+n as a right S1+n-set given by conjugation: ωg := g−1ωg. Let U1+n
be the subset of S1+n made up of the permutations which have only one cycle, that is
the orbit of (0 1 . . . n). The bijection Sn→ U1+n, σ �→ (0 σ(1) . . . σ (n)) permits
us to view Sn as a S1+n-set. The restriction of this action to the subgroup Sn of S1+n
is immediately seen to be the right multiplication.

An important case of a cyclic operad is the endomorphism operad. Let A be a
finite dimensional vector space, equipped with a nondegenerate pairing 〈−,−〉 :
A ⊗ A → K. This pairing gives rise to an isomorphism A ∼= A∗, and so we
have an isomorphism EndA(n) := Hom(A⊗n,A) ∼= Hom(A⊗n+1,K). As a conse-
quence, we get an action of Sn+1 on EndA(n), which makes EndA into a cyclic
operad.

The data of an algebra over a cyclic operad is given by a morphism of cyclic
operad P → EndA. For example an algebra over the cyclic operad Ass is a finite
dimensional associative algebra equipped with a nondegenerate symmetric pairing
〈−,−〉 such that

〈ab, c〉 = 〈a, bc〉,
for any a, b, c ∈A, see Sect. 13.7.3.
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13.14.7 Permutads vs Shuffle Algebras

Let n= {1, . . . , n}. To any surjection t : n→ k, we associate a graph as follows. It
is a bipartite graph, the first row is made up of n vertices labeled from 1 to n and
the second row is made up of k vertices labeled from 1 to k. There is an edge from
vertex i in the first row to vertex j on the second row whenever t (i)= j .

EXAMPLE.

5 1
•

2
•

3
•

4
•

5
•

2 �
1

�
2

We define a substitution as corresponding to the composition of surjective maps
(so we perform substitution only on the second row vertices). This combinatorial
data defines a monad P over the category of arity-graded vector spaces (compare
with ns operads, cf. Sect. 5.9.5). An algebra over the monad P is called a permutad,
cf. [LR12].

When presenting a permutad in terms of partial operations, one sees that this no-
tion is exactly the same as the notion of “shuffle algebra” introduced by M. Ronco
in [Ron11]. Interpreting the bipartite graphs corresponding to surjections as shuf-
fle trees whose underlying tree is a left comb, cf. Sect. 8.2, we get a comparison
between permutads and shuffle operads.

There is a permutad pAs similar to the ns operad As, in particular pAsn is one-
dimensional. Its minimal model can be described using the permutohedron (in place
of the associahedron).

13.14.8 Modular Operads

There is an obvious definition of substitution for finite graphs whose edges are la-
beled by nonnegative integers. A modular operad is an algebra over the monad on
S-modules defined by the “stable” graphs, see [GK98] for details. One of the moti-
vating examples of a modular operad is �Mg,n, where �Mg,n is the moduli space of
genus g stable curves with n marked points.

It is a higher genus extension of the notion of cyclic operads.

13.14.9 Properads

We consider the automorphism classes of finite connected directed graphs, see Ap-
pendix C.4.1. So each vertex has some inputs, let us say n≥ 1 and some outputs, let
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Fig. 13.3 Labeled connected
graph
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us saym≥ 1. Among the outer edges, depending on the orientation, we have leaves,
oriented towards the vertex, and roots, oriented outwards the vertex. We suppose
that for each vertex the set of inputs (resp. outputs) is endowed with a bijection to
{1, . . . , n} (resp. {1, . . . ,m}). We also suppose that the set of leaves (resp. the set of
roots) has a similar labeling, see Fig. 13.3.

We define a substitution of a graph at a vertex like in the general case, but taking
the labelings into consideration: the labeling of the set of leaves of the to-be-inserted
graph is used to identify them with the inputs of the vertex, and similarly for the
roots.

From this data we can construct a monad on S-bimodules, i.e. families of
Sn × S

op
m -modules. A properad, as introduced slightly differently in [Val07b], is

an algebra over this monad.
Observe that if we restrict ourself to the graphs whose vertices have one and

only one output, then we get the notion of symmetric operad (since Sn × S1 ∼= Sn).
Properads model operations with several inputs and several outputs. Many types of
bialgebras can be encoded by properads. Contrary to modular operads, properads
can act on infinite dimensional vector spaces and do not require any pairing.

In [Val07b], the category of S-bimodules is endowed with a monoidal product,
which extends the monoidal product ◦ of S-modules. In loc. cit., a properad is de-
fined as a monoid in this monoidal category. The Koszul duality for properads is
proved following exactly the same pattern as in Chaps. 3 and 7.



Appendix A
The Symmetric Group

Il faut, lorsque vous étudiez les propriétés du cercle, de la
sphère et des sections coniques, que vous vous sentiez frères par
l’esprit d’Euclide et d’Archimède et que, comme eux vous voyiez
avec ravissement se développer le monde idéal des figures et des
proportions dont les harmonies enchanteresses se retrouvent
ensuite dans le monde réel.

Jean Jaurès, Toulouse (1914)

The purpose of this appendix is essentially to fix the notations and to recall some
elementary facts about the representations of the symmetric group that are needed in
this book. The main result is the Schur Lemma which says that in characteristic zero
any homogeneous polynomial functor is completely determined by a representation
of the symmetric group.

For more details the reader can consult any book on the subject, for instance
[Mac95, Sag01].

A.1 Action of Groups

A.1.1 Group Algebra, Representation

The group algebra K[G] of a group G over a commutative algebra K is the free
module with basis the elements of G. The product is induced by the product in the
group:

(∑

i

aigi

)(∑

j

aj gj

)

=
∑

i,j

(aiaj )(gigj ).

The tensor product of modules over K[G] is often denoted by −⊗G − instead of
−⊗K[G] −.
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A representation of the group G is a left module M over K[G]. The action of
g ∈G on m ∈M is denoted either by g ·m or by gm if there is no ambiguity. The
algebra K[G] is called the regular representation ofGwhen viewed as a left module
over itself.

A.1.2 Invariants and Coinvariants

To any representationM of G is associated its space of invariantsMG and its space
of coinvariantsMG defined as follows:

MG := {m ∈M | g ·m=m, ∀g ∈G},
MG :=M/{g ·m−m | g ∈G, m ∈M}.

The notation follows the usual convention since MG is contravariant in G and MG
is covariant in G.

There is a natural map from invariants to coinvariants:

MG�M�MG.

Whenever G is finite and #G is invertible in the ground ring, then this map is an
isomorphism. Indeed an inverse is given by [m] �→ 1

#G

∑
g∈G g ·m, where [m] is the

class of m ∈M inMG.

A.1.3 Restriction and Induction

Let H be a subgroup of G. The restriction of a representation of G to H is simply
the same space but viewed as a module over H . If M is a right H -module, then the
induced representation is the following representation of G:

IndGH M :=M ⊗H K[G],
where K[G] is viewed as a left module over K[H ] through the multiplication in
K[G]. Observe that the space IndGH M can be identified with the space M ⊗K

K[H\G].

A.1.4 Equivariance

Let M and N be two (left) G-modules. A linear map f :M→ N is said to be G-
equivariant, or simply equivariant, if, for any g ∈ G, m ∈M one has f (g ·m) =
g ·f (m). In other words f is a morphism in the category ofG-modules. The space of
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G-equivariant maps is denoted by HomG(M,N) since it is made of the morphisms
which are invariant for the action of G by (g · f )(m) := g−1 · f (g · m). If L is
another G-module, one has a natural isomorphism

HomG
(
M,Hom(N,L)

)∼=Hom(M ⊗G N,L).

A.2 Representations of the Symmetric Group Sn

A.2.1 The Symmetric Group Sn

By definition the symmetric group Sn is the group of automorphisms of the set
{1,2, . . . , n}. Its elements are called permutations. The image of the permutation σ
is denoted either by (σ (1), . . . , σ (n)) or, sometimes, by [σ(1) . . . σ (n)]. The neutral
element is denoted either by 1 or 1n or even idn. Let us denote by si the permutation
which exchanges the elements i and i + 1 and leaves the others fixed. It is called a
transposition and sometimes denoted by (i i + 1) (cycle notation). The transposi-
tions generate Sn. In fact Sn is presented by the set of generators {s1, . . . , sn−1} and
the set of relations

⎧
⎨

⎩

s2
i = 1, for i = 1, . . . , n− 1,
sisj = sj si , for |i − j | ≥ 2,
sisi+1si = si+1sisi+1, for i = 1, . . . , n− 2.

This is called the Coxeter presentation of the symmetric group. In general there
is no preferred way of writing a permutation in terms of the Coxeter generators.
However, for any permutation σ there is a minimum number of generators in such
a writing. It is called the length of the permutation and is denoted by �(σ ). For
instance we have �([321])= 3 since [321] = s1s2s1.

A.2.2 Irreducible Representations

A representation of Sn is said to be irreducible if it is not isomorphic to the direct
sum of two nonzero representations. It can be shown that the isomorphism classes
of representations of the symmetric group Sn are in one-to-one correspondence with
the partitions of the integer n, that is the sequence of integers λ= (λ1, . . . , λr) such
that λ1 ≥ · · · ≥ λr ≥ 1 and

∑
i λi = n. It is often helpful to represent such a sequence

by a Young diagram. For instance the Young diagram of (4,2,1) is
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The irreducible representation associated to λ is denoted by Sλ and called the
Specht module. Any finite dimensional representation M of Sn is isomorphic to the
sum of its isotypic componentsMλ, one for each irreducible representation:

M =
⊕

λ

Mλ

whereMλ is isomorphic to the sum of a finite number of copies of Sλ. This number
is called the multiplicity of Sλ inM . For instance the multiplicity of Sλ in the regular
representation is equal to the dimension of Sλ. From this result follows the formula:

∑

λ

(
dimSλ

)2 = n!.

