
Automatic Derivation of Service Candidates

from Business Process Model Repositories

Henrik Leopold1 and Jan Mendling2

1 Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
henrik.leopold@wiwi.hu-berlin.de

2 WU Vienna, Augasse 2-6, A-1090 Vienna, Austria
jan.mendling@wu.ac.at

Abstract. Although several approaches for service identification have
been defined in research and practice, there is a notable lack of auto-
matic analysis techniques. In this paper we take the integrated approach
by Kohlborn et al. as a starting point, and combine different analysis
techniques in a novel way. Our contribution is an automated approach
for the identification and detailing of service candidates. Its output is
meant to provide a transparent basis for making decisions about which
services to implement with which priority. The approach has been im-
plemented and evaluated for an industry collection of process models.

1 Introduction

Services-Oriented Architecture has been discussed for roughly a decade as a
concept to increase the agility of a company in providing goods and services to
external partners and organizing internal operations. In this context, a service
can be understood as an action that is performed by an entity on behalf of
another one, such that the capability of performing this action represents an
asset [1]. The focus on services is supposed to improve business and IT alignment,
as it establishes principles like abstraction, autonomy and reuse [2].

A plethora of approaches to service derivation have been defined in the past.
A core problem is though that many of these approaches lack methodological
detail, and that none of them builds on automatic analysis techniques, cf. [2].
The problem is that a manual approach does not scale up to the size of a whole
company. Indeed, several approaches recommend the manual specification of
capabilities, among others based on interviews [3,4,2]. The benefits of reusing
information artifacts, e.g. process models, has been recognized, among others
in [5], but not in an automatic way. However, the entirety of a company can
hardly be taken into account as long as models have to be manually created and
inspected.

In this paper, we address the problem of manual work in the phases of service
derivation. We consider the situation where an extensive set of hundreds of
process models is available, which is realistic for many medium-sized and big
companies [6]. Our contribution is an approach for the automatic derivation
of service candidates, augmented with a set of metrics giving first clues about

W. Abramowicz et al. (Eds.): BIS 2012, LNBIP 117, pp. 84–95, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Automatic Identification of Service Candidates 85

2. Ident if icat ion 3. Detailing 4. Priorit izat ion1. Preparat ion

Process Models Candidate List Behavioural
Profiles

Ranked
Implementat ion
Candidates

Fig. 1. The four phases of service derivation

priorities. This approach is meant as a decision support tool for business and
IT managers to quickly spot reuse potential in their company. In this way, the
approach aims to speed up derivation drastically, and it can easily scale for
involving large sets of process models of the whole company.

The paper is structured accordingly. Section 2 introduces the procedure of
service derivation as it is summarized in related research. Section 3 introduces
our approach, which builds on automatic techniques for parsing activity labels
in process models. Section 4 presents the results of testing our prototypical
implementation on a set of roughly 600 process models from practice. Section 5
discusses related work before Section 6 concludes the paper.

2 Background

This section introduces the theoretical background of service derivation. Several
of the existing approaches explicitly distinguish between business services and
software services. This distinction is brought forth by different perspectives. A
business service can be understood as a specific set of actions that are performed
by an organization [7], while a software service describes a part of an applica-
tion system that is utilized by several entities independently [2]. The concept
of a business service puts more emphasis on the economic perspective, as the
software service is more related to information technology. This divide is also ap-
parent in many of the methodological contributions on service derivation [8,9,10].
Typically, the derivation of business services tends to take more of a top-down
approach, and the software service derivation is rather bottom-up. It has been
shown though that both derivation types have many commonalities. For both
service types, business and software services, many authors consider the analysis
and evaluation of business process models to be a central step [11,12,13]. There-
fore, we will focus on the reuse of process models and abstract from differences
between both service types here. Accordingly, we describe service derivation as
a four phase approach involving preparation, identification, detailing, and pri-
oritization, similar to the integrated approach of [2]. Figure 1 illustrates this
approach.

