
Goal-Oriented Model-Driven Business Process

Monitoring Using ProGoalML

Falko Koetter1 and Monika Kochanowski2

1 University of Stuttgart IAT, Germany
falko.koetter@iao.fraunhofer.de

2 Fraunhofer IAO, Germany
monika.kochanowski@iao.fraunhofer.de

Abstract. In today’s fast changing business world, the fulfillment of
process goals needs to be constantly evaluated and adjusted. But pro-
cesses are often carried out by systems which are not process aware. aPro
is a modular architecture for business process optimization. In aPro pro-
cess models can’t be guaranteed to be executable but need to be moni-
tored. In this paper, we propose a modeling language for process metrics,
key performance indicators and goals and use the interchange format
ProGoalML to automate creation and setup of monitoring infrastruc-
ture.

Keywords: business process management, process monitoring, business
process goals, process adaptation, business intelligence.

1 Introduction

In today’s commerce business processes are volatile and interconnected, causing
the necessity to react to changes in a timely and correct fashion [8]. But only
changes impacting the goals of the process necessitate an adjustment of the
process. Thus, to assess the need for change, the goals of a process as well as
their degree of fulfillment have to be known. Monitoring solutions today[21,2,3]
focus on executable processes.

However, our work in the industry as well as other sources[16][14] found exe-
cutable process models to be the exception rather than the norm. Thus, business
process models are often disconnected from process execution and serve only
documentation purposes. While switching to executable processes is often not
possible due to existing systems or lack of IT support in single process steps,
there still is a need for business process monitoring and optimization[14]. Com-
panies need a way to implement missing capabilities without abandoning existing
solutions. Thus, the contribution of this work is to provide a model-driven ap-
proach for monitoring business processes which takes into account the current
state of BPM adoption.

We propose aPro, a modular Architecture for business PRocess Optimization
(Figure 1). aPro is based on the business process lifecycle as described in [19],
containing components for process modeling, execution, monitoring, analysis and

W. Abramowicz et al. (Eds.): BIS 2012, LNBIP 117, pp. 72–83, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Goal-Oriented Model-Driven Business Process Monitoring Using ProGoalML 73

Modeling

Process
Repository

Modeling Tool

Execution

Process Engine

Application Systems

Monitoring

Monitoring
Webservices

CEP Engine

Data
Warehouse

Analysis

Data Mining

Adaptation

Fragment
Repository

ABIS

Analysis Tool

Dashboard

Monitoring
Stubs

Fig. 1. Overview of the aPro architecture. Bold parts highlight focus of this work.

adaptation. DuringModeling a process model is created using a modeling tool and
stored in a process repository. Then duringExecution the process is either executed
by a process engine or by a collaboration of (legacy) application systems, which
are not process-oriented. During execution, measurement of relevant metrics has
to be performed, e.g. synchronous or asynchronous. In any case, a measurement
is compiled into a call to a monitoring web service, which transfers the data to a
Complex EventProcessing (CEP)[12] Engine[1]. It correlates the measurements of
a process instance, calculates key performance indicators (KPI s) and checks goal
fulfillment. The CEP Engine then provides the processed data to the next steps:
Real-time data is displayed on a dashboard and long-term data is stored in a data
warehouse. During analysis data mining is used to find deficits and identify pos-
sible adjustments of the process. These adjustments are then used to adapt the
process using for example ABIS[20], a tool for adaptive business processes.

In this work, we focus on the steps modeling andmonitoring, though other com-
ponents already exist[10]. For defining process goals, we extend BPMN 2.0[15]
with modeling elements for metrics, KPIs and goals. Multiple components are
involved in aPro, and each of them needs to be configured and adapted indepen-
dently. As this would result in prohibitive effort, we generate all configuration files
from the defined goals, KPIs, metrics and process model. ProGoalML, the Process
Goal M arkup Language, serves as an intermediary between the different files as
shown in Figure 2. We focus on the highlighted parts, describing modeling, cre-
ation of a ProGoalML file and automatic generation of measurement and result
schemata as well as CEP rules, thus encompassing all steps necessary to perform
basic process monitoring. This paper is structured as follows.We first describe the
modeling steps and give a motivational example in Section 2. In Section 2.2 we ex-
plain the structure of ProGoalML. Section 3 describes the measuring of metrics



74 F. Koetter and M. Kochanowski

and the creation of CEP rules and result schemata. Section 4 describes a prototyp-
ical implementation as well as evaluation. In Section 5 we examine related work.
Section 6 gives a conclusion and outlines future work.

