
An Approach for Consistent Delegation
in Process-Aware Information Systems

Sigrid Schefer-Wenzl, Mark Strembeck, and Anne Baumgrass

Institute for Information Systems and New Media
Vienna University of Economics and Business (WU Vienna), Austria

firstname.lastname@wu.ac.at

Abstract. Delegation is an important concept to increase flexibility in
authorization and obligation management. Due to the complexity of po-
tential delegation relations, there is a strong need to systematically check
the consistency of all delegation assignments. In this paper, we discuss
the detection of delegation conflicts based on the formal definitions of
a model that supports the delegation of roles, tasks, and duties in a
business process context.

Keywords: Access Control, Business Processes, Delegation, RBAC.

1 Introduction

A business process includes a set of tasks which are performed to reach certain
corporate goals. To support the secure execution of a business process, subjects
participating in a particular process instance must own the permissions that
are needed to execute the corresponding tasks (see, e.g., [17]). In recent years,
Role-Based Access Control (RBAC) [7,9] has developed into a de facto standard
for access control. In RBAC, roles are used to model different job positions and
responsibilities within an organization and/or information system. Permissions
are assigned to roles according to the tasks each role has to accomplish. The
roles are then assigned to human users according to their respective work profile
[15]. Roles are also used as an abstract concept for delegation [5,18] or for the
assignment of duties defined via obligations [11,21].

Authorization policies define a subject’s permissions, while obligation poli-
cies define a subject’s duties (see, e.g., [3]). Delegation provides a mechanism
to increase flexibility in authorization and obligation management. In essence, a
subject can delegate tasks, duties, or roles to another subject [11]. Subsequently,
the subject receiving the delegation (the delegatee) will act on behalf of the del-
egating subject (the delegator). While delegation authorizes subjects to perform
tasks they usually are not allowed to perform, authorization constraints, such as
mutual-exclusion (ME) and binding constraints, restrict which subject is allowed
to execute a particular task (see, e.g., [16,17,19]). In process-aware information
systems, ME constraints enforce conflict of interest policies. Conflict of interest
arises as a result of the simultaneous assignment of two mutually exclusive tasks
or roles to the same subject. In contrast to ME constraints, binding constraints

W. Abramowicz et al. (Eds.): BIS 2012, LNBIP 117, pp. 60–71, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



An Approach for Consistent Delegation in PAIS 61

define that bound tasks must be executed by the same subject or role. The
immanent complexity of delegations is a central problem in process-aware infor-
mation systems (see, e.g., [4,10]). Thus, when delegating tasks, roles, or duties,
design-time and run-time checks need to ensure the consistency of the corre-
sponding RBAC model including mutual-exclusion and binding constraints. In
[13,16], we provide a set of algorithms that check and ensure the consistency of
process-related RBAC models without addressing delegation aspects.

The main contribution of this paper is the consideration of delegations when
checking and ensuring the consistency of process-related RBAC models. In
particular, we integrate the formal definitions of our delegation model into
process-related RBAC models [17]. These definitions are based on several
existing, well-known delegation models and are the basis for the algorithms
presented in this paper. The algorithms systematically detect potential conflicts
when delegating roles, tasks, and duties at design- and run-time. For this
purpose, we take the conflicts identified in [13,16] as a starting point.

The remainder of this paper is structured as follows. In Section 2, we introduce
relevant terms and present the formal definitions of a process-related RBAC
delegation model. Section 3 provides algorithms to detect potential delegation
conflicts to ensure the consistency of a process-related RBAC delegation model.
Section 4 discusses related work and Section 5 concludes the paper.

2 Process-Related RBAC Delegation Models

In our process-related RBAC delegation model, roles, tasks, and associated du-
ties are delegatable. Each task in an IT-supported workflow (such as negotiating
a contract) is typically associated with certain access operations (e.g., to sign
the contract). Thus, a subject participating in a workflow must be authorized to
perform the tasks needed to complete the process (see, e.g., [17]). In organiza-
tional contexts, tasks can be associated with duties. Each duty defines an action
that must be performed by a certain subject in order to comply with legal or or-
ganizational regulations (see, e.g., [3,12]). A subject may either be a human user
or a software-based system. In RBAC, a role is a subject abstraction containing
the tasks and duties of a certain subject-type.

