


Intelligent Systems Reference Library 42

Editors-in-Chief

Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Prof. Lakhmi C. Jain
School of Electrical and Information
Engineering
University of South Australia
Adelaide
South Australia SA 5095
Australia
E-mail: Lakhmi.jain@unisa.edu.au

For further volumes:
http://www.springer.com/series/8578



Andrzej Skowron and Zbigniew Suraj (Eds.)

Rough Sets and
Intelligent Systems –
Professor Zdzisław Pawlak
in Memoriam

Volume 1

123



Editors
Prof. Andrzej Skowron
Institute of Mathematics
University of Warsaw
Warsaw
Poland

Prof. Zbigniew Suraj
Institute of Computer Science
University of Rzeszów
Rzeszów
Poland

ISSN 1868-4394 e-ISSN 1868-4408
ISBN 978-3-642-30343-2 e-ISBN 978-3-642-30344-9
DOI 10.1007/978-3-642-30344-9
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012939519

c© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Affiliations of Authors (Vol. 1 & Vol. 2)

Abdulaziz Alkhalid
Mathematical and Computer Sciences and Engineering Division
King Abdullah University of Science and Technology
Thuwal, 23955-6900
Saudi Arabia
e-mail: abdulaziz.alkhalid@kaust.edu.sa

Talha Amin
Mathematical and Computer Sciences and Engineering Division
King Abdullah University of Science and Technology
Thuwal, 23955-6900
Saudi Arabia
e-mail: talha.amin@kaust.edu.sa

Piotr Artiemjew
Department of Mathematics and Computer Science
University of Warmia and Mazury
54, Słoneczna, Olsztyn, 10-710
Poland
e-mail: artem@matman.uwm.edu.pl

S. Asharaf
Indian Institute of Management Kozhikode
Kozhikode, Kerala
India 673570
e-mail: asharaf@iimk.ac.in

Nouman Azam
Department of Computer Science
University of Regina
Regina, Saskatchewan
Canada S4S 0A2
e-mail: azam200n@cs.uregina.ca



VI Affiliations of Authors (Vol. 1 & Vol. 2)

Sanghamitra Bandyopadhyay
Machine Intelligence Unit
Indian Statistical Institute
203, B.T. Road, Kolkata 700108
India
e-mail: sanghami@isical.ac.in

Mohua Banerjee
Indian Institute of Technology
Kanpur, 208016
India
e-mail: mohua@iitk.ac.in

Minakshi Banerjee
Center for Soft Computing Research
Indian Statistical Institute
203, B.T. Road, Kolkata 700108
India
e-mail: mbanerjee23@gmail.com

Jan G. Bazan
Institute of Computer Science
University of Rzeszów
2, Dekerta, Rzeszów, 35-030
Poland
e-mail: bazan@univ.rzeszow.pl
and
Institute of Mathematics
University of Warsaw
2, Banacha., Warsaw, 02-097
Poland

Stanisława Bazan-Socha
Second Department of Internal Medicine
Jagiellonian University Medical College
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Poznań University of Technology
2, Piotrowo, Poznań, 60-965
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To the memory of

Professor Zdzisław I. Pawlak



Foreword

This book is a tribute to the late Professor Zdzisław Pawlak (1926-2006), a founder
of the Polish school of Artificial Intelligence, and one of pioneers of Computing
Science in Poland and worldwide.

The work of Professor Pawlak fits perfectly with the definition of Computing Sci-
ence given by Peter J. Denning (2000): “Computing Science is the systematic study
of algorithmic processes that describe and transform information: their theory, anal-
ysis, design, efficiency, implementation, and application”. In such an understanding
of Computing Science, the contribution of Professor Pawlak was without a doubt
most seminal among all Polish scientists.

This book is an edited collection of chapters written by authors who knew Pro-
fessor Pawlak. The first chapter comprises an introduction into his life and achieve-
ments through testimonies of his students and collaborators. The remaining chapters
refer to his research, and show its far reaching consequences for today’s computing
practices.

Professor Pawlak’s scientific contributions were of a fundamental nature and
established new directions in information processing research. His foremost contri-
bution to the body of scientific knowledge was the formulation of Rough Set theory
- a powerful yet simple and general concept for reasoning about data.

It was Paul Valéry who said, “A vague fact may be more perfidious than erro-
neous reasoning”. Indeed, an error in reasoning can be found and corrected while
a vague fact cannot be corrected and when put together with certain facts, it may
undermine the entire reasoning process. Therefore, vague facts have to be identified
as a part of knowledge about the given reality so they can be used in approximate
reasoning. Rejection of these facts is equally wrong as is ignoring their vagueness,
since vagueness may be symptomatic for very important aspects of the considered
reality.

Rough Set theory perfectly addresses this issue by permitting to differentiate be-
tween vague and certain facts when reasoning about data. The theory is based on
an observation that knowledge about the objects of a universe is granular - objects
that are described with the same information are indiscernible and form granules
of knowledge about the universe. It is, however, not always possible to precisely
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express a concept concerning a given set of objects in terms of knowledge about the
universe, using the available granules of knowledge. Then, such a concept needs to
be expressed approximately by two sets of objects called lower and upper approx-
imations, respectively. The lower approximation is a union of all the granules that
are completely included in the concept, while the upper approximation is a union
of all the granules that have a nonempty intersection with the concept. The differ-
ence between upper and lower approximations is called a boundary region and it
consists of vague objects (facts) - those where it is impossible to state with cer-
tainty if they belong to the considered concept. This distinction between certain
knowledge (lower approximation) and doubtful knowledge (boundary region) has a
crucial impact on the reasoning process. Rough Set reasoning about data allows for
the discovery of interesting relationships in data, the reduction of data, measuring
the value of information carried by data, and the induction of decision rules that are
helpful for explaining relationships in data to be used in decision support and in the
construction of a strategy of intervention.

Rough set theory is complementary to Fuzzy Set theory and Possibility theory.
Together, these three theories provide the best available methodologies for the anal-
ysis of data that bears some kind of “imperfection” such as vagueness, ambiguity,
imprecision, incompleteness, and uncertainty.

The first paper on rough sets by Professor Pawlak, published in 1982 in the Jour-
nal of Information and Computer Science, was quoted 4150 times (per the SCO-
PUS database), and the number of papers that have the term “rough set” in their
title, abstract or as a keyword is well over 10,000, with a Hirsch index greater than
85. These papers are about theoretical extensions to the rough set concept and also
about applications in numerous areas. This sheer volume of publications is a pow-
erful testimony to the fact that Rough Set theory is a very important contribution
when answering questions in Artificial Intelligence, Decision theory, Operational
Research, Theory of Conflicts, Control theory, Machine Learning and Knowledge
Discovery, to name the few.

On a personal note, I am grateful to Professor Pawlak for teaching me Rough Set
theory in the early stages of its conception. Together with my brother Krzysztof, a
surgeon, we had the privilege of working with Professor Pawlak on the first practical
application of the theory - verification of indications for the treatment of duodenal
ulcer by HSV. My cooperation with Professor Pawlak lasted until his health permit-
ted, and expanded to include my younger colleagues, like Salvatore Greco. Profes-
sor Pawlak’s pleasant personality made this collaboration a true pleasure and also
attracted other researchers to this field. I also fondly remember talking to Profes-
sor Pawlak about things other than research - especially about photography. He was
an accomplished photographer and also a landscape painter with an acute ability to
capture the interplay of light and shadow.

Despite his overwhelming scientific stature, Professor Zdzisław Pawlak was a
modest and considerate person. He radiated enthusiasm and kind encouragement
for the young. For all these reasons, we wish to keep the memory of him alive.
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We are very grateful to the editors of this volume - Professors Andrzej Skowron
and Zbigniew Suraj - for undertaking the task of preparing this special book. It will
certainly contribute to the memory of Professor Pawlak as a person and as a scientist.

Let me finish this foreword with a quote from Hippocrates that very well de-
scribes Professor Pawlak’s life and achievements - “Vita brevis, ars longa” (Life
elapses, art lasts forever). Indeed, Professor Pawlak’s accomplishments transcend
his life.

Roman Słowiński
Poznań, March 2012
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This book is dedicated to the memory of Professor Zdzisław Pawlak, who passed
away almost six years ago. He is the founder of the Polish school of Artificial In-
telligence and one of the pioneers in Computer Engineering and Computer Science
with worldwide influence. He was a truly great scientist, researcher, teacher and a
human being.

Professor Pawlak’s most important discovery was his invention of the rough set
theory in 1982, which gained vast popularity throughout the World. More than 5000
English-language publications and also more than 5000 Chinese-language publica-
tions about Pawlak’s theory and its applications have been published so far, includ-
ing many books. Those publications include both specializations and extensions of
rough set theory. Their goal is to solve new scientific problems, examining connec-
tions between the theory and other approaches and dealing with applications of the
theory in practice. Moreover, a number of books devoted to rough sets theory were
published worldwide. Numerous conferences, e.g., in China, India, Japan, Canada,
USA, in Europe and also recently in Australia and Africa, were organized. The
rough sets theory has an immense following in China and research on rough sets
also is significantly growing in India.

Rough set theory has attracted worldwide attention with many researchers and
practitioners, who have contributed essentially to its development and applications.
Rough set theory overlaps with many other theories. Despite this, rough set the-
ory may be considered as an independent discipline in its own right. The rough
set approach seems to be of fundamental importance in artificial intelligence and
cognitive sciences, especially in research areas such as adaptive and autonomous
systems, bioinformatics, data mining and knowledge discovery, decision analysis,
expert systems, machine learning, intelligent systems, inductive reasoning, pattern
recognition, mereology, digital image processing, digital image analysis and sig-
nal analysis. A wide range of applications of methods based on rough set theory
alone or in combination with other approaches have been discovered in many ar-
eas including: acoustics, bioinformatics, business and finance, chemistry, computer
engineering (e.g., data compression, digital image processing, digital signal process-
ing, parallel and distributed computer systems, sensor fusion, fractal engineering),
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decision analysis and systems, economics, electrical engineering (e.g., control, sig-
nal analysis, power systems), environmental studies, digital image processing, in-
formatics, medicine, molecular biology, musicology, neurology, robotics, social sci-
ence, software engineering, spatial visualization, Web engineering, and Web mining.

Professor Pawlak inspired many computer scientists and mathematicians both in
both Poland and throughout the world. His students and collaborators created re-
search teams in many countries, including, besides of his native Poland, the United
States, Canada, Japan, Norway, Sweden and other places. It would be hardly possi-
ble t o find a computer science institution, in his native Poland without encountering
a faculty influenced by Professor Pawlak. His scientific achievements continue to
inspire his many students still working in these institutions and also the next gener-
ations of students.

This book prepared in two volumes contains more than 50 chapters. This demnon-
strates that the scientific approaches discovered by of Professor Zdzisław Pawlak,
especially the rough set approach as a tool for dealing with imperfect knowledge,
are vivid and intensively explored by many researchers in many places throughout
the world. The submitted papers prove that interest in rough set research is growing
and is possible to see many new excellent results both on theoretical foundations
and applications of rough sets alone or in combination with other approaches.

The book is divided into two volumes.
The first volume contains the following chapters.
Chapter “Professor Zdzisław Pawlak (1926-2006): Founder of the Polish School

of Artificial Intelligence” by Andrzej Skowron, Mihir Kr. Chakraborty,
Jerzy Grzymła-Busse,Victor Marek, Sankar K. Pal, James Peters, Grzegorz Rozen-
berg, Dominik Śl ↪ezak, Roman Słowiński, Shusaku Tsumoto, Alicja Wakulicz-Deja,
Guoyin Wang, and Wojciech Ziarko is dedicated to the memory of Professor
Zdzisław Pawlak, founder of the Polish school of Artificial Intelligence and one
of the pioneers in Computer Engineering and Computer Science with worldwide in-
fluence. In particular, it contains a few selected speech fragments pointing to Profes-
sor’s scientific achievements along with personal comments by Andrzej Skowron,
one of the authors, on features of Professor Pawlak as a truly great scientist, teacher
and a human being.

The list of works by Professor Zdzisław Pawlak, prepared by Andrzej Skowron, is
included in the chapter “List of Works by Professor Zdzisław Pawlak (1926-2006)”.

Chapter “Rough Sets: From Rudiments to Challenges” by Hung Son Nguyen
and Andrzej Skowron contains a survey about rough sets together with comments
on possible future research directions and challenges.

In Chapter “Zdzisław Pawlak, Databases and Rough Sets”, Victor W. Marek
presents work of Zdzisław Pawlak in the area of databases and the extension of that
work to the theory of rough sets. In particular, the author concentrates on motiva-
tions of Professor Pawlak for introducing information storage and retrieval systems
and describes how this, eventually, led to rough sets theory.

Chapter “jMAF - Dominance-based Rough Set Data Analysis Framework” by
Jerzy Błaszczyński, Salvatore Greco, Benedetto Matarazzo, Roman Słowiński, and
Marcin Szela̧g, presents a rough set data analysis software jMAF. It employs java
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Rough Set (jRS) library in which are implemented data analysis methods provided
by the (variable consistency) Dominance-based Rough Set Approach (DRSA). The
chapter also provides some basics of the DRSA and of its variable consistency
extension.

Chapter “Dynamic Programming Approach for Exact Decision Rule Optimiza-
tion” by Talha Amin, Igor Chikalov, Mikhail Moshkov, and Beata Zielosko, dis-
cusses an extension of dynamic programming approach to sequential optimization
of exact decision rules relative to the length and coverage. The chapter also contains
results of experiments with decision tables from UCI Machine Learning Repository.

Chapter ”Approaches for Updating Approximations in Set-Valued Information
Systems While Objects and Attributes Vary with Time ” by Hongmei Chen, Tian-
rui Li, and Hongmei Tian focuses on studying principles for incrementally updating
approximations in a set-valued information system while attributes and objects are
added. Methods for updating approximations of concepts in set-valued information
systems with attributes and objects changing simultaneously are presented. Experi-
mental evaluation of the proposed methods is included.

Ivo Düntsch and Günther Gediga describe in Chapter “On the gradual evolvement
of things” the generic properties of a visual system without hard coding the envi-
ronment. As a measure of approximation, Pawlak’s approximation quality is used.
The considerations are related to some ideas of the Gibson ecological approach to
perception.

The Chapter “On Empirical Comparison of Rule Sets Induced by LERS and
Probabilistic Rough Classification” by Jerzy W. Grzymała-Busse, Shantan R.
Marepally, and Yiyu Yao explores an extension of rough set theory, based on prob-
ability theory. In particular, parameterized approximations are used together with
the corresponding positive, boundary, and possible rules. The results of parameter
tuning on the quality of the induced classifiers based on such rules are reported.

In Chapter “Exploring Neighborhood Structures with Neighborhood Rough Sets
in Classification Learning”, Qinghua Hu, Leijun Li, and Pengfei Zhu introduce
neighborhoods of samples to granulate the universe and use the neighborhood gran-
ules to approximate classification, thus a model of neighborhood rough sets is de-
rived. Some machine based on the model learning algorithms, including boundary
sample selection, feature selection and rule extraction, are developed.

Chapter “Rough Representations of Ill-Known Sets and Their Manipulations in
Low Dimensional Space” by Masahiro Inuiguchi, focuses on investigations of the
rough representations of graded ill-known sets and the manipulations of possibil-
ity and necessity measures of graded ill-known sets using general conjunction and
implication functions in the universe.

In Chapter “Property-Driven Rough Sets Approximations of Relations” by
Ryszard Janicki, a problem of approximating an arbitrary relation by a relation with
desired properties is formally defined and analysed. The concepts of α-lower and
upper approximatios are introduced and their properties are discussed. Two special
cases, approximation by partial orders and approximation by equivalence relations
are discussed in detail.
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Chapter “Towards a Comprehensive Similarity Analysis of Voting Procedures
Using Rough Sets and Similarity Measures” by Janusz Kacprzyk, Hannu Nurmi,
and Sławomir Zadrożny, presents and approach to the evaluation of similarity of
voting procedures with respect to a set of criteria which are widely used in the
social choice literature. First, a qualitative rough sets based analysis is proposed,
and then an additional quantitative analysis is added by using two measures of sim-
ilarity of binary patters widely employed in many areas , i.e. the one based on the
Hamming distance and the one due to Jaccard-Needham. The approach proposed
constitutes a step towards the solutution of a difficult problem of determining the
(degree of) similarity of voting procdures by providing a comprehensive qualitative
and quantitative view.

Chapter “Algebras for Information Systems” by Md. Aquil Khan and Mohua
Banerjee, introduces algebraic structures for different kinds of information systems
together with the representation theorems for classes of algebras corresponding to
these structures. Finally, equational logics for deterministic, incomplete and non-
deterministic information systems are presented.

Chapter “DNA Rough-Set Computing in the Development of Decision Rule
Reducts” by Ikno Kim, Junzo Watada, and Witold Pedrycz, introduces a DNA
rough-set computation technique for dealing with the NP-hard problem problem
of optimal reduction of decision rules. The proposed technique is a composition of
computational DNA molecular techniques and is effectively employed to alleviate
the computational complexity of the considered optimization problem.

Chapter “Three-valued Logic for Reasoning about Covering-Based Rough Sets”
by Beata Konikowska, introduces a tool for reasoning about covering-based rough
sets in the form of three-valued logic with logical values corresponding to positive,
negative region and the boundary regions of a set. The author presents a strongly
sound sequent calculus for this logic, together with the proof of strong completeness
for a subset of its language.

In Chapter “Music Information Retrieval in Music Repositories” by Bożena
Kostek, the key concepts associated with automated music information retrieval and
music recommendation are discussed. Experiments on a constructed music database
with different kinds of classifiers are reported. A proposal for music retrieval and
annotation aided by gaze tracking is also discussed.

In Chapter “Rough Support Vectors: Classification, Regression, Clustering” by
Pawan Lingras, Parag Bhalchandra, Cory Butz, and S. Asharaf, it is shown that
the concepts of margins in support vector techniques provides a natural relationship
with the rough set theory. The authors describe rough set theoretic extensions of sup-
port vector technologies for classification, prediction, and clustering. The theoreti-
cal formulations of rough support vector machines, rough support vector regression,
and rough support vector clustering are supported with a summary of experimental
results.

Chapter “Logic-based Roughification” by Linh Anh Nguyen and Andrzej Szałas
includes novel roughification techniques for constructing equivalence/similarity
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relations adequate for Pawlak-like approximations. The authors also present appli-
cations of the proposed approach in granulating relational databases as well as con-
cept learning and approximation in description logic-based information systems.

Chapter “How Near Are Zdzisław Pawlak’s Paintings? Merotopic Distance Be-
tween Regions-of-Interest” by James F. Peters, presents an approach to measuring
the nearness of Pawlak’s paintings in terms of the merotopic distance between col-
lections of neighborhoods in image regions-of-interest.

Chapter “An Implementation of the Zdzisław Pawlak Idea for Reasoning about
Uncertainty. Approximate Reasoning by Parts” by Lech Polkowski and Maria
Semeniuk-Polkowska, presents a mereological calculus of parts, in which concepts
become elementary objects and relations among them are expressed as relations of
being parts to degrees. This analysis allows, in particular, for approximations to
various degrees. A characterization of continuous rough inclusions parallel to the
Menu-Pavelka characterization of continuous t–norms is proposed.

Chapter “Granular Concept Mapping and Applications” by Sumalee Sonamthi-
ang, Kanlaya Naruedomkul, and Nick Cercone, presents a granular concept hier-
archy (GCH) construction and mapping of the hierarchy for granular knowledge.
A granule description language and granule measurements are proposed to enable
mapping for an appropriate granular concept that represents sufficient knowledge to
solve the problem at hand. Applications of GCH are demonstrated through learning
of higher order decision rules.

Chapter “Rough Sets and Medical Differential Diagnosis” by Shusaku Tsumoto,
discusses a correspondence between the core ideas of rough sets and medical differ-
ential diagnosis.

In Chapter “Science and Semantics: A Note on Rough Sets and Vagueness” by
Marcin Wolski, rough set theory is presented against the background of recent philo-
sophical discussions about vagueness and empirical sciences.

The second volume contains the following chapters.
In chapter “From Logic to Computer Science – A Personal Experience”, Anita

Wasilewska explains why she is so grateful to Professor Zdzisław Pawlak whom
was possible to meet on her way from mathematics to computer science.

Chapter ”Knowledge algebras and their discrete duality” by Ewa Orlowska and
Anna Maria Radzikowska introduces a class of algebras referred to as knowledge
algebras and a class of knowledge frames. Representation theorems for these classes
leading to a discrete duality are proved.

Chapter “Comparison of Greedy Algorithms for Decision Tree Optimization” by
Abdulaziz Alkhalid, Igor Chikalov, and Mikhail Moshkov is devoted to the com-
parison of 16 types of greedy algorithms for decision tree construction with optimal
decision trees generated by the dynamic programming approach. Optimization is
performed relative to minimal values of different parameters of decision trees. The
results of experiments are reported and discussed.

In Chapter “A Review of the Knowledge Granulation Methods: Discrete vs Con-
tinuous Algorithms” by Piotr Artiemjew, rough inclusions and some of their weaker
variants are used to define similarity relations. Applications to classification prob-
lems are discussed.
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In Chapter “Game-theoretic Rough Sets for Feature Selection” by Nouman Azam
and JingTao Yao, a game-theoretic rough sets based method is formulated for select-
ing important features by combining multiple measures representing importance
levels for a feature. The method incorporates the measures as players in a game
where each player employs a three-way decision in selecting features. The included
demonstrative example suggests that this method may be useful for feature selection
in text categorization.

Chapter “A Clustering Approach to Image Retrieval Using Range Based Query
and Mahalanobis Distance” by Minakshi Banerjee, Sanghamitra Bandyopadhyay,
and Sankar K. Pal, puts forward a new approach to address a general purpose
content-based image retrieval task. The effectiveness of the proposed algorithm is
demonstrated with increased accuracy and reduced retrieval time.

Chapter “Classifiers Based on Data Sets and Domain Knowledge: A Rough Set
Approach” by Jan G. Bazan, Stanisława Bazan-Socha, Sylwia Buregwa-Czuma,
Przemysław Pardel, Andrzej Skowron, and Barbara Sokolowska, presents the ontol-
ogy approximation method for inducing complex classifiers from experimental data
and domain knowledge. The experimental results on different data sets are reported,
in particular on (i) data set generated by a vehicular traffic simulator, (ii) real-life
data set concerning coronary heart disease obtained from Second Department of In-
ternal Medicine, Jagiellonian University Medical College, Cracow, Poland, and (iii)
real-life data set concerning respiratory failure obtained from Neonatal Intensive
Care Unit in the Department of Pediatrics, Jagiellonian University Medical College,
Cracow, Poland.

Chapter “Incorporating Rough Data in Database Design for Imprecise Informa-
tion Representation” by Theresa Beaubouef and Frederick E. Petry, provides dis-
cussions of how it is possible to design relational databases to allow the incorpora-
tion of uncertain data characterized using rough set theory. This included Entity-
Relationship modeling, rough functional dependencies and rough normal forms.
Security issues as dealt with in statistical databases are also discussed as well as
an example of the representation of uncertain spatial data by rough sets.

The approach based on a pragmatic view of representation of knowledge is used
in Chapter ‘Rough Pragmatic Description Logic” by Zbigniew Bonikowski, Edward
Bryniarski, and Urszula Wybraniec-Skardowska for introducing and for investiga-
tion of a rough description logic.

Chapter “Application of Rough Set Theory to Sentiment Analysis of Microblog
Data” by Chien-Chung Chan and Kathy J. Liszka, presents the use of rough set
theory to formulate sentimental approximation spaces based on key words for as-
sessing sentiment of microblogging messages. The sentimental approximation space
provides contextual sentiment from the entire collection of messages, and it enables
the evaluation of sentiment of different subjects, not in isolation, but in context.
The sentimental approximation space offers potentially more insightful information
about a subject than simple polarity answers of positive or negative.

Chapter “Relationships for Cost and Uncertainty of Decision Trees” by Igor
Chikalov, Shahid Hussain, and Mikhail Moshkov, presents the results of studies on
the relationships between the cost and the uncertainty of decision trees as well as on
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the relationships between the number of nodes and the depth in the case of exact de-
cision trees. The developed tools are based on dynamic programming approach and
are applicable only to relatively small decision tables. The results of experiments
are reported and discussed.

Chapter “The Impact Rules of Recommendation Sources for Adoption Inten-
tion of Micro-Blog Based on DRSA with Flow Network Graph” by Yang-Chieh
Chin, Chiao-Chen Chang, Chiun-Sin Lin, and Gwo-Hshiung Tzeng, focuses on the
micro-blog (i.e., a new communication channel with which people share short text
messages on public and private networks) on Facebook. The main purpose of the re-
ported study is to explore and compare what recommendation sources influence the
intention to use micro-blogs and to combine the personal characteristics/ attributes
of gender, daily internet hour usage and past use experience to infer the usage of
micro-blogs decision rules using a dominance-based rough-set approach (DRSA)
with flow network graph.

Chapter “Providing Feedback in Ukrainian Sign Language Tutoring Software”
by M.V. Davydov, I.V. Nikolski, V.V. Pasichnyk, O.V. Hodych, and Y.M. Scher-
byna, focuses on video recognition methods implemented as part of the Ukrainian
Sign Language Tutoring Software. The proposed software system for sign language
recognition supports user interaction with the system during learning of signs and
the verification process. The developed feedback mechanism significant improves
the training experience for users. The results of experiments are reported and dis-
cussed.

Chapter “Hybrid Methods in Data Classification and Reduction” by Paweł Deli-
mata and Zbigniew Suraj summarizes numerous results of the authors on issues of
data reduction, feature subset selection and classifier construction. In particular, ap-
plications of reducts, deterministic and inhibitory decision rules for feature selection
are presented.

Chapter “Uncertainty Problem Processing with Covering Generalized Rough
sets” by Jun Hu and Guoyin Wang, focuses on applications of the covering gen-
eralized rough set approach. There are proposed two models: knowledge reduction
model and covering generalized rough fuzzy model.

Chapter “Hardware Implementations of Rough Set Methods in Programmable
Logic Devices” by Maciej Kopczynski and Jarosław Stepaniuk, discusses existing
results on hardware realization of rough set algorithms in the Field Programmable
Gate Array (FPGA) logic devices.

In Chapter “Determining Cosine Similarity Neighborhoods by Means of the Eu-
clidean Distance”, Marzena Kryszkiewicz presents a scalable method for computing
cosine similarity neighborhoods of vectors by employing the Euclidean distance ap-
plied to (α−)normalized forms of these vectors and the triangle inequality. There
are considered three types of sets of cosine similar vectors: all vectors the similarity
of which to a given vector is not less than an ε threshold value and two variants of
k-nearest neighbors of a given vector.

Chapter “Time Variability-Based Hierarchic Recognition of Multiple Musical
Instruments in Recordings” by Elżbieta Kubera, Alicja A. Wieczorkowska, and
Zbigniew W. Raś, focuses on automatic identification of musical instruments in
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polyphonic audio recordings. The reported experiments demonstrate that the per-
formance of classifiers enhanced, in particular by new temporal parameters intro-
duced to supply additional temporal information for the timbre recognition, lead to
improvement of the classifier performance.

In chapter “Unifying Variable Precision and Classical Rough Sets: Granular Ap-
proach” by Tsau Young Lin and Yu Ru Syau it is shown that neighborhood sys-
tems (NS) can integrate Ziarko’s variable precision rough set model (VPRSM) and
Pawlak ’s classical rough sets into one concept.

Chapter “Fuzzy Hybrid MCDM for Building Strategy Forces” by Mei-Chen Lo
and Gwo-Hshiung Tzeng, adopts Fuzzy multiple criteria decision making methods
and discuss how the technology, marketing and research & development forces oper-
ate and suggests ways of adjusting to them, and, where possible, of taking advantage
of them.

Chapter “Rough Set Based Feature Selection: Criteria of Max-Dependency, Max-
Relevance, and Max-Significance” by Pradipta Maji and Sushmita Paul, reports a
rough set based feature selection algorithm called maximum relevance - maximum
significance (MRMS), and its applications on quantitative structure activity rela-
tionship (QSAR) and gene expression data. The importance of rough set theory for
computing both relevance and significance of the features is also established. The
results of experiments are reported and discussed.

In Chapter “Towards Logics of Some Rough Perspectives of Knowledge” by A.
Mani, semantic frameworks for dealing with such issues as concepts of relative
consistency of knowledge, conflict representation and resolution are introduced and
developed. The proposed semantics may be of interest for multi-agent systems, dy-
namic spaces and collections of general approximation spaces.

In Chapter “Classifiers Based on Nondeterministic Decision Rules” by Barbara
Marszał-Paszek and Piotr Paszek, classifiers based on rough set theory and nonde-
terministic decision rules are discussed. The reported experiments are showing that
enhancing rule-based classifiers with nondeterministic rules may lead to increasing
of the classification quality.

In Chapter “Approximation and Rough Classification of Letter-like Polygon
Shapes” by Elisabeth Rakus-Andersson, is presented a rough set based method
to classification of discrete two-dimensional point sets resembling some letters to-
gether with a rough set technique for verifying decisions about the primary recog-
nitions of the curves’ appearance as letter shapes. The results are utilized in the
classifications of internet packet streams or in the analysis of wave signals typical
of, e.g., medical examinations.

Chapter “Rough Set-based Identification of Heart Valve Diseases Using Heart
Sounds” by Mostafa A. Salama, Omar S. Soliman, Ilias Maglogiannis, Aboul Ella
Hassanien, and Aly A. Fahmy, presents an application of the rough set approach to
classification of heart sound diseases using heart sounds. The reported experiments
are showing that the rough set based approach outperforms several other well known
machine learning techniques.

In Chapter “Rough Sets and Neuroscience” by Tomasz G. Smolinski and Astrid
A. Prinz, examples of the existing and potential applications of rough set theory (and
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its hybridizations) in neuroscience and neurology are presented. Moreover, a discus-
sion of further development of rough-neural computing, stimulated by relationships
of rough sets with neuroscience, is provided.

In Chapter “On Knowledge Representation and Automated Methods of Search-
ing Information in Bibliographical Data Bases: A Rough Set Approach” by Zbig-
niew Suraj, Piotr Grochowalski, and Krzysztof Pancerz, is presented an approach to
searching for information in bibliographical data bases founded on rough set theory
and the domain knowledge represented by ontologies. The reported experiments are
performed on data gathered in the Rough Set Database System (RSDS).

In Chapter “Design and Verification of Rule-Based Systems for Alvis Models”
by Marcin Szpyrka and Tomasz Szmuc, is presented a method of encoding and
verification of rule-based systems with the Haskell functional language in order to
include them into Alvis, a modeling language designed for embedded systems that
provides a possibility of a formal model verification.

Chapter “On Objective Measures of Actionability in Knowledge Discovery” by
Li-Shiang Tsay and Osman Gurdal, is included a rough set method for generating a
set of rules by utilizing the domain experts’ prior knowledge to formulate its inputs
and to evaluate the observed regularities it discovers. The generated rule overcomes
the traditional data-centered pattern mining resulting to bridge the gap and enhance
real-world problem solving capabilities.

In Chapter “Pseudometric Spaces from Rough Sets Perspective” by Piotr
Wasilewski, relationships between approximation spaces and pseudometric spaces
are presented. Investigations are focused on the class of pseudometric spaces which
are lower bounded in each point since open sets in these spaces coincide with defin-
able sets of some prescribed approximation spaces.

Editors of this book are proud to present the readers this book.

Andrzej Skowron and Zbigniew Suraj
Warszawa, Rzeszów, March 2012
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2 A. Skowron et al.

1.1 Introduction

This chapter is dedicated to the memory of Professor Zdzisław Pawlak, founder
of the Polish school of Artificial Intelligence and one of the pioneers in Computer
Engineering and Computer Science with worldwide influence.

To capture the spirit of Professor Pawlak’s creative genius, this chapter contains
testimonies of many collaborators, colleagues and friends pointing to Professor’s
scientific achievements and his personal qualities. In short, we present Professor
Pawlak as a truly great scientist, teacher and human being.

1.2 Biography [51]

Zdzisław Ignacy Pawlak was born on 10 November 1926 in Łódź, where he also fin-
ished primary school in 1939. During the German occupation of Poland, like many
Poles, he was a slave-labourer and was forced to work for Siemens. After the Sec-
ond World War, in 1946, he passed his high school examinations as an extern, and
in 1947, he started his studies at the Electrical Engineering Faculty of the Łódź Uni-
versity of Technology. In 1949, he transferred to the Electrical Faculty (the Faculty
of Telecommunication between 1951 and 1966, the Faculty of Electronics and In-
formation Technology at present) at the Technical University of Warsaw (now the
Warsaw University of Technology). He received his engineering degree in Telecom-
munications and Master of Science degree in Radio Engineering in 1951, presenting
the diploma thesis entitled A clock for the electronic computing machine, prepared
under supervision of Romuald Marczyński.

After graduation, he worked as a junior member of the research staff at the
Mathematical Institute of Polish Academy of Sciences (PAS) (now Institute of
Mathematics of Polish Academy of Sciences (PAS)) until 1957. Between 1957–
1959 he worked at the Technical University of Warsaw, where he took part in de-
signing the first Polish computer. In effect, one of the first computing machines
in Poland was built under his supervision. In 1959, he returned to the Institute of
Mathematics of PAS where he worked as an assistant professor from 1959 to 1963.

He received his doctoral degree in 1958 (at the time called candidate of technical
sciences) at the Institute of Fundamental Technological Research of PAS presenting
the doctoral thesis entitled Application of Graph Theory to the Decoder Synthesis.
The dissertation was supervised by Professor Krystyn Bochenek.

Professor Pawlak received his postdoctoral degree (habilitation, Dr. Sci.) in
Mathematics at the Institute of Mathematics of PAS in 1963 for the dissertation
entitled Organization of Address-less Machines. From 1963 until 1969, he worked
at the Institute of Mathematics of the Warsaw University.

In 1971, he was promoted to an Associate Professor at the Institute of Mathemat-
ics of PAS. Between 1971 and 1979, Professor Pawlak was the Deputy Director for
Science at the Computer Center of PAS, and later, after the institute’s renaming in
1976, of the Institute of Computer Science of PAS. In 1978, he was promoted to a
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(full) Professor in the Institute of Computer Science of PAS in Warsaw. In 1983, he
was elected a corresponding member of PAS, and later, in 1991, he became a full
member of the Polish Academy of Sciences. From 1979 to 1986, he was the direc-
tor of the Institute of Informatics of the Silesian University of Technology. Starting
from 1985, he worked at the Institute of Theoretical and Applied Informatics of PAS
in Gliwice. In 1998, he also worked at the University of Applied Computer Science
and Management in Warsaw. Between 1989 and 1996, he was the director of the
Institute of Computer Science of the Warsaw University of Technology.

In 1950, Professor Pawlak developed the first-generation computer GAM-1 at
the Group of Computing Machines (GAM) at the State Institute of Mathematics in
Warsaw. However, that machine was never used for practical applications. In 1951,
Zdzisław Pawlak came up with a new way to generate random numbers, which
was published in the prestigious Mathematical Tables and Other Aids to Computa-
tion journal (now called Mathematics of Computation), the oldest journal devoted
to computation [17]. It was the first-ever Polish computer science work published
abroad. Later, he suggested a new method for representing numbers in the posi-
tional numerical system with a negative radix −2 (so-called −2 system). Based on
this technique and horizontal microprogramming, with Professor Pawlak’s project
and supervision, a computing machine UMC-1 was built at the Warsaw University
of Technology. Later, Professor Pawlak was studying many aspects of computer
science, including computational linguistics, automata theory, automated theorem
proving and information retrieval. One of the most interesting achievements of that
period was a new formal model of computing machine, different from Turing’s
machine and Rabin-Scott’s finite automata. That model gained a lot of attention
worldwide and was called Pawlak machine in the literature. Another important ac-
complishment was creating the first mathematical model of Crick and Watson’s
DNA encoding. Pawlak also developed an original approach to the information
retrieval. He also proposed a new mathematical approach to the conflict analysis,
which has important applications in psychology, economy and politics.

Professor Pawlak’s most important discovery was his invention of rough set the-
ory in 1982, which gained vast popularity throughout the World. More than 5000
English-language publications about Pawlak’s theory and its applications have been
published so far, including several books.

Many international conferences, mainly in the USA, Canada, China, India, Japan
and Europe, were organized to discuss and develop Professor Pawlak’s work.

At those conferences, he gave lectures, among other subjects, in mathematical
logic, mathematical foundations of computer science, organization of computing
machines, mathematical linguistics and rough set theory. He was frequently invited
as a visiting professor to many universities in the USA, Canada and Europe, includ-
ing the Philosophy Department at Stanford University (1965).

Professor Pawlak received many honours and awards acknowledging his achieve-
ments as one of the main animators of scientific life in Poland. His work was rec-
ognized on the national level by the Polish government, including Polish National
Science Award in 1973, Polish Knight’s Cross of the Order of Polonia Restituta
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in 1984, Polish Mathematical Society Steinhaus Prize for achievements in appli-
cations of Mathematics for 1989 and Polish Officer’s Cross of the Order Polonia
Restituta in 1999.

Professor Pawlak was a member and officer of many scientific organizations, ac-
tive in various periods of time in over 30 governing councils (including being the
president of a number of those). In his native Poland, he was the president of the
National Central Committee for Scientific Titles and Degrees (CKK) between 1975
and 1988 (mathematical and technical sections) 1, member of the Computer Science
Committee of PAS, the Committee of Cooperation of Academies of Sciences of the
Socialist Countries on Computational Technology (1971-1979), the State Commit-
tee for Scientific Research (1994-2000), the Central Committee for Scientific Titles
and Degrees (2000-2006), the Polish Mathematical Society and the Polish Semiotic
Society (vice-president, 1990-1996). He served on several editorial boards of sci-
entific journals, both foreign and national. He served as the deputy editor-in-chief
of the Bulletin of PAS. On his initiative, the journal Fundamenta Informaticae was
created. For many years, he served as the deputy editor-in-chief of Fundamenta
Informaticae. He published over two hundred articles and a number of books. Pro-
fessor Pawlak supervised thirty doctoral dissertations. We quote all these facts to
show the amount of his energy and enthusiasm devoted to promotion of scientific
research, education of young researchers and their supervision.

Professor Pawlak loved to spend time with family in nature surrounding (see
Figure 1.2). So many visitors and friends from all over the world were always very
welcome at the home of Professor Pawlak by his wife Danuta.

Fig. 1.2. Professor Zdzisław Pawlak with wife Danuta and daughter Dorota (picture taken in
1950s)

1 This committee was responsible for the scientific evaluation of candidates applying for D.
Sci. (habilitation) degree and Professor title and recommending the final decision.
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1.3 From the Clock to the Pseudo-random Number Generator

As it was mentioned before, Zdzisław Pawlak got his engineer’s degree in Telecom-
munications and Master of Science degree (in radio engineering) in 1951, presenting
the diploma thesis A clock to the electronic computing machine, supervised by Ro-
muald Marczyński. An interesting story is connected with this work, which was told
by the Professor at the conference dinner in Jabłonna Palace, near Warsaw, during
the First International Conference on Rough Sets and Current Trends in Computing
(RSCTC) in 1998 [42] (see the picture below).

Fig. 1.3. Meeting during the dinner at the First International Conference on Rough Sets and
Current Trends in Computing (RSCTC 1998) in the Jabłonna Palace (near Warsaw): Professor
Zdzisław Pawlak is describing how the clock from his master’s thesis was transformed into
the pseudo-random number generator

It turned out that the clock designed in his master’s thesis, is hardly stable. Then,
Zdzisław Pawlak came into the conclusion that the design may be modified and used
to create a pseudo-random number generator. All that became an inspiration for the
work on flip-flop as a generator of random binary digits, published in 1956 in the
Mathematical Tables and Other Aids to Computation [17].

Many years later, Professor Pawlak visited one of the American institutes, where
he was proudly presented with a fine-quality pseudo-random number generator. He
was also told that it was based on the idea of a Polish scientist. When he asked about
the name of that scientist, he got the reply, Pawlak2.

2 See (video) interview with Professor Pawlak at www.atvn.pl/index sub page.php?
atvn=archiwum/index&title=ARCHIWUM&icm=edit lista&graf=
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Fig. 1.4. Fragment of the work flip-flop as generator of random binary digits

1.4 Engineer and Mathematician

As an engineer, Professor Pawlak treated language of Mathematics as a tool to
formulate his ideas accurately. He was convinced that Computer Science must be
founded on Mathematics. He was one of the pioneers of research direction called
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Foundations of Computer Science and initiated a conference with that name. Un-
doubtedly, his attitude was influenced by years of his work at the Mathematical
Institute of PAS in Warsaw. Professor Pawlak’s own words, delivered at the Poznań
University of Technology, during the ceremony of awarding him a honorary doc-
toral degree, picture that period best. A short fragment of his speech is presented
below [32]:

My first experience of scientific work occurred in 1951 at the State Mathematical Institute
(at present, The Institute of Mathematics of PAS), where, after graduating from the Warsaw
University of Technology, a group of scientists headed by engineer Romuald Marczyński
was building the first Polish computer. This group was called “Mathematical Apparatuses
Group” (GAM). Dealing with a totally new area of science, both in Poland and all over
the World, I found myself in an unusual situation for a fresh graduate of the University
of Technology. At that time, the only existing computer (as we know them now) was lo-
cated at the Cambridge University. We, the builders, had a complete lack of knowledge,
literature and, the most important, skilled ‘masters’ that would be able to lead our group
of inexperienced, young scientists. There was a large group of outstanding, world renown
mathematicians working at the Institute of Mathematics of PAS including Professors Karol
Borsuk, Wacław Sierpiński, Kazimierz Kuratowski, Andrzej Mostowski, Roman Sikorski,
Jerzy Łoś, Stanisław Mazur, Andrzej Grzegorczyk, and others. However, the area of com-
puting machines, which is how computers were then called, was of no interest to them.
Work at the Institute of Mathematics gave me an opportunity to interact with many great
mathematicians, even from the outside of the Institute, for instance Professors Helena Ra-
siowa, Kazimierz Ajdukiewicz, Hugo Steinhaus, Klemens Szaniawski, and others. More-
over, thanks to the work at the Institute, I had the opportunity to meet some of the greatest
mathematicians of the 20th century, including Alfred Tarski, Stanisław Ulam, Samuel Eilen-
berg, Alonzo Church, Leon Henkin, Dana Scott, Laszlo Kalmar, Alfréd Rényi, Rózsa Péter,
Andriej Kołmogorow, Borys Trachtenbrot, Borys Gniedenko, Andriej Markow, Andriej Ti-
chonow, and others. These contacts had no direct impact on my scientific development but
the atmosphere dominating the Institute and daily contacts with eminent scholars indirectly
influenced my personal scientific interests a lot. In the case of dealing with our team’s spe-
cific problems, everybody had to find his own solution. Actually, this had some advantages,
because it left us a significant area of independence, but today, I tend to think that disad-
vantages of that situation overwhelmed its positive sides. It is not the right time to develop
the topic, but taking all that into consideration, that situation had significant effects on my
personal development as a researcher with both advantages and disadvantages.

After a short period of time, the logician Henryk Greniewski became the head of GAM.
He was a polite and kind-hearted man with a great personality. I owe him my first contacts
with scientific issues. He was the first one to organise a seminar on Boolean algebras and
their usage in synthesis of digital systems, which was a mysterious topic for me at the time.
He always had a kind advice for me and payed attention to my problems, not necessarily
connected to science. Without hesitation he played a significant role in my scientific de-
velopment. I organised my first seminar later with my friend Dr Andrzej Ehrenfeucht, an
eminent mathematician and a man of many interests, not only limited to mathematics. Our
meetings were concerned with computers, algorithms and logic, which definitely broadened
both my knowledge and scientific horizons.
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1.5 Computation Models, Rough Sets and Artificial Intelligence

It is natural to divide Professor Pawlak’s scientific work into a number of stages.
The first of these is his work on first Polish digital computer in the 1950s. Dur-
ing this period, Professor Pawlak worked on the organization of digital machines
and the logic of operation of digital systems. Coming up with a new method of
representing numbers in the positional numeral system with a negative radix (-2
system) was a significant achievement of that period. This method was used to im-
plement arithmetic-logic operations in the arithmetic operations unit of an experi-
mental computing machine UMC-1, built under Zdzisław Pawlak’s supervision at
the Warsaw University of Technology. In the 1960s, a significant Computer Science
research was concerned with the logic of digital machines. Automata theory was
evolving especially fast. At the time Professor Pawlak was interested in organization
of address-less machines, which were controlled by a so-called transition function.
Pawlak created a new formal model of an address-less machine, which was differ-
ent from a Turing machine and Rabin-Scott’s finite automata. This proposal created
an international interest and was called the Pawlak machine. At the time Profes-
sor Pawlak investigated computations realized by von Neumann machines and also
alternatives, such as address-less machines.

Getting worldwide interest was another obvious success in the initial stage of
Pawlak’s scientific work. Let us present a few examples.

Professor Pawlak was invited to be a part of an American team, supervised by
Professor Traub from University of Illinois, constructing ILLIAC IV, one of the first
attempts at a massively parallel computer. Traub was familiar with Pawlak’s work
since he served as one of the reviewers of the Pawlak habilitation thesis. Unfortu-
nately, the government of People’s Republic of Poland did not let him travel, refused
to give him a passport and the plan failed.

The idea of the positional numeral system with a negative radix (-2 system) was
rediscovered in the USA, ten years after Pawlak’s work publication. Let us quote
Pawlak’s letter [24]:

I have recently read the above paper (S. Zohar, IEEE Trans. Computers, vol. C-19, Mar.
1970, pp. 222-226) with interest. The idea of negative radix is not new, and has been dealt
with in a series of papers, some of which are noted in the references. We have in Poland
over ten computers built on this principle, which have been working for over ten years. This
information may be of interest to people working on the subject in the U.S.A.

Profesor Pawlak, was one of the few Poles invited to make a plenary presentation
at the Congress of Logic, Methodology and Philosophy of Science in Amsterdam in
1967. The lecture was entitled On the notion of a computer [23].

Professor Pawlak proposed a new class of parenthesis-free languages, being a
generalization of Łukasiewicz’s parenthesis-free notation. These results were in-
cluded in the fundamental work of D. Knuth The Art of Programming.

In the 1970s, Professor Pawlak was interested in the formal models of the DNA.
His formal model of genetic codes [21] was the world’s first mathematical repre-
sentation of the DNA. It was the milestone for further research [13], which helped
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in incorporating the double helix structure in the formal model, leading to the rapid
development of many computation models based on the DNA.

In the sixth chapter of the book Genetic Grammars ([21]), Pawlak introduced a
new type of grammars, generating complex systems from the elementary ones, for
instance creating proteins from amino-acids. He also presented a generalization of
traditional grammars, which is still used in the formal language theory. In the book
[21], Pawlak introduced a planar mosaic construction from elementary mosaics us-
ing production rules for the composition. He also presented a language for linear
representation of such mosaic structures. Pawlak also proposed a two-way approach
to grammars, consisting of formal grammars and constructions called picture gram-
mars, see [45, 43, 44, 13]. Professor Solomon Marcus [13] states that Pawlak’s re-
search in formal grammars and picture grammars was a pioneering work at the time.
Later, the theory of formal grammars was given a full presentation by Arto Salomaa
in 1973. The first attempt at creating a general approach to picture grammars was
made by Alan C. Shaw in 1967. In 1969, an extensive monograph on the topic was
published by Azriel Rosenfeld. Professor Solomon Marcus describes [13] his first
contact with this model (presented by Pawlak in a popular science book [21]) and
the importance of this event for his own research:

41 years ago, Z. Pawlak has published in Polish language a book aimed perhaps as an
introduction to the field of mathematical linguistics (Pawlak 1965). Short time after this
event, he attended an international conference in Bucharest and I met him there. He offered
me a copy of this book. As a matter of fact, he showed me the book and he said that he
is sorry to have it in a language which is not available to me. But I told him that I would
like to have the book and I will manage to follow it at least partly. Happy idea! Besides
some usual introductory notions concerning the mathematical approach to grammars (the
title in Polish: “Gramatyka i matematyka” was clearly “Grammar and mathematics”), a
special chapter called my attention because it was concerned with the grammar of the
genetic code. I was already introduced, at that time, to the works of Roman Jakobson and
of many other authors concerning the analogy between linguistics and molecular genetics.
Pawlak’s approach was mainly presented in symbols, graphs and geometric pictures, while
the few words in Polish were in most cases international words like codons, amino acids,
nucleotides, proteins.

It is interesting to recall the period of the sixties of the past century. After a long period
in which historical linguistics used ideas and metaphors of Darwinian biology, an important
change took place: instead of using biological ideas and metaphors in linguistics, linguistic
ideas and metaphors related to phonemic and morphemic segmentation penetrated the study
of nucleic acids, amino acids and proteins.

To this itinerary of opposite direction in respect to the previous one, Pawlak was adding
the idea of a generative perspective in the study of heredity. In this aim, he proposed a
mechanism operating concomitantly in two directions. On the one hand, in the direction
of formal grammars, on the other hand, in the direction of what was called later picture
grammars.

Let us recall that both formal grammars and picture grammars were at that time at their
very beginning. Formal grammars theory had to wait till the year 1973 for a first satisfactory
rigorous presentation (Salomaa 1973), while picture grammars had to wait until the year
1967 for a first systematic attempt (Shaw 1967) and two more years for the monograph by
Rosenfeld (1969).
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[...] missing structure [a double helix structure of Watson and Crick in the approach by
Pawlak] became the point of departure in Tom Head’s pioneering work on DNA computing
(Head 1987)3.

In the 1970s, Pawlak and his co-workers investigated information retrieval systems
(see [25, 14, 15]). In applications, information systems and query languages were
expected to provide efficient up-to-date information extraction from the constantly
expanding data sets. The formal model of the information system and the language
for information retrieval, developed by Professor Pawlak, made it possible to create
a unified approach to information retrieval and resulted in a broad analysis of the
information retrieval processes’ features [47].

Considering information retrieval, Professor Pawlak focused on the connection
of his approach with the semantic information [26]:

It is worth to think of a more general question, namely: Is, for example, description of data
sets possible only in a given way? What exactly is an information? What are its basic fea-
tures? etc. Let us observe that the notion of information, which we need to achieve the goals
presented in this article, has nothing to do with the notion of information formalized in so
called theory of information created by Shannon in the 1940s. In that theory, the starting
points for describing information refer to sending signals in telecommunication networks.
In the 1930s, the logician and philosopher Rudolf Carnap elaborated on the notion of in-
formation similar to the one we mention in this article. It might be possible to create a new
theory of information based on our experience with the modern computing machines.

[. . .] Almost all problems, which were raised while building and using computing ma-
chines have many different aspects - from the ones connected directly with the applications,
to the ones that go beyond computing machines themselves. This is probably the reason
why computer science - the science describing computing machines and their usage - is so
appealing.

Pawlak’s statement about creating new theory of information proved appealing to
many scientists. Nowadays, many researchers are engaged in the effort to create such
theory. From the first publication on the topic of semantic information [1], the re-
search on the range of problems in semantic information grew immensely, especially
in recent years ([5, 2, 7, 8]). There is a need to develop new methods of modelling
complex, autonomous and adaptive dynamical systems, in which computations are
realized by interactions of their components (information granules). Research on
basic notions such as (interactive) computations intensified recently [9, 11].

The above-mentioned model of an information system was used in a number of
approaches to data processing and mining, as fundamental representation of avail-
able data. Several years ago, the printouts of seminal Pawlak’s paper published in
1981 in Information Systems [27] were distributed among the participants of the
28th ACM SIGMOD/PODS conference in Vancouver, as an important complement
to Codd’s vision of a relational model. This example shows a huge influence of
Professor Pawlak’s ideas on very diverse areas of science and industry, including in
particular the mainstream research on database systems and information retrieval.

The last period of Zdzisław Pawlak’s scientific work began in the 1980s and con-
tinued until he passed away in 2006. Fundamental works connected with rough set

3 See [10].
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theory are the results of that period [28, 30, 35, 36, 37]. That theory is, undoubtedly,
the most important achievement of Professor Pawlak.

Fig. 1.5. Keynote talk of Professor Pawlak during the RSKD 1993 conference in Banff

Roman Słowiński stated in his laudation for Zdzisław Pawlak’s honorary degree in
Poznań University of Technology [47]:

This theory helps to find answers to many basic questions in mathematics, computer sci-
ence, artificial intelligence, decision theory, conflict theory, machine learning, knowledge
discovery and control theory. This theory is founded on an observation that knowledge
about objects from a real or abstract world is granular. Indeed, objects described by the
same information are indiscernible and create elementary sets, which are knowledge gran-
ules for that world. When willing to express a concept, referring to a given set of objects,
in terms of knowledge about the world the objects come from, one encounters a situation in
which in general, the concept is not expressible exactly by the available granules; in other
words, the union of elementary sets having non-empty intersection with our set, does not
coincide with the set. This set - a concept - may, however, be expressed roughly, using sets
called lower and upper approximations - lower approximation containing elementary sets
(granules) which are wholly included in our set, and upper approximation containing also
those sets which are partly included in our set. The difference between those approximations
is called a boundary of a set, and contains ambiguous objects, for which one cannot claim
with certainty, whether they do or do not belong to our set. Differentiating between definite
knowledge represented by lower approximation and approximate knowledge represented by
the boundary of a set has a fundamental impact on the deduction process. Rough set theory
complements fuzzy set theory and soft computing, with which it now delivers the best tools
for reasoning about data bearing different types of “imperfections”, such as ambiguity,
inaccuracy, inconsistency, incompleteness, and uncertainty.

Since Pawlak’s introduction [28] of rough sets in 1982, more than 5000 English-
language publications on this topic appeared in print [56] and over 5000 Chinese-
language publications [53] and books (Figure 1.7).
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Fig. 1.6. Professor Zdzisław Pawlak receiving Honorary Doctorate from Poznań University
of Technology (2002) - Roman Słowiński (standing on the left) delivering his laudation for
Zdzisław Pawlak’s honorary degree in Poznań University of Technology

Fig. 1.7. Books on rough sets in Chinese [53]

Those publications include both specializations and extensions of rough set the-
ory. Their goal is to solve new scientific problems, examining connections between
rough set theory and other approaches to uncertainty and applying the theory in prac-
tice. A number of books devoted to rough sets theory were published worldwide.

Numerous conferences, for example, in China, India, Japan, Canada, USA and in
Europe were organized. For example, in 2011, the Thirteenth International Confer-
ence on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC
2011) was organized in Moscow, Russia and the 6th International Conference on
Rough Sets and Knowledge Technology (RSKT 2011) was held in Banff, Canada.
Many international conferences added rough sets to their lists of principal topics.
Rough set theory has an immense following in China. The First Chinese Workshop



1 Professor Zdzisław Pawlak (1926-2006) 13

on Rough Sets and Soft Computing (CRSSC2001) was organized in May 2001, in
Chongqing (see Figure 1.8). Professor Pawlak attended the workshop and gave a
keynote talk. Guoyin Wang from Chongqing is reporting that this talk was very
important for the development of rough sets in China.

Fig. 1.8. Professor Zdzisław Pawlak (the first row in the middle) with participants of the
First Chinese Workshop on Rough Sets and Soft Computing (CRSSC 2001), May 2001,
Chongqing

The tenth Chinese conference devoted to rough set theory took place in
Chongqing in 2010. In 2010, another international conference named Rough Sets
in Knowledge Technology was organised in Beijing, while in Zhejiang, a succes-
sive international workshop called Rough Set Theory took place. The 2012 Joint
Rough Set Symposium (JRS 2012), that is, a joint conference of the Eighth Interna-
tional Conference on Rough Sets and Current Trends in Computing (RSCTC 2012)
and the Seventh International Conference on Rough Sets and Knowledge Technol-
ogy (RSKT 2012) will be held in Southwest Jiaotong University, Chengdu, China,
17-20 August 20124.

Figure 1.9 presents places in China where conferences on rough sets took place.
In his talk during the session devoted to the memory of Professor Pawlak at

Rough Sets and Emerging Intelligent Systems Paradigms (RSEISP 2007) confer-
ence in 2007, Guoyin Wang stated:

Professor Pawlak will eternally remain in the memory of worldwide scientific community
thanks to his research achievements, which are his permanent contribution for the World
Science. He had a significant impact on building friendship between Polish and Chinese
scientists.

4 http://sist.swjtu.edu.cn/jrs2012/

http://sist.swjtu.edu.cn/jrs2012/
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Fig. 1.9. Places in China where conferences on rough set theory were organized [53]

For more information about the research on rough sets in China the reader is referred
to [52].

Research concerning rough sets is also significantly growing in India, recently
[12]. The year 2009 was called the Rough Set Year in India. There are also a lot
of teams working on rough set theory and its applications at many university cen-
tres in Poland5. Professor Pawlak’s book [30] about rough sets was, so far, quoted
above 8500 times in Google Scholar. The number of valuable theoretical publica-
tions and applications basing on rough sets is constantly growing, especially when
combined with other approaches to reasoning based on imperfect (often incomplete)
information.

Professor Pawlak is also the author of an approach to conflict analysis [37, 29].
Andrzej Skowron is reporting comments of Professor Pawlak during a meeting in
2006:

I remember that during a discussion in 2006, [Professor Pawlak] was enjoying the fact that
his approach to conflict analysis and conflict solving was chosen as a basis for a large
project concerning negotiations between shipyards in Hong Kong.

Out of many awards given to Professor Pawlak, he especially treasured the Hugo
Steinhaus Prize awarded to him by the Polish Mathematical Society for his work
on applications of mathematics and the honorary doctoral degree of the Poznań
University of Technology.

5 See http://rsds.univ.rzeszow.pl/

http://rsds.univ.rzeszow.pl/
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In 1996, he received the Lotfi A. Zadeh Best Paper Award. Here is a part of
laudation at the award ceremony [55]:

Zdzisław Pawlak, a professor and research scientist at the Institute of Theoretical and Ap-
plied Informatics in the Polish Academy of Sciences, has won the 1996 Lotfi A. Zadeh Best
Paper Award in the scientific field of soft computing for a paper entitled “On Rough Set
Theory”.

[...] The award will be presented during the ACM Third Joint Conference on Information
Sciences to be held March 2-5, 1997, at the Sheraton Imperial Hotel and Convention Center
in Research Triangle Park, N.C..

1.6 Professor Pawlak’s Influence on the Development of
Computer Science Community

In this section, we will present a number of testimonies of scientists discussing the
influence of Pawlak on the development of Computer Science both in his native
Poland and in other countries.

Professor Pawlak inspired many computer scientists and mathematicians both in
Poland and throughout the world. At present, his students and collaborators head
research teams in many countries, including, besides of his native Poland, United
States, Canada, Japan, Norway, Sweden and other places. It would be hardly pos-
sible to find a computer science institution in his native Poland without encounter-
ing faculty influenced by Pawlak. Some research centres, for instance in Warsaw,
Poznań, Gdańsk, Katowice, Wrocław and Rzeszów were formed following his ini-
tiative. His scientific achievements continue to inspire his many students who are
still working there and the next generations of their students. Professor Pawlak had
an unusual gift to inspire his interlocutors. As a consequence many individuals were
profoundly influenced by his interests and enthusiasm towards scientific research
right from the first contact with him [51].

Professor Grzegorz Rozenberg, the Director of the Leiden Center for Natural
Computing has written in his letter to the participants of the International Confer-
ence on Rough Sets and Intelligent Systems Paradigms (RSEISP 2007, Warsaw,
Poland, June 28-30), dedicated to the memory of Professor Pawlak:

I first met Zdzisław since 1963 - he was my mentor, then we became friends, and then family
friends: Zdzisław and his wife Danuta became also good friends of my wife and of my
parents.

Zdzisław was an unusually gifted scientist whose work is characterized by two main fea-
tures: genuine originality and elegant simplicity. He had a gift of getting to the real essence,
the root, of a research problem. Then he was able to formulate a model that was capturing
this root in an elegant and transparent way. His real research interests were always on the
boundary of applications and theory: he formulated theoretical models of phenomena that
were highly relevant for applications. This reflected well his engineering background. His
research was often pioneering - a good example is his model of the structure and function-
ality of DNA, which he formulated already in 1965.
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Fig. 1.10. Professors Zdzisław Pawlak and Grzegorz Rozenberg in front of Mathematical
Institute of Polish Academy of Sciences

Zdzisław was an unusually modest scientist - this modesty was totally disproportional
to his scientific achievements. He was always amazed that his ideas had such a broad and
profound influence. Even when he was describing to me the state-of-the-art of rough set
theory, he preferred to talk about the work of others. Usually during such discussions it took
me some time to figure out that many of the nice ideas really originated with him. He was
a great scientist, certainly the most influential Polish computer scientist. The combination
of originality, creativity, and passion for research on the one hand and such a disarming
modesty on the other, made him really a role model for scientists.

[...] Zdzisław was a great scientist, but he was also a wonderful person. He had a great
sense of humor and a very contiguous laugh - our sessions ended often in attacks of hiccups
invoked by telling jokes and writing funny rhymes and poetry.

[...] The essence of what I want to say is that he was a great scientist and a wonder-
ful human being of an exceptional integrity. I was really privileged to have him as a close
friend. I surely miss him, I miss our phone conversations, and I often think about him. I
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know that many of his friends will remember him for a long time. As a scientist he will be
remembered for a very long time as there is no doubt that many of his scientific ideas have
a great future.

Victor Marek (University of Kentucky, Lexington, KY) has written in his letter to the
participants of the International Conference on Rough Sets and Intelligent Systems
Paradigms (RSEISP 2007, Warsaw, Poland, June 28-30), dedicated to the memory
of Professor Pawlak:

Fig. 1.11. Professor Zdzisław Pawlak and Victor Marek in Beskidy Mountains during the
Workshop on Information Retrieval, 1974

The problem of finding the relevant information is one of the most urgent tasks of Computer
Science. Zdzisław was one of the giants who created the theory that underlies the digital
revolution. Rough Sets is one of the leading paradigms for thinking about the information,
as it is provided to us at the global village through the World-Wide Web.

Sankar K. Pal has written in his letter:

I first came to know about the theory of Rough Sets when I was working at the Software Tech-
nology Branch, Information Technology Division, NASA Johnson Space Center, Houston,
TX, USA during 1990-92 and 1994 as a NAS-NRC Senior Research Associate. I attended
some seminars on applications of rough sets in knowledge encoding in expert systems. I
also had an opportunity to take part in discussions of Rough Sets by some of the university
researchers who worked in our lab as summer research fellows with my advisor Dr. Robert
N. Lea.

As an applied scientist working there at NASA in neuro-fuzzy computing, machine intel-
ligence and genetic algorithms, I got motivated to work on this theory because of its major
characteristics like uncertainty analysis, computation with granules and dimensionality re-
duction. After returning to my Indian Statistical Institute at Calcutta, I took a project from
CSIR (Council of Scientific and Industrial Research, India) in 1995 and hired Dr. Mohua
Banerjee who had just submitted her PhD thesis at Calcutta University. We started working
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primarily on knowledge encoding problems in neural networks for knowledge based con-
nectionist system design, and rough-fuzzy integration for obtaining a paradigm for better
uncertainty analysis.

Subsequently, I got involved in an INDO-POLISH collaborative project (funded by DST,
India and KBN, Poland) and visited many times Professor Andrzej Skowron and his team
at the University of Warsaw. We worked together for different special issues of journals,
books, and research papers mainly on granular computing, computing with words and in
designing hybrid systems involving rough sets with other soft computing tools. During each
of my visits, I met Professor Zdzisław Pawlak, the father of Rough Sets, a very humble and
kind man, either at the office of Professor Skowron, or at his office at the Warsaw University
of Technology. He attended my talks with appreciation, and we discussed various research
issues. I visited his house a couple of times and cherished his paintings and other art. He
also visited my Institute once in early 2000 in connection with attending a conference at
Calcutta.

Fig. 1.12. In office of Andrzej Skowron (2000); from the left, Professor Zdzisław Pawlak,
Marcin Szczuka, Sankar K. Pal

Professor Pawlak is no more, but with his encouragement and blessing we could form a
large group in the Machine Intelligence Unit, and establish the Center for Soft Computing
Research at ISI, Kolkata, to work with this theory. Currently, the research topics include:
granular computing, image processing, data mining, case based reasoning and natural com-
puting involving rough sets either in isolation or in integration with other classical or mod-
ern soft computing tools along with their applications in bioinformatics, web mining and
video surveillance. Our collaborators in the Hong Kong Poly University and the University
of Naples, Italy, are also working in some of these areas. It may be mentioned here that
the original definition of Soft Computing of Lotfi Zadeh had four components: Fuzzy Logic,
Neuro-Computing, Genetic Algorithms, and Probabilistic Reasoning. Extension of this defini-
tion by introducing Rough Sets as Fifth Constituent is the outcome of the aforesaid research
contributions of our group. This augmentation enhanced significantly the basic computa-
tional intelligence characteristics of soft computing and hence the foundation of the idea and
design of high MIQ (Machine IQ) systems.

Recently, we have also formed an Indian Society for Rough Sets to promote rough set
research activities in India.
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Fig. 1.13. Dinner during the Rough Set Theory and Granular Computing (RSTGC 2001),
Matsue, Shimane, Japan, 20-22 May 2001, (from the left) Sankar K. Pal, Professor Zdzisław
Pawlak, Andrzej Skowron, Jerzy Grzymała-Busse

While we miss the great man, we love to pay our homage to his memory through the work.

Professor Janusz Sosnowski, the head of the Institute of Computer Science at the
Warsaw University of Technology, wrote in his memoir [51]:

After graduation, [Professor Pawlak] worked as a junior member at the Institute of Mathe-
matics of PAS until 1957. In this period, he took part in building the first Polish experimental
“mathematical machine” (as computers were named then) GAM-1 [...]. Between 1957 and
1959, he worked at the Warsaw University of Technology, at the Chair and the Section of
Telecommunications and Radio Broadcasting (KKTR), which was a very active research and
construction projects centre, concerned with digital electronics (called impulse technology
then) and “computing machines” [...]. In 1956, a computing machine called PARK (designed
by Gerard Kudelski) was built there. Based on the experience gathered during the construc-
tion of reliable, complex electronic devices in the 1950s, the PARK group attempted to build
its own “mathematical machine.” Professor Pawlak played a crucial role in the project. Un-
der his supervision and according to his design, an experimental computing machine was
built at the Warsaw University of Technology. Its innovation consisted of using the positional
numeral system with a negative radix (-2) and the concept of microinstruction. Based on
Professor Pawlak’s ideas, an Electronic Digital Machine (EMC) and, later (after Pawlak’s
transfer to the Mathematical Institute of PAS), a prototype (1960) and five machines of the
test series of Universal Digital Machine (UMC-1) were built. The machine [UMC-1] was
microprogrammed horizontally, had a drum memory and was realised in the tube technology,
based on dynamic digital systems (using Havens’ delay lines).

The experience gathered in the UMC-1 project resulted in creating successive generations
of digital machines (UMC-10, based on transistor technology). Both, the UMC-10 prototype
and the test series of UMC-10, built by the engineers of the Chair of Mathematical Machines
Building turned out to be successful and reliable devices. Polish government decided to pro-
duce those machines in ELWRO factory (Wrocław, 1962-1964). UMC-10 was the first modern
computer produced in Poland. 25 copies of UMC-10 were built and deployed.

Although the period of Professor’s work [on UMC] between 1957 and 1959 may appear
short, it was of crucial importance for the Warsaw University of Technology, the Faculty
and especially for the department which was later transformed into the Institute of Com-
puter Science (in 1975.) It was the beginning of digital and electronic computing techniques
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Fig. 1.14. Universal Digital Machine UMC-1

development (the contemporary name of Computer Science). Research and development work
[done then] resulted in the long-term development plan of the Department. It also contributed
to the fact that the Department was one of the first few centres of Computer Science. More-
over, the Department had significant achievements in educating computer scientists. The first
M.Sc students specialising in mathematical machines [i.e. computer engineering] graduated
in 1961.

After his transfer from the Department to the Institute of Mathematics, Pawlak’s involve-
ment with the personnel of the Department continued. He organised a seminar devoted to
problems of contemporary computer science and digital electronics (researchers from the
Warsaw University of Technology were also involved in the seminar). Moreover, Professor
taught students specialising in building of mathematical machines and worked with many
graduates from the Department and the Faculty of Electronic Engineering.

In the 1980s, the political and economical situation in Poland resulted in emigration of
many important Institute researchers. Most of them made successful scientific careers in well-
known foreign research centres. The result of this exodus was weakening of the scientific staff,
especially among researchers with doctoral and advanced degrees. In 1988, the Institute em-
ployed only three persons having final (habilitation) degrees. To solve this crisis, we asked
Professor Pawlak to come back to the Institute as its head. While being aware of the difficul-
ties that lie ahead, Professor Pawlak accepted the invitation.

For many researchers, Professor Pawlak’s return was the additional motivation to work
even harder. His experience, authority and international contacts were also very helpful.
Pawlak’s work allowed to preserve the individuality of the Institute and to define new ways of
development. At the time of Professor Pawlak return, the Institute consisted only of the De-
partment of Computer Graphics and six laboratories, responsible for teaching and research.
During the Professor’s second tenure, the structure of the Institute was changed. Starting in
1994, besides of the Department of Computer Graphics, the Institute created the Department
of Software and Computer Architecture and the Department of Information Systems. This
decision was crucial for further Institute’s development [...].
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Based on his knowledge, academic position and authority, Professor Pawlak introduced
a new, modern subject, based on a branch of Artificial Intelligence, to the Institute. That was
the area of reasoning from uncertain or inaccurate data.

After his retirement in 1996, Professor Pawlak continued to be involved in Institute’s
matters to the end of his days. He visited the head’s office on a regular basis and worked with
the researchers of the Institute of Computer Science.

[...] Professor Pawlak had a very important role in integrating the scientific communities
of mathematicians and technical scientists. He significantly broadened the research interests
of many workers of the Institute. In 1998, the Faculty of Electronics and Information Tech-
nology, and the Institute of Computer Science helped to organise an international conference
in Warsaw, devoted to rough sets (the 1st International Conference on Rough Sets and Cur-
rent Trends in Computing (RSCTC)). It was an important scientific event, bringing together
experts from many branches of science.

[...] Professor Pawlak was concerned with the pace of computer science development at
our Technical University and in the country. He compared it with situation at the similar
faculties at the leading foreign universities. He tried to make aware the scientific community
of Warsaw University of Technology of the situation.

Professor Piotr Dembiński, director of the Institute of Computer Science of PAS in
Warsaw over many years, writes in his memoirs [51]:

[...] As everybody old enough remembers, the beginning of the 1970s and its subsequent
years were not the best time for the development of our native computer technology. In that
situation, Professor Pawlak decided that it is necessary to focus on the areas in which we
were able to succeed worldwide rather than in our country alone. Theoretical (mathemati-
cal) foundations of computer science appeared to be such a branch. We – researchers of the
Computer Centre – and other people gathered around him were prepared and educated to
research this area. Furthermore, the mathematical tools and language were natural to this
kind of scientific work.

The choice appeared right. Mathematical Foundations of Computer Science began to
shape the scientific profile of the Computer Centre, which was renamed the Institute of
Computer Science of PAS in 1976. It is possible to say that Professor Pawlak was an actual
creator of the Institute and the main leader of the research conducted there.

To present the results of the Institute’s work worldwide, Professor Pawlak motivated
us to organise a conference series concerned with the mathematical foundations of com-
puter science in 1972 (Mathematical Foundations of Computer Science - MFCS), which
took place annually in Poland and Czechoslovakia (alternating the country each year) and,
from 1989, in Poland, Czech Republic and Slovakia. MFCS was the only and unique scien-
tific event of that time, where scientists from both sides of the Iron Curtain gathered. The
Conference has not lost its prestige so far.

Professor Pawlak and Professor Rasiowa were also the initiators of establishing a sci-
entific journal called Fundamenta Informaticae, which quickly became renowned in the
worldwide scientific community and, as a result, got a high rated position on the ISI Master
Journal List.

Alicja Wakulicz-Deja, the president of the Institute of Computer Science at the Uni-
versity of Silesia, recalls Professor [51]:

Professor Zdzisław Pawlak was one of the initiators of creation of the Institute of Computer
Science at the University of Silesia and the director of the Institute between 1979 and 1986.
He was our co-worker and mentor of the Institute’s staff. During his work at the Institute,
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he conducted seminars and spent much time on face-to-face scientific discussions with the
researchers of the institute.

He always looked for new scientific problems - his ideas inspired his young co-workers.
We owe him the first significant publications of the Institute of Computer Science and pre-
sentations of our research at many national and international conferences.

Professor Pawlak was a very demanding as a scientist and, while often using quick wit
and jokes, he created an atmosphere of great respect for his knowledge and intelligence.

Professor Pawlak left the Institute in 1986 because of his personal and health problems.
However, he was always interested in research and work of our Institute. He repeatedly
asked me to visit him in Warsaw and report on the progress of the Institute. He was pleased
with our achievements and advised how to solve our problems. In particular, he said that “if
anybody is able to replace us, we should start researching something new.” He also thought
that primitive and unfriendly people should be avoided because “if you step in the mud, it
will leave a stain on your shoes”.

[...] I met Professor Zdzisław Pawlak during my last year of studies at the Faculty of
Electronic Engineering (specialization - Digital Machines) in Technical University of War-
saw, when he proposed topics for master theses. I chose the topic called “The Graph Gram-
mars and Digital Mathematical Machines”. At that time, Professor Pawlak was a docent
(Associate Professor) at the Institute of Mathematical Machines, where he took part in
building an arithmetic logic unit for the ZAM 41 machine, which was implemented with
Pawlak’s system (negative 2 base radix).

Thus my collaboration with Professor Pawlak began from the period of his work, which
may be called the phase of “Pawlak Machine” then continuing through the phase of the
machine specified with the instruction set (my doctoral thesis) to the information systems
(postdoctoral degree) and decision support systems (application of rough set theory).

This collaboration taught me to perceive computer science as a fully mature branch
of science, the ultimate goal of Professor Pawlak’s. He also thought us that one must not
develop a theory which has no applications and frequently told us to search for applications
of theories we developed.

Professor Jerzy Dembczyński, Rector of the Poznań University of Technology,
wrote in the laudation opening the ceremony of awarding Professor Pawlak a hon-
orary doctorate degree [3]:

Fig. 1.15. The ceremony of awarding Professor Zdzisław Pawlak honorary doctorate degree:
Jerzy Dembczyński, Rector of the Poznań University is giving flowers to Professor Pawlak
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[...] the time has come to thank one of the pioneers of Polish and international computer sci-
ence, the hero of this ceremony, much-esteemed laureate, Professor Zdzisław I. Pawlak. His
contributions to computer science are respected throughout the world. He was instrumental
in creating the first Polish digital machine. He is also the first Pole whose scientific work
in computer science was published in a prestigious western scientific journal. Professor
Pawlak presented the first mathematical model of the DNA, while the laureate’s adress-less
machine model earned him great respect throughout scientific community. The abundance
of his scientific achievements is still growing; we owe him fundamental work on theory of
rough sets and granular computing.

[...] The collaboration of Professor Zdzisław I. Pawlak with the Institute of Automation
and, later, the Institute of Computer Science at the Poznań University of Technology started
in the 1970s and still continues.

Let us quote Roman Słowiński’s words [47]:

Looking at him from our, Poznań, perspective, we are grateful to Professor Pawlak for
introducing us to rough set theory at its very beginning and for letting us to perform its
first practical verifications - it was the application of rough set theory to decision support in
medicine. In 1992, Poznań was honoured to organise the first seminar (see Figure 1.16) ded-
icated to this subject. This seminar began a series of international conferences in Canada,
USA, Japan, and Poland. An international scientific association was also founded – Inter-
national Rough Set Society.

Fig. 1.16. Participants of the first international seminar on rough sets in Kiekrz near Poznań,
1992; (lying from the left) Professor Zdzisław Pawlak and Barbara Wołyńska, (crouch-
ing from the left) Zdzisław Piasta, Cecylia Rauszer, Jerzy W. Grzymała-Busse, Jerzy Ste-
fanowski, Andrzej Skowron, Wojciech Ziarko, Piotr Sapiecha, Leszek Płonka, (standing
from the left) Ramin Yasdi, Maciej Kandulski, Mohua Banerjee, Jacek Marciniec, Jerzy
Krysiński, Janusz Szymaś, T.Y. Lin, Maciej Modrzejewski, El Sanossy Abobaker Sharif,
Lech Polkowski, Ewa Orłowska, Jarosław Stepaniuk, Roman Słowiński, Krzysztof Słowiński
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[...] Ladies and gentlemen, we have an honour to reward an eminent scientist,
with great achievements for Polish and international computer science development,
tireless seeker of answers to difficult and fundamental questions in science, man of im-
peccable reputation, and Poznań University of Technology’s friend of a long standing.

While being an acknowleded authority in scientific research, Professor Pawlak is
a humble and kind-hearted man. In contacts with young researchers, he transmits his
enthusiasm and friendly encouragement. One can also enjoy talking with him on other
topics than computer science - he is a connoisseur of photography, and, moreover,
since a couple of years he is painting pictures, which show his extraordinary sensitivity
to a subtle play of lights in a landscape6 .

Fig. 1.17. “Winter” painted by Zdzisław Pawlak

Professor Mihir Kr. Chakraborty in his letter “Remembering Professor Pawlak”
writes:

I remember my first meeting with professor Z. Pawlak at his drawing room in Warsaw on
a chilly winter. We had a long discussion full of excitement on uncertainty, vagueness and
his own theory of rough sets. Professor offered me a fantastic dinner. And in the end, I
expressed my willingness to work on his theory provided I got a young mind to collabo-
rate. Fortunately, within a short period Mohua (Banerjee), a very talented fresh graduate of
the department of Pure mathematics, University of Calcutta approached me to supervise her
Ph.D. work. I asked her to read some papers on rough set theory and to see if she liked them.
Fortunately again, Mohua took up the subject with great enthusiasm and completed her dis-
sertation. She was the first researcher in this field in India. Since that time we have been
working together. Jointly we wrote a paper with the title “Pawlak’s landscaping with rough
sets” – reflecting that Pawlak was a painter who used to paint with rough brush-strokes. We
are trying to popularize the theory in India and feel that some amount of success has been
achieved. Mohua also was very close to Professor Pawlak. When we received the news of
his demise we had been greatly shocked and sent a few lines to Professor Andrzej Skowron
as a tribute to Professor Pawlak and as an expression of our deepest respect to his memory,

6 See Figure 1.17.
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I would like to present those lines once again.

Good bye Professor Pawlak

What had been inevitable has happened.
We had been silently apprehending this last moment.

We cherish all the nice memories of every bit of our togetherness
the evenings, nights, working mornings, cosy corners, the lody
riversides, long drives, smiles, quarrels, Warsaw, Paris, Banff
the Niagra, Calcutta

We wished to meet you in pains. We could not

Now we shall paint you on our heart as you painted the nature on canvas
We could roughly walk along the beautiful path you have created as a mathematical-artist
We hope to go on further

Our regards, tears and best wishes for your steps into the unknown

Good bye Papa Pawlak.

Fig. 1.18. Visit of Mohua Banerjee in Warsaw 1992, (from the left) Professor Zdzisław
Pawlak, Mohua Banerjee and Janusz Kacprzyk

Fig. 1.19. During International Conference on Fuzzy Systems (AFSS 2002), Calcutta, India,
3-6 February 2002; Professor Zdzisław Pawlak with parents of Mohua Benerjee and Mihir
Kr. Chakraborty (on the left)
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Shusaku Tsumoto in his letter “Encounter with Professor Pawlak” writes:

Fig. 1.20. RSFDGrC 1999, Yamaguchi, Japan; (from the right) Professor Pawlak, Shusaku
Tsumoto with wife and Ning Zhong

My Research Concern from 1986 to 1988
I was involved in development of RHINOS, and interested in characterization of medical

reasoning when I interviewed the domain experts for knowledge acquisition. On the other
hand, development of electronic patient records was ongoing, and I forsaw that healthcare
records will be used as a dataset and automated acquisition of knowledge base would be an
important topic in medical informatics.

Residents from 1989 to 1991
After I was graduated from Osaka University, School of Medicine, I worked for Chiba

University Hospital as a resident of Neurology from 1989 to Sep 1990, and moved to Emer-
gency Department of Matsudo Municipal Hospital for one year. From Oct 1991, I worked
as a research associate of division of medical informatics, and was involved in development
of hospital information systems.

Encounter with Pawlak’s book: 1991
When I worked for emergency department of Matsudo municipal hospital, every week

I visited a large bookstore called Yaesu Book Center in front of Tokyo Station. I found
Pawlak’s book on one Saturday afternoon. I looked it through and found it interesting.
However, I was looking for other book on AI and I hesitated buying it. I repeated taking it
in hand and putting back into the bookshelf. Since I did not find any interesting book that
day, I bought his book. At that time, I did not notice that reasoning of our expert system
corresponds to rough sets and I put Pawlak’s book on the desk, not the bookshelf.
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Encounter with Rough Sets: 1992 to 1993.
I read his book during Xmas in 1992 in order to give some subject to the seminar in

Tokyo Medical and Dental University. In 1993 when I moved to this university as an as-
sociate professor, I had found that the core ideas have correspondence to the reasoning of
our expert system (RHINOS). That is, exclusive rules and inclusive rules are corresponding
to the rules obtained from upper and lower approximation of a given concept. I started my
study on rough sets since then.

Workshop in Banff: 1993.
I found a name “RSKD2003” (Rough Sets and Knowledge Discovery) in IEEE Expert

and I sent an email to Professor Ziarko. Although the deadline had passed, he encouraged
me to submit my papers. I presented my idea in RSKD2003, which was a very nice workshop
and I met Pawlak’s family: many important persons such as Professors Pawlak, Skowron,
Słowiński, Ziarko, Cercone, Lin, Yao and Hu. This was the starting point of my research on
rough sets and data mining.

Meeting with Professor Pawlak
I attended Pawlak’s plenary talk on conflict analysis, which can be viewed as formal

analysis on asymmetric relation [31, 34]. This was the most impressive talk in this work-
shop: Professor Pawlak was very strong, energetic and research-minded. This is the moment
when I had decided to work for rough sets.

Here is a recollection of Wojciech Ziarko about Professor Pawlak visits in Regina:

Professor Zdzisław Pawlak visited Regina several times, about five or six times, in 1980’s,
early 1990’s and early 2000 . I find it difficult to determine precise dates and lengths of his
stay at this time since all my office documents are temporarily in storage and not acces-
sible. Prior to my arrival to Regina in 1982, during my teaching contract in Nigeria, we
maintained regular contact by letters. Relatively soon after starting my position at the Uni-
versity of Regina, I invited Proessor Pawlak to officially visit our University. It was 1983 or
1984. During this first visit, Professor Pawlak stayed in the city’s oldest hotel (considered
the most prestigious) called Hotel Saskatchewan. I remember, first morning after Professor
Pawlak’s arrival, I went to the hotel to pick him up. I met him in the lobby and found him
very amused. It turned out that few minutes ago he met in the hotel lobby the editor from
Poland of his most recent book, whom he met a day or two ago in Warsaw!

For the first visit, Professor Pawlak brought with him a bunch of manuscripts about his new
research. The manuscripts were about set approximations, which he called rough sets. He
made a seminar presentation about his research, which was very well received, despite the
fact that probably many people in the audience did not quite grasp the basic ideas at that
time, me included. It took us many discussions and arguments between three of us, that
is, Professor Pawlak, Dr. Michael Wang and myself before things clarified. This was the
beginnings of the rough set research at the University of Regina.

After Professor Pawlak left, Michael Wong and myself caught the “rough set bug” and
worked together on this new exciting topic, often arguing noisily on corridors. We were, in
particular, interested in extensions of the basic theory and its probabilistic aspects. During
his next visit to Regina in late 1980’s, Professor Pawlak joined our discussions and was
very active participant. Some of the results of the discussions are summarized in our joint
article [54].
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The longest visit of Professor Pawlak to Regina took place also in late 1980’s or early
1990’s. Professor Pawlak taught a graduate-level class about rough sets at our University,
which attracted large number of students. He received very good reviews after this class,
which inspired some well-known researchers today, such as Dr. Y. Yao, to focus on this area.
He also offered an industrial course on rough sets to the employees of Westbridge Corpo-
ration, the largest IT company in Saskatchewan at that time. Professor Pawlak spent about
six months in Regina during that stay. He lived in our house, which gave us plenty of op-
portunities to discuss research, and also to get to know each other well. Professor Pawlak’s
friendly and brilliant personality was a magnet to our friends and our kids alike, who treated
him as second dad. It was also difficult time for Professor Pawlak since his grandson was
born when he was here and by necessity he was separated from him for many months. All
members of my family have very fond memories of Professor Pawlak’s time with us.

Other visits to Regina were relatively brief, connected with two rough set conferences in
Banff, in 1993 and 2000. Due to his poor health, Professor Pawlak was not able to attend
the rough conference in Regina, in 2005. However, he was in the mind of every participant
as he is remembered by all of us who had the privilege of knowing him personally and
working with him.

Dr Urszula Stańczyk, in her memoirs about Professor Adam Mrózek from the Insti-
tute of Theoretical and Applied Informatics of PAS and the Silesian University of
Technology in Gliwice, writes [49]:

In the beginning of the 1980s, Professor Mrózek contacted Professor Zdzisław Pawlak, the
creator of rough set theory. Elements of this theory turned out very quickly to be effective
in analysis and minimization of arrays describing behaviour of operator-experts. Meeting
Professor Pawlak had a crucial impact on A. Mrózek’s future research. Applying rough
set theory, in the last years of Professor Mrózek’s life, resulted in introducing the idea of
so called rough controller and broadening the fields of theory’s application to economical
processes and medical diagnosis.

The last example of Professor Pawlak’s inspiration outlined in this section, reported
by Dominik Ślȩzak, relates to development of a commercial database system avail-
able worldwide since 2005 (with its open source version launched in 20087). The
idea behind its efficiency lies in data granulation and adoption of principles of rough
set approximations to dynamically identify only those granules which are truly re-
quired to resolve the incoming SQL statements. Let us refer to two fragments de-
scribing this technology, taken from the blog of one of the most influential database
analysts8. The first fragment was published in 2008:

[...] The “rough set” part of Infobright’s story is a lot of mumbo-jumbo [...]

The second fragment comes in 2011:

[...] Rough Query estimates query results [...] To me, Rough Query is the most impressive
part of the Infobright 4.0 announcement. [...]

7 www.infobright.org
8 www.dbms2.com

www.infobright.org
www.dbms2.com
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In our opinion, the two above excerpts illustrate that it always takes time for indus-
try to accept new ideas. Moreover, only those ideas which are simple and power-
ful enough can survive. It cannot be a coincidence that so many ideas of Zdzisław
Pawlak are nowadays present in so many areas of research and applications.

We close this section with some pictures from the rough set meetings.

Fig. 1.21. San Jose 1994: International Workshop on Rough Sets and Soft Computing (RSSC
1994), San Jose, CA, USA, 10-12 November 1994; from the left: Krzysztof Słowiński,
Lech Polkowski, Andrzej Skowron, Robert Golan, Marzena Kryszkiewicz, Jerzy Grzymała-
Busse, Shusaku Tsumoto, Zdzisław Piasta, Krzysztof Krawiec, Wojciech Ziarko, Roman
Słowiński, Professor Zdzisaw Pawlak

Fig. 1.22. Joint Conference on Information Science, Wrightsville Beach, 1995; from the right:
Professor Zdzisław Pawlak, Marzena Kryszkiewicz, Hung Son Nguyen, Jerzy Grzymała-
Busse, Wojciech Ziarko, Anna Buczak, Zbigniew Raś
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Fig. 1.23. Tokyo 1996: Fourth International Workshop on Rough Sets, Fuzzy Sets and Ma-
chine Discovery (RSFD 1996), Tokyo, Nov. 6-8, 1996; from the left: Jerzy Stefanowski,
Shusaku Tsumoto, Lotfi Zadeh, Wojciech Ziarko, Professor Zdzisław Pawlak, Roman
Słowiński

Fig. 1.24. Visit in Kyoto after RSFDGrC 1999 conference in Yamaguchi, Japan; from the
right (in front): wife of Grzymała-Busse, Sheela Ramanna, from the right (behind) James
Peters, Marcin Szczuka, Jan Żytkow, Andrzej Skowron, Professor Zdzisław Pawlak and (be-
hind) Yoshitsugu Kakemoto
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1.7 Zdzisław Pawlak and Artificial Intelligence

In this section, we discuss the idea of Artificial Intelligence as developed in the
work of Professor Pawlak and his closest collaborators, including Professor Helena
Rasiowa.

Here is a recollection of Andrzej Skowron.

Professor Pawlak and Professor Helena Rasiowa conducted a research seminar on auto-
mated theorem proving, at the Faculty of Mathematics and Mechanics of the University of
Warsaw.

Fig. 1.25. Professor Helena Rasiowa and Professor Zdzisław Pawlak

I remember this as if it was today. I remember a big auditorium filled with participants
of the seminar. In that period, Professor Pawlak conducted an intensive research related
to mathematical models of computers and computations realised by them. He lectured and
conducted seminars for students of mathematics and computer science. The cooperation
with Professor Helena Rasiowa and her research team began in the early 1960s and lasted
for many years. The results of this collaboration are still important. One may safely say
that a new research school came into existence [11]. This cooperation had a lot of influence
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on shaping many people’s scientific research and on the evolution of main notions of logic
researched by Professor Rasiowa’s group [11]: from the classical logic to non-classical
logic and its inference processes, the main characteristics of current Artificial Intelligence
investigations.

We found the first trace of Professor Pawlak’s interest in Artificial Intelligence in an
article [18] from 1956, in which he discusses the relationship between mathematical
machines (“apparatuses”) and cybernetics:

Robots, humans, homunculuses, mechanical animals, chess machines, and other similar
wonders - until recently the domain of mad scientists, inventors, alchemists, common de-
ceivers and, at the best case, science fiction writers - are now getting popular among ab-
solutely normal, lucid people and even renowned and respected scholars. This change was
triggered during the last war by a famous American mathematician Norbert Wiener. [...]
He came into conclusion that modern mathematical apparatuses are almost ideal models
of many phenomena happening in the nervous system and, partly, models of phenomena
happening in a society. This created basis for renaissance of mechanicism in biology and
sociology. This new mechanicism is called cybernetics.

Professor Pawlak warned in [18] that

[...] it is worth to be aware of the fact that an apparatus is not an organism and the analogies
between them are secondary, while differences are fundamental.

and

[...] Capabilities of existing, even the strongest apparatuses do not exceed a range of “prim-
itive work”.

[...] Looking at the “electronic brain” [...] a faint sign of intelligence and thinking
should be expected - features, which no mathematical apparatus has. [at present]

Similar opinions appear again in [19] in 1963:

The role of mathematical machines in mathematics has its strictly determined limits. It
seems even less probable for them to play a significant role in other sciences, especially
in the humanities. The hopes of cyberneticians for creating a homunculus seem unfounded.
[...] there is a similarity between machines and living organisms but it has a surface char-
acter, while the differences are fundamental. The history of machines differs from the one of
bio-organisms and I do not believe they are ever going to converge.

Is cybernetics a worthless game, then? Probably not. Cybernetics extended the range
of engineers’ interests to the humanities, while humanists’ to engineering. To sum up, cy-
bernetics may indirectly influence the way of the technical development, as well as other
sciences progress.

In a later period, up to the beginning of the 1980s, Professor Pawlak did not pub-
lish works which were directly concerned with Artificial Intelligence. However, his
works, mentioned above, referring, for example, to computation models realised by
address-less machines [20, 22] or inspired by biological processes [21, 13] clearly
shows that he was intrigued with various computation models and searching for al-
ternative models to those realised in von Neumann’s machines, models that had the
potential to cause the next technological revolution. He expressed that idea in the
lecture during the award ceremony at Poznań University of Technology [33]:
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We are still unable to provide the parallel algorithm theory, in spite of the huge development
of parallel and concurrent systems. New computation models are being developed for, e.g.,
DNA computing and quantum computing. In this context, it is instructive to think about
Noble Prizes awarded in 1998 for the work related to computers:

• in Physics, for the results in researching quantum phenomena as a basis for com-
puters (Robert Laughlin, Horest Stoermer, Daniel Tsui);

• in Chemistry, for the development of computing methods (Walter Kohn, John
Pople).

[...] meteorology, aerodynamics, genetics or cryptography demand significantly bigger
computational power. I refer not only to increasing the speed of computing but, generally, to
finding a new computing paradigm, because modern computers, based on von Neumann’s
idea, are reaching the limits of their capabilities. This task may be very difficult to realise
without new concepts of concurrent and parallel computing on a large scale.

As we see, Professor Pawlak was still intrigued by new computation models. He
searched for them, while working on computation models of von Neumann’s ma-
chines, computation models inspired by biological processes or computation models
for automated theorem proving. However, he found all of these models insufficient
to solve the real difficulties in creating Artificial Intelligence [33]:

In spite of the computers’ enormous successes in science, their role is limited. In the most
important scientific tasks: creating and verifying hypotheses, computers did not play any
important role so far. The example of Fermat’s Last Theorem is symptomatic here. This is
because we do not understand the essence of a scientific discovery and the role of intuition,
associations etc. Picasso commented on this in a very dramatic manner. (Compare with the
motto of [33]: “Computers are useless. They do not pose questions.”)

We quote another excerpt of Professor Pawlak’s lecture at the Poznań University of
Technology [33], referring to issues connected to computation models and Artificial
Intelligence:

Proving a hypothesis in inductive logic is done, unlike in deductive logic, not by formal
reasoning, but on the basis of experiment. Physics illustrates it best. Researching induc-
tive logic has a long history. An eminent English philosopher John Stuart Mill (1806-1873)
is considered its founder. The creation of computers and their innovative applications in-
fluenced the rapid growth of interest in inductive reasoning. At present this area develops
really dynamically thanks to computer science techniques. Machine learning, knowledge
discovery, reasoning from data, expert systems, and other techniques are the examples on
new directions in inductive reasoning.

[...] A research in the theory of induction owes computer science new impulses too.
However, we are far from the situation similar to the one in deductive logic. There are no
emerging outlines of theory of induction, having the same status as the theory of deduction.

[...] Finally, the most interesting technology, from the computer scientist’s point of view,
is the common-sense reasoning. This is the reasoning which people use in everyday life,
politics and many humanities. The starting point of that kind of reasoning is knowledge
possessed by a certain group of people (“common knowledge”) about a subject, and in-
tuitive methods of reasoning from that knowledge. Examples of that type of reasoning are
commonly seen in press, radio and television. They are concerned with politics, economy or
arts. Parliamentary debates are a classic example of common-sense reasoning. Governing
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Evolution of AI models of computing in the Rasiowa – Pawlak School 
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Fig. 1.26. Models’ evolution in the Rasiowa - Pawlak research school

parties give arguments for accepting the budget, saying that it is excellent, while opposition
parties counter their arguments. Who is right, then? Neither deductive logic (reasoning) nor
inductive logic (experiment) may solve the problem. That is why voting is the only chance
to settle the argument. The result of voting does not make a thesis valid or not. Of course
this method is unacceptable in mathematics or physics. Nobody will judge the correctness
of Fermat’s theorem or Newton’s equations by voting. The theory of this type of reasoning
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still awaits significant development. Moreover, its structure is not sufficiently understood.
However, there were some investigations of the subject. The common-sense reasoning is re-
ally significant because of its range and importance in some fields. Computer science may
play an important role here, on the condition that one would understand the essence of this
reasoning thoroughly. This can be achieved by making an appropriate theoretical studies.

Undoubtedly, the discovery of rough set theory gave a strong impulse to work on
understanding the essence of reasoning mentioned above. Some investigations point
to the connections between rough sets and existing formalisms of common-sense
reasoning including default logic [4]. Research on relationships between rough sets
and paraconsistent logics still flourishes [50]. In our opinion, further understanding
of common-sense reasoning’s essence may be achieved with better understanding
of the fundamentals and capabilities of interactive granular computing. Rough sets
play a significant role in defining this form of computing. The programme of this
research is presented in [11].

We close this section with a statement of Professor Toshinori Munakata (Cleve-
land State University) [16]:

It is an honor to contribute my short article to this special issue commemorating the life
and work of Professor Zdzisław Pawlak. In this article I would like to discuss my encoun-
ters with the field of artificial intelligence (AI) in general, and how I see rough set theory
and Professor Zdzisław Pawlak in this context. I have been fortunate to know some of the
greatest scholars in the AI field. There are many of them, but if I had to choose the three
I admire most, they are: Professors Pawlak, Lotfi Zadeh and Herbert A. Simon. There are
common characteristics among all of them. Although they are the most prominent of schol-
ars, all are frank and easy and pleasant to talk with. All are professionally active at ages
where ordinary people would have long since retired.

[...] For knowledge discovery techniques such as rough sets, there may be a limit when
we deal only with decision tables. Perhaps we should also look at other formats of data as
well as other types of data, for example, non-text, comprehensive types of information, such
as symbolic, visual, audio, etc. Also, the use of huge background knowledge, in a manner
similar to human thought, would be necessary and effective. Human-computer interactions
would also enhance the discovery processes. Other totally different domains are non-silicon
based new computing paradigms. I am currently working on my fourth Special Section for
the Communications of the ACM as a guest editor on this subject [...]. These approaches
may lead to a new dimension of information processing in a wide range of application
domains including rough sets. As with other scientific developments in history, such as
alchemy and the first airplane, a breakthrough may come in a totally unexpected form.

1.8 People and Nature

Professor Pawlak was a lively and witty person. He felt comfortable among other
people (especially friends, see pictures included in this chapter 1) and he adored
nature. After relaxing surrounded by nature he would regenerate fast and get back
to his intensive scientific work, for which he dedicated his life.
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Fig. 1.27. Visit in Kansas, Professor Zdzisław Pawlak enjoying activities on slide with chil-
dren of Jerzy Grzymała-Busse; from the top: son Jan, Professor Pawlak, daughter Anna, and
son Witold

Fig. 1.28. Visit in Kansas, Professor Zdzisław Pawlak in a military uniform with Jerzy
Grzymała-Busse family; from the left: son Jan; wife Dobroslawa; daughter, Anna; and Jerzy
Grzymała-Busse

Jerzy Grzymała-Busse writes about visits of Professor Pawlak at the University of
Kansas:

Between 1984 and 1994 Professor Zdzisław Pawlak visited the University of Kansas sev-
eral times. The main reason for his visits was to present his research on rough sets, mostly
through invited scientific talks. During these visits, Professor Pawlak lived in the home of
Jerzy Grzymałla-Busse and became - practically - a family member. They went on many
walks together, as well as trips to local attractions. He participated in various family activ-
ities, including the kids’ track and field competitions, and trips to a shooting range to shoot
M14 and M16 military rifles.
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He loved to go with the younger members of the Grzymała-Busse family to playgrounds,
participating and enjoying the activities (Figure 1.27). One of his hobbies was hunting
for interesting and rare things at local garage sales. Figure 1.28 shows Professor Pawlak
proudly sporting a military uniform.

James Peters (University of Manitoba) writes:

In a short time that I knew him, he was like a father for me. ... He changed my [life] in many
ways.

Professor Pawlak was not only a pioneer in mathematics and computer science, he was
also a gifted painter of scenes from nature. His interest in enshrining moments in the chang-
ing seasons in the Polish countryside in paintings began in the 1950. One of his earliest
paintings (a waterscape) was signed by him in 1954. His interest in painting continued
through his life.

His paintings capture various moments in the four seasons in the Polish countryside.
In a vivid way, his paintings offer his perception of the symmetries and singular beauty of
the woods, gently rolling terrain, lakes and shorelines that he visited in Poland. A persis-
tent theme in Professor Pawlak’s paintings are watershadows of trees and waterway reeds.
These watershadows manifest Professor Pawlak’s interest in the portrayal of actual objects
such as trees in an approximate but beautiful way. In some sense, Professor Pawlak painted
border regions of elongated watershadows that is reminiscent of his basic idea of set ap-
proximations in rough set theory. See, e.g., Figure 1.29, for a sample painting by Professor
Pawlak from the late 1990s.

Fig. 1.29. A sample painting by Professor Pawlak from the late 1990s

Professors Andrzej Czyżewski and Bożena Kostek describe a story behind the
Alaskan scenery:

In 1998, May 4th-9th Andrzej Czyżewski and Bożena Kostek had an occasion of participat-
ing in the 7th IEEE International Conference on Fuzzy Systems organized in Anchorage,
Alaska, USA. A special session devoted to rough sets was organized at this conference, thus
it attracted some members of the rough set community, including the founder of rough set
theory - Professor Zdzisław Pawlak, who presented a keynote speech at that conference.
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On May 10th, the day following the conference, they organized a car tour around An-
chorage in order to catch a glimpse of the incredible Alaskan scenery and landscapes.
Professor Pawlak and Lech Polkowski accepted their invitation and they all had a very nice
time together, because the previously capricious weather changed on that day allowing us
to watch the sun beaming to snowy mountains (see Figures 1.40-1.41).

Professor Pawlak seemed impressed with the picturesque view of the snowy peaks and
wild landscapes. As it was revealed later, those impressions lasted for long in his sensitive
painter’s soul. When Andrzej Czyżewski went to Professor Pawlak’s Warsaw home many
years later, he asked for visiting the small painting gallery located in a room of the home.
Among many Professor Pawlak’s paintings the Alaskan landscapes shone brightly, catching
an attention of the viewer. The last visit of Andrzej Czyżewski in Professor Pawlak’s home
located at Zuga street in Warsaw was tinted with unspoken awareness of the serious illness
of the host. Despite that, as usually, Professor Pawlak seemed to take it easily and even
joked. He said: “take this picture now, because after painter’s death the price may rise
seriously”. With those words he took the painting off from the wall and handed it to Andrzej
Czyżewski, who got a little bit confused with this act. “I cannot accept such a gift” - he
said. Professor Pawlak responded: “it is not for free, you have to pay for it, but not for me.
Pay one million dollars or less (he smiled jokingly) to some people who may really need
money”. Soon they parted, exchanging their last view when Andrzej Czyżewski loaded the
painting into his car. He decided right after to respect the donator’s will and supplied a
hospice in Poland in return to Professor Pawlak’s gift.

Today the painting (see the photocopy of it in Figure 1.30) hangs on the wall inside An-
drzej Czyżewski’s and Bożena Kostek’s home reminding them Professor Zdzisław Pawlak
who was world-renowned scientist, with so many talents and at the same time so unpreten-
tious, approaching much younger colleagues in a very natural, friendly and warm manners.

Fig. 1.30. A sample painting by Professor Pawlak: Alaska, 1999
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Professor Dembiński (Institute of Computer Science of PAS) writes in his memoirs
[51]:

Professor Pawlak was a modest person, and often began his presentations with the words
”I am not sure, if it is significant, but [...]

[...] Professor Pawlak had wide interests and had many talents, for instance he sang
very well and he knew probably all operetta arias by heart. At the end of his life he was
often painting. His paintings could compete with the work of professional artists. He often
jokingly collected diplomas attesting to his various achievements, not only scientific ones.
So, for instance he got from my wife - a professional dancer - certificate about his high
dance skills. Similarly, in pilot school (“Szkoła Orla̧t”) in Dȩblin, he asked commanding
officer - General Olszewski - for a diploma of a jet plane test pilot, after his flight with
General.

[...] Professor Pawlak – outstanding scientist and mentor – a person with many talents.

Professor Janusz Sosnowski of the Warsaw University of Technology describes Pro-
fessor Pawlak with these words [51]:

He was a very cheerful person with a sense of humour and abundant interests beyond the
scientific ones. Taking over the Institute’s administration after Professor Pawlak’s retire-
ment (1996), I was facing many difficult problems both inside of the Institute and in our re-
lations with the administration. At that time, helpful discussions with the Professor assisted
me in surviving difficult moments and finding appropriate solutions. Professor Pawlak was
also able to appreciate achievements of others and willing to help them in their work, which
are unusual features in scientific environment.

Mr Jerzy Fiett, Professor’s friend, writes in his testimonial presented during one of
the sessions devoted to the memory of Professor Pawlak:

How many years have passed, when young (then) people: Zdzisław Pawlak - “Kłaczek”,
Mieczysław Zielczyński - “Miećka”, Andrzej Janikowski and Jerzy Fiett, members of exclu-
sive Old Bachelors’ Club from the 1950s, made up a group that could do the impossible and
put even the wildest ideas into operation? Andrew is not with us anymore. He rests eternally
in Stara Miłosna. Zdzisław, after achieving everything in his scientific career, still works in
his profession, in spite of serious health problems. Moreover, he paints really great, writes,
and still has new plans.

Professor Pawlak often recalled excursions to Bieszczady Mountains, which took
place after the Second World War. Here is a fragment of Mr Fiett’s memories of
these trips:

A camp on Szeroki Wierch, frost cracking of trees, a trip to Halicz via Tarnica - Krzemień
(that damn frost traverse!), return at sunset, beautiful downhill ride from Tarnica on the
snowy drifts. Another freezing night, drying and freezing boots for the night, drying gloves
and socks with “on belly” method - beautiful morning, hoarfrosty replicas of socks and
gloves on our sleeping bags! Stonefrost, icy boots. Next, after a proper breakfast, to the
place, where Berehy Górne used to be. Incredibly hard struggling to go with resistant to-
boggan, constantly playing tricks, through the snowy, sloping bushes, filled with surprises
in the form of snowdrifts, rifts and other obstacles. Next, walking on a bit friendlier terrain
for some time, to the tiny Lemken cemetery and a few chimneys sticking out from the snow.
That was all that was left from Berehy Górne village. Near the site of a fire, on a broad
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opening covered with deep snow, frozen to the bones, we put up our tents and prepare a
place to sleep. We collect timber to make a bonfire and surround our tents with previously
cut wood. That is how we made our new campsite. Sleeping is not going to be comfortable,
like during the previous nights. We cover the floors of our tents with cloth, on which we
lay a self-made mattress, consisting of four rubber tubes and sackcloth binding. We lay our
blankets and sleeping bags on the improvised floor and use backpacks as pillows.

Fig. 1.31. Picture made by Professor Pawlak in the early 1950s in Bieszczady

Andrzej Skowron recollects:

Masurian lakes were Professor’s most favourite areas, and we used to go there together
during the last years of his life. I had an impression that not only does he know every lake
there, but also every path, stone and tree.

Here is another fragment of Mr Fiett’s memories of trips to the lakes:

The day after a relatively peaceful canoeing trip’s segment, the most beautiful but the
wildest and the most difficult section (called “a little hell”) begins. We row through the
great tunnel, shaded with thick branches of trees growing on both sides of the river, going
with the strong current. We row through the winding riverbed swarming with rocks, some-
times pretty sharp, and with fallen trees, struggling to protect our boats from breaking -
as we can, using paddles or hands. However, it is really beautiful here! Zdzisiek [Profes-
sor Pawlak’s nickname], intrepid photographer, takes photos of his companions (Andrzej
and Miećka). These photos were a precious memory of our trip down Wel river and were
awarded first prize in the [London] Times’ photographic contest (see Figure 1.32).
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Fig. 1.32. Polish jungle: Times’ photographical contest award (1950s)

Fig. 1.33. Professor Pawlak with (from the right) Boris A. Trakhtenbrot, Cecylia Rauszer,
wife of Professor Trakhtenbrot and Helena Rasiowa
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Fig. 1.34. Professors Zdzisław Pawlak and Lotfi A. Zadeh

Fig. 1.35. Charlotte, 1984; from the left: Professor Pawlak, Viktor W. Marek, Elizabeth
Marek, Natalia Marek, Professor Rasiowa
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Fig. 1.36. Professor Zdzisław Pawlak and Hiroakira Ono with wife

Fig. 1.37. Professor Pawlak in U.S.A. with (from the right) Anita Wasilewska, Zbigniew W.
Raś, Shusaku Tsumoto, Wojciech Ziarko
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Fig. 1.38. With Setsuo Ohsuga: Birthday of Professor Pawlak in Japan

Fig. 1.39. RSCTC 1998

Fig. 1.40. From trip after FUZZ-IEEE 1998, Anchorage, Alaska; (from the left) Andrzej
Czyżewski, Lech Polkowski, Professor Zdzisław Pawlak
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Fig. 1.41. From trip after FUZZ-IEEE 1998, Anchorage, Alaska; (from the left) Professor
Zdzisław Pawlak, Bożena Kostek, Lech Polkowski

Fig. 1.42. On the way to Banff, RSCTC 2000; (from the left) Professor Zdzisław Pawlak,
Jerzy Grzymała- Busse, Lech Polkowski and Andrzej Skowron
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Fig. 1.43. On the way to Banff, RSCTC 2000; (from the right) Lech Polkowski, Jerzy
Grzymała- Busse with wife Dobroslawa, and Professor Zdzisław Pawlak

Fig. 1.44. Visit in Kansas, Professor Zdzisław Pawlak on swing with (Witold and Jan) sons
of Jerzy Grzymała-Busse
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Fig. 1.45. Visit in Kansas, Professor Zdzisław Pawlak enjoying activities on swing in Kansas

Fig. 1.46. Lunch with Professor Zdzisław Pawlak in 2000 during the visit of Sankar K. Pal
in Warsaw; (from the right) Sankar K. Pal, Professor Pawlak, Lech Polkowski, and Andrzej
Skowron
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Fig. 1.47. Rough Set Theory and Granular Computing (RSTGC 2001), Matsue, Shimane,
Japan, May 20-22, 2001; (from the left) Shusaku Tsumoto with family, Sankar K. Pal,
Professor Zdzisław Pawlak, Jerzy Grzymała-Busse, Paulina Zalewska and her friend

Fig. 1.48. Professor Zdzisław Pawlak at home with Andrzej Skowron (2000)
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Fig. 1.49. Professor Zdzisław Pawlak singing arias at home (2000), (on the right)
Sankar K. Pal

Fig. 1.50. Christmas 2003: Professor Zdzisław Pawlak and Andrzej Jankowski
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Fig. 1.51. Christmas 2003: Professor Zdzisław Pawlak and Andrzej Skowron
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Fig. 1.52. Professor Zdzisław Pawlak

1.9 Conclusions

Here we conclude our celebration of Professor Pawlak’s life with few testimonies
from students and collaborators. Other testimonies can be found in [6, 38, 39, 40,
48, 41]. A volume of Fundamenta Informaticae [46] includes articles dedicated to
Professor Pawlak.
During one of the reminiscence sessions devoted to Professor Pawlak, Roman
Słowiński stated:

The road which led Professor Pawlak to his crucial discoveries was long but ended suc-
cessfully. Over fifty years, Professor Pawlak researched many areas of computer science.
Without hesitation one can say that his personal path is one of the most important ones
from the fifty-year-old history of research in Polish and worldwide computer science.”

During the same session, James Peters and Andrzej Skowron recalled the Professor:

Zdzisław Pawlak gave an abundance of his time and energy to help others. His personal-
ity and insight had, undoubtedly, influenced many scientists around the World. He had a
unique gift to inspire his students, co-workers and many scientists beyond his close circle of
collaborators to do research. Professor’s associates recognized his extraordinary character.
Many called him “Our Papa Pawlak”.

[...] Professor Zdzisław Pawlak was with us only for a while. However, when we consider
his talents and great achievements, we know how much he influenced us and our successes
with his research work in many areas like approximate reasoning, intelligent information
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systems, computation models and foundations of computer science, and of artificial intel-
ligence - especially including rough set theory, molecular computing, pattern recognition,
philosophy, art, and poetry. He also influenced us with his uncommonly rich personality.

Alicja Wakulicz-Deja farewelled Professor saying [51]:

Our meetings lasted to his last days.
[...] He seemed indestructible. However, his struggle with severe illness was very hard.

When I was afraid that he was getting tired during our meetings and ask him if anything
hurts him, he replied: “Let’s not talk about it, others suffer more despite the fact they are
better than me (like the Holy Father John Paul II)”. Only at the end, there were moments,
when he said: “You have better connections up there9, tell them to take me now”.

[...] He often reiterated that scientific research is very hard and sometimes he would
prefer to be a lumberjack, who may rest after the work, being surrounded by a beautiful na-
ture. Nature often lured him to primeval forests and lakes. He documented it in his beautiful
photographs and painted pictures.