Goals, 
KPIs and 
metrics 

GoalML 

Visualiz
ation 

schema 

Data 
Warehouse 

Monit
oring 
Stubs 

Webser
vices 

SQL / Star 
Schema 

Dashboard 

CEP 
Rules CEP 

Engine 

Measure
ment 

Schema 

Result 
Schema 

Process 
model 

Fig. 2. Overview of documents created with ProGoalML. Dotted lines indicate flow of
monitoring data between components. Grey parts highlight focus of this work.

2 Modeling Goals, KPIs and Metrics Using ProGoalML

In order to define a goal model and create a ProGoalML document, aPro intro-
duces additional modeling elements used in conjunction with a BPMN diagram
(see Figure 3).

Fig. 3. ProGoalML modeling elements

To measure metrics during execution, measuring points are used. A measuring
point can be attached to any BPMN element, at which a measurement is to be
taken. It contains one or more Parameters which are to be measured. A Param-
eter has a name and a primitive data type. A special case is the ID type, which is
used to correlate measurements of a process instance. Based on Parameters,KPI s
can be calculated. A KPI defines a function which references Parameters or other
KPIs. A goal is similar to a KPI as it is defined by a function as well. However, this
function returns a Boolean value indicating whether the goal has been fulfilled or
not.Abbreviations are used to indicatewhich type ameasurement, goal orKPIhas.



Goal-Oriented Model-Driven Business Process Monitoring Using ProGoalML 75

We define a Parameter p as a tuple p ∈ P = (n, t, Ep)
where n is the name of the Parameter and the type t ∈ T , with T = {Boolean,

Enumeration, Integer, Double, String, ID, Long} as the set of types. If t =
Enumeration, then Ep is the set of possible enumeration values, else Ep = ∅.

We define a measuring point m as a tuple

m ∈ M = (e, Pm)

where e is the BPMN element the measuring point is attached to and Pm is
the set of Parameters belonging m. As a parameter may only belong to a single
measuring point, given P as the set of all parameters the following must hold

∀m1,m2 ∈ M : Pm1 , Pm2 ⊂ P ∧m1 �= m2 → Pm1 ∩ Pm2 = ∅
We further define a KPI k as a tuple

k ∈ K = (n, f, Vk)

where n is the Name of the KPI, f f is the function to calculate the KPI and
Vk ⊂ P ∪K is the set of input variables. Similarly, a goal is defined as

g ∈ G = (n, f, Vg)

where n is the name of the goal, f is a function returning a Boolean and Vg ⊂ P∪
K is the set of input variables. For the purpose of KPI calculation it is necessary
that there are no cyclic input variables, as otherwise no order of calculation may
be found. To ensure this, the following must hold:

∀k ∈ K : ∀v ∈ Vk :� ∃v0, v1, ..., vn ∈ K : (vo = vn = v ∧ ∀i ∈ [0, n) : vi ∈ Vvi+1)

2.1 Motivational Example

Figure 4 shows a simplified claim handling process of a car insurance company
which checks if a claim is justified. In the first step the claim is entered by an
employee in a claims management system containing among others the stipulated
amount. The second step is performed by an expert system and calculates a
reference amount for the claim based on the address given by checking repair
shop and rental car prices. In the last step a report is generated in the claims
management system and a decision about the claim is made. Either the claim is
accepted, accepted with a reduced amount, rejected or an error occurred.