In the context of RBAC, several delegation approaches use the concept of
delegation roles (see, e.g., [8,14,20]). In our delegation model, a delegation role
is created by the delegator and comprises a set of delegated tasks and duties
(similar to [20]). Hereby, each duty is associated with a certain task [12]. A dele-
gator can delegate all or a subset of his/her delegatable tasks, duties, or roles by
assigning them to a delegation role. Subsequently, delegation roles are assigned
to delegatees and can either be defined for temporary or for permanent delega-
tion (see, e.g., [2,20]). By default, delegation roles are permanent which means
they authorize the delegatee to perform the delegated tasks and duties in all
instances of a process. In contrast, a temporary delegation role authorizes the
delegatee to perform the delegated tasks and duties only in particular process in-
stances. Moreover, we support single- and multi-step delegation (see, e.g., [2,18]).



62 S. Schefer-Wenzl, M. Strembeck, and A. Baumgrass

In single-step delegation, a delegated task, duty, or role cannot be delegated fur-
ther by the delegatee. Multi-step delegation allows a delegatee to further delegate
the delegated tasks, duties, and roles. In general, delegation roles and all assign-
ments to delegation roles are managed by the delegating subject. All other roles
are called regular roles and are usually managed by the organization’s security
officer. Fig. 1 shows a class diagramm that depicts the elements of the RBAC
delegation model (see Definition 1).

Fig. 1. Main elements of process-related RBAC delegation models

Furthermore, different kinds of authorization constraints can be defined to
restrict which subjects are allowed to execute a particular task or duty (see, e.g.,
[17,19]). In this paper, we focus on static mutual exclusion (SME), dynamic mu-
tual exclusion (DME), subject-binding (SB), and role-binding (RB) constraints.
A SME constraint defines that two statically mutual exclusive tasks must never
be assigned to the same subject. In turn, a DME constraint defines that two
dynamically mutual exclusive tasks must never be executed by the same subject
in the same process instance. A SB constraint defines that two bound tasks must
be performed by the same individual within the same process instance. A RB
constraint defines that bound tasks must be performed by members of the same
role, but not necessarily by the same individual. To ensure proper delegation,
authorization constraints must be considered when delegating tasks, duties, and
roles (see Section 3). For example, a delegation assignment must not authorize
the delegatee to perform two SME tasks.

Definition 1 formally specifies the essential elements and their basic interrela-
tions in a metamodel for process-related RBAC delegation models (see Fig. 1).



An Approach for Consistent Delegation in PAIS 63

Definition 1. (Process-Related RBAC Delegation Model). Let PRDM =
(E,Q,D,DL) be a Process-Related RBAC Delegation Model, where E refers to the
pairwise disjoint sets of the metamodel, Q to mappings that establish relation-
ships, D to binding and mutual-exclusion constraints, and DL to mappings for
delegation policies.

The sets E of the Process-Related RBAC Delegation Model are:
– An element of S is called Subject. S �= ∅.
– An element of R is called Role. R �= ∅.
– An element of RR is called Regular Role. RR ⊆ R.
– An element of DR is called Delegation Role. DR ⊆ R
– An element of DRT is called Temporary Delegation Role. DRT ⊆ DR.
– An element of PT is called Process Type. PT �= ∅.
– An element of PI is called Process Instance. PI �= ∅.
– An element of TT is called Task Type. TT �= ∅.
– An element of DTT is called Delegatable Task Type. DTT ⊆ TT .
– An element of TI is called Task Instance.
– An element of DUT is called Duty Type.
– An element of DDUT is called Delegatable Duty Type. DDUT ⊆ DUT .
– An element of DUI is called Duty Instance.

For the mappings of the Process-Related RBAC Model (Q,D) see [17]. Below,
we define additional mappings for delegation: DL = rrh ∪ drh ∪ creator ∪ drpi ∪
trra ∪ trdel ∪ dta ∪ rrsa ∪ rsdel ∪ dui ∪ res ∪ rer (P refers to the power set):

1. Roles R are partitioned into regular roles and delegation roles. In RBAC,
roles can be arranged in a role-hierarchy, where senior-roles inherit the per-
missions from their junior-roles. To avoid invalid permission inheritance,
the regular role-hierarchy consists of regular roles only. If a model uses
process-related RBAC delegation, this mapping replaces the role-hierarchy
mapping rh in [17]: The mapping rrh : RR �→ P(RR) is called regu-
lar role-hierarchy. For rrh(rs) = RRj, we call rs ∈ RR senior regu-
lar role and RRj ⊆ RR the set of direct junior regular roles. The tran-
sitive closure rrh∗ defines the inheritance in the role-hierarchy such that
rrh∗(rs) = RRj∗ includes all direct and transitive regular junior-roles that
the senior-role rs inherits from. The regular role-hierarchy is cycle-free, i.e.
for each r ∈ RR : rrh∗(r) ∩ r = ∅.

