

Lecture Notes
in Business Information Processing 111

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University of Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, Qld, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Claes Wohlin (Ed.)

Agile Processes
in Software Engineering
and Extreme Programming

13th International Conference, XP 2012
Malmö, Sweden, May 21-25, 2012
Proceedings

13

Volume Editor

Claes Wohlin
Blekinge Institute of Technology
School of Computing
Karlskrona, Sweden
E-mail: claes.wohlin@bth.se

ISSN 1865-1348 e-ISSN 1865-1356
ISBN 978-3-642-30349-4 e-ISBN 978-3-642-30350-0
DOI 10.1007/978-3-642-30350-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012937367

ACM Computing Classification (1998): D.2, K.6

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

In the last decade, we have seen agile and lean software development strongly
influence the way software is developed. Agile and lean has moved from being a
way of working for a number of pioneers to becoming, more or less, the expected
way of developing software also in industry. The transition to more agile and lean
practices is not easy and any expected benefits do not come automatically. Thus,
there is a great need for research and practice to work together to understand,
evaluate and improve software development.

An important starting point is to study agile and lean software development
both academically and in close collaboration between academia and practice.
This book presents a number of research contributions in relation to these ways
of developing software. More specifically, the book includes a number of chapters
on different themes related to agile and lean software development. The themes
include general aspects of agility, agile teams, studies related to release and
maintenance, and research on specific practices in agile and lean. The four themes
are complemented with four shorter chapters capturing some additional aspects
on agile and lean software development.

The target audience of the book is researchers, teachers and practitioners
who would like to gain insight into some contemporary research that most likely
will affect both future research and practice in relation to agile and lean software
development.

The chapters represent a selection of the papers submitted to the 13th In-
ternational Conference on Agile Software Development (XP 2012). The strong
submissions from researchers and practitioners, as well as the informed reviews,
were a prerequisite for the book. The reviewers include members of the Program
Committee and a set of additional reviewers supporting the Program Commit-
tee. Thus, I would like to extend my sincere gratitude to all contributors, both
authors and reviewers. Thanks!

The editing of this book was supported by the BESQ+ project, which is
funded by the Knowledge Foundation in Sweden under the Grant 20100311.

March 2012 Claes Wohlin

Organization

Research Paper Program Committee

Pekka Abrahamsson Free University of Bozen-Bolzano, Italy
Muhammad Ali Babar IT University of Copenhagen, Denmark
Aybüke Aurum University of New South Wales, Australia
Robert Biddle Carleton University, Canada
Luigi Buglione Engineering Ingegneria Informatica, Italy
Ivica Crnkovic Mälardalen University, Sweden
Torgeir Dingsøyr SINTEF ICT, Norway
Tore Dyb̊a SINTEF ICT, Norway
Amr Elssamadisy Wireless Generation, USA
Hakan Erdogmus Kalemun Research Inc., Canada
Steven D. Fraser Cisco Research Center, USA
Juan Garbajosa Universidad Politecnica de Madrid, Spain
Alfredo Goldman University of São Paulo, Brazil
Des Greer Queen’s University Belfast, UK
Orit Hazzan Technion - Israel Institute of Technology, Israel
Rashina Hoda The University of Auckland, New Zealand
Helena H. Olsson Gothenburg University, Sweden
Martin Höst Lund University, Sweden
Gargi Keeni Tata Consultancy Services, India
Kirsi Korhonen NSN, Finland
Philippe Kruchten University of British Columbia, Canada
Pasi Kuvaja University of Oulu, Finland
Stig Larsson Effective Change, Sweden
Casper Lassenius Aalto University, Finland
Kalle Lyytinen Case Western Reserve University, USA
Lech Madeyski Wroclaw University of Technology, Poland
Michele Marchesi University of Cagliari, Italy
Grigori Melnik Microsoft, USA
Alok Mishra Atilim University, Turkey
Nils Brede Moe SINTEF ICT, Norway
Ana M. Moreno Universidad Politecnica de Madrid, Spain
Oscar Nierstrasz University of Bern, Switzerland
Nilay Oza VTT, Finland
Maria Paasivaara Aalto University, Finland
Jennifer Pérez Universidad Politécnica de Madrid, Spain
Kai Petersen Blekinge Institute of Technology, Sweden
Adam Porter University of Maryland, USA
Outi Salo Nokia, Finland

VIII Organization

Helen Sharp The Open University, UK
Alberto Sillitti Free University of Bozen-Bolzano, Italy
Darja Smite Blekinge Institute of Technology, Sweden
Giancarlo Succi Free University of Bozen-Bolzano, Italy
Marco Torchiano Politecnico di Torino, Italy
Stefan van Baelen K.U. Leuven, Belgium
Xiaofeng Wang Free University of Bozen-Bolzano, Italy
Hironori Washizaki Waseda University, Japan
Barbara Weber University of Innsbruck, Austria
Werner Wild Evolution, Austria
Laurie Williams North Carolina State University, USA
Agust́ın Yagüe Universidad Politecnica de Madrid, Spain
Pär Ågerfalk Uppsala University, Sweden

Additional Reviewers

Wojciech Biela
Dibyendu Biswas
Mahesh Kuruba
Jorge Ressia Moreno
Fabrizio Perin
Viviane Santos
Erwann Wernli
Mansooreh Zahedi

Table of Contents

Being Agile

Agile Principles as Software Engineering Principles: An Analysis 1
Normand Séguin, Guy Tremblay, and Houda Bagane

Agile Software Development Practice Adoption Survey 16
Narendra Kurapati, Venkata Sarath Chandra Manyam, and
Kai Petersen

Applying Agile Development in Mass-Produced Embedded Systems 31
Ulrik Eklund and Jan Bosch

Agile Teams

Understanding Team Dynamics in Distributed Agile Software
Development . 47

Siva Dorairaj, James Noble, and Petra Malik

Information Flow within a Dispersed Agile Team: A Distributed
Cognition Perspective . 62

Helen Sharp, Rosalba Giuffrida, and Grigori Melnik

Sensing High-Performing Software Teams: Proposal of an Instrument
for Self-monitoring . 77

Petri Kettunen and Simo Moilanen

Release and Maintanance

Release Readiness Indicator for Mature Agile and Lean Software
Development Projects . 93

Miroslaw Staron, Wilhelm Meding, and Klas Palm

A Palette of Lean Indicators to Detect Waste in Software Maintenance:
A Case Study . 108

Kai Petersen

A Comparative Study of Scrum and Kanban Approaches on a Real
Case Study Using Simulation . 123

David J. Anderson, Giulio Concas, Maria Ilaria Lunesu,
Michele Marchesi, and Hongyu Zhang

X Table of Contents

Specific Agile Practices

Impact of Test Design Technique Knowledge on Test Driven
Development: A Controlled Experiment . 138

Adnan Čaušević, Daniel Sundmark, and Sasikumar Punnekkat

Escalation of Commitment: A Longitudinal Case Study of Daily
Meetings . 153

Viktoria Gulliksen Stray, Nils Brede Moe, and Tore Dyb̊a

Short Papers

Agile User Stories Enriched with Usability . 168
Ana M. Moreno and Agust́ın Yagüe

Evidence-Based Timelines for Agile Project Retrospectives – A Method
Proposal . 177

Elizabeth Bjarnason and Björn Regnell

Who Is Stronger in Your Agile Deployment – The Id or the
Superego? . 185

Stavros Stavru and Sylvia Ilieva

adVANTAGE: A Fair Pricing Model for Agile Software Development
Contracting . 193

Matthias Book, Volker Gruhn, and Rüdiger Striemer

Author Index . 201

Agile Principles as Software Engineering

Principles: An Analysis

Normand Séguin, Guy Tremblay, and Houda Bagane

Département d’informatique, Université du Québec à Montréal
C.P. 8888, Succ. Centre-ville

Montréal, QC, Canada, H4G 2C1
{seguin.normand,tremblay.guy}@uqam.ca

Abstract. Ever since software engineering was born, over 40 years ago,
hundreds of “fundamental principles” for software engineering have been
proposed. It is hard to believe that such a young discipline—in fact,
any discipline—would rest on such a large number of “fundamental”
principles. A few years ago, Séguin and Abran indeed showed, through
a detailed analysis of the various principles proposed in the software
engineering literature during the 1970–2003 period, that many—in fact
most!—of the statements proposed as “fundamental principles” could not
be considered as software engineering principles. The analysis method
proposed by Séguin and Abran provides, among other things, a rigorous
definition of term principle along with a set of criteria allowing to verify
whether or not a statement is a software engineering principle. In this
paper, we apply this method to the agile principles. More specifically,
we examine the principles proposed by the Agile Manifesto as well as
those from three well-known agile methods: XP, Scrum, and DSDM.
Our analysis results show that many of the statements proposed as agile
principles are in fact also software engineering principles.

Keywords: Agile Principles, Software Engineering Principles.

1 Introduction

Software engineering was born about forty years ago and has since become a
better defined discipline: new development methods have been proposed, new
tools, theoretical as well as practical, have been developed, including a Guide
to the software engineering body of knowledge [1]. In fact, some even claim that
“Software engineering has, indeed, become a profession [. . .] [although] what it
has not become is part of the engineering profession” [2].

While various researchers and practitioners are working to develop new meth-
ods, techniques and tools, others are attempting to define the discipline’s founda-
tions. Such foundations must be enduring, relatively insensitive to technological
changes, thus independent of the techniques or technologies that are la mode
du jour. Among these foundational elements are principles.

The software engineering literature contains multitudes of statements that
were claimed to be “fundamental principles” of software engineering [3, 4, 5, 6,

C. Wohlin (Ed.): XP 2012, LNBIP 111, pp. 1–15, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 N. Séguin, G. Tremblay, and H. Bagane

7, 8, 9, 10]. In previous work, Séguin and Abran [11] presented a first analysis
that identified the statements that could indeed be considered software engineer-
ing principles. More precisely, they proposed a rigorous definition of the term
principle along with a set of criteria allowing to verify if a statement proposed
as a software engineering principle was, in fact, such a principle. They then
used these criteria to analyze numerous statements—over 300!—that had been
proposed as software engineering principles. Their analysis identified 34 such
principles: 24 were totally independent from each other, whereas the remaining
10 could be deduced from the other, more general, principles. In other words,
only 24 statements among the (more than) 300 analyzed (i.e., only 8 %) were in
fact software engineering principles.

Among the noticeable events that marked the software engineering discipline
over the last decade is, most certainly, the emergence of the Agile development
methods. These methods claim to share a common set of ideas, stated in what
is known as the Manifesto for Agile Software Development [12]. This manifesto
expresses four key values, that are common among the various methods, values
that stress the priority that must be given to individuals and their interactions, to
working software, to customer collaboration, and to change responsiveness. From
these values result a set of principles—12 of them—that are also presented in the
Agile Manifesto and that are supposedly shared by the various agile methods.
In the present paper, we analyze those 12 principles to determine whether these
statements are software engineering principles.1

Although the various agile methods share several values and principles, they
differ from each other not only by the practices they use, but also by various
additional principles on which they rest. Thus, we also analyze the principles pro-
posed by three well-known agile methods: XP [15], Scrum [16] and DSDM [17].

Our paper is organized as follows. Section 2 presents our conceptual framework
as well as the research method used to analyze the various statements proposed
as principles. The following sections then present our analysis results for the
Agile Manifesto principles (Sect. 3) and the principles of XP, Scrum and DSDM
(Sect. 4). Finally, Section 5 provides a general discussion of the analysis results,
and Section 6 concludes and presents some possible future work.

2 Conceptual Framework and Methodology

When one looks into the software engineering literature that deals with princi-
ples, one can see that numerous authors use the following terms without making a
clear distinction between them: principle, concept, law, etc. Such a terminological
confusion definitely has negative consequences on the wording and interpretation
of statements. Hence, statements proposed as principles are generally worded in
one of three different ways: (i) a single term, usually denoting a concept; (ii) a
descriptive statement; (iii) a prescriptive statement.

1 Some of the results we present have initially been described, in French only, in a
Mémoire de mâıtrise [13] and in a paper published in Génie logiciel [14].

Agile Principles as Software Engineering Principles: An Analysis 3

Most authors, except for a few [3, 4], did not explicitly present or describe
the method or the criteria used to identify principles and justify their selection.
Thus, most of the principles lists presented in the literature essentially represent
the authors’ opinions. This is most certainly why the software engineering litera-
ture contains such a large number of statements proposed as “principles”—over
300!—and why there is no clear consensus on those principles.

In what follows, we briefly present the key elements of the method proposed by
Séguin [18] and Séguin and Abran [11] to identify software engineering principles.
We do not present the complete method but only the first phases, which are
those we applied to analyze the principles proposed by the Agile Manifesto and
by various agile methods. But first, some terminology.

2.1 Three Key Concepts: Value, Principle, Practice

Agile methods, including the Manifesto, make a clear distinction—in fact, sug-
gest a hierarchy—among the notions of value, principle, and practice. These key
concepts may be defined as follows.

According to the Oxford English Dictionary (OED) [19], one definition for
value is the following:

The relative worth, usefulness, or importance of a thing or (occas.) a per-
son; the estimation in which a thing is held according to its real or supposed
desirability or utility.

Another definition, for the plural form values, is the following:

The principles or moral standards held by a person or social group; the gener-
ally accepted or personally held judgement of what is valuable and important
in life.

Similarly, Power [20] defines values as ideals shared and embraced by a group.
These values, positive or negative, are generally implicit, part of the individuals’
personality or the group’s culture. Furthermore, “values are often emotive—they
represent driving forces behind people” [20].

According to the OED [19], some definitions for principle are the following:

A fundamental truth or proposition on which others depend; a general state-
ment or tenet forming the (or a) basis of a system of belief, etc.; a primary
assumption forming the basis of a chain of reasoning.

Science. A general or inclusive statement about an aspect of the natural world
that has numerous special applications or is applicable in a wide variety of
cases.

A general law or rule adopted or professed as a guide to action; a settled
ground or basis of conduct or practice; a fundamental motive or reason for
action, esp. one consciously recognized and followed.

The latter definition is particularly interesting and is reflected in the definition
used by Séguin [18] in his work on software engineering principles, as he gave
the following definition of a principle:

4 N. Séguin, G. Tremblay, and H. Bagane

A principle is a first and fundamental statement of the discipline worded in
a prescriptive manner in order to guide action, that can be verified in its
consequences and by experiments.

Accordingly, by itself, a single concept cannot be considered as a principle. Fur-
thermore, being “a fundamental truth [or] motive,” a principle should not be
derived and, therefore, is intrinsically fundamental—so the term fundamental
principle is redundant.

A principle should also be some kind of rule, law or general truth [19, 21],
that provides ground and guidance for action. This latter aspect is particularly
significant in our context (software engineering principles), as principles are ex-
pected to be the foundation on which practices rest. Furthermore, as the third
OED definition states, a principle is a rule “adopted or professed as a guide to
action [that is] consciously recognized and followed.” This means that it should
be possible to observe, in practice, whether or not a principle has been applied
and followed. As we will see below, all these various aspects will be present in
our criteria for identifying software engineering principles.

As for practice, Aubry [22] defines it as follows (our translation): “A practice
is a concrete and proven approach that allows to solve typical problems or to
improve how software is developed.” He adds that “values and principles are from
the cultural level and should not change from one project to another, whereas
practices are application of principles in specific context” [22]. In other words,
it is values and principles that should guide the choice of practices.

2.2 Principles Analysis Method

The method proposed by Séguin and Abran to analyze software engineering
principles consist of four key phases [11]. For our analysis of agile principles, we
used the first phases dealing with individual criteria analysis. Table 1 shows the
individual criteria for identifying software engineering principles. These criteria

Table 1. Individual criteria for identifying software engineering principles

1. A principle is a statement worded in a prescriptive manner [18].

2. A principle should not be directly associated with, or rise from, a technology, a
method, or a technique, nor be a specific software engineering activity (adapted
from [4]).

3. A software engineering principle should not state a compromise (or a mix) between
two actions or concepts (adapted from [4]).

4. A software engineering principle should refer to concepts related with the SE dis-
cipline [4].

5. A principle should be worded in such way that it is possible to test it in practice
or to observe some of its consequences [4].

Agile Principles as Software Engineering Principles: An Analysis 5

are said to be individual as they are applied to each principle independently
from each other.2 We briefly explain them below—for more details, see [4, 11].

The first criteria states that a principle should be worded as a prescriptive
statement. Thus, it should provide guidance with respect to some action, without
saying explicitly how to do it. The second criteria states that a principle should
neither be expressed in terms of a specific technique or method, nor be a specific
activity—although applying the principle could lead to performing some appro-
priate activities. To apply this identification criteria, we used the ISO/IEC 12207
standard [23] as reference framework, as it describes standard software engineer-
ing processes and activities. The third criteria states that a principle should not
express a compromise between two actions (or concepts) nor should it suggest a
mix between actions. As originally expressed by Bourque et al. [4]: “[a] principle
should not attempt to prioritize or select among various qualities of a solution;
the engineering process should do that.” The fourth criteria requires that the
statement should contain or explicitly refer to software engineering concepts; if
not, then although the statement might be a general principle, it is not specifi-
cally a software engineering principle. To apply this criteria, we used the Guide
to the SWEBOK [1] as reference framework, as it defines the key SE knowledge
areas. Finally, the fifth criteria states that a principle should be observable or
verifiable, or as expressed by Bourque et al. [4]: “A fundamental principle should
be precise enough to be capable of support or contradiction.” In other words,
applying, or not, the principle should have some consequences. For example,
“Don’t believe everything you read.” could not be retained as a principle because
the consequences of applying this prescription cannot be verified.

The procedure we used to analyze agile principles is the following. First, we
analyzed each principle based on the five individual criteria. Then, if only the
first criteria (prescriptive wording) was not satisfied and aminor rewording could
turn the statement into a prescriptive form, we retained the principle with the
new wording. We applied this procedure for the principles proposed in the Agile
Manifesto [12] as well as those proposed by XP [15, 24], Scrum [16, 22, 25, 26]
and DSDM [17]. In the following sections, we present the results of our analysis.

3 Analysis of the Agile Manifesto Principles

Since the early ’80s, a large number of software development methods—too nu-
merous to cite—have been proposed to face “The Software Crisis.” Many of
these methods relied on a strict and detailed software process, that put much
emphasis on following a plan to alleviate the difficulties and problems associated
with software development. By contrast, many of the methods proposed in the
late ’90s aimed at using simpler and lighter development processes. Thus, ini-
tially, the term lightweight process was often used, to contrast with the heaviness

2 Séguin and Abran [11] also introduce two overall criteria, that allow to check the
global coherence of various principles. However, given the limited number of princi-
ples we analyzed (32 vs. 313), we only used the individual criteria.

6 N. Séguin, G. Tremblay, and H. Bagane

of formal software processes—later called plan-driven by Boehm and Turner [27].
However, as expressed by Hunt on the tenth anniversary of the Agile Manifesto:

But “light-weight,” while perhaps technically correct, carried connota-
tions of insufficiency. So after some discussion, we all agreed on coining
the term agile. And thus the Agile Manifesto and the eponymous move-
ment were born.3

The values expressed in the Agile Manifesto, which are shared by numerous agile
methods, appear in Table 2.

Table 2. Manifesto for Agile Software Development [12]

We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

– Individuals and interactions over processes and tools
– Working software over comprehensive documentation
– Customer collaboration over contract negotiation
– Responding to change over following a plan

That is, while there is value in the items on the right, we value the
items on the left more.

From the Agile Manifesto’s four values have been derived a set of 12 princi-
ples. These principles can be seen as operationalization of the four fundamental
values; they emphasize collaboration, interaction, frequent deliveries, continuous
validation, etc. Table 3 shows these 12 principles [12].4 Each of these 12 prin-
ciples were analyzed using the five individual criteria described in Section 2.2.
Table 4 shows the results of this analysis.

Criterion no. 1, which states that a principle must be expressed in a pre-
scriptive manner, rejected 6 principles. As suggested by our analysis method,
if a principle is rejected only because of this criterion, a minor rewording can
be performed. Principle no. 7, can thus be reworded as Measure the progress
primarily through working software. Seven principles (six unchanged, one with a
minor rewording) satisfy the first criterion, whereas five others are worded in a
purely descriptive manner.

The 12 principles satisfy criterion no. 2 which states that a principle must
not result from a technology, a method, a technique or an activity. Rather, it
is activities that should result from principles. They also satisfy criterion no. 3,
which states that a principle must not suggest a compromise or trade-off between
two actions or concepts.

3 http://blog.toolshed.com/2011/01/why-johnny-cant-be-agile.html,
January 10th, 2011.

4 In this table and the followings, the statements retained as software engineering
principles have been shown in italics.

Agile Principles as Software Engineering Principles: An Analysis 7

Table 3. The 12 principles from the Agile Manifesto

Proposed principles

1 Our highest priority is to satisfy the customer through early and continuous delivery
of valuable software.

2 Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage.

3 Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

4 Business people and developers must work together daily throughout the project.

5 Build projects around motivated individuals. Give them the environment and sup-
port they need, and trust them to get the job done.

6 The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

7 Working software is the primary measure of progress.

8 Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely.

9 Continuous attention to technical excellence and good design enhances agility.

10 Simplicity—the art of maximizing the amount of work not done—is essential.

11 The best architectures, requirements, and designs emerge from self-organizing
teams.

12 At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.

Table 4. Analysis of the 12 principles from the Agile Manifesto based on the individual
criteria—Retained as worded, Retained* with minor rewording, or Rejected

Principle
Criteria

Result
1 2 3 4 5

1 + + + + + Retained

2 + + + + + Retained

3 + + + + + Retained

4 + + + + + Retained

5 + + + + + Retained

6 - + + - + Rejected

7 - + + + + Retained*

8 + + + + + Retained

9 - + + + - Rejected

10 - + + - - Rejected

11 - + + + - Rejected

12 - + + - - Rejected

8 N. Séguin, G. Tremblay, and H. Bagane

Criterion no. 4 states that a principle wording must include concepts related
with software engineering [1]. Three principles (6, 10 and 12) are rejected because
they do not contain such explicit reference.

Criterion no. 5 states that a principle must be testable. For example, princi-
ple 4 can be verified by determining whether meetings between the two groups
are held and how frequently. It should also be possible to observe the results
when such meetings never occur. Four principles do not satisfy this criterion.

Following the application of the five individual criteria, seven principles pro-
posed by the Agile Manifesto are retained as software engineering principles.

Table 5. Correspondence between Agile Manifesto values and principles

Agile Manifesto Principles

Manifesto Values 1 2 3 4 5 6 7 8 9 10 11 12

1. Individuals and interactions
over processes and tools.

+ + + + + +

2. Working software over com-
prehensive documentation.

+ + + + + +

3. Customer collaboration over
contract negotiation.

+ + + +

4. Responding to change over fol-
lowing a plan.

+ + + +

Before examining the principles proposed by some Agile methods, it is in-
teresting to examine the correspondence between the Agile Manifesto principles
and values, shown in Table 5: We note a complete coverage of both values and
principles, i.e., each value is associated with at least one principle, and vice-versa.

4 Analysis of Three Agile Methods Principles

In this section, as we did for the Agile Manifesto principles, we analyze the
principles proposed by three well-known agile methods: XP, Scrum and DSDM.

4.1 eXtreme Programming

eXtreme Programming (XP) was developed in the late ’90s by Beck, Jeffries and
Cunningham [15]. XP values are expressed quite succinctly by Beck [15]:

1. Simplicity
2. Communication
3. Feedback
4. Courage

Agile Principles as Software Engineering Principles: An Analysis 9

However, Beck also notes that values are too vague to help decide which practices
should be used, so those values must be refined into more concrete principles [15].
Beck thus expresses the same idea mentioned earlier, namely, that it is principles
that guide the choice of practices.

XP five principles as initially expressed by Beck are the following:

1. Rapid feedback
2. Assume simplicity
3. Incremental change
4. Embrace change
5. Quality work.

Table 6. The five XP principles as expressed by Cohn [24]

Proposed principles

1. Provide rapid feedback to its customers and learn from that feedback.

2. Favor simplicity and always attempt a simple solution before moving to a more
complex one.

3. Improve the software through small, incremental changes.

4. Embrace change because they know they are truly adept at accommodating and
adapting.

5. Insist that the software consistently exhibits the highest level of quality workman-
ship.

A few years later, Cohn [24] expressed XP principles as shown in Table 6.
Cohn’s wording follows the spirit of Beck’s principles, although Cohn’s wording
is more complete and explicit. Thus, it is Cohn’s principles that we analyzed.
Table 7 shows the analysis results.

Table 7. Analysis of the five XP principles using the individual criteria—Retained as
worded, or Rejected

Principle
Criteria

Result
1 2 3 4 5

1 + + + + + Retained

2 + + + - - Rejected

3 + + + + + Retained

4 + + + + - Rejected

5 + + + + + Retained

XP’s foundations consist of 4 values, 5 principles and 12 practices. However,
Beck’s original principles are mostly concepts, that do note guide action—e.g.,
Rapid feedback. Cohn’s rewording of XP principles provide a better ground for
action and have a better fit with our criteria for software engineering principles.
Thus, three out of five XP principles as expressed by Cohn are retained as SE
principles, whereas all of Beck’s original principles would be rejected.

10 N. Séguin, G. Tremblay, and H. Bagane

4.2 Scrum

The term Scrum first appeared in 1986 [28], where the authors introduced new
product development practices—not yet specifically targeted to software prod-
ucts. A few years later, Schwaber [16], who would be one of the Agile Manifesto’s
signatories, proposed the Scrum method, subsequently described in more detail
by Schwaber and Beedle [25]. Scrum rests on the following five values [25]:

1. Commitment
2. Focus
3. Openness
4. Respect
5. Courage

Scrum also rests on six principles, presented in Table 8. According to Schwaber
and Beedle [25], these principles can be summarized by the following ideas:
“Scrum is a management and control process that cuts through complexity to
focus on building software that meets business needs. Scrum is superimposed
on top of and wraps existing engineering practices, development methodologies,
or standards. [. . .] Scrum deals primarilary at the level of the team. It enables
people to work together effectivily, and by doing so, it enables them to produce
complex, sophisticated products.”

Table 8. The six Scrum principles

Proposed principles

1. Built-in instability.

2. Self-organizing project teams.

3. Overlapping development phases.

4. Multilearning.

5. Subtle control.

6. Organizational transfer of learning.

Table 9. Analysis of Scrum six principles based on the individual criteria—Retained
as worded, Retained* with minor rewording or Rejected

Principle
Criteria

Result
1 2 3 4 5

1 - + + - - Rejected

2 - + + + - Rejected

3 - + + + + Retained*

4 - + + - - Rejected

5 - + + - - Rejected

6 - + + + - Rejected

Agile Principles as Software Engineering Principles: An Analysis 11

Table 9 shows the analysis result for the Scrum principles: Only one principle
is retained, no. 3, but with a minor rewording—Use overlapping development
phases. The other Scrum principles are mostly conceptual and descriptive. They
do not guide action and it would be difficult in practice to check—as implied by
Scrum’s commitment value itself—if they have been followed or not.

4.3 DSDM

DSDM (Dynamic System Development Method), developed in the UK, is a de-
scendant of the RAD method (Rapid Application Development) [29].

DSDM proposes nine principles [17], presented in Table 10, whereas Table 11
shows our analysis results. One principle satisfied all criteria, whereas seven
satisfied all but the first (prescriptive wording). Since it was possible to (easily)
reword each of the latter—e.g., Focus on the frequent delivery of products.—they
were all retained as SE principles.

Table 10. The nine (9) DSDM principles

Proposed principles

1. Active user involvement is imperative.

2. DSDM teams must be empowered to make decisions.

3. The focus is on frequent delivery of products.

4. Fitness for business purpose is the essential criterion for acceptance of deliverables.

5. Iterative and incremental development is necessary to converge on an accurate busi-
ness solution.

6. All changes during development are reversible.

7. Requirements are baselined at a high level.

8. Testing is integrated throughout the life cycle.

9. A collaborative and cooperative approach between all stakeholders is essential.

Table 11. Analysis of the nine DSDM principles using the individual criteria—Retained
as worded, Retained* with minor rewording or Rejected

Principle
Criteria

Result
1 2 3 4 5

1 - + + + + Retained*

2 + + + + + Retained

3 - + + + + Retained*

4 - + + + + Rejected

5 - + + + + Retained*

6 - + + + + Retained*

7 - + + + + Retained*

8 - + + + + Retained*

9 - + + + + Retained*

12 N. Séguin, G. Tremblay, and H. Bagane

Compared to XP (3 out of 5) and Scrum (1 out of 6), almost all of DSDM
principles (8 out of 9) have thus been retained. Among the three agile methods,
DSDM thus appears to be the one whose underlying principles are the most
faithful to our definition of software engineering principles.

5 Discussion

Proponents of agile software development methods have proposed various prin-
ciples to use as foundations of their methods. However, much like proponents of
more classical software engineering methods, they did not necessarily ensure that
the “principles” they proposed were, indeed, principles. For lack of a clear and
unambiguous definition of the notion of principle and lack of a set of well-defined
criteria, similar confusion appears in the specification of Agile principles as ob-
served for Software engineering principles. Thus, many statements proposed as
agile principles are worded either as simple concepts (one or a few words) or in
a descriptive manner.

For example, XP principles [15] are mostly concepts (e.g., Quality work).
Such wording provides little guidance for software developers that want to put
these “principles” in practice, possibly leading to confusion, indecision, or con-
tradictory actions. However, we noted that Cohn [24] managed to reword XP
principles to provide better guidance. As for Scrum principles, again these are
mostly simple concepts, that provide little guidance (e.g., Multilearning, Subtle
control). Again, it is neither clear to what actions should lead such principles,
nor how to verify if these principles have been applied or not in a Scrum-based
software development project. On the other hand, DSDM principles appear to
better obey the criteria for being software engineering principles.

More generally, if we examine the relationships among the various criteria and
the 32 principles we analyzed, we note the following:

– (Prescriptive wording) This criterion led to the rejection of numerous princi-
ples. However, quite often, minor rewording allowed to satisfy this criterion.

– (Technology/method independence) All the analyzed statements satisfied
this criterion. This characteristic implies, as some have claimed, that many
agile principles may indeed be appropriate for various software development
approaches and methods.

– (Lack of compromise/tradeoff) All analyzed statements satisfied this
criterion.

– (Software engineering) This criterion led to the rejection of seven statements.
Thus, even though some of these statements may be general principles—e.g.,
“Simplicity [. . .] is essential”—we cannot consider them to specifically be
software engineering principles.

– (Verifiable) This criterion led to the rejection of 11 principles. Statements
rejected because of this criterion are thus too imprecise to be refutable—
e.g., “Continuous attention to technical excellence and good design enhance
agility.”

Agile Principles as Software Engineering Principles: An Analysis 13

The analysis of the various statements proposed in the mainstream software en-
gineering literature as software engineering principles [18] showed that most of
these statements were not principles, at least not software engineering princi-
ples: 313 principles were analyzed and, based on the individual criteria, only 34
of them (11 %) were retained (including some with minor rewording). Interest-
ingly, among the 32 agile principles we analyzed, 19 were retained as software
engineering principles (59,4 %), even though the proposed agile principles did
not intend a priori to be SE principles—contrary to the 313 principles analyzed
by Séguin, that all claimed to be SE principles!

Table 12. Correspondance between the Guide to the SWEBOK knowledge areas
and the agile principles retained as software engineering principles (AM = Ag-
ile Manifesto). The ten knowledge areas are the following: 1.SR=Software Require-
ments, 2.SD=Software Design, 3.SC=Software Construction, 4.ST=Software Test-
ing, 5.SM=Software Maintenance, 6.SCM=Software Configuration Mangagement,
7.SEM=Software Engineering Management, 8.SEP=Software Engineering Process,
9.SETM=Software Engineering Tools and Methods, 10.SQ=Software Quality.

Knowledge areas

Principles 1.
SR

2.
SD

3.
SC

4.
ST

5.
SM

6.
SCM

7.
SEM

8.
SEP

9.
SETM

10.
SQ

AM 1 X X X X X X

AM 2 X

AM 3 X X X X X X X

AM 4 X X X

AM 5 X X

AM 7 X X

AM 8 X

XP 1 X

XP 3 X

XP 5 X

Scrum 3 X X

DSDM 1 X

DSDM 2

DSDM 3 X X

DSDM 5 X X X

DSDM 6 X

DSDM 7 X

DSDM 8 X

DSDM 9 X

It is interesting to establish a tentative mapping between the Agile principles
that were retained as SE principles and the 10 knowledge areas from the Guide
to the SWEBOK—see Table 12.

14 N. Séguin, G. Tremblay, and H. Bagane

None of the principles explicitly touch upon the Software maintenance knowl-
edge area, and only one implictly touches upon the Software configuration man-
agement area (All changes should be reversible). This is a bit ironic knowing the
emphasis put on the latter aspect by the various agile practices: “Agile methods
consist of individual elements called practices. Practices include using version
control, setting code standards, and giving weekly demos to your stakehold-
ers.” [30]. It is as though such aspects were so intrinsic to agile methods that. . .
expressing them as principles was unnecessary.

More generally, our analysis shows that the Agile movement and methods
definitely rest on a set of principles and that most of these principles are, in fact,
software engineering principles. Although agile methods were—and sometime
still are—considered outside of “mainstream software engineering,” our analysis
shows that such is not the case.

6 Conclusion

Our goal, when we started this work, was to determine whether the agile princi-
ples proposed in the Agile Manifesto and by some agile methods were software
engineering principles. To attain this goal, we used the method and criteria de-
scribed by Séguin [18], who analyzed numerous statements that claimed to be
fundamental principles of software engineering. Séguin found that few (11 %) of
those statements could be considered software engineering principles. Based a
similar analysis of agile principles, it turned out that even though the agile prin-
ciples did not claim to be software engineering principles, most of them (59 %)
were!

As future work, it would be interesting to analyze the principles proposed by
various other agile methods—including the lesser-known XP principles [15, 31].
With a larger number of statements, the collective criteria proposed by Séguin
and Abran [11] could then be applied. This would then help to understand how
well the Agile Manifesto principles indeed represent, or not, principles common to
many agile methods. The criteria used in our analysis could also serve as general
guidance for “methodologists” who intend to develop new methods, agile or not,
that rest on a set of well-defined principles.

References

1. Abran, A., Moore, J., Bourque, P., Dupuis, R. (eds.): Guide to the Software Engi-
neering Body of Knowledge (2004 Version). IEEE Computer Society Press (2004)

2. Davis, M.: Will software engineering ever be engineering? Commun. ACM 54, 32–
34 (2011)

3. Boehm, B.W.: Seven basic principles of software engineering. Journal of Systems
and Software 3(1), 3–24 (1983)

4. Bourque, P., Dupuis, R., Abran, A., Moore, J.W., Tripp, L., Wolff, S.: Fundamental
principles of software engineering—A journey. J. Syst. Softw. 62, 59–70 (2002)

5. Davis, A.M.: 201 principles of software development. McGraw-Hill, Inc. (1995)

Agile Principles as Software Engineering Principles: An Analysis 15

6. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering,
2nd edn. Prentice Hall (2003)

7. Lehman, M.M.: On understanding laws, evolution, and conservation in the large-
program life cycle. Journal of Systems and Software 1, 213–221 (1979-1980)

8. Ross, D., Goodenough, J., Irvine, C.: Software engineering: Process, principles, and
goals. Computer 8(5), 17–27 (1975)

9. Royce, W.W.: Managing the development of large software systems: concepts and
techniques. In: Proc. 9th Int’l Conf. on Soft. Eng., pp. 328–338 (1987)

10. Wasserman, A.: Toward a discipline of software engineering. IEEE Software 13(6),
23–31 (1996)

11. Séguin, N., Abran, A.: Les principes du génie logiciel: une première analyse. Génie
Logiciel (80), 45–51 (2007)

12. Beck, K., et al.: Manifesto for Agile Software Development (February 2001),
http://agilemanifesto.org

13. Bagane, H.: Analyse des principes du génie logiciel au niveau du développement
agile. Master’s thesis, Dép. d’Informatique, UQAM (March 2011)

14. Bagane, H., Tremblay, G., Séguin, N.: Principes de génie logiciel et développement
agile : une analyse. Génie Logiciel (98), 43–51 (2011)

15. Beck, K.: Extreme Programming Explained—Embrace Change. Addison-Wesley
(1999)

16. Schwaber, K.: Scrum development process. In: ACM Conf. on Obj. Oriented Progr.
Syst., Lang., and Applic. (OOPSLA), pp. 117–134 (1995)

17. Stapleton, J.: DSDM: Dynamic Systems Development Method: The Method in
Practice. Addison-Wesley Professional (1997)

18. Séguin, N.: Inventaire, analyse et consolidation des principes fondamentaux du
génie logiciel. PhD thesis, École de Technologie Supérieure, Montréal, QC (2006)

19. Oxford English Dictionary Online project team: Oxford English Dictionary
(November 2011), http://www.oed.com

20. Power, G.: Values, practices & principles,
http://www.energizedwork.com/weblog/2006/12/values-practices-principles

(Visited on April 2011)
21. Bunge, M.: Philosophical Dictionnary. Prometheus Book, New York (2003)
22. Aubray, C.: Scrum: le guide pratique de la méthode agile la plus populaire. Dunod

(2010)
23. ISO/IEC: Information technology—software life cycle processes. Technical Report

ISO/IEC Std 12207: 1995, ISO/IEC (1995)
24. Cohn, M.: User Stories Applied—For Agile Software Development. Addison-Wesley

Professional (2004)
25. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice-Hall

(2001)
26. Schwaber, K.: Agile Software Development with Scrum. Microsoft Press (2004)
27. Boehm, B., Turner, R.: Balancing Agility and Discipline—A Guide for the Per-

plexed. Addison-Wesley (2004)
28. Takeuchi, H., Nonaka, I.: The new new product development game. Harvard Busi-

ness Review (1986)
29. McConnell, S.: Rapid Development: Taming Wild Software Schedules. Microsoft

Press (1996)
30. Shore, J., Warden, S.: The art of agile development. O’Reilly Media (2007)
31. Fowler, M.: Principles of XP (October 2003),

http://martinfowler.com/bliki/PrinciplesOfXP.html

http://agilemanifesto.org
http://www.oed.com
http://www.energizedwork.com/weblog/2006/12/values-practices-principles
http://martinfowler.com/bliki/PrinciplesOfXP.html

Agile Software Development Practice Adoption

Survey

Narendra Kurapati1, Venkata Sarath Chandra Manyam1, and Kai Petersen1,2

1 Blekinge Institute of Technology, 37140 Karlskrona, Sweden
2 Ericsson AB, Box 518, SE-371 23, Karlskrona, Sweden

{naku10,vemc10}@student.bth.se, kai.petersen@bth.se,
kai.petersen@ericsson.com

Abstract. Agile methodologies are often not used “out of the box” by
practitioners, instead they select the practices that fit their needs best.
However, little is known which agile practices the practitioners choose.
This study investigates agile practice adoption by asking practitioners
which practices they are using on project and organizational level. We
investigated how commonly used individual agile practices are, combi-
nations of practices and their frequency of usage, as well as the degree
of compliance to agile methodologies (Scrum and XP), and as how suc-
cessful practitioners perceive the adoption. The research method used is
survey. The survey has been sent to over 600 respondents, and has been
posted on LinkedIn, Yahoo, and Google groups. In total 109 answers
have been received. Practitioners can use the knowledge of the common-
ality of individual practices and combinations of practices as support in
focusing future research efforts, and as decision support in selecting agile
practices.

Keywords: Software Development, Agile Practices, Adoption, Survey.

1 Introduction

In response to the need of reacting to changes in customer needs quickly agile
methodologies have gained considerable importance in the software development
industry. A variety of software development methodologies (e.g. Scrum, Extreme
Programming (XP, etc.) and their related practices have gained attentions from
research, with the majority of empirical research focusing on XP [2]. Overall,
many practices are considered as being part of the agile toolbox, different articles
identifying 21 [9] up till 32 [12] agile practices.

Given that companies work in different contexts the “out of the box” agile
methodologies are often not followed as they are described in the books. Instead,
companies select the practices that fit their needs [5,12,11]. As the main focus
of past research was on individual case studies [2] there is a research gap with
regard to which practices the software industry at large is using. We only identi-
fied two surveys of relevance focusing on agile practices [1,10]. The survey by [1]
focuses on which methodologies were used, but does not ask for actual usage on

C. Wohlin (Ed.): XP 2012, LNBIP 111, pp. 16–30, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Agile Software Development Practice Adoption Survey 17

practice level. Sochova [10] only included a very limited number of agile prac-
tices in her survey. Overall, this raises the need for a survey study on agile
practice adoption to better understand, which agile practices are actually used
in industry.

In response to the above mentioned research gap we conducted a survey to
find out which agile practices are used in industry. In particular, the survey aims
at answering the following research questions:

– RQ1: How commonly used are individual agile practices?
– RQ2: Which agile practices are used together by practitioners, and how

common are the combinations?
– RQ3: To what degree does the software industry comply to Extreme Pro-

gramming (XP) and Scrum?
– RQ4: As how successful do the practitioners perceive the adoption of agile

practices in terms of customer satisfaction and employee satisfaction?

The remainder of the paper is structured as follows: Section 2 presents related
work. Section 3 describes the research design. Section 4 contains the results of
the survey. Section 5 concludes the paper.

2 Related Work

The related work focuses on the identification of agile practices and related
methodologies, and population oriented studies that have a specific focus on
agile practice adoption.

2.1 Literature on Agile Practices

Dyb̊a et al. [2] conducted a systematic review on empirical research investigating
agile software development. They found that the main focus of past research
was on XP, while very few studies targeted other methodologies, such as Scrum.
With regard to classification of research methods four surveys were identified,
none focusing on agile practices used within the methodologies.

Williams [12] conducted a literature review and identified 32 agile and lean
software development practices that are related to well known agile method-
ologies, namely XP, Scrum, feature driven development (FDD), and Lean. Some
practices are cross-referenced given that the practices are similar, but have differ-
ent names in different agile methodologies. She also points out that organizations
tend to select practices creating hybrid methodologies.

Shashank and Darse [9] conducted a systematic literature review focusing on
the identification of agile practices and how they are adapted, e.g. different ways
of how pair programming is done. They identified 21 different practices and their
adaptations in form of sub-practices.

Petersen [8] identified 22 agile practices and 4 lean practices. The practices
have been mapped to agile and lean principles to highlight the differences and
similarities between lean and agile software development.

18 N. Kurapati, V.S.C. Manyam, and K. Petersen

Jalali and Wohlin [3] identified 25 agile practices used in global software de-
velopment through a systematic review of literature.

Koch [6] provides a summary of agile methodologies and practices. After pre-
senting the agile principles and practices he links the practices to different soft-
ware development methodologies.

The studies [12,9,8,3] have been used as input for the construction of the agile
survey used in this study. The practice list used in the survey presents a con-
solidated view of agile practices, where some practices were merged and others
split. The linkage of agile practices used in our survey and agile methodologies
was based on descriptions in [6,12].

2.2 Agile Surveys

We identified two surveys focusing on the adoption and use of agile practices in
industry.

Dogs and Klimmer [1] conducted a survey in 2004 where they received 84
responses. The goal of the survey was to capture which agile methodologies are
most frequently used, success with respect to defects and user experience, and
the perceived usefulness of different agile practices. The most commonly used
methodology was XP (38.6%) followed by FDD (14.55%), RUP (11.9%) and
Scrum (7.2%). Furthermore, a number of methodologies with less than 5% of all
answers were identified. A ranking of how many responses state that a practice
was used successfully showed that more than half of the identified practices re-
ceived more than half of the total number of responses. However, the study does
not look into which practices are actually selected independently of a method-
ology.

Sochova [10] conducted a survey on agile adoption receiving 181 responses in
a three month period in 2009. The survey focused on reasons to start agile, diffi-
culty of using agile practices, and actual usage of agile practices. The focus was
on 9 agile practices (stand-up meeting, backlog, burn-down, pair-programming,
TDD, estimations in points, planning poker, customer demo, and retrospective).
With respect to ease of use Scrum, backlog, and burn-down, retrospective, and
customer demo were perceived as the easiest. Pair programming, TDD, and es-
timation were perceived as hard to learn. With regard to usage the least used
practices are planning poker, TDD, pair programming with more than 30 people
not using them. Scrum standup (not used by 2) and customer demo (not used
by 3) are used by almost all of the respondents. The survey is limited in the
sense that it only focuses on very few practices.

Korhonen [7] surveyed three agile teams with regard to their agile adoption
in different points in time. The practices considered were daily practices (user
stories, product backlog, and short iteration), team practices (refactoring, Scrum,
self-organized teams), and programming practices (collective code ownership,
pair programming, refactoring, tests written at the same time as code, TDD, and
continuous integration). The specific focus was on determining, which practices
were used by teams without programming responsibility. Their general findings
were that teams with no direct responsibility for programming adopted agile

Agile Software Development Practice Adoption Survey 19

practices related to daily practices and team practices. Only the programming
team would in addition to that also adopt programming practices, but at the
same time rely on the other two categories of practices as well.

Overall, the related work shows that there are investigations on agile practices,
where the practices are mostly investigated through case studies. We found very
few surveys, where one (Sochova [10]) was of limited rigor, not discussing e.g.
validity threats. This motivates the work presented in this paper, focusing on
agile practice adoption in software industry through a survey to get a broader
picture of what practices are actually used in the industry. Finding this out is
of interest as several researchers recognized that companies tailor their practice
selection to their needs [5,12,11].

3 Survey Design

Sampling and Population: The survey was sent out to 600 practitioners that
were sampled by diversity (different countries, companies, and domains), and
was posted on LinkedIn, Yahoo, and Google groups. The population comprises
software industry practitioners who are experienced in agile software develop-
ment. In total we received 109 valid answers from practitioners.

Survey Structure: The survey consisted of six different parts, namely introduc-
tion, demographics, agile practice adoption, agile practice adaptation, employee
and customer satisfaction, and contact details. In total the survey comprised of
217 questions.

Part 1: Introduction: The introduction shortly explained the purpose, benefits
for the respondents, definition of population (who should fill in the survey),
estimated duration of the survey (30 Minutes), and information about the re-
searchers conducting the study.

Part 2: Demographics: This part captured information about the respondent
and his/her organization. The practitioners also selected whether they want to
answer the survey for a single project or their organization. The reason for doing
so was that many roles in software organizations are not necessarily involved in
the project work. For example, in market-driven development market analysts
package requirements and based on the availability of requirements one or several
projects are initiated, i.e. there is a pre-activity before the actual development
projects start.

Part 3: Agile Practice Adoption: The respondents got a list of agile practices
with a short description of the practice, and selected those that they use. An
overview of the practices is given in Table 1. As mentioned earlier, several reviews
on agile practices have been conducted [12,9,8,3], these have been used to create
a consolidated list of practices for the survey. The mapping of the practices to
the two methodologies checked for level of adoption is based on the book by
Koch [6] on agile software development (see Appendix E for XP and Appendix
H for Scrum) and the analysis of compliance is based on this book.

20 N. Kurapati, V.S.C. Manyam, and K. Petersen

��� �����	
������	���� ��� ������

��� ���	�������	��������������������������	
���� �
��!�"�#� √� �

��� ��	�����!!	"����$������
����!!�"	������"������!��"�����

��!����!����#�

√� �

�%� �
�""	"��%�!�&�"'�	��������!����"�����	�"�(��$��"������!��

�"���� �
����������������	!��	�")������)��"���	!	"������
����#�

√� �

*�� *��+	"�������������+	"�����������������,���#� � √�
-./� -.�/���0��+��"�!(�����$�+	"������������,�������$��+#� √� �

���� �������	"�����������	"����������(������"�����"��(
	�1��"��

���������!�
�2	�1#�

√� �

���� ���������	 ����	�����	"��������"��$��+������������������"�����

����	����	�"#�

� �

��� ����&�!�

���
���������
	 �	"��
����!�������"��������

�����!�#�

√� �

��� �	!�
�����	�"��%��
�������	�"������	!�
������
��	�"#� √� �

��� ��	"�&�����	�"�������	 ���� �
��!�"����"�	��	"����

��	"�&�	!��(�2#�

� √�

���� ��	"���
�""	"������	"�������	"�������
�����������������

�$	"��

��	"�&	����	�"#�

� √�

���� ��	"���� 	�$�����	"����� 	�$�!���	"������	�������(��������

$�+�������������	"�&	����	�"#�

� √�

�'���� ���"�'����������� �1'��1�!���	"������	������$����$�����"��

����
������1#�

� √�

��� ���	��&3��������3�����&���	����������������!�"����������

��"��	�"�
	�1����	���(1������1���!����&�����!�#�

� √�

*��!� *��!��0�+�	"����!�)��4�4���'
������)��	��	(����)���,����

!�"���)������������#�

√� √�

*��� *�����	 �"��� �
��!�"����"	���������� �
�����(��������	"������

����$��#�

√� �

*���	"�� *���	"�����"�	"���������	"�)��"	�)�	"�����	�")��������"��#� � �

��� ���	"�����"���������	"���
�����

�$���(1�����!!�#� √� �

��� ��

���	 ���$"���	����"1�"����"����"�������)�"����$"���(1�

	"�	 	���
�#�

√� �

��!!� ��!!�"	���	�"���	����"�����""�
�������!!�"	���	�"��!�"��

���!�!�!(��)��4�4�������������)��+1��)����4#�

� �

�5��� ��"�	����	�"��"�����"�����"���!�"���6"�(
���	��"�	�	���	�"����

�	���	��
����+	"�& ��	�"	"���"�����"���!�"���!�"��������#�

� �

��� ��"�	"������"�����	�"������
��	"�����	�"��������#� √� �

���� ����!�"���	�"���!����"��&�!����	���"�����!�"���	�")��4�4�

���	������#�

� �

�0� �"��!��	 ��0�+�������3���(��+�!����"	�!��!�"����	
��

���!��$�	�����������	"�������	
1�$�+#�

� �

��� ����������*�!�������������	"�������1���!�(��$��"������!��

�"���� �
������������	�"�����!(��	�	��#�

√� �

Fig. 1. Identified Practices and their Mapping to XP and Scrum

Part 4: Agile Practice Adaptation: For each practice selected in Part 3 the prac-
titioners provided answers of how they adapted the practice to their organization
by choosing sub-practices.

Part 5: Employee satisfaction and customer satisfaction: This part focused on
the outcome achieved when using the agile practices with respect to perceived
employee and customer satisfaction. Only a sub-set of the respondents answer-
ing Part 1, Part 2, and Part 3 completely answered with respect to customer
satisfaction. In our analysis, hence only a sub-set of the answers is reprsented.

Part 6: Contact details: The respondents were free to provide their contact de-
tails so that the results of the survey can be made available to them. Furthermore,
getting the contact details allowed us to ask further questions with respect to
the answers received.

The focus of the study presented here was on agile practice adoption, which
makes use of the answers received in Part 2, 3, and 5 of this survey.

Agile Software Development Practice Adoption Survey 21

Prior to running the survey from October 11, 2011 till November 11, 2012
the survey was reviewed from two researchers (one full professor and one PhD
student) and two practitioners, who in informal interviews provided feedback
and suggested changes, that were incorporated.

Analysis: The analysis for RQ1 was done using descriptive statistics. As RQ2 is
focusing on combinations of agile practices used in industry, we used hierarchical
cluster analysis and agglomerative clustering to find similar groups of practices.
As a distance measure Euclidean distance was used. RQ3 was also analyzed
through descriptive statistics.

Validity Threats: In surveys there is always a risk that questions are misunder-
stood. In order to reduce the risk we conducted interviews with two practitioners
and two researchers who work/do research in agile software development.

Furthermore, the outcome might be biased with respect to similarities of the
respondents. However, respondents from different domains, experience levels, etc.
answered the survey, even though a limited number of responses was obtained.
Hence, this threat is partially reduced. One threat remaining is that respondents
represent different roles and project types. Given that a previous study (cf. [7])
showed that depending on the type of project there are different usages of agile
practices, there might be a risk that the results are biased towards programming
oriented projects, as the majority of respondents were programmers.With regard
to the project managers, we also do not know whether they used agile in a
programming project.

Evaluation apprehension was avoided by guaranteeing anonymity to the re-
spondents, and not forcing them to provide their contact details if they do not
want to.

Hypotheses guessing is a threat, which means that the practitioners might
provide answers the researcher wants to hear. However, we only revealed the
information that we are seeking to find which practices are used in industry;
not, for example, that we intend to check conformance to development methods,
which would likely have biased the practitioner to select certain practices.

Given that a web survey was posted in on-line communities, and requests for
filling in the survey by e-mail were sent, there was no control for the researchers
with respect to external validity (i.e. the general applicability of the results).What
can be observed is that few practitioners from military domain have answered the
survey, however, for other domains such as information systems, outsourced, com-
mercial, end-user, and embedded several answers have been received.

The survey is long and hence maturation is a threat to validity. Given that we
captured not only practice adoption, but also adaptation (how each individual
practice is used by them), there is a risk that the practitioners might get bored.
Though, in order to get a complete picture of agile practice adaptation there is
a need to ask detailed questions of how agile practices are used. This is more a
threat for the overall survey, as the questions relevant to this study were asked
in Part 3, which was very early in the survey. Hence, for the results presented
in this paper the threat of maturation is low.

22 N. Kurapati, V.S.C. Manyam, and K. Petersen

Only a sub-set of the respondents answered questions with respect to their
satisfaction with respect to agile, so they do not represent the full set of respon-
dents based in which we captured agile practice adoption. However, we decided
to still present the results as they give some indication of whether the agile
practice adoption as presented in this survey was a success.

4 Results

4.1 Survey Demographics

Table 1 shows the results of system type for projects and organizations. When
defining the system types we followed the recommendation by Jones [4]. Observe
that the total number of responses is higher than 109 as an organization or team
can work on different types of systems at the same time (e.g. a commercial end
user system). What can be observed is that the majority of the responses come
from the information system domain (38%), followed by outsourced (20%) and
commercial (19%). All types are accounted for with regard to the total responses.
On project level, no answers have been received from the military domain.

Table 1. Number of Responses per System Type

System type Project Organization Responses Total Percentage Total

Information Systems 16 50 66 38%
Outsourced (developed under contract) 7 28 35 20%
Commercial (marketed to external client, e.g. sold on CD) 8 25 33 19%
End user (private, for personnel use, e.g. banking software) 4 11 15 9%
Embedded 2 12 14 8%
Other 3 4 7 4%
Military 0 4 4 2%

Total 40 134 174 100%

Table 2 shows the distribution of responses by role, showing that all roles
are covered in the survey, in particular programmers, project managers, agile
coaches, and business analysts are well represented. Furthermore, the respon-
dents are experienced in software development, which is indicated by the average
experience.

Table 2. Respondents and Experience

Role Responses Percentage Avg. exp (years)

Programmer 55 24.34 11
Project Manager 52 23.01 10
Agile Coach 29 12.83 4.7
Business Analyst 27 11.95 9.7
System Designer 20 8.85 11.8
System Analyst 18 7.96 8
Quality Assurance 14 6.19 5
Researcher 11 4.87 9.75

Total 226 100.00

Agile Software Development Practice Adoption Survey 23

4.2 Commonality of Agile Practice Usage

Here we investigated the commonality of each individual agile practice, as is
shown in Figure 2. As a means for structuring the data we define three categories,
namely:

– Common: Used by > 2/3 of the respondents (represented by black bars).
– Less common: Used by [1/3;2/3] of the respondents (represented by gray

bars).
– Seldom: Used by < 1/3 of the respondents (represented by white bars).