[...] I think that he rests somewhere among his favourite forests and lakes now but I
sometimes miss his words “I haven’t seen you for some time, you are getting insubordinate
recently Madame Professor”.

We close this chapter with some pictures of our meetings with Professor Pawlak.
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pp. 71–77. PWN, Waszawa (1970) (in Polish)

http://pl.wikipedia.org/wiki/Klemens_Szaniawski


60 A. Skowron

48. Definitional Approach to Automatic Demonstration. In: M. Laudet, D. Lacombe,
L. Nolin, and M. Schützenberger (eds.) Proceedings of the Symposium on Automatic
Demonstration, Versailles, France, December 1968, Lecture Notes in Mathematics, vol.
125, pp. 191–193. Springer-Verlag, Berlin (1970)
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5. Zbiory przybliżone. Nowa matematyczna metoda analizy danych. (Rough sets. New

mathematical method of data analysis) pp. 1–13 (in Polish)
6. Rough control. (1996) pp. 1–4 (manuscript)
7. Komputery i nauka (Computers and science). pp. 1–7 (manuscript) (in Polish)
8. Rough sets - A new paradigm of imprecise knowledge. pp. 1–7 (manuscript)
9. Conflicts and decisions II. pp. 1–7 (manuscript)

10. Data analysis: A rough set view. pp. 1–9 (manuscript)
11. Data, decision rules and rough sets. pp. 1–10 (manuscript)
12. Decision and flow networks. pp. 1–8 (manuscript)
13. Decision tables and case based reasoning. pp. 1–5 (manuscript)
14. Flow graphs: A new paradigm for intelligent data analysis. pp. 1–28 (manuscript)
15. Inference rules, decision rules and rough sets. (1999) pp. 1–7 (manuscript, preliminary

version of the paper for the RSFDGrC 1999 lecture in Yamaguchi).
16. Multi-valued logic, Bayes’ rule and rough sets. pp. 1–10 (manuscript)
17. A new approach to drawing conclusions from data. A rough set perspective. pp. 1-14

(manuscript)
18. New look on Bayes’ theorem the rough set outlook II. pp. 1-17 (manuscript)
19. Rough sets - A new way of data analysis. pp. 1-9 (manuscript)
20. Rough set theory: A new mathematical approach to data analysis. pp. 1–14 (manuscript)



74 A. Skowron

21. Using rough sets for drawing conclusions from data. pp. 1–8 (manuscript)
22. On some issues on rough sets. (2004) pp. 1–60 (manuscript)
23. Rough controllers. pp. 1–6 (manuscript)
24. Conflicts and decisions. pp. 1–6 (manuscript)
25. Rough sets. pp. 1–40 (slides)
26. In pursuit of patterns in data. Reasoning from data. The rough set way. pp. 1–36 (slides).
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’Polish notation’ of Łukasiewicz). Życie Warszawy 113, p. 5 (1961) (article in Polish)

31. Matematyczne podstawy informatyki (Mathematical foundations of informatics).
Trybuna Ludu 105, p. 6 (1973) (article in Polish)

32. Badania dla informatyki (Research in informatics). Trybuna Ludu 36, p. 8 (1974) (article
in Polish)

33. Ludzie i komputery. Kształcenie informatyków (Humans and computers. Education in
informatics). Trybuna Ludu 345. p. 6 (1974) (article in Polish)
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Chapter 3
Rough Sets: From Rudiments to Challenges

Hung Son Nguyen and Andrzej Skowron

Abstract. In the development of rough set theory and applications, one can distin-
guish three main stages. At the beginning, the researchers concentrated on descriptive
properties such as reducts of information systems preserving indiscernibility rela-
tions or description of concepts or classifications. Next, they moved to applications
of rough sets in machine learning, pattern recognition and data mining. After gain-
ing some experiences, they developed foundations for inductive reasoning leading to,
for example, inducing classifiers. While the first period was based on the assumption
that objects are perceived by means of partial information represented by attributes,
the second period was based on the assumption that information about the approx-
imated concepts is partial too. Approximation spaces and searching strategies for
relevant approximation spaces were recognized as the basic tools for rough sets. Im-
portant achievements both in theory and applications were obtained using Boolean
reasoning and approximate Boolean reasoning applied, for example, in searching for
relevant features, discretization, symbolic value grouping, or, in more general sense,
in searching for relevant approximation spaces. Nowadays, we observe that a new
period is emerging in which two new important topics are investigated: (i) strategies
for discovering relevant (complex) contexts of analysed objects or granules, what
is strongly related to information granulation process and granular computing, and
(ii) interactive computations on granules. Both directions are aiming at developing
tools for approximation of complex vague concepts, such as behavioural patterns or
adaptive strategies, making it possible to achieve the satisfactory qualities of realized
interactive computations. This chapter presents this development from rudiments of
rough sets to challenges, for example, related to ontology approximation, process
mining, context inducing or Perception-Based Computing (PBC). The approach is
based on Interactive Rough-Granular Computing (IRGC).
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3.1 Introduction

Rough set theory, proposed by Professor Zdzisław Pawlak in 1982 [209, 211, 212,
215], can be seen as a new mathematical approach for solving problems dealing
with imperfect data and knowledge or, in particular, with vague concepts.

The rough set philosophy is founded on the assumption that with every object
of the universe of discourse, we associate some information (data, knowledge). For
example, if objects are patients suffering from a certain disease, symptoms of the
disease form information about patients. Objects characterized by the same informa-
tion are indiscernible (similar) in view of the available information about them. The
indiscernibility relation generated in this way is the mathematical basis of rough set
theory. This understanding of indiscernibility is related to the idea of Gottfried Wil-
helm Leibniz that objects are indiscernible if and only if all available functionals
take on identical values (Leibniz’s Law of Indiscernibility: The Identity of Indis-
cernibles) [5, 127]. However, in the rough set approach, indiscernibility is defined
relative to a given set of functionals (attributes).

Any set of all indiscernible (similar) objects is called an elementary set, and forms
a basic granule (atom) of knowledge about the universe. Any union of elementary
sets is referred to as a crisp (precise) set1. A set that is not crisp is called rough
(imprecise or vague).

Consequently, each rough set has boundary region cases, that is, objects that
cannot with certainty be classified either as members of the set or of its comple-
ment. Obviously, crisp sets have no boundary region elements at all. This means
that boundary region cases cannot be properly classified by employing available
knowledge.

Thus, the assumption that objects can be “seen” only through the information
available about them leads to the view that knowledge has a granular structure. Due
to the granularity of knowledge, some objects of interest cannot be discerned and ap-
pear as the same (or similar). As a consequence, vague concepts, in contrast to pre-
cise concepts, cannot be characterized in terms of information about their elements.
Therefore, in the proposed approach, we assume that any vague concept is replaced
by a pair of precise concepts – called the lower and the upper approximation of the
vague concept. The lower approximation consists of all objects that surely belong
to the concept and the upper approximation contains all objects that possibly belong
to the concept. The difference between the upper and the lower approximation con-
stitutes the boundary region of the vague concept. These approximations are two
basic operations in rough set theory. Note, that the boundary region is defined rela-
tive to a subjective knowledge given by a set of attributes or/and sample of objects.
Such a boundary region is crisp. However, when some attributes are deleted, new at-
tributes are added or a given sample is updated and the boundary region is changing.
One could ask about a boundary region independent of such subjective knowledge
but then, in the discussed framework, we do not have a possibility to define such

1 This approach is generalized when one considers inductive extensions of approximations
from samples of objects (see, e.g. [303]).
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region as a crisp set. This property is related to the higher-order vagueness discussed
in philosophy.

Hence, rough set theory expresses vagueness not by means of membership, but
by employing a boundary region of a set. If the boundary region of a set is empty, it
means that the set is crisp, otherwise the set is rough (inexact). A nonempty bound-
ary region of a set means that our knowledge about the set is not sufficient to define
the set precisely.

Rough set theory is not an alternative to but rather is embedded in classical set
theory. Rough set theory can be viewed as a specific implementation of Frege’s idea
of vagueness [59], that is, imprecision in this approach is expressed by a boundary
region of a set.

Rough set theory has attracted worldwide attention of many researchers and
practitioners, who have contributed essentially to its development and applications.
Rough set theory overlaps with many other theories. Despite this, rough set the-
ory may be considered as an independent discipline in its own right. The rough set
approach seems to be of fundamental importance in artificial intelligence and cogni-
tive sciences, especially in research areas such as machine learning, intelligent sys-
tems, inductive reasoning, pattern recognition, mereology, image processing, signal
analysis, knowledge discovery, decision analysis and expert systems. The main ad-
vantage of rough set theory in data analysis is that it does not need any preliminary
or additional information about data like probability distributions in statistics, basic
probability assignments in Dempster–Shafer theory, a grade of membership or the
value of possibility in fuzzy set theory (see, e.g. [55] where some combinations of
rough sets with non-parametric statistics are studied). One can observe the following
about the rough set approach:

• introduction of efficient algorithms for finding hidden patterns in data,
• determination of optimal sets of data (data reduction),
• evaluation of the significance of data,
• generation of sets of decision rules from data,
• easy-to-understand formulation,
• straightforward interpretation of obtained results,
• suitability of many of its algorithms for parallel processing.

The basic ideas of rough set theory and its extensions as well as many interesting
applications can be found in a number of books (see, e.g. [43, 46, 52, 55, 83, 104,
118, 119, 137, 189, 199, 200, 215, 245, 249, 252, 253, 277, 324, 387, 109, 156, 38,
96, 223, 45, 29, 110, 198, 159, 248, 144, 224]), issues of the Transactions on Rough
Sets [233, 231, 226, 227, 228, 232, 235, 229, 236, 241, 230, 238, 11, 237], special
issues of other journals (see, e.g. [37, 133, 225, 197, 291, 326, 391, 392, 105, 191,
44, 292]), proceedings of international conferences (see, e.g. [2, 99, 136, 251, 290,
310, 320, 321, 353, 355, 356, 367, 390, 394, 72, 368, 4, 377, 123, 39, 366, 370,
272, 350, 384, 124, 378]) and tutorials (see, e.g. [117, 222, 221, 220]). For more
information on the bibliography on rough sets, one can also visit web pages2.

2 www.roughsets.org

www.roughsets.org
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In this chapter, we begin with a short discussion on vague concepts (see
Section 3.2). Next, we recall the basic concepts of rough set theory (see Section 3.3).
Some extensions of the rough set approach are outlined in Section 3.4. In Section 3.5,
we discuss the relationship of the rough set approach with inductive reasoning. In
particular, we present the rough set approach to inducing rough set-based classifiers
and inducing relevant approximation spaces. We also discuss shortly the relationship
of the rough set approach and the higher-order vagueness. Section 3.6 includes some
remarks on relationships of information granulation and rough sets. Section 3.7, we
outline the rough set approach to ontology approximation. The rough set approach
based on combination of rough sets and Boolean reasoning with applications in pat-
tern recognition, machine learning and data mining in presented in Section 3.8. In
Section 3.9, we discuss some scalability issues using the rough set approach. Some
comments on relationships of rough sets and logic are included in Section 3.10.
Finally, we discuss some challenging issues for rough sets (see Section 3.11). We
propose Interactive (Rough) Granular Computing (IRGC) as a framework making it
possible to search for solutions of problems related to inducing of relevant contexts,
process mining and Perception-Based Computing (PBC).

This chapter is an extended version of our paper presented in the book “Three
Approaches to Data Analysis. Test Theory, Rough Sets and Logical Analysis of
Data” [40].

3.2 Vague Concepts

Mathematics requires that all mathematical notions (including set) must be exact,
otherwise precise reasoning would be impossible. However, philosophers [111, 112,
266, 271] and recently computer scientists [145, 184, 186, 287] as well as other
researchers have become interested in vague (imprecise) concepts.

In classical set theory, a set is uniquely determined by its elements. In other
words, this means that every element must be uniquely classified as belonging to
the set or not. That is to say the notion of a set is a crisp (precise) one. For example,
the set of odd numbers is crisp because every number is either odd or even.

In contrast to odd numbers, the notion of a beautiful painting is vague, because
we are unable to classify uniquely all paintings into two classes: beautiful and not
beautiful. Some paintings cannot be decided whether they are beautiful or not, and
thus, they remain in the doubtful area. Thus, beauty is not a precise but a vague
concept.

Almost all concepts we are using in natural language are vague. Therefore,
common-sense reasoning based on natural language must be based on vague con-
cepts and not on classical logic. Interesting discussion of this issue can be found in
[266].

The idea of vagueness can be traced back to the ancient Greek philosopher Eu-
bulides of Megara (ca. 400BC) who first formulated so-called sorites (heap) and
falakros (bald man) paradoxes (see, e.g. [111, 112]). The bald man paradox goes as
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follows: suppose a man has 100,000 hairs on his head. Removing one hair from his
head surely cannot make him bald. Repeating this step we arrive at the conclusion
that a man without any hair is not bald. Similar reasoning can be applied to a heap
of stones.

Vagueness is usually associated with the boundary region approach (i.e. existence
of objects that cannot be uniquely classified relative to a set or its complement)
which was first formulated in 1893 by the father of modern logic, German logician,
Gottlob Frege (1848-1925) (see [59]).

According to Frege, the concept must have a sharp boundary. To the concept
without a sharp boundary, there would correspond an area that would not have any
sharp boundary–line all around. It means that mathematics must use crisp, not vague
concepts, otherwise it would be impossible to reason precisely.

Summing up, vagueness is

• not allowed in mathematics;
• interesting for philosophy;
• a nettlesome problem for natural language, cognitive science, artificial intelli-

gence, machine learning, philosophy, and computer science.

3.3 Rudiments of Rough Sets

This section briefly delineates basic concepts in rough set theory.

3.3.1 Indiscernibility and Approximation

The starting point of rough set theory is the indiscernibility relation, which is gener-
ated by information about objects of interest. The indiscernibility relation expresses
the fact that due to a lack of information (or knowledge) we are unable to discern
some objects employing available information (or knowledge).

This means that, in general, we are unable to deal with each particular object but
we have to consider granules (clusters) of indiscernible objects as a fundamental
basis for our theory.

From a practical point of view, it is better to define basic concepts of this theory
in terms of data. Therefore, we will start our considerations from a data set called an
information system. An information system is a data table containing rows labeled
by objects of interest, columns labelled by attributes and entries of the table are
attribute values. For example, a data table can describe a set of patients in a hospital.
The patients can be characterized by some attributes, like age, sex, blood pressure
and body temperature. With every attribute, a set of its values is associated, for
example, values of the attribute age can be young, middle, and old. Attribute values
can be also numerical. In data analysis, the basic problem we are interested in is to
find patterns in data, that is, to find a relationship between some sets of attributes,
for example, we might be interested whether blood pressure depends on age and
sex.
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Suppose, we are given a pair A= (U,A) of non-empty, finite sets U and A, where
U is the universe of objects and A is a set consisting of attributes, that is, functions
a : U −→Va where Va is the set of values of attribute a, called the domain of a. The
pair A = (U,A) is called an information system (see, e.g. [210]). Any information
system can be represented by a data table with rows labelled by objects and columns
labelled by attributes3. Any pair (x,a), where x∈U and a∈ A defines the table entry
consisting of the value a(x).

Any subset B of A determines a binary relation INDB on U called an indiscerni-
bility relation, defined by

x INDB y if and only if a(x) = a(y) for every a ∈ B, (3.1)

where a(x) denotes the value of attribute a for object x.
Obviously, INDB is an equivalence relation. The family of all equivalence classes

of INDB, that is, the partition determined by B, will be denoted by U/INDB, or
simply U/B; an equivalence class of INDB, that is, the block of the partition U/B,
containing x will be denoted by B(x) (other notation used: [x]B or more precisely
[x]INDB). Thus, in view of the data we are unable, in general, to observe individual
objects but we are forced to reason only about the accessible granules of knowledge
(see, e.g. [199, 215, 255]).

If (x,y)∈ INDB, we will say that x and y are B-indiscernible. Equivalence classes
of the relation INDB (or blocks of the partition U/B) are referred to as B-elementary
sets or B-elementary granules. In the rough set approach, the elementary sets are the
basic building blocks (concepts) of our knowledge about reality. The unions of B-
elementary sets are called B-definable sets.4

For B ⊆ A we denote by In fB(x) the B-signature of x ∈ U , that is, the set
{(a,a(s)) : a ∈ B}. Let INF(B) = {In fB(s) : s ∈U}. Then, for any objects x,y ∈U ,
the following equivalence holds: xINDBy if and only if In fB(x) = In fB(y).

The indiscernibility relation will be further used to define basic concepts of rough
set theory. Let us define now the following two operations on sets X ⊆U

LOWB(X) = {x ∈U : B(x)⊆ X}, (3.2)

UPPB(X) = {x ∈U : B(x)∩X �= ∅}, (3.3)

assigning to every subset X of the universe U two sets LOWB(X) and UPPB(X)
called the B-lower and the B-upper approximation of X respectively. The set

BNB(X) = UPPB(X)−LOWB(X), (3.4)

will be referred to as the B-boundary region of X .

3 Note that in statistics or machine learning such a data table is called a sample [97].
4 One can compare data tables corresponding to information systems with relations in

relational databases [63].
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From the definition, we obtain the following interpretation:

• The lower approximation of a set X with respect to B is the set of all objects
that can be for certain classified as objects in X using B (are certainly in X in
view of B).

• The upper approximation of a set X with respect to B is the set of all objects
that can be possibly classified as objects in X using B (are possibly in X in view
of B).

• The boundary region of a set X with respect to B is the set of all objects, that
can be classified neither as in X nor as in U −X using B.

In other words, due to the granularity of knowledge, rough sets cannot be charac-
terized by using available knowledge. Therefore with every rough set we associate
two crisp sets, called lower and upper approximation. Intuitively, the lower approx-
imation of a set consists of all elements that surely belong to the set, whereas the
upper approximation of the set constitutes of all elements that possibly belong to
the set, and the boundary region of the set consists of all elements that cannot be
classified uniquely to the set or its complement, by employing available knowledge.
The approximation definition is clearly depicted in Figure 3.1.

The universe of objects

Fig. 3.1. A rough set
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The approximations have the following properties:

LOWB(X)⊆ X ⊆ UPPB(X), (3.5)

LOWB(∅) = UPPB(∅) = ∅,LOWB(U) = UPPB(U) = U,

UPPB(X ∪Y ) = UPPB(X)∪UPPB(Y ),
LOWB(X ∩Y ) = LOWB(X)∩LOWB(Y ),
X ⊆ Y implies LOWB(X)⊆ LOWB(Y ) and UPPB(X)⊆ UPPB(Y ),
LOWB(X ∪Y )⊇ LOWB(X)∪LOWB(Y ),
UPPB(X ∩Y )⊆ UPPB(X)∩UPPB(Y ),
LOWB(−X) =−UPPB(X),
UPPB(−X) =−LOWB(X),
LOWB(LOWB(X)) = UPPB(LOWB(X)) = LOWB(X),
UPPB(UPPB(X)) = LOWB(UPPB(X)) = UPPB(X).

Let us note that the inclusions in (3.5) cannot be in general substituted by the equal-
ities. This has some important algorithmic and logical consequences.

Now we are ready to give the definition of rough sets.
If the boundary region of X is the empty set, that is, BNB(X) = ∅, then the set

X is crisp (exact) with respect to B; in the opposite case, that is, if BNB(X) �= ∅,
the set X is referred to as rough (inexact) with respect to B. Thus, any rough set, in
contrast to a crisp set, has a non-empty boundary region.

One can define the following four basic classes of rough sets, that is, four cate-
gories of vagueness:

X is roughly B-definable iff LOWB(X) �= ∅ and UPPB(X) �= U, (3.6)

X is internally B-indefinable iff LOWB(X) = ∅ and UPPB(X) �= U,

X is externally B-indefinable iff LOWB(X) �= ∅ and UPPB(X) = U,

X is totally B-indefinable iff LOWB(X) = ∅ and UPPB(X) = U.

The intuitive meaning of this classification is the following.
If X is roughly B-definable, this means that we are able to decide for some ele-

ments of U that they belong to X and for some elements of U we are able to decide
that they belong to −X , using B.

If X is internally B-indefinable, this means that we are able to decide about some
elements of U that they belong to −X , but we are unable to decide for any element
of U that it belongs to X , using B.

If X is externally B-indefinable, this means that we are able to decide for some
elements of U that they belong to X , but we are unable to decide, for any element of
U that it belongs to −X , using B.

If X is totally B-indefinable, we are unable to decide for any element of U whether
it belongs to X or −X , using B.
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Thus, a set is rough (imprecise) if it has nonempty boundary region; otherwise,
the set is crisp (precise). This is exactly the idea of vagueness proposed by Frege.

Let us observe that the definition of rough sets refers to data (knowledge) and is
subjective, in contrast to the definition of classical sets, which is in some sense an
objective one.

A rough set can also be characterized numerically by the following coefficient

αB(X) =
|LOWB(X)|
|UPPB(X)| , (3.7)

called the accuracy of approximation, where X is a nonempty set and |S| denotes
the cardinality of set S. 5 Obviously 0 ≤ αB(X) ≤ 1. If αB(X) = 1 then X is crisp
with respect to B (X is precise with respect to B), and otherwise, if αB(X) < 1 then
X is rough with respect to B (X is vague with respect to B). The accuracy of approx-
imation can be used to measure the quality of approximation of decision classes on
the universe U . One can use another measure of accuracy defined by 1−αB(X) or

by 1− |BNB(X)|
|U | . Some other measures of approximation accuracy are also used,

for example, based on entropy or some more specific properties of boundary regions
(see, e.g. [64, 288, 317]). The choice of a relevant accuracy of approximation de-
pends on a particular data set. Observe that the accuracy of approximation of X can
be tuned by B. Another approach to accuracy of approximation can be based on the
Variable Precision Rough Set Model (VPRSM) [389].

In the next section, we discuss decision rules (constructed over a selected set B
of features or a family of sets of features) that are used in inducing classification
algorithms (classifiers) making it possible to classify to decision classes unseen ob-
jects. Parameters that are tuned in searching for a classifier with the high quality
are its description size (defined using decision rules) and its quality of classification
(measured by the number of misclassified objects on a given set of objects). By se-
lecting a proper balance between the accuracy of classification and the description
size we expect to find the classifier with the high quality of classification also on
unseen objects. This approach is based on the minimum description length principle
[267, 268, 318].

3.3.2 Decision Systems and Decision Rules

Sometimes, we distinguish in an information system A= (U,A) a partition of A into
two disjoint classes C,D ⊆ A of attributes called condition and decision (action)
attributes, respectively. The tuple A = (U,C,D) is called a decision system (or
decison table6).

5 The cardinality of set S is also denoted by “card(S)” instead of |S|.
6 More precisely, decision tables are representations of decision systems.
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Let V =
⋃{Va |a∈C}⋃{Vd |d ∈D}. Atomic formulae over B⊆C∪D and V are

expressions a = v called descriptors (selectors) over B and V where a∈B and v∈Va.
The set of formulae over B and V denoted by F (B,V ), is the least set containing
all atomic formulae over B and V and closed under the propositional connectives ∧
(conjunction), ∨ (disjunction) and ¬ (negation).

By ‖ϕ‖A, we denote the meaning of ϕ∈F (B,V ) in the decision system A which
is the set of all objects in U with the property ϕ. These sets are defined by ‖a =
v‖A = {x∈U |a(x) = v}, ‖ϕ∧ϕ′‖A = ‖ϕ‖A∩‖ϕ′‖A; ‖ϕ∨ϕ′‖A = ‖ϕ‖A∪‖ϕ′‖A;
‖¬ϕ‖A = U−‖ϕ‖A. The formulae from F (C,V ) and F (D,V ) are called condition
formulae of A and decision formulae of A, respectively.

Any object x ∈ U belongs to the decision class ‖∧d∈D d = d(x)‖A of A. All
decision classes of A create a partition U/D of the universe U .

A decision rule for A is any expression of the form ϕ⇒ ψ, where ϕ ∈ F (C,V ),
ψ ∈ F (D,V ), and ‖ϕ‖A �= ∅. Formulae ϕ and ψ are referred to as the prede-
cessor and the successor of decision rule ϕ⇒ ψ. Decision rules are often called
“IF . . .T HEN . . .” rules. Such rules are used in machine learning (see, e.g. [97]).

Decision rule ϕ⇒ ψ is true in A if and only if ‖ϕ‖A ⊆ ‖ψ‖A. Otherwise, one
can measure its truth degree by introducing some inclusion measure of ‖ϕ‖A in
‖ψ‖A. Let us denote by |ϕ| the number of objects from U that satisfies formula ϕ,
that is, the cardinality of ‖ϕ‖A. According to Łukasiewicz [142], one can assign to

formula ϕ the value
|ϕ|
|U |, and to the implication ϕ⇒ ψ the fractional value

|ϕ∧ψ|
|ϕ| ,

under the assumption that ‖ϕ‖ �= ∅. Proposed by Łukasiewicz, that fractional part
was much later adapted by machine learning and data mining literature, for example
in the definitions of the accuracy of decision rules or confidence of association rules.

Each object x of a decision system determines a decision rule
∧

a∈C

a = a(x)⇒
∧

d∈D

d = d(x). (3.8)

For any decision system A = (U,C,D) one can consider a generalized decision
function ∂A : U −→ P(INF(D)) defined by

∂A(x) =
{

i ∈ INF(D) : ∃x′ ∈U
[
(x′,x) ∈ INDC and In fD(x′) = i

]}
, (3.9)

where A = C ∪D, P(INF(D)) is the powerset of the set INF(D) of all possible
decision signatures.

The decision system A is called consistent (deterministic), if |∂A(x)|= 1, for any
x ∈U . Otherwise, A is said to be inconsistent (non-deterministic). Hence, decision
system is inconsistent if it consists of some objects with different decisions but
indiscernible with respect to condition attributes. Any set consisting of all objects
with the same generalized decision value is called a generalized decision class.

Now, one can consider certain (possible) rules (see, e.g. [84, 89]) for decision
classes defined by the lower (upper) approximations of such generalized decision
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classes of A. This approach can be extend, using the relationships of rough sets with
the Dempster-Shafer theory (see, e.g. [278, 288]), by considering rules relative to
decision classes defined by the lower approximations of unions of decision classes
of A.

Numerous methods have been developed for generation of different types of deci-
sion rules, and the reader can find by himself in the literature on rough sets. Usually,
one is searching for decision rules (semi) optimal with respect to some optimization
criteria describing quality of decision rules in concept approximations.

In the case of searching for concept approximation in an extension of a given
universe of objects (sample), the following steps are typical. When a set of rules has
been induced from a decision system containing a set of training examples, they can
be inspected to see whether they reveal any novel relationships between attributes
that are worth pursuing for further research. Furthermore, the rules can be applied to
a set of unseen cases in order to estimate their classification power. For a systematic
overview of rule application methods the reader is referred to the literature (see, e.g.
[16, 151]).

3.3.3 Dependency of Attributes

Another important issue in data analysis is discovering dependencies between at-
tributes in a given decision system A = (U,C,D). Intuitively, a set of attributes D
depends totally on a set of attributes C, denoted C ⇒ D, if the values of attributes
from C uniquely determine the values of attributes from D. In other words, D de-
pends totally on C, if there exists a functional dependency between values of C and
D. Hence, C⇒D if and only if the rule (3.8) is true on A for any x ∈U . In general,
D can depend partially on C. Formally, such a partial dependency can be defined in
the following way.

We will say that D depends on C to a degree k (0≤ k ≤ 1), denoted C ⇒k D, if

k = γ(C,D) =
|POSC(D)|

|U | , (3.10)

where
POSC(D) =

⋃

X∈U/D

LOWC(X), (3.11)

called a positive region of the partition U/D with respect to C, is the set of all
elements of U that can be uniquely classified to blocks of the partition U/D, by
means of C.

If k = 1 we say that D depends totally on C, and if k < 1, we say that D depends
partially (to degree k) on C. If k = 0 then the positive region of the partition U/D
with respect to C is empty.
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The coefficient k expresses the ratio of all elements of the universe, which can be
properly classified to blocks of the partition U/D, employing attributes C and will
be called the degree of the dependency.

It can be easily seen that if D depends totally on C then INDC ⊆ INDD. It means
that the partition generated by C is finer than the partition generated by D. Notice,
that the concept of dependency discussed above corresponds to that considered in
relational databases.

Summing up: D is totally (partially) dependent on C, if all (some) elements of
the universe U can be uniquely classified to blocks of the partition U/D, employing
C.

Observe that (3.10) defines only one of possible measures of dependency between
attributes (see, e.g. [316]). One also can compare the dependency discussed in this
section with dependencies considered in databases [63].

3.3.4 Reduction of Attributes

We often face a question whether we can remove some data from a data-table pre-
serving its basic properties, that is – whether a table contains some superfluous data.

Let us express this idea more precisely.
Let C,D⊆ A be sets of condition and decision attributes respectively. We will say

that C′ ⊆C is a D-reduct (reduct with respect to D) of C, if C′ is a minimal subset
of C such that

γ(C,D) = γ(C′,D). (3.12)

The intersection of all D-reducts is called a D-core (core with respect to D).
Because the core is the intersection of all reducts, it is included in every reduct, that
is, each element of the core belongs to some reduct. Thus, in a sense, the core is
the most important subset of attributes, since none of its elements can be removed
without affecting the classification power of attributes. Certainly, the geometry of
reducts can be more compound. For example, the core can be empty but there can
exist a partition of reducts into a few sets with non-empty intersection.

Many other kinds of reducts and their approximations are discussed in the litera-
ture (see, e.g. [20, 172, 175, 279, 314, 317, 318, 122, 169, 333]). For example, if one
change the condition (3.12) to ∂A(x) = ∂B(x), (where A =C∪D and B =C′ ∪D) then
the defined reducts are preserving the generalized decision. Other kinds of reducts
are preserving, for example, (i) the distance between attribute value vectors for any
two objects, if this distance is greater than a given threshold [279], (ii) the distance
between entropy distributions between any two objects, if this distance exceeds a
given threshold [314, 317] or (iii) the so-called reducts relative to object used for
generation of decision rules [20]. There are some relationships between different
kinds of reducts. If B is a reduct preserving the generalized decision, then in B is
included a reduct preserving the positive region. For mentioned above reducts based
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on distances and thresholds one can find analogous dependency between reducts
relative to different thresholds. By choosing different kinds of reducts we select
different degrees to which information encoded in data is preserved. Reducts are
used for building data models. Choosing a particular reduct or a set of reducts has
impact on the model size as well as on its quality in describing a given data set.
The model size together and the model quality are two basic components tuned in
selecting relevant data models. This is known as the minimum length principle (see,
e.g. [267, 268, 317, 318]). Selection of relevant kinds of reducts is an important
step in building data models. It turns out that the different kinds of reducts can be
efficiently computed using heuristics based, for example, on the Boolean reasoning
approach [31, 32, 30, 36].

3.3.5 Discernibility and Boolean Reasoning

Methodologies devoted to data mining, knowledge discovery, decision support, pat-
tern classification and approximate reasoning require tools for discovering templates
(patterns) in data and classifying them into certain decision classes. Templates are
in many cases most frequent sequences of events, most probable events, regular con-
figurations of objects, the decision rules of high quality, standard reasoning schemes.
Tools for discovering and classifying of templates are based on reasoning schemes
rooted in various paradigms [51]. Such patterns can be extracted from data by means
of methods based, for example, on Boolean reasoning and discernibility.

The discernibility relations are closely related to indiscernibility and belong to
the most important relations considered in rough set theory.

The ability to discern between perceived objects is important for constructing
many entities like reducts, decision rules or decision algorithms. In the standard
approach, the discernibility relation DIS B ⊆U ×U is defined by x DISB y if and
only if non(x INDB y), that is, B(x)∩B(y) = ∅. However, this is, in general, not
the case for generalized approximation spaces. For example, in the case of some
of such spaces, for any object x may be given a family F(x) with more than one
elementary granules (neighbourhoods) such that x ∈ I(x) for any I(x) ∈ F(x). Then,
one can define that objects x,y are discernible if and only if I(x)∩ I(y) = ∅ for
some I(x) ∈ F(x) and I(y) ∈ F(y) and indiscernibility may be not the negation of
this condition, for example, objects x,y are defined as indiscernible if and only if
I(x)∩ I(y) �= ∅ for some I(x) ∈ F(x) and I(y) ∈ F(y).

The idea of Boolean reasoning is based on construction for a given problem P of
a corresponding Boolean function fP with the following property: the solutions for
the problem P can be decoded from prime implicants of the Boolean function fP.
Let us mention that to solve real-life problems it is necessary to deal with Boolean
functions having large number of variables.

A successful methodology based on the discernibility of objects and Boolean rea-
soning has been developed for computing of many important ingredients for appli-
cations. These applications include generation of reducts and their approximations,
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decision rules, association rules, discretization of real value attributes, symbolic
value grouping, searching for new features defined by oblique hyperplanes or higher
order surfaces, pattern extraction from data as well as conflict resolution or negoti-
ation (see, e.g. [20, 172, 175, 279, 314, 317, 318, 169]).

Most of the problems related to generation of the above mentioned entities are
NP-complete or NP-hard. However, it was possible to develop efficient heuristics
returning suboptimal solutions of the problems. The results of experiments on many
data sets are very promising. They show very good quality of solutions generated
by the heuristics in comparison with other methods reported in literature (e.g. with
respect to the classification quality of unseen objects). Moreover they are very effi-
cient from the point of view of time necessary for computing of the solution. Many
of these methods are based on discernibility matrices. Note that it is possible to com-
pute the necessary information about these matrices using directly7 information or
decision systems (e.g. sorted in preprocessing [16, 168, 178, 373]) that significantly
improve the efficiency of algorithms.

It is important to note that the methodology makes it possible to construct heuris-
tics having a very important approximation property that can be formulated as fol-
lows: expressions, called approximate implicants, generated by heuristics that are
close to prime implicants define approximate solutions for the problem.

3.3.6 Rough Membership

Let us observe that rough sets can be also defined employing the rough membership
function (see Eq. 3.13) instead of approximation [219]. That is, consider

µB
X : U → [0,1],

defined by

µB
X(x) =

|B(x)∩X |
|X | , (3.13)

where x ∈ X ⊆U . The value µB
X(x) can be interpreted as the degree that x belongs

to X in view of knowledge about x expressed by B or the degree to which the ele-
mentary granule B(x) is included in the set X . This means that the definition reflects
a subjective knowledge about elements of the universe, in contrast to the classical
definition of a set.

The rough membership function can also be interpreted as the conditional proba-
bility that x belongs to X given B. This interpretation was used by several researchers
in the rough set community (see, e.g. [87, 317, 357, 372, 393, 382], [389]). Note also
that the ratio on the right-hand side of the equation (3.13) is known as the confidence
coefficient in data mining [97, 115]. It is worthwhile to mention that set inclusion

7 I.e. without the necessity of generation and storing of the discernibility matrices.
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to a degree has been considered by Łukasiewicz [142] in studies on assigning frac-
tional truth values to logical formulas.

On can observe that the rough membership function has the following properties
[219]:

1) µB
X(x) = 1 iff x ∈ LOWB(X),

2) µB
X(x) = 0 iff x ∈U −UPPB(X),

3) 0 < µB
X(x) < 1 iff x ∈ BNB(X),

4) µB
U−X (x) = 1−µB

X(x) for any x ∈U ,
5) µB

X∪Y (x)≥max
(
µB

X(x), µB
Y (x)

)
for any x ∈U ,

6) µB
X∩Y (x)≤min

(
µB

X(x), µB
Y (x)

)
for any x ∈U .

From the properties it follows that the rough membership differs essentially from
the fuzzy membership [385], for properties 5) and 6) show that the membership for
union and intersection of sets, in general, cannot be computed – as in the case of
fuzzy sets – from their constituents membership. Thus formally the rough member-
ship is different from fuzzy membership. Moreover, the rough membership function
depends on an available knowledge (represented by attributes from B). Besides, the
rough membership function, in contrast to fuzzy membership function, has a prob-
abilistic flavor.

Let us also mention that rough set theory, in contrast to fuzzy set theory, clearly
distinguishes two very important concepts, vagueness and uncertainty, very often
confused in the AI literature. Vagueness is the property of concepts. Vague concepts
can be approximated using the rough set approach [287]. Uncertainty is the property
of elements of a set or a set itself (e.g. only examples and/or counterexamples of
elements of a considered set are given). Uncertainty of elements of a set can be
expressed by the rough membership function.

Both fuzzy and rough set theory represent two different approaches to vagueness.
Fuzzy set theory addresses gradualness of knowledge, expressed by the fuzzy mem-
bership, whereas rough set theory addresses granularity of knowledge, expressed by
the indiscernibility relation. A nice illustration of this difference has been given by
Dider Dubois and Henri Prade [49] in the following example. In image process-
ing fuzzy set theory refers to gradualness of gray level, whereas rough set theory is
about the size of pixels.

Consequently, both theories are not competing but are rather complementary. In
particular, the rough set approach provides tools for approximate construction of
fuzzy membership functions. The rough-fuzzy hybridization approach proved to be
successful in many applications (see, e.g. [196, 200]).

Interesting discussion of fuzzy and rough set theory in the approach to vagueness
can be found in [266]. Let us also observe that fuzzy set and rough set theory are
not a remedy for classical set theory difficulties.

One of the consequences of perceiving objects by information about them is that
for some objects one cannot decide whether they belong to a given set or not. How-
ever, one can estimate the degree to which objects belong to sets. This is a crucial ob-
servation in building foundations for approximate reasoning. Dealing with imperfect
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knowledge implies that one can only characterize satisfiability of relations between
objects to a degree, not precisely. One of the fundamental relations on objects is a
rough inclusion relation describing that objects are parts of other objects to a degree.
The rough mereological approach [248, 199, 249, 250, 252] based on such a relation
is an extension of the Leśniewski mereology [128].

3.4 Generalizations of Approximation Spaces

The rough set concept can be defined quite generally by means of topological oper-
ations, interior and closure, called approximations [245]. It was observed in [212]
that the key to the presented approach is provided by the exact mathematical formu-
lation of the concept of approximative (rough) equality of sets in a given approxi-
mation space. In [215], an approximation space is represented by the pair (U,R ),
where U is a universe of objects, and R ⊆U ×U is an indiscernibility relation de-
fined by an attribute set (i.e. R = INDA for some attribute set A). In this case, R is
the equivalence relation. Let [x]R denote an equivalence class of an element x ∈U
under the indiscernibility relation R , where [x]R = {y ∈U : xR y}.

In this context, R -approximations of any set X ⊆U are based on the exact (crisp)
containment of sets. Then set approximations are defined as follows:

• x ∈U belongs with certainty to X ⊆U (i.e. x belongs to the R -lower approxi-
mation of X), if [x]R ⊆ X .

• x ∈U possibly belongs X ⊆U (i.e. x belongs to the R -upper approximation of
X), if [x]R ∩X �=�.

• x ∈U belongs with certainty neither to the X nor to U −X (i.e. x belongs to the
R -boundary region of X), if [x]R ∩ (U −X) �=� and [x]R ∩X �=�.

Our knowledge about the approximated concepts is often partial and uncertain [83].
For example, concept approximation should be constructed from examples and
counterexamples of objects for the concepts [97]. Hence, concept approximations
constructed from a given sample of objects are extended, using inductive reasoning,
on objects not yet observed.

Several generalizations of the classical rough set approach based on approxima-
tion spaces defined as pairs of the form (U,R ), where R is the equivalence relation
(called indiscernibility relation) on the set U have been reported in the literature
(see, e.g. [132, 134, 251, 284, 356, 379, 380, 381, 383, 308, 302, 331, 301, 303]) 8.

Let us mention two of them.
The concept approximations should be constructed under dynamically changing

environments [287, 307]. This leads to a more complex situation where the boundary
regions are not crisp sets, which is consistent with the postulate of the higher order

8 Among extensions not discussed in this chapter is the rough set approach to multicriteria
decision-making (see e.g. [75, 76, 77, 78, 82, 231, 243, 325, 79, 120, 80, 81, 74, 323]
and also the Chapter jMAF - Dominance-based Rough Set Data Analysis Framework by J.
Błaszczyński, S. Greco, B. Matarazzo, R. Słowiński, M. Szela̧g in this book (chapter 5)).
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vagueness considered by philosophers (see, e.g. [111]). Different aspects of vague-
ness in the rough set framework are discussed, for example, in [145, 184, 186, 266,
287]. It is worthwhile to mention that a rough set approach to the approximation
of compound concepts has been developed. For such concepts, it is hardly possi-
ble to expect that they can be approximated with the high quality by the traditional
methods [35, 364]. The approach is based on hierarchical learning and ontology
approximation [13, 24, 177, 199, 294]. Approximation of concepts in distributed
environments is discussed in [285]. A survey of algorithmic methods for concept
approximation based on rough sets and Boolean reasoning in presented, for exam-
ple, in [16, 281, 169, 13].

A generalized approximation space9 can be defined by a tuple AS = (U,I,ν)
where I is the uncertainty function defined on U with values in the powerset P(U)
of U (I(x) is the neighboorhood of x) and ν is the inclusion function defined on
the Cartesian product P(U)×P(U) with values in the interval [0,1] measuring the
degree of inclusion of sets [297]. The lower and upper approximation operations
can be defined in AS by

LOWAS(X) = {x ∈U : ν(I(x),X) = 1}, (3.14)

UPPAS(X) = {x ∈U : ν(I(x),X) > 0}. (3.15)

In the standard case, I(x) is equal to the equivalence class B(x) of the indiscernibility
relation INDB; in case of tolerance (similarity) relation T ⊆U ×U [256] we take
I(x) = [x]T = {y∈U : x T y}, that is, I(x) is equal to the tolerance class of T defined
by x. The standard rough inclusion relation νSRI is defined for X ,Y ⊆U by

νSRI(X ,Y ) =

⎧
⎨

⎩

|X ∩Y |
|X | , if X is non− empty,

1, otherwise.
(3.16)

For applications, it is important to have some constructive definitions of I and ν.
One can consider another way to define I(x). Usually together with AS we con-

sider some set F of formulae describing sets of objects in the universe U of AS,
defined by semantics ‖ · ‖AS, that is, ‖α‖AS ⊆U for any α ∈ F 10. Now, one can
take the set

NF (x) = {α ∈ F : x ∈ ‖α‖AS}, (3.17)

and I◦(x) = {‖α‖AS : α ∈ NF (x)}. Hence, more general uncertainty functions hav-
ing values in P(P(U)) can be defined and in the consequence different definitions
of approximations are considered. For example, one can consider the following def-
initions of approximation operations in this approximation space AS◦= (U,I◦,ν):

LOWAS◦(X) = {x ∈U : ν(Y,X) = 1 for some Y ∈ I(x)}, (3.18)

UPPAS◦(X) = {x ∈U : ν(Y,X) > 0 for any Y ∈ I(x)}. (3.19)

9 More general cases are considered, for example, in [301, 303].
10 If AS = (U,I,ν) then we will also write ‖α‖U instead of ‖α‖AS.
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There are also different forms of rough inclusion functions. Let us consider two
examples.

In the first example of a rough inclusion function, a threshold t ∈ (0,0.5) is used
to relax the degree of inclusion of sets. The rough inclusion function νt is defined
by

νt (X ,Y ) =

⎧
⎪⎨

⎪⎩

1 if νSRI (X ,Y )≥ 1− t,
νSRI (X ,Y )−t

1−2t if t ≤ νSRI (X ,Y ) < 1− t,

0 if νSRI (X ,Y )≤ t.

(3.20)

This is an interesting “rough-fuzzy” example because we put the standard rough
membership function as an argument into the formula often used for fuzzy member-
ship functions.

One can obtain approximations considered in the variable precision rough set ap-
proach (VPRSM) [389] by substituting in (3.14)-(3.15) the rough inclusion function
νt defined by (3.20) instead of ν, assuming that Y is a decision class and I(x) = B(x)
for any object x, where B is a given set of attributes.

Another example of application of the standard inclusion was developed by using
probabilistic decision functions. For more detail the reader is referred to [303, 349,
316, 317].

The rough inclusion relation can be also used for function approximation [308,
301, 303] and relation approximation [329]. In the case of function approximation
the inclusion function ν∗ for subsets X ,Y ⊆U×U , where U ⊆ � and � is the set of
real numbers, is defined by

ν∗ (X ,Y ) =

⎧
⎨

⎩

|π1 (X ∩Y )|
|π1 (X)| if π1(X) �= ∅,

1 if π1(X) = ∅,

(3.21)

where π1 is the projection operation on the first coordinate. Assume now, that X is
a cube, and Y is the graph G( f ) of the function f : � −→ �. Then, for example, X
is in the lower approximation of f if the projection on the first coordinate of the
intersection X ∩G( f ) is equal to the projection of X on the first coordinate. This
means that the part of the graph G( f ) is “well” included in the box X , that is, for
all arguments that belong to the box projection on the first coordinate the value of
f is included in the box X projection on the second coordinate. This approach was
extended in several papers (see, e.g. [349, 303]).

The approach based on inclusion functions has been generalized to the rough
mereological approach [199, 250, 249, 252]. The inclusion relation xµry with the
intended meaning x is a part of y to a degree at least r has been taken as the basic
notion of the rough mereology being a generalization of the Leśniewski mereol-
ogy [128, 129]. Research on rough mereology has shown importance of another
notion, namely closeness of compound objects (e.g. concepts). This can be defined
by x clr,r′ y if and only if x µr y and y µr′ x.
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Rough mereology offers a methodology for synthesis and analysis of objects in
a distributed environment of intelligent agents, in particular, for synthesis of ob-
jects satisfying a given specification to a satisfactory degree or for control in such
a complex environment. Moreover, rough mereology has been used for develop-
ing the foundations of the information granule calculi, aiming at formalization of
the Computing with Words paradigm, formulated by Lotfi Zadeh [386]. More com-
plex information granules are defined recursively using already defined information
granules and their measures of inclusion and closeness. Information granules can
have complex structures like classifiers or approximation spaces. Computations on
information granules are performed to discover relevant information granules, for
example, patterns or approximation spaces for compound concept approximations.

Usually, there are considered families of approximation spaces labelled by some
parameters. By tuning such parameters according to chosen criteria (e.g. minimal
description length) one can search for the optimal approximation space for concept
description (see, e.g. [16, 169, 13]).

3.5 Rough Sets and Induction

Granular formulas are constructed from atomic formulas corresponding to the con-
sidered attributes (see, e.g. [222, 221, 301, 303]). In the consequence, the satisfia-
bility of such formulas is defined if the satisfiability of atomic formulas is given
as the result of sensor measurement. Let us consider two information systems
A = (U,C,D) and its extension A∗ = (U∗,C) having the same set of attributes
C (more precisely, the set o attributes in A is obtained by restricting to U attributes
from A∗ defined on U∗ ⊇U).

Hence, one can consider for any constructed formula α over atomic formulas its
semantics ‖α‖A ⊆ U over U as well as the semantics ‖α‖A∗ ⊆ U∗ over U∗ (see
Figure 3.2).

The difference between these two cases is the following. In the case of U , one
can compute ‖α‖A ⊆U , but in the case ‖α‖A∗ ⊆U∗, for any object from U∗ −U ,
there is no information about its membership relative to ‖α‖A∗ − ‖α‖A. One can
estimate the satisfiability of α for objects u ∈U∗ −U only after some relevant sen-
sory measurements on u are performed. In particular, one can use some methods
for estimation of relationships among semantics of formulas over U∗ using the re-
lationships among semantics of these formulas over U . For example, one can apply
statistical methods. This step is crucial in investigation of extensions of approxima-
tion spaces relevant for inducing classifiers from data.
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Fig. 3.2. Two semantics of α over U and U∗, respectively

3.5.1 Rough Sets and Classifiers

In this section, we consider the problem of approximation of concepts over a uni-
verse U∞ (concepts that are subsets of U∞). We assume that the concepts are per-
ceived only through some subsets of U∞ called samples. This is a typical situation in
the machine learning, pattern recognition or data mining approaches [97, 115, 135].
We explain the rough set approach to induction of concept approximations using the
generalized approximation spaces of the form AS= (U, I,ν) defined in Section 3.4.

Let U ⊆ U∞ be a finite sample. By ΠU we denote a perception function from
P(U∞) into P(U) defined by ΠU(C) = C∩U for any concept C ⊆U∞.

Let us consider first an illustrative example.
We assume that there is given an information system A = (U,A) and let us as-

sume that for some C ⊆U∞ there is given the set ΠU(C) = C∩U . In this way we
obtain a decision system ASd = (U,A,d), where d(x) = 1 if x∈C∩U and d(x) = 0,
otherwise.

We would like to illustrate how from the decision function d may be induced a
decision function d∗ defined over U∞ which can be treated as an approximation of
the characteristic function of C.

Let us assume that RULES(ASd) is a set of decision rules induced by some rule
generation method from ASd . For any object x ∈ U∞, let MatchRules(ASd ,x) be
the set of rules from RULES(ASd) supported by x (see, e.g. [20]).

Let C1 = C and C0 = U∞ \C. Now, for k = 1,0 one can define the rough mem-
bership functions µk : U∞→ [0,1] in the following way:
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1. Let Rk(x) be the set of all decision rules from MatchRules(ASd ,x) for Ck, that
is, decision rules from MatchRules(ASd ,x) with right hand side d = k

2. We define real values wk(x), where w1(x) is called the weight “for” and w0(x)
the weight “against” membership of the object x in C, respectively, by

wk(x) = ∑
r∈Rk(x)

strength(r),

where strength(r) is a normalized function depending on length, support,
con f idence of the decision rule r and on some global information about the
decision table ASd such as the table size or the class distribution (see [20]).

3. Finally, one can define the value of µk(x) by

µk(x) =

⎧
⎪⎪⎨

⎪⎪⎩

undefined if max(wk(x),w1−k(x)) < ω
0 if w1−k(x)−wk(x)≥ θ and w1−k(x) > ω
1 if wk(x)−w1−k(x)≥ θ and wk(x) > ω
θ+(wk(x)−w1−k(x))

2θ in other cases,

where ω,θ are parameters set by user.

Now, for computing of the value d∗(x) for x ∈U∞ the user should select a strategy
resolving conflicts between values µ1(x) and µ0(x) representing, in a sense votes
“for” and “against” membership of x in C, respectively. Note that for some cases
x due to the small differences between these values the selected strategy may not
produce the definite answer and these cases will create the boundary region.

Let us consider a generalized approximation space AS = (U, I,νSRI), where
I(x) = A(x) for x ∈U . Now, we would like to check how this approximation space
may be inductively extended so that in the induced approximation space we may
define approximation of the concept C or in other words the approximation of the
decision function d∗.

Hence, the problem we are considering is how to extend the approximations of
ΠU(C) defined by AS to an approximation of C over U∞. We show that the problem
can be described as searching for an extension ASC = (U∞,IC,νC) of the approx-
imation space AS, relevant for approximation of C. This requires to show how to
extend the inclusion function ν from subsets of U to subsets of U∞ that are relevant
for the approximation of C. Observe that for the approximation of C, it is enough to
induce the necessary values of the inclusion function νC without knowing the exact
value of IC(x)⊆U∞ for x ∈U∞.

Let AS be a given approximation space forΠU(C) and let us consider a language
L in which the neighbourhood I(x)⊆U is expressible by a formula pat(x), for any
x ∈U . It means that I(x) = ‖pat(x)‖U ⊆U where ‖pat(x)‖U denotes the meaning
of pat(x) restricted to the sample U . In case of rule-based classifiers, patterns of the
form pat(x) are defined by feature value vectors.

We assume that for any new object x ∈U∞−U , we can obtain (e.g. as a result of
sensor measurement) a pattern pat(x) ∈ L with semantics ‖pat(x)‖U∞ ⊆U∞. How-
ever, the relationships between information granules over U∞ like sets: ‖pat(x)‖U∞
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and ‖pat(y)‖U∞ , for different x,y ∈U∞, are, in general, known only if they can be
expressed by relationships between the restrictions of these sets to the sample U ,
that is, between sets ΠU(‖pat(x)‖U∞) and ΠU(‖pat(y)‖U∞).

The set of patterns {pat(x) : x ∈U} is usually not relevant for approximation of
the concept C ⊆U∞. Such patterns are too specific or not enough general and can
directly be applied only to a very limited number of new objects. However, by using
some generalization strategies, one can search, in a family of patterns definable from
{pat(x) : x ∈U} in L, for such new patterns that are relevant for approximation of
concepts over U∞. Let us consider a subset PATT ERNS(AS,L,C) ⊆ L chosen as
a set of pattern candidates for relevant approximation of a given concept C. For
example, in case of rule based classifier one can search for such candidate patterns
among sets definable by subsequences of feature value vectors corresponding to
objects from the sample U . The set PATT ERNS(AS,L,C) can be selected by using
some quality measures checked on meanings (semantics) of its elements restricted
to the sample U (like the number of examples from the concept ΠU(C) and its
complement that support a given pattern). Then, on the basis of properties of sets
definable by these patterns over U we induce approximate values of the inclusion
function νC on subsets of U∞ definable by any of such pattern and the concept C.

Next, we induce the value of νC on pairs (X ,Y ) where X ⊆ U∞ is definable
by a pattern from {pat(x) : x ∈ U∞} and Y ⊆ U∞ is definable by a pattern from
PATTERNS(AS,L,C).

Finally, for any object x ∈U∞−U we induce the approximation of the degree

νC(‖pat(x)‖U∞ ,C)

applying a conflict resolution strategy Con f lict res (a voting strategy, in case of rule
based classifiers) to two families of degrees:

{νC(‖pat(x)‖U∞ ,‖pat‖U∞) : pat ∈ PATT ERNS(AS,L,C)}, (3.22)

{νC(‖pat‖U∞ ,C) : pat ∈ PATT ERNS(AS,L,C)}. (3.23)

Values of the inclusion function for the remaining subsets of U∞ can be chosen
in any way – they do not have any impact on the approximations of C. Moreover,
observe that for the approximation of C we do not need to know the exact values of
uncertainty function IC – it is enough to induce the values of the inclusion function
νC. Observe that the defined extension νC of ν to some subsets of U∞ makes it
possible to define an approximation of the concept C in a new approximation space
ASC.

Observe that one can also follow principles of Bayesian reasoning and use de-
grees of νC to approximate C (see, e.g. [217, 319, 322]).

Let us present yet another example of (inductive) extension AS∗ of approxima-
tion space AS in the case of rule based classifiers. For details the reader is referred
to, for example, [301, 303].
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Let h : [0,1]→ {0,1/2,1} be a function defined by

h(t) =

⎧
⎨

⎩

1, if t > 1
2 ,

1
2 , if t = 1

2 ,

0, if t < 1
2 .

(3.24)

We start with an extension of the uncertainty function and the rough inclusion func-
tion from U to U∗, where U ⊆U∗:

I(x) = {‖lh(r)‖U∗ : x ∈ ‖lh(r)‖U∗ and r ∈ Rule set}, (3.25)

where x ∈ U∗ and lh(r) denotes the formula on the left-hand side of the rule r,
and Rule set is a set of decision rules induced from a given decision system DT =
(U,A,d). In this approach, the rough inclusion function is defined by

νU (X ,Z) = h

(
|{Y ∈ X : Y ∩U ⊆ Z}|

|{Y ∈ X : Y ∩U ⊆ Z}|+ |{Y ∈ X : Y ∩U ⊆U∗ −Z}|

)

, (3.26)

where X ⊆ P(U∗), X �= ∅ and Z ⊆U∗. In case X = ∅ we set νU (∅,Z) = 0
The induced uncertainty and rough inclusion functions can now be used to define

the lower approximation LOWAS∗(Z), the upper approximation UPPAS∗(Z), and the
boundary region BNAS∗(Z) of Z ⊆U∗ by:

LOWAS∗(Z) = {x ∈U∗ : νU (I(x),Z) = 1}, (3.27)

UPPAS∗(Z) = {x ∈U∗ : νU (I(x),Z) > 0}, (3.28)

and
BNAS∗(Z) = UPPAS∗(Z)−LOWAS∗(Z). (3.29)

In the example, we classify objects from U∗ to the lower approximation of Z if ma-
jority of rules matching this object are voting for Z and to the upper approximation
of Z if at least half of the rules matching x are voting for Z. Certainly, one can fol-
low many other voting schemes developed in machine learning or by introducing
less crisp conditions in the boundary region definition. The defined approximations
can be treated as estimations of the exact approximations of subsets of U∗ because
they are induced on the basis of samples of such sets restricted to U only. One can
use some standard quality measures developed in machine learning to calculate the
quality of such approximations assuming that after estimation of approximations
on U∗ full information about membership for objects relative to the approximated
subsets of U∗ is uncovered analogously to the testing sets in machine learning.

In an analogous way, one can describe other class of classifiers used in machine
learning and data mining such as neural networks or k-nn classifiers.

In this way, the rough set approach to induction of concept approximations can
be explained as a process of inducing a relevant approximation space.
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In [303] is presented the rough set approach to approximation of partially defined
concepts (see also, e.g. [22, 23, 26, 302, 177, 169, 13, 331, 311, 301, 312]). The
problems discussed in this chapter are crucial for building computer systems that
assist researchers in scientific discoveries in many areas. Our considerations can be
treated as a step towards foundations for modelling of granular computations inside
of system that is based on granules called approximation spaces. Approximation
spaces are fundamental granules used in searching for relevant complex granules
called as data models, for example, approximations of complex concepts, functions
or relations. The approach requires some generalizations of the approximation space
concept introduced in [296, 297]. There are presented examples of rough set-based
strategies for the extension of approximation spaces from samples of objects onto a
whole universe of objects. This makes it possible to present foundations for induc-
ing data models such as approximations of concepts or classifications analogous to
the approaches for inducing different types of classifiers known in machine learn-
ing and data mining. Searching for relevant approximation spaces and data models
are formulated as complex optimization problems. This optimization is performed
relative to some measures that are some versions of the minimum length principle
(MLP) [267, 268].

3.5.2 Inducing Relevant Approximation Spaces

A key task in granular computing is the information granulation process that leads to
the formation of information aggregates (with inherent patterns) from a set of avail-
able objects. A methodological and algorithmic issue is the formation of transparent
(understandable) information granules inasmuch as they should provide a clear and
understandable description of patterns present in sample objects [9, 223]. Such a
fundamental property can be formalized by a set of constraints that must be satis-
fied during the information granulation process. For example, in case of inducing
granules such as classifiers, the constraints specify requirements for the quality of
classifiers. Then, inducing of classifiers can be understood as searching for relevant
approximation spaces (which can be treated as a spacial type of granules) relative to
some properly selected optimization measures11. The selection of these optimiza-
tion measures is not an easy task because they should guarantee that the (semi-)
optimal approximation spaces selected relative to these criteria should allow us to
construct classifiers of the high quality.

Let us consider some examples of optimization measures [170]. For example, the
quality of an approximation space can be measured by:

Quality1 : SAS(U)×P(U)→ [0,1], (3.30)

11 Note that while there is a large literature on the covering based rough set approach (see, e.g.
[388, 91]) still much more work should be done on (scalable) algorithmic searching meth-
ods for relevant approximation spaces in huge families of approximation spaces defined
by many parameters determining neighbourhoods, inclusion measures and approximation
operators.
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where U is a non-empty set of objects and SAS(U) is a set of possible approximation
spaces with the universe U.

Example 3.1. If UPPAS(X) �= ∅ for AS ∈ SAS(U) and X ⊆U then

Quality1(AS,X) = νSRI(UPPAS(X),LOWAS(X)) =
|LOWAS(X)|
|UPPAS(X)| . (3.31)

The value 1−Quality1(AS,X) expresses the degree of completeness of our knowl-
edge about X , given the approximation space AS.

Example 3.2. In applications, we usually use another quality measure analogous to
the minimum length principle [268, 268] where also the description length of approx-
imation is included. Let us denote by description(AS,X) the description length of
approximation of X inAS. The description length may be measured, for example, by
the sum of description lengths of algorithms testing membership for neighborhoods
used in construction of the lower approximation, the upper approximation, and the
boundary region of the set X . Then the quality Quality2(AS,X) can be defined by

Quality2(AS,X) = g(Quality1(AS,X),description(AS,X)), (3.32)

where g is a relevant function used for fusion of values Quality1(AS,X) and
description(AS,X). This function g can reflect weights given by experts relative
to both criteria.

One can consider different optimization problems relative to a given class Set AS

of approximation spaces. For example, for a given X ⊆ U and a threshold t ∈
[0,1], one can search for an approximation space AS satisfying the constraint
Quality2(AS,X)≥ t.

Another example can be related to searching for an approximation space satisfy-
ing additionally the constraint Cost(AS) < c where Cost(AS) denotes the cost of
approximation space AS (e.g. measured by the number of attributes used to define
neighbourhoods in AS), and c is a given threshold. In the following example, we
consider also costs of searching for relevant approximation spaces in a given family
defined by a parameterized approximation space. Any parameterized approximation
space AS#,$ = (U, I#,ν$) is a family of approximation spaces. The cost of searching
in such a family for a relevant approximation space for a given concept X approx-
imation can be treated as a factor of the quality measure of approximation of X in
AS#,$ = (U, I#,ν$). Hence, such a quality measure of approximation of X in AS#,$
can be defined by

Quality3(AS#,$,X) = h(Quality2(AS,X),Cost Search(AS#,$,X)), (3.33)

where AS is the result of searching in AS#,$, Cost Search(AS#,$,X) is the cost
of searching in AS#,$ for AS, and h is a fusion function, for example, assuming
that the values of Quality2(AS,X) and Cost Search(AS#,$,X) are normalized to
interval [0,1] h could be defined by a linear combination of Quality2(AS,X) and
Cost Search(AS#,$,X) of the form
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λQuality2(AS,X)+ (1−λ)Cost Search(AS#,$,X), (3.34)

where 0 ≤ λ ≤ 1 is a weight measuring an importance of quality and cost in their
fusion.

We assume that the fusion functions g,h in the definitions of quality are mono-
tonic relative to each argument.

Let AS ∈ Set AS be an approximation space relevant for approximation of X ⊆
U , that is, AS is the optimal (or semi-optimal) relative to Quality2. By

Granulation(AS#,$),

we denote a new parameterized approximation space obtained by granulation of
AS#,$. For example, Granulation(AS#,$) can be obtained by reducing the number
of attributes or inclusion degrees (i.e. possible values of the inclusion function). Let
AS′ be an approximation space in Granulation(AS#,$) obtained as the result of
searching for optimal (semi-optimal) approximation space in Granulation(AS#,$)
for approximation of X .

We assume that three conditions are satisfied:

• after granulation of AS#,$ to Granulation(AS#,$) the following property holds:
the cost

Cost Search(Granulation(AS#,$),X), (3.35)

is much lower than the cost Cost Search(AS#,$,X);
• description(AS′,X) is much shorter than description(AS,X), that is, the de-

scription length of X in the approximation space AS′ is much shorter than the
description length of X in the approximation space AS;

• Quality1(AS,X) and Quality1(AS′,X) are sufficiently close.

The last two conditions should guarantee that the values

Quality2(AS,X) and Quality2(AS′,X)

are comparable and this condition together with the first condition about the cost of
searching should assure that

Quality3(Granulation(AS#,$,X)) is much better than Quality3(AS#,$,X).
(3.36)

Certainly, the phrases already mentioned such as much lower, much shorter, and
sufficiently close should be further elaborated. The details will be discussed else-
where.

Taking into account that parameterized approximation spaces are examples of
parameterized granules, one can generalize the above example of parameterized ap-
proximation space granulation to the case of granulation of parameterized granules.

In the process of searching for (sub-)optimal approximation spaces, different
strategies are used. Let us consider an example of such strategies [309]. In the ex-
ample, DT = (U,A,d) denotes a decision system (a given sample of data), where
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U is a set of objects, A is a set of attributes and d is a decision. We assume that
for any object x, there is accessible only partial information equal to the A-signature
of x (object signature, for short), that is, In fA(x) = {(a,a(x));a ∈ A} and analo-
gously for any concept there is only given a partial information about this concept
by a sample of objects, for example, in the form of decision system. One can use
object signatures as new objects in a new relational structure R . In this relational
structure, R are also modelled some relations between object signatures, for ex-
ample, defined by the similarities of these object signatures. Discovery of relevant
relations on object signatures is an important step in the searching process for rele-
vant approximation spaces. In this way, a class of relational structures representing
perception of objects and their parts is constructed. In the next step, we select a
language L of formulas expressing properties over the defined relational structures,
and we search for relevant formulas in L . The semantics of formulas (e.g. with one
free variable) from L are subsets of object signatures. Observe that each object sig-
nature defines a neighbourhood of objects from a given sample (e.g. decision system
DT ) and another set on the whole universe of objects being an extension of U . In
this way, each formula from L defines a family of sets of objects over the sample
and also another family of sets over the universe of all objects. Such families can
be used to define new neighbourhoods of a new approximation space, for exam-
ple, by taking unions of the described above families. In the searching process for
relevant neighbourhoods, we use information encoded in the given sample. More
relevant neighbourhoods make it possible to define relevant approximation spaces
(from the point of view of the optimization criterion). It is worth to mention that
often this searching process is even more compound. For example, one can discover
several relational structures (not only one, e.g. R as it was presented before) and
formulas over such structures defining different families of neighbourhoods from
the original approximation space and next fuse them for obtaining one family of
neighbourhoods or one neighbourhood in a new approximation space. This kind of
modelling is typical for hierarchical modelling [13], for example, when we search
for a relevant approximation space for objects composed from parts for which some
relevant approximation spaces have been already found.

3.5.3 Rough Sets and Higher Order Vagueness

In [111], it is stressed that vague concepts should have non-crisp boundaries. In the
definition presented in this chapter, the notion of boundary region is defined as a
crisp set BNB(X). However, let us observe that this definition is relative to the sub-
jective knowledge expressed by attributes from B. Different sources of information
may use different sets of attributes for concept approximation. Hence, the boundary
region can change when we consider these different views. Another aspect is dis-
cussed in [287, 307] where it is assumed that information about concepts is incom-
plete, for example, the concepts are given only on samples (see, e.g. [97, 115, 151]).
From [287, 307], it follows that vague concepts cannot be approximated with
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satisfactory quality by static constructs such as induced membership inclusion func-
tions, approximations or models derived, for example, from a sample. Understand-
ing of vague concepts can be only realized in a process in which the induced models
are adaptively matching the concepts in a dynamically changing environment. This
conclusion seems to have important consequences for further development of rough
set theory in combination with fuzzy sets and other soft computing paradigms for
adaptive approximate reasoning.

3.6 Information Granulation

Information granulation can be viewed as a human way of achieving data compres-
sion and it plays a key role in the implementation of the strategy of divide-and-
conquer in human problem-solving [386, 223]. Objects obtained as the result of
granulation are information granules. Examples of elementary information granules
are indiscernibility or tolerance (similarity) classes (see, e.g. [222]). In reasoning
about data and knowledge under uncertainty and imprecision many other more com-
pound information granules are used (see, e.g. [255, 254, 284, 298, 299]). Examples
of such granules are decision rules, sets of decision rules or classifiers. More com-
pound information granules are defined by means of less compound ones. Note that
inclusion or closeness measures between information granules should be consid-
ered rather than their strict equality. Such measures are also defined recursively for
information granules.

Let us discuss shortly an example of information granulation in the process of
modelling patterns for compound concept approximation (see, e.g. [21, 22, 24, 25,
28, 177, 310, 303, 313, 312], [332]. We start from a generalization of information
systems. For any attribute a ∈ A of an information system (U,A), we consider to-
gether with the value set Va of a a relational structure Ra over the universe Va (see,
e.g. [309]). We also consider a language La of formulas (of the same relational sig-
nature as Ra). Such formulas interpreted over Ra define subsets of Cartesian prod-
ucts of Va. For example, any formula αwith one free variable defines a subset ‖α‖Ra

of Va. Let us observe that the relational structure Ra (without functions) induces a
relational structure over U . Indeed, for any k-ary relation r from Ra one can define
a k-ary relation ga ⊆ Uk by (x1, . . . ,xk) ∈ ga if and only if (a(x1), . . . ,a(xk)) ∈ r
for any (x1, . . . ,xk) ∈Uk. Hence, one can consider any formula from La as a con-
structive method of defining a subset of the universe U with a structure induced by
Ra. Any such a structure is a new information granule. On the next level of hier-
archical modelling, that is, in constructing new information systems we use such
structures as objects and attributes are properties of such structures. Next, one can
consider similarity between new constructed objects and then their similarity neigh-
bourhoods will correspond to clusters of relational structures. This process is usually
more complex. This is because instead of relational structure Ra we usually consider
a fusion of relational structures corresponding to some attributes from A. The fusion
makes it possible to describe constraints that should hold between parts obtained by
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composition from less compound parts. Examples of relational structures can be de-
fined by indiscernibility, similarity, intervals obtained in discretization or symbolic
value grouping, preference or spatio-temporal relations (see, e.g. [76, 115, 297]).
One can see that parameters to be tuned in searching for relevant12 patterns over
new information systems are, among others, relational structures over value sets,
the language of formulas defining parts, and constraints.

3.7 Ontological Framework for Approximation

In a number of papers (see, e.g. [13, 193, 300, 14]), the problem of ontology approx-
imation has been discussed together with possible applications to approximation of
compound concepts or to knowledge transfer (see, e.g. [13, 17, 180, 276, 286, 300,
14]). For software RoughICE supporting ontology approximation the reader is re-
ferred to the system homepage13.

In the ontology [328], (vague) concepts and local dependencies between them
are specified. Global dependencies can be derived from local dependencies. Such
derivations can be used as hints in searching for relevant compound patterns (infor-
mation granules) in approximation of more compound concepts from the ontology.
The ontology approximation problem is one of the fundamental problems related
to approximate reasoning in distributed environments. One should construct (in a
given language that is different from the ontology specification language) not only
approximations of concepts from ontology but also vague dependencies specified in
the ontology. It is worthwhile to mention that an ontology approximation should be
induced on the basis of incomplete information about concepts and dependencies
specified in the ontology. Information granule calculi based on rough sets have been
proposed as tools making it possible to solve this problem. Vague dependencies
have vague concepts in premisses and conclusions. The approach to approximation
of vague dependencies based only on degrees of closeness of concepts from de-
pendencies and their approximations (classifiers) is not satisfactory for approximate
reasoning. Hence, more advanced approach should be developed. Approximation
of any vague dependency is a method which allows for any object to compute the
arguments “for” and “against” its membership to the dependency conclusion on the
basis of the analogous arguments relative to the dependency premisses. Any argu-
ment is a compound information granule (compound pattern). Arguments are fused
by local schemes (production rules) discovered from data. Further fusions are pos-
sible through composition of local schemes called approximate reasoning schemes
(AR schemes) (see, e.g. [25, 199, 254]). To estimate the degree to which (at least) an
object belongs to concepts from ontology, the arguments “for” and “against” those
concepts are collected and next a conflict resolution strategy is applied to them to
predict the degree.

12 For target concept approximation.
13 http://www.mimuw.edu.pl/∼bazan/roughice/
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3.8 Discernibility and Boolean Reasoning: Rough Set Methods
for Machine Learning, Pattern Recognition, and Data
Mining

Tasks collected under the labels of data mining, knowledge discovery, decision
support, pattern classification, and approximate reasoning require tools aimed at
discovering templates (patterns) in data and classifying them into certain decision
classes. Templates are in many cases most frequent sequences of events, most prob-
able events, regular configurations of objects, the decision rules of high quality,
standard reasoning schemes. Tools for discovery and classification of templates are
based on reasoning schemes rooted in various paradigms [51]. Such patterns can be
extracted from data by means of methods based, for example, on Boolean reasoning
and discernibility (see this Section and [36]).

Discernibility relations belong to the most important relations considered in
rough set theory. The ability to discern between perceived objects is important for
constructing many entities like reducts, decision rules or decision algorithms. In the
classical rough set approach, a discernibility relation DIS(B)⊆U×U where B⊆ A
is a subset of attributes of an information system (U,A), is defined by xDIS(B)y if
and only if non(xINDBy), where INDB is the B-indiscernibility relation. However,
this is, in general, not the case for the generalized approximation spaces. One can
define indiscernibility by x ∈ I(y) and discernibility by I(x)∩ I(y) = ∅ for any ob-
jects x,y, where I(x) = B(x),I(y) = B(y) in the case of the indiscernibility relation,
and I(x),I(y) are neighborhoods of objects not necessarily defined by the equiva-
lence relation in a more general case.

The idea of Boolean reasoning is based on construction for a given problem P of
a corresponding Boolean function fP with the following property: The solutions for
the problem P can be decoded from prime implicants of the Boolean function fP.
Let us mention that to solve real-life problems it is necessary to deal with Boolean
functions having large number of variables.

A successful methodology based on discernibility of objects and Boolean reason-
ing has been developed for computing of many entities important for applications,
like reducts and their approximations, decision rules, association rules, discretiza-
tion of real value attributes, symbolic value grouping, searching for new features
defined by oblique hyperplanes or higher-order surfaces, pattern extraction from
data as well as conflict resolution or negotiation.

Most of the problems related to generation of the mentioned above entities are
NP-complete or NP-hard. However, it was possible to develop efficient heuristics
returning suboptimal solutions of the problems. The results of experiments on many
data sets are very promising. They show very good quality of solutions generated
by the heuristics in comparison with other methods reported in the literature (e.g.
with respect to the classification quality of unseen objects). Moreover, these heuris-
tics are very efficient from the point of view of time necessary for computing of
solutions. Many of these methods are based on discernibility matrices. Note that it
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is possible to compute the necessary information about these matrices using14 in-
formation encoded in decision systems (e.g. sorted in preprocessing [16, 178, 373])
directly, which significantly improves the efficiency of algorithms.

It is important to note that the methodology makes it possible to construct heuris-
tics having a very important approximation property which can be formulated as
follows: Expressions generated by heuristics, that is, implicants close to prime im-
plicants define approximate solutions for the problem.

In this section, we discuss applications of methods based on rough sets and
Boolean reasoning in machine learning, pattern recognition and data mining.

In supervised machine learning paradigm [97, 115, 143, 151], a learning al-
gorithm is given a training data set, usually in the form of a decision system
A = (U,A,d)15, prepared by an expert. Every such decision system classifies el-
ements from U into decision classes. The purpose of the algorithm is to return
a set of decision rules together with matching procedure and conflict resolution
strategy, called a classifier, which makes it possible to classify unseen objects,
that is, objects that are not described in the original decision table. In this sec-
tion, we provide a number of rough set methods that can be used in construc-
tion of classifiers. For more information, the reader is referred, for example, to
[3, 20, 41, 42, 47, 50, 55, 64, 65, 71, 73, 85, 86, 87, 88, 89, 90, 92, 93, 98,
100, 101, 102, 113, 114, 125, 126, 130, 131, 138, 139, 140, 152, 153, 163, 176,
8, 194, 195, 196, 197, 199, 200, 218, 242, 249, 252, 253, 257, 270, 274, 275,
281, 283, 291, 293, 330, 342, 343, 344, 345, 347, 357, 369, 371, 374]), and
for papers on hierarchical learning and ontology approximation, for example, to
[17, 21, 24, 25, 177, 180, 179, 285, 294, 299, 300].

Most of the techniques discussed below are based on computing prime implicants
for computing different kinds of reducts. Unfortunately, they are computationally
hard. However, many heuristics have been developed which turned out to be very
promising. The results of experiments on many data sets, reported in the literature,
show a very good quality of classification of unseen objects using these heuristics.
A variety of methods for computing reducts and their applications can be found
in [16, 121, 135, 200, 252, 253, 281, 283, 293, 295, 315, 317, 374, 375]. The fact
that the problem of finding a minimal reduct of a given information system is NP-
hard was proved in [295].

As we mentioned, there exists a number of good heuristics that compute suffi-
ciently many reducts in an acceptable time. Moreover, a successful methodology,
based on different reducts, has been developed for solution of many problems like
attribute selection, decision rule generation, association rule generation, discretiza-
tion of real-valued attributes and symbolic value grouping. For further readings the
reader is referred to [20, 280, 345] (attribute selection); [173, 164, 165, 171, 289]
(discretization); [166, 167] (discretization of data stored in relational databases);
and [172] (reduct approximation and association rules).

14 That is, without the necessity of generation and storing of the discernibility matrices.
15 For simplicity, we consider decision systems with one decision.
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Many of these methods are based on discernibility matrices defined in this sec-
tion. It is possible to compute the necessary information about these matrices using
information or decision systems (e.g. sorted in preprocessing [16, 178]) directly
what significantly improves the efficiency of algorithms.

The results presented in this section have been implemented, for example, in the
RSES16 software system (see also [15, 16, 19, 27, 116]). Sections 3.8.1-3.8.6 are
based on a chapter of the book [48]. For links to other rough set software systems,
the reader is referred to the RSDS17.

3.8.1 Reducts in Information and Decision Systems

A crucial concept in the rough set approach to machine learning is that of a reduct.
In fact, the term “reduct” corresponds to a wide class of concepts. What typifies all
of them is that they are used to reduce information (decision) systems by removing
redundant attributes. In this section, we consider three kinds of reducts that will be
used in the remainder of this chapter.

Given an information system A= (U,A), a reduct is a minimal set (wrt inclusion)
of attributes B ⊆ A such that INDB = INDA where INDB, INDA are the indiscerni-
bility relations defined by B and A, respectively [215]. The intersection of all reducts
is called a core.

Intuitively, a reduct is a minimal set of attributes from A that preserves the origi-
nal classification defined by A. Reducts are extremely valuable in applications. Un-
fortunately, the problem of finding a minimal reduct is NP-hard. One can also show
that for any m, there is an information system with m attributes having an exponen-
tial (wrt m) number of reducts. Fortunately, there are reasonably good heuristics that
allow one to compute sufficiently many reducts in an acceptable amount of time.

To provide a general method for computing reducts, we will use the following
constructs.

Let A= (U,A) be an information system with n objects. The discernibility matrix
of A is an n× n matrix with elements ci j consisting of the set of attributes from A
on which objects xi and x j differ, that is,

ci j = {a ∈ A : a(xi) �= a(x j)}, for i, j = 1, ...,n. (3.37)

A discernibility function fA forA is a propositional formula of m Boolean variables,
a∗1, ...,a

∗
m, corresponding to the attributes a1, ...,am, defined by

fA(a∗1, ...,a
∗
m) =

∧

1≤ j<i≤m

∨

c∈c∗i j ,ci j �=∅

c, (3.38)

where c∗i j = {a∗ : a ∈ ci j}. In the sequel, we write ai instead of a∗i , for simplicity.

16 The Rough Set Explorer System: http://logic.mimuw.edu.pl/∼rses/
17 The Rough Set Database System: http://rsds.univ.rzeszow.pl

http://rsds.univ.rzeszow.pl


3 Rough Sets: From Rudiments to Challenges 107

Table 3.1. The information table considered in Example 3.3

Ob ject Speed Colour Humidity

car1 medium green high
car2 medium yellow low
car3 high blue high

Table 3.2. The discernibility matrix for the information table provided in Table 3.1

M (A) car1 car2 car3

car1 c,h s,c
car2 c,h s,c,h
car3 s,c s,c,h

The discernibility function fA describes constraints that must hold to preserve
discernibility between all pairs of discernible objects from A. It requires keeping at
least one attribute from each non-empty element of the discernibility matrix corre-
sponding to any pair of discernible objects.

It can be shown [295] that for any information system A = (U,A) the set of all
prime implicants of fA determines the set of all reducts of A.

Example 3.3. Consider the information system A whose associated information ta-
ble is provided in Table 3.1. The discernibility matrix for A is presented in Table
3.2. (The letters s, c and h stand for Speed, Color and Humidity, respectively.) The
discernibility function for the information system A is then given by

fA(s,c,h) ≡ (c∨h)∧ (s∨ c)∧ (s∨ c∨h).

The prime implicants of fA(s,c,h) can be computed in order to derive the reducts
for A:

fA(s,c,h) ≡ (c∨h)∧ (s∨ c)∧ (s∨ c∨h)
≡ (c∨h)∧ (s∨ c)
≡ c∨ (h∧ s).

The prime implicants of fA(s,c,h) are c and h∧s. Accordingly, there are two reducts
of A, namely {Color} and {Humidity,Speed}. �

The second type of reduct used in this chapter are the decision-relative reducts for
decision systems.

In terms of decision tables, ∂A(x), called the generalized decision function, is the
mapping on U such that for any object x it specifies all rows in the table whose
attribute values are the same as for x, and then collects the decision values from
each row. A decision-relative reduct of A = (U,A,d) is a minimal (wrt inclusion)
non-empty set of attributes B⊆ A such that ∂B = ∂A. Intuitively, the definition states
that B allows us to classify exactly the same objects, as belonging to equivalence
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Table 3.3. The decision table considered in Example 3.4

Ob ject Speed Colour Humidity Danger

car1 medium green high no
car2 medium yellow small no
car3 high blue high yes

classes U/∂A, as A. In terms of decision tables, the columns associated with the
attributes A−B may be removed without affecting the classification power of the
original table.

To compute decision-relative reducts, we extend the definitions of discernibility
matrix and discernibility function in the following straightforward manner. Let A=
(U,A,d) be a consistent decision system (i.e. ∂A(x) consists of exactly one decision
for any x ∈U) and let M (A) = [ci j] be the discernibility matrix of the information
system (U,A). We construct a new matrix, M ′(A) = [c′i j], where

c′i j =
{

∅, if d(xi) = d(x j),
ci j, otherwise.

M ′(A) is called the decision-relative discernibility matrix of A. The decision-
relative discernibility function f r

A for A is constructed from the decision-relative
discernibility matrix forA in the same way as a discernibility function is constructed
from a discernibility matrix. Then, it can be shown [295] that the set of all prime
implicants of f r

A determines the set of all decision-relative reducts of the consistent
decision system A.

Example 3.4. Consider the decision table associated with a decision system A as
represented in Table 3.3.

The discernibility matrix for A is the same as the one given in Table 3.2, and the
decision-relative discernibility matrix for A is provided in Table 3.4.

Using the decision-relative discernibility matrix, we can compute the decision-
relative discernibility function for A:

f r
A(s,c,h)≡ (s∨ c)∧ (s∨ c∨h)≡ (s∨ c).

The set of all prime implicants of f r
A(s,c,h) is {s,c}. Therefore, there are two

decision-relative reducts of A, namely {Speed} and {Color}.
To each decision-relative reduct B of a decision system A, we assign a new de-

cision system, called the B-reduction of A. The details are as follows. Let A =
(U,A,d) be a consistent decision system and suppose that B is a decision-relative
reduct of A. A B-reduction of A is a decision system A∗ = (V,B,d), where:18

• V = {[x]B : x ∈U};

18 Recall that [x]B, where x ∈U , denotes the equivalence class of the relation INDB which
contains x.
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Table 3.4. The decision-relative discernibility matrix corresponding to the decision system
shown in Table 3.3

M ′(A) car1 car2 car3

car1 s,c
car2 s,c,h
car3 s,c s,c,h

Table 3.5. {Speed}-reduction of the decision system A

Ob jects Speed Danger

car1, car2 medium no
car3 high yes

• a([x]B) = a(x), for each a ∈ B and each [x]B ∈V ;
• d([x]B) = d(x), for each [x]B ∈V .

Let A∗ be the {Speed}-reduction of the decision system A. The decision table as-
sociated with A∗ is provided in Table 3.5. �

The above defined method for decision relative reducts computation can be easily
extended to inconsistent decision systems.

Observe that another kind of reducts can be obtained by using the discernibility
requirement relative to the positive regions, that is, POSA(d) = POSB(d) instead of
∂B = ∂A. Certainly, for inconsistent decision systems the former requirement is less
restrictive than the latter.

The last type of reduct, considered in this section, is used in applications where
approximations to reducts are prefered to standard reducts. For example, approxi-
mate reducts for decision-relative reducts are making it possible to generate approx-
imate decision rules. In the case of approximate reducts we relax the requirement
for the discernibility preserving. Instead of preserving the discernibility for all en-
tries of the discernibility matrix where it is necessary we preserve it to a degree, that
is, in a number of entries characterized by a coefficient α. Such reducts are called
α-reducts, where α is a real number from the interval [0,1]. More formal definition
of approximate reducts is the following:

Let A= (U,A,d) be a decision system and let M (A) be the discernibility matrix
of A. Assume further that n is the number of non-empty sets in M (A). A set of
attributes B ⊆ A is called an α-reduct if and only if m

n ≥ α, where m is the number
of sets in M (A) having a non-empty intersection with B.

The reader is referred to [169, 175, 215, 315, 317] for information on various
types of approximate reducts. Additionally, [18, 172, 257, 318] provide approxi-
mation criteria based on discernibility and, therefore, related to Boolean reasoning
principles.
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3.8.2 Attribute Selection

In the supervised machine learning approach, a learning algorithm is provided with
training data. In the context of rough set machine learning techniques, training data
sets are provided in the form of training decision systems, or their equivalent repre-
sentations as decision tables.

Since the condition attributes of a specific decision table are typically extracted
from large sets of unstructured data, it is often the case that some of the attributes are
irrelevant for the purpose of classification. Such attributes should be removed from
the table if possible. The attribute selection problem is the problem of choosing
a relevant subset of attributes, while removing the irrelevant ones (see, for example,
[97]).

A natural solution of the attribute selection problem is to assume that the in-
tersection of the decision-relative reducts of a training decision table is the source
of the relevant attributes. Unfortunately, there are two problems with this solution.
Firstly, the intersection can be empty. Secondly, the number of attributes contained
in all decision-relative reducts is usually small. Consequently, although these at-
tributes perfectly characterize the training decision table, they are, in general, inad-
equate for providing a satisfactory classification of new objects not occurring in the
training data.

To deal with the attribute selection problem, it is often reasonable to use various
approximations of decision-relative reducts.

Let A = (U,A,d) be a consistent decision system. One can treat any subset B of
A as an approximate reduct of A. The number

εA,{d}(B) =
γ(A,{d})− γ(B,{d})

γ(A,{d}) = 1− γ(B,{d})
γ(A,{d}) , (3.39)

is called an error approximation of A by B.19

The error approximation of A by B expresses exactly how the set of attributes B
approximates the set of condition attributes A with respect to determination of d.
Note that εA,{d}(B) ∈ [0,1], where 0 indicates no error, and the closer εA,{d}(B) is to
1, the greater is the error. The reader is referred, for example, to [172, 318] for more
information on approximate reducts.

There are two general approaches to attribute selection: an open-loop approach
and a closed-loop approach. Methods based on the open-loop approach are charac-
terized by the fact that they do not use any feedback information about classifier
quality for attribute selection. In contrast, the methods based on the closed-loop
approach use feedback information as criteria for attribute selection.

A number of attribute selection algorithms have been proposed in the machine
learning literature, but they will not be considered here since our focus is on
rough set based techniques. Rough set techniques that attempt to solve the attribute

19 Recall that the coefficient γ(X ,Y ) expresses the degree of dependency between sets of
attributes X and Y .
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selection problem are typically based on the closed-loop approach and consist of the
following basic steps:20

1. Decision-relative reducts are extracted from a training decision table. The at-
tributes contained in these reducts (in their intersection or in most of them) are
viewed as potentially relevant.

2. Using the specific machine learning algorithm, a classifier based on the chosen
attributes is constructed.

3. The classifier is then tested on a new set of training data; if its performance
is unsatisfactory (wrt some measure), a new set of attributes is constructed by
extracting additional (approximate) reducts for the initial training table, and the
process is repeated.

Reducts need not be the only source of information used in the selection of at-
tributes. The rough set approach offers another interesting possibility. The main
idea is to generalize the notion of attribute reduction by introducing the concept
of significance of attributes. This measure enables attributes to be evaluated using
a multi-valued scale that assigns a real number from the interval [0,1] to an attribute.
This number, expressing the importance of an attribute in a decision system, is eval-
uated by measuring the effect of removing the attribute from the table.

The significance of an attribute a in a decision table A = (U,A,d) is defined by

σA,{d}(a) =
γ(A,{d})− γ(A−{a},{d})

γ(A,{d}) = 1− γ(A−{a},{d})
γ(A,{d}) . (3.40)

Assume that B⊆ A. The significance coefficient can be extended to sets of attributes
as follows,

σ(A,{d})(B) =
γ(A,{d})− γ(A−B,{d})

γ(A,{d}) = 1− γ(A−B,{d})
γ(A,{d}) . (3.41)

The coefficient σA,{d}(B) can be understood as a classification error which oc-
curs when the attributes from B are removed from the decision system. Note that
σA,{d}(B) ∈ [0,1], where 0 indicates that removal of attributes in B causes no error,
and the closer σA,{d}(B) is to 1, the greater the error is.

Remark 3.1. In this section, we have mainly concentrated on the case, where the
attributes are selected from the set of attributes of the input decision system. In
some cases it might be useful to replace some attributes by a new one.

For example, if one considers a concept of a safe distance between vehicles, then
attributes, say VS standing for “vehicle speed” and SL standing for “speed limit”,
can be replaced by an attribute DIF representing the difference SL−VS. In fact,
the new attribute better corresponds to the concept of safe distance than the pair
(VS,SL).

20 There are public domain software packages, for instance the RSES system (for references
see, e.g. [27] and http://logic.mimuw.edu.pl/˜rses/), which offer software that may
be used to solve the attribute selection problem.

http://logic.mimuw.edu.pl/~rses/
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3.8.3 Value Set Reduction

Consider a decision system with a large number of attribute values. There is a very
low probability that a new object will be properly recognized by matching its at-
tribute value vector with any of the rows in the decision table associated with the
decision system. So, in order to construct a high-quality classifier, it is often nec-
essary to reduce the cardinality of the value sets of specific attributes in a training
decision table. The task of reducing the cardinality of value sets is referred to as the
value set reduction problem(see, e.g. [169]).

In this section, two methods of value set reduction are considered [169]:

1. discretization, used for real value attributes, and
2. symbolic attribute value grouping, used for symbolic attributes.

3.8.3.1 Discretization

A discretization replaces value sets of condition real-valued attributes with intervals.
The replacement ensures that a consistent decision system is obtained (assuming
a given consistent decision system) by substituting original values of objects in the
decision table by the unique names of the intervals comprising these values. This
substantially reduces the size of the value sets of real-valued attributes.

The use of discretization is not specific to the rough set approach but to machine
learning. In fact, a majority of rule or tree induction algorithms require it for a good
performance.

Let A = (U,A,d) be a consistent decision system. Assume Va = [la,ra) ⊆ �,21

for any a ∈ A, and la < ra. A pair (a,c), where a ∈ A and c ∈ Va, is called a cut on
Va.

Any attribute a∈ A defines a sequence of real numbers va
1 < va

2 < · · ·< va
ka

, where
{va

1,v
a
2, . . . ,v

a
ka
}= {a(x) : x ∈U}. The set of basic cuts on a, written Ba, is specified

by
Ba = {(a,(va

1 + va
2)/2),(a,(va

2 + va
3)/2), . . . ,(a,(va

ka−1 + va
ka

)/2)}.
The set

⋃
a∈A Ba is called the set of basic cuts on A. �

Example 3.5. Consider a consistent decision system A and the associated decision
table presented in Table 3.6(a).

We assume that the initial value domains for the attributes a and b are

Va = [0,2) ;Vb = [0,4) .

The sets of values of a and b for objects from U are

21
� denotes the set of real numbers.
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Table 3.6. The discretization process: (a) The original decision system A considered in Ex-
ample 3.5 (b) The C-discretization of A considered in Example 3.6

A a b d

u1 0.8 2.0 1
u2 1.0 0.5 0
u3 1.3 3.0 0
u4 1.4 1.0 1
u5 1.4 2.0 0
u6 1.6 3.0 1
u7 1.3 1.0 1 (a)

⇒

AC aC bC d

u1 0 2 1
u2 1 0 0
u3 2 3 0
u4 3 1 1
u5 3 2 0
u6 4 3 1
u7 2 1 1 (b)

a(U) = {0.8, 1.0, 1.3, 1.4, 1.6} ;

b(U) = {0.5, 1.0, 2.0, 3.0} .

By definition, the sets of basic cuts for a and b are

Ba = {(a,0.9), (a,1.15), (a,1.35), (a,1.5)};

Bb = {(b,0.75); (b,1.5); (b,2.5)}.
�

Using the idea of cuts, decision systems with real-valued attributes can be dis-
cretized. For a decision system A = (U,A,d) and a ∈ A, let

Ca = {(a,ca
1),(a,ca

2), . . . ,(a,ca
k)},

be any set of cuts of a. Assume that ca
1 < ca

2 < · · ·< ca
k . The set of cuts C =

⋃
a∈A Ca

defines a new decision system AC = (U,AC,d), called the C-discretization of A,
where

• AC = {aC : a ∈ A};

• aC(x) =

⎧
⎨

⎩

0, if and only if a(x) < ca
1,

i, if and only if a(x) ∈ [ca
i ,c

a
i+1), for i ∈ {1, . . . ,k−1},

k + 1, if and only if a(x) > ca
k.

Example 3.6 (Example 3.5 continued). Let C = Ba∪Bb. It is easy to check that the
C-discretization of A is the decision system whose decision table is provided in
Table 3.6 (b). �

Since a decision system can be discretized in many ways, a natural question arises
how to evaluate various possible discretizations.

A set of cuts C is called A-consistent, if ∂A = ∂
AC , where ∂A and ∂

AC are
generalized decision functions for A and AC, respectively. An A-consistent set of
cuts C is A-irreducible if C′ is not A-consistent for any C′ ⊂C. The A-consistent
set of cuts C is A-optimal if card(C) ≤ card(C′), for any A-consistent set of cuts
C′.
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As easily observed, the set of cuts considered in Example 3.6 is A-consistent.
However, as we shall see in Example 3.7, it is neither optimal nor irreducible.

Since the purpose of the discretization process is to reduce the size of individual
value sets of attributes, we are primarily interested in optimal sets of cuts. These are
extracted from the basic sets of cuts for a given decision system.

Let A = (U,A,d) be a consistent decision system where U = {u1, . . . ,un}.
Recall that any attribute a ∈ A defines a sequence va

1 < va
2 < · · · < va

ka
, where

{va
1,v

a
2, . . . ,v

a
ka
}= {a(x) : x ∈U}. Let ID(A) be the set of pairs (i, j) such that i < j

and d(ui) �= d(u j). We now construct a propositional formula, called the discerni-
bility formula of A, as follows:

1. To each interval of the form
[
va

k ,v
a
k+1

)
, a∈A and k∈{1, . . . ,na−1}, we assign

a Boolean variable denoted by pa
k . The set of all these variables is denoted by

V (A).
2. We first construct a family of formulas

{B(a, i, j) : a ∈ A and (i, j) ∈ ID(A)},

where B(a, i, j) is a disjunction of all elements from the set

{pa
k :
[
va

k ,v
a
k+1

)⊆ [min{a(ui),a(u j)},max{a(ui),a(u j)})}.

3. Next, we construct a family of formulas

{C(i, j) : i, j ∈ {1, . . . ,n}, i < j and (i, j) ∈ ID(A)},

where C(i, j) =
∨

a∈A B(a, i, j).
4. Finally, the discernibility formula for A, D(A), is defined as

D(A) =
∧

C(i, j),

where i < j and (i, j) ∈ ID(A) and C(i, j) �≡ FALSE.

Any non empty set S = {pa1
k1

, . . . , par
kr
} of Boolean variables from V (A) uniquely

defines a set of cuts, C(S), given by

C(S) = {(a1,(v
a1
k1

+ va1
k1+1)/2), · · · ,(ar,(var

kr
+ var

kr+1)/2)}.

Then we have the following properties:
Let A = (U,A,d) be a consistent decision system. For any non-empty set S ⊆

V (A) of Boolean variables, the following two conditions are equivalent:

1. The conjunction of variables from S is a prime implicant of the discernibility
formula for A.

2. C(S) is an A-irreducible set of cuts on A. �

Let A= (U,A,d) be a consistent decision system. For any non-empty set S⊆V (A)
of Boolean variables, the following two conditions are equivalent:
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1. The conjunction of variables from S is a minimal (wrt to length) prime implicant
of the discernibility formula for A.

2. C(S) is an A-optimal set of cuts on A.

Example 3.7 (Example 3.6 continued).

ID(A) = {(1,2), (1,3), (1,5), (2,4), (2,6), (2,7)
(3,4), (3,6), (3,7), (4,5), (5,6), (5,7)}.

1. We introduce four Boolean variables, pa
1, pa

2, pa
3, pa

4, corresponding respectively
to the intervals

[0.8,1.0) , [1.0,1.3), [1.3,1.4) , [1.4,1.6)

of the attribute a, and three Boolean variables, pb
1, pb

2, pb
3, corresponding respec-

tively to the intervals

[0.5,1.0), [1.0,2.0) , [2,3.0)

of the attribute b
2. The following are the formulas B(a, i, j) and B(b, i, j), where i < j and (i, j) ∈

ID(A):

B(a,1,2)≡ pa
1 B(b,1,2)≡ pb

1∨ pb
2

B(a,1,3)≡ pa
1∨ pa

2 B(b,1,3)≡ pb
3

B(a,1,5)≡ pa
1∨ pa

2∨ pa
3 B(b,1,5)≡ FALSE

B(a,2,4)≡ pa
2∨ pa

3 B(b,2,4)≡ pb
1

B(a,2,6)≡ pa
2∨ pa

3∨ pa
4 B(b,2,6)≡ pb

1∨ pb
2∨ pb

3
B(a,2,7)≡ pa

2 B(b,2,7)≡ pb
1

B(a,3,4)≡ pa
3 B(b,3,4)≡ pb

2∨ pb
3

B(a,3,6)≡ pa
3∨ pa

4 B(b,3,6)≡ FALSE

B(a,3,7)≡ FALSE B(b,3,7)≡ pb
2∨ pb

3
B(a,4,5)≡ FALSE B(b,4,5)≡ pb

2
B(a,5,6)≡ pa

4 B(b,5,6)≡ pb
3

B(a,5,7)≡ pa
3 B(b,5,7)≡ pb

2.

3. The following are the formulas C(i, j), where i < j and (i, j) ∈ ID(A):

C(1,2)≡ pa
1∨ pb

1∨ pb
2 C(1,3)≡ pa

1∨ pa
2∨ pb

3
C(1,5)≡ pa

1∨ pa
2∨ pa

3 C(2,4)≡ pa
2∨ pa

3∨ pb
1

C(2,6)≡ pa
2∨ pa

3∨ pa
4∨ pb

1∨ pb
2∨ pb

3 C(2,7)≡ pa
2∨ pb

1
C(3,4)≡ pa

3∨ pb
2∨ pb

3 C(3,6)≡ pa
3∨ pa

4
C(3,7)≡ pb

2∨ pb
3 C(4,5)≡ pb

2
C(5,6)≡ pa

4∨ pb
3 C(5,7)≡ pa

3∨ pb
2.
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Table 3.7. The C-discretization considered in Example 3.7

AC aC bC d

u1 0 2 1
u2 1 0 0
u3 1 2 0
u4 1 1 1
u5 1 2 0
u6 2 2 1
u7 1 1 1

4. The discernibility formula for A is then given by

D(A) ≡ (pa
1∨ pb

1∨ pb
2)∧ (pa

1∨ pa
2∨ pb

3)∧
(pa

1∨ pa
2∨ pa

3)∧ (pa
2∨ pa

3∨ pb
1)∧

(pa
2∨ pa

3∨ pa
4∨ pb

1∨ pb
2∨ pb

3)∧ (pa
2∨ pb

1)∧
(pa

3∨ pb
2∨ pb

3)∧ (pa
3∨ pa

4)∧ (pb
2∨ pb

3)∧
pb

2∧ (pa
4∨ pb

3)∧ (pa
3∨ pb

2).

The prime implicants of the formula D(A) are

pa
2∧ pa

4∧ pb
2

pa
2∧ pa

3∧ pb
2∧ pb

3

pa
3∧ pb

1∧ pb
2∧ pb

3

pa
1∧ pa

4∧ pb
1∧ pb

2.

Suppose we take the prime implicant pa
1∧ pa

4∧ pb
1∧ pb

2. Its corresponding set of cuts
is

C = {(a,0.9),(a,1.5),(b,0.75),(b,1.5)}.
The decision table for the C-discretization of A is provided in Table 3.7.

Observe that the set of cuts corresponding to the prime implicant pa
2∧ pa

4∧ pb
2 is

{(a,1.15),(a,1.5),(b,1.5)}. Thus C is not an optimal set of cuts. �

The problem of searching for an optimal set of cuts P in a given decision system A

is NP-hard. However, it is possible to devise efficient heuristics which, in general,
return reasonable sets of cuts. One of them, called MD-heuristics, is presented below.

We say that a cut (a,c) discerns objects x and y if and only if a(x) < c≤ a(y) or
a(y) < c≤ a(x).

Let n be the number of objects and let k be the number of attributes of a decision
system A. It can be shown that the best cut can be found in O(kn) steps using O(kn)
space only.

Example 3.8. Consider the decision table with the associated decision system A,
provided in Table 3.6 from Example 3.5. The associated information table for the
information system A∗ is presented in Table 3.8.
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INPUT: a decision system A = (U,A,d)
OUTPUT: a set of cuts C

1. Set C to ∅.
2. Let

⋃
a∈A Ca be the set of basic cuts on A.

3. Construct an information table A∗ = (U∗,A∗) such that

• U∗ is the set of pairs (ui,u j) of objects discerned by d (in A) such that i < j;
• A∗ =

⋃
a∈A Ca, where for each c ∈ A∗,

c(x,y) =
{

1, if and only if c discerns x and y (in A),
0, otherwise.

4. Choose a column from A∗ with the maximal number of occurrences of 1’s; add the cut
corresponding to this column to C ; delete the column from A∗, together with all rows
marked with 1 in it.

5. If A∗ is non-empty, then go to step 4 else stop. �

Table 3.8. The information table for the information system A∗

A∗ (a,0.9) (a,1.15) (a,1.35) (a,1.5) (b,0.75) (b,1.5) (b,2.5)
(u1,u2) 1 0 0 0 1 1 0
(u1,u3) 1 1 0 0 0 0 1
(u1,u5) 1 1 1 0 0 0 0
(u2,u4) 0 1 1 0 1 0 0
(u2,u6) 0 1 1 1 1 1 1
(u2,u7) 0 1 0 0 1 0 0
(u3,u4) 0 0 1 0 0 1 1
(u3,u6) 0 0 1 1 0 0 0
(u3,u7) 0 0 0 0 0 1 1
(u4,u5) 0 0 0 0 0 1 0
(u5,u6) 0 0 0 1 0 0 1
(u5,u7) 0 0 1 0 0 1 0

Under the assumption that columns with maximal number of 1’s are chosen from
left to right (if many such columns exist in a given step), the set of cuts returned by
the algorithm is {(a,1.35),(b,1.5),(a,1.15),(a,1.5)}. However, as shown in exam-
ple 3.7, it is not an optimal set of cuts. �

3.8.3.2 Symbolic Attribute Value Grouping

Symbolic attribute value grouping is a technique for reducing the cardinality of
value sets of symbolic attributes. Let A= (U,A,d) be a decision system. Any func-
tion ca : Va → {1, . . . ,m} , where m ≤ card(Va), is called a clustering function for
Va. The rank of ca, denoted by rank (ca), is the value card({ca(x) | x ∈Va}).
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For B⊆ A, a family of clustering functions {ca}a∈B is B-consistent if and only if

∀a ∈ B [ca(a(u)) = ca(a(u′))],

implies (u,u′) ∈ INDB∪ INDd , for any pair (u,u′) ∈U.

The notion of B-consistency has the following intuitive interpretation: If two objects
are indiscernible wrt clustering functions for value sets of attributes from B, then
they are indiscernible either by the attributes from B or by the decision attribute.

We consider the following problem, called the symbolic value partition grouping
problem:

Given a decision system A = (U,A,d), where U = {u1, . . . ,uk}, and a set of
attributes B ⊆ A, search for a B-consistent family {ca}a∈B of clustering functions
such that ∑

a∈B
rank (ca) is minimal.

In order to solve this problem, we apply the following steps:

1. Introduce a set of new Boolean variables:22

{av′
v : a ∈ B and v,v′ ∈Va and v �= v′}.

We extract a subset S of this set such that av′
v ∈ S implies that v′ < v wrt some

arbitrary linear order < on the considered domain.
2. Construct matrix M = [ci j]i, j=1,...,k as follows:

ci j = {av′
v ∈ S : v′ = a(ui) and v = a(u j) and d(ui) �= d(u j)}.

It is easily seen that in the case of a binary decision, the matrix can be reduced
by placing objects corresponding to the first decision in rows and those corre-
sponding to the second decision in columns. We call such a matrix a reduced
discernibility matrix.

3. Using the reduced matrix, M ′, obtained in the previous step, construct the
function

∧

ci j∈M ′

⎛

⎝
∨

c∈ci j ,ci j �=∅

c

⎞

⎠ .

4. Compute the shortest (or sufficiently short) prime implicant I of the constructed
function.

5. Using I, construct, for each attribute a ∈ B, an undirected graph Γa =
〈
VΓa ,EΓa

〉
,

where

• VΓa = {av | v ∈Va};
• EΓa = {(ax,ay) | x,y ∈U and a(x) �= a(y)}.

Note that using I one can construct EΓa due to the equality

EΓa = {(av,av′) : av′
v occurs in I}.

22 The introduced variables serve to discern between pairs of objects wrt an attribute a.
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Table 3.9. The decision table considered in Example 3.9

A a b d

u1 a1 b1 0
u2 a1 b2 0
u3 a2 b3 0
u4 a3 b1 0
u5 a1 b4 1
u6 a2 b2 1
u7 a2 b1 1
u8 a4 b2 1
u9 a3 b4 1
u10 a2 b5 1

6. Find a minimal colouring of vertices for Γa.23 The colouring defines a partition
of VΓa by assuming that all vertices of the same colour belong to the same par-
tition set and no partition set contains vertices with different colours. Partition
sets are named using successive natural numbers.
The clustering function for VΓa is ca(av) = i, provided that av is a member of the
i-th partition set.

Remark 3.2. In practical implementations, one does not usually construct the ma-
trix M explicitly, as required in Steps (2)-(3) above. Instead, prime implicants are
directly extracted from the original decision system.

It should be emphasized that in Step (4) above, there can be many different short-
est prime implicants and in Step (6) there can be many different colorings of the
obtained graphs. Accordingly, one can obtain many substantially different families
of clustering functions resulting in different classifiers. In practice, one often gener-
ates a number of families of clustering functions, tests them against data and chooses
the best one.

Using the construction above to generate a family of partitions, it is usually possible
to obtain a substantially smaller decision table, according to the following definition.

Let A = (U,A,d) be a decision system and B ⊆ A. Any family of clustering
functions c = {ca}a∈B specifies a new decision system Ac = (U,Ac,d) called the
c-reduction of A wrt B, where Ac = {ac : a ∈ B} and ac(x) = ca(a(x)).

Example 3.9. Consider the decision table provided in Table 3.9. The goal is to solve
the symbolic value partition problem for B = A.

One then has to perform the following steps:

1. Introduce new Boolean variables au
v,b

w
x , for all u,v∈Va,u < v and w,x∈Vb,w <

x.
23 The colourability problem is solvable in polynomial time for k = 2, but remains NP-

complete for all k≥ 3. But, similarly to discretization, one can apply some efficient search
heuristics for generating (sub-) optimal partitions.
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Table 3.10. The reduced matrix corresponding to the decision table provided in Table 3.9

M ′ u1 u2 u3 u4

u5 bb1
b4

bb2
b4

aa1
a2 , bb3

b4
aa1

a3 , bb1
b4

u6 aa1
a2 , bb1

b2
aa1

a2 bb2
b3

aa2
a3 , bb1

b2

u7 aa1
a2 aa1

a2 , bb1
b2

bb1
b3

aa2
a3

u8 aa1
a4 , bb1

b2
aa1

a4 aa2
a4 , bb2

b3
aa3

a4 , bb1
b2

u9 aa1
a3 , bb1

b4
aa1

a3 , bb2
b4

aa2
a3 , bb3

b4
bb1

b4

u10 aa1
a2 , bb1

b5
aa1

a2 , bb2
b5

bb3
b5

aa2
a3 , bb1

b5

×

×

×

×

×
a1 a2

a3 a4

b1 b2

b3

b5

b4

Fig. 3.3. Coloring of attribute value graphs constructed in Example 3.9

Table 3.11. The reduced table corresponding to graphs shown in Figure 3.3

ac bc d

1 1 0
2 2 0
1 2 1
2 1 1

2. The reduced matrix M ′ is presented in Table 3.10.
3. The required Boolean function is given by

bb1
b4
∧bb2

b4
∧ (aa1

a2
∨bb3

b4
)∧ (aa1

a3
∨bb1

b4
)∧

(aa1
a2
∨bb1

b2
)∧aa1

a2
∧bb2

b3
∧ (aa2

a3
∨bb1

b2
)∧

aa1
a2
∧ (aa1

a2
∨bb1

b2
)∧bb1

b3
∧aa2

a3
∧

(aa1
a4
∨bb1

b2
)∧aa1

a4
∧ (aa2

a4
∨bb2

b3
)∧ (aa3

a4
∨bb1

b2
)∧

(aa1
a3
∨bb1

b4
)∧ (aa1

a3
∨bb2

b4
)∧ (aa2

a3
∨bb3

b4
)∧bb1

b4
∧

(aa1
a2
∨bb1

b5
)∧ (aa1

a2
∨bb2

b5
)∧bb3

b5
∧ (aa2

a3
∨bb1

b5
).

4. The shortest prime implicant for the function is

I ≡ aa1
a2
∧aa2

a3
∧aa1

a4
∧aa3

a4
∧bb1

b4
∧bb2

b4
∧bb2

b3
∧bb1

b3
∧bb3

b5
.
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5. The graphs corresponding to a and b are shown in Figure 3.3.
6. The graphs are 2-colored, as shown in Figure 3.3, where nodes marked by

⊗
are

colored black and the other nodes are colored white. These colorings generate
the following clustering functions:

ca (a1) = ca (a3) = 1

ca (a2) = ca (a4) = 2

cb (b1) = cb (b2) = cb (b5) = 1

cb (b3) = cb (b4) = 2.

Given these clustering functions, one can construct a new decision system (see
Table 3.11). �

Observe that discretization and symbolic attribute value grouping can be simultane-
ously used in decision systems including both real-value and symbolic attributes.

3.8.4 Minimal Decision Rules

In this section, techniques for constructing minimal rules for decision systems will
be considered.

Given a decision Table A, a minimal decision rule (wrt A) is a rule which is
TRUE in A and which becomes FALSE in A if any elementary descriptor from the
left-hand side of the rule is removed.24

The minimal number of elementary descriptors in the left-hand side of a minimal
decision rule defines the largest subset of a decision class. Accordingly, informa-
tion included in the conditional part of any minimal decision rule is sufficient for
predicting the decision value of all objects satisfying this part of the rule. The con-
ditional parts of minimal decision rules define the largest object sets relevant for
approximating decision classes. The conditional parts of minimal decision rules can
be computed using prime implicants.

To compute the set of all minimal rules wrt to a decision system A = (U,A,d),
we proceed as follows, for any object x ∈U :

1. Construct a decision-relative discernibility function f r
x by considering the row

corresponding to object x in the decision-relative discernibility matrix for A.
2. Compute all prime implicants of f r

x .
3. On the basis of the prime implicants, create minimal rules corresponding to x.

To do this, consider the set A(I) of attributes corresponding to propositional
variables in I, for each prime implicant I, and construct the rule:

⎛

⎝
∧

a∈A(I)

(a = a(x))

⎞

⎠⇒ d = d(x).

24 A decision rule ϕ⇒ ψ is TRUE in A if and only if ‖ϕ‖A ⊆ ‖ψ‖A.
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Table 3.12. Decision table considered in Example 3.10

Ob ject L W C S

1 7.0 large green no
2 7.0 large blue no
3 4.0 medium green yes
4 4.0 medium red yes
5 5.0 medium blue no
6 4.5 medium green no
7 4.0 large red no

Table 3.13. {L,W}-reduction considered in Example 3.10

Ob jects L W S

1, 2 7.0 large no
3,4 4.0 medium yes
5 5.0 medium no
6 4.5 medium no
7 4.0 large no

The following example illustrates the idea.