2. Delegation roles can be arranged in a delegation role-hierarchy via role-to-
role delegation. Note that each delegation role may have junior regular roles
or junior delegation roles (see, e.g., [20]). However, delegation roles must
not have senior regular roles to avoid invalid permission inheritance in the
regular role hierarchy: The mapping drh : DR �→ P(R) is called delegation
role-hierarchy. For drh(drs) = Rj, we call drs ∈ DR senior delegation role
and Rj ⊆ R the set of direct junior-roles. The transitive closure drh∗ defines
the inheritance in the role-hierarchy such that drh∗(drs) = Rj∗ includes all
direct and transitive junior-roles that the senior-role drs inherits from. The
delegation role-hierarchy is cycle-free, i.e. for each r ∈ R : drh∗(r) ∩ r = ∅.



64 S. Schefer-Wenzl, M. Strembeck, and A. Baumgrass

3. Each subject can create an arbitrary number of delegation roles. Subse-
quently, the creator will act as the delegator of its delegation roles: The
mapping creator(dr) : DR �→ S is called delegation role creator. For
creator(dr) = s, we call dr ∈ DR delegation role and s ∈ S the creator of
this delegation role.

4. Each delegation role can be specified either for permanent or for temporary
delegation. By default, a delegation role is permanent and is valid for all
process types. In case of temporary delegation, a temporary delegation role
is only valid for particular process instances: The mapping drpi : DRT �→
P(PI) is called delegation role-to-process assignment. For drpi(drt) =
Pdrt, we call drt ∈ DRT temporary delegation role, and Pdrt ⊆ PI the set
of process instances.

5. Task types are assigned to regular roles to define the permissions of the
corresponding role. If a model uses process-related RBAC delegation, this
mapping replaces the task-to-role assignment mapping tra in [17]: The map-
ping trra : RR �→ P(TT ) is called task-to-regular role assignment. For
trra(r) = Tr, we call r ∈ RR regular role and Tr ⊆ TT is called the set of
tasks assigned to r. The mapping trra−1 : TT �→ P(RR) returns the set of
regular roles a particular task is assigned to.

6. Task types can be defined as being delegatable. Only delegatable tasks can
be assigned to delegation roles. Thus, a subject can delegate a task by as-
signing this task to a delegation role: The mapping trdel : DR �→ P(DTT )
is called task-to-role delegation. For trdel(dr) = DTdr, we call dr ∈ DR
delegation role and DTdr ⊆ DTT is called the set of delegated tasks assigned
to dr. The mapping trdel−1 : DTT �→ P(DR) returns the set of delegation
roles a particular delegatable task is assigned to.

7. Further, trra and trdel imply a mapping task ownership town : R �→
P(TT ) to determine all tasks that are assigned to a particular role. If
a model uses process-related RBAC delegation, this mapping replaces
the town-mapping from [17]: For each r ∈ R, the tasks inherited from
its junior roles are included, i.e. town(r) = townrrh(r) ∪ towndrh(r),
where townrrh(r) =

⋃
rinh∈rrh∗(r) trra(rinh) ∪ trra(r) and towndrh(r) =

⋃
rinh∈drh∗(r) trdel(rinh) ∪ trdel(r).

8. A duty defines an action that must be performed by a certain subject. In
a business process context, each duty is associated with a task [12]: The
mapping dta : TT �→ P(DUT ) is called duty-to-task assignment. For
dta(t) = DUx, we call t ∈ TT task type and DUx ⊆ DUT is called the set of
duties assigned to this task type.

9. Delegatable tasks can only be delegated, if all associated duties are also
delegatable: ∀tx ∈ trdel(dr) : ∀du ∈ dta(tx) : du ∈ DDUT

10. Regular roles are assigned to subjects. Thereby, subjects acquire the rights
to execute the corresponding tasks and duties. If a model uses process-
related RBAC delegation, this mapping replaces the role-to-subject assign-
ment mapping rsa in [17]: The mapping rrsa : S �→ P(RR) is called reg-
ular role-to-subject assignment. For rrsa(s) = RRs, we call s ∈ S



An Approach for Consistent Delegation in PAIS 65

subject and RRs ∈ RR the set of regular roles owned by s. The mapping
rrsa−1 : RR �→ P(S) returns all subjects assigned to a regular role.