�� �� ��� ��� ��� ��� ���

�	
������

���������	���������

�����	�
�����

���	�

����� �!�!��	�

�� �����!���� �!�

"�� �
��	� 	#��		��!�

$	�
�%� �	��%	�	����	�
�

&�'�����	��#		��

" ���	�%	� !��

(���
�� �!�

)�% �!��
��%��%��

$	���

(
����	���	��

"�� �
������ �!��		��!�

)��*!�������+����!	�

�"��
��	�	��	��

$���� �!����!�	���

$	���!�

�)���	���	��#�	�� ��

)����� ������

)��������� �
	!������

"
�� 	��,�-	�
��	��,�.�����!�� �
�

"�� �
,�
	�������

"
��%'����,�"������		��!��

(a) Use of Agile Practices Project Level
(33 respondents)

�� ��� ��� ��� ��� /�� 0�� 1��

�	
�������

����� �!�!��	�

$	�
�%� �	��%	�	����	�
�

�� �����!���� �!�

���������	���������

���	�

�����	�
�����

" ���	�%	� !��

��'�����	��#		��

)���	���	��#�	�� ��

(���
�� �!�

)�% �!��
��%��%��

"�� �
��	� 	#��		��!�

$	���

)��*!�������+����!	�����!	�	�
�

"
�� 	��,�-	�
��	��,�.�����!�� �
�

)��������� �
	!������

$���� �!����!�	���

$	���!�

)����� ������

(
����	���	��

"��
��	�	��	��

"�� �
,�
	�������

"�� �
������ �!��		��!�

"
��%'����,�"������		��!��

(b) Use of Agile Practices Organizational
Level (76 respondents)

Fig. 2. Frequeny of Agile Practice Usage

Project: Common practices are stand-ups, sprint and iteration, stories and fea-
tures, continuous integration, communication, collective ownership, testing, track-
ing progress, short releases, configuration and change management, sprint plan-
ning meeting, retrospectives, and team.

Less common practices are coding standards, refactoring, simple design, 40-
hour week, test-driven development, sprint review meeting, pair programming,
planning game, office, and documentation.

Seldom practices are informative workshop and metaphors.

Organization: Common practices are stand-ups, sprint planning meeting, sprint
and iteration, short releases, retrospectives, communication, testing, tracking
progress, continuous integration, stories and features, configuration and change
management, team, sprint review meeting, coding standards, refactoring, and
collective ownership.

Less common practices are 40-hour week, simple design, documentation, office,
informative workshop, pair programming, test-driven development, and planning
game.

24 N. Kurapati, V.S.C. Manyam, and K. Petersen

Metaphors is a practice applied rarely.

Comparison: Comparing the responses on project and organizational level we
can see that the answers show a high level of agreement with respect to how
commonly the practices are used. With regard to common practices on organi-
zational level we find sprint review meeting, coding standards, and refactoring,
which are less common practices on project level. Otherwise, the common prac-
tices are the same. With regard to the less common practices there is also a high
agreement, project level having coding standards, refactoring, and sprint review
meeting in that category, while organizational level has informative workshop,
which is rated less common on project level. Metaphors fall in the seldom cate-
gory for projects and organizations, while informative workshops are seldom for
project level, but not organizational level.

4.3 Combination of Agile Practices

Table 3 shows the results of the hierarchical cluster analysis on project and orga-
nizational level for practices. The data is sorted in ascending order for distance.
If many respondents choose a similar set of practices they are likely to end up
in one cluster. Overall, the table shows which practices are used together on
project and organizational level. The following information shown in the table
should be highlighted:

– When comparing project and organization, the distance between items on
organizational level is larger than on project level. One possible explana-
tion might be that practices on organizational level are more spread as an
organization might run projects with varying practices in each project.

– Similarities between project and organization: Test driven development
(TDD) and pair programming (PP) are in the same cluster for project and
organization, even though the distance is much lower on project level (2.236
on project level in comparison to 4.472 on organizational level). Cluster
7 (Stand-ups, Sprint/iteration, Sprint planning meeting, retrospective) for
project is the same as Cluster 3 for organization with similar distance val-
ues (3,073 on project level and 3,231 on organizational level) that are both
relatively low given that the largest distance is 4.144 and 6.476 for project
and organization, respectively. The identity of clusters 3 and 7, while having
low distance values at the same time, would indicate that the clusters are
distinctive when combining practices.

After identifying similar groups we investigated the frequency of responses that
fell into the previously identified clusters, as shown in Table 3. The goal is to
identify the most frequently used combination of agile practices.

For structuring the data (Figure 3) we divide the usage of combinations of
practices in three categories, namely:

– Common: Used by > 2/3 of the respondents.
– Less common: Used by [1/3;2/3] of the respondents.
– Seldom: Used by <1/3 of the respondents.

Agile Software Development Practice Adoption Survey 25

Table 3. Cluster Analysis

Project Organization
Cluster 1st item 2nd item Distance Cluster 1st item 2nd item Distance

1 S-ups Sp 1.414 1 SPM Sp 2.236
2 SD Ref 1.732 2 S-ups Ret 3.000
3 Testing St 2.000 3 Cluster 2 Cluster 1 3.231
4 TDD PP 2.236 4 St TP 3.317
5 Cluster 1 SPM 2.236 5 CI Ref 3.317
6 CI SR 2.449 6 Testing Team 3.317
7 Cluster 5 Ret 2.641 7 C&CM Comm 3.317
8 Cluster 3 C&CM 2.646 8 Cluster 6 Cluster 4 3.532
9 Cluster 6 TP 2.828 9 Cluster 8 Cluster 3 3.766

10 CS 40H 2.828 10 Cluster 5 CO 3.803
11 Team SRM 2.828 11 Cluster 9 SR 4.023
12 Cluster 8 Cluster 2 2.911 12 Cluster 11 Cluster 7 4.040
13 Cluster 4 Of 2.914 13 Cluster 10 CS 4.320
14 Cluster 9 CO 2.940 14 Cluster 12 SRM 4.356
15 IW PG 3.000 15 TDD PP 4.472
16 Me Doc 3.000 16 Cluster 14 Cluster 13 4.516
17 Cluster 14 Cluster 12 3.067 17 Cluster 15 SD 4.996
18 Cluster 11 Cluster 7 3.073 18 IW Of 5.000
19 Cluster 17 Comm 3.328 19 Cluster 16 40H 5.137
20 Cluster 19 Cluster 10 3.381 20 Cluster 18 Cluster 17 5.334
21 Cluster 20 Cluster 18 3.481 21 Doc PG 5.385
22 Cluster 21 Cluster 13 3.705 22 Cluster 20 Cluster 19 5.493
23 Cluster 22 Cluster 15 3.837 23 Cluster 22 Cluster 21 5.560
24 Cluster 23 Cluster 16 4.144 24 Cluster 23 Me 6.476

Project: On project level common combinations of practices are represented by
clusters 1 (stand-ups, Sprint/iteration), 3 (testing, stories/features), 6 (contin-
uous integration, short releases), and 5 (stand-ups, sprint/iteration, and sprint
planning meeting).

Less common combinations are represented by clusters 9 (continuous integra-
tion, short releases, tracking progress), 8 (testing, stories/features, change and
configuration management), 7 (retrospective, sprint planning meeting, stand-
ups, sprint/iteration), 2 (simple design, refactoring), 14 (continuous integration,
short releases, tracking progress, collective ownership), 11 (team, sprint review
meeting), 10 (coding standards, 40 hour week), 4 (test-driven development, pair
programming), 18 (team, sprint review meeting, stand-ups, sprint/iteration, and
sprint planning meeting, sprint planning meeting), 12 (testing, stories/features,
change and configuration management, simple design, refactoring), and 13 (test-
driven development, pair programming, and office).

Seldom combinations of practices, which contain a larger set of practices, are
represented by clusters 17, 19, 15, 16, 20, 23, 22, 21, and 24.

Organization: Common practice combinations on organizational level are clus-
ters 1 (sprint planning meeting), 2 (stand-ups, retrospective), 4 (stories and
features, tracking progress), 7 (change/configuration management, communica-
tion), 6 (testing, team), 3 (stand-ups, retrospective, sprint planning meeting),
and 5 (continuous integration, retrospective).

Clusters 8 (testing, team, stories/features, tracking progress), 10 (continuous
integration, retrospective, collective ownership), 13 (continuous integration, ret-
rospective, collective ownership, coding standards), 9 (testing, team, stories/
features, tracking progress, stand-ups, retrospective, sprint planning meeting), 18
(Informative workshop,office), 15 (test-driven development, pair programming),
12 (testing, team, stories/features, tracking progress, stand-ups, retrospective,

26 N. Kurapati, V.S.C. Manyam, and K. Petersen

sprint planning meeting, short releases, change/configuration management, com-
munication), 11 (testing, team, stories/features, tracking progress, stand-ups, ret-
rospective, sprint planning meeting, short releases), 21 (documentation, planning
game), 17 (test-driven development, pair programming, simple design) represent
less common practice combinations.

Seldom combinations contain many practices and are represented by clusters
14, 16, 20, 19, 22, 23, 24.

�� /� ��� �/� ��� �/� ���

����
	�����2�����
	�����3�����
	���0�

����
	�����2�����
	�����3�����
	���4�

����
	�����2�����
	�����3�����
	�����

����
	�����2�����
	�����3�����
	���/�

����
	�����2�����
	���5�3�����
	�����

����
	���0�2��	
������3������	�
�����

����
	���/�2�������	������	�3������ �!�
��	�

����
	���5�2�����
	���1�3������� ������

����
	���1�2�����
	�����3�����
	�����

����
	�����2�����
	����3����	�

����
	�����2�����
	��4�3�����
	����

����
	���4�2�����
	�����3�����
	��1�

����
	����2�$	�
��� �	���	�	�3��� �����!	�

����
	�����2���% �!�"
��%	�3������		��

����
	�����2�$	���3�"�� �
�(� 	#��		��!�

����
	�����2�����
	��5�3�����	���	��#�	�� ��

����
	����2�" ���	��	� !��3�(���
�� �!�

����
	��1�2�����
	��/�3�(
����	���	�

����
	��4�2�����
	����3����!	���%����*!	��!
	�

����
	��5�2�����
	��0�3�$���� �!����!�	���

����
	��/�2�����
	����3�"�� �
������ �!��		��!�

����
	��0�2����
	���
	�3�"��
�(�	��	��

����
	����2�$	���!�3�"
�� 	���	�
��	��

����
	����2�"
��%����3�"�� �
��
	������

(a) Project Level (33 respondents)

�� ��� ��� 0��

����
�����2�����
�����3��
������

����
�����2�����
�����3�����
�����

����
�����2�����
�����3�����
���5�

����
���5�2�����
���0�3������������

����
�����2�����
���4�3�����
���1�

����
���0�2�����
�����3�����
�����

����
�����2�����
�����3���� �
���	��
	�

����
���1�2�����
���/�3�� ������ !��

����
�����2����	�3������ �!�
���

����
�����2�����
��5�3����
�������

����
�����2�����
�����3�����
��1�

����
���/�2���
��� ����	�3��� �����!�	�

����
���4�2�������	���������3�����

����
��5�2�����
��4�3�����
����

����
�����2�����
�����3���� �!��
�	�

����
�����2�����
��/�3������	��#���	�

����
��4�2�����
��0�3�����
����

����
��/�2����
	���
	�3��
��������

����
����2�����
����3�����
����

����
��0�2�����!�3�����

����
��1�2����!������	��!
�3�����	�

����
����2��
��	���
	�3������	����!�	�

����
����2��
�������3��
��������

����
����2���� �
�����	��
	�3���� �
��
	�

(b) Organizational Level (76 respon-
dents)

Fig. 3. Cluster Analysis for Agile Practice Combination - Frequencies

4.4 Compliance to Agile Development Processes (XP and Scrum)

The compliance is measured as the number of practices adopted belonging to the
XP and Scrum methodologies, both containing a different number of practices
(see Table 1). The compliance is structured as follows for XP and Scrum:

– Full compliance: All practices are fulfilled, which means 13 practices for XP
and 7 practices for Scrum.

– Strong compliance: Most of the practices are fulfilled, which means 8-12
practices for XP and 4-6 practices for Scrum.

– Weak compliance: Few practices in relation to the total number of practices
are fulfilled, which means for XP 4-7 practices and for Scrum 2-3 practices.

– No compliance: None or very few practices are fulfilled, meaning 0-3 for XP
and 0-1 for Scrum.

Agile Software Development Practice Adoption Survey 27

Project: Figure 4 shows the compliance to XP and Scrum on project level. It is
visible that Scrum has a higher compliance level than XP. For Scrum 33.33%
of all respondents are fully compliant, and 45.45% are strongly compliant. Only
few projects have weak (12.12%) or no (9.09%) compliance. For XP only 6.06%
are fully compliant, while 54.55% are strongly compliant. There are, however,
more projects that have weak (24.24%) or no (12.12%) compliance to XP.

Table 4 shows a cross-analysis of the compliance to Scrum and XP. It, for
example, shows that one project using Scrum with full compliance is also fully
compliant to XP, 10 projects using Scrum with full compliance are strongly com-
pliant with XP, and so forth. The interesting observation here is that around 50
% of all projects are at least strongly compliant to both methodologies. There
are few projects that use one of the methodologies and then have a weak com-
pliance to the other (see e.g. strong compliance to XP and weak compliance to
Scrum), showing clearly that neither of the methodologies is used in isolation
from others.

(a) Compliance XP (Project) (b) Compliance Scrum (Project)

Fig. 4. Compliance to XP and Scrum (Project Level)

Table 4. Compliance on Project Level: Cross-Analysis

� � � ��� � �

� � ������ ��	
��� ���� �
�

� ������ ��������� ����������� ��������� ��

������ ��	
��� �� ���������� ���������� ����������

� ���� �� ��������� �� ���������

� �
� �� �� �� ���������

Organization: Figure 5 shows the compliance to XP and Scrum on organizational
level. A similar pattern to the one on project level can be observed. That is,
organizations are more compliant to Scrum than to XP. For Scrum 50.00% are
fully compliant, 39.47% are strongly compliant, 3.95% are weakly compliant, and
6.58% are not compliant. For XP, 5.25% of the organizations are fully compliant,
57.89% are strongly compliant, 27.63 are weakly compliant, and 9.21 are not
compliant, showing the lower degree of compliance.

Table 5 shows that over 50% of the organizations are at least strongly compli-
ant to Scrum and XP, which is a similar observation as for the project level. This
also applies to the overall pattern that companies do not seem to concentrate
solely on one of the development methods.

28 N. Kurapati, V.S.C. Manyam, and K. Petersen

(a) Compliance XP (Organization) (b) Compliance Scrum (Organization)

Fig. 5. Compliance to XP and Scrum (Organizational Level)

Table 5. Compliance on Organizational Level: Cross-Analysis

� � � ��� � �

� � ������ ��	
��� ���� �
�

� ������ ������%�� �����%�%��� ��������� ���������

������ ��	
��� ��������� ����������� ��������&�� ������'��

� ���� �� �� ������%�� ��

� �
� �� �� ��������� '��%�����

4.5 Success of Adoption

Table 6 shows the responses for six factors with respect to employee satisfaction.
Overall, the majority of the respondents perceives the agile adoption as positive,
the factor with the highest agreement was related to reduction of stress and
workload due to agile practice use.

Table 6. Employee Satisfaction

6���������	
���	
�����	
���� ����
����

�	������
�������	������

���
����	���������

���	�����

���	�����

�
����������	�����

�����
�

�����

��
	��

��	�
	
���������	
������������������������	�����

�������	���	�������
�	����
���
�	�����	���

���� !"�� !��#"�� ���!"�� !��#"�� ���

����	�	�
�����	
��������	�����������	��	���
�	��

���	��$�

�!�� �"�� %��&"�� '��'"�� ����"�� �&�

����	�	�
�����(��	
���������	
�����	��

����	��������	���������
���
�$�

%&��& "��)���"�� ���!"�� !��#"�� �%�

�
�����	���������	�����
����������������	������
��

����	�	�
�����
������	
���$�

)%���&"�� ���)"�� ���)"�� #��)"�� ���

����	�	�
�����(��	
���������	
����

����	��������	������
���	���������
��	
���$�

%%��&!"�� ���#"�� !��#"�� ���!"�� �*�

+����	

���	���	�������	�����������
���
���	��

�(���������
��
����	�	�
�����
������	
���$�

)*��*'"�� �%��!!"�� #��%"�� !��#"�� �*�

Table 7. Customer Satisfaction

���
������	
���	
�����	
���� ����
����

�	������
�������	������

���
����	���������

���	�����

���	�����

�
����������	�����

�����
�

�����

��
	��

���
�������	���	��	�������
���
��
������
�

��
��������������	
���$�

!#��#)"�� &���!"�� #!��)&"��)���"�� �*�

���
������	���	��	�������
���
��
��������	����

����(��

�'�� '"��)���"�� !��#"�� ���!"�� �*�

���
������	���	
���������
��
�����
��
�
�������

���,���
������������

%%��&#"�� &���!"�� #��%"�� '��'"�� ���

���
������	�����
	�
�������
�	�����
���������
���

����������
��������

)%���&"�� ���)"�� �!���&"�� '��'"�� ���

�����	�	�
�����(��	
���������	
������	
�������
����

����������������
������

%%��&#"�� ���&"��)��*"�� ���!"�� ���

Agile Software Development Practice Adoption Survey 29

Table 7 shows the results with respect to customer satisfaction. The results
show that the aspects that were most positively perceived were related to that
the customer could provide rapid feedback, and is satisfied with the output of
frequent deliveries, which also resulted in a high percentage of people answering
positive with respect to positive responses from customers customers.

5 Conclusion

We conducted a survey of agile practice adoption, which was sent to over 600
practitioners and posted on LinkedIn, Yahoo groups and Google groups. The
survey contained questions regarding demographics, agile practice adoption and
adaptation, and outcomes of agile practice usage. This study focused on the agile
adoption part of the survey. In the following answers to the research questions
are presented.

RQ1: How commonly used are individual agile practices? With regard
to usage of individual practices we identified three groups of practices based
on their commonality for projects and organization (see Section 4.2. for the
frequencies).

Knowledge of the commonality of practices has important implications for
practice and research. From a practitioner point of view this knowledge provides
pointers of which agile practices to consider for their own development organi-
zation, given that other practitioners learn and adapt their practice selection
accordingly based on their experience.

RQ2: Which agile practices are used together by practitioners, and
how common are the combinations? In order to answer RQ2 we conducted
a cluster analysis to determine which agile practices are used together, and
investigated the frequency of practice usage in each cluster (see Section 4.3.).

It was apparent that the combinations of practices belonging to clusters with
low distance (i.e. they are very similar) and that are frequently used are very
rational. This adds further to the validity of the survey. For example, on project
level clearly stated stories and features support testing, continuous integration
facilitates short releases, and sprint/iterations are strongly connected to a sprint
planning meeting.

The analysis of the commonality further supports practice selection, as it
supports further investigations in research and practice not just which practices
to choose based on overall frequency, but how the selection of one practice might
depend on one or more other practices.

RQ3: To what degree does the software industry comply to Extreme
Programming and Scrum? Overall, we found that Scrum has a higher com-
pliance than XP on project and organizational level, both levels showing very
similar patterns (see Section 4.4). The result was that practices from Scrum and
XP seem to be used together, i.e. both methodologies are used complementary.
From a research perspective this means that it would be interesting to investi-
gate how to integrate agile methodologies in the best possible way. It also means

30 N. Kurapati, V.S.C. Manyam, and K. Petersen

that future research needs to not only focus on single methodologies, given that
the majority of past research has an XP focus.

RQ4: As how successful do the practitioners perceive the adoption of
agile practices in terms of customer satisfaction and employee satis-
faction? Overall, we found that the impact of agile practices was perceived as
positive on customer satisfaction and employee satisfaction (see Section 4.5). It
is important to highlight that these results have limitations as only a sub-set of
the respondents answered this question.

Future Work: In future work the reasons of why certain agile practices and
the combination thereof are chosen more frequently has to be investigated in
further detail. Furthermore, as the scope of the survey also contained parts on
practice adoption and outcome of agile practice usage, we will investigate how
each individual practice is adopted by the companies, and with what success.

References

1. Dogs, C., Klimmer, T.: An evaluation of the usage of agile core practices. Master’s
thesis, Blekinge Institute of Technology, Sweden (2011)

2. Dyb̊a, T., Dingsøyr, T.: Empirical studies of agile software development: A sys-
tematic review. Information & Software Technology 50(9-10), 833–859 (2008)

3. Jalali, S., Wohlin, C.: Agile practices in global software engineering - a systematic
map. In: Proceedings of the 5th IEEE International Conference on Global Software
Engineering (ICGSE 2010), pp. 45–54 (2010)

4. Jones, C.: Software assessments, benchmarks, and best practices. Addison-Wesley,
Boston (2000)

5. Kniberg, H., Farhang, R.: Bootstrapping scrum and xp under crisis a story from
the trenches. In: Proceedings of Agile Development Conference (AGILE 2008),
pp. 436–444 (2008)

6. Koch, A.S.: Agile software development: evaluating the methods for your organi-
zation. Artech House, Boston (2005)

7. Korhonen, K.: Adopting Agile Practices in Teams with No Direct Programming
Responsibility – A Case Study. In: Caivano, D., Oivo, M., Baldassarre, M.T., Vis-
aggio, G. (eds.) PROFES 2011. LNCS, vol. 6759, pp. 30–43. Springer, Heidelberg
(2011)

8. Petersen, K.: Is lean agile and agile lean? a comparison between two software devel-
opment paradigms. In: Dogru, A.H., Bicer, V. (eds.) Modern Software Engineering
Concepts and Practices: Advanced Approaches, pp. 19–46 (2010)

9. Shashank, S.P., Darse, D.H.P.: Finding common denominators for agile practices:
A systematic literature review. Master’s thesis, Blekinge Institute of Technology,
Sweden (2011)

10. Sochova, Z.: Agile adoption survey (2009)
11. Vriens, C.: Certifying for cmm level 2 and iso9001 with xpatsignscrum. In: Pro-

ceedings of the Agile Development Conference (ADC 2003), pp. 120–124 (2003)
12. Williams, L.: Agile software development methodologies and practices. Advances

in Computers 80, 1–44 (2010)

Applying Agile Development

in Mass-Produced Embedded Systems

Ulrik Eklund and Jan Bosch

Chalmers University of Technology
Software Engineering Division, Dept. of Computer Science & Engineering

Göteborg, Sweden
ulrik.eklund@ituniv.se, jan.bosch@chalmers.se

Abstract. The paper presents a method to manage critical interac-
tions to manage when introducing agile software development in mass-
produced embedded systems. The method consists of a context model
together with a set of measures, and is validated by empirical evidence
from three cases.

From an industrial perspective, the paper provides a prescription on
how to implement agile software development outside the typical domains
for agile, in this case for mass-produced products with embedded software
governed by a stage-gate process for mechanics and hardware.

From a research perspective, the paper provides an analysis of the
software development cycle for products with embedded software, espe-
cially where product development as a whole is driven by a plan-driven
process. The main contribution is a method for introducing agile in areas
where by necessity the full R&D process cannot be agile.

Keywords: embedded systems, agile software development, case study.

1 Introduction

Agile software development is quite pervasive today in several domains, even if it
is still not the norm. Agile methods are a mandatory part of university curricula
in software engineering and used in project courses. But agile development has
not taken the same hold in embedded systems, even though it promises business
benefits also attractive in this domain. The reason is that there are factors
that distinguish embedded systems from other domains where agile software
development has proven its value.

In this paper, we provide an overview of the problem context and support it
both by empirical evidence from three cases at Volvo Car Corporation (VCC)
as well as published literature. We then present a method with measures that
address found obstacles to introducing agile development in the embedded sys-
tems context focusing on successful product ownership. Finally we validate the
method through one finished and two on-going cases of agile development in the
context above.

The contributions of this paper are twofold: First, from an industrial per-
spective a set of factors that must be considered if implementing agile software

C. Wohlin (Ed.): XP 2012, LNBIP 111, pp. 31–46, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

32 U. Eklund and J. Bosch

development outside the common domain for agile, in this case for mass-produced
products with embedded software governed by a stage-gate process for the hard-
ware. In addition, the paper prescribes a set of measures that must be considered
by an original equipment manufacturer (OEM).

Second, from a research perspective the paper provides an analysis of the soft-
ware development cycle for products with embedded software, especially where
product development as a whole is driven by a plan-driven process. The main
contribution is a method for introducing agile development in domains where
by necessity the full R&D process cannot be agile, including (1) some subcon-
tractors not working agile, (2) interface with hardware and mechanics and (3)
certification processes. The method provides guidance how to manage the inter-
face between agile and non-agile parts of R&D. In addition, the paper provides a
rich insight into the challenges for development of automotive software through
a number of cases.

2 Context and Problem Statement

Several studies report on successful implementation of agile methods in new
development of software systems with strong user interaction, e.g. web-based
shops[1,2]. However there are several domains where agile software development
practices is not nearly as pervasive, such as mass-produced embedded systems[3].
Examples of products in this domain are cars and trucks, micro-wave ovens and
other home utensils, sewing machines, printers and copying machines.

The relevance of the context and the research question is validated through
three case studies at VCC as well as cases found in published literature. In
addition to these cases there are also three validation cases, also from VCC,
making a total of six cases providing empirical evidence.

2.1 Case 1: Introduction of Distributed Software Architecture

Case description: VCC as OEM introduced a distributed software architecture
for the first time, in late 1998. This was in contrast to the previous generation
of cars where each feature was realised by a single micro-controller with very
limited interaction between the features.

Found issues: The distributed architecture allowed more integrated function-
ality between components that previously were stand-alone from a functional
viewpoint. Most of the electronic and software design of the micro-controllers
were outsourced to a number of suppliers responsible for both hardware and soft-
ware co-design. Function decomposition was deployed between the outsourced
micro-controllers and definition of interfaces between them had to be done by
the Electric and Electronics Systems Engineering (EESE) department of VCC.
Since user features were realised by cooperating software from different teams,
the development process required synchronisation of all developed software.

Applying Agile Development in Embedded Systems 33

Goal of the case study: Identifying factors influencing three key designs of
the software architecture: In-vehicle network topology, software variability mech-
anisms, and split of responsibility among development teams for requisitions
elicitation and system definition.

Research problem relevance: The case confirms the research question by
giving an example of greenfield software development. Factors that were critical
to manage for the project were e.g. distributed functionality affecting integration
and validation of the complete product, interaction between development teams
both technically & planning-wise according to stage gates, technical standards
to simplify integration, and subcontracting software development according to
fixed schedules & fixed requirements specifications.

2.2 Case 2: Architecture Maintenance Process

Case description: Managing architectural changes in a controlled way at VCC
when releasing new or updated products.

Found issues: Over time the development process in the previous case had
some unintended side effects; design documents became very large, were diffi-
cult to comprehend and were difficult to maintain. It was difficult to find design
contradictions in the system because of high coupling and low cohesion that
led to increased integration efforts for verification and validation. While it was
still quite easy to add new functionality it was becoming successively hard to
change existing software. The architects seemed to be mostly evaluating various
design proposals from development teams (suppliers when software and hard-
ware development is outsourced, which was quite common). An issue in the
change management process was to achieve informed consent from all concerned
stakeholders.

Goal of the case study: Identifying the actual architecture change process(es),
how well it worked and what artefacts/information was used.

Research problem relevance: The case gives some examples of critical factors
needed to manage for software development in this context, e.g. overview of
the implemented functionality, integration & validation between different sub-
systems, and change management.

2.3 Case 3: Development Project of an Infotainment System

Case description: VCC decided to deliver a new generation of infotainment
systems to extend its competitive position. The development organisation had
to deal with several prerequisites which had a major effect on the project: The
systems were to be sold by more than one brand within Ford Motor Company and
developed components were to be shared between brands (both hardware and
software) while maintaining a brand-specific HMI. This was to leverage sourcing

34 U. Eklund and J. Bosch

with other (unrelated) components from new suppliers. All software was also
to be outsourced while in the previous system generation the software for the
main micro-controller was developed in-house at VCC. There was also a desire
to minimise the requirements elicitation effort in terms of spent man-hours.

Found issues: Initially the focus was on component development, i.e. on each
micro-controller with its deployed software. The software specifications for each
micro-controller were also reused from the previous generation to minimise the
effort in writing new specifications. Some of the complex customer features were
distributed between two micro-controllers, which led to a complicated interface
shared between two software suppliers. The project progress was initially meas-
ured in implemented customer features that meant that delivery of platform
software necessary for integration and testing was initially de-emphasized.

The setup of the teams changed in the middle of the project, from being fo-
cused on component development to being focused on feature development with
cross-functional teams. It was difficult to plan and manage the integration occa-
sions necessary for validation and verification since there was no overall view of
feature realisation and development at both VCC and the involved suppliers was
based on incorrect assumptions about the architecture. The project also started
midway with shorter sprints with a limited set of features verified after each
sprint rather than planning against large integration occasions. These changes
probably were key contributions in keeping the launch date.

Goal of the case study: A post mortem analysis to identify the major factors
influencing the architecture and the causal relationships between them and the
used process. Management at the concerned department at VCC ordered the
study to learn from this case and avoid similar issues in future R&D efforts.

Research problem relevance: The case serves as an example where initial
approach was typical for waterfall development, but could have benefited from
agile practices, e.g. requirements were not fully known from the beginning, in-
tegration & validation was no sufficiently planned, the architecture was complex
and the feature content constantly changed during development.

2.4 Research Problem

Based on cases 1-3 we define the domain of mass-produced embedded systems
by four characteristics:

– Deep integration between hardware and software for significant parts of the
functionality

– Strong focus on manufacturing aspects of the product in the development
(e.g. by project gates)

– Strong supplier involvement
– Some parts realise safety-critical functionality

The research problem is “What are the critical interactions for a team doing agile
software development within a plan-driven project in this context, and how can
these interactions be facilitated?”

Applying Agile Development in Embedded Systems 35

3 Research Methodology

The research followed a process of Context and problem identification → Model
and method development → Method validation. Both the problem identification
and the validation were done through six qualitative case studies.

All cases were captured in a qualitative manner and analysed with an in-
terpretative approach[4]. The studies took advantage of the fact that the first
author was native[5] to VCC, and acted as a participant/observer. The main
data sources in case 1, 2 and 3 were interviews, either recorded and transcribed
or with notes taken during the interview.

The selection of interviewees in all cases was made as a purposive sample[6]
to ensure in cases 1 and 3 that all key developer roles were represented. In case 2
more than half of the architects at VCC participated in the interview study. An
overview of used data sources and the author role in each case is seen in Table 1.

Table 1. Case data and author involvement

Case Data sources Author role
1 Interviews with 20 developers + design documents Insider observer
2 Interviews with 6 architects + design documents +

personal notes
Participant / insider observer

3 Interviews with 6 key developers + design documents Insider observer
4 All project & design documents of both product owner

and Scrum team + personal notes
Participant / insider observer

5 Official meeting notes and presentations + personal
notes

Insider observer

6 Official meeting notes and presentations + personal
notes

Participant / insider observer

The main data source in case 4 was the complete project and design docu-
mentation contained in two project sites, augmented by the personal notes of
the first author, who was a stakeholder at the product owner side. In case 5 and
6 the data consists of process documentation, meeting notes and presentations
at VCC as well as the first author’s personal notes as a change agent.

The analysis of the data sources in cases 1-3 focused on identifying the context
of software development in mass-produced embedded systems. The analysis in
cases 4-6 focused on identifying a set of measures facilitating agile development in
this context and a model describing the types of interaction between agile teams
and the rest of the R&D organisation. The context model and the measures of
the method were derived largely following the theory described by Mintzberg[7].

4 Method for Introducing Agile Software Development
in Mass-Produced Embedded Systems

A typical development process for mass-produced embedded systems is to fol-
low a traditional stage-gate process, where the gates are driven by decisions and
investment in the manufacturing of the product, i.e. driven by the hardware.

36 U. Eklund and J. Bosch

Gate progression corresponds to software artefacts, e.g. user requirements, sys-
tem requirements, software architecture, component requirements, and software
implementation, i.e. a waterfall process even if the artefacts are updated as the
project progresses. Software requirements are the result from systems engineer-
ing work and are usually structured according to the hardware partitions if the
system consists of several micro-controllers. It is quite common to outsource part
of the software development to subcontractors, especially in the automotive do-
main, where most software is today subcontracted with a fixed price connected
to one product line or sold together with a specific hardware solution.

There are several different development methods that can be described as
agile, two of the most commonly used being XP[8] and Scrum[9]. Common for
all agile methods are that they share a set of values[10]. We distinguish agile
development from plan-driven or waterfall development through these values
and a set of practices which are method agnostic:

– Software is iteratively developed in time-boxed periods of 2-6 weeks
– The result after each iteration is running software
– The content to be implemented, and therefore the final product content, is

continuously decided in each iteration.

In order to accomplish agile development, a set of measures needs to be in place,
regardless of context and domain. Examples of domain-independent measures
include a product backlog, development team co-location and product owner
involvement[11]. In the remainder of this section, we present context-specific
measures required for mass-produced embedded systems.

The method for introducing agile software development consist of a model,
seen in Figure 1, defining interactions necessary for agile teams together with a

�����
��	
���

����������

����
�����
��	
���

����������

�
�
�
�

�����
������
���
��

����������	
����������	�����

������
��
���

�
�
���
�
�

���������������������������������	�����

�
�

�
�

�
���
!

������
��
���

Fig. 1. The context of software development of mass-produces systems and the inter-
actions between software development teams in general and agile teams in particular,
to the rest of the organisation

Applying Agile Development in Embedded Systems 37

set measures facilitating agile development in a context where the full product
cannot be agile. The interactions between the development of embedded soft-
ware and the entire product development can be classified as one of four cat-
egories; requirements, project gates, integration & validation, and delivery. The
interactions between software teams doing agile development and those doing
traditional development falls within the first three categories.

Based on the model a set of measures are prescribed, summarised in Table 2.
Each measure is either a prerequisite for agile development, e.g. must be defined
in the pre-game phase of Scrum, or an activity while doing the iterations, e.g. in
the game phase of Scrum. Each measure targets a specific interaction relevant
to the teams introducing agile development:

1. Interface to the rest of the organisation outside software development
2. Internal activity to the teams adopting agile development
3. Interface to the teams doing traditional software development.

Table 2. The measures of the four categories prescribed model

Phase Category Relationship Measure to implement

Prerequisites

Requirements Interface to the rest of
the organisation

P1: Dedicated product owner

Project gates
Interface to the rest of
the organisation

P2: Clear structure and goal of the pro-
cess improvement

Interface to the rest of
the organisation

P3: Involve the OEM project manager

Interface to the rest of
the organisation

P4: Connect agile roles to the rest of
the organisation with an acceptable gov-
ernance structure

Validation Internal activity P5: Align pulse between OEM and sub-
contractor

Internal
Internal activity P6: An established platform used by the

development team
Internal activity P7: Resource necessary agile roles
Internal activity P8: 1-to-1 mapping between OEM and

subcontractor’s development teams

Activity

Requirements
Interface to the rest of
the organisation

A1: Gradual growth of requirements

Interface to the rest of
the organisation

A2: Interact with existing tools

Internal activity A3: Quality attributes and architecture
in the product backlog

Project gates Interface to the rest of
the organisation

A4: Project reports

Validation

Interface to traditional
teams

A5: Product technology standards

Interface to the rest of
the organisation

A6: Fulfil quality assessments

Interface to the rest of
the organisation

A7: Meet product integration test sched-
ule

Interface to traditional
teams

A8: Definition of system anatomy

Interface to traditional
teams

A9: Interface definitions towards other
sub-systems

Internal
Internal activity A10: Focus on enthusiasts
Internal activity A11: Implement refactoring as continu-

ous activity

38 U. Eklund and J. Bosch

4.1 Requirements

This category encompasses how the software requirements implemented by the
agile team relate to the requirements of the finished product, they typically con-
tain both functional requirements experienced by the end-user, but also quality
attributes, such as testability. The model also includes the methods and tools
for capturing and transferring requirements in this category.

The measures prescribed to handle requirements, besides the common prac-
tices prescribed by the chosen agile approach, in the context of mass-produced
embedded systems are:

Prerequisite 1: A positive product owner who is responsible for prioritising
requirements, in a large project can be done by many different stakeholders
resulting in unclear directions. This addresses the context of manufacturing
focus in the product project and supports the agile value of Individuals and
Interactions over Processes and Tools[10].

Activity 1: Gaining acceptance for gradual growth and polishing of require-
ments instead of waterfall development of artefacts. This also addresses the
manufacturing focus and supports Responding to Change over Following a
Plan.

Activity 2: Interact with the common project tools used beyond the agile de-
velopment project teams. This also addresses the manufacturing focus.

Activity 3: Include quality attributes and architectural solutions in the product
backlog if they are not resolved in the pre-game/planning phase. This menas
that the architects must interact with the teams during the entire project
instead of defining an architecture description as a development prerequisite.

4.2 Product Project Gates

This category focuses on the interface between the software development team
and the full product project. This includes the static organisation of the project
including governance and reporting, as well as basic principles for driving and
measuring progress. The measures prescribed to agile team to operate within a
plan-driven project context are:

Prerequisite 2: Clear structure and goal of the process improvement to es-
tablish consensus about the process improvement and empower the change
agents. This addresses the manufacturing focus and supports the agile value
of Responding to Change.

Prerequisite 3: Involvement of the project manager at the OEM at e.g. sprint
demos to experience first hand the growth of implemented software. This
supports the agile value of Individuals and Interactions.

Prerequisite 4: Connect the practices and roles of the agile method (e.g. Scrum)
to existing roles and functions at the rest of the organisation with a gov-
ernance structure acceptable to the line and project organisation, e.g. clarify
where what type of decisions are taken by whom. This addresses the manu-
facturing focus and supports Individuals and Interactions.

Applying Agile Development in Embedded Systems 39

Activity 4: Include the product project’s demands for artefacts, milestones and
gates in the work products from the agile software development teams. This
addresses the manufacturing focus of the product project.

4.3 Validation

This category is concerned with the interface between agile software development
and the validation of the product as a whole. The category includes activities
necessary to integrate the various software and hardware parts to a whole, how
this whole is verified against the requirements and the validation of the full
product. The measures prescribed to agile team to successfully integrate with
the full product and support validation are:

Prerequisite 5: Align OEM pulse and subcontractor’s sprint intervals if de-
velopment is outsourced to maintain development flow. This addresses the
context of supplier involvement and supports the agile value of Customer
Collaboration.

Activity 5: Verify and validate adherence to technical standards required by
the product architecture platform, such as communication protocols, log-
ging, power management and similar services. This addresses software and
hardware integration and supports Working Software.

Activity 6: Fulfilment of required quality assessment of software, e.g. automot-
ive SPICE[12]. This addresses the context of safety-critical functionality and
supports Working Software.

Activity 7: Generate deliverables in time to scheduled product testing, e.g.
HIL testing and integration testing on the complete product. This addresses
the manufacturing focus and supports Working Software.

Activity 8: Define and update a system anatomy [13] to understand technical
dependencies between what is implemented in each sprint. This addresses
software and hardware integration and supports Working Software.

Activity 9: Define interfaces towards other sub-systems to alleviate the neces-
sity of synchronised development of individual backlog items. This addresses
the manufacturing focus and supports Working Software.

4.4 Software Delivery

This is category describes the principles for how the finished software is delivered
to the end-user. In mass-produced embedded systems the software and the hard-
ware is delivered as a single product and this is the only possibility if the software
is stored in ROM. But other principles, such as continuous delivery or software
updates, are conceivable and increasingly considered in the embedded systems
industry. As the delivery of software is not changed, despite the adoption of agile
software development internal to the organization, there are no specific measures
to adopt. It is beyond the scope of this paper to fully explore the possibilities of
post-deployment updates of software, but is left to be explored in future work.

40 U. Eklund and J. Bosch

4.5 Internal Activities

These are the measures that have no direct relationship to other software devel-
opment teams or the rest of the organisation, and are thus up to the agile teams.
However, in our experience, these are important for successful implementation
of agile development in the context of mass-produced embedded systems.

Prerequisite 6: Guarantee the availability of an established platform used by
the development team, including a software platform, development infra-
structure and an integration environment. This addresses the context of
software and hardware integration and supports the agile value of Working
Software.

Prerequisite 7: Resource necessary roles to facilitate the development team(s),
e.g. Scrum master, Product owner and Scrum coaches as well as roles re-
quired by mechanics, hardware and systems development, such as integration
leader. This supports the agile value of Individuals and Interactions.

Prerequisite 8: Establish a direct, e.g. 1-to-1, mapping between OEM feature
definition and integration testing teams and the subcontractor’s development
teams if programming is outsourced. This addresses the context of supplier
involvement supports the agile value of Individuals and Interactions.

Activity 10: Introduce agile development only where the organisation is en-
thusiastic and make use of any previous experiences as product owners and
developers. This supports the agile value of Individuals and Interactions.

Activity 11: Implement frequent refactoring and “clean-as-you-go” as an activ-
ity, even though it does not provide direct customer value. This addresses
the manufacturing focus and supports the value of Working Software. In
plan-driven projects these activities are either defined up-front or commonly
“hidden” as feature development in sourcing agreements.

5 Method Validation

The method for introducing agile software development in mass-produced em-
bedded systems was used in three projects where agile software development was
used at VCC. Case 4 has concluded, while case 5 and 6 is still going on at the
time this paper was written.

5.1 Case 4: Agile Development of an Infotainment Sub-system

Case description: Development project of a prototype to establish a proof-of-
concept for some radically different development strategies compared to case 3 for
a similar system, an infotainment system based on an open platform, Android.
The project was executed in an industrial setting, but the resulting system was
not intended to go into mass production and be sold to customers.

The primary goal of the project was to establish whether it was possible
to do feature development with extremely short lead-times from decision to
implementation compared to present industrial projects, e.g. case 3 above, from

Applying Agile Development in Embedded Systems 41

a nominal lead-time of 1-3 years to 4-12 weeks. The finished system was required
to be open to 3rd party feature development, i.e. development not sourced or
ordered by VCC, and as such form the basis for a software ecosystem around
Volvo infotainment systems.

Agile context: The short lead-times were accomplished by a small development
team using Scrum from EIS by Semcon1, which had a supplier relationship to
VCC as product owner. Working software was continuously validated in “real”
environments, i.e. the infotainment system was installed in both a driving sim-
ulator and real test cars and users evaluated the system during the project.

All project information was centrally managed with Trac2 with full access
for both the team and the stakeholders supporting the product owner. The two
sites stored the product backlog, design documentation, progress reports, sprint
backlogs and burndown charts. The openness of the system was enabled by
an open architecture based on Android with separation of feature development
from platform and hardware development, this also enabled the ability of open
innovation of features.

Goal of the case study: The goal of the case study was to evaluate alternat-
ive, i.e. agile, ways of working compared to “common practice” in the business
domain.

Method relevance: The project was not connected to the release of new car
models and therefore had no demands of gate reports or a large governance
structure. Instead the governance was provided of a team of developers at VCC
supporting the appointed product owner. The members of this team had mostly
more than ten years of automotive experience, and met in bi-weekly half-day
meetings. One major difference for the Scrum team compared to an industrial
vehicle project was the smaller effort spent on testing and quality assessments,
which partly explains the significant decrease in lead-time. The project used
prerequisites 1, 2 and 4-8, and activities 1, 2, and 9-11 of the method.

5.2 Case 5: Climate Control Software

Case description: The studied project develops climate control software in-
house at VCC, where it was previously outsourced.

Agile context: The development team applies most of Scrum practices since
this is a natural evolution of present team practices. The product owner resides at
the interior department, in cooperation with one person from product planning
at VCC. The development team of nine persons and the Scrum master are part of
the EESE department with extensive domain expertise of climate control. Most
of the algorithms are developed in Simulink from which C code is generated.

1 A local consultancy firm with thorough automotive software experience.
2 http://trac.edgewall.org/

http://trac.edgewall.org/

42 U. Eklund and J. Bosch

The software will run on a hardware platform with basic software delivered by
the HVAC3 hardware supplier. Both the control software and the standardised
basic software are based on the AUTOSAR software architecture[14] and the
interfaces to other systems, including HMI, are stable.

Goal of the case study: The study was performed as validation of the model
in Section 4 and to provide feedback to software process improvements at VCC.

Method relevance: It was to difficult to find a willing person to act as a
product owner towards the programming team, one can speculate if this is be-
cause the team was perceived as having better domain expertise than a pro-
spective product owner from another department. There was little controversy
in redefining existing requirements into a format suitable for a backlog. These
requirements will also be stored in the engineering database at VCC when con-
sidered stable.

The governance structure was simple with few different concerned stakehold-
ers, but still more complex than case 4. The team adjusted their sprint schedule
to suit integration events of the complete electrical system. A set of project re-
port templates was developed to fulfil the needs of the project management with
the intention of report them after each sprint. An agile coach was involved the
first months to get the team up to speed as quickly as possible. The project uses
most of the measures prescribed by the method, i.e. prerequisites 1, 2, 4, 6, and
7 and activities 1-7 and 9-11.

5.3 Case 6: Next Generation Infotainment System

Case description: Development of next generation infotainment system at
VCC, to be included in future car models. The system scope is similar to case
3 above, but with a major increase in feature content, especially for connected
services.

Agile context: The concerned department at the OEM has already taken
some steps towards agile methods compared to case 3: Software requirements
are defined on a feature level rather than on a design or implementation level.
Cross-functional development teams organised around features are responsible
for defining, integrating and validating features in the vehicle. Development is
made in 6 week increments with shorter turn-around time compared to the gate
timing of the overall car project.

Goal of the case study: The study was performed as validation of the model
in Section 4 and to provide feedback to software process improvements at VCC.

Method relevance: The product owner role is held by a duo, one from the
department of product planning at VCC, the other from the EESE department.

3 HVAC = Heating, Ventilating, and Air Conditioning.

Applying Agile Development in Embedded Systems 43

In contrast to case 5, the governance structure guiding sprint planning is very
complex but has a change control board as final focal point. We believe this is
caused by the infotainment system realises much of the HMI and connectivity
services, which means there are numerous concerned stakeholders interested in
brand competitiveness. It is implied that the product owner will decide if red
tape in the board risk postponing a sprint. The project report template is still
not universally accepted by all stakeholders.

The agreement with the subcontractor was on iterations of six weeks. The ten
feature teams have been organised to match the subcontractor’s teams, but the
sprints have not started at the time of writing. The initial sprint planning and
goals were aligned with the test vehicle builds.

A system anatomy was defined by a group of key developers at VCC and
will continuously be updated together with the subcontractor. The interfaces to
other subsystems were identified with the help of the architecture group at the
EESE department. The project used all Prerequisites and Activities prescribed
by the method.

5.4 Method Use in the Three Cases

The method was developed to fulfil a practical need to systematically identify
and implement necessary measures for successful agile development since no com-
parable method was found in published literature. The issues addressed in cases
4-6 are not of how a development team adapts to agile software development,
but how such a team operates in a context of a much larger project develop-
ing a product with embedded software. To facilitate this, the method defines 19
measures concerning interaction addition to the practices prescribed by an agile
method such as XP or Scrum.

Case 4, 5 and 6 were executed in roughly that chronological order, so it was
natural to apply the measures of prescriptions in increments. The measures used
in case 4 focused on how an OEM can act as a product owner towards a sub-
contractor using Scrum. Case 5 develops software in-house of the OEM and
therefore some of the measures are not relevant. Using Scrum in this case was
neither controversial nor perilous and fitted well with the overall strategy of in-
sourcing software. Case 6 wants to improved ways of working compared to the
experiences from case 3. The measures used are there both to support the sub-
contractor using iterative development and to achieve a more lucid management
of project compared to case 3.

In all cases the proposed measures addressed real concerns voiced by various
stakeholder at VCC. In case 4 and 5 the measures seems to satisfy the stakehold-
ers, while in case 6 there is still discussions suggesting that some stakeholders
are still not comfortable with an agile approach to software development.

6 Related Work

The context described in Section 2.4 is supported by literature, for example
Ebert & Jones[15] mentions factors contributing to the complexity in their

44 U. Eklund and J. Bosch

survey of the present state of embedded software development: “combined soft-
ware/hardware systems equipped with distributed software, computers, sensors,
and actuators” which directly corresponds to the integration aspect. Ronkainen
& Abrahamsson[16] emphasise that embedded systems are characterised by the
concurrent co-design of hardware and software, same as seen in Section 2.4. Man-
hart & Schneider[17] describes agile development of software in buses at Daimler-
Chrysler. They mention for example that “equipment, functions, or parameter
sets are implemented by integrating different proportions of third party- and
OEM manufactured components” indicating the supplier involvement.

The method above addresses issues also found in literature. Boehm &
Turner[18] describes challenges of introducing agile software development in or-
ganisations using traditional or plan-driven software development. They identify
three areas of conflicts when trying to introduce agile development in tradi-
tional organisations; “development process conflicts, business process conflicts,
and people conflicts”. Of these the method in Section 4 focuses on the first and
the last and provides measures to handle those conflicts. Kruchten[19] explores
the context of agile development, providing an analysis framework, but has no
explicit prescription on how to introduce agile development outside what he calls
“the agile sweet-spot”. Turk et al.[20] identifies a set of six limitations with agile
development. Four of them are addressed by the method described in this paper;
subcontracting, building reusable artefacts, development involving large teams
and development of large complex software.

The method above provides guidance on how to implement agile development
on the team level where the organisation at large cannot adopt agile practices
while Lanti[21] describes how to scale agile practices, specifically program man-
agement and product backlog administration, in large organisations with several
development teams contributing to the final product. Savolainen et al.[22] list
three requirement engineering practices required when implementing agile de-
velopment of embedded systems; highly skilled people especially in requirements
engineering, understanding the type of the system, and preserving existing key
practices when making the transformation. The method here complements their
work by also including measures beyond requirements.

7 Summary

The method presented in the paper was developed as an answer to “What are the
critical interactions for a team doing agile software development within a plan-
driven project in the context of mass-produced embedded systems, and how can
these interactions be facilitated?” This context is defined by four characteristics;
deep integration between hardware and software, strong focus on manufacturing
aspects (e.g. by process gates), strong supplier involvement, and some parts
realise safety-critical functionality.

The method consists of a context model describing four categories of inter-
action between the development of embedded software and the entire produce
development together with a set of measures facilitating these interactions when

Applying Agile Development in Embedded Systems 45

agile development is introduced in a team. The identified interaction categories
are requirements, project gates, integration & validation and delivery.

The prescribed set of measures in the method are of two kinds, the first being
prerequisites for successful implementation of agile software development in or-
ganisations where by necessity the full R&D process cannot be agile. The second
being a set of activities necessary for the teams doing agile development to both
successfully interact with the non-agile parts of the organisation and internal
activities to the teams. The research problem was found both in empirical evid-
ence from three cases at VCC as well as in published literature. The method was
also validated through one finished and two on-going cases of agile development
in the context above.

The contributions of this paper are twofold: From an industrial perspective
it provides a set of measures on how to implement agile software development
outside the common domain for agile, in this case for mass-produced products
with embedded software governed by a stage-gate process for the hardware. From
a research perspective the paper provides a method with a context model for
introducing agile in domains where the product as a whole is driven by a plan-
driven process. Finally the paper provided a rich insight into the challenges for
automotive software development through a number of cases.

Acknowledgements. This work has been financially supported by the Swedish
Agency for Innovation Systems (VINNOVA) and Volvo Car Corporation within
the partnership for Strategic Vehicle Research and Innovation (FFI).

The authors would like to thank developers at Volvo Cars and EIS by Semcon
for participating in valuable discussions.

References

1. Goodman, D., Elbaz, M.: “It’s not the pants, it’s the people in the pants” learnings
from the gap agile transformation - what worked, how we did it, and what still
puzzles us. In: Proceedings of the Agile Conference, pp. 112–115. IEEE (2008)

2. Chung, M., Drummond, B.: Agile at Yahoo! from the trenches. In: Proceedings of
the Agile Conference, pp. 113–118. IEEE (2009)

3. Salo, O., Abrahamsson, P.: Agile methods in european embedded software de-
velopment organisations: A survey on the actual use and usefulness of extreme
programming and scrum. IET Software 2(1), 58–64 (2008)

4. Walsham, G.: Interpretive case studies in IS research: nature and method.
European Journal of Information Systems 4, 74–81 (1995)

5. Brannick, T., Coghlan, D.: In defense of being “Native”, the case for insider aca-
demic research. Organizational Research Methods 10(1), 59–74 (2007)

6. Robson, C.: Real World Research: A Resource for Social Scientists and
Practitioner-Researchers, 2nd edn. Blackwell (2002)

7. Mintzberg, H.: Developing theory about the development of theory. In: Great Minds
in Management: The Process of Theory Development. Oxford Handbook of Man-
agement Theory, pp. 355–372. Oxford University Press (2005)

46 U. Eklund and J. Bosch

8. Beck, K.: Extreme Programming: A Humanistic Discipline of Software Devel-
opment. In: Astesiano, E. (ed.) ETAPS/FASE 1998. LNCS, vol. 1382, pp. 1–6.
Springer, Heidelberg (1998)

9. Schwaber, K.: Scrum development process. In: Proceedings of the ACM Conference
on Object Oriented Programming Systems, Languages, and Applications, pp. 117–
134 (1995)

10. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,
R.C., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for agile
software development (2001)

11. Kniberg, H.: Scrum and XP from the Trenches. Lulu.com (2007)
12. McCaffery, F., Pikkarainen, M., Richardson, I.: Ahaa –agile, hybrid assessment

method for automotive, safety critical smes. In: Proceedings of the International
Conference on Software Engineering, pp. 551–560. IEEE (2008)

13. Taxén, L. (ed.): The system anatomy - Enabling agile project management, 1st
edn. Studentlitteratur (2011)

14. Fürst, S., Mössinger, J., Bunzel, S., Weber, T., Kirschke-Biller, F., Heitkämper,
P., Kinkelin, G., Nishikawa, K., Lange, K.: AUTOSAR - a worldwide standard
is on the road. In: International VDI Congress Electronic Systems for Vehicles,
Baden-Baden, Germany (2009)

15. Ebert, C., Jones, C.: Embedded software: Facts, figures, and future. Com-
puter 42(4), 42–52 (2009)

16. Ronkainen, J., Abrahamsson, P.: Software Development Under Stringent Hardware
Constraints: Do Agile Methods Have A Chance? In: Marchesi, M., Succi, G. (eds.)
XP 2003. LNCS, vol. 2675, pp. 73–79. Springer, Heidelberg (2003)

17. Manhart, P., Schneider, K.: Breaking the ice for agile development of embedded
software: An industry experience report. In: Proceedings of International Confer-
ence on Software Engineering, pp. 378–386. IEEE, Washington, DC (2004)

18. Boehm, B., Turner, R.: Management challenges to implementing agile processes in
traditional development organizations. IEEE Software 22(5), 30–39 (2005)

19. Kruchten, P.: Contextualizing agile software development. Journal of Software
Maintenance and Evolution: Research and Practice (2011)

20. Turk, D., France, R., Rumpe, B.: Limitations of agile software processes. Systems
Engineering 43, 43–46 (2002)

21. Laanti, M.: Implementing program model with agile principles in a large soft-
ware development organization. In: Proceedings of the International Conference
on Computer Software and Applications, pp. 1383–1391. IEEE, Turku (2008)

22. Savolainen, J., Kuusela, J., Vilavaara, A.: Transition to agile development - re-
discovery of important requirements engineering practices. In: Proceedings of the
Requirements Engineering Conference, pp. 289–294. IEEE (2010)

Understanding Team Dynamics

in Distributed Agile Software Development

Siva Dorairaj, James Noble, and Petra Malik

School of Engineering and Computer Science,
Victoria University of Wellington,

Wellington, New Zealand
{siva.dorairaj,james.noble,petra.malik}@ecs.vuw.ac.nz

Abstract. Team dynamics are patterns of interaction among team
members that determine the performance of the team. Success of Ag-
ile software development depends on team interaction. Team interactions
are, however, affected in distributed teams. Through a Grounded Theory
study that involved 40 Agile practitioners from 24 different software com-
panies in the USA, India, and Australia, we investigate the key concerns
of distributed Agile teams. We found Agile teams depend significantly
on team interaction, and adopt six strategies that promote effective team
interaction in distributed software development.

Keywords: Team Dynamics, Team Interaction, Agile Methods,
Grounded Theory, Distributed Teams.

1 Introduction

Team dynamics are patterns of interaction among team members that determine
the performance of a software development team [1]. Several studies assert that
team dynamics are important characteristics of high performance teams [2,3].
Effective team interaction provides avenues for team members to state ideas and
opinions without barriers, listen actively to understand the concerns of other
team members, and provide timely suggestions to the problems faced by the
team [4,5]. Success of Agile software development depends significantly on team
interaction [6,7,8].

Agile teams in distributed software development interact over time and space
through technology-mediated communication such as telephone and e-mail [2,9].
Non-verbal communication such as facial expression and hand gestures that are
often missing in technology-mediated communication, decreases the awareness
of team member actions [2]. Team interactions are affected in distributed Agile
teams [2,3,10]. This raises a critical question: How do Agile teams promote team
interaction in distributed software development? Through a Grounded Theory
study that involved 40 Agile practitioners from 24 different software companies
in the USA, India, and Australia, we found six strategies that promote effective
team interaction in distributed Agile teams: ‘one team’ mindset, personal touch,
open communication, team collocation, team ambassadors, and coach travels.

