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14.1 Introduction

With time, Pawlak’s simple rough set model has seen many generalizations due to
demands from different practical situations (e.g., [12, 39, 32, 22, 33, 34]). As we
know, the notion of an approximation space [29], viz. a tuple (U,R), where U is a
non-empty set and R an equivalence relation, plays a crucial role in Pawlak’s rough
set theory. A useful natural generalization is where the relation R is not necessarily
an equivalence. For instance, in [33, 17], a tolerance approximation space is consid-
ered, where R is a tolerance relation. The notion of lower and upper approximations
of a set in these generalized approximation spaces is then defined in a natural way. In
Pawlak’s definition of lower and upper approximations of a subset X of the domain
U in an approximation space (U,R), equivalence classes [x]R of objects are replaced
by the set R(x) := {y ∈U : (x,y) ∈ R}. That is, lower and upper approximations of
a set X(⊆U) in a generalized approximation space (U,R) are given as:

XR := {x ∈U : R(x)⊆ X}, and XR := {x ∈U : R(x)∩X �= /0}.

There is another way to look at generalizations of Pawlak’s rough set theory, viz.
from the point of view of information systems. Most applications of rough set theory
are based on these attribute-value representation models.

Definition 14.1. A deterministic information system (DIS) S := (U,A ,
⋃

a∈A Va, f ),
comprises a non-empty set U of objects, A of attributes, Va of attribute values for
each a ∈ A , and information function f : U ×A →⋃

a∈A Va such that f (x,a) ∈Va.

S1 and S2 of Table 14.1, which provide information about three patients P1−P3
regarding attributes “Temperature (T)”, and “Headache (H)”, are examples of DISs.

Table 14.1. DISs S1 ans S2

(a) DIS S1

Patient T H

P1 very high yes
P2 very high no
P3 high yes

(b) DIS S2

Patient T H

P1 very high yes
P2 very high no
P3 no yes

Given a deterministic information system S := (U,A ,
⋃

a∈A Va, f ) and a set B⊆
A , the indiscernibility relation IndS

B is an equivalence relation on U defined by:

(x,y) ∈ IndS
B , if and only if f (x,a) = f (y,a) for all a ∈ B.

Thus, given a DIS S and a set B of attributes, we obtain an approximation space
(U, IndS

B). For instance, in the above example, corresponding to the attribute set



14 Algebras for Information Systems 383

B := {T, H}, DISs S1 and S2 give rise to the approximation spaces ({P1, P2, P3},
IndS1

B ) and ({P1, P2, P3}, IndS2
B ) respectively, where

IndS1
B = IndS2

B = {(P1, P1),(P2, P2),(P3, P3)}.

One may then approximate elements of a set X with respect to an attribute set B us-
ing the notion of lower/upper approximations in the approximation space (U, IndS

B).
Note that we may have two different DISs K1 := (U,A ,

⋃
a∈A Va, f1) and K2 :=

(U,A ,
⋃

a∈A Va, f2) with the same domain and the same sets of attribute, attribute-
values, such that IndK1

A = IndK2
A , hence generating the same approximation space

with respect to the attribute set A . This is the case, for example, with the DISs of
Table 14.1.

The notion of a deterministic information system has been generalized in many
ways to consider different practical situations. For instance, information regarding
values of some attribute for some object may not be available (unlike the case of a
DIS, where the information is complete). A distinguished attribute-value ∗ is used
to depict such a situation.

Definition 14.2. A tuple S := (U,A ,
⋃

a∈A Va, f ) is called an information system
(IS), where U,A ,Vala, f are as in Definition 14.1 and ∗ ∈ ⋂a∈A Vala. An informa-
tion system which satisfies f (x,a) = ∗ for some x ∈U and a ∈ A will be called an
incomplete information system (IIS).

Observe that a deterministic information system can be identified with the informa-
tion system S := (U,A ,

⋃
a∈A Va, f ), where f (x,a) �= ∗ for all x ∈U and a ∈ A .

In [20, 21], instead of an indiscernibility relation, a similarity relation (defined
below) is considered as the distinguishability relation in the context of an incomplete
information system. The assumption here is that the real value of missing attributes
is one from the attribute domain.
(x,y) ∈ SimS

B if and only if , f (x,a) = f (y,a) or f (x,a) = ∗, or f (y,a) = ∗, for all
a ∈ B.
One could easily verify that SimS

B is a tolerance relation, and thus, an IIS S and an
attribute set B give rise to a tolerance approximation space (U,SimS

B).
DISs are deterministic in the sense that objects take a single value for each at-

tribute. Thus, a natural generalization of DISs is obtained by allowing an object to
take a set of values for an attribute.

Definition 14.3. A tuple S := (U,A ,
⋃

a∈A Va, f ) is called a non-deterministic in-
formation system (NIS), where U,A ,Vala are as in Definition 14.1 and f : U×A →
℘(

⋃
a∈A Va) such that f (x,a)⊆ Va.

Note that an indiscernibility relation IndS
B for NISs can be defined in a way identical

to that for DISs.
One may attach different interpretations with “ f (x,a) = V”. For instance, as

exemplified in [9, 10], if a is the attribute “speaking a language”, then f (x,a) =
{German, English} can be interpreted as (i) x speaks German and English and no
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other languages, (ii) x speaks German and English and possibly other languages, (iii)
x speaks German or English but not both, or (iv) x speaks German or English or both.
Motivated by these interpretations several relations apart from the indiscernibility
relation are defined on non-deterministic information systems (e.g., [28, 36, 10]).
We list a few of them below.

Similarity (x,y) ∈ SimS
B if and only if f (x,a)∩ f (y,a) �= /0 for all a ∈ B.

Inclusion (x,y) ∈ InS
B if and only if f (x,a)⊆ f (y,a) for all a ∈ B.

Negative similarity (x,y)∈NSimS
B if and only if ∼ f (x,a)∩∼ f (y,a) �= /0 for all

a ∈ B, where ∼ is the complementation relative to Va.
Complementarity (x,y) ∈ComS

B if and only if f (x,a) =∼ f (y,a) for all a ∈ B.
Weak indiscernibility (x,y)∈wIndS

B if and only if f (x,a) = f (y,a) for some a∈
B.

Weak similarity (x,y) ∈ wSimS
B if and only if f (x,a)∩ f (y,a) �= /0 for some

a ∈ B.
Weak inclusion (x,y) ∈ wInS

B if and only if f (x,a)⊆ f (y,a) for some a ∈ B.
Weak negative similarity (x,y)∈wNSimS

B if and only if∼ f (x,a)∩∼ f (y,a) �= /0
for some a ∈ B.

Weak complementarity (x,y) ∈ wComS
B if and only if f (x,a) =∼ f (y,a) for

some a ∈ B.

Each of the relations defined above gives rise to a generalized approximation space,
where the relation may not be an equivalence. Thus, one can approximate any subset
of the domain using the lower and upper approximations defined on these general-
ized approximation spaces.

14.1.1 Towards an Algebra for Information Systems

In this chapter, we study classes of algebraic structures that are obtained from de-
terministic, incomplete and non-deterministic information systems. An algebraic
approach to rough set theory was first presented by Iwiński in 1987 [14]. Since
then, substantial work has been done on algebraic aspects of the theory (e.g., cf.
[17, 31, 4, 37]). In one direction, different representations of rough sets have been
considered, and endowed with algebraic structures. It is observed that the algebras
induced from approximation spaces are instances of various known as well as new
algebraic structures, such as quasi-Boolean algebras, double Stone algebras, Nelson
algebras, Łukasiewicz algebras, and topological quasi-Boolean algebras. A detailed
survey can be found in [4]. In another direction of research, lower/upper approxima-
tions are viewed as unary operators mapping a set to its lower/upper approximations.
This observation leads to a class of Boolean algebras with operators (BAO). For in-
stance, in [38], a BAO consisting of two unary operators L and H is considered,
where these operators are used to capture the lower and upper approximations. We
would like to mention here that the motivation of such a Boolean algebra with oper-
ators comes from approximation operators induced by approximation spaces, where
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the attribute set does not come into the picture. However, in ISs, as evident, the no-
tions of approximations are not absolute, but relative to attribute sets. In fact, a DIS

S := (U,A ,
⋃

a∈A Va, f ) determines an algebra BS := (℘(U),∩,∼, /0,{IndS
B}B⊆A),

where /0 denotes the empty set, ∼ is the operation of taking the complement of a

set relative to U , ∩ that of taking the intersection of two sets and IndS
B is a unary

operator on℘(U) mapping a set X(⊆U) to XIndS
B

. In [8], BS is called a knowledge

approximation algebra of type A derived from the DIS S .
In this chapter, we are interested in the following standard line of investigation

in algebraic studies of classes of structures. In order to study a class C of structures
obtained from information systems, one tries to abstract it through a class F of
structures given by a set of axioms, such that each member of C is also a member
of F . Moreover, the adequacy of the class F of abstract structures for C is proved
through a representation theorem, which involves showing that for every abstract
structure A ∈ F , there is a structure C ∈ C , and an isomorphism/embedding (in
an appropriate sense) from A to C. In the context of frames, this is just the notion
of informational representability [27]. It may be mentioned that informationally
representable frames were first studied in [35], and a detailed study of informational
representability can be found in [11].

