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Abstract. Process mining is not restricted to process discovery and also includes
conformance checking, i.e., checking whether observed behavior recorded in the
event log matches modeled behavior. Many organizations have descriptive or nor-
mative models that do not adequately describe the actual processes. Therefore, a
variety of techniques for conformance checking have been proposed. However,
all of these techniques focus on the control-flow and abstract from data and re-
sources. This paper describes an approach that aligns event log and model while
taking all perspectives into account (i.e., also data and resources). This way it is
possible to quantify conformance and analyze differences between model and re-
ality. The approach has been implemented in ProM and evaluated using a variety
of model-log combinations.

1 Introduction

Modern organizations are centered around the processes needed to deliver products and
services in an efficient and effective manner. Organizations that operate at a higher pro-
cess maturity level use formal/semiformal models (e.g., UML, EPC, BPMN and YAWL
models) to document their processes. In some case these models are used to configure
process-aware information systems (e.g., WFM or BPM systems). However, in most
organizations process models are not used to enforce a particular way of working. In-
stead, process models are used for discussion, performance analysis (e.g., simulation),
certification, process improvement, etc. However, reality may deviate from such mod-
els. People tend to focus on idealized process models that have little to do with reality.
This illustrates the importance of conformance checking [1,2,3].

An important enabler for conformance checking is the availability of event data in
modern organizations. Even though processes are typically not enforced by a process-
aware information system, still most events are recorded. Consider for example a hos-
pital. Medical doctors are not controlled by some BPM system. However, many events
are recorded, e.g., blood tests, X-ray images, administered drugs, surgery, etc. all result
in events that can be linked to a particular patient. Digital data is everywhere – in every
sector, in every economy, in every organization, and in every home – and will continue
to grow exponentially. MGI estimates that enterprises globally stored more than 7 ex-
abytes of new data on disk drives in 2010, while consumers stored more than 6 exabytes
of new data on devices such as PCs and notebooks [4]. The growing availability of event
data is an important enabler for conformance checking.
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Fig. 1. BPMN diagram of a data and resource-aware process to manage credit requests to buy
home appliances. In the remainder, data objects are simply referred with the upper-case initials,
e.g., V=Verification, and activity names by the letter in brackets, e.g. a=Credit Request.

Along with process discovery (learning process models from logs) and process en-
hancement (e.g., extending process models with bottleneck information based on times-
tamps in event logs), conformance checking belongs to the area of Process Mining [5],
which is a relatively young research discipline that sits between computational intelli-
gence and data mining on the one hand, and process modeling and analysis on the other
hand.

Conformance checking techniques take an event log and a process model and compare
the observed behavior with the modeled behavior. There are different dimensions for
comparing process models and event logs. In this paper, we focus of the fitness dimension:
a model with good fitness allows for most of the behavior seen in the event log. A model
has a perfect fitness if all traces in the log can be replayed by the model from beginning
to end. Other quality dimensions are simplicity, precision, and generalization [1,2].

Various conformance checking techniques have been proposed in recent years
[1,2,3,6,7,8,9,10,11]. However, all of the techniques described in literature focus on
the control flow, i.e. the ordering of activities. They do not take into account other per-
spectives, such as resources and data. For example, when an activity is executed by the
wrong person it is important to detect such a deviation. Conformance checking tech-
niques need to detect that an activity reserved for gold customers is executed for silver
customers. Note that information about cases and data is readily available in today’s
event logs. The routing of a case may depend on data, i.e., a check needs to be per-
formed for claims over 5000. Therefore, it is important to look at the combination of all
perspectives.