Example 3.10. Consider the decision system A whose decision table is provided
in Table 3.12. Table 3.12 contains the values of condition attributes of vehicles
(L,W,C, standing for Length, Width, and Color, respectively), and a decision at-
tribute S standing for Small which allows one to decide whether a given vehicle is
small.

This system has exactly one decision-relative reduct consisting of attributes L
and W . The {L,W}-reduction of A as shown in Table 3.13.

Table 3.13 results in the following set of non-minimal decision rules:

(L = 7.0) ∧ (W = large) ⇒ (S = no)
(L = 4.0) ∧ (W = medium) ⇒ (S = yes)
(L = 5.0) ∧ (W = medium) ⇒ (S = no)
(L = 4.5) ∧ (W = medium) ⇒ (S = no)
(L = 4.0) ∧ (W = large) ⇒ (S = no).

To obtain the minimal decision rules, we apply the construction provided above,
for x ∈ {1, . . . ,7}.

1. The decision-relative discernibility functions f r
1 , . . . , f r

7 are constructed on the
basis of the reduced discernibility matrix shown in Table 3.14:
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Table 3.14. Reduced decision-relative discernibility matrix from Example 3.10

3 4

1 L,W L,W,C
2 L,W,C L,W,C
5 L,C L,C
6 L L,C
7 W,C W

f r
1 ≡ (L∨W )∧ (L∨W ∨C)≡ (L∨W )

f r
2 ≡ (L∨W ∨C)∧ (L∨W ∨C)≡ (L∨W ∨C)

f r
3 ≡ (L∨W )∧ (L∨W ∨C)∧ (L∨C)∧L∧ (W ∨C)
≡ (L∧W )∨ (L∧C)

f r
4 ≡ (L∨W ∨C)∧ (L∨W ∨C)∧ (L∨C)∧ (L∨C)∧W

≡ (L∧W )∨ (C∧W )
f r
5 ≡ (L∨C)∧ (L∨C)≡ (L∨C)

f r
6 ≡ L∧ (L∨C)≡ L

f r
7 ≡ (W ∨C)∧W ≡W.

2. The following prime implicants are obtained from formulas f r
1 , . . . , f r

7 :

f r
1 : L, W

f r
2 : L, W , C

f r
3 : L∧W , L∧C

f r
4 : L∧W , C∧W

f r
5 : L, C

f r
6 : L

f r
7 : W .

3. Based on the prime implicants, minimal decision rules are created for objects
1, . . . ,7. For instance, from prime implicants L and W corresponding to f r

1 , the
following minimal decision rules are generated based on object 1:

(L = 7.0)⇒ (S = no)
(W = large)⇒ (S = no).

On the basis of object 3 and prime implicants L∧W and L∧C for f r
3 we obtain

the following rules:

(L = 4.0)∧ (W = medium)⇒ (S = yes)
(L = 4.0)∧ (C = green)⇒ (S = yes).

Similarly, minimal decision rules can easily be obtained for all other
formulas. �
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In practice, the number of minimal decision rules can be large. One then tries to
consider only subsets of these rules or to drop some conditions from minimal rules.

Remark 3.3. The main challenge in inducing rules from decision systems lies in de-
termining which attributes should be included into the conditional parts of the rules.
Using the strategy outlined above, the minimal rules are computed first. Their condi-
tional parts describe the largest object sets with the same generalized decision value
in a given decision system. Although such minimal decision rules can be computed,
this approach can result in a set of rules of unsatisfactory classification quality. Such
rules might appear too general or too specific for classifying new objects. This de-
pends on the data analyzed. Techniques have been developed for the further tuning
of minimal rules. �

3.8.5 Example: Learning of Concepts

Given that one has all the techniques described in the previous sections at one’s
disposal, an important task is to induce definitions of concepts from training data,
where the representation of the definition is as efficient and of high quality as pos-
sible. These definitions may then be used as classifiers for the induced concepts.

Let us concentrate on the concept of Distance between cars on the road. The
rough relation Distance(x,y,z) denotes the approximate distance between vehicles
x and y, where z ∈ {small,medium, large,unknown}. Below, we simplify the defini-
tion somewhat, and consider Distance(x,z) which denotes that the distance between
x and the vehicle directly preceding x is z.25 Assume that sample training data have
been gathered in a decision table which is provided in Table 3.15, where26

• SL stands for the “speed limit” on a considered road segment;
• VS stands for the “vehicle speed”;
• W stands for “weather conditions”;
• AD stands for “actual distance” between a given vehicle and its predecessor on

the road.

For the sake of simplicity, we concentrate on generating rules to determine whether
the distance between two objects is small.

On the basis of the training data, one can compute a discernibility matrix. Since
we are interested in rules for the decision small only, it suffices to consider a simpli-
fied discernibility matrix with columns labelled by objects 1 and 3, as these are the
only two objects, where the corresponding decision is small. The resulting discerni-
bility matrix is shown in Table 3.16.

25 In fact, here we consider a distance to be small if it causes a dangerous situation and to be
large if the situation is safe.

26 Of course, real-life sample data would consist of hundreds or thousands of examples.
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Table 3.15. Training data considered in Section 3.8.5

Ob ject SL V S W AD Distance

1 70 60 rain 3.0 small
2 70 70 sun 5.0 medium
3 50 60 rain 5.0 small
4 50 60 sun 9.0 medium
5 30 15 rain 9.0 large
6 30 10 sun 5.0 large
7 70 60 rain 15.0 large
8 50 40 rain 15.0 large

Table 3.16. Discernibility matrix of Table 3.15 for decision small

Ob ject 1 3

2 V S,W,AD SL,V S,W
4 SL,W,AD W,AD
5 SL,V S,AD SL,V S,AD
6 SL,V S,W,AD SL,V S,W
7 AD SL,AD
8 SL,V S,AD V S,AD

The discernibility matrix gives rise to the following discernibility functions:

f1 ≡ (V S∨W ∨AD)∧ (SL∨W ∨AD)∧ (SL∨VS∨AD)
∧(SL∨VS∨W ∨AD)∧AD∧ (SL∨VS∨AD)

≡ AD

f3 ≡ (SL∨VS∨W)∧ (W ∨AD)∧ (SL∨VS∨AD)
∧(SL∨VS∨W )∧ (SL∨AD)∧ (VS∨AD)

≡ (W ∧AD)∨ (SL∧AD)∨ (VS∧AD)∨ (SL∧VS∧W ).

Based on the discernibility functions, one can easily find prime implicants and ob-
tain the following rules for the decision small:27

(AD = 3.0)⇒ (Distance = small) (3.42)

(W = rain)∧ (AD = 5.0)⇒ (Distance = small)
(SL = 50)∧ (AD = 5.0)⇒ (Distance = small)
(V S = 60)∧ (AD = 5.0)⇒ (Distance = small)
(SL = 50)∧ (VS = 60)∧ (W = rain)⇒ (Distance = small).

There have been also developed methods for approximation of compound concepts
based on rough sets, hierarchical learning and ontology approximation (see, e.g.
[13, 17, 21, 24, 25, 177, 180, 179, 285, 294, 299, 300]).

27 In practical applications one would have to discretize AD before extracting rules.
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Table 3.17. Information table considered in Example 3.11

Customer Bread Milk Jam Beer

1 yes yes no no
2 yes yes yes yes
3 yes yes yes no
4 no yes yes no

3.8.6 Association Rules

In this section [172, 175], we show how rough set techniques can be used to extract
association rules from information systems. Association rules playing an important
role in the field of data mining provide associations among attributes28. A real num-
ber from the interval [0,1] is assigned to each rule and provides a measure of the
confidence of the rule. The following example will help to illustrate this.

Example 3.11. Consider the information table provided in Table 3.17.
Each row in the table represents items bought by a customer. For instance, cus-

tomer 1 bought bread and milk, whereas customer 4 bought milk and jam. An as-
sociation rule that can be extracted from the above table is: a customer who bought
bread also bought milk. This is represented by

(Bread = yes)⇒ (Milk = yes).

Since all customers who bought bread actually bought milk too, the confidence of
this rule is 1. Now consider the rule

(Bread = yes)∧ (Milk = yes)⇒ (Jam = yes)

stating that a customer who bought bread and milk, bought jam as well. Since three
customers bought both bread and milk and two of them bought jam, the confidence
of this rule is 2/3. �

We now formalize this approach to confidence measures for association rules. Re-
call that by a template, we mean a conjunction of elementary descriptors, that is,
expressions of the form a = v, where a is an attribute and v ∈ Va. For an informa-
tion system A and a template T , we denote by supportA(T ) the number of objects
satisfying T . Let A be an information system and T = D1∧ . . .∧Dm be a template.
By an association rule generated from T , we mean any expression of the form

∧

Di∈P

Di ⇒
∧

Dj∈Q

D j,

where {P,Q} is a partition of {D1, . . . ,Dm}. By a confidence of an association rule
φ≡∧

Di∈P Di ⇒ ∧
Dj∈Q D j we mean the coefficient

28 Association between attributes are also studied using association reducts [315].
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con f idenceA(φ) =
supportA(D1∧ . . .∧Dm)

supportA(
∧

Di∈P

Di)
.

There are two basic steps used in methods aimed at generating association rules.
(Below s and c stand for support and confidence thresholds wrt a given information
system A, respectively.)

1. Generate as many templates T = D1 ∧ . . . ∧ Dk as possible, such that
supportA(T ) ≥ s and supportA(T ∧Di) < s, for any descriptor Di different
from all descriptors D1, . . . ,Dk.

2. Search for a partition {P,Q} of T , for each T generated in the previous step,
satisfying

a. supportA(P) <
supportA(T )

c
b. P has the shortest length among templates satisfying (a).

Every such partition leads to an association rule of the form P ⇒ Q whose
confidence is greater than c.

The second step, crucial to the process of extracting association rules, can be solved
using rough set methods.

Let T = D1∧D2∧ . . .∧Dm be a template such that supportA(T )≥ s. For a given
confidence threshold c∈ [0,1], the association rule φ≡P⇒Q is called c-irreducible
if con f idenceA(P ⇒ Q)≥ c and for any association rule φ′ ≡ P′ ⇒ Q′ such that P′
is a sub-formula of P, we have

con f idenceA(P′ ⇒ Q′) < c.

The problem of searching for c-irreducible association rules from a given template
is equivalent to the problem of searching for α-reducts in a decision table, for some
α ∈ [0,1] (see Section 3.8.1).

Let A be an information system and T = D1 ∧D2 ∧ . . . ∧Dm be a template.
By a characteristic table for T wrt A, we understand a decision system A|T =
(U,A|T ,d), where

1. A|T = {aD1 ,aD2 , ...,aDm} is a set of attributes corresponding to the descriptors
of T such that

aDi(u) =
{

1, if the object u satisfies Di,
0, otherwise;

2. the decision attribute d determines whether the object satisfies a template T ,
that is,

d(u) =
{

1, if the object u satisfies T,
0, otherwise.

The following property provides the relationship between association rules and ap-
proximations of reducts.
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For a given information system A = (U,A), a template T = D1 ∧D2 ∧ . . .∧Dm

and a set of descriptors P⊆ {D1, . . . ,Dm}, the association rule

∧

Di∈P

Di ⇒
∧

Dj∈{D1,...,Dm}−P

D j,

is

1. a 1-irreducible association rule from T if and only if
⋃

Di∈P

{aDi} is a decision-

relative reduct of A|T ;
2. a c-irreducible association rule from T if and only if

⋃

Di∈P

{aDi} is an α-reduct

of A|T , where

α= 1−
[(

1

c
−1

)

/
(

|U |
supportA(T )

−1

)]

.

The problem of searching for the shortest association rules is NP-hard.
The following example illustrates the main ideas used in the searching method

for association rules.

Example 3.12. Consider the information table A with 18 objects and 9 attributes
presented in Table 3.18.

Table 3.18. Information table A considered in Example 3.12

A a1 a2 a3 a4 a5 a6 a7 a8 a9

u1 0 1 1 1 80 2 2 2 3
u2 0 1 2 1 81 0 aa 1 aa
u3 0 2 2 1 82 0 aa 1 aa
u4 0 1 2 1 80 0 aa 1 aa
u5 1 1 2 2 81 1 aa 1 aa
u6 0 2 1 2 81 1 aa 1 aa
u7 1 2 1 2 83 1 aa 1 aa
u8 0 2 2 1 81 0 aa 1 aa
u9 0 1 2 1 82 0 aa 1 aa
u10 0 3 2 1 84 0 aa 1 aa
u11 0 1 3 1 80 0 aa 2 aa
u12 0 2 2 2 82 0 aa 2 aa
u13 0 2 2 1 81 0 aa 1 aa
u14 0 3 2 2 81 2 aa 2 aa
u15 0 4 2 1 82 0 aa 1 aa
u16 0 3 2 1 83 0 aa 1 aa
u17 0 1 2 1 84 0 aa 1 aa
u18 1 2 2 1 82 0 aa 2 aa
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Consider the template

T = (a1 = 0)∧ (a3 = 2)∧ (a4 = 1)∧ (a6 = 0)∧ (a8 = 1). (3.43)

It is easily seen that supportA(T ) = 10. The new constructed decision table A |T is
presented in Table 3.19.

Table 3.19. Decision table A|T considered in Example 3.12

A|T aD1 aD2 aD3 aD4 aD5 d
(a1 = 0) (a3 = 2) (a4 = 1) (a6 = 0) (a8 = 1)

u1 1 0 1 0 0 0
u2 1 1 1 1 1 1
u3 1 1 1 1 1 1
u4 1 1 1 1 1 1
u5 0 1 0 0 1 0
u6 1 0 0 0 1 0
u7 0 0 0 0 1 0
u8 1 1 1 1 1 1
u9 1 1 1 1 1 1
u10 1 1 1 1 1 1
u11 1 0 1 1 0 0
u12 1 0 0 1 0 0
u13 1 1 1 1 1 1
u14 1 1 0 0 0 0
u15 1 1 1 1 1 1
u16 1 1 1 1 1 1
u17 1 1 1 1 1 1
u18 0 1 1 1 0 0

The reduced discernibility matrix A |T is provided in Table 3.20, where for sim-
plicity, the second column represents, in fact, ten columns with identical contents,
labelled by u2,u3,u4,u8,u9,u10,u13,u15,u16,u17, respectively.

Table 3.20. Reduced discernibility matrix for A|T from Example 3.12

M (A|T ) u2,u3,u4,u8,u9
u10,u13,u15,u16,u17

u1 aD2 ,aD4 ,aD5

u5 aD1 ,aD3 ,aD4

u6 aD2 ,aD3 ,aD4

u7 aD1 ,aD2 ,aD3 ,aD4

u11 aD1 ,aD3 ,aD5

u12 aD2 ,aD3 ,aD5

u14 aD3 ,aD4 ,aD5

u18 aD1 ,aD5
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Given the discernibility matrix, one can easily compute the discernibility function
A |T for A |T :

fAT (aD1 ,aD2 ,aD3 ,aD4 ,aD5) ≡ (aD2 ∨aD4 ∨aD5)
∧(aD1 ∨aD3 ∨aD4)
∧(aD2 ∨aD3 ∨aD4)
∧(aD1 ∨aD2 ∨aD3 ∨aD4)
∧(aD1 ∨aD3 ∨aD5)
∧(aD2 ∨aD3 ∨aD5)
∧(aD3 ∨aD4 ∨aD5)
∧(aD1 ∨aD5),

where Di denotes the i-th conjunct of (3.43).
The discernibility function has the following prime implicants: aD3 ∧aD5 , aD4 ∧

aD5 , aD1∧aD2∧aD3 , aD1∧aD2∧aD4 , aD1∧aD2∧aD5 , aD1∧aD3∧aD4 . This gives rise
to the reducts: {aD3 ,aD5}, {aD4 ,aD5}, {aD1 ,aD2 ,aD3}, {aD1 ,aD2 ,aD4}, {aD1 ,aD2 ,
aD5}, {aD1 ,aD3 ,aD4}. Thus, there are 6 association rules with confidence 1, that is,
1-irreducible:

D3∧D5 ⇒ D1∧D2∧D4

D4∧D5 ⇒ D1∧D2∧D3

D1∧D2∧D3 ⇒ D4∧D5

D1∧D2∧D4 ⇒ D3∧D5

D1∧D2∧D5 ⇒ D3∧D4

D1∧D3∧D4 ⇒ D2∧D5.

For confidence 0.9, we look for α-reducts for the decision table A |T , where

α= 1−
(

1

0.9
−1

)

/

(
18

10
−1

)

≈ 0.86.

Hence, we look for a set of descriptors that covers at least �(18− 10) ∗ α� =
�8 ∗ 0.86�= 7 elements of the discernibility matrix M (A |T). One can see that the
following sets of descriptors: {D1,D2}, {D1,D3}, {D1,D4}, {D1,D5}, {D2,D3},
{D2,D5}, {D3,D4} have non-empty intersections with exactly 7 members of the
discernibility matrix M (A |T ). Consequently, the 0.9-irreducible association rules
obtained from those sets are the following:
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D1∧D2 ⇒ D3∧D4∧D5

D1∧D3 ⇒ D2∧D4∧D5

D1∧D4 ⇒ D2∧D3∧D5

D1∧D5 ⇒ D2∧D3∧D4

D2∧D3 ⇒ D1∧D4∧D5

D2∧D5 ⇒ D1∧D3∧D4

D3∧D4 ⇒ D1∧D2∧D5.

The technique illustrated by this example can be applied to find useful dependen-
cies between attributes in complex application domains. In particular, one could use
such dependencies in constructing robust classifiers conforming to the laws of the
underlying reality. �

3.9 Rough Sets, Approximate Boolean Reasoning and
Scalability

Mining large data sets is one of the biggest challenges in KDD. In many practi-
cal applications, there is a need of data mining algorithms running on terminals of
a client–server database system where the only access to database (located in the
server) is enabled by SQL queries.

Unfortunately, the proposed so far data mining methods based on rough sets and
Boolean reasoning approach are characterized by high computational complexity
and their straightforward implementations are not applicable for large data sets. The
critical factor for time complexity of algorithms solving the discussed problem is
the number of simple SQL queries like

SELECT COUNT FROM aTable WHERE aCondition

In this section, we present some efficient modifications of these methods to solve
out this problem. We consider the following issues:

• Searching for short reducts from large data sets;
• Searching for best partitions defined by cuts on continuous attributes;

3.9.1 Reduct Calculation

Let us again illustrate the idea of reduct calculation using discernibility matrix (Ta-
ble 3.21).

Example 3.13. Let us consider the “weather” problem specified by decision system
which is represented by decision table (see Table 3.21). Objects are described by
four condition attributes and are divided into 2 classes. Let us consider the first 12
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observations. In this example, U = {1,2, . . . ,12}, A = {a1,a2,a3,a4}, CLASSno =
{1,2,6,8}, CLASSyes = {3,4,5,7,9,10,11,12}.

Table 3.21. The exemplary “weather” decision table (left) and the compact form of discerni-
bility matrix (right)
date outlook temperature humidity windy play
ID a1 a2 a3 a4 dec
1 sunny hot high FALSE no
2 sunny hot high TRUE no
3 overcast hot high FALSE yes
4 rainy mild high FALSE yes
5 rainy cool normal FALSE yes
6 rainy cool normal TRUE no
7 overcast cool normal TRUE yes
8 sunny mild high FALSE no
9 sunny cool normal FALSE yes
10 rainy mild normal FALSE yes
11 sunny mild normal TRUE yes
12 overcast mild high TRUE yes

M 1 2 6 8

3 a1 a1,a4 a1,a2,
a3, a4

a1,a2

4 a1,a2 a1,a2,a4a2,a3,a4a1

5 a1,a2,a3a1,a2,
a3, a4

a4 a1,a2,a3

7 a1,a2,
a3,a4

a1,a2,a3a1 a1,a2,
a3, a4

9 a2,a3 a2,a3,a4a1,a4 a2,a3

10 a1,a2,a3a1,a2,
a3,a4

a2,a4 a1,a3

11 a2,a3,a4a2,a3 a1,a2 a3,a4

12 a1,a2,a4a1,a2 a1,a2,a3a1,a4

The discernibility matrix can be treated as a board containing n×n boxes. Note-
worthy is the fact that discernibility matrix is symmetrical with respect to the main
diagonal, because Mi, j = Mj,i, and that sorting all objects according to their deci-
sion classes causes a shift off all empty boxes nearby to the main diagonal. In case
of decision table with two decision classes, the discernibility matrix can be rewrit-
ten in a more compact form as shown in Table 3.21. The discernibility function is
constructed from discernibility matrix by taking a conjunction of all discernibility
clauses in which any attribute ai is substituted by the corresponding Boolean vari-
able xi. After reducing, of all repeated clauses, we have29:

f (x1,x2,x3,x4) =(x1)(x1 + x4)(x1 + x2)(x1 + x2 + x3 + x4)(x1 + x2 + x4)
(x2 + x3 + x4)(x1 + x2 + x3)(x4)(x2 + x3)(x2 + x4)
(x1 + x3)(x3 + x4)(x1 + x2 + x4).

One can find relative reducts of the decision table by searching for prime implicants
of this discernibility function. The straightforward method allow us to calculate all
prime implicants by transformation of the formula to the DNF form (using absorb-
tion rule p(p+q)≡ p and other rules for Boolean algebra). One can do it as follows:

f = (x1)(x4)(x2 + x3) = x1x4x2 + x1x4x3

Thus, we have 2 reducts: R1 = {a1,a2,a4} and R2 = {a1,a3,a4}.

29 In the formulas + denotes logical disjunction ∨ and we omit the conjunction sign ∧ if is
this not lead to misunderstanding.
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Every heuristic algorithm for the prime implicant problem can be applied to the
discernibility function to solve the minimal reduct problem. One of such heuris-
tics was proposed in [295] and was based on the idea of greedy algorithm, where
each attribute is evaluated by its discernibility measure, that is, the number of pairs
of objects which are discerned by the attribute, or, equivalently, the number of its
occurrences in the discernibility matrix.

• First we have to calculate the number of occurrences of each attributes in the
discernibility matrix:

eval(a1) = discdec(a1) = 23, eval(a2) = discdec(a2) = 23,

eval(a3) = discdec(a3) = 18, eval(a4) = discdec(a4) = 16.

Thus a1 and a2 are the two most preferred attributes.
• Assume that we select a1. Now we are taking under consideration only those

cells of the discernibility matrix that are not containing a1. There are 9 such
cells only, and the number of occurrences are as the following:

eval(a2) = discdec(a1,a2)−discdec(a1) = 7,

eval(a3) = discdec(a1,a3)−discdec(a1) = 7,

eval(a4) = discdec(a1,a4)−discdec(a1) = 6.

• If this time we select a2, then there only 2 remaining cells, and, both are con-
taining a4;

• Therefore, the greedy algorithm returns the set {a1,a2,a4} as a reduct of suffi-
ciently small size.

There is another reason for choosing a1 and a4, because they are core attributes30.
One can check that an attribute is a core attribute if and only if occurs in the dis-
cernibility matrix as a singleton [295]. Therefore, core attributes can be recognized
by searching for all singleton cells of the discernibility matrix. The pseudo-code of
this algorithm is presented in Algorithm 3.1.

The reader may have a feeling that the greedy algorithm for reduct problem has
quite a high complexity, because two main operations:

• disc(B) – number of pairs of objects discerned by attributes from B;
• isCore(a) – check whether a is a core attribute;

are defined by the discernibility matrix which is a complex data structure containing
O(n2) cells, and each cell can contain up to O(m) attributes, where n is the number
of objects and m is the number of attributes of the given decision table. This suggests
that the two main operations need at least O(mn2) computational time.

Fortunately, both operations can be performed more efficiently. It has been shown
[178] that both operations can be calculated in time O(mn logn) without the neces-
sity to store the discernibility matrix. We present an effective implementation of this
heuristics that can be applied to large data sets.

30 An attribute is called core attribute if and only if it occurs in every reduct [215, 222].
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Algorithm 3.1. Searching for short reduct

begin
B := ∅ // Step 1. Initializing B by core attributes
for a ∈ A do

if isCore(a) then
B := B∪{a}

end
end
// Step 2. Including attributes to B
repeat

amax := argmax
a∈A−B

discdec(B∪ {a}) eval(amax) := discdec(B∪ {amax})− discdec(B)

if (eval(amax) > 0) then
B := B∪{a}

end
until (eval(amax) == 0) OR (B == A) ;
// Step 3. Elimination
for a ∈ B do

if (discdec(B) = discdec(B−{a})) then
B := B−{a};

end
end

end

Let A=(U,A,dec) be a decision system. By a “counting table” of a set of objects
X ⊂U we denote the vector:

CountTable(X) = 〈n1, . . . ,nd〉,

where nk = card(X ∩CLASSk) is the number of objects from X belonging to the kth

decision class.
We define a conflict measure of X by

con f lict(X) =∑
i< j

nin j =
1
2

⎡

⎣

(
d

∑
k=1

nk

)2

−
d

∑
k=1

n2
k

⎤

⎦ .

In other words, con f lict(X) is the number of pairs (x,y) ∈ X ×X of objects from
different decision classes.

By a counting table of a set of attributes B we mean the two-dimensional array
Count(B) = [nv,k]v∈INF (B),k∈Vdec

, where

nv,k = card({x ∈U : in fB(x) = v and dec(x) = k}).

Thus Count(B) is a collection of counting tables of equivalence classes of the in-
discernibility relation IND(B). It is clear that the complexity time for the construc-
tion of counting table is O(nd logn), where n is the number of objects and d is the
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number of decision classes. One can also observe that counting tables can be easily
constructed in data base management systems using simple SQL queries.

For a given counting table, one can easily calculate the discernibility measure
relative to a set of attributes B by

discdec(B) =
1
2 ∑

v�=v′,k �=k′
nv,k ·nv′,k′ .

The disadvantage of this equation relates to the fact that it requires O(S2) operations,
where S is the size of the counting table Count(B).

The discernibility measure can be understood as a number of unresolved (by the
set of attributes B) conflicts. One can show that

discdec(B) = con f lict(U)− ∑
[x]∈U/IND(B)

con f lict([x]IND(B)). (3.44)

Thus, the discernibility measure can be determined in O(S) time:

discdec(B) =
1
2

(

n2−
d

∑
k=1

n2
k

)

− 1
2 ∑

v∈INF(B)

⎡

⎣

(
d

∑
k=1

nv,k

)2

−
d

∑
k=1

n2
v,k

⎤

⎦ , (3.45)

where nk = |CLASSk|= ∑v nv,k is the size of kth decision class.
Moreover, one can show that attribute a is a core attribute of decision system

A = (U,A,dec) if and only if

discdec(A−{a}) < discdec(A).

Thus both operations discdec(B) and isCore(a) can be performed in linear time with
respect to the counting table size.

Example 3.14. In the discussed example, the counting table for a1 is as follows:

Count(a1) dec = no dec = yes
a1 = sunny 3 2

a1 = overcast 0 3
a1 = rainy 1 3

We illustrate Eqn. (3.45) by inserting some additional columns to the counting table:

Count(a1) dec = no dec = yes ∑ con f lict(.)
a1 = sunny 3 2 5 1

2 (52−22−32) = 6
a1 = overcast 0 3 3 1

2 (32−02−32) = 0
a1 = rainy 1 3 4 1

2 (42−12−32) = 3

U 4 8 12 1
2(122−82−42) = 32

Thus, discdec(a1) = 32−6−0−3 = 23.
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3.9.2 Discretization of Large Data Sets Stored in Relational
Databases

In this section (see [169, 166, 167]), we discuss an application of approximate
Boolean reasoning to efficient searching for cuts in large data sets stored in rela-
tional databases. Searching for relevant cuts is based on simple statistics which can
be efficiently extracted from relational databases. This additional statistical knowl-
edge is making it possible to perform the searching based on Boolean reasoning
much more efficient. It can be shown that the extracted cuts by using such reasoning
are quite close to optimal.

Searching algorithms for optimal partitions of real-valued attributes, defined by
cuts, have been intensively studied. The main goal of such algorithms is to discover
cuts that can be used to synthesize decision trees or decision rules of high quality wrt
some quality measures (e.g. quality of classification of new unseen objects, quality
defined by the decision tree height, support and confidence of decision rules).

In general, all those problems are hard from computational point of view (e.g.
the searching problem for minimal and consistent set of cuts is NP-hard). In con-
sequence, numerous heuristics have been developed for approximate solutions of
these problems. These heuristics are based on approximate measures estimating the
quality of extracted cuts. Among such measures discernibility measures are relevant
for the rough set approach.

We outline an approach for solution of a searching problem for optimal partition
of real-valued attributes by cuts, assuming that the large data table is represented in
a relational database. In such a case, even the linear time complexity with respect to
the number of cuts is not acceptable because of the time needed for one step. The
critical factor for time complexity of algorithms solving that problem is the number
of SQL queries of the form

SELECT COUNT
FROM a Table

WHERE (an attribute BETWEEN value1 AND value2)
AND (additional condition)

necessary to construct partitions of real-valued attribute sets. We assume the answer
time for such queries does not depend on the interval length31. Using a straightfor-
ward approach to optimal partition selection (wrt a given measure), the number of
necessary queries is of order O(N), where N is the number of preassumed cuts. By
introducing some optimization measures, it is possible to reduce the size of search-
ing space. Moreover, using only O(logN) simple queries, suffices to construct a
partition very close to optimal.

Let A= (U,A,d) be a decision system with real-valued condition attributes. Any
cut (a,c), where a ∈ A and c is a real number, defines two disjoint sets given by

31 This assumption is satisfied in some existing database management systems.
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UL(a,c) = {x ∈U : a(x)≤ c},
UR(a,c) = {x ∈U : a(x) > c}.

If both UL(a,c) and UR(a,c) are non-empty, then c is called a a. The cut (a,c)
discerns a pair of objects x, y if either a(x) < c≤ a(y) or a(y) < c≤ a(x).

Let A = (U,A,d) be a decision system with real-valued condition attributes and
decision classes Xi, for i = 1, . . . ,r(d). A quality of a cut (a,c), denoted by W (a,c),
is defined by

W (a,c) =
r(d)

∑
i�= j

Li(a,c)∗R j(a,c) (3.46)

=

(
r(d)

∑
i=1

Li(a,c)

)

∗
(

r(d)

∑
i=1

Ri(a,c)

)

−
r(d)

∑
i=1

Li(a,c)∗Ri(a,c),

where Li(a,c) = card(Xi ∩UL(a,c)) and Ri(a,c) = card(Xi ∩UR(a,c)), for i =
1, . . . ,r(d).

In the sequel, we will be interested in finding cuts maximizing the function
W (a,c).

The following definition will be useful. Let Ca = {(a,c1), . . . ,(a,cN)} be a set
of cuts on attribute a, over a decision system A and assume c1 < c2... < cN . By a
median of the ith decision class, denoted by Median(i), we mean the minimal index
j for which the cut (a,c j) ∈ Ca minimizes the value |Li(a,c j)−Ri(a,c j)|,32 where
Li and Ri are defined before.

One can use only O(r(d)∗ logN) SQL queries to determine the medians of deci-
sion classes by using the well-known binary search algorithm.

Then one can show that the quality function Wa(i)
def= W (a,ci), for i = 1, . . . ,N, is

increasing in {1, . . . ,min} and decreasing in {max, . . . ,N}, where min and max are
defined by

min = min
1≤i≤N

Median(i),

max = max
1≤i≤N

Median(i).

In consequence, the search space for maximum of W (a,ci) is reduced to i ∈
[min,max].

Now, one can apply the divide and conquer strategy to determine the best cut,
given by cBest ∈ [cmin,cmax], wrt the chosen quality function. First, we divide the
interval containing all possible cuts into k intervals. Using some heuristics, one then
predict the interval which most probably contains the best cut. This process is recur-
sively applied to that interval, until the considered interval consists of one cut. The
problem which remains to be solved is how to define such approximate measures
which could help us to predict the suitable interval.

32 The minimization means that |Li(a,c j)−Ri(a,c j)|= min
1≤k≤N

|Li(a,ck)−Ri(a,ck)|.
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Let us consider a simple probabilistic model. Let (a,cL), (a,cR) be two cuts such
that cL < cR and i = 1, . . . ,r(d). For any cut (a,c) satisfying cL < c < cR, we as-
sume that x1, . . . ,xr(d), where xi = card(Xi ∩UL(a,c)∩UR(a,c)) are independent
random variables with uniform distribution over sets {0, ...,M1}, ..., {0, ...,Mr(d)},
respectively, that

Mi = Mi(a,cL,cR) = card(Xi∩UL(a,cR)∩UR(a,cL)).

Under these assumptions, the following fact holds. For any cut c∈ [cL,cR], the mean
E(W (a,c)) of quality W (a,c) is given by

E(W (a,c)) =
W (a,cL)+W(a,cR)+ con f lict((a,cL),(a,cR))

2
, (3.47)

where con f lict((a,cL),(a,cR)) =∑
i�= j

Mi ∗Mj.

In addition, the standard deviation of W (a,c) is given by

D2(W (a,c)) =
n

∑
i=1

⎡

⎣Mi(Mi + 2)
12

(

∑
j �=i

(R j(a,cR)−Lj(a,cL))

)2
⎤

⎦ . (3.48)

Formulas (3.47) and (3.48) can be used to construct a predicting measure for the
quality of the interval [cL,cR]:

Eval ([cL,cR],α) = E(W (a,c))+α
√

D2(W (a,c)), (3.49)

where the real parameter α ∈ [0,1] can be tuned in a learning process.
To determine the value Eval ([cL,cR],α), we need to compute the numbers

L1(a,cL), . . . ,Lr(d)(a,cL),M1, . . . ,Mr(d),R1(a,cR), . . . ,Rr(d)(a,cR).

This requires O(r(d)) SQL queries of the form

SELECT COUNT
FROM DecTable
WHERE (attribute a BETWEEN value1 AND value2)

AND (dec = i).

Hence, the number of queries required for running this algorithm is

O(r(d)k logk N).

In practice, we set k = 3, since the function f (k) = r(d)k logk N over positive inte-
gers is taking minimum for k = 3.

Numerous experiments on different data sets have shown that the proposed solu-
tion allows one to find a cut which is very close to the optimal one. For more details
the reader is referred to the literature (see [166, 167]).
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3.10 Rough Sets and Logic

The father of contemporary logic is a German mathematician Gottlob Frege (1848-
1925). He thought that mathematics should not be based on the notion of set but on
the notions of logic. He created the first axiomatized logical system but it was not
understood by the logicians of those days.

During the first three decades of the 20th century, there was a rapid development
in logic bolstered to a great extent by Polish logicians, especially Alfred Tarski
(1901-1983) (see e.g. [351]).

Development of computers and their applications stimulated logical research and
widened their scope.

When we speak about logic, we generally mean deductive logic. It gives us tools
designed for deriving true propositions from other true propositions. Deductive rea-
soning always leads to true conclusions. The theory of deduction has well estab-
lished generally accepted theoretical foundations. Deductive reasoning is the main
tool used in mathematical reasoning and found no application beyond it.

Rough set theory has contributed to some extent to various kinds of deductive
reasoning. Particularly, various kinds of logics based on the rough set approach have
been investigated, rough set methodology contributed essentially to modal logics,
many-valued logic, intuitionistic logic and others (see e.g. [6, 7, 53, 54, 57, 70, 69,
146, 147, 161, 160, 162, 185, 187, 188, 190, 213, 214, 246, 247, 259, 260, 261, 262,
263, 264, 265, 360, 359, 361, 362]).

A summary of this research can be found in [245, 38] and interested reader is
advised to consult these volumes.

In natural sciences (e.g., in physics) inductive reasoning is of primary impor-
tance. The characteristic feature of such reasoning is that it does not begin from
axioms (expressing general knowledge about the reality) like in deductive logic,
but some partial knowledge (examples) about the universe of interest are the start-
ing point of this type of reasoning, which are generalized next and they constitute
the knowledge about wider reality than the initial one. In contrast to deductive rea-
soning, inductive reasoning does not lead to true conclusions but only to probable
(possible) ones. Also in contrast to the logic of deduction, the logic of induction
does not have uniform, generally accepted, theoretical foundations as yet, although
many important and interesting results have been obtained, for example, concerning
statistical and computational learning and others.

Verification of validity of hypotheses in the logic of induction is based on exper-
iment rather than the formal reasoning of the logic of deduction. Physics is the best
illustration of this fact.

The research on inductive logic has a few centuries’ long history and outstanding
English philosopher John Stuart Mill (1806-1873) is considered its father [150].

The creation of computers and their innovative applications essentially contributed
to the rapid growth of interest in inductive reasoning. This domain develops very
dynamically thanks to computer science. Machine learning, knowledge discovery,
reasoning from data, expert systems and others are examples of new directions in
inductive reasoning. It seems that rough set theory is very well suited as a theoretical
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basis for inductive reasoning. Basic concepts of this theory fit very well to represent
and analyse knowledge acquired from examples, which can be next used as starting
point for generalization. Besides, in fact rough set theory has been successfully ap-
plied in many domains to find patterns in data (data mining) and acquire knowledge
from examples (learning from examples). Thus, rough set theory seems to be another
candidate as a mathematical foundation of inductive reasoning [24, 177, 308].

The most interesting from computer science point of view is common sense rea-
soning. We use this kind of reasoning in our everyday life, and examples of such
kind of reasoning we face in news papers, radio, TV, in political, economic, debates
and discussions.

The starting point to such reasoning is the knowledge possessed by the specific
group of people (common knowledge) concerning some subject and intuitive meth-
ods of deriving conclusions from it. We do not have here possibilities of resolving
the dispute by means of methods given by deductive logic (reasoning) or by in-
ductive logic (experiment). So the best known methods of solving the dilemma is
voting, negotiations or even war. See for example, Gulliver’s Travels [341], where
the hatred between Tramecksan (High-Heels) and Slamecksan (Low-Heels) or dis-
putes between Big-Endians and Small-Endians could not be resolved without a war.

These methods do not reveal the truth or falsity of the thesis under consideration
at all. Of course, such methods are not acceptable in mathematics or physics. No-
body is going to solve by voting, negotiations or declare a war – the truth of Fermat’s
theorem or Newton’s laws.

Reasoning of this kind is the least studied from the theoretical point of view and
its structure is not sufficiently understood, in spite of many interesting theoretical
research in this domain [62]. The meaning of common sense reasoning, considering
its scope and significance for some domains, is fundamental and rough set theory
can also play an important role in it but more fundamental research must be done to
this end [294].

In particular, the rough truth introduced in [213] and studied, for example in [7]
seems to be important for investigating commonsense reasoning in the rough set
framework.

Let us consider a simple example. In the considered decision system we assume
U = Birds is a set of birds that are described by some condition attributes from
a set A. The decision attribute is a binary attribute Files with possible values yes
if the given bird flies and no, otherwise. Then, we define (relative to an informa-
tion system A = (U,A)) the set of abnormal birds by AbA(Birds) = LOWA({x ∈
Birds : Flies(x) = no}). Hence, we have, AbA(Birds) = Birds−UPPA({x ∈ Birds :
Flies(x) = yes}) and Birds−AbA(Birds) = UPPA({x ∈ Birds : Flies(x) = yes}).
It means that for normal birds it is consistent, with knowledge represented by A,
to assume that they can fly, that is, it is possible that they can fly. One can opti-
mize AbA(Birds) using A to obtain minimal boundary region in the approximation
of {x ∈ Birds : Flies(x) = no}.

It is worthwhile to mention that in [48] has been presented an approach com-
bining the rough sets with nonmonotonic reasoning. There are distinguished some
basic concepts that can be approximated on the basis of sensor measurements and
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more complex concepts that are approximated using so called transducers defined
by first-order theories constructed over approximated concepts. Another approach
to commonsense reasoning has been developed in a number of papers (see, e.g.
[24, 177, 199, 255, 294]). The approach is based on an ontological framework for
approximation. In this approach, approximations are constructed for concepts and
dependencies between the concepts represented in a given ontology expressed, for
example, in natural language. Still another approach combining rough sets with logic
programming is discussed in [365].

To recapitulate, the characteristics of the three above mentioned kinds of reason-
ing are given below:

1. deductive:

• reasoning method: axioms and rules of inference;
• applications: mathematics;
• theoretical foundations: complete theory;
• conclusions: true conclusions from true premisses;
• hypotheses verification: formal proof.

2. inductive:

• reasoning method: generalization from examples;
• applications: natural sciences (physics);
• theoretical foundation: lack of generally accepted theory;
• conclusions: not true but probable (possible);
• hypotheses verification - experiment.

3. common sense:

• reasoning method based on common-sense knowledge with intuitive rules
of inference expressed in natural language;

• applications: every day life, humanities;
• theoretical foundation: lack of generally accepted theory;
• conclusions obtained by mixture of deductive and inductive reasoning

based on concepts expressed in natural language, for example, with applica-
tion of different inductive strategies for conflict resolution (such as voting,
negotiations, cooperation, war) based on human behavioural patterns;

• hypotheses verification - human behaviour.

There are numerous issues related to approximate reasoning under uncertainty.
These issues are discussed in books on granular computing, rough mereology and
computational complexity of algorithmic problems related to these issues. For more
detail, the reader is referred to the following books [223, 156, 45, 159, 248].

Finally, we would like to stress that still much more work should be done to
develop approximate reasoning methods for making progress in development intel-
ligent systems. This idea was very well expressed by Professor Leslie Valiant 33:

33 http://people.seas.harvard.edu/∼valiant/researchinterests.htm
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A fundamental question for artificial intelligence is to characterize the computational build-
ing blocks that are necessary for cognition. A specific challenge is to build on the success of
machine learning so as to cover broader issues in intelligence.... This requires, in particular
a reconciliation between two contradictory characteristics – the apparent logical nature of
reasoning and the statistical nature of learning.

3.11 Interactive Rough Granular Computing (IRGC)

There are many real-life problems that are still hard to solve using the existing
methodologies and technologies. Among such problems are, for example, classi-
fication and understanding of medical images, control of autonomous systems like
unmanned aerial vehicles or robots, and problems related to monitoring or rescue
tasks in multiagent systems. All of these problems are closely related to intelligent
systems that are more and more widely applied in different real-life projects.

One of the main challenges in developing intelligent systems is discovering meth-
ods for approximate reasoning from measurements to perception, that is, deriving
from concepts resulting from sensor measurements concepts or expressions enunci-
ated in natural language that express perception understanding.

Nowadays, new emerging computing paradigms are investigated attempting to
make progress in solving problems related to this challenge. Further progress de-
pends on a successful cooperation of specialists from different scientific disciplines
such as mathematics, computer science, artificial intelligence, biology, physics,
chemistry, bioinformatics, medicine, neuroscience, linguistics, psychology, soci-
ology. In particular, different aspects of reasoning from measurements to percep-
tion are investigated in psychology [11, 95], neuroscience [244], layered learning
[332], mathematics of learning [244], machine learning, pattern recognition [97],
data mining [115] and also by researchers working on recently emerged computing
paradigms such as computing with words and perception [386], granular computing
[199], rough sets, rough-mereology and rough-neural computing [199].

One of the main problems investigated in machine learning, pattern recognition
[97] and data mining [115] is concept approximation. It is necessary to induce ap-
proximations of concepts (models of concepts) from available experimental data.
The data models developed so far in such areas like statistical learning, machine
learning, pattern recognition are not satisfactory for approximation of compound
concepts resulting in the perception process. Researchers from the different ar-
eas have recognized the necessity to work on new methods for concept approx-
imation (see, e.g. [35, 364]). The main reason is that these compound concepts
are, in a sense, too far from measurements which makes the searching for rele-
vant (for their approximation) features infeasible in a huge space. There are several
research directions aiming at overcoming this difficulty. One of them is based on
the interdisciplinary research where the results concerning perception in psychol-
ogy or neuroscience are used to help to deal with compound concepts (see, e.g.
[97]). There is a great effort in neuroscience towards understanding the hierarchical
structures of neural networks in living organisms [56, 244]. Convolutional networks
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(ConvNets) which are a biologically inspired trainable architecture that can learn
invariant features, were developed (see, e.g. [352]). Also mathematicians are rec-
ognizing problems of learning as the main problem of the current century [244].
The problems discussed so far are also closely related to complex system mod-
elling. In such systems, again the problem of concept approximation and reasoning
about perceptions using concept approximations is one of the challenges nowadays.
One should take into account that modelling complex phenomena entails the use
of local models (captured by local agents, if one would like to use the multi-agent
terminology [103, 387]) that next should be fused [354]. This process involves the
negotiations between agents [103] to resolve contradictions and conflicts in local
modelling. This kind of modelling will become more and more important in solving
complex real-life problems that we are unable to model using traditional analytical
approaches. The latter approaches lead to exact models. However, the necessary as-
sumptions used to develop them are causing the resulting solutions to be too far from
reality to be accepted. New methods or even a new science should be developed for
such modelling [66].

One of the possible solutions in searching for methods for compound concept
approximations is the layered learning idea [332]. Inducing concept approximation
should be developed hierarchically starting from concepts close to sensor measure-
ments to compound target concepts related to perception. This general idea can be
realized using additional domain knowledge represented in natural language. For
example, one can use principles of behaviour on the roads, expressed in natural lan-
guage, trying to estimate, from recordings (made, e.g. by camera and other sensors)
of situations on the road, if the current situation on the road is safe or not. To solve
such a problem one should develop methods for concept approximations together
with methods aiming at approximation of reasoning schemes (over such concepts)
expressed in natural language. Foundations of such an approach are based on rough
set theory [215] and its extension rough mereology [199, 249, 250, 252, 13, 248],
both discovered in Poland.

Objects we are dealing with are information granules. Such granules are obtained
as the result of information granulation [386]:

Information granulation can be viewed as a human way of achieving data compression
and it plays a key role in implementation of the strategy of divide-and-conquer in
human problem-solving.

Constructions of information granules should be robust with respect to their input
information granule deviations. In this way also a granulation of information granule
constructions is considered. As the result, we obtain the so-called AR schemes (AR
networks) [199, 249, 250, 252]. AR schemes can be interpreted as complex patterns
[115]. Searching methods for such patterns relevant for a given target concept have
been developed [199, 13]. Methods for deriving relevant AR schemes are of high
computational complexity. The complexity can be substantially reduced by using
domain knowledge. In such a case AR schemes are derived along reasoning schemes
in natural language that are retrieved from domain knowledge. Developing methods
for deriving such AR schemes is one of the main goals of our projects.
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Granulation is a computing paradigm, among others like self-reproduction, self-
organization, functioning of brain, Darwinian evolution, group behaviour, cell mem-
branes and morphogenesis, that are abstracted from natural phenomena. Granulation
is inherent in human thinking and reasoning processes. Granular computing (GrC)
provides an information processing framework where computation and operations
are performed on information granules, and it is based on the realization that preci-
sion is sometimes expensive and not much meaningful in modelling and controlling
complex systems. When a problem involves incomplete, uncertain, and vague in-
formation, it may be difficult to differentiate distinct elements and one may find it
convenient to consider granules for its handling. The structure of granulation can be
often defined using methods based on rough sets, fuzzy sets or their combination.
In this consortium, rough sets and fuzzy sets work synergistically, often with other
soft computing approaches, and use the principle of granular computing. The devel-
oped systems exploit the tolerance for imprecision, uncertainty, approximate reason-
ing and partial truth under soft computing framework and is capable of achieving
tractability, robustness and close resemblance with human-like (natural) decision
making for pattern recognition in ambiguous situations [292]. Qualitative reasoning
requires to develop methods supporting approximate reasoning under uncertainty
about non-crisp concepts, often vague concepts. One of the very general scheme of
tasks for such qualitative reasoning can be described as follows. From some basic
objects (called in different areas as patterns, granules or molecules) it is required to
construct (induce) complex objects satisfying a given specification (often, expressed
in natural language specification) to a satisfactory degree. For example, in learning
concepts from examples we deal with tasks where a partial information about the
specification is given by examples and counter examples concerning of classified
objects. As examples of such complex objects one can consider classifiers consid-
ered in Machine Learning or Data Mining, new medicine against some viruses or
behavioural patterns of cell interaction induced from interaction of biochemical pro-
cesses realized in cells. Over the years we have learned how to solve some of such
tasks while many of them are still challenges. One of the reasons is that the discovery
process of complex objects relevant for the given specification requires multilevel
reasoning with necessity of discovering on each level the relevant structural objects
and their properties. The searching space for such structural objects and properties is
very huge and this, in particular, shows that fully automatic methods are not feasible
using the exiting computing technologies. However, this process can be supported
by domain knowledge used which can be used for generating hints in the searching
process (see, e.g. [13]). This view is consistent with [34] (see, page 3 of Foreword):

[...] Tomorrow, I believe, every biologist will use computer to define their research
strategy and specific aims, manage their experiments, collect their results, interpret
their data, incorporate the findings of others, disseminate their observations, and ex-
tend their experimental observations - through exploratory discovery and modelling -
in directions completely unanticipated.

Rough sets, discovered by Zdzisław Pawlak [212], and fuzzy sets, due to Lotfi
Zadeh [385], separately and in combination have shown quite strong potential for
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supporting the searching process for the relevant complex objects (granules) dis-
cussed above (see, e.g. [200, 199, 220, 13, 192]). Fuzzy set theory addresses gradu-
alness of knowledge, expressed by the fuzzy membership, whereas rough set theory
addresses granularity of knowledge, expressed by the indiscernibility relation.

Computations on granules should be interactive. This requirement is fundamental
for modelling of complex systems [67]. For example, in [183] this is expressed by
the following sentence:

[...] interaction is a critical issue in the understanding of complex systems of any sorts:
as such, it has emerged in several well-established scientific areas other than computer
science, like biology, physics, social and organizational sciences.

Interactive Rough Granular Computing (IRGC) is an approach for modelling inter-
active computations (see, e.g. [312]). IRGC are progressing by interactions between
granules (structural objects of quite often high-order type) discovered from data and
domain knowledge. In particular, interactive information systems (IIS) are dynamic
granules used for representing the results of the agent interaction with the environ-
ments. IIS can be also applied in modelling more advanced forms of interactions
such as hierarchical interactions in layered granular networks or generally in hier-
archical modelling. The proposed approach [312, 313] is based on rough sets but it
can be combined with other soft computing paradigms such as fuzzy sets or evo-
lutionary computing, and also with machine learning and data mining techniques.
The notion of the highly interactive granular system is clarified as the system in
which intrastep interactions with the external as well as with the internal environ-
ments take place. Two kinds of interactive attributes are distinguished as follows:
perception attributes, including sensory ones and action attributes.

The outlined research directions in this section create a step towards understand-
ing the nature of reasoning from measurements to perception. These foundations are
crucial for constructing intelligent systems for many real-life projects. The recent
progress in this direction based on rough sets and granular computing is reported in
[312, 313].

In the following section, we outline three important challenging topics.

3.11.1 Context Inducing and IRGC

Reasoning about context belongs to the main problems investigated in AI for many
years (see, e.g. [148, 273, 327]). One of the old and still challenging problem in
machine learning, pattern recognition and data mining is feature discovery (feature
construction, feature extraction) [97]. This problem is related to discovery of struc-
tures of objects or contexts in which analyzed objects should be considered. In this
section, we discuss an application of information systems for context modelling.
The approach is based on fusion of information systems (or decision systems) with
constraints. The constraints can be defined by means of relations over sets of at-
tribute values or their Cartesian products. Objects on the next level of modelling are
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relational structures over signatures (or sets of signatures) of arguments of fusion
operation. In this way, one can obtain as objects on higher level of modelling in-
discernibility (similarity) classes of objects, time windows, their clusters, sequences
of time windows and their sets. Indiscernibility classes over objects representing
sequences of time windows are sets of such sequences and they may represent in-
formation about processes.

Let us consider one simple example illustrating this approach elaborated, for ex-
ample, in [311, 312, 313].

In the process of searching for (sub-)optimal approximation spaces, different
strategies may be used. Let us consider an example of such strategy presented in
[309]. In this example, DT = (U,A,d) denotes a decision system (a given sample
of data), where U is a set of objects, A is a set of attributes and d is a decision. We
assume that for any object x ∈U , only partial information equal to the A-signature
of x (object signature, for short) is accessible, that is, In fA(x) = {(a,a(x)) : a ∈ A}.
Analogously, for any concept there are only given a partial information about this
concept by means of a sample of objects, for example, in the form of decision table.
One can use object signatures as new objects in a new relational structure R . In this
relational structure R some relations between object signatures are also modeled,
for example, defined by the similarities of these object signatures (see Figure 3.4).
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x v1

y w1

…

…

…

w…

α …

…

v

r

Fig. 3.4. Granulation to tolerance classes. r is a similarity (tolerance) relation defined over
signatures of objects.

Discovery of relevant relations between object signatures is an important step in
searching for relevant approximation spaces. In this way, a class of relational struc-
tures representing perception of objects and their parts is constructed. In the next
step, we select a language L consisting of formulas expressing properties over the
defined relational structures and we search for relevant formulas in L . The seman-
tics of formulas (e.g. with one free variable) from L are subsets of object signatures.
Note, that each object signature defines a neighborhood of objects from a given sam-
ple (e.g. decision system DT ) and another set on the whole universe of objects being
an extension of U . Thus, each formula from L defines a family of sets of objects
over the sample and also another family of sets over the universe of all objects. Such
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families can be used to define new neighbourhoods for a new approximation space
by, for example taking their unions. In the process of searching for relevant neigh-
bourhoods, we use information encoded in the available sample. More relevant
neighbourhoods make it possible to define more relevant approximation spaces
(from the point of view of the optimization criterion). Following this scheme, the
next level of granulation may be related to clusters of objects (relational structures)
for a current level (see Figure 3.5).
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Fig. 3.5. Granulation of tolerance relational structures to clusters of such structures. rε,δ is a
relation with parameters ε,δ on similarity (tolerance) classes.

In Figure 3.5, τ denotes a similarity (tolerance) relation on vectors of attribute
values, τ(v) = {u : v τ u}, τ(v) rε,δ τ(w) iff dist(τ(v),τ(w)) ∈ [ε− δ,ε+ δ] and
dist(τ(v),τ(w)) = in f{dist(v′,w′) : (v′,w′) ∈ τ(v)× τ(w)} where dist is a distance
function on vectors of attribute values.

One more example is illustrated in Figure 3.6, where the next level of hierarchical
modelling is created by defining an information system in which objects are time
windows and attributes are (time-related) properties of these windows.
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Fig. 3.6. Granulation of time points into time windows. T is the time window length, v j =
(v1 j, . . . ,vT j) for j = 1, . . . ,T , rem(i,T ) is the remainder from division of i by T , α is an
attribute defined over time windows.
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It is worth mentioning that quite often this searching process is even more so-
phisticated. For example, one can discover several relational structures (e.g. corre-
sponding to different attributes) and formulas over such structures defining different
families of neighbourhoods from the original approximation space. As a next step,
such families of neighborhoods can be merged into neighbourhoods in a new, higher
degree approximation space.

The proposed approach is making it possible to construct information systems
(or decision system) on a given level of hierarchical modelling from information
systems from lower level(s) by using some constraints in joining objects from un-
derlying information systems. In this way, structural objects can be modelled and
their properties can be expressed in constructed information systems by selecting
relevant attributes. These attributes are defined with use of a language that makes
use of attributes of systems from the lower hierarchical level as well as relations
used to define constraints. In some sense, the objects on the next level of hierarchi-
cal modelling are defined using the syntax from the lover level of the hierarchy. Do-
main knowledge is used to aid the discovery of relevant attributes (features) on each
level of hierarchy. This domain knowledge can be provided, for example, by concept
ontology together with samples of objects illustrating concepts from this ontology.
Such knowledge is making it feasible to search for relevant attributes (features) on
different levels of hierarchical modelling.

In Figure 3.7 we symbolically illustrate the transfer of knowledge in a particular
application. It is a depiction of how the knowledge about outliers in handwritten
digit recognition is transferred from expert to a software system. We call this pro-
cess knowledge elicitation [179, 180, 181]. Observe, that the explanations given by
expert(s) are expressed using a subset of natural language limited by using concepts
from provided ontology only. Concepts from higher levels of ontology are gradually
approximated by the system from concepts on lower levels.

Fig. 3.7. Expert’s knowledge elicitation.
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This kind of approach is typical for hierarchical modelling [25, 17, 24, 177, 13,
14]. This is, in particular, the case when we search for a relevant approximation
space for objects composed from parts for which some approximation spaces, rele-
vant to components, have already been found. We find that hierarchical modelling
is required for approximation of complex vague concepts, as in [181, 244].

3.11.2 Process Mining and IRGC

The rapid expansion of the Internet has resulted not only in the ever-growing amount
of data therein stored, but also in the burgeoning complexity of the concepts and
phenomena pertaining to those data. This issue has been vividly compared in [60]
with the advances in human mobility from the period of walking afoot to the era
of jet travel. These essential changes in data have brought new challenges to the
development of new data mining methods, especially that the treatment of these data
increasingly involves complex processes that elude classic modelling paradigms.
Types of datasets currently regarded “hot”, like biomedical, financial or net user
behaviour data are just a few examples. Mining such temporal or complex data
streams is on the agenda of many research centres and companies worldwide (see,
for example, [1, 269]). In the data mining community, there is a rapidly growing
interest in developing methods for process mining, e.g., for discovery of structures of
temporal processes from observations (recorded data). Works on process mining, for
example, [33, 149, 358, 376, 363] have recently been undertaken by many renowned
centres worldwide34. This research is also related to functional data analysis (cf.
[258]), cognitive networks (cf. [208]) and dynamical system modelling in biology
(cf. [58]).

Let us consider an illustrative example explaining motivation for discovery of
process models from data.

This problem is illustrated in Figure 3.8. It is assumed that from granules
G,G1,G2 representing the sets of the paths of the processes, their models in the
form of Petri nets PN,PN1,PN2, respectively, were induced. Then, the structure of
interaction between PN1 and PN2 can be described by an operation transforming
PN1,PN2 into PN.

The discovery of relevant attributes on each level of the hierarchy can be sup-
ported by domain knowledge provided, for example, by concept ontology together
with the illustration of concepts by means of the samples of objects taken from this
concepts and their complements [13]. Such application of domain knowledge often
taken from human experts serves as another example of the interaction of a system
(classifier) with its environment. Additionally, such support of relevant attributes
discovery on given level of the hierarchy, as well as on other levels, can be found
using different ontologies. These ontologies can be described by different sets of

34 http://www.isle.org/∼langley/,
http://soc.web.cse.unsw.edu.au/bibliography/discovery/index.html,
http://www.processmining.org/

http://soc.web.cse.unsw.edu.au/bibliography/discovery/index.html
http://www.processmining.org/
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Fig. 3.8. Discovery of interaction structure

formulas and possibly by different logics. Thus, the description of such discovery of
relevant attributes in interaction, as well as its support give a good reason for apply-
ing fibring logics methods [61]. Note that in the hierarchical modelling of relevant
complex patterns also top-down interactions of the higher levels of the hierarchy
with the lower levels should be considered, for example, if the patterns constructed
on higher levels are not relevant for the target task, the top-down interaction should
inform lower levels about the necessity of searching for new patterns.

There are numerous papers based on the rough set approach on discovery of
concurrent processes from data (see, e.g. [305, 304, 306, 334, 239, 335, 240, 201,
337, 202, 203, 204, 205, 340, 339, 346, 338, 206, 154, 207, 157, 155, 158, 336,
170, 45]). In [174, 170] was outlined an approach to discovery of processes from
data and domain knowledge which is based on RGC philosophy. This research was
initiated by the idea of Professor Zdzisław Pawlak presented in [216], where data
tables are treated as partial specifications of concurrent processes. Rows in a given
data table are examples of global states and columns represent local processes. One
of the solutions presented in the above papers was based on decomposition of data
tables into modules defined by reducts of data tables. The modules are linked by
constraints defined by rules extracted from data. In another approach, first from a
given data table decision rules are extracted (e.g., a set of minimal decision rules)
and such a set of decision rules is used as knowledge encoded in the data table or
theory defined by data table. Next, the set of all global states is defined as equal
to the maximal set of objects (global states) consistent with the theory. There were
proposed methods for automatic generation from a given data table a (colored) Petri
net with the reachability set equal to the maximal consistent set of states consistent
with the theory generated from the data table. The reader is referred to the Web
page http://rsds.univ.rzeszow.pl for information on the developed software
(ROSECON) for inducing Petri nets from data tables.

http://rsds.univ.rzeszow.pl
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An important role in discovering Petri nets play the inhibitory rules (see, e.g.
[45]). The reader interested in complexity results related to such rules as well as to
consistent extensions of information systems is referred to, for example, [154, 157,
155, 45, 158].

Here, we would like to formulate some challenges related to discovery of concur-
rent processes from data tables occurring in hierarchical modelling by using IRGC.
On higher levels of hierarchy, the structure of objects becomes complex, e.g., indis-
cernibility classes of data tables considered on higher level of the hierarchy can be
equal to sets of paths of structural states. The theories of such data tables are much
more complex than considered before. The rules in such a theory discovered from
data may require extension to (spatio-)temporal decision rules or temporal associ-
ation rules or even more complex rules defined by different temporal logics. The
challenges are related to discovery of relevant rules and theories over such rules as
well as to inducing, for example, Petri nets consistent with theories defined by such
constraints.

3.11.3 Perception-Based Computing and IRGC

Perception-Based Computing (PBC) methods are needed to face problems of data
mining (DM) and knowledge discovery in databases (KDD) with dynamically
evolving complex data (e.g. stream data sources, sensory data). Another challenge,
making PBC methods indispensable, is a growth of the size and complexity of data
sources (e.g. Web sources, neuro-imaging data, data from network interactions) in
open environments. These challenges, in particular, discovery of complex concepts
such as behavioural patterns, hardly can be met by classical methods [244]. They
can be met by KDD systems which dialogue with experts or users during the dis-
covery process[364] or by adaptive learning systems changing themselves during
the learning process as the response to evolving data.

Another area where PBC methods are needed is a multi-agent systems field. Be-
haviour steering and coordination of multi-agent coalitions acting and cooperat-
ing in open, unpredictable environments call for interactive algorithms [68], that
is, algorithms interacting with the environment during performing particular steps
of computations or changing themselves during the process of computation. Next
challenge of this type comes from human – robot interaction. The problem of human
control over autonomously coordinating swarms of robots is the central challenge
in this field which should be solved before human == robot teams can be taken out
of laboratories and put to practical use.

Coordination and control are essentially perception based thus PBC methods are
indispensable for designing and behaviour description of cognitive systems and for
understanding interactions in layered granular networks [223], where granules can
be interpreted both as data patterns and agents (e.g. robots or movable sensors).
Granules in such networks, which are additionally self-organizing, can be also un-
derstood as cores in pertinent multi-core computing engines in structurally and
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run-time reconfigurable hardware, what makes PBCs useful in computer engineer-
ing as well as an essential part of cognitive informatics.

Current works are aimed at developing methods based on the generalized infor-
mation systems (a special kind of data tables) and the rough set approach for repre-
senting partial information on interactions in layered granular networks [106, 108,
107], [312, 313]. The idea of the representation of interactions using information
systems has some roots in such approaches as rough sets introduced by Zdzisław
Pawlak [212], the information flow by Jon Barwise [12] or Chu spaces [10],
http://chu.stanford.edu/. Information systems are used to represent granules
of different complexity and the interactions among them [312, 107]. Rough sets are
used for vague concept approximation [222], for example, in the approximation of
ontologies given by experts (see, e.g. [13]).

Perception-based computing provides capability to compute and reason with
perception-based information as humans do to perform a wide variety of physical
and mental tasks without any measurement and computation. Reflecting the finite
ability of the sensory organs and (finally the brain) to resolve details, perceptions
are inherently granular. Boundaries of perceived granules (e.g. classes) are unsharp
and the values of the attributes they can take are granulated. In general, perception
may be considered as understanding of sensory information. This point of view is,
for example, presented in Computing with Words and Perception [386] which

derives from the fact that it opens the door to computation and reasoning with infor-
mation which is perception – rather than measurement-based. Perceptions play a key
role in human cognition, and underlie the remarkable human capability to perform a
wide variety of physical and mental tasks without any measurements and any compu-
tations. Everyday examples of such tasks are driving a car in city traffic, playing tennis
and summarizing a story.

The need for perception based computing appears, for example, in problems of anal-
ysis of complex processes that result from the interaction of many component pro-
cesses and from control over such process. A component process control is aimed
at achieving the desired patterns of the system behaviors. This task is a challenge
for areas such as multi-agent systems or autonomous systems [348, 282, 141]. Per-
ceived properties of complex processes are often complex vague concepts, about
which only partial information is available. Also information about the satisfiabil-
ity of such concepts determines activating complex actions. It is worth noting that
actions can be initiated at different levels of the hierarchy of concepts from a given
ontology and that a prediction of action activation at higher levels of the hierarchy
is usually conditioned by the perception of properties depending on the history of
computations in which information about actions conducted also on lower levels of
the hierarchy and their results is stored. Discovery of search strategies for new es-
sential properties at higher levels of hierarchy becomes a challenge and is crucial
for understanding of perception. The values of these attributes depend on the his-
tory of computing (with registered information about the actions performed on the
actual and the lower levels and their results). These new features determine the per-
ception of satisfiability degrees of complex concepts mentioned above conditioning
execution of actions on the considered level of hierarchy. The difficulties of analysis

http://chu.stanford.edu/
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and synthesis of perceptual computations follow from the nature of interactive com-
putations, in which it becomes necessary to take into account interactions between
processes during performed steps of computing (called intrastep interactions [94]).
These difficulties follow also from partial information about component processes,
from possible interactions between them, and also from requirements on avoidance
of central control.

There are several critical issue for making progress in perception understand-
ing and modelling. Among them is the nature of objects on which are performed
computations leading to perception. We propose to use granules for modelling such
objects. The computations on granules are realized through interactions.

Note also that the fusion of information may lead to new information systems
with structural objects [312, 313, 311] or to nets of information systems linked by
different constraints. For example, a family of parameterized sensors may model a
situation in which the sensors are enabled by the judgment module for recording
features of video at different moments of time in probing the environment. This
makes it possible to collect the necessary features of the environment for an acti-
vating of the relevant higher level action. Parameters may be related, for example,
to positions of moving camera. This is closely related to the approach to perception
presented in [182] (page 1) (see also Figure 3.9):

[...] perceiving is a way of acting. Perception is not something that happens to us, or
in us. It is something we do. Think of blind person tap-tapping his or her way around
a cluttered space, perceiving the space by touch, not all at once, but through time,
by skillful probing and movement. This is, or at least ought to be, our paradigm of
what perceiving is. The world makes itself available to the perceiver through physical
movement and interaction.
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Fig. 3.9. Action in perception

The last example suggests that the sensory attributes may be fused using some
parameters such as time of enabling or position of sensors. Certainly, for performing
more compound actions it is necessary to use a net of such parameterized sensors
in which sensory attributes are linked with relevant constraints [182]. Hierarchical
modelling may also lead to nets of information systems constructed over informa-
tion systems corresponding to sensory attributes. Nodes in these networks may be
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linked using different information such as behavioural patterns or local theories in-
duced from information systems in nodes as well as their changes when information
systems are updated. In the former case, the reader may recognize some analogy to
theory of information flow [12].

We proposed to build foundations for Perception based Computing (PBC) on the
basis of Interactive Granular Computing (IGC), in particular on Interactive Rough
Granular Computing (IRGC). A step towards this goal is presented in [312, 313].
PBC can be considered in a more general framework of Wisdom Technology (Wis-
tech) [106, 108, 107] based on a metaequation

wisdom = knowledge + adaptive judgment + interactions. (3.50)

In the above metaequation there is mentioned a special kind of reasoning
called as adaptive judgment. There are many important issues belonging to
adaptive judgment such as searching for relevant approximation spaces includ-
ing inducing new features, feature selection, rule induction, discovery of mea-
sures of inclusion and strategies for conflict resolution, adaptation of measures
based on the minimum description length, adaptive reasoning about changes,
perception (action and sensory) attributes selection, adaptation of quality mea-
sures during computations performed by agents, adaptation of object struc-
tures, adaptation of strategies for knowledge representation and interaction with
knowledge bases, ontology acquisition and approximation, discovery of lan-
guage for cooperation or competition, and adaptive strategies for language evo-
lution. In general, adaptive judgment is a mixture of deductive and inductive
reasoning methods for reasoning about interactive granular computations and
on controlling such computations by adaptive strategies for achieving the tar-
get goals. The mentioned mixture of deductive and inductive reasoning creates
many challenges. This is closely related to opinion expressed by Leslie Valiant
http://people.seas.harvard.edu/∼valiant/researchinterests.htm

A fundamental question for artificial intelligence is to characterize the computational
building blocks that are necessary for cognition. A specific challenge is to build on
the success of machine learning so as to cover broader issues in intelligence. This
requires, in particular a reconciliation between two contradictory characteristics –
the apparent logical nature of reasoning and the statistical nature of learning.

3.12 Conclusions

In the chapter, we have discussed some basic issues and methods related to
rough sets together with some generalizations, including those related to relation-
ships of rough sets with inductive reasoning. We have also listed some research
directions based on interactive rough granular computing. For more detail the
reader is referred to the literature cited at the beginning of this chapter (see also
http://rsds.wsiz.rzeszow.pl).

http://rsds.wsiz.rzeszow.pl
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We are observing a growing research interest in the foundations and applications
of rough sets.

Relationships between rough sets and other approaches have been established
as well as a wide range of hybrid systems have been developed. In particular, its
relationships to fuzzy set theory, the theory of evidence, Boolean reasoning meth-
ods, statistical methods and decision theory have been clarified and seem now to
be thoroughly understood. There are reports on many hybrid methods obtained by
combining the rough set approach with other approaches such as fuzzy sets, neural
networks, genetic algorithms, principal component analysis, singular value decom-
position or vector support machines.

Rough sets are now linked with decision system used for modelling and analy-
sis of complex systems, fuzzy sets, neural networks, evolutionary computing, data
mining and knowledge discovery, pattern recognition, machine learning, data min-
ing and approximate reasoning, multicriteria decision making. In particular, rough
sets are used in probabilistic reasoning, granular computing, intelligent control, in-
telligent agent modelling, identification of autonomous systems and process speci-
fication.

A wide range of applications of methods based on rough set theory alone or in
combination with other approaches have been discovered in many areas including:
acoustics, bioinformatics, business and finance, chemistry, computer engineering
(e.g. data compression, digital image processing, digital signal processing, paral-
lel and distributed computer systems, sensor fusion, fractal engineering), decision
analysis and systems, economics, electrical engineering (e.g. control, signal analy-
sis, power systems), environmental studies, digital image processing, informatics,
medicine, molecular biology, musicology, neurology, robotics, social science, soft-
ware engineering, spatial visualization, Web engineering, and Web mining.

Many important research topics in rough set theory such as various logics related
to rough sets and many advanced algebraic properties of rough sets were only men-
tioned in the chapter. The reader can find details in the books, articles and journals
cited in this chapter.
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R. (eds.): RSCTC 2006. LNCS (LNAI), vol. 4259. Springer, Heidelberg (2006)
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121. Kryszkiewicz, M., Rybiński, H.: Computation of reducts of composed information
systems. Fundamenta Informaticae 27(2-3), 183–195 (1996)
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[320], pp. 33–42



170 H.S. Nguyen and A. Skowron

308. Skowron, A., Swiniarski, R., Synak, P.: Approximation spaces and information gran-
ulation. In: Peters and Skowron [226], pp. 175–189

309. Skowron, A., Synak, P.: Complex patterns. Fundamenta Informaticae 60(1-4),
351–366 (2004)

310. Skowron, A., Szczuka, M. (eds.): Proceedings of the Workshop on Rough Sets in
Knowledge Discovery and Soft Computing at ETAPS 2003. Electronic Notes in Com-
puter Science, vol. 82(4). Elsevier, Amsterdam (2003),
www.elsevier.nl/locate/entcs/volume82.html

311. Skowron, A., Szczuka, M.: Toward Interactive Computations: A Rough-Granular Ap-
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cies. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS
(LNAI), vol. 3488, pp. 354–363. Springer, Heidelberg (2005)
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Chapter 4
Zdzisław Pawlak, Databases and Rough Sets

Victor W. Marek

Abstract. We discuss work of Zdzisław Pawlak in the area of databases and the
extension of that work to the theory of rough sets. In particular, we look at his
motivations for introducing information storage and retrieval systems and how this,
eventually, led to rough sets theory.

Keywords: Information storage and retrieval systems (i.s.r.), rough sets.

4.1 Introduction

In this memoir, I am recalling my collaboration with Professor Zdzisław Pawlak,
especially during 1970s and early 1980s. This period coincides with two ideas that
originated with Pawlak during that time: a model of databases (it was called infor-
mation storage and retrieval systems and was pursued by a group of scientists in
Poland and in other research centers mostly in Eastern Europe) and then later work
on approximating sets (of records or other objects) by means of some pairs of sets of
objects. This latter theory is now called rough sets and again originated with Pawlak.
The reason why I write about these areas is that during that specific period I was a
close collaborator of Pawlak and worked with him on a variety of projects related to
these two areas.

Of course, Pawlak studied many other areas of Computer Science and, more gen-
erally, Mathematics. Specifically he contributed to the area of models of computa-
tion, data structures, combinatorial optimization, and theory of conflicts – to name
a few. I am sure these contributions will be discussed by others, and I will focus on
information storage and retrieval systems and on rough sets.

Victor W. Marek
Department of Computer Science
University of Kentucky, Lexington, KY 40506-0633, USA
e-mail: marek@cs.uky.edu

A. Skowron and Z. Suraj (Eds.): Rough Sets and Intelligent Systems, ISRL 42, pp. 175–184.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

marek@cs.uky.edu


176 V.W. Marek

Let me first describe how this all started. In 1960, fresh from high school, I started
studies of Mathematics at Warsaw University. There was no Computer Science pro-
gram at Warsaw at the time, but some aspects of Computer Science were taught in
the numerical analysis program that was part of Mathematics. Very soon, I was at-
tracted to Foundations of Mathematics. Warsaw, of course, had a strong tradition of
Foundations. There were several groups of researchers pursuing foundational stud-
ies. The strongest group was centered around Professor Andrzej Mostowski who
was both the head of Foundations section at the Mathematical Institute of Polish
Academy of Sciences and, at the same time, the Chair of Algebra at the University.
Other notable logicians at the time included Professor Helena Rasiowa (Chair of
Logic at the Warsaw University and later close collaborator of Pawlak), Professor
Andrzej Grzegorczyk (first at the University, then at Polish Academy of Science),
Professor Wanda Szmielew (Chair of Foundations of Geometry at the University),
and Professor Jerzy Łoś. Professors Rasiowa and Grzegorczyk were Mostowski’s
students. Professor Szmielew was Alfred Tarski’s student. Although Tarski (since
the middle of WW II) was at the University of California, Berkeley, he somehow in-
fluenced Warsaw foundational research – in spite of the fact that at the time a “Cold
War” was raging between the countries dependent of Soviet Union and so-called
the West and so communications were sporadic, censored, and slow. In addition to
the forenamed researchers, I soon met two other: One was Andrzej Ehrenfeucht and
the other Zdzisław Pawlak. Both, at the time, were working at the Mathematical
Institute of Polish Academy of Sciences. Zdzisław was a computer engineer, and
Andrzej was a logician, with clear interests in Foundations.

There were several opportunities for participation in classes and seminars de-
voted to Foundations. Each of the principals mentioned above taught some lectures
and lead seminar series. As a sophomore and then a junior at the University I joined
two. One was the General Foundations Seminar, usually convening on Wednesday,
5 pm (essentially in Tarskian tradition). That seminar was lead by a distant (at least
at that time) figure – Professor Andrzej Mostowski. All current major results in
Foundations were presented there. There were also other series. Besides of Profes-
sor Rasiowa’s seminar (dominated by the algebraic approach to logic), Professor
Szmielew’s seminar (Foundations of Geometry) and, occasionally, Professor Grze-
gorczyk’s seminar, there was Ehrenfeucht and Pawlak seminar at the Mathematical
Institute. The atmosphere there was very informal. Unlike in other seminars the
“thou” form was used there, and this informality and relaxed atmosphere certainly
appealed to people like myself. The audience was, unlike in other seminars, very
diverse: logicians, probabilists, philosophers, computer scientists and even medical
researchers. A number of papers devoted to automated theorem proving were read
there. I remember two – pioneering Hao Wang work on proving tautologies using
computers and Davis and Putnam work on resolution. The memories of events that
happened some 50 years ago are blurred; somehow, the presentation of Professor
Ewa Orłowska comes to mind.

Very soon, I started to talk regularly to Andrzej Ehrenfeucht and, eventually, at his
suggestion and with his guidance I wrote a master’s (M.Sc) thesis. Like Mostowski
(but unlike the others), Andrzej was a “generalist” of Foundations - he had extensive
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knowledge of all major areas of Foundations: Proof Theory, Set Theory, Recursion
Theory, and especially Model Theory. For reasons not entirely clear today, Andrzej
suggested for my M.Sc. thesis a topic from Combinatorial Set Theory. Maybe the
reason was that he heard a talk on set-theoretical topology and immediately saw a
generalization? Maybe he heard it from someone who heard it from the great combi-
natorist Paul Erdös? Anyway, as I recall, we were sitting in a cafe at Marszałkowska
Street in Warsaw (close to Constitution Square) eating cakes, drinking coffee (likely
Andrzej also drank cognac - he could afford it and he liked it then) and Andrzej sug-
gested a problem closely related to so-called Δ-lemma. He told me to use a specific
form of induction. I was reading two-year Mostowski’s course in Set Theory and
it fit together very well. Soon the problem was solved, publication written, thesis
defended, and as a result I became a teaching assistant at Mostowski’s group. The
year was 1964, and at exactly that year a breakthrough in Foundations of Set The-
ory occurred - Paul J. Cohen of Stanford University invented a new technique called
“forcing”. He utilized it to prove independence of Continuum Hypothesis, a prob-
lem stemming out of famous Hilbert problems. We, in the vicinity of Mostowski,
dropped everything and started to research the area of Foundations of Set Theory.
So, naturally, Foundations of Computer Science went (fortunately temporarily for
me) away. Moreover, soon Andrzej Ehrenfeucht left for United States and after short
stint in California settled in Colorado. He is not a person who reads or writes much.
Actually, to this day, he writes almost nothing, but magically knows much. This
lack of communication created a vacuum, at least for me and for a couple of years I
did exotic things like studies of second-order arithmetic (what is it?), constructible
hierarchy (even worse!), and other fashionable, but remote from Computer Science
areas. After getting a PhD degree in 1968 and post-doc’ing in Holland in 1970/71,
as I was returning to Poland I took a detour and visited Janusz Onyszkiewicz (an-
other Warsaw logician) who was at Aarhus University in Denmark for a year. I no-
ticed there that logicians were deeply engaged in various problems stemming from
Computer Science. This must have influenced me somehow because once back in
Warsaw, in addition to the research discussed above, I started to look at the areas fur-
ther away from Mostowski-style Foundations. Soon a series of phone conversations
with Zdzisław on some issues related to something related to databases followed. I
knew very little about databases, and at the time I was not familiar with the work
of E.F. Codd on relational model of databases. Worse, I did not understand the is-
sues. Likely, nobody in Warsaw did. That is, except Zdzisław. He somehow knew
that the time to apply various techniques of logic to databases has come. In the next
section I will describe the work done by Zdzisław and myself, and how it is related
to databases as we know them now. This research coincided with the significant
changes in the attitude of Polish scientific community toward Computer Science. In
rapid succession, and obviously Zdzisław was instrumental in these things happen-
ing, several things occurred. First, Computer Science program was established at the
Warsaw University (Professor Rasiowa, the then Dean of Mathematics and Physics,
later Mathematics and Mechanics was also deeply involved). Second, the Academy
of Sciences converted its “Computational Center” into a Computer Science Institute
(the formal change, including the name change, came later), thus creating another
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place where Computer Science researchers could be employed. There was yet an-
other important change. Warsaw Technical University opened a highly competitive
program called “Technical Physics and Applied Mathematics” which was, in reality,
Computer Science. That program, due to its competitiveness and prestige, attracted
a cream of computationally minded young students from all over Poland. Many of
these individuals soon became young researchers. I did not realize this at the time
but a number of these individuals were ready for serious research work in Computer
Science. The most advanced among these students and researchers was Witold Lip-
ski (unfortunately died early - we have today the annual Lipski Competition for
the brightest Polish young researcher in Computer Science). Zdzisław and I worked
with Lipski who very quickly wrote a Ph.D. dissertation on information storage and
retrieval systems, became a well-known database theorist and combinatorist. I will
discuss how the combinatorics came into the picture in the next section. The most
important aspect of that work was that very quickly we had in Warsaw a large group
of young researchers working on databases and combinatorics. Soon, Lipski had
a number of collaborators, both in database theory and combinatorics. In the next
section. I will discuss how these two areas related in our work.

The interest in databases and their query languages came naturally to Pawlak.
For a number of years, Zdzisław collaborated with a number of physicians. There
were no subspecialty of Medical Informatics at the time, and one needed a vision
to see that Medicine will be revolutionized by the computer applications. Nobody
(at least in Warsaw) could imagine databases of medical cases except, of course,
Zdzisław. He realized the potential of storing the medical data in databases, and
more importantly, data mining the data so stored.

The formal descriptions of databases, query languages, and the possibility of
testing formal properties of such databases were a major driving force of his consid-
erations. And of course this projected on the work of the group of people around
him. An important aspect (I will discuss it in more detail below) was that the
(anonymized) records stored in databases did not form a set, but rather a bag (the
inventors of relational model were, originally, against such approach, but today it is
widely accepted).

There were several consequences of such possibility (i.e., existence of undistin-
guishable objects). Namely it is possible, even likely, that the query language is
inadequate to describe the answers to queries that the user would like to make. This
is a common case in medical applications. Often physicians see the symptoms not
the underlying causes, and the language expressing symptoms may be inadequate to
describe the essence of the underlying medical problem.

The key insight that Zdzisław had was that given a description language (which
results in database scheme) that language may be good enough only for the approx-
imate description of the set of objects that interests the user. There is more than
one situation that occurs here and I will discuss the reasons for approximations in
Section 4.3. Going into studies of approximations immediately changed the per-
spective. Namely several new aspects arose. For instance: What are the measures
of approximation? What are the query languages adequate for specific measures
of approximation? Can one eliminate some attributes without lowering the quality
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of approximation? and many other questions. Not surprisingly, the resulting theory
of Rough Sets related to Logic, Universal Algebra, but also to various aspects of
Statistics. This is the source of the popular Rough Sets Theory widely studied today
throughout the world.

4.2 Information Storage and Retrieval Systems, Databases

So, what were those information storage and retrieval systems (i.s.r. for short), and
how were they motivated? The general questions, namely What is a database and
what are formal properties of databases? were not settled at the time. Today, the
researchers of database theory think about databases as relational systems in the
sense used by logicians [1]. Surely, since the database is supposed to be stored, the
relations (often called tables) need to be finite. Therefore, the corresponding logical
system that may be used to describe these relational systems is some form of finite
model theory, a fragment of model theory first studied by Y. Gurevich. Thinking
about databases as collections of relations (tables) was proposed by E.F. Codd of
IBM and quickly gained acceptance, first among theoreticians and then also, by
use of query languages such as SQL, with a wide community of users (to be fair
to others, there are many alternative ways of thinking about databases). Moreover,
in a couple of years, there were implementations of relational databases, and soon
they became competitive in their performance with respect to the older, non-SQL,
systems.

Prior to the relational model, database systems were based on so-called network
model and on hierarchical model. These previous models could not be, really, ex-
plained to the user community since they involved understanding processing of data
within database systems, in particular data structures such as linked or double-linked
lists. Relational model thinking was declarative; for the first time the user was think-
ing about what information she wants to get out of the system, not how she wants to
get it.

Coming back to i.s.r., it was defined as a relational system, but on a single ta-
ble. Also, it was heavily influenced by logic (rather than relational algebra). Let me
shortly describe what happens when logicians look at the databases. First, one has to
have a language. In case of databases, if one has to study sets of records, those need
to be described. For that reason, one needed a language. The language had means to
introduce descriptors. For that reason, Pawlak proposed to have a collection (called
A) of all descriptors of the system. Actually, SQL does precisely the same (although
in a clearer way, by means of types of attributes that are always finite, since even
types such as integer, or real, are in reality finite). Descriptors split into classes
called attributes. A natural way to do this is by means of an equivalence relation
on the set of descriptors. Such construction presupposes that for attributes a1 and
a2 the descriptors of type a1 and of a2 are disjoint. This may appear to be limiting,
but really is not. For if we have three dimensions of a box and measure the size then
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to describe a red box 35 centimeter long, 36 centimeters wide and 20 centimeters
high, we can use the record

〈length : 35,width : 35,height : 20,color : red〉.

In this way, the length equal to 35cm and width equal to 35 are disambiguated.
So now, an i.s.r. is a relational system S = 〈X ,A,RI,U〉where X is a set of objects

(think about records but not necessarily different), A is the set of descriptors, RI

an equivalence relation partitioning descriptors into attributes, and finally, U is a
function assigning to each descriptor d ∈ A a subset of X consisting of records with
value d. Since the descriptors (like in our example) carried the information about the
attribute to which they belonged, there was no ambiguity. For instance, U(height :
20) was the set of (descriptions of) boxes that had the height equal to 20. This choice
of definition was motivated by the concept of inverted file, a construction not taught
today in database courses (but current at the time), in which one stores for some or
all descriptors the set of identifiers of records with that descriptor.

Once we have descriptors, we can build a free Boolean Algebra over that set. It is
natural to find the set of boxes with the length equal to 35 and width 35, we need to
compute intersection (Boolean meet) of two sets: of objects with the length 35 and
of objects with the width 35. To facilitate answers to such queries (give me the set of
all boxes of length 35 and width 35), the i.s.r. had the syntactical category of terms.
These, in today parlance of SQL, corresponded to the queries that the user can ask.
There was an inductive definition of term and the evaluation function ‖ · ‖. This
evaluation function did what (simple) SQL queries do: returned the bag of records
satisfying the suitable boolean condition. So the SQL query: SELECT * FROM
boxes WHERE length = 35 AND width = 35; would be written as ‖length : 35 ·
width : 35‖. The query language of i.s.r. was significantly weaker than that of (even
quite simple) SQL, since there were no comparators; all that were expressible were
boolean operations. We soon realized that this was a problem and added extensions
that allowed for comparisons, but we never truly recognized that the comparators are
important. Moreover, SQL allows for “hiding” values of some attributes by means
of projection operator. This was not available in i.s.r. SQL treats the answers to all
queries as tables and these tables may have different schemata. This again was not
available in i.s.r. But there were some advantages, too. Specifically, terms offered a
possibility of describing formulas - the properties of the system in its entirety. SQL
systems did not offer (and still do not offer) such capabilities, namely imposing
general integrity constraints on the system1. The i.s.r. research did not study directly
the first issue, but studied the second one. To give an example of the issues, let
us assume that there is an additional attribute color. The language of i.s.r. allowed
to express the properties of the systems such as “All red boxes have length 35”.
Today’s SQL systems do not offer the language for testing such integrity constraints,
although the user can write a program testing for such properties using so-called
embedded SQL.

1 Of course, some integrity constraints can be declared in SQL, but generally, SQL limits
the capabilities of the database designer to specify the integrity constraints.
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The researchers of i.s.r. devoted a significant amount of attention to various as-
pects of possible implementation of such systems. While today storage is inexpen-
sive and all sorts of data are collected with massive databases of immense size,
the situation was different in the 1970s. Storage was expensive and processing was
slower. This lead to two important research topics: first, decomposing databases so
that they required less space and second, organizing data on disk so that answers to
some queries were computed in a simple manner. To give the example of this second
issue, if the records of boxes with the length equal to 35 form a segment in the under-
lying organization of data then the answer of the query ‖length : 35‖ is simple and
requires minimal number of accesses to the disk. While the issue of decomposition
of data went, essentially, away (we no longer require our students to normalize the
data “to death”, and normal forms beyond the so-called third normal form are not
taught), the issue of organization of data did not go away and we are still concerned
with minimizing the number of accesses to the disk. The theory behind the organi-
zation of data is a well-established topic. It involves both combinatorics (here the
mathematics comes into play) and data structures. The mathematical foundations of
the technology of storage were based, at the time, on interval graphs ([3]) and on
the theory of Boolean matrices with consecutive 1s property. Lipski and his collab-
orators (this included me ([4]), and generally was a subclass of Pawlak’s research
group) devoted a lot of attention to these issues. In the modern setting, today, the
issue did not disappear. As the larger amount of data are stored and then processed,
the issue of quick retrieval becomes even more important since moving the data
through the network becomes a “chocking point”. For that reason the researchers of
so-called Cloud Computing pay significant attention to data organization.

The work on i.s.r. under the name of information systems concerned the group
of researchers around Pawlak throughout 1970s and resulted in a large body of re-
search, eventually leading to studies of rough sets that I will report in the next sec-
tion. One legacy of that research that slowly gained an acceptance in the mainstream
database community was that the records can have duplicates. In theoretical terms
this means that the tables are bags of records, not sets of records. This was obvious
to Pawlak and his collaborators, because the language of i.s.r. naturally admitted
a situation where two different objects had exactly same descriptions (certainly a
common situation in databases of medical cases - one of the main motivation of
Pawlak). To sum up, the investigations of i.s.r. prepared the ground for future re-
lated research on rough sets which will be discussed in the next section.

4.3 Rough Sets

The issue of the inadequacy of formal description language to describe desired fam-
ilies of sets of objects plagued (and still plagues) Computer Science. The nature of
human natural language is such that when there is no adequate definition of some
concept, we can invent an appropriate definition “on the fly”. That is, the natural
language constantly invents new concepts and vocabularies. With the formalized



182 V.W. Marek

languages, for instance of predicate calculus, change of vocabulary is still possible,
but with each change comes the change of semantics and, often, of processing al-
gorithms. The question of the changing language used to describe i.s.r. concerned
the researchers from the beginning. The formal means to describe the inadequacy
of the language was, again, a certain natural equivalence relation that can be asso-
ciated with a given i.s.r. S . Namely, S induces an equivalence relation in the set X
of objects. This indiscernibility relation ∼ is defined as follows: x ∼S y if for all
descriptors a, x∈U(a)≡ y∈U(a). We will drop the subscript S when the system S
is fixed. Hence, x ∼ y holds when, from the point of view of the query language of
S , the objects x and y are undistinguishable. The equivalence classes (cosets) of ∼
are minimal units that the language of S allows to describe. Assuming there is finite
number of equivalence classes of ∼ (one can theoretically think about infinite S ’s
but these do not appear in reality), the subsets of X that are describable by means of
the query language of S are precisely the unions of (finite collections) these equiv-
alence classes. Let us call, for the lack of a better word, these equivalence classes
monads. If monads can have more than one element, then we face the following
dilemma: What to do if that family of descriptions is inadequate to the needs of the
user? There are several situations where we see this inadequacy. First, there may
be situations where the monads are too big - in reality the descriptions should be
finer, but we do not have the language good enough to describe the differences. This
is common situation in medicine. Physicians strive to have adequate description of
the underlying biological system (the patient) in objective terms. But before such
description can be found, the less precise descriptions in forms of symptoms experi-
enced by the patient is all that is available. But the same symptoms may show up in
different medical conditions. In fact, the discovery of objective values is the subject
of what is commonly known as medical tests, and the process of differentiation of
description is practiced in medicine under the name of differential diagnosis. So, in
this situation, which we call situation I the available query language is inadequate.
But there is also another situation where the query language is adequate, but the
shortest description of a set of interest is too big. To see what happens in this second
situation (situation II) let us observe that, in principle, the number of monads is pro-
portional to the product of the sizes of cosets of the relation RI of the i.s.r. S . Every
set-theoretical union of monads is describable, but such descriptions may be very
long! The question that Pawlak asked was how to handle both situations. His idea,
first described in the paper [6], and then elaborated in details in his book [8], was to
use approximations. But what approximations? It turned, eventually, out that more
than one concept is involved. The question of inadequacy of the language can be
treated as follows: with every subset Y ⊆ X we can assign two definable subsets of
X . Namely, the greatest definable subset of Y and the least definable superset of Y .
These sets are commonly denoted Y and Y , respectively. Of course, Y is the union
of all monads included in Y , while Y is the union of monads that have nonempty
intersection with Y . Having the concepts of Y and Y allows to measure inadequacy
of the language of i.s.r. to describe a set Y . A variety of measures is possible, for in-
stance the ratio of sizes of Y and Y (which is defined whenever Y ⊆ X is nonempty).
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But there are other measures, too. For instance the ratio of upper approximation to
the lower one or of the size of Y to its upper approximation.

If we take the minima of the measures described above over all nonempty subsets
of X , we get adequacy measure for the language itself! In other words, approxima-
tions allow to measure inadequacy of the language.

We observe that the information theorists devoted a significant attention to this
problem. Some of the proposals such as minimum description length can be found
in [9]. Once one starts to measure adequacy, new problems come to mind: feature
extraction, feature constriction etc. We then land in the world of machine learning.

As mentioned above, the language can be adequate to describe a set Y ⊆ X , but
description may be too large! If this is the case then we would like to find approxima-
tions of the set Y using a weaker language than that available from S . This situation,
under the name of attribute reduction trades precision for conciseness. Namely, we
are willing to accept a pair of imprecise, but concise descriptions instead of one
precise but impossibly long description.

Generally, then we trade impossibility of adequate description (either because of
nonexistence of such description, or inadequacy of such description because of its
size) by moving to approximations. It turns out (as shown in [7]) that rough sets
(Pawlak approximations) can be characterized (in some precise sense) as best possi-
ble approximations. It did not surprise us, as in many situations Pawlak’s intuition
turned out to be very strong and confirmed by adequate mathematics. It is also worth
mentioning that while the presence of a i.s.r. (that provides the description language)
is beneficial, it is not a necessary ingredient of the approximation – all we need for
this is the indiscernibility relation ∼, the point of view commonly accepted by the
rough sets researchers. This level of abstraction allows to tie (as done of many re-
searchers) rough sets with the universal-algebraic concepts of Boolean algebras with
operators [2] and also with finite topologies.

4.4 Conclusions

Zdzisław was a true renaissance man: with many interests besides computer science
he produced artistic short movies, wrote poetry, but also did practical things. What-
ever he did the same enthusiasm and pervasive optimism present in his scientific
work demonstrated itself in his actions. I, of course, benefited when he decided to
build a shower stall in my small cottage in the country. Certainly the contrast be-
tween an academician living in “ivory tower” and a mason with his bricklayer trowel
could not be bigger. Among many passions Zdzisław had was antique restoration.
Like everything he did, this passion was contagious. So, when he and I brought to
my apartment in Warsaw a round table bought in a consignment store (and in ob-
vious need of restoration) my family was not pleased, and I had a new occupation
for few months. I recall discussing with Zdzisław heating water using solar energy
(yes, this was in 1970s!) and other innovations.
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I left Poland in tumultuous year 1982 and in 1983 settled in Lexington, KY. Oc-
casionally, I looked at Rough Sets (I mentioned one of those revisits above, there
were other returns to that area of research, as well) but focused on another area,
called nonmonotonic logic. This area dealt with another inadequacy of common-
sense logic: namely of tentative and defeasible conclusions. This article is not the
place to tell the story of that research. But of course, I followed developments in
Rough Sets theory and met Zdzisław both in Poland when it was again possible to
visit after the revolutions of 1989 and during his visits in the States. In particular
I went to Nashville, TN (not far away from Lexington, at least for American dis-
tances), when in 1995 when Zdzisław made an invited presentation for the ACM
which resulted in next year of Zadeh prize in Soft Computing.

As I am looking back, one thing is certain: working with Zdzisław was more than
just science, it was life to the fullest.

Acknowledgements. We thank Professor Andrzej Skowron for initiating this paper and for
a number of suggestions for improvements.
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Chapter 5
jMAF - Dominance-Based Rough Set Data
Analysis Framework

Jerzy Błaszczyński, Salvatore Greco, Benedetto Matarazzo, Roman Słowiński,
and Marcin Szela̧g

Abstract. We present a rough set data analysis software jMAF. It employs java
Rough Set (jRS) library in which are implemented data analysis methods provided
by the (variable consistency) Dominance-based Rough Set Approach (DRSA). The
chapter also provides some basics of the DRSA and of its variable consistency
extension.

Keywords: Dominance-based rough set approach (DRSA), ordinal classification
with monotonicity constraints, jMAF software, decision rules, reducts, variable
consistency.

5.1 Introduction

jMAF is a rough set data analysis software written in Java language and available
online1. It makes use of java Rough Set (jRS) library. Unlike other existing rough
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set exploration systems, for example, RSES and RSESlib2, jMAF and jRS library
implement methods of data analysis provided by the Dominance-based Rough Set
Approach (DRSA), and by its extended version, the Variable Consistency
Dominance-based Rough Set Approach (VC-DRSA). In this chapter, we give some
basics of these two approaches, together with an example of jMAF usage that is
meant to instruct novice users.

5.2 Reminder on the Dominance-Based Rough Set Approach

Dominance-based Rough Set Approach (DRSA) has been proposed by Greco,
Matarazzo and Słowiński [11, 12, 13, 14, 35]. DRSA extends rough set theory pro-
posed by Pawlak [28, 29, 32] and follows the suggestion formulated by Słowiński
in [34], towards reasoning about decision situations with background knowledge
about ordinal evaluations of objects from a universe, and about monotonic relation-
ships between these evaluations, for example “the larger the mass and the smaller
the distance, the larger the gravity” or “the greater the debt of a firm, the greater its
risk of failure”. Precisely, the monotonic relationships are assumed between evalua-
tion of objects on condition attributes and their assignment to decision classes. The
monotonic relationships are also interpreted as monotonicity constraint, because the
better the evaluation of an object, the better should be the decision class the object
is assigned to. For this reason, classification problems of this kind are called ordi-
nal classification problems with monotonicity constraints. Many real-world classi-
fication problems fall into this category [7]. Typical examples are multiple criteria
sorting and decision under uncertainty, where the order of value sets of attributes
corresponds to increasing or decreasing order of preference of a decision maker. In
these decision problems, the condition attributes are called criteria. Some tutorial
presentations of DRSA are available in [15, 16, 36, 38].

It is worth stressing, however, that DRSA can also be used in data analysis of
non-ordinal problems, that is, problems with no background knowledge about or-
dinal evaluations of objects, after an easy pre-processing of the input data [5]. It
then gives more concise decision rules than the usual induction techniques designed
for non-ordinal classification, without recurring to a pre-discretization of numerical
attributes.

Although DRSA is a general methodology for reasoning about data describ-
ing ordinal classification problems with monotonicity constraints, in this chapter,
we shall use the vocabulary typical for multiple criteria classification (called also
sorting) problems.

2 http://alfa.mimuw.edu.pl/˜rses/

http://alfa.mimuw.edu.pl/~rses/
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5.2.1 Decision Table

Let us consider a decision table [28] including a finite universe of objects (solutions,
alternatives, and actions) U evaluated on a finite set of condition attributes F =
{ f1, . . . , fn}, and on a single decision attribute d.

Table 5.1. Exemplary decision table with evaluations of students

Student f1 - Mathematics f2 - Physics f3 - Literature d - Overall Evaluation
S1 good medium bad bad
S2 medium medium bad medium
S3 medium medium medium medium
S4 good good medium good
S5 good medium good good
S6 good good good good
S7 bad bad bad bad
S8 bad bad medium bad

The set of the indices of attributes is denoted by I = {1, . . . ,n}. Without loss
of generality, fi : U → ℜ for each i ∈ I, and, for all objects x,y ∈U , fi(x) ≥ fi(y)
means that “x is at least as good as y with respect to attribute i”, which is denoted
by x�i y. Therefore, it is supposed that �i is a complete preorder, that is, a strongly
complete and transitive binary relation, defined on U on the basis of quantitative and
qualitative evaluations fi(·). Furthermore, decision attribute d makes a partition of
U into a finite number of decision classes, Cl={Cl1, . . . ,Clm}, such that each x ∈U
belongs to one and only one class Clt = {x∈U : d(x) = t}, t = 1, . . . ,m. It is assumed
that the classes are preference ordered, that is, for all r,s = 1, . . . ,m, such that r > s,
the objects from Clr are preferred to the objects from Cls. More formally, if � is a
comprehensive weak preference relation on U , defined by the decision attribute d,
that is, if for all x,y ∈U , x�y reads “x is at least as good as y”, then it is supposed
that

[x∈Clr, y∈Cls, r>s]⇒ x�y,

where x�y means x�y and not y�x.
The above assumptions are typical for consideration of an ordinal classification

with monotonicity constraints (or multiple criteria sorting) problem. Indeed, the de-
cision table characterized above, includes examples of ordinal classification which
constitute an input preference information to be analyzed using DRSA.

The sets to be approximated are called upward union and downward union of
decision classes, respectively:

Cl≥t =
⋃

s≥t

Cls, Cl≤t =
⋃

s≤t

Cls, t = 1, ...,m.
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The statement x ∈ Cl≥t reads “x belongs to at least class Clt”, while x ∈ Cl≤t reads
“x belongs to at most class Clt”. Let us remark that Cl≥1 = Cl≤m = U , Cl≥m=Clm and
Cl≤1 =Cl1. Furthermore, for t=2,...,m,

Cl≤t−1 = U −Cl≥t and Cl≥t = U −Cl≤t−1 .

5.2.2 Dominance Cones as Granules of Knowledge

The key idea of DRSA is representation (approximation) of upward and downward
unions of decision classes by granules of knowledge generated by attributes being
criteria. These granules are dominance cones in the attribute values space.

x dominates y with respect to set of attributes P ⊆ F (shortly, x P-dominates
y), denoted by xDPy, if for every attribute fi ∈ P, fi(x) ≥ fi(y). The relation of P-
dominance is reflexive and transitive, that is, it is a partial preorder.

Given a set of attributes P ⊆ F and x ∈U , the granules of knowledge used for
approximation in DRSA are:

• a set of objects dominating x, called P-dominating set or positive dominance
cone,
D+

P (x)={y ∈U : yDPx},
• a set of objects dominated by x, called P-dominated set or negative dominance

cone,
D−

P (x)={y ∈U : xDPy}.

Let us recall that the dominance principle [7] requires that an object x dominating
object y on all considered attributes (i.e., x having evaluations at least as good as y
on all considered attributes) should also dominate y on the decision (i.e., x should be
assigned to at least as good decision class as y). Objects satisfying the dominance
principle are called consistent and those which are violating the dominance principle
are called inconsistent.

5.2.3 Approximation of Ordered Decision Classes

The P-lower approximation of Cl≥t , denoted by P(Cl≥t ), and the P-upper approxi-
mation of Cl≥t , denoted by P(Cl≥t ), are defined as follows (t = 2, ...,m):

P(Cl≥t ) = {x ∈U : D+
P (x)⊆Cl≥t },

P(Cl≥t ) = {x ∈U : D−
P (x)∩Cl≥t �= /0}.

The lower approximation of union of classes Cl≥t is composed of such objects x
that the positive dominance cone D+

P (x) in the condition attribute space, with the
origin whose coordinates are those of object x, is included in this union. The upper
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approximation of union of classes Cl≥t is composed of such objects x that the neg-
ative dominance cone D−

P (x) in the condition attribute space, with the origin whose
coordinates are those of object x, has a non-empty intersection with this union.

Analogously, one can define the P-lower approximation and the P-upper approx-
imation of Cl≤t as follows (t = 1, ...,m−1):

P(Cl≤t ) = {x ∈U : D−
P (x)⊆Cl≤t },

P(Cl≤t ) = {x ∈U : D+
P (x)∩Cl≤t �= /0}.

The lower approximation of union of classes Cl≤t is composed of such objects x
that the negative dominance cone D−

P (x) in the condition attribute space, with the
origin whose coordinates are those of object x, is included in this union. The upper
approximation of union of classes Cl≤t is composed of such objects x that the posi-
tive dominance cone D+

P (x) in the condition attribute space, with the origin whose
coordinates are those of object x, has a non-empty intersection with this union.

Remark that these definitions are analogous to the definition of lower and upper
approximation in basic rough set theory. However, here, the dominance cones are
used instead of indiscernibility granules, and moreover, the approximated sets are
here unions of ordered classes instead of single classes.

The P-lower and P-upper approximations so defined satisfy the following inclu-
sion property, for all P⊆ F :

P(Cl≥t )⊆Cl≥t ⊆ P(Cl≥t ), t = 2, . . . ,m,

P(Cl≤t )⊆Cl≤t ⊆ P(Cl≤t ), t = 1, . . . ,m−1.

The P-lower and P-upper approximations of Cl≥t and Cl≤t have an important com-
plementarity property, according to which,

P(Cl≥t ) = U–P(Cl≤t−1) and P(Cl≥t ) = U–P(Cl≤t−1), t=2,...,m,

P(Cl≤t ) = U–P(Cl≥t+1) and P(Cl≤t ) = U–P(Cl≥t+1), t=1,...,m–1.

The P-boundary of Cl≥t and Cl≤t , denoted by BnP(Cl≥t ) and BnP(Cl≤t ), respectively,
are defined as follows:

BnP(Cl≥t ) = P(Cl≥t )–P(Cl≥t ), t = 2, . . . ,m,

BnP(Cl≤t ) = P(Cl≤t )–P(Cl≤t ), t = 1, . . . ,m−1.

Due to the above complementarity property, BnP(Cl≥t )= BnP(Cl≤t−1), for t = 2, ...,m.

5.2.4 Quality of Approximation

For every P⊆F , the quality of approximation of the ordinal classification Cl by a set
of attributes P is defined as the ratio of the number of objects P-consistent with the
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dominance principle and the number of all the objects in U . Since the P-consistent
objects are those which do not belong to any P-boundary BnP(Cl≥t ), t = 2, . . . ,m, or
BnP(Cl≤t ), t = 1, . . . ,m−1, the quality of approximation of the ordinal classification
Cl by a set of attributes P, can be written as

γP(Cl) =

∣
∣
∣U −

(
⋃

t=2,...,m
BnP(Cl≥t )

)
∣
∣
∣

|U | =

∣
∣
∣U −

(
⋃

t=1,...,m−1
BnP(Cl≤t )

)
∣
∣
∣

|U | .

γP(Cl) can be seen as a degree of consistency of the objects from U , where P is the
set of attributes being criteria and Cl is the considered ordinal classification.

Moreover, for every P ⊆ F , the accuracy of approximation of union of ordered
classes Cl≥t , Cl≤t by a set of attributes P is defined as the ratio of the number of ob-
jects belonging to P-lower approximation and P-upper approximation of the union.
Accuracy of approximation αP(Cl≥t ), αP(Cl≤t ) can be written as

αP(Cl≥t ) =

∣
∣
∣P(Cl≥t )

∣
∣
∣

|P(Cl≥t )| , αP(Cl≤t ) =

∣
∣
∣P(Cl≤t )

∣
∣
∣

|P(Cl≤t )| .

5.2.5 Reduction of Attributes

Each minimal (with respect to inclusion) subset P ⊆ F such that γP(Cl) = γF(Cl)
is called a relative reduct of Cl and is denoted by REDk

Cl, where k ∈ K, and K is a
finite set of all reducts. Other types of reducts have been defined in the context of
basic rough set theory [28, 41]. The intersection of all reducts is called the core, and
is denoted by CORECl. Attributes in CORECl cannot be removed from consideration
without deteriorating the quality of approximation. This means that, in set F , there
are three categories of attributes:

• indispensable attributes included in the core,
• exchangeable attributes included in some reducts, but not in the core,
• redundant attributes, neither indispensable nor exchangeable, and thus not in-

cluded in any reduct.

An algorithm for reduction of attributes in the framework of the Dominance-based
Rough Set Approach has been proposed in [42]. This algorithm has been imple-
mented in jMAF.

5.2.6 Decision Rules

The dominance-based rough approximations of upward and downward unions of
decision classes can serve to induce a generalized description of objects in terms of
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“if . . . , then . . . ” decision rules. For a given upward or downward union of classes,
Cl≥t or Cl≤s , the decision rules induced under a hypothesis that objects belonging to
P(Cl≥t ) or P(Cl≤s ) are positive examples, and all the others are negative, suggest a
certain assignment to “class Clt or better”, or to “class Cls or worse”, respectively.
On the other hand, the decision rules induced under a hypothesis that objects be-
longing to P(Cl≥t ) or P(Cl≤s ) are positive examples, and all the others are negative,
suggest a possible assignment to “class Clt or better”, or to “class Cls or worse”,
respectively. Finally, the decision rules induced under a hypothesis that objects be-
longing to the intersection P(Cl≤s )∩P(Cl≥t ) are positive examples, and all the others
are negative, suggest an approximate assignment to some classes between Cls and
Clt (s < t).

In the case of preference-ordered description of objects, set U is composed of
examples of ordinal classification. Then, it is meaningful to consider the following
five types of decision rules:

1) certain D≥-decision rules, providing lower profile descriptions for objects be-
longing to P(Cl≥t ):
i f fi1(x)≥ ri1 and . . . and fip(x)≥ rip , then x ∈Cl≥t ,
where {i1, . . . , ip} ⊆ I, t = 2, . . . ,m, ri1 , . . . ,rip ∈ℜ;

2) possible D≥-decision rules, providing lower profile descriptions for objects be-
longing to P(Cl≥t ):
i f fi1(x)≥ ri1 and . . . and fip(x)≥ rip , then x possibly belongs to Cl≥t ,
where {i1, . . . , ip} ⊆ I, t = 2, . . . ,m, ri1 , . . . ,rip ∈ℜ;

3) certain D≤-decision rules, providing upper profile descriptions for objects be-
longing to P(Cl≤t ):
i f fi1(x)≤ ri1 and . . . and fip(x)≤ rip , then x ∈Cl≤t ,
where {i1, . . . , ip} ⊆ I, t = 1, . . . ,m−1, ri1 , . . . ,rip ∈ℜ;

4) possible D≤-decision rules, providing upper profile descriptions for objects be-
longing to P(Cl≤t ):
i f fi1(x)≤ ri1 and . . . and fip(x)≤ rip , then x possibly belongs to Cl≤t ,
where {i1, . . . , ip} ⊆ I, t = 1, . . . ,m−1, ri1 , . . . ,rip ∈ℜ;

5) approximate D≥≤-decision rules, providing simultaneously lower and upper
profile descriptions for objects belonging to Cls∪Cls+1∪. . .∪Clt , without pos-
sibility of discerning to which class:
i f fi1(x)≥ ri1 and . . . and fik (x)≥ rik and fik+1(x)≤ rik+1 and . . . and fip(x)≤
rip , then x ∈Cls∪Cls+1∪ . . .∪Clt ,
where {i1, . . . , ip} ⊆ I, s, t ∈ {1, . . . ,m}, s < t, ri1 , . . . ,rip ∈ℜ.

In the premise of a D≥≤-decision rule, there can be “ fi(x) ≥ ri” and “ fi(x) ≤ r′i”,
where ri ≤ r′i, for the same i ∈ I. Moreover, if ri = r′i, the two conditions boil down
to “ fi(x) = ri”.

Since a decision rule is a kind of implication, a minimal rule is understood as
an implication such that there is no other implication with the premise of at least
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the same weakness (in other words, a rule using a subset of elementary condi-
tions and/or weaker elementary conditions) and the conclusion of at least the same
strength (in other words, a D≥- or a D≤-decision rule assigning objects to the
same union or sub-union of classes, or a D≥≤-decision rule assigning objects to the
same or smaller set of classes).

The rules of type 1) and 3) represent certain knowledge extracted from data (ex-
amples of ordinal classification), while the rules of type 2) and 4) represent possible
knowledge; the rules of type 5) represent doubtful knowledge, because they are sup-
ported by inconsistent objects only.