In the above lines, the following abstract algebra is proposed in [8] corresponding
to knowledge approximation algebras derived from DISs (with finite attribute set A).

Definition 14.4. A structure B := (B ,κP)P⊆A is a knowledge approximation alge-
bra of type A (a finite set), if κP ∈ BB for each P⊆A and the following axioms hold
for all x,y ∈ B and P,Q⊆ A .

(A0) B := (B,∨,¬,0) is a complete atomic Boolean algebra.
(A1) κP0 = 0.
(A2) κPx≥ x.
(A3) κP(x∧κPy) = κPx∧κPy.
(A4) x �= 0 implies κ/0x = 1.
(A5) κP∪Qx = (κPx)∧ (κQx) if x is an atom of B .

A representation theorem is also presented in [8] stating that every knowledge ap-
proximation algebra of type A is isomorphic to a knowledge approximation algebra
of type A derived from some DIS. In order to see how the required DIS is generated
from the given knowledge approximation algebra, we need a few definitions.

Given a knowledge approximation algebra B := (B ,κP)P⊆A , the atomic struc-
ture At(B) of B is (At(B), TP)P⊆A , where At(B) is the set of atoms of B and for
each P⊆ A , TP is the equivalence relation on At(B) such that

(x,y) ∈ TP if and only if y≤ κPx.

Now the atomic structure At(B), in turn, determines a DIS S(At(B)) := (At(B),
A , V , f ), where V :=

⋃
a∈A At(B)/T{a} and f (x,a) := [x]T{a} . Finally, in the rep-

resentation theorem it is shown that B ∼= BS (At(B)). Note that in this representation
theorem, the atomicity property of B plays a crucial role.
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We note that Comer’s work in [8] is confined to DISs only and does not talk
about possible extensions to other types of information systems, such as incomplete
and non-deterministic information systems. Moreover, the knowledge approxima-
tion algebra derived from a DIS S does not give a complete description of the DIS.
In fact, attribute and attribute-value pairs, which are the main ingredients of a DIS,
do not appear in this description. In the next section, we shall propose an algebraic
formalism of DISs which captures this aspect. An abstract algebra for DISs will
be proposed and the corresponding representation theorem will be proved in Sec-
tion 14.3. In Section 14.4, we will see that this representation theorem also leads
us to logics for DISs. In Sections 14.5, 14.6 and 14.7, we shall extend this formal-
ism to incomplete and non-deterministic information systems as well. Section 14.8
concludes the chapter.

14.2 Algebra for Deterministic Information Systems

Let us consider the deterministic information systems S1 and S2 of Table 14.1. Ta-
ble 14.2 below gives the lower and upper approximations of all the subsets of U
with respect to indiscernibility relations corresponding to different sets of attributes.
Observe that the two different DISs S1 and S2 generate the same knowledge approx-

imation algebra (℘(U),∩,∼, /0,{IndSi
B }B⊆A), where A := {T,H} and the operator

IndSi
B is determined by Table 14.2. This fact shows that a knowledge approximation

algebra does not give a complete description of the DISs. This observation leads us
to the proposal of a deterministic information system algebra given as follows.

Table 14.2. Lower and upper approximations in the information systems Si, i = 1,2

X X
Ind

Si
{T}

X
Ind

Si
{T}

X
Ind

Si
{H}

X
Ind

Si
{H}

X
Ind

Si
{T,H}

X
Ind

Si
{T,H}

{P1} /0 {P1,P2} /0 {P1,P3} {P1} {P1}
{P2} /0 {P1,P2} {P2} {P2} {P2} {P2}
{P3} {P3} {P3} /0 {P1,P3} {P3} {P3}
{P1,P2} {P1,P2} {P1,P2} /0 U {P1,P2} {P1,P2}
{P1,P3} /0 U {P1,P3} {P1,P3} {P1,P3} {P1,P3}
{P2,P3} {P3} U /0 U {P2,P3} {P2,P3}
U U U U U U U
/0 /0 /0 /0 /0 /0 /0

Let us fix finite sets A of attributes and V :=
⋃

a∈A Va of attribute values. Let D
denote the set of all descriptors [30], viz. pairs (a,v), for each a ∈ A , v ∈ Va. As
we have already seen, given a deterministic information system S := (U,A ,V , f ),
the upper approximations with respect to the indiscernibility relations IndS

B, B⊆A ,

determine unary operations IndS
B on℘(U), viz.
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IndS
B(X) := XIndS

B
, X ⊆U.

Similarly, one has the unary operations IndS
B determined by lower approximations.

Each descriptor (a,v) also determines a nullary operation (constant) cS
(a,v) on℘(U):

cS
(a,v) := {x ∈U : f (x,a) = v}.

Thus, we have the following definition. Let Ω be the tuple (A ,V ).

Definition 14.5. Let S := (U,A ,V , f ) be a deterministic information system. A de-
terministic information system algebra (in brief, DIS-algebra) of type Ω generated
by the deterministic information system S is the structure

S∗ := (℘(U),∩,∼, /0,{IndS
B}B⊆A ,{cS

γ }γ∈D).

Observe that a DIS-algebra generated by a DIS S is actually an extension of the
knowledge approximation algebra derived from S with a collection of nullary oper-
ations. The DIS-algebra generated by the DIS Si, i = 1,2 (cf. Table 14.1) is given by
Si
∗ := (℘(U), ∩, ∼, /0, {IndSi

B }B⊆A , {cSi
γ }γ∈D), where A := {T,H}, D :=

{(T, very high), (T,high),(T,no),(H,yes),(H,no)}, IndSi
B is given by Table 14.2, and

cSi
γ by Table 14.3 below. As expected, S1

∗ and S2
∗ differ only with respect to nullary

operators.

Table 14.3. Nullary operators cSi
γ , i = 1,2

γ cS1
γ cS2

γ

(T,very high) {P1,P2} {P1,P2}
(T, high) {P3} /0
(T,no) /0 {P3}
(H,no) {P2} {P2}
(H,yes) {P1,P3} {P1,P3}

Notation 1. For the elements x and y of a Boolean algebra (U,∧,¬,0), we shall
write x→ y and x↔ y to denote the elements ¬x∨y and (x→ y)∧ (y→ x), respec-
tively. Thus, in particular, for subsets X and Y of U in the power set Boolean algebra
with domain℘(U), X → Y and X ↔ Y, respectively, represent the sets ∼ X ∪Y and
(X → Y )∩ (Y → X).

The following proposition lists a few properties of DIS-algebras.

Proposition 14.1.

1. IndS
B(X ∩Y ) = IndS

B(X)∩ IndS
B(Y ), X ⊆U.

2.
⋃

v∈Va
cS
(a,v) = U.
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3. cS
(a,v)∩ cS

(a,u) = /0 when v �= u.

4. IndS
C(X)⊆ IndS

B(X) for C ⊆ B⊆ A , and X ⊆U.

5. cS
(a,v) ⊆ IndS

{a}(c
S
(a,v)).

6. cS
(b,v)∩ IndS

B∪{b}(X)⊆ IndS
B(cS

(b,v) → X), X ⊆U.

7. IndS
/0 (X) �= /0 implies X = U.

8. IndS
/0 (U) = U.

Proof. (1) It is enough to show that X ∩Y IndS
B

= XIndS
B
∩Y IndS

B
. Here,

x ∈ X ∩Y IndS
B

⇐⇒ [x]IndS
B
⊆ X ∩Y

⇐⇒ [x]IndS
B
⊆ X , and [x]IndS

B
⊆ Y

⇐⇒ x ∈ XIndS
B
∩Y IndS

B
.

(2) We just need to prove the inclusion U ⊆⋃
v∈Va

cS
(a,v). So, let us take an arbitrary

x ∈U . Then, f (x,a) = v for some v ∈ Va, and hence, we obtain x ∈ cS
(a,v).

(3) Follows directly from the definition of the operators cS
(a,v), and the fact that f is

a function with domain U ×A .
(4) From the definition of the indiscernibility relation, we obtain for C ⊆ B, IndS

B ⊆
IndS

C, and hence XIndS
C
⊆ XIndS

B
. Now using the definition of the operators IndS

B , and

IndS
C , we obtain the desired result.