In order to monitor this process, measuring points are defined at the activi-
ties. The first measuring point at Enter Claim contains two IDs, ClaimID and
Address, as well as two other parameters: Timestamp of type long indicating
the time the claim was entered and Amount of type double, the amount stipu-
lated by the claim. The second measuring point at Calculate Reference Amount
contains an ID named Address, which is the same address as in the first step
and another parameter Amount of type double, the reference amount calculated
by the expert system. The third measuring point at Decide Claim contains the
same claimID as the first measuring point and two other parameters: A Times-
tamp indicating when the claim was decided and the Result of the Decision as
an Enumeration containing the values ACCEPTED,PARTIALLY ACCEPTED,



76 F. Koetter and M. Kochanowski

Fig. 4. Example process annotated with measuring points, KPIs and goals

REJECTED and ERROR. Measuring points are named after the elements they
are attached to in order to uniquely define their parameters and measurements.

Based on these three measuring points two KPIs and two goals are calculated.
The first KPI is the process execution time measured in seconds starting from
the moment the claim has been entered, calculated from both timestamp values
using the function

Time := (Decide Claim.Timestamp− Enter Claim.Timestamp)/1000.0

Based on this KPI, a goal named Time SLA is defined, mandating the execution
time to be below 60 seconds:

Time SLA := Time < 60.0

The second KPI, Savings achieved by the expert system is calculated using the
function

Savings := Enter Claim.Amount− Calculate Reference Amount.Amount

The second goal mandates that the process finishes without an error:

No Errors := Decide Claim.Result �= ”ERROR”

Note that when parameters from different measuring points are used in a func-
tion, the measurements have to be correlated with each other using IDs.

2.2 ProGoalML

After measuring points, KPIs and goals have been modeled, a ProGoalML docu-
ment has to be created to serve as an input for configuration document creation
as shown in Figure 2.



Goal-Oriented Model-Driven Business Process Monitoring Using ProGoalML 77

Abridged ProGoalML document from motivational example(Figure 4)

<Progoalml version="1.0">

<Meta>...</Meta>

<GoalModel>

<MeasuringPoint name="Calculate_Reference_Amount">

<RefBpmn>Calculate_Reference_Amount</RefBpmn>

<Parameter name="Address">

<DataType>ID</DataType>

</Parameter>

<Parameter name="Amount">...</Parameter>

</MeasuringPoint>

<MeasuringPoint name="Decide_Claim">...</MeasuringPoint>

<MeasuringPoint name="Enter_Claim">...</MeasuringPoint>

<KeyPerformanceIndicator name="Savings">

<Formula>

Enter_Claim.Amount - Calculate_Reference_Amount.Amount

</Formula>

<RefParameter>

<ParameterName>Amount</ParameterName>

<MeasuringPointName>Enter_Claim</MeasuringPointName>

</RefParameter>

...

<DataType>double</DataType>

</KeyPerformanceIndicator>

<KeyPerformanceIndicator name="Time">...</KeyPerformanceIndicator>

<Goal name="No_errors">

<Formula>Result != "ERROR"</Formula>

<RefParameter>...</RefParameter>

<DataType>boolean</DataType>

</Goal>

<Goal name="Time_SLA">...</Goal>

</GoalModel>

<ProcessModel>...</ProcessModel>

</Progoalml>

A ProGoalML document consists of a goal model, a process model and meta-
data like title and creation date. The process model is created by removing all
aPro-related elements from the process and serializing the resulting standard
BPMN 2.0 model. The goal model consists of measuring points, KPIs and goals.
A measuring point contains its parameters as well as a reference to the BPMN
element it belongs to. A parameter consists of a name, a data type and, if it is
an enumeration, all possible enumeration values. KPIs consist of a data type, a
formula and references to all input variables. Parameters are referenced by their
name and the name of the measuring point they belong to. Similar to KPIs goals
consist of a data type, a formula and references to all input variables, though
the data type has to be boolean. However, in future work other data types may
be supported to measure partial fulfillment of goals.



78 F. Koetter and M. Kochanowski

3 Measuring and Result Creation

As shown in Figure 1, monitoring data has to be gathered from application
systems. To instrument these diverse application systems, different monitoring
stubs are necessary, ranging from simple web service calls to periodically evalu-
ating local log files. For each measuring point a separate monitoring stub may
be created befitting the particular system performing the corresponding step.