C. Wohlin (Ed.): XP 2012, LNBIP 111, pp. 47–61, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

48 S. Dorairaj, J. Noble, and P. Malik

2 Research Method

2.1 Grounded Theory

Grounded Theory (GT) is a systematic research method that emphasises the
generation of theory derived from systematic and rigorous analysis of data. GT
was originally developed by Barney G. Glaser and Anslem L. Strauss [11]. We
chose GT as our research method for two main reasons. Firstly, GT is suitable
to be used in areas that are under-explored or where a new perspective might
be beneficial, and the literature on distributed Agile software development, par-
ticularly on team dynamics in distributed teams, is still scarce [6,12]. Secondly,
GT allows researchers to study social interactions and the behaviour of people
in the context of solving problems, and Agile methods focus on people and their
interactions in software development teams [13]. Notably, GT is increasingly be-
ing used successfully to study the social nature of Agile teams [14,15,16]. Using
Glaser’s guidelines, we commenced our research with a general area of interest
(i.e distributed Agile software development) because beginning a GT study with
specific research questions can lead to preconceived ideas or hypotheses of the
research phenomenon [17,18]. Glaser [17,19] asserts that problem and its key
concerns will emerge in the initial stages of data analysis – and it did.

2.2 Data Collection

Data collection in GT is guided through theoretical sampling whereby researchers
iteratively collect and analyze their data, and decide what data to collect next
and where to find the data [18,20]. A GT study requires the theoretical sampling
to be continued until theoretical saturation [11] is reached – that is when no more
new concepts or categories emerge from the data, and further data collection
would be a waste of time.

We collected data through interviewing Agile practitioners. We started out
data collection in the USA where several Agile practitioners had agreed to par-
ticipate in our study. We conducted face-to-face, one-on-one, semi-structured
interviews with our participants. We prepared a set of questions for the initial
interviews to develop a smooth discussion with the participants. The interview
questions focused on the challenges that teams face in distributed Agile projects,
and the strategies adopted to overcome them. The interviews lasted for at least
an hour, and were conducted at a mutually agreed location. Interviews were
voice-recorded with consent from the participants. Voice recording the inter-
views helped us to concentrate on the conversation and understand participant’s
main concerns in distributed Agile projects. The ongoing interview and analysis
guided the evolution of interview questions and choice of future participants.
Over the past two years, the primary researcher has travelled twice to the USA,
three times to India and once to Australia, for the purpose of interviewing par-
ticipants for this study until the theoretical saturation has been reached.

Team Dynamics in Distributed Agile 49

Table 1. Participant and Project Details. (Agile Position: Scrum Master (SM), Agile
Coach (AC), Developer (DEV), Business Analyst (BA), Quality Analyst (QA), Senior
Management (MGT)).

Participant Agile Project Agile Team Project Sprint
(code) Role Distribution Method Size Duration (weeks)

(months)

P1 DEV USA-India Scrum 8 to 10 10 2
P2 AC USA-India Scrum & XP 12 to 14 12 2
P3 SM USA-Western Europe-India Scrum 10 8 3
P4 AC USA-China Scrum & XP 10 8 2
P5 AC USA-India Scrum & XP 8 12 2 to 3
P6 DEV USA-UK Scrum & XP 20 to 22 8 2
P7 AC USA-Argentina-India Scrum & XP 18 6 2
P8 DEV USA-Australia-India Scrum & XP 9 to 10 8 2
P9 DEV Western Europe-Brazil Scrum & Lean 14 24 2 to 3
P10 SM USA-Argentina-India Scrum 10 to 12 8 3
P11 SM USA-Middle East-India Scrum & XP 13 10 2
P12 DEV USA-India Scrum & XP 12 18 2
P13 SM USA-India Scrum & XP 17 to 20 5 2
P14 DEV USA-India Scrum & XP 16 to 17 36 2
P15 QA USA-India Scrum & XP 16 18 2
P16 SM USA-India Scrum & XP 16 18 2
P17 DEV USA-India Scrum & XP 16 18 2
P18 BA UK-India Scrum & XP 8 12 2
P19 DEV USA-India Scrum 8 to 10 10 3
P20 MGT Australia-India Scrum & XP 9 to 12 12 2 to 3
P21 SM USA-Australia Scrum 15 9 2
P22 SM Australia-India Scrum & XP 9 to 12 12 2 to 3
P23 QA Japan-India-China Scrum 7 to 8 4 2
P24 AC Western Europe-India Scrum & XP 9 5 2
P25 SM USA-India Scrum & XP 24 6 3
P26 AC USA-India Scrum & XP 16 (3) ongoing 3
P27 SM USA-Brazil Scrum & XP 30 6 2
P28 MGT USA-India Scrum 20 18 3
P29 SM USA-India Scrum & XP 14 10 2
P30 AC Western Europe-India Scrum & XP 8 to 10 (5) ongoing 2 to 3
P31 AC UK-India Scrum & XP 15 to 20 (7) ongoing 3
P32 MGT UK-South Africa Scrum & XP 12 18 2
P33 AC Australia-Eastern Europe-India Scrum & XP 50 24 3
P34 AC USA-India Scrum & XP 6 to 8 10 2
P35 AC USA-India Scrum & XP 8 18 3
P36 QA Canada-India Scrum & XP 10 to 15 18 2
P37 DEV Western Europe-India Scrum & XP 16 4 2
P38 BA USA-India Scrum & XP 28 (2) ongoing 2
P39 AC USA-India Scrum & XP 22 to 25 6 to 7 2
P40 DEV Australia-India Scrum & XP 7 6 1

2.3 Participant and Project Details

We interviewed 40 Agile practitioners from 24 different software organisations in
the USA, India, and Australia. Participants adopted Agile methods, primarily
Scrum and XP, in their distributed software development projects. We inter-
viewed participants from a range of different roles within the distributed Agile
projects: Scrum Masters, Agile Coaches, Developers, Quality Analysts, Busi-
ness Analysts, and Senior Management (e.g. Vice President, Human Resource
Manager, Director of Technology).

50 S. Dorairaj, J. Noble, and P. Malik

Table 1 shows participant and project details. Projects were distributed be-
tween 2 or 3 countries, iteration varied from 2 to 5 weeks, and project duration
varied from 6 to 24 months though some projects were still ongoing when we
interviewed the participants. Projects often started with a small team size of 6
to 12 members, but some teams had scaled through up to 50 members to acco-
modate the increasing complexity of their projects. Due to privacy and ethical
consideration, we will only identify our participants using the codes P1 to P40.

2.4 Data Analysis

We transcribed the interviews, and used open coding to analyse the interview
transcripts [18]. Open coding breaks down, examines, compares, conceptualises,
and categorises the data [20]. We assigned a code or a summary phrase to each
key point. Using GT’s constant comparison method [21], we constantly compared
each code with the codes from the same interview, and those from other inter-
views. The codes that are related to a common theme were grouped together to
produce a second level of abstraction called a concept.

As we continuously compared codes, many fresh concepts emerged. These
concepts were themselves analysed using constant comparison method to pro-
duce a third level of abstraction called a category. Several categories emerged
from analysis of the interviews: trust, communication, cultural differences and
team interaction. We wrote-up memos on the ideas about the codes, concepts
and categories, and their inter-relationships with one another. We sorted the
collection of the theoretical memos and used them to understand the research
phenomenon. We intend to generate a substantive theory that explicates the
research phenomenon using an emergent theoretical code [20]. Since the codes,
concepts, and category emerge directly from the data, our findings are grounded
within the context of the data. We have presented several findings in different pa-
pers [22,23,24]. In this paper we describe how distributed Agile teams build team
interaction. Figure 1 shows the concepts ‘One Team’ Mindset, Personal Touch,
Open Communication, Team Collocation, Team Ambassadors, and Coach Travels
that gave rise to the category Building Team Interaction.

Fig. 1. Emergence of category Building Team Interaction from concepts

Team Dynamics in Distributed Agile 51

3 Results

In this section we present the strategies that promote team interaction in dis-
tributed Agile teams: the category Building Team Interaction and its underlying
concepts. We have selected quotations from our interviews to illustrate the emer-
gent concepts.

3.1 ‘One Team’ Mindset

In Agile software development, team members need to interact frequently with
the entire team during meetings, pair-programming, or discussions throughout
the project:

“Working on a Agile project requires team members to work collabora-
tively with other people, talking and interacting whether it’s in meetings,
pairing, [or] talking to people one on one. The social interaction is so
important.” —P20, Management Team.

Crucially, all team members from every location participate in a ‘daily stand-up
meetings’ using technology-mediated communication. Teams prefer video confer-
encing over telephone conferencing during daily meetings to increase interaction
among the team members:

“Daily stand-up meetings are mandatory for all team members. We often
do Skype video calls. We feel that if we see team members face-to-face,
we’ll have better interaction with them.” —P36, Quality Analyst.

Teams understand that the daily standup meetings are important to the entire
team, and therefore joint standup meetings are scheduled so that members from
all locations are able to participate in the meeting:

“When we have a daily standup meeting, we talk about what everyone
was doing, we get to know about who is doing what, what are the issues,
what happened at the end of our day, and what we need to do for today.
We definitely have a joint standup meeting [though] over different time
zones, it can be difficult. ” —P11, Scrum Master.

When the team members are separated across several time zones, the daily
stand-up meetings with the entire team causes difficulties for team members.
Often, team members from one location have to stay back till late at night,
while team members from another location have to come in to work very early
in the morning:

“We have some people, with abnormal working hours, who come after
lunch and work till late night.” —P4, Agile Coach.

Despite the difficulties interacting with one another, distributed teams try to
keep a ‘one team’ mindset to foster their interaction:

52 S. Dorairaj, J. Noble, and P. Malik

“We are working as a team in Agile. The team knows that they are not
separated just because they are in another building, or another location
with some time zone difference. It’s only one team. ” —P24, Agile Coach.

In this ‘one team’ mindset, project team members and customer understand that
they all belong to one single team despite working from different locations:

“We have absolutely one team [but] we are working in different locations.
And, the client is definitely part of the team.” —P16, Scrum Master.

This ‘one team’ mindset is the fundamental factor that fosters effective interac-
tion between team members and improve team performance:

“We have a one whole team mindset. The team is distributed but it is
one whole team. Everyone works as one team, and there is one team
performance.” —P7, Agile Coach.

Participants P1, P3, P7, P16, P18, P20-P29, P32, P33, and P35-P38 explicitly
discussed the ‘one team’ mindset where the members of the distributed team
strive to interact and perform as one team.

3.2 Personal Touch

Distributed team members often have difficulties getting to know each other, or
even just to ‘put a face to the name’:

“We were working together with Sebastian but we didn’t know who is
Sebastian. We have not even seen [his] face. It is hard to get the feeling
of teamness when you don’t know whom you are working with.” —P9,
Developer.

Teams are encouraged to keep photographs of all the members on a wall to get
a ‘team presence’ that helps the members to recognise one another:

“It’s very important to take pictures of [team member] and put them up
on a card wall so that these people actually exists and become real in
teams.” —P2, Agile Coach.

Teams also create online repositories or Wikis, where the photographs of the
entire team and description of each member, are shared with the team. The
Wiki gives a personal touch to the team members, and fosters more meaningful
interaction:

“We have a “team place” or Wiki where we upload the photographs of
the team members, and share some moments of [our] personal life which
will help us move forward in our professional interaction.” —P24, Agile
Coach.

Some teams allocate a short duration of time before daily meetings for team
members to talk about personal matters, or to have some fun conversation:

Team Dynamics in Distributed Agile 53

“We need to have some personal time with other team members. We have
15 minutes before the daily meeting to speak freely to each other in the
team. ” —P24, Agile Coach.

Teams exhibit strong dynamics when members are interacting without barriers.
This kind of frequent interaction promotes team building:

“... the first 15 minutes [of daily meetings] was open time, and we could
talk about anything we want. And, that’s when we started seeing a very
strong team building.” —P1, Developer.

Knowing members personally promotes better understanding in the team where
team members from all the locations are better able to understand the difficulties
faced by other members:

“Team members understand and value the other team member’s life, had
the rapport with all team members, [and] team members [were] well jelled
with each other.”—P24, Agile Coach.

Teams need to participate in daily standup and retrospective meetings. The
understanding established between team members allows them to ‘share the
pain’ when working across different time zones:

“We start rotating the standup meeting [that is] for one month it is going
to be at night [in India], and the next month it will be in the morning.”
—P18, Business Analyst.

The interaction of the team improves significantly when team members know
each other. The team should have seen all the members of the team, talked to
them, and possibly worked with them in close proximity to develop strong team
dynamics.

3.3 Open Communication

Participants encourage open communication in distributed teams — team mem-
bers keep direct and honest communication within project team, and also with
customers and management:

“Communication needs to be kept as open as possible, and there should
not be any hierarchy so that [team members] can communicate directly
with customers and management.” —P29, Scrum Master.

Open communication improves team interaction, and encourages team members
to be involved in decision making for the project:

“The project team believed in communicating very openly and transpar-
ently. So, all decisions were made in consultation with the entire project
team.” —P38, Scrum Master.

54 S. Dorairaj, J. Noble, and P. Malik

Participants realised that frequent open communication fosters good understand-
ing between project team and management:

“The more we have open conversations, [the] better we understand the
management, [and] then we are able to suggest better alternatives to
them.” —P17, Developer.

As a result of a good understanding between project team and management,
participants were able to communicate directly with the management to make
a request for the team:

“[When] I had to negotiate with the management, it was not a challenging
thing [because] management well understood us. So it became easier for
them to give [the request].” —P34, Agile Coach.

Some team members, however, face difficulties in engaging courageously in open
communication with other members from different locations and the customers.
Western participants described that their Indian counterparts unrealisticly agree
to every request from the customers because it is typically not in the Indian
culture to say ’No’ to elders in a family, or superiors in an organisation:

“The Indians don’t say ‘No’ to anything. That’s one of the major prob-
lems faced by all the western customers. This is because of the culture
[that] you should always obey the seniors.” —P33, Agile Coach.

In order to address this concern, some teams engage in coaching to grow courage
for team members to speak up, and improve interaction in the team:

“Here in India, trying to grow the courage for people to speak out and
ask for what they need and be honest about what they can sustain, is
something that I’m coaching a lot.” —P31, Agile Coach.

Participants recognise that Agile methods value courage and open communi-
cation. Team members should be honest and transparent in all the levels of
interactions, especially with customers:

“Most of the time, the members [in India] have a tendency to follow
[requests] from the onsite members, but the onsite members are often
more interested to know what other options are available. Agile taught
them courage in speaking openly with the clients [sic].” —P24, Agile
Coach.

Teams members should understand that courage is the foundation of open and
honest communication — both within the project team, and with customers and
management — and should strive to grow courage to facilitate communication.

Team Dynamics in Distributed Agile 55

3.4 Team Collocation

Agile methods prefer collocated teams to allow frequent interaction between the
team members. While a distributed development team is not (by definition) col-
located, many projects choose to collocate all the team members at the beginning
of a project:

“At the beginning of the [distributed] project, it’s important for the entire
team and the customer to be collocated for the [first] few weeks of the
project. That’s really important.” —P20, Management Team.

Some teams collocate at the customer location for the first iteration to allow
frequent interaction between the project team and customer:

“The idea was to start all together as a whole team here [at customer
location] for the first iteration in order to have direct interaction with
customer.” —P7, Agile Coach.

Collocating for the first iteration, or for a couple of weeks, helps the team to
establish trust and build team relationships. When the members are sent back
to their distributed locations, the trust and team relationships that have been
developed during the collocation help them to interact effectively:

“I would collocate a team for the first few weeks of the project [until]
the team is able to build trust, build relationships, [and] build shared un-
derstanding. It is much easier to have conversations with team members
on the phone if you’ve met them previously in person.” —P22, Scrum
Master.

There are some teams that rotate the location for team collocation between the
customer location, and project team locations for a specified time duration:

“We prefer to collocate. The first set of collocation involved the delivery
team [from India]. Then the second time is the team from the USA, the
customers and all the stakeholders came down here [to India] and worked
from the same location for a month.” —P18, Business Analyst.

Team collocation develops strong team relationships that increase team perfor-
mance when team members get distributed in different locations:

“When we started, we moved everyone to client site, [and] worked col-
located. When we moved back to [our] site, there was a very natural
bonding between the entire team, and we were doing an excellent job.”
—P35, Agile Coach.

Teams that are not able to collocate all the members for the first iteration
would at the least send the senior members to initiate team interaction between
members in all the locations:

56 S. Dorairaj, J. Noble, and P. Malik

“Some of the senior members in the team go there [to other location] just
to have a feel about the team members there.” —P24, Agile Coach.

When team members travel to different locations, some team members were
willing to spend personal time to get to know others and build strong team
relationships:

“Apart from work, we spend a lot of good time with them. Some were
keen to see our village life [in India] and come to our home.” —P26,
Agile Coach.

Some teams organise team building activities to accommodate the team mem-
bers whom travel from other location. Team building activities encourage team
members to interact comfortably, motivate them to develop good teamwork, and
inspire them to work effectively as an Agile team.

“If other team members from onsite [are] coming here, we plan our team
building activities so that we do that activities in that part of the month so
that we can create a rapport with the onsite team.” —P24, Agile Coach.

Realising the benefits of team collocation, some teams go so far as to move to
the client’s location for the entirety of short projects:

“We may not do the work offshore for the projects running for a smaller
duration. We do it at the onsite [customer location] itself. We finish up
the project from the client’s site, and then come back [to our location].”
—P36, Quality Analyst.

Overall, participants found that team collocation, even for a short duration,
facilitates team interaction that develops good teamwork and establishes trust
across the whole team, supporting the ‘one team’ mindset that is crucial in a
distributed Agile development project.

3.5 Team Ambassadors

Rather than collocating the whole team, individual team members can travel
to the other team locations, to interact closely with the team members there.
These team members, referred to as ‘team ambassadors’, travel solely to fos-
ter interpersonal relationships within the team. Team Ambassadors do not act
as a managers or liasions between separate teams — the ’one team’ mindset
helps ensure team coordination and decision making is shared across the whole
distributed team, primarily via the daily distributed meetings.

Participants describe that the main responsibility of the team ambassadors
are to understand the team members in the location to which they have been
sent:

“We wanted mainly to understand the team. When I went there, I started
observing people and their way of interacting with each other. We started
understanding each other, and started to work as a team.” —P33, Agile
Coach.

Team Dynamics in Distributed Agile 57

While working in the other location, the team ambassadors develop good rela-
tionships with the members there, promoting the dynamics of the entire team:

“When you send people over, you work with them, you go out with them,
drink with them. In that way, you build this friendship, [and] you under-
stand the people that you work with. So the interaction improves a lot.”
—P12, Developer.

Some teams rotate team ambassadors between the offshore and onsite locations:

“Developers will rotate with developers, and rotations happens between
Business Analysts also. We have people from here rotating for some dura-
tion. And, this [rotation] promotes team dynamics here.” —P16, Scrum
Master.

and this rotation provides opportunities for more team members to act as am-
bassadors:

“We rotate [team ambassadors] to facilitate more conversations [with
team] and be able to understand them better.” —P37, Developer.

Participants P1, P3, P11-P20, P24, P27, P33, P36-P38 understand the impor-
tance of team ambassadors for distributed teams. The team ambassadors pro-
mote interaction, create rapport within the ‘one team’, helping members to work
effectively together, even though they are distributed.

3.6 Coach Travels

The role of an Agile Coach, though self-descriptive, is to help a team or individual
adopt and improve Agile methods and practices. A coach helps team members
reflect and improve the activities involved in software development, and often
withdraws from the team when the time is right and let the team continue:

“I coach the team who are adopting Agile. Often I guide others to deal
with the situation at hand, but I want them to be in-charge of their own
situation, and be independant of the coach.” —P2, Agile Coach.

Coaches typically emphasize the importance of working together as ‘one team’,
cultivating team spirit, and engaging team members to improve the team dy-
namics:

“[After] we had the coaching activities, we were successfully able to form
the teams, and I could see good team dynamics happening. That [coach-
ing] brought in a lot of changes within the team.” —P33, Agile Coach.

Agile coaches travel around all the team’s locations to meet all the team members
and establish good relationships with them. The personal interaction and the
bonding with team members allows the coach to engage in coaching activities
even from remote locations:

58 S. Dorairaj, J. Noble, and P. Malik

“It is very difficult to coach someone [whom] you don’t have any personal
connection [with]. So, I think that going to other country and meeting
the team members helps me to keep on coaching daily from here. You
need to keep a team relationship and travel as much as possible if you
are coaching.” —P7, Agile Coach.

Coaches improve interaction amongst team members and develop team under-
standing in different locations:

“We had a coach from onsite who came here [to India] for several weeks.
That coaching improved the interaction with remote team because the
coach helped them to understand the working style of the remote team
members. We prefer that the coach from remote location visits our team
frequently.” —P28, Management Team.

Coaches travelling allows them to appreciate the wider environment at each loca-
tion. This allows the coach to have more informed conversations with customers
or the rest of the team:

“I have met more people in India, and I actually know more about what
India is like. And knowing that gives me better empathy and sympathy
for the team that work under [difficult] conditions. ” —P22, Agile Coach.

Coaching activities can also foster effective interaction between project team and
support groups in the organisation:

“... make sure that interaction between development team and the support
groups enable cross-communication. So, if something goes wrong, there
are different groups within the same organisation to support [the team].”
—P34, Agile Coach.

Participants P1, P2, P7, P22, P24, P28, P31-P35 and P39 acknowledge that
mentoring or coaching provided by Agile Coaches increased team interaction
within the project team, and with other groups in the organisation. Coaches
need to travel to all the distributed locations so that personal connections can
be maintained between coach and team members.

4 Discussion

Distributed teams should maintain as far as possible a single team identity across
all locations to promote interaction and encourage cooperation amongst team
members [25]. Loss of ‘teamness’ could pull distributed projects apart as it is
often difficult to integrate separate independent teams into a coherent team.
We found that the ‘one team’ mindset is the fundamental strategy that brings
together the team members across different locations and encourages cooperation
between the team and the customer.

Team Dynamics in Distributed Agile 59

Distributed team members often leverage technology-mediated communica-
tion for team interaction. Non-verbal communication such as body language,
hand gestures, facial expressions, and eye-contacts that forms 93% of communi-
cation are, however, missing in technology-mediated communication [26]. Fiore
et al. [2] asserts that team interaction in distributed teams affects teamwork
and team performances. Team building and establishing trust are difficult when
team members do not work together in close proximity.

While most teams used video-conferencing, collocation, or team ambassadors
to bind teams together, we found that some team members (P6, P8, P9, P25)
have not even seen the faces of all members in the team. This is mainly because
some team members did not get to travel to different locations to meet other
members, and the technology-mediated communication between members in dif-
ferent locations were limited to phone calls or emails, but not video-conferencing.
We found that teams need to create ‘team presence’ to allow the natural bonding
between members in different locations. Practices such as keeping photographs
of all the members on a wall, or maintaining Wikis with the photographs and
description of the members create ‘team presence’ and build team ties.

Layman et al. [9] describe that a key member of the distributed Agile team
who is physically located with the other team can provide an essential two-way
communication conduit. This key member acted as a communication bridge-
head between team members from different locations, and played the advocate
for both groups on a daily basis. Braithwaite and Joyce [25] describe that local
representatives travel from one location to another for an extended period to
understand the members in that location, and share business domain knowledge
between locations. We found that team ambassadors travel from one location to
another, and work in close proximity with team members for a period of time.
Unlike Layman et al., and Braithwaite and Joyce, these team ambassadors do
not act as communication condiuts but rather the teams members communicate
directly with each other, using video, audio, messaging, and email to contact
remote team members, both in the daily stand-up meetings, and whenever other
interactions are required. The ambadassors carry out their own development
tasks, and strive to develop good team relationships and to promote direct in-
teraction between local and remote team members.

5 Limitations

The inherent limitation of a Grounded Theory (GT) study is that the results are
grounded in the specific contexts explored in the research. These contexts were
dictated by the availability of the participants, and by our choice of research
destinations. We do not claim that our results are universally generalisable to
all distributed Agile software development projects, but rather our results accu-
rately characterize the contexts studied.

60 S. Dorairaj, J. Noble, and P. Malik

6 Conclusion

We investigated distributed software development from the specific perspective
of Agile practitioners through a Grounded Theory study that involved 40 partic-
ipants from 24 software companies in the USA, India, and Australia. We found
distributed teams adopt six strategies to promote effective team interaction: ‘one
team’ mindset, personal touch, open communication, team collocation, team am-
bassadors, and coach travels. The teams that we studied were found practicing
at least one of these strategies to promote team interaction between members in
different locations. Some teams proactively adopted these strategies to work ef-
ficiently in distributed Agile projects, and some teams adopted them as solution
strategies when problems around team interaction arise. We are mindful that
there can be other strategies to promote team interaction that can be useful and
effective in their own contexts, but did not emerge from our analysis. Future
studies can compare and contrast team dynamics for distributed teams against
team dynamics for collocated Agile teams.

Acknowledgments. Thanks to the Agile practitioners who participated in this
study. Thanks to Dr. Rashina Hoda, Dr. Angela Martin and several anonymous
reviewers. This study is supported by UNITEN (Malaysia) Ph.D. scholarship.

References

1. Castka, P., Bamber, C., Sharp, J., Belohoubek, P.: Factors affecting successful
implementation of high performance teams. Team Performance Management 7,
123–134 (2001)

2. Fiore, S.M.: Distributed coordination space: Toward a theory of distributed team
process and performance. Theoretical Issues in Ergonomics Science 4, 340–364
(2003)

3. Espinosa, J.A., Slaughter, S.A., Kraut, R.E., Herbsleb, J.D.: Familiarity, complex-
ity, and team performance in geographically distributed software development. Or-
ganization Science 18, 613–630 (2007)

4. Johnson, D.W., Johnson, F.P.: Joining Together: Group Theory and Group Skills,
4th edn. Prentice-Hall, Englewood Cliffs (1991)

5. Katzenbach, J.R., Smith, D.K.: The Wisdom of Teams: Creating the High-
performance Organization. Harvard Business School Press, Boston (1993)

6. Korkala, M., Abrahamsson, P.: Communication in distributed Agile development:
A case study. In: 33rd EUROMICRO Conference on Software Engineering and
Advanced Applications, pp. 203–210 (2007)

7. Korkala, M., Pikkarainen, M., Conboy, K.: Distributed Agile Development: A Case
Study of Customer Communication Challenges. In: Abrahamsson, P., Marchesi,
M., Maurer, F. (eds.) XP 2009. LNBIP, vol. 31, pp. 161–167. Springer, Heidelberg
(2009)

8. Prikladnicki, R., Audy, J.L.N., Damian, D., de Oliveira, T.C.: Distributed software
development: Practices and challenges in different business strategies of offshoring
and onshoring. In: International Conference on Global Software Engineering, pp.
262–274 (2007)

Team Dynamics in Distributed Agile 61

9. Layman, L., Williams, L., Damian, D., Bures, H.: Essential communication prac-
tices for Extreme Programming in a global software development team. Information
and Software Technology 48, 781–794 (2006); Special Issue Section: Distributed
Software Development

10. Moe, N.B., Dingsoyr, T., Dyba, T.: A teamwork model for understanding an Agile
team: A case study of a Scrum project. Information and Software Technology 52,
480–491 (2010)

11. Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for
Qualitative Research. Sociology Press, Aldine (1967)

12. Paasivaara, M., Lassenius, C.: Could global software development benefit from
Agile methods? In: IEEE International Conference on Global Software Engineering,
pp. 109–113. IEEE Computer Society, Washington, DC (2006)

13. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall
PTR, Upper Saddle River (2001)

14. Hoda, R., Noble, J., Marshall, S.: Organizing self-organizing teams. In: Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering, New
York, USA, pp. 285–294 (2010)

15. Whitworth, E., Biddle, R.: The social nature of Agile teams. In: Proceedings of the
AGILE, pp. 26–36. IEEE Computer Society, Washington, DC (2007)

16. Martin, A., Biddle, R., Noble, J.: The XP customer team: A grounded theory. In:
Proceedings of the AGILE Conference, pp. 57–64 (2009)

17. Glaser, B.: Doing Grounded Theory: Issues and Discussions. Sociology Press, Mill
Valley (1998)

18. Urquhart, C., Lehmann, H., Myers, M.D.: Putting the ‘theory’ back into grounded
theory: guidelines for grounded theory studies in information systems. Information
Systems Journal 20, 357–381 (2010)

19. Glaser, B.: Basics of Grounded Theory Analysis: Emergence vs Forcing. Sociology
Press, Mill Valley (1992)

20. Glaser, B.: Theoritical Sensitivity: Advances in Methodology of Grounded Theory.
Sociology Press, Mill Valley (1978)

21. Glaser, B.G.: The constant comparative method of qualitative analysis. Social
Problems 12, 436–445 (1965)

22. Dorairaj, S., Noble, J., Malik, P.: Understanding the Importance of Trust in Dis-
tributed Agile Projects: A Practical Perspective. In: Sillitti, A., Martin, A., Wang,
X., Whitworth, E. (eds.) XP 2010. LNBIP, vol. 48, pp. 172–177. Springer, Heidel-
berg (2010)

23. Dorairaj, S., Noble, J., Malik, P.: Bridging cultural differences: A grounded theory
perspective. In: Proceedings of the 4th India Software Engineering Conference,
ISEC 2011, pp. 3–10. ACM, New York (2011)

24. Dorairaj, S., Noble, J., Malik, P.: Effective Communication in Distributed Agile
Software Development Teams. In: Sillitti, A., Hazzan, O., Bache, E., Albaladejo,
X. (eds.) XP 2011. LNBIP, vol. 77, pp. 102–116. Springer, Heidelberg (2011)

25. Braithwaite, K., Joyce, T.: XP Expanded: Distributed Extreme Programming. In:
Baumeister, H., Marchesi, M., Holcombe, M. (eds.) XP 2005. LNCS, vol. 3556, pp.
180–188. Springer, Heidelberg (2005)

26. Bianchi-berthouze, N., Kleinsmith, A.: A categorical approach to affective gesture
recognition. Connection Science 15, 259–269 (2003)

C. Wohlin (Ed.): XP 2012, LNBIP 111, pp. 62–76, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Information Flow within a Dispersed Agile Team:
A Distributed Cognition Perspective

Helen Sharp1, Rosalba Giuffrida2, and Grigori Melnik3

1 The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
2 IT University of Copenhagen, Denmark

3 Microsoft Patterns & Practices, USA
h.c.sharp@open.ac.uk, rogi@itu.dk, grigori.melnik@microsoft.com

Abstract. One of the hallmarks of a co-located agile team is the simple and
open flow of information between its members. In a co-located setting,
peripheral awareness, osmotic communication and simple information radiators
support agile principles such as collective ownership, minimal documentation
and simple design, and facilitate smooth collaboration. However in a dispersed
agile team, where individual team members are distributed across several sites,
these mechanisms are not available and information sharing has to be more
explicit. Research into distributed software development has been tackling
similar issues, but little work has been reported into dispersed agile teams. This
paper reports on a field study of one successful partially dispersed agile team.
Using a distributed cognition analysis which focuses on information
propagation and transformation within the team we investigate how the team
collaborates and compare our findings with those from co-located teams.

Keywords: Dispersed agile development, distributed cognition, qualitative
study.

1 Introduction

Global Software Development (GSD) is increasingly becoming normal practice in the
software industry [1]. Organizations establish global software projects distributed all
over the world, involving multiple teams located at different sites. It is claimed that
GSD has advantages but it is also challenging because teams have to deal with
temporal, geographical and socio-cultural distance, resulting in difficulties with
division of work, inadequate communication, knowledge management, project and
process management issues and infrastructure problems [2]. Several strategies have
been suggested to overcome these challenges including reduced intensive
collaboration [3], reduced temporal distance [3], increased formal documentation [2]
and organizational factors such as processes, structure and goal alignment [4]. In
contrast, agile methods depend on close collaborations, frequent informal face-to-face
communication rather than lengthy documentation, and self-organising teams.

Despite these apparent differences, interest has been shown in assessing the
viability of agile in GSD. Some studies suggest that agile practices mitigate GSD

 Information Flow within a Dispersed Agile Team 63

challenges, whilst others believe they emphasize the challenges [5, 6], yet others
suggest that agile practices need to be modified for success.

Holmström et al. [7] specifically explored how agile practices can reduce three
kinds of “distance” – temporal, geographical, and socio-cultural. They found specific
agile practices to be useful for reducing communication, coordination, and control
problems. Layman [8] suggests that methodologies dependent on informal
communication can be used on GSD projects, despite geographic, technical, temporal
and linguistic hurdles: an email listserv, globally-available project management tool,
and an intermediary development manager who played a strong role in both groups.

Challenges of distributed agile build on those of GSD in general, and include lack
of close proximity, lack of team cohesion, lack of shared context and knowledge and
unavailability of team members [9]. Communication related issues are the major
challenges when using distributed agile [5]. Several researchers claim that extending
or modifying agile practices is necessary in GSD. Lee at al [10] reported that
conventional agile methods must embrace more rigour and discipline in a distributed
setting. Kirscher et al. [11] recommend Distributed eXtreme Programming (DXP), in
which eight XP practices are seen as independent of the locality of the team and thus
are practices that can be applied in GSD while four of them (planning game, pair
programming, continuous integration, and on-site customers) are dependent on
collocated team members and thus require alternative solutions to work in GSD.

As in GSD, much of the research so far into distributed agile teams focuses on the
situation where multiple teams are distributed globally. To date, little research
investigates dispersed teams [12] where most or all individual team members are
alone, i.e. they are the only team member in any one location. This situation has
become more relevant as experts are often widely distributed, and small open source
projects [13] also have similarities to the dispersed model.

Previous analysis of co-located agile teams highlights that information flow within
and around team members is simple and open, supported by few mediating artefacts
that promote discussion [14]. In this paper, we use the same analysis approach to
investigate information flow in a partially dispersed agile team and to compare the
results. In the next section we describe the study situation including the team, the data
gathering and analysis. The analysis itself is presented in Section 3, Section 4
discusses our findings in the context of co-located agile teams and the challenges of
global agile development, and section 5 presents some conclusions and future work.

2 The Study

The project under study was to develop enterprise software components for use by
software developers in their own organisations when building their cloud-based
solutions. The deliverables are composed of binaries, tests and developer guidance.

The development, including ‘spiking’ iterations ran for 5 months from July 2011 to
November 2011, although the initial product backlog had been developed over several
months prior to this, through consultation with the user community and other
development teams (this development is outside the scope of this study). The product
backlog prioritization was heavily influenced by community votes.

64 H. Sharp, R. Giuffrida, and G. Melnik

2.1 The Team

The project team consisted of one core team, an additional offshore testing team and a
network of advisers (which was also globally dispersed). This study focused on the core
team, which was made up of nine members. Most team members had worked together
on a couple of previous projects, and hence knew each other. The team was an example
of an agile dispersed development team as described above, although it should be
properly defined as a partially dispersed team i.e. only one member of the team was in
any one location for the majority of the time, except for those based in the team room in
Seattle. At critical times within the product development (such as kick-off/exploration,
beta release, final release) all team members who could attend, would visit Seattle for
one or two sprints. The two development leads based in Buenos Aires would also meet
occasionally and work together, although they mainly worked in different locations.
Other team members would frequently pair remotely. Cross-discipline pairing (e.g.
technical writer with developer) would also take place. An overview of the team
members’ roles and their locations is given in Table 1 (the real names of team members
are substituted by pseudonyms to protect their identity). Only the documentation lead
was a native English-speaker, but the main project language was English.

Table 1. Team membership

Pseudonym Role Location Time zone
David Technical writer, documentation lead Bristol, UK GMT +0:00
Edwin Technical writer, training materials Hague, The

Netherlands
GMT +1:00

Mamu Test lead (the majority of the testing
team were located in India)

Vancouver,
Canada

GMT -8:00

Rina Tester Seattle, USA GMT -8:00
Eliah Developer and subject matter expert Seattle, USA GMT -8:00
Joe Lead developer Buenos

Aires,
Argentina

GMT -3:00

Frederico Lead developer Buenos
Aires,
Argentina

GMT -3:00

George Product owner Seattle, USA GMT -8:00
Jon Developer (& user interface designer) Montreal,

Canada
GMT -5:00

The team used the hybrid “XP@Scrum” [15] approach with Scrum project

management practices and XP engineering practices. Specifically, they met for stand-
up meetings every day, developed in 2-week sprints with an iteration planning
meeting, customer demos (with the product owner and the members of the advisory
board) and a retrospective at the end of every sprint, had requirements expressed in
stories, followed test-first development and practiced continuous integration and
pairing. Within the two-week sprints, the team met every day for a 15 minute
stand-up at 9.30am Seattle time, which fell within the working day for all timezones
represented in the team. The furthest away was Edwin, in the Netherlands, for whom

 Information Flow within a Dispersed Agile Team 65

this time translated into 6.30pm. This meeting was accomplished using Microsoft’s
Lync, with some team members dialing in via computer telephony and others via
regular phone lines. As typical to Scrum, each team member would report what they
did before this meeting (“yesterday” for some team members and “today” for others,
depending on timezone), what they are doing after this meeting (“today” or
“tomorrow”), and any blocking issues. The offshore test team could not be present at
stand-ups due to timezones so Rina acted as their proxy. Even when travelling, team
members would make every effort to attend the standup. Once each team member had
reported the team decided whether there was a need for a further discussion about any
issues that had arisen (which was typically the case), and also when to do a triage. If it
was decided that a discussion was required then the meeting resumed after a 10
minute break (for coffee). Sometimes all team members would attend these meetings
and sometimes only relevant participants. Important meetings were recorded for
future viewing by team members who could not attend e.g. the testers and technical
writers. All team meetings were supported by Lync, with screen sharing being used
for demos or to share diagrams etc. It has been reported by a team member that
occasionally video streaming was used. Microsoft’s OneNote and Team Foundation
Server supported knowledge sharing. OneNote is a collection of wiki pages which can
be tailored to any situation according to needs. For this project a shared OneNote file
with revision tracking and residing on a Skydrive was used, so that everybody could
contribute. Team Foundation Server houses the source repository together with the
product backlog and sprint backlogs with the current status of stories and bugs within
the backlog. Skydrive, a shared network folder for large files, audio recordings and
presentations, was used by the team as an additional project artefact repository.

2.2 Data Gathering

An ethnographically-informed approach was taken to data gathering [16]. One of the
authors (the researcher) conducted an observational study of the agile team and one
other author is a member of the team under study. The researcher observed all team
members remotely, as a common practice in virtual ethnography [17], with the
purpose of understanding team members’ perspective of having virtual colleagues and
virtual meetings. Additionally, following a strategically-situated approach [18], some
sites have been visited in order to enhance the understanding of the team and to
understand the role of physical artefacts in a partially dispersed agile team.

The researcher attended two or three stand-ups a week and eight iteration planning
meetings over the project, joined three triage sessions and several ad hoc
conversations, visited USA and UK sites and obtained photographs of the
Argentinean environment. She also had access to the team’s OneNote notebook which
contained records of the team’s retrospectives and many brainstorms and discussions.
At the end of the project she was also given recordings of pairing sessions and other
ad hoc meetings. The data collected included observation notes, screen captures of
Lync conversations, still photographs, recordings of team conversations, pairing
sessions and iteration planning meetings. In addition, as the issue of information
sharing was a clear theme in the field study data, a short questionnaire was completed
by each team member asking for details of how and when they shared information.
The questions asked in this questionnaire are reproduced in Table 2.

66 H. Sharp, R. Giuffrida, and G. Melnik

Table 2. Questions asked of the team about information sharing

Information sharing questions
1. How do you share information with your fellow team members?
2. Apart from the daily stand-ups, how often do you contact your fellow

team members, and how, e.g. telephone Joe every hour for 5 mins?
3. Are there artefacts or items of information that you don’t need to share?

Please describe specific examples and indicate why you don’t need to
share them.

4. If you come across something you don’t understand, where do you go
for help? Please provide three example sources and describe the kind of
information you glean from each

2.3 Distributed Cognition

Distributed cognition theory [19] examines the cognitive processes that are dispersed
among individuals and between individuals and artefacts in the external environment
with and through which they interact [20]. Within CSCW and HCI it has been used to
investigate collaborative working e.g. [21, 22]. This kind of analysis views a cognitive
system as being distributed across individuals, artefacts, internal (i.e. cognitive)
representations and external representations in the environment. It focuses particularly
on how information is propagated and transformed within the system to achieve
collaboration. Co-located agile teams have been analysed using this approach [14, 23],
but its use in software development more widely has been limited (e.g. [24]). In this
paper, we base our analysis on Distributed Cognition in order to investigate how
information flows within, around and through a partially dispersed agile team, as
compared with a co-located agile team. We draw on previous descriptions of distributed
cognition, and a technique called DiCOT to analyse the team’s information flows.

2.4 DiCOT (Distributed Cognition for Teamwork)

DiCOT [25] provides a structured approach to reasoning about a situation from a
Distributed Cognition point of view. It draws on ideas and representations from
Contextual Design [26], together with a series of principles that are central to
distributed cognition. There are three main themes in DiCoT:

1. The physical theme focuses on the physical environment within which the
cognitive system operates, at whatever level of granularity is relevant, from the
building or office layout to the positioning of items on a desk or noticeboard.

2. The artefact theme focuses on the detail of artefacts that are created and used to
perform the activity under study.

3. The information flow theme focuses on what and how information flows through
the cognitive system, the media which facilitate that flow and how the
information is transformed in the process.

Furniss and Blandford [25] identify 22 principles from distributed cognition which
can be loosely categorised according to these three themes (see Table 3). Each theme
can be investigated using these principles, an associated model, and a tabular

 Information Flow within a Dispersed Agile Team 67

representation to capture the detail of activity within a theme. Although further work
has been done to extend DiCOT to two other themes, these three were used in the
original analysis and for comparability we focus only on these three.

Table 3. The principles of Distributed Cognition underlying DiCOT

Physical Layout
• Space and cognition: considers the use of space to support activity, e.g.

laying out materials
• Perceptual: considers how spatial representations aid computation
• Naturalness: considers how closely the properties of the representation

reflect those of that which it represents
• Subtle bodily supports: considers what if any bodily actions are used to

support activity, e.g. pointing
• Situation awareness: considers how people are kept informed of what is

going on, e.g. through what they can see, what they can hear and what
is accessible to them.

• Horizon of observation: considers what an individual can see or hear
(this influences situation awareness)

• Arrangement of equipment: considers how the physical arrangement of
the environment affects access to information.

Artefacts
• Mediating artefacts: are used to perform the activity
• Creating scaffolding: considers how people use their environment to

support their tasks, e.g. creating reminders of where they are in a task
• Representation-goal parity: considers how artefacts in the environment

represent the relationship between the current state and goal state.
• Coordination of resources: considers the resources (e.g. plans, goals,

history and so on) that are co-ordinated to aid action and cognition.
Information flow
• Information movement: considers the mechanisms (representations and

physical realisation) used to move information around the cognitive
system

• Information transformation: considers when, how and why information
is transformed as it flows through the cognitive system

• Information hubs: are a central focus where information flows meet and
decisions are made.

• Buffers: hold up information until it can be processed without causing
disruption to ongoing activity.

• Communication bandwidth: considers the richness of a communication
channel, e.g. face-to-face communication imparts more information
than email

• Informal and formal communication: recognises that informal
communication can be very important

• Behavioural trigger factors: cause activity to happen without an overall
plan needing to be in place.

68 H. Sharp, R. Giuffrida, and G. Melnik

3 DiCOT Analysis

3.1 Physical Layout to Support Cognition

In terms of the office or working environment, each location was different, but no
evidence was found of the working environment being used to support activity. Most
collaborative activity took place in a virtual setting, e.g. in a Lync meeting or through
instant messaging. Very little collaborative activity had a physical aspect to it except
the layout used in the software support tools (which we explore through the artefact
theme below). To illustrate the physical environment of the team members, we
consider the team room and two other example workspaces below.

Fig. 1. (a) The team room in Seattle; (b) David’s office; (c) Frederico and Joe while pairing

The Team Room in Seattle. Fig 1 (a) illustrates the team room environment. The walls
are covered in white boards and several sketches and lists were on these walls at the
time of the researcher’s visit. However, only two walls were related to the current
project, one of which contained a list of topics which had been identified for team
conversations and another one was used for design discussions and sketching of specific
features. The focus of the team room was twofold: the large screen which was used to
display screen sharing during meetings; and the conference telephone on the small
round table in the middle of the room. During meetings, team members present in the
team room would sit or walk around this table. There was also a music centre for
streaming music, and it was reported to the researcher that the team had an M&M’s
dispenser and adopted the ritual of getting a candy when a bug was fixed. In terms of
the seven principles of the physical layout theme, the team did not in general use space
or physical layout in the team room to support their work. However it was reported to
the researcher that during onsite working, when more of the team members were present
in Seattle, the physical space and layout were important. As there are no physical
representations, the perceptual and naturalness principles are not relevant. During the
researcher’s time in the team room, there was no evidence of the use of subtle bodily
supports, situation awareness1 or horizon of observation to support collaborative
working. This is not surprising as the team focus was elsewhere – as the researcher’s
notes comment, they were “somewhere in the ether”. Arranging the large screen and the

1 However one team member reported that overhearing others’ conversations did trigger

decisions and other discussions.

 Information Flow within a Dispersed Agile Team 69

conference phone equipment in the centre of the room meant that everyone has clear
access to information being shared digitally or orally, although each member of the
team could also log onto Lync through their own computers to join the meeting.

Individuals’ Physical Setting. David was based in the UK and worked mostly from
home. The researcher visited his location to observe a day’s work. The most striking
aspect of David’s environment was his computing equipment: an array of three
screens sitting on his desk. While working, David would have several windows open
spread across the three screens. There was no other evidence of the use of physical
layout to support David’s working, and as he was on his own no other physical
principles are relevant here. Frederico and Joe came together to pair occasionally, and
the only support they had in their physical environment was their laptops. Fig 1 (b, c)
shows David’s environment, and that of Frederico and Joe when they came together
to pair.

3.2 Artefacts Created or Used

Among the locations observed, physical artefacts supported the team’s work only in
the office in Seattle – most of the distributed team’s work and all activity of dispersed
team members were supported through electronic documents and diagrams. The team
room walls in Seattle (which were made of whiteboard material) displayed the list of
topics for discussion, checklists and other information such as login details and
configuration lines. There were also notes from brainstorming and design sessions.
These artefacts were present only in the team room. The posters and certificates
hanging on the walls in David’s office, were not related to his work and the only sign
of a physical external artefact was a (clean) pad of paper on his desk. In the office of
Frederico and Joe, no physical artefacts were present at all, neither on the desk nor on
the walls.

Regarding electronic artefacts, two main repositories supported the team’s work:
OneNote which the team referred to as their “Knowledge Base”, and Microsoft Visual
Studio Team Foundation Server (TFS). The latter is a collaboration platform to
support teams through the automation and integration of processes, tools and project
artefacts built around a central repository (with version control, build automation,
workitem tracking etc.) as well as powerful reporting that help analyze and track
progress and quality of the projects in real-time2. Our team used the facilities within
TFS to support an agile process, code sharing, bug tracking and to maintain the
product backlog: the stories and their statuses (see Fig 2). OneNote is also a
commercial tool, described as “a digital notebook” which supports the development
and sharing of information using diagrams, text, schedules and so on. It also supports
revision tracking, which is important for identifying updates made by collaborators.
Several templates for OneNote are available, but custom structures can also be
developed. The structure used by our team is illustrated in Fig 3.

2 http://www.microsoft.com/visualstudio/en-us/products/2010-
editions/team-foundation-server/overview

70 H. Sharp, R. Giuffrida, and G. Melnik

Fig. 2. Example screen shots of TFS (backlog view)

Fig. 3. Example screen shot of OneNote. The tab structure reads: Exploration, Project
Administration, <Project> Doc Notes, Advisories, Perf Testing, and Technical and
implementation notes.

Other artefacts were shared through Skydrive, a shared network folder for large
files, audio recordings, presentations. OneNote, TFS and files shared on Skydrive
were used to co-ordinate action. OneNote included a team diary showing when
individuals were on leave etc, together with contact details, and the product backlog
aspect of TFS included showed who was responsible for which story and kept a
record of who created or edited any documents. TFS was also used for bug tracking.
A detailed discussion of OneNote, TFS and Skydrive is outside the scope of this
current paper. In terms of the DiCOT principles, most of the mediating artefacts to
support collaboration were electronic (as described above). When artefacts were
considered interesting for the whole team and they were not digital (e.g. whiteboards
sketches in Seattle office), photos of the whiteboard were taken and shared through
Skydrive or OneNote for giving access to dispersed members. Generally, team
members shared all artefacts with the rest of the team, but few exceptions occurred:
David and other team members had private OneNote tabs where they kept their own
notes separate from the shared set, which were used as scaffolding to support their
own activity. Other note-taking and sketching behaviour that was observed included
making personal ‘to do’ lists (e.g. by Eliah in the Seattle team) and drawing initial
diagram sketches (e.g. by David before committing a diagram to a drawing package).
The management of representations and resources focused on OneNote and TFS.

3.3 Information Flow

Team members based in Seattle communicated through face-to-face conversations. The
whole team communicated through email and Lync, mainly using one to one instant
messaging chats, phone calls and screen sharing. Use of video and group text chat was

 Information Flow within a Dispersed Agile Team 71

very rare. Phone calls and screen sharing were only used when more detailed discussion
was needed or for specific critical issues. Information was therefore moved around the
team using each of these mechanisms, represented with dotted lines in Fig. 4. Team
members were communicating together from few times per week to several times per
day, depending on the role of each member and on the phase of the project.

Fig. 4. Information flow within the partially dispersed team. OneNote, TFS and Skydrive were
information hubs. Communication among team members occurred through face-to-face
interactions, email and Lync. (note that all team members communicated freely with all others,
and the communication lines are representative not exhaustive).

Since George was the product owner and Scrum master, he was regularly
communicating with most of the team members as well as members of the other
product groups and advisors and was managing the development of the project,
therefore he was acting as an information hub. In addition, information was stored in
OneNote, TFS and Skydrive and these were all significant information hubs and
information buffers. Stand up meetings, triages and team conversations were also
information hubs because key decisions were made at these times. The stand-up
meeting was a co-ordination event but it was noticeable that during a stand-up, no
documents were being shared. Individual team members took their turn to describe
what they had been doing and what they will do next, as well as any blocking issues
they had faced. During standups any additional discussion/brainstorming topics have
been identified and scheduled promptly – often just after the standup. During the
iteration planning meeting, screen and document sharing was more common, and for
the sprint retrospectives an anonymized, shared note page was used for team members
to write their thoughts and irritations anonymously before discussion; the page was
later saved in OneNote. Team conversations, demonstrations, presentations, advisory
board meetings and iteration planning meetings were recorded for later viewing by
team members not present, or for re-viewing when documenting or testing stories.
Recordings were stored through Skydrive and all retrospective comments were also
stored in OneNote. These recordings were also information buffers.

72 H. Sharp, R. Giuffrida, and G. Melnik

When two team members are talking synchronously, then information is
transformed the least. When information is entered into TFS, it has to conform to the
specific fields and templates within the system. There was no evidence that this
transformation caused any confusion or uncertainty, but nevertheless transformation
was necessary. To capture information in OneNote also required some transformation
– into a diagram or notes within the document structure.

Communication bandwidth varied from face-to-face groups meetings within the
Seattle office or during the on-site meetings, to synchronous group conference calls,
to recordings of conversations, instant messages, and one-to-one conversations. There
were many different channels used for communication and there did not seem to be
any concern or confusion over the type, frequency nor bandwidth of interactions.

Although there were regular team interactions, and a rhythm to the day and the
sprint (as you would expect to find in any agile team), there was little communication
that might be described as ‘formal’. Some demonstrations to the group of advisors
were rehearsed and kept to strict time, and in that sense were ‘formal’ compared to
the regular short interactions between the team members via Lync IM to ask for
clarification or to ask for a synchronous conversation. However, the majority of the
interactions were informal. Each member of the team knew when the stand-ups,
iteration planning and other regular meetings were happening, and hence would be
available through Lync on time for them. There was also an implicit agreement to
block 2 hours after standup for team discussions. Apart from this, team members were
self-organising and would attend to tasks and responsibilities as they arose. One factor
which supported this way of working was that each person has their own and well-
defined role (see Table 1). As such behavioural trigger factors were hard to spot.

4 Discussion

4.1 Agile Dispersed Development and Global Software Development Issues

In the introduction we discussed potential benefits [1] and main challenges facing
distributed [27] teams, and agile distributed teams [9]. The team described in this
paper is dispersed for including in the team the most talented developers and subject
matter experts beneficial for the project. The case we reported here is a partially
dispersed team following the XP@Scrum distributed development approach and our
findings are in line with studies stating that agile practices can successfully be
adopted in GSD [7]. Despite the fact that team members were distributed across
different time zones and were geographically dispersed, the team collaborated using
agile practices in order to complete the project.

GSD highlights the lack of informal communication in distributed settings due to
geographical distance and time-zone differences [27]. In our partially dispersed team
there were some overlapping working hours among team members, so synchronous
communication and collaboration was possible, mainly through the use of Lync for
IM and phone calls. When this was not possible, team members adapted their working
hours to those of remote colleagues (e.g. European members attending evening
meetings) or they were recording the meetings to share them asynchronously.

 Information Flow within a Dispersed Agile Team 73

Communication was mainly informal and team members were easy accessible for
impromptu conversations over Lync. Some team members reported that they were
collaborating on a daily basis with some remote colleagues, even for several hours per
day; no formal communication has been observed and documentation (e.g. shared
digital artefacts, wiki pages, recording of the meetings) was limited to what is
considered necessary for getting the work done, as in every agile project. This is in
contrast with traditional GSD where detailed, comprehensive documentation as well
as codified, explicit knowledge are considered necessary because communication is
problematic and tacit knowledge is difficult to share [2]. Pair programming is a
controversial practice that some authors consider very difficult to be performed in a
dispersed settings [12] or even impossible [28] because pairs cannot sit side by side.
In our team, pairing sessions were performed despite the geographical distance, using
screen sharing and audio calls.

4.2 Co-located Agile versus Dispersed Agile

A previous distributed cognition analysis of a co-located agile team [14] identified
three main observations:

1. There are few mediating artefacts in the system and those that do exist are
simple and lack detailed information, which encourages discussion.

2. Information flows are simple and open, thus promoting situational awareness.
3. The team works in an information-rich environment. Information is both easily

accessible and immediately relevant and applicable.

Comparing these points to the team in this study, there are some parallels but also
significant differences. Our partially dispersed team relied on several digital
mediating artefacts (OneNote, TFS, recordings etc). Each of these contained very
detailed information, and the software tools (particularly TFS) had sophisticated
structures which require more effort to learn to use. This is not to say that the team
members showed any indication of difficulties, but information was less accessible to
newcomers or outsiders than in the co-located situation. The detailed information
available to the team through these artefacts led to an information-rich environment,
but significantly more transformation between representations was needed.

The simple, open flow of information in co-located agile teams makes use of
physical space and relies on face-to-face communication and on physical artefacts
[23]. A central role is played by the Wall and the Story Cards, and situational
awareness is high (see Fig 5). In the dispersed team, information flows were open
because anyone could contact anyone else on the team, but they were also restricted
because information flow needed to be explicit – there was no equivalent to peripheral
awareness among dispersed members. Communication among dispersed team
members occurred through ad hoc computer mediated interactions and it was
necessary to explicitly store the information in information hubs in order to share it.
Comparing Figs 4 and 5 shows that the study reported here highlights very different
patterns of interaction: the information flow of our dispersed agile team is focused on
OneNote, TFS and artefacts shared through Skydrive (see Fig 4).

74 H. Sharp, R. Giuffrida, and G. Melnik

Fig. 5. Information flow within a co-located agile team

During the meetings among dispersed team members there was no clear equivalent
to the Story Cards and the Wall: screen sharing was used to focus attention of the
team but often team members were not sharing screens, but just in audio contact.
Moreover, the walls in the Seattle office were used for listing topics and checklists, or
for brainstorming and design sessions; walls were not used as in co-located agile for
organizing story cards or focusing attention during stand-ups. Since team members
were dispersed, awareness of each other’s activity was not as straightforward as in co-
located settings and it was the responsibility of individuals to share information and
artefacts with other team members. While in co-located agile an important role is
played by the social context [29], in our partially dispersed agile team we observed a
much stronger role for individuals deciding what to share and with whom.