The derivation of services usually starts with a preparation phase. In this
phase, an information base for the service analysis is established. This informa-
tion base may include different types of business documents such as enterprise
architectures, business processes or organizational structures. In this paper, we
assume that a collection of process models is already available. This is a viable

86 H. Leopold and J. Mendling

assumption since big and medium-sized companies typically possess hundreds of
process models [6]. The subsequent identification phase is concerned with iden-
tifying capabilities. In process models, these capabilities can be closely related
to actions. If required, the available processes have to be further decomposed
in order to arrive at a suitable level of detail. In the following detailing phase,
the relationships and interactions between services are identified. This includes
the detection of overlaps with existing services and the proper incorporation of
new services into the existing SOA landscape. Finally, the prioritization phase is
utilized to decide which services should be considered for implementation with
which priority.

This four-phase process shows that the issue of scalability is hardly discussed.
That is a significant problem when a service-oriented architecture is embraced as
a company-wide concept. When starting from a process perspective, this means
that dozens of processes have to be modeled. Often, it takes weeks to document
only a single process. Even if a big number of process models already exist, it
is hardly possible to inspect them manually in a systematic way. Against this
background, it is striking that none of the service derivation approaches from
the extensive list collected in [2] considers the potential for automation. In the
following, we will define an approach that assembles analysis techniques in an
innovative way towards this end.

3 Automatic Service Identification and Detailing

This section discusses our approach for the automatic identification and detailing
of service candidates from process models. The basis for our algorithm is a set of
process models P where each process model p is characterized by set of activities
A. An activity a is further defined as a combination of an action an and a business
object bo on which this action is performed. As an example consider the activity
Verify Invoice which contains the action verify and the business object invoice.
The union of all activity sets A from the model collection P is denoted with AP .
In order to identify an ordered list of service candidates S from all activities
AP we introduce a two-phase approach. In the first phase we parse all activities
contained in AP and annotate them with their according action and business
object. In the second phase, we employ different strategies to identify a list of
service candidates from these activities. Finally, we use behavioral profiles for a
detailing of the service. The following sections introduce both phases in detail.

3.1 Annotation of Process Model Activities

The goal of this phase is the precise annotation of activity labels with action and
business object. In order to accomplish this, we employ a technique developed in
prior work [14]. This technique builds on the insight that activity labels follow
regular structures, so called label styles. The most frequent label styles are the
verb-object and the action-noun style. The verb-object style is characterized by
an imperative verb in the beginning which is followed by the business object.

Automatic Identification of Service Candidates 87

Examples are Notify Customer or Print Document. In activities belonging to
the action-noun style the action is not given as verb, but captured as a noun.
As examples consider Order Shipment or User Registration. These examples
illustrate that the structural knowledge about the label styles enables the proper
extraction of action and business from activities. Accordingly, the annotation
phase is further subdivided into two main steps: recognition of activity labeling
style and derivation of action and business object from activity labels.

Recognition of Label Style: The first step is the correct recognition of the ac-
tivity label style. Thereby, it is important to appropriately cope with the typical
challenges of activity labels. This includes the lack of a rich sentence structure
and also the zero-derivation ambiguity. The latter refers to misinterpretations
due to the fact that one syntactic word can be interpreted as verb or noun
(e.g. the plan and to plan). In order to adequately determine the label style,
we designed a recognition algorithm which analyzes different stages of the la-
bel context [14]. As an example, consider the activity label Plan Data Transfer
from the SAP Reference Model. By solely analyzing the label, it is not possi-
ble to decide about the label style. The activity could either instruct to plan a
data transfer or to transfer a record of plan data. However, by broadening the
context and considering the whole process model collection, we can learn that
many other processes from the collection deal with the business object plan data.
Accordingly, the label is classified as an action-noun label. In cases where the
context of the process model collection is not sufficient, we use a word frequency
list to decide whether the first word in the label is more likely to be a verb or a
noun. Accordingly, it is categorized as a verb-object or action-noun label.

Derivation of Action and Business Object: The second step in the an-
notation phase is the actual derivation of action and business object from the
activity label. Therefore, we make use of the structural knowledge about the
label styles. Thus, we know that a verb-object label begins with an imperative
verb which is followed by a business object. Accordingly, the verb-object label
Contact Customer can be easily decomposed into the action contact and the
business object customer. In the same vein, we derive action and business ob-
ject from action-noun labels. As an example consider the activity Credit Status
Analysis. Being aware that this is an action-noun label, we know that the action
is given as a noun at the end of the label. By using the lexical database WordNet
[15] we can derive the verb analyze from the nominalized action analysis. The
business object is respectively specified with Credit Status.