Given a certain or possible D≥-decision rule r ≡ “i f fi1(x) ≥ ri1 and . . . and
fip(x) ≥ rip , then x ∈ Cl≥t ”, an object y ∈U supports r if fi1(y) ≥ ri1 and . . . and
fip(y) ≥ rip . Moreover, object y ∈ U supporting decision rule r is a base of r if
fi1(y) = ri1 and . . . and fip(y) = rip . Similar definitions hold for certain or possi-
ble D≤-decision rules and approximate D≥≤-decision rules. A decision rule having
at least one base is called robust. Identification of supporting objects and bases of
robust rules is important for interpretation of the rules in multiple criteria decision
analysis. The ratio of the number of objects supporting a rule and the number of all
considered objects is called relative support of a rule. The relative support and the
confidence ratio are basic characteristics of a rule; however, some Bayesian confir-
mation measures reflect much better the attractiveness of a rule [24]. In this sense
one could consider a generalization of rough set approach in which approximations
are defined taking into account confidence and also one or more confirmation mea-
sures. This idea constitutes the parameterized rough set approach proposed in [20].

A set of decision rules is complete if it covers all considered objects (examples of
ordinal classification) in such a way that consistent objects are re-assigned to their
original classes, and inconsistent objects are assigned to clusters of classes referring
to this inconsistency. A set of decision rules is minimal if it is complete and non-
redundant that is, exclusion of any rule from this set makes it incomplete. Remark
that, in practice, using a complete set of rules is not always satisfactory because
some specific rules with a weak support may negatively bias the classification of
new objects.

Note that the syntax of decision rules induced from rough approximations de-
fined using dominance cones is using consistently this type of granules. Each con-
dition profile defines a dominance cone in n-dimensional condition space ℜn, and
each decision profile defines a dominance cone in one-dimensional decision space
{1, . . . ,m}. In both cases, the cones are positive for D≥-rules and negative for D≤-
rules. These decision rules are used to classify new objects according to a classifi-
cation procedure described in [1].

Let us also remark that dominance cones corresponding to condition profiles can
originate in any point of the condition attribute space ℜn, identified with an ob-
ject present in the decision table, without the risk of their being too specific. Thus,
contrary to traditional granular computing, the condition space ℜn need not be dis-
cretized a priori. The cutting planes just pass through coordinates of objects from
the decision table.
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5.2.7 Variable Consistency Dominance-Based Rough Set
Approaches

In DRSA, lower approximation of a union of ordered decision classes contains only
consistent objects. Such a lower approximation is defined as a sum of dominance
cones that are subsets of the approximated union. In practical applications, how-
ever, such a strong requirement may result in relatively small (and even empty)
lower approximations. Therefore, several variants of DRSA have been proposed,
relaxing the condition for inclusion of an object to the lower approximation. Vari-
able Consistency Dominance-based Rough Set Approaches (VC-DRSA) include to
lower approximations objects that are sufficiently consistent, according to different
measures of consistency.

Although VC-DRSA is inspired by a similar approach proposed by Ziarko [45]
and called VPRS, it is based on its own definitions of lower approximations which
need to be monotonic in the sense described in [4].

Given a user-defined threshold value on a consistency measure, extended lower
approximation of a union of classes is defined as a set of objects for which the
consistency measure satisfies that constraint.

Several definitions of consistency measures have been considered in the literature
so far. In the first papers concerning VC-DRSA [13, 23], consistency of objects has
been calculated using rough membership measure [30, 44]. Then, in order to ensure
monotonicity of lower approximation with respect to the dominance relation, some
new consistency measures have been proposed and investigated in [2]. Recently, it
has been observed that it is reasonable to require that a consistency measure used
in the definition of the lower approximation satisfies a set of monotonicity prop-
erties [4]. Variable-consistency approaches involving such monotonic consistency
measures are called Monotonic Variable Consistency Dominance-based Rough Set
Approaches (Monotonic VC-DRSA) [3, 4].

Procedures for rule induction from dominance-based rough approximations ob-
tained using VC-DRSA have been proposed in [6, 22]. These procedures are based
on sequential covering procedure that was originally applied in the rough set context
in the LEM algorithm [25].

5.3 Example of Application of jMAF

This section presents a didactic example which illustrates application of jMAF to an
ordinal classification problem with monotonicity constraints. The surveys [15, 16,
17, 35, 36, 37, 38] include other examples of application of DRSA.
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5.3.1 Running jMAF

You may find jMAF executable file in the location where you have unpacked
the zip file that can be downloaded from http://www.cs.put.poznan.pl/
jblaszczynski/Site/jRS.html. Please launch this file. A moment later you will
see main jMAF window on your desktop. It should resemble the one presented in
Figure 5.1.

Fig. 5.1. jMAF main window

Now you have jMAF running in workspace folder located in the folder where it
was launched from. You can check the content of workspace folder by examining
the explorer window. The main jMAF window is divided into 4 sub windows: top-
most menubar and toolbar, middle explorer and results window and bottom console
window. There is also a status line at the bottom.

5.3.2 Decision Table

Let us consider the following ordinal classification problem. Students of a college
must obtain an overall evaluation on the basis of their achievements in Mathemat-
ics, Physics, and Literature. These three subjects are clearly criteria (condition at-
tributes), and the comprehensive evaluation is a decision attribute. For simplicity,
the value sets of the attributes and of the decision attribute are the same, and they
are composed of three values: bad, medium, and good. The preference order of these
values is obvious. Thus, there are three preference-ordered decision classes, so the
problem belongs to the category of ordinal classification. In order to build a prefer-
ence model of the jury, DRSA is used to analyze a set of exemplary evaluations of
students provided by the jury. These examples of ordinal classification constitute an
input preference information presented as decision table in Table 5.2.

http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html
http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html
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Note that the dominance principle obviously applies to the examples of ordinal
classification, since an improvement of a student’s score in one of three attributes
with other scores unchanged should not worsen the student’s overall evaluation but
rather improve it.

Table 5.2. Exemplary decision table with evaluations of students (examples of ordinal clas-
sification)

Student Mathematics Physics Literature Overall Evaluation
S1 good medium bad bad
S2 medium medium bad medium
S3 medium medium medium medium
S4 good good medium good
S5 good medium good good
S6 good good good good
S7 bad bad bad bad
S8 bad bad medium bad

Observe that student S1 has not worse evaluations than student S2 on all the con-
sidered condition attributes; however, the overall evaluation of S1 is worse than the
overall evaluation of S2. This violates the dominance principle so the two examples
of ordinal classification, and only those, are inconsistent. One can expect that the
quality of approximation of the ordinal classification represented by examples in
Table 5.2 will be equal to 0.75.

5.3.3 Data File

As the first step, you should create a file containing data from the data table. You
have now two choices-you may use spreadsheet-like editor or any plain text editor.
For this example, we will focus on the second option.

Run any text editor that is available on your system installation. Enter the text
shown below.

**ATTRIBUTES
+ Mathematics : [bad, medium, good]
+ Physics : [bad, medium, good]
+ Literature : [bad, medium, good]
+ Overall : [bad, medium, good]
decision: Overall

**PREFERENCES
Mathematics : gain
Physics : gain
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Literature : gain
Overall : gain

**EXAMPLES
good medium bad bad
medium medium bad medium
medium medium medium medium
good good medium good
good medium good good
good good good good
bad bad bad bad
bad bad medium bad

**END

Now, save the file as students.isf (for example in the jMAF folder). At this mo-
ment, you are able to open this file in jMAF.

5.3.4 Opening Data File

Use File | Open to open students.isf file. You will see a typical file open dialog.
Please select your newly created file. Alternatively, you can double-click file in the
explorer window if you have saved it in the workspace folder. If the file is not visible
in explorer window, try right clicking on the explorer window and select from the
context menu Refresh or Switch workspace to choose different workspace folder.

Fig. 5.2. File students.isf opened in jMAF
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5.3.5 Calculation of Dominance Cones

One of the first steps of data analysis using rough set theory is calculation of dom-
inance cones (P-dominating sets and P-dominated sets). To perform this step, you
can select an example from the isf file in results window and use Calculate | P-
Dominance Sets | Calculate dominating set or Calculate | P-Dominance Sets |
Calculate dominated set. You can also use these options from the toolbar menu.
The resulting dominance cones for student S1 are visible in Figures 5.3 and 5.4.

Fig. 5.3. P-dominating cone of Example 1

Fig. 5.4. P-dominated cone of Example 1
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5.3.6 Calculation of Approximations

The next step in rough set analysis is calculation of approximations. Use Calcu-
late | Unions of classes | Standard unions of classes to calculate DRSA unions
and their approximations. Now, you should see an input dialog for calculation of
approximations. It should look like the one presented in Figure 5.5.

Fig. 5.5. Input dialog for calculation of approximations

Leave default value of the consistency level parameter if you are looking for
standard DRSA analysis. You can also set consistency level lower than one, to per-
form VC-DRSA analysis. The result would be that more of the objects from the
upper approximations of unions with accuracy of approximation lower than one
would be included in lower approximation. You should see the result as presented in
Figure 5.6.

Fig. 5.6. Approximations of unions of classes
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You can navigate in Standard Unions window to see more details concerning
calculated approximations (they are presented in Figure 5.7).

Fig. 5.7. Details of approximations of unions of classes

As you can see, quality of approximation equals 0.75, and accuracy of approxi-
mation in unions of classes ranges from 0.5 to 1.0. Lower approximation of union
“at most” bad includes S7 and S8. Please select Track in Editor option to track
your selection from Standard Unions window in the results window.

5.3.7 Calculation of Reducts

The list of all reducts can be obtained by selecting Calculate | Reducts | All
reducts. As a result of this operation one can see all of reducts together with their
cardinality, that is, number of criteria in a reduct. Additionally, the core of the cal-
culated reducts is also shown (see Figure 5.8).

5.3.8 Induction of Decision Rules

Given the calculated in section 5.3.6 rough approximations, one can induce a set
of decision rules representing the preferences of the jury. We will use one of the
available methods - minimal covering rules (VC-DOMLEM algorithm).The idea is
that evaluation profiles of students belonging to the lower approximations can serve
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Fig. 5.8. List of calculated reducts and core

as a base for some certain rules, while evaluation profiles of students belonging to
the boundaries can serve as a base for some approximate rules. In the example we
will consider, however, only certain rules.

To induce rules use Calculate | VC-DOMLEM algorithm. You will see a dia-
log with parameters of rule induction that is presented in Figure 5.9. Leave default
values of these parameters to perform standard rule induction for DRSA analysis.

Fig. 5.9. Dialog with parameters of rule induction

To select where the result file with rules will be stored please edit output file in
the following dialog (presented in Figure 5.10).
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Fig. 5.10. Dialog with parameters of rule induction

The resulting rules are presented in results window (see Figure 5.11).

Fig. 5.11. Decision rules

Statistics of a rule selected in results window can be show by selecting Open
Statistics View associated with selected rule from toolbar or from the context
menu (right click on a rule). Statistics of the first rule are presented in Figure 5.12.

One can also see coverage of a rule (see Figure 5.13).
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Fig. 5.12. Statistics of the first decision rule

Fig. 5.13. Coverage of the first decision rule

5.3.9 Classification

Usually data analyst wants to know what is the value of induced rules, that is, how
good they can classify objects. Thus, we proceed with an example of reclassification
of learning data table for which rules were induced. To perform reclassification use
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Classify | Reclassify learning examples. You will see a dialog with classification
options. Select VCDRSA classification method as it is presented in Figure 5.14.
Should you want to know more about VC-DRSA method, please see [1].

Fig. 5.14. Dialog with classification method

The results of classification are presented in a summary window as it is shown in
Figure 5.15. Use Details button to see how particular objects were classified. The
resulting window is presented in Figure 5.16. In this window, it is possible to see
rules covering each of the classified examples and their classification.

Fig. 5.15. Results of classification

Column “Certainty” in Fig. 5.16 refers to classification certainty score calculated
in a way presented in [1].
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Fig. 5.16. Details of classification

5.4 Roadmap of Future Development of jMAF

jMAF is still under development. We plan to add the following functions to jMAF:

• induction of all decision rules with possibility of filtering a satisfactory subset
of rules,

• handling of missing values,
• calculation of VC-reducts,
• measuring of Bayesian confirmation of attributes, and
• import of data files from popular spreadsheets.

5.5 Exemplary Applications of Dominance-Based Rough Set
Approach

There are many possibilities of applying DRSA to real-life problems. The non-
exhaustive list of potential applications includes:

• decision support in medicine: in this area, there are already many interesting ap-
plications (see, e.g., [31, 26, 27, 43]); however, they exploit the classical rough
set approach; applications requiring DRSA, which handle ordered value sets of
medical signs, as well as monotonic relationships between the values of signs
and the degree of a disease, are in progress;
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• customer satisfaction survey: theoretical foundations for application of DRSA
in this field are available in [18]; however, a fully documented application is
still missing;

• bankruptcy risk evaluation: this is a field of many potential applications, as can
be seen from promising results reported for exmale in [39, 40, 10]; however, a
wider comparative study involving real data sets is needed;

• operational research problems, such as location, routing, scheduling or inven-
tory management: these are problems formulated either in terms of classifica-
tion of feasible solutions (see, e.g., [9]) or in terms of interactive multiobjective
optimization, for which there is a suitable IMO-DRSA [21] procedure;

• finance: this is a domain where DRSA for decision under uncertainty has to be
combined with interactive multiobjective optimization using IMO-DRSA; some
promising results in this direction have been presented in [19];

• ecology: assessment of the impact of human activity on the ecosystem is a chal-
lenging problem for which the presented methodology is suitable; the up-to-
date applications are based on the classical rough set concept (see, e.g., [33, 8]);
however, it seems that DRSA handling ordinal data has a greater potential in
this field.

5.6 Glossary

Multiple attribute (or multiple criteria) decision support aims at giving the decision
maker (DM) a recommendation concerning a set of objects U (also called alter-
natives, actions, acts, solutions, options, candidates, etc.) evaluated from multiple
points of view called attributes (also called features, variables, criteria, etc.).

Main categories of multiple attribute (or multiple criteria) decision problems are:

• classification, when the decision aims at assigning objects to predefined classes;
• choice, when the decision aims at selecting the best object;
• ranking, when the decision aims at ordering objects from the best to the worst.

Two kinds of classification problems are distinguished:

• taxonomy, when the value sets of attributes and the predefined classes are not
preference ordered;

• ordinal classification with monotonicity constraints (also called multiple cri-
teria sorting), when the value sets of attributes and the predefined classes are
preference ordered, and there exist monotonic relationships between condition
and decision attributes.

Two kinds of choice problems are distinguished:

• discrete choice, when the set of objects is finite and reasonably small to be
listed;

• multiple objective optimization, when the set of objects is infinite and defined
by constraints of a mathematical program.
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If value sets of attributes are preference-ordered, they are called criteria or ob-
jectives, otherwise they keep the name of attributes.

Criterion is a real-valued function fi defined on U , reflecting a worth of objects
from a particular point of view, such that in order to compare any two objects a,b ∈
U from this point of view, it is sufficient to compare two values: fi(a) and fi(b).

Dominance: object a is non-dominated in set U (Pareto-optimal) if and only if
there is no other object b in U such that b is not worse than a in all considered
criteria, and strictly better on at least one criterion.

Preference model is a representation of a value system of the decision maker on
the set of objects with vector evaluations.

Rough set in universe U is an approximation of a set based on available informa-
tion about objects of U . The rough approximation is composed of two ordinary sets,
called lower and upper approximation. Lower approximation is a maximal subset
of objects which, according to the available information, certainly belong to the
approximated set, and upper approximation is a minimal subset of objects which,
according to the available information, possibly belong to the approximated set. The
difference between upper and lower approximation is called boundary.

Decision rule is a logical statement of the type “if..., then...”, where the premise
(condition part) specifies values assumed by one or more condition attributes and
the conclusion (decision part) specifies an overall judgment.
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14. Greco, S., Matarazzo, B., Słowiński, R.: Multicriteria classification. In: Kloesgen, W.,
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39. Słowiński, R., Zopounidis, C.: Application of the rough set approach to evaluation of
bankruptcy risk. International Journal of Intelligent Systems in Accounting, Finance and
Management 4, 27–41 (1995)
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Chapter 6
Dynamic Programming Approach for Exact
Decision Rule Optimization

Talha Amin, Igor Chikalov, Mikhail Moshkov, and Beata Zielosko

Abstract. This chapter is devoted to the study of an extension of dynamic program-
ming approach that allows sequential optimization of exact decision rules relative to
the length and coverage. It contains also results of experiments with decision tables
from UCI Machine Learning Repository.

Keywords: Decision rules, dynamic programming, length, coverage.

6.1 Introduction

Decision rules are widely used as parts of classification algorithms (predictors), as
a way for knowledge representation, and as parts of algorithms (parallel or nonde-
terministic) [13, 14, 16, 20].

There are different approaches to the construction of decision rules and reducts
(decision rules can be considered as local reducts): brute-force approach that is
applicable to tables with relatively small number of attributes, genetic algorithms
[22, 24], Apriori algorithm [1], simulated annealing [9], Boolean reasoning [15, 17,
21], ant colony optimization [4, 10], algorithms based on decision tree construction
[11, 14, 18], and different kinds of greedy algorithms [13, 15]. Each method can
have different modifications. For example, as in the case of decision trees, we can
use greedy algorithms based on different uncertainty measures (Gini index, entropy,
etc.) to generate decision rules.
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In many applications very often we are interested in the construction of short
rules that cover many objects (we concentrate in this chapter on the consideration
of exact rules). In particular, the choice of short rules is connected with the Mini-
mum Description Length principle [19, 8] and Minimum Message Length [23]. The
rule coverage is important to discover major patterns in the data. Unfortunately, the
problems of minimization of length and maximization of coverage of decision rules
are NP-hard.

In this chapter, we try to avoid this “restriction” for relatively small decision
tables by the use of an extension of dynamic programming approach. If we can con-
struct all subtables of the initial decision table given by systems of conditions of the
kind “attribute = value” then we can describe the whole set of so-called irredundant
decision rules, describe all irredundant rules with maximum coverage, and after that
among these rules describe all rules with minimum length. We can change the order
of optimization: describe all irredundant rules with minimum length, and after that
describe among such rules all rules with maximum coverage. The obtained rules can
be used both in usual [14] and online [5] classifiers.

We prove that by removal of some conditions from the left-hand side of each
exact rule that is not irredundant we can obtain an irredundant (exact) decision rule
whose length is at most the length of initial rule and the coverage is at least the
coverage of initial rule. It means that we work not only with optimal rules among
irredundant rules but also with optimal among all rules.

Similar approach to the decision tree optimization was considered in [2, 3, 6,
12]. First results for decision rules based on dynamic programming approach were
obtained in [25]. The aim of this study was to find one decision rule with minimum
length for each row.

In this chapter, we consider algorithms for optimization of irredundant decision
rules relative to the length and coverage and results of experiments with some deci-
sion tables from UCI Machine Learning Repository [7] based on Dagger software
system created in KAUST.

The chapter consists of eight sections. Section 6.2 is devoted to the consideration
of irredundant decision rules. In Sect. 6.3, we study a directed acyclic graph that
allows us to describe the whole set of irredundant decision rules. In Sect. 6.4, we
consider a procedure of optimization of this graph (really, corresponding rules) rela-
tive to the length, and in Sect. 6.5 – relative to the coverage. In Sect. 6.6, we discuss
possibilities of sequential optimization of rules relative to the length and coverage.
Section 6.7 contains results of experiments with decision tables from UCI Machine
Learning Repository, and Sect. 6.8 – conclusions.

6.2 Irredundant Decision Rules

First, we consider definitions of notions corresponding to decision tables and
decision rules.
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A decision table T is a rectangular table with n columns labeled with conditional
attributes f1, . . . , fn. Rows of this table are filled with nonnegative integers that are
interpreted as values of conditional attributes. Rows of T are pairwise different and
each row is labeled with a nonnegative integer (decision) that is interpreted as a
value of the decision attribute.

We denote by N(T ) the number of rows in the table T . The table T is called
degenerated if T is empty (in this case N(T ) = 0) or all rows of T are labeled with
the same decision.

A table obtained from T by the removal of some rows is called a subtable of the
table T . Let T be nonempty, fi1 , . . . , fim ∈ { f1, . . . , fn} and a1, . . . ,am be nonnega-
tive integers. We denote by T ( fi1 ,a1) . . . ( fim ,am) the subtable of the table T which
contains only rows that have numbers a1, . . . ,am at the intersection with columns
fi1 , . . . , fim . Such nonempty subtables (including the table T ) are called separable
subtables of T .

We denote by E(T ) the set of attributes from { f1, . . . , fn} which are not constant
on T . For any fi ∈ E(T ), we denote by E(T, fi) the set of values of the attribute fi

in T .
The expression

fi1 = a1∧ . . .∧ fim = am → d (6.1)

is called a decision rule over T if fi1 , . . . , fim ∈ { f1, . . . , fn}, and a1, . . .am,d are
nonnegative integers. It’s possible that m = 0. In this case (6.1) is equal to the rule

→ d. (6.2)

Let r = (b1, . . . ,bn) be a row of T . We will say that the rule (6.1) is realizable for
r, if a1 = bi1 , . . . ,am = bim . If m = 0 then the rule (6.2) is realizable for any row
from T .

We will say that the rule (6.1) is true for T if each row of T for which the rule
(6.1) is realizable has the decision d attached to it. Note that (6.1) is true for T if
and only if the table T ′ = T ( fi1 ,a1) . . . ( fim ,am) is degenerated and each row of T ′
is labeled with the decision d. If m = 0 then the rule (6.2) is true for T if and only if
T is degenerated and each row of T is labeled with the decision d.

If the rule (6.1) is true for T and realizable for r, we will say that (6.1) is a
decision rule for T and r.

We will say that the rule (6.1) with m > 0 is an irredundant decision rule for T
and r if (6.1) is a decision rule for T and r and the following conditions hold:

(i) fi1∈E(T ) and if m > 1 then fi j ∈E(T ( fi1 ,a1) . . . ( fi j−1 ,a j−1)) for j = 2, . . . ,m;
(ii) if m = 1 then the table T is nondegenerated, and if m > 1 then the table

T ( fi1 ,a1) . . . ( fim−1 ,am−1) is nondegenerated.

If m = 0 then the rule (6.2) is an irredundant decision rule for T and r if (6.2) is a
decision rule for T and r, that is, if T is degenerated and each row of T is labeled
with the decision d.
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Lemma 6.1. Let T be a nondegenerated decision table, fi1 ∈ E(T ), a1 ∈ E(T, fi1),
and r be a row of the table T ′ = T ( fi1 ,a1). Then the rule (6.1) with m ≥ 1 is an
irredundant decision rule for T and r if and only if the rule

fi2 = a2∧ . . .∧ fim = am → d (6.3)

is an irredundant decision rule for T ′ and r (if m = 1 then (6.3) is equal to → d).

Proof. It is clear that (6.1) is a decision rule for T and r if and only if (6.3) is a
decision rule for T ′ and r.

It’s easy to show that the statement of lemma holds if m = 1. Let now m > 1.
Let (6.1) be an irredundant decision rule for T and r. Then from (i) it follows that

f2∈E(T ′) and if m>2 then, for j=3, . . . ,m, fij ∈E(T ′( fi2 ,a2) . . . ( fij−1 ,a j−1)). From
(ii) it follows that T ′ is nondegenerated if m = 2 and T ′( fi2 ,a1) . . . ( fim−1 ,am−1)
is nondegenerated if m > 2. Therefore (6.3) is an irredundant decision rule for T ′
and r.

Let (6.3) be an irredundant decision rule for T ′ and r. Then, for j = 2, . . . ,m,
fi j ∈ E(T ( fi1 ,a1) . . . ( fi j−1 ,a j−1)). Also we know that fi1 ∈ E(T ). Therefore the
condition (i) holds. Since (6.3) is an irredundant decision rule for T ′ and r, we have
T ( fi1 ,a1) is nondegenerated if m = 2 and T ( fi1 ,a1) . . . ( fim−1 ,am−1) is nondegener-
ated if m > 2. Therefore the condition (ii) holds, and (6.1) is an irredundant decision
rule for T and r.  !
Let τ be a decision rule over T and τ be equal to (6.1).

The number m of conditions on the left-hand side of τ is called the length of this
rule and is denoted by l(τ). The length of decision rule (6.2) is equal to 0.

The coverage of τ is the number of rows in T for which τ is realizable and which
are labeled with the decision d. We denote it by c(τ). The coverage of decision rule
(6.2) is equal to the number of rows in T which are labeled with the decision d. If τ
is true for T then c(τ) = N(T ( fi1 ,a1) . . . ( fim ,am)).

Proposition 6.1. Let T be a nonempty decision table, r be a row of T and τ be a de-
cision rule for T and r which is not an irredundant decision rule for T and r. Then
by removal of some conditions from the left-hand side of τ we can obtain an irredun-
dant decision rule irr(τ) for T and r such that l(irr(τ))≤ l(τ) and c(irr(τ))≥ c(τ).

Proof. Let τ be equal to (6.1). Let T be degenerated. One can show that the rule
→ d is an irredundant decision rule for T and r. We denote this rule by irr(τ). It is
clear that l(irr(τ))≤ l(τ) and c(irr(τ))≥ c(τ).

Let T be nondegenerated, and t be the minimum number from {1, . . . ,m} such
that T ( fi1 ,a1) . . . ( fit ,at) is degenerated. If t < m then we remove from τ the condi-
tions fit+1 = at+1, . . . , fim = am. We denote the obtained rule by τ′. It is clear that τ′
is a decision rule for T and r. If fi1 /∈ E(T ) then we remove the condition fi1 = a1

from τ′. For any j ∈ {2, . . . ,t}, if fi j /∈ E(T ( fi1 ,a1) . . . ( fi j−1 ,a j−1)) then we remove
the condition fi j = a j from the left-hand side of the rule τ′.

One can show that the obtained rule is an irredundant decision rule for T and r.
We denote it by irr(τ). It is clear that l(τ)≥ l(irr(τ)) and c(τ)≤ c(irr(τ)).  !
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6.3 Directed Acyclic Graph Δ(T )

Now, we consider an algorithm that constructs a directed acyclic graph Δ(T ) which
will be used to describe the set of irredundant decision rules for T and for each
row r of T . Nodes of the graph are some separable subtables of the table T . During
each step, the algorithm processes one node and marks it with the symbol *. At the
first step, the algorithm constructs a graph containing a single node T which is not
marked with *.

Let us assume that the algorithm has already performed p steps. We describe
now the step (p + 1). If all nodes are marked with the symbol * as processed, the
algorithm finishes its work and presents the resulting graph as Δ(T ). Otherwise,
choose a node (table)Θ, which has not been processed yet. IfΘ is degenerated, then
markΘ with the symbol * and go to the step (p+2). Otherwise, for each fi ∈ E(Θ),
draw a bundle of edges from the node Θ. Let E(Θ, fi) = {b1, . . . ,bt}. Then draw t
edges fromΘ and label these edges with pairs ( fi,b1), . . . ,( fi,bt) respectively. These
edges enter to nodesΘ( fi,b1), . . . ,Θ( fi,bt). If some of nodesΘ( fi,b1), . . . ,Θ( fi,bt)
are absent in the graph then add these nodes to the graph. We label each row r of Θ
with the set of attributes EΔ(T)(Θ,r) = E(Θ). Mark the node Θ with the symbol *
and proceed to the step (p + 2).

The graph Δ(T ) is a directed acyclic graph. A node of this graph will be called
terminal if there are no edges leaving this node. Note that a node Θ of Δ(T ) is
terminal if and only if Θ is degenerated.

Later, we will describe procedures of optimization of the graph Δ(T ) relative to
the length and coverage. As a result we will obtain a graph G with the same sets of
nodes and edges as in Δ(T ). The only difference is that any row r of each nondegen-
erated table Θ from G is labeled with a nonempty set of attributes EG(Θ,r)⊆ E(Θ)
possibly different from E(Θ).

Now for each node Θ of G and for each row r of Θ we describe a set of decision
rules RulG(Θ,r). Let Θ be a terminal node of G: Θ is a degenerated table in which
each row is labeled with the same decision d. Then

RulG(Θ,r) = {→ d}.
Let nowΘ be a nonterminal node of G such that for each child Θ′ of Θ and for each
row r′ of Θ′ the set of rules Rul(Θ′,r′) is already defined. Let r = (b1, . . . ,bn) be a
row of Θ labeled with a decision d. For any fi ∈ EG(Θ,r), we define the set of rules
RulG(Θ,r, fi) as follows:

RulG(Θ,r, fi) = { fi = bi∧α→ d : α→ d ∈ RulG(Θ( fi,bi),r)}.

Then
RulG(Θ,r) =

⋃

fi∈EG(Θ,r)

RulG(Θ,r, fi).

Theorem 6.1. For any nodeΘ of Δ(T ) and for any row r of Θ, the set RulΔ(T)(Θ,r)
is equal to the set of all irredundant decision rules for Θ and r.
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Proof. We will prove this statement by induction on nodes in Δ(T ). Let Θ be a
terminal node of Δ(T ). Then each row r of Θ is labeled with the same decision d.
One can show that the rule → d is the only rule which is irredundant for Θ and r.
Therefore, the set RulΔ(T)(Θ,r) is equal to the set of all irredundant decision rules
for Θ and r.

Let Θ be a nonterminal node of Δ(T ), and for each child of Θ, the statement of
theorem holds. Let r = (b1, . . . ,bn) be a row ofΘ which is labeled with a decision d.
Using Lemma 6.1, we obtain that RulΔ(T)(Θ,r) contains only irredundant decision
rules for Θ and r.

Let τ be an irredundant decision rule forΘ and r. Since Θ is nondegenerated, the
left-hand side of τ is nonempty. Therefore, τ can be represented in the form fi =
bi∧α→ d, where fi ∈ E(Θ). Using Lemma 6.1, we obtain α→ d is an irredundant
decision rule for Θ( fi,bi) and r. Based on inductive hypothesis, we obtain that the
rule α→ d belongs to the set RulΔ(T)(Θ( fi,bi),r). Therefore, τ ∈ Rul(Θ,r).  !
To illustrate algorithm studied in this chapter, we consider simple decision table T0

(see Table 6.1).

Table 6.1. Decision table T0

T0 =

f1 f2 f3

r1 1 1 1 1
r2 1 0 0 1
r3 0 0 0 2
r4 1 1 0 1

Algorithm stops partitioning of a subtable Θ of T0 if Θ is degenerated or empty.
We denote G = Δ(T0).

For each node Θ of the graph G and for each row r of Θ we describe the set
RulG(Θ,r). We will move from terminal nodes of G to the node T0. Terminal nodes
of the graph G are Θ1, Θ2, Θ4, Θ6, Θ7, and Θ8, Θ9. For these nodes,

RulG(Θ1,r3) = {→ 2};
RulG(Θ2,r1) = RulG(Θ2,r2) = RulG(Θ2,r4) = {→ 1};
RulG(Θ4,r1) = RulG(Θ4,r4) = {→ 1};
RulG(Θ6,r1) = {→ 1};
RulG(Θ7,r2) = {→ 1};
RulG(Θ8,r2) = RulG(Θ8,r4) = {→ 1};
RulG(Θ9,r4) = {→ 1};

Now we can describe the sets of rules attached to rows of Θ3 and Θ5. There are
nonterminal nodes of G. For Θ3 all children Θ1 and Θ7 are already treated, and we
have

RulG(Θ3,r2) = { f1 = 1→ 1};
RulG(Θ3,r3) = { f1 = 0→ 2}.

For Θ5 all children Θ1, Θ3, Θ8, and Θ9 are already treated, and we have
RulG(Θ5,r2) = { f1 = 1→ 1, f2 = 0∧ f1 = 1→ 1};
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Fig. 6.1. Directed acyclic graph G = Δ(T0)

RulG(Θ5,r3) = { f1 = 0→ 2, f2 = 0∧ f1 = 0→ 2};
RulG(Θ5,r4) = { f1 = 1→ 1, f2 = 1→ 1}.

Finally, we can describe the sets of rules attached to rows of T0:
RulG(T0,r1) = { f1 = 1→ 1, f2 = 1→ 1, f3 = 1→ 1};
RulG(T0,r2) = { f1 = 1→ 1, f2 = 0∧ f1 = 1→ 1, f3 = 0∧ f1 = 1→ 1,
f3 = 0∧ f2 = 0∧ f1 = 1→ 1};
RulG(T0,r3) = { f1 = 0→ 2, f2 = 0∧ f1 = 0→ 2, f3 = 0∧ f1 = 0→ 2,
f3 = 0∧ f2 = 0∧ f1 = 0→ 2};
RulG(T0,r4) = { f1 = 1→ 1, f2 = 1→ 1, f3 = 0∧ f1 = 1→ 1,
f3 = 0∧ f2 = 1→ 1}.

6.4 Procedure of Optimization Relative to Length

We consider the procedure of optimization of the graph G relative to the length l.
For each node Θ in the graph G, this procedure assigns to each row r of Θ the set
Rull

G(Θ,r) of decision rules with minimum length from RulG(Θ,r) and the number
Optl

G(Θ,r) – the minimum length of a decision rule from RulG(Θ,r).
The idea of the procedure is simple. It is clear that for each terminal nodeΘ of G

and for each row r of Θ the following equalities hold:

Rull
G(Θ,r) = RulG(Θ,r) = {→ d},
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where d is the decision attached to each row of Θ, and

Optl
G(Θ,r) = 0.

Let Θ be a nonterminal node, r = (b1, . . . ,bn) be a row of Θ labeled with a decision
d. We know that

RulG(Θ,r) =
⋃

fi∈EG(Θ,r)

RulG(Θ,r, fi)

and, for fi ∈ EG(Θ,r),

RulG(Θ,r, fi) = { fi = bi∧α→ d : α→ d ∈ RulG(Θ( fi,bi),r)}.

For fi ∈ EG(Θ,r), we denote by Rull
G(Θ,r, fi) the set of all rules with the minimum

length from RulG(Θ,r, fi) and by Optl
G(Θ,r, fi) – the minimum length of a decision

rule from RulG(Θ,r, fi).
One can show that

Rull
G(Θ,r, fi) = { fi = bi∧α→ d : α→ d ∈ Rull

G(Θ( fi,bi),r)},

Optl
G(Θ,r, fi) = Optl

G(Θ( fi,bi),r)+ 1,

and
Optl

G(Θ,r) = min{Optl
G(Θ,r, fi) : fi ∈ EG(Θ,r)}

= min{Optl
G(Θ( fi,bi),r)+ 1 : fi ∈ EG(Θ,r)}.

It’s easy to see also that

Rull
G(Θ,r) =

⋃

fi∈EG(Θ,r),Optl
G(Θ( fi,bi),r)+1=Optl

G(Θ,r)

Rull
G(Θ,r, fi).

We now describe the procedure of optimization of the graph G relative to the
length l.

We will move from the terminal nodes of the graph G which are degenerated
tables to the node T . We will assign to each row r of each table Θ the number
Optl

G(Θ,r) which is the minimum length of a decision rule from RulG(Θ,r) and we
will change the set EG(Θ,r) attached to the row r in the nonterminal table Θ. We
denote the obtained graph by Gl .

Let Θ be a terminal node of G. Then we assign to each row r of Θ the number
Optl

G(Θ,r) = 0.
Let Θ be a nonterminal node and all children of Θ have already been treated. Let

r = (b1, . . . ,bn) be a row of Θ. We assign the number

Optl
G(Θ,r) = min{Optl

G(Θ( fi,bi),r)+ 1 : fi ∈ EG(Θ,r)}
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to the row r in the table Θ and we set

EGl (Θ,r) = { fi : fi ∈ EG(Θ,r),Optl
G(Θ( fi,bi),r)+ 1 = Optl

G(Θ,r)}.

From the reasoning before the description of the procedure of optimization relative
to the length the next statement follows.

Theorem 6.2. For each node Θ of the graph Gl and for each row r of Θ the set
RulGl (Θ,r) is equal to the set Rull

G(Θ,r) of all rules with the minimum length from
the set RulG(Θ,r).

Figure 6.2 presents the directed acyclic graph Gl obtained from the graph G (see
Fig. 6.1) by the procedure of optimization relative to the length.

Fig. 6.2. Graph Gl

Using the graph Gl , can describe for each row ri, i = 1, . . . ,4, of the table T0 the
set Rull

G(T0,ri) of all irredundant decision rules for T0 and ri with minimum length:
Rull

G(T0,r1) = { f1 = 1→ 1, f2 = 1→ 1, f3 = 1→ 1};
Rull

G(T0,r2) = { f1 = 1→ 1};
Rull

G(T0,r3) = { f1 = 0→ 2};
Rull

G(T0,r4) = { f1 = 1→ 1, f2 = 1→ 1}.
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6.5 Procedure of Optimization Relative to Coverage

We consider the procedure of optimization of the graph G relative to the coverage
c. For each node Θ in the graph G, this procedure assigns to each row r of Θ the
set Rulc

G(Θ,r) of decision rules with maximum coverage from RulG(Θ,r) and the
number Optc

G(Θ,r) – the maximum coverage of a decision rule from RulG(Θ,r).
The idea of the procedure is simple. It is clear that for each terminal nodeΘ of G

and for each row r of Θ the following equalities hold:

Rulc
G(Θ,r) = RulG(Θ,r) = {→ d},

where d is the decision attached to each row of Θ, and

Optc
G(Θ,r) = N(Θ).

Let Θ be a nonterminal node, r = (b1, . . . ,bn) be a row of Θ labeled with a decision
d. We know that

RulG(Θ,r) =
⋃

fi∈EG(Θ,r)

RulG(Θ,r, fi)

and, for fi ∈ EG(Θ,r),

RulG(Θ,r, fi) = { fi = bi∧α→ d : α→ d ∈ RulG(Θ( fi,bi),r)}.

For fi ∈ EG(Θ,r), we denote by Rulc
G(Θ,r, fi) the set of all rules with the maximum

coverage from RulG(Θ,r, fi) and by Optc
G(Θ,r, fi) – the maximum coverage of a

decision rule from RulG(Θ,r, fi).
One can show that

Rulc
G(Θ,r, fi) = { fi = bi∧α→ d : α→ d ∈ Rulc

G(Θ( fi,bi),r)},

Optc
G(Θ,r, fi) = Optc

G(Θ( fi,bi),r),

and
Optc

G(Θ,r) = max{Optc
G(Θ,r, fi) : fi ∈ EG(Θ,r)}

= max{Optc
G(Θ( fi,bi),r) : fi ∈ EG(Θ,r)}.

It’s easy to see also that

Rulc
G(Θ,r) =

⋃

fi∈EG(Θ,r),Optc
G(Θ( fi,bi),r)=Optc

G(Θ,r)

Rulc
G(Θ,r, fi).

We now describe the procedure of optimization of the graph G relative to the cover-
age c.

We will move from the terminal nodes of the graph G which are degenerated
tables to the node T . We will assign to each row r of each table Θ the number
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Optc
G(Θ,r) which is the maximum coverage of a decision rule from RulG(Θ,r) and

we will change the set EG(Θ,r) attached to the row r in the nonterminal tableΘ. We
denote the obtained graph by Gc.

Let Θ be a terminal node of G. Then we assign the number

Optc
G(Θ,r) = N(Θ)

to each row r of Θ.
Let Θ be a nonterminal node and all children of Θ have already been treated. Let

r = (b1, . . . ,bn) be a row of Θ. We assign the number

Optc
G(Θ,r) = max{Optc

G(Θ( fi,bi),r) : fi ∈ EG(Θ,r)}

to the row r in the table Θ and we set

EGc(Θ,r) = { fi : fi ∈ EG(Θ,r),Optc
G(Θ( fi,bi),r) = Optc

G(Θ,r)}.

From the reasoning before the description of the procedure of optimization relative
to the coverage the next statement follows.

Theorem 6.3. For each node Θ of the graph Gc and for each row r of Θ the set
RulGc(Θ,r) is equal to the set Rulc

G(Θ,r) of all rules with the maximum coverage
from the set RulG(Θ,r).

Figure 6.3 presents the directed acyclic graph Gc obtained from the graph G (see
Fig. 6.1) by the procedure of optimization relative to the coverage.

Using the graph Gc, can describe for each row ri, i = 1, . . . ,4, of the table T0

the set Rulc
G(T0,ri) of all irredundant decision rules for T0 and ri with maximum

coverage. We will give also the value Optc
G(T0,ri) which is equal to the maximum

coverage of an irredundant decision rule for T0 and ri. This value was obtained
during the procedure of optimization of the graph G relative to the coverage. We
have

Rulc
G(T0,r1) = { f1 = 1→ 1}, Optc

G(T0,r1) = 3;
Rulc

G(T0,r2) = { f1 = 1→ 1}, Optc
G(T0,r2) = 3;

Rulc
G(T0,r3) = { f1 = 0→ 2, f2 = 0∧ f1 = 0→ 2, f3 = 0∧ f1 = 0→ 2,

f3 = 0∧ f2 = 0∧ f1 = 0→ 2}, Optc
G(T0,r3) = 1;

Rulc
G(T0,r4) = { f1 = 1→ 1}, Optc

G(T0,r4) = 3.

6.6 Sequential Optimization

Theorems 6.2 and 6.3 show that we can make sequential optimization relative to the
length and coverage. We can find all irredundant rules with maximum coverage, and
after that among these rules find all rules with minimum length. We can also change
the order of optimization: find all irredundant rules with minimum length, and after
that find among such rules all rules with maximum coverage.
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Fig. 6.3. Graph Gc

We will say that an irredundant decision rule for T and r is totally optimal if it has
minimum length and maximum coverage among all irredundant decision rules for T
and r. We can describe all totally optimal rules using the procedures of optimization
relative to the length and coverage.

Set G = Δ(T ). We apply the procedure of optimization relative to the coverage to
the graph G. As a result we obtain the graph Gc and, for each row r of T – the value
Optc

G(T,r) which is equal to the maximum coverage of an irredundant decision rule
for T and r.

Now we apply the procedure of optimization relative to the length to the graph
G. As a result, we obtain the graph Gl . After that, we apply the procedure of opti-
mization relative to the coverage to the graph Gl . As a result, we obtain the graph
Glc and, for each row r of T , – the value Optc

Gl (T,r) which is equal to the maximum
coverage of an irredundant decision rule for T and r among all irredundant decision
rules for T and r with minimum length.

One can show that a totally optimal irredundant decision rule for T and r ex-
ists if and only if Optc

G(T,r) = Optc
Gl (T,r). If the last equality holds then the set

RulGlc(T,r) is equal to the set of all totally optimal irredundant decision rules for T
and r.

It is clear that the results of sequential optimization of irredundant decision rules
for T and r depend on the order of optimization (length+coverage or coverage+
length) if and only if there are no totally optimal irredundant decision rules for T
and r.
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Figure 6.4 presents the directed acyclic graph Glc obtained from the graph Gl

(see Fig. 6.2) by the procedure of optimization relative to the coverage.

Fig. 6.4. Graph Glc

Using the graph Glc, can describe for each row ri, i = 1, . . . ,4, of the table T0 the
set RulGlc(T0,ri) of all irredundant decision rules for T0 and ri which have maximum
coverage among all irredundant decision rules for T0 and ri with minimum length.
We will give also the value Optc

Gl (T0,ri) which is equal to the maximum coverage of
a decision rule for T0 and ri among all irredundant decision rules for T0 and ri with
minimum length. This value was obtained during the procedure of optimization of
the graph Gl relative to the coverage. We have

RulGlc(T0,r1) = { f1 = 1→ 1}, Optc
Gl (T0,r1) = 3;

RulGlc(T0,r2) = { f1 = 1→ 1}, Optc
Gl (T0,r2) = 3;

RulGlc(T0,r3) = { f1 = 0→ 2}, Optc
Gl (T0,r3) = 1;

RulGlc(T0,r4) = { f1 = 1→ 1}, Optc
Gl (T0,r4) = 3.

It’s easy to see that Optc
G(T0,ri) = Optc

Gl (T0,ri) for i = 1, . . . ,4. Therefore, for i =
1, . . . ,4, RulGlc(T0,ri) is the set of all totally optimal irredundant decision rules for
T0 and ri.
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6.7 Experimental Results

We considered a number of decision tables from UCI Machine Learning Repository
[7]. Some decision tables contain conditional attributes that take unique value for
each row. Such attributes were removed. In some tables there were equal rows with,
possibly, different decisions. In this case each group of identical rows was replaced
with a single row from the group with the most common decision for this group. In
some tables there were missing values. Each such value was replaced with the most
common value of the corresponding attribute.

For each of the considered decision tables T and for each row r of the table T ,
we find the minimum length of an irredundant decision rule for T and r, and the
maximum coverage of an irredundant decision rule for T and r. After that, we find
for rows of T the minimum length of a decision rule with minimum length, the
maximum length of such a rule, and average length of rules with minimum length
(one for each row). We find also for rows of T the minimum coverage of a decision
rule with maximum coverage, the maximum coverage of such a rule, and the aver-
age coverage of rules with maximum coverage (one for each row). The considered
results can be found in Table 6.2.

Table 6.2. Minimum length and maximum coverage of rules

Decision table Number Number of Min length of rules Max coverage of rules
of rows cond. attr. min avg max min avg max

Adult-stretch 16 4 1 1.250 2 4 7.000 8
Agaricus-lepiota 8124 22 1 1.182 2 72 2135.463 2688
Balance-scale 625 4 3 3.197 4 1 4.213 5
Breast-cancer 266 9 1 2.665 6 1 9.534 25
Cars 1728 6 1 2.434 6 1 332.764 576
Flags 193 26 1 1.933 3 2 11.021 22
Hayes-roth-data 69 5 1 2.145 4 1 6.522 12
Hause-votes-84 279 16 2 2.538 5 2 73.523 97
Lenses 10 4 1 1.400 3 1 2.600 4
Lymphography 148 18 1 1.993 4 2 21.541 32
Monks-1-test 432 6 1 2.250 3 12 45.000 108
Monks-1-train 124 6 1 2.266 3 1 13.452 29
Monks-2-test 432 6 3 4.523 6 1 12.356 36
Monks-2-train 169 6 3 3.497 5 1 6.379 16
Monks-3-test 432 6 1 1.750 2 36 56.000 108
Monks-3-train 122 6 2 2.311 4 1 12.197 22
Mushrom 8124 22 1 1.182 2 72 2135.463 2688
Nursery 12960 8 1 3.118 8 1 1531.043 4320
Shuttle-landing-control 15 6 1 1.400 4 1 2.133 3
Soybean-small 47 35 1 1.000 1 10 12.532 17
Spect-test 169 22 1 1.479 8 2 58.047 67
Teeth 23 8 1 2.261 4 1 1.000 1
Tic-tac-toe 958 9 3 3.017 4 6 66.681 90
Zoo 59 16 1 1.559 4 3 11.068 19
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Table 6.3. Totally optimal rules

Decision table Number Number of rows Number of tot. opt. rules
of rows with tot. opt. rules min avg max

Adult-stretch 16 16 1 1.250 2
Agaricus-lepiota 8124 612 0 0.075 1
Balance-scale 625 625 1 1.637 4
Breast-cancer 266 133 0 0.650 5
Cars 1728 1728 1 1.115 2
Flags 193 53 0 0.311 4
Hayes-roth-data 69 69 1 1.145 2
Hause-votes-84 279 101 0 0.384 2
Lenses 10 10 1 1.200 2
Lymphography 148 52 0 0.358 2
Monks-1-test 432 432 1 1.000 1
Monks-1-train 124 120 0 1.016 2
Monks-2-test 432 432 1 1.111 3
Monks-2-train 169 157 0 1.112 3
Monks-3-test 432 432 1 1.056 2
Monks-3-train 122 122 1 1.164 3
Mushrom 8124 612 0 0.075 1
Nursery 12960 12960 1 1.140 4
Shuttle-landing-control 15 13 0 0.933 2
Soybean-small 47 37 0 1.851 5
Spect-test 169 108 0 0.645 2
Teeth 23 23 1 3.609 10
Tic-tac-toe 958 942 0 0.994 2
Zoo 59 44 0 1.305 17

Recall that an irredundant decision rule for T and r is called totally optimal if it
has minimum length and maximum coverage among all irredundant decision rules
for T and r. For each of the considered decision tables T , we count the number of
rows r such that there exists a totally optimal irredundant decision rule for T and
r. We find minimum, average and maximum number of totally optimal irredundant
decision rules for T and r among all rows r of T (see Table 6.3).

In Table 6.4, we present results of sequential optimization of exact decision
rules. For tables with rows that have no totally optimal rules, we make two steps
of optimization – relative to the length and then relative to the coverage (column
“length+coverage”). After that, we find average length and average coverage of rules
after two steps of optimization.

We consider also the reversed order of optimization. For tables with rows that
have no totally optimal rules, we make two steps of optimization – relative to the
coverage and then relative to the length (column “coverage+length”). After that, we
find average length and average coverage of rules after two steps of optimization.
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We consider both average among all rows (column “avg1”) and average among
all rows without totally optimal rules (column “avg2”). Column “At” contains the
number of conditional attributes, column “Row” contains the number of rows, and
column “Row′” contains the number of rows without totally optimal rules in the
considered decision table.

Table 6.4. Sequential optimization of exact decision rules

length+coverage coverage+length
Decision table At Row Row′ length coverage length coverage

avg1 avg2 avg1 avg2 avg1 avg2 avg1 avg2

Agaricus-lepiota 22 8124 7512 1.182 1.193 1370.132 1309.919 2.514 2.633 2135.463 2137.601
Breast-cancer 9 266 133 2.665 2.376 7.038 4.429 3.429 3.902 9.534 9.421
Flags 26 193 140 1.933 1.943 6.394 3.429 4.119 4.957 11.021 9.807
Hause-votes-84 16 279 178 2.538 2.494 65.409 62.685 3.520 4.034 73.523 75.404
Lymphography 18 148 96 1.993 1.958 15.169 9.698 2.932 3.406 21.541 19.521
Monks-1-train 6 124 4 2.266 3.000 13.395 2.000 2.298 4.000 13.452 3.750
Monks-2-train 6 169 12 3.497 3.167 6.249 3.250 3.568 4.167 6.379 5.083
Mushrom 22 8124 7512 1.182 1.193 1370.132 1309.919 2.514 2.633 2135.463 2137.601
Shuttle-landing 6 15 2 1.400 1.500 1.867 1.000 1.733 4.000 2.133 3.000
Soybean-small 35 47 10 1.000 1.000 12.234 8.600 1.213 2.000 12.532 10.000
Spect-test 22 169 61 1.479 1.639 53.550 39.639 1.964 2.984 58.047 52.098
Tic-tac-toe 9 958 16 3.017 4.000 66.580 2.000 3.033 5.000 66.681 8.000
Zoo 16 59 15 1.559 2.200 10.525 3.200 1.881 3.467 11.068 5.333

6.8 Conclusions

We studied an extension of dynamic programming approach to the optimization of
exact decision rules relative to the length and coverage. The considered approach
allows us to describe the whole set of irredundant decision rules and optimize these
rules sequentially relative to the length and coverage or relative to the coverage
and length. We considered results of experiments with decision tables from UCI
Machine Learning Repository [7]. Future study will be connected with the consid-
eration of weighted length and weighted coverage of decision rules.
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Chapter 7
Approaches for Updating Approximations
in Set-Valued Information Systems While
Objects and Attributes Vary with Time

Hongmei Chen, Tianrui Li, and Hongmei Tian

Abstract. Rough set theory is an important tool for knowledge discovery. The lower
and upper approximations are basic operators in rough set theory. Certain and un-
certain if-then rules can be unrevealed from different regions partitioned by ap-
proximations. In real-life applications, data in the information system are changing
frequently, for example, objects, attributes, and attributes’ values in the informa-
tion system may vary with time. Therefore, approximations may change over time.
Updating approximations efficiently is crucial to the knowledge discovery. The set-
valued information system is a general model of the information system. In this
chapter, we focus on studying principles for incrementally updating approximations
in a set-valued information system while attributes and objects are added. Then,
methods for updating approximations of a concept in a set-valued information sys-
tem is given while attributes and objects change simultaneously. Finally, an exten-
sive experimental evaluation verifies the effectiveness of the proposed method.

Keywords: Knowledge discovery, rough set theory, set-valued information system,
approximations.

7.1 Introduction

The Rough Set Theory (RST) proposed by Pawlak is a mathematical tool to process
information [18]. It has been successfully applied to knowledge discovery, image
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processing, and pattern recognition [19, 1, 13, 20, 2, 17]. In Traditional Rough Set
theory (TRS), the relation between objects is the equivalence relation. Equivalence
classes are induced by different equivalence relations that form a partition of the
universe. For any subset of the universe which usually denotes a concept in the infor-
mation system, equivalence classes are used to describe the concept approximately.
If the subset equals to a union of some equivalence classes, then the set is certain. If
it cannot be described by certain equivalence classes, then the set is uncertain (rough
set). Therefore, a pair of certain sets, that is, upper and lower approximations are
used to describe the concept approximately. The approximations partition the uni-
verse into three different regions. Then, we can induce certain rules from positive
region and negative region and uncertain rules from boundary region, that is, a tree-
way decision [27]. In TRS, the data in the information system are complete, static,
and single valued. In real-life applications, attributes’ values may be single valued
or multi-valued. The set-valued information system is a general model of single-
valued information system [11]. For example, the language one can speak may be
one of “English, French, German, Chinese, and Japanese” or a power set of multi-
language. Set-valued based rough sets can be used to approximate the concept and
induce rules in the case of multi-value of attributes. Because of the restriction and
uncertain factors to the data access, data missing exists usually. The equivalence
relation is substituted by the tolerance relation, the similarity relation, and the lim-
ited tolerance relation to process data in real-life applications [14, 24, 26]. Since
the value of the missing data may be any values in the attribute values’ domain,
the set-valued information system has been used to process data in the incomplete
information system. In TRS, data in information systems are static, but in real-life
applications, information systems are under dynamic environments, for example, in
the case of processing interactive data and stream data, the limitation of store space,
error revision, and addition of data. Objects, attributes, and attributes’ values in the
information system may vary with time. The approximations of a concept may al-
ter with the variation of the objects, attributes, or attributes’ values. How to update
approximation effectively is important to the efficiency of the knowledge discovery
based on RST.

In [11], Guan defined the tolerance relation, maximal tolerance classes, and rel-
ative attribute reduction methods based on maximal tolerance classes in the set-
valued information system. Qian et al. defined disjunctive and conjunctive set-valued
information systems in [21] in view of different meanings of attributes’ values,
and they further studied the approach of attribute reduction and rules abstraction in
these two different set-valued information systems. Song and Zhang defined partly-
accordant reduction and assignment reduction in an inconsistent set-valued decision
information system [23]. In [5], Chen et al. introduced the probability rough sets
into set-valued information systems, and they studied the method for updating ap-
proximations incrementally under variable precision set-valued information system
while attributes’ values were coarsening and refining.

The attributes, objects and attributes’ values may vary when the information sys-
tem changes which causes the variation of knowledge. Lot of works have been done
to study how to update knowledge efficiently when the information system varies



7 Approaches for Updating Approximations in Set-Valued Information Systems 231

with time [7, 8, 9, 12, 25]. Li et al. proposed the method to update approxima-
tions incrementally under the characteristic relation when multi-attributes are added
or deleted simultaneously [16]. Cheng proposed two incremental methods for fast
computing the approximations in rough fuzzy sets when adding or deleting multi-
attributes, that is, one starts from the boundary set and the other is based on the
cut sets of a fuzzy set [6]. Fan et al. analyzed the different cases of the effect to
the rules set when adding objects and they proposed an algorithm to renew rules
by updating Strength Index (SI) [10]. Zheng and Wang proposed a rule tree, and
they investigated the methods to renew the rule set by updating the rule tree [28].
Skowron et al. defined the function approximations that are used to induce unknown
rules through known object sets [22]. Liu et al. defined the covering matrix and pre-
cision matrix in [15]. Then, they proposed methods to renew interesting knowledge
by updating covering matrix and precision matrix under the immigrant and emigrant
of objects. Chen et al. studied the method to update approximations incrementally
by analyzing the change of granularity and boundary region while attributes’ values
were coarsening and refining [3, 29]. When attributes and objects change simulta-
neously, Chen et al. proposed the method to update approximations in TRS [4]. In
the dynamic data environment, attributes and object may vary simultaneously. In
this case, there is no literature on how to update knowledge in extended rough sets.
In this chapter, we investigate how to update approximations by decomposing and
combining the information system and using the information in the boundary re-
gion. We also investigate how to update approximations by an accumulation policy.
The work will improve the efficiency of knowledge discovery and further promote
the study of the updating method for knowledge discovery in the condition of the
complex change of data.

The chapter is organized as follows. In Section 7.2, we introduce the basic con-
cepts in the set-valued rough set theory, such as the dominance relation in the set-
valued information system and the definitions of upper and lower approximations.
In Section 7.3, we study methods for updating approximations incrementally while
adding attributes and objects adding simultaneously. In Section 7.4, an accumula-
tion method to update approximations incrementally is proposed. In Section 7.5, an
illustrative example is given to show the decomposing method used to update ap-
proximations. In Section 7.6, extensive experiments have been carried out to verify
the efficiency of the method. We conclude the chapter in the Section 7.7 and outline
the direction of our further work.

7.2 Rough Set Theory in a Set-Valued Information System

In this section, we recall basic concepts in a set-valued information system.

Definition 7.2.1. Let S = (U,A,V, f ) be a set-valued information system, where U =
{x1,x2, . . . ,xn} is a non-empty finite set of objects, called the universe. A = {a1

,a2, . . . , al} is a non-empty finite set of attributes. The element in A is called an
attribute. A = C∪D, C∩D = /0, C is the set of condition attributes, and D is the



232 H. Chen, T. Li, and H. Tian

set of decision attributes. V = {Vai|ai ∈ A}, Vai(i = 1,2, · · · , l) is the domain of
attribute ai(ai ∈ A). VC is the domain of condition attributes. VD is the domain of
decision attributes. V = VC ∪VD is the domain of all attributes. f : U ×C → 2VC is
a set-valued mapping. f : U ×D→VD is a single-valued mapping.

Definition 7.2.2. Given a set-valued information system S = (U,A,V, f ), for B⊆C,
a set-valued dominance relation is defined as follows:

R≥B = {(y,x) ∈U ×U | f (y,a)⊇ f (x,a),∀a ∈ B} (7.1)

R≥B is reflexive, asymmetric, and transitive. We denote [x]≥B = {y ∈U |(y,x) ∈ R≥B },

[x]≤B = {y ∈U
∣
∣
∣(x,y) ∈ R≥B }. [x]≥B (x ∈U) is a granule of knowledge induced by the

dominance relation, which are the set of objects dominating x.

Definition 7.2.3. ∀B ⊆ A, ∀X ⊆ U, the lower and the upper approximations of X
under the dominance relation R≥B are defined respectively as follows.

R≥B (X) = {x ∈U
∣
∣
∣[x]≥B ⊆ X } and R≥B (X) = {x ∈U

∣
∣
∣[x]≥B ∩X �= /0} (7.2)

Based on the approximations of X , one can partition the universe U into three dis-
joint regions, that is, the positive region POS≥ (X), the boundary region BNR≥(X),
and the negative region NEG≥(X):

POS≥ (X) = R≥B (X); (7.3)

BNR≥(X) = R≥B (X)−R≥B (X); (7.4)

NEG≥(X) = U −R≥B (X). (7.5)

We can obtain certain rules from the position region and negative region and possi-
ble rules from the boundary region.

7.3 Principle for Dynamic Maintenance of Approximations
While Objects and Attributes Are Added Simultaneously

In this section, we study the principle for dynamic maintenance of approximations
in a set-valued information system under the addition of objects and attributes.

Let St = (Ut ,At ,V t , f t) denote the set-valued information system at time t, where
At = Ct ∪ dt , |Ut | = n, |Ct | = m. Let U+ denote a set of objects added to the set-
valued information system, and C+ denote a set of conditional attributes added to the
set-valued information system. |U+|= n+, U+ = {x j| j = n + 1,n + 2, . . . ,n + n+},
|C+| = m+, C+ = {a j| j = m + 1,m + 2, . . . ,m + m+}. In this
chapter, we only consider the case when objects and conditional attributes are added
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to the set-valued information system but decision attributes are kept unchanged. Let
St+1 = (Ut+1,At+1,Vt+1, f t+1) denote the set-valued information system at time
t + 1, where Ut+1 = Ut ∪U+, At+1 = Ct+1 ∪ dt , Ct+1 = Ct ∪C+. Then, we de-
compose the set-valued information system St+1 into two set-valued information
systems, that is, SU+ = (U+,At+1,VU+, fU+) , SA+ = (Ut ,At+1,V A+, f A+). The
set-valued information system SA+ is further decomposed into two sub set-valued
information systems St = (Ut ,At ,Vt , f t ) and SΔA = (Ut ,AΔA,VΔ, f Δ), where AΔA =
C+ ∪ dt . Note that the attributes’ domain may change when adding objects to the
information system. Let [xS

i ]
≥
B denote dominating classes of object xi induced by B

in the set-valued information system S, where B⊆C.
Now we consider the variation of granules induced by the dominating relation in

a set-valued information system.

Lemma 7.3.1. [xSA+

i ]≥
Ct+1 = [xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+ .

Proof. By Definition 7.2.2, [xSA+

i ]≥
Ct+1= {y ∈ Ut

∣
∣ f (y,a) ⊇ f (xi,a),∀a ∈Ct+1 },

[xSt

i ]≥Ct = {y∈Ut | f (y,a) ⊇ f (xi,a),∀a ∈Ct }, [xSΔA

i ]≥C+ = {y∈Ut | f (y,a) ⊇ f (xi,a),

∀a ∈C+}. Since Ct+1 = Ct ∪C+, then [xSA+

i ]≥
Ct+1 = [xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+ .
From Lemma 7.3.1, the granules in the set-valued information system may be-

come smaller with the addition of attributes.

Lemma 7.3.2. For [xSt+1

i ]≥
Ct+1 , the following hold:

1. If ∃xSU+

n+ j s.t. xSU+

n+ j R
≥
Ct+1xSA+

i , then [xSt+1

i ]≥
Ct+1 = [xSA+

i ]≥
Ct+1 ∪[xSU+

n+ j ]
≥
Ct+1;

2. If ¬∃xSU+

n+ j s.t. xSU+

n+ j R
≥
Ct+1xSA+

i , then [xSt+1

i ]≥
Ct+1 = [xSA+

i ]≥
Ct+1;

3. If ∃xSA+

i s.t. xSA+

i R≥
Ct+1xSU+

n+ j , then [xSt+1

n+ j ]
≥
Ct+1 = [xSU+

n+ j ]
≥
Ct+1 ∪ [xSA+

i ]≥
Ct+1;

4. If ¬∃xSA+

i s.t. xSA+

i R≥
Ct+1xSU+

n+ j , then [xSt+1

n+ j ]
≥
Ct+1 = [xSU+

n+ j ]
≥
Ct+1 .

Proof. 1. By Definition 7.2.2, if ∃xSU+

n+l ∈ [xSU+

n+ j ]
≥
Ct+1 , then xSU+

n+l R≥
Ct+1xSU+

n+ j . Because

the transitive of the dominance relation, xSU+

n+ j R
≥
Ct+1xSA+

i . Thus xSU+

n+l R≥
Ct+1 xSA+

i . That

is, [xSt+1

i ]≥
Ct+1 = [xSA+

i ]≥
Ct+1 ∪ [xSU+

n+ j ]
≥
Ct+1 .

Analogously, 2., 3. and 4. hold.
Lemma 7.3.2 explains the four kinds of change of a granule with respect to the

addition of objects in a set-valued information system.

Let Ci1 = {xSU+

n+ j

∣
∣
∣xSU+

n+ j R
≥
Ct+1xSA+

i }, Cj2 = {xSA+

i

∣
∣
∣xSA+

i R≥
Ct+1 xSU+

n+ j}(1 ≤ i ≤ n, 1 ≤
j ≤ n+). From Lemmas 7.3.1 and 7.3.2, the granules of a set-valued information
system will be one of the following cases when attributes and objects are added
simultaneously.

i. If Ci1 �= /0, then [xSt+1

i ]≥
Ct+1 = ([xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+)∪Ci1;

ii. If Ci1 = /0, then [xSt+1

i ]≥
Ct+1 = [xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+ ;

iii. If Cj2 �= /0, then [xSt+1

n+ j ]
≥
Ct+1 = [xSU+

n+ j ]
≥
Ct+1 ∪Cj2;
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iv. If Cj2 = /0, then [xSt+1

n+ j ]
≥
Ct+1 = [xSU+

n+ j ]
≥
Ct+1 .

Let R≥B,S(X), R≥B,S(X) denote lower and upper approximations of a concept X in the

set-valued information system S, respectively. For example, R≥Ct ,St (Xt), R≥Ct ,St (Xt)

denote the lower and upper approximations of the concept Xt in the set-valued in-
formation system St , respectively. The cardinality of a concept in the set-valued
information system St may vary when adding objects to the set-valued information
system, that is, Xt+1 = Xt ∪XU+

. Without loss of generality, Xt+1 = {xi| f (xi,d) =
k,1 ≤ i ≤ n + n+}. The concept X is approximated by dominating classes in a set-
valued information system. The approximations may change with the variation of
the granules and the concept. The following propositions hold.

Proposition 7.3.1. If [xSt+1

i ]≥
Ct+1 = [xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+ ∪Ci1 (Ci1 �= /0), then the follow-
ing hold:

i. If xSt

i ∈ BNR≥Ct ,St (Xt), xSt

i ∈ Xt , [xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+ ⊆ Xt, ∀xSU+

n+ j ∈ Ci1, xSU+

n+ j ∈
R≥

Ct+1,SU+ (XU+
), then R≥

Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt)∪{xSt+1

i }, R≥
Ct+1,St+1(Xt+1) =

R≥Ct ,St (Xt);

ii. If xSt

i ∈ R≥Ct ,St (Xt), ∃xSU+

n+ j ∈Ci1, xSU+

n+ j /∈ R≥
Ct+1,SU+ (XU+

), then xSt+1

i /∈ R≥
Ct+1,St+1

(Xt+1), R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt)−{xSt

i }, R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt);

iii. If xSt

i /∈ R≥Ct ,St (Xt), ∃xSU+

n+ j ∈Ci1, xSU+

n+ j ∈ R≥
Ct+1,SU+ (XU+

), then R≥
Ct+1,St+1(Xt+1)

= R≥Ct ,St (Xt), R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt)∪{xSt+1

i };

iv. Otherwise, R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt), R≥

Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt).

Proof. i. If xSt

i ∈ BNR≥Ct ,St (Xt), [xSt

i ]≥Ct ∩Xt �= /0, [xSt

i ]≥Ct �⊂ Xt . If xSt

i /∈ Xt , then xSt

i ∈
[xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+ , [xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+ �⊂ Xt . If xSt

i ∈ Xt , then [xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+ ⊆ Xt ,

xSA+

i ∈ R≥
Ct+1,SA+ (Xt), [xSA+

i ]≥
Ct+1 ⊆ Xt . Since ∀xSU+

n+ j ∈ Ci1, xSU+

n+ j ∈ R≥
Ct+1,SU+ (XU+

),

then xSU+

n+ j ⊆ XU+
. Because Xt+1 = Xt ∪XU+, [xSA+

i ]≥
Ct+1 ∪{xSU+

n+ j} ⊆ Xt ∪XU+
, that

is, ([xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+)∪Ci1 ⊆ Xt ∪XU+
. Since xSt

i /∈ R≥Ct ,St (Xt), xSt

i ∈ BNR≥Ct ,St (Xt),

xSt

i ∈ R≥Ct ,St (Xt), and xSt+1

i ∈ R≥
Ct+1,St+1(Xt+1). Therefore, R≥

Ct+1,St+1(Xt+1) =

R≥Ct ,St (Xt) ∪{xSt+1

i }, R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt).

ii. If xSt

i ∈ R≥Ct ,St (Xt), ∃xSU+

n+ j ∈ Ci1, xSU+

n+ j /∈ R≥
Ct+1,SU+ (XU+

), then [xSt

i ]≥Ct ⊆ Xt ,

[xSU+

n+ j ]
≥
Ct+1 �⊂ XU+

. Thus [xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+ ⊆ Xt , [xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+ ∪ [xSU+

n+ j ]
≥
Ct+1 �⊂ Xt ∪

XU+
, ([xSt

i ]≥Ct ∩[xSΔA

i ]≥C+∪[xSU+

n+ j ]
≥
Ct+1)∩(Xt∪XU+

) �= /0. Therefore, R≥
Ct+1,St+1(Xt+1)=

R≥Ct ,St (Xt)−{xSt

i }, R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt).
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iii. If xSt

i /∈ R≥Ct ,St (Xt), ∃xSU+

n+ j ∈ Ci1, xSU+

n+ j ∈ R≥
Ct+1,SU+ (XU+

), then [xSt

i ]≥Ct ∩Xt = /0,

[xSU+

n+ j ]
≥
Ct+1 ⊆ XU+

. Thus ([xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+)∩Xt = /0, [xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+ ∪ [xSU+

n+ j ]
≥
Ct+1 �⊂

Xt ∪XU+
, ([xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+ ∪ [xSU+

n+ j ]
≥
Ct+1)∩ (Xt ∪XU+

) �= /0. Therefore, R≥
Ct+1,St+1

(Xt+1) = R≥Ct ,St (Xt), R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt)∪{xSt+1

i }.

iv. The proof is similar to the proof of i, ii.

Proposition 7.3.2. If [xSt+1

i ]≥
Ct+1 = [xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+ , then the following hold:

i. If xSt

i ∈ BNR≥Ct ,St (X),

a) If xSt

i ∈ Xt, ([xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+) ⊆ Xt, then R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt)

∪{xSt+1

i }, R≥
Ct+1,St+1 (Xt+1) = R≥Ct ,St (Xt);

b) If xSt

i /∈ Xt, ([xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+)∩Xt = /0, then R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt),

R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt)−{xSt+1

i };

ii. Otherwise, R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt), R≥

Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt).

Proof. i. a) If xSt

i ∈ Xt , [xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+ ⊆ Xt , then [xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+ ⊆ (Xt ∪XU+
).

[xSt+1

i ]≥
Ct+1 ⊆ Xt+1, R≥

Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt)∪{xSt+1

i }. Since xSt

i ∈ BNR≥Ct ,St (X),

then R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt). b) If xSt

i /∈ Xt , [xSt

i ]≥Ct �⊂ Xt , then if ([xSt

i ]≥Ct ∩
[xSΔA

i ]≥C+)∩ Xt = /0, R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt), R≥

Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt)−
{xSt+1

i }.

ii. Because [xSt+1

i ]≥
Ct+1 = [xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+ , [xSt+1

i ]≥
Ct+1 ⊆ ([xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+). If

[xSt

i ]≥Ct ⊆Xt , then [xSt+1

i ]≥
Ct+1 ⊆Xt . If [xSt

i ]≥Ct ∩Xt = /0, then [xSt+1

i ]≥
Ct+1∩Xt = /0. That is,

R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt), R≥

Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt).

Proposition 7.3.3. If [xSt+1

n+ j ]
≥
Ct+1 = [xSU+

n+ j ]
≥
Ct+1∪Cj2(Cj2 �= /0), then the following hold:

i. If xSU+

n+ j ∈ R≥
Ct+1,SU+ (XU+

), ∀xSA+

i ∈Cj2, f (xSA+

i ,d) = k, then R≥
Ct+1,St+1 (Xt+1) =

R≥Ct ,St (Xt)∪{xSt+1

n+ j }, R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt)∪{xSt+1

n+ j };

ii. If xSU+

n+ j ∈ BNR≥
Ct+1,SU+ (XU+

), then R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt),

R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt)∪{xSt+1

n+ j };

iii. If xSU+

n+ j /∈ R≥
Ct+1,SU+ (XU+

), ∃xSA+

i ∈Cj2, f (xSA+

i ,d) = k, then

R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt), R≥

Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt)∪{xSt+1

n+ j }.

iv. Otherwise, R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt), R≥

Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt).
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Proof. i. If xSU+

n+ j ∈ R≥
Ct+1,SU+ (XU+

), then [xSU+

n+ j ]
≥
ct+1 ⊆ XU+

. Because ∀xSA+

i ∈ Cj2,

f (xSA+

i ,d) = k, then if Cj2 ⊆ Xt , [xSU+

n+ j ]
≥
Ct+1 ∪Cj2 ⊆ (Xt ∪XU+

). That is, [xSt+1

n+ j ]
≥
Ct+1 ⊆

Xt+1. Then R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt)∪{xSt+1

n+ j }, R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt)∪

{xSt+1

n+ j }.

ii. If xSU+

n+ j ∈ BNR≥
Ct+1,SU+ (XU+

), then [xSU+

n+ j ]
≥
Ct+1 �⊂ XU+

, [xSU+

n+ j ]
≥
Ct+1 ∩XU+ �= /0. Thus

[xSU+

n+ j ]
≥
Ct+1 ∪Cj2 �⊂ (Xt ∪XU+

), ([xSU+

n+ j ]
≥
Ct+1 ∪Cj2)∩ (Xt ∪XU+

) �= /0, that is, xSU+

n+ j ∈
BNR≥

Ct+1,St+1(Xt+1). Therefore, R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt), R≥

Ct+1,St+1(Xt+1) =

R≥Ct ,St (Xt)∪{xSt+1

n+ j }.

iii. If xSU+

n+ j /∈R≥
Ct+1,SU+ (XU+

), then [xSU+

n+ j ]
≥
ct+1∩XU+

= /0. If ∃xSA+

i ∈Cj2, f (xSA+

i ,d) =

k, then Cj2 ∩ Xt �= /0, ([xSU+

n+ j ]
≥
Ct+1 ∪C2) �⊂ (Xt ∪ XU+

), ([xSU+

n+ j ]
≥
Ct+1 ∪Cj2)∩ (Xt ∪

XU+
) �= /0. Therefore, R≥

Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt), R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt)∪

{xSt+1

n+ j }.

iv. If xSU+

n+ j /∈ R≥
Ct+1,SU+ (XU+

), Cj2∩Xt = /0, then ([xSU+

n+ j ]
≥
Ct+1 ∪Cj2)∩(Xt ∪XU+

) = /0.

Therefore, R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt), R≥

Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt).

Proposition 7.3.4. If [xSt+1

n+ j ]
≥
Ct+1 = [xSU+

n+ j ]
≥
Ct+1 , then the following hold:

i. If xSU+

n+ j ∈ R≥
Ct+1,SU+ (XU+

), then R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt)∪{xSt+1

n+ j },

R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt)∪{xSt+1

n+ j };

ii. If xSU+

n+ j ∈ BNR≥
Ct+1,SU+ (XU+

), then R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt),

R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt)∪{xSt+1

n+ j };

iii. Otherwise, R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt), R≥

Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt).

Proof. i. If xSU+

n+ j ∈ R≥
Ct+1,SU+ (XU+

), then [xSU+

n+ j ]
≥
Ct+1 ⊆ XU+

. Therefore, [xSt+1

n+ j ]
≥
Ct+1

= [xSU+

n+ j ]
≥
Ct+1 ⊆ (Xt ∪XU+

), that is, xSt+1

n+ j ∈ R≥
Ct+1,St+1(Xt+1). Thus R≥

Ct+1,St+1 (Xt+1)

= R≥Ct ,St (Xt)∪{xSt+1

n+ j }, R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt)∪{xSt+1

n+ j }.

ii. If xSU+

n+ j ∈BNR≥
Ct+1,SU+ (XU+

), then [xSU+

n+ j ]
≥
Ct+1 �⊂XU+

, [xSU+

n+ j ]
≥
Ct+1∩XU+ �= /0. There-

fore, [xSt+1

n+ j ]
≥
Ct+1 = [xSU+

n+ j ]
≥
Ct+1 �⊂ (Xt ∪XU+

), [xSt+1

n+ j ]
≥
Ct+1 = [xSU+

n+ j ]
≥
Ct+1 ∩ (Xt ∪XU+

) �=
/0, that is, xSt+1

n+ j /∈ R≥
Ct+1,St+1(Xt+1), xSt+1

n+ j ∈ R≥
Ct+1,St+1(Xt+1). Therefore, R≥

Ct+1,St+1

(Xt+1) = R≥Ct ,St (Xt), R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt)∪{xSt+1

n+ j }.
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iii. If xSU+

n+ j /∈ R≥
Ct+1,SU+ (XU+

), then [xSU+

n+ j ]
≥
Ct+1 ∩XU+

= /0. Therefore, [xSt+1

n+ j ]
≥
Ct+1 =

[xSU+

n+ j ]
≥
Ct+1∩(Xt ∪XU+

) �= /0. Thus R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt), R≥

Ct+1,St+1 (Xt+1) =

R≥Ct ,St (Xt).

Considering the variation of granules in a set-valued information system with re-
spect to attributes and objects are added simultaneously, we discuss the change of
lower and upper approximations in Propositions 7.3.1, 7.3.2, 7.3.3 and 7.3.4. In the
following, we present algorithms (see Algorithms 7.1, 7.2 and 7.3) for updating ap-
proximations of a concept when objects and attributes are added simultaneously.

Algorithm 7.1 . Algorithm for Updating Approximations when Objects and At-
tributes are Added based on the Decomposition (AUAOAAD)

INPUT: R≥Ct ,St (Xt), R≥Ct ,St (Xt), [xi]
≥
Ct (1≤ i≤ |Ut |), Xt , U+, A+

OUTPUT: R≥Ct+1,St+1(Xt+1), R≥Ct+1,St+1(Xt+1)

1: for i = 1 to n do
2: Compute [xSΔA

i ]≥C+ in SΔA

3: [xSA+

i ]≥Ct+1 ← [xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+ ;
4: end for
5: Compute [xSU+

j ]≥C+ , R≥Ct+1,SU+(XU+), R≥Ct+1,SU+(XU+)

6: for i = 1 to n do
7: sigi = 0, signi=0, Ci1 = 0, Cj2 = 0
8: for j = n+1 to n+n+ do
9: if xSU+

j R≥Ct+1xSA+

i then

10: [xSt+1

i ]≥Ct+1 ← [xSA+

i ]≥Ct+1 ∪{xSU+

j }, Ci1 ← 1

11: if xSU+

j ∈ R≥
Ct+1,SU+ (XU+

) then

12: sigi ← 1
13: else
14: signi ← 1;
15: end if
16: else if xSA+

i R≥Ct+1xSU+

j then

17: [xSt+1

j ]≥Ct+1 ← [xSU+

j ]≥Ct+1 ∪{xSA+

i }, Cj2 ← 1
18: end if
19: end for
20: AUADCV(R≥Ct,St (Xt), R≥Ct ,St (Xt), Ci1, [xSt+1

i ]≥Ct+1 )

21: end for
22: for j = n+1 to n+n+ do

23: AUAUDC(R≥Ct,St (Xt), R≥Ct ,St (Xt),Cj2, [xSt+1

i ]≥Ct+1 )

24: end for
25: return R≥Ct+1,St+1 (Xt+1), R≥Ct+1,St+1(Xt+1)
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7.4 Accumulation Principle for Dynamic Maintenance of
Approximations While Objects and Attributes Are Added

When objects and attributes are added simultaneously, we may see it as two sequen-
tial courses, that is, objects are added firstly and attributes are added secondly (or in
a reverse order). When objects (attributes) are added to the set-valued information
system, it may be seen as the accumulation results of objects (attributes) are added
to the set-valued information system one by one. Then, if we develop an effective
method for updating approximations when a single object (attribute) is added, then
we can deal with the case when multi-objects and multi-attributes are added to the
information system simultaneously. We present the principle for updating approx-
imations when a single attribute or object is added to the set-valued information
system as follows.

Algorithm 7.2. Algorithm for Updating Approximations when Dominating Classes
in SA+ Vary (AUADCV)

INPUT: R≥Ct ,St (Xt), R≥Ct ,St (Xt), [xSt+1

i ]≥Ct+1 (1≤ i≤ |Ut |), Xt

OUTPUT: R≥Ct+1,St+1(Xt+1), R≥Ct+1,St+1(Xt+1)

1: if Ci1 = 1 then
2: if xSt

i ∈ BNR≥Ct ,St (Xt),xSt

i ∈ Xt , [xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+ ⊆ Xt ,sigi = 1,signi = 0 then

3: R≥Ct+1,St+1 (Xt+1)← R≥Ct ,St (Xt)∪{xSt+1

i }
4: else if xSt

i ∈ R≥Ct ,St (Xt),signi = 1 then

5: R≥Ct+1,St+1 (Xt+1)← R≥Ct ,St (Xt)−{xSt

i }
6: else if xSt

i /∈ R≥Ct ,St (Xt),sigi = 1 then

7: R≥Ct+1,St+1 (Xt+1)← R≥Ct ,St (Xt)∪{xSt+1

i }
8: end if
9: else

10: if xSt

i ∈ BNR≥Ct ,St (X) then

11: if xSt

i ∈ Xt , ([xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+)⊆ Xt then

12: R≥Ct+1,St+1(Xt+1)← R≥Ct ,St (Xt)∪{xSt+1

i };

13: else if xSt

i /∈ Xt , ([xSt

i ]≥Ct ∩ [xSΔA

i ]≥C+)∩Xt = /0 then

14: R≥Ct+1,St+1(Xt+1)← R≥Ct ,St (Xt)−{xSt+1

i };
15: end if
16: end if
17: end if
18: return R≥Ct+1,St+1 (Xt+1), R≥Ct+1,St+1(Xt+1)

Let St = (Ut ,At) be a set-valued information system, and St′ = (Ut′ ,At′) denotes
the set-valued information system after adding an object into the set-valued informa-
tion system, where Ut′ =Ut ∪{xn+1}(|Ut |= n), At′ = At , Xt = {xi | f (xi ,d) = k,1≤
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i ≤ n}. [xi]≥t′
B denotes dominating class of object xi induced by B in the set-valued

information system St′ , where B ⊆C. Then, we give the principle for updating ap-
proximations when an object is added.

Algorithm 7.3. Algorithm for Updating Approximations when Updating Dominat-
ing Classes in SU+ Vary (AUAUDC)

INPUT: R≥Ct ,St (Xt), R≥Ct ,St (Xt), Cj2, [xSt+1

i ]≥Ct+1

OUTPUT: R≥Ct+1,St+1(Xt+1), R≥Ct+1,St+1(Xt+1)

1: if Cj2 = 1 then

2: if xSU+

n+ j ∈ R≥
Ct+1,SU+ (XU+

),∀xSA+

i ∈C2, f (xSA+

i ,d) = k then

3: R≥Ct+1,St+1 (Xt+1)← R≥Ct ,St (Xt)∪{xSt+1

n+ j},R≥Ct+1,St+1(Xt+1)← R≥Ct ,St (Xt)∪{xSt+1

n+ j}
4: else if xSU+

n+ j ∈ BNR≥
Ct+1,SU+ (XU+

) then

5: R≥Ct+1,St+1 (Xt+1)← R≥Ct ,St (Xt)∪{xSt+1

n+ j}
6: else if xSU+

n+ j /∈ R≥
Ct+1,SU+ (XU+

),∃xSA+

i ∈C2, f (xSA+

i ,d) = k then

7: R≥Ct+1,St+1 (Xt+1)← R≥Ct ,St (Xt)∪{xSt+1

n+ j}
8: end if
9: else

10: if xSU+

n+ j ∈ R≥
Ct+1,SU+ (XU+

) then

11: R≥Ct+1,St+1(Xt+1)← R≥Ct ,St (Xt)∪{xSt+1

n+ j},R≥Ct+1,St+1 (Xt+1)← R≥Ct ,St (Xt)∪{xSt+1

n+ j}
12: else if xSU+

n+ j ∈ BNR≥
Ct+1,SU+ (XU+

) then

13: R≥Ct+1,St+1(Xt+1)← R≥Ct ,St (Xt)∪{xSt+1

n+ j};
14: end if
15: end if
16: return R≥Ct+1,St+1 (Xt+1), R≥Ct+1,St+1(Xt+1)

Lemma 7.4.1. For [xi]≥t′
B (1≤ i≤ n), if (xn+1,xi)∈R≥B , then [xi]≥t′

B = [xi]≥t
B ∪{xn+1}.

Proof. It is directly from Definition 7.2.2. if f (xn+1,d) = k, then Xt′ = Xt ∪{xn+1};
If f (xn+1,d) �= k, then Xt′ = Xt . The following proposition holds when an object is
added to the set-valued information system.

Proposition 7.4.1. For R≥B (Xt′), R≥B (Xt′), the following hold:

i. If f (xn+1,d) = k, [xi]≥t′
B �= [xi]≥t

B , and xi /∈ R≥B (Xt), then R≥B (Xt′) = R≥B (Xt),

R≥B (Xt′) = R≥B (Xt)∪{xi};

ii. If f (xn+1,d) �= k, [xi]≥t′
B �= [xi]≥t

B , and xi ∈ R≥B (Xt), then R≥B (Xt′) = R≥B (Xt)−
{xi}, R≥B (Xt′) = R≥B (Xt);
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iii. If [xn+1]≥t′
B ∩Xt′ �= /0, then R≥B (Xt′) = R≥B (Xt), R≥B (Xt′) = R≥B (Xt)∪{xn+1};

iv. If [xn+1]≥t′
B ⊆ Xt′ , then R≥B (Xt′)=R≥B (Xt)∪{xn+1}, R≥B (Xt′)=R≥B (Xt)∪{xn+1};

Proof. i. If f (xn+1,d)= k, then Xt′ = Xt∪{xn+1}. Because xi /∈R≥B (Xt), then [xi]≥t
B ∩

Xt = /0. Therefore, [xi]≥t′
B = ([xi]≥t

B ∪ {xn+1})∩Xt′ �= /0. Thus, R≥B (Xt′) = R≥B (Xt),

R≥B (Xt′) = R≥B (Xt)∪{xi}.
ii. If f (xn+1,d) = k, then Xt′ = Xt . Since xi ∈ R≥B (Xt), then [xi]≥t

B ⊆ Xt . Because

[xi]≥t′
B = ([xi]≥t

B ∪{xn+1}) �⊂ Xt′ , then R≥B (Xt′) = R≥B (Xt)−{xi}, R≥B (Xt′) = R≥B (Xt).
The proofs of iii and iv are directly from Definition 7.2.3.

Let St = (Ut ,At) be a set-valued information system, and St′′ = (Ut′′ ,At′′) denote
the set-valued information system after adding an attribute into the set-valued in-
formation system, where Ut′′ = Ut(|Ut | = n), At′′ = At ∪{am+1}(|At | = m), Xt =
{xi | f (xi ,d) = k,1 ≤ i ≤ n}. [xi]≥t′′

B∪{am+1} denotes dominating class of object xi in-

duced by B∪{am+1} in the set-valued information system St′′ . The following propo-
sition holds when an attribute is added to the set-valued information system.

Lemma 7.4.2. [xi]≥t′′
B∪{am+1} = [xi]≥t

B ∩ [xi]≥t
{am+1}(1≤ i≤ n).

Proof. It follows directly from Definition 7.2.2.

Proposition 7.4.2. If f (xi,d) = k, xi ∈ BNR≥(Xt), [xi]≥t′′
B∪{am+1} ⊆ Xt , then R≥B (Xt′′)

= R≥B (Xt)∪{xi}.

Proof. From Lemma 7.4.2, [xi]≥t′′
B∪{am+1} ⊆ [xi]≥t

B . Then if f (xi,d) �= k, [xi]≥t′′
B∪{am+1} �⊂

Xt due to the reflexivity of [xi]≥t′′
B∪{am+1}. Therefore, if f (xi,d) = k, xi ∈ BNR≥(Xt),

[xi]≥t′′
B∪{am+1} ⊆ Xt , then R≥B (Xt′′) = R≥B (Xt)∪{xi} by Definition 7.2.2.

Let St+1 = (Ut+1,At+1) denote the set-valued information system after adding
attributes into the set-valued information system, where Ut+1 = Ut ∪U+(|Ut | = n,
|U+|= n+), At+1 = At ∪A+( |At |= m, |A+|= m+), Xt = {xi | f (xi ,d) = k,1 ≤ i≤
n}. In the following, we propose an accumulation algorithm (see Algorithm 7.4) for
updating approximations while objects and attributes are added simultaneously.

7.5 Example

In this section, an example is used to explain the methods proposed in this chapter.
The computing procedure of Algorithm 7.1 is also explained by the example as
follows.
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Algorithm 7.4. Accumulation Algorithm for Updating Approximations when Ob-
jects and Attributes are Added (AAUAOAA)

INPUT R≥Ct ,St (Xt), R≥Ct ,St (Xt), [xi]
≥
Ct (1≤ i≤ |Ut |), Xt , U+, A+

OUTPUT R≥Ct+1,St+1 (Xt+1),R≥Ct+1,St+1(Xt+1)

1: for i = 1 to n do
2: for j = n+1 To n+n+ do
3: [x j]

≥t ′
Ct ← {x j}

4: if x jR
≥
B xi then

5: [xi]
≥t ′
Ct ← [xi]

≥t
Ct ∪{x j}

6: end if
7: if f (x j,d) = k,xi /∈ R≥B (Xt)) then

8: R≥B (Xt ′) = R≥B (Xt)∪{xi}
9: else if f (x j,d) �= k,xi ∈ R≥B (Xt)) then

10: R≥B (Xt ′) = R≥B (Xt)−{xi}
11: end if
12: if xiR

≥
B x j then

13: [x j]
≥t ′
Ct ← [x j]

≥t
Ct ∪{xi}

14: end if
15: end for
16: end for
17: for j = n+1 To n+n+ do
18: if [x j]

≥t ′
Ct ∩Xt ′ �= /0 then

19: R≥B (Xt ′) = R≥B (Xt)∪{x j}
20: end if
21: if [x j]

≥t ′
Ct ⊆ Xt+1 then

22: R≥B (Xt ′) = R≥B (Xt)∪{x j}, R≥B (Xt ′) = R≥B (Xt)∪{x j}
23: end if
24: end for
25: for j = n+1 to n+n+ do
26: for j = m+1 to m+m+ do
27: compute [xi]

≥t ′′
{aj};

28: [xi]
≥t+1
Ct+1 ← [xi]

≥t
Ct ∩ [xi]

≥t ′′
{aj}

29: if f (xi,d) = k, xi ∈ BNR≥(Xt), [xi]
≥t+1
Ct+1 ⊆ Xt then

30: R≥B (Xt+1) = R≥B (Xt)∪{xi}
31: end if
32: end for
33: end for
34: return R≥Ct+1,St+1 (Xt+1), R≥Ct+1,St+1(Xt+1)
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Ut = {xi|1 ≤ i ≤ 9}, At = {ai|1 ≤ i ≤ 3}, Ut
/

dt = {{x1,x2,x5,x7,x9} ,{x3,x4,

x6,x8} }, Xt = {x1,x2,x5,x7,x9}. [xSt

1 ]≥Ct = {x1,x3,x6}, [xSt

2 ]≥Ct = {x2,x9}, [xSt

3 ]≥Ct =
{x3,x2,x5}, [xSt

4 ]≥Ct = {x4,x6}, [xSt

5 ]≥Ct = {x5,x1,x7}, [xSt

6 ]≥Ct = {x3,x6},

[xSt

7 ]≥Ct ={x7,x4,x2}, [xSt

8 ]≥Ct ={x4,x6,x8}, [xSt

9 ]≥Ct ={x6,x9}. R≥Ct ,St (Xt) = {xSt

2 ,xSt

5 },

R≥Ct ,St (Xt) = {xSt

2 ,xSt

5 ,xSt

1 , xSt

7 , xSt

9 , xSt

3 , xSt

8 }, BNR≥Ct ,St (Xt) = {xSt

1 ,xSt

7 ,xSt

9 ,xSt

3 ,xSt

8 }.

Table 7.1. A set-valued information system at time t

Ut a1 a2 a3 d
x1 {1} {2} {1,2} 0
x2 {2,3} {1,2} {1,3} 0
x3 {1,2} {1,2} {1,2} 1
x4 {3} {2,3} {2,3} 1
x5 {1} {2} {2} 0
x6 {1,3} {2,3} {1,2,3} 1
x7 {1,2} {2} {2} 0
x8 {3} {2} {2,3} 1
x9 {2,3} {1,2} {1,2,3} 0

Now, we consider the case when objects and attributes are added to the set-valued
information system simultaneously. The set-valued information system shown in
Table 7.1 change to the set-valued information system shown in Table 7.2, where
C+ = {a4,a5} and U+ = {x10,x11,x12,x13,x14}. Now the set-valued information
system St+1 is decomposed into two set-valued information systems SA+(shown in
Table 7.3) and SU+

(shown in Table 7.5). The set-valued information system SA+
is

further decomposed into two set-valued information systems St (shown in Table 7.1)
and SΔA (shown in Table 7.4).

Table 7.2. The set-valued information system at time t +1

Ut+1 a1 a2 a3 a4 a5 d
x1 {1} {2} {1,2} {2} {1,3} 0
x2 {2,3} {1,2} {1,3} {3} {3} 0
x3 {1,2} {1,2} {1,2} {1,2} {1,3} 1
x4 {3} {2,3} {2,3} {3} {2,3} 1
x5 {1} {2} {2} {2} {2,3} 0
x6 {1,3} {2,3} {1,2,3} {1,2,3} {1,3} 1
x7 {1,2} {2} {2} {1,2} {1,2,3} 0
x8 {3} {2} {2,3} {3} {1,2,3} 1
x9 {2,3} {1,2} {1,2,3} {1,3} {1,2,3} 0
x10 {1,2,3} {1,2,3} {1,2,3} {1,2,3} {2,3} 1
x11 {1,2,3} 1,2 1,2,3 2,3 {2,3} 0
x12 {2} {3} {1,2,3} {1,3} {2} 0
x13 {1,2} {2} {2,3} {2} {3} 1
x14 {3} {1,3} {1,2} {2,3} {2} 0
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Then, we calculate the approximation incrementally as follows:

1. We compute the dominating classes in the set-valued information system SΔA.
For the set-valued information system SΔA, [xSΔA

1 ]≥C+ = {x1,x3,x6,x7}, [xSΔA

2 ]≥C+

= {x2,x4,x6,x8,x9}, [xSΔA

3 ]≥C+ = {x3,x6,x7}, [xSΔA

4 ]≥C+ = {x4,x8 ,x9}, [xSΔA

5 ]≥C+ =

{x5,x7}, [xSΔA

6 ]≥C+ = {x6}, [xSΔA

7 ]≥C+ = {x7}, [xSΔA

8 ]≥C+ = {x8,x9}, [xSΔA

9 ]≥C+ = {x9}.

Table 7.3. The set-valued information system SA+

Ut a1 a2 a3 a4 a5 d
x1 {1} {2} {1,2} {2} {1,3} 0
x2 {2,3} {1,2} {1,3} {3} {3} 0
x3 {1,2} {1,2} {1,2} {1,2} {1,3} 1
x4 {3} {2,3} {2,3} {3} {2,3} 1
x5 {1} {2} {2} {2} {2,3} 0
x6 {1,3} {2,3} {1,2,3} {1,2,3} {1,3} 1
x7 {1,2} {2} {2} {1,2} {1,2,3} 0
x8 {3} {2} {2,3} {3} {1,2,3} 1
x9 {2,3} {1,2} {1,2,3} {1,3} {1,2,3} 0

2. We compute the dominating classes in the set-valued information system SA+

incrementally. For the set-valued information system SA+
, [xSA+

1 ]≥
Ct+1 = [xSt

1 ]≥Ct ∩
[xSΔA

1 ]≥C+ = {x1,x3 ,x6} ∩ {x1,x3 ,x6,x7} = {x1,x3,x6} = [xSt

1 ]≥Ct , [xSA+

2 ]≥
Ct+1 =

{x2,x9} = [xSt

2 ]≥Ct , [xSA+

3 ]≥
Ct+1 = {x3}, [xSA+

4 ]≥
Ct+1 = {x4}, [xSA+

5 ]≥
Ct+1 = {x5,x7},

[xSA+

6 ]≥
Ct+1 = {x6}, [xSA+

7 ]≥
Ct+1 = {x7}, [xSA+

8 ]≥
Ct+1 = {x8}, [xSA+

9 ] ≥
Ct+1 = {x9}.

Table 7.4. The set-valued information system SΔA

UΔA a4 a5 d
x1 {2} {1,3} 0
x2 {3} {3} 0
x3 {1,2} {1,3} 1
x4 {3} {2,3} 1
x5 {2} {2,3} 0
x6 {1,2,3} {1,3} 1
x7 {1,2} {1,2,3} 0
x8 {3} {1,2,3} 1
x9 {1,3} {1,2,3} 0

3. We compute the dominating classes and approximations of a concept in the
set-valued information system SU+

. For the set-valued information system SU+
,

[xSU+

10 ]≥
Ct+1 = {x10}, [xSU+

11 ]≥
Ct+1 = {x11,x10}, [xSU+

12 ]≥
Ct+1 = {x12}, [xSU+

13 ]≥
Ct+1 =

{x13, x10}, [xSU+

14 ]≥
Ct+1 = {x14, x10 }. SU+

/
dU+ = {{x10,x13},{x11,x12,x14}},
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Table 7.5. The set-valued information system SU+

U+ a1 a2 a3 a4 a5 d
x10 {1,2,3} {1,2,3} {1,2,3} {1,2,3} {2,3} 1
x11 {1,2,3} 1,2 1,2,3 2,3 {2,3} 0
x12 {2} {3} {1,2,3} {1,3} {2} 0
x13 {1,2} {2} {2,3} {2} {3} 1
x14 {3} {1,3} {1,2} {2,3} {2} 0

XU+
= {x11,x12,x14}. R≥

Ct+1,SU+ (XU+
) = {x12}, R≥

Ct+1,SU+ (XU+
) = { x11, x14,

x12}, BNR≥
Ct+1,SU+ (XU+

) = {x11,x14}.

4. We compute the dominating classes in the set-valued information system St+1

incrementally. [xSt+1

2 ]≥
Ct+1 = [xSt

2 ]≥
Ct+1∪[xSU+

11 ]≥
Ct+1 = {x2,x9,x11,x10}, [xSt+1

10 ]≥
Ct+1 =

[xSU+

10 ] ≥
Ct+1 , [xSt+1

12 ]≥
Ct+1 = [xSU+

12 ]≥
Ct+1 , [xSt+1

13 ]≥
Ct+1 = [xSU+

13 ]≥
Ct+1 , [xSt+1

14 ] ≥
Ct+1 = [xSU+

14 ]
≥
Ct+1 .

5. Finally, we update the approximations of the set-valued information system
St+1 incrementally. xSt

3 ∈ BNR≥Ct ,St (Xt), [xSt+1

3 ]≥
Ct+1 = [xSA+

3 ]≥
Ct+1 = {x3}∩Xt = /0,

R≥
Ct+1,St+1 (Xt+1) = R≥Ct ,St (Xt)−{x3} = {x2,x5,x1,x7,x9}. xSt

7 ∈ BNR≥Ct ,St (Xt),

[xSt+1

7 ] ≥
Ct+1 = [xSA+

7 ] ≥
Ct+1 = {x7} ⊆ Xt , R≥

Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt) ∪{x7} =

{ x2 ,x5, x7}. [xSt+1

2 ]≥
Ct+1 = [xSA+

2 ] ≥
Ct+1 ∪ [xSU+

11 ] ≥
Ct+1 = {x2,x9,x11, x10},xSt

2 ∈
R≥Ct ,St (Xt), xSU+

11 ∈ BNR≥
Ct+1,SU+ (XU+

), R≥
Ct+1,St+1(Xt+1) = R≥Ct ,St (Xt) −{x2}=

{x5,x3,x7}. xSU+

12 ∈ R≥
Ct+1,SU+ (XU+

), R≥
Ct+1,St+1(X t+1) = R≥Ct ,St (Xt) ∪{x12}

= {x5,x3,x7,x12}. xSU+

14 ∈ BNR≥
Ct+1,SU+ (XU+

), R≥
Ct+1,St+1 (Xt+1) = R≥Ct ,St (Xt)∪

{x14} = {x2,x5 ,x1,x7,x9,x14}.

7.6 Performance Analysis

Experiments have been carried out to verify the effectiveness of the algorithms. Data
sets used to test the algorithms are listed in Table 7.6. Data sets 1 to 4 are incom-
plete information system downloaded from UC Irvine Machine Learning Database
Repository (www.ics.uci.edu/˜mlearn/MLRepository.html). Dataset 5 is a
set-valued information system generated by randomly. Data set 6 is from [21], which
is a practical conjunctive set-valued decision table from the test for foreign language
ability in Shanxi University, China. We perform the experiments on a computer with
Intel Core 2 Duo CPU T6500 2.10GHz CPU, 4.0 GB of memory, running Microsoft
Windows Vista Home Basic. Algorithms are developed in C#.

www.ics.uci.edu/~mlearn/MLRepository.html
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Table 7.6. Data description

Data sets Abbreviation Rows Attributes Classes
Loss rate of

attribute values
1 Lung cancer Lun 32 57 3 0.27%
2 Horse Horse 300 29 2 18.43678%

3
Shuttle

Landing Control
Shuttle 15 8 2 21.66667%

4 housevotes84 HouseV 435 18 2 3.678161%
5 Samples Samp 400 40 5 no
6 Language test Lang 50 6 2 no

We compare the efficiency of the incremental algorithm and the non-incremental
learning algorithm. Experimental results are listed in Tables 7.7 and 7.8.

Table 7.7. A comparison of efficiency based on the incremental learning algorithm and the
non-incremental learning algorithm

Data
sets

The number of
objects added

The number of
attributes added

AUAOAAD(s) AAUAOAA(s)
Non-incremental

updating(s)
Lun 10 24 0.0154933 0.0193596 0.0297983

HorseV 150 13 1.2718853 1.2718853 1.581161
Shuttle 8 2 0.0032563 0.0035347 0.008766
House 100 6 1.5932707 1.3088443 1.7860024
Samp 400 20 7.8289669 8.4810256 8.0401398
Lang 2 30 0.0377443 0.0527268 0.0532438

Table 7.8. A comparison of efficiency between Algorithm AUAOAAD and Algorithm
AAUAOAA on “Language test”

The number of
objects added

The number of
attributes added

AUAOAAD(s) AAUAOAA(s)
Non-incremental

updating(s)
1 1 0.0057276 0.0044171 0.0137274
2 1 0.0106077 0.0052004 0.0062275
3 1 0.0064592 0.006034 0.0067691
4 1 0.0069583 0.0069021 0.007351

10 2 0.012332 0.017197 0.0125285
20 2 0.0296651 0.0308497 0.0332367
30 2 0.0377443 0.0527268 0.0532438

From Table 7.7, we can see the both Algorithms AUAOAAD and AAUAOAA
outperform non-incremental updating methods. Furthermore, we carry out exper-
iments on data set “Language test” to verify the efficiency between Algorithm
AUAOAAD and Algorithm AAUAOAA. From Table 7.8, we can see when adding
objects 1 to 3 and adding 1 attribute, Algorithm AAUAOAA outperforms Algorithm
AUAOAAD. In the case of the addition of object 4 and 1 attribute, there is no much
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difference of the two algorithms. When adding 10, 20 and 30 objects and adding
2 attributes, Algorithm AUAOAAD outperforms Algorithm AAUAOAA. This is
because the cost of Algorithm AAUAOAA to maintain approximations and dom-
inating classes recursively may exceed the cost of Algorithm AUAOAAD. In the
incremental updating methods, both Algorithms AUAOAAD and AAUAOAA use
original information and data structure, so the efficiency of knowledge discovery
improves.

Let St = (Ut ,At ,V t , f t) denote the set-valued information system at time t. At
time t + 1, objects U+ and attributes A+ are added to the set-valued information
system simultaneously, that is, St+1 = (Ut+1,At+1,V t+1, f t+1), where Ut+1 = Ut ∪
U+, At+1 = Ct+1 ∪ dt , Ct+1 = Ct ∪C+. In Algorithm AUAOA-AD, we decompose
the set-valued information system St+1 into two set-valued information systems,
that is, SU+ = (U+,At+1,VU+, fU+) and SA+ = (Ut ,At+1,V A+, f A+) and the set-
valued information system SA+ is further decomposed into two sub set-valued in-
formation systems St = (Ut ,At ,V t , f t ) and SΔA = (Ut ,AΔA,VΔ, f Δ), where AΔA =
C+∪dt . Computational complexity of Algorithm AUAOAAD is O((|A+ + 1)| |Ut |+
∣
∣UΔ

∣
∣2
∣
∣At+1

∣
∣+

∣
∣Ut+1

∣
∣). The computational complexity of Algorithm AAUAOAA is

O(|Ut |2 (|A+|+ |U+|)). The computational complexity of non-incrementally updat-

ing is O |At + 1|∣∣Ut+1
∣
∣2. The complexity of Algorithms AUAOAAD and AAUAOAA

are lower than that of non-incremental updating methods.

7.7 Conclusions

The set-valued information systems evolve with time. Objects, attributes and at-
tributes’ values may alter. The concept induced by the subset of the universe may
vary too. Therefore, the approximations of a concept as well as certain rules and
uncertain rules may vary with time. In this chapter, two algorithms of incremental
updating method were proposed to maintain approximations when objects and at-
tributes are added simultaneously. In Algorithm AUAOAAD, we decomposed the
set-valued information system into three sub set-valued information systems con-
sidering attributes and objects change simultaneously. In Algorithm AAUAOAA,
a accumulation policy is taken into consideration. We investigated the variation of
approximations related to the variation of granules in the different regions. Then,
we presented the methods to update approximations of a concept. An example was
employed to explain the AUAOAAD method. Experimental results showed the both
methods were effective to maintain knowledge. In the future, we will study opti-
mization techniques of the proposed methods and extend these methods to fuzzy
rough set model.
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Chapter 8
On the Gradual Evolvement of Things

Ivo Düntsch and Günther Gediga

Abstract. The aim of this work is to describe the generic properties of a visual
system without hard coding the environment.

Keywords: hard coding the environment, indicator function, invariants, percep-
tional vector analysis, quadtrees, rough approximation quality, translations, visual
perception.

8.1 Introduction

Over a period of fifty years, the psychologist J. J. Gibson developed a theory of
visual perception that was radically different from the prevailing views of the time
- and, to some extent, from those of today. According to Gibson [5], the main task
for perception is to recognize the invariant parts within a variant world:

“We perceive that the environment changes in some respects and persists in others. We
see that it is different from time to time, even moment to moment, and yet that it is the
same environment over time. We perceive both the change and the underlying non–
change. My explanation is that the perceptual systems work by detecting invariants in
the flux of stimulation but are also sensitive to the flux itself” [4].

These invariants can be described by a mathematical model, which can be used
more than once for the description of the world. Gibson showed that simple models
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define properties (e.g., “horizon”), but these models are rather ad hoc, and a general
framework is still lacking.

A principle of visual perception based on an ecological approach was outlined
by Johansson, which he called perceptional vector analysis [6]. Johansson showed
by experiments that visual perception seems to be organized by something close to
factoring independent vectors of movement patterns. A simple experiment was the
presentation of three light points in a dark environment. Two points are moving up
and down, the third (inner) point is moving up and down as well, but moving at the
same time gradually from one outer point to the other. The perceptional result is as
follows: There is a “stick” moving up and down (the two outer points) and a point
moving up and down on the stick.

The experimental results show that the perceptual content is independent of an
observer, although the layout consists of three moving points only. Johannson con-
cluded that the visual system is organized in such a way that this certain layout has
to be perceived as a hierarchical system of – more or less independent – movement
patterns. In this chapter, we aim at a description of a perceiving system from an
algorithmic/logical point of view, which is more general than the assumption of a
system that performs vector analysis. Furthermore, we like to deal with an imprecise
information basis, which we describe by rough sets.

Much effort has been put into the mathematical description of spatial or spatial-
temporal relationships, which use logical/algebraical models such as the region con-
nection calculus [10], the polygonal algebras [9], and contact or proximity algebras
[2]. These models use “regions” as primitives. According to Gibson, objects should
be defined by invariants; however, in the models mentioned above, the nature of
these invariants is not addressed, since regions are treated as existing a priori.

In a predefined world, shapes of objects such as blocks, cones, disks are hard
coded into the system. Through detectors, the agent discovers objects in its environ-
ment according to its instructions. In this chapter, we aim to describe the generic
properties of a visual system without hard coding the environment. As a measure of
approximation, we will use Pawlak’s approximation quality [8].

8.2 The Setup

In the first approach, we use instances t1, t2, . . . of an n×n grid C = {ci, j : i, j < n}
of cells, called a container, which carries the information coming from the outside
world to an organism or a machine. We may think of the cells as atoms of a two
dimensional visual field spanned by C, and each cell contains information delivered
by a sensor. The state of the cell ci, j at time tk is denoted by [ci, j]k and is evaluated
according to attributes such as color, hue, intensity, or just “on” or “off”; indeed,
each cell may contain a whole information system in the sense of [7]. The global
state of C at time tk is denoted by Ck.

The indicator function measures the amount of agreement between two global
states at times tr and ts:
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indr,s(ci, j) =

{
1, if [ci, j]r = [ci, j]s
0, otherwise,

(8.1)

Its complementary xor function is defined by

xorr,s(ci, j) =

{
1, if [ci, j]r �= [ci, j]s,
0, otherwise.

The (global) amount of agreement in states tr and ts is measured by ∑{indr,s(ci, j) :
i, j < n}, denoted by Ir,s, and the (global) amount of change from tr to ts is measured
by ∑{xorr,s(ci, j) : i, j < n}, denoted by Dr,s.

A movement is a mapping m : C → C ∪ {∞} which is (partly) injective in the
following sense:

If 〈i, j〉 �= 〈i′, j′〉, and {m(ci, j),m(ci′, j′)} �= {∞}, then m(ci, j) �= m(ci′, j′). (8.2)

We interpret m(ci, j) = ∞ as “cell ci, j moves out of sight”.
With each movement m and two states tr and ts we can compare [ci, j]r and

[m(ci, j)]s, and set

indm
r,s(ci, j) =

{
1, if [ci, j]r = [m(ci, j)]s,
0, otherwise.

(8.3)

The agreement with respect to m is defined by

Im
r,s :=∑{indm

r,s(ci, j) : i, j < n}. (8.4)

For the corresponding difference function, we need to take into account that cells
may move outside the visual field: If m(ci, j) �= ∞, set

xorm
r,s(ci, j) =

{
1, if [ci, j]r �= [m(ci, j)]s,
0, otherwise.

(8.5)

The difference index Dm
r,s is given by

Dm
r,s :=∑{xorm

r,s(ci, j) : m(ci, j) �=∞}. (8.6)

Since C is finite, so is the set M of movements, and therefore, max{Im
r,s : m ∈ M }

and min{Im
r,s : m ∈M } are well defined.
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8.3 Translations

Simple examples of movements are translations t(x,y), x,y ∈ Z with

t(x,y)(ci, j) =

{
ci+x, j+y, if 0≤ i+ x, j + y < n,

∞, otherwise.

For any x,y < n, the value Ix,y
r,s offers us an evaluation of a translation in coordinates

given by C. The parameters x,y of a maximal value of Ix,y
r,s is a candidate for the rep-

resentation of an outer world translation by internal coordinates assuming a “stable
world” assumption.

Example 8.1. Assume the following two representations at time r = 1 and s = 2
using a grid with n = 5 with two “outer points” and one “inner point” just like the
layout in Johannson’s experiment:

r = 1
XX00X
XX00X
00000
00000
00000

s = 2
00000
00000
00000
X0X0X
X0X0X
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Fig. 8.1. Ix,y
1,2, x,y ∈ {−4, ...,+4}
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Evaluating all values of Ix,y
1,2 using x,y ∈ {−4, ...,+4} results in the functions shown

in Figure 8.1. In this situation, there is a maximal value of 15 which is unique, since
15 elements can be recaptured if and only if x =−2 and y = 0. In other words, the
translation t(−2,0) results in the greatest agreement.

Note that, the number of elements can be rescaled in terms of rough approxima-
tion quality

λ0 =
recaptured elements by translation

elements of the grid

The index 0 is used, because λ0 tells us something about the overall approximation
quality of background and translation stable things. In our example, we observe
λ0 = 0.6.

In order to extract more translations from the grids, we mark with asterisks those
cells ci, j in C1 and t(−2,0)(ci, j) in C2 for which [ci, j]1 = [t(−2,0)(ci, j)]2.

r = 1
XX00X
XX00X
*****
*****
*****

s = 2
*****
*****
*****
X0X0X
X0X0X

We call these the residual grids C1(1) and C2(1). Now we apply the maximization
algorithm once again to the non–asterisk cells, resulting in the optimal value of 6 at
(x = 3,y = 0).

Once again, the approximation quality may be defined by

λ1 =
recaptured remaining elements by translation

remaining elements of the grid
,

resulting in λ1 = 0.6, which indicates that 60% of the remaining area can be recap-
tured by a translation, which is different from the background movement.