EXAMPLES.
n= 1. The unique irreducible representation of S1 is one-dimensional.
n= 2. There are two partitions of 2: λ= (2) and λ= (1,1):

The representation S2 is the one-dimensional trivial representation, so S2 =Kx

and [21] · x = x. The representation S1,1 is the one-dimensional signature represen-
tation, so S1,1 =Kx and [21] · x =−x.
n= 3. There are three partitions of 3: λ= (3), λ= (2,1) and λ= (1,1,1):

The associated representations are the trivial representation for λ = (3) and the
signature representation for λ= (1,1,1). For λ= (2,1) it is the hook representation
which can be described as follows. Consider the three-dimensional space Kx1 ⊕
Kx2 ⊕Kx3 on which S3 acts by permutation of the indices. The kernel of the linear
map Kx1⊕Kx2⊕Kx3 →K, xi �→ 1 is clearly invariant under the action of S3. This
is the two-dimensional hook representation S2,1. Observe that the three elements
x1 − x2, x2 − x3, x3 − x1 lie in the kernel, but are not linearly independent since
their sum is zero. Any two of them form a basis of S2,1. The vector x1 + x2 + x3

is invariant under the action of S3, hence it is isomorphic to S3 and there is an
isomorphism

Kx1 ⊕Kx2 ⊕Kx3 ∼= S2,1 ⊕ S3.
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n= 4. There are five partitions of 4: λ= (4), λ= (3,1), λ= (2,2), λ= (2,1,1)
and λ= (1,1,1,1):

The associated irreducible representations are as follows:

S4 is the one-dimensional trivial representation,
S3,1 is the hook representation, that is the kernel of ⊕i=4

i=1Kxi→K, xi �→ 1,
S2,2 is described below,
S2,1,1 is the kernel of ⊕i=4

i=1Kxi → K, xi �→ 1, where we let S4 act on the four-
dimensional space by permutation of the indices and multiplication by the signa-
ture,

S1,1,1,1 is the one-dimensional signature representation.

In the set of four elements {a, b, c, d} we consider the non-ordered subsets of
non-ordered pairs. So we have only three elements:

{{a, b}, {c, d}};{{a, c}, {b, d}};{{a, d}, {b, c}}.

We let S4 act on the ordered set {a, b, c, d} as usual, hence the three-dimensional
vector space K

3 spanned by the aforementioned subsets of pairs is a representation
of S4. Consider the map K

3 →K which sends each generator to 1. The kernel is a
two-dimensional representation of S4. This is S2,2.

A.2.3 The Schur Lemma

The following result, called the Schur Lemma, says that, for an infinite field, any
homogeneous polynomial functor of degree n is of the form V �→M(n)⊗Sn V

⊗n
for some Sn-module M(n). It justifies the choice of S-modules to define an operad
in characteristic zero.

Lemma A.2.1. If K is an infinite field, then any natural transformation θ : V⊗n→
V⊗n is of the form θn · (v1, . . . , vn) for some θn ∈K[Sn].

Proof. Let GL(V ) be the group of isomorphisms of the space V (general linear
group). Let α ∈GL(V ) act on End(V ) by conjugation:

α · f := αf α−1.
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We let GL(V ) act on End(V⊗n) diagonally, and we denote by End(V⊗n)GL(V ) the
space of invariants. We first show that, for r = dimV ≥ n, the map

ξ :K[Sn]→ End
(
V⊗n
)GL(V )

, θn �→ (ω �→ θn ·ω)
is an isomorphism.

Let e1, . . . , er be a basis of V and let f ∈ End(V⊗n)GL(V ). The element
f (e1, . . . , er ) can be written

∑
ai(ei1, . . . , eir ) where ai ∈ K and i = (i1, . . . , ir ).

Replacing e1 by λe1, for λ ∈K, the element f (e1, . . . , en) is multiplied by λ. Since
the field K is infinite, the index 1 must occur once and only once in each sequence i.
Similarly each index 2, . . . , n must occur once and only once. It follows from this
fact that each sequence i is a permutation of (1, . . . , n). Therefore we get

f (e1, . . . , en)=
∑

σ

aσ σ (e1, . . . , en)

and so f = θn for θn =∑σ aσ . Indeed, for any other vector basis of V⊗n one can
find α ∈ End(V ) such that this vector is α(e1, . . . , en). Since f is GL(V )-invariant
one has

f
(
α(e1, . . . , en)

)= α(f (e1, . . . , en)
)

= α(θn(e1, . . . , en)
)

= θn
(
α(e1, . . . , en)

)

as expected.
Since r = dimV ≥ n by hypothesis, the element θn is unique because the vectors

σ(e1, . . . , en) are linearly independent in V⊗n. Finally we have proved that ξ is an
isomorphism.

Since ξ(θn) is GL(V )-invariant, it follows that any natural transformation of V⊗n
into itself is completely determined by some θn ∈K[Sn]. �

REMARK. In positive characteristic p there are transformations of functors which
do not come from morphisms of S-modules. For instance the Frobenius map given
by the pth power, is one of them:

F : (V⊗n)
Sn
→ (V⊗pn)

Sn
, F (x1, . . . , xn)=

(
x
p

1 , . . . , x
p
n

)
.

It is a consequence of the fact that the binomial coefficients are zero in characteris-
tic p.



Appendix B
Categories

. . . the discovery of ideas as general as these [category and the
like] is chiefly the willingness to make a brash or speculative
abstraction, in this case supported by the pleasure of purloining
words from the philosophers: ‘Category’ from Aristotle and
Kant, ‘Functor’ from Carnap (Logische Syntax der Sprache)
and ‘natural transformation’ from then current informal
parlance.

Saunders MacLane in “Categories for the working
mathematician”

This appendix is a brief but complete survey on categories: functors, transformations
of functors, adjoint functors and monads (a word borrowed from Leibniz). In the last
part, we introduce the notions of model categories, homotopy categories and derived
functors. The purpose is essentially to fix the terminology and notations used in this
book. For more details we refer to the books of Saunders MacLane [ML98] and
Daniel Quillen [Qui67].

B.1 Categories and Functors

The idea of the notion of category is to put emphasis on morphisms instead of ob-
jects themselves. Category theory is the “algebra of algebra”; it provides a general
common framework for many theories.

B.1.1 Categories

A category C is made up of objects and, for any two objects C and C′ we are given
a set of morphisms, also called maps or arrows, denoted either by HomC(C,C

′),
Hom(C,C′) or C(C,C′). For any morphism f : C→ C′, the object C is called the

J.-L. Loday, B. Vallette, Algebraic Operads,
Grundlehren der mathematischen Wissenschaften 346,
DOI 10.1007/978-3-642-30362-3, © Springer-Verlag Berlin Heidelberg 2012
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source of f and the object C′ is called the target of f . There is a notion of compo-
sition of two morphisms f : C→ C′ and g : C′ → C′′ provided that the target of f
is the same as the source of g. The composite is denoted as usual g ◦f : C→ C′′ or
gf if there is no ambiguity. Composition of morphisms is supposed to be associa-
tive. To any object C, there exists an identity morphism denoted either by IdC , or
Id. Composition with the identity does not change the morphism. By reverting the
orientation of all arrows, one defines the opposite category denoted Cop.

Left cancelable morphisms, i.e. fg = fg′ implies g = g′, are called monomor-
phisms and denoted by �. Right cancelable morphisms are called epimorphisms
and denoted by �. Invertible morphisms are called isomorphisms and denoted by
�−→ or ∼= or simply by = when there is no ambiguity.

B.1.2 Functors

Given two categories C and D there is a notion of functor F : C→ D. It consists in
the following data. First to any element C of C, it associates an element F(C) in D.
Then to any morphism f : C→ C′ in C, we are given a morphism F(f ) : F(C)→
F(C′) in D such that F(g ◦ f )= F(g) ◦ F(f ) and F(IdC)= IdF(C).

A subcategory C ⊂ D is a category made up of a subclass of objects of D,
and for any pair X,Y of objects of C, the set of morphisms is a subset of that
of D: HomC(X,Y ) ⊂ HomD(X,Y ). A subcategory C ⊂ D is called full when
HomC(X,Y )=HomD(X,Y ), for any pair X,Y of objects of C.

A functor F : C→ D is faithful if the set-theoretic maps

HomC(X,Y )� HomD
(
F(X),F (Y )

)

are injective, for any pair X,Y of objects of C. It is the case for a subcategory of a
category. A functor F : C→ D is full if the set-theoretic maps

HomC(X,Y )� HomD
(
F(X),F (Y )

)

are surjective, for any pair X,Y of objects of C. It is the case for full subcategories.

B.1.3 First Examples

The category of sets, with set-theoretic maps, is denoted by Set. The category of
vector spaces over the field K, with linear morphisms, is denoted by VectK or, more
often, simply by Vect. One defines the forgetful functor, U : Vect → Set, by asso-
ciating to a vector space its underlying set. The image of a linear morphism under
this functor is simply the underlying set-theoretic map.

In the other way round, to any set X one can associate a vector space denoted
either by K[X] or by KX, which is spanned by the elements of X. Any set-map
f : X→ Y can be uniquely extended linearly to define a vector space morphism
f :K[X]→K[Y ], whence a functor F : Set→ Vect.
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B.1.4 Natural Transformation

If F and G are two functors C→ D, there is a notion of natural transformation of
functors α : F →G from F to G as follows. For any object C of C, we are given
a morphism α(C) : F(C)→G(C) in D. It is natural in the following way: for any
morphism f : C→ C′ in C, it is required that the following diagram

F(C)
F(f )

α(C)

F (C′)

α(C′)

G(C)
G(f )

G(C′)

is commutative. Notice that one can compose natural transformations of functors.
When α(C) is an isomorphism for any C of C, α is called a natural isomorphism
and denoted by α : F ∼=G. When such a natural isomorphism exists, one says that
the two functors F and G are naturally isomorphic.

B.1.5 Equivalence of Categories

A functor F : C→ D is called an equivalence of categories if there exists a functor
G : D → C such that the two composites GF ∼= IdC and FG ∼= IdD are naturally
isomorphic to the identity functors. There exists a more strict notion of isomorphism
of categories, when a functor F : C → D admits a strict inverse. Such a situation
almost never appears in practice since a functor changes the objects and it is not
possible to get them back. However, it is sometimes possible to recover an object in
the same isomorphism class, whence an equivalence of categories as the following
proposition shows. A functor F : C → D is called essential surjective if for any D
in D, there is a C in C such that D ∼= F(C).

Proposition B.1.1. A functor F : C→ D is an equivalence of categories if and only
if F is essential surjective, full and faithful.