(5) Let x ∈ cS
(a,v). Then, we obtain f (x,a) = v. Now let us consider an arbitrary y

such that (x,y) ∈ IndS
{a}. Then, f (y,a) = f (x,a) = v, and hence, y ∈ cS

(a,v). Thus, we

have shown x ∈ IndS
{a}(c

S
(a,v)).

(6) Let x∈ cS
(b,v)∩ IndS

B∪{b}(X). Let us take an arbitrary y such that (x,y) ∈ IndS
B . We

need to show y ∈ cS
(b,v) → X , that is, y ∈∼ cS

(b,v)∪X . Let us assume that y ∈ cS
(b,v),

we prove y ∈ X . Note that x,y ∈ cS
(b,v) implies (x,y) ∈ IndS

{b}. This together with

(x,y) ∈ IndS
B gives (x,y) ∈ IndS

B∪{b}. Thus we obtain y ∈ X as x ∈ IndS
B∪{b}(X).

(7) Follows from the fact that IndS
/0 = U ×U . (8) is obvious. �

Remark 14.1. Let us explain the above proposition. 2 and 3 say that each object
takes precisely one value for each attribute. According to 4, if an object is a posi-
tive element of a set X with respect to the indiscernibility relation corresponding to
an attribute set C, then it remains so with respect to indiscernibility relations cor-
responding to any attribute set containing C. 5-6 relate the indiscernibility relations
and attribute, attribute value pairs. According to 5, if an object w takes a value v for
an attribute a, then every object indiscernible with w with respect to a, also takes the
value v for the attribute a. 6 says that if an object w takes the value v for an attribute
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b and every object indiscernible with w with respect to attributes from B∪{b} be-
longs to the set X , then every object indiscernible with w with respect to attributes
from B, and which takes the value v for b also belongs to X .

We shall see later that these properties are actually characterizing properties of DIS-
algebras. Thus, we propose the following notion of an abstract DIS-algebra.

Definition 14.6. An abstract DIS-algebra of type Ω is a tuple

A := (U,∧,¬,0,{LB}B⊆A ,{dγ}γ∈D),
where (U,∧,¬,0) is a Boolean algebra and LB and dγ are, respectively, unary and
nullary (constant) operations on U satisfying the following:

(C0) LB(x∧ y) = LB(x)∧LB(y);
(C1)

∨
v∈Va

d(a,v) = 1;
(C2) d(a,v)∧d(a,u) = 0 when v �= u;
(C3) LC(x)≤ LB(x) for C ⊆ B⊆ A ;
(C4) d(a,v) ≤ L{a}(d(a,v));
(C5) d(b,v)∧LB∪{b}(x)≤ LB(d(b,v) → x);
(C6) L /0(x) �= 0 implies x = 1.
(C7) L /0(1) = 1.

As a consequence of Proposition 14.1, the DIS-algebra S∗ generated by a DIS S is
an abstract DIS-algebra.

Let UB be the dual of the operator LB, that is, UB(x) := ¬LB(¬x). The following
proposition presents a few properties of abstract DIS-algebras.

Proposition 14.2. 1. LB(x)≤ x≤UB(x).
2. For x≤ y, LB(x)≤ LB(y), and UB(x)≤UB(y).
3. LB(x)∨LB(y)≤ LB(x∨ y), and UB(x)∧UB(y)≥UB(x∧ y).
4. UB(0) = 0 and LB(1) = 1.
5. UB(UB(x)) = UB(x) and LB(LB(x)) = LB(x).
6. UB(x∧UB(y)) = UB(x)∧UB(y) and LB(x∨LB(y)) = LB(x)∨LB(y).
7. x �= 0 implies U/0x = 1.
8. UB(x∨ y) = UB(x)∨UB(y).

Proof. We only provide the proof of items (1)-(5) for LB.
(1) Using (C6), we obtain the result for B = /0. Next, we prove the result for singleton
B. Let B = {a} and consider an arbitrary v ∈Va. Then, using (C5), and the fact that
L /0(x) ≤ x, we obtain d(a,v) ∧L{a}(x) ≤ d(a,v) → x, and hence, d(a,v) ∧L{a}(x) ≤ x.
Since this is true for all v ∈ Va, we obtain

∨
v∈Va

d(a,v) ∧ L{a}(x) ≤ x. Thus, (C1)
gives L{a}(x)≤ x.
Now, assuming LB(x) ≤ x and following exactly the above steps, one can prove
LB∪{b}(x)≤ x.

(2) Let x ≤ y. Then, x∧ y = x, and hence, using (C0), we obtain LB(x)∧LB(y) =
LB(x). Therefore, LB(x)≤ LB(y).

(3) Since x ≤ x∨ y, using item (2), we obtain LB(x) ≤ LB(x∨ y). Similarly, we have
LB(y)≤ LB(x∨ y), and hence, we get LB(x)∨LB(y)≤ LB(x∨ y).
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(4) Follows from (C3), and (C7).

(5) First we note that for x = 1, L /0(L /0(x)) = L /0(x) = 1 (using (C7)), and for x �= 1,
L /0(L /0(x)) = L /0(x) = 0 (using (C6)). Next, we prove the result for singleton B, say
B = {a}. Since L{a}(L{a}(x))≤ L{a}(x) (by item 1), we just need to show the reverse
inequality, that is, L{a}(x)≤ L{a}(L{a}(x)). Here,

d(a,v)∧L{a}(x)≤ L /0(¬d(a,v)∨ x) (by (C5))
= L /0L /0(¬d(a,v)∨ x)
≤ L{a}L{a}(¬d(a,v)∨ x) (by (C3) and item 2). (14.1)

From (C4) and item (2), we have L{a}(d(a,v)) ≤ L{a}L{a}(d(a,v)). Therefore, again
using (C4) we obtain

d(a,v) ≤ L{a}L{a}(d(a,v)). (14.2)

Thus, we have

d(a,v)∧L{a}(x)≤ L{a}L{a}(¬d(a,v)∨ x)∧L{a}L{a}(d(a,v)) (combining (14.1) and (14.2) )

= L{a}L{a}((¬d(a,v)∨ x)∧d(a,v)) ( by (C0))

= L{a}L{a}(d(a,v)∧ x). (14.3)

Since (14.3) holds for all v ∈ Va, using item (3), we obtain
∨

v∈Va

d(a,v)∧L{a}(x)≤ L{a}L{a}(
∨

v∈Va

d(a,v)∧ x). (14.4)

Therefore, (C1) gives L{a}(x)≤ L{a}(L{a}(x)).
Next, assuming LB(x) ≤ LBLB(x) and following exactly the above steps, we can
prove LB∪{a}(x)≤ LB∪{a}(LB∪{a}(x)). This completes the proof. �
From Proposition 14.2, it is clear that UB and LB are, respectively, closure and in-
terior operators. Moreover, the reduct A := (U,∧,¬,0,{LB}B⊆A) is a topological
Boolean algebra [4]. Furthermore, (U,∧,¬,0,{UB}B⊆A) satisfies all the conditions
of an abstract knowledge approximation algebra [8], except that in the latter case,
the reduct (U,∧,¬,0) is taken to be a complete atomic Boolean algebra, while we
do not have that requirement.

Let us recall that a cylindric algebra of dimension |A | [13] is a structure

A := (U,∧,¬,0,{Λa}a∈A ,{µ(a,b)}(a,b)∈A×A),

where (U,∧,¬,0) is a Boolean algebra, and Λa, µ(a,b) are, respectively, unary and
nullary operations on U , such that

(L1) Λa(0) = 0,
(L2) x≤ Λa(x),
(L3) Λa(x∧Λa(y)) = Λa(x)∧Λa(y),
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(L4) Λa(Λb(x)) = Λb(Λa(x)),
(L5) µ(a,a) = 1,
(L6) If a �= b,c, then µ(b,c) = Λa(µ(b,a)∧µ(a,c)),
(L7) If a �= b, then Λa(µ(a,b)∧ x)∧Λa(µ(a,b)∧¬x) = 0.

The difference between the signature of an abstract DIS-algebra of type (A ,V ) and
that of a cylindric algebra of dimension |A | is now clear. The cylindric algebra has
unary and nullary operations corresponding to each element of A , and A×A , respec-
tively. Whereas, in the case of abstract DIS-algebra, unary and nullary operations are
indexed, respectively, over the sets℘(A) and A×V . Moreover, operators UB of an
abstract DIS-algebra satisfy (L1)–(L3), but may fail to satisfy (L4). (L5)–(L7) do not
make sense in the case of abstract DIS-algebras. However, the BAO (U,∧,¬,0,UB)
obtained from an abstract DIS-algebra is a cylindric algebra of dimension 1.