11. Delegation roles are assigned to delegatees who are subsequently authorized
and responsible to perform the corresponding delegated tasks and duties:
The mapping rsdel : S �→ P(DR) is called role-to-subject delegation.
For rsdel(s) = DRs, we call s ∈ S delegatee and DRs ∈ DR the set of
delegation roles owned by s. The mapping rsdel−1 : DR �→ P(S) returns all
delegatees assigned to a delegation role.

12. Further, rrsa and rsdel imply a mapping role ownership rown : S �→ P(R)
to determine all roles that are assigned to a particular subject. If a model uses
process-related RBAC delegation, this mapping replaces the rown-mapping
from [17]: For each s ∈ S, all inherited roles are included, i.e. rown(s) =
rownrrh(s) ∪ rowndrh(s), where rownrrh(s) =

⋃
r∈rrsa(s) rrh∗(r) ∪ rrsa(s)

and rowndrh(s) =
⋃

r∈rsdel(s) drh∗(r) ∪ rsdel(s).
13. For each task type, we can create an arbitrary number of respective task in-

stances via the task instantiation mapping ti [17]. Similarly, each duty
type is instantiated by a number of duty instances: The mapping dui :
(DUT × PI) �→ P(DUI) is called duty instantiation. For dui(duT , pI) =
DUi, we call DUi ⊆ DUI set of duty instances, duT ∈ DUT is called duty
type and pI ∈ PI is called process instance.

14. The executing-subject mapping es returns the subject executing a particu-
lar task instance [17]. The subject responsible for discharging a duty is called
the responsible subject of this duty instance: The mapping res : DUI �→ S
is called responsible-subject mapping. For res(du) = s, we call s ∈ S the
responsible subject and du ∈ DUI is called duty instance.

15. Within the same process instance, a subject executing a task is also respon-
sible for discharging all associated duties: ∀du ∈ dta(t1), pi ∈ PI : ∀tx ∈
ti(t1, pi), dux ∈ dui(du, pi) : es(tx) = res(dux)

16. The executing-role mapping er returns the role executing a particular task
instance [17]. The active-role mapping ar returns the role a subject has
currently activated [16]. The role being responsible for actually discharging
a certain duty instance is called the responsible-role: The mapping rer :
DUI �→ R is called responsible-role mapping. For rer(du) = r, we call
r ∈ R the responsible role and du ∈ DUI is called discharged duty instance.

17. Further, we allow the definition of subject-binding, role-binding, static mu-
tual exclusion, and dynamic mutual exclusion constraints on task types. Re-
lated consistency requirements are specified in [17]: The mapping sb : TT �→
P(TT ) is called subject-binding. For sb(t1) = Tsb, we call t1 the subject
binding task and Tsb ⊆ TT the set of subject-bound tasks. The mapping
rb : TT �→ P(TT ) is called role-binding. For rb(t1) = Trb, we call t1 the
role binding task and Trb ⊆ TT the set of role-bound tasks. The mapping
sme : TT �→ P(TT ) is called static mutual exclusion. For sme(t1) = Tsme

with Tsme ⊆ TT , we call each pair t1 and tx ∈ Tsme statically mutual ex-
clusive tasks. The mapping dme : TT �→ P(TT ) is called dynamic mutual
exclusion. For dme(t1) = Tdme with Tdme ⊆ TT , we call each pair t1 and
tx ∈ Tdme dynamically mutual exclusive tasks.



66 S. Schefer-Wenzl, M. Strembeck, and A. Baumgrass

3 Detecting Delegation Conflicts

When delegating tasks, duties, or roles several conflicts may occur. In [13,16], we
detect conflicts of process-related RBAC models at design-time and run-time.
In this paper, we provide additional algorithms to detect delegation conflicts.
Algorithms 1–3 check the design-time consistency of a process-related RBAC
delegation model when defining a task-to-role, role-to-role, or role-to-subject del-
egation relation. Algorithm 4 checks the consistency of a process-related RBAC
delegation model at run-time. All other conflicts that can potentially occur at
design- or run-time are addressed by the algorithms presented in [13,16].