4.3 Limitations

In this paper we reported only one case study of a small partially dispersed agile team.
Although elapsed time covered the majority of development effort, the team has been
observed for a limited period. Not all locations were visited and only limited on-site
observation was possible – this limitation is mitigated by one of the authors being a
member of the team.

5 Conclusions and Future Work

Our distributed cognition analysis of one partially dispersed agile team shows that the
information flow within the team is more complex than that in a co-located team in
the following ways: our dispersed team relied on complex digital artefacts with
sophisticated structures rather than on simple physical artefacts used in a sophisticated
way. It was therefore important for team members to be familiar with the tools being
used. Information sharing needed to be explicitly accomplished, and information
needed to be transformed more often than in a co-located setting. In addition, the
responsibility of what information to share when and through which medium lay with

 Information Flow within a Dispersed Agile Team 75

individual team members. These are important points for anyone wishing to set up a
dispersed agile team.

The team members themselves did not refer to communication as problematic.
There were no references to communication problems in the records of the
retrospective sessions, and although technology sometimes caused difficulties in the
meetings, team members were not distracted or deflected by them, but simply
continued with their activities. We did not investigate why this was the case, nor any
other challenges and problems they faced. This may be the subject of future work.
Other future work will include the study of further dispersed teams and a more
detailed analysis of the team studied here. For example, Social Network Analysis
(SNA) has been used to identify the relationships between distributed team members,
e.g. collaboration patterns and impact of distance on awareness [30]. This kind of
analysis could be used to investigate the role of artefacts and on how information is
shared between dispersed team members.
Acknowledgments. We’d like to thank the team members for their support.

References

1. Conchúir, E.Ó., Ågerfalk, P.J., Olsson, H.H., Fitzgerald, B.: Global Software
Development: Where are the benefits? Communications of the ACM 52(8), 127–131
(2009)

2. Herbsleb, J.D., Moitra, D.: Global Software Development. IEEE Software 18(2), 16–20
(2001)

3. Carmel, E., Agarwal, R.: Tactical Approaches for Alleviating Distance in Global Software
Development. IEEE Software 18(2), 22–29 (2001)

4. Cataldo, M., Bass, M., Herbsleb, J.D., Bass, L.: On Coordination Mechanism in Global
Software Development. In: Second IEEE International Conference on Global Software
Engineering, pp. 71–80. IEEE, Munich (2007)

5. Hossain, E., Babar, M.A., Paik, H.: Using scrum in global software development: a
systematic literature review. In: Fourth IEEE International Conference on Global Software
Engineering, pp. 175–184. IEEE, Limerick (2009)

6. Jalali, S.: Wohlin. C.: Agile practices in global software engineering-a systematic map. In:
5th IEEE International Conference on Global Software Engineering, pp. 45–54. IEEE,
Princeton (2010)

7. Holmström, H., Fitzgerald, B., Ågerfalk, P.J., Conchúir, E.Ó.: Agile practices reduce
distance in global software development. Information Systems Management 23(3), 7–18
(2006)

8. Layman, L., Williams, L., Damian, D., Bures, H.: Essential communication practices for
extreme programming in a global software development team. Information and Software
Technology 48(9), 781–794 (2006)

9. Paasivaara, M., Durasiewicz, S., Lassenius, C.: Distributed Agile Development: Using
Scrum in a Large Project. In: 3rd IEEE International Conference on Global Software
Engineering, pp. 87–95. IEEE, Bangalore (2008)

10. Lee, G., DeLone, W., Espinosa, J.A.: Ambidextrous coping strategies in globally
distributed software development projects. Communications of the ACM 49(10), 35–40
(2006)

76 H. Sharp, R. Giuffrida, and G. Melnik

11. Kircher, M., Jain, P., Corsaro, A., Levine, D.: Distributed extreme programming. In:
Extreme Programming and Flexible Processes in Software Engineering, Italy (2001)

12. Braithwaite, K., Joyce, T.: XP Expanded: Distributed Extreme Programming. In: Baumeister,
H., Marchesi, M., Holcombe, M. (eds.) XP 2005. LNCS, vol. 3556, pp. 180–188. Springer,
Heidelberg (2005)

13. Mockus, A., Fielding, R., Herbsleb, J.: Two case studies of open source software
development: Apache and Mozilla. ACM Transactions on Software Engineering and
Methodology 11(3), 309–346 (2002)

14. Sharp, H., Robinson, H., Segal, J., Furniss, D.: The Role of Story Cards and the Wall in
XP teams: a distributed cognition perspective. In: Proceedings of the Conference on Agile
2006, pp. 65–75. IEEE Computer Society Press, Minneapolis (2006)

15. Vriens, C.: Certifying for CMM Level 2 and IS09001 with XP@Scrum. In: Agile
Development Conference, pp. 120–124. IEEE, Salt Lake City (2003)

16. Robinson, H., Segal, J., Sharp, H.: Ethnographically-informed Empirical Studies of
Software Practice. Information and Software Technology 49(6), 540–551 (2007)

17. Hine, C.: Virtual ethnography. Sage Publications Ltd. (2000)
18. Marcus, G.E.: Ethnography through thick and thin. Princeton University Press (1998)
19. Hutchins, E.: Cognition in the Wild. MIT Press, Cambridge (1995)
20. Hollan, J., Hutchins, E., Kirsch, D.: Distributed Cognition: Toward a new foundation for

human-computer interaction research. ACM Transactions on Computer-Human Interaction
7(2), 174–196 (2000)

21. Furniss, D.: Codifying Distributed Cognition: A Case Study of Emergency Medical
Dispatch. MSc Thesis. UCLIC (2004)

22. Halverson, C.A.: Activity theory and distributed cognition: Or what does CSCW need to
DO with theories? Computer Supported Cooperative Work 11, 243–267 (2002)

23. Sharp, H., Robinson, H.: Collaboration and Co-ordination in mature eXtreme Programming
teams. International Journal of Human-Computer Studies 66, 506–518 (2008)

24. Flor, N.V., Hutchins, E.L.: Analyzing distributed cognition in software teams: a case study
of team programming during perfective maintenance. In: Fourth Workshop on Empirical
Studies of Programmers, pp. 36–64. Ablex, Norwood (1991)

25. Blandford, A., Furniss, D.: DiCoT: A Methodology for Applying Distributed Cognition to
the Design of Teamworking Systems. In: Gilroy, S.W., Harrison, M.D. (eds.) DSV-IS
2005. LNCS, vol. 3941, pp. 26–38. Springer, Heidelberg (2006)

26. Beyer, H., Holtzblatt, K.: Contextual Design: Defining Customer-Centered Systems.
Morgan Kauffman, San Francisco (1998)

27. Herbsleb, J.D.: Global software engineering: The future of socio-technical coordination.
In: 2007 Future of Software Engineering, pp. 188–198. IEEE, Minneapolis (2007)

28. Shrivastava, S.V., Date, H.: Distributed Agile Software Development: A Review. Journal
of Computer Science and Engineering 1(1), 10–17 (2010)

29. Sharp, H., Robinson, H.M., Petre, M.: The Role of Physical Artefacts in Agile Software
Development: two complementary perspectives. Interacting with Computers 21(1-2), 108–
116 (2009)

30. Damian, D., Marczak, S., Kwan, I.: Collaboration Patterns and the Impact of Distance on
Awareness in Requirements-Centred Social Networks. In: 15th IEEE International
Conference on Requirements Engineering, pp. 59–68. IEEE, New Delhi (2007)

C. Wohlin (Ed.): XP 2012, LNBIP 111, pp. 77–92, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Sensing High-Performing Software Teams: Proposal
of an Instrument for Self-monitoring

Petri Kettunen and Simo Moilanen

University of Helsinki, Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland

{petri.kettunen,smoilane}@cs.helsinki.fi

Abstract. Agile/Lean software development teams are by definition striving for
high performance. However, it is not straightforward to recognize and cultivate
those high-performing teams. Sometimes the team members perceive their in-
ternal performance differently than their externally observed outcomes really
are. This paper addresses those issues by proposing an instrument for self-
monitoring and analyzing software development team performance. The key
goal is that practicing teams can use it even on a daily basis to indicate and steer
their own performance excellence. This is supported by certain principal per-
formance analysis guidelines. A prototype implementation of the instrument is
demonstrated with some empirical cases. The cases indicate that the instrument
can indicate noticeable differences in the perceived performance of individual
team members and the team external outcomes. It helps detecting potential per-
formance problems and impediments as well as improving even high-
performers, and explaining team performance differences.

Keywords: agile software teams, Lean product development, process im-
provement, organizational design, performance management.

1 Introduction

Teams and teamwork are central to Agile and Lean software development. Moreover,
not just having teams but consciously concentrating on their performance is what
brings the agility and leanness benefits. However, it is not yet thoroughly understood,
how such high-performance teams are established and how they can be sustained.

High-performing teamwork has been investigated in many fields over the years. In
particular, the success factors of new product development (NPD) teams are in gener-
al relatively well known [1]. However, the specific concerns and intrinsic properties
of modern software development teams are essentially less understood in particular in
larger scales.

In all, it is not clearly understood, what high performance means for software
development in total, and how exactly such effects and outcomes are achievable in
repeatable ways. The goal of this paper is to discover and address such areas and ele-
ments, focusing on the specific aspects of software development teams (with respect
to work teams in general).

78 P. Kettunen and S. Moilanen

The approach in this paper is to address those problems by constructing a team
survey and monitoring instrument. Such profiles can then be used to find potential
commonalities and differences of the teams within and between different product
development organizations. Software development organizations can gauge their
teams with it for organizational improvement. Software teams themselves may utilize
it for their own performance management.

The rest of this paper is organized as follows. Section 2 reviews the prior and
related works of teamwork and performance. Based on that grounding, Section 3 pro-
poses a survey instrument to profile software teams from the performance perspec-
tive. Section 4 presents actual profiling findings of real-life high-performing team
cases, followed by consequent insights and implications in Section 5. Finally, Section
6 concludes with pointers to further research and development.

2 Background and Related Work

Successful R&D organizations rely more and more on teamwork (Sect. 2.1). Howev-
er, in order to be able to form and develop such software teams (Sect. 2.3), appropri-
ate performance measures and gauging must be set in the context (Sect. 2.2). That
raises new research questions (Sect. 2.4).

2.1 High-Performing Teams

Industrial-strength software product development is almost always done in teams,
even in globally virtual set-ups. However, although product development team per-
formance has been investigated extensively in various industries, software develop-
ment teams and their knowledge-intensive work are still open to even fundamental
questions and gaps.

Furthermore, software teams do not exist in isolation in particular in larger product
development organizations. The context of the team affects the team organization and
their performance in several, sometimes subtle and even conflicting ways. There may
considerable differences in different industries and competitive environments (e.g.,
automotive embedded software vs. mobile games).

Table 1 illustrates this broad perspective with the key research viewpoints. The
reference points of our research agenda are thus in general work teams and new prod-
uct development projects (e.g., [2], [3]). This is then specialized to software.

Table 1. High performing software teams research and development perspectives

Viewpoint Key Questions

EXTERNAL • How does a high-performing team appear and manifest itself?

INTERNAL • What happens inside a high-performing (software) team?
DEVELOPMENT • How can we create and sustain such teams?

The concept of value is central to high performance Agile/Lean software develop-

ment. This line of thinking can be further extended beyond the direct product value
towards its benefits to the customers and even their customers [2]. In principle, agile

 Sensing High-Performing Software Teams 79

teams are sensitive to their environment, flexible, and responsive to changing custom-
er needs [3]. Such teams understand the product value drivers as well as the role of
the team in the overall value stream (process value). They are thus capable of sustain-
ing high value delivery performance even under turbulent circumstances.

2.2 Software Team Performance

In general, there is no one universal measure of software team performance. With
traditional project teams, the basic objectives of achieving the product goals (functio-
nality, quality) within the constraints (resources, schedule, cost) are typical measures
in product and process performance dimensions. With respect to the team context, it
follows that the performance is relative to the organizational environment of the team.
Consequently, we do not prescribe performance with fixed measures.

Prior literature has described many possible software team performance measures.
Typical ones are in terms of meeting or exceeding all of the objectives of a software
development project [4], stakeholder-rated performance (e.g., contribution to the firm
performance) [5], post-release defect density [6], speed of delivery and timely deli-
very [7], and defect removal ability [8].

Since product/service value delivery is a principal performance driver for
Agile/Lean software development teams, it should be imperative to measure it [9].
Software team performance in terms of value creation efficiency can be assessed with
value stream mapping/analysis (VSM/A) and more generally value network analysis
(VNA) methods [10]. High performance can then be defined in terms of optimal value
creation (benefits vs. costs) [2], [11]. High-performing software teams excel in their
value creation not only for the customers, but also for their organizations and for the
team itself [12]. Conversely, while waste lowers performance it is relative to the de-
fined value [13].

High-performing teams are proficient at tracking their performance. Although it is
difficult to define general-purpose performance measures for specific software teams,
the measurement systems can be developed based on existing general-purpose
frameworks to begin with. In particular, the ISO/IEC 15939 standard provides such a
platform [14]. Notably, teams may sometimes perceive their internal performance
differently than the team externally measured outcomes exhibit. It is imperative to
know systematically, who judges the success and when [15]. Finally, although finan-
cial performance measures are still the most obvious ones in industrial teamwork,
recently additional dimensions have been proposed – such as ‘triple-bottom-line’ [16].

2.3 Developing High-Performing Teams

There is no universal recipe for creating and improving high-performing software
teams [4]. Nevertheless, it is possible to find many generally applicable ways and
measures to device and guide software teams towards high performance (e.g., TSP).
All in all, high performance of software development teams is apprehended in multi-
disciplinary ways spanning many areas of modern business competence and R&D
management. This paper focuses on software engineering (management) discipline.

80 P. Kettunen and S. Moilanen

However, it is fundamental to understand the connections to those related fields for
instance with respect to knowledge workers in general. Table 2 aggregates typical
performance factors presented in the existing literature. Notably agile software team
models address most of those concerns.

Table 2. Software team performance influence factors

Factors Ref

POSITIVE: exceptional designers, managing learning; negotiation and coordination
processes; informal communication networks
NEGATIVE: thin spread of application domain knowledge, fluctuating and conflict-
ing requirements, communication and coordination breakdowns

[17]

NEGATIVE: software development risks [18]
POSITIVE: “Healthy” levels of conflicts, resolved constructively
NEGATIVE: unresolved conflicts (weak conflict management)

[5]

NEGATIVE: no standard evidence on previous or current projects, inappropriate
software life-cycle models, missing concept of operations, lack of qualification test-
ing, insufficient data modeling, poor system and software architecture designing, lack
of competent software professionals

[19]

artifact reuse, team expertise, process maturity, functional requirement stability [6]
POSITIVE: team knowledge sharing [20]
POSITIVE: management support (e.g., resources, obstacle removal), team member
characteristics (e.g., business process competence), communication quality, clear
mission

[8]

Furthermore, those positive influences require typically certain supporting organi-

zational enablers on the one hand, and removing possible hindrances and impedi-
ments on the other hand. Such typical enabling elements are selective hiring of new
personnel (right people) [21], organizational constructs to facilitate longer-term
process development and improvement [22], and team-member exchange [20].

2.4 Knowledge Gaps and Research Needs

Starting from Table 1 and following the line of thinking in Sect. 2.1-2.3, there are com-
pelling and pressing needs to understand what high performance means in given software
development domains and competitive environments. The objective of this investigation
is to device aims for practicing software teams and their organizations to disentangle and
thereby tackle those questions. We approach this set of interrelated research questions
with a probing instrument coupled with performance analysis guidelines.

3 Instrument Design and Analysis Principles

In order to address the research problems summarized in Sect. 2.4, we propose a self-
monitoring approach and instrument for software teams (Sect. 3.1). Moreover, this is
coupled with performance analysis guidelines (Sect. 3.2).

 Sensing High-Performing Software Teams 81

3.1 Instrument for Self-monitoring

Traditionally, software organizations have collected large bodies of low-level basic
measures such LOC, defect counts, and effort figures. However, much less is unders-
tood about their higher-level measures. That leads often to unclear linkages to the
relevant performance indicators for example when leaning on the general-purpose
measurement system ISO/IEC 15939 standard (c.f., Sect. 2.2).

For that, we have compiled a self-monitoring tool primarily for the software teams
themselves to gauge their own performance measures. The premise of our instrumen-
tation approach is by contrast to start the other way around top-down by looking for
leading indicators of high (or conversely, lower) software team performance.

The provisional Instrument has been developed as follows. Starting from Table 1,
the establishment is the literature review of different team performance factors
described in Sect. 2, e.g., [23]. That groundwork is augmented with our empirical
experiences with certain industrial software organizations. In addition, some earlier
academic classroom studies of software teams have been incorporated [24]. The in-
strument has first been piloted in laboratory settings like presented in Sect. 4.1.

Table 3. Main structure of the Instrument

HIGH PERFORMING TEAM SURVEY
Performance
1. How do you score your team in general? {7 items}
2. How do you appraise the following team outcomes and impacts? {8}
3. How important are the following for your team? {18}
− …
− High software quality (e.g., reliability, usability)
− …
Team
1. How do you rate the following aspects from your point of view? {15}
2. How do you rate the following concerns? {8}
− …
− Our team is capable of quick round-trip software engineering cycles (design-build-test-

learn).
− …
3. The best description of your team's level of development is: {4}
4. What are the modes of leadership in your team? {12}
5. What are the key roles in your team? {16}
− …
− Software engineers
− …
Organization
1. How do you rate the following organizational factors in your context? {20}
2. How important are the following aspects for you in your work? {12}
− Solving software engineering problems (software design)
− …

82 P. Kettunen and S. Moilanen

A key design rationale for the present generic instrument has been to avoid using
abstract conceptual vocabulary on the one hand, and vaguely-defined terms on the
other hand. For instance, instead of asking whether the team is “innovative”, we have
formulated those question items in terms of newness of product (features), thereby
looking for the lower-level constituting elements, which are usually closer to the daily
work and talk of the practitioners. Situational factors may be tailored (Sect. 4.2).

Table 3 presents the current main organization of the Instrument with some soft-
ware-specific sample question items1. There are three sections corresponding to the
following prime questions:

1. How does the team perceive its (high) performance (drivers, goals)?
2. How does it function (means)?
3. Is the organization supportive – encouraging even higher performance (enab-

lers/impediments)?

The current provisional answering scales are overall defined as qualitative 5-point
Likert ratings as follows depending on the nature of the questions:

− Temporal: Always / Usually / Occasionally / Seldom / Never
− Weighing: Key / Important / Relative / Some little (= moderate) / Little (= low)
− Perceptional: Strongly Agree / Agree / Neutral / Disagree / Strongly Disagree
− Discretionary: Very Important / Important / Somewhat / A little / Unimportant
_ In addition, there are open free-format text entry choices (‘Other’), and the options
to skip questions (‘n/a’, ‘I don’t know’).

3.2 Analysis Guidelines

There is no prescribed process to use the Instrument, but the initial idea is to utilize it
as follows. Ideally, all members should be respondents in order to see their common
views or to discover potential differences in individual perceptions. Anonymous col-
lection of the replies is thus recommended. The underlying philosophy is to discover
the current state of the affairs of the particular team as perceived by the team mem-
bers. Specifically, there is no fixed definition of ‘high performance’. Individual,
teams, and their contexts change over time. The replies should thus be analyzed with
respect to the timeline. The overall design rationale has been to keep the Instrument
lightweight. Ideally, it could then be used even daily at least partially.

It is important to understand that the given team responses must be analyzed in the
specific organizational context. Moreover, the response profile should be evaluated in
total rather than just as separate items like discussed in Sect. 5.1. Furthermore, it is
important to see potential linkages and interdependencies with individual questions.
While it is not possible to present detailed prescribed rules for all such interrelation-
ships in general, the following are some basic ideas to begin with:

1 A prototype implementation of the Instrument in its current form is available online.

 Sensing High-Performing Software Teams 83

− Is the team performing high? Does the team want to excel? (Performance section in
Table 3)

− Do we have a proper team for the job? Does the team know its goals? (Team sec-
tion in Table 3)

− Can the team perform high? Is it sustainable? (Organization section in Table 3).

4 Case Studies

The Instrument case studies were conducted in three different software teams in two
different organizations. The first organization (Sect. 4.1) is in an academic set-up. The
environment is however close to real work life. The second one (Sect. 4.2) is a global
IT company. Sect. 4.3 compares and contrasts the cases, demonstrating how the In-
strument results can assist in further performance analysis. Some analyses are pro-
vided to illustrate the conclusions and follow-up questions that could be made based
on the results from the Instrument.

4.1 Student Case

The aim of the first case was to pilot the Instrument (Sect. 3.1) in a laboratory envi-
ronment. The Software Factory at the University of Helsinki provides such research
facilities.

Software Factory2 conducts rapid software development experiments in collabora-
tion with academia and industry. It takes real-life customer projects and produces
working software product in fixed seven-week periods, typically using Agile/Lean
software practices. The project team members are primarily students, but the industri-
al customers are closely involved and often on site. Researchers can use that as a plat-
form to conduct empirical research on a variety of topics.

Table 4. Student case project descriptive information

ATTRIBUTE Software Factory Project
Participants 6 persons (one academic staff member)
Interest groups Customer (and their business customers), education organization,

researchers
Customers Start-up entrepreneur, frequently onsite and collaborating with their

potential external customers (prototype demonstrations)
Team history None together
Team expertise Mostly experts, some novices; The academic member provided some

prior knowledge.
Product start status Previous customer prototype
Product end status The customer was satisfied with the outcomes and knowledge gained

during the project.
Team continuation None

2 www.softwarefactory.cc

84 P. Kettunen and S. Moilanen

Table 4 presents the main characteristics of the case project. The project team
members were MSc-level students coming from different countries. In addition, there
was one local staff member acting as a coach.

The Instrument test was conducted at a late phase of the project. Each team mem-
ber (including the coach) was asked to fill in the survey online individually and ano-
nymously. The result summary was published and discussed with the whole team in
the project end debriefing session.

Table 5 shows the most striking survey results provided by the Instrument. Follow-
ing the line of thinking in Sect. 3.2, Table 6 presents some plausible interpretations of
the question items shown in Table 5. In particular, the varying distributions (level of
agreement) of the responses are of interest here.

Table 5. Student case survey highlights (c.f., Table 3)

How do you score your team
in general? Always

Usual-

ly

Occa-

sionally Seldom Never

I don't

know

Does the team want to excel?

Student Team 3 1 2 0 0 0

How important are the fol-
lowing for your team? Always

Usual-

ly

Occa-

sionally Seldom Never n/a

Stable product specs

Student Team 0 4 0 2 0 0

How do you rate the following
aspects?

Strong

Agree Agree Neutral

Disag-

ree

Strong

Disagr

I don't

know

My team members have all the knowledge needed to perform at a high level.

Student Team 0 2 3 0 0 0

What are the modes of lea-
dership in your team?

Strong

Agree Agree Neutral

Disag-

ree

Strong

Disagr

I don't

know

Shared leadership

Student Team 1 1 1 1 0 1

How do you rate the following
organizational factors?

Strong

Agree Agree Neutral

Disag-

ree

Strong

Disagr

I don't

know

People set high standards of their work.

Student Team 0 2 2 0 0 1

How important are the fol-
lowing aspects for you? Very

Impor-

tant

Some-

what A little

Unim-

portant n/a

Solving software engineering problems (software design)

Student Team 2 1 1 1 0 0

Finally, by and large, the respondents (i.e., project team members) considered the

Instrument to be illuminating. However, in addition, they pointed out the following
issues: It took some 15 minutes to fill the full survey in. This is probably too much in
daily use. The terminology (e.g., “organization”) should first be clarified and agreed
in the project context. Misinterpretations may cause threats to the reliability.

 Sensing High-Performing Software Teams 85

Table 6. Student case performance analysis

INSTRUMENT
ITEMS (Table 5)

Expected
Responses

Potential Explanations and Implications

Does the team want
to excel?

Close to
‘Always’

Not every team member has equal standard of their
“excellence”; The team members are not really
ambitious enough.

Shared leadership Uniformity The team has not agreed on the leader(s); Not every
team member sees leadership in a similar way.

Solving software
engineering problems
(software design)

Close to
‘Very
Important’

Some team members are more interested in working
in a higher-level of abstraction or closer to the cus-
tomer space; Not everybody ranges software design
activities equally (e.g., verification and validation).

4.2 Industrial Cases

The industrial cases were conducted at a large IT company, which in this paper will
for confidentiality reasons be titled as ‘ITCO’. ITCO is specialized in IT services,
R&D and consulting. ITCO’s headquarters is based in Europe and the company has
functions in multiple countries around the world. The cases are described in detail
below. Table 7 summarizes their demographic information (like in Table 4).

Industrial Case #1
The team studied in the first industrial case was expected to be a high-performance
team due to previous good feedback, high-level professionalism of the team members,
the long team composition time and the strict criteria for choosing the team members.

Both the project management and the customer were very satisfied with the team
performance. The project manager responsible for the project's deliveries described
the team as “professionals with good motivation and high output”.

The team was handpicked by the customer and they worked at the customer's pre-
mises. All the team members were interviewed for the team and their performance
was constantly monitored by the customer. If the customer wasn't satisfied with a
team member’s performance in the long run, the member was disassociated from the
team and from the project altogether. The team had existed for about 18 months and
at the time of the case study, and the team had stayed constant for about 12 months.

All the team members had at least 5 years, and some had over 10 years of software
development experience. All the team members as well as all the teams in the project
were working at the same site. The working method was applied Scrum. The case
took place in Finland.

Industrial Case #2
The second industrial team studied was a young team that was struggling to meet its
goals. The team had existed for about 2 months at the time of the study. The team
was made up of new recruits who were experienced software developers, each team
member having at least 5 years of software development experience.

86 P. Kettunen and S. Moilanen

The team was part of a project that had just started and was going on its ramp up
phase. The project was distributed to two sites and the team studied here was the first
team put together at the Indian offshore site.

At the time of the study, common ways of working or even a clear project organi-
zation were not yet established in the project. Despite the early stage of the project,
the team was working on an actual soon-to-be production feature and had strong sup-
port from the on-site personnel. The project had upfront planning done and the soft-
ware development was carried out using the Kanban method.

The project management was not satisfied with the team's output. Nevertheless,
they tolerated it, because the team as well as the project was just starting out.

There was in addition the external management of the team involved. External, in
this context, refers to the management that does not work within the team, and neither
the managers nor the team members consider as part of the team. The management
(two highly skilled persons) was responsible for recruitment, staffing and output of
the offshore site. They served offsite project owners.

Table 7. Industrial case teams descriptive information

ATTRIBUTE #1: Mature Industrial Team #2: Young Industrial Team

Participants 6 persons 4 persons
Interest groups Customer, firm R&D management (home-office)
Customers Onsite; professional IT-

developers, IT-outsourcers and
product managers

Offsite; IT-administration

Team history 18 months 2 months

Team expertise High skill level Medium-high skill level
Product start status n/a n/a
Product end status n/a n/a
Team continuation Full Discretionary

Like with the student case (Sect. 4.1), the teams were asked to fill in the Instrument

web-pages anonymously. The basic version of the Instrument (Table 3) was slightly
modified to the industrial context.

Both industrial teams answered nearly identically to the following questions: The key
performance influencing factors are under the team's own control; Our team is fully
integrated with the surrounding organization; How often are there communication and
coordination breakdowns? The team has full and immediate visibility and access to all
necessary and useful information; The team is able to work in real time (smoothly,
without unpredictable delays and glitches), i.e., the flow of work is steady; Our team is
capable of short roundtrip software engineering cycles (design-build-test-learn); How
often is the equipment needed by your team working and easily available?

Given that Team #1 appears to be considerably more productive for ITCO than Team
#2, it is interesting to notice how both of the teams answered to the previous questions.
Basically both teams state that they are able to work rather smoothly in real time, to-
gether with the surrounding organization if needed, without major communication

 Sensing High-Performing Software Teams 87

or coordination breakdowns, and they have all the equipment and information they need
in place. This suggests that the productivity difference between the teams is not directly
related to working methods or tools.

When probing the data to explain the performance difference between the industri-
al teams, the following turned out as obvious differences between the teams:

• Team maturity: Team #2 considered itself to be struggling with effective working
methods and getting their tasks done where as Team #1 considered their team
members to be clear on their responsibilities and that most of their time was spent
on task accomplishing.

• The amount and appreciation of generalists in the team: When asked What are the
key roles in your team? Team #1 seems to think generalist as a key role but Team
#2 as a role of very low importance. The results of this for overall team perfor-
mance would be interesting point of study and may very well explain some of the
performance issues Team #2 is having.

• Resources spent on improving: As shown in Table 8, Team #2 considers itself to
be continually improving where as the Team #1 considers itself much more stable
on the improving aspect. The expected result was the opposite but this can be ex-
plained by Team #1 spending more of its resources on tasks at hand and less on
performance improvement than Team #2.

The study also revealed an interesting issue with the potential of Team #1 to further
improve the team performance. Both industrial teams get paid the same way, as a
monthly salary. However, it is interesting to note in Table 8 that the newly formed
Team #2 is much more satisfied in the way they are paid than the older Team #1.
Also, as shown in Table 8, the members of Team #2 considered their setup considera-
bly closer to entrepreneurial startup than did the members of Team #1, and for the
question People have time to think (no excessive stress, pressure) Team #2 was far on
the strongly agreeing side when Team #1 was at the neutral-disagree side.

The teams did answer similarly however when asked Does the team want to excel?
Answers for both teams were at the tip of the positive end of the scale.

Those answers were somewhat as expected. The newly formed Team #2 can improve
its results, since there is much that a new team can do to improve its performance via
common working methods, tools and other group formation related matters. With Team
#1, much of that “natural growth” and easy steps of improvement are already done and
improving the team performance even further takes considerable effort.

Table 8. Industrial cases response highlights (c.f., Table 3)

How do you rate the following
aspects?

Strong

Agree Agree Neutral

Disag-

ree

Strong

Disagr

I don't

know

The way we get paid encourages our team to perform at a high level.

Team #1 (6 respondents / 6) 0 1 1 3 1 0

Team #2 (3 respondents / 4) 1 2 0 0 0 0

Our team is like a "startup" (entrepreneurial), i.e., continually improving.

Team #1 (6 respondents / 6) 0 0 5 1 0 0

Team #2 (3 respondents / 4) 1 1 1 0 0 0

88 P. Kettunen and S. Moilanen

Team #1 seems to be busy at delivering products at its current velocity. Even
though many team members would like to spend time on improving the team perfor-
mance, it seems not to be feasible to do so. The surrounding organization is already
satisfied with the team’s performance, so resources are not allocated at improving the
delivery performance even further and the team’s performance is not related to per-
sonal incentives.

All this seems to add up to the fact, that the team doesn’t have time to work on
performance issues and none of the team members care to make the time as little per-
sonal gain is to be expected from introducing new ideas for delivery performance
improvements. In other words, the team seems to be so busy with its day-to-day work,
that there is no more room for the naturally occurring self-management that creates
the “heroes” who take charge and push the change for the next rational thing to do.

If it is a conscious managerial decision to concentrate the efforts of Team #1 only
towards the deliveries, it is a perfectly valid one. However, it may be a matter of cir-
cumstances that Team #1 has “drifted” to the state of no improvement. Then it is very
important for the team as well as for the managers of the team to awake to the situation.

4.3 Comparisons

Based on the different cases described in Sect. 4.1 and 4.2, the following illustrates
how the Instrument results can be used to compare team performances. Moreover, it is
possible to contrast different teams for understanding their influence factors.

Table 9 presents the distributions of how the case team members perceived their
level of maturity (as defined in [23]). In addition for the industrial team (#2), this is
contrasted with how their home-office management sees the offshore team.

Table 9. Case teams’ perceived maturity distributions (c.f., Table 3)

The best description of your team's level
of development is:

Student
Team

Team #1 Team #2 Team #2
by
Mgmt

Team members are clear on their… 80% 67% 0% 50%

Effective working procedures have been … 20% 33% 67% 50%

Currently struggling with how we can best … 0% 0% 33% 0%

Just getting started 0% 0% 0% 0%

It was interesting to note how different teams approached the concept of team maturi-

ty. As shown in Table 9, the students were by far the most confident on their team’s
working methods even though they had been together for the least time of all the teams
studied. This is an important point to notice as the Instrument is context-free in this
aspect. Since the study was conducted at the very end of the project course, it is justifia-
ble the students felt that their team was at its peak level of maturity.

The younger industrial team (#2) was filled with experienced developers used to
projects lasting longer than the student project, so naturally their answers took place
at the “less mature” end of the scale. The more mature industrial team’s (#1) answers

 Sensing High-Performing Software Teams 89

located at the higher end of the scale. Given that an average ITCO-project lasts for
about 12 months, the answers of the industrial teams were as expected. It was also
notable that no team considered themselves as a “Just getting started”.

In Table 9, an interesting point to notice is that the home-office management of the
Indian team (#2) considered the team much more mature than the team considered
itself. This could very well be a source of trouble in the future. Overall this question
illustrates clearly how the Instrument is context-free, i.e., it can be applied to different
(organizational, cultural, team life-cycle) contexts. However, once the tool has been
set up, the context becomes fixed and consideration must be taken when comparing
different results gathered from different contexts. This is directly related to the diffi-
culty of measuring productivity in the software development industry, as the produc-
tivity context for one team can be completely different from for another team.

5 Discussion

The aim of this investigation is to build holistic understanding of the key elements of
high-performing software development teams (Sect. 5.1). The design rationale is to
cover broadly all main areas (Sect. 5.2). They can then be analyzed further (Sect. 5.3).

5.1 Analysis and Evaluation

The aim of the Instrument is to be able to spot critical areas. Some initial validation of
the coverage and strength are the case study insights (Sect. 4.1-4.2). However, more
situational validation is needed (conclusion validity).

Self-monitoring has certain inherent risks (e.g., trust). A limitation of our approach
is that the Instrument comprises a predefined set of general question items (construct
validity). Some circumstantial performance-influencing factors may thus be missing
(internal validity). Moreover, since team performance is relative to the context, the
results may not be directly applicable in different organizations (external validity).

While software teams benefit from Agile practices in particular, longer-term organ-
ization-wide performance improvements require typically more, such as CMMI [22].
The underlying tenet of our Instrument approach is to highlight such key areas by
taking a holistic view, not limiting to software engineering.

5.2 Implications

All things considered, our team self-monitoring approach with the Instrument serves
the following overall organizational purposes and goals: The team becomes aware of
its performance, the high performance influences can be understood systematically,
and the organizational context elements surrounding ”A-teams” become evident. Of-
ten there are noticeable gaps between how the software team perceived its perfor-
mance and how the external management judges it. Such potential gaps should openly
be recognized, and this is where the Instrument brings probes [13], [19].

The Instrument can be exercised for comparing different teams like shown in
Table 9. Such indicative benchmarking could strive the teams for even higher perfor-
mance [25]. However, care should be taken not to misuse such performance analysis

90 P. Kettunen and S. Moilanen

(perceived vs. actual). In particular, cultural differences may affect the way team
members feel free to analyze their performance objectively and openly like suggested
by our international industrial cases (Sect. 4.2). However, it should be useful to identi-
fy such teams for organizational development and coaching purposes [26].

This leads to the question of what team performance measures are appropriate in
different organizational contexts, and whether it is sensible to compare (benchmark)
different teams between organizations [6]. By and large, software development lacks
comparable market/industry standard levels of excellence, which could readily be
used as yardsticks and objectives. Nevertheless, the Instrument survey profiles of the
teams could possibly be compared and contrasted with respect to the following points:
Do different high-performing teams feature equally? Do high-performing teams have
compatible organizational surroundings (context)? Moreover, by repeating the sur-
veys (even daily), timeline trends could be illuminated.

5.3 Future Work

In general, we aim for a systematized framework for instantiating and adjusting the
generic instrument base designed here. The industrial case teams commented the full
survey taking too long to complete and that some answer ranges were not in line with
the questions. This brings up the idea of scaling it down making a lightweight version
for rapid use. In addition, the terminology tailoring could be guided.

A further idea is to consider using the Instrument for team training purposes for
example by Agile Coaches. A way to utilize the Instrument is to use it as an aid for
depicting the desired future state of the would-be high-performing teams. This could
be especially useful in the start-up phase of new software teams. Similar considera-
tions may be applicable while transferring or reorganizing [27].

6 Conclusions

The insight here is that once the team members have at least once before experienced
a truly high-performing team, they can recognize one although it may be hard to arti-
culate it. Moreover, such perceptions can help in pointing out lower performance in
practicing teams. This is the premise of our instrument for self-monitoring presented
in this paper. It concentrates more on the social and organizational aspects of high-
performing software teams.

In conclusion, like demonstrated by the case studies presented in Sect. 4, our ap-
proach offers the following prospects and possibilities:

• observing practicing high-performing software teams in action
• proposing practical guidelines for “creating” and improving such teams
• building emerging theory on high performance of software development teams
• expanding from single teams to high-performing software enterprises (scaling).

Acknowledgments. This work was supported by the Finnish National Technology
Agency TEKES (SCABO project no. 40498/10).

 Sensing High-Performing Software Teams 91

References

1. Cooper, R.G., Edgett, S.J.: Lean, Rapid, and Profitable New Product Development. Book-
Surge Publishing, North Charleston (2005)

2. Winter, M., Szczepanek, T.: Projects and programmes as value creation processes: A new
perspective and some practical implications. International Journal of Project Manage-
ment 26, 95–103 (2008)

3. Ancona, D., Bresman, H.: X-Teams: How to Build Teams that Lead, Innovate, and Suc-
ceed. Harvard Business School Press, Boston (2007)

4. Ginac, F.P.: Creating High Performance Software Development Teams. Prentice Hall, Up-
per Saddle River (2000)

5. Sawyer, S.: Effects of intra-group conflict on packaged software development team per-
formance. Information Systems Journal 11, 155–178 (2001)

6. Kasunic, M.: A Data Specification for Software Project Performance Measures: Results of
a Collaboration on Performance Measurement. Technical report TR-012, CMU/SEI (2008)

7. Symons, C.: Software Industry Performance: What You Measure Is What You Get. IEEE
Software 27(6), 66–72 (2010)

8. Lu, Y., Xiang, C., Wang, B., Wang, X.: What affects information systems development
team performance? An exploratory study from the perspective of combined socio-technical
theory and coordination theory. Computers in Human Behavior 27, 811–822 (2011)

9. Laanti, M., Kettunen, P.: Cost Modeling Agile Software Development. International
Transactions on Systems and Applications 1(2), 175–179 (2006)

10. Allee, V.: Value Network Analysis and value conversion of tangible and intangible assets.
Journal of Intellectual Capital 9(1), 5–24 (2008)

11. Buschmann, F.: Value-Focused System Quality. IEEE Software 27(6), 84–86 (2010)
12. Patanakul, P., Shenhar, A.: Exploring the Concept of Value Creation in Program Planning

and Systems Engineering Processes. Systems Engineering 13(4), 340–352 (2009)
13. Mossman, A.: Creating value: a sufficient way to eliminate waste in lean design and lean

production. Lean Construction Journal, 13–23 (2009)
14. Staron, M., Meding, W., Karlsson, G.: Developing measurement systems: an industrial

case study. J. Softw. Maint. Evol.: Res. Pract. 23, 89–107 (2010)
15. Agresti, W.W.: Lightweight Software Metrics: The P10 Framework. IT Pro., 12–16 (Sep-

tember-October 2006)
16. Osterwalder, A., Pigneur, Y.: Business Model Generation: A Handbook for Visionaries,

Game Changers, and Challengers. John Wiley & Sons, New York (2010)
17. Curtis, B., Krasner, H., Iscoe, N.: A Field Study of the Software Design Process for Large

Systems. Communications of the ACM 31(11), 1268–1287 (1988)
18. Ropponen, J., Lyytinen, K.: Components of Software Development Risk: How to Address

Them? A Project Manager Survey. IEEE Trans. Software Engineering 26(2), 98–111
(2000)

19. Allen, M.: From Substandard to Successful Software. CrossTalk 22(4), 29–32 (2009)
20. Liu, Y., Keller, R.T., Shih, H.-A.: The impact of team-member exchange, differentiation,

team commitment, and knowledge sharing on R&D project team performance. R&D Man-
agement 41(3), 274–287 (2011)

21. Pfeffer, J.: Seven Practices of Successful Organizations. California Management Re-
view 40(2), 96–124 (1998)

22. Glazer, H.: Love and Marriage: CMMI and Agile Need Each Other. CrossTalk 23(1), 29–
34 (2010)

92 P. Kettunen and S. Moilanen

23. Yeatts, D.E., Hyten, C.: High-performing self-managed work teams: a comparison of
theory to practice. SAGE Publications, Thousand Oaks (1998)

24. Oza, V., Kettunen, P., Abrahamsson, P., Münch, J.: Attaining High-performing Software
Teams with Agile and Lean Practices: An Empirical Case Study. In: 1st International
Software Technology Exchange Workshop, Swedsoft (2011)

25. Höfner, G., Mani, V.S., Nambiar, R., Apte, M.: Fostering a high-performance culture in
offshore software engineering teams using balanced scorecards and project scorecards. In:
6th IEEE International Conference on Global Software Engineering, pp. 35–39 (2011)

26. Sudhakar, G.P.: Understanding Software Development Team Performance. Scientific An-
nals of the ”Alexandru Ioan Cuza” Univesity of Iasi, Economic Sciences Section (2010)

27. Smite, D., Wohlin, C.: Risk Identification in Software Product Transfers. In: 1st Interna-
tional Software Technology Exchange Workshop, Swedsoft (2011)

C. Wohlin (Ed.): XP 2012, LNBIP 111, pp. 93–107, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Release Readiness Indicator for Mature Agile
and Lean Software Development Projects

Miroslaw Staron1, Wilhelm Meding2, and Klas Palm2

1 Software Centre, Computer Science and Engineering
Chalmers / University of Gothenburg

SE-412 96 Gothenburg, Sweden
miroslaw.staron@ituniv.se

2 Ericsson Metrics Team, Ericsson Product Development
Ericsson AB, Sweden

{wilhelm.meding,klas.palm}@ericsson.com

Abstract. Large companies like Ericsson increasingly often adopt the principles
of Agile and Lean software development and develop large software products in
iterative manner – in order to quickly respond to customer needs. In this paper
we present the main indicator which is sufficient for a mature software
development organization in order to predict the time in weeks to release the
product. In our research project we collaborated closely with a large
Agile+Lean software development project at Ericsson in Sweden. This large
and mature software development project and organization has found this main
indicator – release readiness – to be so important that it was used as a key
performance indicator and is used in controlling the development of the product
and improving organizational performance. The indicator was developed and
validated in an action research project at one of the units of Ericsson AB in
Sweden in one of its largest projects.

1 Introduction

Continuous delivery of customer value is crucial for software development companies
operating in the market-driven context. This way of operating in the global market
today is supported by the Agile and Lean ways-of-working with short feedback loops,
empowered teams and customer involvement [1, 2]. Such concepts as customer value,
customer pull and continuous quality assessment from Lean have taken the
development organization to a mature stage with teams that are aware of the goals of
the organization as well as the technical details of the products. The Agile software
development methods are used for both small projects and for large development
projects with over 100 designers [3-6] (and this trend increases). The methods are
used also in the context of product maintenance, thus making the work of
maintenance personnel more efficient [7].

As Agile methods are increasingly often used to address the challenges of
continuous deployment, customer responsiveness and empowering teams for
development of large software products, new challenges occur which relate to the

94 M. Staron, W. Meding, and K. Palm

parallel development of features of large software products. Multiple teams which
develop code for distinct features on a single component might not be fully aware
about the changes/development of the code which is done by other parallel teams
working on the same component [8]. Since the teams are often independent
(empowered, i.e. self-directed, self-selected, and self-managed), there is a need for
automated support in maintaining the quality of the product [4, 9].

Due to the dynamics of multiple teams, parallel features and self-
management/organization, the main area where the support is needed is release
readiness – the area is important for project managers, product owners and for the
release responsible that need predictions on when the product is going to be ready to
be deployed to customer environments – also known as “definition of done”. The
release readiness is a concrete realization of the definition of done in the context of
mature Agile and Lean organization.

However, metrics in this area cannot be done manually as the manual work
significantly increases the costs of the metric and decreases its quality over time.
Automation is the key aspect in the monitoring of these two areas as “measurement”
is not an activity that contributed directly to the product development, but is very
important for it. The efficiency of automated measurement outweighs costs of using
the measures and makes the measures transparent for the whole development
organization – from designers to unit managers.

Based on the above we addressed the following research question in this paper:

Which are the main indicators in the area of release readiness?

The research question was addressed through an action research project conducted
collaboratively between University of Gothenburg and Ericsson AB in Sweden. The
action research project took place in a product development organization which
develops a mature core network telecommunication product handling mobile data
traffic. The results of the project showed one single indicator which was introduced
and validated in a large software development project at that unit and is under
implementation at another large software development project.

The remaining of the paper is structured as follows: section 2 presents the most
relevant related work. Section 3 describes the organizational context of our work and
outlines the design and operation of our action research study. Section 4 presents the
indicator and section 5 presents the results from the evaluation of the indicator in the
organization. Finally section 6 contains the conclusions from our work.

2 Related Work

The work presented in this paper is the continuation of the work on monitoring
bottlenecks in large software development organizations which was conducted in the
same unit of Ericsson [4]. In the previous work we developed and introduced a
method based on automated indicators for monitoring the capacity and bottlenecks in
the work flow in the large software development project – i.e. the process/project
view of software development in that organization. In our current work we addressed

Release Readiness Indicator for Mature Agile and Lean Software Development Projects 95

the product view by developing and introducing the quality readiness indicator – i.e.
indicator showing when the product is ready to be released/deployed to the customers.

Measuring business value is one of the main measures which should be used by
Agile teams and companies [10]. The awareness of how the team contributes to the
value is an important driver for the success of Agile projects. What the authors of the
cited article postulate is similar to what we intend to achieve – provide key
information without introducing manual work overhead. The focus of the cited article
is on the customer value, whereas the focus of this article is on quality risk monitoring
and predicting delivery time – both articles complement each other.

Another important measure which is claimed to stimulate agility in software
development teams is the RTF (Running Tested Features) measure, popular in XP
[11]. The metric combines three important concepts – the feature (i.e. a piece of code
useful for the end-user, not a small increment that is not visible to the end user),
execution (i.e. adding the value to the product through shipping the features to the
customer), and the testing process (i.e. the quality of the feature – not only should it
be execute, but also be of sufficient quality). This measure stimulates smart
continuous deployment strategies and is intended to capture similar aspects as our
release readiness indicator although in smaller projects.

A set of other metrics useful in the context of continuous deployment can be found
in the work of Fritz [12] in the context of market driven software development
organization. The metrics presented by Fritz measure such aspects as continuous
integration pace or the pace of delivery of features to the customers. These metrics
complement the two indicators presented in this paper with a different perspective
important for product management.

The delivery strategy which is an extension of the concept of continuous
deployment has been found as one of the three key aspects important for Agile
software development organizations in a survey of 109 companies by Chow and Cao
[13]. The indicator presented in this paper is a means of supporting organizations in
their transition towards achieving efficient delivery processes which are in line with
the delivery strategy prioritized by practitioners in this survey.

3 Organizational Context

The indicator presented in this paper was based on a study of one unit of Ericsson with
approximately 700 persons. The unit was located at multiple sites with over 30
development teams working in a software development project of ca. 150 persons. The
unit was mature in both the software development paradigm (streamline development)
and the measurement processes (adoption of ISO/IEC 15939, [14]). This ISO standard is
one of the key aspects of our work since it defines one of the main concepts – indicator
– used in the organization. The other key concepts are information need and
stakeholder. The notion of indicators has shown itself to be one of the key aspects of the
successful adoption of such “metrics” as quality readiness [14].

96 M. Staron, W. Meding, and K. Palm

3.1 ISO/IEC 15939

The current measurement processes in the organization are based on ISO/IEC
15939:2007 standard, which is a normative specification for the processes used to
define, collect, and analyze quantitative data in software projects or organizations.
The central role in the standard is played by the information product which is a set of
one or more indicators with their associated interpretations that address the
information need [15]. The information need is an insight necessary for a stakeholder
to manage objectives, goals, risks, and problems observed in the measured objects
[15]. These measured objects can be entities like projects, organizations, software
products, etc. characterized by a set of attributes. We use the following definitions
from ISO/IEC 15939:2007 [16]:

• Base measure – measure defined in terms of an attribute and the method for
quantifying it. This definition is based on the definition of base quantity from.

• Derived measure – measure that is defined as a function of two or more values of
base measures. This definition is based on the definition of derived quantity from.

• Indicator – measure that provides an estimate or evaluation of specified attributes
derived from a model with respect to defined information needs.

• Decision criteria – thresholds, targets, or patterns used to determine the need for
action or further investigation, or to describe the level of confidence in a given
result.

• Information product – one or more indicators and their associated interpretations
that address an information need.

• Measurement method – logical sequence or operations, described generically,
used in quantifying an attribute with respect to a specified scale.

• Measurement function – algorithm or calculation performed to combine two or
more base measures.

• Attribute – property or characteristics of an entity that can be distinguished
quantitatively or qualitatively by human or automated means.

• Entity – object that is to be characterized by measuring its attributes.
• Measurement process – process for establishing, planning, performing and

evaluating measurement within an overall project, enterprise or organizational
measurement structure.

• Measurement instrument – a procedure to assign a value to a base measure.

The view on measures presented in ISO/IEC 15939 is consistent with other
engineering disciplines, the standard states that it is based on ISO/IEC 15288:2007
(Software and Systems engineering - Measurement Processes) [17], ISO/IEC 14598-
1:1999 (Information technology - Software product evaluation) [18], ISO/IEC 9126-x
[19], ISO/IEC 25000 series of standards, or International vocabulary of basic and
general terms in metrology (VIM) [16]. Conceptually, the elements (different kinds of
measures) which are used in the measurement process can be presented as in Figure 1.

Release Readiness Indicator for Mature Agile and Lean Software Development Projects 97

Fig. 1. Measurement system information model (from ISO/IEC 15939:2007)

One of the key factors for every measurement system is that it has to satisfy an
information need of a stakeholder – i.e. there needs to be a person/organization
who/which is dependent on the information that the measurement system provides.
Typical stakeholders are project managers, organization managers, architects, product
managers, customer representatives, and similar [20-23]. The indicator is intended to
provide information along with interpretation, which implies the existence of an
analysis model that eases the interpretation. The analysis model is a set of decision
criteria used when assessing the value of an indicator – e.g. describing at which value
of the indicator we e.g. set a red flag signaling problems in the measured object. The
derived measures (based on the definition of the derived quantity) and base measures
(based on the definition of the base quantity) are used to provide the information for
calculating the value of the indicator.

3.2 Streamline Development, SD

The context of the case study was one of the software development organizations of
Ericsson AB. The organization and the project within Ericsson, which we worked
closely with, developed large products for the mobile telephony network. The size of
the organization was several hundred engineers and the size of the projects can be up
to 200 engineers. Projects were executed according to the principles of Agile software

Attribute Attribute

Measurement
method

Measurement
method

Base

Measure

Base

Measure

Measurement
Function

Derived

Measure

Derived

Measure

(analysis)
Model

Indicator

Interpretation

Information

Product

Raw data Raw data

ISO/IEC
15939:2007
information
model

Stakeholder with Information
Need

98 M. Staron, W. Meding, and K. Palm

development and Lean production system referred to as Streamline development (SD)
within Ericsson [24]. In short, the principles of Streamline development postulated
that software development was organized as a series of activities centered around the
product and executed mainly in cross-functional teams responsible for the design,
implementation and partially testing of their part of the product (e.g. a feature) [25].
This was found to be rather typical process design that addressed market pull in Lean
development [26].

A noteworthy fact observed in our study was that in SD the releases of new software
versions to customers were frequent and that there was always a release-ready version
of the system: referred to as Latest System Version, LSV [25]. It is the defects existing
(and known) in that version of the system that were of interest for the project and
product management. Ideally the number of known defects in that version of the system
should be 0, however, during the development (i.e. between releases) this number might
vary as there might be defects which are discovered during the process of integrating
new features (parts of code) into the latest system version. In practice there are almost
always defects being fixed as integration and testing is continuous. However, at release
times the main branch was frozen with the purpose of removing all defects – this
removal was the responsibility of the release project, which was a project aimed at
packaging the product and preparing it for the market availability.

An overview of the development process with the list of metrics used by the
relevant stakeholders is presented in Figure 2.

Fig. 2. Overview of the development process and measures collected

In Figure 2 the process started with the customer requirements being captured by
Product Management (PM) who divided the requirements into functional and non-
functional requirements for customer features (FR-F and NFR-F). These requirements

Release Readiness Indicator for Mature Agile and Lean Software Development Projects 99

were broken down into functional and non-functional requirements for product
features (FR-P and NFR-P). These requirements were then packaged into work
packages (WP) for design teams (DM). The requirements were also traced to test
cases (TC) which verified that the requirements were implemented and that they were
implemented with the appropriate quality (e.g. performance, security). All
requirements were traced to test cases monitored by the quality manager at the
organization (through automated measurement systems like [4, 27]). Defects could
appear when the test cases were executed and these defects (Defect) were fed back to
the design teams which had to remove them from the code before the product was
released.

The main criterion for releasing the product was that all functionality was in place.
This meant that all requirements were linked to test cases, all test cases were executed
and all test cases were passed. This also meant that all defects were removed since
discovering of a defect equals to failure of a test case which entails the need to re-
execute the test case.

Because the above mechanisms were in place, including automated measurement
systems for monitoring that all requirements were traced to test cases and that all
defects are reported, only one indicator was needed and sufficient to check whether
the product is ready to be released – RR (Release Readiness).

3.3 Research Method and Study Design

In this research we chose action research as the most appropriate approach [28]. We
worked in close collaboration with product development projects at one of the units of
Ericsson and provided measures (indicators) based on the requests from the
organization. In this section we present in detail the design of cycles which focused
on the development of the RR indicator and its evaluation. The summary of all action
research cycles is as follows:

1. Initial cycle: elicitation of “theory” behind the measures. In this cycle we planned
how understand/verify which factors are important for the measures – e.g. filtering
criteria for test cases or types of changes. The whole research team was involved
(the research team is described in the next paragraphs).

2. Initial development cycle: development of the measures and application of them on
historical data. In this cycle we developed and validated the measures on the
historical data available at the company. The university researcher was involved in
development and the research team was involved in the feedback loop.

3. Deployment cycle: the developed indicators were deployed in the project with ca.
100 developers working on a large telecom network product. The university
researcher was involved in data collection and monitoring of the quality of the
data. The rest of the research team was involved in the monitoring of the situation
in the project and checking whether the indicators reflect the current situation in
the project.

4. Evaluation and Improvement cycle: the final cycle of the action research evaluated
the empirical validity of the indicators. The evaluation was done by measuring the

100 M. Staron, W. Meding, and K. Palm

correctness of the prediction. The whole research team was involved in the
evaluation cycle whereas the measurement team leader was involved in the
maintenance of the developed measurement system.

The sampling of the project was convenience sampling [29] – the research team was
part of this project and the development of the indicator was needed for that particular
development project.

Each cycle contained relevant roles, but the core research team consisted of:

• University researcher with background in software engineering and focus on
software metrics

• Metric team leader with the responsibility to develop, deploy and maintain
measurement systems in the company

• Quality manager with the responsibility for the quality in the project/product
• Test leader with the responsibility for test analysis and execution for the

project/product where the measures were deployed.
• Deputy project manager with the responsibility to monitor delivery of features

in the project/product where the measures were deployed.

The additional involved roles (in particular cycles) were team managers, line/section
managers, and technical responsible for software components in the system.