14.3 Representation Theorem for Abstract DIS-Algebras

The proof of the representation theorem for abstract knowledge approximation al-
gebras given in [8] makes use of the completeness and atomicity properties of the
Boolean reduct of the algebra. In fact, the embedding of an abstract knowledge ap-
proximation algebra A is given in an extension of the power set algebra over the set
At(A) of atoms of A. But in the case of abstract DIS-algebras, the Boolean reduct
may not be complete and atomic, and hence, this technique will not work. We use
prime filters [7] for our purpose.

Recall that a filter of a Boolean algebra A := (U,∧,∼,0) is a subset F of U such
that (i) 1 ∈ F , (ii) if a,b ∈ F , then a∧b ∈ F , (iii) if a ∈ F and a ≤ b, then b ∈ F . A
filter is proper if it does not contain the smallest element 0. A proper filter is prime
if a∨ b ∈ F implies that at least one of a and b belongs to F . We note that for a
prime filter F , we have

• a→ b,a ∈ F implies b ∈ F , and
• a→ b /∈ F implies a ∈ F and b /∈ F .

We shall require these facts later.

Let PF(A) denote the set of all prime filters of A.

Let us consider an abstract DIS-algebra A := (U,∧,¬,0,{LB}B⊆A ,{dα}α∈D). A
determines a unique DIS A∗ as follows.
Consider the mapping fA : PF(A)×A → V such that

fA(Γ,a) = v if and only if d(a,v) ∈ Γ.

Conditions (C1) and (C2) in Definition 14.6 guarantee that fA is a total function.
Thus, we obtain the DIS A∗ := (PF(A),A ,V , fA). A∗ determines the lower ap-
proximation operators IndA∗

B , B⊆ A , on℘(PF(A)).
We also recall that the reduct (U,∧,¬,0,{LB}B⊆A) of an abstract DIS-algebra

A := (U,∧,¬,0,{LB}B⊆A , {dα}α∈D) determines a complex algebra [7] as follows.
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For each B⊆ A , let us consider the binary relation QA
B ⊆ PF(A)×PF(A):

(Γ,Δ) ∈QA
B if and only if LB(x) ∈ Γ implies x ∈ Δ.

The relations QA
B are used to define the operators mA

B :℘(PF(A))→℘(PF(A)):

mA
B (X) := {Γ ∈ PF(A) : for all Δ such that (Γ,Δ) ∈ QA

B , Δ ∈ X}.

The complex algebra corresponding to the reduct (U,∧,¬,0,{LB}B⊆A) of the ab-
stract DIS-algebra A is given by extending the power set algebra over PF(A) with
the operators mA

B .
So, an abstract DIS-algebra A, on the one hand, determines the lower approxi-

mation operators IndA∗
B . On the other hand, it gives rise to the complex algebra with

operators mA
B . Is there any relationship between the operators mA

B , and the lower
approximation operators IndA∗

B ? In fact, we shall now show that for each B ⊆ A ,

the operators mA
B and IndA∗

B are the same. This result will also lead us to the desired
representation theorem. Let us begin with the following proposition listing a few
properties of the relations QA

B .

Proposition 14.3

1. QA
B ⊆ QA

C for C ⊆ B⊆ A .
2. d(b,v) ∈ Γ∩Δ for some v ∈ Vb if and only if (Γ,Δ) ∈ QA

{b}.
3. If (Γ,Δ) ∈QA

B and d(b,v) ∈ Γ∩Δ for some v ∈Vb, then (Γ,Δ) ∈ QA
B∪{b}.

4. QA
/0 = PF(A)×PF(A).

5. QA
B =

⋂
b∈B QA

{b}.

Proof (1) is a direct consequence of (C3). Let us prove (2). First suppose d(b,v) ∈
Γ∩Δ for some v ∈ Vb, and let L{b}(x) ∈ Γ. We need to show x ∈ Δ. Using the
properties of filters, we obtain d(b,v)∧L{b}(x) ∈ Γ, and hence, by (C5) with B = /0,
we obtain L /0(d(b,v) → x) ∈ Γ. This shows that L /0(d(b,v) → x) �= 0, and hence, by
(C6), we obtain d(b,v) → x = 1. Therefore, we have d(b,v) → x ∈ Δ. Finally using the
fact that d(b,v) ∈ Δ, we obtain x ∈ Δ.

Conversely, suppose (Γ,Δ)∈QA
{b}. By (C1), there exists a v∈Vb such that d(b,v) ∈

Γ. Therefore, using (C4), we obtain L{b}(d(b,v)) ∈ Γ, and so d(b,v) ∈ Δ.
Let us now prove (3). Suppose (Γ,Δ) ∈ QA

B and d(b,v) ∈ Γ∩Δ for some v ∈ Vb.
Further, suppose LB∪{b}(x)∈ Γ. We need to show x∈Δ. Due to the given conditions,
we obtain d(b,v)∧LB∪{b}(x) ∈ Γ, and hence, by (C5), LB(d(b,v) → x) ∈ Γ. This gives
d(b,v) → x ∈ Δ, as (Γ,Δ) ∈QA

B . As d(b,v) ∈ Δ, x ∈ Δ.
(4) is obvious due to (C6). Let us now move to (5). From (1), we obtain QA

B ⊆
⋂

b∈B QA
{b}. It is also not difficult to see that the reverse inclusion holds when |B| ≤ 1.

To complete the proof, let us assume that the reverse inclusion holds for B, and prove
it for B∪{a}. Let (Γ,Δ) ∈⋂b∈B∪{a}QA

{b}. We need to show (Γ,Δ) ∈ QA
B∪{a}. Using
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(2) and the fact that (Γ,Δ)∈QA
{a}, we obtain d(a,v) ∈ Γ∩Δ for some v. Now (3) gives

(Γ,Δ) ∈ QA
B∪{a}. �

Theorem 14.1. Let A := (U,∧,¬,0,{LB}B⊆A ,{dγ}γ∈D) be an abstract DIS-algebra.
Then, the following hold for each B ⊆ A .

1. IndA∗
B = QA

B .
2. IndA∗

B = mA
B .

Proof. (2) is a direct consequence of (1). So, we only prove (1). Due to (5) of Propo-
sition 14.3, it is enough to prove (1) for singleton B. Let (Γ,Δ)∈ IndA∗

{b}. This implies

fA(Γ,b) = fA(Δ,b) = v for some v. Therefore, from the definition of fA, we obtain
d(b,v) ∈ Γ∩Δ. Now using (2) of Proposition 14.3, we obtain (Γ,Δ)∈QA

{b} as desired.
The reverse inclusion can be proved similarly. �

Theorem 14.2 (Representation theorem for abstract DIS-algebras).
Let A := (U,∧,¬,0,{LB}B⊆A ,{dγ}γ∈D) be an abstract DIS-algebra. Then the map-
pingΨ : U →℘(PF(A)) given by

Ψ(x) := {Γ ∈ PF(A) : x ∈ Γ}, x ∈U,
is an embedding of A into (A∗)∗.

Proof. It is not difficult to see that Ψ(dγ) = cA∗
γ , γ ∈ D. Due to item (2) of The-

orem 14.1, the rest follows in the lines of the proof of Jónnson-Tarski theorem
(cf. [7]). �

14.4 Logics for Deterministic Information Systems

Let us consider a language L consisting of a countable set Var := {p,q,r, . . .} of
variables, a binary operator ∧, unary operators ¬, LB and constants 0, d(a,v), where
B⊆ A , (a,v) ∈D. The well-formed formulae (wffs) of L are defined recursively:

α := p ∈Var | 0 | d(a,v) | ¬α | α∧β | LBα.
Now consider an abstract DIS-algebra A := (U,∧,¬,0,{LB}B⊆A ,{dγ}γ∈D). An as-
signment for A is a map V : Var → U . V can be extended to a mapping Ṽ from
the set of all L-wffs to U in the obvious way: 0,d(a,v),LB correspond, respectively,
to 0,d(a,v),LB. An equation α ≈ β is said to hold in A, denoted as A |= α ≈ β, if
Ṽ (α) = Ṽ (β) for all V .

The notion of equivalence defined above can be used to realize laws related to
DISs and approximations. For instance, one may easily verify that, for all A,

A |= ((d(b,v)∧LB∪{b}(p))→(LB(d(b,v)→p)))≈ 1,

where→ is the logical connective for implication defined in the usual way: α→β :=
¬α∨β. The representation theorem also leads to the complete axiomatization for the
semantic notion of equivalence in DIS-algebras generated by DISs. More formally
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speaking, using Birkhoff’s completeness theorem for equational logic [6], one can
prove that if α ≈ β holds in all DIS-algebras generated by DISs, then α ≈ β is
derivable from the equations (C0)–(C7).