Algorithm 1. Check if it is allowed to delegate a task type to a delegation role.
Input: taskx ∈ TT , droley ∈ DR, delegator ∈ S
1: if delegator �= creator(droley) then return false
2: if taskx /∈ DTT then return false
3: if ∃ dutyx ∈ dta(taskx) | dutyx /∈ DDUT then return false
4: if � r ∈ rown(delegator) | taskx ∈ town(r) ∧ r ∈ RR then return false
5: if ∃ tasky ∈ town(droley) | tasky ∈ sme(taskx) then return false
6: if ∃ rolez ∈ allSeniorRoles(droley) | taskz ∈ town(rolez) ∧
7: taskz ∈ sme(taskx) then return false
8: if ∃ s ∈ S | droley ∈ rown(s) ∧ rolez ∈ rown(s) ∧
9: taskz ∈ town(rolez) ∧ taskz ∈ sme(taskx) then return false
10: if ∃ tasky ∈ sb(taskx) | tasky /∈ DTT then return false
11: if ∃ tasky ∈ rb(taskx) | tasky /∈ DTT then return false
12: if ∃ tasky ∈ sb(taskx) | dutyy ∈ dta(tasky) ∧ dutyy /∈ DDUT then return false
13: if ∃ tasky ∈ rb(taskx) | dutyy ∈ dta(tasky) ∧ dutyy /∈ DDUT then return false
14: return true

Fig. 2. Delegation conflicts

Only the creator of a delegation role can delegate to it and assign delegatees.
Thus, Algorithm 1, line 1 returns false if a subject tries to delegate to a dele-
gation role which he/she has not created. For example, in Fig. 2a, subject s1
tries to delegate task tx to delegation role dry . Task tx is delegatable which is
visualized in Fig. 2 by a triangle attached to the task-symbol including the letter
D. However, s1 is not the creator of dry and thus s1 cannot delegate to it.



An Approach for Consistent Delegation in PAIS 67

Next, Algorithm 1, line 2 checks if a subject tries to delegate a task which
is not delegatable. In Fig. 2b, task tx cannot be delegated to delegation role
dry, because tx is not delegatable. Afterwards, line 3 checks if a subject tries to
delegate a task which is associated with a non-delegatable duty. Duties always
need to be discharged by the subject executing the corresponding task. Thus,
if a task is delegated, the corresponding duty also needs to be delegatable. In
Fig. 2c, task tx can not be delegated to delegation role dry, because the duty
dux associated to tx is not delegatable.

Algorithm 1, line 4 returns false if a subject tries to delegate a task which
he/she is not assigned to via its (regular) role ownership assignments. If single-
step delegation is preferred, the subject can only delegate tasks and duties which
he/she owns directly or transitively via a regular role. This is because single-step
delegation does not allow to further delegate a delegated task. In Fig. 2d, subject
s1 tries to delegate task tx to its delegation role dry. However, none of the regular
roles owned by s1 is assigned to tx. Thus, s1 cannot delegate tx to dry . In case
of multi-step delegation, a subject can delegate all of his/her tasks and duties.
For this purpose, we need to change the condition r ∈ RR in Algorithm 1, line
4 to r ∈ R. Subsequently, a subject can delegate tasks and duties which he/she
owns directly or transitively via its regular or delegation role memberships.

Moreover, it is not possible to delegate a task if this delegation would result in
the assignment of two SME tasks to the same role or subject (see Algorithm 1,
lines 5-9). Fig. 2e depicts an example where a delegation role dry owns a task
ty which is defined as SME to another task tx. Thus, tx cannot be delegated to
dry. Otherwise, dry would subsequently own two SME tasks. Fig. 2f shows an
example, where the delegation of task tx to the delegation role dry is not allowed
because s1 would then be authorized to perform the two SME tasks tz and tx.

If a subject tries to delegate a task which has a subject-binding to one or more
non-delegatable task(s), Algorithm 1, line 10 returns false. This is because subject-
bound tasks always have to be performed by the same subject. Thus, if a task is
delegated, all subject-bound tasks also need to be assigned to the same delegation
role. Otherwise, the SB constraint cannot be fulfilled. In Fig. 2g, a SB constraint is
defined on tx and ty. Therefore, the subject performing tx also has to perform ty.
When delegating tx to dry Algorithm 1 returns false, because ty is not delegatable.
However, to fulfill the SB constraint, both tasks need to be delegated to dry . Simi-
larly, Algorithm 1, line 11 returns false if a subject tries to delegate a task which has
a role-binding to one or more non-delegatable task(s). Thus, if a task is delegated,
all role-bound tasks also need to be assigned to the same delegation role.