Removing those elements that were recaptured by this step results in

r = 1
*X0**
*X0**
*****
*****
*****

s = 2
*****
*****
*****
*0X**
*0X**

Now – at step 2 – the situation is not unique(Figure 8.3), because two translations
of C1(2) to C2(2) offers identical local optimum values, which is quite probable for
low frequencies. Whatever translation will be used, we result in λ2 = 0.5.
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Fig. 8.2. Ix,y
1,2, x,y ∈ {−4, ...,+4} for residual grids I

−4 −2  0  2  4

0
.0

0
.5

1
.0

1
.5

2
.0

−4

−2

 0

 2

 4

X

Y

E
v
a

lu
a

ti
o

n

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●

●

●

●●●●●●

●●●●●●●●●

●

●

●

●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

Fig. 8.3. Ix,y
1,2, x,y ∈ {−4, ...,+4} for residual grids II



8 On the Gradual Evolvement of Things 255

Nevertheless, if we choose one of the arguments of two optimal values,
for example, x = 3,y = 1, we end up in a movement of two elements within those 6
elements of step 1.

�

Obviously, the algorithm can be applied recursively until either grid C1(k) or C2(k)
is empty.

The rough set analysis of translations offers the same results as Johansson’s per-
ceptual vector theory: The elements show a moving stick (recaptured in step 1) and
an element moving within the stick (recaptured in step 2).

However, up to now, we do not have a description of a “thing”. We will explore
in the next section how to define things in terms of a stable residual.

8.3.1 Evolving Things and Properties

The situation with two successive frames offers a description of “T-things” by col-
lecting at each step those cells whose content agrees with the content of its image.
We result in 4 different T-things that consists of an s-position, a set of 2-dimensional
values and a direction due to the translation.

Our grid at s = 2 can be translated into regions defined by T-things:

s = 2
11111
11111
11111
24322
24322

The values of these 4 T-things are
T-thing 1 (Tt = 1)

00000
00000
00000

T-thing 1 is a block consisting of “0” elements. Obviously, we result in something
like a block property, which a system can learn and add this to the possible attributes
of a (more complex than a T-) thing.

T-thing 2 (Tt = 2)

X??0X
X??0X

T-thing 2 consists of “X” elements at the end of the block and “0” elements at y
position within the block. The question marks show cells, which are not part of T–
thing 2, but T–things further down in the hierarchy. So these positions may be filled
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in by other T-things that may define a more complex “composite T–Thing”, because
the positions of the subsequent T–things are “within” the region of T–thing 2.

T-thing 3 (Tt = 3)

X
X

T-thing 4 (Tt = 4)

0
0

Finally, every T-thing has its own direction of movement, which may be used to
predict the results of the following frame 3.

The expectation of the visual situation of frame 3 shows the following pattern:

00000
?????
?????
?????
????? (end of the visual field)
?????
a??bX
a??bX

a = either X (T-thing 2) or 0 (T-thing 4)
? = no clue at all
b = either 0 (T-thing 2) or 0 (T-thing 3)

So the system “now” which will be in sight at frame 3 and it has some further
predictions even for results out of sight.

Assume for a moment that T-thing 2 is in sight at frame 3.

• If region “a” consists of X only, the system may conclude that T-thing 2 is in
front of T-thing 4.

• If region “a” consists of 0 only, the system may conclude that T-thing 4 is in
front of T-thing 2.

• If region “b” consists of X only, the system may conclude that T-thing 3 is in
front of T-thing 2.

• If region “b” consists of 0 only, the system may conclude that T-thing 2 is in
front of T-thing 3.

We conclude with the observation that when using 3 frames there is a chance of
detecting an occlusion relation among T-things.

8.4 Quadtrees

Using a pyramid representation for data is quite old [1]. The hierarchical organiza-
tion of visual input has two nice properties:
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• Computation within higher layer of a hierarchical organized visual input is
much faster than dealing with the basic elements.

• Good organization in a higher level helps to organize selective attention [11].

Our idea is the organization of the visual field in quadtrees. These data structures
have the nice property that building the structure is based on a rough set operation.
Loosely speaking, a quadtree [3] consists of a succession of decompositions of a
given rectangle C into quadrants until each node satisfies a given condition. The
process can be represented by a tree, each non–leaf node of which has four children,
corresponding to the quadrants NW, NE, SW, and SE; in matrix form,

(
ak

00 ak
01

ak
10 ak

11

)

Each node has either no descendants or four descendants. Each descendant of a node
g represents a quadrant in the plane whose origin is g and which is bounded by the
quadrant boundaries of the previous step; an example taken from [12] is shown in
Figure 8.4.

Fig. 8.4. A region I of cells, its decomposition, and its quadtree representation

Each tree level corresponds to an equivalence relation on C. A node becomes a
leaf node if its associated quadrant – that is, its corresponding equivalence class –
is uni–colored; otherwise, the equivalence relation will be refined to the next level.
This is the rough set concept of nested equivalence relations.

Representations consisting of two or more quadtrees can be used to analyze
movements as well. The detection of a global translation in the basic layout (bottom
of the quadtree) will be very time consuming. A detection of global translation is
easier, if we compare the quadtree representation at a higher level. For example,
suppose block 1 in Figure 8.4 is black, and all other blocks are white. In this case,
we need only 4 bits to represent the full layout. Assume additionally that block 1
moves to one of the other three possible blocks in that quadtree representation. In
this case, we need only a few operations to detect the global movement, based on
the equivalence classes in the top layer of the quadtree representation.
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8.5 Conclusion and Outlook

Although the ideas presented here are far away from a comprehensive theory, we
demonstrate that simple movements – translations – can be detected by a recur-
sive rough set based (counting) algorithm. Step 0 will always be the detection of
(mutual!) global movement based on the best rough description of the visual grid.
Filtering out the results of this step, we end up in a generic hierarchical description
of movements, based on rough approximations of residual sets. The results of this
procedure lead – at least for our examples – to the same results as the perceptual
vector theory of ecological psychologists.

The spirit of the ecological approach – that essential information about “things”
is given by their movement behavior – is applied to a very simple layout. No pre–
assumption is necessary to detect movement, up to the generic idea that the world is
invariant if we take certain transformations (such as translations) into account. We
demonstrate that the optimization can be applied to detect “T-things” which will (or
will not) be real things, but which can be characterized by their common (residual)
movement. We have demonstrated that even concepts such as “occlusion” can be
defined on this basis: The information of an “occlusion” is given directly by the
changing environment and the invariance assumption(s) of the perceiving system.

We like to point out that “T-things” are not “things” in colloquial parlance, but
may be “things” if they are sufficiently interesting for the organism/agent/robot.
The definition of what is “interesting” for an organism is based on the concept of
affordances by Gibson. Conceptually, we have to define a new representation of
“T-things” enhanced by some value for the organism based upon one or more af-
fordances, which we will call “things” from now on. Consequently, whereas a “T-
thing” will vanish, if it is out of sight (because there is no additional value for the
organism), a “T-thing”, enhanced by some affordances, may persist within a differ-
ent data structure. Using this kind of “thing” evolvement, there will be no “hole”
in the perceptional world if a “T-thing” vanishes: either it is of no interest – then
other “T-things” step into the perception – or it is of some interest; in this case the
organism is aware that the “thing” has moved outside the visual field, with a cer-
tain gradient and the organism can capture the “thing” by moving itself to focus the
visual field on the thing once again.

The final point of our chapter deals with the fact that detecting change might
be quite time consuming, if the visual field is not as tiny as in our examples. In
that case, a further rough set based information structure can be used: The quadtree
representation of the visual field.

Since this chapter presents only the first ideas, the validity of the approach is still
an open question and needs to be tested. One has to define algorithms that can handle
huge visual fields, and we have to consider other types of movements like rotation.
Nevertheless, a construction of a system which is flexible to define its own “reality”
based on perceived “things” is possible and seems to be a challenge for the future.

Acknowledgements. We would like to thank the referee for the helpful and constructive
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Chapter 9
An Empirical Comparison of Rule Sets Induced
by LERS and Probabilistic Rough Classification

Jerzy W. Grzymała-Busse, Shantan R. Marepally, and Yiyu Yao

Abstract. We explore an extension of rough set theory based on probability theory.
Lower and upper approximations, the basic ideas of rough set theory, are generalized
by adding two parameters, denoted by alpha and beta. In our experiments, for differ-
ent pairs of alpha and beta, we induced three types of rules: positive, boundary, and
possible. The quality of these rules was evaluated using ten-fold cross-validation on
five data sets. The main results of our experiments are that there is no significant
difference in quality between positive and possible rules and that boundary rules are
the worst.

Keywords: Rough set theory, Pawlak approximations, probabilistic approximations,
parameterized approximations, positive, boundary and possible rules.

9.1 Introduction

Rough set theory, introduced by Z. Pawlak in the early eighties of the last century [7,
8], is widely applied in many research areas. One of the most successful application
areas is data mining.
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Many extensions of rough set theory were investigated, one of such extensions
is based on probability theory. There exist a few approaches to extending rough
set theory using probability theory. One of them, used in this paper, is a decision-
theoretic rough set model (DTRSM) in which a pair of threshold parameters for
defining probabilistic approximations was determined based on the well established
Bayesian decision theory [13, 15, 16]. The probabilistic approximations defined by
such parameters would incur minimal risk in deciding the positive, boundary, and
negative regions. Based on intuitive arguments, a variable precision rough set model
(VPRSM) for probabilistic approximations was suggested in [18]. Once proba-
bilistic approximations are introduced, it is possible to induce rules using standard
methodology [6, 10, 12, 5].

For the rest of this chapter, we will assume that the knowledge is represented by
rules and that data sets are represented by decision tables. Additionally, this chapter,
is a continuation of our previous work [5] in which it was shown how to modify de-
cision tables in order to induce positive, boundary, and possible rules induced from
probabilistic approximations. However, this time, we simplify the idea of modifi-
cation of decision tables from which such rules may be induced. Furthermore, we
present results of experiments on typical data sets from the University of California
at Irvine Machine Learning Repository. These data sets were additionally processed
before our experiments. Namely, during discretization, intervals for numerical at-
tributes were allowed to be too large so that the data sets were inconsistent. This
additional modification of data sets was necessary since with an appropriate dis-
cretization and consistent data sets lower and upper probabilistic approximations
will be identical.

A preliminary version of this chapter was prepared for the 10-th International
Conference on Hybrid Intelligent Systems (HIS 2010), Atlanta GA, August 23–25,
2010 [4].

9.2 Rough Sets and Three-Way Rules

In this section, the notion of three-way rules is introduced with respect to Pawlak
and probabilistic rough sets.

9.2.1 Indiscernibility Relation

As stated before, we assume that the input data sets are presented in the form of a
decision table. An example of a decision table is shown in Table 9.1.

Rows of the decision table represent cases, while columns are labeled by vari-
ables. The set of all cases will be denoted by U . In Table 1, U = {1, 2,..., 10}.
Independent variables are called attributes, and a dependent variable is called a de-
cision and is denoted by d. The set of all attributes will be denoted by A. In Table
1, A = {Temperature, Headache, Cough}. The value for a case x and an attribute a
will be denoted by a(x).
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One of the most important ideas of rough set theory is an indiscernibility relation.
Let Q be a non-empty subset of A. The indiscernibility relation IND(Q) is a relation
on U defined for x,y ∈U as follows:

(x,y) ∈ IND(Q) if and only if ∀a ∈Q(a(x) = a(y)).

The indiscernibility relation IND(Q) is an equivalence relation. Equivalence classes
of IND(Q) are called elementary sets of Q and are denoted by [x]Q. A subset of U
is called Q-definable if it is a union of elementary sets [7, 8].

Table 9.1. A decision table

Attributes Decision

Case Temperature Headache Cough Flu

1 normal no no no

2 normal no no no

3 normal yes no no

4 normal yes no no

5 normal yes no yes

6 normal no yes no

7 high yes yes no

8 high yes yes yes

9 high yes yes yes

10 high yes yes yes

9.2.2 Pawlak Approximations

The set C of all cases defined by the same value of the decision d is called a concept.
Usually, a concept C is not Q-definable. The largest definable set contained in C is
called the lower approximation of C, and the smallest definable set containing C is
called the upper approximation of C, namely,

apr
Q
(C) =

⋃
{[x]Q | [x]Q ⊆C}

=
⋃
{[x]Q | Pr(C|[x]Q) = 1};

aprQ(C) =
⋃
{[x]Q | [x]Q∩C �= /0}

=
⋃
{[x]Q | Pr(C|[x]Q) > 0}, (9.1)

where Pr(C|[x]Q) = |C ∩ [x]Q|/|[x]Q| is the conditional probability, and | · | is the
cardinality of a set. The set POSQ(C) = apr

Q
(C) is called the positive region of C,
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the set BNDQ(C) = aprQ(C)−apr
Q
(C) is called the boundary region of C, and the

set NEGQ(C) = U −aprQ(C) is called the negative region of C.
For an attribute a and its value v, (a,v) is called an attribute-value pair. The set of

objects, [(a,v)] = {o∈U | a(o) = v}, is called a block [2]. For Table 9.1, the concept
of Flu is defined by the block [(Flu,yes)], and the concept of No-Flu is defined by
the block [(Flu,no)]. For Q = A, the lower approximations of both concepts are:

apr
A
([(Flu,no)]) = {1,2,6},

apr
A
([(Flu,yes)]) = /0,

and upper approximations of the concepts are:

aprA([(Flu,no)]) = U,

aprA([(Flu,yes)]) = {3,4,5,7,8,9,10}.

The associated three regions are:

POSA([(Flu,no)]) = {1,2,6},
BNDA([(Flu,no)]) = {3,4,5,7,8,9,10},
NEGA([(Flu,no)]) = /0,

POSA([(Flu,yes)]) = /0,
BNDA([(Flu,yes)]) = {3,4,5,7,8,9,10},
NEGA([(Flu,yes)]) = {1,2,6}.

9.2.3 Probabilistic Approximations

Probabilistic rough sets have been proposed and studied in [9, 12, 13, 15, 16, 18].
In probabilistic approaches to rough sets, such as decision-theoretic model [13, 15]
and variable precision model [18], we define the parameterized approximations of
the concept C:

apr
Q,(α,β)(C) =

⋃
{[x]Q | Pr(C|[x]Q)≥ α},

aprQ,(α,β)(C) =
⋃
{[x]Q | Pr(C|[x]Q) > β}, (9.2)

with α> β. They are referred to as the α-level lower approximation and β-level up-
per approximation, respectively. Similarly, (α,β)-level positive, (α,β)-level bound-
ary and (α,β)-level negative regions may be introduced. Additionally, a union of
the (α,β)-level positive and (α,β)-level boundary regions is called a (α,β)-level
possible region.



9 An Empirical Comparison of Rule Sets Induced by LERS 265

Suppose we set α = 0.6 and β = 0.3, which can be interpreted in terms of cost
or risk of classifying an object into the positive region, the boundary region or the
negative region [13, 15]. For Table 9.1, with respect to Q = A. we have the following
probabilistic (0.6,0.3)-approximations:

apr
A,(0.6,0.3)([(Flu,no)]) = {1,2,3,4,5,6},

apr
A,(0.6,0.3)([(Flu,yes)]) = {7,8,9,10},

aprA,(0.6,0.3)([(Flu,no)]) = {1,2,3,4,5,6},
aprA,(0.6,0.3)([(Flu,yes)]) = {3,4,5,7,8,9,10}.

The associated positive, boundary and negative regions are:

POSA,(0.6,0.3)([(Flu,no)]) = {1,2,3,4,5,6},
BNDA,(0.6,0.3)([(Flu,no)]) = /0,
NEGA,(0.6,0.3)([(Flu,no)]) = {7,8,9,10},

POSA,(0.6,0.3)([(Flu,yes)]) = {7,8,9,10},
BNDA,(0.6,0.3)([(Flu,yes)]) = {3,4,5},
NEGA,(0.6,0.3)([(Flu,yes)]) = {1,2,6}.

9.2.4 Three-Way Rules

The four regions may be interpreted in terms of some decisions [14], with the posi-
tive region representing the certain acceptance, boundary region representing defer-
ment (i.e., delayed decision or indecision), negative region representing rejection,
and possible region representing possible (or plausible) acceptance. Rules induced
from the positive, boundary, and possible regions are, respectively, referred to as
positive, boundary, and possible rules.

We can analyze three-way rules and examine their implications by introducing
a few quantitative measures. The Pawlak approximations may be interpreted as a
special case with α = 1 and β = 0. We therefore only consider the probabilistic
case.

Consider first two quantitative measures on characterizing an arbitrary set G⊆U
with respect to a concept C ⊆U . The precision or accuracy of G is given by:

precision(C|G) =
|C∩G|
|G| , (9.3)

and the recall provided by G for C is given by:

recall(C|G) =
|C∩G|
|C| . (9.4)
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When G = /0, we define precision(C| /0) = 1. The two measures are adopted from
information retrieval. Their uses in data mining have been considered by many au-
thors [11, 17]. The inverse of precision is the error rate of G, that is, error(C|G) =
1− precision(C|G).

The probability used in the probabilistic model is, in fact, the precision of an
equivalence class, namely, Pr(C|[x]Q) = precision(C|[x]Q). In an (α,β)-approxima-
tion, the precision of an equivalence class in the positive region is larger than or
equal to α, in the boundary region is between β and α, and in the negative region is
smaller than or equal to β.

The following theorem gives conditions on the precision of the three regions.

Theorem 9.1. In probabilistic (α,β)-approximations, the precisions of the three re-
gions are bounded by:

precision(C|POSQ,(α,β)(C))≥ α,

β< precision(C|BNDQ,(α,β)(C)) < α,

precision(C|NEGQ,(α,β)(C))≤ β. (9.5)

Based on the connection between precision and recall, one can equivalently state
these conditions in terms of an error rate. With the introduction of the two measures
and the results of the above theorem, one can easily establish that the relationship
between Pawlak (1,0)-approximations and probabilistic (α,β)-approximations:

α≤ precision(C|POSQ,(α,β)(C))≤
precision(C|POSQ,(1,0)(C)) = 1,

recall(C|POSQ,(α,β)(C))≥
recall(C|POSQ,(1,0)(C)). (9.6)

The results clearly show the trade-off made between Pawlak and probabilistic mod-
els. For the positive region, a probabilistic model gains in recall, but loses in preci-
sion, and for the Pawlak, it is the reverse. Similar results can also be obtained for
other regions.

Once the three regions are obtained, one may apply any rule induction algorithm
to induce three-way rules.

Consider an interpretation of positive rules derived from the probabilistic pos-
itive region. Let POSQ,(α,β)(C) be the (α,β)-positive region of C. Suppose H ⊆
POSQ,(α,β)(C) and H is Q-definable, that is, H is a union of some Q-equivalence
classes. Then, one can define a positive rule,

Des(H)→ Des(C),

where Des denotes a description of the set of objects H based on attribute-value
pairs. An example for Table9.1 is given by:
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C = {5,8,9,10}= [(Flu,yes)],
Des(C) = (Flu,yes),
POSQ,(0.6,0.3)(C) = {3,4,5,7,8,9,10};

H = {7,8,9,10} ⊆ POSQ,(0.6,0.3)(C),
Des(H) = (Temperature,high);

r1 : (Temperature,high)→ (Flu,yes);

precision(r1) = precision({5,8,9,10}|{7,8,9,10})
= 0.75≥ 0.6.

In other words, for an Q-definable subset of POSQ,(α,β)(C), we can induce a positive
rule. The following theorem shows that the precision of such a rule is larger than or
equal to α.

Theorem 9.2. Suppose Des(H)→ Des(C) is a positive rule in probabilistic (α,β)-
approximations, that is, H is a non-empty and Q-definable subset of POSQ,(α,β)(C).
Then, precison(C|H)≥ α.

By this theorem, we may accept a decision with a precision larger than or equal to α,
or equivalently with an error rate smaller than or equal to 1−α. For the special case
of a Pawlak positive rule, the precision is 1, and the error rate is 0. Similar results
can be stated for boundary and possible rules.

Detailed procedure of positive, boundary, and possible rules induction with LERS
and the experimental evaluation are presented in the next three sections.

9.3 Positive and Possible Rule Induction with LERS

In this section, we introduce the LERS (Learning from Examples based on Rough
Sets) data mining system and then discuss a method to transform a decision table so
that LERS can be applied to induce types of rules, which are related to three-way
rules.

The LERS data mining system computes lower and upper approximations for
every concept and then induces rules using one of the selected algorithms [2, 3].
Rules induced from lower and upper approximations are called certain (or positive)
and possible (or plausible), respectively [1]. Since the lower approximation is a
subset of the upper approximation, certain rules may be viewed as a special case of
possible rules.

A rule induction algorithm MLEM2 is one of the basic rule induction algorithms
of LERS. MLEM2 explores the search space of attribute-value pairs. Its input data
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set is a lower or upper approximation of a concept. In general, MLEM2 computes a
local covering [2, 3] and then converts it into a rule set.

In the LERS format, every rule is associated with three numbers: the total number
of attribute-value pairs on the left-hand side of the rule, the total number of cases
correctly classified by the rule during training, and the total number of training cases
matching the left-hand side of the rule, that is, the rule domain size.

The MLEM2 module of LERS induces the following set of certain rules:

1, 3, 3
(Headache,no) → (Flu,no),

and the following set of possible rules:

1, 3, 7
(Headache,yes) → (Flu,no),
1, 3, 3
(Headache,no) → (Flu,no),
1, 4, 7
(Headache,yes) → (Flu,yes).

9.4 Rules in Probabilistic Rough Sets

In order to induce probabilistic positive, boundary, and possible rules we have to
modify input data sets. For every kind of rules (positive, boundary and possible)
and a concept C described by [(d, w)], the corresponding region will be unchanged
(every entry will be the same as in the original data set). For all remaining cases, the
decision value will be set to a special value, not listed in any attribute domain in the
original data set, for example, let us use the value SPECIAL. Then, we will induce a
possible rule set using the MLEM2 rule induction algorithm. From the induced rule
set, only rules with (d, w) on the right-hand side will survive, all remaining rules
(for other values of d and for values SPECIAL) should be deleted. The final rule set
is a union of all rule sets computed this way separately for all values of d.

If we want to induce positive rules with α= 0.6 and β= 0.3 for the data set pre-
sented on Table 9.1 we should construct two decision tables, presented as Tables 9.2
and 9.3.

Once those two regions are constructed, one can immediately adopt LERS to
induce two sets of rules. However, two important issues remain to be investigated.
One is the estimation of the parameters and the other is the interpretation of the
induced rules.

From Table 9.2, the MLEM2 rule induction algorithm induced the following pos-
sible rule set:
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1, 5, 6
(Temperature,normal)→ (Flu,no),
2, 1, 3
(Temperature,normal) & (Headache,yes)→ (Flu,yes),
1, 4, 4
(Temperature,high)→ (Flu,SPECIAL).

Table 9.2. A modified decision table to induce positive rules, with α = 0.6 and β = 0.3, for
(Flu, no)

Attributes Decision

Case Temperature Headache Cough Flu

1 normal no no no

2 normal no no no

3 normal yes no no

4 normal yes no no

5 normal yes no yes

6 normal no yes no

7 high yes yes SPECIAL

8 high yes yes SPECIAL

9 high yes yes SPECIAL

10 high yes yes SPECIAL

Table 9.3. A modified decision table to induce positive rules, with α = 0.6 and β = 0.3, for
(Flu, yes)

Attributes Decision

Case Temperature Headache Cough Flu

1 normal no no SPECIAL

2 normal no no SPECIAL

3 normal yes no SPECIAL

4 normal yes no SPECIAL

5 normal yes no SPECIAL

6 normal no yes SPECIAL

7 high yes yes no

8 high yes yes yes

9 high yes yes yes

10 high yes yes yes
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From Table 9.3, the MLEM2 rule induction algorithm induced the following possi-
ble rule set:

1, 6, 6
(Temperature,normal)→ (Flu,SPECIAL),
1, 1, 4
(Temperature,high)→ (Flu,no),
1, 3, 4
(Temperature,high)→ (Flu,yes).

The final set of probabilistic positive rules for Table 9.1 is as follows:

1, 5, 6
(Temperature,normal)→ (Flu,no),
1, 3, 4
(Temperature,high)→ (Flu,yes).

Similarly, for induction of boundary rules from Table 1, with α = 0.6 and β = 0.3,
we need to construct Table 9.4 for the only nonempty boundary region {3, 4, 5}.

Table 9.4. A modified decision table to induce probabilistic boundary rules, with α = 0.6
and β= 0.3, for (Flu, yes)

Attributes Decision

Case Temperature Headache Cough Flu

1 normal no no SPECIAL

2 normal no no SPECIAL

3 normal yes no no

4 normal yes no no

5 normal yes no yes

6 normal no yes SPECIAL

7 high yes yes SPECIAL

8 high yes yes SPECIAL

9 high yes yes SPECIAL

10 high yes yes SPECIAL

From Table 9.4, the MLEM2 rule induction algorithm induced the following pos-
sible rule set:
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1, 6, 6
(Cough,yes)→ (Flu,SPECIAL),
1, 6, 6
(Headache,no)→ (Flu,SPECIAL),
2, 2, 3
(Temperature,normal) & (Headache,yes)→ (Flu,no),
2, 1, 3
(Temperature,normal) & (Headache,yes)→ (Flu,yes).

For the concept [(Flu, yes)], the final set of probabilistic boundary rules with α= 0.6
and β= 0.3 consists of the following single rule
2, 1, 3

(Temperature,normal) & (Headache,yes)→ (Flu,yes).

The set of boundary rules for the concept [(Flu, no)] is empty.
For the concept [(Flu, no)] and α = 0.6 and β = 0.3, the probabilistic possible

rule set is identical with the positive rule set. For the concept [(Flu, yes)] andα= 0.6
and β= 0.3, the probabilistic possible rule set should be induced from the Table 9.5.

Table 9.5. A decision table

Attributes Decision

Case Temperature Headache Cough Flu

1 normal no no SPECIAL

2 normal no no SPECIAL

3 normal yes no no

4 normal yes no no

5 normal yes no yes

6 normal no yes SPECIAL

7 high yes yes no

8 high yes yes yes

9 high yes yes yes

10 high yes yes yes

1, 3, 3
(Headache,no)→ (Flu,SPECIAL)
1, 3, 7
(Headache,yes)→ (Flu,no)
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1, 4, 7
(Headache,yes)→ (Flu,yes)

Thus, the set of probabilistic possible rules for the concept [(Flu, yes)] consists of
the following single rule:

1, 4, 7
(Headache,yes)→ (Flu,yes)

9.5 Experiments

Our experiments were conducted using ten-fold cross validation on five data sets
available on the University of California at Irvine Machine Learning Repository.
For consistent data sets, for any values of alpha and beta, parameterized lower ap-
proximations are equal to upper ones, so it was necessary to use inconsistent data
sets for our experiments. We converted consistent data sets into inconsistent ones
by discretizing numerical attributes in such a way that the intervals, results of dis-
cretization, were too large. Data sets used for in our experiments are summarized in
Table 9.6.

Table 9.6. Data sets used for experiments

Data set Number of Consistency

cases attributes concepts

Glass 214 9 6 55.14

Hepatitis 155 19 2 65.81

Postoperative patient 90 8 3 84.44

Primary tumor 339 17 21 72.27

Wine recognition 178 13 3 61.80

Obviously, parameterized lower approximations depend only on alpha, so for a
fixed alpha parameters all corresponding lower approximations are equal to each
other, hence the error rate, result of ten-fold cross validation is also the same. Simi-
larly, for a fixed beta parameter, all corresponding upper approximations are identi-
cal, so corresponding error rates are also equal.

Results of the experiments are presented on Tables 9.7– 9.11.
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Table 9.7. Error rate for glass data set

Type of rules:

Parameters positive boundary possible

α= 1.0, β= 0.0 35.51 55.61 30.17

α= 1.0, β= 0.2 35.51 58.41 31.78

α= 1.0, β= 0.4 35.51 52.80 33.64

α= 1.0, β= 0.6 35.51 59.35 32.24

α= 1.0, β= 0.8 35.51 70.09 34.11

α= 0.8, β= 0.0 34.11 60.28 30.17

α= 0.8, β= 0.2 34.11 63.55 31.78

α= 0.8, β= 0.4 34.11 60.28 33.64

α= 0.8, β= 0.6 34.11 65.89 32.24

α= 0.6, β= 0.0 32.24 69.63 30.17

α= 0.6, β= 0.2 32.24 70.56 31.78

α= 0.6, β= 0.4 32.24 66.36 33.64

Table 9.8. Error rate for hepatitis data set

Type of rules:

Parameters positive boundary possible

α= 1.0, β= 0.0 17.42 25.16 15.48

α= 1.0, β= 0.2 17.42 23.87 15.48

α= 1.0, β= 0.4 17.42 28.39 16.13

α= 1.0, β= 0.6 17.42 20.65 15.48

α= 1.0, β= 0.8 17.42 20.65 17.42

α= 0.8, β= 0.0 17.42 76.13 15.48

α= 0.8, β= 0.2 17.42 42.22 15.48

α= 0.8, β= 0.4 17.42 50.97 16.13

α= 0.8, β= 0.6 17.42 43.87 15.48

α= 0.6, β= 0.0 15.48 75.48 15.48

α= 0.6, β= 0.2 15.48 68.39 15.48

α= 0.6, β= 0.4 15.48 79.35 16.13
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Table 9.9. Error rate for postoperative patient data set

Type of rules:

Parameters positive boundary possible

α= 1.0, β= 0.0 37.78 55.56 42.22

α= 1.0, β= 0.2 37.78 55.56 42.22

α= 1.0, β= 0.4 37.78 53.33 38.89

α= 1.0, β= 0.6 37.78 37.78 35.56

α= 1.0, β= 0.8 37.78 — 37.78

α= 0.8, β= 0.0 37.78 55.56 42.22

α= 0.8, β= 0.2 37.78 55.56 42.22

α= 0.8, β= 0.4 37.78 53.33 38.89

α= 0.8, β= 0.6 37.78 37.78 35.56

α= 0.6, β= 0.0 35.56 64.44 42.22

α= 0.6, β= 0.2 35.56 64.40 42.22

α= 0.6, β= 0.4 35.56 67.78 38.89

Table 9.10. Error rate for primary tumor data set

Type of rules:

Parameters positive boundary possible

α= 1.0, β= 0.0 69.32 79.94 63.32

α= 1.0, β= 0.2 69.32 79.35 63.72

α= 1.0, β= 0.4 69.32 80.83 62.24

α= 1.0, β= 0.6 69.32 88.50 65.49

α= 1.0, β= 0.8 69.32 79.94 69.07

α= 0.8, β= 0.0 69.03 80.53 63.32

α= 0.8, β= 0.2 69.03 79.94 63.72

α= 0.8, β= 0.4 69.03 81.71 62.24

α= 0.8, β= 0.6 69.03 89.68 65.49

α= 0.6, β= 0.0 65.49 85.55 63.32

α= 0.6, β= 0.2 65.49 85.55 63.72

α= 0.6, β= 0.4 65.49 84.96 62.24
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Table 9.11. Error rate for wine recognition data set

Type of rules:

Parameters positive boundary possible

α= 1.0, β= 0.0 37.08 47.19 12.36

α= 1.0, β= 0.2 37.08 47.19 11.24

α= 1.0, β= 0.4 37.08 47.75 10.11

α= 1.0, β= 0.6 37.08 48.88 11.24

α= 1.0, β= 0.8 37.08 50.56 13.48

α= 0.8, β= 0.0 13.48 67.42 12.36

α= 0.8, β= 0.2 13.48 69.66 11.24

α= 0.8, β= 0.4 13.48 71.99 10.11

α= 0.8, β= 0.6 13.48 71.91 11.24

α= 0.6, β= 0.0 11.24 61.80 12.36

α= 0.6, β= 0.2 11.24 66.29 11.24

α= 0.6, β= 0.4 11.24 75.84 10.11

9.6 Conclusion

We conducted a number of experiments on five typical data sets. These data sets
were preprocessed in order to increase inconsistency. Then, for different values of
two parameters, alpha and beta, we evaluated positive, boundary, and possible rules,
using ten-fold cross-validation.

The first, most obvious conclusion is that boundary rules are always the worst
rules (the corresponding error rates are largest). It is caused by the fact that in in-
duction of such rules the most important region, the positive region, is ignored. Due
to this fact, the quality of boundary rules cannot exceed the quality of positive or
possible rules.

As usually, it is difficult to tell whether positive or possible rules are better. For
some data sets and some parameters, alpha and beta positive rules are better, for
other data sets and other parameters, it is the other way around.
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Chapter 10
Exploring Neighborhood Structures
with Neighborhood Rough Sets in Classification
Learning

Qinghua Hu, Leijun Li, and Pengfei Zhu

Abstract. We introduce neighborhoods of samples to granulate the universe and use
the neighborhood granules to approximate classification, thus they derived a model
of neighborhood rough sets. Some machine learning algorithms, including boundary
sample selection, feature selection and rule extraction, were developed based on the
model.

Keywords: Classification learning, rough set, neighborhood, neighborhood
entropy, sample selection, feature selection, attribute reduction, rule learning.

10.1 Introduction

Classification is a kind of important task in human cognition, reasoning and engi-
neering applications. People learn to distinguish different classes of objects during
all their life. Classification techniques also underlie numerous intelligent applica-
tions, including health diagnosis, fault analysis, object recognition, and so on. In
these domains, a set of training samples are usually collected and each is described
with a collection of features. Thus the samples are represented with feature vectors;
the elements of the vectors are the feature values. In this case, the samples can be
considered as sample points in the corresponding feature space. A learning algo-
rithm is employed to extract classification rules from these data. The learned rules
may be a continuous function or a set of discrete rules.
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Given a classification task, we have to ask a question how the different classes
of objects can be distinguished from each other. As the objects of discourses are
described with features, the objects with the same feature values are grouped into a
subset and form an elemental concept labeled with a word, such as apple, banana,
pear. Considering our cognition, we know there is a consistency assumption in clas-
sification modeling: the objects having the same feature values should be grouped
into the same class; otherwise, the classification is inconsistent. The inconsistent
objects that have the same feature values but belong to different classes form the
boundary region of classification. Prof. Pawlak had an insight into this assumption
and proposed the mathematical model of rough sets to compute the inconsistency
due to the limited granularity of elemental concepts induced by finite knowledge
[18, 19]. This assumption is widely used in our cognition and recognition. In the
past, people have little knowledge about the world. We can just divide the objects
in the world into coarse subsets. As we obtain more knowledge about the world, the
objects are partitioned into finer subsets. Some objects that were not able to be pre-
cisely characterized in the past can be accurately described now. This phenomenon
can currently be computed with the rough set model [19, 22]. From this viewpoint,
the model of rough sets provides us an interesting and effective tool to understand
human’s cognition and extract knowledge from data.

In health diagnosis and engineering applications, objects are usually described
with numerical features or mixed numerical and nominal variables. For example,
temperature and blood pressure are widely gathered in medical analysis; the out-
puts of sensors in engineering applications are also numerical. In this context, small
perturbation can be disregarded in classification. We take another consistency as-
sumption in this case that the objects with similar feature values, instead of the
same feature values, should be grouped into the same class; otherwise, the classifi-
cation is not consistent. Here, the similar objects of object x can be considered as
the neighborhood of x with respect to a certain similarity or dissimilarity function.
If we assign a neighborhood to each sample, the family of neighborhoods generates
a covering of the universe. We then utilize these neighborhood granules to approxi-
mately describe the subsets of the universe. The model of approximately describing
classifications with neighborhood granules is called neighborhood rough sets.

In this work, we will introduce the basic concepts and properties of neighbor-
hood rough sets; we also show the applications of neighborhood rough sets in
classification. It is interesting to find that the boundary samples computed with
neighborhood rough sets can be used to learn support vector machines. In addition,
we construct attribute reduction algorithms based on the model. Unlike Pawlak’s
rough sets, this model does not require discretizing numerical features in attribute
reduction. Finally, a rule extracting algorithm based on the neighborhood model is
also described via neighborhood covering reduction. The related works have been
reported in [9, 10, 8, 11, 12, 13].
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10.2 Pawlak’s Rough Sets and Related Works

In the early 1980s, Z. Pawlak introduced the model of rough sets, which is useful for
machine learning and data mining, including feature selection, attribute reduction,
rule extraction and uncertain reasoning [19].

Let U = {x1,x2, · · · ,xn} be a set of objects of discourse called the universe, and
R be an equivalence relation on U . The ordered pair (U,R) is said to be an approx-
imation space. U/R = {X1,X2, · · · ,Xk} is the partition of U induced by R, where
Xi is one of the equivalence classes. The objects in Xi are discernable as they are
equivalent to each other with respect to R.

In applications, the objects in U are described with a set of features A =
{a1,a2, · · · ,am}, and each object just takes a single value for a given feature. Given
B⊆ A, we associate an equivalence relation R over U that

RB = {(xi,x j)|∀a ∈ B : a(xi) = a(x j),xi,x j ∈U}. (10.1)

The equivalence class generated with xi ∈U and B is denoted by [xi]B, which is a
subset of objects with the same feature values as xi with respect to B.

As to classification modeling, beside condition attributes A, we are also given a
decision attribute D, which divides the objects into several decision classes U/D =
{d1,d2, · · · ,dN}. Take class di as an example. The lower and upper approximations
of di in terms of B⊆ A are defined as

RBdi = {x|[x]B ⊆ di,x ∈U},RBdi = {x|[x]B∩di �= /0,x ∈U}. (10.2)

considering the above definition, we can see that the lower approximation is a subset
of samples whose equivalence classes consistently belong to the decision class di

and the upper approximation is a subset of samples whose equivalence classes have
elements in di. Obviously, RBdi ⊇ di ⊇ RBdi. The difference between RBdi and RBdi

is called the boundary region, computed as BNDB(di) = RBdi−RBdi. BNDB(di) is
a subset of samples whose equivalence classes are not consistent. Some objects in it
belong to di. However, there are also some objects belonging to other classes. Thus,
it forms a region where samples cannot be certainly classified.

Correspondingly, we can also give the definition of lower and upper approxima-
tions of classification.

RBD =
N⋃

i=1

RBdi,RBD =
N⋃

i=1

RBdi. (10.3)

The boundary region of classification is computed as BNDB(D) = RBD−RBD. It is
easy to derive that RBD = U . So BNDB(D) = U −RBD. In fact, we can also obtain

that BNDB(D) =
N⋃

i=1
BNDB(di).
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As mentioned before, the decisions of samples in the boundary region are not con-
sistent. They have the same feature values but belong to different decision classes,
which leads to the confusion in classification. The size of boundary region reflects
the capability of attribute set B in approximating D or the dependency of D on B. A
function, called dependency, was defined as

γB(D) =
|POSB(D)|

|U | . (10.4)

γB(D) reflects the complexity of classification using attribute set B. If γB(D) = 1,
we say D is completely dependent on B. In this case, the classification is consistent.
Every object can be precisely classified into a decision class according to its feature
values. However, a lot of classification task is not consistent in real-world applica-
tions, then γB(D) < 1 . Inconsistency maybe results from noise information or the
limited knowledge. As to the first case two objects from different classes have the
same feature values due to noise perturbation. As to the second case, the current
information is not enough to discern objects from different classes. If new knowl-
edge is introduced, the inconsistent samples may become distinguishable and the
boundary region is reduced.

In data-driven classification modeling, the training samples with class labels are
given to users. The users cannot discern these two classes of inconsistency in data.
The task is to identify a classification function from these data. The learned function
should have good generalization power on unseen objects (learning for prediction)
or precisely describe the data (learning for description). It is notable that these two
learning objectives sometimes lead to completely different learning strategies.

Rough sets based machine learning starts with attribute reduction, which pro-
vides a more compact representation of the raw task. A reduct is a sufficient and
necessary subset B of features, satisfying the following conditions:

1) sufficient condition: γB(D) = γA(D);
2) necessary condition: ∀a ∈ B,γB−a(D) = γB(D) .

As computing the optimal reduct is an NP-hard problem, a lot of heuristic attribute
reduction algorithms have been developed these years [14, 20, 23, 25, 26, 27, 28,
31]. Moreover, a collection of rule extraction techniques were also developed [7, 24,
30].

10.3 Neighborhood Rough Sets

As mentioned before that objects are usually described with m numerical features.
In this case, the samples can be considered as points in an m-dimensional feature
space. The proximity or distance between samples generate a kind of structures of
samples.
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2
1

Fig. 10.1. Neighborhoods of x in terms of different distances

Definition 10.1. [10] Given xi ∈ U and B ⊆ C, the neighborhood δB(xi) of xi in
subspace B is defined as

δB(xi) = {x j|x j ∈U,#B(xi,x j)≤ δ}, (10.5)

where Δ is a distance function. ∀x1,x2,x3 ∈U , it satisfies:

1) Δ(x1,x2)≥ 0,Δ(x1,x2) = 0 if and only if x1 = x2;
2) Δ(x1,x2) = Δ(x2,x1);
3) Δ(x1,x3)≤ Δ(x1,x2)+Δ(x2,x3).

In applications, three distance functions are widely used. Consider x1 and x2 in an m-
dimensional space A = {a1,a2, · · · ,am},v(x,ai) denotes the value of sample x in the
ith dimension ai, then a general distance, named Minkowsky distance, is computed
as

ΔP(x1,x2) = (
N

∑
j=1

|v(x1,ai)− v(x2,ai)|P)1/P. (10.6)

1) It is called Manhattan distance Δ1 if P = 1; 2)Euclidean distance Δ2 if P = 2;
and 3) Chebychev distance if P =∞. A detailed survey on distance functions can be
found in some references.
δB(xi) is a subset of samples which are close to sample xi . The size of neighbor-

hood depends on the threshold δ, which can be viewed as the parameter of granular-
ity. More samples fall into δB(xi) if δ increases. The shape of the neighborhood is
determined by the used distance function. Considering the 2-dimensional real space,
neighborhoods of x0 in terms of the above three metrics are as shown in Figure 10.1.
1-norm-based neighborhood is a rhombus region around center sample ; 2-norm
based neighborhood is a ball region, while the infinite-norm-based neighborhood is
a rectangle or a square.

Besides the above functions, there also are some distance functions for mixed
numerical and categorical data [9], such as Heterogeneous Euclidean-Overlap
Metric function (HEOM), Value Difference Metric (VDM), Heterogeneous Value
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Difference Metric (HVDM) and Interpolated Value Difference Metric (IVDM). The
HEOM is defined in the following way

HEMO(x,y) =

√
m

∑
j=1

wai ×d2
ai
(xai ,yai), (10.7)

where m is the number of attributes, wai is the weight of attribute ai, dai(x,y) is the
distance between samples x and y in terms of attribute ai being defined as

dai(x,y) =

⎧
⎪⎪⎨

⎪⎪⎩

1, i f the attribute value
o f x or y is unknown,

overlapa(x,y), i f a is a nominal attribute,
rn−di f fa(x,y), i f a is a numerical attribute.

(10.8)

Here, overlapa(x,y) =
{

0, i f x = y
1, othwise

and rn−di f fa(x,y) = |x−y|
maxa−mina

.

With different metric functions, the proposed technique can be used to ana-
lyze categorical attributes, numerical attributes, interval-valued attributes, and their
mixtures.

If confronted with objects described with other types of features, such as time se-
ries, images, and graphs, we can also compute the neighborhood of the objects using
some corresponding distance or similarity functions, such as dynamic time warping
distance for time series, histogram intersection kernel for image classification.

From the above discussion, we can see there are two key factors in definition of
neighborhood. One is the used distance function, and the other is threshold δ. The
first one determines the shape of neighborhoods and the latter controls the size of
neighborhoods. Furthermore, a neighborhood granule degrades to an equivalence
class if δ= 0. In this case, the samples in the same neighborhood are equivalent and
the neighborhood rough set model degrades to the classical rough set model.

In order to deal with heterogeneous features, we here compute the neighborhoods
of samples in the following way [9].

Definition 10.2. Let B1 ⊆ A and B2 ⊆ A be numerical attributes and categorical at-
tributes, respectively. The neighborhood granules induced by B1,B2, and B1

⋃
B2

are defined as
(1) δB1(x) = {xi|ΔB1(x,xi)≤ δ,xi ∈U};
(2)δB2(x) = {xi|ΔB2(x,xi) = 0,xi ∈U};
(3)δB1

⋃
B2(x) = {xi|ΔB1(x,xi)≤ δ∧ΔB2(x,xi) = 0,xi ∈U}; where∧means “and”

operator.

The first item is designed for the objects described with numerical attributes, the
second is for categorical attributes, and the last one is for numerical and categorical
attributes. Thus this definition is able to deal with data with numerical, categorical
and their mixed features.
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In computing neighborhoods, if the numerical features are normalized into the
unit interval [0, 1] and the values of categorical features are coded as a series of
integral numbers, such as 1,2,3 · · · , distance between two objects is no less than
1 if they take different values in any categorical feature. Generally speaking, δ is
specified a value far smaller than 1. In this case, the objects with different categorical
values necessarily do not belong to the same neighborhood. This suggests that two
objects belong to the same neighborhood only if they take the same values in all
categorical features.

Given a metric space < U,Δ>, the collection of neighborhood granules
{δ(xi)|xi ∈U} forms an elemental granule system, which covers the universe, rather
than partitions. We have

1) ∀xi ∈U,δ(xi) �= /0;
2)

⋃

x∈U
δ(x) = U .

A neighborhood relation N on the universe can be written as a relation matrix
M(N ) = (ri j)n×n where

ri j =
{

1, Δ(xi,x j)≤ δ
0, otherwise.

(10.9)

It is easy to show that N satisfies the following properties: reflexivity: rii = 1; sym-
metry: ri j = r ji. Obviously, neighborhood relations are a class of similarity relations,
which satisfy reflexivity and symmetry. Neighborhood relations draw the objects to-
gether for similarity or indistinguishability in terms of the distances between objects.

Remark 1. δ(x) is an equivalence class and N is an equivalence relation if we
specify δ= 0. This is applicable to categorical data.

Remark 2. According to Definition 10.2, if numerical and categorical features co-
exist, the samples within a neighborhood granule are close to each other in terms
of the numerical features; in the mean time, they are equivalent with respect to the
categorical attributes.

Definition 10.3. [10] Giving a set of samples U , N is a neighborhood relation on
U , {δ(xi)|xi ∈U} is the family of neighborhood granules. Then we call < U,N >
a neighborhood approximation space.

Definition 10.4. [10] Given < U,N >, for arbitrary X ⊆U , two subsets of objects,
called lower and upper approximations of X in terms of relation N N, are defined as

N X = {xi|δ(xi)⊆ X ,xi ∈U}, (10.10)

N X = {xi|δ(xi)∩X �= /0,xi ∈U}. (10.11)

Accordingly, the boundary region of X in the approximation space is formulated as

BN(X) = N X −N X . (10.12)
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Table 10.1. Play tennis data with heterogeneous features

Day outlook T humidity windy play

x1 sunny 85 85 false no

x2 sunny 80 90 true no

x3 overcast 83 86 false yes

x4 rainy 70 96 false yes

x5 rainy 68 80 false yes

x6 rainy 65 70 true no

x7 overcast 64 65 true yes

x8 sunny 72 95 false no

x9 sunny 69 70 false yes

x10 rainy 75 80 false yes

x11 sunny 75 70 true yes

x12 overcast 72 90 true yes

x13 overcast 81 75 false yes

x14 rainy 71 91 true no

Example 1. Table 10.1 gives a data set play tennis with mixed categorical and nu-
merical features, where U = {x1,x2, · · · ,x14}, A={outlook, T, humidity, windy},
D={play}, and condition attributes outlook and windy are categorical; T and hu-
midity are numerical and play is the decision.

As for classical rough sets, features T and humidity should be discretized be-
fore rough set analysis is performed. Here we directly analyze it with neighborhood
model.

As an example, we discuss features outlook and T . According Definition 10.2,
attribute outlook groups the 14 samples into 3 subsets:

U /outlook = {X1 = {x1,x2,x8,x9,x11},X2 = {x3,x7,x12,x13},X3 = {x4,x5,x6,
x10,x14}}.

Here X1
⋃

X2
⋃

X3 = U and Xi∩Xj = /0 if i �= j.
As to numerical feature T , we specify δ= 5, then
|x2− x1| ≤ 5, so x2 ∈ δ(x1). Similarly, we get δ(x1) = {x1,x2,x3,x13},δ(x2) =

{x1,x2,x3,x10,x11,x13}, · · · ,δ(x14) = {x4,x5,x8,x9,x10,x11,x12,x14}.

It is easy to see
14⋃

i=1
δ(xi) = U and δ(x1)∩δ(x2) = {x1,x2,x3,x13} �= /0.

With these two features, the samples in δ(x1) should take value sunny with at-
tribute outlook, and the distance with x1 should be not greater than 5 with T .
δoutlook,T (x1) = {x1,x2}. Similarly, δoutlook,T (x2) = {x1,x2,x11},δoutlook,T (x3) =
{x3,x13}, · · · ,δoutlook,T (x14) = {x4,x5,x14}. Assumed X = {x1,x2,x6,x8,x14},
namely, the samples with decision no, δoutlook,T (x1) ⊆ X , so x1 ∈ N X , similarly,

we can get N X = {x1},N X = {x1,x2,x4,x5,x6,x8,x9,x10,x11,x14}.
The size of boundary region reflects the degree of roughness of set X in the ap-

proximation space. Assuming X is the sample subset with a decision label, usually
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we hope the boundary region of the decision could be as little as possible for decreas-
ing uncertainty in decision. The sizes of boundary regions depend on X , attributes
to describe U , and threshold δ. Delta is the parameter to control analysis granularity,
and we have the following theorem.

Theorem 10.1. [9] Given < U,Δ,N > and two nonnegative δ1 and δ2, if δ1 ≥
δ2,N1 ⊇N2, we have

1)∀xi ∈U : δ1(xi)⊇ δ2(xi);
2) ∀X ⊆U : N1X ⊆N2X ,N1X ⊆N2X,

where N1 and N2 are the neighborhood relations induced with δ1 and δ2, respec-
tively.

Proof. δ1 ≥ δ2, we have δ1(xi)⊇ δ2(xi) . Assuming δ1(xi)⊆X , we have δ2(xi)⊆X .
Therefore we must have xi ∈N2X if xi ∈N1X . However, xiis not sure in N1X if we

have xi ∈N2X . Hence N1X ⊆N2X . Similarly, we can get N1X ⊆N2X .

The above theorem shows that a finer neighborhood relation is produced with a
smaller delta; accordingly, the lower approximation is larger than that with a large
delta. In neighborhood rough sets, parameter delta provides a chance to explore the
data under different granularity.

Definition 10.5. [10] Given a neighborhood decision table NDT =< U,A
⋃

D >,
X1,X2, · · · ,XN are the classes with decisions 1 to N, NB is the neighborhood infor-
mation granule generated by attributes B ⊆ A, the lower and upper approximations
of the decision D with respect to attribute set B are defined as

NBD =
N⋃

i=1

NBXi, NBX =
N⋃

i=1

NBXi, (10.13)

where

NBX = {xi|δ(xi)⊆ X ,xi ∈U},NBX = {xi|δ(xi)∩X �= /0,xi ∈U}. (10.14)

The decision boundary region of D with respect to attributes B is defined as

BN(D) = NBX −NBD. (10.15)

The lower approximation of decision, also called positive region of decision, de-
noted by POSB(D), is the subset of objects whose neighborhood subset consistently
belongs to one of the decision classes, while the neighborhood subsets of the bound-
ary samples come from more than one decision class. As to classification learning,
these samples are one of the sources causing classification complexity because they
confuse the employed learning algorithm. They take the similar or even equivalent
feature values but belong to different decision classes.
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Boundary

Positive

Negative

X

Fig. 10.2. Rough set in discrete feature space

It is easy to show that

1) NBD = U ;
2) POSB(D)∩BN(D) = /0;
3) POSB(D)

⋃
BN(D) = U .

Therefore, the neighborhood model divides the samples into two disjoint groups:
positive region and boundary region. Positive region is the sample set which can be
classified into one of the classes without uncertainty according to the existing at-
tributes, while boundary region is the set of samples which cannot be determinately
classified. Intuitively, the samples in boundary region are easy to be misclassified.
In data acquirement and preprocessing, one usually tries to find a feature space in
which the classification task has the least boundary.

Example 2. Approximations are demonstrated as shown in Figures 10.2 and 10.3.
In the discrete case, the samples are granulated into a number of mutually exclusive
equivalence information granules with their feature values, shown as the lattices in
Figure 10.2. Assuming we want to describe a subset X ⊆ U with these granules,
then we will find two subsets of granules: a maximal subset of granules which are
included in X and a minimal subset of granules which includes X . Figure 10.3 shows
an example of binary classification in a 2-D numerical space, where d1 is labeled
with “ ∗ ” and d2 is labeled with “ + ”. Taking samples x1,x2, and x3 as examples,
we assign spherical neighborhoods to these samples. We can find δ(x1) ⊆ d1 and
δ(x3) ⊆ d2, while δ(x2)∩ d1 �= /0 and δ(x2)∩ d2 �= /0. According to the above defi-
nitions, x1 ∈ N d1,x3 ∈ N d2, and x2 ∈ BN(D). As a whole, regions A1 and A3 are
decision positive regions of d1 and d2, respectively, while A2 is the boundary region.

The size of a boundary region reflects the degree of roughness of set X in the
approximation space. Assuming X is the sample subset with a decision label, usu-
ally we hope the boundary region of the decision could be as little as possible for
decreasing uncertainty in decision. The sizes of boundary regions depend on X , the
attributes used to describe U , and threshold δ.

The samples in different feature subspaces will have different boundary regions.
The size of boundary region reflects the discernibility of the classification problem in
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1x 2x
3x

1A 2A
3A

Fig. 10.3. Rough set in numerical feature space

(1) Two mutually exclusive classes   (2) Two intersection classes 

Fig. 10.4. Two binary classification tasks

the corresponding subspaces. It also reflects the recognition power or characterizing
power of the condition attributes. The greater the boundary region is, the weaker the
characterizing power of the condition attributes is. It can be formulated as follows.

Definition 10.6. The dependency degree of D to B is defined as the ratio of the
objects in the positive region:

γB(D) =
|POSB(D)|

|U | . (10.16)

γB(D) reflects the ability of B to approximate D. Obviously, 0 ≤ γB(D) ≤ 1. We
say D completely depends on B if γB(D) = 1, denoted by B ⇒ D; otherwise we say
Dγ− depends on B, denoted by B ⇒γ D. If γB(D) = 1, we say the classification D
is consistent in terms of attribute set B and granularity δ.

Example 3. Geometrical interpretation of dependence: As shown in
Figure 10.4(1), if the patterns are complete classifiable, then, the boundary sample
set is empty. Hence, γB(D) = |POSB(D)|/|U | = |A⋃B|/|A⋃B| = 1. In this case,
the decision is completely dependent on attribute subset B. However, if there is an
overlapped region between classes, as shown in Figure 10.4(2), that is, there are
some inconsistent samples. The dependency is computed as:

γB(D) = |POSB(D)|/|U |= |A
⋃

C|/|A
⋃

B
⋃

C|< 1.
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We can find that the dependency function depends on the size of the intersection
between classes. Generally speaking, we hope to find a feature subspace, in which,
the classification problem is with the least overlapping region. If the samples are
completely separable (linearly separable or nonlinearly separable), the dependency
is 1. we say the classification is consistent; otherwise, we say it is inconsistent. With
an inconsistent classification problem, we try to find the feature subset which gets
the largest dependence.

Theorem 10.2. [9] (Attribute Monotonicity). Given a neighborhood decision sys-
tem < U,A

⋃
D >,B1,B2 ⊆ A,B1 ⊆ B2, with the same metric in computing neigh-

borhoods, we have
1)NB1 ⊇NB2;
2) POSB1(D)⊆ POSB2(D),
2) ∀X ⊆U,NB1X ⊆NB2X ;γB1(D)≤ γB2(D).

Proof. With the same metric ∀x ∈U , we have δB1(x)⊇ δB2(x) if B1 ⊆ B2. Assume
δB1(x)⊆NB1X , where X is one of the decision classes, then we have δB2(x)⊆NB2X .

In the same time, there may be xi,δB1(xi) �⊂ NB1X , and δB2(x) ⊆ NB2X . Therefore,
POSB1(D)⊆ POSB2(D). Accordingly, we have γB1(D)≤ γB2(D).

Theorem 10.2 shows dependence monotonously increases with attributes, which
means that adding a new attribute in the attribute subset at least does not decrease
the dependence. This property is very important for constructing feature selection
algorithms. Generally speaking, we hope to find a minimal feature subset which
has the same characterizing power as the whole samples. The monotony of the de-
pendency function is very important for constructing a greedy forward or backward
search algorithm[8]. It guarantees that adding any new feature into the existing sub-
set does not lead a decrease in the significance of the new subset.

Definition 10.7. Given a neighborhood decision table NDT =< U,A
⋃

D,V,
f >,B⊆ A, we say attribute subset B is a relative reduct if

1) Sufficiency: γB(D) = γA(D);
2) Necessity: ∀a ∈ B,γB(D) > γB−a(D).

The first condition guarantees that POSB(D) = POSA(D). The second condition
shows there is no superfluous attribute in the reduct. Therefore, a reduct is the min-
imal subset of attributes which has the same approximating power as the whole
attribute set.

10.4 Information Entropy for Neighborhood Models

The relationship between Shannon’s information entropy and Z. Pawlak’s rough sets
was well discussed [4, 28]. However, Shannon’s entropy is not applicable to numer-
ical information and the mutual information derived in this model cannot be used
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to compute relevance between numerical features. In this section, we introduce the
concept of neighborhood into information theory, and generalize Shannon’s entropy
to neighborhood information entropy [11].

Definition 10.8. Given a set of samples U = {x1,x2, · · · ,xn} described by numerical
or discrete features A. B ⊆ A is a subset of attributes. The neighborhood of sample
xi in B is denoted by δB(xi), then the neighborhood uncertainty of the sample xi is
defined as

NHxi
δ (B) =− log

‖δB(xi)‖
n

, (10.17)

and the average uncertainty of the set, also called neighborhood entropy, of samples
is computed as

NHδ(B) =−1
n

n

∑
i=1

log
‖δB(xi)‖

n
. (10.18)

Since ∀xi,δB(xi) ⊆U,‖δB(xi)‖/n ≤ 1, so we have logn ≥ NHδ(B) ≥ 0.NHδ(B) =
logn if and only if for ∀xi,‖δB(xi)‖= 1.NHδ(B)= 0 if and only if for ∀xi,‖δB(xi)‖=
n.

Theorem 10.3. Assume that δ≤ δ′ ,NHδ(B)≥ NH
′
δ(B).

Proof. ∀xi ∈ U , we have δ(xi) ⊆ delta
′
(xi), then ‖δ(xi)‖ ≤ ‖δ′(xi)‖, we have

NHδ(B)≥ NH
′
δ(B).

Theorem 10.4. NHδ(B) = H(B) if δ= 0, where H(B) is Shannon’s entropy.

Proof. If δ = 0, the samples are partitioned into disjoint X1,X2, · · · ,Xm, where
Δ(xi,x j) = 0 if xi,x j ∈ Xk. Assume there are mi samples in Xi. Then H(B) =

−
m
∑

i=1

mi
n log mi

n .δB(x) = Xk if x ∈ Xk and δ= 0. If i �= j,Xi ∩Xj = /0, we have

NHδ(B)=−1
n∑i

log
‖δB(xi)‖

n
= ∑

x∈X1

−1
n

log
‖δB(xi)‖

n
+ · · ·+ ∑

x∈Xm

−1
n

log
‖δB(xi)‖

n

So NHδ(B) =−
m
∑

i=1

mi
n log mi

n . This leads us to the conclusion that NHδ(B) = H(B).

Neighborhood entropy is a natural generalization of the Shannon’s entropy if fea-
tures are continuous. As to discrete features, we can define a discrete distance such
that Δ(x,y) = 0 if x = y; otherwise Δ(x,y) = 1. If Δ< 1, the subset δB(xi) of samples
forms the equivalence class [xi], where [xi] is the set of samples taking the same fea-
ture values with xi. In this case, the neighborhood entropy equals Shannon entropy.
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Definition 10.9. B,C⊆ A are two subsets of attributes. The neighborhood of sample
xi in feature subspace B

⋃
C is denoted by δB

⋃
C(xi), then the joint neighborhood

entropy is computed as

NHδ(B,C) =−1
n

n

∑
i=1

log
‖δB

⋃
C(xi)‖
n

(10.19)

Especially if B is a set of input variables, C is the classification attribute, we define
deltaB

⋃
C(xi) = δB(xi)∩ cxi . Thus

NHδ(B,C) =−1
n

n

∑
i=1

log
‖δR(xi)∩ cxi‖

n

Theorem 10.5. NHδ(B,C)≥ NHδ(B),NHδ(B,C)≥ NHδ(C).

Proof. ∀xi ∈ U , we have δB
⋃

C(xi) ⊆ δB(xi) and δB
⋃

C(xi) ⊆ δC(xi). Then,
‖δB

⋃
C(xi)‖ ≤ ‖δB(xi)‖ and ‖δB

⋃
C(xi)‖ ≤ ‖δC(xi)‖; therefore, NHδ(B,C) ≥

NHδ(B),and NHδ(B,C)≥ NHδ(C).

Definition 10.10. B,C ⊆ A are two subsets of attributes. The conditional neighbor-
hood entropy of B to C is defined as

NHδ(B|C) =−1
n

n

∑
i=1

log
‖δB

⋃
C(xi)‖

‖δC(xi)‖ (10.20)

Theorem 10.6. NHδ(B|C) = NHδ(B,C)−NHδ(C)

Proof. NHδ(B,C)−NHδ(C)

=− 1
n

n
∑

i=1
log

‖δB
⋃

C(xi)‖
n − (− 1

n

n
∑

i=1
log ‖δC(xi)‖

n )

=− 1
n

n
∑

i=1
(log

‖δB
⋃

C(xi)‖
n − log ‖δC(xi)‖

n )

=− 1
n

n
∑

i=1
log

‖δB
⋃

C(xi)‖
‖δC(xi)‖

Definition 10.11. B,C ⊆ A are two subsets of attributes. The neighborhood mutual
information of B and C is defined as

NMIδ(B;C) =−1
n

n

∑
i=1

log
‖δB(xi)‖ · ‖δC(xi)‖

n‖δB
⋃

C(xi)‖ (10.21)

Theorem 10.7. Given two subsets of attributes B and C, NMIδ(B;C) is the mutual
information of these subsets, then the following equations hold:

1) NMIδ(B;C) = NMIδ(C;B);
2) NMIδ(B;C) = NHδ(B)+ NHδ(C)−NHδ(B,C);
3) NMIδ(B;C) = NHδ(B)−NHδ(B|C) = NHδ(C)−NHδ(C|B).
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Proof. The conclusions of 1) and 3) are straightforward; here we give the proof of
property 2).

2)NHδ(B)+ NHδ(C)−NHδ(B,C)

=− 1
n

n
∑

i=1
log ‖δB(xi)‖

n − 1
n

n
∑

i=1
log ‖δC(xi)‖

n − (− 1
n

n
∑

i=1
log

‖δB
⋃

C(xi)‖
n )

=− 1
n

n
∑

i=1
(log ‖δB(xi)‖

n + log ‖δC(xi)‖
n − log

‖δB
⋃

C(xi)‖
n )

=− 1
n

n
∑

i=1
(log ‖δB(xi)‖

n × f rac‖δC(xi)‖n× n
‖δB

⋃
C(xi)‖)

=− 1
n

n
∑

i=1
log ‖δB(xi)‖·‖δC(xi)‖

n‖δB
⋃

C(xi)‖

Lemma 10.1. Given a set U of samples described by attribute set A,B ⊆ A and
D is the decision attribute. NMIx

δ(B;D) = Hx(B) if the decision of sample x ∈
U is δ-neighborhood consistent, where NMIx

δ(B;D) = − log ‖δB(x)‖·‖Dx‖
n‖δB

⋃
D(x)‖ ,Hx(D) =

− log ‖Dx‖
n .

Proof. δB
⋃

D(x) = δB(x)∩Dx, and we have that δB(x) ⊆ Dx if x is consistent. So

deltaB
⋃

D(x) = δB(x). Then − log ‖δB(x)‖·‖Dx‖
n‖δB

⋃
D(x)‖ =− log ‖δB(x)‖·‖Dx‖

n‖δB(x)‖ =− log ‖Dx‖
n .

Theorem 10.8. Given a set of samples U described by the attribute set A,B⊆ A and
D is the decision attribute. NMIδ(B;D) = H(D) if the samples in feature subspace
B are δ-neighborhood consistent.

Proof. As the decisions of samples in feature subspace are consistent, the decision

of each sample is consistent. For ∀xi ∈U,NMIxi
δ (B;D)= Hxi(D). So

n
∑

i=1
NMIxi

δ (B;D)

= NMIδ(B;D);
n
∑

i=1
Hxi(D) = H(D). We get the conclusion that NMIδ(B;D) = H(D).

The above theorem shows that the mutual information between features B and
decision D is equal to the uncertainty quantity of decision if the classification is
consistent with respect to the knowledge of B. There is not any uncertainty in clas-
sification if attributes B is known. Moreover, we also know by The lemma that the
mutual information between B and D with respect to sample x is the uncertainty of
x in classification if its decision is consistent. With Lemma 10.1 and Theorem 10.6,
we not only distinguish whether all samples in classification learning are consistent,
but also know which samples are consistent if there are some inconsistent samples in
classification. In practice it is often that just some, instead of all, samples are consis-
tent. It is useful to find these consistent patterns for understanding the classification
task at hand.

10.5 Boundary Sample Selection with Neighborhood Model

The samples near the classification border usually have larger influence on the
classification model than other samples. In addition, these samples can help users
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understand the classification tasks. For example, the border samples are difficult to
be distinguished. If we know which samples are located near the border, we can
extract additional features to discern them.

In[2], Cortes and Vapnik showed that the weights of optimal classification hy-
perplane can be written as linear combination of support vectors, which are located
near the border. One can select only a part of the samples, so-called support vec-
tors, to train SVM, rather than the whole training sets if they can be found in ad-
vance. By this way, the learning time and space complexity will be greatly reduced.
Based on this observation, some researches were reported to select patterns for SVM
[15, 16, 21]. Shin and Cho discussed a neighborhood property based pattern se-
lection algorithm, where neighborhood entropy was defined. They associated each
samples with k nearest neighbors, then checked the entropy of the neighborhood.
If the entropy is not zero, then the samples are considered as boundary set [21].
Furthermore, they gave the proof that neighborhood relation between training sam-
ples in input space is preserved in feature space. This lays a firm groundwork for
boundary sample selection.

In neighborhood rough sets, the difference of the lower and upper approximations
is called boundary region. Obviously, the samples in the boundary region are near
the samples from different classes. These samples are possibly support vectors. If
we use neighborhood rough sets to compute these samples and train support vector
machines just with them. The learning processing would significantly speed up.

In neighborhood rough sets, BN(D) = NBD−NBD = U −NBD. If we get the
positive samples, then we can compute the boundary samples. According to the
definition of boundary samples, we know if the neighborhood of a sample is not
consistent, this sample belongs to classification boundary region. Consider sample
x, we can check whether there is a sample within x’s neighborhood having different
class label. If yes, we collect x in the boundary set.

Look at Figure 10.5(1). We can see there is a boundary region in the binary
classification task. In addition, there are two noisy samples. We search the boundary
set with neighborhood rough sets at granularity δ1. We can see in Figure 10.5(2)
that x1 and x2 are far from the classification border. They are class-noisy samples.
In classification learning, we should omit these samples; otherwise, the model may
be confused. Here the idea of variable precision rough sets can be combined with
neighborhood rough sets to deal with this problem [29].

Definition 10.12. Given two sets X and Y , we define the inclusion degree of X in Y
as

I(X ,Y ) = |X ∩Y |/|X | (10.22)

Definition 10.13. [12] Given a family of neighborhood information granules δ(xi),
i = 1,2, · · · ,n,X ⊆U , the variable precision lower approximation and upper approx-
imation is defined as
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         3x

2x

1x

  (1) Example with noised samples                     (2) Boundary where 1.0

         
(3) Boundary where 2.0                         (4) Boundary where 4.0

Fig. 10.5. An example data with noised samples

N βX = {xi|I(δB(xi),X)≥ β,xi ∈U}, (10.23)

N βX = {xi|I(δB(xi),X) > 1−β,xi ∈U}, (10.24)

where β> 0.5.

Definition 10.13 relaxes the condition of strict inclusion or strict exclusion in Def-
inition 4 and replaces them with majority inclusion and majority exclusion. Based
on the variable precision neighborhood model, x1,x2 and their neighborhood will be
classified into the positive regions of class 1 and class 2, respectively. While samples
like x3 are still grouped into the decision boundary.

Figures 10.5(2), (3), and (4) present the boundary samples discovered with neigh-
borhood rough set model, where δ = 0.1,δ = 0.2,δ = 0.4, respectively. Obviously
the boundary region increases with threshold δ. And we also find some of the sam-
ples far away decision boundary also be included in the boundary set due to the
noised samples. These samples will have negative effect on the classification hyper-
plane. They should be deleted from the boundary set.

Here we redefine the positive region and decision boundary as follows:

POSB(D) = {xi|∃d j, I(δ(xi),d j)≥ β}, (10.25)

BN(D) = {xi|∀d j, I(δ(xi),d j) < β}, (10.26)

We also have

U = POSB(D)
⋃

BN(D). (10.27)
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In this case, the noise in positive region can be recognized as

N(D) = {xi|xi ∈ dk,∃d j, I(δ(xi),d j)≥ β,k �= j}. (10.28)

By specifying a proper threshold δ and β, we can find a boundary region with ap-
propriate size and delete the noisy samples from the boundary set. Several works
discussed the problem of specifying the value of parameter β. At large, β can take
values in arrange [0.7, 1]. The value of δ depends on applications. Generally speak-
ing, if the inter-class distance of a learning sample set is large, we should assign
δ with a large value to get enough boundary samples to support the optimal hy-
perplane, vice versa. Generally, δ can take value in arrange [0.1, 0.5] if numerical
attributes are normalized to the unit interval [0, 1].

Figure 10.6 shows some toy examples. There are three typical classification prob-
lems. The first is a binary classification problem with circle classification plane.
The second is a 4× 4 checkerboard classification problem, and the third one is a
three-class problem. Figures 10.6(1-1), (2-1) and (3-1) give the raw sample set;
Figures 10.6(2-1), (2-2) and (3-2) present the optimal classification planes trained
with the raw data; Figures 10.6(1-3), (2-3) and (3-3) show the boundary samples
found with 1-norm neighborhood rough set model. Finally, Figures 10.6(1-4), (2-
4) and (3-4) show the optimal hyperplanes trained just with the boundary samples
computed with neighborhood rough sets. We can see that the two classes of classi-
fication planes are quite similar to each other although most of the learning samples
don’t take part in the training process after sample reduction.

10.6 Feature Selection with Neighborhood Model

The dependence function reflects the approximating capability of a condition at-
tribute set in approximating decisions. It can be used to measure the quality of the
attributes. The objective of attribute reduction is to search a subset of attributes such
that the classification problem has the maximal dependency; meanwhile, no redun-
dant attribute exists in the selected subset. In this section, we construct some mea-
sures for attribute selection and reduction and then present a greedy feature selection
algorithm.

Definition 10.14. Given a neighborhood decision table <U,A
⋃

D >,B⊆A,∀a∈B,
one can define the significance of a in B as

Sig1(a,B,D) = γB(D)− γB−a(D). (10.29)

Note that an attribute’s significance is the function of three variables: a,B and D. An
attribute a may be of great significance in B1 but of little significance in B2. What’s
more, the attribute’s significance is different for each decision if they are multiple
decision attributes in a decision table.
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Fig. 10.6. Three toy examples

The above definition is applicable to backward feature selection. Similarly, a
measure applicable to forward selection can be defined as shown below.

Definition 10.15. Given a neighborhood decision table < U,A
⋃

D >,B ⊆ A,∀a ∈
A−B, one can define the significance of a in B as

Sig2(a,B,D) = γB⋃a(D)− γB(D). (10.30)

As 0≤ γB(D)≤ 1 and ∀a ∈ B : γB(D)≥ γB−a(D), we have

0≤ Sig1(a,B,D)≤ 1,0≤ Sig2(a,B,D)≤ 1 (10.31)

We say attribute a is superfluous in B with respect to D if Sig1(a,B,D) = 0; other-
wise, a is indispensable.

The objective of rough set based attribute reduction is to find a subset of attributes
which has the same approximating power as the original data and has no redundant
attribute. With the above measures, forward greedy search algorithms for attribute
reduction can be formulated as follows [9].



296 Q. Hu, L. Li, and P. Zhu

Algorithm 1 : Naive forward attribute selection based on neighborhood
rough sets (NFARNRS)

Input : < U,A
⋃

D >
Delta // Control the size of the neighborhood Output: reduct red.
1: /0→ red; // red is the pool to contain the selected attributes
2: For each ai ∈ A− red

3: Compute γred
⋃

ai(D) =
|POSB

⋃
ai

(D)|
|U|

4: Compute SIG(ai,red,D) = γred
⋃

ai(D)− γred(D)
5: end
6: select the attribute ak satisfying SIG(ak,red,D) = max

i
(SIG(ai,red,D))

7: If SIG(ak,red,D) > ε, // ε is a little positive real number use to control the
convergence

8: red
⋃

ak → red
9: go to step2
10: else
11: return red
12: end if

There is a parameter of delta, which is d to control the size of neighborhoods, to be
specified in the algorithm. Usually, parameter delta takes value in the interval [0.1,
0.3] if all numerical features are normalized into [0, 1].

There are some key steps in a feature selection algorithm: subset generation,
subset evaluation and stopping criterion. In algorithm NFAS-NRS, we begin with
an empty set red of attribute and add one feature which makes the increment of
dependency maximal into the set red in each round. We evaluate the subset with
dependency function. The attributes maximizing the increment of dependency are
selected. The algorithm stops until the dependency does not increase by adding any
new feature into the attribute subset red.

According to the Geometrical interpretation of dependence function, we see that
the algorithm tries to find the feature subspace such that there is the least overlapped
region between classes for a given classification task. We achieve the goal by max-
imizing the positive region, accordingly, maximizing the dependency between the
decision and condition attributes. The samples in the boundary region are easy to be
misclassified. Intuitively, the accuracy of the classification increases as the number
of boundary samples decreases.

NFAS-NRS computes the relation between each pair of samples in every round.
The worst case of computational complexity is O(m2n2), where m and n are the
numbers of features and samples, respectively. Assumed there are k attributes in-
cluded in the reduct, the total computation times are

m×n2 +(m−1)×n2 + · · ·+(m− k)×n2 = (2m− k)(k + 1)×n2/2. (10.32)

As we know the positive region of decision is monotonous with the attributes, we
have the following corollary which can be used to speed up the algorithm.
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Property 10.1. Given a neighborhood decision system < U,A
⋃

D, f > and a metric
Δ,M,N ⊆ A,M ⊆ N, if xi ∈ POSM(D) then xi ∈ POSN(D).

Property 10.1 shows that an object necessarily belongs to the positive region with
respect to an attribute set if it belongs to the positive region with respect to its subset.
In the forward attribute selection, the attributes are added into the selected subset
one by one according to their significances, correspondingly, according the size of
positive regions. ∀M ⊇ B,xi ∈ POSM(D), if object xi ∈ POSB(D). Therefore, we
need not compute the objects in POSB(D) when compute POSM(D) because they
are necessarily in POSM(D). In this case, we just need consider the objects in U −
POSB(D). The objects in U −POSB(D) and the rested features get fewer and fewer
as the attribute selection goes on, so the computation will be reduced in selecting
a new feature. Based on this observation, a fast forward algorithm is formulated as
follows [9].

Algorithm 2 : Fast attribute selection based on neighborhood
rough sets (FAS−NRS)

Input : < U,A
⋃

D > delta // Control the size of the neighborhood
Output : reduct red.
1: /0→ red,U → S; // is used to contain the selected attributes, S is the set of

samples out of positive region.
2: while S �= /0
3: for each ai ∈ A− red
4: generate a temporary decision table DTi =< U,red

⋃
ai,D >

5: /0→ POSi

6: for each O j ∈ S
7: Compute δ(O j) in neighborhood decision table DTi

8: if ∃Xk ∈U/D, such that δ(O j)⊆ Xk

9: POSi
⋃

O j → POSi

10: end if
11: end for
12: end for
13: find ak such that |POSk|= max

i
|POSi|

14: if POSk �= /0
15: red

⋃
ak → red

16: S−POSk → S
17: else
18: exit while
19: end if
20: end while
21: return red, end

Assume there are n samples in the decision table and k features in the reduct,
and selecting an attribute averagely adds n/k samples into the positive region, the
computational times of reduction are
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N×n×n+(N −1)×n× k−1
k

×n+ · · ·+(N−k)× 1
k
×n×n <

n2

k
× (k +k−1+ · · ·+1)

(10.33)

Thus the computational complexity is N × n2(k + 1)/2. In practice, it is usually
found that most of samples have been grouped into positive regions if a few fea-
tures have been selected. Therefore the computation will be greatly reduced at the
sequential round and the reduction procedure speeds up.

In order to test the effectiveness of FAS-NRS, we collect two data sets, mush-
room and letters. Mushroom is a data set including 8124 samples described with 22
features, and letters including 20000 samples with 16 features. We randomly draw
some samples and conduct attribute selection on the drawn data sets. The drawn
data gradually increase to the whole sets. We observe the change of computational
cost, as shown in Figures 10.7 and 10.8. We compute the distance between different
samples and find their neighborhood subsets. It is easy to see that the computational
time and comparison times of algorithm 1 quickly increase with the numbers of
samples; however, the computation complexity of Algorithms 2 is not so sensitive
to the size of sample sets compared with Algorithm 1. With 8124 samples from
mushroom, Algorithm 3 conducts 581188 comparisons in reduction, whereas Algo-
rithm 1 requires 21665485 comparisons. About 97% computations are reduced. The
similar case occurs to data letter.

10.7 Rule Extraction with Neighborhood Model

Extracting rules from training samples is a kind of important tasks in machine learn-
ing and classification modeling. Covering reduction is a classical technique to extract
rules. As we know, neighborhoods of samples form a covering of the universe. In this
work, we introduce a new way to specify values of parameter delta, which are cal-
culated according to the location of samples in feature spaces. So the values of delta
of samples may be different. Here we set as the classification margin of samples [6].
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However, in Definition 10.1, all samples are specified with the same value of delta.
In order to differentiate them, here we give a new definition of neighborhood.

Definition 10.16. [13] Given arbitrary xi ∈U , the δ neighborhood N (xi) in feature
space is defined as

N (xi) = {x j ∈U : Δ(xi,x j)≤ δ}, (10.34)

where Δ is a distance function and δ is a parameter dependent on xi.

The key difference of this definition is that the size of neighborhood varies with
sample points. Now we give an approach to computing δ.

Given a set of samples <U,A,D >,x∈U.NH(x) is the nearest sample of x within
the same class of x, called the nearest hit of x, while NM(x) is the nearest sample
of x outside of the class of x, called the nearest miss of x. Then the classification
margin of x is computed as

m(x) = Δ(x,NM(x))−Δ(x,NH(x)) (10.35)

The margin of a sample x reflects how much the features of x can be corrupted by
noise before x is misclassified. If m(x) < 0 , the sample will be misclassified if we
use the nearest neighbor rule because x is closer to the samples in other classes. In
this case we set M(x) = 0, and N (xi) = {x j : Δ(xi,x j) = 0}; otherwise, the value of
δ of sample x is set as M(x) when we compute the neighborhood of x.

Certainly, the size of neighborhood can be specified in other ways, which leads
to different neighborhood coverings.

The family of neighborhoods N = {N (x1),N (x2), · · · ,N (xn)} generates a cov-
ering of the universe. Now we call < U,N ,D > a neighborhood covering decision
system.

Definition 10.17. [13] Let < U,N ,D > be a neighborhood covering decision sys-
tem. X ⊆U is an arbitrary subset of U . The lower and upper approximations of X
in < U,N ,D > are defined as
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N1X = {x ∈U : N (x)⊆ X},N2X = {N (x) : N (x)⊆ X}; (10.36)

N1X = {x ∈U : N (x)∩X �= /0},N2X = {N (x) : N (x)∩X �= /0}. (10.37)

where N1X and N2X are called Type 1 and Type 2 covering lower approximations,

respectively, and N1X and N2X are Type 1 and Type 2 covering upper approxima-
tions, respectively.

If the neighborhood covering N is also a partition of the universe, then N1X =
N2X and N1X = N2X . However, usually N is not a partition. In this case the two
definitions are different.

Example 1. U = {x1,x2,x3,x4,x5},N (x1) = {x1,x2},N (x2) = {x1,x2,x3},
N (x3) = {x2,x3,x4},N (x4) = {x3,x4,x5},N (x5) = {x4,x5}. Assume that X =
{x1,x2,x3}. We compute N1X = {x1,x2},N2X = {x1,x2,x3},N1X = {x1,x2,x3,x4},
N2X = {x1,x2,x3,x4,x5}.
Definition 10.18. [13] Let < U,N ,D > be a neighborhood covering decision sys-
tem. U/D = {X1,X2, · · · ,Xl}is the partition of U induced with D. The lower and
upper approximations of decision D are defined as

N1D =
l⋃

i=1

N1Xi,N2D =
l⋃

i=1

N2Xi; (10.38)

N1D =
l⋃

i=1

N1Xi,N2D =
l⋃

i=1

N2Xi. (10.39)

It is easy to see that N1D = U and N2D = U . However, N1D ⊆U and N2D⊆U .

Definition 10.19. [13] Let < U,N ,D > be a neighborhood covering decision sys-
tem. U/D = {X1,X2, · · · ,Xl},x ∈ U , we say x is Type-1 consistent if there exists
Xi ∈U/D, such that N (x) ⊆ Xi. In this case N1D = U . We say x is Type-2 consis-

tent if there exists x
′ ∈U and Xi ∈U/D, such that x ∈N (x

′
)and N (x

′
)⊆ Xi. In this

case, N2D = U .

Property 10.2. If N1D = U , then N2D = U holds. However, if N2D = U , we cannot
obtain N1D = U .

N1D = U shows that the neighborhood of each sample is consistent. Thus, there
exists Xi ∈U/D, such that N (x)⊆ Xi . Therefore, N2D = U . Whereas when N2D =
U , there may be some inconsistent covering element N (x) . In this case, N1D �= U .

Definition 10.20. If all the samples in U are Type-1 consistent, namely N1D = U,
we say that the neighborhood covering decision system is Type-1 consistent; other-
wise we say the system is Type-1 inconsistent. If all the samples in U are Type-2
consistent, namely N2D = U , we say that the neighborhood covering decision sys-
tem is Type-2 consistent; otherwise we say the system is Type-2 inconsistent.
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Example 2. U = {x1,x2,x3,x4,x5},N (x1) = {x1,x2},N (x2) = {x1,x2,x3},
N (x3) = {x2,x3,x4},N (x4) = {x3,x4,x5},N (x5) = {x4,x5}. Assume that U/D =
{X1,X2},X1 = {x1,x2,x3} and X2 = {x4,x5}. Then we get N1X1 = {x1,x2},N1X2 =
{x5},N2X1 = {x1,x2,x3},N2X2 = {x4,x5} So N1D = {x1,x2,x5}, while
N1D = {x1,x2,x3,x4,x5}. The decision system is Type-2 consistent and Type-1
inconsistent.

There maybe exist two classes of covering elements in Type 2 consistent neigh-
borhood covering decision systems: consistent and inconsistent covering elements.
N (x1),N (x2) and N (x5) are consistent, while N (x3) and N (x4) are inconsistent.
However, all the covering elements are consistent if the decision system is Type-1
consistent.

It is also reasonable that inconsistent covering elements exist in consistent cov-
ering decision systems. As to a covering decision system, there are some redundant
covering elements. Although we can find a neighborhood granule for each sample
such that this sample is consistent in this granule, this sample may also exist in
other inconsistent neighborhood granules. We just require finding a granule which
contains this sample and the granule is consistent.

Definition 10.21. Let < U,N ,D > be a Type-1 or Type-2 consistent neighborhood
covering decision system. Xi is one of the decision classes. N (x

′
) ∈N . If ∃N (x) ∈

N , such that N (x
′
) ⊆ N (x) ⊆ Xi, we say N (x

′
) is relatively consistent reducible

with respect to Xi; otherwise, we say N (x
′
) is relatively consistent irreducible.

Definition 10.22. [13] Let < U,N ,D > be a type-2 consistent neighborhood cover-
ing decision system. If N (x)∈N is an inconsistent covering element, we say N (x)
is a relatively inconsistent reducible element.

There are two types of reducible elements: one is consistent and is contained by
other consistent elements; the other is the inconsistent elements.

Definition 10.23. [13] Let < U,N ,D > be a type-1 consistent neighborhood cov-
ering decision system. If ∀N (x) ∈ N , there does not exist N (x

′
) ∈ N , such that

N (x
′
) ⊆ N (x) ⊆ Xi , where Xi is an arbitrary decision class, then we say

< U,N ,D > is relatively irreducible; otherwise, we say N (x
′
) is relatively re-

ducible.

Definition 10.24. [13] Let < U,N ,D > be a type-1 consistent neighborhood cover-
ing decision system. N ′ ⊆N is a derived covering from N by reducing the redun-
dant covering elements, and <U,N ′

,D > is relatively irreducible. Then we say that
N ′

is a D-relative reduct of N , denoted by reductD(N ).

Property 10.3. Let <U,N ,D > be a type-1 consistent neighborhood covering deci-
sion system and reductD(N ) be a D-relative reduct of N . Then < U,
reductD(N ),D > is also a type-1 consistent covering decision system, and ∀N (x)∈
N ,∃N (x

′
) ∈ reductD(N ), such that N (x)⊆N (x

′
).
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The conclusions of Property 10.3 are straightforward because we just remove the
redundant covering elements in the covering. Moreover, as to a type-1 consistent
covering decision system, all the elements are consistent; naturally the reduced cov-
ering decision system is also type-1 consistent.

After covering element reduction, there is no redundant covering element in the
covering decision system. All the selected covering elements are useful in approx-
imating the decision classes. With a reduct of a covering decision system, we can
generate covering rules in the form

If x
′ ∈N (x), then x

′
is assigned with the class of N (x).

The theoretic framework of neighborhood covering reduction forms a mecha-
nism for classification rule learning from training samples. In next section, we will
construct an algorithm for rule learning based on neighborhood covering reduction.

We now introduce a novel rule learning algorithm based on neighborhood cov-
ering reduction. Just like the problem of minimal attribute reduction, the search of
minimal rule set is also NP-hard [1]. There are several strategies to search the sub-
optimal rule set, such as forward search, backward search and genetic algorithm
[17]. Here we consider the forward search technique which start with an empty set
of rules, and add new rules one by one. In each step, the consistent neighborhood
which covers most samples is selected and generates a piece of rule.

In addition, we can see that some neighborhoods just cover several samples in
the experiments. If we include these rules, the size of rule base is very large and the
corresponding classification model would overfit the training samples. Thus a prun-
ing strategy is required. The pruning techniques used in other rule learning systems
are applicable [5]. In this work, we add rules one by one [13]. In the meanwhile,
we also test the current set of rules with training and test samples. We record the
classification accuracies. The rule set yielding the best classification performance is
outputted. Certainly, other pruning techniques can also adopted.

Algorithm NCR : Rule Learning Based on Neighborhood Covering
Reduction

Input : Training set: Utrain = {(x1,d1), · · · ,(xi,di), · · · ,(xn,dn)}, i = 1,2, · · · ,n;
Test set Utest = {(x′1,d

′
1), · · · ,(x

′
j,d

′
j), · · · ,(x

′
m,d

′
m)}, j = 1,2, · · · ,m.

Output : rule set R = {r1, · · · ,ri, · · · ,rh}, where the rule is in the form of (xi,
m(xi),

d− i) .
1: compute the margin m(xi) of each sample xi, i = 1,2, · · · ,n. If m(xi) < 0, we

set m(xi) = 0.
2: compute the neighborhood covering element N (xi) of sample xi, i = 1,2, · · · ,n,

the covering of the universe is denoted by N .
3. Count the samples covered by each covering element in N .
4: R← /0
5: While (N �= /0)
6: select the cover element N (x) which covers the most samples.
7: add a rule (x,m(x),y) into the rule set R, where m(x) is the margin of x,

y is the decision of x.
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Fig. 10.9. Demonstration of neighborhood covering elements

8: remove the samples which are covered by N (x).
9: compute the classification of rule set R on the training or test samples
10: end
11: sort the rules according to the size of the covering elements in the descending

order
12: choose the first h rules that produce the highest classification accuracy on

the training sample set Utrain or Utest

This algorithm greedily searches the largest neighborhood of samples in the for-
ward search step and removes the rules covering the least samples. In this way, we
generate a small set of rules which can cover most of the samples.

It is worth pointing out that the above algorithm is developed according to type
2 neighborhood rough sets, instead of type 1 neighborhood rough sets. However, if
the size of neighborhood is set as the margin of samples, there is not any inconsis-
tent neighborhood that derived neighborhood covering decision system. So the rules
produced with the above algorithm are consistent.

According to the definition of margin of samples, we know the margins of sam-
ples far away from the classification border are large. So their neighborhoods are
also larger than the neighborhoods of samples close to classification border, as
shown in Figure 10.1. There are two classes of samples in this classification task,
where “◦ ” is a sample from d1 , and “ + ” from d2.

Now we consider samples x1,x2 and x3.

m(x1) = Δ(x1,nm(x1))−Δ(x1,nh(x1))≥ 0;
m(x2) = Δ(x2,nm(x2))−Δ(x2,nh(x2))≈ 0;
m(x3) = Δ(x3,nm(x3))−Δ(x3,nh(x3)) < 0.

Correspondingly, N (x2) = {x2} and N (x3) = {x3}. They are pruned in the prun-
ing step, whereas N (x1) covers many samples and it is selected and generates a
classification rule that if Δ(x,x1)≤ m(x1), then x ∈ d1.

It is notable that the pruned rules do not cover all the samples. In addition, the
test sample may be beyond the region of the neighborhood of any sample. In this
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Fig. 10.11. Rule learning with quadrate neighborhoods

case, no rule matches the test sample. In this case, the test sample is classified to the
class of the nearest neighborhood.

As we employ a greedy strategy in searching rules. The rule learning algorithm is
very efficient. The time complexities of computing the nearest miss and nearest hit
are n logn, respectively. The complexity of the forward rule generation is n. Totally,
the time complexity of algorithm NCR is n logn.

We generate two binary classification tasks in 2-D feature spaces. The train-
ing samples are shown in Figure 10.10(a) and Figure 10.11(a), respectively. We
compute the margin of every sample with Euclidean distance and infinite-norm-
based distance, respectively. Then we can build a neighborhood of each sample. Eu-
clidean distance produces spherical neighborhoods and infinite-norm-based distance
yields quadrate neighborhoods, as shown in Figure 10.10(b) and Figure 10.11(b),
respectively.

Obviously, there are a lot of redundant neighborhoods in the original neighbor-
hood covering. Removing the superfluous covering elements leads to a compact and
concise classification model. So we employ Algorithm NCR on the neighborhood
covering. The reduced coverings are presented in Figure 10.10(c) and
Figure 10.11(c), respectively. As to these simple tasks, two pieces of rules are pro-
duced for each task. The classification models are simple and easy to be understood.
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10.8 Conclusions and Future Work

Neighborhood structures are very useful for understanding data distribution and
building classification models. In this chapter, we introduce the neighborhood rough
set model and show some applications in classification learning. This model takes
the fundamental assumption in human’s cognition that the objects having the same
or similar feature values should be grouped into the same class; otherwise, the clas-
sification is inconsistent. Here the words ”same” and ”similar” can be measured
with a general distance or similarity function, and the neighborhood of a sample x
is a subset of samples which have the same or similar feature values of x. Then we
analyze whether all the samples in the neighborhood come from the same class. If
all the samples come from the same class, we group x into the positive region; oth-
erwise, group it into classification boundary. By this way, we can divide the samples
into two subsets: positive region and boundary region. Using the boundary region,
we can train support vector machines; using the positive region, we can evaluate the
quality of features for describing classification. By neighborhood covering reduc-
tion, we can also extract classification rules from samples. These applications are
useful and interesting. Along this way, we can develop new theoretical framework
for machine learning. We can also develop new applications of the models.

In the current researches we usually employ Euclidian distance function for nu-
merical data. However, there are a lot of distance functions for more complex data,
such as images, time series, graphs and other unstructured data. We can introduce
neighborhood rough sets to these domains by employing proper distance functions.
We will work along this direction in the future.
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Chapter 11
Rough Representations of Ill-Known Sets and
Their Manipulations in Low Dimensional Space

Masahiro Inuiguchi

Abstract. Ill-known sets are subsets whose members are not known exactly. They
can be represented by a family of subsets that can be true. When each subset is
assigned a possible degree, the ill-known set is called a graded ill-known set. In
this chapter, we focus on manipulations of graded ill-known sets, a possibility dis-
tribution on the power set. Two fuzzy sets on the universe called lower and upper
approximations are uniquely defined from a graded ill-known set. On the contrary,
a graded ill-known set is not uniquely determined by given lower and upper approx-
imations but the maximal one is. Under a certain condition, we explicitly represent
the maximal graded ill-known set having given lower and upper approximations.
To utilize graded ill-known sets in decision and information sciences, possibility
and necessity measures of graded ill-known sets are described. Simple computation
formulae of possibility and necessity measures of graded ill-known sets are shown
when lower and upper approximations are given.

Keywords: Ill-known set, fuzzy set, possibility measure, necessity measure, lower
approximation, upper approximation, implication function, conjunction function.

11.1 Introduction

Manipulation of uncertain information on single-valued variables has been consid-
erably developed in probability and possibility theories [2, 7, 18, 20, 23]. Along with
the development of the theories, the necessity and importance of the treatment of un-
certain information on set-valued variables have been recognized [5, 8, 21]. Whereas
the knowledge on single-valued variables is said to be disjunctive, the knowledge
on set-valued variables is said to be conjunctive. Some frameworks [5, 8, 21] have
been already proposed to manipulate conjunctive information. For example, proba-
bilistic information on a set-valued variable can be treated as random sets [5] while
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possibilistic information on a set-valued variable can be represented as ill-known
sets [8].

Let us focus on ill-known sets. Ill-known set is a subset of the universal set X
whose members are not exactly known. The manipulation of ill-known sets has not
yet been discussed exhaustively. The conceivable reasons are (a) we are seldom con-
scious of the existence of an ill-known set even when we use it, (b) an ill-known set
is very complicated because it is a subset of the power set, and thus, (c) manipu-
lation of ill-known sets can be considered as a very formidable task. However, we
may treat ill-known sets unconsciously. For example, fuzzy reasoning based on a
conjunction function that is well-used in fuzzy logic control [19] can be considered
reasoning based on the conjunctive knowledge [10]. In the method, a set of con-
ceivable input values is inferred rather than a single input value. The collections
of possibly true objects such as possible facts can be seen as ill-known sets. Some-
one’s favorite food, days when a person stays in Osaka, candidate for research topic,
and so on are set-valued variables and the uncertain information about those vari-
ables can be represented by ill-known sets. We often encounter ill-known sets in
real world. The investigation of ill-known sets would be necessary and important
for representing human knowledge and uncertain information.

To define an ill-known set completely, we should specify a family of subsets. Be-
cause we have (2|X | −1) candidates for the member of the family, the specification
may become a formidable task when the universe X is large, where |X | shows the
cardinality of X . A rough representation is conceivable by specifying two subsets,
a subset whose elements are certainly known to be members and a subset whose
elements are certainly known not to be members. While the former subset can be
seen as a lower approximation of the ill-known set, the complementary subset of
the latter subset can be seen as an upper approximation because it is a subset whose
elements may be members. In the real world, we often know such lower and upper
approximations of ill-known sets but not the complete representation. Most of the
time, the lower and upper approximations of ill-known sets would be sufficient and
useful. Considering the lower and upper approximations, the rough representations
of ill-known sets are similar to rough sets [12, 13]. As the similar set model to the
rough representation of ill-known set, shadowed set is studied by Pedrycz [16].

Graded ill-known sets were also considered. A graded ill-known set can be de-
fined by specifying possibility degrees on subsets of X . In other words, a graded
ill-known set is represented by a possibility distribution on the power set 2X . Graded
ill-known sets can be approximated by two fuzzy subsets: a fuzzy subset with mem-
bership grade showing to what extent the element is a member, and a fuzzy subset
with membership grade showing to what extent the element is not a member. Similar
to non-graded case, lower and upper approximations of the graded ill-known set are
obtained from those two fuzzy subsets. The membership function of lower approx-
imation is assumed to be not greater than that of upper approximation. Therefore,
the rough representations of graded ill-known sets are similar to Φ-fuzzy sets [11],
intuitionistic fuzzy sets [1] and twofold fuzzy sets [4, 6].

As a pioneer work on ill-known sets and graded ill-known sets, Dubois and
Prade [8] gave interesting concepts and presented considerable results. They gave
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the fundamental definitions and investigated the recovery of possibility distribution
on the power set 2X from the rough representations and manipulations of possibility
and necessity measures of ill-known sets on the universe X . Possibility and neces-
sity measures are useful for the evaluation of vague queries. They assumed Dienes
implication and the minimum operation for implication and conjunction functions.

Considering the diversity of people, professions and traditions, Dienes implica-
tion and the minimum operation are not always sufficient to represent human evalu-
ations. For example, necessity measure can be seen as a measure of inclusion but we
cannot express the normal fuzzy set inclusion [22] by the necessity measure defined
by Dienes implication. In approximate reasoning, to characterize many kinds of
fuzzy reasoning, many implication and conjunction functions are used. Considering
those facts, it would be better to use various implication and conjunction functions
in the treatments of ill-known sets.

In this chapter, we focus on the rough representations of graded ill-known sets
and the manipulations of possibility and necessity measures of graded ill-known sets
using general conjunction and implication functions in the universe X . Although a
graded ill-known set can be regarded as a possibility distribution on the power set,
the lower and upper approximations enable us to represent it as two fuzzy subsets
of the universe. In the real world, because of its complexity, it is not easy to specify
a complete possibility distribution of the power set but to specify their lower and
upper approximations. We consider graded ill-known sets specified by their upper
and lower approximations. There are many possibility distributions on the power set
having same lower and upper approximations, but the maximal possibility distribu-
tion is unique. Then we take a graded ill-known set corresponding to the maximal
possibility distribution. We investigate the manipulations of the maximal graded ill-
known sets by their lower and upper approximations. It is shown that possibility and
necessity measures are computed by their lower and upper approximations.

In next section, ill-known sets and graded ill-known sets are introduced. Rough
representation of ill-known sets and imprecisely specified ill-known sets are inves-
tigated. In Section 11.3, possibility and necessity measures of ill-known sets under
ill-known information are described. It is shown that those measures with respect to
imprecisely specified ill-known sets are calculated in lower-dimensional space. Con-
cluding remarks and several conceivable future topics are described in Section 11.4.

11.2 Ill-Known Sets

Let X be a universe. Let A be a crisp set which is ill-known, that is, there exists at
least one element x ∈ X , for which it is not known whether x belongs to A or not. To
represent such an ill-known set, collecting possible realizations of A, we obtain the
following family:

A = {A1,A2, . . . ,An}, (11.1)

where Ai is a crisp set such that A = Ai is possible.
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Fig. 11.1. Possible animals in the zoo

Given A , we obtain a set of elements which is a certain member of A, say A− and
a set of elements which is a possible member of A, say A+ can be defined as

A− =
⋂

A =
⋂

i=1,...,n

Ai, A+ =
⋃

A =
⋃

i=1,...,n

Ai. (11.2)

Corresponding to rough sets [12, 13], we call A− and A+ “the lower approximation”
of A and “the upper approximation” of A, respectively.

In the real world, we may know certain members and certain non-members only.
In other words, we know the lower approximation A− as a set of certain members
and the upper approximation A+ as a complementary set of certain non-members.
Given A− and A+ (or equivalently, the complement of A+), we obtain a family A of
possible realizations of A as

A = {Ai | A− ⊆ Ai ⊆ A+}. (11.3)

We note that A− and A+ are recovered by applying (11.2) to the family A induced
from A− and A+ by (11.3). On the other hand, A cannot be always recovered by
applying (11.3) to A− and A+ defined by (11.2).

Example 11.1. Mary and her son are going to a small zoo where she visited 10 years
ago. Let us consider the animals they can see in the zoo. Mary remembers that there
were rabbits (a), goats (b) and sheep (c).

Let X = {a,b, . . . ,o} be a set including all possible animals (see Figure 11.1). Let
A be the set of animals they can see. From her memory, Mary knows that A includes
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{a,b,c}. Moreover, Mary knows that dinosaurs are extinct. Namely, A include nei-
ther {n} nor {o}. However, Mary does not know about whether the other animals
they can see at the zoo or not. Then A is an ill-known set. From Mary’s memory
and the general knowledge, we know that A is a set including neither {n} nor {o}
but {a,b,c}. In other words, we have A− = {a,b,c} as the lower approximation and
A+ = X −{n,o} as the upper approximation of A. Then we obtain the family of
possible realizations as

A = {Ai | Ai ⊇ {a,b,c}, Ai∩{n,o}= /0}. (11.4)

Obviously, applying (11.2) to A of (11.4), we regain A− = {a,b,c} and A+ = X −
{n,o}.

If all Ai’s of (11.1) are not regarded as equally possible, we may assign a possibility
degree πA(Ai) to each Ai so that

max
i=1,...,n

πA(Ai) = 1. (11.5)

Thus, a possibility distribution πA : 2X → [0,1] is introduced. The ill-known set
having such a possibility distribution is called “a graded ill-known set”.

In this case, the lower approximation A− and the upper approximation A+ are
defined as fuzzy sets with the following membership functions:

µA−(x) = inf
x�∈Ai

I1(πA(Ai), 0), (11.6)

µA+(x) = sup
x∈Ai

T1(πA(Ai), 1), (11.7)

where I1 and T1 are implication and conjunction functions, respectively. An impli-
cation function I : [0,1]× [0,1]→ [0,1] satisfies

(I1) I(0,0) = I(0,1) = I(1,1) = 1 and I(1,0) = 0, (boundary condition)
(I2) I(a,b)≤ I(c,d), 0≤ c≤ a≤ 1, 0≤ b≤ d ≤ 1. (monotonicity)

A conjunction function T : [0,1]× [0,1]→ [0,1] satisfies

(T1) T (0,0) = T (0,1) = T (1,0) = 0 and T (1,1) = 1, (boundary condition)
(T2) T (a,b)≤ T (c,d), 0≤ a≤ c≤ 1, 0≤ b≤ d ≤ 1. (monotonicity)

In (11.6) and (11.7), we use functions I1(·,0) and T1(·,1) defined by implication
and conjunction functions, respectively. However, they can be replaced with a non-
increasing function n : [0,1]→ [0,1] and a non-decreasing function ϕ : [0,1]→ [0,1]
such that n(0) = ϕ(1) = 1 and n(1) = ϕ(0) = 0. Indeed, Dubois and Prade [8] de-
fined those by I1(s,0) = 1− s and T1(s,1) = s, ∀s ∈ [0,1]. In this chapter, in order
to know the relations of those functions with implication and conjunction functions
used for other purposes, we use I1 and T1 to define A− and A+.

Example 11.2. (a continuation of Example 1) Mary asked some people who visited
the zoo about animals there. However, as shown in Figure 11.2, their answers are
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Fig. 11.2. Four opinions about animals in the zoo and Mary’s assignment of possibility
degrees

different from one another. They answered certain members Yi and certain nonmem-
bers Ni as Y1 = {a,b,c,e,g,h}, N1 = {k, l,n,o}, Y2 = {a,b,c,d, f, j}, N2 = {m,n,o},
Y3 = {a,b,c, f, i}, N3 = {k, l,m,n,n}, Y4 = {a,b,c,d,e,g}, and N4 = {n,o}. Those
four kinds of information are different, but they are not totally conflicting because
we have Yi∩Nj = /0 for any i, j ∈ {1,2,3,4}. Based on those pieces of information,
she may assign possibility degrees of

πA(A) =
|{i ∈ {1,2,3,4} | A⊇ Yi, A∩Ni = /0}|

4
. (11.8)

Possibility degree πA(A) of (11.8) shows what percentage of people are consistent
with A.

Let T1(a,b) = min(a,b) and I1(a,b) = max(1−a,b). Then we have T1(a,1) = a
and I1(a,0) = 1−a. Applying (11.6) and (11.7), we obtain the following result (see
Figure 11.3):
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Fig. 11.3. lower and upper approximations of the graded ill-known set in Example 2

µA−(a) = 1, µA+(a) = 1, µA−(b) = 1, µA+(b) = 1,

µA−(c) = 1, µA+(c) = 1, µA−(d) = 0.5, µA+(d) = 1,

µA−(e) = 0.5, µA+(e) = 1, µA−(f) = 0.5, µA+(f) = 1,

µA−(g) = 0.5, µA+(g) = 1, µA−(h) = 0.25, µA+(h) = 1,

µA−(i) = 0.25, µA+(i) = 1, µA−(j) = 0.25, µA+(j) = 1,

µA−(k) = 0, µA+(k) = 0.5, µA−(l) = 0, µA+(l) = 0.5,

µA−(m) = 0, µA+(m) = 0.5, µA−(n) = 0, µA+(n) = 0,

µA−(o) = 0, µA+(o) = 0. (11.9)

In Example 2, we assume Yi ∩Nj = /0 for any i, j ∈ {1,2,3,4}. If this assumption
does not hold, the information pieces from the four people are strongly conflicting
and we cannot represent all information pieces as a normal possibility distribution
πA . In such cases, we should apply a certain conflict resolution technique. However,
as in Example 2, if information pieces were about a real fact, conflicts would not
occur frequently.

We obtain the following proposition about lower and upper approximations.

Proposition 11.1. We have

∀x ∈ X , µA−(x) > 0 implies µA+(x) = 1. (11.10)
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In other words, we have
Supp(A−)⊆ Core(A+), (11.11)

where we define

Supp(A−) = {x ∈ X | µA−(x) > 0}, Core(A+) = {x ∈ X | µA+(x) = 1}. (11.12)

Proof. µA−(x) > 0, that is, infx�∈Ai I1(πA(Ai),0) > 0 implies

∀i ∈ {1, . . . ,n} such that x �∈ Ai, πA(Ai) �= 1.

From (11.5), this means

∃i ∈ {1, . . . ,n} such that x ∈ Ai, πA(Ai) = 1.

Hence, we have

µA+(x) = sup
x∈Ai

T1(πA(Ai),1)≥ T1(1,1) = 1. (Q.E.D.)

From Proposition 11.1, pair (A−,A+) can be seen as a twofold fuzzy set [4, 6] that
imposes that µA−(x) > 0 implies µA+(x) = 1.

Now let us discuss the inverse problem. Namely, when µA− and µA+ are given, let
us consider the associated ill-known set, that is, the associated possibility distribu-
tion πA : 2X → [0,1]. Then, the system of equations is given as

µA−(x) = inf
x�∈Ai

I1(πA(Ai), 0), µA+(x) = sup
x∈Ai

T1(πA(Ai), 1). (11.13)

Considering that approximations A− and A+ would be obtained more often than the
possibility distribution πA , this inverse problem is practically important.

The existence of a solution which satisfies (11.13) for any given µA− and µA+

requires the following conditions on I1 and T1:

{I1(s,0) | s ∈ [0,1]}= [0,1], {T1(s,1) | s ∈ [0,1]}= [0,1]. (11.14)

Taking into consideration the definitions of implication and conjunction functions,
(11.14) implies that the functions I1(·,0) : [0,1]→ [0,1] and T1(·,1) : [0,1]→ [0,1]
are decreasing and increasing surjections, respectively. This also means that I1(·,0)
and T1(·,1) are continuous.

We have the following proposition on the greatest possibility distribution πA
satisfying (11.13), where we say that πA1 is not smaller than πA2 if and only if
πA1(Ai)≥ πA2(Ai), ∀Ai ∈ 2X .

Proposition 11.2. When (11.14) is fulfilled, the maximal possibility distribution sat-
isfying (11.13) is obtained uniquely as
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π∗A(Ai) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

inf
x

I∗1 (µA−(x),0), if Ai = /0,
inf

x
T ∗

1 (µA+(x),1), if Ai = X ,

min

(

inf
x�∈Ai

I∗1 (µA−(x),0), inf
x∈Ai

T ∗
1 (µA+(x),1)

)

, otherwise,

(11.15)

where

I∗1 (a,0) = sup{s ∈ [0,1] | I1(s,0)≥ a}, (11.16)

T ∗
1 (a,1) = sup{s ∈ [0,1] | T1(s,1)≤ a}. (11.17)

Proof. From the assumption of the proposition, (11.14) is satisfied with I1 and T1.
For a solution πA satisfying (11.13), we have

πA(Ai)≤ sup{s ∈ [0,1] | I1(s,0)≥ µA−(x)}, ∀x �∈ Ai, for Ai �= X ,

πA(Ai)≤ sup{s ∈ [0,1] | T1(s,1)≤ µA+(x)}, ∀x ∈ Ai, for Ai �= /0.

Applying (11.16) and (11.17), we obtain

πA(Ai)≤ inf
x�∈Ai

I∗1 (µA−(x),0), for Ai �= X ,

πA(Ai)≤ inf
x∈Ai

T ∗
1 (µA+(x),1), for Ai �= /0.

Combining those, for a solution πA satisfying (11.13), we have

πA(Ai)≤ π∗A(Ai).

Therefore, it is sufficient to show π∗A of (11.15) satisfies

µA−(x) = inf
x�∈Ai

I1(π∗A(Ai),0), µA+(x) = sup
x∈Ai

T1(π∗A(Ai),1). (11.18)

First, let us prove the latter equality of (11.18). For x �∈ Supp(A−), we have

π∗A(Supp(A−)∪{x})
= min(I∗1 (0,0),min(T ∗1 (1,1),T ∗

1 (µA+(x),1))) = T ∗
1 (µA+(x),1)

because we have µA+(y) = 1 for y ∈ Supp(A−) by Proposition 11.1. Then we obtain

sup
x∈Ai

T1(π∗A(Ai),1)≥ T1(π∗A(Supp(A−)∪{x}),1)

= T1(T ∗
1 (µA+(x),1),1)

= sup{T1(s,1) | T1(s,1)≤ µA+(x), s ∈ [0,1]}= µA+(x).

On the other hand, since, for any Ai such that x ∈ Ai, π∗A(Ai) ≤ T ∗
1 (µA+(x),1) is

valid, we have

T1(π∗A(Ai),1)≤ T1(T ∗
1 (µA+(x),1),1)≤ µA+(x), ∀Ai such that x ∈ Ai.
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Hence, the latter part of (11.18) is proved when x �∈ Supp(A−).
For x ∈ Supp(A−) ⊆ Core(A+) (the inclusion comes from Proposition 11.1),

since π∗A(Supp(A−)) = 1, we have

sup
x∈Ai

T1(π∗A(Ai),1)≥ T1(π∗A(Supp(A−)),1) = 1.

Hence, supx∈Ai
T1(π∗A(Ai),1) = 1 = µA+(x).

Now let us prove the former part of (11.18). For x ∈ Core(A+), from Proposi-
tion 11.1, we obtain π∗A(Core(A+)−{x}) = I∗1 (µA−(x),0). Then,

inf
x�∈Ai

I1(π∗A(Ai),0)≤ I1(π∗A(Core(A+)−{x}),0)

= I1(I∗1 (µA−(x),0),0)
= inf{I1(s,0) | I1(s,0)≥ µA−(x)} = µA−(x).

On the other hand, since, for all Ai such that x �∈ Ai, π∗A(Ai)≤ I∗1 (µA−(x),0) is valid,
we have

I1(π∗A(Ai),0)≥ I1(I∗1 (µA−(x),0),0)≥ µA−(x), ∀Ai such that x ∈ Ai.