We end this section with the remark that abstract DIS-algebras are actually an
algebraic counterpart of the logic LIS of deterministic information systems proposed
in [15]. In order to see it, recall that LIS-wffs are given by the scheme

(a,v) ∈D | p ∈Var | ¬α | α∧β | [I(B)]α.

Clearly, LIS-wffs are identifiable with the L-wffs by the bijection θmapping p to p,
γ ∈ D to dγ and [I(B)]α to LB(θ(α)). Using Theorem 14.2, one can then show that
'LIS α if and only if θ(α)≈ 1 holds in all abstract DIS-algebras.

14.5 Algebra for Incomplete Information Systems

We recall the definitions (Definition 14.2) of information systems and incomplete
information systems. As mentioned in Section 14.1, in the case of (incomplete)
information systems, a similarity relation is used as the distinguishability relation,
rather than the indiscernibility relation. As in the case of the indiscernibility relation,
the similarity relation SimS

B determines the unary operation SimS
B on℘(U) mapping

a set X to XSimS
B
. Thus, we extend the notion of DIS-algebra to incorporate the

similarity relation and define IS-algebra of type Ω generated by the information
system S as the structure

S∗ := (℘(U),∩,∼, /0,{IndS
B}B⊆A ,{SimS

B}B⊆A ,{cS
γ }γ∈D).

Moreover, an abstract IS-algebra of type Ω is a tuple

A := (U,∧,¬,0,{LB}B⊆A ,{SB}B⊆A ,{dγ}γ∈D),

where (U,∧,¬,0,{LB}B⊆A ,{dγ}γ∈D) is an abstract DIS-algebra and SB,B ⊆ A are
unary operations on U such that

(C8) SC(x)≤ SB(x) for C ⊆ B ⊆ A ,
(C9) d(a,v) ≤ S{a}(d(a,v)∨d(a,∗)), where v �= ∗,
(C10) d(b,v)∧SB∪{b}(x)≤ SB((d(b,v)∨d(b,∗))→ x), where v �= ∗,
(C11) d(b,∗)∧SB∪{b}(x)≤ SB(x).

If the abstract IS-algebra satisfies the additional condition

(C12)
∨
α∈D ′ dγ �= 1, where D ′ := {(a,v) : a ∈ A ,v ∈ Va \ {∗}},

then it will be called an abstract IIS-algebra.

Similarly to Theorem 14.2, we obtain the following representation theorem.
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Theorem 14.3 (Representation theorem for abstract (I)IS-algebras)
Every abstract IS-algebra (IIS-algebra) is isomorphic to a subalgebra of S∗ corre-
sponding to some IS (IIS) S.

Using the above representation theorem, as in the case of DIS, one can show that
the abstract IS-algebra is an algebraic counterpart of the logic proposed in [16] for
information systems. Moreover, the theorem also gives an equational logic for ISs
consisting of the equations (C0)− (C11).

14.6 Algebra for Non-deterministic Information Systems

In this section, our aim is to propose an algebraic formalism for NISs that would also
capture the notion of set approximations with respect to different relations defined
on NISs. For the moment, we restrict ourselves to indiscernibility, similarity, and
inclusion relations (cf. Section 14.1). In Section 14.5, we have seen that the results
obtained in Sections 14.2-14.4 for DISs can be extended in a natural way to obtain
an algebra for ISs. The situation is not so simple for NISs. In fact, we need axioms
which relate approximations relative to different sets of attributes and attribute-value
pairs. In the case of DISs, axioms (C3)− (C5) serve the purpose, but axioms (C4),
(C5) are not sound (as will be illustrated in Example 14.1) when we move to NISs.
Therefore, we need replacements for these axioms and for this purpose, we shall
take the help of unary operators which provide names to objects. These operators
will help to reason about the equality of objects. Thus, we have the following notion
of an algebra generated from a NIS.

As before, let us consider finite sets A and Va, a ∈ A , of attributes and attribute
values and let Ω be the tuple (A ,

⋃
a∈A Va). Recall that the attribute-value pairs

(a,v) ∈ D represent the collection of objects taking the value v for the attribute a.
As objects take a set of attribute values in the case of NISs, we consider the set
Da := {(a,V ) : V ⊆ Va}, for each a ∈ A . Thus, each element (a,v) in D may be
viewed as the element (a,{v}) of Da. Observe that |∏a∈A Da| is finite. Moreover,
for any NIS S := (U,A ,V , f ), |U/IndS

A | ≤ |∏a∈A Da|. LetΘ := {i, j, . . .} be a finite
set of “nominals” with |Θ|= |∏a∈A Da|.
Definition 14.7. Let S := (U,A ,V , f ) be a non-deterministic information system.
A non-deterministic information system algebra (in brief, NIS-algebra) of type Ω
generated by the non-deterministic information system S is a structure

S∗ := (℘(U),∩,∼, /0,{IndS
B}B⊆A ,{SimS

B}B⊆A ,{InS
B}B⊆A ,{cS

γ }γ∈D ,{cS
i }i∈Θ),

where IndS
B , SimS

B, InS
B are operators on℘(U) mapping a set X to XIndS

B
, XSimS

B
, and

XInS
B

respectively, for γ := (a,v) ∈ D, cS
γ is the nullary operation (constant) given

by the subset {x ∈ U : f (x,a) = v} of U , and cS
i are nullary operations on℘(U)

satisfying the following.
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(N1) U/IndS
A ⊆ {cS

i : i ∈ Θ}.
(N2) cS

i ∩ cS
j = /0, for i �= j.

(N3) cS
i ∈U/IndS

A ∪{ /0}.
(N4) If (x,y) /∈ IndS

A , [x]IndS
A

= cS
i and [y]IndS

A
= cS

j , then i �= j.

From conditions (N1)–(N4), it is clear that the nullary operators cS
i are used to

name the equivalence classes of IndS
A such that different equivalence classes are

provided with different names. This could also be viewed as providing names to
elements of the set U such that elements belonging to the same equivalence class
of the relation IndS

A are provided with the same name and elements belonging to
different equivalence classes of IndS

A have different names. Observe that due to size
of the setΘ, we have enough nominals to achieve this task. Also note that the reduct
(℘(U), ∩,∼, /0,{IndS

B}B⊆A , {SimS
B}B⊆A , {InS

B}B⊆A , {cS
γ }γ∈D) of S∗ is determined

uniquely, and thus, a NIS S can generate two distinct NIS-algebras which can differ
only with respect to naming of the objects, that is, with respect to nullary operators
corresponding to the elements from the set Θ.

We would like to mention here that the above idea of naming objects (elements of
the domain) is not new. In fact, it is the main idea of hybrid logics (cf. [7]). The idea
of naming objects is also used by Konikowska [18, 19] in the proposals of modal
logics for information systems and rough set theory. The main difference between
these and our way of naming is that we are providing the same name to the elements
belonging to the same equivalence class of IndS

A and different names to objects be-
longing to different classes. In other words, as mentioned above, we are effectively
providing names to the equivalence classes instead of individual elements.

The following proposition lists a few properties of NIS-algebras.

Proposition 14.4. Let X be a subset of the domain U.

1. LC(X)⊆ LB(X) for C ⊆ B⊆ A , L ∈ {IndS ,SimS , InS}.
2. cS

(a,v) ⊆ L{a}(cS
(a,v)), L ∈ {IndS , InS}.

3. ∼ cS
(a,v) ⊆ IndS

{a}(∼ cS
(a,v)).

4. cS
i ⊆ SimS

{a}(
⋃

v∈Va
(cS

(a,v)∩ IndS
/0 (c

S
i → cS

(a,v)))).

5. cS
i ∩ IndS

B∪{b}(X)⊆ IndS
B

(
⋂

v∈Vb

(

cS
(b,v) ↔ IndS

/0 (c
S
i → cS

(b,v))
)

→ X

)

.

6. cS
(b,v)∩SimS

B∪{b}(X)⊆ SimS
B(cS

(b,v) → X).

7. cS
i ∩ InS

B∪{b}(X)⊆ InS
B

(
⋂

v∈Vb

(

IndS
/0 (c

S
i → cS

(b,v))→ cS
(b,v)

)

→ X

)

.

8. IndS
/0 (X) = SimS

/0 (X) = InS
/0 (X).

9. IndS
/0 (X) �= /0 implies X = U.

10. cS
i ∩ cS

(a,v) ⊆ IndS
/0 (c

S
i → cS

(a,v)).