In any case, whenever a measurement occurs, the monitoring stub calls its
corresponding monitoring web service, transmitting all measured parameters.
The monitoring web service then transfers the measurement to the CEP engine
as an event. This way, CEP engine and monitoring stub are decoupled, resulting
in simplified and engine-independent stub code.

Measurement schema for Calculate Reference Amount (see Figure 4)

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Calculate_Reference_Amount"

type="Calculate_Reference_Amount"/>

<xs:complexType name="Calculate_Reference_Amount">

<xs:sequence>

<xs:element name="refBPMN" type="xs:string"/>

<xs:element name="Address" type="xs:id"/>

<xs:element name="Amount" type="xs:double"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

For each measuring point an XML schema is generated, describing the struc-
ture of a measurement, called a measurement schema (see Figure 2). It defines
the interface between monitoring stub, web service and CEP engine. In our ex-
ample (see Figure 4) three schemata are generated in total.

In order to get monitoring results the CEP engine will gather measurements
and calculate KPIs and goals. As KPIs and goals may be calculated from Pa-
rameters belonging to multiple measuring points, it is necessary to correlate all
measurements from a process instance in order to obtain a matching set of input
variables. For example in Figure 4 the Savings are calculated from two separate
measuring points. For correlation Parameters of the type t = ID (i.e. IDs) are
used. IDs with the same name are considered to have identical values in a single
process instance, thus can be used to correlate their measuring points with each
other, finding measurements which belong to the same process instance. Utiliz-
ing transitivity, measuring points with different IDs may be correlated as well.
Consider our motivational example (see Figure 4). Two kinds of ID are used,
CaseID and Address. The measuring point at EnterClaim contains both IDs, so
it can be correlated to both other measuring points, which contain one of the
IDs each. Thus, all three measurements which occur in a process instance can
be correlated and KPIs spanning multiple measurements can be calculated.



Goal-Oriented Model-Driven Business Process Monitoring Using ProGoalML 79

We define the coverage class of a measuring point mx as follows

Cmx = {m ∈ M |∃mo, ...,mn ∈ M : mn = mx ∧ ∀i ∈ [0, n) : ∃p1 ∈ Pmi , p2 ∈
Pmi+1 : np1 = np2 ∧ tp1 = tp2 = ID}
KPIs and goals may only use input variables belonging to one coverage class.

If a measuring pointm1 is contained in the coverage class of another measuring
point m2, their coverage classes are identical:

m1 ∈ Cm2 => m2 ∈ Cm1 => Cm1 = Cm2

Thus, in our example, all coverage classes are identical and contain all three
measuring points.

Algorithm to find distinct coverage classes

I := {x|x ∈ P ∧ tp = ”ID”}
C := ∅
f : I �→ Cm : f(id) := ∅
f o r ea ch (m ∈ M )

Cm := {m}
f o r ea ch (p ∈ Pm ∩ I )

i f (f(p) �= ∅)
C := C\{f(p)}
Cm := Cm ∪ f(p)

end i f
endfor
C := C ∪ {Cm}
f o r ea ch (p ∈ {p|p ∈ I ∧ ∃x ∈ Cm : p ∈ Px})
f(p) := Cm

endfor
endfor

To generate result schemata and CEP rules we need to identify the set C of
all distinct coverage classes using the algorithm above. Whenever it encounters a
measuring point m which has an ID p already present in another coverage class
f(p), coverage classes are merged, thus ensuring every measuring point sharing
an ID is in the same coverage class and only distinct coverage classes remain
in C. For each coverage class a CEP rule for process instance correlation and a
result schema is generated, as shown in Figure 2.

A result schema contains all goals, KPIs and parameters of a coverage class.
The name of a measurement is assembled from measuring point and parame-
ter names. IDs are named differently, as they have the same values among all
measuring points and their names are globally unique.