Hence, the former part of (11.18) is proved when x ∈ Core(A+).
For x �∈ Core(A+), since π∗A(Core(A+)) = 1, we have

inf
x�∈Ai

I1(π∗A(Ai),0)≥ I1(π∗A(Core(A+)),0) = 0.

Hence, infx�∈Ai I1(π∗A(Ai),0) = 0 = µA−(x). (Q.E.D.)

In this chapter, we introduce the following assumption which is a little bit stronger
than (11.14):

(A1) I1(·,0) : [0,1]→ [0,1] and T1(·,1) : [0,1]→ [0,1] are decreasing and increas-
ing bijection, respectively.

Under assumption (A1), we have I∗1 (·,0) = I−1
1 (·,0) and T ∗

1 (·,0) = T−1
1 (·,0), where

I−1
1 (·,0) and T−1

1 (·,0) are inverse functions of I1(·,0) and T1(·,0), respectively. As-
suming inf /0= +∞, (11.15) is simplified as

π∗A(Ai) = min

(

inf
x�∈Ai

I−1
1 (µA−(x),0), inf

x∈Ai
T−1

1 (µA+(x),1)
)

. (11.19)

We usually have many solutions which satisfy (11.14). This means that we cannot
always recover the original ill-known set. As Dubois and Prade [8] mentioned, an
ill-known set represented as a possibility distribution on the power set 2X is too so-
phisticated to be dealt with. It is rare that an ill-known set is given by a complete
possibility distribution form. In the real world, we may have cases where only lower
and upper approximations A− and A+ are obtained rather than the complete pos-
sibility distribution πA . In this chapter, we focus on the manipulation of a graded
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ill-known set imprecisely specified by its approximations because it would be more
encountered in the real world than that specified by its complete possibility distri-
bution. We call the imprecise specification of an ill-known set by lower and upper
approximations satisfying (11.10) “a rough representation of ill-known set”.

The determination of a possibility distribution on 2X corresponding to the lower
and upper approximations is called the “embedding”. For a rough representation of
ill-known set, the given approximations are recovered through the embedding and
approximation processes as shown in Proposition 11.2.

The complement of an ill-known set expressed by a possibility distribution πA is
expressed by a possibility distribution π̄Ā defined by

π̄Ā(Āi) = πA(Ai), i = 1, . . . ,n, (11.20)

where Āi is the complement of Ai.
Under assumption (A1), the lower and upper approximations of the complemen-

tary set are given by the following lower and upper approximations of an ill-known
set:

µĀ+(x) = sup
x∈Āi

T1(π̄Ā(Āi),1) = sup
x�∈Ai

T1(πA(Ai),1)

= sup
x�∈Ai

T1(I−1
1 (I1(πA(Ai),0),0),1)

= T1

(

I−1
1

(

inf
x�∈Ai

I1(πA(Ai),0),0
)

,1

)

= T1(I−1
1 (µA−(x),0),1),(11.21)

µĀ−(x) = inf
x�∈Āi

I1(π̄Ā(Āi),0) = inf
x∈Ai

I1(πA(Ai),0)

= inf
x∈Ai

I1(T−1
1 (T1(πA(Ai),1),1),0)

= I1

(

T−1
1

(

sup
x∈Ai

T1(πA(Ai),1),1

)

,0

)

= I1(T−1
1 (µA+(x),1),0).(11.22)

The relations among πA , π̄Ā and µA− , µA+ , µĀ− , µĀ+ under assumption (A1) are
depicted in Figure 11.4.

Example 11.3. (a continuation of Example 2) Let T1(a,1) = a and I1(a,0) = 1− a
as in Example 2. Then T−1

1 (a,1) = a and I−1
1 (a,0) = 1−a. Let P1 = {a,b,c}, P2 =

{d,e, f,g}, P3 = {h, i, j}, P4 = {k, l,m} and P5 = {n,o}. From µA− and µA+ given in
(11.9), we obtain

π∗A(A) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if A �⊇ P1 or A∩P5 �= /0,
0.5, if A⊇ P1,A∩P5 = /0 and (A �⊇ P2 or A∩P4 �= /0),

0.75, if A⊇ P1∪P2,A �⊇ P3 and A∩ (P4∪P5) = /0,
1, if A⊇ P1∪P2∪P3 and A∩ (P4∪P5) = /0.

(11.23)

In this case, π∗A is different from πA defined by (11.8). Indeed, for A = {a,b,c,m},
we obtain π∗A(A) = 0.5 while πA(A) = 0.
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Fig. 11.4. Relations among πA , π̄Ā and µA− , µA+ , µĀ− , µĀ+ under assumption (A1)

The complement of the ill-known set imprecisely specified by µA− and µA+ of
(11.9) is an ill-known set imprecisely specified by the following µĀ− and µĀ+ :

µĀ−(a) = 0, µĀ+(a) = 0, µĀ−(b) = 0, µĀ+(b) = 0,

µĀ−(c) = 0, µĀ+(c) = 0, µĀ−(d) = 0, µĀ+(d) = 0.5,

µĀ−(e) = 0, µĀ+(e) = 0.5, µĀ−(f) = 0, µĀ+(f) = 0.5,

µĀ−(g) = 0, µĀ+(g) = 0.5, µĀ−(h) = 0, µĀ+(h) = 0.75,

µĀ−(i) = 0, µĀ+(i) = 0.75, µĀ−(j) = 0, µĀ+(j) = 0.75,

µĀ−(k) = 0.5, µĀ+(k) = 1, µĀ−(l) = 0.5, µĀ+(l) = 1,

µĀ−(m) = 0.5, µĀ+(m) = 1, µĀ−(n) = 1, µĀ+(n) = 1,

µĀ−(o) = 1, µĀ+(o) = 1. (11.24)

11.3 Possibility and Necessity Measures under Ill-Known Sets

In the presence of a partial information given by a rough representation of ill-known
set A , let us consider the evaluation of a vague query expressed by a rough represen-
tation of ill-known set B . Since the information has been given as a rough represen-
tation of ill-known set A , we can obtain a possibility distribution πA by embedding
formula (11.15). Similarly, the vague query given by B can be expressed as a fuzzy
set characterized by πB . Then, as is investigated by Prade and Testemale [17], the
evaluation can be done by the possibility and necessity measures of B under πA . The
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possibility distribution πA is defined on the power set 2X , and thus, it may require
the calculations on the power set 2X . We investigate the calculations of possibility
and necessity measures using the lower and upper approximations A−, A+, B− and
B+.

Possibility and necessity measures of an ill-known set B under an ill-known set
A on the power set can be defined by

Π(B |A) = sup
C∈2X

T2(πA(C),πB(C)), (11.25)

N(B |A) = inf
C∈2X

I2(πA(C),πB(C)), (11.26)

where T2 and I2 are conjunction and implication functions, respectively. Those mea-
sures evaluate possibility and necessity degrees to what extent the set expressed as
A possibly equals to or possibly matches to the set expressed as B .

When A and B are given roughly by their approximations, we obtain the follow-
ing proposition on calculations of necessity measures.

Proposition 11.3. Under the assumption (A1), when I2 is upper semi-continuous,
we have

N(B |A) = min

(

inf
x∈X

I3(µA+(x),µB+(x)), inf
x∈X

I4(µB−(x),µA−(x))
)

, (11.27)

where implication functions I3 and I4 are defined by

I3(a,b) = I2
(
T−1

1 (a,1),T−1
1 (b,1)

)
, (11.28)

I4(a,b) = I2
(
I−1
1 (b,0), I−1

1 (a,0)
)
. (11.29)

Proof. Utilizing the upper semi-continuity of I2 and assumption (A1), this proposi-
tion is proved as

N(B |A) = inf
C∈2X

I2(π∗A(C),π∗B(C))

= inf
C∈2X

I2

(

π∗A(C),min

(

inf
x∈C

T−1
1 (µB+(x),1), inf

x�∈C
I−1
1 (µB−(x),0)

))

= min

(

inf
C∈2X

I2

(

π∗A(C), inf
x∈C

T−1
1 (µB+(x),1)

)

,

inf
C∈2X

I2

(

π∗A(C), inf
x�∈C

I−1
1 (µB−(x),0)

))

= min

(

inf
C∈2X

inf
x∈C

I2
(
π∗A(C),T−1

1 (µB+(x),1)
)
,

inf
C∈2X

inf
x�∈C

I2
(
π∗A(C), I−1

1 (µB−(x),0)
)
)
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= min

(

inf
x∈C

I2

(

sup
C∈2X

π∗A(C),T−1
1 (µB+(x),1)

)

,

inf
x�∈C

I2

(

sup
C∈2X

π∗A(C), I−1
1 (µB−(x),0)

))

= min

(

inf
x∈C

I2

(

T−1
1

(

sup
C∈2X

T1(π∗A(C),1),1

)

,T−1
1 (µB+(x),1)

)

,

inf
x�∈C

I2

(

I−1
1

(

inf
C∈2X

I1(π∗A(C),0),0
)

, I−1
1 (µB−(x),0)

))

= min

(

inf
x∈X

I3(µA+(x),µB+(x)), inf
x∈X

I4(µB−(x),µA−(x))
)

.

(Q.E.D.)

Before describing a similar result to Proposition 11.3 about possibility measures,
we show the following lemma.

Lemma 11.1. When A is characterized by possibility distribution π∗A of (11.15), the
level cut [A ]h = {C ∈ 2X | π∗A(C)≥ h} is represented as

[A ]h =
{

C
∣
∣ (A−)I1(h,0) ⊆C ⊆ [A+]T1(h,1)

}
, (11.30)

where

(A−)I1(h,0) = {x ∈ X | µA−(x) > I1(h,0)}, (11.31)

[A+]T1(h,1) = {x ∈ X | µA+(x)≥ T1(h,1)}. (11.32)

Proof. Let C be a set such that (A−)I1(h,0) ⊆C ⊆ [A+]T1(h,1). Then, we have

µA−(x)≤ I1(h,0) for any x �∈C,

µA+(x)≥ T1(h,1) for any x ∈C.

From (I2) and (T2), we obtain

I∗1(µA−(x),0)≥ I∗1(I1(h,0),0)≥ h, for any x �∈C,

T ∗1 (µA+(x),1)≥ T ∗
1 (T1(h,1),1)≥ h.

As a result, we have

inf
x�∈C

I∗1 (µA−(x),0)≥ h and inf
x∈C

T ∗
1 (µA+(x),1)≥ h.

From (11.15), we obtain πA(C)∗ ≥ h.
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Now, utilizing the following equivalences, we prove π∗A(C) < h for any C not
satisfying (A−)I1(h,0) ⊆C ⊆ [A+]T1(h,1). Because I1(·,0) is surjective, we obtain

I∗1 (a,0) < I∗1 (b,0) if and only if a > b. (11.33)

Similarly, because T1(·,1) is surjective, we have

T ∗1 (a,1) < T ∗
1 (b,1) if and only if a < b. (11.34)

If C �⊇ (A−)I1(h,0), there is x �∈C such that µA−(x) > I1(h,0). From (11.33), we have

inf
x�∈C

I∗1 (µA−(x),0) < h.

Hence, we obtain π∗A(C) < h. On the other hand, if C �⊆ [A+]T1(h,1), there is x ∈ C
such that µA+(x) < T1(h,1). From (11.34), we have

inf
x∈C

T ∗1 (µA+(x),1) < h.

Therefore, we obtain we obtain π∗A(C) < h. (Q.E.D.)

Then we have the following proposition on the calculations of possibility measures.

Proposition 11.4. Under the assumption (A1), when T2(a,b) = min(a,b), we have

Π(B |A) = min

(

inf
x∈X

I5(µB−(x),µA+(x)), inf
x∈X

I5(µA−(x),µB+(x))
)

, (11.35)

where implication function I5 is defined by

I5(a,b) = max(I−1
1 (a,0),T−1

1 (b,1)). (11.36)

Proof. Let Pos(B−,B+;A−,A+) be the right-hand side of (11.35), that is,

Pos(B−,B+;A−,A+) = min

(

inf
x∈X

I5(µB−(x),µA+(x)), inf
x∈X

I5(µA−(x),µB+(x))
)

.

Suppose Pos(B−,B+;A−,A+)≥ h. From (11.36), this supposition is equivalent to

inf
x∈X

max(I−1
1 (µB−(x),0),T−1

1 (µA+(x),1))≥ h,

inf
x∈X

max(I−1
1 (µA−(x),0),T−1

1 (µB+(x),1))≥ h.

These can be rewritten as follows, respectively

∀x ∈ X , I−1
1 (µB−(x),0) < h implies T−1

1 (µA+(x),1)≥ h,

∀x ∈ X , I−1
1 (µA−(x),0) < h implies T−1

1 (µB+(x),1)≥ h.
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Hence, we have

Pos(B−,B+;A−,A+)≥ h

if and only if (B−)I1(h,0) ⊆ [A+]T1(h,1) and (A−)I1(h,0) ⊆ [B+]T1(h,1).(11.37)

On the other hand, from (11.10), we have

∀h ∈ [0,1], (A−)I1(h,0) ⊆ [A+]T1(h,1),

∀h ∈ [0,1], (B−)I1(h,0) ⊆ [B+]T1(h,1).

Thus,

(A−)I1(h,0) ⊆ (A−)I1(h,0)∪ (B−)I1(h,0) ⊆ [A+]T1(h,1),

(B−)I1(h,0) ⊆ (A−)I1(h,0)∪ (B−)I1(h,0) ⊆ [B+]T1(h,1).

From Lemma 11.1, (A−)I1(h,0)∪ (B−)I1(h,0) ∈ [A ]h∩ [B ]h. This means that

Π(B |A) = sup
C∈2X

min(πA(C),πB(C)) ≥ h.

Hence, we prove that

∀h ∈ [0,1]; Pos(B−,B+;A−,A+)≥ h implies Π(B |A)≥ h,

in other words, Pos(B−,B+;A−,A+)≤Π(B |A).
Let us prove the reverse inequality. We have

Π(B |A)≥ h if and only if ∀ε> 0, Π(B |A) > h− ε.

Moreover,
Π(B |A) > h− ε implies ∃C, C ∈ [A ]h−ε∩ [B ]h−ε.

From Lemma 11.1, ∃C, C ∈ [A ]h−ε∩ [B ]h−ε means

(A−)I1(h−ε,0) ⊆C ⊆ [A+]T1(h−ε,1) and (B−)I1(h−ε,0) ⊆C ⊆ [B+]T1(h−ε,1).

By transitivity, this implies

(B−)I1(h−ε,0) ⊆ [A+]T1(h−ε,1) and (A−)I1(h−ε,0) ⊆ [B+]T1(h−ε,1).

From (11.37), this is equivalent to Pos(B−,B+;A−,A+)≥ h−ε. Therefore, we have

Π(B |A)≥ h implies ∀ε> 0, Pos(B−,B+;A−,A+)≥ h− ε,

in other words,Π(B |A)≤ Pos(B−,B+;A−,A+). (Q.E.D.)

Proposition 11.3 shows that, for any upper semi-continuous implication function I2,
a necessity measure of an ill-known set B under an ill-known set A is calculated
by using A−, A+, B−, and B+. On the contrary, Proposition 11.4 shows that, for a
special conjunction function T2, that is, T2(a,b) = min(a,b), possibility measure of



11 Rough Representations of Ill-Known Sets 325

Fig. 11.5. B− and B+ expressing Mary’s son’s satisfaction degrees of sets of animals

an ill-known set B under an ill-known set A is calculated by using A−, A+, B− and
B+. It does not mean that a similar result holds for other conjunction functions T2.

Example 11.4. (a continuation of Example 2) Let T1(a,b)= ab, I1(a,b)= 1−a+ab,
T2(a,b) = min(a,b) and I2(a,b) = 1 if a≤ b, I2(a,b) = max(1−a,b) otherwise. In
this case, we obtain I2(a,b) = I4(a,b) = I2(a,b) and I5(a,b) = max(1− a,b). Let
us discuss to what extent Mary’s son is pleased with visiting the small zoo. To this
end, we assume Mary’s son expresses the set of animals he wants to see in the zoo
by B− and B+ having the following membership functions (see also Figure 11.5):

µB−(a) = 1, µB+(a) = 1, µB−(b) = 0.8, µB+(b) = 1,

µB−(c) = 0.8, µB+(c) = 1, µB−(d) = 1, µB+(d) = 1,

µB−(e) = 1, µB+(e) = 1, µB−(f) = 0, µB+(f) = 0.5,

µB−(g) = 0, µB+(g) = 0.5, µB−(h) = 0.3, µB+(h) = 1,

µB−(i) = 1, µB+(i) = 1, µB−(j) = 0.3, µB+(j) = 1,

µB−(k) = 0.8, µB+(k) = 1, µB−(l) = 0.8, µB+(l) = 1,

µB−(m) = 0.3, µB+(m) = 1, µB−(n) = 0, µB+(n) = 0,

µB−(o) = 0, µB+(o) = 0. (11.38)

The necessity and possibility degrees of his satisfaction under π∗A given by
(11.23) are calculated as in Tables 11.1 and 11.2. Then we obtain N(B |A) = 0.2 and
Π(B |A) = 0.5

We should be aware that the meanings of Π(B |A) and N(B |A) change depending
on the interpretation of πB . For example, let us consider a situation where a manager
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Table 11.1. Calculation of N(B|A)

a b c d e f g h i j k l m n o inf

A+ 1 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0 0 –
B+ 1 1 1 1 1 0.5 0.5 1 1 1 1 1 1 0 0 –
I3 1 1 1 1 1 0.5 0.5 1 1 1 1 1 1 1 1 0.5

B− 1 0.8 0.8 1 1 0 0 0.3 1 0.3 0.8 0.8 0.3 0 0 –
A− 1 1 1 0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.25 0 0 0 0 –
I4 1 1 1 0.5 0.5 1 1 0.7 0.25 0.7 0.25 0.2 0.7 1 1 0.2

min 0.2

Table 11.2. Calculation of Π(B|A)

a b c d e f g h i j k l m n o inf

B− 1 0.8 0.8 1 1 0 0 0.3 1 0.3 0.8 0.8 0.3 0 0 –
A+ 1 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0 0 –
I5 1 1 1 1 1 1 1 1 1 1 0.5 0.5 0.7 1 1 0.5

A− 1 1 1 0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.25 0 0 0 0 –
B+ 1 1 1 1 1 0.5 0.5 1 1 1 1 1 1 0 0 –
I5 1 1 1 1 1 0.5 0.5 1 1 1 1 1 1 1 1 0.5

min 0.5

wants to employ several workers. He will be able to assign his satisfaction degree to
each subset of candidates. This satisfaction degree can be expressed by πB . In such
a case, πB shows the satisfaction degree of a decision maker. Π(B |A) and N(B |A)
show the possibility and necessity degrees to what extent the decision maker is
satisfied with ill-known set A , respectively. Π(B |A) and N(B |A) in Example 4
are based on this interpretation.

On the other hand, if πB(Bi) shows the possibility degree of the realization
B = Bi, the meanings of Π(B |A) and N(B |A) are different from the previous ones.
Π(B |A) and N(B |A) evaluate the possibility and necessity degrees to what extent
A possibly equals to B.

In the latter case, we can obtain the possibility distribution of the complement of
the set B from πB through (11.20). Thus, we can compute Π(B̄ |A) and N(B̄ |A).
Those measures evaluate the possibility and necessity degrees to what extent A pos-
sibly equals to B̄. Let us introduce a strong negation n : [0,1]→ [0,1] such that

(n1) n(0) = 1,
(n2) n(n(a)) = a, a ∈ [0,1],
(n3) n is continuously decreasing.

n(Π(B̄ |A)) and n(N(B̄ |A)) show the impossibility and contingency degrees to what
extent A possibly equals to B̄. In other words, n(Π(B̄|A)) and n(N(B̄ |A)) evaluate
the necessity and possibility degrees to what extent A is certainly different from B̄.

From Propositions 11.3 and 11.4, for n(Π(B̄ |A)) and n(N(B̄ |A)), we have the
following corollary.



11 Rough Representations of Ill-Known Sets 327

Corollary 11.1. Under assumption (A1), the following assertions are valid:

(a) When I2 is upper semi-continuous, we have

n(N(B̄ |A)) = max

(

sup
x∈X

f3(µA+(x),µB−(x)),sup
x∈X

f4(µB+(x),µA−(x))
)

, (11.39)

where functions f3 and f4 are defined by

f3(a,b) = n(I2(T−1
1 (a,1), I−1

1 (b,0))), (11.40)

f4(a,b) = n(I2(I−1
1 (a,0),T−1

1 (b,1))). (11.41)

(b) When T2(a,b) = min(a,b), we have

n(Π(B̄ |A)) = max

(

sup
x∈X

f5(µB+(x),µA+(x))),sup
x∈X

g5(µA−(x),µB−(x)))
)

,

(11.42)
where functions f5 and g5 are defined by

f5(a,b) = min(n(T−1
1 (a,1)),n(T−1

1 (b,1))), (11.43)

g5(a,b) = min(n(I−1
1 (a,0)),n(I−1

1 (b,0))). (11.44)

Proof. From (11.27), (11.21) and (11.22), we have

N(B̄ |A) = min

(

inf
x∈X

I3(µA+(x),µB̄+(x)), inf
x∈X

I4(µB̄−(x),µA−(x))
)

= min

(

inf
x∈X

I3(µA+(x),T1(I−1
1 (µB−(x),0),1)),

inf
x∈X

I4(I1(T−1
1 (µB+(x),1),0),µA−(x))

)

.

Thus, we obtain

n(N(B̄ |A)) = max

(

sup
x∈X

n(I3(µA+(x),T1(I−1
1 (µB−(x),0),1))),

sup
x∈X

n(I4(I1(T−1
1 (µB+(x),1),0),µA−(x))

)

.

This is equivalent to (11.39).
On the other hand, from (11.35), (11.21) and (11.22), we have

Π(B̄|A) = min

(

inf
x∈X

I5(µB̄−(x),µA+(x)), inf
x∈X

I5(µA−(x),µB̄+(x))
)

= min

(

inf
x∈X

I5(I1(T−1
1 (µB+(x),1),0),µA+(x)),

inf
x∈X

I5(µA−(x),T1(I−1
1 (µB−(x),0),1))

)

.
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Thus, we obtain

n(Π(B̄|A)) = max

(

sup
x∈X

n(I5(I1(T−1
1 (µB+(x),1),0),µA+(x)),

sup
x∈X

n(I5(µA−(x),T1(I−1
1 (µB−(x),0),1))

)

.

This is nothing but (11.42). (Q.E.D.)

As shown in Corollary 1, n(Π(B̄|A)) and n(N(B̄ |A)) can also be calculated by
using A−, A+, B−, and B+. Functions f4 and g5 are disjunction functions while
functions f3 and f5 are negations of conjunction functions.

In the literature [14, 3], a t-norm t : [0,1]× [0,1]→ [0,1] is often used as a con-
junction function, where t-norm t satisfies

(t1) t(a,1) = t(1,a) = a, ∀a ∈ [0,1],
(t2) t(a,b)≤ t(c,d), ∀a,b,c,d ∈ [0,1] such that a≤ c and b≤ d,
(t3) t(a,b) = t(b,a), ∀a,b ∈ [0,1],
(t4) t(a,t(b,c)) = t(t(a,b),c), ∀a,b,c ∈ [0,1].

R-, S- and reciprocal R-implication functions [15, 9], that is, IR, IS and Ir−R are
defined from a t-norm t by the following equations, respectively:

IR[t](a,b) = sup{s ∈ [0,1] | t(a,s)≤ b}, (11.45)

IS[t](a,b) = n1(t(a,n1(b))), (11.46)

Ir−R[t](a,b) = sup{s ∈ [0,1] | t(n1(b),s)≤ n1(a)}, (11.47)

where n1 is a strong negation.
When T1 in (11.13) is a t-norm and I1 is an S- or reciprocal R-implication func-

tion, we have T−1
1 (a,1) = a and I−1

1 (a,0) = n1(a), for all a∈ [0,1]. In this case, im-
plication functions I3, I4, and I5 are expressed simply as I3(a,b) = I2(a,b), I4(a,b)=
I2(n1(b),n1(a)) and I5(a,b) = max(n1(a),b) for any a ∈ [0,1] and b ∈ [0,1]. More-
over, f3, f4, f5 and g5 are also expressed simply as f3(a,b) = n(I2(a,n1(b))),
f4(a,b) = n(I2(n1(a),b)), f5(a,b) = max(n(a),n(b)) and g5(a,b) = max(n(n1(a)),
n(n1(b))) for any a ∈ [0,1] and b ∈ [0,1].

Finally, to understand differences among

N(B |A), Π(B |A), n(N(B̄ |A) and n(Π(B̄ |A)),

let us consider the conditions for N(B |A) = 1, Π(B |A) = 1, n(N(B̄ |A) = 1 and
n(Π(B̄ |A)) = 1. We assume that T2 is a minimum operation and Assumption A1.
Then, we obtain

N(B |A) = 1⇐ Supp(A+)⊆ Core(B+) and Core(B−)⊇ Supp(A−), (11.48)

Π(B |A) = 1⇔ Supp(B−)⊆ Core(A+) and Supp(A−)⊆ Core(B+), (11.49)
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n(N(B̄ |A) = 1

⇐ Core(A+)∩Core(B−) �= /0 or Supp(B+)∪Supp(A−) �= X , (11.50)

n(Π(B̄|A)) = 1

⇐ Supp(B+)∪Supp(A+) �= X or Core(A−)∩Core(B−) �= /0, (11.51)

where the inclusion relation A ⊆ B between fuzzy sets A and B is defined normally
by the inequality of their membership functions µA and µB, that is, µA(x) ≤ µB(x),
∀x ∈ X . We find that N(B |A) and Π(B |A) relate with inclusion relations among
A−, A+, B− and B+ while n(N(B̄ |A) and n(Π(B̄|A)) relate with intersection of B−
with A+, A− and intersection of complement of B+ with complements of A+ and
A−.

When I2 is an R- or reciprocal R-implication, we have

N(B |A) = 1⇔ A+ ⊆ B+ and B− ⊇ A−, (11.52)

Then, under assumption A1, we find N(B |A) = 1 implies Π(B |A) = 1 when I2 is
an R- or reciprocal R-implication and T2 is a minimum operation.

11.4 Concluding Remarks

In this chapter, we focused on ill-known sets imprecisely specified by their lower
and upper approximations. We extended the previous results given by Dubois and
Prade to cases when general implication and conjunction functions are used instead
of Dienes implication and minimum operation. The simple manipulations of possi-
bility and necessity measures of roughly defined ill-known sets have been investi-
gated. We have introduced conditions for implication and conjunction functions to
recover the original roughly defined ill-known set through the embedding and ap-
proximation processes. It has been shown that a necessity measure of ill-known set
imprecisely specified by lower and upper approximations can be calculated in the
universe if the necessity measure is defined by an upper semi-continuous implica-
tion function. On the other hand, we could obtain the similar result for a possibility
measure of ill-known set imprecisely specified by lower and upper approximations
only when the possibility measure is defined by a minimum operation. Namely, sim-
ple calculations are valid for various necessity measures and for a special possibility
measure.

The specification of ill-known set is one of controversial topics. Even if we use
the rough representations by lower and upper approximations, the specification of
lower and upper approximations would be a complex problem. Then, the specifica-
tion of ill-known set is one of future topics. Moreover, related to this, as we see in
Example 2, the fusion of ill-known sets from different information sources is also an
important topic. Similar to evidence theory [18], we will have various approaches.
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We considered that an ill-known set is a model expressing the possible realiza-
tions of a conjunctive variable, a set-valued variable. The possible range of a dis-
junctive variable (i.e., a single-valued variable) can be seen as a conjunctive variable.
Therefore, it can be represented by an ill-known set. In this case, we should consider
a possibility distribution of possible ranges. Because possible ranges themselves in-
clude uncertainty, its possibility distribution includes further uncertainty. From this
point of view, a study on ill-known sets could be valuable for treatment of higher-
order uncertainty.

Finally, as an extension of ill-known sets, ill-known fuzzy sets are conceivable.
In this case, we consider possibility distributions on the set of all fuzzy subsets.
The manipulation of ill-known fuzzy sets on the universe using lower and upper
approximations would also be an interesting topic.

Acknowledgements. The author acknowledges that this work was partially supported by the
Grant-in-Aid for Scientific Research (C) No.23510169.
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Chapter 12
Property-Driven Rough Sets Approximations
of Relations

Ryszard Janicki�

Abstract. The problem of approximating an arbitrary relation by a relation with
desired properties is formally defined and analysed. Two special cases, approxima-
tion by partial orders and approximation by equivalence relations are discussed in
detail.

Keywords: Approximation of raw data, properties of relations, rough sets, α-
approximations, partial order, equivalence relation.

12.1 Introduction

While, in general, sets are just arbitrary collections of arbitrary elements [8], when
they are applied in other parts of Mathematics or Science, they usually have some
structure and properties. Their elements are usually engaged in complex relation-
ships. While a collection that consists of, say, a white elephant, computer mouse,
empty set, and a letter ‘a’, is a proper set (c.f. [8, 12]), in most applications the sets
are more homogenous, as ‘sets of integers’, ‘vertices’, ‘variables’, etc., and quite of-
ten they have some very specific structures like ‘trees’, ‘partitions’, ‘partial orders’,
etc.

Those structures and properties are essential when it comes to the problem of
approximation of raw empirical data by appropriate mathematical concepts.

The simplest and most abstract way of modelling complex connections relation-
ships is to use the notion of relation.
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The problem we will try to deal with in this chapter can be formulated as follows.
We have a set of data that have been obtained in an empirical manner. From the
nature of the problem, we know that the set should have some structure and desired
properties, for example, it should be partially ordered, or partially ordered for one
attribute and partitioned by some equivalence relation for another attribute (so it
should be represented by two binary relations) but because the data are empirical it
is not. In general case, this might be just an arbitrary set without the desired structure
and properties. What is the ‘best’ approximation that has the desired structure and
properties and how it can be computed? For the approximation of arbitrary relations
by partial orders, this problem was discussed and some solutions were proposed in
[6] (within both the standard theory of relations [8, 12] and Rough Sets paradigm
[9, 10]).

In this chapter, we will generalise and refine some ideas of [6] to arbitrary rela-
tions, and we will illustrate our concepts by showing approximations by two of the
most often used kinds of relations, partial orders and equivalence relations.

It appears that the concept of approximation has two different intuitions in Mathe-
matics and Science. The first one stems from the fact that often, empirical numerical
data have some errors, so in reality, we seldom have the value x (unless the measure-
ments are expressible in integers) but usually some interval (x−ε,x+ε), that is, the
lower approximation and the upper approximation. Rough Sets [9, 10] exploit this
idea for general sets. The second intuition can be illustrated by least square approx-
imation of points in the two-dimensional plane (c.f. [15]). Here we know or assume
that the points should be on a straight line and we are trying to find the line that fits
the data best. In this case the data have a structure (points in two dimensional plane,
that is, a relation that is a function) and should satisfy a desired property (be on the
straight line). Note that even if we replace a solution f (x) = ax + b by two lines
f1(x) = ax + b− δ and f2(x) = ax + b + δ, where δ is a standard error (c.f. [15]),
there is no guarantee that any point resides between f1(x) and f2(x). Hence this is
not the case of an upper, or lower approximation in the sense of Rough Sets. How-
ever this approach assumes that there is a well-defined concept of a metric which
allows us to minimise the distance, and this concept is not obvious, and often not
even possible for non-numerical objects (see for instance [6]).

The approach presented in this chapter is a mixture of both intuitions. There is no
metric, but the concept of “minimal distance” is replaced and somehow simulated
by a sequence of property-driven lower and/or upper approximations, in the style of
Rough Sets.

The chapter is structured as follows. The next section provides basic facts about
relations. Section 12.3 recalls the classical Rough Set approach to the approximation
of relations. In Section 12.4, the concept of property-driven rough approximation of
arbitrary relations is introduced, and the basic definitions are given. The next three
sections provide basic theoretical framework for the approach presented. Section
12.5 deals with a single property (as for instance transitivity only), Section 12.6
provides an analysis of a composition of two properties (for instance symmetry
and transitivity), and Section 12.7 extends the obtained results to a composition
of an arbitrary number of properties. In Section 12.8, we use the ideas presented
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in previous sections to approximate an arbitrary binary relation by a partial order,
and in Section 12.9 to approximate an arbitrary binary relation by an equivalence
relation. Section 12.8 refines some results of [6]. The last section contains final
comments.

12.2 Relations and Some of Their Basic Classifications

In this section, we recall some fairly known concepts and results that will be used
in the following sections [2, 8, 12].

Let X be a set, any R ⊆ X ×X× ...×X
︸ ︷︷ ︸

n

= ∏n
i=1 X is called an n-ary relation

(on X).
If n = 2, that is, R⊆ X ×X then R is called a binary relation (on X).
Customarily, we will use the generic name relation for both n-ary and binary

relations and apply the prefixes ‘n-ary’ and ‘binary’ only when needed. For the rest
of this section, we assume that any relation is a binary relation, that is, a relation
R⊆ X ×X . We also will often write aRb to denote (a,b) ∈ R.

Definition 12.1 (Basic Types of Relations). Let R, < ,and ≡ be relations on X .

1. idX = {(x,x) | x ∈ X}, or just id, is called the identity relation.
2. R is reflexive iff id ⊆ R, that is, (x,x) ∈ R for all x ∈ X .
3. R is irreflexive iff id∩R = /0, that is, (x,x) /∈ R for all x ∈ X .
4. R is symmetric iff for all x,y ∈ X , xRy⇒ yRx.
5. R is transitive iff for all x,y,z ∈ X , xRy∧ yRz⇒ xRz.
6. A relation ≡ is an equivalence relation iff it is reflexive, symmetric and

transitive, that is, x≡ x, x≡ y⇒ y≡ x, and x≡ y≡ z⇒ x≡ z, for all x,y,z ∈ X .
7. A relation < is a (sharp) partial order iff it is irreflexive and transitive, that

is, ¬(x < x) and x < y < z⇒ x < z for all x,y,z ∈ X . �

For every equivalence relation ≡ on X and every x ∈ X , the set [x]≡ = {y | x ≡ y}
denotes an equivalence class containing the element x.

We also have [x]≡ = [y]≡if and only if x ≡ y (c.f. [2, 8, 12]).
The set of all equivalence classes of an equivalence relation≡ is denoted as X/≡,

and it is a partition of X , that is, the sets from X/≡ are disjoint and cover the whole
X .

For every two relations R,S on X , the relational composition R ◦ S is defined as
a(R◦S)cif and only if ∃b ∈ X . aRb∧bRc, for all a,c ∈ X ; for every relation R on X ,
we have R−1 = {(a,b) | (b,a) ∈ R}, and R0 = id, Rk = R◦ ...◦R︸ ︷︷ ︸

k

for k > 0.

For every relation R on X , the smallest transitive (reflexive, symmetric, etc.) re-
lation on X containing R is called the transitive (reflexive, symmetric, etc.) closure
of R (c.f. [2, 12]).
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Proposition 12.1 (Explicit Expresions for Closures [2, 12]). Let R be a relation
on X.

1. Rref = R∪ id is the reflexive closure of R.
2. Rsym = R∪R−1 is the symmetric closure of R.
3. R+ =

⋃∞
i=1 Ri is the transitive closure of R.

4. R∗ =
⋃∞

i=0 Ri is the reflexive-transitive closure of R. �

Closures correspond to simple upper approximations of relations in the sense of
Rough Sets. Concepts corresponding to lower approximations are more complex
and less systematic and will be discussed later (in Section 12.8).

12.3 Classical Rough Relations

The principles of Rough Rets [9, 10] can be formulated as follows. Let U be a finite
and nonempty universe of elements, and let E ⊆U ×U be an equivalence relation.
The elements of U/E are called elementary sets, and they are interpreted as basic
observable, measurable, or definable sets. The pair (U,E) is referred to as a Pawlak
approximation space. A set X ⊆ U is approximated by two subsets of U , A(X) -
called the lower approximation of X , and A(X) - called the upper approximation of
X , where A(X) and A(X) are defined as follows.

Definition 12.2 ([9, 10])

1. A(X) =
⋃{[x]E | x ∈U ∧ [x]E ⊆ X},

2. A(X) =
⋃{[x]E | x ∈U ∧ [x]E ∩X �= /0}. �

Rough set approximations satisfy the following properties:

Proposition 12.2 (Pawlak [10])

1. X ⊆ Y =⇒A(X)⊆ A(Y ),
2. A(X ∩Y ) = A(X)∩A(Y ),
3. A(X)⊆ X,
4. A(X) = A(A(X)),
5. A(X) = A(A(X)),

6. X ⊆ Y =⇒A(X)⊆ A(Y ),
7. A(X ∪Y ) = A(X)∪A(Y ),
8. X ⊆ A(X),
9. A(X) = A(A(X)),

10. A(X) = A(A(X)). �

Since every relation is a set of pairs, this approach can be used for relations as well
[13]. Unfortunately, in such cases as ours, we want approximations to have some
specific properties like irreflexivity, transitivity etc., and most of those properties
are not closed under the set union operator. As was pointed out in [17], in general,
one cannot expect approximations to have the desired properties (see [17] for de-
tails). It is also unclear how to define the relation E for cases such as ours.
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However, the Rough Sets can also be defined in an orthogonal (sometimes called
‘topological’) manner [10, 14, 16]. For a given (U,E), we may define D(U) as the
smallest set containing /0, all of the elements of U/E and that is closed under set
union. Clearly, U/E is the set of all components generated by D(U) [8]. We may
start with defining a space as (U,D), where D is a family of sets that contains /0, and
for each x ∈U , there is X ∈D such that x ∈ X (i.e. D is a cover of U [12]). We may
now define ED as the equivalence relation generated by the set of all components
defined by D (see for example [8]). Hence, both approaches are equivalent [10, 14,
17]; however, now for each X ⊆U , we might use different formulas for A(X) and
A(X).

Proposition 12.3 ([10, 14, 17])

1. A(X) =
⋃{Y | Y ⊆ X ∧Y ∈D},

2. A(X) =
⋂{Y | X ⊆ Y ∧Y ∈D}. �

We can now define D as a set of relations having the desired properties and then cal-
culate A(R) and/or A(R) with respect to a given D. Such an approach was proposed
and analysed in [17]; however, it seems to have only limited applications. It assumes
that the set D is closed under both union and intersection, and few properties of re-
lations do this. For instance, transitivity is not closed under union and having a cycle
is not closed under intersection. Some properties, like ‘having exactly one cycle’,
are preserved by neither union nor intersection. This problem was discussed in [17],
and they proposed that perhaps a different D could be used for the lower and upper
approximations. But this solution again seems to have rather limited applications.
The approach of [17] assumes additionally that, for the upper approximation there
is at least one element of D that contains R, and, for the lower approximation there
exists at least one element of D that is included in R. These are assumptions that
are too strong for many applications (see [6]). If R contains a cycle, then there is no
partial order that contains R!

To solve those problems, we need to create a new setting.

12.4 Property-Driven Rough Approximations of Relations

In this section, we will provide a formal basis of our approach.
Let X be a set and X =∏n

1 X = X × ...×X
︸ ︷︷ ︸

n

. We assume that in this section any

relation is an n-ary relation and a subset of X.

Definition 12.3. 1. Any first-order predicate (c.f. [3]) α containing one atomic n-
ary relational symbol R (which may occur more than once) will be called an
n-ary relational property (or just a property).

2. Let R ⊆ X. An n-ary relational property α is called a property of the n-ary
relation R if the symbol R is interpreted as the relation R, all variables of α
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are over the set X , and the tuple (X ,R) is a model of α, that is, α holds for any
assignment (c.f. [3]). �

Obvious examples of properties are transitivity (α = (∀a,b,c. R(a,b)∧R(b,c)⇒
R(a,c))), reflexivity (α = (∀a. R(a,a))), symmetry (α = (∀a,b. R(a,b)⇒ R(b,a))
etc., for binary relations. Standardly, when it does not cause any confusion, the same
symbol is used to denote both R and R. We would like to point out the difference
between a property, that is, just a statement that may or may not be true and where
R is just a symbol, and a property of R, a statement that is true for all assignments,
and R is a well-defined relation.

Definition 12.4. Let P be a finite set of n-ary relational properties, such that for
each α ∈ P , there is a non-empty relation Q⊆ X, and α is a property of Q.

1. Any element α ∈ P is called an elementary property.
2. For each elementary property α ∈ P , Pα ⊆ 2X is the set of n-ary relations over

X that satisfy the property α. �

Definition 12.4 allows /0 ∈ Pα, but disallows Pα = /0 and Pα = { /0}.
Even though any property can be called ‘elementary’, it is assumed that in any

concrete case the elemetary properties are ‘simple’ and ‘regular’. They are just
atomic parts from which the real more sophisticated properties are built.

Definition 12.5. 1. For every α ∈ P , Pα is closed under intersection iff for each
R,S ∈ Pα, R∩S∈ Pα. The set of all α∈ P that are closed under intersection will
be denoted by P∩.

2. For every α∈ P , Pα is closed under union iff for each R,S∈ Pα, R∪S ∈ Pα. The
set of all α ∈ P that are closed under union will be denoted by P∪. �

Some examples of properties for binary relations:

• α =transitivity, or α =partial ordering, Pα is closed under intersection but not
under union,

• α=symmetry, Pα is closed both under intersection and under union,
• α=having a cycle, Pα is closed under union but not under intersection.

Assumption 1. We assume that if α ∈ P then, Pα is either closed under union or it
is closed under intersection (or both), that is, P = P∪ ∪P∩. �

This assumption is much weaker than it might appear as this is an assumption only
about elementary properties, not about composite more sophisticated properties that
will be considered later. However, it is absolutely needed as we want to define lower
and upper approximations in the style of Proposition 12.3 and want at least one of
them to exist.

Definition 12.6. The pair (X,{Pα | α ∈ P}) will be called an property-driven ap-
proximation space for the n-ary relations over X . �
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When /0 ∈ {Pα | α ∈ P} and {Pα | α ∈ P} is a cover then, Definition 12.6 corre-
sponds to the definition of space (U,D) from Section 12.3. In Section 12.3, the ele-
ments of D were used to construct lower and upper approximations A(X) and A(X)
(see Proposition 12.3), here our intention is to use the elements of {Pα | α ∈ P} as
building bricks of our property-driven lower and upper approximations. However,
as opposed to the properties of D, it may happen that /0 /∈ {Pα | α ∈ P} and that
{Pα | α ∈ P} is not a cover.

Intuitively, for every relation R and every property α ∈ P , we expect an appro-
priate lower approximation of R to be a subset of R that belongs to Pα, and an
appropriate upper approximation of R to be a superset of R that also belongs to
Pα. Note that, these are weaker expectations than required from classical rough set
approximations where we expect ‘the largest subset of R’ for lower and ‘the small-
est superset of R’ for upper approximation. However, even this may not always be
possible, which leads us to the following definition.

Definition 12.7. Let R⊆ X be a non-empty relation and α ∈ P . We say that:

1. R has α-lower bound if and only if ∃Q ∈ Pα. Q⊆ R,
2. R has α-upper bound if and only if ∃Q ∈ Pα. R⊆ Q.

We also define

3. lbα(R) = {Q | Q ∈ Pα∧Q⊆ R}, the set of all α-lower bounds of R, and
4. ubα(R) = {Q |Q ∈ Pα∧R⊆ Q}, the set of all α-upper bounds of R. �

Note that, if the relation X =∏n
i=1 X satisfies α, then α-upper bound exists for any

R⊆ X, and if the relation /0 satisfies α, then α-lower bound exists for any R ⊆ X.

Some examples for binary relations:

• α =transitivity, R - any relation, both α-lower bound and α-upper bound do
exist,

• α =reflexivity, R - any relation, α-lower bound exists only when R is already
reflexive, α-upper bound does exist,

• α =irreflexivity, R - any relation, α-lower bound does exist, α-upper bound
exists only when R is already irreflexive,

• α =symmetry, R - any relation, α-lower bound may not exist while α-upper
bound does exist,

• α =partial ordering, R has a cycle, α-lower bound exists but α-upper bound
does not exist.

• α=partial ordering, R - any relation,α-lower bound exists, α-upper bound may
not exist,

• α=equivalence, R - any relation,α-lower bound exists only when R is reflexive,
α-upper bound does exist,

• α =having a cycle, R is a partial order, α-lower bound does not exist, α-upper
bound exists,
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• α =having a cycle, R - any relation, α-lower bound may not exist, α-upper
bound exists,

• α = (R(a,b)∧¬R(c,d)), R any relation such that (a,b) /∈ R and (c,d) ∈ R,
neither α-lower bound nor α-upper bound exists.

The remaining auxilliary concepts that are needed to formally define lower and up-
per approximations that preserve elementary properties of relations are the well
known concepts of maximal and minimal elements of families of relations (c.f.
[2, 12]).

Definition 12.8. For every family of relations F ⊆ 2X, we define

1. min(F ) = {R | ∀Q ∈ F . Q ⊆ R ⇒ R = Q}, the set of all minimal elements of
F ,

2. max(F ) = {R | ∀Q ∈ F .R ⊆ Q ⇒ R = Q}, the set of all maximal elements of
F .

�

We are now able to provide the two main definitions of our model.

Definition 12.9 (α-lower and α-upper approximations)

1. If R has α-lower bound then we define its α-lower approximation as:

Aα(R) =
⋂
{Q |Q ∈max(lbα(R))}.

2. If R has α-upper bound then we define its α-upper approximation as:

Aα(R) =
⋃
{Q |Q ∈ min(ubα(R))}. �

If R does not have α-lower bound (α-upper bound) then its α-lower approximation
(α-upper approximation) does not exist. This is the major difference between this
model and the standard Rough Sets model. It might happen that neither α-lower
approximation nor α-upper approximation exists. Then α should probably not be
called an ‘elementary’ property and it should instead be decomposed into a con-
junction of simpler properties. This problem will be discussed in Section 12.6.

To show that Definition 12.9 is sound, we need to prove the following:

(1) if the relation R has a property α, both approximations are reduced to identity,
(2) for every property α ∈ P , both Aα(R) and Aα(R) satisfy the property α (if they

exist), first of all this is what they were invented for,
(3) when a propertyα is closed under both union and intersection, and an α-(lower/

upper) approximation exists, it should be identical to the standard lower/upper
approximation (either that of Definition 12.2 or its equivalent version from
Proposition 12.3).

The result below proves the point (1).

Proposition 12.4. If R ∈ Pα then Aα(R) = Aα(R) = R.
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Proof. If R ∈ Pα then lbα(R) = ubα(R) = {R}. �

The proof of point (2) will be split into two parts.

Proposition 12.5

1. If α ∈ P∩ and R has α-lower bound then
Aα(R) =

⋂{Q |Q ∈max(lbα(R))} ∈ Pα.
2. If α ∈ P∪ and R has α-upper bound then

Aα(R) =
⋃{Q |Q ∈min(ubα(R))} ∈ Pα.

Proof
(1) Every element of max(lbα(R)) is in Pα. Since α ∈ P∩, the intersection of all
elements of max(lbα(R)) is also in Pα.
(2) Every element of min(ubα(R)) is in Pα. Sinceα∈P∪, the union of all elements
of min(ubα(R)) also is in Pα. �

The second part involves new representations of both Aα(R) and Aα(R), more or
less in the style of A(R) and A(R) from Proposition 12.3.

Proposition 12.6

1. If α ∈ P∪ and R has α-lower bound, then

Aα(R) =
⋃
{Q |Q ∈ lbα(R)} =

⋃
{Q | Q⊆ R∧Q ∈ Pα} ∈ Pα.

2. If α ∈ P∩ and R has α-upper bound, then

Aα(R) =
⋂
{Q |Q ∈ ubα(R)} =

⋂
{Q | R⊆ Q∧Q ∈ Pα} ∈ Pα.

Proof
(1) If α ∈ P∪ and R has α-lower bound, then max(lbα(R)) is a singleton set, that
is, max(lbα(R)) = {Q}, where Q =

⋃{S | S ∈ lbα(R)}. Every element of lbα(R) is
clearly in Pα. Since α ∈ P∪, the union of all elements of lbα(R) is in Pα, that is,
Q ∈ Pα.
(2) If α∈ P∩ and R has α-upper bound, then min(ubα(R)) is a singleton set, that is,
min(ubα(R)) = {S}, where S =

⋂{Q |Q ∈ ubα(R)}. Since α ∈ P∩, the intersection
of all elements of ubα(R) is in Pα, that is, S ∈ Pα. �

The next result shows when this model is exactly the same as the classical Rough
Sets approach to relations (the version from [16, 17] illustrated by Proposition 12.3).
It is a proof of point (3) of the soudness requirements.

Corollary 12.1

1. If α ∈ P∪ ∩P∩ and R has α-lower bound, then Aα(R) = A(R), and,
2. if α ∈ P∪ ∩P∩ and R has α-upper bound, then Aα(R) = A(R),

where A(R) and A(R) are classical upper and lower rough approximations over the
space (X ×X ,{Pα | α ∈ P}), as defined in Proposition 12.3.
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Proof (1) From the second equality in Proposition 12.6(1).
(2) From the second equality in Proposition 12.6(2). �

In this section, we defined lower and upper approximations that provide desired
relational properties. In the next section, we will discuss major properties of these
approximations.

12.5 Properties of α-Approximations

In this section, we will show that the operational and compositional properties of
α-lower and α-upper approximations are pretty close (but not identical) to those of
standard rough set approximations as presented in Proposition 12.2. We start with
the properties of α-lower approximation (compare with Proposition 12.2(1–4) for
standard rough set lower approximation).

Proposition 12.7. If R,Q ⊆ X have α-lower bound then:

1. R⊆ Q =⇒ Aα(R)⊆ Aα(Q),
2. Aα(R)⊆ R,
3. Aα(R) = Aα(Aα(R)),
4. Aα(R∩Q) = Aα(Aα(R)∩Aα(Q)),
5. if α ∈ P∩ then Aα(R∩Q) = Aα(R)∩Aα(Q),
6. if R has α-upper bound then Aα(R) = Aα(Aα(R)).

Proof.
(1) Since R ⊆ Q =⇒ lbα(R)⊆ lbα(Q) =⇒ max(lbα(R)) ⊆ lbα(Q), then for each
S ∈ max(lbα(R)), there is S′ ∈ max(lbα(Q)) such that S ⊆ S′; and intersection pre-
serves inclusion.
(2) Since S ∈ lbα(R) =⇒ S ⊆ R, and intersection preserves inclusion.
(3) From Proposition 12.4 because Aα(R) ∈ Pα.
(4) By (1) we have Aα(R∩Q)⊆Aα(R) and Aα(R∩Q)⊆Aα(Q), so Aα(R∩Q)⊆
Aα(R)∩Aα(Q). Hence, by (2) and (3) Aα(R∩Q)⊆ Aα(Aα(R)∩Aα(Q)).
By the definition, we have Aα(Aα(R) ∩Aα(Q)) =

⋂{S | S ∈ max(lbα(Aα(Q)∩
Aα(Q)))}. Let T ∈ lbα(Aα(Q)∩Aα(Q))). This means T ∈ Pα ∧ T ⊆ Aα(R)∩
Aα(Q); hence, T ∈ Pα ∧ T ⊆ R ∧ T ⊆ Q, that is, T ∈ Pα ∧ T ⊆ R∩Q. Therefore,
T ∈ lbα(R∩Q). In this way, we proved that lbα(Aα(Q)∩Aα(Q)) ⊆ lbα(R∩Q).
Hence,
max(lbα(Aα(Q)∩Aα(Q))) ⊆ lbα(X ∩Q), that is, for each S ∈ max(lbα(Aα(Q)∩
Aα(Y ))), there exists S′ ∈max(lbα(R∩Q)), such that S⊆ S′. Since intersection pre-
serves inclusion, this means that Aα(Aα(R)∩Aα(Q))⊆ Aα(R∩Q).
(5) By (4) of this proposition, we have Aα(R ∩Q) = Aα(Aα(R) ∩Aα(Q)). If
α ∈ P∩ then, Aα(R)∩Aα(Q) ∈ Pα, so by Proposition 12.4, we have
Aα(R)∩Aα(Q) = Aα(Aα(R)∩Aα(Q)).
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(6) If R has α-upper bound then Aα(R) ∈ Pα so from Proposition 12.4, it follows
that,
Aα(X) = Aα(Aα(X)). �

The difference from the classical case is that intersection splits into two cases and
mixing lower with upper α-approximation is conditional.

We will now present the properties of α-upper approximation (compare with
Proposition 12.2(5–10) for standard rough set upper approximation).

Proposition 12.8. If R,Q ⊆ X have α-upper bound then

1. R⊆ Q =⇒ Aα(R)⊆ Aα(Q),
2. R⊆ Aα(R),
3. Aα(R) = Aα(Aα(R)),
4. Aα(R∪Q) = Aα(Aα(R)∪Aα(Q)),
5. if α ∈ P∪ then Aα(R∪Q) = Aα(R)∪Aα(Q),
6. if R has α-lower bound then Aα(R) = Aα(Aα(R)).

Proof.
(1) Since R⊆Q =⇒ ubα(Q)⊆ ubα(R) =⇒min(ubα(Q))⊆ ubα(R), then for each
S′ ∈ min(ubα(Q)) there is S ∈ min(ubα(R)) such that S ⊆ S′; and union preserves
inclusion.
(2) Since S ∈ ubα(R) =⇒ R⊆ S, and union preserves inclusion.
(3) From Proposition 12.4 because Aα(R) ∈ Pα.
(4) By (1) we have Aα(R) ⊆ Aα(R∪Q) and Aα(Q) ⊆ Aα(R∪Q), so Aα(R)∪
Aα(Q)⊆ Aα(R∪Q). Hence, by (2) and (3) Aα(Aα(R)∪Aα(Q))⊆ Aα(R∪Q).
Since R⊆ Aα(R) and Q⊆ Aα(Q) then, R∪Q⊆ Aα(R)∪Aα(Q), i.e.
upα(Aα(R)∪Aα(Q)⊆ upα(R∪Q), and consequently, min(upα(Aα(R)∪Aα(Q))⊆
upα(R∪Q). Hence, for each S′ ∈min(upα(Aα(R)∪Aα(Q)), there exists
S ∈min(upα(R∪Q)) such that S⊆ S′. Since union preserves inclusion, we obtained
Aα(R∪Q)⊆ Aα(Aα(R)∪Aα(Q)).
(5) By (4) of this proposition, Aα(R∪Q) = Aα(Aα(R)∪Aα(Q)). If α ∈ P∪ then
Aα(R)∪Aα(Q) ∈ Pα, so by Proposition 12.4 we have
Aα(R)∪Aα(Q) = Aα(Aα(R)∪Aα(Q)).
(6) If R has α-lower bound then, Aα(R) ∈ Pα so by Proposition 12.4 we have,
Aα(X) = Aα(Aα(X)). �

Here the difference from the classical case is that union splits into two cases and
mixing upper with lower α-approximation is conditional.

12.6 Composite Properties

Most of the interesting properties are composite properties. For example, a binary
relation can be made a partial order by applying transitive closure first and making
the outcome acyclic later, or in the opposite order (see Section 12.8 and [6]), or a
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relation can be made an equivalence relation by applying relexive, symmetric and
transitive closures in this order (see Section 12.9). In this section, we will propose a
framework for doing this kind of compositions in a systematic way.

In principle, we will try to solve the following problem. Suppose we have two
propertiesα and β, but we are really interested in the propertyα∧β. Under what cir-
cumstances do the approximations Aα(Aβ(R)), Aα(Aβ(R)), Aα(Aβ(R)) and

Aα(Aβ(R)) exist and satisfy the property α∧β? What is the relationship between
Aα(Aβ(R)) and Aβ(Aα(R)), Aα(Aβ(R)) and Aβ(Aα(R)), etc.? What about the rela-
tionship between the approximations Aα∧β(R) and Aα(Aβ(R)), and between
Aα∧β(R) and Aα(Aβ(R))?

We will restrict our attention to the conjuction operator ‘∧’ only. The other two
basic operators of propositional logic, conjuction ‘∨’, and negation ‘¬’, will not
be discussed. Adding them to this model is an open research problem. However,
most of the popular properties in Science and also in Mathematics are defined as
conjuctions of two or more basic properties.

Hence we start with the following definition.

Definition 12.10. P∧ = {α1∧ ...∧αk | k ≥ 1 and αi ∈ P for i = 1, ...,k}.
The elements of P∧ are called composite properties. �

Propositions 12.5 and 12.6 guarantee that if either Aα(R) or Aα(R) exists, it satisfies
the property α. But if R has a property β different from α, neither Aα(R) nor Aα(R)
may satisfy β. For example if R is transitive, its symmetric closure is symmetric, but
may not be transitive any longer [12].

Definition 12.11. Let α,β ∈ P∧.

1. We say that α l-preserves β iff
for every R ∈ Pβ, if R has α-lower bound then Aα(R) ∈ Pβ,

2. We say that α u-preserves β iff
if R has α-upper bound then Aα(R) ∈ Pβ. �

The result below validates the above definition.

Proposition 12.9. Let α,β ∈ P∧. Then we have:

1. if α l-preserves β, R has β-lower bound and Aβ(R) has α-lower bound, then
S = Aα(Aβ(R)) ∈ Pα∩Pβ, that is, S satisfies the property α∧β.

2. if α l-preserves β, R has β-upper bound and Aβ(R) has α-lower bound, then
S = Aα(Aβ(R)) ∈ Pα∩Pβ, that is, S satisfies the property α∧β.

3. if α u-preserves β, R has β-lower bound and Aβ(R) has α-upper bound, then

S = Aα(Aβ(R)) ∈ Pα∩Pβ, that is, S satisfies the property α∧β.

4. if α u-preserves β, R has β-upper bound and Aβ(R) has α-upper bound, then
S = Aα(Aβ(R)) ∈ Pα∩Pβ, that is, S satisfies the property α∧β.



12 Property-Driven Rough Sets Approximations of Relations 345

Proof. (1) Since R has β-lower bound, by Proposition 12.5(1) - if β ∈ P∩, or
Proposition 12.6(1) - if β ∈ P∪, then Q = Aβ(R) ∈ Pβ. Since α l-preserves β and
Q = Aβ(R) hasα-lower bound, then by Definition 12.11(1), S = Aα(Q)∈Pβ. Again,
since Q = Aβ(R) has α-lower bound, by Proposition 12.5(1) - if α ∈ P∩, or Propo-
sition 12.6(1) - if α ∈ P∪, then S = Aα(Q) ∈ Pα. Hence S = Aα(Aβ(R)) ∈ Pα∩Pβ.
(2), (3) and (4) are carried out similarly as (1). �

In general there are no specific relationships between Aα(Aβ(R)) and Aβ(Aα(R)),
or between Aα(Aβ(R)) and Aβ(Aα(R)). The approximation Aα(Aβ(R)) may exist
but Aβ(Aα(R)) may not, and similarly for upper approximations. Even if they both
exist, they may be equal, not equal, one included into another - or not, etc., some
examples will be discussed in Sections 12.8 and 12.9. However, there is a very
specific relationship between Aα(Aβ(R)) and Aα(Aβ(R)).

Proposition 12.10. Let α,β ∈ P∧, and

• α u-preserves β and β l-preserves α,
• R has α-upper bound and β-lower bound,
• Aα(R) has β-lower bound, and
• Aβ(R) has α-lower bound

then

1. Aα(Aβ(R)) ∈ Pα∩Pβ and Aβ(Aα(R)) ∈ Pα∩Pβ.

2. Aα(Aβ(R))⊆ Aβ(Aα(R)).

Proof. (1) By Proposition 12.9(2) and 12.9(3).
(2) By Proposition 12.8(2), R⊆ Aα(R), so Aβ(R)⊆ Aβ(Aα(R)), and

Aα(Aβ(R)) ⊆ Aα(Aβ(Aα(R))). By (1) of this proposition, Aβ(Aα(R)) ∈ Pα, so by

Proposition 12.4, Aα(Aβ(Aα(R))) = Aβ(Aα(R)). Therefore Aα(Aβ(R)) ⊆
Aβ(Aα(R)). �

Note that, the above result is consistent with Propositions 12.7(6) and 12.8(6). We
would like to point out that, in general, there is no inclusion-type relationship be-
tween R and Aα(Aβ(R)) and similary for R and Aβ(Aα(R).

Suppose that both A(α∧β)(R) and Aα(Aβ(R)) (or A(α∧β)(R) and Aα(Aβ(R))) ex-

ist and Aα(Aβ(R)) ∈ P(α∧β) (or Aα(Aβ(R)) ∈ P(α∧β)). Which one is a better approx-
imation of R?

Proposition 12.11. Assume that α, β belong to P∧.

1. If R has β-lower bound and (α ∧ β)-lower bound, and Aβ(R) has α-lower
bound, then: A(α∧β)(R)⊆ Aα(Aβ(R))⊆ R,

2. If R has β-upper bound and (α∧ β)-upper bound, and Aβ(R) has α-upper
bound, then: R⊆ Aα(Aβ(R))⊆ A(α∧β)(R).

3. A(α∧β)(R), A(α∧β)(R), Aα(Aβ(R)), Aα(Aβ(R)) ∈ P(α∧β) = Pα∩Pβ.
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Proof. (1) Since obviously lb(α∧β)(R)⊆ lbβ(R) then A(α∧β)(R)⊆ Aβ(R). Hence
Aα(A(α∧β)(R))⊆ Aα(Aβ(R)). Since A(α∧β)(R) ∈ Pα, then due to Proposition 12.4,
Aα(A(α∧β)(R)) = A(α∧β)(R). From Proposition 12.7(2) we have Aα(Aβ(R)) ⊆ R,
which ends the proof of (1).
(2) Since obviously ub(α∧β)(R) ⊆ ubβ(R) then min(ub(α∧β)(R)) ⊆ ubβ(R). This
means Aβ(R)⊆A(α∧β)(R). Hence Aα(Aβ(R))⊆Aα(A(α∧β)(R)). Since A(α∧β)(R)∈
Pα, then due to Proposition 12.4, Aα(A(α∧β)(R)) = A(α∧β)(R). From Proposition
12.8(2) we have R⊆ Aα(Aβ(R)), which ends the proof of (2).
(3) A(α∧β)(R) and A(α∧β)(R) belong to P(α∧β) by either Proposition 12.5 or Propo-

sition 12.6. Aα(Aβ(R)) ∈ Pα∩Pβ by Proposition 12.9(1), and Aα(Aβ(R)) ∈ Pα∩Pβ
by Proposition 12.9(4). �

Proposition 12.11 suggests an important technique for the design of approximation
schema. It in principle says that using a complex predicate as a property usually
results in a worse approximation than when the property is decomposed into simpler
ones, and then we approximate a given relation over all these simpler properties.
This means that before starting an approximation process we should think carefully
how the given property could be decomposed into the simpler (and more regular
with respect to the theory presented) ones.

12.7 Mixed Approximations

Many properties may have the form like α1∧α2∧ ...∧αk , and in general only some
sequences of αi-approximations could lead to the desired result. In this section we
will provide some framework to deal with this problem.

We adopt the following convention, we will often write A(0)
α (R) instead of Aα(R)

and A(1)
α (R) instead of Aα(R).

Definition 12.12. A sequence s = (α1, i1)(α2, i2)...(αk, ik), where k≥ 1, α j ∈ P and
i j ∈ {0,1} for j = 1, ...,k, is a proper approximation schedule of a given relation
R⊆ X, iff the following conditions are satisfied

1. αi �= αi+1, for i = 1, ...,k−1, and
2. the mixed approximation As(R), defined as

As(R) = A(i1)
α1 (A(i2)

α2 (...(A(ik)
αk (R))...))

does exist and As(R) ∈ P(α1∧...∧αk).

A conjunction π(s) = α1 ∧α2 ∧ ....∧αk is the composite property generated by
the sequence s. �



12 Property-Driven Rough Sets Approximations of Relations 347

We will also write α(0) instead of (α,0), α(1) instead of (α,1), ‘α-0 bound’ instead
of ‘α-lower bound’, ‘α-1 bound’ instead of ‘α-upper bound’, ‘0-preserves’ instead
of ‘l-preserves’, and ‘1-preserves’ instead of ‘u-preserves’.

Proposition 12.12. Let R ⊆ X and s = α(i1)
1 α(i2)

2 ....α(ik)
k be a sequence with αi �=

αi+1, for i = 1, ...,k− 1. Define subsequences of s as follows: sk = α(ik)
k , sk−1 =

α(ik−1)
k−1 sk , ..., s2 = α(i2)

2 s3, s1 = α(i1)
1 s2 = s.

The sequence s = α(i1)
1 α(i2)

2 ....α(ik)
k is a proper approximation schedule of the rela-

tion R iff the following conditions are satisfied:

1. R has αk-ik bound,
2. for each j = k−1, ...,1, α j i j-preserves π(s j+1) and As j+1(R) has α j -i j bound.

Proof. By induction on the length of s, using Propositions 12.3, 12.6 and 12.9. �

While Definition 12.12 is not constructive, Proposition 12.12 suggests a recursive
algorithm that can be used to compute As(R).

12.8 Approximations by Partial Orders

The theory proposed above can be applied to any composite property and any re-
lation. We will now apply it to the approximation of arbitrary binary relations by
partial orders. This section is a refined version of the results initially presented in [6].

We start with defining two operations on binary relations that will later be used
to construct partial order approximations.

Let X be a set and R⊆ X ×X be any relation.

Definition 12.13 ([6]). Let R⊆ X ×X .

1. The relation R•, the acyclic refinement of R, is defined as follows:

aR•b if and only if aRb∧¬(aRcycb),

where aRcycbif and only if aR+b∧ bR+a, that is, aRcycb means a and b belong
to some cycle.

2. The relation R⊂ , the inclusion property kernel of R, is defined as:

aR
⊂

b if and only if bRref ⊂ aRref ∧Rref a⊂ Rref b,

where Rref is a reflexive closure of R, and for every relation S⊆ X ×X ,
Sa = {x | xSa} and aS = {x | aSx}.

3. The relation R⊂∧• is defined as follows: aR⊂∧•bif and only if aR⊂b∧aR•b. �
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Fig. 12.1. [6] An example of a relation R, its partial order approximations R⊂∧• , R⊂ , (R•)⊂ ,
(R•)+ and (R+)•. Dotted lines in (R•)+ and (R+)• indicate the relationship that is not in R
and was added by the transitivity operation. In general, we only have R⊂∧• ⊆ R⊂ and it might
happen that R⊂∧• �= R⊂ (c.f. [6]).

The word ‘kernel’ is often used as an antonym of ‘closure’. While ‘closure’ is de-
fined as the least superset having a desired property, the word ‘kernel’ is often used
to name the greatest subset having a desired property. The ‘inclusion property ker-
nel’ is a kernel in this sense. While R• is an acyclic subset of R, it is not a kernel, as
the greatest acyclic subrelation usually does not exist. Hence, the name ‘refinement’
was proposed and used (see [6]).

Theorem 12.1 ([6]). For every relation R⊆ X ×X, we have.

1. The relations R⊂∧• , R⊂ , (R•)⊂ , (R•)+, and (R+)• are partial orders, and can be
considered as partial order approximations of R.

2. R⊂∧• ⊆ (R•)⊂ ⊆ (R•)+ ⊆ (R+)•.
3. R⊂∧• ⊆ (R⊂ )• = R⊂ ⊆ R. �

The statements like (R•)⊂ should be read as follows, find the acyclic refinement of
R first and then find the inclusion property kernel of R•.

The relations R⊂∧• , R⊂ , (R•)⊂ , (R•)+, (R+)• and Theorem 12.1 are illustrated by
an example in Figure 12.1 (from [6]). A formal definition of a partial order approx-
imation of arbitrary binary relations has been given and justified in [6] and all the
relations R⊂∧• , R⊂ , (R•)⊂ , (R•)+, (R+)• satisfy that definition. The idea of using the
relation (R+)• as a partial order approximation came from Schröder (1985) and was
initially formulated in terms of quasi-orders (see [6]). The other approximations,
to our knowledge, originated from [6] and its conference predecessor. There is no
universal inclusion-type relationship between R⊂ and (R•)⊂ ,(R•)+,(R+)•, and con-
sidering R⊂ alone as a partial order approximation of R is a little bit controversial
(see an example from Figure 1 of [6]), but justifiable in some cases (see [6]).
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Partial order approximations of arbitrary binary relations play a crucial role in
the theory of non-numerical rankings based on the pairwise comparisons paradigm
[4, 7].

Let P be the following set of properties over the relation R, P = {α1,α2,α3,α4,
α5}, where:

• α1
df
= ∀a,b∈ X . bRref ⊂ aRref ∧Rref a⊂ Rref b, that is, α1 = inclusion property,

• α2
df
= ∀a,b,c ∈ X . aRb∧bRa =⇒ aRc, that is, α2 = transitivity,

• α3
df
= ∀a,b ∈ X . ¬(aRcycb), that is α3 = acyclicity,

• α4
df
= α1∧α3,

• α5
df
= (∀a ∈ X . ¬(aRa))∧α2, that is, α5 = partial ordering.

Consider the property-driven rough set approximation space

(X ×X ,{Pα | α ∈ P}).

Directly from the definitions we may conclude that an arbitrary relation R has (see
[6], Sections 3 and 4, for details):

• α1-lower bound, but may not have α1-upper bound,
• α2-lower bound and α2-upper bound,
• α3-lower bound, but may not have α3-upper bound,
• α4-lower bound, but may not have α4-upper bound,
• α5-lower bound, but may not have α5-upper bound,

We have here P∩ = {α1,α2,α3,α4,α5}, P∪ = /0.
It turns out that all the partially ordered approximations R⊂ , R⊂∧• , (R•)⊂ , (R•)+

and (R+)• from Theorem 12.1 can be obtained naturally using the Rough Sets ap-
proach proposed in the previous sections. First, we will show that all operations
involved are either lower or upper α-approximations.

Proposition 12.13 ([6])

1. R⊂ = Aα1
(R),

2. R+ = Aα2(R),
3. R• = Aα3

(R),
4. R⊂∧• = Aα4

(R) = Aα1∧α3
(R),

Proof (1) Since R has α1-lower bound and lbα1(R) = {R⊂}, for the details of the
latter see [6], Sections 3 and 4.
(2) Since α2 ∈ P∩ and R has α2-upper bound we can use Proposition 12.6(2), which
says that Aα2(R) is the smallest transitive relation containing R, that is, R+ (c.f.
[12]).
(3) First note that R has α3-lower bound. By the definition, we have
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Aα3
(R) =

⋂{Q | Q ∈ max(lbα3(R))}. Let aRcycb. This means a = a1Ra2R . . .
Rak−1Rak = b, where i �= j⇒ ai �= a j. Let Q∈ lbα1(R). Note that, Q∈max(lbα1(R))
if and only if there is ar such that (ar−1,ar) /∈ Q but a = a0Qa1...Qar−1 and
arQ...Qak. Hence R• =

⋂{Q |Q ∈ max(lbα3(R))}= Aα3
(R).

(4) Since R has α4-lower bound, Aα4
(R) exists and can be constructed. We have

Aα4
(R)=

⋂{Q |Q∈max(lbα1∧α3(R))}=⋂{Q |Q∈max({R⊂ ∩S | S∈ lbα3(R))})}=
R⊂ ∩⋂{Q |Q∈max(lbα3(R))}. From (3) it follows

⋂{Q |Q∈max(lbα3(R))}= R•,
so R⊂∧• = R⊂ ∩R• = Aα1∧α3

(R) = Aα4
(R). �

Now we will show that compositions of appropriate approximations are allowed.

Proposition 12.14

1. α1 l-preserves α3.
2. α2 u-preserves α3.
3. α3 l-preserves α1 and α3 l-preserves α2.

Proof (1) By Theorem 12.1(1), if R is acyclic, R⊂ is acyclic as well, and clearly
R has α1-lower bound ( /0 for example).
(2) By Theorem 12.1(1), transitivity preserves acyclity and of course R has α2-
lower bound ( /0 for example).
(3) By Theorem 12.1(1), acyclic refinement preserves both transitivity and inclu-
sion property kernel, and of course R has α2-lower bound (for example /0 and X ).

�

The main result of this section can now be formulated as follows.

Proposition 12.15 ([6])

1. (R•)⊂ = Aα1
(Aα3

(R)),
2. (R⊂ )• = Aα3

(Aα1
(R)) = R⊂ , so Aα3

(Aα1
(R)) = Aα1

(R),
3. (R•)+ = Aα2(Aα3

(R)),
4. (R+)• = Aα3

(Aα2(R)).

Proof From Propositions 12.13 and 12.14, and, for (2), from Theorem 12.1(3). �

Proposition 12.15 illustrates well the basic properties of property-driven rough set
approximations of binary relations by partial orders. Below we provide some obser-
vations.

• Property α5 does not appear in Proposition 12.15 at all. It is actually a rather
useless property. No upper bound exists in a general case, and the relation
Aα5

(R) is usually not very interesting (c.f. [6]). Property α5 (being a partial
order) is just too strong to be efficiently handled as a whole. We can get much
better results when we treat the components of α5, for instance acyclicity and
transitivity, separately and then compose the results obtained.
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• We have R⊂∧• = Aα4
(R) = Aα1∧α3

(R)⊆ (R•)⊂ = Aα1
(Aα3

(R)), and
R⊂∧• = Aα1∧α3

(R)⊆Aα3
(Aα1

(R)) = (R⊂ )• = R⊂ which illustrates Proposition
12.11(1).

• In general, Aα1
(Aα3

(R)) = (R•)⊂ and Aα3
(Aα1

(R)) = (R⊂ )• = R⊂ are not
equal.

• We also have (R•)+ = Aα2(Aα3
(R))⊆Aα3

(Aα2(R)) = (R+)•. which illustrates
Proposition 12.10(2).

While the approximations of arbitrary relations by partial orders, motivated by pair-
wise comparisons non-numerical ranking [4, 7], were initially defined in terms of the
standard theory of relations, their Rough Sets versions better explain those defini-
tions. The Rough Sets versions provide formal motivation and explanation in places
where in the classical versions were just ‘gut feelings’.

12.9 Approximations by Equivalence Relations

In this section we will apply the theory of property-driven rough approximations to
the approximation of arbitrary binary relations by equivalence relations.

We will start with the classical well-known result.

Proposition 12.16 (Folklore, c.f. [2, 8, 12])
For every relation R⊆X×X, the relations ((Rref )sym)+=((Rsym)ref )+=((Rsym)+)ref

are equivalence relations, and R⊆ ((Rref )sym)+. �

However, in general, the relation ((Rref )+)sym = ((R+)ref )sym = ((R+)sym)ref may
not be an equivalence relation. The simplest example is probably X = {a,b,c}
and R={(a,c),(b,c)}. Then, ((Rref )+)sym ={(a,c),(b,c),(c,a),(c,b),(a,a),(b,b),
(c,c)}, and this relation is not transitive as we have bRc and cRa, but not bRa.

Symmetric closure is not the only method for enforcing symmetry. We can also
used the idea of ‘kernel’ for this task.

Definition 12.14. Let R⊆ X ×X , we define

R
sym

= {(a,b) | (a,b) ∈ R∧ (b,a) ∈ R}.

The relation R
sym

will be called a symmetric kernel of R. �

It turns out that the symmetric kernel preserves transitivity and can also be used as
a tool to construct an approximation by an equivalence relation.

Proposition 12.17. For every R⊆ X ×X, we have:

1. R
sym

is symmetric and R
sym ⊆ R.

2. R
sym

=
⋃{Q |Q ⊆ R and Q is symmetric }.
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3. ((Rref )
sym

)+ = ((R
sym

)ref )+ = ((R
sym

)+)ref .
4. ((Rref )+)

sym
= ((R+)ref )

sym
= ((R+)

sym
)ref .

5. ((Rref )
sym

)+ is an equivalence relation.
6. ((Rref )+)

sym
is an equivalence relation.

Proof. (1) From the definition.
(2) It suffices to show that if Q ⊆ R and Q is symmetric, then Q ⊆ R

sym
. Let

(a,b) ∈ Q, so (a,b) ∈ R. If (b,a) /∈ R then (b,a) /∈ Q, and, since Q is symmetric,
(a,b) /∈Q. Hence (b,a)∈Q. Since Q⊆ R, (b,a)∈R. But if (a,b)∈ R and (b,a)∈R,
then (a,b) ∈ R

sym
. Hence Q ⊆ R

sym
.

(3) and (4). Reflexive closure is just adding the identity relation. It does not inter-
fer with either transitive closure or symmetric kernel operation.
(5) Since transitive closure preserves symmetry (c.f. [12]).
(6) It suffices to show that symmetric kernel preserves transitivity. Define Q =
(Rref )+. Clearly Q is transitive. Suppose that Q

sym
is not. This means thare are a,b,c∈

X such that aQ
sym

b and bQ
sym

c but ¬(aQ
sym

c). By Definition 12.14, Q
sym ⊆ Q, so

aQb and bQc. The relation Q is transitive, so we also have aQc. Since ¬(aQ
sym

c),
then, from Definition 12.14, ¬(cQ

sym
a). However, as Q

sym
is symmetric, aQ

sym
b and

bQ
sym

c means that we also have bQ
sym

a and cQ
sym

b, and consequently bQa and cQb.
Since Q is transitive, then have cQa. But aQc and cQa implies that aQ

sym
c and

cQ
sym

a, contradicting ¬(aQ
sym

c). Hence Q
sym

is transitive. �

The relations (R
sym

)+, (R+)
sym

, (Rsym)+ and Proposition 12.17 are illustrated by an
example in Figure 12.2. While R⊆ (Rsym)+, there is no universal inclusion relation-
ship between R and neither (R

sym
)+ nor (R+)

sym
.

Let P be the following set of properties over the relation R, P = {β1,β2,β3,β4},
where:

• β1
df
= ∀a ∈ X . aRa, that is, β1 = reflexivity,

• β2
df
= ∀a,b ∈ X . aRb⇒ bRa, that is, β2 = symmetry,

• β3
df
= ∀a,b,c ∈ X . aRb∧bRa =⇒ aRc, that is, β3 = transitivity,

• β4
df
= β1∧β2∧β3, that is, β3 = equivalence relation.

Consider the property-driven rough set approximation space

(X ×X ,{Pα | α ∈ P}).

Directly from the definitions, we may conclude that an arbitrary relation
R⊆ X ×X has:

• β1-upper bound, but may not have β1-lower bound, β1-lower bound exists only
when R is already reflexive,

• β2-upper bound, but may not have β2-lower bound, β2-lower bound exists only
when R∩ Id �= /0,

• β3-lower bound and β3-upper bound,
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Fig. 12.2. An example of a relation R and the results of applications of transitive closure,
symmetric closure and symmetric kernel, in various orders. If R is reflexive then, the relations
(R+)

sym
, (Rsym)+ and (R

sym
)+ are equivalence relations. In this figure a •←→• b means

a •−→• b and a •←−• b .

• β4-upper bound, but may not have β4-lower bound, β4-lower bound exists only
when R is reflexive,

We have here P∩ = {β1,β2,β3,β4} and P∪ = {β1,β2}.
It turns out that all the approximations by equivalence relations from Propositions

12.16 and 12.17 can naturally be obtained using the Rough Sets approach proposed
in the previous sections. First, we will show that all operations involved are either
lower or upper α-approximations.

Proposition 12.18. Let R be a relation on X

1. Rref = Aβ1
(R).

2. Rsym = Aβ2
(R).

3. R
sym

= Aβ2
(R).

4. R+ = Aβ3
(R).

Proof. (1) Clearly R has β1-upper bound. We have ubβ1
(R) = {Q | Rref ⊆ Q},

Hence, min(ubβ1
(R)) = {Rref }.
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(2) Since β2 ∈ P∩ and R has β2-upper bound we can use Proposition 12.6(2),
which says that Aβ2

(R) is the smallest symmetric relation containing R, that is, Rsym

(c.f. [12]).
(3) Since β2 ∈ P∪ and R, has β2-lower bound we can use Proposition 12.6(1),
which says that Aβ2

(R) is the greatest symmetric relation included R. From Propo-

sition 12.17(2), it is R
sym

.
(4) Since β3 ∈ P∩ and R has β3-upper bound we can use Proposition 12.6(2),
which says that Aβ3

(R) is the smallest transitive relation containing R, that is, R+

(c.f. [12]). �

We will now show that the compositions of appropriate approximations are allowed.

Proposition 12.19

1. β2 l-preserves and u-preserves β1.
2. β3 u-preserves β1.
3. β2 l-preserves β3 but β2 does not u-preserve β3.
4. β3 u-preserves β2.

Proof (1) Clearly if R is reflexive, then R
sym

and Rsym are also reflexive. This and
Proposition 12.18(2) and (2) prove this assertion.
(2) If R is reflexive, then R+ is also reflexive. Hence, by Proposition 12.18(4) β3

u-preserves β1.
(3) If R is transitive, then by Proposition 12.17(6), R

sym
is also transitive. Hence,

by Proposition 12.18(3), β2 l-preserves β3. However, Rsym may not be transitive, as
the example after Proposition 12.16 shows. Hence by Proposition 12.18(2), β2 does
not u-preserve β3.
(4) If R is symmetric, then R+ is symmetric too. Hence, by Proposition 12.18(4),
β3 u-preserves β2. �

We can now present the main result of this section.

Proposition 12.20. Let R be a relation on X.

1. ((Rref )sym)+ = Aβ3
(Aβ2

(Aβ1
(R))).

2. ((Rref )
sym

)+ = Aβ3
(Aβ2

(Aβ1
(R))).

3. ((Rref )+)
sym

= Aβ2
(Aβ3

(Aβ1
(R))).

4. ((Rref )
sym

)+ ⊆ ((Rref )+)
sym

.

Proof. (1), (2) and (3) A simple consequence of Propositions 12.18 and 12.19.
(4) From Proposition 12.10(2) we have
Aβ3

(Aβ2
(Aβ1

(R)))⊆ Aβ2
(Aβ3

(Aβ1
(R))). �

Proposition 12.20 illustrates well the basic properties of property-driven rough set
approximations of binary relations by equivalence relations. Below, we provide
some observations.
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• Property β4 does not appear in Proposition 12.20 at all. It is actually a rather
useless property. Quite often Aβ4

(R) = /0 and Aβ4
(R) = X, which is not very

helpful. The property β4 (being an equivalence relation) is just too strong to
be efficiently handled as a whole. We can get much better results when we treat
the components of β4, reflexivity, symmetry and transitivity, separately and then
compose them together in appropriate manner.

• The assertion ((Rref )
sym

)+ ⊆ ((Rref )+)
sym

can of course be proved indepen-
dently, without using Rough sets, but Proposition 12.10(2) makes this (other-
wise not obvious) proof trivial.

• We have applied the reflexive closure first, but in fact, it can be applied as the
second or third as well (see Propositions 12.16, 12.17(3) and 12.17(4)).

Standardly, ((Rref )sym)+ is considered as the only approximation of R by an equiv-
alence relation [12]. In the Rough sets approach, it is natural to think of both upper
and lower approximations, which in this case leads to the design of ((Rref )

sym
)+ and

((Rref )+)
sym

approximations.

12.10 Final Comment

The approach presented in this chapter is called property-driven as its main purpose
is to find an approximation, either lower or upper, that satisfies a given predicate,
called a property. It could be seen as a substantial extension of the ideas presented
for relations in [16, 17] and specially recently in [6]. Both this chapter and [6] were
motivated by problems occurring when non-numerical ranking is constructed from
empirical data [4, 7]. When thinking in terms of properties, very often either only
lower or only upper approximation does make sense, and quite often neither of them
if the property is too sophisticated. This lead us to the idea of composite and mixed
approximations.

Proposition 12.11 might be the most useful result of this chapter as it indicates
how properties should be dealt with to get the best approximations.

We would like to point out that all the assumptions from Section 12.4, especially
Assumption 1, relate only to elementary properties. The requirements for composite
properties are indirect and so much weaker.

We believe the schedules can often be interpreted as a simulation of ‘property-
driven non-numerical metrics’, and that finding a good schedule means finding a
good approximation. But finding a good schedule appears to be more art than sci-
ence, as our experience with partial orders and equivalence relations indicates.

In general, for a proper schedule s, we usually have R\As(R) �= /0, As(R)\R �= /0
and R∩As(R) �= /0. The formal definition of the ‘best’ proper schedule is an open
problem. However, we believe that any rule, if proposed, could only be treated as a
guide, as the problem seems to be very domain related.

In this chapter, we deal only with single n-ary relations and the composite prop-
erties are of the form α1 ∧α2 ∧ ...∧αk. A natural extension of the presented the-
ory would be allowing composite properties with the operators of conjunction and
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negation as well. Another natural extension would be to allow properties with more
than one relational symbol, that is, an extension to the relational systems (a tuple
(X ,R1, ...,Rk), where X is a set and R1, ...,Rk are relations on X , c.f. [2]), as suggested
in [5]. For the former extension, we see some technical problems. For the latter ex-
tension, while the extension of general theory is not problematic, one just needs to
follow [5], we expect plenty of technical problems for particular applications. While
in theory any abstract data type (as defined for example in [1]), can be represented
by a relational structure, it is seldom done in practice, as much of the intution is then
lost. From the applications point of view, an extension of the ideas presented here
to (at least some of) abstract algebras [2], would be very helpful.
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Chapter 13
Towards a Comprehensive Similarity Analysis
of Voting Procedures Using Rough Sets
and Similarity Measures

Janusz Kacprzyk, Hannu Nurmi, and Sławomir Zadrożny

To Professor Zdzisław Pawlak, a friend and mentor, who has invented rough sets, a tool
combining an ingenious simplicity with an extraordinary conceptual strength, intuitive
appeal, and application potential

Abstract. An interesting and important problem of how similar (and/or dissimilar)
are the voting procedures (social choice functions) is dealt with. First, we extend
our previous qualitative-type analysis based on rough sets theory which makes it
possible to partition the set of voting procedures considered into some subsets within
which the voting procedures are indistinguishable, that is, (very) similar. Then, we
propose an extension of those analyses towards a quantitative evaluation of a degree
of similarity. We use some known measures of similarity and dissimilarity for binary
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patterns (strings) exemplified by the one based on the Hamming distance and that
due to Jaccard-Needham. The use of both the measures makes it possible to obtain
a quantitative evaluation of how similar the particular voting procedures are. This
quantitative evaluation, when combined with a more qualitative evaluation obtained
by using rough sets, provide a comprehensive view of similarity.

Keywords: Social choice function, voting procedure.

13.1 Introduction

This chapter deals with the problem of voting procedures that are in this chapter
considered more in the context of political elections, that is, social systems, than
multi-agent systems in which voting has been widely employed and is constantly
gaining importance – cf. for a comprehensive exposure in particular Pitt et al. [42]
but also Pitt et al. [40, 41].

The voting procedures are perhaps the best known and most intuitively appealing
examples of social choice functions. A voting procedure is meant to determine the
winner of an election as a function of votes cast by the voters. Obviously, the votes
express the individual voter preferences which usually differ. Social choice theorists
have developed a huge number of various procedures (social choice functions) and
criteria for their evaluation (cf. Arrow, Sen and Suzumura [2], Kelly [20], Plott [43],
Schwartz [48], etc.)

A general setting is as follows: we have n, n ≥ 2 individuals who present their
testimonies over the set of m, m ≥ 2, options, assumed here to be, for instance,
individual preference relations defined as binary preferences over the set of options,
orderings over the set of options, etc., and we focus on social choice functions, a
class of social choice procedures that select a set of winning alternatives, that is,
a set of options that best reflects the opinions of the individuals, as a function of
individual preferences (or orderings) over the set of options. This may clearly be
easily recast in terms of voting.

A major concern in social choice (voting) theory has been the problem whether
and to which extent the social choice (voting) procedures do or do not satisfy some
plausible and reasonable axioms and conditions. Perhaps the best known example
is here the famous Arrows theorem, and a multitude paradoxes of voting. We will
not deal here with this problem, and refer the reader for more information to, for
instance, Arrow [1], Gibbard [12], Kelly [19], May [22], Nurmi [27], Riker [46],
Satterthwaite [47], etc.

An important problem is also how similar or dissimilar (depending on the context
and/or purpose) the particular voting procedures are. Except for a foundational refer-
ence book by Nurmi [27], the papers relevant in this respect, and which basically fol-
low to some extent our line of reasoning, may be exemplified by: Baigent [3], Elkind,
Faliszewski and Slinko [5], McCabe-Dansted and Slinko [23], Richelson [45], etc.
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The second purpose of this chapter is to show that for the analysis of how sim-
ilar (or dissimilar) the particular voting procedures are Pawlak’s rough sets (cf.
Pawlak [33, 34] or Pawlak and Skowron [36]) may provide a set of very useful
tools and techniques which are, on the one hand, simple and intuitively appealing,
and – on the other hand – give much insight. Basically, we consider the voting pro-
cedures and look at some set of popular and well-established criteria against which
the voting procedures are evaluated. However, by using some rough sets based anal-
ysis we will first find a subset of criteria that are most characteristic for the particular
procedure, that is, those which really differentiate the particular voting procedures,
and then proceed with a similarity type analysis. The idea was proposed first by
Fedrizzi, Kacprzyk and Nurmi [10], and we will extend it here to obtain more in-
sight that might be interesting for the readers interested or working in social choice
and voting theory. This purpose has implied that we have employed a limited set
of rough sets tools and techniques to make the chapter comprehensible to an au-
dience with possibly limited familiarity with rough sets. One should mention that
Pawlak [35] himself was interested in conflict analyses and resolution, and proposed
an original rough sets based framework. Although it is different than the one used
here for the analysis of similarity of the voting procedures, some elements of it are
to some extent close in spirit with the philosophy of our approach.

In our analysis we will follow what might be termed an indiscernibility based
analysis so that in our evaluation of the similarity of voting procedures we will use
first of all “qualitative” rough sets analysis. However, it will give us much insight.
That analysis will then be augmented with the use of some basic quantitative mea-
sures of similarity of binary patterns, namely those based on the Hamming distance
and the Jaccard-Needham mesure. This will give us a quantitative view of the simi-
larity of the voting procedures. However, a comprehensive view of that similarity is
first obtained by the use of the combination of both the approaches employed.

The use of other, more sophisticated measures of similarity (for instance, those
due to Dice, Yule, Russell-Rao, Sokal-Michener, Rogers-Tanimoto, and Kulczyński
– cf. Tubbs [50]), both of those which satisfy the metric condition and not, is beyond
the scope of this chapter and will be the subject of next papers.

Notice that this approach is different from the approach by Kacprzyk and
Zadrożny [17], [18] in which some distinct classes of voting procedures are de-
termined using the concept of an ordered weighted averaging (OWA) aggregation
operator (cf. Yager and Kacprzyk [51], Yager, Kacprzyk and Beliakov [52]) in which
the change of the order of variables to be aggregated and the type of weights (i.e.
the aggregation behavior) determines various classes of voting procedures.

To summarize, this chapter is a tribute to Professor Zdzisław Pawlak, who has
invented rough sets theory that has combined an ingenious simplicity with an ex-
traordinary conceptual power that can help solve problems in so many different and
seemingly distant areas, in voting and social choice in our case.



362 J. Kacprzyk, H. Nurmi, and S. Zadrożny

13.2 A Brief Introduction to the Theory of Rough Sets

In this section we will briefly recall some basic concepts and properties of rough sets
theory which may be useful for the social choice and voting community to follow the
discussion in this chapter. For more information on rough sets, we refer the reader
to, for instance, the seminal paper by Pawlak [33], and other sources exemplified
by Pawlak himself [34], Polkowski (e.g., [44]), Skowron (e.g., [36], Pawlak and
Skowron, [37], [38], [39],), and Słowiński (e.g., [13]) and their collaborators).

Basically, the concept of a rough set provides a conceptually simple and efficient
tool for the representation and processing of imprecise knowledge. Roughly speak-
ing, the concept of a rough set is employed in the contexts where the classes into
which the objects are to be classified are imprecise but can nevertheless be approxi-
mated by precise sets, from above and below.

Suppose that U = {u} is a universe of discourse. It can usually be partitioned in
various manners into a family R of partitionings or equivalence relations defined on
U . A knowledge base, denoted by K, is the pair K = (U,R). Let now P be a non-empty
subset of R, P ⊂ R,P �= /0. Then, the intersection of all equivalence relations (or, in
other words, partitionings) in P, which is also an equivalence relation, is called an
indiscernibility relation over P, denoted by IND(P) and the family of its equivalence
classes is termed the P-basic knowledge about U in knowledge base K. Clearly, it
represents all that can be said about the elements of the universe of discourseU under
P. That is, one cannot classify the elements of U any deeper than to the equivalence
classes of IND(P). For instance, if U consists of some objects and P = {R1,R2}
such that R1 partitions the objects into the classes labeled “heavy” and “lightweight”,
and R2 partitions into the classes labeled “black” and “white”, then all that can be
said about any element of U is that it belongs to some of the four combinations of
particular classes: “heavy-and-black”, “heavy-and-white”,“lightweight-and-black”,
“lightweight-and-white” that are implied by U as shown above.

Equivalence classes of IND(P) are called the basic categories (concepts) of
knowledge P. If Q ∈ R, that is, Q is an equivalence relation on U , then its equiva-
lence classes are called Q-elementary categories (concepts) of knowledge R.

Now, suppose that X ⊂ U , and R is an equivalence relation on U . Then, X is
called R-definable or R-exact if it is a union of some R-elementary categories (R-
basic categories); otherwise, it is called R-rough.

Rough sets can be approximately defined by associating with any X ⊂ U and
any equivalence relation R on U the following two sets (U/R denotes the set of all
equivalence relations of R):

• a so-called lower approximation of X :

RLX =
⋃
{Y ∈U/R | Y ⊂ X} (13.1)

• a so-called upper approximation of X :

RU X =
⋃
{Y ∈U/R | Y ∩X �= /0} (13.2)

and a rough set is defined as the pair (RL,RU).
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The meaning is obvious as the lower approximation yields those classes of equiv-
alence relation R which are subsets of X , that is, it contains those elements which are
necessarily also elements of X , while the upper approximation yields those classes
of equivalence relation R which have at least one common element with X .

For our purpose the following two concepts related to the reduction of knowl-
edge, that is, their effective and efficient expression, are crucial. First, suppose that
we have a family of equivalence relations R on U , and one of its elements Z. Then,
Z is called dispensable in R if

IND(R) = IND(R\ {Z}) (13.3)

and otherwise it is called indispensable. If each Z in R is indispensable, then R is
called independent.

Suppose now that we have a family of equivalence relations, R, and its subfamily,
Q⊂ R. If

• Q is independent, and
• IND(Q) = IND(R),

then Q is called a reduct of R; it is clear that the reducts need not be unique.
The core of R is the set of all indispensable equivalence relations in R. Obviously,

the core of R is the intersection of all reducts of R – cf. Pawlak [33].
With respect to knowledge reduction, the concepts of a core and reduct can be

viewed as follows. The core consists of those classifications (equivalence relations)
which are most essential in the knowledge available, that is, no equivalence relation
that belongs to the core can be discarded in the knowledge reduction process (aimed
at a more effective and efficient representation) without distorting the knowledge
itself. A reduct, on the other hand, yields a set of equivalence relations which is
sufficient for the characterization of knowledge available without losing anything
relevant.

An interesting method for the determination of the reducts and cores using
Boolean reasoning was proposed by Pawlak [34], and Pawlak and Skowron [38].

Notice that in this chapter we will deal with analyses based on indiscernibility
relations. In rough sets theory, the concept of a discernibility relation (cf. Yao and
Zhao [53] is also employed and can be used in the context of similarity analysis
of the voting procedures but this interesting approach will not be considered in this
papers.

These basic elements of rough sets theory will now be employed in the problem
considered.

13.3 A Comparison of Voting Procedures

There is a rich literature on social choice functions, notably voting procedures, and
– as we have already indicated in Section 13.1 – there is a multitude of various
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social choice functions (voting procedures), both simple and sophisticated, old and
new, intuitively appealing and not, widely employed and not, etc. There is no clear
“winner” as one can easily show examples when any particular procedure does not
yield good results. The problem of comparison and evaluation of voting procedures
(social choice functions) has been widely studied in the literature and the interested
reader is referred to, for instance, Richelson [45], Straffin [49], Nurmi [27].

A simple and intuitive approach to the comparison of voting procedures (social
choice functions), using rough sets as a point of departure, has been proposed by
Fedrizzi, Kacprzyk and Nurmi [10]. This chapter is based on that idea, and extends
it.

First, to keep our discussion clear and constructive and to better present the idea
of our approach, we will assume here the basic framework adopted by Fedrizzi,
Kacprzyk and Nurmi [10], and refer our analysis directly to an example of specific
voting procedures and evaluation criteria considered. Their choice is well motivated
by results obtained in social choice and voting theory.

Suppose that we take the following 13 popular and widely used voting procedures
(social choice functions), and very briefly summarize their essence:

1. Amendment: proposals (options) under consideration are paired with the status
quo; and if a variation on the proposal is introduced, then it is paired with the
proposal and voted on as an amendment prior to the final vote, then, if the
amendment succeeds, the amended proposal is eventually paired with the status
quo in the final vote, otherwise, the amendment is eliminated prior to the final
vote; this is a very specific voting procedure.

2. Copeland: selects the option with the largest so-called Copeland score which is
the number of times an option beats other options minus the number of times
that option loses to other options in pairwise comparisons,

3. Dodgson: each voter gives a rank ordered list of all options, from the best to
worst, and the winner is the option for which we need to perform the minimum
number of pairwise swaps (added over all candidates) before they become a
Condorcet winner, that is, an option that defeats every other option in pairwise
contests with a majority of votes.

4. Schwartz: selects the set of options over which the collective majority prefer-
ences are cyclic and the entire cycle is preferred over the other options; it is
the single element in case there is a Condorcet winner, otherwise it consists of
several options,

5. Max-min: selects the option for which the minimal support in all pairwise com-
parisons is the largest,

6. Plurality: each voter selects one option (or none in the case of abstention), and
the options with the most votes win,

7. Borda: each voter provides a linear ordering of the options which are assigned
a score (the so-called Borda score) as follows: if there are n candidates, n− 1
points are given to the first ranked option, n−2 to the second ranked, etc.; these
numbers are summed up for each option to end up with the Borda score for that
option, and the option(s) with the highest Borda score win(s).
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8. Approval: each voter selects a subset of the candidate options and the option(s)
with the most votes is/are the winner(s).

9. Black: selects the Condorcet winner, that is, an option that beats or ties all oth-
ers in pairwise comparisons, when one exists and the Borda count winner (as
described above) in the absence of a Condorcet winner,

10. Runoff: the option ranked first by more than half of the electorate is chosen
if one exists. Otherwise, the two options ranked first by more voters than any
other option are compared with each other and the winner is the one ranked first
(among the remaining options) by more voters than the other option.

11. Nanson: we iteratively use the Borda count, at each step dropping the candidate
with the smallest score (majority)1,

12. Hare: the ballots are linear orders over the set of options, and we repeatedly
delete the options which receive the fewest number of first places in the votes,
and the option(s) that remain(s) are declared as the winner(s),

13. Coombs: each voter rank orders all of the options, and if one option is ranked
first by an absolute majority of the voters, then it is the winner, otherwise, the
option which is ranked last by the largest number of voters is eliminated, and
the procedure is repeated.

With respect to the criteria against which the voting procedures are to be compared,
there is a huge number of them, but many voting theorists consider the following
ones to be relevant (cf. Nurmi [27]):

1. Majority winner criterion: if there exists a majority (at least a half) that ranks a
single option at the top (the first), higher than all other candidates, that option
should win.

2. Monotonicity criterion: it is impossible to cause a winning option to lose by
ranking it higher, or to cause a losing option to win by ranking it lower.

3. Consistency criterion: if the electorate is divided in two and an option wins in
both parts, it should win in general.

4. Weak Pareto criterion: whenever all voters rank an option higher than another
option, the latter option should never be chosen.

5. Participation criterion: to vote honestly should be better than not to vote at all.
6. Condorcet winner criterion: if an option beats every other option in pairwise

comparisons, it should always win.
7. Condorcet loser criterion: if an option loses to every other option in pairwise

comparisons, it should always loose.
8. Independence of irrelevant alternatives: if an option is added or removed, the

relative rankings of the remaining options should remain the same.
9. Independence of clones: the outcome should be the same if we add options

identical to the existing ones.
10. Reversal symmetry: if individual preferences of each voter are inverted, the

original winner should never win.

1 This may in fact be considered to be a modified version of the Nanson rule, cf. Fish-
burn [11].
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11. Heritage criterion: if an option is chosen from the entire set of options using a
particular voting procedure, then it should also be chosen from all subsets of the
set of options (to which it belongs) using the same voting procedure and under
the same preferences.

12. Polynomial time: it should be possible to find the winner in polynomial time
with respect to the number of options and voters.

In our analyses we will only use the following 7 criteria, which are often consider
the most relevant, denoted as follows:

1. A – Condorcet winner,
2. B – Condorcet loser,
3. C – majority winner,
4. D – monotonicity,
5. E – weak Pareto winner,
6. F – consistency, and
7. G – heritage.

We shall focus on the following 13 procedures:

1. Amendment,
2. Copeland,
3. Dodgson,
4. Schwartz,
5. Max-min,
6. Plurality,
7. Borda,
8. Approval,
9. Black,

10. Runoff,
11. Nanson,
12. Hare,
13. Coombs.

The point of departure is the “state of the art” presented in Table 13.1 which shows
which voting procedures satisfies which criterion (“0” stands for “does not satisfy”,
and “1” stands for “satisfies”).

It is easy to imagine that the data in Table 13.1 can be directly used for the com-
parison of the 13 voting procedures considered against the 7 criteria assumed by
a pairwise comparison of rows. However, such a straightforward approach would
not provide any deeper insight into the very differences between the voting proce-
dures as the comparison would concern just particular voting procedures and not
their more or less homogeneous classes which are clearly really interesting. This
problem is closely related to Kacprzyk and Zadrożny’s [17], [18] OWA operator
based approach to the classification of voting procedures into a number of more
general classes that are related, first, to the order in which the aggregation via an
OWA operator proceeds and, second, to specific sets of weights of the respective
OWA operators.
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Table 13.1. Satisfaction of 7 criteria by 13 voting procedures

Voting procedure Criteria

A B C D E F G

Amendment 1 1 1 1 0 0 0
Copeland 1 1 1 1 1 0 0
Dodgson 1 0 1 0 1 0 0
Schwartz 1 1 1 1 0 0 0
Max-min 1 0 1 1 1 0 0
Plurality 0 0 1 1 1 1 0
Borda 0 1 0 1 1 1 0
Approval 0 0 0 1 0 1 1
Black 1 1 1 1 1 0 0
Runoff 0 1 1 0 1 0 0
Nanson 1 1 1 0 1 0 0
Hare 0 1 1 0 1 0 0
Coombs 0 1 1 0 1 0 0

13.4 Equivalent Voting Procedures and Indispensable Criteria

Therefore, we will first try to obtain a more compact representation of the voting
procedures and the satisfaction of criteria, operating for clarity on the example con-
sidered shown in Table 13.1.

First, let us concentrate on the crucial properties or attributes of the voting pro-
cedures by merging them into one class such that if they satisfy the same properties
within the set of criteria, they may be considered to be equivalent, that is, belong to
one class.

Thus, for example, the amendment and Schwartz’ procedures have identical prop-
erties in Table 13.1. Hence, we can delete one of them. Similarly, Copeland’s and
Black’s ones have identical properties in the table. The same holds for the runoff,
Hare’s and Coombs’ ones. Therefore, this implies that by deleting all but one in
each of the above set of identical rows (voting procedures), we obtain Table 13.2.

Hence, since each row is now different, we have classified the voting procedures
considered into 9 “really different” (classes of) voting procedures:

1. Amendment (which stands now for Amendment and Schwartz),
2. Copeland (which stands now for Copeland and Black),
3. Dodgson,
4. Max-min,
5. Plurality,
6. Borda,
7. Approval,
8. Runoff (which stands now for Runoff, Hare and Coombs).
9. Nanson.
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Table 13.2. Satisfaction of 7 criteria by 9 equivalent (classes of) voting procedures

Voting procedure Criteria

A B C D E F G

Amendment 1 1 1 1 0 0 0
Copeland 1 1 1 1 1 0 0
Dodgson 1 0 1 0 1 0 0
Max-min 1 0 1 1 1 0 0
Plurality 0 0 1 1 1 1 0
Borda 0 1 0 1 1 1 0
Approval 0 0 0 1 0 1 1
Runoff 0 1 1 0 1 0 0
Nanson 1 1 1 0 1 0 0

Continuing in that spirit, we will try to further reduce the set of data characteriz-
ing the voting procedures and criteria by trying to find the indispensable criteria.

Just to recall this concept, if we have a family of equivalence relations R on U ,
and one of its elements Z, then Z is called dispensable in R if

IND(R) = IND(R\ {Z})

and otherwise it is called indispensable. If each Z in R is indispensable, then R is
called independent. Notice that we consider here each attribute (which corresponds
to a criterion) to be generating such an equivalence relation that to the same class
there belong those voting procedures that fulfill this criterion, and to another class
those which do not. This process is done by eliminating the criteria one at a time
and finding out whether the procedures can be discerned from each other in terms
of the remaining criteria.

Therefore, if we start from Table 13.2, by eliminating criterion A we get
Table 13.3.

Table 13.3. Elimination of criterion A from Table 13.2

Voting procedure Criteria

B C D E F G

Amendment 1 1 1 0 0 0
Copeland 1 1 1 1 0 0
Dodgson 0 1 0 1 0 0
Max-min 0 1 1 1 0 0
Plurality 0 1 1 1 1 0
Borda 1 0 1 1 1 0
Approval 0 0 1 0 1 1
Runoff 1 1 0 1 0 0
Nanson 1 1 0 1 0 0
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The two last rows of Table 13.3 are identical, so that to distinguish those two
last rows, that is, Runoff and Nanson, criterion A is necessary, that is, criterion A is
indispensable.

Then, we delete criterion B and obtain Table 13.4.

Table 13.4. Elimination of criterion B from Table 13.2

Voting procedure Criteria

A C D E F G

Amendment 1 1 1 0 0 0
Copeland 1 1 1 1 0 0
Dodgson 1 1 0 1 0 0
Max-min 1 1 1 1 0 0
Plurality 0 1 1 1 1 0
Borda 0 0 1 1 1 0
Approval 0 0 1 0 1 1
Runoff 0 1 0 1 0 0
Nanson 1 1 0 1 0 0

Now, Copeland and Max-Min become indistinguishable so that criterion B is
indispensable.

Next, the elimination of criterion C leads to Table 13.5.

Table 13.5. Elimination of criterion C from Table 13.2

Voting procedure Criteria

A B D E F G

Amendment 1 1 1 0 0 0
Copeland 1 1 1 1 0 0
Dodgson 1 0 0 1 0 0
Max-min 1 0 1 1 0 0
Plurality 0 0 1 1 1 0
Borda 0 1 1 1 1 0
Approval 0 0 1 0 1 1
Runoff 0 1 0 1 0 0
Nanson 1 1 0 1 0 0

All rows in Table 13.5 are different. This means that criterion C is unnecessary
to differentiate between those choice functions. Therefore, we can conclude that C
is dispensable.

Further, we delete criterion D and obtain Table 13.6. Now, Copeland and Nanson
are indistinguishable so that criterion D is indispensable.

Next, we eliminate criterion E and get Table 13.7.
Two uppermost rows are now identical. Thus, criterion E is indispensable.
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Table 13.6. Elimination of criterion D from Table 13.6

Voting procedure Criteria

A B C E F G

Amendment 1 1 1 0 0 0
Copeland 1 1 1 1 0 0
Dodgson 1 0 1 1 0 0
Max-min 1 0 1 1 0 0
Plurality 0 0 1 1 1 0
Borda 0 1 0 1 1 0
Approval 0 0 0 0 1 1
Runoff 0 1 1 1 0 0
Nanson 1 1 1 1 0 0

Table 13.7. Elimination of criterion E from Table 13.2

Voting procedure Criteria

A B C D F G

Amendment 1 1 1 1 0 0
Copeland 1 1 1 1 0 0
Dodgson 1 0 1 0 0 0
Max-min 1 0 1 1 0 0
Plurality 0 0 1 1 1 0
Borda 0 1 0 1 1 0
Approval 0 0 0 1 1 1
Runoff 0 1 1 0 0 0
Nanson 1 1 1 0 0 0

Next, criterion F is eliminated which is shown in Table 13.8 in which no pair of
rows is identical which means that criterion F is dispensable.

Table 13.8. Elimination of criterion F from Table 13.2

Voting procedure Criteria

A B C D E G

Amendment 1 1 1 1 0 0
Copeland 1 1 1 1 1 0
Dodgson 1 0 1 0 1 0
Max-min 1 0 1 1 1 0
Plurality 0 0 1 1 1 0
Borda 0 1 0 1 1 0
Approval 0 0 0 1 0 1
Runoff 0 1 1 0 1 0
Nanson 1 1 1 0 1 0
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Finally, criterion G is eliminated which is shown in Table 13.9. We can see that
all rows are different so that we can conclude that criterion G is dispensable.

Table 13.9. Elimination of criterion G from Table 13.2

Voting procedure Criteria

A B C D E F

Amendment 1 1 1 1 0 0
Copeland 1 1 1 1 1 0
Dodgson 1 0 1 0 1 0
Max-min 1 0 1 1 1 0
Plurality 0 0 1 1 1 1
Borda 0 1 0 1 1 1
Approval 0 0 0 1 0 1
Runoff 0 1 1 0 1 0
Nanson 1 1 1 0 1 0

We proceed further with our analysis. We can see from our discussion that the
core is the set of indispensable criteria, that is, {A, B, D, E}. Moreover, the reduct
is in this case unique, which need not always be the case, and is also equal to the set
{A, B, D, E}. That is, we need just that set of criteria to distinguish the particular
voting procedures from each other in the setting (criteria) assumed.

Table 13.10. Satisfaction of the criteria belonging to the core by the particular voting proce-
dures

Voting procedure Criteria

A B D E

Amendment 1 1 1 0

Copeland 1 1 1 1

Dodgson 1 0 0 1

Max-min 1 0 1 1

Plurality 0 0 1 1

Borda 0 1 1 1

Approval 0 0 1 0

Runoff 0 1 0 1

Nanson 1 1 0 1

We can proceed with our analysis by considering the reduct (or core). In
Table 13.10 we present a visualization of which criteria are indispensable in the
sense that if we do not take them into account, two or more rows (corresponding
to the respective voting procedures) become indistinguishable. For example, with-
out criterion E, Amendment and Copeland would be indistinguishable, without D,
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Copeland and Nanson would be indistinguishable, without B, Copeland and Max-
Min would be indistinguishable, etc.

Table 13.10 expresses the most crucial properties or criteria of the voting pro-
cedures in the sense that the information it conveys would be sufficient to restore
all information given in the source Table 13.2 because in fact we have just been
reducing step by step information volume without reducing information contents.

Therefore, if we wish to characterize the choice functions in an economical way,
we could use the values of the criteria given in Table 13.10 and present the results
as in Table 13.11 where the subscripts of the particular criteria stand for the values

Table 13.11. An economical characterization of the voting procedures shown in Table 13.10

A1B1D1E0 −→ Amendment
A1B1D1E1 −→ Copeland
A1B0D0E1 −→ Dodgson
A1B0D1E1 −→ Max-min
A0B0D1E1 −→ Plurality
A0B1D1E1 −→ Borda
A0B0D1E0 −→ Approval
A0B1D0E1 −→ Runoff
A1B1D0E1 −→ Nanson

they take on. For instance, to most concisely characterize Amendment, A, B and D
should be 1 while E should be 0, etc.

This is, however, not the most economic characterization. For clarity, we will
not deal here with this, and refer the interested reader to Fedrizzi, Kacprzyk and
Nurmi [10] to learn that the minimal (most economical) characterization of the vot-
ing procedures in terms of information given in Table 13.2 can be portrayed as
shown in Table 13.12.

As we can notice, the most economic characterization of the voting procedures
(shown in (13.12))– which is essentially equivalent to a rich yet redundant charac-
terization presented in the source data set in Table 13.2 – is very compact.