Development of Indicators (cycle 2). For the development of the quality readiness
indicator (QR) the research team started with an initial set of predictor variables per
week, including:

• #1 executed test cases
• # planned test cases (per priority and type)
• # failed test cases
• # passed test cases
• # defects discovered per test case
• # defects discovered
• # defects to be removed (defect backlog in Figure 2)
• # defects removed
• # defects verified
• # features integrated into the main code branch (work package integration pace

in Figure 2)
• # empty integration spots (LSV usage Figure 2)

According to the ISO 15939 Measurement Information Model we characterized these
predictor variables as base measures with precisely defined measurement methods for
data collection. Statistical correlation analyses were performed and they were
complemented with expert opinion on whether there exist causal relationships in the
data (a method which was previously shown to be successful in that organization [5]).
In particular the research team was interested in such aspects as for example if more

1 Reads: “number of“.

Release Readiness Indicator for Mature Agile and Lean Software Development Projects 101

features are integrated, will that cause higher defect reporting rate after a number of
weeks in a project? These aspects could be captured by statistical analyses of
correlations or time series, but it was important for the team to capture the empirical
properties of the development process together with the statistical dependencies in the
data.

The goal of the research team was to find the minimal set of predictor variables
that would not be correlated to each other and that would reflect the empirical
properties of agile software development at Ericsson. This resulted in the set of 4
predictor variables (discussed in section 4).

Evaluation (Cycle 4). The evaluation cycle was planned to take place in a longer
period of time after the measures were deployed into the organization. The evaluation
was planned to be a number of meetings during a period of 6 months with the key
stakeholders for the indicators – each meeting was a short interview. Two main
questions were posed in the interviews:

• The indicator shows that the product will be ready to release in week <X>. Does
it seem “right” according to your professional opinion and to your judgment of
the situation in the project?

• In case you see any discrepancies, could you briefly describe why (according to
you) this is the case?

The goal of these questions was to focus the stakeholder to reason about the empirical
assessment of the same situation which was calculated by the indicators.

4 Release Readiness (RR) Indicator

In this section we present the release readiness indicator and its visualization at the
company.

4.1 Time to Release

The product release-quality readiness indicator predicted when the product under
development would have the sufficient quality for being released. The quality was
measured in a number of open defect reports for the product – meaning that the right
quality for releasing of the product was 0 defects. The 0-defect criterion was
sufficient only when another criterion was fulfilled – all functionality was tested and
all test cases were passed. This means that in practice the indicator of quality-release
readiness had to take into account both.

In the case of the studied organization at Ericsson we introduced the following
indicator (RR):

)
)____(__

#
(

ratepasstestrateexecutiontestrateremovaldefect

defects
RR

−−
=

102 M. Staron, W. Meding, and K. Palm

Where #defects was the number of open defects for the product2,
defect_removal_rate was the average number of removed defects during the last 4
weeks, test_execution_rate was the average number of test cases executed during the
last 4 weaks and test_pass_rate was the average number of test cases passed during
the last 4 weaks. The 4 weeks period was chosed based on statistical and empirical
analyses. These analyses showed that based on the length of the test cycles and the
defect removal activities the 4 week period was the most logical length for this
prediction and provided the most accurate results.

The indicator predicted in which week the release would be possible given the
number of known defects now, how many defects were removed on average in the
last few (4) weeks, and how many defects were expected to be discovered given the
number of test cases being executed3.

The fact that the prediction formula contains only the test execution and pass rate
instead of test planning was dictated by the fact that the organization was mature and
its processes used continuous testing (i.e. running tests continuously and observing
the number of passed test cases) rather than pre-planned testing sequences executed
once in the project. The nature of the stakeholder for this indicator (project manager)
and the auxiliary metrics of traceability of requirements to test cases made it possible
to use this prediction formula with confidence that no vital information was omitted.

Figure 3 presents how the indicator was spread in the organization on a daily basis
– in a form of MS Vista Sidebar gadget.

Fig. 3. MS Vista Gadget with predicted week of release

The content of the gadget shows 2 weeks for the project to obtain the release-
quality (weeks to release). The presentation is simple and succinct giving the
stakeholder (the manager of the studied product development project) the necessary
information. The gadget also contains information about the validity of the measure –
Information Quality which abbreviates to IQ, [30].

2 This measurement included all defects that need to be removed from the product before the

release.
3 One could notice that there is no measure like ”#of test cases planned” in the formula. This is

intentional as the rationale behind this indicator is that the test cases are to be executed until
all defects are fixed – that in particular means that “failing” test cases are executed until they
are passed.

Release Readiness Indicator fo

5 Results from Ev

The results from the evalu
product development proje
that the organization effecti
that the quality manager for

5.1 Evaluation Results

Figure 4 presents an excerp
confidentiality of the data
Relative Error) as it would
However, we can show diff
the diagram in Figure 4,
organization [31]. We follo
on a bi-weekly basis. The
between week number 8 in
with the stakeholder, the st
to particular events in the p
of defect removal activitie
change of the indicator in
defect removal has increase
in week 4, 5, and 6; increas
in week 9. The stakeholder
prediction since the situatio
fact the stakeholder expecte

During the evaluation o
following quote which sum

or Mature Agile and Lean Software Development Projects

valuation

uation of our indicator were collected from the mentio
ect at Ericsson. The introduction of the indicator show
ively adopted it as a KPI – Key Performance Indicator
r the project used it to replace other activities in his work

pt from a chart where the release week is shown. Due to
a we cannot provide accuracy metric like MRE (M
reveal the length of the development cycle for the produ
ferences in the prediction in the absolute terms – shown

alike the evaluation of other predictions in the sa
owed up the indicator in a discussion with the stakehol
chart shows that the indicator predicted the release to
2011 and week number 14 in 2011. During the discuss

akeholder was able to relate to the differences and poin
project which slowed the testing process, increased the p
s or reallocated resources. Each of the events caused
the correct direction, for example: decreasing the pace
ed the predicted release week when making the predict
ing the test execution rate has decreased the time to rele
r perceived it to be normal that the indicator changes

on in the project changed during the evaluation period –
ed the indicator to show this trend.

Fig. 4. Predicted release week

f the indicator with the quality manager, we obtained
mmarizes his perception of the indicator:

103

ned
wed
and
k.

the
Mean

uct.
n in
ame
lder
o be
sion
nted
pace

the
e of
tion
ease
the

– in

the

104 M. Staron, W. Meding, and K. Palm

“Thanks to this indicator I do not have to ‘walk the floor’ anymore and ask about the
status. I have everything I need in one number and I can monitor that all necessary
assumptions hold”

By saying “monitor that all necessary assumptions hold” the quality manager
expressed his confidence in the indicator which was presented to him together with
the associated statistics about such assumptions as:

• Traceability between test cases to requirements
• Traceability between test cases to work packages
• Traceability between work packages and requirements
• Code coverage by test cases

These assumptions reflect the ways of working in the project as presented earlier in
Figure 2 in section 3.2. The measures which measured to what degree the assumptions
hold for the indicator provided the complete picture for the quality manager and
allowed him to assure the quality of information provided to the stakeholder – the
project manager.

The release-readiness indicator and the metrics controlling the assumptions were
fully automated – i.e. the process of collecting, analyzing and presenting information
was executed entirely without the manual work. The data was collected from the defect
database and the database containing log of executed, planned, passed and failed test
cases. The full automation was appreciated and contributed to maintaining the high
quality of the presented indicator [30] – and in this way making it trustworthy in the
organization to such extent as being adopted as Key Performance Indicator (KPI). The
stakeholder’s evaluation of this indicator can be summarized in the following quote:
“This measurement combines all the information I want to know in order to understand
the quality of the product as well as the status and progress of the development
program, into one understandable and very clear KPI”. The adoption of this indicator
as one of the few KPI in the organization showed that the organization (with up to 200
engineers) perceived this indicator to be trustworthy enough to be used in observing
organization’s capability to continuously deliver the customer value.

5.2 Validity Evaluation

As every empirical study, our study has certain threats to validity, which are
considered using the categories presented by Wohlin [32].

The main external validity threat was the fact that we evaluated the indicator at a
single company. We minimized this threat by using the same indicator in another
development project at Ericsson with similar results (although the evaluation was not
as strict as the one presented in this paper). Based on the literature review and the
presence of such metrics as feature backlog or RTF (Running Tested Features) in
smaller Agile development projects, we believe that our results are applicable to other
large software development projects where the assumptions described in section 3 are
met. The main conclusion validity threat was the lack of statistical power in the
evaluation of our indicator – we evaluated it in a single project and due to the

Release Readiness Indicator for Mature Agile and Lean Software Development Projects 105

confidentiality of the data we cannot reveal the accuracy of the indicator (as this
would reveal the length of the development cycle in the organization). In order to
minimize this threat we performed the empirical validation of the indicator in a series
of meetings with the stakeholder. The main construct validity of our study is the fact
that the organization’s high maturity meant that the dependencies between metrics
(such as traceability of requirements to test cases) were implicitly embedded into the
formula. In order to minimize the threat we monitored these dependencies in
supporting measurement systems in the organization.

6 Conclusions

In this paper we addressed the problem of supporting mature Agile and Lean software
development organizations in effective and efficient prediction when the software
product is ready to be released. The problem is evident in larger software
development organizations with multiple parallel empowered teams contributing to
the development of a single product. Before this indicator was introduced, the
organization had worked in a release-planning matter with standard release planning.
After the indicator was introduced the organization could stimulate its change towards
a direction of being able to continuously release the current version of its large
software product without the risk of jeopardizing the operations of the customer – i.e.
at the high quality level.

The indicator presented in this paper was supported with a number of metrics that
controlled the assumptions of the indicator. All measurement systems collecting the
information were automated and therefore the metrics and the indicators were very
much appreciated and spread throughout the company. Based on our experiences
from the introduction of the presented indicator we could recommend companies
interested in introducing this indicator to put special attention to deliver to the
stakeholder the metrics for controlling the assumptions as part of the information
quality evaluation.

Acknowledgements. This research has been carried out in the Software Centre,
University of Gothenburg, and Ericsson AB.

References

[1] Poppendieck, M., Poppendieck, T.: Implementing Lean Software Development: From
Concept to Cash. Addison-Wesley, Boston (2007)

[2] Salo, O., Abrahamsson, P.: Agile methods in European embedded software development
organisations: a survey on the actual use and usefulness of Extreme Programming and
Scrum. IET Software 2, 58–64 (2008)

[3] Korhonen, K.: Exploring Defect Data, Quality and Engagement during Agile
Transformation at a Large Multisite Organization. In: Agile Processes in Software
Engineering and Extreme Programming, pp. 88–102 (2010)

[4] Staron, M., Meding, W.: Monitoring Bottlenecks in Agile and Lean Software
Development Projects – A Method and Its Industrial Use. In: Product-Focused Software
Process Improvement, Tore Cane, Italy, pp. 3–16 (2011)

106 M. Staron, W. Meding, and K. Palm

[5] Staron, M., Meding, W., Söderqvist, B.: A method for forecasting defect backlog in large
streamline software development projects and its industrial evaluation. Information and
Software Technology 52, 1069–1079 (2010)

[6] Gabrielle, B.: Rolling Out Agile in a Large Enterprise. In: Hawaii International
Conference on System Sciences, pp. 462–462 (2008)

[7] Korhonen, K.: Adopting Agile Practices in Teams with No Direct Programming
Responsibility – A Case Study. In: Product-Focused Software Process Improvement, pp.
30–43 (2011)

[8] Ball, T., Nagappan, N.: Use of relative code churn measures to predict system defect
density. In: 27th International Conference on Software Engineering, St. Louis, MO,
USA, pp. 284–292 (2005)

[9] Staron, M., Meding, W.: Defect Inflow Prediction in Large Software Projects. e-
Informatica Software Engineering Journal 4, 1–23 (2010)

[10] Hartmann, D., Dymond, R.: Appropriate agile measurement: using metrics and
diagnostics to deliver business value. In: Agile Conference, pp. 126–134 (2006)

[11] Jeffries, R.: A Metric Leading to Agility (2004),
http://xprogramming.com/xpmag/jatRtsMetric

[12] Fitz, T.: Continuous Deployment at IMVU: Doing the impossible fifty times a day
(2009),
http://timothyfitz.wordpress.com/2009/02/10/continuous-
deployment-at-imvu-doing-the-impossible-fifty-times-a-day/

[13] Chow, T., Cao, D.-B.: A survey study of critical success factors in agile software
projects. Journal of Systems and Software 81, 961–971 (2008)

[14] Staron, M., Meding, W., Karlsson, G., Nilsson, C.: Developing measurement systems: an
industrial case study. Journal of Software Maintenance and Evolution: Research and
Practice, n/a–n/a (2010)

[15] International Standard Organization and International Electrotechnical Commission.
Software engineering – Software measurement process. ISO/IEC, Geneva (2002)

[16] International Bureau of Weights and Measures. In: International vocabulary of basic and
general terms in metrology = Vocabulaire international des termes fondamentaux et
généraux de métrologie, 2nd edn., International Organization for Standardization,
Genève (1993)

[17] International Standard Organization. Systems engineering – System life cycle processes
15288:2002 (2002)

[18] International Standard Organization. Information technology – Software product
evaluation 14598-1:1999 (1999)

[19] International Standard Organization and International Electrotechnical Commission.
ISO/IEC 9126 - Software engineering – Product quality Part: 1 Quality model.
International Standard Organization / International Electrotechnical Commission, Geneva
(2001)

[20] Umarji, M., Emurian, H.: Acceptance Issues in Metrics Program Implementation, pp. 20–
20 (2005)

[21] Gopal, A., Mukhopadhyay, T., Krishnan, M.S.: The impact of institutional forces on
software metrics programs. IEEE Transactions on Software Engineering 31, 679–694
(2005)

[22] Umarji, M., Emurian, H.: Acceptance issues in metrics program implementation, p. 10
(2005)

[23] Kilpi, T.: Implementing a Software Metrics Program at Nokia. IEEE Software 18, 72–77
(2001)

[24] Tomaszewski, P., Berander, P., Damm, L.-O.: From Traditional to Streamline
Development - Opportunities and Challenges. Software Process Improvement and
Practice, 1–20 (2007)

Release Readiness Indicator for Mature Agile and Lean Software Development Projects 107

[25] Akg, A.E., Keskin, H., Byrne, J., Imamoglu, S.Z.: Antecedents and consequences of team
potency in software development projects. Inf. Manage. 44, 646–656 (2007)

[26] Liker, J.K.: The Toyota way: 14 management principles from the world’s greatest
manufacturer. McGraw-Hill, New York (2004)

[27] Staron, M., Meding, W., Nilsson, C.: A Framework for Developing Measurement
Systems and Its Industrial Evaluation. Information and Software Technology 51, 721–
737 (2008)

[28] Susman, G.I., Evered, R.D.: An Assessment of the Scientific Merits of Action Research.
Administrative Science Quarterly 23, 582–603 (1978)

[29] Yin, R.K.: Case Study Research: Design and Methods. SAGE Publications Inc. (2008)
[30] Staron, M., Meding, W.: Ensuring Reliability of Information Provided by Measurement

Systems. In: Software Process and Product Measurement, pp. 1–16 (2009)
[31] Staron, M., Meding, W.: Short-term Defect Inflow Prediction in Large Software Project -

An Initial Evaluation. In: International Conference on Empirical Assessment in Software
Engineering (EASE), Keele, UK (2007)

[32] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslèn, A.:
Experimentation in Software Engineering: An Introduction. Kluwer Academic Publisher,
Boston MA (2000)

A Palette of Lean Indicators to Detect Waste

in Software Maintenance: A Case Study

Kai Petersen

Blekinge Institute of Technology, 37140 Karlskrona, Sweden
Ericsson AB, Box 518, SE-371 23, Karlskrona, Sweden
kai.petersen@bth.se, kai.petersen@ericsson.com

Abstract. Software maintenance is a key activity in software develop-
ment requiring considerable effort and time. Hence, it is important to
increase the efficiency and effectiveness of the maintenance process. The
objective of this article is to introduce a palette of indicators to assess
the maintenance process based on indicators lean indicators. Four indi-
cators aiming at detecting waste have been proposed, namely the inflow
of maintenance requests, the flow of maintenance requests through the
maintenance process with regard to continuous value creation and high
throughput, the analysis of lead-times, and the analysis of workload. The
research method is case study in which the proposed indicators were ap-
plied on the maintenance process of one case company (Ericsson AB).

Keywords: Lean Measurement, Software Maintenance.

1 Introduction

Lean principles have revolutionized the way products are built by identifying
waste and providing analysis tools for the production process to make it more
efficient and effective [8]. Efficiency is defined as “the degree of the economy
with which the process consumes resources, especially time and money” [14].
Effectiveness refers to “how well the process actually accomplishes its intended
purposes” [14]. With respect to the seven wastes of software development [13]
efficiency is strongly related to partially done work, handovers, motion and task
switching, delays and defects, while effectiveness is related to extra features, ex-
tra processes, defects, and over-production. To leverage on the benefits achieved
in lean product development (high quality, quick response to customer needs,
just in time development with little work in progress) lean has become popular
for software development as well [13]. To facilitate lean principles in product de-
velopment and manufacturing indicators and measures were an important tool
for continuous improvements. In particular, the indicators and measures provide
the opportunity to detect whether or not a lean process has been achieved.

Development activities are distinguished into initial software development
where the software product is specified, implemented and tested and thereafter
delivered to the market, and software maintenance [1]. According to the IEEE
Standard for Software Maintenance (IEEE 1219) the maintenance of software

C. Wohlin (Ed.): XP 2012, LNBIP 111, pp. 108–122, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Lean Measurement to Detect Waste in Software Maintenance 109

is defined as ”the modification of a software product after delivery to correct
faults, to improve performance or other attributes, or to adapt the product to
a modified environment.” Software maintenance is a large part of the software
development effort, with effort for maintenance being in the range of 50-80 % of
all software development effort [17]. Given these observations software mainte-
nance is an essential activity in software development and hence improvements
in this activity have the potential to increase the efficiency and effectiveness
of an overall software development organization. Therefore, the identification of
information products focusing on software maintenance was considered an im-
portant effort in the investigated company. An information product consists of a
palette of indicators and their associated interpretation. An indicator itself is a
measure (or set of measures) associated with an analytical model. Without the
analytical model, the measure is simply a variable with an assigned value (see
ISO/IEC-15939/2002).

This paper proposes a palette of indicators for the maintenance process to
support the identification of inefficiencies and effectiveness in software mainte-
nance, and through that help to understand whether the organization adheres
to lean principles. For that purpose, indicators and measures are mapped to lean
principles to assess the process. A combined analysis of the indicators led to the
identification of inefficiencies and ineffectiveness.

The remainder of the paper is structured as follows: Section 2 presents related
work. Section 3 illustrates the indicators and how to conduct a combined analysis
of them. Section 4 presents the research method, followed by the results (Section
5) and their discussion (Section 6). Section 7 concludes the paper.

2 Related Work

The related work focuses on indicators and measurements proposed in the main-
tenance context to assess maintenance performance.

Alam et al. [2] proposed measuring progress by recording code changes and
studying the time dependencies between them. Progress tracking is done in anal-
ogy to construction where a building is continuously built based on dependent
changes, and is an essential part of agile and lean methods [9]. This allows an-
alyzing whether new MRs (Maintenance Requests) are built upon new changes
done recently, or old changes, or whether they are independent. One limitation
of the method is that it does not show the progress with regard to the backlog
of changes to be implemented.

Schneidewind [16] proposed to measure mean time between failure when test-
ing maintenance enhancements, defect density with regard to changed lines of
code, and the overall test time needed.

Henry et al. [5] divided software maintenance into different abstraction levels
(activities, tasks, and procedures), where procedures are a refinement of tasks,
and tasks are a refinement of activities. At the different abstraction levels mea-
sures were proposed on process (effort, completion rate of tasks, defects cor-
rected per week) and product level (number of upgrades implemented, impact of

110 K. Petersen

upgrade changes, number of Lines of Code (LOC) added). However, no ways of
information visualization and analysis have been proposed.

Sneed and Brössler [18] proposed a set of measurements to evaluate software
maintenance performance, namely productivity (size*change rate/maintenance
effort), defect density (defects per lines of code), document degradation, and
user perception.

Rombach and Ulery [15] used the Goal Question Metric paradigm (from
hereon referred to as GQM) to identify goals, questions and metrics for ana-
lyzing the maintenance process. The GQM approach led collecting he number of
changed module per maintenance task, effort (staff-hours) needed for isolating
what to change (i.e. impact analysis), effort (staff-hours) for change implemen-
tation, and portion of reused documentation per maintenance task.

Stark [19] provided an experience report on the introduction of a measurement
program for software maintenance. The measures were also derived based on
the GQM paradigm. GQM led to three categories of measures, namely measures
regarding customer satisfaction, costs of the maintenance program, and schedule.

Chan [3] raises the importance of addressing MRs quickly, i.e. with short lead-
time. To capture the lead-time he distinguishes queuing/processing time (actual
work is done) and service time (waiting).

A common indicator in lean is related to flow (cumulative flow diagrams),
which allow to detect partially done work, bottlenecks, and discontinuous work-
flows as well as large hand-overs [12]. In connection to flow lean also stresses
to limit work in process in relation to capacity by measuring inventory of work
[11]. Furthermore, six sigma is used in lean to detect unstable situations (high
variances) in process performance, e.g. with respect to built in quality [6].

The following observations regarding the related work can be made: Often the
literature reported measures that are relevant for lean software development, but
they are reported in isolation. For example, it is important to distinguish waiting
time and service time (cf. [3]) as waiting time is often much easier to improve
than actual work practices. In addition, the measures do not make explicit use
of visualizations in form of indicators. These are addressed in this paper by
combining different indicators used in the lean context for a holistic analysis.

3 Palette of Lean Indicators for Software Maintenance

Each of the indicators used in the palette is later on combined to conduct an
analysis with respect to inefficiency and ineffectiveness. First, the indicators are
presented, followed by a discussion of how a combined analysis is done.

– The number of maintenance requests provides an indication of built in qual-
ity, as with build in quality the effort of keeping software operational (preven-
tive maintenance) or making it work again (corrective maintenance) would
be lower. Expressing MRs with a process control chart [6] allows seeing the
stability in the inflow with respect to the mean, e.g. increases of the num-
ber of critical requests should be investigated. Furthermore, the number of

Lean Measurement to Detect Waste in Software Maintenance 111

revisions indicates how many attempts are needed to implement the main-
tenance request.

– The cumulative number of work items in different phases over time are plot-
ted in form of a cumulative flow diagram [12]. The diagram is capable of
revealing bottlenecks, and large variances in the flow (e.g. large handovers
of artifacts between phases). Removing the bottlenecks allows addressing
delays and with that reduces the amount of partially done work in progress.

– The principle “deliver as fast as possible” is assessed through measuring the
duration of how long work needs to be completed. The lead-times often have
large variances. Some phases have longer lead-times than others and should
be comparable with regard the distribution of lead-time. Hence, box-plots
are proposed as an approach for visualization.

– Respect people is related to setting reasonable goals and expectations, which
includes to avoid overload situations and keeping the workload below capac-
ity as this supports a smooth workflow [11]. Hence, the workload should be
plotted over time with control charts. The charts will reveal peaks in work-
load, and allow for a discussion about reasonable workload with developers.

The following sections describe the plaette indicators in further detail.

3.1 Maintenance Inflow (M1)

The maintenance inflow shows the incoming requests from customers for needed
maintenance activities. As pointed out earlier, the MRs can be either corrective
or preventive. The inflow should be measured as number of new MRs per time
unit (e.g. week). The measure is visualized through a control chart, showing the
time on the x-axis and the number of new MRs on the y-axis (also referred to
as a time-series). Marking the mean value, and plotting upper and lower control
limits to determine whether the process is under control could extend the control
chart.

3.2 Visualization through Cumulative Flow Diagrams (M2)

A fictional example of the construction of a cumulative flow diagram is shown
in Figure 1. The x-axis shows the time-line and the y-axis shows the cumulative
number of of MRs. The top-line (marked as inflow by the arrow) is the total
number of MRs in development. In week 9 this was around 160, while it increased
to around 220 in week 20. Even though the flow is shown we propose to treat it
as a separate indicator (M1) and with that analyze the stability of the process
with regard to the mean value and the deviations from the mean through upper
control and lower control limits, which is not possible within the flow diagram.

The second line from the top represents the handover from phase A to B, the
following line from phase B to C, and so forth. The vertical distance between
two lines shows the work in process for a phase at a specific point in time. For
example, in week 15 there are about 50 MRs in Phase B.

112 K. Petersen

678

988

978

�
�

��

�
�� :;<=>��

:;<=>��

:;<=>��

�?@ABC

8

78

688

D 68 66 69 6E 6F 67 6G 6H 6I 6D 98

��
�
��
��
�	

�
�
��

��
��
��

��
��

�

��
�

���
���

���

:;<=>��

:;<=>��

:;<=>�J

K	<?LBM>N

K�OBNP�Q?�:NBR>==

Fig. 1. Cumulative Flow Diagram

From the flow diagram a number of interpretations can be made with regard
to continuous flow and throughput.

Continuous flow: Observing the figure it is visible that the flow of handovers
from phase C to D is discontinuous. There is a long time of inactivity (week
9-13) and then suddenly a large handover occurs. That means, for example, that
work done in week 9 and 10 can receive feedback from the following phase 5
weeks later. A long time of inactivity might lead to an overload situation when
the work has to be done at once, and at the same time has potential of causing
quality problems. For example, if phase D would be an integration testing phase
with long times of inactivity a big-bang integration would become necessary.

Throughput: The throughput is characterized by the rate in which MRs are
handed over from one phase to the other. As can be seen the handovers from
phase A to B had less throughput from week 9 to 13 than the handovers from
phase B to C, while the handovers became very similar after week 14. The
throughput allows to make two observations: If the handover in a phase i is
higher than in the phase i+1 this indicates a bottleneck as the work tasks come
in with a higher pace than they go out. The other way around would indicate
that the phase is running out of work, which in the case of maintenance could
be good as it means free resources for other tasks in new software development.

The analysis can be done for single phases (e.g. analysis of MRs), or to get
a picture of the overall performance of maintenance from start to finish, the
incoming rate could be compared with the rate in which MRs are finalized.

3.3 Lead-Time (M3)

In order to measure the lead-times we propose to follow MRs through the main-
tenance flow by assigning states to them and using the measure time in state
(TIS) [7] based on the transition date (TD) for checkpoint q and work-item i,
or the current date (CD).

TISqi =

{
TD(q+1)i − TDqi if TD(q+1)i exists
CD − TDqi otherwise

Lean Measurement to Detect Waste in Software Maintenance 113

When collecting the lead-time measures the mean values and variances should be
analyzed and compared with each other. For example, one should compare the
lead-time of critical and less critical MRs. Furthermore, distinguishing between
processing time (value adding) and waiting time (non-value adding) allows to
focus improvement efforts, e.g. when using value stream mapping to identify
reasons and improvements for long waiting times. To visualize the differences we
propose the use of box-plots showing the spread of the data.

3.4 Workload (M4)

The workload analysis is interesting with regard to the workload in value-adding
activities over time. For that purpose the work in progress measured as the num-
ber of MRs (if possible, weighted by their effort) at a specific point in time should
be plotted and analyzed using statistical process control. The control chart then
should be used to have a dialog with the developers executing the activities to
determine which work level is considered an overload situation. In order to be
able to properly analyze the workload the effort for implementing MRs should
be estimated based on their complexity, as a complex problem is likely to be
causing more workload than an easy to fix problem. Categorizing requests in
very complex, complex, and less complex, can for example, do this. Complexity
means different things for different companies, and hence each company has to
define its own thresholds for the categorization.

3.5 Combined Analysis

Looking at each individual measure only provides a limited view on the efficiency
and effectiveness. For example, only looking at efficiency and identifying that the
organization is highly efficient with respect to fixing maintenance requests might
not be of use if primarily maintenance requests with low priority are fixed (lack
of effectiveness). Hence, when conducting a combined analysis we recommend
that observations from each of the indicators be captured in a matrix showing
efficiency and effectiveness/ strengths and weaknesses.

4 Research Method

The research method used is an industrial case study [21], the study allowing to
understand a specific situation (the use of lean software maintenance) in a given
context. The goal of the study is to: Analyze Lean Software Maintenance for the
purpose of evaluation, with respect to the ability to show the presence/absence
of inefficiencies/ ineffectiveness, from the point of view of the researcher, in the
context of large scale software development dealing with maintenance.

4.1 Case and Context

The case being studied is a development site of Ericsson AB, a Fortune 500 com-
pany working with large-scale software development producing telecommunica-
tion and multimedia applications that is ISO 9001:2000 certified. It is important

114 K. Petersen

to describe different dimensions of the context (e.g. product, market, process)
in order to judge the outcome of a study and to be able to generalize the results
[10]. The company is dealing with business critical applications with MRs on
performance and reliability. The products are developed for a market, meaning
that it is not developed for one specific customer (bespoke development). In-
stead, the product is offered to a market with many potential customers, not
knowing exactly in advance who will actually buy the product. The studied
product contains more than 850,000 lines of code. Testing on unit level is done
with JUnit and for integration and regression testing with TTCN3 (Tree and
Tabular Combined Notation, programming language for testing) [20].

4.2 Unit of Analysis

The unit of analysis is the maintenance process used for maintaining one large sys-
tem developed at the case company. Figure 2 provides an overview of the main-
tenance process. The process starts with a customer raising a MR, which then
is registered in the system by support. In the next step the MR is moved to the
appropriate design organization. The next step is the analysis of the MR to un-
derstand it. In addition test cases are designed and executed to verify the MR.
If the MR is understood and the test cases are clear it goes to the design, imple-
mentation, and test phase. If the MR is not clear, further analysis is necessary.
In the analysis the design organization is working together with support receiving
the information about the problem from the customer, and with experts knowing
the system very well who serve as a consultant. When the MR is understood it is
designed and implemented. The implementation of the MR needs to be verified,
the verification being confirmed in a so-called technical answer, confirming that
the solution is complete, coding standards are met, and that regression tests have
been passed. If this is not the case theMR re-enters the analysis and/ or design and
implementation stage. If the MR has passed it goes either to a correction package,
which is further tested as a whole and then released with a number of correction,
or in some cases it can go directly to the customer.

Based on the process it is tracked in which state/activity a MR resides. A
loop is modeled in the tool for the situation where the technical answer does
not accept the solution and thus the analysis and/ or implementation has to
be redone. The number of iterations is numbered as revisions, revision A being
through in first iteration, B being through in second iteration, and so forth.

4.3 Proposition

A proposition is similar to a hypotheses and states the expected outcome that is
either supported or contradicted by the findings of the study [21]. The following
proposition is stated for this study: Indicators allow to capture the presence or
absence of inefficiencies and ineffectiveness in a real world maintenance process.

Lean Measurement to Detect Waste in Software Maintenance 115

TC
design

Support

System Expert

Design
Maintenance

Register MR
Design

MR-Analyze
TC
design MR-Answer

Register MR
Support Information Input

Consultant

CP1
YesTestcase

design

Design,
impl. and

Checkpoint 1
- MR understood?
- Test cases clear?

Testcase
e ecdesign

Correction Package

System Test

Design
y design

No

design
p

test MR

TTCN3
Packaging of
Corrections and their
Test

Checkpoint 2
- Solution complete?
- Coding standards?
- Reg. test base passed?

CP2
No

exec.

Yes (finalize
in correction
package)

Yes (finalize
in customer
handover)

Fig. 2. Maintenance Process

4.4 Data Collection and Analysis

The data is collected through a company proprietary tool for keeping track of
MRs that were internally or externally reported. That is, the incoming MRs are
registered with their source and it is also visible which person entered them into
the system. The time of entry is kept track of. In addition, the process steps are
represented as states mirroring the process shown in Figure 2. This allows for the
drawing of the cumulative flow diagrams and the measurement of the lead-times
as defined by the lean software maintenance solution presented in this paper.
Furthermore, the MRs are classified (weighted) based on their importance into
as A, B, and C. The information about the classification has been obtained by
a person having worked in testing and with experience in maintenance.

A: MRs that concern performance or stability of the system are mostly clas-
sified as A. They are important and most of the time they are not easy to fix. B:
Problems in this category often concern the robustness of the system. In some
cases robustness problems are also classified as A. C: These problems are less
severe and more easy to fix, such as fixes in single functions. Depending on how
intensively the function is used by the user, or how hard the functional MR is
to correct the MR can in cases also be classified as B.

The analysis was done by applying the indicators and conduct an analysis
to evaluate whether the solution is able to show the presence or absence of
inefficiencies and ineffectiveness. The interpretation was done by the researcher
who has good knowledge at the company’s processes as he is embedded in the
company. In addition, the results have been presented to a fellow practitioner
to check whether the practitioner agrees with the observations made by the
researcher to avoid bias.

4.5 Validity Threats

Correctness of data: One threat to validity when working with industrial data
is the correctness and the completeness of the data. In the case of the company

116 K. Petersen

the tracking system for MRs has been used for almost 15 years and hence the
practitioners are very familiar with using the system in their work, which reduces
the threat of incorrect data. When changing the state of a MR the system
automatically keeps track of the dates, which avoids that dates could be wrongly
entered. Hence, the correctness and completeness of the data is given.

Company specific maintenance process: The maintenance process of the
company is specific for the company. When applying the indicator in differ-
ent companies the states would have to be changed depending on the steps in
the maintenance process.

One company: When studying a company the results are true in the
context of the company. In order to aid in the generalization of the results the
context has been described. That is, the results were observed in a market-driven
context working with large-scale software development.

Interpretation by the researcher: Another threat to validity is the correct interpre-
tation of the data by the researcher. This threat was reduced (but not mitigated)
as the researcher is embedded in the company and hence has knowledge about
the processes. Presenting the results of the analysis to a practitioner working with
testing and maintenance at the company reduced a bias in the analysis.

5 Results

5.1 Indicator for Maintenance Inflow (M1)

Figure 3 shows the inflow of A, B, and C MRs over time. It is clearly visible
that B-MRs occur most often and continuously with a few peaks. A-MRs appear
rather randomly and are spread around, which would be expected and desired
as if many would be reported at once a disturbance of the regular development
process could be expected. C-MRs are less frequent. Overall, the result shows
that it would be worthwhile to investigate a reason for the peaks when many MRs
are reported together. Otherwise, no significant inefficiencies or a particularly
poor performance with regard to A-MRs can be observed.

�?@ABC�� �?@ABC�� �?@ABC��

Fig. 3. MR Inflow for A, B, and C MRs (x-axis shows time and y-axis number of MRs)

Lean Measurement to Detect Waste in Software Maintenance 117

5.2 Indicator for Flow of MRs (M2)

Figure 4 provides an overview of the indicators for MR flow.
Figure 4(a) shows the flow of A-MRs. It is apparent that the actual analysis

and implementation appears to be a bottleneck in the beginning, leading to
a high amount of the MRs being proposed as a solution at once. In addition
the area of MRs waiting for finalization shows that improvements would be
beneficial, as for a long time none of the accepted MRs are finalized and thus
become available for the customer or for inclusion in a correction package.

MRs wait for reg des. MRs waiting for start anal. MRs in analysis and impl.
Solution Proposed MR Answer waiting for Acc. MR waiting for finalization
Finished MRs

(a) A MRs

MRs wait for reg des. MRs waiting for start anal. MRs in analysis and impl.
Solution Proposed MR Answer waiting for Acc. MR waiting for finalization
Finished MRs

(b) B MRs

MRs wait for reg des. MRs waiting for start anal. MRs in analysis and impl.
Solution Proposed MR Answer waiting for Acc. MR waiting for finalization
Finished MRs

(c) C MRs

�

�
HS

�
ES

�
HGS

�
6FS

� � � �

(d) Revisions

Fig. 4. Overview of Indicators for Constraint Identification - for Figures (a), (b), and
(c) - x-axis shows time, y-axis number of items in different states

The maintenance flow for B-MRs (Figure 4(b)) shows that MRs are analyzed
and implemented continuously. The same observation as for the A-MRs can be
made here as well, with the difference that the B-MRs are finalized more contin-
uously. However, it is apparent that the rate in which MRs (solution proposals)
are accepted is much higher than the rate of finalization.

For the C-MRs a similar observation can be made, i.e. the MRs should be
finalized in a more continuous manner.

With regard to differences between the A, B, and C MRs it should be noted
that it is particularly important to avoid the queuing of MRs waiting for final-
ization in the A-case. The B-case appears to be more continuous, but still shows
a bottleneck in this phase.

118 K. Petersen

With regard to the iterations needed to successfully pass a MR through inter-
nal quality assurance Figure 4(d) illustrates that over 70 % of the MRs make it
the first time (as A means when MR is implemented, then it passes the test im-
mediately, without having to go through testing again). 14% have to go through
testing twice to pass (B-revision), and only 7% have to go through test three
times, and 3% four times. Overall, the analysis shows that no specific inefficien-
cies can be detected here. Of course, it would be worthwhile to investigate the
reasons of why some MRs require several revisions (e.g. MRs related to revision
C/ D).

5.3 Lead-Time Measurement (M3)

Figure 5 shows the lead-time of how long MRs reside in the different states,
namely MR waiting for registration in design (S01), MR waiting for the analysis
to start (S02), MR in analysis and implementation processing (S03), MR waiting
for an answer acknowledging the solution (S04), and MR waiting for finalization
(either as a direct delivery to the customer or the packaging into a maintenance
request) (S05). The total lead-time is shown as well.

�����
���	

	����
���������������
������������������

�
�
��
�

Fig. 5. Leadtime

Comparing A, B, and C MRs it is apparent that A and B MRs have a high
overlap of the plots, and that the median values are similar. One could say that
the lead-time should be the shortest for A-MRs. However, as noted before A-
MRs are hard to fix and often rooted in performance problems, thus the similar
lead-time in the analysis and design phase could be justified. However, at the
same time it is striking that long lead-times are observed with regard to waiting
times, the most significant waiting times being in waiting for finalization. In fact,
the waiting times are very similar to the value adding time where the actual anal-
ysis and implementation takes place. As waiting time is often easier to improve
in comparison to productive time the figures show an improvement potential.

Lean Measurement to Detect Waste in Software Maintenance 119

The total lead-time shows that MRs classified as C have a similar median value
as MRs classified as A, but the upper quartile for the lead-time is much higher.
This is an indication for the lower priority of C MRs, and thus is an indication
that the company focuses on effectiveness in concentrating more on getting A
and B MRs to the market quickly.

5.4 Workload (M4)

The workload is illustrated as individual values and moving ranges in Figure 6.
The continuous middle line shows the mean value, while the dashed lines show
the upper and lower control limits being three standard deviations away from the
mean. If values are outside of the control limits the situation is considered out
of control. In this case a peak workload can be seen in the middle of the graph.
For management to gain a better understanding of the workload situation we
propose to use the chart and discuss the workload situation with the developers.
This allows determining how much workload should be in the process at any
given time to not overload the development organization.

� �����
�
��
�
�
��
�
��
�
�
��
��
��
�
�
��
��
�
�
��
�

��
�

� ���

�
�
�
��
�
��
�
�
�
�
��
�
�
��
��
��
�
�
��
��
�
�
��
�

��
�

�

��
�

�

�

��

��

�

���
��

�
��

Fig. 6. Workload

5.5 Combined Analysis

In order to get a holistic picture it is important to bring the results together,
as is done in Figure 7. The figure shows the presence of efficiencies and effec-
tiveness on the top, and the discovery of inefficiencies and ineffectiveness on
the bottom. Inefficiencies and Ineffectiveness are to be discovered as they show
the improvement potential in the process. The efficiency generally refers to the
performance that could be improved. The effectiveness shows strength and im-
provement potential with a focus on a comparative analysis between A, B, and
C MRs.

120 K. Petersen

TU
N>

?V
U;

>W
>?

U�
?U

Q<
A

��������������YZ=�;<M>�X><P�
A>M>A=�[Q?M>=UQV<U>\

�������������?@ABC���YZ=�
RA><NA]�ABC>N��U;<?�Q?@ABC���<?L�
��YZ=

� ��!�������YZ=�@Q?<AQ^>L�WBN>�
RB?UQ?_B_=A]̀ �?>>L�UB�@Q?<AQ^>���
YZ=�><NAQ>N� ��!�����YZ�C<QUQ?V�@BN�

@Q?<AQ^<UQB? Q= aBUUA>?>RP

� ��!�����:NBL_RUQM>�UQW>�[YZ�
Q?�<?<A]=Q=�<?L�QWXA>W>?U<UQB?\�
N>A<UQM>A]�RB?UQ?_B_=�CQU;�VBBL�
U;NB_V;X_Ub

�"� #
�$ ���
� TQWQA<N A><L

�"��#
�$%���
��
BBL�=QU_<UQB?�
U;<U�U;>�A><LcUQW>�a>@BN>�
<?<A]=Q=�Q=�=;BNUb

�W
XN

BM
>

:B
U>

?

�@@QRQ>?R] �@@>RUQM>?>==

@Q?<AQ^<UQB?�Q=�aBUUA>?>RP

�"��#
�$%���
��d<NV>�XBNUQB?�
B@�C<QUQ?V�UQW>�Q?�XNBR>==

�"��#
�$%���
��TQWQA<N�A><Lc
UQW>�[W>LQ<?\�@BN��`��`�<?L��b�
�eXA<?<UQB?�Q=�U;<U���YZ=�;<NL�
UB�@Qeb�	BC>M>Ǹ �=;BNU>N�UQW>��
@BN���CB_AL�a>�<�W>NQUb��&���������$��:><PcCBNPAB<L�

B_U=QL>�RB?UNBA�AQWQU=`�Q?M>=UQV<U>

Fig. 7. Efficiency and Effectiveness Analysis

6 Discussion

The proposition of the study stated that the proposed solution allows capturing
the presence or absence of inefficiencies and ineffectiveness with regard to the
questions raised and allow to discover the need for improvements. Confirming the
proposition indicates the usefulness of the method. In the results the method was
used to show the presence or absence of inefficiencies and ineffectiveness. The
following was identified:

With regard to the inflow of MRs into the development organization no strik-
ing quality issues have been identified with regard to A-MRs, they appeared
randomly and did not occur in large batches. With regard to B-MRs we have
shown that some peaks were visible, which should be investigated. Hence, the
method showed some potential inefficiency here. One way of investigating correc-
tive maintenance requests is to define a test strategy determining when a defect
should have been found (known as fault-slip through [4]). This allows knowing
how early the fault could have been detected.

The analysis of the flow showed that a bottleneck exists in finalizing the MRs
across all types of MRs (i.e. A, B, and C). Hence, the reason for this waiting
time should be identified with priority on the most critical MRs. It is interesting
to observe that the bottleneck appeared in a phase, which is regarded as waiting
time, which means that it could be more easily improved. No particular inef-
ficiencies were identified with regard to iterations needed to pass through the
internal quality control.

A comparison of the lead-times showed that more than 50 % of the lead-time
appears to be waiting time. This is an interesting result as waiting time can more
easily reduced than productive time, meaning that the measures show potential
for the organization to significantly shorten their response time to MRs.

It was also demonstrated that peaks of workload could be identified.
Overall, this analysis that the proposition stated for this study holds, i.e. lean

software maintenance is able to show the presence or absence of inefficiencies
and ineffectiveness.

Lean Measurement to Detect Waste in Software Maintenance 121

One important limitation of the indicators as implemented at the company is
the classification of A, B, and C MRs, which should clearly distinguish between
criticality (how important is the MR for the customer), but not size/complexity
(how hard is it to fix the MR). This information would help analyzing which MRs
should receive primary focus. For example, MRs with high priority that are easy
to fix should be realized first. No information about complexity and effort of
analysis and implementation was available. The information about complexity
is also of importance to determine the workload, which in the case study was
based on the number of MRs being in process at a specific point in time. The
control chart for M4 can be displayed more accurately if each MR is weighted
according to its estimated effort, effort correlating to size and complexity metrics.

7 Conclusion

In this paper a palette of indicators and their combined analysis has been pre-
sented. They support in the analysis of the software maintenance process with
respect to inefficiencies and ineffectiveness. The indicators were the inflow of
MRs, the visualization of the flow through the maintenance process with cu-
mulative flow diagrams, lead-time measures based on state diagrams, and the
analysis of workload peaks with process control charts.

The approach has been evaluated in an industrial case study at Ericsson AB.
The study demonstrated that the approach was able to identify the presence or
absence of inefficiencies and ineffectiveness in the maintenance process. We also
have shown that lean software maintenance requires the company to keep track
of few measurements, still allowing for a comprehensive analysis. In fact, the
system implemented at the company allowed the immediate application. The
prerequisites for implementing the approach are quite minimal, a company has
only to keep track of registration of MRs with time-stamps, state-changes of the
MRs in the process, and the criticality of the MRs have to be identified. Other
companies can implement the process by defining specific states and keeping
track of them. In the case of the studied company we were able to apply the
measurements out of the box based on the tracking system already existing.

In future work lean software maintenance needs to be investigated in different
industrial contexts.

References

1. April, A., Abran, A., Dumke, R.R.: Software maintenance productivity mea-
surement: how to assess the readiness of your organization. In: Proceedings of
the International Conference on Software Process and Product Measurement
(IWSM/Metrikon 2004), pp. 1–12 (2004)

2. Alam, O., Adams, B., Hassan, A.E.: Measuring the progress of projects using
the time dependence of code changes. In: Proceedings of the IEEE International
Conference on Software Maintenance (ICSM 2009), pp. 329–338 (2009)

122 K. Petersen

3. Chan, T.: Beyond productivity in software maintenance: Factors affecting lead time
in servicing users’ requests. In: Proceedings of the IEEE International Conference
on Software Maintenance (ICSM 2000), pp. 228–235 (2000)

4. Damm, L.-O., Lundberg, L., Wohlin, C.: Faults-slip-through - a concept for mea-
suring the efficiency of the test process. Software Process: Improvement and Prac-
tice 11(1), 47–59 (2006)

5. Henry, J., Blasewitz, R., Kettinger, D.: Defining and implementing a measurement-
based software process. Software Maintenance: Research and Practice 8, 79–100
(1996)

6. Lunau, S., John, A.: Six Sigma Lean toolset: executing improvement projects suc-
cessfully. Springer, Berlin (2008)

7. Miranda, E., Bourque, P.: Agile monitoring using the line of balance. Journal of
Systems and Software 83(7), 1205–1215 (2010)

8. Morgan, J.M., Liker, J.K.: The Toyota product development system: integrating
people, process, and technology. Productivity Press, New York (2006)

9. Petersen, K.: Is lean agile and agile lean? a comparison between two software devel-
opment paradigms. In: Dogru, A.H., Bicer, V. (eds.) Modern Software Engineering
Concepts and Practices: Advanced Approaches, pp. 19–46 (2010)

10. Petersen, K., Wohlin, C.: Context in industrial software engineering research. In:
Proceedings of the 3rd International Symposium on Empirical Software Engineer-
ing and Measurement (ESEM 2009), pp. 401–404 (2009)

11. Petersen, K., Wohlin, C.: Software process improvement through the lean measure-
ment (spi-leam) method. Journal of Systems and Software (2010) (in print)

12. Petersen, K., Wohlin, C.: Measuring the flow in lean software development. Softw.,
Pract. Exper. 41(9), 975–996 (2011)

13. Poppendieck, M., Poppendieck, T.: Lean software development: an agile toolkit.
Addison-Wesley, Boston (2003)

14. Roberts, L.: Process reengineering: the key to achieving breakthrough success.
ASQC Quality Press, Milwaukee (1994)

15. Rombach, H.D., Ulery, B.T.: Improving software maintenance through measure-
ment. Proceedings of the IEEE 77(4), 581–595 (1989)

16. Schneidewind, N.F.: Measuring and evaluating maintenance process using reliabil-
ity, risk, and test metrics. In: Proceedings of the IEEE International Conference
on Software Maintenance (ICSM 1997), pp. 232–242 (1997)

17. Scott, T., Farley, D.: Slashing software maintenance costs. Business Software Re-
view (1988)

18. Sneed, H.M.: Measuring the performance of a software maintenance department.
In: Proceedings of the First Euromicro Conference on Software Maintenance and
Reengineering (EUROMICRO 1997), pp. 119–127 (1997)

19. Stark, G.E.: Measurements for managing software maintenance. In: Proceedings
of the IEEE International Conference on Software Maintenance (ICSM 1996), pp.
152–162 (1996)

20. Willcock, C.: An introduction to TTCN-3. Wiley, Chichester (2011)
21. Yin, R.K.: Case Study Research: Design and Methods, 3rd edn. Applied Social

Research Methods Series, vol. 5. Prentice Hall (2002)

A Comparative Study of Scrum

and Kanban Approaches on a Real Case Study
Using Simulation

David J. Anderson1, Giulio Concas2, Maria Ilaria Lunesu2,
Michele Marchesi2, and Hongyu Zhang3

1 David J. Anderson&Associates inc., Seattle, WA, USA
2 DIEE - Department of Electrical and Electronic Engineering,
University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy
3 School of Software, Tsinghua University, Beijing, China

Abstract. We present the application of software process modeling and
simulation using an agent-based approach to a real case study of soft-
ware maintenance. The original process used PSP/TSP; it spent a large
amount of time estimating in advance maintenance requests, and needed
to be greatly improved. To this purpose, a Kanban system was success-
fully implemented, that demonstrated to be able to substantially improve
the process without giving up PSP/TSP. We customized the simulator
and, using input data with the same characteristics of the real ones, we
were able to obtain results very similar to that of the processes of the
case study, in particular of the original process. We also simulated, using
the same input data, the possible application of the Scrum process to
the same data, showing results comparable to the Kanban process.

Keywords: Scrum, Kanban, Lean software development, software pro-
cess simulation.

1 Introduction

Awell-defined software process can help a software organization achieve good and
consistent productivity, and is important for the organizations long-term success.
However, an ill-defined process could overburden developers (e.g., with unneces-
sary meetings and report requests) and reduce productivity. It is thus very impor-
tant to be able to understand if a software process is efficient and effective.

Many software processes have been adopted in industrial practices. For ex-
ample, the Personal Software Process (PSP) [4] proposed by SEI shows software
engineers how to plan, track and analyze their work. The Team Software Process
(TSP) [5] is built on the PSP and extends it to a software project team. Scrum
[13] is an iterative, incremental software process, which is by far the most popu-
lar Agile development process [15]. In recent years, the Lean-Kanban approach
[1] advocates to minimize the Work-In-Process (WIP, which is the number of
items that are worked on by the team at any given time) and to maximize the
value produced by an organization.

C. Wohlin (Ed.): XP 2012, LNBIP 111, pp. 123–137, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

124 D.J. Anderson et al.

Often the impact of a software process on software productivity is understood
through actual practices. The evaluation of the effectiveness of agile practices,
for instance, was performed by Maurer and Martel [6] and by Moser et al [9].
To be able to estimate the impact of processes before a project start, many
software process simulation methods haven been proposed over the years. For
example, Barghouti and Rosenblum [3] proposed methods for simulating and
analyzing software maintenance process. Otero et al. [10] use simulation to opti-
mize resource allocation and the training time required for engineers and other
personnel. Melis et al. [8] [7] proposed an event-driven simulator for Extreme
Programming practices such as test-driven programming and pair programming.
In a previous work [2], some of the authors presented an event-driven simulator
of the Kanban process and used it to study the dynamics of the process, and to
optimize its parameters.

To help better understand and compare the software processes including the
original PSP/TSP, Scrum, and Lean-Kanban processes, in this paper we propose
a software process simulator, which can describe the details of a software project
(e.g., features, activities, developers, etc.) and simulate how a process affects
the project. Our simulator is an event-driven, agent-based simulator. We use it
to simulate the PSP, the Scrum and the Lean-Kanban processes for software
maintenance activities.

The simulations are performed over a Microsoft case study, which is based on
four years of experiences of a Microsoft maintenance team in charge of developing
minor upgrades and fixing production bugs. Our simulation results show that
the Lean-Kanban approach can increase the efficiency of maintenance activities.
These results are consistent with the actual experiences of the Microsoft team.
After one year from the introduction of Lean-Kanban approach, this team was
able to finish the outstanding work and to reduce the average time needed to
complete a request. Our simulation work confirms that a WIP-limited approach
such as Lean-Kanban can indeed improve maintenance throughput and improve
work efficiency.

The paper is organized as follows: in Section 2, we introduce the case study
and the related processes (PSP, Scrum, and Kanban). In Section 3, we describe
our process simulator and its applications to the studied processes. We present
the Microsoft case study and show the simulation results in Section 4. Section 5
concludes the paper.

2 The Case-Study and the Related Processes

This paper analyzes a real software development case study, where a transition
was made from a traditional software engineering approach based on PSP to a
WIP-limited Lean approach. We use real data from this case study to assess the
software process simulator we developed, and as an input to a Scrum process
simulation, to verify the possible results of the use of Scrum in the process.

The case study regards a maintenance team of Microsoft, based in India and
in charge of developing minor upgrades and fixing production bugs for about 80

A Comparative Study of Scrum and Kanban 125

IT applications used by Microsoft staff throughout the world. It has already been
described by one of the authors in the chapter 4 of [1], because it was one of the
first applications of the WIP-limited approach described in that book, making
use of a virtual kanban system. Note that there was no kanban board, because
the board was not introduced until January 2007 in a different firm. The success
of the new process in terms of reduced delivery time and customers’ satisfaction
has been one of the main factors that raised interest on such Kanban approach
in software engineering.

The process is not about the development of a new software system, or about
substantial extensions to existing systems, but it deals with maintenance, the last
stage of the software life cycle. The importance of maintenance is well known,
because it usually counts for the most part of the system’s total cost – even more
than 70% [16]. The typical maintenance process deals with a stream of requests
that must be examined, estimated, accepted or rejected; the accepted requests
are implemented updating the code, and then verified through tests to assess
their effectiveness and the absence of unwanted side-effects.

In the following subsections we will briefly describe the original process used
by the team, the new Kanban-based process, and a possible Scrum process ap-
plied to the same team.

2.1 The Original Process

The maintenance service subject of our case study is Microsoft’s XIT Sustained
Engineering, composed of eight people, including a Project Manager (PM) lo-
cated in Seattle, and a local engineering manager with six engineers in India.
The service was divided in two teams – development team and testing team,
each composed of three members. The teams worked 12 months a year, with an
average of 22 working days per month. The PM was actually a middle-man. The
real business owners were in various Microsoft departments, and communicated
with the PM through four product managers, who had responsibility for business
cases, prioritization and budget control.

The maintenance requests arrived scattered in time, with a frequency of 20-25
per month. Each request passed through the following steps:

1. Initial estimate: this estimate was very accurate, and took about one day for
one developer and one tester. The estimate had to sent back to its business-
owner within 48 hours from its arrival.

2. Go-No go decision: the business owner had to decide whether to proceed
with the request or not. About 12-13 requests per month remained to be
processed, with an average effort of 11 man day of engineering.

3. Backlog: the accepted requests were put in a “backlog”, a queue of pri-
oritized requests, from which the developers extracted those they had to
process. Once a month, the PM met with the product managers and other
stakeholders to reprioritize the backlog.

4. Development phase (aka Coding): the development team worked on the
request, making the needed changes to the system involved. This phase

126 D.J. Anderson et al.

accounted on average for 65% of the total engineering effort. Developers
used TSP/PSP Software Engineering Institute processes, and were certified
CMMI level 5.

5. Testing phase: the test team worked on the request to verify the changes
made. This phase accounted on average for 35% of the total engineering
effort. Most requests passed the verification. A small percentage was sent
back to the development team for reworking. The test team had to work also
on another kind of item to test, known as production text change (PTC),
that required a formal test pass. PTCs tended to arrive in sporadic batches;
they did not take a long time, but lowered the availability of testers.

Despite the qualification of the teams, this process did not work well. The
throughput of completed requests was from 5 to 7 per month, averaging 6. This
meant that the backlog was growing of about 6 request per month. When the
team implemented the virtual kanban system in October 2004, the backlog had
more than 80 requests, and was growing. Even worse, the typical lead times,
from the arrival of a request to its completion, were of 125 to 155 days, a figure
deemed not acceptable by stakeholders.

2.2 The Lean-Kanban Process

To fix the performance problem of the team, a typical Lean approach was used.
First, the process policies were made explicit by mapping the sequence of activ-
ities through a value stream, in order to find where value was wasted. The main
sources of waste was identified in the estimation effort, that alone was consuming
around 33 percent of the total capacity, and sometimes even as much as 40 per-
cent. Another source of waste was the fact that these continuous interruptions
to make estimates, which were of higher priority, hindered development due to
a continuous switching of focus by developers and testers.