Furthermore, a subject cannot delegate a task which has a subject-binding to
other tasks, if one of the subject-bound tasks is associated with a non-delegatable
duty. In Fig. 2h, a SB constraint is defined on tx and ty. Moreover, ty is associated
with a duty duy. If subject s1 tries to delegate tx to dry, it also has to delegate all
subject-bound tasks and associated duties. In this example, duy is not delegatable.
Thus, Algorithm 1, line 12 returns false. Similarly, if a subject tries to delegate a task
which has a role-binding to other tasks, Algorithm 1, line 13 returns false, if one of
the role-bound tasks is associated with a non-delegatable duty. If none of the above



68 S. Schefer-Wenzl, M. Strembeck, and A. Baumgrass

checks returns false, Algorithm 1 finally reaches line 14 and returns true – meaning
that it is allowed to delegate a particular task type to a certain delegation role.

Algorithm 2. Check if it is allowed to delegate a role to a delegation role.
Input: junior ∈ R, senior ∈ DR, delegator ∈ S
1: if delegator �= creator(senior) then return false
2: if junior /∈ rown(delegator) then return false
3: if junior == senior then return false
4: if ∃ taskx ∈ town(junior) | taskx /∈ DT then return false
5: if ∃ taskx ∈ town(junior) | dutyx ∈ dta(taskx) ∧
6: dutyx /∈ DDUT then return false
7: if junior ∈ DR then ∃ r ∈ rown(delegator) | taskx ∈ town(junior) ∧
8: taskx ∈ town(r) ∧ r ∈ RR else return false
9: if senior ∈ drh∗(junior) then return false
10: if ∃ taskj ∈ town(junior) | tasks ∈ town(senior) ∧
11: taskj ∈ sme(tasks) then return false
12: if ∃ rolex ∈ allSeniorRoles(senior) | taskx ∈ town(rolex) ∧
13: taskj ∈ town(junior) ∧ taskx ∈ sme(taskj) then return false
14: if ∃ s ∈ S | senior ∈ rown(s) ∧ rolex ∈ rown(s) ∧ taskx ∈ town(rolex) ∧
15: taskj ∈ town(junior) ∧ taskx ∈ sme(taskj) then return false
16: if ∃ taskx ∈ town(junior) | tasky ∈ sb(taskx) ∧ tasky /∈ DTT then return false
17: if ∃ taskx ∈ town(junior) | tasky ∈ sb(taskx) ∧ dutyy ∈ dta(tasky) ∧
18: dutyy /∈ DDUT then return false
19: return true

junior

seniordry

drz

dry

senior
junior

senior

juniordry

rrj

s1
senior
junior

creator

drt123
s1

txi

PI = 456

a) b) d) e)

dry

drx

s1
senior
junior

creator

c)

tx
D

Fig. 3. Delegation conflicts

Algorithm 2 first checks if the delegator of a role is the creator of the corre-
sponding delegation role. Subsequently, line 2 checks if a subject tries to delegate
a role which he/she is not assigned to. In Fig. 3a, subject s1 tries to delegate
the regular role rrj to its delegation role dry by assigning rrj as junior-role of
dry. However, s1 is not assigned to rrj and thus s1 cannot delegate rrj .

Next, Algorithm 2, line 3 returns false when delegating a role to itself. In gen-
eral, a role cannot be its own junior-role (see Fig. 3b and [16,17]). Algorithm 2,
line 4 checks if the role which is to be delegated only contains delegatable tasks.
Similarly, lines 5-6 check if all duties associated to the tasks of the corresponding
role are delegatable. If either tasks or duties assigned to the role are not dele-
gatable, Algorithm 2 returns false. Algorithm 2, lines 7-8 check if a subject tries
to delegate a delegation role owning a task which the delegator is not assigned
to via its regular role memberships (single-step delegation). Thus, a subject can
only delegate tasks and duties which he/she owns directly or transitively via
a regular role (see Figure 3c). In case of multi-step delegation, we can omit
this check. Moreover, a role-hierarchy must not include a cycle because all roles



An Approach for Consistent Delegation in PAIS 69

within such a cyclic inheritance relation would own the same permissions which
would render the respective part of the role-hierarchy redundant. Line 9 returns
false if a subject tries to delegate a role to a delegation role which is already
defined as its senior-role (see Fig. 3d and [16,17]).