For example, the category of vector spaces with a given basis is equivalent
to Vect.

A skeletal subcategory C of a category D is made up of one and only one object
per isomorphism class and full sets of morphisms. In this case, the inclusion functor
C→ D is an equivalence of categories.

B.1.6 Limits and Colimits

An object 0 of a category C is called an initial object if there exists one and only
one map 0→X associated to any object X of C. An object which satisfies the dual
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Table B.1 First examples of limits and colimits

Type of diagram Limit Colimit

∅ terminal object initial object

• • products coproducts

• • equalizers coequalizers

• • • pullback (fiber product)

• • • pushout (fibered sum)

property is called a terminal object. In the category of sets, the initial object is given
by the empty set and every set with one element {∗} is a terminal object.

The data of a diagram of type D in a category C is equivalent to the data of a
functor from a category D, made up of the underlying graph, to the category C:

Z X Y ⇐⇒ (F : • • • → C
)
.

A cone of F is an element C in C together with maps gx : C→ F(x) in C, for any
object x in D, such that F(f ) ◦ gx = gy , for any map f : x→ y in D. A morphism
of cones is a map h : C→ C′ in C which makes the following diagram commutative

C

gygx

h

C′
g′yg′x

F (x)
F(f )

F (y)

for any f : x→ y in D. This forms the category cone(F ) of cones of the functor F .
Dually, by reversing the arrows g, one defines the category cocone(F ) of cocones
of the functor F .

A limit limF of the diagram (respectively functor) F is a terminal object in the
category coneF of cones over F .

C

limF Y

X Z.

Dually, a colimit colimF of the diagram (respectively functor) F is an initial object
in the category coconeF of cocones over F . Table B.1 gives the main examples of
limits and colimits.
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B.2 Adjoint Functors, Free Objects

The notion of adjoint functors allows one to compare two categories in both direc-
tions. It has been introduced by D.M. Kan in [Kan58].

B.2.1 Adjoint Functors

Let L : C→ D and R : D→ C be a pair of functors.

L : C D :R.
The functor L is said to be a left adjoint to R, and R a right adjoint to L if, for any
objects C in C and D in D, there is a natural bijection

HomD
(
L(C),D

)∼=HomC
(
C,R(D)

)
.

The word “natural” means that such a bijection is required to be compatible with
the morphisms of each category.

Let C be an object of C. Taking D = L(C), there is a particular element in
HomD(L(C),L(C)) which is IdL(C). Its image under the adjunction bijection gives
a morphism υ(C) : C→R(L(C)) in C. The resulting transformation of functors

υ : IdC →RL

is called the unit of the adjunction.
Dually, let D be an object of D. Taking C = R(D), there is a particular element

in HomC(R(D),R(D)) which is IdR(D). Its image under the adjunction bijection
gives a morphism ε(D) : L(R(D))→D. The resulting transformation of functors

ε : LR→ IdD

is called the counit of the adjunction.
Conversely, the adjunction bijection is given by the unit as follows

(
f : L(C)→D

) (
R(f ) ◦ υ(C) : C→R(D)

)

and by the counit as follows

(
ε(D) ◦L(g) : L(C)→D

) (
g : C→R(D)

)
.

Proposition B.2.1.

• When L : C D :R form a pair of adjoint functors, the unit υ and the
counit ε of the adjunction satisfy the following relations
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(
L

L◦υ
L(RL)= (LR)L ε◦L

L
)= IdL,

(
R

υ◦R
RL(R)=R(LR) R◦ε

R
)= IdR .

• In the other way round, let L : C → D and R : D → C be a pair of functors. If
there exist two natural transformations υ : IdC → RL and ε : LR→ IdD, whose
above composites are equal to the identity, then (L,R) form a pair of adjoint
functors.

EXAMPLES. The two aforementioned functors

F : Set Vect :U
are adjoint.

In the category of sets the functors − × Y and Hom(Y,−) are adjoint to each
other since there is a natural bijection

Hom(X× Y,Z)∼=Hom
(
X,Hom(Y,Z)

)

for any sets X, Y , Z.
Similarly, in the category of vector spaces the functors −⊗ V and Hom(V ,−)

are adjoint to each other since there is a natural bijection

Hom(U ⊗ V,W)∼=Hom
(
U,Hom(V ,W)

)

for any vector spaces U , V , W . Of course, here, Hom(V ,W) is equipped with its
vector space structure.

Notice that the unit and the counit of an adjunction provide good candidates for
natural isomorphisms to prove that L and R form an equivalence of categories.

B.2.2 Free Objects

Let U : C→ D be a functor such that the objects of D are the same as the objects of
C except that we do not take into account some of the data. Such a functor is often
called a forgetful functor. We have already seen an example at Sect. B.1. Another
one is when the category C is the category of unital associative algebras, D is the
category of vector spaces and U assigns to the associative algebra A its underlying
vector space. So, U consists in forgetting the algebra structure. Most of the time
the image of an object by a forgetful functor is denoted by the same symbol (i.e. C
instead of U (C)).

Let F : D → C be a functor left adjoint to U . The image of an object D of D
by F is called a free object. Observe that this notion of freeness is relative to the
structure which has been forgotten. In the first example, when U : VectK → Set is
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the functor which assigns to a vector space its underlying set, we forget the linear
space structure. Hence, its left adjoint X �→K[X] assigns to a set X, the free vector
space on X. In the other example, the left adjoint is the tensor algebra functor.

A composite of left adjoint functors is still left adjoint. So the left adjoint of the
functor As-alg → Set, which assigns to a unital associative algebra its underlying
set, is X �→ T (K[X]).

The free object F (V ) (in C) over the object V of D is characterized by the
following property. For any object A in C and any morphism f : V →U (A) in D,
there exists a unique morphism f̃ :F (V )→ A in C, which renders the following
diagram commutative (in D):

V
υ(V )

f

U (F (V ))

U (f̃ )

U (A).

As said before, when U is a forgetful functor, we usually write A instead of U (A)
and also g instead of U (g) for morphisms. So the commutative diagram is usually
written:

V
i

f

F (V )

f̃

A.

Under this property, F (V ) is unique up to a unique isomorphism.
Observe that F stands for “Free” and U stands for “Underlying”.

B.2.3 Representability

A functor F : C → Set is said to be representable if it is isomorphic to a functor
of the form HomC(X,−), for an object X in C. This means that there are natural
bijections F(C)∼=HomC(X,C).

Similarly a contravariant functor, i.e. a functor from the opposite category, is said
to be co-representable if it is isomorphic to a functor of the form HomC(−, Y ), for
an object Y in C.

The celebrated Yoneda Lemma says the following.

Lemma B.2.2. If F : C→ Set is a functor and C is an object in C, then there is a
bijection

Nat
(
HomC(C,−),F

)∼= F(C)
which sends each natural transformation α :HomC(C,−)→ F to α(C)(IdC).
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B.3 Monoidal Category

The notion of monoidal category [Bén63, ML63] is the natural extension of the
notion of cartesian product of sets and of tensor product of vector spaces.

B.3.1 Definition of a Monoidal Category

A monoidal category is a sextuple (C,�, α, I, λ,ρ) where

• C is a category;
• � : C × C → C is a bifunctor, i.e. a functor from the category defined by the

cartesian product of objects and morphisms;
• α is a natural isomorphism

α(A,B,C) : (A�B)�C �−→A�(B�C),

satisfying the following pentagon relation

((A�B)�C)�D

α(A�B,C,D)

α(A,B,C)�D

(A�(B�C))�D

α(A,B�C,D) (A�B)�(C�D)

α(A,B,C�D)A�((B�C)�D)

A�α(B,C,D)
A�(B�(C�D))

where notations like α(A,B,C)�D stand for α(A,B,C)� IdD ;
• I is an object of C;

• λ is a natural isomorphism λ(A) : I�A �−→A;

• ρ is a natural isomorphism ρ(A) :A�I
�−→A, such that

λ(I)= ρ(I) : I�I→ I and such that

(A�I)�B α(A,I,B)

ρ(A)�B

A�(I�B)

A�λ(B)
A�B.
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A monoidal category is called strict if the three natural isomorphisms α, λ and ρ
are identities.

EXAMPLES. The category (EndoFunctC,◦, IdC) of endofunctors of a category C
together with the composite of functors is a strict monoidal category.

The category of sets (Set,×, {∗}) and the category of vector spaces (Vect,⊗,K)
are monoidal categories. Though they are not strict, the morphisms are canonical.

B.3.2 Monoid

A monoid (M,γ,η) in a monoidal category (C,�, α, I, λ,ρ) is an object M of C
endowed with

• a morphism called multiplication γ :M�M→M , which is associative

(M�M)�M
γ�M

α(M,M,M)
M�(M�M)

M�γ
M�M

γ

M�M
γ

M,

• and a morphism called unit η : I→M such that

I�M η�M

λ(M)

M�M
γ

M�I
M�η

ρ(M)

M.

EXAMPLES. A monoid in the monoidal category (Set,×, {∗}) is an ordinary
monoid or semigroup. A monoid in the monoidal category (Vect,⊗,K) is a uni-
tal associative algebra. A monoid in the monoidal category of (EndoFunctC,◦, IdC)

is called a monad, see Sect. B.4.

Reversing all the arrows, � : C→ C�C and ε : C→ I for instance, one gets the
notion of a comonoid (C,�,ε). A (left) module (N, ζ ) over a monoid (M,γ,η), is
an object of C equipped with an action map ζ :M�N→N satisfying compatibility
relations with the multiplication γ and the unit η.
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B.3.3 Monoidal Functor

A (lax) monoidal functor between two monoidal categories (C,�, α, I, λ,ρ) and
(D,�, β, J, ν, σ ) is a functor F : C→ D endowed with

• a natural transformation

φ(A,B) : F(A)� F(B)→ F(A�B),
• a morphism ψ : J→ F(I) in D,

such that the following properties hold:

• Associativity compatibility:

(F (A)� F(B))� F(C) β(F (A),F (B),F (C))

φ(A,B)�F(C)

F (A)� (F (B)� F(C))

F(A)�φ(B,C)

F (A�B)� F(C)
φ(A�B,C)

F (A)� F(B�C)
φ(A,B�C)

F ((A�B)�C) F(α(A,B,C))
F (A�(B�C)).