In a process model each case, i.e. a process instance, is characterized by its case at-
tributes. Paths taken during the execution may be governed by guards and conditions
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defined over such attributes. Process models also define, for each attribute, its domain,
i.e. the values that can be given. Moreover, process models prescribe which attributes
every activity can read or write. Last but not least, process models also describe which
resources are allowed to execute which activities. An activity is typically associated
with a particular role, i.e., a selected group of resources. Moreover, there may be ad-
ditional rules such as the “four-eyes principle” which does not allow for the situation
where the same resource executes two related tasks. If the data and the resource per-
spective are not considered, process executions can apparently be fully conforming,
whereas actually they are not. Let us consider the following example:

Example 1. A credit institute has activated a process to deal with loans requested by
clients. These loans can be used to buy small home appliances (e.g., fridges, TVs, high-
quality digital sound systems). A customer can apply for a loan through a shop clerk.
The clerk prepares the request by filling out the form and attaching documents that
prove the capability to pay off the loan. Upon receiving a new request, the credit in-
stitute opens a new case of the process in Figure 1. Dotted lines going from activities
to data objects indicate the data objects (i.e., the attributes) that activities are allowed
to change the value of. The resource perspective is specified by defining the role that
participants need to have in order to execute the corresponding activity.

Let us also consider the following trace where attribute E stands for Executor and
denotes the activity executor:1

〈(a, {A = 3000, R = Michael, E = Pete}), (b, {V = OK,E = Sue, A = 3000, R = Michael}),
(c, {I = 530, D = OK,E = Sue, A = 3000, R = Michael}), (f, {E = Pete, A = 3000, R = Michael})〉.

Existing conformance checking techniques [2,3,6,7,8,9,10,11] would only consider the
control flow and ignore the decision points, values assigned to attributes and resources.
Hence, the given trace would be considered as perfectly fitting. The approach proposed
in this paper also considers the data and resource perspectives. For example, using our
techniques, we can discover violations of rules, such as: (i) activity c should not be
executed since the loan amount is not greater than 5000 (conversely, activity d should);
(ii) for the considered credit loan, the interest should not be more 450 Euros and, hence,
proposing an interest of 530 Euros is against the credit-institute’s policy for small loans;
(iii) ‘Sue’ is not authorized to execute activity b since she cannot play role Assistant;
(iv) activity h has not been executed and, hence, the decision cannot be positive. The
approach we propose is based on the principle of finding an alignment of event log
and process model. The events in the traces are mapped to the execution of activities
in the process model. Such an alignment shows how the event log can be replayed
on the process model. In [12] an alignment-based conformance checking techniques is
described. However, this approach is limited to the control-flow perspective. This paper
extends [12] by also taking the data and resource perspectives into account.

We allow costs to be assigned to every potential deviation. Some deviations are more
severe than others and the severity can also be influenced by the point in the process
when these occur, e.g., skipping a notification activity is more severe for gold cus-
tomers. Our approach uses the A* algorithm [13] to find, for each trace in the event log,

1 Notation (act, {attr1 = val1, . . . , attrn = valn}) is used to denote the occurrence of activ-
ity act in which attributes attr1, . . . , attrn are assigned values val1, . . . , valn, respectively.
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the process execution, among those possible, whose deviations from the log trace has
the lowest overall cost. In order to keep the technique as general as possible, we have
developed it as independent of both the actual language in which business processes
are described and the log format. Together with measuring the degree of conformance,
the technique highlights where deviations occur thereby showing the control-flow, data
and resource perspectives. In particular, among the different types of deviations that
the technique can diagnose, it is capable to compute how much a value assignment to
an attribute deviates. Similarly, from the resource viewpoint, the techniques pinpoints
which resources and activities more often violate the authorization.

Section 2 illustrates a formalism that abstracts from the actual log and process nota-
tion and focuses on the behavior described by the model and recorded in the event logs.
Section 3 shows how constructing an optimal alignment of process model and event
log can be used to diagnose non-conformance and quantify the fitness. Section 4 elabo-
rates the adaptation of the A* algorithm to solve the problem of conformance checking.
Section 5 describes our implementation of this new approach in ProM. Moreover, ex-
perimental results are given. Finally, Section 6 concludes the paper, describing future
directions of improvement.