3.2 Identification of Service Candidates

At this stage the action and business object from all activity labels of the con-
sidered process model collection are adequately determined. Building on this
annotation information, we introduce three different approaches to identify ser-
vice candidates. The following paragraphs introduce each approach in detail.

Atomic Service Identification: The atomic service identification strategy fo-
cuses on single activities and is based on the notion that reoccurring activities

88 H. Leopold and J. Mendling

Algorithm 1. Atomic Service Identification

1: List candidates = new List();
2: for each activity a ∈ AP do
3: FA = countFrequency(a,AP);
4: if FA ≥ 2 ∧ candidates.contains(a) = false then
5: a.setFrequency(FA);
6: candidates.add(a);
7: candidates.orderByFrequency();

are likely to represent relevant service candidates. This approach is in line with
the viewpoint of [16] that each activity in a process model can be considered as a
potential service. Consequently, the frequency of a particular activity throughout
the model collection determines its potential of being a suitable service candi-
date. In order to capture these considerations we introduce the activity frequency
metric FA, which determines the number of similar activities in a process model
collection for a given activity. Thereby, the similarity between two activities is
based on the congruence between their actions and business objects. Accord-
ingly, activities following a different label style, such as Notify Customer and
Customer Notification, are still considered as equal activities.

The details if the atomic service identification approach are illustrated in
Algorithm 1. In order to identify services candidates for a whole process model
collection, we compute FA for each activity in the collection P (lines 2-3). If the
frequency FA of an activity is equal or greater than two and the activity has not
been considered in a previous iteration, the activity is added to the candidate
list (lines 4-6). After all activities have been analyzed the candidates are ordered
according to their frequency (line 7). As a result, we obtain a list of candidates
ordered by their potential of being suitable service candidates.

Composite Service Identification: The Composite Service Identification ap-
proach aims for identifying composite service candidates based on business object
groups. Hence, it abstracts from single activities and focuses on activity groups
having the same business object. For each business object grouping we intro-
duce the frequency FBO that determines the relevance of that group based on
the occurrence of the business object among all activities of the model collection.

Algorithm 2 provides an algorithmic description for identifying composite
service candidates. First, for each activity the frequency of the business object
is determined (lines 2-4). In case the frequency of a considered business object
is equal or greater than two and the activity - business object combination has
not been stored in previous iterations, the combination is added to the group
candidate map (lines 5-7). After ordering the business object groups according
to their frequencies (line 8), we obtain a list of composite services candidates
ordered by their relevance.

Inheritance Hierarchy Identification: The Inheritance Hierarchy Identifica-
tion approach is based on the considerations of the Composite Service Iden-
tification strategy. However, it extends this approach by taking hierarchical

Automatic Identification of Service Candidates 89

Algorithm 2. Composite Service Identification

1: Map groupCandidates = new Map();
2: for each activity a ∈ AP do
3: bo = a.getBusinessObjectFromAnnotation();
4: FBO = countFrequency(bo,AP);
5: if FBO ≥ 2 ∧ groupCandidates.contains(bo,a) = false then
6: bo.setFrequency(FBO);
7: groupCandidates.add(bo,a);
8: groupCandidates.orderByFrequency();

relationships between the business objects into account. This is motivated by
the design principle of service cohesion [17] that refers to the degree of related-
ness between the operations of a service. Assuming that activities with related
business objects may also lead to related services, we aim for identifying business
object hierarchies. In order to identify relationships between business objects,
we decompose the business object terms. As an example consider the business
object purchase order. Apparently, the word purchase is a specification of the
main word order at the end. Hence, a hierarchy can be constructed by relating
different parts of the business objects. For computing the relevance of such a
hierarchy group we introduce the metric FIH which is based on the occurrence
of the main word among all business objects. The identified hierarchy groups
can then be used for constructing according composite services which explicitly
respect the notion of service cohesion.