• Unit compatibility:

J � F(A) ψ�F(A)

ν(F (A))

F (I)� F(A) φ(I,A)
F (I�A)

F(λ(A))

F (A)

F (A)� J
F(A)�ψ

σ(F (A))

F (A)� F(I) φ(A,I)
F (A�I)

F (ρ(A))

F (A).

The preceding definition is motivated by the following proposition.

Proposition B.3.1. The image F(M) of a monoid (M,γ,η) of C under a lax mo-
noidal functor F : C→ D is a monoid of D with product

F(M)� F(M) φ(M,M)−−−−−→ F(M�M) F(γ )−−−→ F(M)
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and unit

J
ψ−→ F(I)

F (η)−−→ F(M).

A (lax) monoidal functor is called strong if φ is a natural isomorphism and ψ is
an isomorphism. It is called a strict monoidal functor if they are identities. Notice
that, for a morphism between two monoidal categories, being monoidal amounts to
an extra structure, whereas being strict is an extra property.

EXAMPLE. The forgetful functor (Vect,⊗,K)→ (Set,×, {∗}) is a lax, but not
strong, monoidal functor.

Two monoidal categories are monoidally equivalent if they admit a pair of strong
monoidal functors which provide an equivalence of categories.

B.3.4 Coherence Theorem

In practice, any theorem on monoidal categories can be proven by, first, proving
it for strict monoidal categories and then, by invoking the following proposition
[ML98, Chap. VII].

Proposition B.3.2 (Strictification). Every monoidal category is monoidally equiva-
lent to a strict monoidal category.

This proposition is essentially equivalent to the next theorem.

Theorem B.3.3 (Mac Lane’s coherence theorem). In a monoidal category (C,�,
α, I, λ,ρ), every diagram whose vertices come from words in � and I and whose
edges come from the natural isomorphisms α, λ and ρ commute.

This coherence theorem claims that it is enough to check the pentagon and trian-
gle commutative diagram in the definition of a monoidal category to get that “any”
diagram commutes.

B.4 Monads

B.4.1 Definition of a Monad

A monad (T , γ, η) in a category C consists of a functor T : C→ C and two natural
transformations

γ :T ◦T →T , and η : IdC →T ,
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which make the following diagrams commute

T ◦T ◦T
γ ◦Id

Id◦γ

T ◦T

γ

T ◦T
γ

T

IdC ◦T η◦Id
T ◦T

γ

T ◦ IdC
Id◦η

T .

So a monad is nothing but a monoid in the strict monoidal category of endo-
functors (EndoFunctC,◦, IdC). Similarly a comonad is a comonoid in the monoidal
category of endofunctors.

EXAMPLE. When (C,�, I) is a monoidal category, any monoid (M,γ,η) gives rise
to the monad TM(C) :=M�C.

Proposition B.4.1. Any adjunction (L,R,υ, ε) gives rise to a monad structure on
T := RL by γ := RεL, η := υ and dually to a comonad structure on T c := LR
by � := LυR, ε := ε. Conversely, every monad and comonad arises in that way.

B.4.2 Algebra over a Monad

An algebra over the monad (T , γ, η) is an objectA of C equipped with a morphism
γA :T (A)→A which makes the following diagrams commute

T ◦T (A)
γ (A)

T (γA)

T (A)

γA

T (A)
γA

A

IdC(A)
η(A)

T (A)

γA

A.

There is an obvious notion of morphism of T -algebras. It can be shown, cf. loc. cit.,
that any monad T is completely determined by its category of T -algebras together
with the forgetful functor to the underlying category C.

EXAMPLE. Pursuing with previous example of the monad TM associated to a
monoidM , an algebra over TM is a left module overM .

B.4.3 Module over a Monad

There is also a notion of left T -module. It is an endofunctor M : C→ C equipped
with a natural transformation γM :T ◦M →M such that the following diagrams
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are commutative

T ◦T ◦M
T (γM )

γ (M )

T ◦M

γM

T ◦M
γM

M

IdC ◦M η(M )
T ◦M

γM

M .

One recovers the aforementioned definition of an algebra over a monad by con-
sidering the constant functor, which sends every element of C to the object A.

B.5 Categories over Finite Sets

B.5.1 Category of Finite Sets

Let Fin be the category of finite sets with any set-maps. We denote by Bij its
subcategory made up of finite sets and bijections. Its skeleton is the category de-
noted � which has only one object for any nonnegative integer n, namely the set
[n] := {0,1, . . . , n}. So a morphism f : [n] → [m] is completely determined by the
integers f (i) ∈ {0,1, . . . ,m} for i = 0, . . . , n. Since � is subcategory of Fin any
functor Fin→ C determines a functor �→ C by restriction. In the other way round,
if the category C admits finite products, then any functor M : �→ C can be ex-
tended to Fin by the following trick:

M(X) :=
( ∏

Bij([n],X)
M
([n])

)

/∼

where |X| = n and the equivalence relation ∼ is as follows. Let μ ∈M([n]) and let
f,g ∈ Bij([n],X). Then we define

(f ;μ)∼ (g;g−1• f•(μ)
)
.

B.5.2 Simplicial Category

Putting on [n] := {0,1, . . . , n} the usual total order 0< 1< · · ·< n, we consider the
morphisms f : [n] → [m] in � which are weakly increasing, i.e. f (i) ≤ f (j) for
any i < j . Since they are stable under composition, they form a subcategory denoted
� and called the simplicial category.

�� �.
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B.5.3 Category of Noncommutative Finite Sets

We now introduce the category of noncommutative finite sets, denoted �S, as fol-
lows. It has the same objects as �, but the morphisms are set-maps enriched with
the following data: each fiber is equipped with a total order. It means that for
f : [n]→ [m] and any i ∈ [m] the set f−1(i) is totally ordered. It is clear that, for a
composite g ◦f of such maps, the fibers (g ◦f )−1(i) are also totally ordered. So we
get a well-defined category. For instance there are two elements in Hom�S([1], [0]).
There is only one set-map, which sends 0 and 1 to 0. The unique fiber is {0,1} and
there are two different total orders: 0< 1 and 1< 0. Each one of them gives a map
in �S.

Forgetting the information about the order of the fibers gives a full functor

�S� �.

Let us denote by S the groupoid with the same objects as � and with isomor-
phisms Aut([n]) = Sn+1. There is an obvious inclusion S � �S since any fiber
reduced to one element is totally ordered.

There is also an inclusion �� �S since we can identify the morphisms of �
with the morphisms of �S such that the total order of the fiber coincides with the
total order induced by the natural total order 0< 1< · · ·< n.

Proposition B.5.1. [FL91, Lod98] Any morphism f : [n] → [m] in the category of
noncommutative finite sets �S can be written uniquely as the composite f = ϕ ◦ σ :

[n] σ−→ [n] ϕ−→ [m]
where σ ∈Aut([n])= Sn+1 and ϕ ∈Hom�([n], [m]).

B.5.4 Comments

From the above proposition any composite ω ◦ ϕ where ω ∈ HomS([m], [m]) and
ϕ ∈Hom�([n], [m]) can be written

ω ◦ ϕ = ω∗(ϕ) ◦ ϕ∗(ω)
where ω∗(ϕ) ∈Hom�([n], [m]) and ϕ∗(ω) ∈HomS([n], [n]). The family of maps

Hom�
([n], [m])×Sm+1 → Sn+1×Hom�

([n], [m]), (ϕ,ω) �→ (ϕ∗(ω),ω∗(ϕ)
)

is called a distributive law. The pair (�,S) with its distributive law is sometimes
called a matching pair of categories. The category �S is sometimes called a bi-
crossed product of the categories � and S.
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The cyclic permutation (0 1 . . . n) ∈ Sn+1 generates the cyclic group Cn+1 of
order n+ 1. If the permutation ω is cyclic, then so is ϕ∗(ω):

ω ∈ Cm+1 ⊂ Sm+1 → ϕ∗(ω) ∈ Cn+1 ⊂ Sn+1.

As a consequence, there is a well-defined subcategory of �S which is made up of
the morphisms ϕ ◦σ where σ is a cyclic permutation. It is denoted by�C and called
the cyclic category, or Connes’ category [Con85]:

�
�

Fin

� �S S
�

Bij

�C.

The column �C��S� � is not an exact sequence!

B.5.5 Categories of Pointed Sets

The category of pointed finite sets, denoted Fin′, is such that an object is a finite set
together with the choice of one of its elements called the base-point. The morphisms
are the set-maps which send the base-point of the source to the base-point of the
target. Let us choose the point 0 as the base-point of [n]. The skeleton of Fin′ is
denoted by �′. In each of the categories considered in the preceding section, we
consider the subcategory made up of morphisms respecting the base-points. This
subcategory is denoted by decorating the symbol by−′. It is immediate to verify that
HomS′([n], [n])= Aut(�S)′([n], [n])= Sn is viewed as the automorphism group of
{1, . . . , n}. On the other hand we can check that (�C)′ =�op (the opposite category
of �):

�op = (�C)′ � (�S)′ � �′.

B.6 Model Categories

A homotopical category is usually defined as a category of fractions, à la Gabriel–
Zisman, where one localizes with respect to some family of morphisms. Another
way of doing, proposed by Dan Quillen, is to distinguish two sub-families of mor-
phisms: the fibrations and the cofibrations, required to satisfy some axioms. This
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extra data models the homotopy category. Moreover model category structures allow
one to do homotopy theory in many other categories than that of topological space.

The papers [GS07, DS95] provides two concise presentations for this topic. For
more details, we refer the reader to the original lecture note [Qui67] and to the book
[Hov99].

B.6.1 Localization of Categories

One localizes categories in the same way as rings: by adding to a category formal in-
verse morphisms for some class of morphisms to make them become isomorphisms
[GZ67].

Let C be a category with a distinguished subclass W of morphisms. A localized
category of C at W is a category L, endowed with a functor ρ : C→ L such that

1. For any f ∈W , its image ρ(f ) is an isomorphism in L.
2. For any functor F : C → D, which sends elements of W to isomorphisms in D,

there exists a unique functor F̃ : L→ D, which factors F through ρ

C
ρ

F

L

∃! F̃

D.