Abridged result schema for motivational example (compare Figure 4)

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Handle_Claim"

type="Handle_Claim"/>



80 F. Koetter and M. Kochanowski

<xs:complexType name="Handle_Claim">

<xs:sequence>

<xs:element name="Case_ID" type="xs:id"/>

<xs:element name="Address" type="xs:id"/>

<xs:element name="Enter_Claim.Timestamp" type="xs:long"/>...

<xs:element name="Savings" type="xs:double"/>...

<xs:element name="No_Errors" type="xs:boolean"/>...

</xs:sequence>

</xs:complexType>

</xs:schema>

Similar to SQLand tables, the EsperEventProcessingLanguageallows defining
a statement on incoming events, called a rule. This rule uses the IDs to correlate
all measurements from a process instance, calculates KPIs and goals and creates
a result event. For each process instance, the CEP rule creates a result according
to the schema. These messages may then be stored in a data warehouse, displayed
on a dashboard or further aggregated within the CEP engine (future work).

Abridged CEP rule to create results for motivational example (Figure 4))

INSERT INTO Manage_Claim SELECT A.ClaimID as ClaimID, ...,

A.Amount - B.Amount as Savings, ..., C.Result != "ERROR" as No_Errors, ...,

A.Amount as Enter_Claim\.Amount, ..., C.Result as Decide_Claim\.Result

from pattern [every A=event(refBPMN="Enter_Claim")

-> B=event(Address=A.Address and refBPMN="Calculate_Reference_Amount")

-> C=event(ClaimID=A.ClaimID and refBPMN="Decide_Claim")]

4 Prototype and Evaluation

To evaluate ProGoalML, we created a prototype for modeling goal models, as
well as generating ProGoalML files, measuring and monitoring schemata and
CEP rules. The prototype is based on Oryx, a web-based tool for collaborative
modeling[7]. It has been used to model the motivational example in Figure 4.

We then created a test driver generating random measurements from a given
ProGoalML file. We evaluated the documents created by our prototype in multi-
ple examples and found them to be correct. However, when placing a measuring
point inside a loop, multiple measurements per process instance may occur.

Further on, we created an interactive test driver allowing tests with more
realistic data. We extended the motivational example to the real-world process
it represents and tested it using sample data gained by studying the real system.
This resulted in correct results as well and we plan to instrument the production
system in order to further evaluate GoalML.

5 Related Work

Goal modeling is a topic in requirements engineering[11], where goals for a (fu-
ture) system are defined. Compared to ProGoalML goals are defined a priori,
before the system in question exists. Goal models are then used to find goal



Goal-Oriented Model-Driven Business Process Monitoring Using ProGoalML 81

conflicts, identify necessary requirements and ensure requirement completeness.
Goals in requirements engineering are linked and may support or contradict each
other[5]. In [9] an overview of goal-oriented requirements engineering is given.
Goals may be formalized using temporal logic which may be used as a basis
for verification of a system implementing the requirements, e.g. by checking if a
statement holds true at all times. In comparison, ProGoalML is used to define
goals a posteriori, focusing on measuring their fulfillment rather than ensuring
it, which is performed in the later steps of the aPro architecture. As ProGoalML
checks goal fulfillment on a process instance level compared to a system level,
there is no temporal dimension to goal definition. Aggregating goal fulfillment
is performed in the later stages of aPro and subject for future research.

[6] defines a notation for modeling complex events in a BPMN process, simi-
larly to the definition of measurement points in ProGoalML. We experimented
using extended BPMN events for monitoring purposes with the BPMN engine
activiti, but concluded that we need events from a broader range of systems.

In [17] Process Performance Indicators (PPIs), which parallel KPIs in Pro-
GoalML, are defined using an ontology. They as well may be calculated hier-
archically from measurements and may span a process instance or the whole
process. In the latter case measurements from a process instance are aggregated.
We plan to address aggregation of KPIs and goals in future work using further
CEP rules. Similarly to ProGoalML, PPIs are to be used across the business life-
cycle, but measurement and other steps are not described in detail. A graphical
notation for PPIs is planned, but has not been implemented yet.