2 The General Framework

Typically, any process model, such as the BPMN diagram in Figure 1, relies on con-
structs such as parallel split nodes, synchronization nodes, decision/choice nodes, con-
ditions, merge nodes, etc. However, the model description can be “expanded” into a
(possible infinite) set of (potentially arbitrarily long) traces yielding to a final state, i.e.
the set of admissible behaviors. Each trace can be seen as a sequence of execution steps,
each of which corresponds to the execution of a given process activity. Usually, a pro-
cess model also defines a set of attributes together with their domain (i.e., the values
that can be given). An activity is allowed to read and write attributes in a predefined
manner.

Let A, V be, respectively, the finite set of activities and attributes. For all attributes
v ∈ V , let us denote with domAttr(v) the set of values allowed for v (i.e., the attribute
domain). Let be U =

⋃
v∈V domAttr(v). A execution step s = (as, ϕs) consists of

an executed activity as and a function that denotes an assignment of values to process
attributes: ϕs ∈ V �→ U s.t. ∀v ∈ dom(ϕs). ϕs(v) ∈ domAttr(v).2 Let S be the set
of possible execution steps. A process P is the set of all admissible execution traces:
P ⊆ S∗. For each execution step s = (as, ϕs), we use function #act(s) = as to extract
the activity associated to the execution step.

Resources are taken into account by “reserving” a special attribute to carry the ex-
ecutor information. Each value assignment to attributes can either be a read or write
operation and the semantics depends on the executed activity and event log. For in-
stance, let us consider the trace in Section 1 and the first two execution steps s′ =
(a, {A = 3000, R = Michael, E = Pete}) and s′′ = (b, {V = OK,E = Sue, A =
3000, R = Michael}). The assignment A = 3000 for s′ denotes that the execution of
step s′ provokes an assignment of value 3000 to attribute A. Conversely, A = 3000

2 The domain of a function f is denoted by dom(f).
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for s′′ indicates that, during the execution of step s′′, the value 3000 has been read for
attribute A. In the remainder, we focus on the writing operations. It is obvious to see
that our approach can be extended to distinguish between read and write operations.

An event log contains events associated to cases, i.e., process instances. Each case
follows a trace of events. Each trace records the execution of a process instance. Differ-
ent instances may follow the same trace. Therefore, an event log is a multi-set of traces,
i.e., L ∈ B(S∗).3

3 Aligning Event Log and Process Model

Conformance checking requires an alignment of event log L and process model P : the
events in the event log need to be related to model elements and vice versa. Such an
alignment shows how the event log can be replayed on the process model. This is far
from being trivial since the log may deviate from the model and not all activities may
have been modeled and recorded.

We need to relate “moves” in the log to “moves” in the model in order to establish
an alignment between a process model and an event log. However, it may be the case
that some of the moves in the log cannot be mimicked by the model and vice versa. We
explicitly denote “no move” by⊥. For convenience, we introduce the set S⊥ = S∪{⊥}.

One step in an alignment is represented by a pair (s′, s′′) ∈ (S⊥ × S⊥) \ {(⊥,⊥)}
such that

– (s′, s′′) is a move in log if s′ ∈ S and s′′ = ⊥,
– (s′, s′′) is a move in process if s′ = ⊥ and s′′ ∈ S,
– (s′, s′′) is a move in both if s′ ∈ S and s′′ ∈ S.

SA = (S⊥ ×S⊥) \ {(⊥,⊥)} is the set of all legal moves where the first and the second
element of every pair denote possible moves in the log and in the process, respectively.

The alignment of two execution traces σ′, σ′′ ∈ S∗ is a sequence γ ∈ SA
∗ such that,

ignoring all occurrences of ⊥, the projection on the first element yields to σ′ and the
project on the second yields to σ′′. In particular, γ is a complete alignment if σ′ ∈ L
and σ′′ ∈ P .

In order to define the severity of a deviation, we introduce a cost function on legal
moves: κ ∈ SA → R

+
0 . The costs of each legal move depends on the specific model

and process domain and, hence, cost function κ needs to be defined ad-hoc for every
specific case. The cost function can be generalized to alignments γ as the sum of the
cost of each individual move: K(γ) =

∑
(s′,s′′)∈γ κ(s

′, s′′).