When such a category exists, property (2) implies that it is unique up to a unique
isomorphism. We now give a realization of it, denoted by C[W−1].
 Objects: Objects of C,
 Morphisms: To any pair (A,B) of objects of C, we consider the chains Ch(A,B)

of maps either from the morphisms of C or from the formal inverse of elements
of W between A and B , like

A • • •
∼

• · · · • • •
∼

•
∼

B.

We define the set (when it is actually a set) of morphisms HomC[W−1](A,B)
by the set Ch(A,B)/≈ of chains quotiented by the following relations

C
f

D
g

E ≈ C
g◦f

E ,

C
∼
f

D C
f

∼
≈ IdC,

D C
f

∼

∼
f

D ≈ IdD .
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Because of the form of this definition, it is difficult to work in practice with
such a category. The following results give a method to compare various homotopy
categories.

Let C and D be two categories with, respectively, two subclassesWC andWD. Let
L : C � D : R be a pair of adjoint functors, which preserve the two classes WC and
WD. This means that the image under L of any map of WC lives in WD and dually
for R. In this case, this adjunction induces an adjunction

L̃ : C
[
W−1

C

]
D
[
W−1

D

] : R̃ .

Proposition B.6.1. When the unit and the counit of an adjunction L : C � D : R
are defined by morphisms in the localizing classesWC andWD or by isomorphisms,
the induced adjunction is an equivalence between the localized categories C[W−1

C ]
and D[W−1

D ].

B.6.2 Homotopy Category

We have no choices: when W is the class of quasi-isomorphisms of chain com-
plexes or of dg algebras, the localized category Ho(C) := C[W−1], called the homo-
topy category, or derived category for chain complexes, is the good framework for
homological algebra. The homotopy category is the universal category for which
quasi-isomorphisms become isomorphisms. For instance, such categories are the
source and target categories for derived functors, see Sect. B.7.1.

B.6.3 Definition of Model Category

Let C be a category with a distinguished class W of morphisms called the weak
equivalences, denoted by

∼→. The category C is endowed with a model category
structure if it admits two other distinguished classes of morphisms: the fibrations,
denoted by �, and the cofibrations, denoted by �, which satisfy the following
axioms.

[MC 1] (Limits–colimits) The category C admits finite limits and finite colimits.
[MC 2] (2 out of 3) For any pair f,g of composable morphisms, if two of the three

morphisms f , g, gf are weak equivalences, then so is the third one.
[MC 3] (Retracts) These three classes of morphisms are stable under retracts.
[MC 4] (Lifting property) For any commutative diagram (solid arrows) of the

form

A B

X Y,
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there exists a map X→ B if either the cofibration A
∼
�X is a weak-equivalence

or if the fibration B
∼
� Y is a weak-equivalence.

[MC 5] (Factorization) Any morphism f :A→ B factors into two ways:

f =A ∼
�X� B and f =A� Y

∼
� B.

Notice that the class of cofibrations (respectively fibrations) is completely char-
acterized by the class of fibrations (respectively cofibrations), which are weak equiv-
alences, under the lifting property [MC 4].

EXAMPLES. The toy model for this notion is the category of nonnegatively graded
chain complexes. It is endowed with a model category structure where

 the weak equivalences are the quasi-isomorphisms,
 the fibrations are the degree-wise epimorphisms, Cn�Dn, for n≥ 1,
 the cofibrations are the degree-wise monomorphisms, Cn�Dn, with projective

cokernel, for n≥ 0.

The categories of topological spaces and simplicial sets are two other important
examples.

B.6.4 Fibrant and Cofibrant Objects

An object C of a model category C is called cofibrant if the map from the initial
object 0 � C is a cofibration. Dually an object F is called fibrant if the map to the
terminal object F � ∗ is a fibration. A cofibrant resolution, or cofibrant replace-
ment, of an object A of C is a cofibrant object C

∼→A weakly equivalent to A. The
factorization axiom [MC 5] ensures that such a resolution always exists. The lifting
property [MC 4] shows that cofibrant replacements are in some sense unique.

Dually, one defines the notion of fibrant resolution, or fibrant replacement,
A

∼→ F .
In the aforementioned example of nonnegatively graded chain complexes, every

object is fibrant. A chain complex is cofibrant if and only if it is projective. There-
fore, a cofibrant resolution is nothing but a projective resolution.

B.6.5 Main Theorem

We consider the full subcategory Ccf of fibrant and cofibrant objects. On the sets
HomCcf(A,B) of morphisms of this category, one defines an equivalence relation ∼
called homotopy equivalence. Since it is well behaved with respect to composition
of maps, it induces a quotient category Ccf/∼.
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Theorem B.6.2. [Qui67] The following two categories are equivalent

Ho(C)= C
[
W−1]∼= Ccf/∼ .

In the example of chain complexes, this notion of homotopy equivalence is the
classical notion of homotopy equivalence between morphisms of chain complexes.
This theorem asserts that the homotopy category (or derived category) is equivalent
to the category of projective complexes with the homotopy classes of morphisms.

B.6.6 Model Category Structure on Operads

The category of dg operads can be endowed with a model category structure
[Hin97], which allows one to perform homotopical algebra at that level.

Proposition B.6.3. Over a field K of characteristic 0, the category of dg operads
admits a model category structure where

 the weak equivalences are the arity-wise quasi-isomorphisms,
 the fibrations are the arity-wise and degree-wise epimorphisms,
 the cofibrations are characterized by the lifting property.

When the characteristic of the ground field is not equal to 0, the result still holds
but one has to restrict oneself to reduced operads P(0) = 0 [Hin97]. Otherwise,
one gets a semi-model category structure [Spi01], which a slightly weaker notion.

Under some assumptions, the category of operads over a symmetric monoidal
model category admits a model category structure where the weak equivalences
(respectively the fibrations) are the arity-wise weak equivalences (respectively the
fibrations) [BM03a, Fre09a]. This applies to the categories of topological operads
and simplicial operads, for instance.

Proposition B.6.4. In the category of nonnegatively graded dg operads with the
model category structure of Proposition B.6.3, any quasi-free operad (T (X), d) is
cofibrant.

A quasi-free operad (T (X), d) is called triangulated after D. Sullivan, when
its space of generators X is endowed with a exhaustive filtration F0X = {0} ⊂
F1X ⊂ · · · ⊂ FnX ⊂ · · · satisfying d(FnX) ⊂ T (Fn−1). Over unbounded chain
complexes, triangulated quasi-free operads are cofibrant.

B.6.7 Model Category Structure on Algebras over an Operad

The category of dg algebras over an operad can also be endowed with a model
category structure [Hin97].
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Proposition B.6.5. Let K be a field of characteristic 0 and let P be a dg operad.
The category of dg P-algebras, admits a model category structure where

 the weak equivalences are the quasi-isomorphisms,
 the fibrations are the degree-wise epimorphisms,
 the cofibrations are characterized by the lifting property.

In general, when the characteristic of the ground field is not equal to 0, one has
to require that the underlying K[Sn]-modules P(n) of the operad P are projective,
for any n. In this case, one says that the dg S-module P is S-cofibrant, because
it is cofibrant in the model category of dg S-modules. When the dg operad P is
S-cofibrant, the category of dg P-algebras admits a semi-model category structure,
with the same classes of maps as above [Spi01, BM03a, Fre09a].

Proposition B.6.6. In the category of nonnegatively graded dg P-algebras with
the model category structure of Proposition B.6.5, any quasi-free P-algebra
(P(X), d) is cofibrant.

As for operads, a quasi-free P-algebra (P(X), d) is called triangulated, when
its space of generators X is endowed with an exhaustive filtration F0X = {0} ⊂
F1X ⊂ · · · ⊂ FnX ⊂ · · · satisfying d(FnX) ⊂ P(Fn−1). Over unbounded chain
complexes, triangulated quasi-free P-algebras are cofibrant.

In the literature, one usually defines the notion of homotopy P-algebra by a
category of algebras over a cofibrant replacement Q

∼−→P of the operad P . It is
well defined in the following sense.

Lemma B.6.7.

 Any cofibrant operad is S-cofibrant.
 Let P

∼−→P ′ be two weakly equivalent S-cofibrant operads. The homotopy cat-
egories of dg P-algebras and dg P ′-algebras are equivalent.

Ho(dg P-alg)∼= Ho
(
dg P ′-alg

)
.

This lemma shows that the homotopy category of homotopy P-algebras is inde-
pendent of the chosen cofibrant resolution. In this book, we provide canonical ones,
the ones given by the Koszul duality theory. Since the 1970s, it has been known
that the categories of algebras over cofibrant (topological) operads have nice ho-
motopy invariance properties [BV73], the homotopy transfer theorem along weak
equivalences for instance.

B.7 Derived Functors and Homology Theories

Cartan–Eilenberg [CE56] and Grothendieck [Gro57] gave a method to define
(co)homology theories in abelian categories by using the notion of derived func-
tor. This latter notion was generalized by Quillen beyond the additive case in the
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context of model categories. It provides a way to show that homotopy categories are
equivalent.

B.7.1 Derived Functors

Recall that an abelian category is a category whose Hom-sets are abelian groups and
which satisfies some assumptions, see Chap. VIII of [ML98]. In an abelian category,
one can define the notion of projective (resp. injective) objects and (resp. injective)
resolutions, as usual.

Let F : C → D be an additive functor between two abelian categories. If this
functor does not preserve short exact sequences but only the right part of them, one
would like to measure the default from being left exact. To do so, one defines the no-
tion of (left) derived functor, denoted LF . If the abelian category C has enough pro-
jective objects, then every object A admits a projective resolution P•

∼−→ A, unique
up to homotopy equivalences. The left derived functor of F at A is defined by the
homology groups of F(P•):

L•F(A) :=H•
(
F(P•)

)
.

Its definition does not depend on the chosen projective resolution. Hence, it is well
defined. More generally, the derived functor LF is defined to be a functor between
the derived categories of chain complexes of C and of D respectively.

There are two main advantages to define homology theories like this. In the first
place, this conceptual approach permits us to prove general results, valid for any
homological theory defined via derived functors. Then, it makes it easier to com-
pute homology groups; for a particular object A, there are sometimes ad hoc small
projective resolutions of A. Therefore, the left derived functor is computable with
this resolution. For more details, we refer the reader to Chap. III of [GM03].