Algorithm 3 illustrates the details of this approach. The basis of the hierarchy
consideration are business objects which contain more than one word (line 4). If
such a business object is identified, we determine the frequency of its main word
among all activities (line 5). In case the frequency of the main word is equal or
greater than two and no respective hierarchy tree exists, a new tree with the main
word as a root node is created (lines 7-9). Afterwards, all possible business object
parts are computed (lines 10-12). This is accomplished by iteratively complement-
ing the first word of the business object until we finally obtain the original business
object. Each business object part having a frequency greater or equal than two is
inserted as a node on the according hierarchy level (lines 13-14). Finally, the hi-
erarchy trees are sorted according to the frequency of the main word (line 15).

3.3 Detailing of Service Candidates

Service detailing refers to the definition of the structure and behaviour of a ser-
vice, or a set of services. To this end, we adopt an approach for mining action
patterns. Action patterns define recurring behaviour [18]. The conceptual foun-
dation for action patterns are so-called behavioural profiles. Our approach takes
a collection of process models as a starting point for deriving action patterns of a
specific business object. From these patterns, we can use synthesis techniques in
order to arrive at a process model that details the lifecycle of a service candidate.
Therefore, this section defines the notion of a behavioural profile, explains how

90 H. Leopold and J. Mendling

Algorithm 3. Inheritance Hierarchy Identification

1: TreeList hierarchies = new TreeList();
2: for each activity a ∈ AP do
3: bo = a.getBusinessObjectFromAnnotation();
4: if bo.getWordCount() > 1 then
5: mainWord = bo.words[bo.getWordCount()];
6: FIH = countFrequency(mainWord,AP);
7: if FIH ≥ 2 ∧ hierarchies.containsTree(mainWord) = false then
8: mainWord.setFrequency(FIH);
9: hierarchies.createNewTree(mainWord);
10: for i= 1 to bo.getWordCount()) do
11: term = bo.words[1] + . . . + bo.words[i];
12: FIH = countFrequency(term,AP);
13: if FIH ≥ 2 then
14: hierarchies.getTree(mainWord).addNode(term, i);
15: hierarchies.orderByFrequency();

action patterns can be identified, and how a process model showing the service
lifecycle can be found.

Behavioural Profiles: With our approach, we aim to identify service candi-
dates that are utilized in various processes in a company. In order to detail such
a service, we have to extract its behavioral constraints from different process
models, and consolidate them in an appropriate way. So-called behavioral pro-
files capture such constraints on the level of pairs of activities. A behavioral
profile builds on trace semantics for a process model, namely the weak order re-
lation [19]. It contains all pairs (x, y) if there is a trace in which x occurs before
y. For a process model p, we write x �p y. The behavioral profile then defines
a partition over the cartesian product of activities, such that a pair (x, y) is in
one of the following relations:

◦ strict order relation �p, if x �p y and y ��p x;
◦ exclusiveness relation +p, if x ��p y and y ��p x;
◦ interleaving order relation ||p, if x �p y and y �p x.

Based on this behavioral profile, we can define the behavioral constraints of a
service candidate.

Action Patterns: Once we have derived the behavioral profile relations from
a set of process models, we can determine the support and confidence of action
patterns. This works similar to association rule mining. For each pair of activities
that co-occur in one of the process models, we map them to their behavioral
profile relation. Accordingly, a behavioral action pattern can be defined as a
rule R with a minimum support and confidence value [18] such that:

◦ R is a rule X ⇒ Y , where X,Y ⊂ V × {�,�−1,+, ||} × V , such that X
and Y are pairs of actions for which behavioral relations are specified;

◦ minsup is the value of the required minimal support;
◦ minconf is the value of the required minimal confidence.

Automatic Identification of Service Candidates 91

Such a pattern typically captures the relationship between actions, i.e. verbs
mentioned in the activity labels. We can define object-sensitive action patterns
if we only consider actions of the same business object. In our context, such
object-sensitive action patterns provide the basis for detailing the lifecycle of a
service candidate.