Afterwards, Algorithm 2, lines 10-15 prevent that a role-to-role delegation
would result in the assignment of two SME tasks to the same role or subject.
In particular, this conflict occurs if the potential senior-role owns a task which
is SME to one of the tasks owned by the potential junior-role. Subsequently, if
a subject tries to delegate a role owning a task which has a subject-binding to
one or more non-delegatable task(s), Algorithm 2, line 16 returns false. This is
because subject-bound tasks always have to be performed by the same subject. In
case a subject tries to delegate a role owning a task which has a subject-binding
to other tasks, Algorithm 2, line 18 returns false, if one of the subject-bound tasks
is associated with a non-delegatable duty. If none of the above checks returns
false, Algorithm 2 finally reaches line 19 and returns true – meaning that it is
allowed to delegate a particular role to a certain delegation role.

Algorithm 3. Check if it is allowed to assign a particular delegation role to a certain
delegatee.
Input: drolex ∈ DR, delegatee, delegator ∈ S
1: if delegator �= creator(drolex) then return false
2: if ∃ roley ∈ rown(delegatee) | tasky ∈ town(roley) ∧
3: taskx ∈ town(drolex) ∧ tasky ∈ sme(taskx) then return false
4: return true

Algorithm 3, line 1 returns false if the subject who wants to assign a dele-
gation role to a particular delegatee is not the creator of this delegation role.
Subsequently, we need to check if the delegatee-assignment would result in the
assignment of SME tasks to the delegatee (due to other role-memberships of the
delegatee). If none of the above checks returns false, Algorithm 3 finally reaches
line 4 and returns true – meaning that it is allowed to assign a particular dele-
gatee to a certain delegation role.

Algorithm 4. Check if a particular task instance that is executed in a certain process
instance can be allocated to a specific delegatee.
Input: drole ∈ DRT, delegatee ∈ S, tasktype ∈ TT , processtype ∈ PT ,

processinstance ∈ pi(processtype), taskinstance ∈ ti(tasktype, processinstance)
1: if ∃ instancey ∈ ti(typey, processinstance) | ar(delegatee) = drole ∧
2: processinstance /∈ drpi(drole) then return false
3: return true

Algorithm 4, line 2 returns false if the selected subject is not allowed to execute
a certain task instance because the temporary delegation role is not valid for the
corresponding process instance. Each temporary delegation role is only valid
for particular process instances (see Definition 1.4). In Fig. 3e, subject s1 is
assigned to the temporary delegation role drt, and drt is only valid for the
process instance 123. However, the actual process instance is 456. Thus, s1 is
not allowed to execute the delegated tasks in this process instance. Note that
this check is not required for permanent delegation roles.



70 S. Schefer-Wenzl, M. Strembeck, and A. Baumgrass

4 Related Work

In recent years, there has been much work on various aspects of role- and
permission-based delegation (see, e.g., [2,20]). Delegation in a business pro-
cess/workflow context has also received considerable attention. In [1], the notion
of delegation is extended to allow for conditional delegation in workflows. Differ-
ent types of constraints, such as authorization constraints, are addressed in the
context of delegation. The effects of some delegation operations on three work-
flow execution models are described in [6]. Few contributions exist which consider
authorization constraints and related consistency conflicts in the context of del-
egation. In [14], an extension to PBDM is presented to integrate authorization
constraints in permission-based delegation. [14] focuses on static separation of
duty constraints and related conflicts and analyzes role-based constraints. In [4],
Crampton addresses the satisfiability problem of workflows in the context of con-
strained delegation and provides an algorithm that determines whether to permit
a delegation request. However, the algorithm does not distinguish between dif-
ferent conflict types. In [10], Schaad discusses delegation conflicts. In contrast to
our approach, the conflicts are detected after conducting the delegation, while
our algorithms detect conflicts before the delegation is performed. Thus, we aim
to detect conflicts before causing an inconsistent RBAC configuration.

5 Conclusion

In this paper, we provide a formal metamodel for process-related RBAC dele-
gation models. In addition, we presented generic algorithms to detect conflicts
in the context of delegating tasks, duties, and roles. We also discuss the specific
problem of mutual-exclusion and binding constraints in an RBAC delegation
context. Note that in our approach, conflicts are detected before causing an
inconsistent RBAC configuration. Thus, the application of the algorithms pre-
sented in this paper helps security engineers to prevent design- and run-time
conflicts in access control models and thereby aims to ensure the continuous
consistency of corresponding process-related RBAC delegation models.