11. cS
i ∩∼ cS

(a,v) ⊆ IndS
/0 (c

S
i →∼ cS

(a,v)).

12.
⋃

i∈Θ cS
i = U.

13. ∼ cS
i ∪∼ cS

j = U for i �= j.
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14. cS
i ⊆ IndS

AcS
i .

15. IndS
/0 (U) = U.

16. LB(X ∩Y ) = LB(X)∩LB(Y ) for L ∈ {IndS ,SimS , InS}.

Proof. We only provide the proof of items (4) and (5).
(4) Let x ∈ cS

i . We need to show x ∈ SimS
{a}(

⋃
v∈Va

(cS
(a,v)∩ IndS

/0 (c
S
i → cS

(a,v)))). Let

y be such that (x,y) ∈ SimS
{a}, that is, there exists a v ∈ f (x,a)∩ f (y,a). In order

to prove the result, it is enough to show that y ∈ cS
(a,v) ∩ IndS

/0 (c
S
i → cS

(a,v)). Since

v ∈ f (y,a), we obtain y ∈ cS
(a,v). In order to prove y ∈ IndS

/0 (c
S
i → cS

(a,v)), let us take

an arbitrary z ∈ cS
i , and we prove z ∈ cS

(a,v). Since x,z ∈ cS
i , by the condition (N3) of

Definition 14.7, we obtain z ∈ [x]IndS
A

. Since v ∈ f (x,a), we obtain v ∈ f (z,a), and

hence z ∈ cS
(a,v).

(5) Let x ∈ cS
i ∩ IndS

B∪{b}(X). Thus, by the condition (N3) of Definition 14.7, we
obtain

cS
i = [x]IndS

A
. (14.5)

Let us consider an arbitrary y such that (x,y) ∈ IndS
B , and

y ∈
⋂

v∈Vb

(

cS
(b,v) ↔ IndS

/0 (c
S
i → cS

(b,v))
)

. (14.6)

We need to show y ∈ X . Since x ∈ IndS
B∪{b}(X), it is enough to show that (x,y) ∈

IndS
{b}, that is, v ∈ f (x,b) if and only if v ∈ f (y,b).

First suppose v∈ f (x,b). Then we have x ∈ cS
(b,v). Therefore, from (14.5), we obtain

cS
i = [x]IndS

A
⊆ [x]IndS

{b}
⊆ cS

(b,v), and hence IndS
/0 (c

S
i → cS

(b,v)) = U . Therefore, (14.6)

gives y ∈ cS
(b,v), that is, v ∈ f (y,b).

Now suppose v ∈ f (y,b), that is, y ∈ cS
(b,v). Then from (14.6), we obtain y ∈ IndS

/0

(cS
i → cS

(b,v)). This implies that for all z ∈ cS
i , we have z ∈ cS

(b,v). Since x ∈ cS
i , we

obtain x ∈ cS
(b,v). �

Remark 14.2. Note that 8, 9 and 15 list the properties of lower approximations with
respect to indiscernibility, similarity and inclusion relations relative to the empty set
of attributes. The lower approximation of a proper subset of the domain U with re-
spect to any of these relations relative to the empty set of attributes is empty and that
of the domain U is U itself. 10–14 give the rules followed in naming the objects.
According to 10, 11, objects with the same name take the same values for each at-
tribute. Properties 12, 13 guarantee that each object is assigned precisely one name.
According to 14, objects belonging to the same equivalence class with respect to the
indiscernibility relation relative to A have the same names. Apart from these, there
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are properties which relate approximations relative to different sets of attributes and
attribute-value pairs. We have 1–3 and 5 serving this purpose for the indiscernibility
relation. For the similarity relation, we have 1, 4 and 6. 1, 2 and 7 serve the purpose
for the inclusion relation.

2 is similar to 4 of Proposition 14.1. According to it, if an object w takes the value
v for an attribute a, then every object indiscernible to w relative to a, also takes the
value v for a. This is also true for the inclusion relation, but not true for the similarity
relation, as will be illustrated by Example 14.1 below. In the case of indiscernibility,
we have more: if an object w does not take the value v for an attribute a, then every
object indiscernible to w relative to a, also does not take the value v for a. This is
precisely what 3 says. 3 is also not true for the similarity relation, and we have 4
for it. According to 4, if an object w is named i, then for every object w′ similar to
w relative to an attribute a, there exists an attribute value v such that w′ and every
object named i take the value v for a. Thus, it means there exists an attribute value v
such that w and w′ take this value for a. 6 is similar to 5 of Proposition 14.1, which
is explained in Remark 14.1. The fact captured by 6 is not true for indiscernibility
and inclusion relations defined on NISs – this is illustrated by Example 14.1 below.
Instead, we have 5 and 7 for these relations. According to 5, if an object w is named
i and every object indiscernible with w relative to the attribute set B∪{b} belongs to
X , then every object w′ such that (i) w′ is indiscernible with w relative to the attribute
set B and (ii) w′ takes precisely those values for b which are taken by the objects
named i for b, also belongs to X . The interpretation of 7 for inclusion relation is very
similar to the above interpretation of 5 except that in (ii) we have a weaker condition.
It says that if an object w is named i and for every w0 with (w,w0) ∈ InS

B∪{b}, we

have w0 ∈ X , then, every object w′ such that (i) (w,w′)∈ InS
B and (ii) w′ takes a value

v for the attribute b whenever an object named i does so, also belongs to X .

We shall find later that properties 1-16 given in Proposition 14.4 are actually charac-
terizing properties of NIS-algebras. Thus, we propose the following abstract algebra
for NISs.

Definition 14.8. An abstract NIS-algebra of type Ω is a tuple

A := (U,∧,¬,0,{IB}B⊆A ,{SB}B⊆A ,{NB}B⊆A ,{dγ}γ∈D ,{di}i∈Θ),

where (U,∧,¬,0) is a Boolean algebra, IB,SB,NB are unary operations, and dγ,di

are nullary (constant) operations on U satisfying the following.

(N1) LC(x)≤ LB(x) for C ⊆ B⊆ A , L ∈ {I,S,N}.
(N2) d(a,v) ≤ L{a}(d(a,v)), L ∈ {I,N}.
(N3) ¬d(a,v) ≤ I{a}(¬d(a,v)).
(N4) di ≤ S{a}(

∨
v∈Va

(d(a,v)∧ I /0(di → d(a,v)))).

(N5) di∧ IB∪{b}(x)≤ IB

(
∧

v∈Vb

(

d(b,v) ↔ I /0(di → d(b,v))
)

→ x

)

.

(N6) d(b,v)∧SB∪{b}(x)≤ SB(d(b,v) → x).

(N7) di∧NB∪{b}(x)≤ NB

(
∧

v∈Vb

(

I /0(di → d(b,v))→ d(b,v)

)

→ x

)

.
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(N8) I /0(x) = S /0(x) = N/0(x).
(N9) I /0(x) �= 0 implies x = 1.
(N10) di∧d(a,v) ≤ I /0(di → d(a,v)).
(N11) di∧¬d(a,v) ≤ I /0(di →¬d(a,v)).
(N12)

∨
i∈Θ di = 1.

(N13) ¬di∨¬d j = 1 for i �= j.
(N14) di ≤ IA di.
(N15) I /0(1) = 1.
(N16) LB(x∧ y) = LB(x)∧LB(y) for L ∈ {I,S,N}.

We note that a NIS-algebra S∗ generated by a NIS S satisfies the axioms (N1)−
(N16), and hence, every NIS-algebra generated by the NISs are abstract NIS-algebra.

Example 14.1. Let us consider the NIS S of Table 14.4, which is a modified form of
the one given in [3].