Example 1 (cont.). When checking for conformance, the business analysts repute more
severe the misconformances on activities that are concerned with interactions with cus-
tomers, since they can undermine the reputation of the credit institute. Therefore, every
alignment step between ⊥ and an execution step for activities c or d is given a cost 1,
whereas a cost of 10 is given to alignment steps between ⊥ and execution steps for any
activity different from c and d:

∀s ∈ S. κ(s,⊥) = κ(⊥, s) =

{
1 if #act(s) ∈ {c, d}
10 if #act(s) �∈ {c, d}

3
B(X) the set of all multi-sets over X .



Data- and Resource-Aware Conformance Checking of Business Processes 53

γ1
a,{A=3000,R=Michael,E=Pete} a,{A=3000,R=Michael,E=Pete}
b,{V=OK,E=Pete} b,{V=OK,E=Sue}
c,{I=530,D=OK,E=Sue} ⊥
⊥ d,{I=599,D=NOK,E=Sue}
f,{E=Pete} f,{E=Pete}

γ2
a,{A=3000,R=Michael,E=Pete} a,{A=3000,R=Michael,E=Pete}
b,{V=OK,E=Pete} ⊥
⊥ b,{V=OK,E=Sue}
c,{I=530,D=OK,E=Sue} ⊥

d,{I=599,D=NOK,E=Sue}
f,{E=Pete} f,{E=Ellen}

γ3
a,{A=3000,R=Michael,E=Pete} a,{A=3000,R=Michael,E=Pete}
b,{V=OK,E=Pete} b,{V=OK,E=Sean}
c,{I=530,D=OK,E=Sue} ⊥
⊥ d,{I=500,D=NOK,E=Sue}
f,{E=Pete} f,{E=Pete}

γ4
a,{A=3000,R=Michael,E=Pete} a,{A=5001,R=Michael,E=Pete}
b,{V=OK,E=Pete} b,{V=OK,E=Sean}
c,{I=530,D=OK,E=Sue} c,{I=530,D=NOK,E=Sue}
f,{E=Pete} f,{E=Pete}

Fig. 2. Four possible alignments of the log trace described in Section 1 and the process model in
Figure 1

Let Diff(s′, s′′) be the set of attributes to which both steps s′ and s′′ assign a value, but
a different one. Every move in both is assigned a cost as follows:

∀s′, s′′ ∈ S. κ(s′, s′′) =

⎧
⎪⎨

⎪⎩

0.2 · ‖Diff(s′, s′′)‖ if #act(s′) = #act(s′′) ∧#act(s′) ∈ {c, d}
3 · ‖Diff(s′, s′′)‖ if #act(s′) = #act(s′′) ∧#act(s′) �∈ {c, d}
∞ otherwise

The idea is that moves in both with different value assignment to attributes are given a
higher cost for activities c and d rather than for any other activity. Let us consider again
the log trace given in Section 1. Figure 2 shows four possible alignments. It is easy to
check that K(γ1) = K(γ3) = 0+3+1+1+0 = 5, K(γ2) = 0+10+10+1+1+2= 24
and K(γ4) = 3 + 2 + 0.6 + 0 = 5.6 and, hence, alignments γ1 and γ3 are certainly
better than γ2 and γ4.

So far we have considered single complete alignments. However, given a log trace σL ∈
L, our goal is to find a complete alignment of σL and P which minimizes the cost with
respect to all σ′

P ∈ P . We refer to it as an optimal alignment. Let ΓσL,P be the set of all
complete alignments of σL and P . The alignment γ ∈ ΓσL,P is an optimal alignment
if ∀γ′ ∈ ΓσL,P . K(γ) ≤ K(γ′). Note that there may exist several optimal alignments,
i.e. several complete alignments of the same minimal cost.