Synthesis of Service Lifecycle: The remaining challenge is to define a process
model that matches the behavioral relationships of the service candidate. A
corresponding synthesis technique has been defined in [20]. The idea is to identify
the consistent set of behavioral relations. From these relations, we can construct
a process model. The strict order relation defines the skeleton of a corresponding
process model. Activities that are not in an order relation are organized in nested
XOR- or AND-blocks depending on whether they are exclusive or interleaving.
The notion of profile consistency guarantees that such a nesting exists [20].

4 Evaluation

To demonstrate the capability of our service identification approach, we conduct
an evaluation with real-world data. In particular, we designed a test collection
that contains the activity labels of the SAP Reference Model. The SAP Reference
Model is a collection of Event-Driven Process Chains (EPCs) and captures the
business processes supported by the SAP R/3 system in its version from the year
2000 [21, pp. 145-164]. It is organized in 29 functional branches as for instance
sales and accounting and contains 604 process models with in total 2433 activity
labels. In the following paragraphs we present the results for each of the in
subsection 3.2 introduced concepts.

4.1 Activity Frequency Results

For obtaining atomic service candidates we computed the metric FA for each
activity in the process model collection. As a result, we identified 464 activities
with a frequency of at least two. Twelve of these activities even had a frequency
of equal or greater 10. Table 1 gives an overview of the top 5 ranked results.

The results show that it is still necessary to evaluate whether an identified
candidate is suitable for being established as a service. In addition, we must
decide whether a candidate can be established as a business or as a software
service. For instance Process Goods Issue, Billing and Planning are more likely to
represent business services, while Calculate Overhead and Difference Processing
could be automatable activities and are hence candidates for software services.

4.2 Business Object Frequency Results

Based on the consideration of the metric FBO, we identified 378 business object
groups. Thereby, each business object appeared at least twice among all activities
of the model collection. In 27 of these groups the business object was used
ten times or more. Table 2 shows the top 5 ranked business objects groups. In

92 H. Leopold and J. Mendling

Table 1. Results for Atomic Service Identification

Rank Activity FA

1 Process Goods Issue 20
2 Calculate Overhead 17
3 Billing 13
4 Planning 13
5 Difference Processing 13

Table 2. Results for Composite Service Identification

Rank Business Object Example Actions FBO

1 Order Execute, Settle, Archive, Release, Print 48
2 Time Sheet Report, Permit, Process, Approve, Create 23
3 Invoice Release, Verify, Process, Receive, Reverse 23
4 Budget Release, Plan, Update, Allocate, Return 23
5 Posting Perform, Release, Direct 19

addition to the rank and the value of FBO, it also provides the most frequent
actions which are applied on these business objects in the analyzed models.

4.3 Inheritance Hierarchy Results

To extract a business object hierarchy, we derived the different parts for each
business object and computed their frequencies. In this way, for instance the
business object Service Product Order was first reduced to Product Order and
then to Order. Whenever a part term was identified twice, a new node in the
business object hierarchy was created. Taking the given example, only a new
node for Order is introduced as the term Product Order only appeared once
among all activities of the model collection. By computing the metric FIH for
each main word, we obtain a ranked list of business object hierarchies.

In total, we identified 362 business object hierarchies where the main word
was at least found twice among all models. In 70 hierarchies the root term was
used 10 times or more. Table 3 shows the top 5 ranked business object hierarchies
including the main word and three frequent example nodes.

4.4 Determination of Internal Service Structure

In order to determine the internal structure of a composite service, we com-
puted the behavioural profile for the comprised activities. Table 4 shows the
behavioural profile for the composite service order. This profile illustrates that
there exists a well-defined order in which the activities must be executed. Apart
from the activity print, which can be performed at any time after the activity
process, the order is strict. The synthesis of this profile yields the process model
depicted in Figure 2.

Automatic Identification of Service Candidates 93

Table 3. Results for Composite Service Identification

Rank Main Word Example Nodes FIH

1 Order Business Order, Sales Order, Service Order 112
2 Data Plan Data, Transaction Data, Time Sheet Data 51
3 Cost Plan Cost, Process Cost, Shipment Cost 46
4 Request Payment Request, Recruitment Request 30
5 Document Billing Doc., Customer Doc., Customer Doc. 29

Table 4. The behavioural profile for the composite service order

create process print release execute permit settle complete

create � � � � � � �
process � � � � � �
print ‖ ‖ ‖ ‖ ‖
release � �−1 � �
execute �−1 � �
permit � �
settle �

5 Related Work

The work presented in this paper relates to approaches for service identification
and the application of natural language processing for process models.