13.5 Similarity and Distances between Voting Procedures

The analysis of similarity of the voting procedures presented in the previous section
does provide much insight and information yet it is rather of a qualitative type. In
this section we will extend it towards a quantitative analysis while still operating in
what might be considered an indiscernibility type context employed in the previous
section.

First, we will assume that we will operate on the characterization of the voting
procedures as shown in Table 13.2, that is, just after the reduction of identical rows
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Table 13.12. The minimal (most economical) characterization of the voting procedures
shown in Table 13.10

A1E0 −→ Amendment
A1B1D1E1 −→ Copeland
B0D0 −→ Dodgson
A1B0D1 −→ Max-min
A0B0E1 −→ Plurality
A0B1D1 −→ Borda
A0E0 −→ Approval
A0D0 −→ Runoff
A1B1D0 −→ Nanson

in Table 13.1 has been done, without the further reductions as shown in Tables 13.3
– 13.10. This will better serve the purpose, and we will leave the problem of similar-
ity analyses on reduced representations, which is somehow specific, for our future
works. Again, to show the essence, we will consider the specific example as the
method can be generalized in a straightforward way.

Suppose that we start with information given in Table 13.2 which, for the conve-
nience of the readers, will be shown again in Table 13.13.

Table 13.13. Satisfaction of 7 criteria by 9 equivalent (classes of) voting procedures as shown
in Table 13.2

Voting procedure Criteria

A B C D E F G

Amendment 1 1 1 1 0 0 0
Copeland 1 1 1 1 1 0 0
Dodgson 1 0 1 0 1 0 0
Max-min 1 0 1 1 1 0 0
Plurality 0 0 1 1 1 1 0
Borda 0 1 0 1 1 1 0
Approval 0 0 0 1 0 1 1
Runoff 0 1 1 0 1 0 0
Nanson 1 1 1 0 1 0 0

For each pair of voting procedures, (x,y) ∈ V 2, where V is the set of voting
procedures (9 in our case, as in Table 13.2), and for each criterion z, z ∈ Z, where
Z is the set of criteria assumed (cf. Table 13.2), we define the following function
vz : V ×V −→ {0,1}, such that

vz(x,y) =
{

1 if x and y take on the same values for criterion z
0 otherwise

(13.4)
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For example, for the data given in Table 13.2:

vA(Amendment,Copeland) = 1

vE(Amendment,Copeland) = 0

In the simplest way the agreement between two voting procedures, x,y∈V , denoted
by A(x,y), A : V ×V −→ {0, . . . ,card Z}, can be defined in terms of vz(x,y) given
by (13.4) as follows:

A(x,y) = ∑
z∈Z

vz(x,y) (13.5)

We thus get the following matrix of agreements (Table 13.14):

Table 13.14. Values of agreements between the particular voting procedures due to (13.5)

Voting procedure

Voting procedure Amendment Copeland Dodgson Max-min Plurality Borda Approval Runoff Nanson

Amendment - 6 4 5 3 3 1 4 5
Copeland - 5 6 4 4 1 5 6
Dodgson - 6 4 2 2 5 6
Max-min - 5 3 2 4 5
Plurality - 5 4 4 3
Borda - 4 4 3
Approval - 1 0
Runoff - 6
Nanson -

Since the agreement between identical voting procedures does not matter, the
diagonal entries are denoted “-”, and since the agreement function is symmetric,
only the upper half of the matrix is shown.

The normalized distance between two voting procedures x,y ∈V , can be defined
in a straightforward way as

D(x,y) = 1− A(x,y)
cardZ

(13.6)

where A(x,y) is given by (13.5) and card Z is the number of criteria.
Therefore, using (13.6), we obtain the matrix of normalized distances between

the voting procedures given by Table 13.15.
One can notice that, not surprisingly, Copeland, Max-Min, Dodgson and Nanson

form a group of voting procedures which are not more than two criteria away of
each other. Quite closely related to that group are Runoff and Amendment. By the
way, except for Runoff, all these procedures are the Condorcet extensions, that is,
they result in the choice of the Condorcet winner if it exists.

The so-called positional methods, that is, Plurality, Borda and Approval, seem
to be rather far away from the rest of the procedures. This holds particularly for
Approval.
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Table 13.15. Normalized distances between the particular voting procedures due to (13.6)

Voting procedure

Voting procedure Amendment Copeland Dodgson Max-min Plurality Borda Approval Runoff Nanson

Amendment - 1
7

3
7

2
7

4
7

4
7

6
7

3
7

2
7

Copeland - 2
7

1
7

3
7

3
7

6
7

2
7

1
7

Dodgson - 1
7

3
7

5
7

5
7

2
7

1
7

Max-min - 2
7

4
7

5
7

3
7

2
7

Plurality - 2
7

3
7

3
7

4
7

Borda - 3
7

3
7

4
7

Approval - 6
7

7
7

Runoff - 1
7

Nanson -

The results obtained are informative and valuable. On the one hand, they con-
firm to some extent knowledge and intuition of the voting theorists, which speaks
positively for the correctness and usefulness of the method. On the other hand, the
method provides a simple and intuitively appealing apparatus to determine in a sys-
tematic way some classes of the voting procedures which share some common prop-
erties so that they can be considered to be equivalent.

We think that such an equivalence analysis can be important because one will be
able to extend many analytic and experimental results obtained in the field for the
particular voting procedures, but dealt with before as different ones, to other ones
which have been found to be equivalent. Of course, one should bear in mind that
all this is up to the basic assumption of the set of criteria against which the voting
procedures are compared.

It is easy to see that the similarity measure employed in the above analysis is
straightforward and simple. In practice, many more sophisticated similarity mea-
sures are used, and we will present here the use of one of the most relevant and
widely employed one due to Jaccard-Needham.

The Jaccard-Needham measure of similarity of binary patterns can be presented
in a simple way by using the setting of Tubbs [50] proposed in the field of pattern
recognition.

A binary vector Z of dimension N is defined as:

Z = (z1,z2, . . . ,zN) (13.7)

where zi ∈ {0,1}, ∀i ∈ {1,2, . . . ,N}.
The set of all N-dimensional binary vectors is denoted by Ω, the unit binary

vector, I ∈Ω, is a binary vector such that zi = 1,∀i∈ {1,2, . . . ,N}. The complement
of a binary vector Z ∈Ω is Z = I−Z.

If we have two binary vectors, X ,Y ∈ Ω, then we denote by Si, j(X ,Y ) the num-
ber of matches of i in vector X and j in vector Y , i, j ∈ {0,1}. That is, if we have two
vectors:
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X = [0,1,1,0,1,0,0,1,1,0]

Y = [1,1,0,0,1,1,0,0,1,0]

then we have:

S00(X ,Y ) = 3

S01(X ,Y ) = 2

S10(X ,Y ) = 2

S11(X ,Y ) = 3

Formally, we can define those measures as follows. First, for vectors X =
(x1,x2, . . . ,xN) and Y = (y1,y2, . . . ,yN)

vk
i j(X ,Y ) =

{
1 if xk = i and yk = j
0 otherwise

(13.8)

then

Si j(X ,Y ) =
N

∑
k=1

vk
i j(X ,Y ) (13.9)

One can easily notice that

S00(X ,Y ) = X ×Y
T

(13.10)

S11(X ,Y ) = X ×YT (13.11)

Then, following the notation of Tubbs [50], the Si j’s, i, j ∈ {0,1}, can be used to
define many well known measures of similarity, S.(X ,Y ). Specifically, the Jaccard–
Needham measure is defined as:

SJ−N =
S11

S11 + S10 + S01
(13.12)

First, as in the case of the indiscernibility based comparison method for voting pro-
cedures presented in the previous section, we will use as the point of departure
the binary matrix given in Table 13.2 which shows the satisfaction (= 1) or a lack
of satisfaction (= 0) of the A,B,C,D,E,F,G criteria by the 9 (classes of) voting
procedures.

Now, we will calculate Si j, i, j ∈ {0,1}, according to (13.8)–(13.9), for the partic-
ular pairs of 9 voting procedures which will be presented in Table 13.16 the entries
of which are given as [S00,S01,S10,S11] for each pair.

Then, due to (13.12), with the values of [S00,S01,S10,S11] shown in Table 13.16,
we can calculate the values of the Jaccard-Needham similarity measure as shown in
Table 13.17.

Notice that the results of our normalized distance based similarity analysis of
the voting procedures shown in Table 13.14 are clearly different than the results
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Table 13.16. Values of [S00,S01,S10,S11] for the particular pairs of the voting procedures

Voting procedure

Voting procedure Amendment Copeland Dodgson Max-min Plurality Borda Approval Runoff Nanson

Amendment - [2,1,0,4] [2,1,2,2] [2,1,1,3] [1,2,2,2] [1,2,2,2] [1,2,3,1] [2,1,2,2] [2,1,1,3]
Copeland - [2,0,2,3] [2,0,1,4] 1,1,2,3] [1,1,2,3] [0,2,4,1] [2,0,2,3] [2,0,1,4]
Dodgson - [3,1,0,3] [2,2,1,2] [1,3,2,1] [1,3,2,1] [2,2,2,1] [3,1,0,3]
Max-min - [2,1,1,3] [1,2,2,2] [1,2,3,1] [2,1,2,2] [2,1,1,3]
Plurality - [2,1,1,3] [2,1,2,2] [2,1,2,2] [1,2,2,2]
Borda - [2,1,2,2] [2,1,2,2] [1,2,2,2]
Approval - [1,3,3,0] [0,4,3,0]
Runoff - [3,1,0,3]
Nanson -

Table 13.17. Value of the degree of similarity for the particular pairs of voting procedures
using the Jaccard–Needham measure of similarity (13.12)

Voting procedure

Voting procedure Amendment Copeland Dodgson Max-min Plurality Borda Approval Runoff Nanson

Amendment - 0.80 0.40 0.60 0.33 0.33 0.17 0.40 0.60
Copeland - 0.60 0.80 0.50 0.50 0.14 0.60 0.80
Dodgson - 0.75 0.40 0.17 0.00 0.50 0.75
Max-min - 0.60 0.33 0.17 0.40 0.60
Plurality - 0.60 0.40 0.40 0.33
Borda - 0.40 0.40 0.33
Approval - 0.00 0.00
Runoff - 0.75
Nanson -

of an explicit Jaccard-Needham similarity measure based analysis shown in Ta-
ble 13.17, the very essence of both of them is close. One point should, however,
be added. To wit, the Jaccard-Needham measure ignores those instances where nei-
ther of the compared entities has the property under investigation. Surely, among
voting systems the fact that two systems fail on a given criterion is potentially an
important aspect of their similarity. Thus, in this regard, the straight-forward nor-
malized distance-based similarity gives more information about system similarity
than the Jaccard-Needham measure.

13.6 Concluding Remarks

We have presented a method of analysis of the similarity of voting procedures aimed
at finding some sets of similar (maybe equivalent) procedures assuming that these
procedures are compared against a set of well established criteria. Using some ex-
tension of an idea to use for that purpose, as the first step, some intuitively appealing
tools and techniques of rough sets theory, as proposed by Fedrizzi, Kacprzyk and
Nurmi [10], we have first of all employed some recent findings in voting theory
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which have suggested that some voting procedures and criteria should be consid-
ered as equivalent, we have modified our previous analysis and obtained a more
compact characterization of the particular classes of the voting procedures and the
criteria. This, through the use of rough sets tools and techniques, has resulted in a
indiscernibility type qualitative analysis. It was then enhanced with a quantitative
analysis based on a simple yet intuitively appealing normalized distance-based sim-
ilarity measure and then on the Jaccard-Needham explicit similarity based measure.
The results obtained provide much insight into the very differences and common
properties of the particular voting procedures and can be useful both for formal
analyses and practical applications, in human voting and multi-agent software sys-
tems. As for a further research, an extended approach based on the use of distance
and similarity measures between binary patterns should provide valuable results.
Moreover, a joint account for similarity and dissimilarity, which need not be dual in
the case of some measures, can provide an additional insight.
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35. Pawlak, Z.: An inquiry into anatomy of conflicts. Information Sciences 109, 65–78
(1998)

36. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177(1), 3–27
(2007)

37. Pawlak, Z., Skowron, A.: Rough sets: Some extensions. Information Sciences 177(1),
28–40 (2007)

38. Pawlak, Z., Skowron, A.: Rough sets and Boolean reasoning. Information Sciences 177,
41–73 (2007)

39. Peters, J.F., Skowron, A., Stepaniuk, J.: Rough sets: Foundations and perspectives. In:
Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 7787–7797.
Springer, Berlin (2009)

40. Pitt, J., Kamara, L., Sergot, M., Artikis, A.: Formalization of a voting protocol for virtual
organizations. In: Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M., Wooldridge,
M. (eds.) Proc. 4th AAMAS 2005, pp. 373–380. ACM (2005)

41. Pitt, J., Kamara, L., Sergot, M., Artikis, A.: Voting in online deliberative assemblies. In:
Gardner, A., Sartor, G. (eds.) Proc. 10th ICAIL, pp. 195–204. ACM (2005)

42. Pitt, J., Kamara, L., Sergot, M., Artikis, A.: Voting in multi-agent systems. The Computer
Journal 49(2), 156–170 (2006)

43. Plott, C.R.: Axiomatic social choice theory: an overview and interpretation. American
Journal of Political Science 20, 511–596 (1976)

44. Polkowski, L.: A set theory for rough sets. Toward a formal calculus of vague statements.
Fundamenta Informaticae 71(1), 49–61 (2006)

45. Richelson, J.: A comparative analysis of social choice functions I, II, III: A summary.
Behavioral Science 24, 355 (1979)

46. Riker, W.H.: Liberalism against Populism. W.H. Freeman, San Francisco (1982)
47. Satterthwaite, M.A.: Strategy-proofness and Arrow’s conditions: Existence and corre-

spondence theorems for voting procedures and social welfare functions. Journal of Eco-
nomic Theory 10, 187–217 (1975)

48. Schwartz, T.: The Logic of Collective Choice. Columbia University Press, New York
(1986)

49. Straffin, P.D.: Topics in the Theory of Voting. Birkhäuser, Boston (1980)
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14.1 Introduction

With time, Pawlak’s simple rough set model has seen many generalizations due to
demands from different practical situations (e.g., [12, 39, 32, 22, 33, 34]). As we
know, the notion of an approximation space [29], viz. a tuple (U,R), where U is a
non-empty set and R an equivalence relation, plays a crucial role in Pawlak’s rough
set theory. A useful natural generalization is where the relation R is not necessarily
an equivalence. For instance, in [33, 17], a tolerance approximation space is consid-
ered, where R is a tolerance relation. The notion of lower and upper approximations
of a set in these generalized approximation spaces is then defined in a natural way. In
Pawlak’s definition of lower and upper approximations of a subset X of the domain
U in an approximation space (U,R), equivalence classes [x]R of objects are replaced
by the set R(x) := {y ∈U : (x,y) ∈ R}. That is, lower and upper approximations of
a set X(⊆U) in a generalized approximation space (U,R) are given as:

XR := {x ∈U : R(x)⊆ X}, and XR := {x ∈U : R(x)∩X �= /0}.

There is another way to look at generalizations of Pawlak’s rough set theory, viz.
from the point of view of information systems. Most applications of rough set theory
are based on these attribute-value representation models.

Definition 14.1. A deterministic information system (DIS) S := (U,A ,
⋃

a∈A Va, f ),
comprises a non-empty set U of objects, A of attributes, Va of attribute values for
each a ∈ A , and information function f : U ×A →⋃

a∈A Va such that f (x,a) ∈Va.

S1 and S2 of Table 14.1, which provide information about three patients P1−P3
regarding attributes “Temperature (T)”, and “Headache (H)”, are examples of DISs.

Table 14.1. DISs S1 ans S2

(a) DIS S1

Patient T H

P1 very high yes
P2 very high no
P3 high yes

(b) DIS S2

Patient T H

P1 very high yes
P2 very high no
P3 no yes

Given a deterministic information system S := (U,A ,
⋃

a∈A Va, f ) and a set B⊆
A , the indiscernibility relation IndS

B is an equivalence relation on U defined by:

(x,y) ∈ IndS
B , if and only if f (x,a) = f (y,a) for all a ∈ B.

Thus, given a DIS S and a set B of attributes, we obtain an approximation space
(U, IndS

B). For instance, in the above example, corresponding to the attribute set
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B := {T, H}, DISs S1 and S2 give rise to the approximation spaces ({P1, P2, P3},
IndS1

B ) and ({P1, P2, P3}, IndS2
B ) respectively, where

IndS1
B = IndS2

B = {(P1, P1),(P2, P2),(P3, P3)}.

One may then approximate elements of a set X with respect to an attribute set B us-
ing the notion of lower/upper approximations in the approximation space (U, IndS

B).
Note that we may have two different DISs K1 := (U,A ,

⋃
a∈A Va, f1) and K2 :=

(U,A ,
⋃

a∈A Va, f2) with the same domain and the same sets of attribute, attribute-
values, such that IndK1

A = IndK2
A , hence generating the same approximation space

with respect to the attribute set A . This is the case, for example, with the DISs of
Table 14.1.

The notion of a deterministic information system has been generalized in many
ways to consider different practical situations. For instance, information regarding
values of some attribute for some object may not be available (unlike the case of a
DIS, where the information is complete). A distinguished attribute-value ∗ is used
to depict such a situation.

Definition 14.2. A tuple S := (U,A ,
⋃

a∈A Va, f ) is called an information system
(IS), where U,A ,Vala, f are as in Definition 14.1 and ∗ ∈ ⋂a∈A Vala. An informa-
tion system which satisfies f (x,a) = ∗ for some x ∈U and a ∈ A will be called an
incomplete information system (IIS).

Observe that a deterministic information system can be identified with the informa-
tion system S := (U,A ,

⋃
a∈A Va, f ), where f (x,a) �= ∗ for all x ∈U and a ∈ A .

In [20, 21], instead of an indiscernibility relation, a similarity relation (defined
below) is considered as the distinguishability relation in the context of an incomplete
information system. The assumption here is that the real value of missing attributes
is one from the attribute domain.
(x,y) ∈ SimS

B if and only if , f (x,a) = f (y,a) or f (x,a) = ∗, or f (y,a) = ∗, for all
a ∈ B.
One could easily verify that SimS

B is a tolerance relation, and thus, an IIS S and an
attribute set B give rise to a tolerance approximation space (U,SimS

B).
DISs are deterministic in the sense that objects take a single value for each at-

tribute. Thus, a natural generalization of DISs is obtained by allowing an object to
take a set of values for an attribute.

Definition 14.3. A tuple S := (U,A ,
⋃

a∈A Va, f ) is called a non-deterministic in-
formation system (NIS), where U,A ,Vala are as in Definition 14.1 and f : U×A →
℘(

⋃
a∈A Va) such that f (x,a)⊆ Va.

Note that an indiscernibility relation IndS
B for NISs can be defined in a way identical

to that for DISs.
One may attach different interpretations with “ f (x,a) = V”. For instance, as

exemplified in [9, 10], if a is the attribute “speaking a language”, then f (x,a) =
{German, English} can be interpreted as (i) x speaks German and English and no
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other languages, (ii) x speaks German and English and possibly other languages, (iii)
x speaks German or English but not both, or (iv) x speaks German or English or both.
Motivated by these interpretations several relations apart from the indiscernibility
relation are defined on non-deterministic information systems (e.g., [28, 36, 10]).
We list a few of them below.

Similarity (x,y) ∈ SimS
B if and only if f (x,a)∩ f (y,a) �= /0 for all a ∈ B.

Inclusion (x,y) ∈ InS
B if and only if f (x,a)⊆ f (y,a) for all a ∈ B.

Negative similarity (x,y)∈NSimS
B if and only if ∼ f (x,a)∩∼ f (y,a) �= /0 for all

a ∈ B, where ∼ is the complementation relative to Va.
Complementarity (x,y) ∈ComS

B if and only if f (x,a) =∼ f (y,a) for all a ∈ B.
Weak indiscernibility (x,y)∈wIndS

B if and only if f (x,a) = f (y,a) for some a∈
B.

Weak similarity (x,y) ∈ wSimS
B if and only if f (x,a)∩ f (y,a) �= /0 for some

a ∈ B.
Weak inclusion (x,y) ∈ wInS

B if and only if f (x,a)⊆ f (y,a) for some a ∈ B.
Weak negative similarity (x,y)∈wNSimS

B if and only if∼ f (x,a)∩∼ f (y,a) �= /0
for some a ∈ B.

Weak complementarity (x,y) ∈ wComS
B if and only if f (x,a) =∼ f (y,a) for

some a ∈ B.

Each of the relations defined above gives rise to a generalized approximation space,
where the relation may not be an equivalence. Thus, one can approximate any subset
of the domain using the lower and upper approximations defined on these general-
ized approximation spaces.

14.1.1 Towards an Algebra for Information Systems

In this chapter, we study classes of algebraic structures that are obtained from de-
terministic, incomplete and non-deterministic information systems. An algebraic
approach to rough set theory was first presented by Iwiński in 1987 [14]. Since
then, substantial work has been done on algebraic aspects of the theory (e.g., cf.
[17, 31, 4, 37]). In one direction, different representations of rough sets have been
considered, and endowed with algebraic structures. It is observed that the algebras
induced from approximation spaces are instances of various known as well as new
algebraic structures, such as quasi-Boolean algebras, double Stone algebras, Nelson
algebras, Łukasiewicz algebras, and topological quasi-Boolean algebras. A detailed
survey can be found in [4]. In another direction of research, lower/upper approxima-
tions are viewed as unary operators mapping a set to its lower/upper approximations.
This observation leads to a class of Boolean algebras with operators (BAO). For in-
stance, in [38], a BAO consisting of two unary operators L and H is considered,
where these operators are used to capture the lower and upper approximations. We
would like to mention here that the motivation of such a Boolean algebra with oper-
ators comes from approximation operators induced by approximation spaces, where
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the attribute set does not come into the picture. However, in ISs, as evident, the no-
tions of approximations are not absolute, but relative to attribute sets. In fact, a DIS

S := (U,A ,
⋃

a∈A Va, f ) determines an algebra BS := (℘(U),∩,∼, /0,{IndS
B}B⊆A),

where /0 denotes the empty set, ∼ is the operation of taking the complement of a

set relative to U , ∩ that of taking the intersection of two sets and IndS
B is a unary

operator on℘(U) mapping a set X(⊆U) to XIndS
B

. In [8], BS is called a knowledge

approximation algebra of type A derived from the DIS S .
In this chapter, we are interested in the following standard line of investigation

in algebraic studies of classes of structures. In order to study a class C of structures
obtained from information systems, one tries to abstract it through a class F of
structures given by a set of axioms, such that each member of C is also a member
of F . Moreover, the adequacy of the class F of abstract structures for C is proved
through a representation theorem, which involves showing that for every abstract
structure A ∈ F , there is a structure C ∈ C , and an isomorphism/embedding (in
an appropriate sense) from A to C. In the context of frames, this is just the notion
of informational representability [27]. It may be mentioned that informationally
representable frames were first studied in [35], and a detailed study of informational
representability can be found in [11].

In the above lines, the following abstract algebra is proposed in [8] corresponding
to knowledge approximation algebras derived from DISs (with finite attribute set A).

Definition 14.4. A structure B := (B ,κP)P⊆A is a knowledge approximation alge-
bra of type A (a finite set), if κP ∈ BB for each P⊆A and the following axioms hold
for all x,y ∈ B and P,Q⊆ A .

(A0) B := (B,∨,¬,0) is a complete atomic Boolean algebra.
(A1) κP0 = 0.
(A2) κPx≥ x.
(A3) κP(x∧κPy) = κPx∧κPy.
(A4) x �= 0 implies κ/0x = 1.
(A5) κP∪Qx = (κPx)∧ (κQx) if x is an atom of B .

A representation theorem is also presented in [8] stating that every knowledge ap-
proximation algebra of type A is isomorphic to a knowledge approximation algebra
of type A derived from some DIS. In order to see how the required DIS is generated
from the given knowledge approximation algebra, we need a few definitions.

Given a knowledge approximation algebra B := (B ,κP)P⊆A , the atomic struc-
ture At(B) of B is (At(B), TP)P⊆A , where At(B) is the set of atoms of B and for
each P⊆ A , TP is the equivalence relation on At(B) such that

(x,y) ∈ TP if and only if y≤ κPx.

Now the atomic structure At(B), in turn, determines a DIS S(At(B)) := (At(B),
A , V , f ), where V :=

⋃
a∈A At(B)/T{a} and f (x,a) := [x]T{a} . Finally, in the rep-

resentation theorem it is shown that B ∼= BS (At(B)). Note that in this representation
theorem, the atomicity property of B plays a crucial role.
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We note that Comer’s work in [8] is confined to DISs only and does not talk
about possible extensions to other types of information systems, such as incomplete
and non-deterministic information systems. Moreover, the knowledge approxima-
tion algebra derived from a DIS S does not give a complete description of the DIS.
In fact, attribute and attribute-value pairs, which are the main ingredients of a DIS,
do not appear in this description. In the next section, we shall propose an algebraic
formalism of DISs which captures this aspect. An abstract algebra for DISs will
be proposed and the corresponding representation theorem will be proved in Sec-
tion 14.3. In Section 14.4, we will see that this representation theorem also leads
us to logics for DISs. In Sections 14.5, 14.6 and 14.7, we shall extend this formal-
ism to incomplete and non-deterministic information systems as well. Section 14.8
concludes the chapter.

14.2 Algebra for Deterministic Information Systems

Let us consider the deterministic information systems S1 and S2 of Table 14.1. Ta-
ble 14.2 below gives the lower and upper approximations of all the subsets of U
with respect to indiscernibility relations corresponding to different sets of attributes.
Observe that the two different DISs S1 and S2 generate the same knowledge approx-

imation algebra (℘(U),∩,∼, /0,{IndSi
B }B⊆A), where A := {T,H} and the operator

IndSi
B is determined by Table 14.2. This fact shows that a knowledge approximation

algebra does not give a complete description of the DISs. This observation leads us
to the proposal of a deterministic information system algebra given as follows.

Table 14.2. Lower and upper approximations in the information systems Si, i = 1,2

X X
Ind

Si
{T}

X
Ind

Si
{T}

X
Ind

Si
{H}

X
Ind

Si
{H}

X
Ind

Si
{T,H}

X
Ind

Si
{T,H}

{P1} /0 {P1,P2} /0 {P1,P3} {P1} {P1}
{P2} /0 {P1,P2} {P2} {P2} {P2} {P2}
{P3} {P3} {P3} /0 {P1,P3} {P3} {P3}
{P1,P2} {P1,P2} {P1,P2} /0 U {P1,P2} {P1,P2}
{P1,P3} /0 U {P1,P3} {P1,P3} {P1,P3} {P1,P3}
{P2,P3} {P3} U /0 U {P2,P3} {P2,P3}
U U U U U U U
/0 /0 /0 /0 /0 /0 /0

Let us fix finite sets A of attributes and V :=
⋃

a∈A Va of attribute values. Let D
denote the set of all descriptors [30], viz. pairs (a,v), for each a ∈ A , v ∈ Va. As
we have already seen, given a deterministic information system S := (U,A ,V , f ),
the upper approximations with respect to the indiscernibility relations IndS

B, B⊆A ,

determine unary operations IndS
B on℘(U), viz.
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IndS
B(X) := XIndS

B
, X ⊆U.

Similarly, one has the unary operations IndS
B determined by lower approximations.

Each descriptor (a,v) also determines a nullary operation (constant) cS
(a,v) on℘(U):

cS
(a,v) := {x ∈U : f (x,a) = v}.

Thus, we have the following definition. Let Ω be the tuple (A ,V ).

Definition 14.5. Let S := (U,A ,V , f ) be a deterministic information system. A de-
terministic information system algebra (in brief, DIS-algebra) of type Ω generated
by the deterministic information system S is the structure

S∗ := (℘(U),∩,∼, /0,{IndS
B}B⊆A ,{cS

γ }γ∈D).

Observe that a DIS-algebra generated by a DIS S is actually an extension of the
knowledge approximation algebra derived from S with a collection of nullary oper-
ations. The DIS-algebra generated by the DIS Si, i = 1,2 (cf. Table 14.1) is given by
Si
∗ := (℘(U), ∩, ∼, /0, {IndSi

B }B⊆A , {cSi
γ }γ∈D), where A := {T,H}, D :=

{(T, very high), (T,high),(T,no),(H,yes),(H,no)}, IndSi
B is given by Table 14.2, and

cSi
γ by Table 14.3 below. As expected, S1

∗ and S2
∗ differ only with respect to nullary

operators.

Table 14.3. Nullary operators cSi
γ , i = 1,2

γ cS1
γ cS2

γ

(T,very high) {P1,P2} {P1,P2}
(T, high) {P3} /0
(T,no) /0 {P3}
(H,no) {P2} {P2}
(H,yes) {P1,P3} {P1,P3}

Notation 1. For the elements x and y of a Boolean algebra (U,∧,¬,0), we shall
write x→ y and x↔ y to denote the elements ¬x∨y and (x→ y)∧ (y→ x), respec-
tively. Thus, in particular, for subsets X and Y of U in the power set Boolean algebra
with domain℘(U), X → Y and X ↔ Y, respectively, represent the sets ∼ X ∪Y and
(X → Y )∩ (Y → X).

The following proposition lists a few properties of DIS-algebras.

Proposition 14.1.

1. IndS
B(X ∩Y ) = IndS

B(X)∩ IndS
B(Y ), X ⊆U.

2.
⋃

v∈Va
cS
(a,v) = U.
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3. cS
(a,v)∩ cS

(a,u) = /0 when v �= u.

4. IndS
C(X)⊆ IndS

B(X) for C ⊆ B⊆ A , and X ⊆U.

5. cS
(a,v) ⊆ IndS

{a}(c
S
(a,v)).

6. cS
(b,v)∩ IndS

B∪{b}(X)⊆ IndS
B(cS

(b,v) → X), X ⊆U.

7. IndS
/0 (X) �= /0 implies X = U.

8. IndS
/0 (U) = U.

Proof. (1) It is enough to show that X ∩Y IndS
B

= XIndS
B
∩Y IndS

B
. Here,

x ∈ X ∩Y IndS
B

⇐⇒ [x]IndS
B
⊆ X ∩Y

⇐⇒ [x]IndS
B
⊆ X , and [x]IndS

B
⊆ Y

⇐⇒ x ∈ XIndS
B
∩Y IndS

B
.

(2) We just need to prove the inclusion U ⊆⋃
v∈Va

cS
(a,v). So, let us take an arbitrary

x ∈U . Then, f (x,a) = v for some v ∈ Va, and hence, we obtain x ∈ cS
(a,v).

(3) Follows directly from the definition of the operators cS
(a,v), and the fact that f is

a function with domain U ×A .
(4) From the definition of the indiscernibility relation, we obtain for C ⊆ B, IndS

B ⊆
IndS

C, and hence XIndS
C
⊆ XIndS

B
. Now using the definition of the operators IndS

B , and

IndS
C , we obtain the desired result.

(5) Let x ∈ cS
(a,v). Then, we obtain f (x,a) = v. Now let us consider an arbitrary y

such that (x,y) ∈ IndS
{a}. Then, f (y,a) = f (x,a) = v, and hence, y ∈ cS

(a,v). Thus, we

have shown x ∈ IndS
{a}(c

S
(a,v)).

(6) Let x∈ cS
(b,v)∩ IndS

B∪{b}(X). Let us take an arbitrary y such that (x,y) ∈ IndS
B . We

need to show y ∈ cS
(b,v) → X , that is, y ∈∼ cS

(b,v)∪X . Let us assume that y ∈ cS
(b,v),

we prove y ∈ X . Note that x,y ∈ cS
(b,v) implies (x,y) ∈ IndS

{b}. This together with

(x,y) ∈ IndS
B gives (x,y) ∈ IndS

B∪{b}. Thus we obtain y ∈ X as x ∈ IndS
B∪{b}(X).

(7) Follows from the fact that IndS
/0 = U ×U . (8) is obvious. �

Remark 14.1. Let us explain the above proposition. 2 and 3 say that each object
takes precisely one value for each attribute. According to 4, if an object is a posi-
tive element of a set X with respect to the indiscernibility relation corresponding to
an attribute set C, then it remains so with respect to indiscernibility relations cor-
responding to any attribute set containing C. 5-6 relate the indiscernibility relations
and attribute, attribute value pairs. According to 5, if an object w takes a value v for
an attribute a, then every object indiscernible with w with respect to a, also takes the
value v for the attribute a. 6 says that if an object w takes the value v for an attribute
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b and every object indiscernible with w with respect to attributes from B∪{b} be-
longs to the set X , then every object indiscernible with w with respect to attributes
from B, and which takes the value v for b also belongs to X .

We shall see later that these properties are actually characterizing properties of DIS-
algebras. Thus, we propose the following notion of an abstract DIS-algebra.

Definition 14.6. An abstract DIS-algebra of type Ω is a tuple

A := (U,∧,¬,0,{LB}B⊆A ,{dγ}γ∈D),
where (U,∧,¬,0) is a Boolean algebra and LB and dγ are, respectively, unary and
nullary (constant) operations on U satisfying the following:

(C0) LB(x∧ y) = LB(x)∧LB(y);
(C1)

∨
v∈Va

d(a,v) = 1;
(C2) d(a,v)∧d(a,u) = 0 when v �= u;
(C3) LC(x)≤ LB(x) for C ⊆ B⊆ A ;
(C4) d(a,v) ≤ L{a}(d(a,v));
(C5) d(b,v)∧LB∪{b}(x)≤ LB(d(b,v) → x);
(C6) L /0(x) �= 0 implies x = 1.
(C7) L /0(1) = 1.

As a consequence of Proposition 14.1, the DIS-algebra S∗ generated by a DIS S is
an abstract DIS-algebra.

Let UB be the dual of the operator LB, that is, UB(x) := ¬LB(¬x). The following
proposition presents a few properties of abstract DIS-algebras.

Proposition 14.2. 1. LB(x)≤ x≤UB(x).
2. For x≤ y, LB(x)≤ LB(y), and UB(x)≤UB(y).
3. LB(x)∨LB(y)≤ LB(x∨ y), and UB(x)∧UB(y)≥UB(x∧ y).
4. UB(0) = 0 and LB(1) = 1.
5. UB(UB(x)) = UB(x) and LB(LB(x)) = LB(x).
6. UB(x∧UB(y)) = UB(x)∧UB(y) and LB(x∨LB(y)) = LB(x)∨LB(y).
7. x �= 0 implies U/0x = 1.
8. UB(x∨ y) = UB(x)∨UB(y).

Proof. We only provide the proof of items (1)-(5) for LB.
(1) Using (C6), we obtain the result for B = /0. Next, we prove the result for singleton
B. Let B = {a} and consider an arbitrary v ∈Va. Then, using (C5), and the fact that
L /0(x) ≤ x, we obtain d(a,v) ∧L{a}(x) ≤ d(a,v) → x, and hence, d(a,v) ∧L{a}(x) ≤ x.
Since this is true for all v ∈ Va, we obtain

∨
v∈Va

d(a,v) ∧ L{a}(x) ≤ x. Thus, (C1)
gives L{a}(x)≤ x.
Now, assuming LB(x) ≤ x and following exactly the above steps, one can prove
LB∪{b}(x)≤ x.

(2) Let x ≤ y. Then, x∧ y = x, and hence, using (C0), we obtain LB(x)∧LB(y) =
LB(x). Therefore, LB(x)≤ LB(y).

(3) Since x ≤ x∨ y, using item (2), we obtain LB(x) ≤ LB(x∨ y). Similarly, we have
LB(y)≤ LB(x∨ y), and hence, we get LB(x)∨LB(y)≤ LB(x∨ y).
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(4) Follows from (C3), and (C7).

(5) First we note that for x = 1, L /0(L /0(x)) = L /0(x) = 1 (using (C7)), and for x �= 1,
L /0(L /0(x)) = L /0(x) = 0 (using (C6)). Next, we prove the result for singleton B, say
B = {a}. Since L{a}(L{a}(x))≤ L{a}(x) (by item 1), we just need to show the reverse
inequality, that is, L{a}(x)≤ L{a}(L{a}(x)). Here,

d(a,v)∧L{a}(x)≤ L /0(¬d(a,v)∨ x) (by (C5))
= L /0L /0(¬d(a,v)∨ x)
≤ L{a}L{a}(¬d(a,v)∨ x) (by (C3) and item 2). (14.1)

From (C4) and item (2), we have L{a}(d(a,v)) ≤ L{a}L{a}(d(a,v)). Therefore, again
using (C4) we obtain

d(a,v) ≤ L{a}L{a}(d(a,v)). (14.2)

Thus, we have

d(a,v)∧L{a}(x)≤ L{a}L{a}(¬d(a,v)∨ x)∧L{a}L{a}(d(a,v)) (combining (14.1) and (14.2) )

= L{a}L{a}((¬d(a,v)∨ x)∧d(a,v)) ( by (C0))

= L{a}L{a}(d(a,v)∧ x). (14.3)

Since (14.3) holds for all v ∈ Va, using item (3), we obtain
∨

v∈Va

d(a,v)∧L{a}(x)≤ L{a}L{a}(
∨

v∈Va

d(a,v)∧ x). (14.4)

Therefore, (C1) gives L{a}(x)≤ L{a}(L{a}(x)).
Next, assuming LB(x) ≤ LBLB(x) and following exactly the above steps, we can
prove LB∪{a}(x)≤ LB∪{a}(LB∪{a}(x)). This completes the proof. �
From Proposition 14.2, it is clear that UB and LB are, respectively, closure and in-
terior operators. Moreover, the reduct A := (U,∧,¬,0,{LB}B⊆A) is a topological
Boolean algebra [4]. Furthermore, (U,∧,¬,0,{UB}B⊆A) satisfies all the conditions
of an abstract knowledge approximation algebra [8], except that in the latter case,
the reduct (U,∧,¬,0) is taken to be a complete atomic Boolean algebra, while we
do not have that requirement.

Let us recall that a cylindric algebra of dimension |A | [13] is a structure

A := (U,∧,¬,0,{Λa}a∈A ,{µ(a,b)}(a,b)∈A×A),

where (U,∧,¬,0) is a Boolean algebra, and Λa, µ(a,b) are, respectively, unary and
nullary operations on U , such that

(L1) Λa(0) = 0,
(L2) x≤ Λa(x),
(L3) Λa(x∧Λa(y)) = Λa(x)∧Λa(y),



14 Algebras for Information Systems 391

(L4) Λa(Λb(x)) = Λb(Λa(x)),
(L5) µ(a,a) = 1,
(L6) If a �= b,c, then µ(b,c) = Λa(µ(b,a)∧µ(a,c)),
(L7) If a �= b, then Λa(µ(a,b)∧ x)∧Λa(µ(a,b)∧¬x) = 0.

The difference between the signature of an abstract DIS-algebra of type (A ,V ) and
that of a cylindric algebra of dimension |A | is now clear. The cylindric algebra has
unary and nullary operations corresponding to each element of A , and A×A , respec-
tively. Whereas, in the case of abstract DIS-algebra, unary and nullary operations are
indexed, respectively, over the sets℘(A) and A×V . Moreover, operators UB of an
abstract DIS-algebra satisfy (L1)–(L3), but may fail to satisfy (L4). (L5)–(L7) do not
make sense in the case of abstract DIS-algebras. However, the BAO (U,∧,¬,0,UB)
obtained from an abstract DIS-algebra is a cylindric algebra of dimension 1.

14.3 Representation Theorem for Abstract DIS-Algebras

The proof of the representation theorem for abstract knowledge approximation al-
gebras given in [8] makes use of the completeness and atomicity properties of the
Boolean reduct of the algebra. In fact, the embedding of an abstract knowledge ap-
proximation algebra A is given in an extension of the power set algebra over the set
At(A) of atoms of A. But in the case of abstract DIS-algebras, the Boolean reduct
may not be complete and atomic, and hence, this technique will not work. We use
prime filters [7] for our purpose.

Recall that a filter of a Boolean algebra A := (U,∧,∼,0) is a subset F of U such
that (i) 1 ∈ F , (ii) if a,b ∈ F , then a∧b ∈ F , (iii) if a ∈ F and a ≤ b, then b ∈ F . A
filter is proper if it does not contain the smallest element 0. A proper filter is prime
if a∨ b ∈ F implies that at least one of a and b belongs to F . We note that for a
prime filter F , we have

• a→ b,a ∈ F implies b ∈ F , and
• a→ b /∈ F implies a ∈ F and b /∈ F .

We shall require these facts later.

Let PF(A) denote the set of all prime filters of A.

Let us consider an abstract DIS-algebra A := (U,∧,¬,0,{LB}B⊆A ,{dα}α∈D). A
determines a unique DIS A∗ as follows.
Consider the mapping fA : PF(A)×A → V such that

fA(Γ,a) = v if and only if d(a,v) ∈ Γ.

Conditions (C1) and (C2) in Definition 14.6 guarantee that fA is a total function.
Thus, we obtain the DIS A∗ := (PF(A),A ,V , fA). A∗ determines the lower ap-
proximation operators IndA∗

B , B⊆ A , on℘(PF(A)).
We also recall that the reduct (U,∧,¬,0,{LB}B⊆A) of an abstract DIS-algebra

A := (U,∧,¬,0,{LB}B⊆A , {dα}α∈D) determines a complex algebra [7] as follows.
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For each B⊆ A , let us consider the binary relation QA
B ⊆ PF(A)×PF(A):

(Γ,Δ) ∈QA
B if and only if LB(x) ∈ Γ implies x ∈ Δ.

The relations QA
B are used to define the operators mA

B :℘(PF(A))→℘(PF(A)):

mA
B (X) := {Γ ∈ PF(A) : for all Δ such that (Γ,Δ) ∈ QA

B , Δ ∈ X}.

The complex algebra corresponding to the reduct (U,∧,¬,0,{LB}B⊆A) of the ab-
stract DIS-algebra A is given by extending the power set algebra over PF(A) with
the operators mA

B .
So, an abstract DIS-algebra A, on the one hand, determines the lower approxi-

mation operators IndA∗
B . On the other hand, it gives rise to the complex algebra with

operators mA
B . Is there any relationship between the operators mA

B , and the lower
approximation operators IndA∗

B ? In fact, we shall now show that for each B ⊆ A ,

the operators mA
B and IndA∗

B are the same. This result will also lead us to the desired
representation theorem. Let us begin with the following proposition listing a few
properties of the relations QA

B .

Proposition 14.3

1. QA
B ⊆ QA

C for C ⊆ B⊆ A .
2. d(b,v) ∈ Γ∩Δ for some v ∈ Vb if and only if (Γ,Δ) ∈ QA

{b}.
3. If (Γ,Δ) ∈QA

B and d(b,v) ∈ Γ∩Δ for some v ∈Vb, then (Γ,Δ) ∈ QA
B∪{b}.

4. QA
/0 = PF(A)×PF(A).

5. QA
B =

⋂
b∈B QA

{b}.

Proof (1) is a direct consequence of (C3). Let us prove (2). First suppose d(b,v) ∈
Γ∩Δ for some v ∈ Vb, and let L{b}(x) ∈ Γ. We need to show x ∈ Δ. Using the
properties of filters, we obtain d(b,v)∧L{b}(x) ∈ Γ, and hence, by (C5) with B = /0,
we obtain L /0(d(b,v) → x) ∈ Γ. This shows that L /0(d(b,v) → x) �= 0, and hence, by
(C6), we obtain d(b,v) → x = 1. Therefore, we have d(b,v) → x ∈ Δ. Finally using the
fact that d(b,v) ∈ Δ, we obtain x ∈ Δ.

Conversely, suppose (Γ,Δ)∈QA
{b}. By (C1), there exists a v∈Vb such that d(b,v) ∈

Γ. Therefore, using (C4), we obtain L{b}(d(b,v)) ∈ Γ, and so d(b,v) ∈ Δ.
Let us now prove (3). Suppose (Γ,Δ) ∈ QA

B and d(b,v) ∈ Γ∩Δ for some v ∈ Vb.
Further, suppose LB∪{b}(x)∈ Γ. We need to show x∈Δ. Due to the given conditions,
we obtain d(b,v)∧LB∪{b}(x) ∈ Γ, and hence, by (C5), LB(d(b,v) → x) ∈ Γ. This gives
d(b,v) → x ∈ Δ, as (Γ,Δ) ∈QA

B . As d(b,v) ∈ Δ, x ∈ Δ.
(4) is obvious due to (C6). Let us now move to (5). From (1), we obtain QA

B ⊆
⋂

b∈B QA
{b}. It is also not difficult to see that the reverse inclusion holds when |B| ≤ 1.

To complete the proof, let us assume that the reverse inclusion holds for B, and prove
it for B∪{a}. Let (Γ,Δ) ∈⋂b∈B∪{a}QA

{b}. We need to show (Γ,Δ) ∈ QA
B∪{a}. Using
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(2) and the fact that (Γ,Δ)∈QA
{a}, we obtain d(a,v) ∈ Γ∩Δ for some v. Now (3) gives

(Γ,Δ) ∈ QA
B∪{a}. �

Theorem 14.1. Let A := (U,∧,¬,0,{LB}B⊆A ,{dγ}γ∈D) be an abstract DIS-algebra.
Then, the following hold for each B ⊆ A .

1. IndA∗
B = QA

B .
2. IndA∗

B = mA
B .

Proof. (2) is a direct consequence of (1). So, we only prove (1). Due to (5) of Propo-
sition 14.3, it is enough to prove (1) for singleton B. Let (Γ,Δ)∈ IndA∗

{b}. This implies

fA(Γ,b) = fA(Δ,b) = v for some v. Therefore, from the definition of fA, we obtain
d(b,v) ∈ Γ∩Δ. Now using (2) of Proposition 14.3, we obtain (Γ,Δ)∈QA

{b} as desired.
The reverse inclusion can be proved similarly. �

Theorem 14.2 (Representation theorem for abstract DIS-algebras).
Let A := (U,∧,¬,0,{LB}B⊆A ,{dγ}γ∈D) be an abstract DIS-algebra. Then the map-
pingΨ : U →℘(PF(A)) given by

Ψ(x) := {Γ ∈ PF(A) : x ∈ Γ}, x ∈U,
is an embedding of A into (A∗)∗.

Proof. It is not difficult to see that Ψ(dγ) = cA∗
γ , γ ∈ D. Due to item (2) of The-

orem 14.1, the rest follows in the lines of the proof of Jónnson-Tarski theorem
(cf. [7]). �

14.4 Logics for Deterministic Information Systems

Let us consider a language L consisting of a countable set Var := {p,q,r, . . .} of
variables, a binary operator ∧, unary operators ¬, LB and constants 0, d(a,v), where
B⊆ A , (a,v) ∈D. The well-formed formulae (wffs) of L are defined recursively:

α := p ∈Var | 0 | d(a,v) | ¬α | α∧β | LBα.
Now consider an abstract DIS-algebra A := (U,∧,¬,0,{LB}B⊆A ,{dγ}γ∈D). An as-
signment for A is a map V : Var → U . V can be extended to a mapping Ṽ from
the set of all L-wffs to U in the obvious way: 0,d(a,v),LB correspond, respectively,
to 0,d(a,v),LB. An equation α ≈ β is said to hold in A, denoted as A |= α ≈ β, if
Ṽ (α) = Ṽ (β) for all V .

The notion of equivalence defined above can be used to realize laws related to
DISs and approximations. For instance, one may easily verify that, for all A,

A |= ((d(b,v)∧LB∪{b}(p))→(LB(d(b,v)→p)))≈ 1,

where→ is the logical connective for implication defined in the usual way: α→β :=
¬α∨β. The representation theorem also leads to the complete axiomatization for the
semantic notion of equivalence in DIS-algebras generated by DISs. More formally
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speaking, using Birkhoff’s completeness theorem for equational logic [6], one can
prove that if α ≈ β holds in all DIS-algebras generated by DISs, then α ≈ β is
derivable from the equations (C0)–(C7).

We end this section with the remark that abstract DIS-algebras are actually an
algebraic counterpart of the logic LIS of deterministic information systems proposed
in [15]. In order to see it, recall that LIS-wffs are given by the scheme

(a,v) ∈D | p ∈Var | ¬α | α∧β | [I(B)]α.

Clearly, LIS-wffs are identifiable with the L-wffs by the bijection θmapping p to p,
γ ∈ D to dγ and [I(B)]α to LB(θ(α)). Using Theorem 14.2, one can then show that
'LIS α if and only if θ(α)≈ 1 holds in all abstract DIS-algebras.

14.5 Algebra for Incomplete Information Systems

We recall the definitions (Definition 14.2) of information systems and incomplete
information systems. As mentioned in Section 14.1, in the case of (incomplete)
information systems, a similarity relation is used as the distinguishability relation,
rather than the indiscernibility relation. As in the case of the indiscernibility relation,
the similarity relation SimS

B determines the unary operation SimS
B on℘(U) mapping

a set X to XSimS
B
. Thus, we extend the notion of DIS-algebra to incorporate the

similarity relation and define IS-algebra of type Ω generated by the information
system S as the structure

S∗ := (℘(U),∩,∼, /0,{IndS
B}B⊆A ,{SimS

B}B⊆A ,{cS
γ }γ∈D).

Moreover, an abstract IS-algebra of type Ω is a tuple

A := (U,∧,¬,0,{LB}B⊆A ,{SB}B⊆A ,{dγ}γ∈D),

where (U,∧,¬,0,{LB}B⊆A ,{dγ}γ∈D) is an abstract DIS-algebra and SB,B ⊆ A are
unary operations on U such that

(C8) SC(x)≤ SB(x) for C ⊆ B ⊆ A ,
(C9) d(a,v) ≤ S{a}(d(a,v)∨d(a,∗)), where v �= ∗,
(C10) d(b,v)∧SB∪{b}(x)≤ SB((d(b,v)∨d(b,∗))→ x), where v �= ∗,
(C11) d(b,∗)∧SB∪{b}(x)≤ SB(x).

If the abstract IS-algebra satisfies the additional condition

(C12)
∨
α∈D ′ dγ �= 1, where D ′ := {(a,v) : a ∈ A ,v ∈ Va \ {∗}},

then it will be called an abstract IIS-algebra.

Similarly to Theorem 14.2, we obtain the following representation theorem.
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Theorem 14.3 (Representation theorem for abstract (I)IS-algebras)
Every abstract IS-algebra (IIS-algebra) is isomorphic to a subalgebra of S∗ corre-
sponding to some IS (IIS) S.

Using the above representation theorem, as in the case of DIS, one can show that
the abstract IS-algebra is an algebraic counterpart of the logic proposed in [16] for
information systems. Moreover, the theorem also gives an equational logic for ISs
consisting of the equations (C0)− (C11).

14.6 Algebra for Non-deterministic Information Systems

In this section, our aim is to propose an algebraic formalism for NISs that would also
capture the notion of set approximations with respect to different relations defined
on NISs. For the moment, we restrict ourselves to indiscernibility, similarity, and
inclusion relations (cf. Section 14.1). In Section 14.5, we have seen that the results
obtained in Sections 14.2-14.4 for DISs can be extended in a natural way to obtain
an algebra for ISs. The situation is not so simple for NISs. In fact, we need axioms
which relate approximations relative to different sets of attributes and attribute-value
pairs. In the case of DISs, axioms (C3)− (C5) serve the purpose, but axioms (C4),
(C5) are not sound (as will be illustrated in Example 14.1) when we move to NISs.
Therefore, we need replacements for these axioms and for this purpose, we shall
take the help of unary operators which provide names to objects. These operators
will help to reason about the equality of objects. Thus, we have the following notion
of an algebra generated from a NIS.

As before, let us consider finite sets A and Va, a ∈ A , of attributes and attribute
values and let Ω be the tuple (A ,

⋃
a∈A Va). Recall that the attribute-value pairs

(a,v) ∈ D represent the collection of objects taking the value v for the attribute a.
As objects take a set of attribute values in the case of NISs, we consider the set
Da := {(a,V ) : V ⊆ Va}, for each a ∈ A . Thus, each element (a,v) in D may be
viewed as the element (a,{v}) of Da. Observe that |∏a∈A Da| is finite. Moreover,
for any NIS S := (U,A ,V , f ), |U/IndS

A | ≤ |∏a∈A Da|. LetΘ := {i, j, . . .} be a finite
set of “nominals” with |Θ|= |∏a∈A Da|.
Definition 14.7. Let S := (U,A ,V , f ) be a non-deterministic information system.
A non-deterministic information system algebra (in brief, NIS-algebra) of type Ω
generated by the non-deterministic information system S is a structure

S∗ := (℘(U),∩,∼, /0,{IndS
B}B⊆A ,{SimS

B}B⊆A ,{InS
B}B⊆A ,{cS

γ }γ∈D ,{cS
i }i∈Θ),

where IndS
B , SimS

B, InS
B are operators on℘(U) mapping a set X to XIndS

B
, XSimS

B
, and

XInS
B

respectively, for γ := (a,v) ∈ D, cS
γ is the nullary operation (constant) given

by the subset {x ∈ U : f (x,a) = v} of U , and cS
i are nullary operations on℘(U)

satisfying the following.
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(N1) U/IndS
A ⊆ {cS

i : i ∈ Θ}.
(N2) cS

i ∩ cS
j = /0, for i �= j.

(N3) cS
i ∈U/IndS

A ∪{ /0}.
(N4) If (x,y) /∈ IndS

A , [x]IndS
A

= cS
i and [y]IndS

A
= cS

j , then i �= j.

From conditions (N1)–(N4), it is clear that the nullary operators cS
i are used to

name the equivalence classes of IndS
A such that different equivalence classes are

provided with different names. This could also be viewed as providing names to
elements of the set U such that elements belonging to the same equivalence class
of the relation IndS

A are provided with the same name and elements belonging to
different equivalence classes of IndS

A have different names. Observe that due to size
of the setΘ, we have enough nominals to achieve this task. Also note that the reduct
(℘(U), ∩,∼, /0,{IndS

B}B⊆A , {SimS
B}B⊆A , {InS

B}B⊆A , {cS
γ }γ∈D) of S∗ is determined

uniquely, and thus, a NIS S can generate two distinct NIS-algebras which can differ
only with respect to naming of the objects, that is, with respect to nullary operators
corresponding to the elements from the set Θ.

We would like to mention here that the above idea of naming objects (elements of
the domain) is not new. In fact, it is the main idea of hybrid logics (cf. [7]). The idea
of naming objects is also used by Konikowska [18, 19] in the proposals of modal
logics for information systems and rough set theory. The main difference between
these and our way of naming is that we are providing the same name to the elements
belonging to the same equivalence class of IndS

A and different names to objects be-
longing to different classes. In other words, as mentioned above, we are effectively
providing names to the equivalence classes instead of individual elements.

The following proposition lists a few properties of NIS-algebras.

Proposition 14.4. Let X be a subset of the domain U.

1. LC(X)⊆ LB(X) for C ⊆ B⊆ A , L ∈ {IndS ,SimS , InS}.
2. cS

(a,v) ⊆ L{a}(cS
(a,v)), L ∈ {IndS , InS}.

3. ∼ cS
(a,v) ⊆ IndS

{a}(∼ cS
(a,v)).

4. cS
i ⊆ SimS

{a}(
⋃

v∈Va
(cS

(a,v)∩ IndS
/0 (c

S
i → cS

(a,v)))).

5. cS
i ∩ IndS

B∪{b}(X)⊆ IndS
B

(
⋂

v∈Vb

(

cS
(b,v) ↔ IndS

/0 (c
S
i → cS

(b,v))
)

→ X

)

.

6. cS
(b,v)∩SimS

B∪{b}(X)⊆ SimS
B(cS

(b,v) → X).

7. cS
i ∩ InS

B∪{b}(X)⊆ InS
B

(
⋂

v∈Vb

(

IndS
/0 (c

S
i → cS

(b,v))→ cS
(b,v)

)

→ X

)

.

8. IndS
/0 (X) = SimS

/0 (X) = InS
/0 (X).

9. IndS
/0 (X) �= /0 implies X = U.

10. cS
i ∩ cS

(a,v) ⊆ IndS
/0 (c

S
i → cS

(a,v)).

11. cS
i ∩∼ cS

(a,v) ⊆ IndS
/0 (c

S
i →∼ cS

(a,v)).

12.
⋃

i∈Θ cS
i = U.

13. ∼ cS
i ∪∼ cS

j = U for i �= j.
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14. cS
i ⊆ IndS

AcS
i .

15. IndS
/0 (U) = U.

16. LB(X ∩Y ) = LB(X)∩LB(Y ) for L ∈ {IndS ,SimS , InS}.

Proof. We only provide the proof of items (4) and (5).
(4) Let x ∈ cS

i . We need to show x ∈ SimS
{a}(

⋃
v∈Va

(cS
(a,v)∩ IndS

/0 (c
S
i → cS

(a,v)))). Let

y be such that (x,y) ∈ SimS
{a}, that is, there exists a v ∈ f (x,a)∩ f (y,a). In order

to prove the result, it is enough to show that y ∈ cS
(a,v) ∩ IndS

/0 (c
S
i → cS

(a,v)). Since

v ∈ f (y,a), we obtain y ∈ cS
(a,v). In order to prove y ∈ IndS

/0 (c
S
i → cS

(a,v)), let us take

an arbitrary z ∈ cS
i , and we prove z ∈ cS

(a,v). Since x,z ∈ cS
i , by the condition (N3) of

Definition 14.7, we obtain z ∈ [x]IndS
A

. Since v ∈ f (x,a), we obtain v ∈ f (z,a), and

hence z ∈ cS
(a,v).

(5) Let x ∈ cS
i ∩ IndS

B∪{b}(X). Thus, by the condition (N3) of Definition 14.7, we
obtain

cS
i = [x]IndS

A
. (14.5)

Let us consider an arbitrary y such that (x,y) ∈ IndS
B , and

y ∈
⋂

v∈Vb

(

cS
(b,v) ↔ IndS

/0 (c
S
i → cS

(b,v))
)

. (14.6)

We need to show y ∈ X . Since x ∈ IndS
B∪{b}(X), it is enough to show that (x,y) ∈

IndS
{b}, that is, v ∈ f (x,b) if and only if v ∈ f (y,b).

First suppose v∈ f (x,b). Then we have x ∈ cS
(b,v). Therefore, from (14.5), we obtain

cS
i = [x]IndS

A
⊆ [x]IndS

{b}
⊆ cS

(b,v), and hence IndS
/0 (c

S
i → cS

(b,v)) = U . Therefore, (14.6)

gives y ∈ cS
(b,v), that is, v ∈ f (y,b).

Now suppose v ∈ f (y,b), that is, y ∈ cS
(b,v). Then from (14.6), we obtain y ∈ IndS

/0

(cS
i → cS

(b,v)). This implies that for all z ∈ cS
i , we have z ∈ cS

(b,v). Since x ∈ cS
i , we

obtain x ∈ cS
(b,v). �

Remark 14.2. Note that 8, 9 and 15 list the properties of lower approximations with
respect to indiscernibility, similarity and inclusion relations relative to the empty set
of attributes. The lower approximation of a proper subset of the domain U with re-
spect to any of these relations relative to the empty set of attributes is empty and that
of the domain U is U itself. 10–14 give the rules followed in naming the objects.
According to 10, 11, objects with the same name take the same values for each at-
tribute. Properties 12, 13 guarantee that each object is assigned precisely one name.
According to 14, objects belonging to the same equivalence class with respect to the
indiscernibility relation relative to A have the same names. Apart from these, there
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are properties which relate approximations relative to different sets of attributes and
attribute-value pairs. We have 1–3 and 5 serving this purpose for the indiscernibility
relation. For the similarity relation, we have 1, 4 and 6. 1, 2 and 7 serve the purpose
for the inclusion relation.

2 is similar to 4 of Proposition 14.1. According to it, if an object w takes the value
v for an attribute a, then every object indiscernible to w relative to a, also takes the
value v for a. This is also true for the inclusion relation, but not true for the similarity
relation, as will be illustrated by Example 14.1 below. In the case of indiscernibility,
we have more: if an object w does not take the value v for an attribute a, then every
object indiscernible to w relative to a, also does not take the value v for a. This is
precisely what 3 says. 3 is also not true for the similarity relation, and we have 4
for it. According to 4, if an object w is named i, then for every object w′ similar to
w relative to an attribute a, there exists an attribute value v such that w′ and every
object named i take the value v for a. Thus, it means there exists an attribute value v
such that w and w′ take this value for a. 6 is similar to 5 of Proposition 14.1, which
is explained in Remark 14.1. The fact captured by 6 is not true for indiscernibility
and inclusion relations defined on NISs – this is illustrated by Example 14.1 below.
Instead, we have 5 and 7 for these relations. According to 5, if an object w is named
i and every object indiscernible with w relative to the attribute set B∪{b} belongs to
X , then every object w′ such that (i) w′ is indiscernible with w relative to the attribute
set B and (ii) w′ takes precisely those values for b which are taken by the objects
named i for b, also belongs to X . The interpretation of 7 for inclusion relation is very
similar to the above interpretation of 5 except that in (ii) we have a weaker condition.
It says that if an object w is named i and for every w0 with (w,w0) ∈ InS

B∪{b}, we

have w0 ∈ X , then, every object w′ such that (i) (w,w′)∈ InS
B and (ii) w′ takes a value

v for the attribute b whenever an object named i does so, also belongs to X .

We shall find later that properties 1-16 given in Proposition 14.4 are actually charac-
terizing properties of NIS-algebras. Thus, we propose the following abstract algebra
for NISs.

Definition 14.8. An abstract NIS-algebra of type Ω is a tuple

A := (U,∧,¬,0,{IB}B⊆A ,{SB}B⊆A ,{NB}B⊆A ,{dγ}γ∈D ,{di}i∈Θ),

where (U,∧,¬,0) is a Boolean algebra, IB,SB,NB are unary operations, and dγ,di

are nullary (constant) operations on U satisfying the following.

(N1) LC(x)≤ LB(x) for C ⊆ B⊆ A , L ∈ {I,S,N}.
(N2) d(a,v) ≤ L{a}(d(a,v)), L ∈ {I,N}.
(N3) ¬d(a,v) ≤ I{a}(¬d(a,v)).
(N4) di ≤ S{a}(

∨
v∈Va

(d(a,v)∧ I /0(di → d(a,v)))).

(N5) di∧ IB∪{b}(x)≤ IB

(
∧

v∈Vb

(

d(b,v) ↔ I /0(di → d(b,v))
)

→ x

)

.

(N6) d(b,v)∧SB∪{b}(x)≤ SB(d(b,v) → x).

(N7) di∧NB∪{b}(x)≤ NB

(
∧

v∈Vb

(

I /0(di → d(b,v))→ d(b,v)

)

→ x

)

.
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(N8) I /0(x) = S /0(x) = N/0(x).
(N9) I /0(x) �= 0 implies x = 1.
(N10) di∧d(a,v) ≤ I /0(di → d(a,v)).
(N11) di∧¬d(a,v) ≤ I /0(di →¬d(a,v)).
(N12)

∨
i∈Θ di = 1.

(N13) ¬di∨¬d j = 1 for i �= j.
(N14) di ≤ IA di.
(N15) I /0(1) = 1.
(N16) LB(x∧ y) = LB(x)∧LB(y) for L ∈ {I,S,N}.

We note that a NIS-algebra S∗ generated by a NIS S satisfies the axioms (N1)−
(N16), and hence, every NIS-algebra generated by the NISs are abstract NIS-algebra.

Example 14.1. Let us consider the NIS S of Table 14.4, which is a modified form of
the one given in [3].

Table 14.4. NIS S

Languages (L) Sports (S)

Ann {Arabic, Bulgarian} {athletics, basketball}
Bob {Arabic, Dutch} {athletics, basketball}
Cindy {German, Dutch} {cycling}

Here A := {L,S}, VL := {Arabic, Bulgarian, Dutch, German}, and VS :=
{athletics, basketball, cycling}. Thus, |DL| = 16 and |DS| = 8. Let us take Θ :=
{1,2, . . . ,128}. A NIS-algebra generated by NIS S is given by

S∗ := (℘(U),∩,∼, /0,{IndS
B}B⊆A ,{SimS

B}B⊆A ,{InS
B}B⊆A ,{cS

γ }γ∈D ,{cS
i }i∈Θ),

where U := {Ann, Bob, Cindy}, and the operators are given by Tables 14.5 and
14.6.
We note that

cS
(L,Bulgarian)

�⊆ SimS
{L}(c

S
(L,Bulgarian)

), (14.7)

cS
(L,Arabic)

∩ InS
{L,S}({Bob}) �⊆ InS

{S}(c
S
(L,Arabic)

→ {Bob}), (14.8)

cS
(L,Arabic)

∩ IndS
{L,S}({Bob}) �⊆ IndS

{S}(c
S
(L,Arabic)

→ {Bob}). (14.9)

So (14.7)−(14.9) of Example 14.1 show that in a NIS, (N2) may not be satisfied
by the lower approximation operators corresponding to similarity relations and (N6)
may not be satisfied by the lower approximation operators corresponding to indis-
cernibility and inclusion relations. It is thus that we have used (N4) as the replace-
ment of (N2) for the similarity relation, and (N5), (N7) as the replacements of (N6)
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Table 14.5. Lower approximation operators generated by the NIS S

IndS
{L},

IndS
{L,S} , InS

{L},

InS
{L,S}

SimS
{L} IndS

{S}, InS
{S},

SimS
{S}, SimS

{L,S}

{Ann} {Ann} /0 /0
{Bob} {Bob} /0 /0
{Cindy} {Cindy} /0 {Cindy}
{Ann, Bob} {Ann, Bob} {Ann} {Ann, Bob}
{Ann, Cindy} {Ann, Cindy} /0 {Cindy}
{Bob, Cindy} {Bob, Cindy} {Cindy} {Cindy}
U U U U
/0 /0 /0 /0

Table 14.6. Nullary operators cS
γ and cS

i

(a) Nullary operators cS
γ

γ cS
γ

(L,Arabic) {Ann, Bob}
(L,Bulgarian) {Ann}
(L,Dutch) {Bob, Cindy}
(L,German) {Cindy}
(S,athletics) {Anna, Bob}
(S,basketball) {Anna, Bob}
(S,cycling) {Cindy}

(b) Nullary operators cS
i

i ∈Θ cS
i

1 {Ann}
2 {Bob}
3 {Cindy}
i ∈Θ\{1,2,3} /0

for indiscernibility and inclusion relations, respectively. Observe that these replace-
ments make use of the unary operators di.

14.7 Representation Theorem for Abstract NIS-Algebras and
Equational Logic for NISs

In this section, we shall prove the representation theorem for abstract NIS-algebras,
which will also lead us to an equational logic for NISs. We proceed as in the case of
abstract DIS-algebras and for each B⊆ A , we consider the relations LA

B ⊆ PF(A)×
PF(A), L ∈ {I,S,N}, generated by an abstract NIS-algebra

A := (U,∧,¬,0,{IB}B⊆A ,{SB}B⊆A ,{NB}B⊆A ,{dγ}γ∈D ,{di}i∈Θ),

such that

(Γ,Δ) ∈ LA
B if and only if LB(x) ∈ γ implies x ∈ Δ.
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For a Γ∈ PF(A), and b∈A , let Γb denote the set {d(b,v) : d(b,v) ∈ Γ}. The following
proposition presents a few properties of these operators.

Proposition 14.5

1. LA
B ⊆ LA

C for C ⊆ B⊆ A , L ∈ {I,S,N}.
2. Γb = Δb if and only if (Γ,Δ) ∈ IA

{b}.
3. Γb∩Δb �= /0 if and only if (Γ,Δ) ∈ SA

{b}.
4. Γb ⊆ Δb if and only if (Γ,Δ) ∈ NA

{b}.
5. If (Γ,Δ) ∈ IA

B and Γb = Δb, then (Γ,Δ) ∈ IA
B∪{b}.

6. If (Γ,Δ) ∈ SA
B and Γb∩Δb �= /0, then (Γ,Δ) ∈ SA

B∪{b}.
7. If (Γ,Δ) ∈ NA

B and Γb ⊆ Δb, then (Γ,Δ) ∈ NA
B∪{b}.

8. LA
/0 = PF(A)×PF(A), L ∈ {I,S,N}.

9. LA
B =

⋂
b∈B LA

{b}, L ∈ {I,S,N}.

Proof We only provide the proofs of (2) and (3).
(2) First suppose Γb = Δb, and let I{b}(x) ∈ Γ. We need to show x ∈ Δ. From (N12),
we obtain di ∈ Γ for some i ∈ Θ. Therefore, di ∧ I{b}(x) ∈ Γ. Now using (N5) for
B = /0, we obtain

I /0

(
∧

v∈Vb

(

d(b,v) ↔ I /0(di → d(b,v))
)

→ x

)

∈ Γ.

Therefore, (N9) gives

∧

v∈Vb

(

d(b,v) ↔ I /0(di → d(b,v))
)

→ x = 1,

and hence
∧

v∈Vb

(

d(b,v) ↔ I /0(di → d(b,v))
)

→ x ∈ Δ.

If possible, let x /∈ Δ. Then, there exists a v ∈ Vb such that either d(b,v) → I /0(di →
d(b,v)) /∈ Δ, or I /0(di → d(b,v))→ d(b,v) /∈ Δ. First suppose, d(b,v) → I /0(di → d(b,v)) /∈
Δ. Then, d(b,v) ∈ Δ, and I /0(di → d(b,v)) /∈ Δ. Now using the fact that Γb = Δb,
we obtain d(b,v) ∈ Γ, and hence, di ∧ d(b,v) ∈ Γ. Therefore, from (N10, we obtain
I /0(di → d(b,v)) ∈ Γ. Using (N9), this gives di → d(b,v) = 1, and hence, by (N15),
I /0(di → d(b,v)) = 1. This implies I /0(di → d(b,v)) ∈ Δ, a contradiction. Similarly,
I /0(di → d(b,v))→ d(b,v) /∈ Δ will also lead us to a contradiction.

Conversely, suppose (Γ,Δ) ∈ IA
{b}. We need to show d(b,v) ∈ Γ if and only if

d(b,v) ∈ Δ. First let d(b,v) ∈ Γ. Then, from (N2), we obtain I{b}d(b,v) ∈ Γ, and hence
d(b,v) ∈ Δ. Now suppose d(b,v) ∈ Δ. If d(b,v) /∈ Γ, then using (N3), we obtain
I{b}(¬d(b,v)) ∈ Γ, and hence, ¬d(b,v) ∈ Δ, a contradiction.

(3) First suppose Γb ∩Δb �= /0 and we show (γ,Δ) ∈ SA
{b}. Let d(b,v) ∈ γb ∩Δb. Let

S{b}(x) ∈ γ. We need to show x ∈ Δ. We have d(b,v) ∧ S{b}(x) ∈ Γ, and hence by



402 M.A. Khan and M. Banerjee

(N6), S /0(d(b,v) → x) ∈ Γ. This gives I /0(d(b,v) → x) ∈ Γ (due to (N8)), and therefore,
we obtain d(b,v) → x = 1 (by (N9)). This gives us x ∈ Δ as d(b,v) ∈ Δ.
Conversely, suppose (Γ,Δ) ∈ SA

{b}, and we prove Γb∩Δb �= /0. (N12) guarantees the
existence of a i ∈ Θ such that di ∈ Γ. Therefore, by (N4), we obtain
S{b}(

∨
v∈Vb

(d(b,v)∧I /0(di → d(b,v))))∈Γ, and hence,
∨

v∈Vb
(d(b,v)∧I /0(di → d(b,v)))∈

Δ. Therefore, for some v ∈ Vb, d(b,v)∧ I /0(di → d(b,v)) ∈ Δ. Using (N9) and the fact
that di ∈ Γ, this gives us d(b,v) ∈ γ∩Δ, and hence, Γb∩Δb �= /0. �

Let us consider an abstract NIS-algebra A := (U , ∧, ¬, 0, {IB}B⊆A , {SB}B⊆A ,
{NB}B⊆A , {dα}α∈D , {di}i∈Θ). As in the case of abstract DIS algebra, abstract NIS-
algebra A determines a unique NIS A∗ := (PF(A),A ,V , fA), where

fA(Γ,a) = {v : d(a,v) ∈ Γ}.

The following proposition relates the abstract NIS-algebra A and NIS A∗.

Theorem 14.4. The following hold for each B⊆ A .

1. a. IndA∗
B = IA

B .
b. SimA∗

B = SA
B .

c. InA∗
B = NA

B .
2. a. IndA∗

B = mIAB
.

b. SimA∗
B = mSA

B
.

c. InA∗
B = mNA

B
.

Proof. We only prove (1) for singleton B. First suppose (Γ,Δ) ∈ IndA∗
{b}. Therefore,

we obtain fA(Γ,b) = fA(Δ,b). This implies Γb = Δb, and hence, by item (2) of
Proposition 14.5, we obtain (Γ,Δ) ∈ IA

{b}, as desired. Conversely, let (Γ,Δ) ∈ IA
{b}.

Then by item (2) of Proposition 14.5, we obtain Γb = Δb. This gives fA(Γ,b) =
fA(Δ,b) and hence (Γ,Δ) ∈ IndA∗

{b}. One can prove 1(b) and 1(c) in the
same way. �

For each i ∈ Θ, let us consider the nullary operators cA∗
i defined as

cA∗
i := {Γ ∈ PF(A) : di ∈ Γ}.

Then we obtain the following theorem.

Theorem 14.5

1. PF(A)/IndA∗
A ⊆ {cA∗

i : i ∈Θ}.

2. cA∗
i ∩ cA∗

j = /0, for i �= j.

3. cA∗
i ∈U/IndA∗

A ∪{ /0}.

4. If (Γ,Δ) /∈ IndA∗
A , [Γ]

IndA∗
A

= cA∗
i and [Δ]

IndA∗
A

= cA∗
j , then i �= j.
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Proof (1) Let [Γ]
IndA∗

A
∈ U/IndA∗

A . From (N12), we obtain di ∈ Γ for some i ∈ Θ.

Also, due to (N13), d j /∈ Γ for all j distinct from i. We claim that [Γ]
IndA∗

A
= cA∗

i .

In order to see it, first suppose (Γ,Δ) ∈ IndA∗
A . We need to show di ∈ Δ. But since

di ∈ Γ, we obtain, using (N14), IA di ∈ Γ. Now using the facts that (Γ,Δ)∈ IndA∗
A and

IndA∗
A = IA

A , we obtain di ∈ Δ. Next, suppose Δ ∈ cA∗
i , and we prove (Γ,Δ) ∈ IndA∗

A .
For this, by item (2) of Proposition 14.5, it is enough to show that for each a ∈ A ,
and v ∈ Va, d(a,v) ∈ Γ if and only if d(a,v) ∈ Δ. First suppose d(a,v) ∈ Γ. Then using
(N10), we obtain I /0(di → d(a,v)) ∈ Γ. Thus using (N9), we obtain di → d(a,v) ∈ Δ, and
hence d(a,v) ∈ Δ, as di ∈ Δ. Similarly, using (N11), one can show that if d(a,v) ∈ Δ,
then d(a,v) ∈ Γ.

(2) Follows from (N13).

(3) Let us consider cA∗
i �= /0. Then there exists γ ∈ cA∗

i . Now giving argument similar
to (1), one can show that [Γ]

IndA∗
A

= cA∗
i .

(4) If possible, let (Γ,Δ) /∈ IndA∗
A , [Γ]

IndA∗
A

= [Δ]
IndA∗

A
= cA∗

i . Since (Γ,Δ) /∈ IndA∗
A ,

without loss of generality we assume the existence of an a ∈ A and v such that
v∈ fA(Γ,a), but v /∈ fA(Δ,a). That is, d(a,v) ∈ Γ and d(a,v) /∈ Δ. Therefore, we obtain
di∧d(a,v) ∈ Γ and by (N10), I /0(di → d(a,v)) ∈ Γ. This implies I /0(di → d(a,v)) �= 0 and
hence by (N9), di → d(a,v) = 1. But this contradicts the fact that di∧¬d(a,v) ∈ Δ.  !

Finally, we consider the NIS algebra (A∗)∗ generated by A∗ by taking nullary
operators corresponding to elements of Θ as cA∗

i . That is,

(A∗)∗ := (℘(PF(A)),∩,∼, /0,{IndA∗
B }B⊆A ,{SimA∗

B }B⊆A ,{InA∗
B }B⊆A ,

{cA∗
γ }γ∈D ,{cA∗

i }i∈Θ).

Now, one can prove the following representation theorem for abstract NIS-algebras,
using Theorem 14.4.

Theorem 14.6 (Representation theorem for abstract NIS-algebras)
Let A := (U, ∧, ¬, 0, {IB}B⊆A , {SB}B⊆A , {NB}B⊆A , {dα}α∈D , {di}i∈Θ) be an ab-
stract NIS-algebra. Then, the mappingΨ : U →℘(PF(A)) given by

Ψ(x) := {Γ ∈ PF(A) : x ∈ Γ}, x ∈U,
is an embedding of A into (A∗)∗.

As in the case of DISs, the above representation theorem gives us an equational
logic for NISs consisting of the axioms (N1)− (N16).

14.7.1 Extension to Other Types of Relations Defined on NISs

So far in our study of NISs, we have restricted ourselves to indiscernibility, simi-
larity and inclusion relations. But, one can extend the scheme of this work to other
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types of relations defined on NISs as well. In fact, as mentioned in Remark 14.2, the
main task is to come up with axioms relating the approximations (with respect to the
relation considered) relative to different sets of attributes and attribute-value pairs.
We list below the axioms serving this purpose for the relations defined in Section
14.1. Let RB, B⊆ A , be the operators corresponding to the relation considered.

Negative similarity relation:

• RB(x∧ y) = RB(x)∧RB(y).
• RC(x)≤ RB(x) for C ⊆ B⊆ A .
• di ≤ R{a}(

∨
v∈Va

(¬d(a,v)∧ I /0(di →¬d(a,v)))).
• ¬d(b,v)∧RB∪{b}(x)≤ RB(¬d(b,v) → x).
• R /0 = I /0.

Complementarity relation:

• RB(x∧ y) = RB(x)∧RB(y).
• RC(x)≤ RB(x) for C ⊆ B⊆ A .
• d(a,v) ≤ R{a}(¬d(a,v)).
• ¬d(a,v) ≤ R{a}(d(a,v)).

• di∧RB∪{b}(x)≤ RB

(
∧

v∈Vb

(

¬d(b,v) ↔ I /0(di → d(b,v))
)

→ x

)

.

• R /0 = I /0.

Weak indiscernibility relation:

• RB(x∧ y) = RB(x)∧RB(y).
• RB(x)≤ RC(x) for C ⊆ B⊆ A .

• di ≤ RB

(
∨

b∈B
∧

v∈Vb

(

d(b,v) ↔ I /0(di → d(b,v))
))

.

Weak similarity relation:

• RB(x∧ y) = RB(x)∧RB(y).
• RB(x)≤ RC(x) for C ⊆ B⊆ A .

• di ≤ RB

(
∨

b∈B
∨

v∈Vb

(

d(b,v)∧ I /0(di → d(b,v))
))

.

Weak inclusion relation:

• RB(x∧ y) = RB(x)∧RB(y).
• RB(x)≤ RC(x) for C ⊆ B⊆ A .

• di ≤ RB

(
∨

b∈B
∧

v∈Vb

(

I /0(di → d(b,v))→ d(b,v)

))

.

Weak negative similarity relation:

• RB(x∧ y) = RB(x)∧RB(y).
• RB(x)≤ RC(x) for C ⊆ B⊆ A .
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• di ≤ RB

(
∨

b∈B
∨

v∈Vb

(

¬d(b,v)∧ I /0(di →¬d(b,v))
))

.

Weak complementarity relation:

• RB(x∧ y) = RB(x)∧RB(y).
• RB(x)≤ RC(x) for C ⊆ B⊆ A .

• di ≤ RB

(
∨

b∈B
∧

v∈Vb

(

¬d(b,v) ↔ I /0(di → d(b,v))
))

.

Thus we need to consider the axioms listed above, in addition to the axioms (N9),
(N15) for I /0, and (N10)–(N14) for di. Then one can obtain the counterparts of The-
orem 14.4 for these relations. As a consequence of this, we would obtain the de-
sired representation theorems for abstract NIS-algebras that include any of the above
relations.

14.8 Conclusions

Classes of algebras induced by information systems – deterministic, incomplete or
non-deterministic, are considered. These algebras are also able to capture the no-
tion of approximations defined on these information systems. Abstract algebras are
proposed, which model such classes of algebras. Corresponding representation the-
orems are proved. The representation theorems also lead us to equational logics
for the respective information systems. In the process, it is also established that the
proposed classes of abstract algebras for DISs and ISs constitute the algebraic coun-
terparts of the logics for information systems studied in [15, 16].

A search for a suitable logic for information systems and rough set approxima-
tions remains the main issue of many research articles (e.g., [23, 28, 24, 25, 26, 30,
2, 1, 15, 16], c.f. [11, 5]). In [16], the logics for deterministic/incomplete informa-
tion systems are extended to propose dynamic logics for information systems, which
can capture a formalization of the notion of information and information update in
the context of information systems. A natural question would be to extend this work
and propose a dynamic logic for non-deterministic information systems. A first step
in this direction would be to translate the equational logic for NISs obtained in this
chapter, into a modal logic. An extension of the latter to a dynamic logic for NISs
may then be thought of, where we can capture the notion of information flow and
information update for NISs.
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Chapter 15
DNA Rough-Set Computing in the Development
of Decision Rule Reducts�

Ikno Kim, Junzo Watada, and Witold Pedrycz

Abstract. Rough set methods are often employed for reducting decision rules. The
specific techniques involving rough sets can be carried out in a computational man-
ner. However, they are quite demanding when it comes computing overhead. In par-
ticular, it becomes problematic to compute all minimal length decision rules while
dealing with a large number of decision rules. This results in an NP-hard problem.
To address this computational challenge, in this study, we propose a method of DNA
rough-set computing composed of computational DNA molecular techniques used
for decision rule reducts. This method can be effectively employed to alleviate the
computational complexity of the problem.

Keywords: DNA computation, decision rule reduction, NP hard problem, digraph,
DNA rough-set computing, encoding process, deoxyribonucleic acid, nitrogen-
containing base, hydrogen bond, DNA molecular technique, restriction enzyme tech-
nique, ligation technique, polymerase chain reaction technique, affinity separation
technique, gel electrophoresis technique

15.1 Introduction

Many different types of databases and information technologies are needed to
arrive at new solutions and to provide meaningful results to new problems, espe-
cially those encountered in machine learning, data mining, and other information
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processing tasks [30]-[21]. The derived results could include, for example, deci-
sions, features, and relationships that are of interest to the user. With this regard,
rough set methodology and algorithmic framework offers an interesting and useful
alternative. In rough sets, decision tables composed of objects, attributes with their
values, and decision attributes play a pivotal role. Rough sets provide a vehicle to
realize numerous classification tasks. Rough set-based methods [18] are often ap-
plied to problems of feature solutions, meaning that certain specific characteristics
of given selected objects and their attributes in each of the different decision classes
are assessed and selected to provide simplified rules. Rough set theory forms an
important basis of reasoning that generates understandable and transparent infor-
mation that originates from large data sets. In rough sets, a decision table is often
used to represent objects, attributes with values, and related decision attributes. Such
a decision table should be computed to offer decision rule reducts, which can subse-
quently be interpreted in terms of a certain if-then decision rule set that is employed
to support decision-making processes.

There have been great deals of research studies on rough sets and their applica-
tions. Those include some generalizations as proposed for example, by Słowiński
[31]. A group of applications were focused on data analysis and building minimal-
length decision rules and dealing with uncertainties. Grzymała-Busse [8] developed
a computational method of decision rules of minimal length to manage uncertainty
of data in expert systems. Subsequently, Ziarko [36] proposed a new type of decision
system matrix to offer a novel way of reducting decision rules. In addition, Skowron
and Rauszer [27] proposed an incremental identification algorithm based on a deci-
sion system matrix applied to a discernibility matrix. Another incremental algorithm
was studied by Shan and Ziarko [28], who formed decision rules in a different way.

A large number of different types of decision rules come with several mean-
ingful features (corresponding to objects, attributes with their values, and decision
attributes). The most difficult problem that still remains in rough set theory is about
how to reduct decision rules. Computing all minimal-length decision rules is an
intractable NP-hard problem [24].

In this study, we propose a rough set method that is composed of computational
DNA molecular techniques, including experimental molecular techniques, to reduct
decision rules. This novel method is referred to as DNA rough-set computing. A
DNA rough-set computing method is employed first to determine all of the low ap-
proximation subsets, which are classified into each of the selected decision classes,
and secondly one derives decision rules of minimal length. Obviously, DNA rough-
set computing was created based on the mathematical concepts of traditional rough
sets and was carried out in this study to assess its efficiency in reducting decision
rules. This demonstration of the DNA rough-set computing method provides the
framework for building a new type of the rough set-based method. The material is
organized as follows:

Section 15.2 describes some fundamentals of DNA molecules that are crucial to
better understanding of the proposed method. Section 15.3 covers several relevant
DNA molecular techniques. Section 15.4 brings some ideas about basic concept of
rough sets as well as about a model decision table. Section 15.5 describes a novel
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DNA rough-set computing method proposed in this study. Experimental studies are
presented in Section 15.6. Finally, Section 15.7 includes some concluding comments
and offers suggestions for further research.

15.2 Deoxyribonucleic Acid

Biological polymer material present in the cells of living organisms corresponds to
deoxyribonucleic acid, which is commonly abbreviated as DNA [16]. DNA
molecules perform various meaningful functions relevant to development and main-
tenance of living organisms. The main advantage of investigating the functions of
DNA molecules from the computing perspective is the ability of the molecules to
act as high volume memories capable of storing data for long periods of time while
realizing such memories at the nanometer scale. In this section, we briefly describe
DNA molecules, also referred to as nitrogen-containing bases, and explain two im-
portant natural bonds present in DNA molecules.

15.2.1 Nitrogen-Containing Bases

At the basic level, one single DNA molecule consists of phosphoric acid, a five-
carbon sugar, and four different types of nitrogen-containing bases: adenine (A),
thymine (T), guanine (G), and cytosine (C). Each of the four nitrogen-containing
bases is shown in Fig. 15.1 along with their structural formula. Figs. 15.1(a) and (c),

Fig. 15.1. Four nitrogen-containing bases in DNA represented as their structural formulas:
(a) adenine (A) (double-ring structure); (b) thymine (T) (single-ring structure); (c) guanine
(G) (double-ring structure); (d) cytosine (C) (single-ring structure)
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respectively show the bases A and G, both of which have a double-ring structure
and are called purines. Figs. 15.1(b) and (d), respectively show the bases T and
C, both of which have a single-ring structure and are called pyrimidines [9]. In
computational DNA molecular techniques, we must effectively manipulate these
four nitrogen-containing bases A, T, G, and C to achieve meaningful processing.

15.2.2 Phosphodiester Bonds

Each of the four nitrogen-containing bases can be linked with one another by taking
the sugar deoxyribose. If deoxyribose is attached to form a phosphate group, then
it becomes a nucleotide. In order for nucleotides to join a polynucleotide chain, the
phosphate is attached to the first sugar of the 5 carbon that is linked with the hy-
droxyl group attached to the second sugar of the 3 carbon. Through these types of
chemical attachments, adjacent nucleotides of the sugars linked in component con-
nections through the phosphates forming phosphodiester bonds [9]. Additionally,
chemical compounds with phosphodiester bonds are built by nonmetal elements.

15.2.3 Hydrogen Bonds

In DNA molecules, two different polynucleotide strands are bound together within a
pure liquid and are formed using shared hydrogen atoms of two negative atoms. The
connection between the two single strands of polynucleotide is built by a bonding
group referred to as a hydrogen bond. In particular, hydrogen bonds play a primary
role in building the higher-order structure of the DNA molecule, such as an impor-
tant formation of a right-handed helix. Hydrogen bonds form with observation of
certain bonding patterns, which occur through normal types of base pairs (bp). That
is, the base A is always attached only to the base T, whereas G is always attached
only to C. This particular phenomenon is referred to as Watson-Crick complemen-
tarity [34]. Fig. 15.2 shows a photograph of the DNA molecule reconstruction model
first built by Watson and Crick in 1953.

Because a purine chain is always attached only to a pyrimidine chain, the base di-
mensions become the same as the length of the DNA molecule. Thus, any of the two
purines can selectively bond with any of the two pyrimidines. In other words, one
complementary base pairing is composed of both A and T, and the other comple-
mentary base pairing is composed of both G and C. From these two complementary
base pairings, all the backbone groups of the sugar-phosphate clearly have set ori-
entations, which ultimately allow DNA molecules to presume the same structure for
any bases of the DNA sequences. Importantly, the formation of base pairs is a sym-
metric process, which allows formation of the right-handed helix in double-stranded
DNA (dsDNA). Hence, the symmetry of DNA molecules is related to the two single
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polynucleotide strands, each of which runs exactly in opposite directions to create a
dsDNA helix [35], [11].

Two different types of complementary bases should hold A and T together in two
hydrogen bonds, as shown with their structural formulas in Fig. 15.3(a). Further-
more, two different types of complementary bases should hold G and C together in
three hydrogen bonds, as shown with their structural formulas in Fig. 15.3(b). The
combination of strong attachment in phosphodiester bonds and weak attachment in
hydrogen bonds essentially makes the characteristic DNA molecule structure form.

Fig. 15.2. DNA molecule reconstruction model built by Watson and Crick in 1953. The pho-
tograph was taken by Ikno Kim at Science Museum London (Copyright c© 2011 by Ikno
Kim)

15.3 DNA Molecular Techniques

In this section, we describe several important DNA molecular techniques to support
a better understanding of how to manipulate DNA molecules in order to develop
DNA rough-set computing. In particular, this section details five different types of
DNA molecular techniques, which are the restriction enzyme technique, the ligation



414 I. Kim, J. Watada, and W. Pedrycz

Fig. 15.3. Hydrogen bonds in Watson-Crick complementarity represented as their structural
formulas: (a) adenine (A) and thymine (T) are two different complementary bases in two
hydrogen bonds; (b) guanine (G) and cytosine (C) are two different complementary bases in
three hydrogen bonds

technique, the polymerase chain reaction (PCR) technique, the affinity separation
technique, and the gel electrophoresis technique. Each of these molecular techniques
has its own significant function for manipulating DNA molecules and as such it
becomes necessary for building robust DNA rough-set computing.

15.3.1 Restriction Enzyme Technique

To generate recombinant DNA, it is necessary both to break the desired DNA
molecule sites and to isolate certain specific DNA fragments, which can be achieved
by a DNA molecular technique referred to as the restriction enzyme technique. This
technique intentionally severs DNA molecules into separate pieces by targeting cer-
tain sequences of the DNA. Such restriction enzyme sites are commonly comprised
of four to six nucleotides, which involve their complementary DNA base parts [10].
DNA fragments of different lengths are generated by the amplification of various
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types of DNA base sequences and by the subsequent breakage of them into sep-
arate pieces using the restriction enzyme technique. In other words, a restriction
enzyme recognizes some specific DNA base sequences and breaks them at a desired
position.

Restriction enzymes act as nucleases, which also break at a desired position of a
DNA internal edge (type II restriction endonucleases). Since the four possible bases
(A, T, G, and C) are considered, the expected frequency achieved in any DNA base
sequences can be calculated by 4n, where n is the recognized sequence length, and
the lengths of three alternative sites can be predicted. First, each of the 256-base
pairs indicates tetranucleotide sites. Second, each of the 1024-base pairs indicates
pentanucleotide sites. Finally, each of the 4096-base pair indicates hexanucleotide
sites. Furthermore, the cleaving mechanisms carried out in the restriction enzyme
technique are either sticky-ended or blunt-ended [32]. Fig. 15.4 illustrates an exam-
ple of the mechanism of a restriction enzyme (EcoRI).

Fig. 15.4. Example mechanism of the restriction enzyme (EcoRI) with DNA base sequences
of breaking sites, representing 5’-G|AATTC-3’ and 5’-G|AATTC-3’

For the restriction enzyme technique, we add one or more enzymes with a buffer
to DNA molecules. Certain restriction enzymes only work with a particular buffer
that has a dissimilar salt concentration to ensure production of an efficient and trust-
worthy result. Most common restriction enzymes can react and be incubated at 37
◦C. Basically, the amount of a restriction endonuclease used for a reaction (1 µg)
should be able to completely digest substrate DNA in a volume of about 0.05 ml,
keeping in mind three optimal settings, which are potential hydrogen (pH), temper-
ature for one hour, and salt concentration [17].
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15.3.2 Ligation Technique

Unstable dsDNA or dsDNA where one single DNA strand or two different oppo-
site single DNA strands contain one or more DNA nucleotides and are not properly
bound together can be repaired using a ligation technique. The attachment forma-
tion of phosphodiester bonds should be catalyzed by ligation for many important
purposes in the recombinant DNA process.

DNA plasmid vectors are fused to create a single DNA molecule by a biochemi-
cal procedure, which is the ligation process. T4 ligations [7] can be used to seal the
gaps in the single DNA strand for catalyzing the phosphodiester bonds. In the lig-
ation process, T4 ligation works for both sticky-ended and blunt-ended types. The
ligation buffer with enzyme that is used for the process involves adenosine triphos-
phate (ATP) that is labile at common laboratory room temperature [2]. All of the
enzyme varieties and buffers used should be maintained on ice after they have been
taken from the freezer.

15.3.3 Polymerase Chain Reaction Technique

PCR, a DNA molecular technique performed in vitro, can be used to amplify spe-
cific DNA sequences to a count of approximately a half a million by employing
the use of simultaneous complementary primers. The PCR technique uses two types
of primer extensions, which limit the region of DNA molecules for their ampli-
fications. Subsequently, the PCR technique repeats the template-specific synthesis
reaction of the DNA base sequences by inclusion of a heat-resistant polymerase.
The PCR technique was developed to analyze the characteristics of DNA.

The PCR technique requires energy and nucleosides to synthesize DNA
molecules with buffers, primers, polymerases, and templates. Particularly, poly-
merases, which are naturally occurring enzymes, are central components because
they are used to repair and catalyze formation of DNA molecules [26]. The main
step of synthesizing DNA molecules should be repeated and involves heating the
latest synthesized DNA molecules until they are clearly separated and subsequently
letting them cool to allow for primer formation, which anneals the DNA comple-
mentary sequences. With each cycle of heating and cooling, the DNA molecule
number largely increases due to the primer extensions. The predominant reactions
generate DNA molecule products, and some products are flanked by the primer ex-
tensions after several cycles. Fig. 15.5 shows a photograph of the commonly used
type of PCR.

The DNA molecule count continues increasing during the heating and cooling
cycles, although the enzyme might not synthesize an adequate desired number of
DNA molecules or the reaction might suddenly decrease in intensity. The num-
ber of cycles required for optimal amplification is quite variable and is dependent
on each of the amplification steps or on the initial amount of materials included.
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Fig. 15.5. Commonly used type of PCR shows the substeps for each cycle. The photograph
was taken by Ikno Kim at Taipei Medical University (Copyright c© 2011 by Ikno Kim) (Cour-
tesy of Prof. Jui-Yu Wu)

The PCR technique features should be established to maintain stability when the
strong reactions are repeated at their high temperatures. Thus, the enzyme Thermus
aquaticus (Taq) polymerase [15] should be used to maintain stability.

15.3.4 Affinity Separation Technique

To separate some desired DNA sequences from others or to extract one ore more
specific DNA sequences, one DNA molecular technique that can be used is affin-
ity separation. This technique plays a role of scales with a complicated mixture of
DNA molecules from biochemical purpose extractions, cell homogenates, and fer-
mentation broths [14].

The affinity separation technique often uses magnetic beads to collect and dis-
perse material with an aqueous solution. This extraction technique is also employed
to extract and separate biochemical matter. Another type of affinity separation tech-
nique uses magnetic beads with fluorescent labels to extract DNA molecules [6].



418 I. Kim, J. Watada, and W. Pedrycz

In this particular type of the affinity separation, fluorescently labeled DNA frag-
ments have some specific base sequences of ligations that are attached to the mag-
netic beads. This type of affinity separation includes two functions, which are to
enable the attachment to the magnetic beads and to identify each of the magnetic
beads with a solidified DNA fragment. This type of separation technique is also
able to deal with multiple DNA molecules extracted and tested at the same time.
Many affinity separation techniques are expected to become automated ones.

15.3.5 Gel Electrophoresis Technique

The different length sizes of DNA molecules can be revealed by their different
speeds as they move through an electric-charged gel in a technique called gel elec-
trophoresis. DNA molecules are transferred into the electric-charged gel, and an
electric current is introduced to the gel to make the DNA molecules separate accord-
ing to their physical characteristics; the lengths of DNA molecules can be estimated
using this technique. The common equipment used for the gel electrophoresis tech-
nique is called agarose gel electrophoresis. Gel electrophoresis is quite useful not
only for measuring the DNA molecule length, but also for detaching the DNA frag-
ments from their structures [16]. Fig. 15.6 shows a photograph of a commonly used
type of agarose gel electrophoresis. A more recently introduced gel electrophoresis
technique can measure DNA molecule length, while also analyzing the nucleic acids
to provide molecular data. This newer apparatus automatically measures each single
DNA strand and fragment and shows clear linear bands representing their lengths.

15.4 Rough Sets and a Model Decision Table

In this section, a fundamental concept of rough set theory is briefly revisited. This
material is helpful in describing the DNA rough-set computing for decision rule
reducts. A model decision table is also studied and is used as an example that will
be solved by DNA rough-set computing.

15.4.1 Concept of Rough Set Theory

Rough set theory was introduced by Pawlak [19] based on a concept of the under-
lying set theory. He was the first to introduce numerous novel and innovative algo-
rithms, such as fundamentals of Granular Computing, a novel formal computational
machine, perceptional knowledge discovery, and others [23].
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Fig. 15.6. Commonly used type of agarose gel electrophoresis shows the positive pole (red
colour) and the negative pole (black colour). The photograph was taken by Ikno Kim at Taipei
Medical University (Copyright c© 2011 by Ikno Kim) (Courtesy of Prof. Jui-Yu Wu).

The fundamentals of rough set theory can be outlined as follows, see [25]. As-
sume that a universe is denoted by U , and a constraint set is denoted by T . T on
objects is called a disjoint relation of object classifications. Assume that object x
and object y (each object is an element in U), since (x,x) and (y,y) are elements
of T and (x,y) need not be equal to (y,x). If three different elements x,y, and z are
handled, T satisfies the properties of reflexivity, symmetry, and transitivity and is
referred to as an equivalence relation. The equivalence relation, denoted by Ξ, is
also called a discernibility relation. When this relation is invoked, all of the objects
of U can be classified into three different types of disjoint sets: lower approxima-
tion (denoted by ΞA), the upper approximation (denoted by ΞA), and the boundary
region (denoted by ΞB). Let us assume that X is a subset of U . The three disjoint
sets for any subset X ⊆U express the multiplicity of objects, which are surely posi-
tioned in X (class 1), those that are not surely included in X (class 2), or those that
are possibly located in X (class 3). The objects included in class 1 are from ΞA of
X . The objects included in classes 1 and 3 are from ΞA of X . Finally, the objects
included in class 3 are from ΞB of X [20].

Our objective is to determine the lower approximation subsets using DNA rough-
set computing. The resultant lower approximation subsets are revealed by solving
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the problem of the model decision table.The lower approximation subsets are deter-
mined before determining decision rule reducts using the DNA rough-set computing
method.

15.4.2 Decision Table as a Model

In rough sets, we commonly deal with a decision table that is essentially created
on a basis of a decision system. We define the decision system (denoted as DS) as
DS = (U,Γ,ε,ω), where a finite condition attribute set is Γ, a decision attribute is
ε, and a value assignment is ω. U consists of n objects x1,x1, · · · ,xn, correspond-
ing to U = {x1,x2, · · · ,xn}. The n condition attributes are denoted as ζ1,ζ2, · · · ,ζn,
while Γ consists of n condition attributes, corresponding to Γ= {ζ1,ζ2, · · · ,ζn}. The

m condition attribute values are denoted as ψζ1
1 ,ψζ1

2 , · · · ,ψζ1
m , ψζ2

1 ,ψζ2
2 , · · · ,ψζ2

m ,. . .,

and ψζn
1 ,ψζn

2 , · · · ,ψζn
m when we deal with condition attribute values for n condition

attributes ζ1,ζ2, · · · ,ζn. Finally, n pair sets of both n condition attributes and m con-
dition attribute values are denoted as Ic

ζ1
, Ic
ζ2

, · · · , Ic
ζn

.
A case has the mapping from ε : U → Dν, where a set of decision values is Dν in

the decision system, where ω encompasses ε, representing ω : U × (Γ∪ {ε}) →
Iν ∪Dν, where a set of decision attributes is {ε} also denoted as E , expressing
E = {ε}, and this should be treated as a single decision attribute. Thus, a pair (ε,u)
should belong to Dν, meaning that it satisfies all of the value assignments. A set of
all the attributes is expressed by Γt = Γ∪{ε} in the specific case, where the deci-
sion part should be added. Let us assume n decision attribute values are denoted as
τ1,τ2, · · · ,τn and a decision attribute value set is expressed as Dν = {τ1,τ2, · · · ,τn}.
The n decision classes in the n-decision values are denoted as Dντ1 ,D

ν
τ2 , · · · ,Dντn .

A model decision table was employed in this study for reducting decision rules in
rough sets. The model decision table is composed of eight proposed objects, four pro-
posed condition attributes with their condition attribute values, and a single decision
attribute with their decision values. These given decision rules should be reducted
to exhibit a minimal length. By reducting these decision rules, the characteristics of
this decision table can be revealed. The given element sets for the model decision ta-
ble are expressed as (1) U = {Object-1,Object-2,· · ·,Object-8}; (2) Γ= {∗,#,�,•};
(3) Ic∗ = {(∗,1),(∗,2),(∗,3),(∗,4)}; (4) Ic

# = {(#,1),(#,2),(#,3),(#,4)}; (5) Ic
� =

{(�,1),(�,2),(�,3),(�,4)}; (6) Ic• = {(•,1),(•,2),(•,3)}; and (7) Dν =
{Decision Class-1, Decision Class-2}. In more detail, the model decision table is
composed of (1) Object-1 = {(∗,4),(#,3), (�,2),(•,1)}; (2) Object-2 = {(∗,3),
(#,4),(�,4),(•,2)}; (3) Object-3 = {(∗,1), (#,1), (�,1),(•,3)}; (4) Object-4 =
{(∗,4),(#,3), (�,3),(•,2)}; (5) Object-5 = {(∗,2),(#,2), (�,1),(•,1)}; (6) Object-
6 = {(∗,3),(#,4), (�,4),(•,2)}; (7) Object-7 = {(∗,4),(#,1), (�,2),(•,3)}; (8)
Object-8 = {(∗,2),(#,2), (�,1),(•,1)}; (9) Decision Class-1 = {Object-3, Object-
4, Object-6, Object-8}; and (10) Decision Class-2 = {Object-1, Object-2, Object-5,
Object-7}.
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15.5 DNA Rough-Set Computing

DNA rough-set computing is again used to first determine the lower approximation
subsets classified into each decision class and to determine decision rule reducts
based on the determined results obtained so far. This section describes DNA rough-
set computing as well as we show how the method is structuralized in order to reduct
decision rules.

15.5.1 Digraph in DNA

The three distinctively different elements are object elements, condition attribute el-
ements, and condition attribute value elements. To create a digraph of the decision
table, we form both a condition attribute element and a condition attribute value ele-
ment that become one integrated single element, referred to as a pair element. Thus,
one pair element involves a condition attribute element and a condition attribute
value element. By applying the two different elements, corresponding to object el-
ements and pair elements, we create a new type of digraph composed of these two
different elements, referred to as a DNA-digraph, as shown in Fig. 15.7. Hereafter,
an object element and a pair element are called an object node and a pair node in
the case of dealing with the DNA-digraph.

For the DNA-digraph, as for the decision table, let us assume that n object nodes
are x1,x2, · · · ,xn and an object node set is U , expressed as U = {x1,x2, · · · ,xn}, and
n pair nodes consist of both n condition attributes ζ1,ζ2, · · · ,ζn and m condition

attribute values ψζ1
1 ,ψζ1

2 , · · · ,ψζ1
m , ψζ2

1 ,ψζ2
2 , · · · ,ψζ2

m , . . ., and ψζn
1 ,ψζn

2 , · · · ,ψζn
m , and a

pair node set is denoted as Ps, expressed as a pair matrix. The structure of the DNA-
digraph is composed of both n object nodes and n pair nodes. Here, there are one
or more pair nodes, in which some condition attributes, including fewer condition
attribute values than other given condition attributes; the specific symbol ‘φ’ is set
to be used to describe any empty entry.

A DNA-digraph transformed from the model decision table is shown in Fig. 15.8,
in which each of the five complicated pair nodes (∗,4),(#,1),(#,3),(�,1), and
(�,2) is associated with multiple directions. The model DNA-digraph is composed
of the eight object nodes, representing U = {x1,x2, · · · ,x8}, and the four condition
attributes, representing ζ1,ζ2, · · · ,ζ4. Here, the three condition attributes (ζ1,ζ2, and
ζ3) involve the four condition attribute values, and the a single condition attribute
(ζ4) involves the three condition attribute values. A model pair matrix is mainly used
when we encode DNA sequences of the given pair nodes in single-stranded DNA
(ssDNA).

The existing relation between any two nodes in the DNA-digraph, as shown in
Fig. 15.7, is denoted as e, which represents the existing relation of a directed line
connected with those two nodes. The three different types of directed relations be-
tween two nodes are the following cases. The first case is when an object node xi
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Fig. 15.7. Representation of a DNA-digraph is used to reduct decision rules. In this DNA-
digraph, (1) a represents the directions from each of n object nodes x1,x2, · · · ,xn to each

of n pair nodes (ζ1,ψ
ζ1
1 ), (ζ1,ψ

ζ1
2 ),· · · , (ζ1,ψ

ζ1
m ); (2) b represents the two-opposite-way di-

rections from and to each of n object nodes x1,x2, · · · ,xn to and from each of n pair nodes

(ζ2,ψ
ζ2
1 ), (ζ2,ψ

ζ2
2 ),· · · , (ζ2,ψ

ζ2
m ); (3) c represents the directions from each of n pair nodes

(ζ1,ψ
ζ1
1 ), (ζ1,ψ

ζ1
2 ),· · · , (ζ1,ψ

ζ1
m ) to each of n pair nodes (ζ2,ψ

ζ2
1 ), (ζ2,ψ

ζ2
2 ),· · · , (ζ2,ψ

ζ2
m );

(4) d represents the directions from each of n pair nodes (ζ1,ψ
ζ1
1 ), (ζ1,ψ

ζ1
2 ),· · · , (ζ1,ψ

ζ1
m ) to

each of n pair nodes · · · , · · · ,. . ., · · · ; (5) e represents the directions from each of n pair nodes

(ζ1,ψ
ζ1
1 ), (ζ1,ψ

ζ1
2 ),· · · , (ζ1,ψ

ζ1
m ) to each of n pair nodes (ζn,ψ

ζn
1 ), (ζn,ψ

ζn
2 ),· · · , (ζn,ψ

ζn
m );

(6) f represents the directions from each of n pair nodes (ζ2,ψ
ζ2
1 ), (ζ2,ψ

ζ2
2 ),· · · , (ζ2,ψ

ζ2
m ) to

each of n pair nodes · · · , · · · ,. . ., · · · ; (7) g represents the directions from each of n pair nodes

(ζ2,ψ
ζ2
1 ), (ζ2,ψ

ζ2
2 ),· · · , (ζ2,ψ

ζ2
m ) to each of n pair nodes (ζn,ψ

ζn
1 ), (ζn,ψ

ζn
2 ),· · · , (ζn,ψ

ζn
m ); (8)

h represents the directions from each of n pair nodes · · · , · · · ,. . ., · · · to each of n pair nodes

(ζn,ψ
ζn
1 ), (ζn,ψ

ζn
2 ),· · · , (ζn,ψ

ζn
m ); (9) i represents the two-opposite-way directions from and

to each of n pair nodes · · · , · · · ,. . ., · · · to and from each of n object nodes x1,x2, · · · ,xn; and

(10) j represents the directions from each of n pair nodes (ζn,ψ
ζn
1 ), (ζn,ψ

ζn
2 ),· · · , (ζn,ψ

ζn
m ) to

each of n object nodes x1,x2, · · · ,xn.
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Fig. 15.8. Representation of a model DNA-digraph is used to reduct the given decision rules
in the model decision table. In more detail, (1) in (∗,4), Object-1 is directed to (#,3), (�,2),
and (•,1), Object-4 is directed to (#,3), (�,3), and (•,2), and Object-7 is directed to (#,1),
(�,2), and (•,3); (2) in (#,1), Object-3 is directed to (�,1) and Object-7 is directed to (�,2);
(3) in (#,3), Object-1 is directed to (�,2) and (•,1) and Object-4 is directed to (�,3) and
(•,2); (4) in (�,1), Object-3 is directed to (•,3), Object-5 is directed to (•,1), and Object-8
is directed to (•,1); and (5) in (�,2), Object-1 is directed to (•,1) and Object-7 is directed
to (•,3).

involves a directed relation to a pair node (ζα,ψ
ζα
α ), representing xie(ζα,ψ

ζα
α ), and

xiē(ζα,ψ
ζα
α ) has no directed relation. The second case is when a pair node (ζβ,ψ

ζβ
β )

involves a directed relation to an object node x j, representing (ζβ,ψ
ζβ
β )ex j , and

(ζβ,ψ
ζβ
β )ēx j has no directed relation. The final case is when a pair node (ζα,ψζαα ) in-

volves a directed relation to a pair node (ζβ,ψ
ζβ
β ), representing (ζα,ψ

ζα
α )e(ζβ,ψ

ζβ
β ),

and (ζα,ψ
ζα
α )ē(ζβ,ψ

ζβ
β ) has no directed relation.

In the DNA-digraph, three different types of related arcs among nodes exist for
the representations of their arc relations. The first case describes a situation when an

object node xi involves a directed arrow, reaching a pair node (ζα,ψ
ζα
α ), expressing

ba
l =

−−−−−−−−−→
(xi,(ζα,ψ

ζα
α )), i,α, and l = 1,2, · · · ,n. (15.1)
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The second case is when a pair node (ζβ,ψ
ζβ
β ) involves a directed arrow, reaching

an object node x j, expressing

bb
l =

−−−−−−−−−→
((ζβ,ψ

ζβ
β ),x j),β, j, and l = 1,2, · · · ,n. (15.2)

The final case is when a pair node (ζα,ψ
ζα
α ) involves a directed arrow, reaching

another pair node (ζβ,ψ
ζβ
β ) , expressing

bc
l =

−−−−−−−−−−−−−−→
((ζα,ψ

ζα
α ),(ζβ,ψ

ζβ
β )),α,β, and l = 1,2, · · · ,n for α �= β. (15.3)

Three subsets of arcs are also represented in the following manner. The first case
deals with a subset of arcs starting from the object node xi and ending to the pair

node (ζα,ψ
ζα
α ), denoted by Ba, consists of all of the arcs, representing

Ba = {ba
1,b

a
2, · · · ,ba

n}. The second case involves a subset of arcs starting from the

pair node (ζβ,ψ
ζβ
β ) and ending at the object node x j, denoted by Bb, consists of

all of the arcs, representing Bb = {bb
1,b

b
2, · · · ,bb

n}. The final case is when a subset

of arcs starting from the pair node (ζα,ψ
ζα
α ) and ending at the pair node (ζβ,ψ

ζβ
β ),

denoted by Bc, consists of all of the arcs, representing Bc = {bc
1,b

c
2, · · · ,bc

n}.
The five different sets of U , Ps, Ba, Bb, and Bc are represented through a binary

adjacency matrix. A model of a binary adjacency matrix can be constructed by
applying the model DNA-digraph. It is composed of the rows and columns of the
matrix, labeled as follows:

ri, j, i and j = 1,2, · · · ,23 for all (i, j) ∈ L, (15.4)

where a set of all the row and column labels is L, i is the row label, and j is the
column label. When ri, j = 1 in the model binary adjacency matrix, there are three

arc relations: xi → (ζα,ψ
ζα
α ) , (ζβ,ψ

ζβ
β )→ x j, and (ζα,ψ

ζα
α )→ (ζβ,ψ

ζβ
β ) .