Starting from this analysis, a new process was devised, able to eliminate the
waste. The first change was to limit the work-in-progress and pull work from an
input queue as current work was completed. WIP in development was limited to
8 requests, as well as WIP in testing. These figures includes an input queue to
development and testing, and the requests actually under work. Then, the re-
quest estimation was completely dropped. The business owners had in exchange
the possibility to meet every week and chose the requests to replenish the input
queue of requests to develop. They were also offered a “guaranteed” delivery
time of 25 days from acceptance into the input queue to delivery.

In short, the new process was the following:

1. All incoming requests were put into an input backlog, with no estimation.
2. Every week the business-owners decided what request to put into the input

queue of development, respecting the limits.
3. The number of requests under work in both activities – development and

testing – were limited. In each activity, requests can be in the input queue,
under actual work, or be finished, waiting to be pulled to the next activity.

A Comparative Study of Scrum and Kanban 127

4. Developers pulled the request to work on from their input queue, and were
able to be very focused on a single request, or on very few. Finished requests
were put in “Done” status.

5. Testers pulled the “Done” requests into their input queue, respecting the
limits, and started working on them, again being focused on one request, or
on very few. Requests that finished testing were immediately delivered.

This approach was able to substantially increase the teams’ ability to perform
work, substantially lowering the lead time from commitment and meeting the
promised SLA response of 25 days or less for 98% of requests. Commitments
were not made until a request was pulled from the backlog into the input queue.

Further improvements were obtained by observing that most of the work was
spent in development, with testers having a lot of slack capacity. So, one tester
was moved to the development team, and the limit of development activity was
raised to 9. This further incremented the productivity. The team was able to
eliminate the backlog and to reduce to 14 days the average cycle time.

2.3 The Scrum Process

Scrum is by far the most popular Agile development methodology [15]. For this
reason we decided to evaluate the introduction of Scrum for managing the main-
tenance process. A hypothetical introduction of Scrum would be similar to the
Kanban approach, eliminating the estimation phase in exchange for a shortened
cycle time. A typical Scrum process would be:

1. Incoming requests are put into a backlog. The Product Managers would
act as the Product Owners, and the PM would act as the Scrum master
(albeit) remote from the engineering team. The requests are prioritized by
the Product Owners.

2. The development and testing proceeds through time-boxed iterations, called
Sprints.

3. At the beginning of each Sprint, the Product Owners chose a given number
of requests to implement in the Sprint. These requests are presented and
estimated by developers and testers in a Sprint Planning Meeting.

4. Development and testing is performed on these requests during the Sprint,
that is closed by a Sprint Review Meeting. The finished requests are deliv-
ered, while those still under work are passed to the next iteration.

Of course, we have no data about the adoption of Scrum for the maintenance
process. However, we may make some observations about it. The first is that,
even in the best case of a team able to self-organize giving more resources to
coding with respect to testing, the cycle time cannot go below the iteration
length. The meetings before and after each iteration would last at least one
day, so it is better to have iteration lengths not too short – say at least two or
three weeks – not to spend too much time in meetings. In general, we expect
Scrum to produce relatively similar results – maybe just a little less effective.

128 D.J. Anderson et al.

An important point is that Scrum was not a viable choice for ”political” reasons,
because it was considered non-compatible with PSP or TSP, or both. Note that
a recent work claims that Scrum and PSP can indeed be used together [12]. The
Kanban system was not seen in this way, because PSP was not replaced but
merely augmented with the Kanban system.

3 Agent-Based Process Modeling

To model the software maintenance process, we used an approach that can be
described as event-driven and agent-based. It is event-driven because the oper-
ation of the system is represented as a chronological sequence of events. Each
event occurs at an instant in time and marks a change of state in the system
[11]. It is also agent-based because it involves the representation or modeling of
many individuals who have autonomous behaviors (i.e., actions are not scripted
but agents respond to the simulated environment) [14]. In our case the agents
are the developers, but in a broad sense also the activities can be considered
as entities that can change their behavior depending on the environment. For
instance, the activities will not “accept” requests in excess of their limits, that
can vary with time. The basic entities of the proposed model, common to all
simulated processes, are the requests, the activities and the team members.

The maintenance request are atomic units of work. They are characterized by
an arrival time, expressed in days after the starting day of the simulation, an
effort that represents the man days needed to implement and test the request,
a priority in a given range, and a state, representing the completion state of
the request within each activity. The requests can be taken from real records,
or can be randomly generated. In this case study they are randomly generated,
using statistic parameters taken from the real data. All the requests have the
same priority, because requests were prioritized by deciding on which of them
the work had to be started, and not by assigning explicit priority values.

The activities represent the work to be done on the requests. They are ordered
and are characterized by a name, a limit on the number of requests that can be
handled in the activity at any given time, and the typical percentage of the
total estimated cost of a request that pertains to the activity. In our model the
activities are, in the order:

– Planning: it represents the choice of the maintenance requests on which
to start the work. This activity implies no engineering effort, and puts the
chosen issues in the “Input Queue” to the subsequent activity.

– Development: it studies the work to be done to the existing system (bug
fixing or enhancement), and performs this work by changing the source code
of the target system and producing a new executable. This activity accounts
for 65 percent of the total work on a request.

– Testing: the last activity, where the workmade is verified and accepted. If the
request does not pass the verification, it is be sent back to the Development
phase for reworking. The percentage of rejected requests was very low, also
due to the high qualification of the development team (CMMI level 5). In this

A Comparative Study of Scrum and Kanban 129

study we will not consider this case. This activity accounts for 35 percent of
the total work on a request.

The team members represent the engineers working on the requests in the var-
ious activities. Each member has a name, an availability state (available, non-
available), and a “skill”in each of the relevant activities. If the skill is equal to
one, it means that the team member will perform work in that activity accord-
ing to the declared effort – for instance, if the effort is one man day, she will
complete that effort in one man day. If the skill is lower than one, for instance
0.8, it means that a one-day effort will be completed in 1/0.8 = 1.25 days. A skill
lower than one can represent an actual impairment of the member, or the fact
that she has also other duties, and is not able to work full-time on the requests.
If the skill in an activity is zero, the member will not work in that activity.

In this case study the engineers can either be developers, with skill equal to
one in Coding, and equal to zero in Testing, or testers, with skill equal to zero
in Coding, and equal to 0.95 in Testing. This lower figure accounts for the time
devoted by testers to test PTC requests (see the previous section), that are not
considered as explicit requests in this study.

Each team member works on a single request (in a specific activity) until the
end of each day, or until the work on the request in that activity is completed.
When a new request is introduced, or work on a request ends, and in any case
at the beginning of a new day, the system looks for idle engineers, and tries to
assign them to requests available to be worked on in the activities they belong
to. A request is handled by only one team member at any given time.

An important concept related to the work on requests is that of penalty factor,
p. The penalty factor p is equal to one (no penalty) if the same team member, at
the beginning of a day, works on the same request s/he worked the day before.
If the member starts a new request, or changes request at the beginning of the
day, it is assumed that s/he will have to devote extra time to understand how
to work on the request. In this case, the value of p is greater than 1 (1.3 in our
case study), and the actual time needed to perform the work is divided by p. For
instance, if the effort needed to end work on a request in a given activity is t′

(man days), and the skill of the member is s, the actual time, t, needed to end

the work will be t = t
′
s
p . If the time extends over one day, it is truncated at the

end of the day. If the day after the member will work on the same request of the
day before, p will be set to one in the computation of the new residual time. The
probability q that a member choses the same request of the day before depends
on the number of available requests in the member’s activity, nr. In this case
study we, set this probability equal to one for all considered processes.

A more detailed description of the specific events of the simulation, and of the
general model can be found in [2], in the context of Kanban process simulation.

3.1 The Model of the Original Process

To model the original process, we introduced at the beginning of each day (event
“StartDay”) a check of the new requests. If one or more new requests arrived

130 D.J. Anderson et al.

that day, one developer and one tester are randomly chosen, and their avail-
ability is set to “false” until the end of the day. In this way, we modeled the
estimation work of accepted requests. We also modeled the estimation of not ac-
cepted requests by randomly blocking for a day a couple formed by a developer
and a tester, with probability equal to the arrival rate of not accepted requests
(about p = 0.45).

We set the maximum number of requests in the “Coding” phase at 50, not to
flood this activity with too many requests.

3.2 The Model of the Scrum Process

To model the Scrum process, we had to introduce in the simulator the concept of
iteration. To this purpose, we introduced the event “StartIteration”, that takes
place at the beginning of the day when the iteration starts. This event sets to
“false” the availability of all developers and testers for a given time TS , to model
the time needed to hold the review meeting of the previous Sprint, and the Sprint
planning meeting of the current one. TS was set to one day in the considered
case study.

Since the Scrum team is able to self-organize, and since the bottleneck of the
work flow is coding, the Scrum team should self-organize to accommodate this
situation. So, in the Scrum model we modeled all engineers both as developers
and testers, in practice merging the two teams into one. In this way, coding is
no longer the bottleneck, and the work is speeded up. This assumption gives a
significant advantage to Scrum over other processes.

At the beginning of each Sprint, a set of request is taken from the Backlog and
pulled into the Planning activity, to be further pulled to Coding. These request
are chosen in such a way that the sum of their effort is equal to, or slightly
lower than, a given amount of “Story points” to implement in each iteration.
The requests that were still under work at the end of the previous Sprint are
left inside their current activity, and their remaining effort is subtracted by the
available Story points. The activities have no limit, being the flow of requests
naturally limited by the Sprint planning.

4 Results and Discussion

We simulated the three presented models using data mimicking the maintenance
requests made to the Microsoft team presented above. We generated two sets of
requests, covering a time of four years each (1056 days, with 22 days per month).
The average number of incoming requests is 22.5 per month, with 12.5 accepted
for implementation, and 10 rejected. So, we have 600 accepted requests in total,
randomly distributed. One of the sets had an initial backlog of 85 requests, as
in the case study when the process was changed, while the other has no initial
backlog.

The distribution of the efforts needed to complete the requests is Gaussian,
with an average of 10 and a standard deviation of 2.5. In this way, most requests

A Comparative Study of Scrum and Kanban 131

have an estimated effort between 5 and 15. Note that the empirical data show an
average effort per request of about 11 man days. In fact, at least in the original
process, the engineers were continuously interrupted by estimation duties, with
a consequent overhead due to the application of the “penalty” for learning, or
relearning the organization of the code to modify or to test. In practice, we found
that the average effort to complete a request was about 11 in the simulation
of the original process. This value is equal to the empirical evaluation of 11
”engineering man days“ needed on average to complete a request.

For each of the three studied processes, we performed a set of simulations,
with the same data in input. For each process, and each input dataset, the
outputs tends to be fairly stable, performing several runs with different seeds of
the random number generator. For each simulation, we report the cumulative
flow diagram (CFD), that is the cumulative number of requests entering the
various steps of the process, from ”Backlog“ to ”Released“, and statistics about
the cycle time. The cycle time starts when work begins on the request – in our
case when it is pulled to the ”Coding“ activity, and ends when it is released.

In the followings we report the results for the three processes.

4.1 The Original Process

Fig 1 shows a typical CFD for the data of the original process. This diagram
was obtained using the dataset with no initial backlog, and then rescaling the
initial time to the time when the backlog of pending requests reached the value
of 85, that is at day 287 from the beginning of the simulation.

The figure makes evident the inability of the process to keep the pace of in-
coming requests. The throughput of the team is about 6 request per month, and
the backlog of pending requests grows of about 6.5 per month. These figures
exactly correspond to the empirical value measured on real data. The “Coding”
line represents the cumulative number of requests entered into the Coding ac-
tivity, while the “Testing” line represents the cumulative number entered into
the Testing activity. Having limited to 50 the maximum number of requests in
the Coding allow to have a relatively limited WIP. The cumulative number of
released requests (dashed line) is very close to the Testing line, meaning that
the time needed to test the requests is very short. The slope of the dashed line
represent the throughput of the system.

Table 1. Statistics of cycle times in the Original Process

Time Interval Mean Median St.Dev. Min Max

200-250 140.72 131.49 76.2777 35.02 371.53
251-300 150.18 151.03 79.72 12.61 364.89
301-350 170.34 168.65 89.89 9.96 363.23
351-400 162.65 120.16 88.58 64.51 334.69

132 D.J. Anderson et al.

Fig. 1. The CFD of the original process

If we allow one tester to become also a developer, increasing the flexibility
of the team, the throughput increases to 7.3 requests per month. Adding one
developer and one tester to the teams, keeping the above flexibility, further
increases the throughput to 8.1 requests per month, a figure still too low to keep
the pace of incoming requests.

In Table 1 we report some statistics about cycle time in various time intervals
of the simulation. In general, these statistics show very long and very variable
cycle times. We remember that the backlog of pending requests reaches the value
of 85, when the process was changed, at day 287. Around this time, the average
and median cycle times are of the order of 150-160, values very similar to those
reported for real data.

So, we can conclude that the simulator is able to reproduce very well the
empirical data both in term of throughput and of average cycle time.

4.2 The Kanban Process

In the case of Kanban process, the input dataset includes an initial backlog of
85 requests, with no work yet performed on them. The process was simulated by
moving a tester to the developer team after 6 months from the beginning of the
simulation (day 132), as it happened in the real case. The activity limits were
set to 8 (9 from day 132) and 8 for Coding and Testing, respectively, as in the
real case.

The resulting CFD is reported in Fig. 2. Note the slight increase in the steep-
ness of the Coding and Testing lines after day 132, with a consequent increase
of the contribution made by Testing to the WIP. With the adoption of the

A Comparative Study of Scrum and Kanban 133

Kanban system, the throughput substantially increases with respect to the orig-
inal process. Before day 132 the throughput is about 10 requests per month (30
per quarter); after day 132 it increases to about 12 requests per month (36 per
quarter), almost able to keep the pace of incoming requests.

If we compare the throughput data with those measured in the real case (45
per quarter in the case of 3 + 3 teams, and 56 per quarter in the case of 4 +
2 teams), we notice that in the real case the productivity is 50 percent higher
than in the simulated process. Our model already accounts for the elimination
of estimations, and for not having penalties applied the day after the estima-
tion. Note that the maximum theoretical throughput of 6 developers working
on requests whose average is 10 man days is 13.2 per month, and thus 39.6 per
quarter, not considering the penalties applied when a request is tackled for the
first time both during coding and testing. In the real case, there were clearly
other factors at work that further boosted the productivity of the engineers.
It is well known that researchers have found 10-fold differences in productivity
and quality between different programmers with the same levels of experience.
So, it is likely that the same engineers, faced with a process change that made
them much more focused on their jobs and gave them a chance to put an end
to their ”bad name” inside Microsoft, redoubled their efforts and acheved a big
productivity improvement.

Regarding cycle times, their statistics are shown in Table 2, for time intervals
of 100 days starting from the beginning of the simulation. These times dropped
with respect to the original situation, tending to average values of 25.

We also simulated the Kanban process with an increase of both team sizes of
one unit, after 8 months from its introduction, as in the real case. We obtained
an increase of throughput to 14.7 requests per month, or 44 per quarter, with
the average cycle time dropping to 14.3.

Table 2. Statistics of cycletime in the Kanban Process

Time Interval Mean Median St.Dev. Min Max

1-100 25.18 22.74 14.06 6.98 146.72
101-200 28.99 27.97 12.92 11.69 87.53
201-300 24.41 22.05 8.15 11.62 49.18
301-400 26.39 24.13 10.37 11.23 78.34

4.3 The Scrum Process

We simulated the use of a Scrum process to manage the same input dataset of
the Kanban case, that includes the initial backlog. In the presented case study,
we choose iterations of 3 weeks (14 working days, accounting for the day spent in
meetings) because it is the minimum time span accommodating requests whose
average working time is more than 10 man days, and with about 15% of the
requests longer than the average plus a standard deviation, so more than 12.5

134 D.J. Anderson et al.

Fig. 2. The CFD of the Kanban process

engineering days. Remember the constraint that only one developer works on a
request at a time – a constraint mimicking the way of work of the actual teams.
With a two-week iteration the team should spend a lot of time to estimate the
length of the requests, and in many cases it should split them into two smaller
pieces to do them sequentially across two Sprints. Even with a 3 week Sprint
some requests would need to be split, but we do not explicitly handle this case –
simply, the remaining of the request is automatically moved to the next iteration.

The number of Story points to implement is set to 90. In fact, with 14 working
days per teammember during a Sprint, we have a total of 84 man days. We slighly
increased this limit to 90, to accomodate variations. We found empirically that
a further increase of this limit does not increment throughput. We remember
that, in our model of Scrum, all 6 engineers are able to perform both coding and
testing (the latter with 0.95 efficiency), thus modeling the self-organization of
the team.

Fig. 3 shows the CFD diagram in the case of Scrum simulation. Note the char-
acteristic “ladder” appearance of the Coding line, that represents the requests
in input to each Sprint. This process is much better than the original one, and is
almost able to keep the pace of incoming requests, with a throughput of about
11.5 requests per month. This should be compared with the throughputs of Kan-
ban with both teams of 3 engineers (10) and with 4 developers and 2 testers (12).
Had we not allowed the team to “self organize”, the throughput would have been
much lower.

The cycle time statistics are shown in Table 3. They are better than in the
Kanban process, owing the highest team flexibility. Note that in our simulation,
we do not wait for the end of the Sprint to release finished requests, but release

A Comparative Study of Scrum and Kanban 135

them immediately. If we had waited until the end of the Sprint, as in a “true”
Scrum implementation, all these average times should be increased of 3 days
(50% of the difference between the Sprint length and the minimum cycle time,
that is about 9). This is the average waiting time of a request between its com-
pletion and the end of the Sprint. Anyway, the Scrum results are very good, and
comparable with the Kanban ones.

Fig. 3. The CFD of the Scrum process

Table 3. Statistics of cycle time in the Scrum Processes

Time Interval Mean Median St.Dev. Min Max

1-100 16.69 15.74 4.65 8.62 28.00
101-200 16.68 15.79 5.90 9.03 34.51
201-300 16.41 15.71 4.72 9.72 30.50
301-400 16.79 16.41 4.92 8.91 28.02

5 Conclusions and Future Work

We presented the application of the process simulation model developed for
assessing the effectiveness of agile and lean approaches described in [2] to a
real case study, in which a maintenance team experimented the transition from
a PSP/TSP, estimation-based approach to a Lean-Kanban process. We added
also the modeling and simulation of a possible application of the Scrum process
to the same case study, albeit Scrum was not really tried in the real case.

136 D.J. Anderson et al.

The proposed approach to model and simulate a software process, using an
agent-based, fully object-oriented model, demonstrated very effective. It allowed
us to model all three processes with minimal changes in the model and in the
simulator. The use of a general-purpose OO language like Smalltalk eased this
task, allowing a high flexibility in extending the simulator.

We used as input data a stream of maintenance requests synthetically gen-
erated, with the same statistical properties of real requests. We were able to
fully reproduce the statistics of empirical results for the original process, both
in terms of throughput and cycle times.

Regarding Kanban, the simulation results demonstrated a substantial im-
provement with respect to the original process, but in fact significantly lower
than the improvement obtained in the real case, where the throughput was 50%
higher than in the simulated results. This fact is worth further study, because
in the real case it was reported a throughput that can be explained only with
an increase in the productivity of the engineers of the team. Such an increase in
individual productivity is a parameter difficult to introduce a priori in a sim-
ulation, without being accused of wishing to favour a process with respect to
another.

The proposed simulation approach allowed us to easily model and apply to
the case study also the Scrum process, despite its iterative nature, different from
the “steady flow” nature of the two other processes. Since Scrum is based on
self-organizing teams, we modeled this fact by eliminating the difference between
developers and testers, a possibility suggested by the fact that in the real case a
tester was actually moved to the development team. This self-organization gave
Scrum an advantage in flexibility reflected in the lower average and maximum
cycle time with respet to Kanban. On the contrary, the simulated Kanban process
– when the teams are better balanced, with 4 developers and 2 testers – still
overcomes Scrum in throughput.

Overall, we believe that the presented work demonstrated that our agent-
based approach is very effective for modeling and simulation of agile and lean
software development processes, that tend to be simple and well structured, and
that operate on a backlog of “atomic” requirements. This is particularly true
for maintenance processes, that naturally operate on an inflow of independent
requests.

In the future, we plan to further evaluate our simulation method on a variety of
software development and maintenance projects, including open source projects,
with the aim to explore the optimal parameter settings that can maximize the
overall development efficiency. We will devote a specific effort to analyze and
model human factors that could affect the productivity of a development team,
in relation with the specific process and practices used.

A Comparative Study of Scrum and Kanban 137

References

1. Anderson, D.J.: Kanban: Successful Evolutionary Change for Your Technology
Business. Blue Hole Press (2010)

2. Anderson, D.J., Concas, G., Lunesu, M.I., Marchesi, M.: Studying Lean-Kanban
Approach Using Software Process Simulation. In: Sillitti, A., Hazzan, O., Bache,
E., Albaladejo, X. (eds.) XP 2011. LNBIP, vol. 77, pp. 12–26. Springer, Heidelberg
(2011)

3. Barghouti, N.S., Rosenblum, D.S.: A Case Study in Modeling a Human-Intensive,
Corporate Software Process. In: Proc. 3rd Int. Conf. On the Software Process
(ICSP-3). IEEE CS Press (1994)

4. Humphrey, W.S.: Using a defined and measured Personal Software Process. IEEE
Software, 77–88 (May 1996)

5. Humphrey, W.S.: Introduction to the Team Software Process. Addison Wesley
(1999)

6. Maurer, F., Martel, S.: On the productivity of agile software practices: An indus-
trial case study. Technical report, Univ. of Calgary, Alberta (March 2002)

7. Melis, M., Turnu, I., Cau, A., Concas, G.: Evaluating the Impact of Test-First Pro-
gramming and Pair Programming through Software Process Simulation. Software
Process Improvement and Practice 11, 345–360 (2006)

8. Melis, M., Turnu, I., Cau, A., Concas, G.: Modeling and simulation of open source
development using an agile practice. Journal of Systems Architecture 52, 610–618
(2006)

9. Moser, R., Abrahamsson, P., Pedrycz, W., Sillitti, A., Succi, G.: A Case Study
on the Impact of Refactoring on Quality and Productivity in an Agile Team. In:
Meyer, B., Nawrocki, J.R., Walter, B. (eds.) CEE-SET 2007. LNCS, vol. 5082, pp.
252–266. Springer, Heidelberg (2008)

10. Otero, L.D., Centeno, G., Ruiz-Torres, A.J., Otero, C.E.: A systematic approach
for resource allocation in software projects. Comput. Ind. Eng. 56(4), 1333–1339
(2009)

11. Robinson, S.: Simulation – The practice of model development and use. Wiley,
Chichester (2004)

12. Rong, G., Shao, D., Zhang, H.: SCRUM-PSP: Embracing Process Agility and Dis-
cipline. In: Proc. 17th Asia-Pacific Conference on Software Engineering, APSEC
2010, pp. 316–325. IEEE Press (2010)

13. Schwaber, K., Beedle, M.: Agile software development with Scrum. Prentice Hall
(2002)

14. Siebers, P.O., Macal, C.M., Garnett, J., Buxton, D., Pidd, M.: Discrete-event sim-
ulation is dead, long live agent-based simulation! Journal of Simulation 4, 204–210
(2010)

15. Version One.: State of Agile Survey (2010), http://www.versionone.com
16. Wolverton, R.W.: The Cost of Developing Large-Scale Software. IEEE Trans. on

Computers 23, 615–636 (1975)

http://www.versionone.com

Impact of Test Design Technique Knowledge

on Test Driven Development:
A Controlled Experiment

Adnan Čaušević, Daniel Sundmark, and Sasikumar Punnekkat

Mälardalen University, Sweden
firstname.lastname@mdh.se

Abstract. Agile development approaches are increasingly being
followed and favored by the industry. Test Driven Development (TDD) is
a key agile practice and recent research results suggest that the success-
ful adoption of TDD depends on different limiting factors, one of them
being insufficient developer testing skills. The goal of this paper is to
investigate if developers who are educated on general testing knowledge
will be able to utilize TDD more effectively. We conducted a controlled
experiment with master students during the course on Software Verifi-
cation & Validation (V&V) where source code and test cases created by
each participant during the labs as well as their answers on a survey
questionnaire were collected and analyzed.

Descriptive statistics indicate improvements in statement coverage.
However, no statistically significant differences could be established be-
tween the pre- and post-course groups of students. By qualitative analysis
of students’ tests, we noticed a lack of test cases for non-stated require-
ments (“negative”tests) resulting in a non-detection of bugs. Students
did show preference towards TDD in surveys.

Although further research is required to fully establish this, we believe
that identifying specific testing knowledge which is complementary to the
testing skills of a new TDD developer would enable developers to perform
their tasks in a more efficient manner.

Keywords: test driven development, controlled experiment, software
testing.

1 Motivation

Test Driven Development (TDD), also known as test-first programming, is an
essential part of eXtreme Programming (XP) [1]. TDD requires the developers
to construct automated unit tests in the form of assertions to define code re-
quirements before writing the code itself. In this process, developers evolve the
systems through cycles of test, development and refactoring. In a recent indus-
trial survey [2], we examined the difference between the preferred and the actual
level of usage for several test-related practices. Among the 22 examined prac-
tices, surprisingly, TDD gained the highest score of ‘dissatisfaction’. This means

C. Wohlin (Ed.): XP 2012, LNBIP 111, pp. 138–152, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Impact of Test Design Technique Knowledge on TDD 139

that the accumulated absolute difference between the preferred and the actual
levels of usage was highest in the case of TDD. The nature of this dissatisfaction
could be stated as “Respondents would like to use TDD to a significantly higher
extent than they actually do currently”.

Subsequently we explored the current body of knowledge through an empirical
systematic literature review [3] to identify the limiting factors which prevents the
successful adoption of TDD. Insufficient developer testing skills was identified as
one of the important limiting factors as part of the study. By developer testing
skill, we refer to the developer’s ability to write efficient and effective automated
test cases.

1.1 Problem Statement

TDD in its essence teaches developers on how to perform software development
providing some indirect basic testing skills, for example based on positive test-
ing (i.e. testing to show that the software “works” using valid input). We are
interested in identifying specific testing knowledge which is complementary to
the already mentioned testing skills of a new TDD developer. We believe that
such a strategy would enable developers to perform their tasks in a more efficient
manner resulting in higher quality of software products.

1.2 Research Objective

In the form suggested by Wohlin et al. [4], the research objective of this study
can be expressed as follows:

To analyze the effect of testing knowledge on TDD
for the purpose of evaluation of factors affecting the outcome of TDD
with respect to the factors’ limiting effect on the usage of TDD
from the point of view of the software developer
in the context of eXtreme Programming software development.

1.3 Context

To perform analysis with respect to the above objective, an experiment was
organised as laboratory activities with master students enrolled in the Software
Verification and Validation course at Mälardalen University during the autumn
semester in 2010.

1.4 Paper Outline

This paper is structured according to the reporting guidelines provided in [5]
(although some minor deviations from the reporting guidelines were made). In
section 2 we present the related research works followed by the experimental
design in section 3. Section 4 presents the details of execution of our experi-
ment. The treatment and analysis of the collected data are given in section 5.
In section 6, we present statistical inferences followed by conclusions and future
research planned in section 7.

140 A. Čaušević, D. Sundmark, and S. Punnekkat

2 Related Work

Test-driven development is a practice derived from experience and without any
ground theory it makes it very difficult to prove its efficiency in a formal way.
This is one of the reasons why many experiments on TDD are conducted in order
to provide empirical evidence of its claimed quality improvements.

In this section we present related work on empirical investigations of TDD
identified in our recent systematic literature review [3], grouped w.r.t two as-
pects: (i) related to testing knowledge and (ii) general experiments on TDD.

2.1 TDD and Testing Knowledge

Sfetos et al. [6] performed an industrial survey on advantages and difficulties
that software companies experienced when applying XP. Test-first was among
the investigated practices. During interviews, developers identified difficulties in
writing tests at the very beginning of the project.

Geras et al. [7] performed an experiment with professionals in academic en-
vironment providing subjects with two programs for development, one using
test-last and one using test-first process. One of the conclusions made from the
experiment is that without adequate training and having proper testing skills it
is risky to adopt TDD.

Kollanus & Isomöttönen [8] analysed students perceptions and difficulties on
TDD in an educational context experiment. As part of their conclusions they
present different difficulties students had when designing tests. Generally, stu-
dents find it difficult to design appropriate test cases and to design tests in small
steps.

2.2 Experiments in TDD

In Table 1 we present experiments in TDD selected from [3] outlining experiment
environment (industrial or academic) and type of subjects (students, profession-
als or mixed). A brief description of the aim and results of each TDD study is
also presented.

3 Experimental Design

This section details the design of the experiment. Further practical experiment
setup information, e.g., for replication purposes, can be found at the first author’s
webpage1.

3.1 Goals, Hypotheses, Parameters, and Variables

The goal of the experiment was to test the effect of knowledge in software testing
on development speed, artefact quality and developer perception when using TDD.
In order to do so, the following null and alternative hypotheses were formulated:

1 http://www.mrtc.mdh.se/~acc01/tddexperiment

http://www.mrtc.mdh.se/~acc01/tddexperiment

Impact of Test Design Technique Knowledge on TDD 141

Table 1. Research publications on experiments in TDD

AUTHORS YEAR EXPERIMENT SETTINGS SUBJECTS

Müller & Hagner [9] 2002 Academic Students
AIM: To evaluate benefits of test-first programming compared to traditional approach.
RESULTS: Test-first does not accelerate programming, produced programs are not more reliable
but test-first supports better understanding of program.
George & Williams [10] 2003 Industrial Professionals
AIM: To evaluate quality improvements of test-driven development compared to a waterfall-like
approach. RESULTS: Test-driven development produces higher quality code with the tendency of
developers spending more time on coding.
Geras et al. [7] 2004 Academic Professionals
AIM: To investigate developer productivity and software quality when comparing test-driven and
traditional development approaches. RESULTS: There were little or no differences in developer
productivity but frequency of unplanned test failure was lower for test-driven development.
Erdogmus et al. [11] 2005 Academic Students
AIM: To evaluate functional tests in test-driven development when compared to traditional test-
last approach. RESULTS: Test-first students created on an average more tests and tended to be
more productive. There was no significant difference in quality of produced code between two
groups.
Flohr & Schneider [12] 2006 Academic Students
AIM: To investigate the impact of test-first compared to clasical-testing approach.
RESULTS: No significant differences could be established, but students did show a preference
towards test-first approach.
Janzen & Saiedian [13] 2006 Academic Students
AIM: To examine the effects of TDD on internal quality of software design. RESULTS: Positive
correlation between productivity and TDD, but no differences in internal quality. Perception on
TDD was more positive after the experiment.
Müller & Höfer [14] 2007 Academic Mixed
AIM: To investigate the conformance to TDD of professionals and novice TDD developers.
RESULTS: Experts complied more to the rules of TDD and produced test with higher quality.
Janzen et al. [15] 2007 Academic Professionals
AIM: To investigate effects of TDD on internal code quality. RESULTS: Programmers’ opinions
on TDD improved after the experiment but internal code quality had no significant difference
between test-first and test-last approach.
Gupta & Jalote [16] 2007 Academic Students
AIM: To evaluate the impact of TDD on designing, coding and testing when compared with tra-
ditional approach. RESULTS: TDD improves productivity and reduce overall development effort.
Code quality is affected by test effort regardless of the development approach in use.
Kollanus & Isomöttönen [8] 2008 Academic Students
AIM: To improve understanding on TDD in educational context. RESULTS: Students expressed
difficulties with following TDD approach and designing proper tests. Regardless, they believed in
the claimed benefits of TDD.
Höfer & Philipp [17] 2009 Academic Mixed
AIM: To compare conformance to TDD of experts and novice programmers. RESULTS: Experts
refactored their code more than novice programmers, but they were also significantly slower.
Huang & Holcombe [18] 2009 Academic Students
AIM: To investigate the effectiveness of test-first approach compared to the traditional (test-last)
development. RESULTS: Test-first teams spent more time on testing than coding compared to
test-last teams. There was no linear correlation between effort spent on software testing and the
software external quality.
Vu et al. [19] 2009 Academic Students
AIM: To investigate how test-first and test-last methodologies affects internal and external quality
of the software. RESULTS: Test-last team was more productive and created more tests. Students
indicate preference towards test-first approach.
Madeyski [20] 2010 Academic Students
AIM: To investigate how Test-first programming can impact branch coverage and mutation score
indicator. RESULTS: The benefits of the Test-first practice can be considered minor in the specific
context of this experiment.

– Development Speed:

• Hs
0. When using TDD, there is no significant difference between the

development speed of developers with or without knowledge in software
testing.

142 A. Čaušević, D. Sundmark, and S. Punnekkat

• Hs
a. When using TDD, developers with knowledge in software testing

develop faster.

– Artefact Quality:
• Hq

0. When using TDD, there is no significant difference between the
quality of the artefacts produced by developers with or without knowl-
edge in software testing.

• Hq
a. When using TDD, developers with knowledge in software testing

produce artefacts of a higher quality.

– Developer Perception:
• Hp

0. There is no significant difference in the perception of TDD between
developers with or without knowledge in software testing.

• Hp
a. Developers with knowledge in software testing have higher prefer-

ence towards TDD than those without knowledge in software testing.

The development speed, artefact quality and developer perception are operational-
ized in a list of response variables, provided in Table 2.

Table 2. Experiment Response Variables

Construct Variable name Description Scale type

Development Speed User Stories Number of user stories finished
within lab session.

Ratio

Artefact Quality Defects Number of defects found in code im-
plementation by independent test
suite.

Ratio

Artefact Quality Coverage Statement coverage of test suite
when applied to code implementa-
tion.

Ratio

Artefact Quality Complexity Cyclomatic complexity of the code
implementation.

Ratio

Developer Perception Ease of use The ease of use with which the steps
of TDD could be followed.

Ordinal

Developer Perception Preference Subjects’ perception of TDD. Ordinal

In this experiment, the factor of knowledge in software testing is operational-
ized using a 10-weeks half-time advanced-level academic course in Software Veri-
fication and Validiation. Some topics that are covered by course are: introduction
to software testing and testing fundamentals, the test processes, how to practi-
cally write test cases, code inspection and security testing, test design techniques,
static program analysis and real-time testing. The course content has been in-
spired partly by industrial certification courses (e.g., the International Software
Testing Qualification Board (ISTQB) foundation- and advanced-level certifica-
tion courses [21]), and partly by scientific courses and syllabi (e.g., the software
testing course contents proposed by Ammann and Offutt [22]). For the purpose
of this experiment, a subject is said to have knowledge in software testing if (s)he
has taken part in the course lectures and exercises, and not to have knowledge
in software testing if (s)he has not.

Impact of Test Design Technique Knowledge on TDD 143

3.2 Experiment Design

The experiment design is detailed in Figure 1. Two groups of subjects (Group
A and Group B) worked on two different problems (Problem 1 and Problem 2)
as part of the labs, once before and once after the course (using TDD on both
the occasions). During both the labs they used the Eclipse [23] integrated de-
velopment environment (IDE) to create working software solutions in the Java
programming language and the jUnit [24] testing framework for writing exe-
cutable tests. Upon completion of each of the labs, the subjects answered a set
of questions in an online survey system.

Fig. 1. Design of Experiment

3.3 Subjects

The subjects of the experiment were software engineering master students en-
rolled in the Software Verification and Validation course at Mälardalen Uni-
versity during the autumn semester of 2010. The experiment was part of the
laboratory work within the V&V course, and the subjects earned credits for
participation. Students were informed that the final grade for the course will be
obtained from the written exam and their performance during labs would not
affect their grades.

3.4 Objects

As stated above, the experiment used two specific software development prob-
lems for the experiment, namely: (i) Roman numeral conversion (Problem 1) and
(ii) a bowling game score calculator (Problem 2). The specifications for Problem
1 were written by us (in the form of a list of user stories) for the purpose of this
experiment, whereas the specifications for Problem 2 (also a list of user stories)
were based on the Bowling Game Kata (i.e., the problem also used by Kollanus
and Isomöttönen to explain TDD [8]). Detailed information about the problems
and their user stories are provided on first author’s webpage2.

2 http://www.mrtc.mdh.se/~acc01/tddexperiment

http://www.mrtc.mdh.se/~acc01/tddexperiment

144 A. Čaušević, D. Sundmark, and S. Punnekkat

TDD Steps:

1. Write one single test-case
2. Run this test-case. If it fails continue with step 3. If the test-case succeeds,

continue with step 1.
3. Implement the minimal code to make the test-case run
4. Run the test-case again. If it fails again, continue with step 3. If the test-case

succeeds, continue with step 5.
5. Refactor the implementation to achieve the simplest design possible.
6. Run the test-case again, to verify that the refactored implementation still suc-

ceeds the test-case. If it fails, continue with step 5. If the test-case succeeds,
continue with step 1, if there are still requirements left in the specification.

Fig. 2. TDD steps for development

3.5 Instrumentation

As one way of ensuring that subjects properly followed the steps of TDD, we
provided the instructions for TDD prescribed by Flohr and Schneider [12] (see
Figure 2). To avoid problems with subjects’ unfamiliarity of jUnit testing frame-
work and/or Eclipse IDE, subjects were given an Eclipse project code skeleton
with one simple test case. Since this was all located in a subversion (SVN) repos-
itory, an instruction on how to obtain code from SVN and import it in Eclipse
was also provided to students.

3.6 Data Collection Procedure

Teams were instructed to upload their source codes in a SVN repository. This
way the lab instructor has a complete log of subjects’ activities and the option
to obtain code from a specific point in time.

Subjects answered survey questions using quiz assignments in the Blackboard
learning management system for the course. Data from surveys is then exported
in comma separated values (.csv) file format.

4 Execution

4.1 Sample

Twenty-eight students participated in the experiment. Students were informed
that their work in computer laboratory would be used for the experiment, but
they were not provided any details on the goal of the experiment itself. Also,
we explicitly stated that their performance would not influence the final grade
of the V&V course in any way. The final grade was determined by the written
exam.

Impact of Test Design Technique Knowledge on TDD 145

4.2 Preparation

Team numbers were assigned in sequential order based on the time of receipt of
the e-mail requested by the lab instructor. Problems for the teams were assigned
in an alternating manner between the two immediate teams (ex., if team i was
assigned problem 1, one team i+1 was assigned problem 2 and team i+2 was
assigned problem 1 again etc.).

Since the lab work was time-boxed to 3 hours, a Java code skeleton was created
for students. It contained a program class with one empty method returning zero
and a test class with one assert statement validating the previous mentioned
method. This skeleton was made to be directly imported into Eclipse as an
existing project.

For each team a corresponding subversion (SVN) repository was created with
read/write permissions assigned only to students within the given team and to
the lab instructor. To avoid difficulties in setting up SVN and importing project
in Eclipse, an instruction on the usage of SVN and Eclipse was provided to the
students.

4.3 Data Collection Performed

As explained to students in the lab instruction document, after creating a new
test or after changing code in order to pass the existing tests, an SVN commit
command had to be executed. This way the lab instructor had a complete log of
activities during the lab and an ability to obtain source code of the team at any
given point in time. The absence of some students from any of the lab sessions
were clearly visible from their SVN repository since the date of source code was
not the same as the date of the lab. Such data was excluded from the analysis.

5 Analysis

5.1 Descriptive Statistics

Based on initial experimental plan of response variables (see Table 2) a descrip-
tive analysis was performed for each variable independently.

First, considering the development speed construct, Figure 3 presents the
percentage of user stories finished during the experiment sessions as mean values
with standard error deviation. As the figure shows, the development speed was
relatively unaffected in both groups before and after the course.

Second, considering the artefact quality construct, Figures 4, 5, and 6 present
percentage of statement coverage of students test suite, cyclomatic complexity
of the code, and the number of defects detected by an independent test suite
respectively. These measures are given as mean values with standard error devi-
ations. In the case of code coverage, it can been seen that both post-test groups
had better mean values than the pre-test groups. In the complexity and defects
metrics, the differences between the experiment objects seem to obscure such
visible results, if they exist.

146 A. Čaušević, D. Sundmark, and S. Punnekkat

Fig. 3. Performance mean values Fig. 4. Code coverage mean values

Fig. 5. Code complexity mean values Fig. 6. Defects found mean values

Fig. 7. How difficult was it to follow TDD Fig. 8. Students perception of TDD

Impact of Test Design Technique Knowledge on TDD 147

Finally, Figures 7 and 8 provide results related to the developer perception
construct. The first of these figures presents the sum of student responses on the
ease of use with which the steps of TDD are followed in labs. Possible responses
vary from 1 to 8 where 1 means impossible to follow and 8 means it was straight-
forward. Data is presented for both instances of labs. Figure 8 presents the sum
of student responses on the perception of TDD. Possible responses varies from 1
to 8 where 1 means they will not consider using TDD in future developments and
8 means they will always use TDD. Data is presented for both instances of labs.
Generally, students found TDD to be a preferable development method that is
easy to use. However, there is no obvious difference between the pre-experiment
and post-experiment perceptions on this matter.

5.2 Data Set Reduction

Source codes of 17 teams (9 from Group A and 8 from Group B) and 28 student
responses in survey questionnaires were collected for analysis. The difference of 6
students were due to the fact that some students did not fill in the questionnaire
but did perform the lab.

When the actual source code analysis was performed additional data points
had to be removed. The projects of teams 4 and 13 were excluded due to several
syntax errors which made the complete solution uncompilable and irrelevant for
any of the analysis. During code coverage analysis a huge deviation occurred
with Team 14. A detailed analysis revealed that students did not write any test
cases during the lab but they subsequently submitted tests in SVN. Since this
was opposite from the TDD practice stated in their lab instructions, data from
this team was also excluded. After removing data from those three teams, finally
we had data points from:

– 14 teams (7 from Group A and 7 from Group B) for source code analysis
and

– 22 student responses for survey questionnaire analysis.

5.3 Hypothesis Testing

Hypothesis testing was performed in two steps: First, the Mann-Whitney non-
parametric test was used to ensure that the differences in response variable data
between the experiment groups and between the experiment objects were sta-
tistically nonsignificant. The α was set to 0.05, and consequently a resulting z
score of more than 1.96 or less than -1.96 was required to show a significant
difference between the objects or the groups.

The result of this analysis is shown in Table 3. As can be seen from the
table, there were no significant differences between the experiment objects or
groups, with the exception of a significant difference in object complexity. This
parameter is consequently omitted from further analysis.

Second, on the basis of the nonsignificant differences between experiment ob-
jects and groups, the Wilcoxon signed rank test for paired nonparametric data

148 A. Čaušević, D. Sundmark, and S. Punnekkat

was used in order to test the null hypotheses of the experiment.
As in the Mann-Whitney case, the α was set to 0.05. The result of this anal-
ysis is shown in Table 4. For a null hypothesis to be rejected, it is required
that min(W+,W−) ≤ Critical W holds. As shown in the table, none of the
experiment’s null hypotheses can be rejected based on the collected data.

Table 3. Mann-Whitney z scores for differences between experiment groups and ob-
jects. A significant difference in complexity between the experiment objects is found.

Development speed Artefact quality Developer perception
User Stories Defects Coverage Complexity Ease of use Preference

Group A vs. Group B -0.16 -0.80 -0.34 -1.36 -0.30 1.34
Roman vs. Bowling 0.02 -1.91 0.05 -2.64 0.19 0.09

Table 4. Testing of null hypotheses of the experiment

Construct (Null hypothesis) Parameter W+ W− min(W+,W−) Critical W
Development speed (Hs

0) User Stories 52.5 52.5 52.5 21 (14 non-zero differences)
Artefact quality (Hq

0) Defects 22.5 13.5 13.5 4 (8 non-zero differences)
Artefact quality (Hq

0) Coverage 25 80 25 21 (14 non-zero differences)
Artefact quality (Hq

0) Complexity Not tested
Developer perception (Hpe

0) Ease of use 30 25 25 8 (10 non-zero differences)
Developer perception (Hpp

0) Preference 30 15 15 6 (9 non-zero differences)

6 Interpretation

6.1 Evaluation of Results and Implications

When looking at the descriptive statistics results of the code coverage variable we
can notice a positive increase in performances of both the groups when compar-
ing before and after the course results. Even though there were no statistically
significant differences in code coverage values (null hypothesis could not be re-
jected), we think this was a borderline case. What we want to emphasise is that,
on an average, the best performing group before the course was still worse than
the worst group after the course:

max(A,B)precourse < min(A,B)postcourse

The level of complexity of the students program solutions changed for both
groups from one lab to another, but this change had one direction for Group
A and another for Group B. What we can only conclude from this data is that
solutions for Problem 1 are of higher complexity than solutions for Problem 2.

We expected the number of defects variable to provide us with a direct way of
evaluating the impact of testing knowledge. An independent suite of test cases
for each problem was created but we could not use it to the full extent since
different teams finished different numbers of user stories. Every team had on an
average four bugs and in most cases those could have been found by test cases
designed using a negative test design technique.

Impact of Test Design Technique Knowledge on TDD 149

Students claimed they adhered to TDD practice during the experiment to a
high extent (Figure 9). The ease of usage of TDD practice was also reported to
a high extent (Figure 7) but interestingly students did not feel the same about
their preference of using TDD in future development (Figure 8).

Fig. 9. How strictly TDD was followed Fig. 10. Students opinion on the impact

6.2 Limitations of the Study

Typically, four types of validity are discussed in empirical research (i.e., construct
validity, internal validity, external validity and reliability) [4].

Construct Validity refers to the correctness in the mapping between the the-
oretical constructs that are to be investigated, and the actual observations of the
study. Some of the constructs investigated in this study are not trivially defined,
and may be subject to debate (particularly in the case of artefact quality and test-
ing knowledge). In order to mitigate this problem, we have used standard software
engineering metrics (e.g., complexity and coverage), and provided detailed infor-
mation on the operationalization of each construct involved in the experiment.

Internal Validity concerns the proper analysis of data. The statistical strat-
egy used in this paper was to first eliminate the possibility of major confounding
variables affecting the result (i.e., testing for differences between experiment ob-
jects or groups), and second, to test the null hypotheses. Furthermore, as the
normality of the data could not be assumed, we used non-parametric tests to
conduct these hypothesis tests. However, regardless of the strategy used, it is
without question a fact that the sample size of the data was small, which is
a major limitation for statistical analysis (and potentially also a cause for the
inability for null hypothesis rejection). The only way to resolve this matter is
through replications of the experiment.

External Validity relates to the possibility to generalize the study results
outside its scope of investigation. As many of the previously published experi-
ments on TDD (see Table 1), this experiment is performed in a course setting
and suffers from the consequent threats to external validity (e.g., student sub-
jects, small scale objects, short experiment duration). It is, however, uncertain to
what extent this affects the results, as we are not examining a practice (TDD)
directly, but rather assessing whether the practice improves given the acquisition
of a certain knowledge.

150 A. Čaušević, D. Sundmark, and S. Punnekkat

Reliability concerns the degree of certainty with which a replication of this
study, e.g., by a different set of researchers, would yield the same study outcome.
Here, as the experiment package and guidelines are made available for replica-
tion purposes, the major reliability threat relates to the replicated execution of
the V&V course. On the other hand, without having any deeper insight as to
what specific testing knowledge would be beneficial for TDD, this needs to be
considered future work.

7 Conclusions and Future Work

In this section a summary of the study results with directions for future work
are presented.

7.1 Relation to Existing Evidence

In the related works section we mentioned three research papers where partici-
pants of their studies expressed difficulties with testing and/or constructing test
cases. Opinions of the subjects of our study pointed out that testing knowledge
had a relatively significant positive impact on how they performed TDD as can
be seen in Figure 10. However, based on qualitative data from our experiment,
we also inferred that our respondents had problems with creating negative test
cases.

7.2 Impact

A growing number of research publications empirically evaluating TDD implic-
itly suggest that TDD will most likely provide benefit of higher code quality to
the organisation which decide to implement this development process. However,
to the best of our knowledge, there are no reports on failure of implementing
or adopting TDD within a specific organisation. In this context a more rele-
vant research question could be: where and why will TDD not work and how to
overcome those factors?

Our experiment is a initial attempt to address this research question from an
orthogonal perspective by evaluating specifically whether testing knowledge can
support TDD in practice or it could be considered as a limiting factor (as stated
in [3]). Though the present study is inconclusive, it opens up several interesting
challenges for the research community. We believe that identifying specific testing
knowledge, which is complementary to the testing skills of a new TDD developer,
is essential. Such a knowledge would enable developers to achieve performance
efficiency and higher quality of software products. Additionally, it will have a
great impact on the industrial adoption of TDD.

7.3 Future Work

In this study we presented a detailed experiment with students as subjects,
making it more accessible for other researchers to replicate or perform a sim-
ilar experiment. Alongside of providing more evidence on how general testing

Impact of Test Design Technique Knowledge on TDD 151

knowledge supports TDD in practice, we think an evolving experiment should
be created with more specific focus. This experiment would be a possibility to
directly investigate the effect of knowledge of negative testing on TDD practice.
It could be designed in a way to provide education to subjects specifically on how
to design test cases for unspecified system behaviours and use that knowledge
when performing TDD of software systems.

TDD per se provides an excellent opportunity for improving code quality
by imbibing “test culture” in the development community. Adherence to TDD
results in the generation of automated and executable test cases during the devel-
opment phase itself, thus improving the testability of the system requirements.
However, as indicated by our study, TDD needs to be supplemented with new
process steps or test design techniques, which could potentially further enhance
the robustness and the reliability of the system.

In a long term research perspective, we also intent to perform an industrial
case study investigating how experienced developers could benefit from testing
knowledge and what kind of specific testing knowledge they need in order to
increase the quality of the code artefacts they produce.

Acknowledgments. This work was supported by SWELL (Swedish software
Verification & Validation ExceLLence) research school and OPEN-SME research
project.

References

1. Beck, K.: Extreme programming explained: embrace change. Addison-Wesley
Longman Publishing Co., Inc., Boston (2000)

2. Causevic, A., Sundmark, D., Punnekkat, S.: An industrial survey on contempo-
rary aspects of software testing. In: Proceedings of the 3rd IEEE International
Conference on Software Testing, Verification and Validation, ICST, pp. 393–401
(2010)

3. Causevic, A., Sundmark, D., Punnekkat, S.: Factors limiting industrial adoption
of test driven development: A systematic review. In: Proceedings of the 4th IEEE
International Conference on Software Testing, Verification and Validation, ICST,
pp. 337–346 (2011)

4. Wohlin, C., Runesson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Ex-
perimentation in Software Engineering – An Introduction. Kluwer Academic Pub-
lishers (2000)

5. Jedlitschka, A., Pfahl, D.: Reporting guidelines for controlled experiments in soft-
ware engineering. In: Jeffery, R., et al. (eds.) Proceedings of the 4th International
Symposium on Empirical Software Engineering (ISESE 2005), pp. 94–104. IEEE
Computer Society (2005)

6. Sfetsos, P., Angelis, L., Stamelos, I.: Investigating the extreme programming system
- an empirical study. Empirical Software Engineering 11, 269–301 (2006)

7. Geras, A., Smith, M., Miller, J.: A prototype empirical evaluation of test driven
development. In: Proceedings of the 10th International Symposium on Software
Metrics, pp. 405–416. IEEE Computer Society, Washington, DC, USA (2004)

152 A. Čaušević, D. Sundmark, and S. Punnekkat

8. Kollanus, S., Isomöttönen, V.: Understanding tdd in academic environment: expe-
riences from two experiments. In: Proceedings of the 8th International Conference
on Computing Education Research, Koli 2008, pp. 25–31. ACM, New York (2008)

9. Muller, M., Hagner, O.: Experiment about test-first programming. IEE Proceedings
Software 149, 131–136 (2002)

10. George, B., Williams, L.: A structured experiment of test-driven development.
Information and Software Technology 46(5), 337–342 (2003)

11. Erdogmus, H., Morisio, M., Torchiano, M.: On the effectiveness of the test-first
approach to programming. IEEE Transactions on Software Engineering 31, 226–
237 (2005)

12. Flohr, T., Schneider, T.: Lessons Learned from an XP Experiment with Students:
Test-First Needs More Teachings. In: Münch, J., Vierimaa, M. (eds.) PROFES
2006. LNCS, vol. 4034, pp. 305–318. Springer, Heidelberg (2006)

13. Janzen, D.S., Saiedian, H.: On the influence of test-driven development on software
design. In: Conference on Software Engineering Education and Training, pp. 141–
148 (2006)

14. Müller, M., Höfer, A.: The effect of experience on the test-driven development
process. Empirical Software Engineering 12, 593–615 (2007)

15. Janzen, D.S., Turner, C.S., Saiedian, H.: Empirical software engineering in industry
short courses. In: Conference on Software Engineering Education and Training, pp.
89–96 (2007)

16. Gupta, A., Jalote, P.: An experimental evaluation of the effectiveness and effi-
ciency of the test driven development. In: Proceedings of the First International
Symposium on Empirical Software Engineering and Measurement, ESEM 2007,
pp. 285–294. IEEE Computer Society, Washington, DC, USA (2007)

17. Höfer, A., Philipp, M.: An Empirical Study on the TDD Conformance of Novice
and Expert Pair Programmers. In: Abrahamsson, P., Marchesi, M., Maurer, F.
(eds.) XP 2009. LNBIP, vol. 31, pp. 33–42. Springer, Heidelberg (2009)

18. Huang, L., Holcombe, M.: Empirical investigation towards the effectiveness of test
first programming. Inf. Softw. Technol. 51, 182–194 (2009)

19. Vu, J.H., Frojd, N., Shenkel-Therolf, C., Janzen, D.S.: Evaluating test-driven de-
velopment in an industry-sponsored capstone project. In: Proceedings of the 2009
Sixth International Conference on Information Technology: New Generations, pp.
229–234. IEEE Computer Society, Washington, DC, USA (2009)

20. Madeyski, L.: The impact of test-first programming on branch coverage and muta-
tion score indicator of unit tests: An experiment. Inf. Softw. Technol. 52, 169–184
(2010)

21. The International Software Testing Qualifications Board (ISTQB),
http://www.istqb.org

22. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University
Press, Cambridge (2008) ISBN 0-52188-038-1

23. Eclipse, http://www.eclipse.org
24. jUnit Framework, http://www.junit.org

http://www.istqb.org
http://www.eclipse.org
http://www.junit.org

C. Wohlin (Ed.): XP 2012, LNBIP 111, pp. 153–167, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Escalation of Commitment:
A Longitudinal Case Study of Daily Meetings

Viktoria Gulliksen Stray1, Nils Brede Moe2, and Tore Dybå2,1

1 University of Oslo, Gaustadalléen 23,
NO-0373 Oslo, Norway
stray@ifi.uio.no

2 SINTEF, S.P. Andersens veg 15 B,
NO-7465 Trondheim, Norway

(nils.b.moe,tore.dyba)@sintef.no

Abstract. Escalating commitment is a common and costly phenomenon in
software projects in which decision-makers continue to invest resources to a
failing course of action. We conducted a longitudinal case study exploring the
effect of daily meetings on escalating commitment. This was done in an agile
project building software for the oil and gas industry. By analyzing data
collected over a period of four years, and drawing on concepts from self-
justification theory we found that daily meetings contributed to maintain a
situation of escalating commitment. This especially occurs if the meeting
becomes a place for reporting and defending decisions with team members
feeling that they have to justify their choices towards the project management
or fellow team members. Early signs of escalation such as rationalizing
continuation of a chosen course of action must therefore be taken seriously.

Keywords: Escalating commitment, daily meetings, stand-up, Scrum, self-
justification theory, agile software development.

1 Introduction

Escalation of commitment, which can be defined as an increasing commitment to a
failing course of action [1], is a general phenomenon that is particularly common in
software projects because of their complex and uncertain nature [2]. Keil et al. [3], for
example, found that 30-40 % of all software projects experience escalation of
commitment. Some of the most important and difficult decisions made in software
projects involve escalating situations. In these situations decision-makers commit
additional resources to a course of action with negative interim outcomes [4]. One of
the most known escalating commitment projects is the baggage handling system at
Denver International Airport [5]. The project delayed the opening of the airport by
nearly two years and caused it to be $2 billion over budget [5].

Recently there is a trend in software development, through the introduction of agile
software development (ASD), that the focus of decision-making has moved from the
project manager to the software development team, and the decision-making process

154 V.G. Stray, N.B. Moe, and T. Dybå

has changed from individual and centralized to shared and decentralized [6]. Thus in
agile software development leadership is shared, and important decisions on what to
do and how to do it are made through an interactive process involving many people
who influence each other, not just a single person [7].