B.7.2 Tor and Ext Functors

We illustrate these ideas on the following example. Let f : R→ S be a morphism
between two rings. We consider the categories of left modules over R and S respec-
tively, that we denoted by R-Mod and S-Mod. By pulling back along f , an S-module
M becomes an R-module: r.m := f (r).m, for r ∈ R and m ∈M . We denote this
functor by f ∗ : S-Mod→R-Mod. The opposite functor f∗ :R-Mod→ S-Mod is the
extension of scalars given by the relative tensor product f!(N) := S ⊗R N . These
two functors are additive. Since they form a pair of adjoint functors

f! :R-Mod � S-Mod : f ∗,
f∗ is right exact and f ∗ is left exact. Therefore, we can consider the left derived
functor of f∗ denoted L(S⊗R−). More generally, one can derive the functorsM⊗R
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− and−⊗RN on the left. A classical result states that they give the same homology,
that is L(M⊗R−)(N)∼= L(−⊗R N)(M). Therefore, this defines a bifunctor called
the Tor functor denoted by TorR• (M,N) orM ⊗L

R N . Under this notation, we have

Lf∗(N)= TorR• (S,N)= S ⊗L

R N.

When R is an augmented algebra over a ring K, with augmentation denoted
by ε : R→ K, the functor ε!(M) = K⊗R M is equal to the functor that gives the
indecomposable elements ofM for the action of R: Indec(M) :=M/�R.M = ε!(M).
In order to study the properties of the action of R on M , we derive this functor on
the left. We consider the left derived functor

L Indec(M)= Lε∗(M)=K⊗L

R M = TorR• (K,M).

The Hochschild homology of an associative algebraAwith coefficients in a mod-
uleM (not a bimodule) is defined in this way, i.e. via TorA• (K,M). The Chevalley–
Eilenberg homology of a Lie algebra g with coefficients in a module M is also
defined in this way, i.e. via TorU(g)• (K,M) where U(g) is the universal enveloping
algebra of g.

Dually, replacing M ⊗R N by HomR(M,N), one defines the Ext functor
Ext•R(M,N) as the right derived functor of the Hom functor.

B.7.3 Total Derived Functors

Quillen settled in [Qui67] a way to derive functors in a non-additive setting by using
the notion of model categories as follows.

Let C and D be two model categories. A Quillen functor is a pair of adjoint
functors

F : C D :G
such that F preserves cofibrations and G preserves fibrations. (The functor F is the
left adjoint.) Notice that this condition is equivalent to F preserving cofibrations
and acyclic cofibrations; it is also equivalent to G preserving fibrations and acyclic
fibrations.

In this case, one extends the aforementioned definition of derived functor in the
same way. The image of any object A in C under the total left derived functor LF

is given by the image F(C), where C is a cofibrant replacement of A, C
∼−→A. One

proceeds dually, with fibrant replacements, to define the total right derived functor
RG. These two total derived functors form a pair of adjoint functors between the
associated homotopy categories

LF : Ho(C) Ho(D) :RG.
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B.7.4 Equivalence of Homotopy Categories

One of the main uses of the notion of total derived functors is to provide equiva-
lences between the homotopy categories. This is heavily used by Quillen in [Qui69],
where he showed that the homotopy theories of various categories are the same.

Proposition B.7.1. Let

F : C D :G
be a Quillen functor. The induced adjunction

LF : Ho(C) Ho(D) :RG
is an equivalence of categories if and only if, for any cofibrant object X of C and for
any fibrant object Y of D, a map X

∼−→G(Y) is a weak equivalence in C if and only
if the adjoint map F(X)

∼−→ Y is a weak equivalence in D.

In this case, the Quillen functor is called a Quillen equivalence.



Appendix C
Trees

Et comme cela m’est arrivé plusieurs fois je compris que le
meilleur moyen de m’expliquer à moi-même quelque chose qui
me paraissait inexplicable était de la décrire et de l’expliquer à
d’autres.

Stephan Zweig in “Magellan”

We introduce the combinatorial objects named “trees” and “graphs”. There are var-
ious sorts of trees: planar, binary, nonplanar (abstract), circled, ladder, and so on.
They play an important role in the operad theory because the free operad can be
explicitly described in terms of trees.

Moreover they are closely related to a geometric object called the associahedron
(alias Stasheff polytope) for which we give two different cellular realizations. They
both play a role in the analysis of operads associated to the operad As.

C.1 Planar Binary Trees

C.1.1 Magma and Planar Binary Trees

A magma is a set X equipped with a binary operation, that is a set map X×X→X

without any further assumption. The free magma on one element, say x, is made of
all the parenthesizings of a word of finite length in x:

x, (xx),
(
(xx)x

)
,
(
x(xx)

)
,
((
(xx)x

)
x
)
, . . .

It is slightly easier to work with combinatorial objects which are in bijection with the
parenthesizings: the planar binary rooted trees, abbreviated into pb trees (note that
graph theorists would say plane instead of planar). We denote by PBTn the set of pb
trees with n leaves (we do not mention the word rooted anymore, unless necessary):

J.-L. Loday, B. Vallette, Algebraic Operads,
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PBT1 := {|} , PBT2 :=
{ }

, PBT3 :=
{

,

}

,

PBT4 :=
⎧
⎨

⎩
, , , ,

⎫
⎬

⎭
.

So t ∈ PBTn has one root, n leaves, (n− 1) vertices, (n− 2) edges.
The grafting of the trees r ∈ PBTn and s ∈ PBTm is the tree r ∨ s ∈ PBTn+m

obtained by joining the root of r and the root of s to a new vertex and adding a new
root. Under the bijection with parenthesizings, grafting corresponds to the product
in the magma. For n > 1, any tree t ∈ PBTn can be written uniquely as the grafting
of uniquely determined trees:

t = t l ∨ t r .
So there is a bijection PBTn =⋃p+q=n,p≥1,q≥1 PBTp × PBTq .

The number of elements in PBTn+1 is known to be the Catalan number cn =
(2n)!

n! (n+1)! , that is

n 0 1 2 3 4 5 6 7 · · ·
cn 1 1 2 5 14 42 132 429 · · ·

The generating series for the Catalan numbers is

∑

n≥1

cnx
n = 1−√1− 4x

2
.

It is helpful to enumerate the leaves from left to right beginning with 1 as in the
following example:

1 2 3 4 5

As a consequence the set of vertices gets a total order: the vertex i lies in between
the leaves i and i + 1:

1 3

4

2
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For two trees t and s the partial composite t ◦i s is the tree obtained by identifying
the root of s with the ith leaf of t . The result is a tree with m − 1 + n leaves if
the number of leaves of t (resp. s) is m (resp. n). This construction makes sense
whenever 1≤ i ≤m.

The partial composition obviously satisfies the following relations for any r ∈
PBT l , s ∈ PBTm, t ∈ PBTn:

{
(I) (r ◦i s) ◦i−1+j t = r ◦i (s ◦j t), for 1≤ i ≤ l,1≤ j ≤m,
(II) (r ◦i s) ◦k−1+m t = (r ◦k t) ◦i s, for 1≤ i < k ≤ l.

These two relations correspond, respectively, to the following two situations:

· · · · · ·

C.1.2 Tamari Poset Structure on PBTn

On the set of planar binary trees PBTn there is a poset (partially ordered set) struc-
ture, called the Tamari poset structure, which has a lot of interesting properties with
respect to the algebraic operations on trees. It is defined as follows. Let us suppose
that s ∈ PBTn can be obtained from t ∈ PBTn by moving some edge, or leaf, from
left to right over a vertex:

t = �→ s = .

Then we say that t is less than s and we write either t→ s or t < s. It is called
a covering relation. The poset structure of PBTn is induced by these covering rela-
tions. In low dimension we get

The left (resp. right) comb is the minimum (resp. maximum) of PBTn for this
poset structure.

C.1.3 From Permutations to pb Trees

For any n there is a map ϕ : Sn→ PBTn+1 compatible with several algebraic struc-
tures. It is constructed as follows. First, it is helpful to introduce the notion of leveled
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Fig. C.1 The Tamari poset
PBT4

tree. It is a pb tree such that each vertex is assigned a level (from top to bottom, 1
to n), with the requirements that there is only one vertex per level. So the rightmost
tree in Fig. C.1 gives rise to two leveled trees. For a given leveled tree, assigning
to each vertex its levels determines a permutation of {1, . . . , n}. Whence a bijec-

tion between Sn and the set of leveled trees with n+ 1 leaves, denoted by P̃BTn+1.
Forgetting the levels gives the map

ϕ : Sn ∼= P̃BTn+1 → PBTn+1.

See for instance [Lod01, Appendix A].

C.2 Planar Trees and Stasheff Polytope

Orienting the edges of a given pb tree from top to bottom, we see that each vertex has
two inputs and one output. We now consider the planar trees for which any vertex
has k inputs and one output. We first consider the case when k ≥ 2. We denote by
PTn the set of planar (rooted) trees with n leaves:

PT1 := {|} , PT2 :=
{ }

, PT3 :=
{

, ,

}

,

PT4 :=
⎧
⎨

⎩
, . . . , , . . . ,

⎫
⎬

⎭
.

Each set PTn is graded according to the number of vertices, i.e. PTn =⋃n≥k PTn,k
where PTn,k is the set of planar trees with n leaves and k vertices. For instance
PTn,1 contains only one element which we call the n-corolla (the last element in the
above sets). It is clear that PTn,n−1 = PBTn.

Any tree t ∈ PTn, n > 1, is uniquely obtained as the grafting of k trees:

t = t (1) ∨ · · · ∨ t (k), with k ≥ 2.
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The notion of partial composite (grafting ◦i ) extends to all the planar trees. The
number of elements in PTn+1 is the Schröder number (also called super Catalan
number) and is denoted Cn:

n 0 1 2 3 4 5 6 7 · · ·
Cn 1 1 3 11 45 197 903 4279 · · ·

Let us introduce the generating series in two variables

fK
y (x) :=

∑

n≥1

(∑

k≥0

(−1)k#PBTn+1,n−kyk
)

xn.