Similarly to creating KPIs from multiple values, [4] defines Service Level Ob-
jects in a hierarchical fashion in order to find causes of service level violations.
Monitoring data is correlated using hierarchically structured event logs, a tech-
nique not applicable for aPro, as event logs may not exist.

In [3] amethod for run-time validation ofWS-BPEL processes is presented. The
process is augmented with rules like pre- and post-conditions to use a monitoring
manager as a proxy for service calls which polices rule compliance. In comparison
to ProGoalML rules need to be written manually and separate from the process.
Similarly, [2] monitors WS-BPEL processes by extending the runtime engine and
transmitting events to a monitoring engine. Instance monitors for monitoring sin-
gle instances and class monitors for gathering statistics across instances may be
specified using Monitoring Rules, which, similarly to ProGoalML are then used
to create Java Code. Rules for monitors are similar to CEP rules[12] and deliver
numeric or Boolean values like KPIs and goals, but have to be specified manually
separate from the process. Both approaches require a process engine.

[21] presents a top-down approach for modeling process performance met-
rics of a BPEL process. Process and PPM model are transformed to a mon-
itoring model for use in a Business Activity Monitoring (BAM) tool and an
event filter for a specific process engine, selecting events sent to the BAM tool.
As in [2] instance and aggregate performance metrics are differentiated. Like
ProGoalML modeling is initially platform-independent and then translated in
platform-specific documents, but still requires a process engine.



82 F. Koetter and M. Kochanowski

[13] describes a model driven approach for monitoring of BPEL processes.
The process is modeled across multiple abstraction levels, each containing an
additional monitoring model. KPIs are derived from templates to facilitate reuse.
The platform-independent monitoring model is modeled using Eclipse Modeling
Framework and transformed to platform specific event and monitoring models.
Similar to ProGoalML, the complexity of the underlying platform is hidden from
the modeler, but only specific systems may be monitored (IBM Websphere).

In [18] a framework for non-intrusive monitoring is described. Similar to aPro
monitoring is separated from execution andmonitoring data is acquired by polling
for events. A monitoring policy containing a process model, input event descrip-
tions (comparable to monitoring schemata) and requirements to monitor (compa-
rable to goals) is used to configure the monitoring framework.While this approach
is less intrusive than aPro due to the lack of monitoring stubs, it requires events
to be already generated in the execution environment. Creation of a monitoring
policy is not automated and thus needs multiple documents to be written.

6 Future Work and Conclusion

Work on the prototype is ongoing. As shown in Figure 2 we plan automatic cre-
ation of a data warehouse and automatic configuration of a process dashboard
already developed. Further research on CEP rule generation will be necessary,
as multiple iterations are not handled now and aggregated data (e.g. averages
of KPIs) will be shown on the dashboard. Additionally, we will research auto-
matic generation or configuration of monitoring stubs and web services for data
collection. Further on, we plan to support process analysis and integrate ABIS
to achieve process adaptation (see Figure 1).

In this paper, we gave an overview of the business process monitoring require-
ments of aPro and designed a goal modeling notation. We showed how the goal
model is transformed into a ProGoalML document and how this document is
used to create necessary configuration documents. We detailed the creation of
XML schemata for measurements and results as well as the creation of CEP
rules to transform measurements to results. We implemented these concepts in
a prototype and validated them using a test driver. In the future, our findings
will be part of aPro, allowing business process optimization and fast setup of
process monitoring without extensive technical knowledge.

References

1. Esper - Complex Event Processing, http://esper.codehaus.org/
2. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-Time Monitoring of In-

stances and Classes of Web Service Compositions. In: International Conference on
Web Services, ICWS 2006, pp. 63–71 (September 2006)

3. Baresi, L., Guinea, S.: Towards Dynamic Monitoring of WS-BPEL Processes. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp.
269–282. Springer, Heidelberg (2005)

http://esper.codehaus.org/


Goal-Oriented Model-Driven Business Process Monitoring Using ProGoalML 83

4. Bodenstaff, L., Wombacher, A., Reichert, M., Jaeger, M.C.: Monitoring Depen-
dencies for SLAs: The MoDe4SLA Approach. In: IEEE 5th Int’l Conference on
Services Computing, pp. 21–29. IEEE Computer Society Press (July 2008)

5. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Science of Computer Programming 20(1-2), 3–50 (1993)

6. Decker, G., Grosskopf, A., Barros, A.: A Graphical Notation for Modeling Complex
Events in Business Processes. In: 11th IEEE International Enterprise Distributed
Object Computing Conference, EDOC 2007, p. 27 (October 2007)

7. Decker, G., Overdick, H., Weske, M.: Oryx – An Open Modeling Platform for the
BPM Community. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008.
LNCS, vol. 5240, pp. 382–385. Springer, Heidelberg (2008)

8. Gartner: Gartner Reveals Five Business Process Management Predictions for 2010
and Beyond, http://www.gartner.com/it/page.jsp?id=1278415

9. Kavakli, E., Loucopoulos, P.: Goal modeling in requirements engineering: Analysis
and critique (2004)

10. Koetter, F., Weidmann, M., Schleicher, D.: Guaranteeing Soundness of Adap-
tive Business Processes Using ABIS. In: Abramowicz, W. (ed.) BIS 2011. LNBIP,
vol. 87, pp. 74–85. Springer, Heidelberg (2011)

11. van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
Proceedings of Fifth IEEE International Symposium on Requirements Engineering
2001, pp. 249–262 (2001)

12. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Process-
ing in Distributed Enterprise Systems. Addison-Wesley, Boston (2001)

13. Momm, C., Gebhart, M., Abeck, S.: A Model-Driven Approach for Monitoring
Business Performance in Web Service Compositions. In: Proceedings of the 2009
Fourth International Conference on Internet and Web Applications and Services,
pp. 343–350. IEEE Computer Society, Washington, DC (2009)

14. Neubauer, T.: An Empirical Study about the Status of Business Process Manage-
ment. Business Process Management Journal 15(2), 166–183 (2009)

15. Object Management Group (OMG): Business Process Model and Notation
(BPMN) Version 2.0 (2009), http://www.omg.org/spec/BPMN/2.0/

16. Patig, S., Casanova-Brito, V., Vögeli, B.: IT Requirements of Business Process
Management in Practice – An Empirical Study. In: Hull, R., Mendling, J., Tai, S.
(eds.) BPM 2010. LNCS, vol. 6336, pp. 13–28. Springer, Heidelberg (2010)

17. del-Ŕıo-Ortega, A., Resinas, M., Ruiz-Cortés, A.: Defining Process Performance
Indicators: An Ontological Approach. In: Meersman, R., Dillon, T.S., Herrero,
P. (eds.) OTM 2010, Part I. LNCS, vol. 6426, pp. 555–572. Springer, Heidelberg
(2010)

18. Spanoudakis, G.: Non Intrusive Monitoring of Service Based Systems. International
Journal of Cooperative Information Systems 15, 325–358 (2006)

19. Weber, B., Sadiq, S., Reichert, M.: Beyond Rigidity - Dynamic Process Lifecycle
Support: A Survey on Dynamic Changes in Process-aware Information Systems.
Computer Science - Research and Development 23(2), 47–65 (2009)

20. Weidmann, M., Koetter, F., Kintz, M., Schleicher, D., Mietzner, R.: Adaptive
Business Process Modeling in the Internet of Services (ABIS). In: Internet and
Web Applications and Services, ICIW (2011)

21. Wetzstein, B., Strauch, S., Leymann, F.: Measuring Performance Metrics of WS-
BPEL Service Compositions. In: Fifth International Conference on Networking and
Services, ICNS 2009, pp. 49–56 (April 2009)

http://www.gartner.com/it/page.jsp?id=1278415
http://www.omg.org/spec/BPMN/2.0/

	Goal-Oriented Model-Driven Business ProcessMonitoring Using ProGoalML
	Introduction
	Modeling Goals, KPIs and Metrics Using ProGoalML
	Motivational Example
	ProGoalML

	Measuring and Result Creation
	Prototype and Evaluation
	Related Work
	Future Work and Conclusion
	References