References

1. Atluri, V., Warner, J.: Supporting Conditional Delegation in Secure Workflow Man-
agement Systems. In: Proceedings of the 10th ACM Symposium on Access Control
Models and Technologies, SACMAT (June 2005)

2. Barka, E., Sandhu, R.: Framework for Role-Based Delegation Models. In: Pro-
ceedings of the 16th Annual Computer Security Applications Conference, ACSAC
(December 2000)

3. Cole, J., Derrick, J., Milosevic, Z., Raymond, K.: Author Obliged to Submit Paper
before 4 July: Policies in an Enterprise Specification. In: Sloman, M., Lobo, J.,
Lupu, E.C. (eds.) POLICY 2001. LNCS, vol. 1995, pp. 1–17. Springer, Heidelberg
(2001)



An Approach for Consistent Delegation in PAIS 71

4. Crampton, J., Khambhammettu, H.: Delegation and Satisfiability in Workflow Sys-
tems. In: Proceedings of the 13th ACM Symposium on Access Control Models and
Technologies, SACMAT (June 2008)

5. Crampton, J., Khambhammettu, H.: Delegation in Role-Based Access Control.
International Journal of Information Security 7(2) (2008)

6. Crampton, J., Khambhammettu, H.: On Delegation and Workflow Execution Mod-
els. In: Proceedings of the 2008 ACM Symposium on Applied Computing, SAC
(March 2008)

7. Ferraiolo, D.F., Kuhn, D.R., Chandramouli, R.: Role-Based Access Control, 2nd
edn. Artech House (2007)

8. Joshi, J.B.D., Bertino, E.: Fine-grained Role-based Delegation in Presence of the
Hybrid Role Hierarchy. In: Proceedings of the 11th ACM Symposium on Access
Control Models and Technologies, SACMAT (June 2006)

9. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-Based Access Control
Models. IEEE Computer 29(2) (1996)

10. Schaad, A.: Detecting Conflicts in a Role-Based Delegation Model. In: Proceedings
of the 17th Annual Computer Security Applications Conference, ACSAC (2001)

11. Schaad, A., Moffett, J.D.: Delegation of Obligations. In: Proceedings of the 3rd In-
ternational Workshop on Policies for Distributed Systems and Networks, POLICY
(June 2002)

12. Schefer, S., Strembeck, M.: Modeling Process-Related Duties with Extended UML
Activity and Interaction Diagrams. Electronic Communications of the EASST 37
(March 2011)

13. Schefer, S., Strembeck, M., Mendling, J., Baumgrass, A.: Detecting and Resolv-
ing Conflicts of Mutual-Exclusion and Binding Constraints in a Business Process
Context. In: Meersman, R., Dillon, T., Herrero, P., Kumar, A., Reichert, M., Qing,
L., Ooi, B.-C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M., Hitzler, P.,
Mohania, M. (eds.) OTM 2011, Part I. LNCS, vol. 7044, pp. 329–346. Springer,
Heidelberg (2011)

14. Shang, Q., Wang, X.: Constraints for Permission-Based Delegations. In: Proceed-
ings of the 8th IEEE International Conference on Computer and Information Tech-
nology Workshops, CITWORKSHOPS (2008)

15. Strembeck, M.: Scenario-Driven Role Engineering. IEEE Security & Privacy 8(1)
(2010)

16. Strembeck, M., Mendling, J.: Generic Algorithms for Consistency Checking of
Mutual-Exclusion and Binding Constraints in a Business Process Context. In:
Meersman, R., Dillon, T.S., Herrero, P. (eds.) OTM 2010, Part I. LNCS, vol. 6426,
pp. 204–221. Springer, Heidelberg (2010)

17. Strembeck, M., Mendling, J.: Modeling Process-related RBAC Models with Ex-
tended UML Activity Models. Information and Software Technology 53(5) (2011)

18. Wainer, J., Kumar, A., Barthelmess, P.: DW-RBAC: A formal security model of
delegation and revocation in workflow systems. Information Systems 32(3) (2007)

19. Warner, J., Atluri, V.: Inter-Instance Authorization Constraints for Secure Work-
flow Management. In: Proceedings of the 11th ACM Symposium on Access Control
Models and Technologies, SACMAT (June 2006)

20. Zhang, X., Oh, S., Sandhu, R.: PBDM: A Flexible Delegation Model in RBAC.
Proceedings of the 8th ACM Symposium on Access Control Models and Technolo-
gies, SACMAT (June 2003)

21. Zhao, G., Chadwick, D., Otenko, S.: Obligations for Role Based Access Control.
In: Proceedings of the 21st International Conference on Advanced Information
Networking and Applications Workshops, AINAW (May 2007)


	An Approach for Consistent Delegationin Process-Aware Information Systems
	Introduction
	Process-Related RBAC Delegation Models
	Detecting Delegation Conflicts
	Related Work
	Conclusion
	References