One can show (cf. [Sta97a] for instance) that

fK
y (x)= 1− (2+ y)x −√1− 2(2+ y)x + y2x2

2(1+ y)x .

C.2.1 The Associahedron, Alias Stasheff Polytope [Sta63]

The associahedron is a cell complex K n of dimension n which can be realized as
a convex polytope as follows. To any tree t ∈ PBTn+2 we associate a point M(t) ∈
R
n+1 by the following algorithm: M(t) := (a1b1, . . . , an+1bn+1) where ai is the

number of leaves standing on the left side of the ith vertex, and bi is the number of
leaves standing on the right side of the ith vertex. Equivalently

M(t)=M(t l ∨ t r)= (M(t l),pq,M(t r))

whenever t l ∈ PBTp and t r ∈ PBTq .
It can be shown that all the points M(t) lie in the hyperplane

∑
i aibi =

(n+1)(n+2)
2 and the convex hull of all these points is the Stasheff polytope (cf.

[Lod04a]).
From this construction it follows that the Stasheff polytope is a cell complex

whose cells are in bijection with the planar trees. For instance the vertices corre-
spond to the planar binary trees and the big cell corresponds to the corolla. More
precisely the cells of dimension k of K n are in bijection with the planar trees having
n+ 2 leaves and n+ 1− k vertices.

EXAMPLES.

•

K 0 K 1 K 2 K 3
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C.2.2 The Cubical Version of the Associahedron

For any tree t ∈ PBTn+2 and any point u ∈ In (here I = [0,1] ⊂ R is the unit
interval) we associate a metric tree (t, u) by requiring that the edges have a length
given by u. Observe that, when some of the coordinates of u are 0, the shape of
the metric tree is not binary anymore. We quotient the disjoint union of the cubes
PBTn+2 × In by the following equivalence relation:

(t, u)∼ (s, u)
if the associated metric trees are the same. For instance

(

, (0)

)

∼
(

, (0)

)

since both metric trees are the tree . The quotient K n := PBTn+2× In/∼
gives a new cell decomposition of the Stasheff polytope denoted by K n

cub. It is due
to Stasheff [Sta63] and was used in [BV73]. Observe that the top-cells are n-cubes
and there are cn+2 of them:

• |

K 0
cube K 1

cube K 2
cube

We are going to describe combinatorial objects which encode all the cells of this
cellular decomposition.

C.2.3 Circled Trees

By definition a circled planar tree is a planar rooted tree in which each vertex has
been replaced by a planar tree whose number of leaves is the same as the number of
inputs of the vertex. Figure C.2 shows some examples.

The set of circled planar trees with n leaves is denoted by CPTn.

Proposition C.2.1. The set of circled planar trees encodes the cells of the cubical
cell decomposition of the associahedron.
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Fig. C.2 Examples of circled
trees

Proof. It suffices to encode a given cube and to check that the equivalence relation
described in Sect. C.2.1 is coherent with the encoding.

Let t be a planar tree. Choose a bijection between the set of vertices and the
directions in the cube. A cell in the cube is determined by the choice of 0, 1

2 ,1 in
each direction. For instance, in the case of the interval I , the choice 0 encodes for
the 0-cell {0}, the choice 1

2 encodes for the 1-cell I , the choice 1 encodes for the
0-cell {1}. We construct a circled tree out of this data and the convention as follows.
For a given direction, the choice of 0 shrinks the associated edge to a point. If the
choice is 1

2 , then the two adjacent vertices of the edge are going to be encircled in
the same circle. If the choice is 1, then the two adjacent vertices are going to be
encircled by different circles.

EXAMPLES. See Fig. C.3.

It is immediate to check that the encoding is coherent with the equivalence rela-
tion ∼ described in Sect. C.2.1. �

From the construction of the cell-complexes K n and K n
cub we see that there is

a natural cellular map K n→K n
cub. At the chain complex level it induces a graded

map

C•
(
K n
)→ C•

(
K n

cub

)
, big cell �→

∑
top-cells.

C.3 Trees and Reduced Trees

Formally a tree is a connected graph whose geometric realization is acyclic, see
Sect. C.4.1. All the trees involved in this book are rooted trees: there is one preferred
outer edge. As a consequence each vertex has a preferred flag, which we call the
output. The other flags of the vertex are the inputs.

C.3.1 Planar Trees

A rooted tree is planar when there is given a total order on the set of inputs at each
vertex. In the preceding sections of this appendix the vertices of the trees were at
least trivalent (one output and at least two inputs). But when the operad has unary
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Fig. C.3 K 2 with circled trees

operations (on top of the identity), and/or 0-ary operations, then one needs to allow
vertices with one input and/or vertices with no input. Here are examples:

• • •
•
•

•
•

•
•

•
•

• • •

•

The trees whose vertices have at least one input at each vertex are called reduced
trees in this book. We still denote the set of reduced planar trees with n-leaves by
PTn when there is no ambiguity.
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C.3.2 Trees

Ignoring the order on the set of inputs, we get the notion of nonplanar rooted trees
or simply rooted trees. In this case, in order to keep track of the structure of the tree,
one often needs to label the inputs of a given vertex by a given labeling set, which
can be {1, . . . , k}, where k is the number of inputs.

It should be noted that the number of rooted trees (planar or not) with a fixed
number of leaves is finite when the valence is greater than or equal to 3. However
this is no longer true when the valence is greater than or equal to 2 (resp. 1). For
instance there is a countable number of ladders (one leaf):

•
•
•

We denote the set of (nonplanar) rooted trees with n leaves by RTn. Restriction
to trees which are at least trivalent (resp. bivalent, resp. univalent) should be either
said or clear from the context.

C.4 Graphs

We give a formal definition of graphs. The definition of trees is a particular case.

C.4.1 Graphs

A finite graph � is determined by two finite sets: the set of vertices vert(�), the set of
flags (or half-edges) flag(�) and two maps s : flag(�)→ vert(�) and σ : flag(�)→
flag(�) such that σ 2 = id.

An element u ∈ flag(�) which is stable under σ , that is σ(u) = u, is called an
outer edge. A geometric realization of the graph � is obtained as follows. For each
element x ∈ vert(�) we take a point, for each element u ∈ flag(�) we take an inter-
val [0,1]. Then we identify the point 0 of u with the point s(u) and we identify the
point 1 of u with the point 1 of σ(u) (observe that if u is stable this identification
has no effect). The geometric realization of � is a 1-CW-complex.

For instance, if vert(�) = {x, y},flag(�) = {a, b, c, d, e, f } and, s, σ are given
by

− a b c d e

s(−) x x x y y

σ(−) a b d c e
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then the geometric realization of � is

a

x
c yd e

b

There are obvious notions of outer edges (made of only one flag) and internal
edges (made of two flags). A graph is said to be connected whenever its geometric
realization is connected. A morphism of graphs �→ �′ consists of a pair of maps
vert(�)→ vert(�′) and flag(�)→ flag(�′) which commutes to the structure maps
s, s′ and σ,σ ′ respectively.

By definition a tree (or abstract tree or nonplanar tree) is a connected graph
whose geometric realization has no cycle (acyclic cell complex). A rooted tree is
a tree with a preferred outer edge which is called the root. In this case the other
outer edges are called the leaves. A rooted tree can be oriented. We choose to put
the leaves on top and the root at the bottom (like in nature). This orientation, from
top to bottom, permits us to define the set of inputs of a given vertex and the output
of this vertex, as flags of this vertex. The union of two (different) flags at 1 is called
an edge (or sometimes internal edge).

If we put a total order on each set of inputs, then we get the aforementioned
notion of planar tree.

Notice that an isomorphism of trees is made up of two bijections between the set
of vertices and the set of flags respectively. When a tree admits no vertex without
incoming edges (leaves or internal edges), then any of its automorphisms is com-
pletely characterized by the bijection of its leaves.

Given a set X and a bijection of the set of leaves with X, we have a “tree labeled
by X”. The set of isomorphism classes of trees labeled by X is denoted by RT(X).

C.4.2 Graph Complexes

A graph complex is a chain complex whose module of chains is spanned by some
graphs (with no outer edges) and the boundary map is obtained via the contraction
of edges (one at a time). Though several classical chain complexes were recognized
lately as being examples of graph complexes, the very first example appeared in the
work of Kontsevich [Kon93] (see Example 3).

EXAMPLE 1 (The Hochschild complex). Let A be an associative algebra and con-
sider the space of “ladders” whose vertices are decorated by elements of A:

a1 a2 an−1 an

• • · · · • •
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So the space of n-chains is A⊗n. The contraction of the ith edge gives a new
ladder whose ith vertex is decorated by the product aiai+1. The boundary map b′ is
the alternating sum of these contractions, cf. Sect. 9.1.6.

EXAMPLE 2 (The cochain complex of the Stasheff polytope). Let n be an integer
and let Ck be the space spanned by the planar rooted trees with n+ 2 leaves and
n + 1 − k vertices (0 ≤ k ≤ n). Contracting an internal edge gives an element in
Ck+1. The sum over all the internal edges (with ad hoc signs, see below for the
treatment of the signs) gives rise to a boundary map, so, to a cochain complex which
can be identified with the cochain complex of the Stasheff polytope:

d

( )

= , d

( )

=− .

EXAMPLE 3 (Kontsevich graph complex for Com). Consider the space spanned by
the connected graphs (no outer edges) with n edges. Let Cn be the quotient by the
graphs which have at least one loop. Contracting an edge of such a graph gives
an element in Cn−1 (possibly 0 if a loop has been created in the process). The
sum over all the edges (with appropriate signs) of these contractions, gives rise to
a boundary map, and so to a chain complex. This is Kontsevich’s original graph
complex [Kon93] appearing in a computation of homology groups related to the
operad Com.

Handling Signs in Graph Complexes Here is an efficient way to handle the
signs in graph complexes. First, we consider the space of graphs with an orientation
of each edge and a labeling of the vertices by the integers {1,2, . . . , k} where k is
the number of vertices. Then we mod out by the following equivalence relation:

– reversing an arrow changes the sign in front of the element,
– exchanging the labelings i and i + 1 changes the sign in front of the element.