Several studies have shown that decision-makers tend to invest additional
resources in an attempt to justify their previous investments [1, 8, 9]. Because groups
have the capacity of employing multiple perspectives when making decisions, one
might believe that escalating commitment situations should occur less frequently in
agile teams than in traditional teams. However, several studies show that when having
group decision-making, escalating tendencies will occur more often and will be more
severe than in individual decision-making due to group polarization and conformity
pressures [10].

The most important forum for coordinating work and making decisions in ASD is
through daily meetings, which are often called “stand-up meetings” or “Daily Scrum”.
The purpose of the daily meeting is to synchronize activities and improve
communication among the entire team, and to create plans for the next 24 hours [11].
Accordingly, the daily meeting is the most important forum for exchanging information
upon which decisions are based, in addition to being a decision-making forum itself.

Motivated by the importance of understanding escalating commitment in software
development, and the daily meetings as an important place for group decisions and for
exchanging information in agile software projects, we have identified the following
research question:

What is the effect of daily meetings on escalating commitment in agile software
projects?

To investigate this research question we conducted an in-depth longitudinal case
study of escalating commitment in a multi-year new product development project.
Over a 4-year period, the project suffered a number of setbacks and budget increases,
as well as negative feedback on project progress.

The main contribution of this paper is an analysis of daily meetings in a project
with escalating commitment, combined with a discussion of theoretical and practical
implications. We interviewed 20 people in addition to observing teamwork and
meetings. We used self-justification theory to analyze the interview transcripts and
field notes. This theory suggests that individuals tend to escalate their commitment to
a course of action in order to self-justify prior behavior, especially when they have
been personally responsible for negative consequences [8].

The remainder of this paper is organized as follows: The next section outlines the
background and relevant literature on daily meetings and escalating commitment.
Section 3 describes the research methods used, Section 4 reports our results, Section 5
discusses the findings, and Section 6 concludes.

2 Background

In this section we first present background information on decision-making in an agile
context. Then we explain why escalating commitment is important in the field of

 Escalation of Commitment: A Longitudinal Case Study of Daily Meetings 155

decision-making and software development before we introduce theories used to
explain the phenomena of escalating commitment.

2.1 Decision Making in Agile Software Development

Product and project level decisions in a software company can be considered at the
strategic, tactical, and operational levels [12]. In an ASD product company, strategic
decisions are primarily related to product and release plans. Tactical decisions involve
the project management view where the aim is to determine the best way to
implement ASD strategic decisions. Finally, operational decisions are about
implementation of product features and the process of assuring that specific tasks are
carried out effectively and efficiently [6].

When explaining non-routine decisions, like in software projects where goals are
constantly changing, the bounded rationality model [13] is often useful. This model
assumes that decision-makers’ rationality is restricted by the information they have,
their cognitive limitations, and the types of problems they face. An uncertain task
requires large amounts of information to be processed by decision-makers while
performing the task [14]. The greater the uncertainty, the more difficult it is to
program and routinize an activity by preplanning a response [15].

Another relevant theory on decision-making is naturalistic decision-making, which
aids in understanding how people make decisions in real-world contexts that are
meaningful and familiar to them [16, 17]. The advent of naturalistic decision-making
shifted the concept of human decision-making from a domain independent general
approach to a knowledge-based approach exemplified by decision-makers with
substantial experience. The decision-making process was expanded to include the
stage of perception and recognition of situations as well as generation of appropriate
responses, not just a choice from given options [18]. Moving from plan-driven to
agile development can be seen as moving from rational to naturalistic decision-
making [6].

2.2 Escalating Commitment

One major source of error in decision-making is escalation of commitment [19]. The
phenomenon has been widely studied in the Information Systems (IS) field [20-22].
Escalation is considered a costly and common problem in IT projects. Many software
projects are over budget and have time overruns, and this is often caused by a
situation of escalating commitment [23]. Escalating situations happen when decision-
makers allocate resources in the hope of attaining a goal and then receive feedback
that they have not yet reached that goal [24]. There will be an uncertainty surrounding
goal attainment and the decision-maker must make a choice about whether to
continue the previous course of action [24].

While any type of project is at risk of escalation of commitment, Montealegre and
Keil [25] declared that IT projects are especially vulnerable to this phenomenon
because software by nature is intangible, making it difficult to determine the amount
of work left until completion.

156 V.G. Stray, N.B. Moe, and T. Dybå

Several theories have been used to explain the phenomenon of escalating
commitment, and the most frequent theories have been prospect theory, self-
justification theory, agency theory, and approach-avoidance theory [3]. Since self-
justification theory has been shown to provide not only an important [24], but a
primary explanation for escalating commitment [26] we chose to use this theory when
studying the phenomenon in agile software projects. Additionally, in agile software
projects the team members are given more personal responsibility than in traditional
software projects, which is an important concept of this theory.

According to self-justification theory, individuals tend to continue to commit to a
course of action in order to self-justify the correctness of an earlier decision to pursue
a particular course of action [8]. “Individuals seek to rationalize their previous
behavior or psychologically defend themselves against a perceived error in
judgment”, [8], p. 432, in other words: people do not like to admit to themselves or
others that a previous decision was wrong [24].

Escalating behavior is seen as coming from a “retrospective rationality”; what has
been invested in the past is considered relevant to the decision-making [3]. At a
personal level this can be compared to a person who keeps standing in a long queue
because he or she already has been standing there for a long time, even if the queue is
moving slowly [27]. There are two constructs in the self-justification theory:
psychological justification, where an individual seeks to justify his actions in order to
prove to himself that he is competent and rational, and social self-justification where
he seeks to justify the same to others [3].

Psychological justification cannot be assessed directly since it happens in the
subconscious mind of the decision-maker, factors which can indicate that a person
engages in psychological justification is; being extensively involved in a project,
repeatedly expressing support for it, feeling personally responsible or being
emotionally attached to the project [3].

Social self-justification often leads to behaviors to save face, and one indicator of
social self-justification is when a decision-maker does not want to admit mistakes [3].
In the case that a decision-maker is very closely identified with the project or would
look bad if the project was terminated, this may suggest a high need for self-
justification [3].

Additionally, the level of personal responsibility influences the need to self-justify:
a person who has a high level of personal responsibility for a previously chosen
course of action is more likely to commit more resources to this course than
individuals with a low level of personal responsibility [1].

3 Research Method

Since the goal of this research is to explore and provide insight into the phenomenon
of escalating commitment and the decision-making processes in agile software
development, it is important to study software development teams in practice.
Therefore, we chose a case study since case studies are especially useful for such
exploratory research where an in-depth understanding of a phenomenon in its context
is desired [28].

 Escalation of Commitment: A Longitudinal Case Study of Daily Meetings 157

3.1 Case Study Design

We designed a single-case longitudinal study [28] of escalating commitment in a Scrum
project to understand the role of daily meetings in such projects. The particular case was
initially part of a multiple case study involving two companies on understanding shared
decision-making in agile software development [6]. While the multiple case study [6]
identified challenges of shared decision-making in four projects, this study focuses on
the phenomena of escalating commitment in one of the projects. The two first authors
extended the data, which was the base in the study of shared decision-making, by
collecting additional data over a period of one year. A single case study was chosen
since it shows a critical case for testing a well-formulated theory. We relied on
interviews and participant observations when collecting data.

Most case studies on escalation of commitment rely on data collected in retrospect,
after the project has been recognized as a case of escalating commitment. By
including data from before the project experienced escalation, this longitudinal study
gave us a unique opportunity of understanding escalation of commitment. In this
study we chose to focus on daily meetings, as this is the main place for decision-
making and coordination of work in agile teams.

3.2 Study Context

This study was conducted in the context of a larger action research program, in which
the company introduced elements of agile development in response to identified
problems. The Company is a medium-sized software company with approximately
150 employees in four organizational units. Each developer was usually fully
allocated to one project, and when there was a need for additional competence, for
example on user interface or modeling, additional internal resources were used.

The goal of the project was to develop an engineering software product for the oil
and gas industry. Today several clients are interested in buying the software product,
and at the time of the study a few contracts had been signed. The project involved
developing a new system while at the same time trying to obtain input from the
marketing department and potential clients.

Eight months into the project Scrum was introduced and from then on the team
followed Scrum rules and was given significant authority and responsibility for many
aspects of their work, such as planning, scheduling, assigning tasks to members, and
making decisions. They usually relied on three-week sprints, however, the length of
the sprint sometimes changed during vacations, and before and after deliveries. They
conducted Scrum meetings in each sprint, such as sprint planning meeting, sprint
review, and retrospective.

The project had two different Scrum Masters during the four years. The first one
was an experienced developer who had worked in the company for several years. He
stayed on the project for the three first years. The second Scrum Master was an
experienced project manager and architect.

3.3 Data Collection and Analysis

The two first authors conducted 20 semi-structured interviews with developers, Scrum
Masters, and Product Owners. Each interview lasted from 20 to 50 minutes and

158 V.G. Stray, N.B. Moe, and T. Dybå

covered the five main topics; meetings, teamwork, decision-making, agile practices,
and the project. Examples of questions are: How is work coordinated? How do you
perceive the daily meeting? How is feedback given? How are decisions made? How
are problems solved?

Everyone involved in the project was interviewed, including Product Owner and
line manager, one or several times. All interviews were recorded and fully
transcribed. The interview guide was based on the teamwork model proposed by
Dickinson and McIntyre [29], which includes the most common elements that are
considered in research on teamwork processes and that can be used on decision-
making and self-managing teams [30]. The two first authors also observed
retrospectives and daily meetings.

Participant observation was selected as a research technique to investigate the
phenomenon of escalating commitment. It is a particularly relevant approach when
‘the phenomenon is obscured from the view of outsiders’ [31]. During coffee and
lunch breaks the two first authors also discussed status, progress, and how issues were
perceived by team participants. Telephone and e–mail were also used for such
discussions. Notes were taken during dialogues, interactions, and activities. A short
summary was written after each observation. We asked some team members to
explain and comment on our observations.

All the transcribed data from the interviews, observations, and documents was
imported into a software tool for analyzing qualitative data, NVivo
(www.qsrinternational.com). The two first authors read all interviews and
observations, and coded interesting expressions of opinions, problems, events,
happenings, or actions/interactions in the text by assigning the piece of text to a
category (“node” in NVivo). A category represents a phenomenon, that is, a problem,
an issue or an event that is defined as being significant. When categories were found
to be conceptually similar in nature they were grouped under more abstract, higher-
order categories. Finally, NVivo was used to create connections between categories
and their subcategories.

4 Results

The phenomenon of escalating commitment was observed in the following two
distinct phases. In the first phase of our study we found the team to justify their
decisions to the Product Owner. In the second part of the study we found the team
members justifying their decisions to each other. We will now describe our findings
in these two phases.

4.1 The Team Justifying Their Decisions to the Product Owner

The project started in 2006. After 8 months, Scrum was introduced by the second and
third authors in close collaboration with the company. The main motivation was the
urgent need for delivering features more often. So far, the management who funded the
product development project perceived the progress as too slow and threatened to cancel
the project. Also three potential customers (three of the world’s biggest oil companies)

 Escalation of Commitment: A Longitudinal Case Study of Daily Meetings 159

felt that the product development was going too slow, and therefore they did not sign
contracts. Delivering software every month and better responding to potential customers
was seen as necessary for continuing to get funding, therefore the project decided to
start using Scrum and to rely on iterative development. The Scrum Master, Product
Owner, and the team were given Scrum training over two days. In addition the Scrum
Master got coaching from an experienced Scrum trainer the first year.

After introducing Scrum, the team and the management had to make an important
decision regarding which technology the product should be based on. There were two
choices:

1) Base the project on an existing framework for data processing that already
existed within the company, or

2) Build their own framework from scratch independently of what already
existed, and use third part components when needed.

The Product Owner (PO) and the project management let the team decide themselves.
The team chose 2) because:

• The existing framework was seen as too immature at the time of the decision
• The people that had developed the framework were very busy, and were not

part of the project team. The team felt they needed help from the experts of
the framework to implement it in the project

• The team needed to show progress. If they chose 1) it would require several
months adjusting the existing framework before new features could be
implemented. Choosing 2) made it possible to develop the framework in an
iterative way and to start delivering features without the framework being
complete.

The PO, who also was a project manager, frequently communicated with the
customers and he participated in the daily meetings. His goal of participating in the
daily meetings was to frequently inform the team what the potential customers
were interested in, and to better understand the challenges the team faced. It soon
became evident that there were challenges when the team planned their work based on
the product backlog. Some of the features identified by the various customers were
conflicting and some were too vaguely defined. The Scrum Master said:

“We are now dealing with three potential customers, and they ask for three different
solutions. We need to urgently figure out how to satisfy them all.”

Decisions on how to prioritize and how to understand the requirements needed a
constant dialogue between the PO and the team, therefore it was perceived as very
useful to have him in the daily meetings. By observing the daily meetings it was clear
that the PO gave a lot of feedback, and important discussions arose on how to
understand what was supposed to be delivered.

Estimates were given by the team on the various features, however it soon became
evident that the team had overcommitted and had a much lower progress than
expected by the team itself and by the PO. Because of the slow progress, the PO
started to question the decisions and work done by the team members while in the
daily meetings. The PO felt that the team members did not take real responsibility

160 V.G. Stray, N.B. Moe, and T. Dybå

when they did not complete the tasks on time. Also the PO felt that the team was
missing a good strategy for developing the architectural framework for the product.
Both from the interviews and from observing daily meetings it was evident that the
PO and the team did not fully trust each other. The effect was team members ending
up defending their decisions and their work, especially if they were running late on a
task. One developer explained:

“I experienced the daily meeting like an oral exam. If you had estimated two days on
the task, and you had used three days and still not finished, you knew you had to
explain why you were running late. You always prepared for the daily meeting; I
wrote down in detail what I had done on a small piece of paper.”

While everyone agreed that the daily meeting was about informing each other, it was
obvious that this meeting became the place for the developers to give detailed
progress reports to the PO and to give detailed explanations for why things did not
turn out as expected. It was about defending their decisions and their progress against
what they felt the management expected, and less about informing each other.

The Scrum Master initiated several improvement actions to make the situation
better. He introduced; pre-planning meetings so he and the Product Owner could
prepare the product backlog for the planning meeting, pair programming to create
shared ownership, and a dedicated meeting room for the team to visualize and track
all tasks.

In this period the team members had frequent meetings regarding how to solve
problems, how to develop the architectural framework and how to implement
features. The team members felt they based their decisions on consensus, and when
they prepared for the daily meetings it was all about defending their decisions to the
PO, who often questioned them. This was also the case if the team had identified e.g.
a need for upgrading the development tools, the hardware or their competence.

For two more years this pattern of behaviour continued. Project progress was still
perceived as slow by the ones paying for the project, and the pressure on the team and
the PO increased. Because of this, the PO felt he had to make the team commit to
deliver more features. The team tried to protest, but that did not help and the team
usually ended up with an unrealistic backlog for each sprint. At the same time it
became more and more difficult to estimate how much time it would require to
implement new features. It was obvious that there were problems with the
architectural framework, because adding a feature always ended up with the need to
change previous code. Additionally, the team was not able to estimate what needed to
be changed and how long this would take. The situation gradually deteriorated and the
solution was to work harder; resulting in a lot of overtime work. The daily meeting
continued to be a place for the PO to question the team and for the team to defend
their actions. There was never a discussion on whether they had previously made the
right decisions, or if the project was heading in the right direction. The focus was on
continuing to do what they were doing, and to defend their decisions. After a while
the team stopped conducting daily meetings on a regular basis. The reason for this
was that they thought it did not add any value to meet every day.

 Escalation of Commitment: A Longitudinal Case Study of Daily Meetings 161

4.2 Team Members Justifying Their Decisions to Each Other

Three years after Scrum was introduced the former Scrum Master quit the company.
The project got a new Scrum Master, who also became the new project manager, and
four new developers joined the project. Additionally, it was decided that the PO
should not participate in the daily meetings anymore to better protect the team against
the continuous input from the market. Daily meetings were again held five days a
week.

While the project was revitalized, it still had severe problems with progression.
The Scrum Master and the management identified part of the newly developed
framework and code developed by the old team members as a major problem. It was
written in such a way that it became more and more difficult to change. It was time-
consuming to add new features, and the new architectural framework could not be
extended to support features that were essential to enter a new market. The old team
members did not share the view on the source of the problems, and wanted to
continue to use the self-developed framework and code. They also wanted to commit
additional resources to this course of action. The management perceived this course of
action as a failing one.

For a period conflicts arose between the new and the old team members. The new
developers felt the code and architectural framework developed had poor quality,
while some of the old team members felt disregarded when their previous work was
questioned and the new team members started cleaning up in “their” code.

The daily meetings changed from a place the team defended itself to the Product
Owner, to a place were the old team members defended themselves to the new Scrum
Master and the new developers. The old team members felt it was important to prove
to the new team members that they did good work. This seemed like a defence
mechanism that was activated when their previous work and decisions were
questioned. Daily meetings were experienced by some as a means for showing each
other that they were working between the meetings. One developer said:

“Yes, it is ok to have a formal rallying point just to say that “I am here, and I am
actually working on something.”

Another developer explained how he perceived the daily meeting:

“You can feel the pulse go up, because you are supposed to talk about the things you
have done and show progress.”

Some team members defended themselves by telling a lot of details about what they
had done since the last meeting. One developer explained the effect of this detailed
reporting:

“There are often too many details in the daily meetings so people fall off. Because
you don’t know what the others are doing, you have no idea what they are talking
about when they start to talk about their own stuff.”

The Scrum Master tried to change the daily meetings from being a place where
detailed reports were given to him to a forum where the team members could talk to
each other and have less focus on details. However, we still observed that some team

162 V.G. Stray, N.B. Moe, and T. Dybå

members continued to give detailed technical reports during the daily meetings. One
reason for this was that the team members worked on separate parts of the code and
therefore they did not know what the others in the team were doing. The
specialization caused them to feel responsible for their own modules and defend their
“own” code in these modules.

In spring 2011 a plan was made to exchange their new self-developed framework
with the existing company-based framework that the project had decided not to use
three years earlier. The old team members were frustrated about this decision because
they had invested several years in the new code, which was now to be removed. The
old team members were given the opportunity to work out a solution to keep the their
code, but they did not come up with one.

When the code rewriting started, the old team members did not fully support the
decision, and some team members continued to defend their previous actions. The
team was in a crisis for several months because the whole team was not working in
the same direction. Some developers even considered leaving the team.

Replacing bigger parts of the code caused the system to become even more
unstable, even worse than before. Progress was slow and task estimation was still very
difficult. Doing one change to the system could take from hours to days, and the
developers could never tell. Some of the old team members became furious about this
and the atmosphere in the team went from bad to worse. In the interviews it was
revealed that there was a lot of blaming going on in the team. The new team members
blamed problems on the old developers that in their mind had written code with poor
quality. The old team members blamed the replacement of their code to be the reason
for the new problems emerging. From observing a full day retrospective, we noticed
that none of the conflicts between the team members or problems related to the old
code were discussed.

It took more than five months before the team members that had been on the
project from the beginning accepted the decision of exchanging the framework. They
were committed to their previous work and did not want to admit that exchanging it
was a good solution. The daily meetings were the place for defending previous
decisions and showing others that they did a good job. After the old developers started
accepting the changes needed to be done, the daily meetings started to improve,
however there was still an uncertainty related to the delivery of the next big release.

5 Discussion

We have described a project with escalating commitment and how the project
members perceived the daily meetings. In the beginning of the project the daily
meetings became a meeting where the team members felt they had to defend their
decisions and work to the PO. Both parties used the daily meetings to justify their
own work. Later in the project the daily meetings became a forum where some of the
team members felt they had to defend their decision and their work to each other and
to the Scrum Master.

In this section we will discuss our research question and elaborate on how the daily
meeting became a meeting for psychological and social self-justification and how this
contributed to maintain the escalating situation.

 Escalation of Commitment: A Longitudinal Case Study of Daily Meetings 163

5.1 Psychological Self-justification

There are three common reasons for psychological self-justification [3]: (1) Being
extensively involved in a project, (2) being emotionally attached to the project, and (3)
feeling personally responsible for the project. In the observed project, the team members
had been a part of the project for many years, which led them to be emotionally attached
and extensively involved. Also because the project coordinated work by relying on
specialization and corresponding division of work they felt personally responsible for
the modules they worked on. Feeling such personal responsibility and being emotionally
attached are both usually positive qualities of a team. However, as we found, they can
also maintain an escalating situation. The main reason for this was that the daily
meetings were used as a forum for defending decisions.

We saw team members seeking to justify their choices on a regular basis in the
daily meetings. In the first phase of the project the team members all agreed on their
choice being a good one, however they believed they needed to use the daily meetings
to justify it to the PO. The team members felt personally responsible for the choice
that was made, and they became emotionally attached to the code they had written.
The daily meetings were perceived as an oral exam where team members gave
detailed and technical descriptions on what they had been doing since the previous
meeting.

Three years into the project it was decided that they had to replace the self-
developed framework with an existing framework, the team members who had
developed the framework became very frustrated. They had worked on this for three
years, and replacing the code was equal to saying that their work was wasted. Some of
the old developers felt their position was threatened, and for several months many of
them resisted this change. They used a lot of energy complaining about the new
framework and the work carried out by the new developers. The daily meeting
became a place for telling the others that they were adding value to the project.

Our findings are in line with the results of Staw et al. [1], who found that
individuals with a high level of responsibility are more likely to find a greater need to
justify previous decisions. Because the team had developed their own framework over
several years they continued to justify why this framework was the right one, and the
daily meeting became the most important forum for doing so.

When it was decided to replace the framework, the old developers became very
frustrated, and subsequently they used the daily meetings to defend their work and
position in the team. Also, Pan et al [23] found that there might be a sense of anxiety
in a project when a team is told to give up their commitment to a failing course of
action.

Agile software projects rely on feedback sessions such as review and retrospective
meetings. These meetings might make it easier to overcome commitment to a prior,
failing course of action and agree on a turnaround strategy. However, people need to
feel secure to be willing to give up a prior course of action [22], which means that for
retrospective meetings being able to facilitate de-escalation of commitment the
team members must feel secure. In this project the conflicts in the team were never
discussed in retrospective meetings, which might indicate that they did not feel secure.

164 V.G. Stray, N.B. Moe, and T. Dybå

In the study by Pan et al. [22] of de-escalation the team managed to work towards a
project turnaround because of open communication and they found that psychological
safety was crucial. The communication in the team that we studied was not open, and
the team members did not seem secure, which might contribute to explaining why the
escalation continued for such a long time.

5.2 Social Self-justification

Social self-justification is another important construct for self-justification, which can
be indicated by: (1) Behaviors to save face, (2) not wanting to admit mistakes, and (3)
being very closely identified with the project. From the interviews and from observing
the daily meetings we found that the team members and the PO did not fully trust
each other. This led to a behavior of not wanting to admit mistakes and trying to save
face in the daily meetings. When new team members were added to the project, the
old team members started to defend their previous decisions because they did not
want to admit mistakes to the new developers. In addition, the old team members
closely identified themselves with the software being developed.

The project received negative feedback on their progress, and continued for many
years without changing the course of action. In other studies on escalating
commitment it has also been found that decision-makers often tend to allocate more
resources if they receive negative feedback about the chosen course of action, than if
they receive positive feedback [32].

We also found that the project members and the PO relied on placing blame as a
way of justifying decisions. They both blamed the technology, other circumstances
beyond control (e.g. the customer) and the work done by others. The Product Owner
blamed the developers for writing code of low quality, and the developers blamed the
PO for overselling to the customers and giving them ambiguous and conflicting
requirements. The new developers blamed the code written by the existing
developers, while the existing developers started to blame the new code when the
system had a lot of errors during the exchange of the framework. This is in line with
the findings of Heng et al. on blaming as a means of justifying decisions [33].

 The result of this blaming was that the daily meetings became the place to prove
that the work they were doing was good and important. Studies on escalating
commitment have found that if people are motivated to justify their decisions, the
situation of escalating commitment continues, while if this motivation is reduced the
situation can be de-escalated [33]. The daily meeting was a forum where the team
members constantly had to justify their decisions and therefore contributed to
maintaining the escalation.

5.3 Implications for Practice

To avoid situations of escalating commitment it is important to make sure that the
daily meeting is not a place for defending decisions. Not only do the team need to
watch their internal process, they also need to consider which non-team members are
allowed to participate or observe the meeting. If team members start to defend their

 Escalation of Commitment: A Longitudinal Case Study of Daily Meetings 165

decisions or give detailed reports of what they have done because people outside the
team are present in the daily meetings, we advise that these people outside the team
do not participate on a regular basis.

Early signs of escalation such as rationalizing continuation of a chosen course of
action, and when team members start giving detailed and technical descriptions of
what they have done since last meeting, must be taken seriously. Further when the
team becomes aware of the signs of escalating commitment, this needs to be
addressed on the retrospective meetings. Finally, team members should get, and also
give, feedback on how they communicate about their work in the daily meeting.

6 Conclusions and Further Work

There are many reasons why a software project can fail, and escalating commitment,
in which a project continues to absorb resources to a failing course of action, is one of
them. Over a period of four years we were able to see how daily meetings affected the
situation of escalating commitment. We found that the self-justification theory, with
the two factors psychological and social self-justification, helped to explain how the
daily meetings contributed to maintain the escalating situation. Our results show that
the daily meeting became a forum for self-justification where team members defended
their decisions and actions to the Product Owner and to each other, and that the daily
meeting, therefore, instead of initiating de-escalation became the most important
mechanism for maintaining the escalating situation.

The project under study followed Scrum practices, but still experienced a situation
of escalating commitment. One might think that agile software projects do not suffer
from such escalating commitment because the agile development process emphasizes
that the project should embrace change and rely on iterative development and
frequent communication, but our study shows that it also happens in agile software
projects.

This study focused only on the effect of daily meetings on escalating commitment.
Other factors such as knowledge and experience of the team members may also have
had an effect on the escalating situation and these should be assessed in future studies.
Future work should also investigate how the escalation process emerges in agile
software projects, for instance by using the process model given by Mähring and Keil
[21, 34]. More research is needed to understand which mechanisms are needed for
agile projects to discover a situation of escalating commitment and to enter a phase of
de-escalation. In addition there is a need for better understanding of daily meetings in
agile software projects, their usefulness (or lack of) in agile software projects, and
what can be done to improve daily meetings. Research should also study techniques
for daily meetings to make sure they do not maintain a situation of escalating
commitment.

Acknowledgments. This work was supported by the Research Council of Norway
through grant 193236/I40. We appreciate the input received from managers and
project participants of the investigated company, and we are grateful to the reviewers
of this paper who gave us valuable feedback.

166 V.G. Stray, N.B. Moe, and T. Dybå

References

1. Staw, B.: Knee-Deep in the Big Muddy: A Study of Escalating Commitment to a Chosen
Course of Action. Organizational Behavior and Human Performance 16(1), 27–44 (1976)

2. Robey, D., Keil, M.: Blowing the Whistle on Troubled Software Projects.
Communications of the ACM 44(4), 87–93 (2001)

3. Keil, M., Mann, J., Rai, A.: Why Software Projects Escalate: An Empirical Analysis and
Test of Four Theoretical Models. MIS Quarterly 24(4), 631–664 (2000)

4. Keil, M.: Pulling the Plug: Software Project Management and the Problem of Project
Escalation. MIS Quarterly 19(4), 421–447 (1995)

5. Keil, M., Montealegre, R.: Cutting Your Losses: Extricating Your Organization When a
Big Project Goes Awry. Sloan Management Review 41(3), 55–68 (2000)

6. Moe, N.B., Aurum, A., Dybå, T.: Challenges of Shared Decision-Making: A Multiple Case
Study of Agile Software Development. Information and Software Technology, 1–38 (in
press, 2012)

7. Moe, N.B., Dingsøyr, T., Dybå, T.: Overcoming Barriers to Self-Management in Software
Teams. IEEE Software 26(6), 20–26 (2009)

8. Staw, B.M., Fox, F.V.: Escalation: The Determinants of Commitment to a Chosen Course
of Action. Human Relations 30(5), 431–450 (1977)

9. Bazerman, M.H., Giuliano, T., Appelman, A.: Escalation of Commitment in Individual
and Group Decision Making. Organizational Behavior and Human Performance 33(2),
141–152 (1984)

10. Whyte, G.: Escalating Commitment in Individual and Group Decision Making: A Prospect
Theory Approach. Organizational Behavior and Human Decision Processes 54(3), 430–
455 (1993)

11. Schwaber, K., Sutherland, J.: The Scrum Guide. Scrum Allience (2011)
12. Aurum, A., Wohlin, C., Porter, A.: Aligning Software Project Decisions: A Case Study.

International Journal of Software Engineering and Knowledge Engineering 16(6), 795–818
(2006)

13. Simon, H.A.: A Behavioral Model of Rational Choice. The Quarterly Journal of
Economics 69(1), 99–118 (1955)

14. Morgan, G.: Images of Organizations. SAGE Publications, Thousand Oaks (2006)
15. Dybå, T.: Improvisation in Small Software Organizations. IEEE Software 17(5), 82–87

(2000)
16. Lipshitz, R., Klein, G., Orasanu, J., Salas, E.: Taking Stock of Naturalistic Decision

Making. Journal of Behavioral Decision Making 14(5), 331–352 (2001)
17. Fjellman, S.M.: Natural and Unnatural Decision-Making. Ethos 4(1), 73–94 (1976)
18. Klein, G.: Naturalistic Decision Making. Human Factors: The Journal of the Human

Factors and Ergonomics Society 50(3), 456–460 (2008)
19. Lunenburg, F.C.: Escalation of Commitment: Patterns of Retrospective Rationality.

International Journal of Management, Business, and Administration 13(1), 1–5 (2010)
20. Keil, M., Rai, A., Cheney Mann, J., Zhang, G.: Why Software Projects Escalate: The

Importance of Project Management Constructs. IEEE Transactions on Engineering
Management 50(3), 251–261 (2003)

21. Mähring, M., Keil, M.: Information Technology Project Escalation: A Process Model*.
Decision Sciences 39(2), 239–272 (2008)

22. Pan, G., Pan, S., Flynn, D.: De-Escalation of Commitment to Information Systems
Projects: A Process Perspective. The Journal of Strategic Information Systems 13(3), 247–
270 (2004)

 Escalation of Commitment: A Longitudinal Case Study of Daily Meetings 167

23. Pan, G., Pan, S., Newman, M., Flynn, D.: Escalation and De-Escalation of Commitment to
Information Technology Projects: A Commitment Transformation Analysis of an E-
Government Project. Information Systems Journal 16, 3–21 (2006)

24. Brockner, J.: The Escalation of Commitment to a Failing Course of Action: Toward
Theoretical Progress. Academy of Management Review 17(1), 39–61 (1992)

25. Montealegre, R., Keil, M.: De-Escalating Information Technology Projects: Lessons from
the Denver International Airport. MIS Quarterly 24(3), 417–447 (2000)

26. Mayur, S., Desai, D.V.C.: Escalation of Commitment in Mis Projects: A Meta-Analysis.
International Journal of Management & Information Systems 13(2), 29–38 (2009)

27. Newman, M., Sabherwal, R.: Determinants of Commitment to Information Systems
Development: A Longitudinal Investigation. MIS Quarterly 20(1), 23–54 (1996)

28. Yin, R.K.: Case Study Research: Design and Methods. Sage, Thousand Oaks (2008)
29. Dickinson, T.L., McIntyre, R.M.: A Conceptual Framework of Teamwork Measurement.

In: Brannick, M.T., Salas, E., Prince, C. (eds.) Team Performance Assessment and
Measurement: Theory, Methods, and Applications, pp. 19–43. Psychology Press, NJ
(1997)

30. Moe, N.B., Dingsøyr, T., Dybå, T.: A Teamwork Model for Understanding an Agile
Team: A Case Study of a Scrum Project. Information and Software Technology 52(5),
480–491 (2010)

31. Jorgensen, D.L.: Participant Observation: A Methodology for Human Studies. Sage
publications, Thousands Oak (1989)

32. Bowen, M.G.: The Escalation Phenomenon Reconsidered: Decision Dilemmas or Decision
Errors? Academy of Management Review 12(1), 52–66 (1987)

33. Heng, C.S., Tan, B.C.Y., Wei, K.K.: De-Escalation of Commitment in Software Projects:
Who Matters? What Matters? Information & Management 41(1), 99–110 (2003)

34. Keil, M., Mähring, M.: Is Your Project Turning into a Black Hole? California
Management Review 53(1), 6–31 (2010)

C. Wohlin (Ed.): XP 2012, LNBIP 111, pp. 168–176, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Agile User Stories Enriched with Usability

Ana M. Moreno and Agustín Yagüe

Universidad Politecnica de Madrid
Madrid, Spain

ammoreno@fi.upm.es, agustin.yague@upm.es

Abstract. Usability is a critical quality factor. Therefore, like traditional software
teams, agile teams have to address usability to properly catch their users
experience. There exists an interesting debate in the agile and usability
communities about how to achieve this integration. Our aim is to contribute to this
debate by discussing the incorporation of particular usability recommendations
into user stories, one of the most popular artifacts for communicating agile
requirements. In this paper, we explore the implications of usability for both the
structure of and the process for defining user stories. We discuss what changes the
incorporation of particular usability issues may introduce in a user story. Although
our findings require more empirical validation, we think that they are a good
starting point for further research on this line.

Keywords: Agile development, usability patterns, user stories, HCI.

1 Introduction

ISO 9241-11 [1] defines usability as “the extent to which a product can be used by
specified users to achieve specified goals with effectiveness, efficiency and
satisfaction in a specific context of use”. In short, usability is also generally referred
to as "quality in use" [2].

The integration and cross pollination between usability and agile practices have
been a rapidly expanding area of work and research in the last few years. The
increasing number of publications concerning the field or the active Yahoo discussion
group called Agile Usability are two signs of change. One of the premises of this line
of work is that usability is a critical quality factor and needs to be dealt with during
agile development in order to provide a quality user experience. Both the HCI and
agile communities agree on this point. On the HCI side, for example, Nielsen [3]
states that an agile development team must recognize interaction design and usability
methods as explicit methodology development components, whereas, on the agile
side, Ambler [4] claims that an end product’s good usability can be ensured only by
systematic usability engineering activities during development iterations.

This is not, however, a straightforward process. Different authors have highlighted
challenges that need to be overcome if both fields want to work together. Differences in
terminology (Ferreira et al.[5]), goals (Lee[6]) and approaches to software construction
(Desilets[7]) are some of the most often cited obstacles to this integration.

 Agile User Stories Enriched with Usability 169

Nonetheless, several topics dealing with this road to integration are under debate.
At the organizational level, there is an interesting discussion about how the UX team
should work with the agile team (Ferreira et al.[8]). Another interesting line of work
addresses when UX design should take place in an agile process (Constantine[9]),
[10,11,12,13].

Some time ago, the HCI literature provided very specific usability
recommendations with a clear positive impact on the final quality of use of software
systems. Examples are give the user the option to cancel an ongoing process
[11,12,13,14], to undo a task [15,16], provide the user feedback on what is going on
in the system [15,17,18], adapt software functionalities to the user profile [19] or
provide clear and marked exits for the application [17]. Such usability
recommendations are in line with what Nielsen lately referred to as fast and cheap
usability techniques [20], as quick usability actions that help to significantly increase
user satisfaction.

Such recommendations represent specific functionalities to be incorporated into a
software system. Therefore, as discussed in [21], they can be considered as functional
usability requirements that complement traditional requirements.

Advancing along the above road to usability and agile integration, we address how
to deal with the above functional usability requirements in an agile context. We
explore how to represent such functional usability requirements in user stories, one of
the most popular artifacts for conveying agile requirements.

To do this, we have structured the paper as follows. Section 2 describes the usability
recommendations that we will deal with and discusses the need for full specification.
Then Section 3 discusses an approach for documenting this type of usability information
into user stories. Section 4 introduces a software tool set up to support the inclusion of
usability mechanisms in user stories. Section 5 describes how the approach is validated.
Finally, Section 6 outlines some conclusions and future work.

2 Specifying Functional Usability Features

This section describes the usability recommendations that we will deal with and
discusses the need for full specification. We have worked on the functional usability
recommendations proposed in [21], that is, usability heuristics with key benefits
(according to the usability literature) and with strong design implications, according
to the software engineering literature. Table 1 provides an overview.

One question that arises is whether such features need to be explicitly specified and,
if so, exactly what information should be listed. For example, would it be enough to
state in the user story that a particular functionality should include status feedback?
From a usability perspective, many details have to be taken into account for a system to
provide satisfactory system status feedback, including what states to report, what
information to display for each state, how prominent the information should be in each
case (for example, should the application keep control of the system or should users be
able to do something else while system status is being reported)... Therefore, much more
information than just a description of the usability feature must be considered in order to
properly build such feedback recommendations into a software system.

170 A.M. Moreno and A. Yagüe

Table 1. Usability mechanisms addressed

Usability Mechanism Goal

System Status To inform users about the internal status of the system

Warning To inform users of any action with important consequences

Long Action Feedback To inform users that the system is processing an action that will take

some time to complete

Global Undo To undo system actions at several levels

Abort Operation To cancel the execution of an action or the whole application

Abort Command To cancel the execution of a task in progress

Go Back To go back to a particular state in a command execution sequence

Structured Text Entry To help prevent the user from making data input errors

Step-by-Step Execution

To help users to do tasks that require different steps with user input

and correct such input

Preferences To record each user's options for using system functions

Favorites To record certain places of interest for the user

Multilevel Help To provide different help levels for different users

Notice that neither customers/users, nor, as Chamberlain et al. [13] claim, agile

developers are generally usability experts. So, unless this type of usability information
is documented in some way, good usability would, as Jokela and Abrahamsson [22]
mentioned, be more or less a fluke resulting from customer and/or developer intuition.
Whether the sources of this information are customers/users, developers, usability
experts or usability elicitation guidelines [21], such information may, from an agile
perspective, require new user stories and/or modifications to the original functional
stories (new acceptance criteria, new tasks…). Therefore, they will have an impact on
the workload associated with the respective user stories and, consequently, on the
sprint plan. It is our understanding that this type of usability information should be
somehow represented or documented as part of user stories, so it can be properly
estimated and implemented. The next section discusses an approach for documenting
usability information in user stories.

3 Documenting Usability in User Stories

Bearing in mind recommendations on how to write good user stories [23] and
documentation on usability mechanisms [24], we have identified three ways in which
the incorporation of usability influences user stories:

1. Addition of new stories to represent requirements directly derived from usability.
We call these new stories “usability stories” to distinguish them from traditional
user stories, as they represent usability features to be provided by the system.

2. Addition or modification of tasks in existing user stories. This means that some
actions derived from usability constraints should be performed in an existing user
story. This task could be as simple or detailed as needed.

3. Addition or modification of acceptance criteria. These acceptance criteria appear
because the user story functionality needs to include some specific actions that
modify the operating environment.

 Agile User Stories Enriched with Usability 171

At least one, if not all three, of these three actions has to be taken when writing user
stories with usability. Table 2 shows the implications of each analyzed usability
mechanism when it is included in a user story. Table columns represent the above
actions and rows contain the usability mechanisms . Cells marked with an “X” signal
that the incorporation of the usability mechanism requires the respective action. For
example, the implementation of the warning mechanism affects the user story by
modifying acceptance criteria, adding new acceptance criteria, adding new tasks and
adding a new usability story to the product backlog. Table 2 was built empirically as a
result of two case studies and is being further validated, as discussed later.

Table 2. Mapping between usability mechanisms and actions

New

Task

Modify

Task

New

Acceptance

Criteria

Modify

Acceptance

Criteria

New

Usability

Story

New

User

Story

System Status X X X X

Warning X X X X

Long Action X X X

Abort command X X X X

Abort operation X X

Go Back X X X

Text entry X X

Step by Step X X X

Preferences X

Favorites X X X

Help X X X

Fig. 1. User story description with usability features

Based on [23,25], the term usability story could be defined as “an artifact that is
used to represent usability features that a system/software should support because
they are needed by a user to use in a more easy and trusty way and that gives value to
the user/acquirer. Usability stories are documented as user stories because both are
similar. The next section shows an example of a usability story for implementing

172 A.M. Moreno and A. Yagüe

warning messages. User stories and usability stories are referred to differently to
highlight that usability stories are created to address usability requirements related to
a particular user story. Usability stories will be elicited not from product owners but
from usability mechanisms designed to improve the use of a particular functionality
represented in a user story. The next section gives an example of a user story
including the warning usability mechanism.

4 Tool and Process

To support the inclusion of usability mechanisms into user stories, we have
modified an open source tool for managing user stories (ScrumTime
http://www.scrumtime.org/). The main features added to ScumTime are:

• A list of usability mechanisms available as checkbox items to be associated
with each user story.

• A list of usability affected tasks: when a usability mechanism has been
selected for a user story, recommendations about new tasks to be added (or
the modifications to existing tasks) as a result of including this mechanism
are displayed in the task panel.

• A list of usability affected acceptance criteria: when a usability mechanism
has been selected for a user story, the new criteria (or changes to existing
criteria) to be taken into account to check that the implementation covers the
usability features are displayed in the acceptance criteria panel.

• Usability story: when a usability mechanism has been selected for a user
story and this mechanism requires the creation of a usability story, the
usability story is automatically added to the product backlog.

• Help functionality: examples on how to add usability tasks and acceptance
criteria for each usability feature are provided through a new help functionality.

Let us look at an example to illustrate how the tool works. Consider an application
managing user stories in agile projects. One of the features of this application might
be “graphically change the status (created, in progress, stopped, done) of a user
story”. A user story description that does not consider usability features might read
“As a user, I want to change the status of a user story and receive updated
information about the status of each user story under development”.

This user story description does not include any information about usability.
Suppose, for example, that customers want to be warned about undoable actions
(warning feature). Following the process described by authors in [26], this feature
should be added to the user story because some technical actions have to be taken to
inform customers. Fig. 1shows how the tool does this. The description has been
zoomed-in and the words related to the warning pattern have been highlighted.

Basic tasks and acceptance criteria are fixed later, when the user story is detailed
during sprint planning. A new task has to be added to account for the usability feature.

As Fig. 2 shows, a new task, highlighted by a zoomed-in black box, is added to
describe the warning task. All the tasks that are required because of the usability
features are listed on the right side of the screen. They are also boxed in black.

Finally, new acceptance criteria should also be considered (see Fig. 3.), plus a new
usability story to represent the warning window.

 Agile User Stories Enriched with Usability 173

If different usability mechanisms are associated with a user story, the implications
for the tasks and acceptance criteria will appear in a compressed folder which users
can expand at their convenience (Figs. 2 and 3 show the go back and warning
mechanisms, for example).

The main objective of the tool is to capture the usability meta-knowledge related to
the inclusion of particular usability mechanisms in a software system. Consequently, a
developer without too much usability knowledge can contribute to the development of
usable systems. Notice that, as already discussed; neither users nor developers are
ordinarily usability experts. Therefore, an automated tool storing this usability meta-
knowledge can be helpful if there are no usability experts on hand.

Fig. 2. User story tasks that support the warning feature

5 Proof of Concept

At the time of writing this paper, the validation process was still in progress. It is,
however, a two-part process. First, we have worked on validating the usability
knowledge summarized in Table 2. To do this, UPM software engineering graduate
students developed a small agile project (a tool for managing user stories) as part of
their degree project. The tool implemented 24 usability stories incorporating the
described usability mechanisms. Using the results we were able to test the usability
implications for tasks, acceptance criteria and new usability stories derived from each
usability mechanism.

Second, we are validating the tool described in Section 4. It has been tested by
UPM software engineering master students, all of whom have 2 to 4 years’ experience
as software practitioners. As part of their master’s thesis, they developed a real
application using our tool for creating and documenting user stories. In particular, we
worked with three agile teams composed of 3 to 4 developers. The final results are
still under evaluation, but early feedback suggests that usability features were easy to
add to the user stories and not much usability knowledge was required to do so. The
main identified problems were management issues concerning the removal of
usability features after their tasks or acceptance criteria were defined.

174 A.M. Moreno and A. Yagüe

Fig. 3. User story acceptance criteria with usability

Finally, from the preliminary experience using the tool, we can conclude that it is
easy to check the usability features of each user story, but it takes some practice to
incorporate the usability discussion into the regular user story creation flow. The tool
is available at http://scrumtime.eui.upm.es.

6 Conclusion

Our hypothesis is that usability constraints may have a major impact on the system to
be built. They should, therefore, be dealt with in the development process. This paper
aims to present preliminary results on incorporating particular usability mechanisms
into agile user stories.

We map the main usability mechanisms and their implications for user stories and
also introduce a tool that captures the usability knowledge related to such
implications. The approach is still undergoing validation, but preliminary results
suggest that the workload for incorporating particular usability mechanisms using the
stored usability knowledge leads is reasonably acceptable.

The concept of usability story has been defined to represent the stories needed to
implement the required usability mechanisms.

This research raises several issues, like, for example, when to deal with usability
functionalities in an agile process or how to manage the size of user stories containing
quite a few of usability mechanisms.

The next steps are related to further validating our solution and a detailed analysis
of the open issues.

Acknowledgments. The work reported here has been partially sponsored by the
Spanish Ministry of Industry, Tourism and Trade INNOSEP: INcorporating
inNOvation in Software Engineering Processes project. (TIN2009-13849). We would
like to thanks to Diego Yucra for his efforts adapting Scrumtime.

 Agile User Stories Enriched with Usability 175

References

1. ISO 9241-11, 98: Ergonomic Requirements for office work with Visual Display
Terminals. Part 11: Guidance on Usability. ISO (1998)

2. ISO/IEC. 1999, ISO14598-1, 99: Software Product Evaluation: General Overview.
ISO/IEC (1999)

3. Nielsen, J.: Agile Development Projects and Usability. Jakob Nielsen’s Alertbox,
November 17 (2008),
http://www.useit.com/alertbox/agile-methods.html
(visited December 2010)

4. Ambler, S.W.: Tailoring Usability into Agile Software Development Projects. In: Law, E.,
Hvannberg, E., Cockton, G. (eds.) Maturing Usability. Quality in Software, Interaction and
Value. Springer, Heidelberg (2008)

5. Ferreira, J., Noble, J., Biddle, R.: Agile development iterations and UI design. In: AGILE
2007: Proc. of the AGILE 2007, pp. 50–58. IEEE Computer Society, Washington, DC
(2007)

6. Lee, J.C.: Embracing Agile Development of Usable Software Systems. In: CHI (2006)
7. Desilets, A.: Are Agile Usability and Methodologies Comparable (2005),

http://www.carleton.ca/hotlab/hottopics/Articles/June2005-
AreAgileandUxMet.html (visited on December 2010)

8. Ferreira, J., Sharp, H., Robinson, H.: Values and Assumptions Shaping Agile Development
and User Experience Design in Practice. In: Sillitti, A., Martin, A., Wang, X., Whitworth,
E. (eds.) XP 2010. LNBIP, vol. 48, pp. 178–183. Springer, Heidelberg (2010)

9. Constantine L.L.: Process agility and software usability: Toward lightweight usage-
centered design. Constantine & Lockwood, Ltd., Tech. Rep. 110 (2001),
http://citeseer.ist.psu.edu/465732.html

10. Miller, L.: Case study of customer input for a successful product. In: ADC 2005:
Proceedings of the Agile Development Conference, pp. 225–234. IEEE Computer Society,
Washington, DC, USA (2005)

11. Patton, J.: Hitting the Target: Adding Interaction Design to Agile Software Development.
In: Proceedings of OPSLA 2004 (2004)

12. Haikara, J.: Usability in Agile Software Development: Extending the Interaction Design
Process with Personas Approach. In: Concas, G., Damiani, E., Scotto, M., Succi, G. (eds.)
XP 2007. LNCS, vol. 4536, pp. 153–156. Springer, Heidelberg (2007)

13. Maiden, N., Chamberlain, S., Sharp, H.: Towards a Framework for Integrating Agile
Development and User-Centred Design. Springer, Heidelberg (2006)

14. Usability Pattern Collection (December 2010),
http://www.cmis.brighton.ac.uk/research/patterns/

15. Shneiderman, B.: Designing the User Interface: Strategies for Effective Human-Computer
Interaction. Addison-Wesley (1998)

16. Tidwell, J.: Designing Interfaces. In: Patterns for Effective Interaction Design. O’Reilly
(2005)

17. Nielsen, J.: Usability Engineering. John Wiley & Sons (1993)
18. van Welie, M.: Patterns in Interaction Design, http://www.welie.com (accessed

November 2008)
19. Rubinstein, R., Hersh, H.: The Human Factor. Digital Press, Bedford (1984)
20. Nielsen, J.: Fast, Cheap, and Good: Yes, You Can Have It All (January 2007),

http://www.useit.com/alertbox/fast-methods.html (visited December
2010)

176 A.M. Moreno and A. Yagüe

21. Juristo, N., Moreno, A., Sanchez-Segura, M.-I.: Guidelines for eliciting usability
functionalities. IEEE Trans. Softw. Eng. 33(11), 744–758 (2007)

22. Jokela, T., Abrahamsson, P.: Usability Assessment of an Extreme Programming Project: Close
Co-operation with the Customer Does Not Equal to Good Usability. In: Bomarius, F., Iida, H.
(eds.) PROFES 2004. LNCS, vol. 3009, pp. 393–407. Springer, Heidelberg (2004)

23. Cohn, M.: User Stories Applied: For Agile Software Development. The Addison-Wesley
Signature Series. Addison-Wesley Professional (March 2004),
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-
20n&path=ASIN/0321205685

24. Juristo, N., Moreno, A.M., Sanchez-Segura, M.-I.: Analysing the impact of usability on
software design. J. Syst. Softw. 80(9), 1506–1516 (2007)

25. Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley (1999)
26. Moreno, A.M., Yague, A.: Adding usability recommendations into Agile user stories. In:

Proc. 1st Workshop Dealing with Usability in an Agile Domain at XP 2010 (2010)

C. Wohlin (Ed.): XP 2012, LNBIP 111, pp. 177–184, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Evidence-Based Timelines for Agile Project
Retrospectives – A Method Proposal

Elizabeth Bjarnason and Björn Regnell

Department of Computer Science, Lund University, Lund, Sweden
{elizabeth.bjarnason,bjorn.regnell}@cs.lth.se

Abstract. Retrospective analysis of agile projects can support identification of
issues through team reflection and may enable learning and process
improvements. Basing retrospectives primarily on experiences poses a risk of
memory bias as people may remember events differently, which can lead to
incorrect conclusions. This bias is enhanced in project retrospectives which
cover a longer period compared to iteration retrospectives. To support teams in
recalling accurate and joint views of projects, we propose using an evidence-
based timeline with historical data as input to project retrospectives. The
proposed method was developed together with a large software development
company in the telecommunications domain. This paper outlines a method for
visualizing an evidence-based project timeline by illustrating aspects such as
business priority, iterations and test activities. Our method complements an
experience-based approach by providing objective data as a starting point for
reflection and aims to support objective analysis of issues and root causes.

Keywords: agile, software process, retrospective, software visualization.

1 Introduction

Continuously improving through introspection is a recognized part of agile methods
and is applied in, e.g. pairing, use of automated testing and in retrospectives [2, 5, 12].
Retrospectives are commonly performed after each sprint or iterations when the
development team gathers to reflect on their way of working, to identify
improvements and agree on modifications for the next iteration [5, 6]. This approach
aims at enabling self-governing teams to respond quickly to changes, which may
require modifying how they work [6]. In addition, retrospectives may have a
therapeutic effect that can further support communication and interaction within the
team [3], a highly-valued aspect of agile software development.

However, there are also challenges when applying retrospectives in an agile
context. Self-governing development teams tend to focus primarily on short-term
issues that directly concern their team. Drury et al. found that teams that only perform
iteration retrospectives, not reflecting beyond each individual cycle, tend to focus on
tactical decisions rather than long-term strategic issues with the risk of losing sight of
the goals of the organization [6]. In addition, it has been found that efficient
coordination and communication outside of the development team, e.g. with other

178 E. Bjarnason and B. Regnell

dependent teams, is a challenge in particular for large-scale agile software
development [9, 15]. Once projects are completed project members may be re-
assigned and may quickly forget the details since accurate memory recall of project
events tend to decrease with elapsed time [1, 7]. Another issue is that project-level
retrospectives often require multiple viewpoints to obtain a full picture of the project
since many people with different roles and focuses are involved over time.

In this paper, we propose to use evidence-based timelines to address the above
challenges. The proposed method is aimed at supporting fact-based memory recall by
providing a project timeline based on time-stamped data mined from various systems
and databases. This method was developed together with and is planned to be
evaluated at a large software development company that operates in the
telecommunications domain.

The rest of this paper is organized as follows. Section 2 describes previous work on
retrospectives. The research approach is described in 3, while section 4 describes our
proposed method. The method is discussed in the light of related work in Section 5.
Finally, we conclude and describe future research in Section 6.

2 Retrospectives

Retrospectives are prepared to enable productive face-to-face meetings, where the
whole team is encouraged to share experiences and then reflect on and analyse those
experiences in order to identify important issues and agree on an action plan for
improvements [1, 3, 5, 13]. Retrospectives often rely primarily on the participants’
experiences of what has taken place. This focus on subjective opinions may turn
retrospectives into emotional venting sessions rather than being constructive fact-
based discussions [3, 6]. This relates to memory bias, one of the barriers to learning
from post-mortem reviews identified by Zedwith et al.. Memory bias is caused by the
fact that what we remember is selective, and that repression of memories can override
potentially important and valuable information that could have been used to learn and
improve future situations [20].

Collection of both subjective experiences and objective information is included to
some extent in the post-mortem process described by Collier et al.. Presenting
objective data to the project team was found to enable focusing on actual problems of
a sizeable magnitude, rather than merely subjective opinions [3]. In addition,
objective data was found to be useful, in combination with subjective information, in
supporting group analysis and identification of root causes and suitable actions [3].

Furthermore, Baird et al. observed that accurate recall of events becomes harder as
time elapses [1]. The timing aspect has been reported as the main reason why project
retrospectives rarely take place [7]. While 3 to 12 months after project delivery is
suggested as the best time for such a retrospective, by then people tend to be tied up
in new projects and a lot of the details of the previous project have been forgotten [7].
Jorgensen et al. discuss similar issues and state that project retrospectives based on
subjective opinions are very likely to be biased, which in combination with simplified
analysis leads to a high risk of drawing incorrect conclusions [8]. To combat this, the
advice is to combine experience with knowledge (i.e. actual facts) and to use
statistical techniques, in combination with being aware of the biases [8].

 Evidence-Based Timelines for Agile Project Retrospectives 179

3 Research Approach

Our proposed method has been developed in collaboration with one of our partner
companies which operates in the telecommunications domain. The company has
around 4,000 employees and is faced with the challenge of developing software for a
market that rapidly changes. This requires an ability to quickly adapt to change and to
ensure a short time to market in order to keep up with competitors. The company
wanted to evaluate their agile software development process with the goal of further
improving the lead time and development efficiency. The current process assessments
are performed per organizational unit and conducted on individual development
teams, and not on the entire project life cycle, which includes several handovers
between different teams and units. A new method was needed to assess the full
development cycle from initial feature request through development in self-governing
cross-functional teams to system integration and testing, and customer acceptance
testing. A typical software release project contains around 200-250 new features. The
total lead time from feature request until customer acceptance ranges from 9 weeks to
2 years. The feature development teams consist of 1 to 40 developers and testers. The
company had three high-level goals for the new method:

i.The people involved in the full development cycle should be encouraged and
motivated to learn and improve from the findings of the assessment.

ii. The assessment should take place after project completion (to get a full picture)
and the effort required from participants (who have moved on to other
assignments) must be reasonable to the individuals.

iii. Comparison analysis of several features needs to be facilitated, in order to identify
common patterns, good practices etc., and enable organization-wide improvements.

To meet these high-level goals the concept of project longitudinal retrospectives for
individual features was selected. This allows for collaborate reflection and learning
for all the roles involved in the full life cycle of a feature, i.e. the main development
team, and the maintenance team(s) and system-level functions (e.g. system
architecture and system verification) with which the main development team interacts.
In order to support comparison of multiple features, a structured and common format
for the retrospectives, both in how they are prepared, performed and reported was
required. For this reason, and to support memory recall and minimal preparation time
for the participants, we selected to prepare a timeline with relevant time-stamped data
from the available systems. These pre-prepared feature timelines visualize the
evidence gathered from various systems and, thus, provide memory prompts and
enable reflecting on past events without requiring much preparation of the
participants. The timelines are intended to be used as the starting point for project
retrospectives.