Table 14.4. NIS S

Languages (L) Sports (S)

Ann {Arabic, Bulgarian} {athletics, basketball}
Bob {Arabic, Dutch} {athletics, basketball}
Cindy {German, Dutch} {cycling}

Here A := {L,S}, VL := {Arabic, Bulgarian, Dutch, German}, and VS :=
{athletics, basketball, cycling}. Thus, |DL| = 16 and |DS| = 8. Let us take Θ :=
{1,2, . . . ,128}. A NIS-algebra generated by NIS S is given by

S∗ := (℘(U),∩,∼, /0,{IndS
B}B⊆A ,{SimS

B}B⊆A ,{InS
B}B⊆A ,{cS

γ }γ∈D ,{cS
i }i∈Θ),

where U := {Ann, Bob, Cindy}, and the operators are given by Tables 14.5 and
14.6.
We note that

cS
(L,Bulgarian)

�⊆ SimS
{L}(c

S
(L,Bulgarian)

), (14.7)

cS
(L,Arabic)

∩ InS
{L,S}({Bob}) �⊆ InS

{S}(c
S
(L,Arabic)

→ {Bob}), (14.8)

cS
(L,Arabic)

∩ IndS
{L,S}({Bob}) �⊆ IndS

{S}(c
S
(L,Arabic)

→ {Bob}). (14.9)

So (14.7)−(14.9) of Example 14.1 show that in a NIS, (N2) may not be satisfied
by the lower approximation operators corresponding to similarity relations and (N6)
may not be satisfied by the lower approximation operators corresponding to indis-
cernibility and inclusion relations. It is thus that we have used (N4) as the replace-
ment of (N2) for the similarity relation, and (N5), (N7) as the replacements of (N6)
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Table 14.5. Lower approximation operators generated by the NIS S

IndS
{L},

IndS
{L,S} , InS

{L},

InS
{L,S}

SimS
{L} IndS

{S}, InS
{S},

SimS
{S}, SimS

{L,S}

{Ann} {Ann} /0 /0
{Bob} {Bob} /0 /0
{Cindy} {Cindy} /0 {Cindy}
{Ann, Bob} {Ann, Bob} {Ann} {Ann, Bob}
{Ann, Cindy} {Ann, Cindy} /0 {Cindy}
{Bob, Cindy} {Bob, Cindy} {Cindy} {Cindy}
U U U U
/0 /0 /0 /0

Table 14.6. Nullary operators cS
γ and cS

i

(a) Nullary operators cS
γ

γ cS
γ

(L,Arabic) {Ann, Bob}
(L,Bulgarian) {Ann}
(L,Dutch) {Bob, Cindy}
(L,German) {Cindy}
(S,athletics) {Anna, Bob}
(S,basketball) {Anna, Bob}
(S,cycling) {Cindy}

(b) Nullary operators cS
i

i ∈Θ cS
i

1 {Ann}
2 {Bob}
3 {Cindy}
i ∈Θ\{1,2,3} /0

for indiscernibility and inclusion relations, respectively. Observe that these replace-
ments make use of the unary operators di.

14.7 Representation Theorem for Abstract NIS-Algebras and
Equational Logic for NISs

In this section, we shall prove the representation theorem for abstract NIS-algebras,
which will also lead us to an equational logic for NISs. We proceed as in the case of
abstract DIS-algebras and for each B⊆ A , we consider the relations LA

B ⊆ PF(A)×
PF(A), L ∈ {I,S,N}, generated by an abstract NIS-algebra

A := (U,∧,¬,0,{IB}B⊆A ,{SB}B⊆A ,{NB}B⊆A ,{dγ}γ∈D ,{di}i∈Θ),

such that

(Γ,Δ) ∈ LA
B if and only if LB(x) ∈ γ implies x ∈ Δ.
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For a Γ∈ PF(A), and b∈A , let Γb denote the set {d(b,v) : d(b,v) ∈ Γ}. The following
proposition presents a few properties of these operators.

Proposition 14.5

1. LA
B ⊆ LA

C for C ⊆ B⊆ A , L ∈ {I,S,N}.
2. Γb = Δb if and only if (Γ,Δ) ∈ IA

{b}.
3. Γb∩Δb �= /0 if and only if (Γ,Δ) ∈ SA

{b}.
4. Γb ⊆ Δb if and only if (Γ,Δ) ∈ NA

{b}.
5. If (Γ,Δ) ∈ IA

B and Γb = Δb, then (Γ,Δ) ∈ IA
B∪{b}.

6. If (Γ,Δ) ∈ SA
B and Γb∩Δb �= /0, then (Γ,Δ) ∈ SA

B∪{b}.
7. If (Γ,Δ) ∈ NA

B and Γb ⊆ Δb, then (Γ,Δ) ∈ NA
B∪{b}.

8. LA
/0 = PF(A)×PF(A), L ∈ {I,S,N}.

9. LA
B =

⋂
b∈B LA

{b}, L ∈ {I,S,N}.

Proof We only provide the proofs of (2) and (3).
(2) First suppose Γb = Δb, and let I{b}(x) ∈ Γ. We need to show x ∈ Δ. From (N12),
we obtain di ∈ Γ for some i ∈ Θ. Therefore, di ∧ I{b}(x) ∈ Γ. Now using (N5) for
B = /0, we obtain

I /0

(
∧

v∈Vb

(

d(b,v) ↔ I /0(di → d(b,v))
)

→ x

)

∈ Γ.

Therefore, (N9) gives

∧

v∈Vb

(

d(b,v) ↔ I /0(di → d(b,v))
)

→ x = 1,

and hence
∧

v∈Vb

(

d(b,v) ↔ I /0(di → d(b,v))
)

→ x ∈ Δ.

If possible, let x /∈ Δ. Then, there exists a v ∈ Vb such that either d(b,v) → I /0(di →
d(b,v)) /∈ Δ, or I /0(di → d(b,v))→ d(b,v) /∈ Δ. First suppose, d(b,v) → I /0(di → d(b,v)) /∈
Δ. Then, d(b,v) ∈ Δ, and I /0(di → d(b,v)) /∈ Δ. Now using the fact that Γb = Δb,
we obtain d(b,v) ∈ Γ, and hence, di ∧ d(b,v) ∈ Γ. Therefore, from (N10, we obtain
I /0(di → d(b,v)) ∈ Γ. Using (N9), this gives di → d(b,v) = 1, and hence, by (N15),
I /0(di → d(b,v)) = 1. This implies I /0(di → d(b,v)) ∈ Δ, a contradiction. Similarly,
I /0(di → d(b,v))→ d(b,v) /∈ Δ will also lead us to a contradiction.

Conversely, suppose (Γ,Δ) ∈ IA
{b}. We need to show d(b,v) ∈ Γ if and only if

d(b,v) ∈ Δ. First let d(b,v) ∈ Γ. Then, from (N2), we obtain I{b}d(b,v) ∈ Γ, and hence
d(b,v) ∈ Δ. Now suppose d(b,v) ∈ Δ. If d(b,v) /∈ Γ, then using (N3), we obtain
I{b}(¬d(b,v)) ∈ Γ, and hence, ¬d(b,v) ∈ Δ, a contradiction.

(3) First suppose Γb ∩Δb �= /0 and we show (γ,Δ) ∈ SA
{b}. Let d(b,v) ∈ γb ∩Δb. Let

S{b}(x) ∈ γ. We need to show x ∈ Δ. We have d(b,v) ∧ S{b}(x) ∈ Γ, and hence by
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(N6), S /0(d(b,v) → x) ∈ Γ. This gives I /0(d(b,v) → x) ∈ Γ (due to (N8)), and therefore,
we obtain d(b,v) → x = 1 (by (N9)). This gives us x ∈ Δ as d(b,v) ∈ Δ.
Conversely, suppose (Γ,Δ) ∈ SA

{b}, and we prove Γb∩Δb �= /0. (N12) guarantees the
existence of a i ∈ Θ such that di ∈ Γ. Therefore, by (N4), we obtain
S{b}(

∨
v∈Vb

(d(b,v)∧I /0(di → d(b,v))))∈Γ, and hence,
∨

v∈Vb
(d(b,v)∧I /0(di → d(b,v)))∈

Δ. Therefore, for some v ∈ Vb, d(b,v)∧ I /0(di → d(b,v)) ∈ Δ. Using (N9) and the fact
that di ∈ Γ, this gives us d(b,v) ∈ γ∩Δ, and hence, Γb∩Δb �= /0. �

Let us consider an abstract NIS-algebra A := (U , ∧, ¬, 0, {IB}B⊆A , {SB}B⊆A ,
{NB}B⊆A , {dα}α∈D , {di}i∈Θ). As in the case of abstract DIS algebra, abstract NIS-
algebra A determines a unique NIS A∗ := (PF(A),A ,V , fA), where

fA(Γ,a) = {v : d(a,v) ∈ Γ}.

The following proposition relates the abstract NIS-algebra A and NIS A∗.

Theorem 14.4. The following hold for each B⊆ A .

1. a. IndA∗
B = IA

B .
b. SimA∗

B = SA
B .

c. InA∗
B = NA

B .
2. a. IndA∗

B = mIAB
.

b. SimA∗
B = mSA

B
.

c. InA∗
B = mNA

B
.

Proof. We only prove (1) for singleton B. First suppose (Γ,Δ) ∈ IndA∗
{b}. Therefore,

we obtain fA(Γ,b) = fA(Δ,b). This implies Γb = Δb, and hence, by item (2) of
Proposition 14.5, we obtain (Γ,Δ) ∈ IA

{b}, as desired. Conversely, let (Γ,Δ) ∈ IA
{b}.