Service identification has been considered for business services and software ser-
vices [2]. The identification of business services is mainly discussed by papers from
practice [22,23]. Those typically build on the analysis of business entities and com-
ponents. By contrast, the derivation of software services is widely discussed in re-
search. Some authors propose a bottom-up approach by analyzing existing legacy
systems and building on their functionality [24,25]. Others suggest a top-down
strategy [9,26]. However, most approaches proposes to strike a balance between
the two extremes. As a result, plenty of software service identification approaches
include the analysis and evaluation of business process models [11,12,13].

Techniques for natural languageprocessinghave been applied onprocessmodels
in various contexts. One important application scenario is the assurance of
linguistic quality aspects in process models. With this intention NLP tools were
employed for identifying semantic errors in activity labels [27] and for constructing

Create Process

Print

Release Execute Sett le CompletePermit

Fig. 2. The process model for the composite service order

94 H. Leopold and J. Mendling

a glossary from processmodel collections [28]. NLP tools were also used to refactor
wholeprocessmodel collections in order to ensure theunderstandability of the com-
prised activity labels [14]. As the latter requires the decomposition of the activity
label into its components, this technique also constituted the basis for the approach
presented in this paper. Other prominent applications of NLP techniques are the
identification of similarities between process models [29,30] and the derivation of
process models from natural language texts [31,32,33].

6 Conclusion

In this paper we presented an approach for the automatic derivation of service
candidates from process models. We built on analysis techniques for process
models and proposed three different techniques for deriving service candidates.
We tested our approach on a process model collection from practice including
600 EPCs with 2433 activities. The evaluation illustrates the capability of our
algorithm to provide useful information for service derivation. Our technique
does not only enable companies to take an extensive number of process models
into account, but also to efficiently analyze them. Considering the results it
is important to emphasize that our technique cannot completely automate the
service derivation procedure, as the final decision making remains a human task.

In future research, we plan to extend our technique by incorporating lexical
relationships such as synonymy and homonymy. Further, we aim to apply our
technique in the context of an industrial case study. In this way, we aim for
determining the applicability and the significance of each of the identification
strategies. In response to the findings, the proposed approach could then be
adapted to the specific needs from practice.

References

1. O’Sullivan, J., Edmond, D., ter Hofstede, A.H.M.: What’s in a service? Distributed
and Parallel Databases 12(2/3), 117–133 (2002)

2. Kohlborn, T., Korthaus, A., Chan, T., Rosemann, M.: Identification and analysis
of business and software services - a consolidated approach. IEEE T. Services
Computing 2(1), 50–64 (2009)

3. Hafeez, K., Zhang, Y., Malak, N.: Determining key capabilities of a firm using
analytic hierarchy process. Int. J. of Production Economics 76(1), 39–51 (2002)

4. Homann, U., Tobey, J.: From capabilities to services: Moving from a business
architecture to an it implementation (2006)

5. Zimmermann, O., Krogdahl, P., Gee, C.: Elements of service-oriented analysis and
design. IBM developerworks (2004)

6. Rosemann, M.: Potential Pitfalls of Process Modeling: Part A. Business Process
Management Journal 12(2), 249–254 (2006)

7. Feuerlicht, G.: Design of service interfaces for e-business applications using data
normalization techniques. Inf. Syst. E-Business Management 3(4), 363–376 (2005)

8. Bell, M.: Service-oriented modeling. Service Analysis, Design and Architecture.
John Wiley and Sons, Hoboken (2008)

9. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River (2005)

Automatic Identification of Service Candidates 95

10. Ramollari, E., Dranidis, D., Simons, A.: A survey of service oriented development
methodologies. 2nd europ. young researchers WS on service oriented comp. (2007)