A number of meetings were held with representatives from the different units, i.e.
business, software development and system verification, to discuss and review the
method as it was developed. The researchers designed the proposed method, which
was produced iteratively over a period of 1-2 months with regular feedback from the
company. A feature timeline was produced for an example feature by extracting

180 E. Bjarnason and B. Regnell

time-stamped data from systems used for project- and scope- management, and for
software development. Over several iterations with intermediate reviews, the aspects
to include, the data (or evidence) to extract for each aspect, and how they are to be
visualized was agreed with the company representatives. This initial desktop
validation [19] was considered successful by the company representatives, and the
method is at the time of writing planned to be evaluated at the company.

4 Creating Evidence-Base Timelines

Method Outline. The proposed method includes four parts as input to a retrospective:
goals, aspects, evidence, and visualization. Goals are defined for the retrospectives in
order to focus on strategic improvement areas. Based on these goals, the aspects that
are to be covered at the retrospective meetings and visualized in the timelines are then
defined. The aspects are preferably selected with an eye to what data can be extracted.
Both goals and aspects can be defined for continuous reflection (and, thus allow long-
term comparison) or to assess issues specific for a certain project. Individual
retrospectives can be aligned by defining common goals and aspects.

Fig. 1. An example of an evidence-based timeline for a feature

 Evidence-Based Timelines for Agile Project Retrospectives 181

When the set of aspects to include are agreed with relevant parties, evidence is
collected in the form of time-stamped data extracted from various available systems.
The project life cycle is then visualized by displaying the collected evidence along a
timeline. The timeline is distributed in advance to the retrospective participants
together with a set of selected issue reports which form a basis for discussions at the
retrospective meeting.

At the retrospective, the project history is visualized by posting the prepared
timeline on the wall and using this as a basis for discussion and analysis. The overall
timeline and the included aspects are first presented to orient the participants before
going into detailed analysis per time period. The different aspects and relationships
between them are investigated and discussed from the perspective of how they affect
the issues covered by the goals defined for the retrospective. Missing or incorrectly
shown events are elicited from participants. In addition, the participants contribute
with explanations and underlying root causes for phenomena observed in the timeline.
Clarifications, corrections and additional information are added to the timeline at the
meeting, thus producing an updated and jointly agreed picture of the feature history as
an outcome of the retrospective meeting. Over time, multiple timelines are produced
using the same template, thus simplifying comparison analysis.

Timelines in Context. The main retrospective goal for our partner company was to
assess lead time with focus on communication and decisions throughout the
development process. The following six aspects were selected to be covered by the
retrospective: (1) project state (e.g. development iteration, integration, system
testing), (2) decision points, (3) business value, (4) development cost (estimated and
actual) and planning (e.g. estimated and actual delivery time), (5) creation and
modification of specific artefacts (e.g. requirements, test cases), and (6) role
assignments. Evidence for these aspects were gathered from various systems available
at the company, e.g. databases for scope management, project planning and tracking,
requirements and test cases, wiki pages, document management systems, code
repository etc.. The time-stamped data was then visualized per aspect along a
timeline, see Figure 1. For the aspects (3) – (5), namely business value, development
cost and planning, and artefacts, the different events are represented by icons that
illustrate the type of event, e.g. role assigned, business value or development time
estimated. The evidence is grouped according to aspect, each of which is visualized in
a swim lane. The aspects of project state and decision points are placed in direct
proximity to the timeline axis, while the events of all other aspects are related to the
timeline axis by dashed lines. This is to simplify identification of simultaneously or
sequentially occurring events by displaying them in proximity to each other. For
example, Figure 1 reveals that the decision taken in May to reject the feature for one
release was preceded by discovery of impact on another feature (Artefacts), and
followed by removing the development resources (Cost). Thereafter, an additional
stakeholder was identified, the priority of the feature was increased (Value) and the
execution was restarted (Decision & Cost).

For the retrospective meetings at our partner company, a similar approach to
involving key roles for project history day [3] has been selected. In our case, we

182 E. Bjarnason and B. Regnell

decided to include roles responsible for managing the development team (product
manager, project manager, software line manager, architect), and representatives from
system verification and system architects. These roles may also invite other persons
with specific technical competence and relevant experience, e.g. developers or testers.
In all, we expect around 6-8 participants per feature excluding the moderator(s).

5 Discussion

Visualization of timelines can support more efficient processing of information and
aid in identifying patterns and changes over time, and may thus stimulate memory and
aid in creating a joint picture from many different perspectives [5]. All of these
aspects are important objectives of retrospectives, thus making visualization of project
history and evolution an interesting avenue for improving retrospective analysis and
learning. Visualization of timelines has been suggested as a technique also in the field
of computer forensic to enable analysis of large amounts of time-stamped data from
confiscated computers [14]. In that context, the use of an interactive tool for
visualizing timelines has been found to support criminal investigators in finding
patterns and evidence, and to complete the task more efficiently and accurately [14].
In addition, visualization of the evolution of project data from multiple sources has
been shown to be promising in understanding the relationship between multiple
concerns or aspects [18], which is also part of the analysis performed at a
retrospective. A different approach to visualizing the evolution of a project is
investigated by Ripley et al. with the dual purpose of providing awareness of current
and post-mortem events, as well as, the evolution of a project and, thus, allowing both
steering a running project and learning from a completed one [16].

The purpose of our method is to stimulate a deep common understanding of issues
and decisions including the underlying factors and motivations for a project. This is
similar to the motivation for the project history day advocated by Collier et al. [3].
The timeline technique has been found to be beneficial in providing a joint common
background and understanding of a whole project, and in supporting reflection on and
observations of patterns at the project level [12]. The usage of experience-based
timelines has been reported as supporting teams in reflecting on a project’s process
and in revealing discrepancies in interpretations of events [11]. In addition, Collier et
al. found that simple timeline data gathered from three points in time supported
reflecting and analysing issues concerning over- and underestimation of project cost
[3]. Evidence-based timelines may act as integrators at the retrospective meetings and
thereby, similarly to the usage of whiteboards and post-its, support creating an
environment productive to constructive reflection and sharing [4].

Furthermore, using historical data has been found to support prompting memory
and aiding in reflecting on project processes [10], as well as, motivating participation
in deeper analysis also for team members without previous information about the full
development cycle [17]. Timelines can also be useful for eliciting events with an
objective approach, focusing on facts rather than opinions and have been reported to
enable people to grasp different perspectives and resolve conflicts more easily [1].

 Evidence-Based Timelines for Agile Project Retrospectives 183

However, using large amounts of data as input to retrospectives requires both filtering
to avoid information overload [12], and structuring to provide focus [10]. By
preparing the data beforehand saves time at the actual retrospective meeting [12],
which is the case with the proposed use of evidence-based timelines.

6 Conclusions

We propose the usage of evidence-based timelines as input to agile project
retrospectives. Visualization of time-stamped project data may enhance identification
of patterns and problems and thereby support in-depth analysis of the project process.
A deep and joint understanding of a full process can be stimulated by applying a
timeline technique [5], and thus enable joint identification of problems and root
causes [3, 12]. However, producing timelines requires time and effort of the
participants [3]. This cost can be reduced for the participants, by, e.g. a process
manager preparing the evidence-based timeline before the retrospective, and further
reduced by tool support for extracting and displaying data. Examples of data that
could be visualized in timelines include project schedules, problem reports, change
requests, requirement and test case entities, frequency and size of source code
changes. The amount of available and version controlled documentation and data
limits the extent of what can be visualized in the timelines.

The project data prepared in a timeline before the meeting is complemented by
gathering subjective data at the retrospective. This approach may thus enable
providing a more complete and richer in-depth view of the project process by
combining objective and subjective data. Furthermore, a structured collection of
retrospective reports may enable organizations to more easily analyze and identify
patterns between retrospectives and support improvements and learning within the
whole organization [3, 4].

Finally, future work includes evaluating and further refining the proposed method
in a pilot case study and investigating how to perform meta-analysis of multiple
retrospectives. In addition, tool support and visualization techniques for time-stamped
data are also interesting areas to pursue.

Acknowledgements. We would like to thank the practitioners involved in discussing
and provided valuable input to the design of this method. The work is partially funded
by the Swedish Foundation for Strategic Research.

References

1. Baird, L., Holland, P., Deacon, S.: Learning from Action: Imbedding More Learning into
the Performance Fast Enough to Make a Difference. Organizational Dynamics 27(4), 19–
32 (1999)

2. Beck, K.: Extreme Programming Explained. Addison-Wesley (2000)
3. Collier, B., DeMarco, T., Fearey, P.: A Defined Process for Project Postmortem Review.

IEEE Software 13(4), 65–72 (1996)

184 E. Bjarnason and B. Regnell

4. Desouza, K.C., Dingsoyr, T., Awazu, Y.: Experiences with Conducting Project
Postmortems: Reports versus Stories. Softw. Process Improve. and Pract. 10, 203–215
(2005)

5. Derby, E., Larsen, D.: Agile Retrospectives: Making Good Teams Great! Pragmatic
Bookshelf (2006)

6. Drury, M., Conboy, K., Power, K.: Decision Making in Agile Development: A Focus
Group Study of Decisions and Obstacles. In: Agile Conference 2011, pp. 39–47 (2011)

7. Glass, R.L.: Project Retrospectives, and Why They Never Happen. IEEE Software 19(5),
112–113 (2002)

8. Jorgensen, M., Sjoberg, D.: The Importance of NOT Learning from Experience. In: Proc.
of European Software Process Improvement, Copenhagen, Denmark (2000)

9. Karlstrom, D., Runeson, P.: Combining Agile Methods with Stage-Gate Project
Management. IEEE Software 22(3), 43–49 (2005)

10. Krogstie, B.: Using Project Wiki History to Reflect on the Project Process. In: Proc. of
42nd Hawaii International Conference on System Science (2009)

11. Krogstie, B., Divitini, M.: Shared Timeline and Individual Experience: Supporting
Retrospective Reflection in Student Software Engineering Teams. In: 22nd Conf. on
Softw. Engineering Education and Training (2009)

12. Maham, M.: Planning and Facilitating Release Retrospectives. In: Agile Conference 2008,
pp. 176–180 (2008)

13. Nolan, A.J.: Learning from Success. IEEE Software 16(1), 97–105 (1999)
14. Olsson, J., Boldt, M.: Computer Forensic Timeline Visualization Tool. Digital

Investigation 6, 78–87 (2009)
15. Pikkarainen, M., Haikara, J., Salo, et al.: The Impact of Agile Practices on Communication

in Software Development. Empir. Softw. Eng. 13, 303–337 (2008)
16. Ripley, R.M., Sarma, A., van der Hoek, A.: A Visualization for Software Project

Awareness and Evolution. In: VISSOFT 2007, pp. 137–144 (2007)
17. Sertic, H., Marzic, K., Kalafatic, Z.: A Project Retrospective Method in Telecom Software

Development. In: ConTEL 2007, pp. 109–114 (2007)
18. Treude, C., Storey, M.: CONCERNLINE: A Timeline View of Co-Occurring Concerns.

In: ICSE 2009, Vancouver, Canada, pp. 575–578 (2009)
19. Wohlin, C., Gustavsson, A., Höst, et al.: A Framework for Technology Introduction in

Software Organizations. In: Proc. Softw. Process Improve. Conf., pp. 167–176 (1996)
20. von Zedtwitz, M.: Organizational Learning Through Post-Project Reviews in R&D. R&D

Management, 21(3), 255–268 (2002)

C. Wohlin (Ed.): XP 2012, LNBIP 111, pp. 185–192, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Who Is Stronger in Your Agile Deployment –
The Id or the Superego?

Stavros Stavru and Sylvia Ilieva

Sofia University “St. Kliment Ohridski”
5, James Bouchier Str., P.B. 48

1164 Sofia, Bulgaria
{stavross,sylvia}@fmi.uni-sofia.bg

Abstract. Many studies and industrial reports have demonstrated the tendency
towards the increasing number of organizations, interested in agile software
development. With the transition from intentions to actions, the question that
naturally arises is how the deployment process should be approached. In this
paper we argue that shared organizational values, which we call organizational
Superego, should be the main drivers for the deployment and post-deployment
assessment of agile methods and techniques. Along with that we propose a new
organizational classification technique, which assesses the power of the
Superego to shape organizational behavior, together with an organizational
value framework to be used for strengthening it. We further discuss how a
strong Superego would approach the deployment of agile methods and
techniques, and outline a future agile deployment framework, based on
organizational values.

Keywords: Agile Adoption, Deployment and Post-Deployment Assessment of
Agile Methods and Techniques, Organizational Values, Organizational Culture.

1 Introduction

Recent industrial reports have confirmed the tendency from previous years that the
number of organizations, interested in or already deploying agile methods and
techniques, is continuously increasing [1, 2]. In their transition to agile software
development, these organizations are faced with many challenges, including the
deployment process and how it should be approached [3]. In this paper we address
this particular challenge, taking the perspective of organizational values.

By organizational values we mean the “…latent constructs that refer to the way in
which people evaluate activities or outcomes”, and which drive and “regulate both
means and ends” of the organization [4]. Many authors have emphasized the
importance of organizational values in (1) regulating different spheres of
organizational life – from organizational goals and objectives to concrete behavior
and character of organizational members [4]; (2) guiding and securing commitment
for organizational change [4, 5]; (3) ensuring depth, stability, and consistency to
management practices [5]; and many more [4, 5]. Even a new management paradigm

186 S. Stavru and S. Ilieva

has been proposed, known as management by values, which is argued to have a
tremendous potential to overcome the shortcomings of its predecessors, including the
management by instructions and management by objectives [5]. Taking into account
the arguments of these organizational studies and the increasing evidence in respect to
organizational values [4, 5], we were convinced that organizational values would
have the potential to successfully drive the deployment of agile methods and
techniques.

Organizational values, as a core cognitive element of the organizational culture [4],
have been studied in the context of agile software development. A brief overview of
these studies could be found in [6], where the importance of organizational culture to
agile deployment is also argued. While most of these studies are focused on cultural
compatibility and define the ideal organizational context for agile deployment, the
organizational values have been overlooked. The same is valid in regards to the many
agile deployment paradigms, frameworks and approaches, currently existing in the
literature. QIP, the paradigm proposed by Pikkarainen et al. and other paradigms,
briefly summarized in [7], have emphasized the importance of setting goals and
objectives for the deployment process, but they are isolated from organizational
objectives and values. The Strategically Balanced Process Adoption makes a step
further by aligning the deployment process to organizational strategic objectives [8],
but the linkage to organizational values is still missing. Some other deployment
frameworks, including the Agile Adoption Framework (AAF), Agile Adoption and
Improvement Model (AAIM), Objectives, Principles and Practices Framework
(OPPF), briefly presented in [9], are focused on the strict adherence to agile methods
and techniques for achieving organizational agility (and their expected organizational
benefits), taking into account organizational values only to assess the appropriateness
of the deployment (AAIM, OPPF) or the readiness of the organization (AAF, AAIM).
Other approaches [10], suggest that agile methods and techniques should be adapted
and tailored to best fit organizational and project context, but they also lack sufficient
attention on organizational values.

This paper briefly presents the current state of our research work and is organized
as follows: Section 2 discusses the organizational context suitable for the deployment
of agile techniques based on organizational values; Section 3 outlines how
organizational values could be determined and secured; Section 4 briefly describes
how the deployment will be approached from organizational values perspective; and
Section 5 summarizes contributions and presents plans for future work.

2 Who Is Stronger – The Id or the Superego?

Being interested in the deployment of agile techniques in respect to organizational
values, we were concerned with the kind of organizational context, where such
deployment would be applicable at all. It was obvious that (1) there should be
organizational values, explicitly defined by the organization; (2) these organizational
values should have the power to influence organizational decisions (incl. the selection
of agile techniques) and shape organizational behavior (incl. the deployment of these
techniques); and (3) they should be applicable in terms of organizational justification
and assessment (incl. the post-deployment monitoring and assessment of agile

 Who Is Stronger in Your Agile Deployment – The Id or the Superego? 187

techniques). In order to formally specify this organizational context, we studied many
of the existing organizational assessment and classification techniques, thoroughly
reviewed in the excellent work of Jung et al. [11]. Although some of these techniques
as Organizational Culture Assessment Tool (based on Competing Values
Framework), Denison Organizational Culture Scale, van der Post Questionnaire,
Interactive Projective Test and Organizational and Team Culture Indicator [11], take
into consideration the clarity, variety and impact of organizational values, there was
no technique in the literature (to the extent of our knowledge), which assesses and
classifies organizations in terms of organizational values and their power to drive and
justify organizational behavior. To fill this gap and provide a formal specification for
the organizational context, suitable for the deployment of agile techniques, based on
organizational values, we have proposed a new organizational assessment and
classification technique. This technique was initially inspired by the concept of strong
culture [14] and further refined through reviewing of existing industrial surveys (as
the Aspen Institute’s survey [13]), exploring how deeply organizational values are
embedded in organizations, what best practices for managing organizational values do
exist, etc. It adapts the concepts of Id, Ego and Superego, as defined in the Sigmund
Freud's structural model of psyche [12] and provides a new organizational metaphor
[15], which we called the “organization as psyche”. The proposed mapping between
these concepts in a personal and an organizational context is briefly described in
Table 1.

Table 1. The concepts of Id, Ego and Superego in personal and organizational context

Personal Id Organizational Id
The Personal Id comprises the
unorganized part of the personality
structure and is responsible for the
uncoordinated instinctual trends [12].

The Organizational Id pursues the individual or
group interests of stakeholders (named
organizational instincts), resulting in inconsistent,
conflicting and irrational organizational behavior.

Personal Superego Organizational Superego
The Personal Superego is the organized
part of the personality structure, which
strives for perfection, defines and
pursuits personal values and is
responsible for the consciousness [12].

The Organizational Superego defines shared
organizational values and continuously monitors
controls and evaluates the behavior of the
organization in regards to these values.

Personal Ego Organizational Ego
The Personal Ego is the realistic part,
which tries to balance between the Id
and the Superego and shapes the actual
behavior [12].

The Organizational Ego is responsible for the
actual behavior of the organization, where
individual interests and organizational values are
constantly confronting.

The proposed technique is a one dimensional assessment and classification
technique [11], which aims at answering the question of “Who is stronger in your
organization – the Id or the Superego?” It does so by using a self-reporting
questionnaire, currently consisting of 30 items with 7-point Likert response. These
items, partially influenced by Kotter and Heskett’s questionnaire [14] and further
developed based on an extensive literature review, assess organizational values in

188 S. Stavru and S. Ilieva

terms of their determination (the degree to which they are explicitly and clearly
defined), enactment (the degree to which they are taken into consideration and woven
within the organizational life) and commitment (the degree to which they are accepted
and supported by organizational stakeholders). The self-reporting questionnaire,
together with the questionnaire design, its reliability and validity will be thoroughly
presented in a future paper.

Using the proposed technique, the organization is further classified into one of the
following categories: Dominant Id, Conflicting Ego and Dominant Superego. This
categorization reflects the level of determination, enactment and commitment of
organizational values in a given organization, and is briefly presented in Table 2.

Table 2. The Dominant Id, Conflicting Ego and Dominant Superego types of organizations

Assessed aspect Dominant
Id

Conflicting
Ego

Dominant
Superego

Determination of organizational values
Organizational values are explicitly defined
and consistent, are understandable and familiar
to organizational members, are frequently
communicated and revised, are associated with
concrete measures and indicators, etc.

Low Medium to
High

High

Enactment to organizational values
Organizational values have influence on and
are incorporated in organizational decisions
and behavior, organizational members are
continuously monitored, controlled and
evaluated in respect to these values, etc.

Low Low to
Medium

High

Commitment to organizational values
Organizational values are supported by top
management, organizational values are
representing and consistent with the personal
values of organizational members, etc.

Low Low to
Medium

High

The range [Low, Medium and High], used in the table, is simplified for the purpose of clarity.

This organizational assessment and classification technique was initially designed

to formally specify the “perfect” organization (or organizational prerequisites) for the
deployment of agile methods and techniques, based on organizational values, namely
the Dominant Superego. Despite of this it, we expect it to be applicable in a broader
context, including situations where the deployment of changes in organizational
processes, products, etc., should be justified in terms of organizational values, when
the strength of organizational values has to be measured, etc.

3 How to Build a Dominant Superego?

The Dominant Superego does not come for granted and additional efforts are needed
in order to define, prioritize, select and propagate organizational values. As a result
we had concerns about the possible utilization from the industry of agile deployment

 Who Is Stronger in Your Agile Deployment – The Id or the Superego? 189

approaches, based on organizational values. To overcome these concerns, we looked
for existing organizational value frameworks, which could be used by the
organizations in their efforts to become Dominant Superegos. The high level
requirements for these frameworks were to secure high utilization, providing a
straightforward, ready to use and expandable instrumentation, applicable in a wide
range of organizations. More specifically, we required the following elements to be
part of the desired framework: (1) an expandable repository of formally defined and
widely applicable organizational values, together with (2) an expandable repository of
their associated organizational metrics; and (3) formally defined techniques for the
prioritization, elicitation and propagation of organizational values. Starting from these
requirements we reviewed many of the existing organizational value frameworks,
including the Balanced Scorecards, Strategy Maps, Competing Values Framework,
Corporate Transformation Tools, Actions-to-Value Framework and others [4, 11],
together with some organizational value models and dimensions, as described in [4, 6,
11]. Although most of the required elements were fully or partially covered, there was
no organizational value framework, currently existing in the research literature (to the
extent of our knowledge), which provides all of these elements within a single and
coherent instrumentation. To overcome this shortcoming, we have proposed a new
organizational value framework.

The core elements of the proposed framework are the organizational values and
metrics repositories. The Organizational values repository consists of concrete and
formally defined organizational values and their interdependencies. Each organization
value (e.g. Customer Satisfaction) is defined by specifying its name, type, associated
concern and target, and the set of organizational metrics that could be used to assess
organizational behavior in regards to this value. On the other hand, each target (e.g.
Customer), belongs to a specific target group (e.g. Organizational Stakeholders), has a
set of desired target characteristics (e.g. Satisfaction) with their relevant measurable
target properties (e.g. Purchase Rate). The set of measurable target properties
(currently more than 80) compose the organizational metrics repository. A brief
overview of the proposed organizational values, targets and target groups is shown in
Table 3. These organizational values and targets (together with their associated
characteristics and properties) were derived from the literature. The selection was
based on well established criteria, requiring values to be (1) terminal (should describe
desired end state [4]); (2) quantifiable (should be measurable); (3) scientific (should be
subject of organizational studies); and (4) abstract (should be applicable in a wide
organizational context), while the targets had to cover different aspects of organization
life. The proposed values and metrics repositories are not comprehensive, but they
could be easily extended as long as the selection criteria are followed. The other
elements, included in the proposed framework, are a number of techniques used for the
prioritization, elicitation and propagation of organizational values. For the
prioritization of organizational values, value game was proposed. It constitutes of two
sub processes (or game levels) – (1) the target prioritization, where the targets are
prioritized at each hierarchical level of the organization using target and point cards
and (2) the values prioritization, where the values associated with each target are

190 S. Stavru and S. Ilieva

prioritized at each hierarchical level using value and point cards. Target and value
cards are used by the Dealer to describe targets and values, and to organize their
allocated point cards, while point cards are used by the Player to actually estimate
these targets and values. At the end of the value game, there should be a list of
prioritized targets and organizational values, relevant for a particular hierarchical level.
The final elicitation and propagation of organizational targets and values is done
through the value tournament technique, where organizational values are further
aligned at all levels of the organization and high acceptance rate from all stakeholders
is ensured. This is achieved by gathering at least one player from each hierarchical
level to participate in the tournament. Then the tournament itself is organized in way
similar to the value game. At the end, the winning organizational values are officially
announced and signed off. The monitoring and controlling of organizational values is
organized through the use of so called value signboard, whose purpose is to visualize
the organizational values including the current organizational values, their associated
metrics, the decisions currently assessed in terms of organizational values and etc. As
we are limited in size, we are leaving the thorough presentation of all these repositories
and techniques for a separate paper.

Table 3. Organizational values, targets and target groups

Target Organizational Values
Organizational Stakeholders Target Group
Customer

Customer Satisfaction, Customer Delightment, Customer Enrichment,
Customer Performance, Customer Trust, Customer Loyalty and Customer
Engagement

Partner Partner Satisfaction, Partner Trust, Partner Enrichment, Partner
Performance, Partner Engagement and Partner Commitment

Employee Cooperation, Respect, Discipline, Accountability, Competence, Creativity,
Adaptability, Engagement, Commitment and Satisfaction

Shareholder Shareholder Wealth, Shareholder Satisfaction and Shareholder Engagement
Society Ecological Sustainability, Social Sustainability and Society Engagement
Organizational Glue Target Group
Process Focus, Resources Utilization, Communication, Shared Understanding,

Performance, Continuous Improvement and Flexibility
Product Product Functionality, Product Quality and Product Innovation

4 How Does the Dominant Superego Approach Agile
Deployment?

In this section we will briefly describe how the Dominant Superego type of
organization will approach the deployment of agile techniques. The process tasks and
artifacts are graphically represented in Fig. 1, using BPMN 2.0. We call this approach
to agile deployment agile deployment by values.

 Who Is Stronger in Your Agile Deployment – The Id or the Superego? 191

Fig. 1. Agile deployment by values, represented using BPMN 2.0

The first process task aims at creating a prioritized list of agile techniques in terms
of their applicability to the organizational values, defined by the Superego. To do so,
two process artifacts are additionally required – the agile techniques repository and
the techniques-to-values repository. The agile techniques repository consists of
formally defined agile techniques in a way that facilitates their deployment within the
organization (including terms of use, constraints and limitations, interdependencies
and other situational factors). The techniques-to-values repository, on the other hand,
specifies the relation between each particular agile technique and different
organizational values (their “fitness”). This relation could be a positive, neutral or
negative contribution or a more complex conditional contribution and could be
determined based on empirical evidence, expertise, etc. Such repositories already
exist in the research literature as the evidence-based Agile Method Fragments (AMF)
repository, proposed by Esfahani and Yu [8]. If the organizational value framework,
introduced in the previous section is about to be used, these repositories need to be
further adapted to suit the proposed organizational values. At the end of this process
task, there should be a list of agile techniques, prioritized by their aggregated
contribution in terms of organizational values as defined by the Superego. Only then
the organization can further proceed with the selection of concrete agile techniques.
During this selection process, the organization could take into account additional
situational factors, as described in the agile techniques repository. Once the agile
techniques are selected, they should be reflected on the value signboard, where the
post-deployment monitoring will take place. After the actual deployment, assessment
is continuously performed (on fixed time intervals) using the value signboard and the
organizational metrics, associated with the pursued organizational values. After a
predefined period of time, the assessment is finalized and depending on the results,
the agile techniques are either accepted or rejected.

5 What Is Next?

In this paper we have briefly presented the deployment of agile techniques
approached from organizational values perspective. This approach to agile
deployment is quite unique, as none of the reviewed agile deployment frameworks

192 S. Stavru and S. Ilieva

introduces anything in this regard. We have briefly presented some of our initial
results. This includes (1) a new organizational assessment and classification
technique; and (2) a new organizational value framework. We have also discussed
how a Dominant Superego type of organizations will approach the agile deployment.
As a future work we are going to propose a complete framework for agile software
deployment based on organizational values (or agile deployment by values
framework). This will include not only the newly proposed techniques, but also
concrete agile techniques and evidence-based techniques-to-values repositories, all
welded together in a single structured process. The other major future work is the
validation of the introduced techniques in a real industrial setting and the consequent
experimentation of the deployment framework in real industrial cases.

Acknowledgments. The research presented in this paper was partially supported by
the National research fund in Bulgaria, under contract No. DMU 03-40.

References

1. Agile adoption trends, http://www.rallydev.com/learn_agile/agile_for_executives/
2. State of agile development survey

http://www.versionone.com/state_of_agile_development_survey/10
3. Abrahamsson, P., Conboy, K., Wang, X.: ‘Lots done, more to do’: the current state of agile

systems development research. Eur. J. Info. Sys. 18, 281–284 (2009)
4. Jaakson, K.: Management by values: are some values better than others. Man. Dev. 29,

795–806 (2010)
5. Dolan, S., Garcia, S.: Managing by Values: Cultural redesign for strategic organizational

change at the dawn of the twenty-first century. Man. Dev. 21, 101–117 (2002)
6. Iivari, J., Iivari, N.: The relationship between organizational culture and the deployment of

agile methods. Info. Soft. Tech. 53, 509–520 (2011)
7. Pikkarainen, M., Salo, O., Kuusela, R., Abrahamsson, P.: Strengths and barriers behind the

successful agile deployment—insights from the three software intensive companies in
Finland. Empi. Software Eng., 1–28 (2011)

8. Esfahani, H.C., Yu, E., Annosi, M.C.: Strategically balanced process adoption. In:
International Conference on Software and Systems Process, Hawaii, pp. 169–178 (2011)

9. Soundararajan, S., Arthur, J.D.: A Structured framework for assessing the ”goodness” of
agile methods. In: 18th IEEE International Conference and Workshops on Engineering of
Computer-Based Systems, pp. 14–23. IEEE Press, Las Vegas (2011)

10. Krasteva, I., Ilieva, S., Dimov, A.: Experience-Based Approach for Adoption of Agile
Practices in Software Development Projects. In: Pernici, B. (ed.) CAiSE 2010. LNCS,
vol. 6051, pp. 266–280. Springer, Heidelberg (2010)

11. Jung, T., et al.: Instruments for exploring organizational culture: A review of the literature.
Public Admin. Review 69, 1087–1096 (2009)

12. Freud, S.: The Ego and the Id. The Hogarth Press Ltd., London (1949)
13. The Aspen Institute: Deriving Value from Corporate Values (2005)
14. Kotter, J.P., Heskett, J.L.: Corporate culture and performance. Free Press (1992)
15. Cornelissen, J.P., Kafouros, M., Lock, A.R.: Metaphorical images of organization: How

organizational researchers develop and select organizational metaphors. Human
Relations 58, 1545–1578 (2005)

C. Wohlin (Ed.): XP 2012, LNBIP 111, pp. 193–200, 2012.
© Springer-Verlag Berlin Heidelberg 2012

adVANTAGE: A Fair Pricing Model
for Agile Software Development Contracting

Matthias Book1, Volker Gruhn1, and Rüdiger Striemer2

1 paluno – The Ruhr Institute for Software Technology, University of Duisburg-Essen
Gerlingstr. 16, 45127 Essen, Germany

{matthias.book,volker.gruhn}@paluno.uni-due.de
2 adesso AG, Rotherstr. 19, 10245 Berlin, Germany

striemer@adesso.de

Abstract. Agile software development methods are harder to adopt by third-
party software developers than by in-house software development teams, since
traditional contractual frameworks can easily lead to unfair risk distributions
between client and supplier when applied to agile projects. We therefore present
a pricing model for agile software projects that distributes risks evenly between
the partners, and encourages efficient, high-quality contributions on both sides.

Keywords: Agile processes, third-party developers, contracting, pricing.

1 Introduction

The development of complex information systems is typically subject to a number of
common challenges – overrunning time and budget constraints, missing requirements
and quality expectations, and dealing with continually evolving business
environments and integration landscapes. As Curtis et al. already described almost 25
years ago, these problems mostly stem from insufficient communication between
business and technology experts, or users and developers [1].

These challenges occur in in-house development projects, where a large company’s
IT department develops its own systems, as well as in external development projects
where the software is developed by an outside contractor. Each project situation
brings its own set of communication and collaboration challenges that contribute to
the typical problems that complex software projects often face. In this paper, we will
focus on one aspect that makes external software development even more conflict-
prone, namely the contracting and pricing details of such projects.

1.1 Challenges in Traditional Project Contracting

In the experience of IT service providers who develop software solutions tailored to
clients’ individual requirements (e.g. building custom information systems for
insurances or healthcare providers), most clients initially have only a rather coarse,
high-level idea of the system they need. At the same time, however, they would like
to negotiate a fixed price or budget ceiling for the project.

194 M. Book, V. Gruhn, and R. Striemer

In theory, such a fixed price or ceiling could only be properly established based on
a complete specification of the system to be built. However, creating such a complete
specification typically is neither economical (since it requires considerable effort on
both sides, before the actual project even begins), nor is it helpful (since the client
typically remains unable to express all his requirements in sufficiently complete and
consistent detail up front).

In practice, faced with the client’s insistence on a fixed price despite the lack of a
proper specification, service providers often end up trying to make a best guess of the
price, trying to balance the expected project effort with the aim to under-bid any
competing providers. Since this usually results in too low of a price, the contract will
typically be won by a service provider who subsequently struggles with his too-low
bid, or who is an expert in playing the inevitably ensuing change request game.
Obviously, neither constellation is conducive to a lasting customer relationship.

1.2 Challenges in Agile Project Contracting

The recognized lack of helpfulness of complete up-front system specifications has led
to the rise of agile development methods such as Scrum [2], where voluminous
specifications are replaced by quick iteration cycles. At first sight, the continuous
refinement of prototypes in tight collaboration of users and developers seems like an
ideal solution to the difficulty of specifying a complete system beforehand. While the
model lends itself naturally to in-house projects, clients and service providers have
however found it hard to transfer to the commercial domain:

For an agile project, it is virtually impossible to set a fixed price – since the project
scope and the required solutions materialize only gradually, and prototyping implies
performing a considerable amount of work that does not make it into the final project,
but is discarded, the actual effort is hardly foreseeable. A fixed-price contract would
thus expose the service provider to the complete project risk, while the client is
tempted to keep adding bells and whistles along the way at no additional cost.

On the other hand, running agile projects on pure time and materials (T&M)
contracts is equally undesirable: While these seem more fair at first sight (since the
payment corresponds exactly to the work done), they actually incentivize service
providers to blow up the development effort and neglect quality control at the client’s
expense. The project risk thus lies fully with the client.

Again, neither situation is satisfactory for both parties. It would therefore be
desirable to find a contracting model that has a built-in risk limitation mechanism for
the service provider, and a built-in cost limitation mechanism for the client. In this
paper, we will propose such a contracting model that ensures fair distribution of risks
and encourages efficient work on both sides, without relaxing any of the contractual
obligations (e.g. warranty) that parties in a large-scale development project would
normally also expect from each other.

In the following section, we will review related works that we employ as building
blocks of our approach. In Sect. 3, we will then introduce our agile contracting model
adVANTAGE, and discuss initial practical experiences with it in Sect. 4.

 adVANTAGE: A Fair Pricing Model for Agile Software Development Contracting 195

2 Related Work

To improve the “thin spread of application domain knowledge” [1] and the inter-
stakeholder communication issues that are at the heart of many troubled software
engineering projects, numerous approaches, process models and tools have been
introduced over the years. We believe it is necessary to find a pragmatic mix of these
methods and tools for each project, since the solution often lies less in thorough
formalization of a system than in solid understanding of its relevant aspects.

In our approach, we strive to reflect this conviction not just by choosing an agile
process model, but also by supporting and encouraging it in the software project’s
contractual framework. The adVANTAGE approach is therefore grounded in two
software project management concepts:

To focus on the relevant aspects of a system, Boehm and Huang introduced the
notion of value-based software engineering [3] that integrates consideration of a
feature’s or component’s value within a system into all software engineering
activities. As detailed below, our contracting model enforces value orientation
throughout the project’s progress by attaching price tags to each user story.

As Lehman pointed out, stakeholders in every software project are bound to
experience a considerable amount of uncertainty in their specifications and decisions
[4]. Just as software engineering methods and tools should acknowledge these
uncertainties by guiding stakeholders to resolve open questions, however not force
them to fix answers prematurely, our contractual framework is designed to leave room
for gradual elimination of initial uncertainty by allowing re-prioritization of the
project deliverables and late detailing of user stories as the project progresses.

Beside the software engineering aspects, there is also a variety of suggestions for
shaping the business and legal aspects of agile relationships: Van Cauwenberghe
proposed a number of guidelines for reducing the risk in agile fixed price contracts
[5]. As we will see below, adVANTAGE employs some similar mechanisms (e.g.
letting the customer prioritize), however differs significantly in that it is not a fixed-
price model. Sutherland also suggests mechanisms for risk sharing and ensuring
sustained mutual involvement in his “money for nothing, change for free” approach
[6], which we however deemed incompatible with the rather conservative client
domains we are looking at.

Poppendieck and Poppendieck have presented a comprehensive classification of
agile contracting schemes [7]. In their framework, adVANTAGE can be described as
a multi-stage contract model with optional project scope. Larman and Vodde also
discuss agile contracts in depth [8] – besides a strong focus on the legal details of
agile contracts, they describe payment schemes that are similar to our approach, but
more generic than the concrete model we present in the following section.

3 The adVANTAGE Contracting Model

To ensure fairness and efficiency for both parties in an agile development agreement,
our contracting model combines elements of fixed-price and T&M contracting

196 M. Book, V. Gruhn, and R. Striemer

models: adVANTAGE strives to provide some idea of the overall project scope (in
terms of requirements, time and budget) to users and developers, as they would have
in a traditional, fixed-price project, however without exposing the service provider to
the risk of being committed to that exact effort. Instead, adVANTAGE ensures that
the client pays exactly for what is delivered, as he would in a T&M situation –
however without exposing him to the risk of a runaway project that never gets
done, as the service provider will be equally encouraged to complete the project
efficiently.

The key commercial principles of our contracting model thus are risk distribution
and efficiency incentives – for both project parties, and for the whole project duration.
To enforce them, adVANTAGE does not try to shoehorn a complete software project
into one contractual framework, as traditional approaches do, but instead breaks
contracting, pricing, inspection and payment down to the elements of the agile
process. In the following subsections, we will show how these commercial aspects tie
in with the sprints and deliverables of an agile process model:

Step 0: Initial requirements collection and budget estimate. To obtain an initial
overview of the project scope and cost, we collect all the client’s requirements before
the first iteration. Typically, these are “must-have” as well as “nice-to-have” features,
business goals as well as business ideas. Acknowledging that clients are typically
unable to define their requirements in detail (let alone in formal specifications), we
only collect them as “user stories”, i.e. individual, testable features with a coarse, non-
technical description on the business level.

The service provider then estimates the effort required for implementing each of
the user stories. Due to the coarse nature of the user stories, these estimates are
naturally subject to some level of uncertainty. However, we expect this uncertainty to
be no higher than it also is in traditional bidding situations that providers have to deal
with, and the uncertainty is distributed over a large number of individual user stories,
instead of accumulated in one fixed-price bid. Still, the service provider needs
sufficient domain knowledge to make competent estimates, and should perform this
step in close cooperation with the client to avoid misunderstandings.

In contrast to traditional contracting models, the total of all user stories’ effort
estimates is not used to calculate a fixed price tag in the adVANTAGE approach, but
serves as a plausible point of orientation for the following (iterated) steps:

Step 1: User story prioritization and sprint definition. Based on the service
provider’s price estimates and the clients’ internal budget ceiling, the client can now
prioritize, eliminate or add user stories to match his means and needs. In doing so, the
client needs to balance the importance of each user story with his available budget
and desired timeframe. The transparency of these trade-offs to the client is an
important difference from traditional fixed-price models that often tempt clients to
force service providers into aggressive project scopes and schedules because they
won’t affect the price anyway. Instead, the continuous budget focus encourages

 adVANTAGE: A Fair Pricing Model for Agile Software Development Contracting 197

clients to prioritize their desires by which user stories are most critical for putting the
system into productive use, and which ones can be deferred. In addition, since this
(re-)prioritization of user stories is possible after every sprint (as we will see below),
the uncertainty in defining and detailing necessary system functionality is also
distributed over the whole project duration (where its severity will gradually
diminish), instead of being cast in stone at the beginning, when it is largest.

Based on the prioritized user stories, the client and service provider can now agree
on the contents of the first sprint, i.e. the selection of the highest-prioritized user
stories to be implemented next. To include users in the evaluation and prioritization of
further sprints right from the beginning, we recommend that even the first sprint
should include a sufficient selection of user stories that will yield a running – even if
not complete – system.

Step 2: Sprint implementation. At the beginning of each sprint, its user stories are
refined into more detailed specifications in close collaboration between the client and
service provider. The implementation of these stories then progresses according to
established agile development practices.

The duration of a sprint can be chosen flexibly based on the scope and nature of the
project. However, given that our approach is aimed at large-scale projects, we
recommend a sprint length of 4-6 weeks. Besides strict time-boxing of sprints,
another rule is that the selection of user stories cannot be changed within a sprint, but
only between sprints. This not only enables the developers to focus on a fixed set of
requirements per sprint and arrive at a consistently integrated, thoroughly tested and
running product after each iteration, but is also a prerequisite for the subsequent
inspection and billing step.

Step 3: Sprint inspection and billing. In contrast to traditional contracting models,
the adVANTAGE model ties the billing of services very closely to the agile process
structure: At the end of each sprint, each user story is inspected individually for
completion and acceptance (client sign-off), and the estimated and actual efforts of all
accepted user stories are tallied. Depending on whether all user stories were
implemented satisfactorily, and whether the sprint was completed within the
estimated effort, this can lead to several different billing scenarios:

Underspend on sprint. As shown in the example in Table 1, the basis for the billing of
each sprint is a lump sum for activities such as the requirements elaboration, the
scrum master’s work and other efforts that cannot be attributed to individual user
stories (here, e.g., 22,000 EUR). Also on the bill is the initially estimated sprint effort,
based on the service provider’s usual daily rate (here, a total of 80 person days (PD) at
1,000 EUR each). We now contrast this to the sprint’s actual implementation effort: If
the team required less effort, only the actual effort is billed (in Table 1, for example,
an underspend of four person-days leads to a 4,000 EUR reduction of charges).

198 M. Book, V. Gruhn, and R. Striemer

Table 1. Underspend billing

Prio. User Story Completed
& Accepted

Estimated
Effort (PD)

Actual
Effort

1 User Story A yes 18 18
2 User Story B yes 7 7
3 User Story C yes 42 38
4 User Story D yes 3 5
5 User Story E yes 10 8
 Total Effort 80 76

 Estimated price (80 x 1,000 EUR) 80,000 EUR
 Underspend (4 x 1,000 EUR) –4,000 EUR
 Cross-cutting tasks (lump sum) 22,000 EUR
 Sprint Bill 98,000 EUR

Overspend on sprint. On the other hand, if the effort was higher than expected, the
additional effort is still billed, however at a considerably reduced rate that penalizes
the service provider (in Table 2, for example, the five person-days of overspend are
billed at only 600 EUR each). This way, the adVANTAGE model ensures a fair
distribution of risks between both project parties: The client’s risk is reduced since he
is only billed for the actual effort, and the service provider’s risk is reduced since he is
still paid even if his initial estimate turned out to be too low.

Table 2. Overspend billing

Prio. User Story Completed
& Accepted

Estimated
Effort (PD)

Actual
Effort

1 User Story A yes 18 18
2 User Story B yes 7 14
3 User Story C yes 42 40
4 User Story D yes 3 5
5 User Story E yes 10 8
 Total Effort 80 85

 Estimated price (80 x 1,000 EUR) 80,000 EUR
 Overspend (5 x 600 EUR) 3,000 EUR
 Cross-cutting tasks (lump sum) 22,000 EUR
 Sprint Bill 105,000 EUR

One might wonder why we do not calculate the over- or underspend individually
for each user story, but instead for the complete sprint. The reason is that this allows
the service provider to spend effort saved on one user story on another story that
needs more work, if necessary, without being penalized (as shown e.g. in user stories
D and E). This is fair because what matters to the client at the end of a sprint is the
overall state of the product and budget, not how the provider got to it.

 adVANTAGE: A Fair Pricing Model for Agile Software Development Contracting 199

Incomplete/unaccepted user stories. We still need to consider how to deal with user
stories whose implementation was not completed in a sprint’s time box, or whose
delivered quality the client did not accept. In either case, the client has the choice of
transferring these unfinished user stories to the next sprint, or to cancel them and thus
eliminate them from the product.

As Table 3 shows, if a user story is transferred to the next sprint (e.g. user story B),
neither its estimated nor its actual effort so far are included in this sprint’s bill, but
will instead show up on the next sprint’s bill – then incurring an even higher actual
effort (cumulated from both sprints), which will be penalized as described above. In
case the client decides not to go ahead with an incomplete or unsatisfactorily
completed user story and cancels it (example: user story E in Table 3), the work
performed up to that point will still be billed as per the above rules.

This cancellation policy is reasonable as both parties know that work that was
committed to also needs to be paid – and again, the risk is distributed as the service
provider can rely on the client not cancelling already completed work on a whim,
while the client has the option of cancelling work on user stories when he feels that
their maturity is sufficient or further development on them is not economical.

Table 3. Partial billing

Prio. User Story Completed
& Accepted

Estimated
Effort (PD)

Actual
Effort

1 User Story A yes 18 18
2 User Story B no, transfer 7 14
3 User Story C yes 42 40
4 User Story D yes 3 5
5 User Story E no, cancel 10 8
 Total Effort 73 71

 Estimated price (73 x 1,000 EUR) 73,000 EUR
 Underspend (2 x 1,000 EUR) –2,000 EUR
 Cross-cutting tasks (lump sum) 22,000 EUR
 Sprint Bill 93,000 EUR

Iteration or termination. After each sprint, the client then has the option to start the
next iteration from Step 1 again, where he can re-prioritize all user stories, and also
eliminate or add new stories. Change requests for already completed and accepted
features will be treated as new user stories. Since this re-prioritization of the user
stories will again be guided by the question of what is most critical for the system to
enter productive use, and how this can be traded off with the available budget and
time, the project will be focused on its overall goals and constraints in every iteration.

Alternatively, the client can terminate the project after any sprint, when he feels it
has reached the required functionality and/or its budget limits. Since every sprint
results in a running system, this exit strategy is again risk-free for the client.

200 M. Book, V. Gruhn, and R. Striemer

4 Industry Example and Conclusion

The adVANTAGE model has been adopted in practice by adesso AG, a large German
software development company mainly serving the public, financial and healthcare
sector. In an ongoing large-scale project, adesso is building a new contract
management system for a German life insurance company.

Given the complexity of the system – both in terms of its business requirements
and its integration requirements with the legacy infrastructure – both partners agreed
that a reliable up-front fixed price estimate would be very difficult. By employing the
adVANTAGE model, the partners could however break the project down to the
insurer’s individual user stories, and proceed with incremental implementation and
billing of more manageable chunks that could be prioritized according to the insurer’s
wishes for going live. With the project still ongoing, a visible benefit of the approach
so far has been that the collaboration between adesso and its client is more focused on
progress with the individual user stories, than on questions regarding components
throughout the system (which could otherwise distract attention from the essentials as
developers are drawn to problems that are interesting but not immediately relevant).
As a formal basis for billing each sprint, staff members keep timesheets just as they
would for traditional projects, so the administrative overhead is low. The actual
efforts up to now also agree well with the initial estimates, indicating that
adVANTAGE gives no incentive to either party to blow up efforts.

In discussing the above example and our approach in general, it should be noted that an
understanding of the risks of agile software development, and a degree of mutual trust in
the business partner’s competence, quality standards and business ethics, and a
commitment to open communication is still required for a flexible contracting model
such as this to work. Given these prerequisites, however, we believe that the risk-sharing
and fair billing provisions of adVANTAGE will help agile processes to be more readily
adopted by third-party software suppliers and their clients alike.

References

1. Curtis, B., Krasner, H., Iscoe, N.: A Field Study of the Software Design Process for Large
Systems. Comm. ACM 31(11), 1268–1287 (1988)

2. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall (2002)
3. Boehm, B., Huang, L.G.: Value-based Software Engineering: A Case Study. IEEE

Computer 36(3), 33–41 (2003)
4. Lehman, M.M.: Uncertainty in Computer Application and its Control through the

Engineering of Software. J. Softw. Maint: Res. Pract. 1(1), 3–27 (1989)
5. Van Cauwenberghe, P.: Succeeding with Agile Fixed Price Contracts. In: Aguanno, K. (ed.)

Managing Agile Projects. Multi-Media Publications Inc. (2005)
6. Sutherland, J.: Money for Nothing and Your Change for Free: Agile Contracts. Agile 2008

talk, http://www.slideshare.net/gerrykirk/
money-for-nothing-agile-2008-presentation

7. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit. Add.
Wesley (2003)

8. Larman, C., Vodde, B.: Practices for Scaling Lean & Agile Development: Large, Multisite,
and Offshore Product Development with Large-Scale Scrum. Pearson Education (2010)

Author Index

Anderson, David J. 123

Bagane, Houda 1
Bjarnason, Elizabeth 177
Book, Matthias 193
Bosch, Jan 31

Čaušević, Adnan 138
Concas, Giulio 123

Dorairaj, Siva 47
Dyb̊a, Tore 153

Eklund, Ulrik 31

Giuffrida, Rosalba 62
Gruhn, Volker 193

Ilieva, Sylvia 185

Kettunen, Petri 77
Kurapati, Narendra 16

Lunesu, Maria Ilaria 123

Malik, Petra 47
Manyam, Venkata Sarath Chandra 16
Marchesi, Michele 123

Meding, Wilhelm 93
Melnik, Grigori 62
Moe, Nils Brede 153
Moilanen, Simo 77
Moreno, Ana M. 168

Noble, James 47

Palm, Klas 93
Petersen, Kai 16, 108
Punnekkat, Sasikumar 138

Regnell, Björn 177

Séguin, Normand 1
Sharp, Helen 62
Staron, Miroslaw 93
Stavru, Stavros 185
Stray, Viktoria Gulliksen 153
Striemer, Rüdiger 193
Sundmark, Daniel 138

Tremblay, Guy 1

Yagüe, Agust́ın 168

Zhang, Hongyu 123

	Title
	Preface
	Organization
	Table of Contents
	Being Agile
	Agile Principles as Software Engineering Principles: An Analysis
	Introduction
	Conceptual Framework and Methodology
	Three Key Concepts: Value, Principle, Practice
	Principles Analysis Method

	Analysis of the Agile Manifesto Principles
	Analysis of Three Agile Methods Principles
	eXtreme Programming
	Scrum
	DSDM

	Discussion
	Conclusion
	References

	Agile Software Development Practice Adoption Survey
	Introduction
	Related Work
	Literature on Agile Practices
	Agile Surveys

	Survey Design
	Results
	Survey Demographics
	Commonality of Agile Practice Usage
	Combination of Agile Practices
	Compliance to Agile Development Processes (XP and Scrum)
	Success of Adoption

	Conclusion
	References

	Applying Agile Development in Mass-Produced Embedded Systems
	Introduction
	Context and Problem Statement
	Case 1: Introduction of Distributed Software Architecture
	Case 2: Architecture Maintenance Process
	Case 3: Development Project of an Infotainment System
	Research Problem

	Research Methodology
	Method for Introducing Agile Software Development in Mass-Produced Embedded Systems
	Requirements
	Product Project Gates
	Validation
	Software Delivery
	Internal Activities

	Method Validation
	Case 4: Agile Development of an Infotainment Sub-system
	Case 5: Climate Control Software
	Case 6: Next Generation Infotainment System
	Method Use in the Three Cases

	Related Work
	Summary
	References

	Agile Teams
	Understanding Team Dynamics in Distributed Agile Software Development
	Introduction
	Research Method
	Grounded Theory
	Data Collection
	Participant and Project Details
	Data Analysis

	Results
	`One Team' Mindset
	Personal Touch
	Open Communication
	Team Collocation
	Team Ambassadors
	Coach Travels

	Discussion
	Limitations
	Conclusion
	References

	Information Flow within a Dispersed Agile Team: A Distributed Cognition Perspective
	Introduction
	The Study
	The Team
	Data Gathering
	Distributed Cognition
	DiCOT (Distributed Cognition for Teamwork)

	DiCOT Analysis
	Physical Layout to Support Cognition
	Artefacts Created or Used
	Information Flow

	Discussion
	Agile Dispersed Development and Global Software Development Issues
	Co-located Agile versus Dispersed Agile
	Limitations

	Conclusions and Future Work
	References

	Sensing High-Performing Software Teams: Proposal of an Instrument for Self-monitoring
	Introduction
	Background and Related Work
	High-Performing Teams
	Software Team Performance
	Developing High-Performing Teams
	Knowledge Gaps and Research Needs

	Instrument Design and Analysis Principles
	Instrument for Self-monitoring
	Analysis Guidelines

	Case Studies
	Student Case
	Industrial Cases
	Comparisons

	Discussion
	Analysis and Evaluation
	Implications
	Future Work

	Conclusions
	References

	Release and Maintanance
	Release Readiness Indicator for Mature Agile and Lean Software Development Projects
	Introduction
	Related Work
	Organizational Context
	ISO/IEC 15939
	Streamline Development, SD
	Research Method and Study Design

	Release Readiness (RR) Indicator
	Time to Release

	Results from Evaluation
	Evaluation Results
	Validity Evaluation

	Conclusions
	References

	A Palette of Lean Indicators to Detect Waste in Software Maintenance: A Case Study
	Introduction
	Related Work
	Palette of Lean Indicators for Software Maintenance
	Maintenance Inflow (M1)
	Visualization through Cumulative Flow Diagrams (M2)
	Lead-Time (M3)
	Workload (M4)
	Combined Analysis

	Research Method
	Case and Context
	Unit of Analysis
	Proposition
	Data Collection and Analysis
	Validity Threats

	Results
	Indicator for Maintenance Inflow (M1)
	Indicator for Flow of MRs (M2)
	Lead-Time Measurement (M3)
	Workload (M4)
	Combined Analysis

	Discussion
	Conclusion
	References

	A Comparative Study of Scrum and Kanban Approaches on a Real Case Study Using Simulation
	Introduction
	The Case-Study and the Related Processes
	The Original Process
	The Lean-Kanban Process
	The Scrum Process

	Agent-Based Process Modeling
	The Model of the Original Process
	The Model of the Scrum Process

	Results and Discussion
	The Original Process
	The Kanban Process
	The Scrum Process

	Conclusions and Future Work
	References

	Specific Agile Practices
	Impact of Test Design Technique Knowledge on Test Driven Development: A Controlled Experiment
	Motivation
	Problem Statement
	Research Objective
	Context
	Paper Outline

	Related Work
	TDD and Testing Knowledge
	Experiments in TDD

	Experimental Design
	Goals, Hypotheses, Parameters, and Variables
	Experiment Design
	Subjects
	Objects
	Instrumentation
	Data Collection Procedure

	Execution
	Sample
	Preparation
	Data Collection Performed

	Analysis
	Descriptive Statistics
	Data Set Reduction
	Hypothesis Testing

	Interpretation
	Evaluation of Results and Implications
	Limitations of the Study

	Conclusions and Future Work
	Relation to Existing Evidence
	Impact
	Future Work

	References

	Escalation of Commitment: A Longitudinal Case Study of Daily Meetings
	Background
	Decision Making in Agile Software Development
	Escalating Commitment

	Research Method
	Case Study Design
	Study Context
	Data Collection and Analysis

	Results
	The Team Justifying Their Decisions to the Product Owner
	Team Members Justifying Their Decisions to Each Other

	Discussion
	Psychological Self-justification
	Social Self-justification
	Implications for Practice

	Conclusions and Further Work
	References

	Short Papers
	Agile User Stories Enriched with Usability
	Introduction
	Specifying Functional Usability Features
	Documenting Usability in User Stories
	Tool and Process
	Proof of Concept
	Conclusion
	References

	Evidence-Based Timelines for Agile Project Retrospectives – A Method Proposal
	Introduction
	Retrospectives
	Research Approach
	Creating Evidence-Base Timelines
	Discussion
	Conclusions
	References

	Who Is Stronger in Your Agile Deployment – The Id or the Superego?
	Introduction
	Who Is Stronger – The Id or the Superego?
	How to Build a Dominant Superego?
	How Does the Dominant Superego Approach Agile Deployment?
	What Is Next?
	References

	adVANTAGE: A Fair Pricing Model for Agile Software Development Contracting
	Introduction
	Challenges in Traditional Project Contracting
	Challenges in Agile Project Contracting

	Related Work
	The adVANTAGE Contracting Model
	Industry Example and Conclusion
	References

	Author Index