Then by item (2) of Proposition 14.5, we obtain Γb = Δb. This gives fA(Γ,b) =
fA(Δ,b) and hence (Γ,Δ) ∈ IndA∗

{b}. One can prove 1(b) and 1(c) in the
same way. �

For each i ∈ Θ, let us consider the nullary operators cA∗
i defined as

cA∗
i := {Γ ∈ PF(A) : di ∈ Γ}.

Then we obtain the following theorem.

Theorem 14.5

1. PF(A)/IndA∗
A ⊆ {cA∗

i : i ∈Θ}.

2. cA∗
i ∩ cA∗

j = /0, for i �= j.

3. cA∗
i ∈U/IndA∗

A ∪{ /0}.

4. If (Γ,Δ) /∈ IndA∗
A , [Γ]

IndA∗
A

= cA∗
i and [Δ]

IndA∗
A

= cA∗
j , then i �= j.
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Proof (1) Let [Γ]
IndA∗

A
∈ U/IndA∗

A . From (N12), we obtain di ∈ Γ for some i ∈ Θ.

Also, due to (N13), d j /∈ Γ for all j distinct from i. We claim that [Γ]
IndA∗

A
= cA∗

i .

In order to see it, first suppose (Γ,Δ) ∈ IndA∗
A . We need to show di ∈ Δ. But since

di ∈ Γ, we obtain, using (N14), IA di ∈ Γ. Now using the facts that (Γ,Δ)∈ IndA∗
A and

IndA∗
A = IA

A , we obtain di ∈ Δ. Next, suppose Δ ∈ cA∗
i , and we prove (Γ,Δ) ∈ IndA∗

A .
For this, by item (2) of Proposition 14.5, it is enough to show that for each a ∈ A ,
and v ∈ Va, d(a,v) ∈ Γ if and only if d(a,v) ∈ Δ. First suppose d(a,v) ∈ Γ. Then using
(N10), we obtain I /0(di → d(a,v)) ∈ Γ. Thus using (N9), we obtain di → d(a,v) ∈ Δ, and
hence d(a,v) ∈ Δ, as di ∈ Δ. Similarly, using (N11), one can show that if d(a,v) ∈ Δ,
then d(a,v) ∈ Γ.

(2) Follows from (N13).

(3) Let us consider cA∗
i �= /0. Then there exists γ ∈ cA∗

i . Now giving argument similar
to (1), one can show that [Γ]

IndA∗
A

= cA∗
i .

(4) If possible, let (Γ,Δ) /∈ IndA∗
A , [Γ]

IndA∗
A

= [Δ]
IndA∗

A
= cA∗

i . Since (Γ,Δ) /∈ IndA∗
A ,

without loss of generality we assume the existence of an a ∈ A and v such that
v∈ fA(Γ,a), but v /∈ fA(Δ,a). That is, d(a,v) ∈ Γ and d(a,v) /∈ Δ. Therefore, we obtain
di∧d(a,v) ∈ Γ and by (N10), I /0(di → d(a,v)) ∈ Γ. This implies I /0(di → d(a,v)) �= 0 and
hence by (N9), di → d(a,v) = 1. But this contradicts the fact that di∧¬d(a,v) ∈ Δ.  !

Finally, we consider the NIS algebra (A∗)∗ generated by A∗ by taking nullary
operators corresponding to elements of Θ as cA∗

i . That is,

(A∗)∗ := (℘(PF(A)),∩,∼, /0,{IndA∗
B }B⊆A ,{SimA∗

B }B⊆A ,{InA∗
B }B⊆A ,

{cA∗
γ }γ∈D ,{cA∗

i }i∈Θ).

Now, one can prove the following representation theorem for abstract NIS-algebras,
using Theorem 14.4.

Theorem 14.6 (Representation theorem for abstract NIS-algebras)
Let A := (U, ∧, ¬, 0, {IB}B⊆A , {SB}B⊆A , {NB}B⊆A , {dα}α∈D , {di}i∈Θ) be an ab-
stract NIS-algebra. Then, the mappingΨ : U →℘(PF(A)) given by

Ψ(x) := {Γ ∈ PF(A) : x ∈ Γ}, x ∈U,
is an embedding of A into (A∗)∗.

As in the case of DISs, the above representation theorem gives us an equational
logic for NISs consisting of the axioms (N1)− (N16).

14.7.1 Extension to Other Types of Relations Defined on NISs

So far in our study of NISs, we have restricted ourselves to indiscernibility, simi-
larity and inclusion relations. But, one can extend the scheme of this work to other
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types of relations defined on NISs as well. In fact, as mentioned in Remark 14.2, the
main task is to come up with axioms relating the approximations (with respect to the
relation considered) relative to different sets of attributes and attribute-value pairs.
We list below the axioms serving this purpose for the relations defined in Section
14.1. Let RB, B⊆ A , be the operators corresponding to the relation considered.

Negative similarity relation:

• RB(x∧ y) = RB(x)∧RB(y).
• RC(x)≤ RB(x) for C ⊆ B⊆ A .
• di ≤ R{a}(

∨
v∈Va

(¬d(a,v)∧ I /0(di →¬d(a,v)))).
• ¬d(b,v)∧RB∪{b}(x)≤ RB(¬d(b,v) → x).
• R /0 = I /0.

Complementarity relation:

• RB(x∧ y) = RB(x)∧RB(y).
• RC(x)≤ RB(x) for C ⊆ B⊆ A .
• d(a,v) ≤ R{a}(¬d(a,v)).
• ¬d(a,v) ≤ R{a}(d(a,v)).

• di∧RB∪{b}(x)≤ RB

(
∧

v∈Vb

(

¬d(b,v) ↔ I /0(di → d(b,v))
)

→ x

)

.

• R /0 = I /0.

Weak indiscernibility relation:

• RB(x∧ y) = RB(x)∧RB(y).
• RB(x)≤ RC(x) for C ⊆ B⊆ A .

• di ≤ RB

(
∨

b∈B
∧

v∈Vb

(

d(b,v) ↔ I /0(di → d(b,v))
))

.

Weak similarity relation:

• RB(x∧ y) = RB(x)∧RB(y).
• RB(x)≤ RC(x) for C ⊆ B⊆ A .

• di ≤ RB

(
∨

b∈B
∨

v∈Vb

(

d(b,v)∧ I /0(di → d(b,v))
))

.

Weak inclusion relation:

• RB(x∧ y) = RB(x)∧RB(y).
• RB(x)≤ RC(x) for C ⊆ B⊆ A .

• di ≤ RB

(
∨

b∈B
∧

v∈Vb

(

I /0(di → d(b,v))→ d(b,v)

))

.

Weak negative similarity relation:

• RB(x∧ y) = RB(x)∧RB(y).
• RB(x)≤ RC(x) for C ⊆ B⊆ A .
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• di ≤ RB

(
∨

b∈B
∨

v∈Vb

(

¬d(b,v)∧ I /0(di →¬d(b,v))
))

.

Weak complementarity relation:

• RB(x∧ y) = RB(x)∧RB(y).
• RB(x)≤ RC(x) for C ⊆ B⊆ A .

• di ≤ RB

(
∨

b∈B
∧

v∈Vb

(

¬d(b,v) ↔ I /0(di → d(b,v))
))

.

Thus we need to consider the axioms listed above, in addition to the axioms (N9),
(N15) for I /0, and (N10)–(N14) for di. Then one can obtain the counterparts of The-
orem 14.4 for these relations. As a consequence of this, we would obtain the de-
sired representation theorems for abstract NIS-algebras that include any of the above
relations.

14.8 Conclusions

Classes of algebras induced by information systems – deterministic, incomplete or
non-deterministic, are considered. These algebras are also able to capture the no-
tion of approximations defined on these information systems. Abstract algebras are
proposed, which model such classes of algebras. Corresponding representation the-
orems are proved. The representation theorems also lead us to equational logics
for the respective information systems. In the process, it is also established that the
proposed classes of abstract algebras for DISs and ISs constitute the algebraic coun-
terparts of the logics for information systems studied in [15, 16].

A search for a suitable logic for information systems and rough set approxima-
tions remains the main issue of many research articles (e.g., [23, 28, 24, 25, 26, 30,
2, 1, 15, 16], c.f. [11, 5]). In [16], the logics for deterministic/incomplete informa-
tion systems are extended to propose dynamic logics for information systems, which
can capture a formalization of the notion of information and information update in
the context of information systems. A natural question would be to extend this work
and propose a dynamic logic for non-deterministic information systems. A first step
in this direction would be to translate the equational logic for NISs obtained in this
chapter, into a modal logic. An extension of the latter to a dynamic logic for NISs
may then be thought of, where we can capture the notion of information flow and
information update for NISs.
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