11. Azevedo, L.G., Santoro, F., Baião, F., Souza, J., Revoredo, K., Pereira, V., Herlain,
I.: A Method for Service Identification from Business Process Models in a SOA
Approach. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer,
P., Ukor, R. (eds.) BPMDS 2009 and EMMSAD 2009. LNBIP, vol. 29, pp. 99–112.
Springer, Heidelberg (2009)

12. Klose, K., Knackstedt, R., Beverungen, D.: In: Identification of Services - A
Stakeholder-Based Approach to SOA Development and its Application in the Area
of Production Planning. University of St. Gallen (2007)

13. Erradi, A., Kulkarni, N., Maheshwari, P.: Service Design Process for Reusable
Services: Financial Services Case Study. In: Krämer, B.J., Lin, K.-J., Narasimhan,
P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 606–617. Springer, Heidelberg (2007)

14. Leopold, H., Smirnov, S., Mendling, J.: On the refactoring of activity labels in
business process models. Information Systems (forthcoming, 2012)

15. Miller, G.: WordNet: a Lexical Database for English. CACM 38(11), 39–41 (1995)
16. Inaganti, S., Behara, G.K.: Service identification: BPM and SOA handshake. BP-

Trends (2007)
17. Papazoglou, M.P., Heuvel, W.V.D.: Service-oriented design and development

methodology. Int. J. Web Eng. Technol. 2, 412–442 (2006)
18. Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Action patterns in business

process model repositories. Computers in Industry 63 (2012)
19. Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based on

behavioral profiles of process models. IEEE T. Softw. Eng. 37(3), 410–429 (2011)
20. Smirnov, S., Weidlich, M., Mendling, J.: Business process model abstraction based

on synthesis from consistent behavioural profiles. Int. J. Coop. Inf. Sys. 21 (2012)
21. Keller, G., Teufel, T.: SAP(R) R/3 Process Oriented Implementation: Iterative

Process Prototyping. Addison-Wesley (1998)
22. IBM: Component business models (2005)
23. SAP: Enterprise service design guide (2005)
24. Sneed, H.M.: Integrating legacy software into a service oriented architecture. In:

IEEE Conference on Software Maintenance and Reengineering, pp. 3–14 (2006)
25. Belushi, W.A., Baghdadi, Y.: An Approach to Wrap Legacy Applications into Web

Services. In: Int. Conf. on Service Systems and Service Management, pp. 1–6 (2007)
26. Flaxer, D., Nigam, A.: Realizing business components, business operations and

business services. In: Proceedings of IEEE CEC-EAST, pp. 328–332 (2004)
27. Gruhn, V., Laue, R.: Detecting Common Errors in Event-Driven Process Chains

by Label Analysis. Enterprise Modelling and Inf. Systems Arch. 6(1), 3–15 (2011)
28. Peters, N., Weidlich, M.: Automatic Generation of Glossaries for Process Modelling

Support. Enterprise Modelling and Inf. Systems Architectures 6(1), 30–46 (2011)
29. Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of

business process models: Metrics and evaluation. Inf. Syst. 36, 498–516 (2011)
30. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring Similarity between Semantic

Business Process Models. In: APCCM 2007, vol. 67, pp. 71–80 (2007)
31. Friedrich, F., Mendling, J., Puhlmann, F.: Process Model Generation from Nat-

ural Language Text. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS,
vol. 6741, pp. 482–496. Springer, Heidelberg (2011)

32. de AR Gonçalves, J.C., Santoro, F.M., Baião, F.A.: Business Process Mining from
Group Stories. In: CSCWD 2009, pp. 161–166. IEEE Computer Society (2009)

33. Sinha, A., Paradkar, A.: Use Cases to Process Specifications in Business Process
Modeling Notation. In: IEEE Int. Conference on Web Services, pp. 473–480 (2010)

	Automatic Derivation of Service Candidatesfrom Business Process Model Repositories
	Introduction
	Background
	Automatic Service Identification and Detailing
	Annotation of Process Model Activities
	Identification of Service Candidates
	Detailing of Service Candidates

	Evaluation
	Activity Frequency Results
	Business Object Frequency Results
	Inheritance Hierarchy Results
	Determination of Internal Service Structure

	Related Work
	Conclusion
	References