Let � be such a graph and let e be an internal edge whose end (resp. source)
vertex is labeled by the integer j (resp. i). One can always suppose that i < j . The
boundary map is

d(�)=
∑

e

(−1)j�/e

where �/e is the graph obtained by contracting e, keeping the label i, deleting the
label j and normalizing the labels (each label u is replaced by u− 1 for u > j ). It
is a good exercise to check that d2 = 0, see for instance [Bur10].
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Confluent

ambiguity, 103
critical monomial, 91, 265

Conformal field theory, 537
Conilpotent

coalgebra, 11, 168
cooperad, 169
element, 11

Connected
dg C -coalgebra, 413
dga coalgebra, 30

Connes
boundary map, 535
category, 587

Convolution
algebra, 32
operad, 208

Cooperad, 166
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differential graded, 205
weight-graded dg cooperad,

208
Coproduct, 576
Coradical filtration, 11

C -coalgebra, 168
cooperad, 170

Corelators, 232
Corolla, 600
Cotangent complex, 463
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Critical monomial, 91, 104

planar tree, 265
Critical tree monomial, 275
Crossed module, 348
Cyclic
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Deligne conjecture, 539
operad, 563
unital associative algebra, 534

D
Decomposable differential

algebra, 29
operad, 202

Decomposition, 166
of a set, 129
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formal, 438
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Deformation complex
P-algebra, 435
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Deformation functor, 498, 500
Deformation retract, 27
Deligne conjecture, 510
Deligne groupoid, 498
Dendriform, 522
Derivation, 5, 29
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operad, 200
operadic module, 207

Derivative, 25
Derived functor, 593
Desuspension, 23, 198
Dg

C -coalgebra, 206
P-algebra, 203
P-module, 207
comodule, 31
module, 31
vector space, 24
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coalgebra, 30
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Differential, 25
Differential graded

S-module, 198
associative algebra, 28
cooperad, 205
vector space, 24

Dimonoid, 527
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556
Distributive lattice, 109
Distributive law
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operad, 288

Divided power, 137
algebra, 488

Dual numbers, 66
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algebra, 554
bialgebra, 554

Dynkin idempotent, 18

E
Enveloping P-algebra, 456
Equalizer, 576
Equivariant, 568
Euler operator, 17
Eulerian

decomposition, 505
idempotent, 20

Exhaustive filtration, 28
Ext functor, 593
Extension, 449

abelian, 450
Extra ordered grading

algebra, 93
operads, 279

F
Faithful, 574
Fibrant

object, 590
resolution, 590

Fibration, 589
Forgetful functor, 578
Formal

manifold, 496
operad, 424

Framed little discs operad, 536
Free, 578
A-module over an operad,

454
associative algebra, 3
nonsymmetric operad, 179
object, 578
operad, 154

Frobenius, 572
Frobenius map, 501
Full, 574
Full subcategory, 574
Functor, 574
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G
Gauge group, 442, 499
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operad, 241
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Generic element, 140
Gerstenhaber algebra, 506
Graded

P-algebra, 139
S-module, 197
algebra, 28
coalgebra, 30
cooperad, 205
dual, 23
Lie algebra, 490
vector space, 23

Grafting, 598
Grafting algebra, 183, 560
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Gröbner basis
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Group
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H
Hadamard product
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operad, 144

Harrison, 484
Hilbert–Poincaré series
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double, 86
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Hodge decomposition, 505
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Homology group, 26
Homotopy, 26
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BV-algebras, 537
category, 421, 589
commutative algebra, 485
dg P-algebra, 203
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Lie algebra, 365, 495
of an algebra, 338
operad, 391
representation, 398
retract, 345

transfer theorem, 345
Homotopy equivalence
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chain complexes, 27

Homotopy retract, 27
Homotopy transfer theorem, 376
Hook representation, 570
Hopf

algebra, 19
algebra associated to ns operad, 185
algebra associated to operad, 153
compatibility relation, 15
operad, 145

Hypercommutative algebra, 545

I
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functor, 122
operation, 135
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Indecomposable elements, 430
Infinitesimal

composite of morphisms, 196
composite product, 194
composition map of an operad, 195
decomposition map of a cooperad,

197
tree module, 201

Inner derivation, 5
Input, 603
Internal

cohomomorphism, 113
homomorphism, 113

Internal edge, 606
Interval, 300

J
Jacobi identity, 7
Join, 109
Jordan

algebra, 165
triple, 543

K
Kleisli category, 402
Koszul

algebra, 71
complex, 69, 238
convention, 24
criterion, 70
dual cooperad, 233
dual operad, 234
morphism, 48
operad, 237, 238
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resolution, 78, 255
sign rule, 24

Koszul dual
algebra, 65
algebra of a coalgebra, 65
coalgebra, 64
dga coalgebra, 77

Koszul morphism, 48
operadic, 220

Künneth formula, 26
operadic, 199

L
Lattice, 109
Leading space of relations, 95
Leading term, 90, 95, 264
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Left adjoint functor, 577
Left pre-Lie module, 22
Leibniz

algebra, 8, 520
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Leveled tree, 600
Lie

algebra, 7, 490
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module, 9

Lie–Rinehart algebra, 513
Lie-admissible algebra, 493
Lie–Massey product, 497
Limit, 575
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Localization category, 588

M
Magma, 597
Magmatic, 6, 8, 539
Manin black product
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operad, 311
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first, 113
second, 113
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operad, 308

Manin white product
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operad, 308

Massey product, 350
operadic, 382

Master equation, 534
Maurer–Cartan equation, 38, 406

operad, 211
Meet, 109
Metric tree, 602
Minimal

P∞-algebra, 389
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model, 29
operad, 202

Minimal model
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operad, 202

Model
algebra, 29
operad, 202

Model category, 589
Modular operad, 565
Module, 4

over a P-algebra, 448
over a monad, 584
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Module of Kähler differential forms,
460

Moduli space, 434, 499
Monad, 583
Monoid, 581
Monoidal category, 580

strict, 581
Monoidal definition of an operad,

131
Monoidal functor, 582

lax, 582
strict, 583
strong, 583

Monoidally equivalent, 583
Morphism

homotopy algebra, 369
∞-morphism, 370
of P-algebras, 133
of chain complexes, 25
operad, 560

Multicomplex, 385

N
Natural isomorphism, 575
Nilpotent operad, 540
Noncommutative finite sets, 586
Nonsymmetric operad, 136, 177
Normalized bar construction, 304
Normalized form

algebra, 90
ns operad, 264

Ns operad, 136
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O
Operad, 131

differential graded, 200
graded, 200
weight-graded dg operad, 208

Operadic
cohomology with coefficients, 464
composition, 132
homology, 240

P-algebra, 430
homology of an algebra, 338
ideal, 141
quadratic data, 230
suspension, 233

Operadic homology
P∞-algebra, 433

Opposite category, 574
Order complex, 301
Ordered basis
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operad, 283

Output, 603

P
Parallel composition, 147
Partial

composite, 599
composition, 146
definition of an operad, 146
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shuffle product, 269

Partially associative, 544
Partition of an integer, 569
Partition poset, 297
Path-lexicographic order, 278
Pb tree, 597
PBW basis
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operad, 284

Permutad, 565
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Poincaré–Birkhoff–Witt basis
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operad, 284

Pointed
finite sets, 587
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set, 299
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Poisson algebra, 189, 502
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Pontryagin product, 509
Poset, 109, 300

bounded, 300

compatible action of a group, 302
graded, 301
holomogy, 301
pure, 301
reduced homology, 302
semi-modular, 302
totally semi-modular, 302

Pre-Lie
algebra, 20, 514
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153
relation, 21

Primitive
element, 11
operation, 557

Product, 576
Proper part, 300

Q
Quadratic

algebra, 62
coalgebra, 63
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data, 62
monomial algebra, 100
monomial operads, 283
operad, 231

Quadratic differential
algebra, 30
operad, 203

Quadratic model
algebra, 30
operad, 203

Quasi-cofree
cooperad, 206

Quasi-free
dga algebra, 29
operad, 202

Quasi-isomorphism, 26
graded, 50

Quillen equivalence, 595

R
Reduced, 122

decomposition map, 167
operad, 132
symmetric algebra, 7
tensor algebra, 4
tensor module, 4
tree, 604

Regular
operad, 136
representation, 568
sequence, 86
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Relation, 230
Relative composite product, 140
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Representable, 579
Rewriting method
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operad, 274

Rewriting rule, 265, 290
Riemann
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surfaces, 537

Right adjoint functor, 577
Rosetta stone, 368

S
S-module, 122
Schröder number, 601
Segre product, 111
Sequential composition, 147
Shuffle, 16

algebra, 17
operad, 269
tree, 268

Side conditions, 382
Sign-graded, 24
Simplicial

bar construction, 304
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Skew-symmetric, 365
Solvable, 103
Species, 129
Spectral sequence, 28, 385
Stasheff polytope, 601
Steenrod algebra, 81
Subcategory, 574
Sublattice, 109
Substitution, 160
Suitable order
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shuffle tree, 278

Suitable ordered basis
algebra, 100
operad, 283

Suspension, 23, 198
Sweedler’s notation, 9
Switching map, 6, 24
Symmetric
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brace algebra, 517
operad, 131
tensor, 395
tensor product, 257

Syzygy degree

bar construction of algebra, 66
bar construction of operad, 236
cobar construction of coalgebra, 68
cobar construction of cooperad, 236

T
Tamari poset, 599
Tangent homology, 435
Tangle, 561
TCFT, 537
Tensor
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coalgebra, 12
module, xxii

Topological conformal field theory,
537

Tor functor, 593
Total complex, 25
Totally associative, 544
Totally diassociative algebra, 356
Transfer, 345
Transfer theorem, 345
Transformation of functors, 575
Tree module, 155
Treewise tensor product, 160
Triple Massey product, 350
Trivial

P∞-algebra, 389
Twisted

tensor complex, 40
tensor product, 40

Twisted composite product, 211
left, 213
right, 213

Twisting
cochain, 38
morphism, 38

Twisting morphism
operad, 211
with respect to α, 406

U
Unit of adjunction, 577
Unital infinitesimal compatibility relation,

553
Universal enveloping algebra, 8
Universal twisting morphism

(co)algebra, 46
(co)operad, 218
with respect to α, 414

Unshuffle, 16

V
Vertex operator algebra, 538
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Zinbiel algebra, 520
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