Example 1 (cont.). For this example, using the cost function κ defined above, γ1 and
γ3 are both optimal alignments. Of course, the set of optimal alignments depends on the
cost function κ. For instance, let us consider a cost function κ̂ s.t. ∀s ∈ S. κ̂(⊥, s) =
κ̂(s,⊥) = 10 and ∀s′, s′′ ∈ S.κ̂(s′, s′′) = κ(s′, s′′). Using κ̂ as cost function, the
alignment γ4 would be optimal with K(γ4) = 5.6, whereas alignments γ1 and γ3 would
no more be optimal since K(γ1) = K(γ3) = 22.

In the next section we propose an approach to create an optimal alignment with re-
spect to a custom cost function κ. The approach is based on the A* algorithm, i.e. an
algorithm intended to find the path with the lowest overall cost between two nodes in
a direct graph with costs associated to nodes. We have adapted it to derive one of the
optimal alignments.
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4 The A* Algorithm for Conformance Checking

The A* algorithm, initially proposed in [13], aims at finding a path in a graph V from
a given source node v0 to any node v ∈ V in a target set. With every node v of graph
V there is an associated cost, which is determined by an evaluation function f(v) =
g(v) + h(v), where

– g : V → R
+
0 is a function that returns the smallest path cost from v0 to v;

– h : V → R
+
0 is an heuristic function that estimates the path cost from v to its

preferred target node.

Function h is said to be admissible if it returns a value that underestimates the distance
of a path from a node v′ to its preferred target node v′′, i.e. h(v′) ≤ g(v′′). If h is
admissible, A* finds a path that is guaranteed to have the overall lowest cost.

The A* algorithm keeps a priority queue of nodes to be visited: higher priority is
given to nodes with lower costs so as to traverse those with the lowest costs at first. The
algorithms works iteratively: at each step, the node v with lowest cost is taken from
the priority queue. If v belongs to the target set, the algorithm ends returning node v.
Otherwise, v is expanded: every successors v′ is added to priority queue with a cost
f(v′).

We employ A* to find any of the optimal alignments between a log trace σL ∈ S∗

and a Process Model P . In order to be able to apply A*, an opportune search space
needs to be defined. Every node γ of the search space V is associated to a different
alignment that is a prefix of some complete alignment of σL and P . Since a different
alignment is also associated to every node and vice versa, later on we use the alignment
to refer to the associated state. The source node is empty alignment γ0 = 〈〉 and the set
of target nodes includes every complete alignment of σL and P .

Let us denote the length of a sequence σ with ‖σ‖. Given a node/alignment γ ∈ V ,
the search-space successors of γ include all alignments γ′ ∈ V obtained from γ by
concatenating exactly one move step. Let us consider a custom cost function κ and
denote with κmin the smallest value returned by κ that is greater than 0. Given an
alignment γ ∈ V of σ′

L and σ′
P , the cost of path from the initial node to node γ ∈ V is:

g(γ) = κmin · ‖σ′
L‖+K(γ).

It is easy to check that, given a log trace σL and two complete alignments γ′
C and γ′′

C

of σL and P , K(γ′
C) < K(γ′

C) iff g(γ′
C) < g(γ′′

C) and K(γ′
C) = K(γ′′

C) iff g(γ′
C) =

g(γ′′
C). Therefore, an optimal solution returned by the A* algorithm coincides with an

optimal alignment. Term κmin · ‖σ′
L‖, which does not affect the optimality, has been

added because it allows us to define a more efficient admissible heuristics. Given an
alignment γ ∈ V of σ′

L and σ′
P , we employ the following heuristics:

h(γ) = κmin · (‖σL‖ − ‖σ′
L‖)

For alignment γ, the number of steps to add in order to reach a complete alignment is
lower bounded by the number of execution steps of trace σL that have not been included
yet in the alignment, i.e. ‖σL‖−‖σ′

L‖. Since the additional cost to traverse a single node
is at least κmin, the cost to reach a target node is at least h(γ), corresponding to the case
when the part of the log trace that still needs to be included in the alignment fits in full.
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5 Implementation and Experiments

The Data-Aware Conformance Checker is implemented as a software plug-in of ProM,
a generic open-source framework for implementing process mining tools in a standard
environment [14]. The plug-in takes as input a process model and a log and, by em-
ploying the techniques described in Section 4, answers to the conformance-checking
questions expressed in the Section 1.

Extended Casual Nets. Our data-aware conformance-checking engine is completely
independent of the process modeling language. As a proof of concept, we have used
Causal Nets as concrete language to represent process models and extended it in or-
der to describe the aspects related to the data and resource perspective. While Casual

Fig. 3. An Extended Causal Net for Example 2

Nets without the data and re-
source perspective are thor-
oughly described in [1], space
limitations prevent us from giv-
ing here a full formalization
for their extension with these
perspectives. A Casual Net ex-
tended with data is a graph
where nodes represent activities
and arcs represent causal depen-
dencies. Each activity has a set
of possible input bindings and
output bindings. The occurrence of an activity is represented by an activity binding
(a, abI , abO, φ), which denotes the occurrence of activity a with input binding abI

and output binding abO and data binding function φ, where data attributes have global
scopes. The input and output bindings include the activities that precede and succeed
the occurrence of activity a. If there exists an attribute v ∈ dom(φ)) and a value u
such that φ(v) = u, the occurrence of a provokes to overwrite the value of attribute u
with u. The definition of a process P in Section 2 is also applicable to Extended Casual
Nets: there exists a distinct process trace for each legal sequence of activity bindings
that ends with the final activity.4 Given a valid sequence of activity bindings, the corre-
sponding process trace contains a different execution step (a, φ) for each activity bind-
ing (a, abI , abO, φ). And the order of the execution steps in a process trace complies
the order of activity bindings in the corresponding activity-bindings sequences.

Example 2. Figure 3 shows an example of a Causal Net extended with data. There is
a set of n different process attributes X1, . . . , Xn, each of which is a natural number
between 1 and m. Node S is the starting activity: it has no input binding and one output
binding, which is the set {A1, . . . , An} of activities. This means activity S is followed by
activities A1, . . . , An executed in any order (i.e., AND-split). Activity Ai is associated
a guard X ′

i ≥ 0; when an attribute, e.g. Xi, is annotated with the prime symbol in a

4 The lack of space does not allow us to elaborate more the concept of “legal sequence”. In a
few words, a sequence of activity bindings is valid if every predecessor activity and successor
activity always agree on their bindings as well as the guards always hold in relation with the
value assignments given. Interested readers can also refer to [1].
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(a) The computation time
for different numbers n
of parallel activities. Each
series refers to a differ-
ent size m of the domain
of each attribute Xi (with
m ∈ {12, 22, 32, 42}).

(b) The influence of the
size of the input do-
main on the computation
time. In particular, the
trend line shows that the
computation time grows
sub-linearly with growing
sizes of the input domain.

(c) The number of visited
search-space nodes in the
case of 3 parallel activi-
ties with and without us-
ing the heuristics. The x
axis refers to the size m
of the domain of each at-
tribute Xi.

Fig. 4. The results of the experiments conducted on Example 2

guard, the activity, e.g. Ai, is prescribed to update the value of the attribute. And the
written value must not violate the guards, e.g. Xi has to be assigned a non-negative
value. Activity O is characterized by an input binding {A1, . . . , An}, which means that
O can only be executed after all activities A1, . . . , An have been (i.e., AND-join). Two
possible output bindings are modeled for O: B and C. Therefore, O is followed by
either B or C (i.e., XOR-split). B and C are associated with two guards indicating that
activities B or C can follow O if the average of values for X1, . . . , Xn is less than m/2
or, vice versa, greater or equal to m/2.

Experiments. As input for experiments, we generated event logs by modeling the Ex-
amples 2 in CPN Tools (http://cpntools.org) and simulating the model. In
particular, we considered all combinations in which the number n of parallel activi-
ties ranges from 3 to 6 and each attribute can be given a value between 1 and m, with
m ∈ {12, 22, 32, 42}.

For each combinations, the log is composed by 6 different traces, generated in a ran-
dom fashion but perfectly fitting. In order to make the conformance-checking analysis
more challenging, from the generated logs, we have removed every occurrence of ac-
tivity A1 as well as we have swapped every occurrence of activity B and C. Moreover,
we have set the cost of moving only in the process or in the log three times bigger
than moving in both with different value assignments to attribute. In this way, complete
alignments that contain move only in the process and in the log are always given a cost
higher than move in both with different value assignments. Therefore, in order to find an
optimal alignment, the conformance checker needs to find different value assignments
to attributes X1, . . . , Xn from what encountered in the log. In this way, moves only in
the log or in the process can be avoided for B or C.

Figure 4 illustrates the results of the experiments. The graph in Figure 4a shows the
computation time to find optimal alignments for different numbers n of parallel activ-
ities and for different sizes m of the domain of each attribute Xi. The x axis refers to

http://cpntools.org
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number n, where the y axis is the computation time. Four series are plotted for different
attribute domain sizes m ∈ {12, 22, 32, 42}.

For each series, the computation time grows exponentially with the number n of
parallel activities. On the other hand, the size of the input domain is roughly mn and,
hence, grows exponentially with the number n of parallel activities. Indeed, each of n
attributes X1, . . . , Xn should be assigned one out of m values.

To sum up, the experiments proves that the computation time is upper bounded by
a polynomial expression in the size of the input. To have a more precise estimation,
we have plotted a different graph in which the x axis is the domain size and y is the
computation time. The graph is shown in Figure 4b where the dotted line delineates
the regression curve that better represents the trend. For this example, the actual com-
putation time to find a solution grows as a square root of the input domain size. This
sub-linear trend demonstrates that, in practical cases, the time to find an optimal align-
ment is only relatively affected by the number of values a certain process attribute can
be given. This remarkable result is certainly related to the goodness of the employed
heuristic function. In the worst case, the theoretical complexity remains exponential in
the size of the domain. But, in practice, the heuristic allows the algorithm to signifi-
cantly cut the number of search-space nodes to visit and, hence, the computation time
to find a solution. As a matter of fact, Figure 4c shows the number of visited nodes
in case of 3 parallel activities and for different values of m. In particular, we compare
such a number in the case both the heuristic is used and is unused: the heuristics roughly
instructs the algorithm to only visit a logarithmic number of nodes with respect to the
case when the heuristic is not used.

Visualization of the Results in the Operationalization as ProM plug-in. We conclude
this section by showing the actual operationalization as ProM plug-in in a scenarios
in which we want to check the conformance of a given log against the process of
Example 1. The log contains one perfectly-fitting trace and other trace with different
problems. Figure 5 illustrates how the conformance-checking results are visualized: the
optimal alignment of each log trace is shown as a sequence of triangles, each represent-
ing a move in the process and/or in the log. The triangle colors represent the alignment
type. The green and white color identify moves in both with the same attribute assign-
ment or with a different one; yellow and purple report moves only in the log or in the
process, respectively. When the user passes over a triangle with the mouse, the plug-in
shows the execution step(s) associated to the move. The value near to every trace is the
fitness value of the trace, i.e. a value between 0 and 1 which quantifies the quality of the
alignment. Fitness value 1 identifies the perfect alignment. Conversely, a fitness value
0 pinpoints the alignment with the largest possible cost, which typically only consists
by moves in log and moves in process. Interested readers can refer to [2] where fitness
values are computed in the same way. At the bottom, a table shows some statistics on
the attribute assignments in the moves present in the optimal alignments shown in the
upper part of the screen. The second column highlights the percentage of log steps that
do not provide assignment. The last two columns report the average and the standard
deviation of the difference of the values assigned to attributes in the moves. We use the
hamming distance to compute the string differences and, in case of boolean attributes,
we consider true as value 1 and false as value 0.
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Fig. 5. A screenshot of the ProM plug-in: how optimal alignments are visualized and what statis-
tics are available on the process attributes

6 Conclusion

Process mining can be seen as the “missing link” between data mining and business
process management. Although process discovery attracted the lion’s share of attention,
conformance checking is at least as important. It is vital to relate process models (hand-
made or discovered) to event logs. First of all, it may be used to audit processes to
see whether reality conforms to some normative of descriptive model [15]. Deviations
may point to fraud, inefficiencies, and poorly designed or outdated procedures. Second,
conformance checking can be used to evaluate the performance of a process discovery
technique. Finally, the alignment between model and log may be used for performance
analysis, e.g., detecting bottlenecks [1].

Existing conformance checking techniques focus on the control flow thereby ignor-
ing the other perspectives (data and resources). This paper presents a technique that takes
data and resources into account when checking for process conformance. The proposed
heuristics-based approach seems extremely promising since it allows for cutting out a
significant part of the search space during the analysis. As a matter of fact, the compu-
tation time seems to be sub-linear, at least for the example used during the experiments.

Of course, a larger set of experiments with different processes is needed to verify our
findings. Moreover, the absolute value of the computation time is still relatively high
and that seems to be mostly related to the parsing of the guard expressions to determine
the node successors in the search space. The parsing operations approximately take
70% of the overall computation time: we are currently investigating how to reduce the
number of guards to be evaluated, along with integrating a more efficient parser.
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Sepúlveda, M., Sinur, J., Soffer, P., Song, M., Sperduti, A., Stilo, G., Stoel, C., Swenson, K.,
Talamo, M., Tan, W., Turner, C., Vanthienen, J., Varvaressos, G., Verbeek, E., Verdonk, M.,
Vigo, R., Wang, J., Weber, B., Weidlich, M., Weijters, T., Wen, L., Westergaard, M., Wynn, M.:
Process Mining Manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops
2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012)

6. Weijters, A., van der Aalst, W., de Medeiros, A.A.: Process Mining with the Heuristics
Miner-algorithm. Technical report, Eindhoven University of Technology, Eindhoven, BETA
Working Paper Series, WP 166 (2006)

7. de Medeiros, A.A., Weijters, A., van der Aalst, W.: Genetic Process Mining: an Experimental
Evaluation. Data Mining and Knowledge Discovery 14, 245–304 (2007)

8. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Towards Robust Conformance
Checking. In: Muehlen, M.z., Su, J. (eds.) BPM 2010 Workshops. LNBIP, vol. 66, pp. 122–
133. Springer, Heidelberg (2011)

9. Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J.: Process Compliance Measurement
Based on Behavioural Profiles. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 499–
514. Springer, Heidelberg (2010)

10. Rozinat, A., Veloso, M., van der Aalst, W.: Using hidden markov models to evaluate the quality
of discovered process models. Technical report, BPM Center Report BPM-08-10 (2008)

11. Cook, J., Wolf, A.: Software Process Validation: Quantitatively Measuring the Correspon-
dence of a Process to a Model. ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM) 8, 147–176 (1999)

12. Adriansyah, A., van Dongen, B., van der Aalst, W.: Conformance Checking Using Cost-
Based Fitness Analysis. In: IEEE International Enterprise Distributed Object Computing
Conference, pp. 55–64. IEEE Computer Society (2011)

13. Dechter, R., Pearl, J.: Generalized best-first search strategies and the optimality of A*. Jour-
nal of the ACM (JACM) 32, 505–536 (1985)

14. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES, XESame,
and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75.
Springer, Heidelberg (2011)

15. van der Aalst, W.M.P., van Hee, K., van der Werf, J.M.E.M., Verdonk, M.: Auditing 2.0:
Using Process Mining to Support Tomorrow’s Auditor. IEEE Computer 43(3), 90–93 (2010)


	Data- and Resource-Aware Conformance Checkingof Business Processes
	Introduction
	The General Framework
	Aligning Event Log and Process Model
	The A* Algorithm for Conformance Checking
	Implementation and Experiments
	Conclusion
	References