15.5.2 Encoding Process in DNA

To encode DNA sequences, the binary adjacency matrix is used in the encoding
process. This type of matrix involves rows and columns, including the object and
pair nodes, and is transformed into the desired DNA sequences.

Here, the model adjacency matrix is composed of 23 rows and 23 columns. In the
model DNA-digraph, each of two directional nodes involves its own row and col-
umn. The 23 rows and 23 columns are labeled by ri, j, i and j = 1,2, · · · ,23. For the
DNA encoding process, we construct seven different types to create an initial DNA
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library. Each of the seven types involves its own row and column labels. The seven
types are referred to as types 1 to 7; types 1, 2, and 3 are substrings, which in this
study are called double-encoded substring, and types 4, 5, 6, and 7 are complemen-
tary substrings. These double-encoded substrings and complementary substrings are
all formed in ssDNA.

Fig. 15.9. Representation of a double-encoded substring for type 1

Fig. 15.10. Representation of a double-encoded substring for type 2

Type 1 expresses a double-encoded substring, shown in Fig. 15.9, which involves

the two nodes xi and (ζα,ψζαα ) , and contains a directed arrow, indicating the direc-

tion starting from xi and ending at (ζα,ψ
ζα
α ). Thus, this type is denoted by a double-

encoded substring xi − 3′upper → 5′upper − (ζα,ψ
ζα
α ). For Type 1, all the row and

column labels are denoted by i and j, and those entries can be defined as

ri, j = 1 for i = 1,2, · · · ,8, j = 9,10, · · · ,20, and all (i, j) ∈ L. (15.5)

The two different nodes are encoded by a DNA oligonucleotide, in which two differ-
ent sites have been unified into a single site. The single DNA oligonucleotide comes
with its DNA base pair (bp) length (after hybridization and end-filling). Thus, for
the model DNA-digraph, each object node xi, i = 1,2, · · · ,8 was set to be a length

of 18 bp, and each pair node (ζα,ψ
ζα
α ) represents 5′upper− (∗∨#∨�,1∨2∨3∨4),

with a different bp length in each of the different pair nodes.
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Type 2 also expresses a double-encoded substring, shown in Fig. 15.10, which

involves the two nodes (ζβ,ψ
ζβ
β ) and x j, and contains a directed arrow that indicates

the direction starting from (ζβ,ψ
ζβ
β ) and ending at x j. Thus, it is denoted by a double-

encoded substring (ζβ,ψ
ζβ
β )− 3′upper → 5′upper − x j. For type 2, all the row and

column labels are denoted as i and j, and those entries can be defined as

ri, j = 1 for i = 13,14, · · · ,23, j = 1,2, · · · ,8, and all (i, j) ∈ L. (15.6)

The two different nodes are encoded by a DNA oligonucleotide of a single site. The
single DNA oligonucleotide involves its own DNA bp length. Thus, for the model

DNA-digraph, each pair node (ζβ,ψ
ζβ
β ) represents (#∨�∨•,1∨2∨3∨4)−3′upper,

with a different bp length in each of the different pair nodes, and each object node
x j, j = 1,2, · · · ,8 was set to have a length of 18 bp.

Fig. 15.11. Representation of a double-encoded substring for type 3.

Type 3 also expresses a double-encoded substring, shown in Fig. 15.11, which

involves the two nodes (ζα,ψ
ζα
α ) and (ζβ,ψ

ζβ
β ), and contains a directed arrow, indi-

cating the direction starting from (ζα,ψ
ζα
α ) and ending at (ζβ,ψ

ζβ
β ). Thus it is de-

noted by a double-encoded substring (ζα,ψ
ζα
α )− 3′upper → 5′upper− (ζβ,ψ

ζβ
β ). For

type 3, all the row and column labels are denoted as i and j, and those entries can
be defined as

ri, j = 1 for i = 9,10, · · · ,20, j = 13,14, · · · ,23, and all (i, j) ∈ L. (15.7)

The two different pair nodes are encoded by a DNA oligonucleotide of a single
site. The single DNA oligonucleotide involves its own DNA bp length. Thus, for

the model DNA-digraph, each pair node (ζα,ψ
ζα
α ) represents (∗∨#∨�,1∨2∨3∨

4)−3′upper, with a different bp length in each of the different pair nodes, and each

pair node (ζβ,ψ
ζβ
β ) represents 5′upper− (#∨�∨•,1∨2∨3∨4), with a different bp

length in each of the different pair nodes.
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In the DNA-digraph, the main forces of the hybridization and ligation techniques
[4] with types 4, 5, 6, and 7 induce all three different DNA substrings to connect
with one another. The complementary substrings of types 4, 5, 6, and 7 make the
given double-encoded substrings connect clearly to become dsDNA.

Fig. 15.12. Representation of a complementary substring for type 4

Fig. 15.13. Representation of a complementary substring for type 5

Type 4 makes an attachment of three different linked nodes, which correspond

to an object node xi, a pair node (ζα,ψ
ζα
α ) and a pair node (ζβ,ψ

ζβ
β ), respectively,

from 5′ to 3′, as shown in Fig. 15.12. A middle pair node of the complementary
substring should be for type 4 generated to link together the three element nodes,
and this complementary substring is denoted by a complementary encoding 5′lower−
(ζα,ψ

ζα
α ) | (ζα,ψζαα )−3′lower. For the model DNA-digraph, the middle pair node of

the complementary substring represents 5′lower− (1∨2∨3∨4,∗∨#∨�) | (1∨2∨
3∨4,∗∨#∨�)−3′lower.

Type 5 also realizes an attachment of three different linked nodes, which corre-

spond to a pair node (ζα,ψ
ζα
α ), a pair node (ζβ,ψ

ζβ
β ) and an object node x j, respec-

tively, from 5′ to 3′, as shown in Fig. 15.13. Similar to type 4, a middle pair node
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of the complementary substring should be generated with type 5. This complemen-

tary substring is denoted by a complementary substring encoding 5′lower−(ζβ,ψ
ζβ
β ) |

(ζβ,ψ
ζβ
β )−3′lower. The middle pair node of the complementary substring represents

5′lower − (1∨ 2∨ 3∨ 4,#∨�∨•) | (1∨ 2∨ 3∨ 4,#∨�∨•)− 3′lower for the middle
DNA-digraph.

Fig. 15.14. Representation of a complementary substring for type 6

Fig. 15.15. Representation of a complementary substring for type 7

Type 6 also makes an attachment of three different linked nodes, which corre-

spond to a pair node (ζα,ψ
ζα
α ), a pair node (ζλ,ψ

ζλ
λ ) and a pair node (ζβ,ψ

ζβ
β ),

respectively, from 5′ to 3′, as shown in Fig. 15.14. Similarly to type 4, a mid-
dle pair node of the complementary substring should be generated with type 6.
This complementary substring is denoted by a complementary substring encoding

5′lower − (ζλ,ψ
ζλ
λ ) | (ζλ,ψζλλ )− 3′lower. The middle pair node of the complementary

substring represents 5′lower− (1∨2∨3∨4,#∨�) | (1∨2∨3∨4,#∨�)−3′lower for
the model DNA-digraph.

Type 7 also makes an attachment of three different linked nodes, corresponding

to a pair node (ζβ,ψ
ζβ
β ), an object node xλ and a pair node (ζα,ψ

ζα
α ), respectively,
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from 5′ to 3′, as shown in Fig. 15.15. A middle object node of the complementary
substring should be generated with type 7. This complementary substring is denoted
by a complementary substring encoding 5′lower− xλ | xλ−3′lower. The middle object
node o f the complementary substring represents 5′lower−1∨2∨·· ·∨8 | 1∨2∨·· ·∨
8−3′lower for the model DNA-digraph.

15.6 Experimental Studies

In what follows, we show the DNA rough-set computing method being applied to
a splicing operational method [12] to form reducts of decision rules. The splicing
operational method is executed by the proposed seven different types of double-
encoded substrings and complementary substrings. For the simulated experiments
in this study, the control program Vector NTI was employed to show the length-
represented DNA strands, representing the final results of the decision rule reducts.

15.6.1 Experiments

The possible double-encoded substrings and complementary substrings among the
object and pair nodes should be generated to first determine the lower approxima-
tion subsets in each of the decision classes and to secondly determine the decision
rule reducts. The first process is executed by computing the DNA strand lengths,
using substring types 3 and 6, second process is executed by determining all of the
circular DNA fragments, using substring types 1, 2, 4, 5, and 7, as well as reusing
types 3 and 6. Fig. 15.16 shows an example of the circular type of DNA fragment
composed of Object-2, (∗,3),(�,4), and (•,2). In this example, the two pair nodes
are linked together, and each of the pair nodes is also linked with the object node that
is linked with the other pair node. The nodes now become the hybridized circular
type of DNA fragment. In more detail, the protocol for DNA rough-set computing
for decision rule reducts is described as follows:

Step 1

(DNA-digraph creation-1): By interpreting the given relations of each of the given
objects, condition attributes, and condition attribute values, a DNA-digraph can be
constructed with n object nodes and n pair nodes. As shown in Fig. 15.8, in the
model DNA-digraph, each double-encoded substring of sequence directions is en-
coded based on the arc directions starting at an object node and ending at an object
node.
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Fig. 15.16. Representation of an example direction composed of one object node and three
different pair nodes becomes a circular DNA molecule from 5’ to 3’
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Step 2

(encoding process-1 and hybridization technique-1): The given object and pair
nodes of the double-encoded substrings and their complementary substrings for the
model DNA-digraph are encoded in DNA molecules. The type 3 and 6 substrings
first generated and encoded in ssDNA are used initially to determine the lower ap-
proximation subsets in each decision class (we call this the first-reduct). All of the
encoded type 3 double-encoded substrings and their type 6 complementary sub-
strings are synthesized and placed in a prepared test tube. The encoded pair node of
the double-encoded and complementary substrings for this hybridization technique
based on the Watson-Crick complementary rules should be heated to about 94 ◦C
and cooled to about 20 ◦C at multiple intervals of 1 ◦C/min.

Step 3

(simulated gel electrophoresis technique-1 and removal process-1): The lengths of
all of the hybridized DNA strands are measured by the simulated gel electrophoresis
technique, which can classify the strands into each of two decision classes (Decision
Class-1 and -2) for the model decision table. If two or more hybridized DNA strands
have the same length, then those strands correspond to the objects that involve the
same condition attribute values. If two or more hybridized DNA strands with the
same length are not involved in exactly the same decision class or are separately
involved in each of the different decision classes despite having the same length,
then those two or more hybridized DNA strands should be clearly removed from
all decision classes. Subsequently, the remaining hybridized DNA strands for each
decision class are divided into each lower approximation subset in each decision
class.

Step 4

(denaturing process, marking process-1, and DNA-digraph creation-2): After the
lower approximation subsets are determined in each decision class, types 3 and 6 of
the hybridized DNA strands should be heated to about 94 ◦C to serve as ssDNA in
the dsDNA status. All the denatured ssDNA strands are reused for the hybridization
technique-2 and ligation technique. The number of DNA encoding sequences should
be reducted by detecting one or more object nodes, which belong only to a subset of
the lower approximation subsets and are involved in the exact same decision class.
In more detail, if the two subsets, B1 and B2, of arcs between object and pair nodes
are defined as

B1 = {
−−−−−−−−−→
(xi,(ζα,ψ

ζα
α )) ∈ Ba|xi ∈ ΞA(Dντ)}, (15.8)
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which expresses a subset of arcs from an object node xi to a pair node (ζα,ψζαα ), and

B2 = {
−−−−−−−−−→
((ζβ,ψ

ζβ
β ),x j) ∈ Bb|x j ∈ ΞA(Dντ)}, (15.9)

which expresses a subset of arcs from a pair node (ζβ,ψ
ζβ
β ) to an object node x j,

then either xi or x j (or both xi and x j) in each subset of the object nodes is (are)
involved in one subset of the lower approximation subsets. At the same time, each

subset of pair nodes, either (ζα,ψ
ζα
α ) or (ζβ,ψ

ζβ
β ) (or both (ζα,ψ

ζα
α ) and (ζβ,ψ

ζβ
β )),

is first marked as a first condition group of the reducted decision rules (we call this
the first part of second-reduct). After determining the first part of second-reduct,
an updated DNA-digraph should be created upon removing the first part of second-
reduct, which corresponds to both B1 and B2. An updated model DNA-digraph is
shown in Fig. 15.17.

Step 5

(encoding process-2, hybridization technique-2, ligation technique, restriction en-
zyme technique, and affinity separation technique-1): Based on the updated DNA-
digraph, all of the double-encoded and complementary substrings can be encoded
in ssDNA for types 1, 2, 4, 5, and 7, while reusing types 3 and 6. All of these types
should also be synthesized and placed in the prepared test tube. For this step of the
hybridization technique process, the ligases are added to bond the different encoded
DNA sequences and to ensure their ligations. One or more circular DNA fragments
should be detected and distinguished from all of the completely hybridized and lig-
ated DNA strands. Here, the circular DNA fragments should be cut once at any point
by employing the restriction enzyme technique to make them into linear DNA frag-
ments, which should also be heated to about 94 ◦C to create ssDNA. The affinity
separation technique-1 is also employed to classify each of the determined object
groups (Object-1 to -8) in each object-labeled test tube.

Step 6

(simulated gel electrophoresis technique-2 and removal process-2): The simulated
gel electrophoresis technique can measure the length of each of the object groups of
the cut and denatured DNA strands. Each of the object groups of the DNA strands
should be divided into the individual test tubes and should be loaded into different
prepared lanes (object group lane-1 to -8). If there are two or more object groups
of the DNA strands after all groups are loaded, indicating the presence of the same
length, then those DNA strands should be clearly removed. In the same lower ap-
proximation subset, the removed DNA strands are obviously not involved.
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Fig. 15.17. Representation of an updated model DNA-digraph, in which the pair nodes of the
first part of second-reduct have been removed.

Step 7

(affinity separation technique-2 and marking process-2): After removing DNA
strands of the same length, each of the object group lanes (object group lane-1 to ob-
ject group lane-8) should contain the remaining DNA fragments, which correspond
to two or more pair nodes. Using the complementary substrings of the pair nodes,
we distinguish all of the pair nodes contained in each of object group lanes (each of
the low approximation subsets). Here, all of the pair nodes are the reducted decision
rules (we call this the second part of second-reduct), which are divided into each
decision class.

15.6.2 Experimental Results

The two techniques processing the simulated gel electrophoresis-1 and simulated
gel electrophoresis-2 were executed to detect the DNA strands, representing the
lower approximation subsets and decision rule reducts in each decision class. The
results of experiments producing the lower approximation subsets and decision rule
reducts in each decision class are shown in more detail below.
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First (first-reduct), the two removable object groups, which were Object-2 and
Object-6 (Decision Class-2 and Decision Class-1, respectively), and Object-5 and
Object-8 (Decision Class-2 and Decision Class-1, respectively), had the same
lengths. Hence, all of the remaining objects were Object-1 and Object-3 (Decision
Class-2 and -1, respectively) or Object-4 and Object-7 (Decision Class-1 and -2,
respectively). The lower approximation subsets in each of Decision Class-1 and De-
cision Class-2 were as follows: (1) Decision Class-1 = {Object-3, Object-4} derived
from (Object-3) (∗,1)−3′upper → 5′upper−(#,1) | (#,1)−3′upper→ 5′upper−(�,1)
| (�,1)− 3′upper → 5′upper − (•,3) at 762 bp and (Object-4) (∗,4)− 3′upper →
5′upper− (#,3) | (#,3)−3′upper → 5′upper− (�,3)|(�,3)−3′upper → 5′upper− (•,2)
at 1168 bp; and (2) Decision Class-2 = {Object-1, Object-7} derived from (Object-
1) (∗,4)− 3′upper → 5′upper− (#,3) | (#,3)− 3′upper → 5′upper− (�,2) | (�,2)−
3′upper → 5′upper−(•,1) at 1128 bp and (Object-7) (∗,4)−3′upper → 5′upper−(#,1)
| (#,1)−3′upper → 5′upper− (�,2) | (�,2)−3′upper → 5′upper− (•,3) at 1032 bp.

Second (the first part of second-reduct), the results of the first marked condition
group of the reducted decision rules in each decision class (Decision Class-1 and
-2) were as follows: (1) Decision Class-1: (Object-3) x3−3′upper → 5′upper− (∗,1)
and (Object-4) both x4−3′upper → 5′upper− (�,3) and (�,3)−3′upper → 5′upper−
x4; and (2) Decision Class-2: (Object-1) both x1 − 3′upper → 5′upper − (�,2) and
(�,2)− 3′upper → 5′upper − x1 and (Object-7) both x7− 3′upper → 5′upper− (�,2)
and (�,2)−3′upper → 5′upper− x7.

Finally (the second part of second-reduct), the results of the four different subsets
of the pair nodes of the reducted decision rules in Object-1, Object-3, Object-4, and
Object-7 in each decision class were as follows: (1) Decision Class-1: (Object-3)
x3− 3′upper → 5′upper− (#,1)|(#,1)− 3′upper → 5′upper− (�,1)|(�,1)− 3′upper →
5′upper− (•,3) | (•,3)−3′upper → 5′upper− x3 at 568 bp, (Object-3) x3−3′upper →
5′upper−(#,1) | (#,1)−3′upper → 5′upper−(�,1) | (�,1)−3′upper → 5′upper−x3 at
472 bp, (Object-3) x3−3′upper → 5′upper− (�,1)|(�,1)−3′upper → 5′upper− (•,3)
| (•,3)−3′upper → 5′upper− x3 at 280 bp, (Object-4) x4−3′upper → 5′upper− (∗,4)
| (∗,4)− 3′upper → 5′upper − (#,3) | (#,3)− 3′upper → 5′upper − (•,2) | (•,2)−
3′upper → 5′upper−x4 at 1556 bp, (Object-4) x4−3′upper → 5′upper− (∗,4) | (∗,4)−
3′upper → 5′upper− (•,2) | (•,2)−3′upper → 5′upper− x4 at 1148 bp, and (Object-4)
x4−3′upper → 5′upper− (#,3) | (#,3)−3′upper → 5′upper− (•,2) | (•,2)−3′upper →
5′upper− x4 at 516 bp; and (2) Decision Class-2: (Object-1) x1−3′upper → 5′upper−
(∗,4) | (∗,4)−3′upper → 5′upper−(#,3) | (#,3)−3′upper → 5′upper−(•,1) | (•,1)−
3′upper → 5′upper−x1 at 1532 bp, (Object-1) x1−3′upper → 5′upper− (∗,4) | (∗,4)−
3′upper → 5′upper − (•,1) | (•,1)− 3′upper → 5′upper − x1 at 1124 bp, (Object-1)
x1−3′upper → 5′upper− (#,3)| (#,3)−3′upper → 5′upper− (•,1)—(•,1)−3′upper →
5′upper− x1 at 492 bp, (Object-7) x7−3′upper → 5′upper− (∗,4) | (∗,4)−3′upper →
5′upper− (#,1) | (#,1)−3′upper → 5′upper− (•,3) | (•,3)−3′upper → 5′upper− x7 at
1460 bp, (Object-7) x7−3′upper → 5′upper−(∗,4) | (∗,4)−3′upper → 5′upper−(#,1)
| (#,1)− 3′upper → 5′upper− x7 at 1364 bp, and (Object-7) x7− 3′upper → 5′upper−
(∗,4) | (∗,4)−3′upper → 5′upper− (•,3) | (•,3)−3′upper → 5′upper− x7 at 1172 bp.



15 DNA Rough-Set Computing in the Development of Decision Rule Reducts 435

The above results (first-reduct and the first and second parts of second-reduct)
were interpreted as two different subsets of if-then rules, which were as follows: (1)
Decision Class-1: if * is 1, then Decision Class-1 is chosen; if � is 3, then Decision
Class-1 is chosen; if # is 1 and � is 1, then Decision Class-1 is chosen; if � is 1 and
• is 3, then Decision Class-1 is chosen; if * is 4 and • is 2, then Decision Class-1 is
chosen; and if # is 3 and • is 2, then Decision Class-1 is chosen; and (2) Decision
Class-2: if � is 2, then Decision Class-2 is chosen; if * is 4 and • is 1, then Decision
Class-2 is chosen; if # is 3 and • is 1, then Decision Class-2 is chosen; if * is 4 and #
is 1, then Decision Class-2 is chosen; and if * is 4 and • is 3, then Decision Class-2
is chosen.

These interpreted results including the if-then decision rules in each decision
class are the final solution of decision rule reducts obtained using DNA rough-set
computing. It is worth stressing that the DNA rough-set computing method takes
advantage of the characteristics of the various DNA molecular techniques.

To evaluate approximate computing times, we used the number of nodes (the
number of object nodes and the number of pair nodes (composed of condition at-
tributes and condition attribute values) in the DNA-digraph were set to become the
number of nodes) and the number of directed arrows in the DNA-digraph to compare
the proposed DNA rough-set computing method with an exponential-time comput-
ing method used for decision rule reducts. We selected the exponential-time com-
puting method. To reach an optimal solution, the main reason was that the major
problem was to find a way how we could reduct decision rules; recall that this prob-
lem is NP-hard, meaning that a polynomial-time computing method for this reduct
problem has not been discovered yet.

In the exponential-time computing method, a processor executing 56,200 MIPS
(mega instruction per second) (Intel Core2 Kentsfield Quad Core) was used, and
the exponential-time computing method used an operation of 2n [13]. The approx-
imate computing times of the prepared DNA rough-set computing method were
calculated based on the previously reported experimental results and genetic exper-
imental notes [3]-[5]. When dealing with 60 nodes and 2,340 directed arrows, the
prepared DNA rough-set computing method was approximately 2,307 times faster
than the exponential-time computing one.

15.7 Conclusions

Based on the study of the proposed DNA rough-set computing for decision rule
reduction, the three main conclusions can be presented.

First, this study shows a reduction of the complicated information of decision
rules provided from the given decision using DNA rough-set computing.
DNA rough-set computing was developed for the first-time in this study, and it of-
fers some advantages and opens a new direction of optimization in our opinion.
DNA rough-set computing was used to determine the lower approximation subsets
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classified into each of the decision classes and to reduct all decision rules (or in
other words, determine decision rules of minimal length).

Second, the study shows that DNA rough-set computing has a tangible poten-
tial for transforming a decision table into a digraph. This transformation created a
DNA-digraph that can be applied not only to a reduct problem, but also to many
others. DNA rough-set computing has also emerged as a potential way for combin-
ing different computer-based technologies from other fields to generate additional
new computing methods.

Finally, the updating processes involving simplified data deliver more intuitive
and useful information that can be readily handled and produced. However, the
main difficulties still exist as we are faced with a number of intractable problems
associated with such data. In this study, we showed that DNA rough-set computing
can help to alleviate this kind of problems.
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Chapter 16
Three-Valued Logic for Reasoning about
Covering-Based Rough Sets

Beata Konikowska

Abstract. In the chapter we present a tool for reasoning about covering-based rough
sets in the form of three-valued logic in which the value t corresponds to the positive
region of a set, the value f — to the negative region and the undefined value u — to
the boundary of a given set. Atomic formulas of the logic represent either member-
ship of objects of the universe in rough sets or the subordination relation between
objects generated by the covering underlying the approximation space, and complex
formulas are built out of the atomic ones using three-valued Kleene connectives. We
give a strongly sound sequent calculus for the logic defined in this way and prove
its strong completeness for a subset of its language.

Keywords: Rough sets, covering, subordination relation, rough set regions, three-
valued logic, approximation space, Kleene connectives, sequent calculus.

16.1 Introduction

Rough sets, a very famous concept developed by Pawlak in the early 1980s [22, 23],
are a both simple and powerful notion designed to model vague or imprecise infor-
mation. In opposition to Zadeh’s fuzzy sets, rough sets are not based on any numer-
ical measure of the degree of membership of an object in an imprecisely defined
set. Instead, they employ a much more universal and versatile idea of an indiscerni-
bility relation, which groups together objects having the same properties from the
viewpoint of a certain application into disjoint equivalence classes.

This concept has proved to be immensely useful in practice. Since their introduc-
tion in the early 1980s, rough sets have found numerous applications in areas like
control of manufacturing processes [17], development of decisions tables [24], data
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mining [17], data analysis [25], knowledge discovery [18, 19], and so on. They
have also been the subject of an impressive body of research. Although the re-
search focus has been mainly on the algebraic properties of rough sets, a number
of logicians have also explored this area, presenting and studying various brands
of rough set logics, including logics based on indiscernibility and similarity rela-
tions, as well as other types of relations considered in connection with imprecise
information [8, 7, 10, 11, 15, 20, 21, 13, 12, 27, 28].

Over the years, one of the trends in rough set research involved generalizing that
notion by replacing the indiscernibility relation underlying the original rough sets,
which was an equivalence relation representing a partition of the universe of objects,
with other, less restrictive constructs. The broadest generalization is covering-based
rough sets [31, 26], whereby rough sets are defined based on an arbitrary covering
of the universe of objects rather than on its partition. By now, this notion has also
been examined in many papers (see e.g. [29, 30, 33]), with the main focus again on
the algebraic properties of rough sets.

In opposition to the above, in this chapter we are interested in the logical aspects
of rough sets. Our approach is based on employing three-valued logic. The under-
lying motivation is that, similarly to original Pawlak’s rough sets, covering-based
rough sets define three regions of any set X of objects, namely:

• positive region of X , containing all objects of the universe which certainly be-
long to X in the light of the information provided by the covering;

• negative region of X , containing all objects which certainly do not belong to X ;
• boundary of X , containing all objects which cannot be said for sure to either

belong or not to belong to X .

Hence, the most natural idea for reasoning about membership of objects in rough
sets is to use a three-valued logic, with the values:

• t — meaning “certainly belongs” and assigned to objects in the positive region
of a given set;

• f — meaning “certainly does not belong” and assigned to objects in the negative
region of the set; and

• u — meaning “not known to either belong or not” and assigned to the boundary
of the set.

Such an idea was exploited in [4] for the original rough sets based on an equivalence
relation on the universe of objects. However, the logic developed there was just a
simple propositional logic generated by the three-valued non-deterministic matrix
(see [6, 2, 5, 1]), shortly: Nmatrix, M 3

RS with the following truth tables:

− f u t

t u f

∪ f u t

f f u t
u u {u, t} t
t t t t

∩ f u t

f f f f
u f {f,u} u
t f u t

(16.1)
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where f,u and t stand for the appropriate singleton sets. The reason for such an
approach was that M 3

RS is observed by any interpretation I of formulas of the form
x ∈ A representing membership of an element x in a rough set A. More exactly, if
I(x ∈̂A) = a and I(x ∈̂B) = b, then I(x ∈̂(A (B)) belongs to the set assigned to the
pair (a,b) by the truth table of M 3

RS corresponding to the connective (.
However, despite this fact, the above Nmatrix is not really adequate for describing

set-theoretic operations on rough sets. Indeed: according to it, if I(x ∈̂A) = u and
I(x ∈̂B) = u, then I(x ∈̂(A∪B)) ∈ {u, t}. The inclusion indeed holds — but having
it as the only limitation on I(x ∈̂(A∪B)) if I(x ∈̂A) = I(x ∈̂B) = u allows in case of
A = B for having I(x ∈̂A) = u and I(x ∈̂(A∪A)) = t — which is inconsistent with
the fact that Is(A∪A) = Is(A) under any normal interpretation Is of set expressions.
What is more, the above rule also allows for the case when I(x ∈̂(A∪B)) = u and
I(x ∈̂(B∪A)) = t, which is equally impossible. As a result, the sequent calculus
developed in [4], after its lifting to the level of membership formulas, does not allow
us to prove the sequents x∈ (A∪A)⇒ x∈A and x∈ (A∪B)⇒ x∈ (B∪A), which are
valid in rough set models. Analogous inconsistencies occur in case of intersection.

To avoid such deficiencies, the semantics of the logic we will develop in this
chapter will be based on natural frameworks for covering-based rough sets, that is,
covering-based approximations spaces. Since the most interesting feature differing
covering-based rough sets from the original, partition-based ones are the complex
relations between objects generated by the usually overlapping elements of the cov-
ering, in our logic, we will explore a fundamental relation of that type, called sub-
ordination relation, and its relationships with the lower and upper approximations
and the regions of a set, to better characterize those notions. Accordingly, the atomic
formulas of the language of our logic will represent either membership of objects
of the universe in rough sets or the subordination relation between objects. Com-
plex formulas will be formed out of the atomic ones using negation, disjunction and
conjunction, incorporated in the language in order to increase its expressiveness and
interpreted according to the three-valued Kleene matrix. Our choice of such inter-
pretation of the connectives was motivated by the wide use of Kleene connectives in
applications related to computer software and computation. However, it should be
noted that since the truth tables of Kleene and Łukasiewicz 3-valued matrices differ
only in case of implication, which we do not use here, the interpretations of connec-
tives employed in this chapter are also compliant with the semantics of Łukasiewicz
three-valued logic [16], whose connections with rough set logics were studied in
[8, 27].

The chapter is organized as follows. Section 16.2 presents the fundamentals of
covering-based rough sets. In Section 16.3, the subordination relation is defined,
and its properties are explored, including the closure properties of the lower and up-
per approximation and the regions of a set under that relation. Section 16.4 defines
the syntax and semantics of the logic Lc

RS developed in the chapter, including sat-
isfaction and consequence relations for formulas and sequents. Sections 16.5-16.8
present the proof system for Lc

RS, and prove its strong soundness, as well as strong
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completeness for the subset of the language featuring only atomic set expressions.
Finally, Section 16.9 presents the conclusions and outlines future work.

16.2 Covering-Based Rough Sets

In what follows, for any set X , by P (X) we denote the powerset of X , that is, the set
of all subsets of X and by P +(X) — the set of all nonempty subsets of X .

Definition 16.1. By a covering-based approximation space, or shortly approxima-
tion space, we mean any ordered pair A = (U,C ), where U is a non-empty universe
of objects, and C ⊆ P +(U) is a covering of U , that is,

⋃{C |C ∈ C}= U.

Definition 16.2. For any approximation space A = (U,C ), we define the operators
of lower approximation LC and upper approximation HC of subsets of U with re-
spect to the covering C as follows:

• The lower approximation of a set X ⊆U with respect to the covering C is the
set

LC (X) = {x ∈U | ∀C ∈ C (x ∈C ⇒C ⊆ X)}
• The upper approximation of a set X ⊆U with respect to the covering C is the

set
HC (X) =

⋃
{C ∈ C |C∩X �= /0}

In view of the above definition, one can say that, given the approximate knowledge
about objects available in the approximation space A :

• LC (X) is the set of all the objects in U which certainly belong to X ;
• HC (X) is the set of all the objects in U which might belong to X ;

The above operations have the same basic properties as in case of Pawlak’s rough
sets based on a partition of the universe, that is, for any X ,Y ⊆U , we have

LC (X)⊆ X ⊆ HC (X)

HC (X ∪Y ) = HC X ∪HCY LC (X ∪Y )⊇ LC X ∪LCY

LC (X ∩Y ) = LC X ∩LCY HC (X ∩Y )⊆ HC X ∩HCY

LC (−X) =−HC X HC (−X) =−LC X

(16.2)

where none of the inequalities in (16.2) can be replaced by an equality.
Following the example of Pawlak’s rough sets, with any subset of a universe U

of an approximation space, we can associate three regions of that universe: positive,
negative, and boundary, representing three basic statuses of membership of an object
of the universe U in X :

Definition 16.3. Let A = (U,C ) be an approximation space, and let X ⊆U . Then:
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• The positive region of X in the space A with respect to the covering C is the set

POSC (X) = LC (X)

• The negative region of X with respect to the covering C is the set

NEGC (X) = LC (U −X)

• The boundary region of X with respect to the covering C is the set

BNDC (X) = U − (POSC (X)∪NEGC (X))

Corollary 16.1. For any approximation space A = (U,C ) , and any X ⊆ U, we
have:

POSC (X) = {x ∈U | ∀C ∈ C (x ∈C ⇒C ⊆ X)}

NEGC (X) = {x ∈U | ∀C ∈ C (x ∈C ⇒C ⊆U −X)}

BNDC (X) = {x ∈U | ∃C ∈ C (x ∈C∧C∩X �= /0∧C∩ (U −X) �= /0}

(16.3)

The regions defined as above are obviously disjoint. Moreover, we can say that
according to the approximate knowledge of the properties of objects in U provided
by the covering C :

• The elements of POSR(X) certainly belong to X ;
• The elements of NEGR(X) certainly do not belong to X ;
• We cannot tell if the elements of BNR(X) belong to X or not.

The above basic properties of regions imply that a natural logic for reasoning about
covering-based rough sets is a three-valued logic with the values t — true, f – false,
u — unknown, in which the value t corresponds to the positive region of a set, the
value f — to the negative region, and the undefined value u — to the boundary
region of a given set. This is exactly the approach we will adopt in defining our
logic in what follows.

16.3 Subordination Relation and Closure Properties of
Approximations and Regions

Assume A = (U,C ) is an arbitrary approximation space to be fixed until stated
to the contrary. In order to express the basic relationships between the objects in
the universe U induced by the covering C , we introduce a special subordination
relation:

Definition 16.4. The relation of subordination with respect to the covering C is a
binary relation ≺C on U defined by:
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x ≺C y
d f≡ ∀C ∈ C (y ∈C ⇒ x ∈C)

Defining the notion of a neighborhood (x)C of an object x ∈U with respect to the
covering C as in the literature on covering-based rough sets, that is, by

(x)C =
⋂
{C ∈ C | x ∈C}

we immediately obtain the following connection between the two notions:

(∀x,y ∈U)[x≺C y⇔ x ∈ (y)C ]

It can be easily seen that ≺C is a partial quasi-order on U :

Lemma 16.1. The subordination relation ≺C is reflexive and transitive.

Proof. By Def. 16.4, reflexivity is obvious, for x ∈C → x ∈C. To show transitivity,
assume (i) x ≺C y and (ii) y ≺C z. Then, for any C ∈ C , z ∈C implies y ∈C by (ii),
whence x ∈C by (i). Thus x≺C z, and ≺C is indeed transitive.

By the above Lemma, the subordination relation is an equivalence relation iff it is
symmetric. In particular, this is the case when C is a partition. Namely, we have:

Lemma 16.2. If C is a partition, then ≺C is the equivalence relation RC on U cor-
responding to that partition, that is, the only equivalence relation with the set of
equivalence classes identical with C .

Proof. If C is a partition, then different sets in C are disjoint. Hence, for any y ∈U ,
there is a single C ∈ C such that y ∈C. Consequently, x≺C y iff x ∈C iff xRC y.

In general, we have:

Corollary 16.2. The relation≺C is an equivalence relation iff it is identical with the
relation ∼C defined by:

x ∼C y ⇔ x ≺C y∧ y≺C x

Note that in view of the definition of ≺C , if the above condition holds, we have

(∀x,y ∈U)[(∀C ∈ C )(y ∈C ⇒ x ∈C)⇔ (∀C ∈ C )(x ∈C ⇒ y ∈C)]

However, as the above does not imply that

(∀x,y ∈U)(∀C ∈ C )[(y ∈C ⇒ x ∈C)⇔ (x ∈C ⇒ y ∈C)]

then the converse to Lemma16.2 does not hold — the covering C need not be a
partition if ≺C is an equivalence, because this relation does not uniquely determine
the covering.

The subordination relation allows us to better characterize the lower and upper
approximation and all the three regions of a subset of U . Namely, we have the fol-
lowing closure results:
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Proposition 16.1. For any subset X of U, the lower approximation (equivalently,
the positive region of X) and the negative region of X with respect to C are upward-
closed under ≺C , while the upper approximation of X and the boundary of X are
downward-closed under ≺C . In other words, for any x,y ∈U, the following impli-
cations hold:

(i) If y ∈ LC (X) and y≺C x, then x ∈ LC (X)

(ii) If y ∈HC (X) and x≺C y, then x ∈HC (X)

(iii) If y ∈ NegC (X) and y ≺C x, then x ∈ NegC (X)

(iv) If y ∈ BndC (X) and x≺C y, then x ∈ BndC (X).

Proof. The mentioned implications are easily derived from Corollary 16.3 and Def-
initions 16.2, 16.3, 16.4, as shown below.

(i) Assume that y ∈ LC (X) and y ≺C x, and consider any C ∈ C . If x ∈ C, then
y ≺C x implies y ∈ C by Definition 16.4. As y ∈ LC (X), then, by Definition 16.2,
y ∈C implies C ⊆ X . Since x ∈C, in this way we have shown that, for any C ∈ C ,
x ∈C implies C ⊆ X , whence x ∈ LC (X) by Definition 16.2. Thus (i) holds.

(ii) Assume that y ∈ HC (X) and x ≺C y. By Definition 16.2, y ∈ HC (X) implies
that there is C ∈ C such that y ∈C and C∩X �= /0. Since y ∈C and x ≺C y, then by
Definition 16.4 we have x ∈C. Thus there is C ∈ C such that x ∈C and C∩X �= /0,
whence x ∈ HC (X) by Definition 16.2. Hence (ii) holds.

(iii) Assume the left side of the implication holds. As NegC (X) = LC (U −X) by
Definition 16.3, then we have y ∈ LC (U −X) and y ≺C x. By the already proven
implication (i) applied to U−X , this implies x ∈ LC (U−X), whence x ∈ NegC (X),
and (iii) holds.

(iv) Assume that y ∈ BndC (X) and x ≺C y. By Definition 16.3, y ∈ BndC (X)
implies that there is C ∈ C such that y ∈C and both C∩X �= /0 and C∩(U −X) �= /0.
Since x ≺C y, from y ∈C and Definition 16.4 we obtain x ∈C. As a result, there is
C ∈ C such that x ∈C and both C∩X �= /0 and C∩(U−X) �= /0. Hence x ∈ BndC (X)
by Definition 16.3 and (iv) holds too.

16.4 Syntax and Semantics of the Language Lc
RS

Now we shall define the language Lc
RS of the three-valued logic for reasoning about

covering-based rough sets described in the introduction. Formulas of Lc
RS will con-

tain expressions representing sets of objects (built from set variables using set-
theoretic operators), variables representing objects, the symbol ∈̂ of a three-valued
binary predicate representing membership of an object in a rough set, the symbol≺
of a two-valued binary predicate representing the subordination relation on objects,
and the logical connectives ¬,∧,∨ which will be interpreted as 3-valued Kleene
connectives.
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Definition 16.5. Assume that:

• OV is a non-empty denumerable set of object variables;
• SV is a non-empty denumerable set of set variables.

The syntax of the language Lc
RS is defined as follows:

1. The set SE of set expressions of Lc
RS is the least set satisfying the following

conditions:

• SV ⊆ SE;
• If A,B ∈ SE , then −A,A∪B,A∩B∈ SE;

2. The set Ac
RS of atomic formulas of Lc

RS is the least set satisfying the following
conditions:

• If x ∈ OV and A ∈ SE , then x ∈̂A is in Ac
RS;

• For any x,y ∈ OV , the expression x ≺ y is in Ac
RS.

3. The set F c
RS of formulas of Lc

RS is the least set F containing Ac
RS and closed

under the connectives ¬,∨,∧.

The semantics of Lc
RS is based on interpreting the formulas of Lc

RS in semantic frame-
works for that language built on covering-based approximation spaces and including
valuations of set variables and object variables.

Definition 16.6. A semantic framework, or shortly framework, for Lc
RS is an ordered

triple R = (A ,v,w), where

• A = (U,C ) is a covering-based approximation space;
• v : OV →U is a valuation of object variables;
• w : SV → P (U) is a valuation of set variables.

Definition 16.7. An interpretation of Lc
RS in a framework R = (A ,v,w), where A =

(U,C ), is a mapping IR : F c
RS → {t, f,u} defined as follows:

1. IR (x ≺ y) =
{

t if v(x)≺C v(y)
f otherwise

2. IR (x ∈̂A) =

⎧
⎨

⎩

t if v(x) ∈ PosC (w∗(A))
f if v(x) ∈ NegC (w∗(A))
u if v(x) ∈ BndC (w∗(A))

for any x,y∈OV and any A∈ SE , where w∗ is the extension of w to SE obtained
by interpreting−,∪,∩ as the set-theoretic operations of complement, union and
intersection, that is,

• w∗(X) = w(X) for any X ∈ SV ,
• for any A,B ∈ SE , w∗(−A) = U −w(A), w∗(A∪B) = w∗(A)∪w∗(B),

w∗(A∩B) = w∗(A)∩w∗(B) .

3. For any ϕ,ψ ∈ F :
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• IR (¬ϕ) =

⎧
⎨

⎩

t if IR (ϕ) = f
f if IR (ϕ) = t
u if IR (ϕ) = u

• IR (ϕ∨ψ) =

⎧
⎨

⎩

t if either IR (ϕ) = t or IR (ψ) = t
f if IR (ϕ) = f and IR (ψ) = f
u otherwise

• IR (ϕ∧ψ) =

⎧
⎨

⎩

t if IR (ϕ) = t and IR (ψ) = t
f if either IR (ϕ) = f or IR (ψ) = f
u otherwise

It can be easily seen that the interpretation IR is a well-defined mapping of the set
of formulas into {t, f,u}. Indeed, as the regions of a rough set are disjoint, Point 2
provides a well-defined interpretation of atomic membership formulas, and all the
other clause raise no doubts. Note that the interpretation of subordination formulas
given by Point 1 is two-valued.

In the future, we will drop the subscript at IR whenever the framework R is
understood.

16.4.1 Satisfaction and Consequence Relations for Formulas and
Sequents

To complete the definition of the semantics of Lc
RS, we need to define the notion

of satisfaction and the consequence relation. Since the proof system we are going
to develop for Lc

RS will be a sequent calculus, we will define both the notions for
formulas as well as for sequents.

Definition 16.8
By a sequent, we mean a structure of the form Γ⇒ Δ, where Γ and Δ are finite sets
of formulas. The set of all sequents in the language Lc

RS is denoted by Seqc
RS.

We assume that the only designated value in the three-valued semantics of Lc
RS is

t. This gives rise to the following definitions of satisfaction and consequence:

Definition 16.9. 1. A formula ϕ ∈ F c
RS is satisfied by an interpretation I of Lc

RS, in
symbols I |= ϕ, if v(ϕ) = t.

2. A formula ϕ ∈ F c
RS is valid, in symbols |=c

RS ϕ, if I |= ϕ for any interpretation I
of Lc

RS.
3. A set of formulas T ⊆ F c

RS is satisfied by an interpretation I, in symbols I |= T ,
if I |= ϕ for all ϕ ∈ T .

4. A sequent Σ= (Γ⇒ Δ) is satisfied by an interpretation I, in symbols I |= Σ, iff
either I |= ϕ for some ϕ ∈ Δ or I �|= ψ for some ψ ∈ Γ.

5. A sequent Σ= (Γ⇒ Δ) is valid, in symbols |=c
RS Σ, if I |= Σ for any interpreta-

tion I of Lc
RS



448 B. Konikowska

6. The formula consequence relation in Lc
RS is the relation 'c

RS on P (F c
RS)×F c

RS
such that, for every T ⊂ F c

RS and every ϕ ∈ F c
RS

T 'c
RS ϕ if every model of T is also a model of ϕ

7. The sequent consequence relation in Lc
RS is the relation 'c

RS on P (Seqc
RS)×

Seqc
RS such that, for every Q⊆ Seqc

RS, and every Σ ∈ Seqc
RS

Q 'c
RS Σ iff, for any interpretations I of Lc

RS, I |=c
RS Q implies I |=c

RS Σ

16.5 Proof System for the Logic Lc
RS

Now we shall present a proof system for the logic Lc
RS with the language Lc

RS, cor-
responding to the consequence relation 'c

RS defined in the preceding chapter. It can
be easily noted that, in view of the properties of Kleene connectives, the only tau-
tologies in this logic express the properties of the two-valued subordination relation
rather than the properties of rough sets themselves. Accordingly, our proof system
should be aimed at proving entailments, which are represented by sequents. As a
result, the deduction formalism we will use for Lc

RS is a sequent calculus.

16.6 Sequent Calculus CRS

Let CRS be the sequent calculus over Lc
RS defined as follows:

Axioms:

(A1) ϕ⇒ ϕ (A2) ¬ϕ,ϕ⇒
(A3) z≺ x,z≺ y,x ∈̂A,y ∈̂−A⇒ (A4) ⇒ x ∈̂(A∪−A)

Structural rules: weakening, cut

Inference rules for set-theoretic operations:

(−−⇒)
Γ,x ∈̂A⇒ Δ

Γ,x ∈̂−−A⇒ Δ (⇒−−)
Γ⇒ Δ,x ∈̂A

Γ⇒ Δ,x ∈̂−−A

(id ∪⇒)
Γ,x ∈̂A ⇒ Δ
Γ,x ∈̂A∪A⇒ Δ



16 Three-Valued Logic for Reasoning about Covering-Based Rough Sets 449

(∪⇒)a
Γ⇒ Δ,x ∈̂−A Γ,x ∈̂B ⇒ Δ

Γ,x ∈̂A∪B⇒ Δ (⇒∪)
Γ,⇒ Δ,x ∈̂A,x ∈̂B
Γ⇒ Δ,x ∈̂A∪B

(∪⇒)b
Γ⇒ Δ,x ∈̂−B Γ,x ∈̂A ⇒ Δ

Γ,x ∈̂A∪B⇒ Δ

(−∪⇒)
Γ,x ∈̂−A,x ∈̂−B⇒ Δ
Γ,x ∈̂− (A∪B)⇒ Δ (⇒−∪)

Γ⇒ Δ,x ∈̂−A Γ⇒ Δ,x ∈̂−B
Γ⇒ Δ,x ∈̂− (A∪B)

(∩⇒)
Γ,x ∈̂A,x ∈̂B⇒ Δ
Γ,x ∈̂A∩B⇒ Δ (⇒∩)

Γ⇒ Δ,x ∈̂A Γ⇒ Δ,x ∈ B
Γ⇒ Δ,x ∈̂A∩B

(id −∩⇒)
Γ,x ∈̂−A⇒ Δ

Γ,x ∈̂− (A∩A)⇒ Δ

(−∩⇒)a
Γ,x ∈̂−A⇒ Δ Γ⇒ Δ,x ∈̂B

Γ,x ∈̂− (A∩B)⇒ Δ (⇒−∩)
Γ⇒ Δ,x ∈̂−B,x ∈̂−A
Γ⇒ Δ,x ∈̂− (A∩B)

(−∩⇒)b
Γ,x ∈̂−B⇒ Δ Γ⇒ Δ,x ∈̂A

Γ,x ∈̂− (A∩B)⇒ Δ

Inference rules for Kleene negation over atomic formulas:

(¬ ≺⇒)
Γ⇒ Δ,x ≺ y
Γ,¬(x ≺ y)⇒ Δ (⇒¬≺)

Γ,x ≺ y⇒ Δ
Γ⇒ Δ,¬(x ≺ y)

(¬ ∈̂⇒)
Γ,x ∈̂−A⇒ Δ
Γ,¬(x ∈̂A)⇒ Δ (⇒¬ ∈̂)

Γ⇒ Δ,x ∈̂−A
Γ⇒ Δ,¬(x ∈̂A)

Inference rules for Kleene connectives:

(¬¬⇒)
Γ,ϕ⇒ Δ
Γ,¬¬ϕ⇒ Δ (⇒¬¬)

Γ⇒ Δ,ϕ
Γ⇒ Δ,¬¬ϕ

(∨⇒)
Γ,ϕ⇒ Δ Γ,ψ⇒ Δ
Γ,ϕ∨ψ⇒ Δ (⇒∨)

Γ,⇒ Δ,ϕ,ψ
Γ⇒ Δ,ϕ∨ψ

(¬∨⇒)
Γ,¬ϕ,¬ψ⇒ Δ
Γ,¬(ϕ∨ψ)⇒ Δ (⇒¬∨)

Γ⇒ Δ,¬ϕ Γ⇒ Δ,¬ψ
Γ⇒ Δ,¬(ϕ∨ψ)

(∧⇒)
Γ,ϕ,ψ⇒ Δ
Γ,ϕ∧ψ⇒ Δ (⇒∧)

Γ⇒ Δ,ϕ Γ⇒ Δ,ψ
Γ⇒ Δ,ϕ∧ψ

(¬∧⇒)
Γ,¬ϕ⇒ Δ Γ,¬ψ⇒ Δ
Γ,¬(ϕ∧ψ)⇒ Δ (⇒¬∧)

Γ⇒ Δ,¬ϕ,¬ψ
Γ⇒ Δ,¬(ϕ∧ψ)
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Analytic omission (closure) rules:

(re f l ≺)
Γ,x ≺ x⇒ Δ
Γ⇒ Δ where x occurs in Γ∪Δ

(tr ≺)
Γ,x ≺ y,y≺ z,x ≺ z⇒ Δ
Γ,x ≺ y,y ≺ z⇒ Δ (cl ∈̂ ≺)

Γ,y ≺ x,y ∈̂A,x ∈̂A⇒ Δ
Γ,y ≺ x,y ∈̂A⇒ Δ

(sym ∪)
Γ,x ∈ (A∪B),x ∈ (B∪A)⇒ Δ

Γ,x ∈ (A∪B)⇒ Δ

(sym −∩)
Γ,x ∈ −(A∩B),x ∈ −(B∩A)⇒ Δ

Γ,x ∈ −(A∩B)⇒ Δ

In all axioms and inference rules, we assume that x,y,z ∈ OV and A,B ∈ SE .
It should be noted that the axioms and inference rules for set-theoretic operations

are those given in [4] lifted to the level of membership formulas, supplemented by
axioms A3 and A4, as well the two “idempotence rules” (id∪⇒),(id−∩⇒), and
the two “symmetry rules” (sym ∪),(sym −∩), which have been added to remedy
the deficiencies of the system given in [4] mentioned in the introduction.

Besides the axioms given above, in what follows, we will sometimes use the
derived axiom

(A5) x ∈̂A,x ∈̂−A⇒ (16.4)

To derive (A5), we take x = y = z in Axiom A3, which yields x≺ x,x ∈̂A,x ∈̂−A⇒,
and then eliminate x ≺ x by applying rule (refl ≺).

16.7 Soundness of CRS

Lemma 16.3

1. The axioms of the system CRS are valid.
2. For any inference rule ρ of CRS and any framework R for Lc

RS, if the interpreta-
tion I of Lc

RS in R satisfies all the premises of ρ, then I satisfies the conclusion
of ρ as well.

Proof. Both parts can be easily verified based on the individual clauses of the defi-
nition of I given in Definition 16.7.

Since the rules for Kleene connectives are well known, by way of example, we
shall prove the validity of the rather non-obvious Axiom A3, the omission rule
(cl ∈̂ ≺), and one of the very non-standard rules for introducing ∪ and −∩ on
the left hand side of the sequent, namely rule (∪⇒)a.

Assume I is an interpretation of Lc
RS in a framework R = {(U,C ),v,w}.



16 Three-Valued Logic for Reasoning about Covering-Based Rough Sets 451

We begin with axiom A3 having the form z≺ x,z≺ y,x ∈̂A,y ∈̂−A⇒. Suppose
I |= {z ≺ x,z ≺ y,x ∈̂A,y ∈̂−A}. Then, by Definition 16.7, z ≺C x,z ≺C y,v(x) ∈
Pos(w∗(A)),v(y) ∈ Pos(w∗(−A). Since by Proposition 16.1 both Pos(w∗(A) and
Pos(w∗(−A) are closed under the subordination relation ≺C , this implies v(z) ∈
Pos(w∗(A)) and v(z) ∈ Pos(w∗(−A)) — which is a contradiction, because by (16.3)
Pos(w∗(−A)) = U −Pos(w∗(A)), so these two sets are disjoint. As R is an arbi-
trary framework, this shows that the left-hand side of A3 is unsatisfiable, whence
the axiom is valid.

Now let us pass to the rule

(cl ∈̂ ≺)
Γ,y ≺ x,y ∈̂A,x ∈̂A ⇒ Δ
Γ,y ≺ x,y ∈̂A ⇒ Δ

and assume (*) I |= (Γ,y ≺ x,y ∈̂A,x ∈̂A⇒ Δ). Suppose now I |= {Γ,y ≺ x,y ∈̂A}.
Then, v(y)≺C v(x) and v(y) ∈ Pos(w∗(A)), so by Proposition 16.1, we have v(x) ∈
Pos(w∗(A)). Hence, I |= {Γ,y ≺ x,y ∈̂A,x ∈̂A}, which yields I |= Δ by (*). As a
result, I |= (Γ,y ≺ x,y ∈̂A⇒ Δ), which proves the soundness of the rule.

Consider finally the rule

(∪⇒)a
Γ⇒ Δ,x ∈̂−A Γ,x ∈̂B ⇒ Δ

Γ,x ∈̂A∪B⇒ Δ

Denote the premises by S1,S2, and assume I |= S1,S2. Suppose now I |= Γ,x ∈̂A∪B.
Then, v(x) ∈ Pos(w∗(A∪B)), which means that, for every C ∈ C , x ∈C implies C⊆
w∗(A∪B). As w∗(A∪B) = w∗(A)∪w∗(B), this implies that C⊆w∗(A) or C⊆w∗(B)
or C has non-empty intersections with both the latter sets and their complements.
Hence, we have the following three possibilities:

v(x) ∈ Pos(w∗(A)) Then, I �|= (x ∈̂−A), which in view of I |= S1 yields I |= Δ;
v(x) ∈ Pos(w∗(B)) Then, I |= (x ∈̂B), which yields I |= Δ by the fact that I |= S2;
v(x) ∈ Bnd(w∗(A))∩Bnd(w∗(B)) Then, once more I �|= (x ∈̂−A), whence I |= Δ

by the fact that I |= S1.

Hence, this rule is also sound.

Clearly, from the above Lemma, we can immediately conclude that:

Corollary 16.3. The inference rules of CRS are strongly sound, that is, they preserve
the validity of sequents.

16.8 Completeness of a Sublanguage

Unfortunately, because of the technicalities resulting from the complex character of
covering-based approximation spaces underlying the semantics of Lc

RS, for the time
being there is no proof that CRS is complete for the full language Lc

RS.
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However, we will prove the completeness of CRS — or rather its appropriate
subsystem — for the subset F at

RS of the language Lc
RS consisting of formulas which

do not contain complex set expressions. The importance of this language follows
from the fact that it contains both formulas representing membership of elements
in rough sets and formulas representing the subordination relation between objects
generated by the covering, and exploiting the relationship between the latter relation
and membership of elements in rough sets allows us to get better insight in the way
in which a given covering generates rough sets.

In what follows, Seqat
RS denotes the set of all sequents over formulas in F at

RS , and

'at
RS,'�≺RS — the consequence relation 'c

RS restricted to sets of formulas and formulas
in F at

RS .

Theorem 16.1. Let CRSat be the calculus obtained from CRS by:

• deleting all inference rules for set-theoretic operations, together with the rules
(¬ ∈̂⇒),(⇒¬ ∈̂),(sym ∪),(sym −∩) and Axiom A4;

• replacing Axiom A3 with
(A3′) z≺ x,z≺ y,x ∈̂A,¬(y ∈̂A)⇒

• adding the rule

(cl ¬ ∈̂ ≺)
Γ,y≺ x,¬(y ∈̂A),¬(x ∈̂A)⇒ Δ

Γ,y ≺ x,¬(y ∈̂A)⇒ Δ

Then the calculus CRSat is finitely strongly sound and complete for 'at
RS, that is,

for any finite set of sequents S ⊆ Seqat
RS and any sequent Σ ∈ Seqat

RS, S 'at
RS Σ iff

S 'CRSat Σ.

Proof. The soundness part follows from the soundness of CRS proven in Lemma 16.3,
together with the fact that Axiom A3′ is derivable in CRS from Axiom A3 and rule
(¬ ≺⇒), while rule (cl ¬ ∈̂ ≺) is derivable from rules (¬ ≺⇒),(cl ∈̂ ≺).

To prove the completeness part, we argue by contradiction. Suppose that for a
finite set of sequents S and a sequent Σ0 = (Γ⇒ Δ), we have S 'at

RS Σ0, but Σ0 is not
derivable from S in CRSat . We shall construct a counter-model for the entailment
S 'at

RS Σ0, that is, a framework R for Lc
RS such that IR |= S but IR �|= Σ0. The general

method employed in the proof is based on the use of saturated sequents and is similar
to that employed in [3, 4],

Denote by F(S) the set of all formulae belonging to at least one side of some
sequent in S. Then F(S) is finite; assume it has l elements. Let ϕ1,ϕ2, . . . ,ϕl be an
enumeration of the formulae in F(S). We shall now define a sequence of sequents
Γn ⇒ Δn,n = 0,1, . . . , l, such that, for n = 0,1, . . . , l:

(i) Γ⊆ Γn, Δ⊆ Δn

(ii) If n �= 0, then ϕn ∈ (Γn∪Δn).
(iii) Γn ⇒ Δn is not derivable from S in CRSat .

The above sequence is defined inductively as follows:

• We put Γ0 = Γ,Δ0 = Δ. As by our assumption Γ⇒ Δ is not derivable from S in
CRSat , the conditions (i)–(iii) above are satisfied for n = 0.
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• Suppose n ≤ l− 1 and we have defined the sequents Γi ⇒ Δi satisfying con-
ditions (i)–(iii) for i ≤ n. Then, the sequents Σ1 = Γn ⇒ Δn,ϕn+1 and Σ2 =
ϕn+1,Γn ⇒ Δn cannot be both derivable from S in CRSat , since then Γn ⇒ Δn

would be derivable from them by cut on the formulaϕn+1. We take Γn+1⇒Δn+1

to be Σ1, if Σ1 is not derivable from S, and Σ2 otherwise. Then, obviously, from
the inductive assumption it follows that the sequence Γn+1 ⇒ Δn+1 satisfies
conditions (i)–(iii).

By induction, the whole sequence Γn ⇒ Δn,n = 0,1, . . . , l, satisfies the desired con-
ditions (i)–(iii). What is more, from the inductive construction we can see that

(iv) Γn ⊆ Γn+1,Δn ⊆ Δn+1 for n = 1,2, . . . , l−1

Let Σ∗ = (Γ∗ ⇒ Δ∗) be the extension of Γl ⇒ Δl to a saturated sequent, that is,
a minimal sequent containing Γl ⇒ Δl and closed under the logical rules in CRSat

applied backwards. By way of example, a sequent Γ′ ⇒ Δ′ is closed under rule
(∨⇒) applied backwards if whenever ϕ∨ψ is in Γ′, either ϕ is in Γ′ or ψ is in Γ′,
and it is closed under rule (⇒∨) applied backwards if whenever ϕ∨ψ is in Δ′, both
ϕ and ψ are in Δ′.

Then, we can easily see that

(I) Γ⊆ Γ∗,Δ⊆ Δ∗
(II) F(S)⊆ Γ∗ ∪Δ∗
(III) Γ∗ ⇒ Δ∗ is saturated, and it is not derivable from S in CRSat .

Now we construct the desired counter-model R = (A ,v,w). Define

OV0 = {x ∈ OV | x occurs in Σ∗}, SV0 = {S ∈ SV | S occurs in Σ∗} (16.5)

(recall that formulas in F at
RS do not contain any complex set expressions).

Let Rt ,R f ,Ru be the relations on OV0×SV0 defined by:

Rt(x,A)⇔ (x ∈̂A) ∈ Γ∗ R f (x,A)⇔¬(x ∈̂A) ∈ Γ∗
Ru(x,A)⇔¬Rt(x,A)∧¬R f (x,A) (16.6)

From the above, we immediately conclude that, for any x ∈OV0,A ∈ SV0,

Ru(x,A)⇔ (x ∈̂A) �∈ Γ∗ and ¬(x ∈̂A) �∈ Γ∗

Hence, we have:

Lemma 16.4
For any x ∈OV0,A ∈ SV, Rt(x,A),R f (x,A)Ru(x,A) are all mutually exclusive.

Proof. As Σ∗ is not provable, then from Axiom 2 it follows that we cannot have
both (x ∈̂A)∈Γ∗ and¬(x ∈̂A)∈Γ∗. Hence Rt(x,A),R f (x,A) are mutually exclusive.
The fact that Ru(x,A) excludes both Rt(x,A) and R f (x,A) follows trivially from its
definition.
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Define now
OV1 =

⋃
{{x′A,x′′A} | x ∈OV0,A ∈ SV0,Ru(x,A)} (16.7)

where

1. OV1∩OV0 = /0
2. Any two elements in OV1 represented by non-identical symbols are different

(16.8)
As the universe of A , we take

U = OV0∪OV1

Further, for any x ∈ OV0,we define:

C0(x) = {y ∈ OV0 | (y≺ x) ∈ Γ∗}
C1(x) =

⋃{{x′A,x′′A} | A ∈ SV0,Ru(x,A)}
C(x) = C0(x)∪C1(x)

(16.9)

Then, it can be easily seen that the family

C = {C(x)|x ∈ OV0)} (16.10)

has the following properties:

Lemma 16.5. For any x,y ∈OV0, the following holds:

1. x ∈C0(x), C0(x)⊆ OV0,C1(x)⊆ OV1;
2. If x,y ∈ OV0 and x �= y, then C(x)∩C(y) = C0(x)∩C0(y);
3. y ∈C(x) iff (y ≺ x) ∈ Γ∗;
4. C is a covering of U.

Proof.

1. Since by (16.5) x occurs in Σ∗, and Σ∗ as a saturated sequent is closed under
rule (re f l ≺), then (x ≺ x) ∈ Γ∗, which yields x ∈ C0(x). The remaining two
inclusions follow directly from (16.9), (16.5) and (16.7).

2. By (16.9),C(x) =C0(x)∪C1(x) and C(y) =C0(y)∪C1(y), where C0(x),C0(y)⊆
OV0, and C1(x),C1(y) ⊆ OV1. As OV1 ∩OV0 = /0 by (16.8), we have C0(x)∩
C1(y) = C1(x)∩C0(y) = /0. Moreover, from the definition of C1(x) in (16.9) and
the fact that by (16.8) {x′A,x′′A}∩{y′A,y′′B}= /0 if x �= y, we obtain C1(x)∩C1(y) =
/0. Together with the foregoing, this yields C(x)∩C(y) = C0(x)∩C0(y).

3. If (y ≺ x) ∈ Γ∗, then y ∈ C0(x) by (16.9), whence y ∈ C(x). Assume now y ∈
C(x). If y = x, then (x ≺ x) ∈ Γ∗, because Σ∗ as a saturated sequent is closed
under rule (re f l ≺). If y �= x, then, as y ∈ C(y) by Point 1, y ∈ C(x) implies
y∈C(y)∩C(x). As C(y)∩C(x) =C0(y)∩C0(x) by Point 2, this yields y∈C0(x),
whence (y ≺ x) ∈ Γ∗.

4. To prove that C is a covering of U , we have to show that for every u∈U there is
C ∈ C such that u∈C. For u∈OV0 this follows from Point 1. In turn, if u∈OV1,
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then u∈ {x′A,x′′A} for some x∈OV0,A∈ SV0. Thus from (16.9) we get u∈C1(x),
whence u ∈C(x).

Accordingly, for our counter-model, we take A = (U,C ) defined as above.
The valuation of object variables is defined as follows:

v(x) = x (16.11)

for any x ∈ OV0, and v(x) = x0 for any x ∈U −OV0, where x0 is some arbitrarily
chosen, but fixed variable in OV0.

To define the valuation of set variables, for any A ∈ SV we take:

wt(A) =
⋃{C(x) | Rt(x,A)}, wf (A) =

⋃{C(y) | R f (y,A)},
w′u(A) = {z′A | Ru(z,A)}, w′′u(A) = {z′′A | Ru(z,A)},

w(A) = wt (A)∪w′u(A)− (wf (A)∪w′′u(A))

(16.12)

It remains to prove that R is indeed the desired counter-model, that is, that for the
interpretation IR of formulas generated by R according to Definition 16.7 we have

(I) IR |= Σ for each Σ ∈ S;
(II) IR �|= (Γ⇒ Δ).

We start with (II). As Γ⊆ Γ∗,Δ⊆ Δ∗, then in order to prove (II) it suffices to prove
that IR �|= (Γ∗ ⇒ Δ∗). Since the only designated value in the semantics of our logic
is t and IR (ϕ) ∈ {f, t,u} for any formula ϕ, this means we have to show that

IR (γ) = t for any γ ∈ Γ∗, IR (δ) ∈ {f,u} for any δ ∈ Δ∗ (16.13)

For this purpose, we will prove, analogously as in [4], that, for any formula ϕ oc-
curring in Σ∗,

(A) IR (ϕ) =
{

t if ϕ ∈ Γ∗
f if ¬ϕ ∈ Γ∗

and

(B) IR (ϕ) ∈
{ {f,u} if ϕ ∈ Δ∗
{t,u} if ¬ϕ ∈ Γ∗

We argue by induction on the complexity of ϕ, proving simultaneously (A) and (B).
For simplicity, from now on we drop the subscript R in IR .

ϕ= (x ≺ y), where x,y ∈ OV0

(A) ϕ ∈ Γ∗
Then, (x ≺ y) ∈ Γ∗. By Definition. 16.7, to prove that I(x ≺ y) = t, we
have to show that v(x) ≺C v(y). Since by (16.11) v(x) = x,v(y) = y, in
view of (16.4), this amounts to proving that, for any C ∈ C , y ∈C implies
x ∈ C. Suppose C ∈ C and y ∈ C. Then, by (16.10) C = C(u) for some
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u ∈ OV0. Hence, by Point 3 of Lemma 16.5 y ∈ C implies (y ≺ u) ∈ Γ∗.
However, as (x ≺ y) ∈ Γ∗ too, and Γ∗ is a saturated sequent, then by rule
(tr≺) we have (x≺ u)∈ Γ∗, whence x∈C(u). As a consequence, x≺C y,
whence I(ϕ) = I(x ≺ y) = t, and (A) holds for ϕ.

¬ϕ ∈ Γ∗
In this case, ¬(x ≺ y) ∈ Γ∗. As S �'at

CRS Σ
∗, then by Axiom A2 (x ≺ y) �∈

Γ∗. Hence, by Point 3 of Lemma 16.5 x �∈C(y). Since y ∈C(y), by (16.4),
this implies x �≺C y, whence I(ϕ) = I(x ≺ y) = f, and (A) holds for ϕ.

(B) ϕ ∈ Δ∗
If (x ≺ y) ∈ Δ∗, then, as S �'at

CRS Σ
∗, (x ≺ y) �∈ Γ∗ by Axiom A1 . Hence,

from the immediately preceding proof of (A) in case of ¬(x ≺ y) ∈ Γ∗we
obtain I(ϕ) = I(x ≺ y) = f, and (B) holds for ϕ.

¬ϕ ∈ Δ∗
If ¬(x≺ y)∈ Δ∗, then, since Σ∗ is a saturated sequent, from rule (⇒¬≺)
we obtain (x ≺ y) ∈ Γ∗, whence I(x ≺ y) = t by the inductive hypothesis
for (A). Consequently, I(ϕ) = t and (B) holds for ϕ.

ϕ= (x ∈̂A), where x ∈ OV0,A ∈ SV0

(A) ϕ ∈ Γ∗
Then (x ∈̂A) ∈ Γ∗. By Point 2 of Definition 16.7, in order to show that
I(x ∈̂A) = t, we have to prove that v(x) ∈ POS(w∗(A)). Since v(x) = x
(for x∈OV0) and w∗(A) = w(A) because A∈ SV0, then by Equation (16.3)
we need to prove that

(∀C ∈ C )[x ∈C → C ⊆ w(A)]

By Equation ( 16.12), we have

w(A) = wt(A)∪w′u(A)− (wf (A)∪w′′u(A)),
where
wt(A) =

⋃{C(x) | Rt(x,A)}, wf (A) =
⋃{C(y) | R f (y,A)},

w′u(A) = {z′A | Ru(z,A)}, w′′u(A) = {z′′A | Ru(z,A)}
(16.14)

Assume C ∈ C and x ∈ C. Then, by (16.10) and (16.9), there is s ∈ OV0

such that C = C(s), whence from by Point 3 of Lemma 16.5 we get
(x ≺ s) ∈ Γ∗. Considering that Σ∗ is saturated and (x ∈̂A) ∈ Γ∗, from rule
(cl ∈̂ ≺), we obtain (s ∈̂A)∈Γ∗. Thus, Rt(s,A) by (16.6), whence (16.14)
implies C = C(s)⊆ wt (A). Accordingly, in order to prove that C ⊆ w(A),
we need to show that
(i) z′′A �∈C(s) for any z ∈ OV0 such that Ru(z,A);
(ii) C(s)∩C(y) = /0 for any y ∈ OV0 such that R f (y,A)
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We begin with (i). Assume Ru(z,A). As Rt(s,A) holds, and by (16.4) we
cannot have both Rt(s,A) and Ru(s,A), then z �= s. By (16.9), we have

C(s) = C0(s)∪C1(s), where C1(s) = {s′B | Ru(s,B)}∪{s′′B | Ru(s,B)}

As z′′A ∈ OV1 and C0(s) ⊆ OV0, then z′′A �∈C0(s). In turn, as z �= s, then by
(16.8) z′′A �= s′B,s′′B for any B. Thus z′′ �∈C(s).
Consider now (ii), and assume R f (y,A). We argue by contradiction. Sup-
pose C(s)∩C(y) �= /0, and consider any u ∈ C(s)∩C(y). Then, by Point
3 of Lemma 16.5, we have (u ≺ s) ∈ Γ∗ and (u ≺ y) ∈ Γ∗. However, as
(s ∈̂A) ∈ Γ∗ and ¬(y ∈̂A) ∈ Γ∗, this is a contradiction — for, in view
of Axiom A3’, any sequent containing all of the formulas u ≺ s,u ≺
y,s ∈̂A,¬(y ∈̂A) on the left hand side is provable in CRSat by weaken-
ing, and Σ∗ is not provable. Hence C ⊆ w(S), I(ϕ) = t and (A) holds for
ϕ.

¬ϕ ∈ Γ∗
Then, ¬(x ∈̂A) ∈ Γ∗. By Point 2 of Definition 16.7, in order to prove that
I(ϕ) = I(x ∈̂A) = f, we have to show that v(x)∈NEG(w(A)). As v(x) = x,
then by Equation (16.3), we need to prove that

(∀C ∈ C )(x ∈C → C ⊆U −w(A))

The proof is quite analogous to the preceding case. Assuming x ∈ C, we
get C =C(s) for some s∈OV0, with (x≺ s)∈Γ∗ holding by Lemma 16.5,
whence ¬(s ∈̂A) ∈ Γ∗ by rule (cl ¬ ∈̂ ≺). By Equation (16.14), we have

U −w(A) = wf (A)∪w′′u(A)− (wt(A)∪w′u(A)) (16.15)

with wf (A),wt(A),w′u(A) and w′′u(A) defined as in (16.14). Since
¬(s ∈̂A) ∈ Γ∗, then R f (s,A). As in the foregoing proof for (x ∈̂A) ∈ Γ∗
we have shown that Rt(r,A) and R f (s,A) imply C(r)∩C(s) = /0, then to
show that C(s) ⊆U −w(A) it suffices to prove that z′A �∈ C(s) for any z
such that Ru(z,A). The proof is analogous to the proof that z′′A �∈ C(x) in
case of (x ∈̂A) ∈ Γ∗. Hence, C ⊆U −w(A), I(ϕ) = f and (A) holds for ϕ.

(B) ϕ ∈ Δ∗
Then (x ∈̂A)∈ Δ∗, whence S �'at

CRS Σ
∗ implies (x ∈̂A) �∈ Γ∗ by Axiom A1.

We have two possible cases:
¬(x ∈̂A) ∈ Γ∗

Then I(ϕ) = f by what we have already proved in (A), and (A) holds
for ϕ.

¬(x ∈̂A) �∈ Γ∗
Then both (x ∈̂A) �∈ Γ∗ and ¬(x ∈̂A) �∈ Γ∗, whence Ru(x,A). Accord-
ingly, by what we have already proved for (A) in case of (x ∈̂A) ∈ Γ∗
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and in case of¬(x ∈̂A)∈Γ∗, x′A �∈C(r) for every r such that Rt(r,A) and
x′′A �∈C(y) for every y such that R f (y,A). Since x′A �= x′′A, by (16.14) and
(16.15) this yields x′A ∈ w(A) and x′′A ∈U −w(A). As C(x) ⊇ {x′A,x′′A},
this implies C(x)∩w(A) �= /0 and C(x)∩ (U −w(A)) �= /0. Thus, by
(16.3), we have x ∈ Bnd(w∗(A)), and so by Point 2 of Definition 16.7
I(ϕ) = I(x ∈ A) = u. Hence, (B) holds for ϕ.

¬ϕ ∈ Δ∗
Then¬(x ∈̂A)∈Δ∗, whence¬(x ∈̂A) �∈Γ∗. If (x ∈̂A)∈Γ∗, then I(x ∈̂A)=
t by what we have already proved for (A), and so I(ϕ) = t. If (x ∈̂A) �∈ Γ∗,
then by what we have just proved above I(x ∈̂A) = u, whence I(ϕ) = u.
In both cases, (B) holds for ϕ.

ϕ= ¬ψ

(A) If ϕ ∈ Γ∗, then ¬ψ ∈ Γ∗, whence by the inductive hypothesis for ψ, we get
v(ψ) = f, and from Point 3 of Definition 16.7, we obtain v(ϕ) = v(¬ψ) = t.
Suppose now ¬ϕ ∈ Γ∗. Then ¬¬ψ ∈ Γ∗, and, as Γ∗ ⇒ Δ∗ is saturated, by
rule (¬¬⇒) we have ψ ∈ Γ∗. Hence, by the inductive hypothesis v(ψ) = t,
which in turn yields I(ϕ) = I(¬ψ) = f by Point 3 of Definition 16.7. Thus,
(A) holds in this case too.

(B) If ϕ ∈ Δ∗, then ¬ψ ∈ Δ∗, whence by the inductive hypothesis for ψ, we get
I(ψ)∈ {t,u}. By the definition of I, the latter implies I(ϕ) = I(¬ψ) ∈ {f,u}.
If ¬ϕ ∈ Δ∗, then ¬¬ψ ∈ Δ∗, and, as Γ∗ ⇒ Δ∗ is saturated, by rule (⇒ ¬¬)
we have ψ ∈ Δ∗. Thus, by the inductive hypothesis I(ψ) ∈ {f,u}, whence
I(ϕ) = I(¬ψ) ∈ {t,u} by the definition of I. Hence, (B) holds for ϕ.

ϕ= ψ1∨ψ2

(A) If ϕ∈ Γ∗, then (ψ1∨ψ2) ∈ Γ∗. Since Γ∗ ⇒ Δ∗ is saturated, by rule (∨⇒),
we have either ψ1 ∈ Γ∗ or ψ2 ∈ Γ∗. Hence, by the inductive hypothesis either
I(ψ1) = t or I(ψ2) = t. As in both cases, we get I(ϕ) = I(ψ1∨ψ2) = t, then
(A) holds for ϕ.

If ¬ϕ ∈ Γ∗, then ¬(ψ1 ∨ψ2) ∈ Γ∗. Since Γ∗ ⇒ Δ∗ is saturated, by rule
(¬∨ ⇒) we have ¬ψ1,¬ψ2 ∈ Γ∗, whence by the inductive hypothesis
I(ψ1) = I(ψ2) = f. By Point 3 of Definition 16.7, this yields, I(ϕ) = I(ψ1∨
ψ2) = f, so (A) holds for ϕ.

(B) If ϕ ∈ Δ∗, then ψ1 ∨ψ2 ∈ Δ∗. Thus, as Δ∗ is saturated, by rule (⇒∨) we
have ψi ∈ Δ∗ for i = 1,2. Hence, by the inductive hypothesis I(ψi) ∈ {f,u}
for i = 1,2. As a result, by the definition of I, we have I(ψ1∨ψ2) ∈ {f,u},
so (B) is satisfied.

Next, if ¬ϕ ∈ Δ∗, then ¬(ψ1∨ψ2) ∈ Δ∗. Since Δ∗ is saturated, from rule
(⇒ ¬∨), we obtain ¬ψi ∈ Δ∗ for some i ∈ {1,2}. Hence, by the inductive
hypothesis I(ψi) ∈ {t,u} for some i ∈ {1,2}, and so I(ψ1∨ψ2) ∈ {t,u} by
the definition of I. Thus (B) holds for ϕ.
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ϕ= ψ1∧ψ2

The proof in this case is similar to that in the previous one and is left to the reader.

It remains to prove (I), that is, to show that v |= Σ for each Σ ∈ S. So let Σ ∈ S.
Then Σ = ϕ1, . . . ,ϕk ⇒ ψ1, . . . ,ψl for some integers k, l and formulas ϕi,ψ j, i =
1, . . . ,k, j = 1, . . . , l. Clearly, we cannot have both {ϕ1, . . . ,ϕk} ⊆ Γ∗ and
{ψ1, . . . ,ψl} ⊆ Δ∗, for then Γ∗ ⇒ Δ∗ would be derivable from Σ, and hence, from S,
by weakening. Since F(S) ⊆ Γ∗ ∪Δ∗, this implies that either ϕi ∈ Δ∗ for some i or
ψ j ∈ Γ∗ for some j. Hence, by (A) and (B), which we have already proved, we have
either v �|= ϕi for some i, or v |= ψ j for some j, which implies that v |= Σ.

16.9 Conclusions

In this chapter, we have presented a three-valued logic for covering-based rough
sets, featuring additionally the subordination predicate which represents a funda-
mental relation between objects induced by the covering. The sequent calculus CRS
developed in the chapter has been proved sound for the full language, and complete
for the sublanguage F at

RS of formulas containing only atomic set expressions.
The completeness proof for that sublanguage contains construction of the cover-

ing based on the subordination relation. However, unlike the indiscernibility relation
underlying Pawlak’s rough sets, the subordination relation does not uniquely deter-
mine the covering generating the approximation space — which might be one of the
reasons for difficulties in proving completeness for the full language.

Another is certainly the need to handle the two cases of non-determinacy in the
Nmatrix M 3

RS. Because of them, in order to extend the completeness proof of the
sublanguage given in the foregoing to the full language, we have to ensure in the
counter-model construction, among others, the possibility that I(x ∈̂(A∪B)) = t
when I(x ∈̂A) = I(x ∈̂B) = u. This amounts to enabling the option v(x)∈ Pos(A∪B)
when v(x)∈ Bnd(A)∩Bnd(B). Since for the interpretation w∗ of set expressions, we
have w∗(A∪B) = w∗(A)∪w∗(B), we cannot ensure that C ⊆ w∗(A∪B) for every
C ∈ C such that x ∈ C by adding to w∗(A∪B) anything which is not already in-
cluded in either w∗(A) or w∗(B). Instead, we have to insert in w∗(A) and w∗(B)
elements which will ensure that v(x) ∈ Pos(A∪B) while preserving the condition
v(x) ∈ Bnd(A)∩Bnd(B).

This task is not so difficult in case of atomic A,B and isolated formulas of the type
x ∈̂(A∪B). Indeed, assume in the proof of Theorem 1 that Γ∗ =Γ′,x ∈̂(A∪B), where
A,B,x do not occur in Γ′. Then neither x ∈̂A,x ∈̂B nor their negations are in Γ∗, so for
the countermodel defined as in the discussed proof we have I(x ∈̂A) = I(x ∈̂B) = u.
Further, it is easy to check that for the covering C and the interpretation w of set
variables defined there we have C(x) = {x,x′A,x′′A,x′B,x′′B} and w(A) = {x′A},w(B) =
{x′B}. Now let us modify the definition of w given in the proof to wm by taking
wm(A) = {x,x′A,x′′B},wm(B) = {x′B,x′′A}. Then we have x ∈ Bnd(wm(A)), because
x′A,x′′A ∈ C(x), but x′A ∈ wm(A) and x′′A �∈ wm(A), and analogously x ∈ Bnd(wm(B)).
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Hence, for the modified interpretation Im generated by wm, we have Im(x ∈̂A) =
Im(x ∈̂B) = u. However, as wm(A)∪wm(B) = {x,x′A,x′′B}∪ {x′B,x′′A} = C(x), then
x ∈ Pos(A∪B), and so Im(x ∈̂(A∪B)) = t.

However, the above task becomes quite daunting in case of nested set-theoretic
operations and multiple formulas which must be handled simultaneously. Accord-
ingly, after exploring the subject in depth, the author suspects that maybe no com-
plete finite proof system exists for the language considered in this chapter.

Accordingly, the issue of a complete proof system for the full language will be
the subject of further research, and in future work we will consider supplementing
the language by other operators to ensure unique determination of the covering and
completeness. Other directions for future work include considering logics for rough
sets defined by partial orders, lattices, and so on.

References

1. Avron, A.: Classical Gentzen-type methods in propositional many-valued logics. In: Fit-
ting, M., Orłowska, E. (eds.) Beyond Two: Theory and Applications of Multiple-Valued
Logic. STUDFUZZ, vol. 114, pp. 117–155. Physica Verlag, Heidelberg (2003)

2. Avron, A.: Logical Non-Determinism as a Tool for Logical Modularity: An Introduc-
tion. In: Artemov, S., Barringer, H., d’Avila Garcez, A.S., Lamb, L.C., Woods, J. (eds.)
We Will Show Them: Essays in Honor of Dov Gabbay, vol. 1, pp. 105–124. College
Publications (2005)

3. Avron, A., Konikowska, B.: Multi-valued calculi for Logics based on Non-determinism.
Logic Journal of the IGPL 13, 365–387 (2005)

4. Avron, A., Konikowska, B.: Rough sets and 3-valued Logics. Studia Logica 90(1),
69–92 (2008)

5. Avron, A., Lev, I.: Canonical Propositional Gentzen-Type Systems. In: Goré, R.P.,
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Chapter 17
Music Information Retrieval in Music
Repositories

Bożena Kostek

Abstract. This chapter reviews the key concepts associated with automated Mu-
sic Information Retrieval (MIR). First, current research trends and system solutions
in terms of music retrieval and music recommendation are discussed. Next, exper-
iments performed on a constructed music database are presented. A proposal for
music retrieval and annotation aided by gaze tracking is also discussed.

Keywords: Music information retrieval, decision systems, music classification,
music annotation, gaze tracking.

17.1 Introduction

Audio-video information currently available online is measured in petabytes. Thus,
to improve access conditions to vast resources containing this type of information,
it is necessary to create meta-descriptions of multimedia files in an automatic mode.

Music Information Retrieval (MIR) is an interdisciplinary domain that focuses
on automated extraction of information from audio signals and enables to search the
indexed information [5, 12, 14, 17, 34, 35, 38, 39]. It must be stressed that in the last
few years a great deal of progress has been made as regards the scientific studies on
music information retrieval [42]. The results of global research concentrated on the
practical use of technical implementations and systems applications. The ongoing
research focuses for example on the improvement of the efficiency and effective-
ness of music recognition (e.g., in terms of performance). This is a crucial issue,
especially in the context of online music services that attract millions of users. In its
early stages, the primary focus of MIR was on applications that allowed to search for
music information through QBH, Query-by-humming/singing/whistling. The more
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advanced applications support Query-by-example searching. However, today the
most important research (and applications) relates to the retrieval in which a content-
based analysis is used. In particular, the retrieval of a musical style, genre, or mu-
sic referring to the mood/emotions of a musical piece is called Query-by-category:
musical style, genre, mood/emotion [1, 26].

The basis of music recommendation systems is constituted by metadata added to
musical pieces so that a user can search a music database effectively. According to
the ID3v1 (or higher) audio file format specification, these data are called tags. They
are included in the files, and they refer to different aspects of music tracks (such as
title, composer, length, etc.). However, there are also tags specifying the tempo or
musical instruments of a musical piece, etc. [15].

In the MIR literature, there are three main approaches in terms of automatic mu-
sic annotation [6, 8, 24, 30]. File annotation by means of automatic tag retrieval
from databases, such as Gracenote or FreeDB, is the simplest method. However,
such recommending systems lack the capability to suggest specific musical piece
before they are annotated manually. Hence, in the second approach, individuals are
employed to manually add tags to music files [30]. This method requires a large
number of “experts” with musical background and is time-consuming. This method
is also called social tagging, when a statistically significant number of people par-
ticipate in the process. This method can, for example, take the form in which key
words describing a musical piece are added by users. Nevertheless, it must be re-
membered that manual annotation can also be problematic in the context of various
musical tastes and preferences, which can lead to a situation where the same track
is assigned to different genres by individuals with diverse musical experience. That
is why, it is often observed that users may never be able to objectively assign appro-
priate attributes to a given musical piece.

The third approach uses information based on a low-level description of music.
Low-level descriptors are usually based on the MPEG 7 standard, Mel-frequency
cepstral coefficients (MFCC’s) or, finally, dedicated parameters suggested by re-
searchers [11, 13, 15, 16, 17, 22, 32, 33]. Within this approach, feature descriptors
are assigned to a given music excerpt in order to perform automatic annotation of
a given piece. This is followed by a search for similarities within the genre to carry
out automatic tagging. The selection and quality of the parameterization method de-
pends on the algorithm used in automatic genre classification. Thus, the adequate
selection of parameters, the algorithm optimization in terms of signal processing and
data exploration techniques serve as key technologies that provide effective music
tagging automatically.

Resulting from this description, the issues of retrieval and recommendation are
interconnected. Manual annotation of musical pieces may be supported by the anal-
ysis carried out with regard to computer users’ reactions to music they listen to.
Currently, the technological potential supports gaze-tracking, in which objectiviza-
tion of annotation process is possible by means of observing the level of the user’s
interest in the retrieved multimedia material.

A prototype device, named Cyber-eye, was constructed in the Department of
Multimedia Systems (MSD) of the Gdansk University of Technology (GUT). The
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device illuminates computer users’ eyes by infrared (IR) light, and it acquires eye
view for further processing. According to the definition given by the GazeGroup
[40] “gaze tracking is the process of measuring the ”Point of Regard” (PoR) or
the“Line of Sight” (LoS) of the eye, and tracking it over time. This process can be
divided into two subprocesses:

• eye tracking, that is, detecting and tracking eye features and movements,
• gaze estimation, that is, calculating the eye gaze from eye features” [40].

The Cyber-eye system is composed of hardware solutions and accompanying soft-
ware that analyzes a user’s activity during a given task [18, 19]. The architecture of
the system is presented in Fig. 17.4, and its working principles in Section 17.5.2.

This article presents a research project in which the gaze-tracking system is used
to develop a method of musical document ranking. The method is based on the
analysis of how computer users perceive information visually.

Firstly, the article provides a review of selected solutions in the field of music rec-
ommendation along with the examples of such systems. Secondly, a music database
designed for research purposes is presented. The database is used for experiments
aimed at the analysis of music genre classification efficiency. In the experiments,
a dual approach to musical piece annotation, that is, manual (a user selects a given
element from a user interface with a mouse) and automatic (a file is automatically
annotated by the gaze-tracking system) was also proposed. Hence, this study en-
deavors to answer if it is possible to perform automatic tagging in relation to a given
musical parameter (e.g., piece tempo), and whether it is linked with a subject’s mu-
sical experience. Simultaneous collection of data that refer to options selected with
a mouse was done to objectivize the study through finding a correlation between
mouse-click selections and the results from the gaze-tracking system.

17.2 Review of Selected Solutions in Terms
of Music Recommendation

System solutions and music recommendation services include social networking
systems, Internet radio stations, and Internet music stores as well as research or
experimental solutions which operate on small music databases. These last ones,
chronologically earlier, allowed to test proposed solutions for music classification
efficiency. In this case, one can talk about systems that are based on the aforemen-
tioned content-based analysis, that is, features of a given piece or music type as-
signed to a given composer or music genre.

Systems creating play lists compliant with a user’s profile are used in applica-
tions and music recommendation services. The largest Internet radio stations based
on what is called collaborative filtering were built around this approach. This term is
understood as finding answers by questioning a community within social network-
ing services. The activity is based on the identification of a group of individuals
with similar tastes and musical preferences within a large user community and can
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provide a list of suggested answers (presented hierarchically – from the most to
the least accurate response). Lately, another term appeared, called context-boosted
collaborative filtering, a hybrid approach that takes into account also content-based
filtering. Algorithms, typically used in data exploration, such as the Pearson cor-
relation coefficient, cosine measure or k-NN algorithm, that reflect the similarities
among musical pieces contained in a database and a query submitted by a user, etc.
are employed to search such dependency and similarity. The calculated numerical
index of such measures enables to arrange responses (e.g., play lists or answers to
a query) in the order regarding their similarity.

17.2.1 Music Retrieval within a Content-Based Analysis

Systems or solutions based on music analysis use both low-level parameterization
and meta-description. The selection of feature vectors (FV) that reflect the appro-
priate representation of musical data cannot be carried out effectively, unless tools
supporting automatic music classification are also utilized. For this reason, the clas-
sification stage is as important as an adequately selected parameter vector.

Two types of descriptors are used for audio signals within the MPEG 7 stan-
dard [22]: low-level descriptors and high-level descriptors. The ISO/IEC 15938
standard provides only a definition of parameters while the algorithms calculating
these quantities are not specified. The MPEG 7 standard contains 17 low-level pa-
rameters divided into six groups. In particular, the application of parameters from
the BasicSpectral group as well as the AudioPower parameter is useful for classifi-
cation. Since the parameters included in the MPEG 7 standard are very popular in
audio data classification, their definitions will not be given here.

In the field of Music Information Retrieval, one can find several music collec-
tions (e.g. GZTAN, ISMIR2004, MIREX2005, Magnatune) that are often used to
test the efficiency of solutions proposed by various researchers in terms of auto-
matic music classification by means of benchmarking [42]. Some selected results of
the efficiency of music classification obtained in recent years on the basis of these
collections are presented in Table 17.1. It is worth mentioning that these collections
are not consistent as they differ in the number of musical pieces, file format, bit res-
olution, number of genres, etc. Hence, such a comparison is not fully possible and
justified. Characteristics of music collections, mentioned above, are as follows:

• GTZAN – au format, 22 kHz, monophonic signals, 30 s, 1,000 files, 10 music
genres,

• ISMIR2004 – mp3 format, 44 kHz, stereophonic signals, full-length music
tracks, 1,458 music files, 6 music genres,

• MIREX2005 – mp3 format, 44 kHz, mono, based on Magnatune corpus –
full-length music tracks, mp3 and lossless, 15,000 music files,1100 albums, 10
genres

• Million Song Dataset based on Magnatune corpus service, 2,400 songs across
8 genres, mp3 and lossless.
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Table 17.1. Examples of results in the field of the MIR music genre retrieval

Authors Music collection Efficiency [%]

Bergsta et al. [4] GTZAN 82.50
Li et al. [20] GTZAN 78.50
Lidy et al. [21] GTZAN 76.80
Benetos, Kotropoulos [3] GTZAN 75.00
Holzapfel, Stylianou [9] GTZAN 74.00
Tzanetakis et al. [33] GTZAN 61.00
Holzapfel, Stylianou [9] ISMIR2004 83.50
Pampalk et al. [25] ISMIR2004 82.30
Lidy et al. [21] ISMIR2004 79.70
Bergstra et al. [4] MIREX2005 82.23
Lidy et al. [21] MIREX2005 75.27
Mandel, Ellis [23] MIREX2005 78.81
Hughes et al. [10] Milion Song Dataset 82.7

Numerous examples of music genre classification can be found in literature. Us-
ing the provided meta-data, Hughes et al. [10] automatically extracted a corpus of
2,400 songs across 8 genres from the custom multi-genre corpora from the Million
Song Dataset [41], namely ambient, blues, classic-rock, classical, country, jazz, hip-
hop, and techno. The average ROC value, which corresponds to the accuracy of a
binary-classification experiment involving one genre vs. all the others, obtained in
their classification experiments was 82.7%. Such studies were intensively carried
out in the Department of Multimedia Systems, and the gained results are encourag-
ing, as with a similar number of music database files they allowed to obtain results
at the level of 80% (and higher) [15, 16]. Lately, a new database was created for the
new contest (ISMIS 2011) on music genre recognition [17]. The dataset and feature
vectors were prepared by the Multimedia Systems Department, GUT. The com-
petition attracted very large interest among Data Mining and Music Information
Retrieval community: 292 teams with 357 members had registered, 150 of them ac-
tively participated, submitting over 12.000 solutions in total, largely outperforming
baseline methods. The best results obtained during the contest were by A. Schierz
and M. Budka, and the classification rate was of 0.87507 [31].

17.2.2 Systems Using a Community Interaction

Social networking systems that use a community interaction are to a large extent
based on users’ profiles. It is usually achieved either by means of gathering indi-
rect information, for example, by observing reviewed tracks in an e-store, analyzing
musical pieces/albums display time, storing a user’s shopping list, analyzing other
social networking services or by obtaining direct information, that is, asking for the
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musical piece assessment on the progressive scale, arranging the collection in the
order of favorite tracks, or selecting a “better” musical piece from two presentations
and creating a user’s preference list. In order to ensure interaction between a user
(mainly a broadly understood user’s profile) and the system, technologies and ap-
plications have been created or adopted that automatically transfer data for analysis
(e.g., the scrobbler application described in Section 17.3.1).

An example of a new approach to music retrieval that makes use of community
interaction is the field of Music Emotion Recognition or personalized music recom-
mendation. The tests carried out within the field explain how the subjective nature
of emotion perception must be taken into account when constructing automatic sys-
tems of music emotion recognition (MER) [27].

Examples of music recommendation systems based on social networking services
will be presented in Section 17.3.

17.3 Examples of Music Recommendation Systems

In this Section, examples of music recommendation systems are discussed. First,
systems that attract a large number of users are mentioned. Often, based on known
services (e.g., Last.fm [51] and YouTube), new ones are created that combine the
functionality of two or more services (such as wykop.pl). For example, user’s reg-
istered with Last.fm automatically obtain video clips from YouTube according to
their musical taste.

17.3.1 Pandora

Undoubtedly, one of the best-known Internet radio systems recommending music
is the personalized Pandora radio service. This is a content-based recommender,
although the features are extracted by humans. It is said that the result is high-
quality data, but poor scalability. It is based on the Music Genome project (USA,
2000) [54], in which around 400 parameters were initially set and constituted a kind
of genotype of a given musical piece. Pandora Media service was established in
2000. Since 2005, the service has been operating as a free-of-charge Internet radio
station. However, it is currently available only in the USA. The music catalogue
is estimated to contain 74000 pieces. The service was initially using seven music
genres categorized into five groups (Pop/Rock, Hip-Hop/Electronica, Jazz, World
Music, and Classical). Currently, there are 100 radio stations defined by listeners
where the assigned music genre does not always conform with the ID3v2 format.

Each musical piece in the database is represented by a vector of attributes. The sys-
tem uses from 150 to 500 attributes depending on the type of music genre.
The attributes relate to music structure elements (e.g., dynamics, tempo, and rhythm),
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instruments, or lyrics. Musical pieces are assessed by experts (musicians and mu-
sicologists) and attributes which create an adequate genotype for a given track and
a music profile are also assigned in this way. The analysis of a single musical piece
takes about half an hour.

Pandora uses a feedback relying on a user’s assessment of a musical piece for
the purposes of efficient recommendation. The service uses the simplest form of
subjective assessment: users specify whether they like a track or not. Listening to
a musical piece suggested by the service may be skipped with no limitation. Opting
not to make choice is interpreted as not being in the mood to listen to a given musical
piece. A list of recommended tracks is defined on the basis of similarity vectors.
The similarity is calculated as the proximity of vectors in a given metric space.
The choice of a track or an artist on demand is not possible in this system [54].

17.3.2 Last.fm

Last.fm is currently the biggest musical social networking service [51]. It was cre-
ated in 2002 by F. Miller, M. Stiksel, M. Breidenbruecker and T. Willomitzer. In
2005, it merged with the Audioscrobbler project by R. Jones from the University of
Southampton. Presently, the service is managed by the CBS Corp. media company.
Initially the service was free of charge. Currently, however, a monthly subscription
is required. It is estimated that the community around Last.fm includes 40 million
users, and the music catalogue contains about seven million pieces and is still grow-
ing. Moreover, the service has over 43 million registered scrobblers. Scrobbler is an
application installed on a user’s computer to download information from the client
application, in this case from a multimedia player. This message is sent by Scrob-
bler to the service. Primarily, the service fulfils the role of an Internet radio station.
It also recommends music and provides current rankings of artists, tracks, and the
most popular tags. The service also provides information about music events. Ge-
olocation takes place on the basis of the user’s IP address.

Last.fm automatically generates a profile page for every user who signed up for
a music recommender system called “Audioscrobbler”. The system builds a detailed
profile of each user’s musical taste by recording details of the songs the user listens
to, either from Internet radio stations or the user’s computer or portable music de-
vices. This information is transferred to the database (scrobbled) either via the music
player itself or via a plugin installed in the user’s music player. The profile data are
then displayed on the user’s profile page along with the list of the tracks recently
listened to as well as a list of the artists most often listened to and the user’s favorite
tracks. On the basis of these data, the system retrieves and creates a list of other users
– individuals with similar tastes. User pages include what is known as taste-meters
that enable to compare the compatibility of different users’ musical tastes. Addi-
tionally, a user can get information about which tracks have recently been listened
to by his/her friends, etc.
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Aforementioned, there are two basic ways of obtaining information on the pref-
erences of particular users in the service:

• Using the Internet radio station in the service. A user may use the list of artists
and tracks recommended by the service. A user can also use several radio chan-
nels. Every channel includes a separate play list (27 stations that are divided
into the music of the sixties, seventies, eighties, and nineties).

• It is possible to build a user’s profile on the basis of the tracks that were listened
to as well as their rating. In this case, scrobbling allows obtaining information
about a user by collecting information on the music database stored in a user’s
computer or by analyzing musical pieces that the user listens to. Scrobbling of
a track occurs when the track is listened to. The title of the musical piece is sent
to Last.fm where it is added to the user’s music profile. These data enable to
create personalized radio stations. Collaborative filtering is used in the service.
Music suggestions are retrieved thanks to service users who have similar tastes
(known as neighbors).

The users can tag artists, albums, and tracks, and thus retrieve music according
to assigned tags. Besides the most typical choices (e.g., a music genre, artist’s or
composer’s name), the classification of this kind includes the choice of a track ac-
cording to assigned mood, the artist’s sex, or other characteristics. Initially, users
were able to create custom radio stations and playlists from any of the audio tracks
in the Last.fm music library and could listen to some individual tracks on demand.
However, the ability to listen to custom radio stations (“personal tag radio”) was
withdrawn in 2010. An opportunity to create a radio station based on a given tag
was possible, if the number of musical pieces that were annotated by this tag was
sufficiently large. The service also allows to retrieve lyrics. However, as pointed out
before, in 2010 some of the above-mentioned functions were limited [51].

17.3.3 Examples of Other Systems

Mufin

Music FINder – the system uses the mufin player (only on PC) [52]. The service is
a search engine with recommendation and enables the users to buy music or listen to
half-minute excerpts. The smartphone application is available with the Android sys-
tem. The system is a classic example of content-based music recommenders, using
an algorithmic approach. Recommendation occurs on the basis of musical piece pa-
rameters (tempo, instruments, harmony, etc.). The service presents musical pieces
collected on the server graphically in the form of a three-dimensional map. This
enables one to observe the relationships among particular tracks of the database.
A user is able to define

• on the horizontal plane – the mood,
• on the vertical plane – sound choice (from synthetic to acoustic),
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• when moving backwards or forwards, a user is able to select the adequate tempo
of a music (from calm to aggressive).

Genius

The Genius function introduced in iTunes v8. allows recommending music among
tracks available in the user’s library [45]. Retrieval and recommendation use typ-
ical collaborative filtering, based, however, on the similarity of artists’ (not songs
or albums). The resulting recommendations take the form of a playlist of musical
pieces that are similar or mixed consistently. The Genius Sidebar recommendation
application uses Gracenote MusicID to collect high-level data.

Musicovery

Musicovery is an interactive Internet radio station created by Castaignet and Vavrille
in 2006 in France [53]. The system creates playlists containing recommended tracks
according to the user’s mood. The free-of-charge use of the service allows to listen to
low-quality files (32 kb/s). Experts who rate particular musical pieces are employed
by the service. Each musical piece in the database is described by 40 attributes.
The attributes subjectively describe only the mood of a song/music. Playlists of the
user’s anticipated preferences are built on the basis of the obtained classification. It
is possible to select musical pieces from a specified decade. The service displays
recommendation in the form of a map that shows the relationships among musical
pieces.

Other systems that recommend music include

• Lala – based on “following” the P2P service users and their music choices, that
is, the service relies on users following each other on the service and recom-
mending new music to each other [50],

• Amazon – Internet store, the users may listen to or download music in their
Cloud Drive accounts, also it lets users store music on remote servers and access
songs from the internet or Android phones [46],

• eMusic – the second largest Internet music store after iTunes, based on the
technology of personalization and recommendation services, takes into account
a hybrid approach (algorithms and human input from experts) [47],

• iLike – part of MySpace; the service lets users share music preferences, receive
personalized concert and music recommendations and includes a “sidebar” for
iTunes that creates automatic playlists [48],

• Slacker – personalized Internet radio station (operating only in the USA) [55],
• Jamendo – the last of the presented systems is currently often compared with

Last.fm. The service does not have the scrobbling function, so music can only
be listened from the service site or the whole album can be downloaded [49].
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17.4 Music Genre Recognition Experiment

17.4.1 Music Database

The music database created in the Department of Multimedia Systems contains mu-
sical pieces of 60 composers/artists. From the albums within the same style, 15–20
musical pieces of each musician/composer have been chosen. They were of CD-
quality, standard 16-bit resolution/44.1 kHz sampling rate, PCM stereo format. Mu-
sic genre categories in the created database were limited to basic styles, such as
classical music, jazz, blues, rock, metal, and pop. The number of musical pieces
assigned to a given genre is presented in Table 17.2. For each piece, 20 segments
of 25-second-long-excerpts were extracted and parameterized. This means that 20
feature vectors containing 171 parameters were obtained for every musical piece.
The parameterization involved extraction of the following parameters: 127 descrip-
tors of the MPEG-7 standard, Mel-Frequency Cepstral Coefficients (MFCC – 20
descriptors) as well as time-related “dedicated” parameters (24 descriptors). For the
MPEG-7 descriptors, the Hamming window of length 8192(with 50% overlapping)
was used. For example, for a 5-minute audio excerpt, the number of frames was 155
(each audio segment 15-seconds long at a sample rate of 44100 Hz with overlapping
results in 661500 samples; thus, this returns 155 frames). In the case of MPEG-7 de-
scriptors the average and variance values were calculated within each audio segment
for all frames containing 8192 samples over all frequency bands. For the MFCC pa-
rameters, the Hamming window of length 512 (with 50% overlapping) was utilized.
The parameter vector includes 171 descriptors, and the total number of parameter
vectors in the whole database amounts to 21,680. Additionally, it must be added
that the parameters were normalized to be in the range of (−1,+1). Since MPEG-
7 features and Mel-Frequency Cepstral-Coefficients are widely presented in a rich
literature related to this subject, there they will only be listed. These parameters are
listed below:

• parameter 1: Temporal Centroid (defined as the time averaged over the energy
envelope),

• parameter 2: Spectral Centroid (computed as the power weighted average of the
frequency of the bins in the power spectrum) average value calculated for all
frames (see comment above),

• parameter 3: Spectral Centroid variance calculated for all frames,
• parameters 4–37: Audio Spectrum Envelope (ASE)- describes the spectrum of

the audio according to a logarithmic frequency scale; average values in 34 fre-
quency bands (calculated at one-fourth-octave intervals over the range of 62.5
Hz to 16 kHz),

• parameter 38: ASE average value calculated for 34 frequency bands,
• parameters 39–72: ASE variance values in 34 frequency bands (the same fre-

quency bands as cited above),
• parameter 73: averaged ASE variance parameter,
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• parameters 74, 75: Audio Spectrum Centroid (defined as the power weighted
log-frequency centroid) – average and variance values,

• parameters 76, 77: Audio Spectrum Spread (describes the second moment of
the log-frequency power spectrum) – average and variance values,

• parameters 78–101: Spectral Flatness Measure (SFM) average values for 24
frequency bands, calculated at one-fourth-octave intervals over the range of 250
Hz to 16 kHz; (SFM describes the flatness properties of the spectrum of an audio
signal within a given number of frequency bands),

• parameter 102: SFM average value (averaged for 24 frequency bands),
• parameters 103–126: Spectral Flatness Measure (SFM) variance values for 24

frequency bands,
• parameter 127: averaged SFM variance parameters (averaged for 24 frequency

bands),
• parameters 128–147: 20 first MFCC (mean values),
• parameters 148–171: dedicated parameters in the time domain based on the

analysis of the envelope distribution in relation to the rms (root mean square)
value.

The dedicated parameters are related to the time domain. They are based on the
analysis of the distribution of sound sample values related to the multiples of the
root mean square values of the signal (rms). For this purpose, three reference levels
were defined: r1, r2, and r3 – equal to namely 1 · rms, 2 · rms, and 3 · rms values of
the samples in the analyzed signal frame. The first three parameters are linked with
the number of samples that are exceeding the levels: r1, r2, and r3.

pn =
count(samples exceeding rn)

length(x(k))
(17.1)

where n = 1,2,3, and x(k) is the signal frame analyzed.
The initial analysis of the values of parameters pn showed to be difficult, be-

cause the rms level in the analyzed excerpts sometimes significantly varies within
the frame. In order to deal with this problem, another approach was introduced. Each
5-second frame was divided into 10 smaller segments of 0.5 second. In each of these
segments, the pnparameters (Eq. 17.2) were calculated. As a result, a sequence of
Pn was obtained:

Pn = {p1
n, p2

n, p3
n, . . . , p10

n } (17.2)

where pk
n, k = 1 . . .10, and n = 1,2,3 as defined in Eq. 17.1.

In this way, 6 new features were defined on the basis of the Pn sequences. New
features were defined as the mean (qn) and variance (vn) of Pn, n = 1,2,3. Index n
is related to the different reference values of r1, r2, and r3.

qn =

10
∑

k=1
pk

n

10
(17.3)

vn = var(Pn) (17.4)
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In order to supplement the feature description, additional three parameters were
defined. They are calculated as the “peak to rms” ratio, but in three different ways
described below:

• parameter k1 calculated for a 5-second frame,
• parameter k2 calculated as the mean value of the ratio calculated in 10 sub-

frames, each of 0.5-second duration (no overlap was used),
• parameter k3 calculated as the variance value of the ratio calculated in 10 sub-

frames (no overlap was used).

The last group of the dedicated parameters is related to the observation of the
threshold crossing rate value. This solution may be compared with a more gen-
eral idea based on a classical zero crossing rate parametrization (ZCR). The ZCR
parametrization is widely used in many fields of automatic sound recognition. The
extension of this approach is a definition of a threshold crossing rate value (TCR)
calculated analogically as ZCR, but by counting the number of signal crossings in
relation not only to zero, but also to the r1, r2 and r3 values. These values (similarly
as in the case of the other previously presented parameters) are defined in 3 different
ways: for an entire 5-second frame and as the mean and variance values of the TCR
calculated for 10 sub-frames. This gives 12 additional parameters to the feature set.

The entire set of dedicated parameters consists of 24 parameters that supplement
147 parameters calculated based on MPEG-7 and mel-cepstral parameterization.

The reduction in the feature vector redundancy is an important part of the anal-
ysis. Therefore, the obtained parameter vector was tested in the context of separa-
bility. The basic correlation analysis is based on calculating the covariance matrix
followed by that of the correlation matrix and the interpretation of particular coef-
ficients within the t-distribution statistics. Based on that it can be specified which
parameters can be viewed as redundant. This may be done by means of the correla-
tion coefficient Rxy calculated for values x1, x2 . . . xn of parameter x and for values
y1, y2, . . . yn of parameter y according to the following formula:

Rxy =
n∑xiyi−∑xi∑yi√

n∑x2
i − (∑xi)2

√
n∑y2

i − (∑yi)2
(17.5)

where n is the number of parameter vectors. The t-distribution characterized by n−2
degrees of freedom is calculated according to the following formula:

Rxy
√

1−R2
xy

√
n−2 (17.6)

In Figs. 17.1 and 17.2 examples of analyses are presented: the first one shows the
report agreement in terms of the parameter correlation of the artist’s songs with the
parameters of the whole music category, while the second one shows the lack of
such a report agreement.
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a) b)

Fig. 17.1. Examples of graphs displaying the distribution of strongly correlated parameters
with regard to the class of a selected artist (a) and the whole class of a music category (b)

a) b)

Fig. 17.2. Examples of graphs displaying the distribution of strongly correlated parameters
with regard to the class of a selected artist (a) and the whole class of a music category (b)
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Table 17.2. Presentation of the number of genres and musical pieces in the constructed music
database

Music genre Number of tracks

classical 320
jazz 362
blues 216
rock 124
metal 104
pop 184

17.4.2 Music Genre Classification

The research experiment included a study of the created parameter vector efficiency
for automatic music classification. In order to achieve it, the data were divided into
training and testing sets: 50/50%. The following algorithms were used for classifi-
cation: Support Vector Machine – SVM, J48 decision trees and the Random Forest
(RF) from the WEKA system [44], and the rough set-based (RS) analysis from the
RSES system [43]. The C-SVC SVM algorithm and a Gaussian function with the
Radial Basis kernel function were employed. The cost coefficient was set at 62.5
and the gamma parameter at 0.5. The J48 classifier parameters were default, so the
Confidence Factor was 0.25, and the minimum number of instances per leaf was 2.
The Random Forest model was created with the unlimited depth of trees and the
number of trees, was equal to 20. For the J48, the confidence factor used for pruning
was set to 0.25, and the minimum number of instances per leaf was equal to 2.

Rough sets introduced by Pawlak [28] are often employed when discovering sig-
nificant and eliminating redundant data is a crucial aim. A large number of refer-
ences focusing on rough sets-based applications [28, 29], also those related to MIR
[13, 15] exist. Within the context of this chapter, the rough set method was used
for the purpose of classification, even though rough sets - as mentioned above - are
typically used to discover data dependencies and to identify data redundancy. In the
experiments, the rough set decision system RSES was employed [2, 43]. Since this
system is used by many researchers, the details concerning its algorithmic imple-
mentation and performance will not be provided here. FVs were divided into train-
ing and testing sets. The parameters were quantized according to the RSES system
principles. The local and global discretization were used to obtain reducts calculated
from genetic and exhaustive algorithms [2, 36, 37]. The exhaustive (deterministic)
algorithm constructs all reducts, whereas the genetic (heuristic) algorithm calculates
some of reducts [36, 37].

Since the classifier based on the Support Vector Machine is by definition a binary
classifier, in the case of music genre classification, it required extension to classify
many classes. In this case, the one-versus-all method was employed. This method
involved creating many binary classifiers (the number of classifiers equals the num-
ber of classes), each one of them differentiating a class from the set of classes.



17 Music Information Retrieval in Music Repositories 477

The classification was performed in the RSES [43] and WEKA environments
[44]. Table 17.3 and Fig. 17.3 show results of music database classification.

Table 17.3. Classification efficiency

Classifier Efficiency [%]

SVM 90.87
J48 77.40
Random Forest 84.72
Rough Sests 78.8

Fig. 17.3. Classification efficiency in terms of particular music genres

The data classified were strongly non-linear. It is worth noting that the SVM
classifier looks for a hyperplane that divides classes while maintaining a maximum
possible margin of distance from vectors at class borders. In the case of SVM, linear
discrimination is realized in a plane that is different from the original one, which
refers to the fact that the division border in the primary representation plane may be
strongly non-linear. Considering this fact, it seems that the SVM classifier provides
the greatest efficiency of recognition.

In addition, it is interesting to observe more detailed classification results pro-
duced by rough sets (Table 17.4). It seems that in both cases (SVM and RS) the set
of parameters contained in the FV is very efficient in separating classical music from
other genres. From the confusion matrix (Table 17.4), we can see that the optimiza-
tion of feature vectors could be done for jazz genre, since this is often erroneously
recognized as classical music.
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Table 17.4. Classification efficiency

No. of
Classical Jazz Rock Blues Metal Pop Accuracy Coverage

objects

Classical 2169 159 5 39 0 8 2380 0.911 1
Jazz 572 2110 19 149 15 95 2960 0.713 1
Rock 18 106 1097 49 129 141 1540 0.712 1
Blues 5 21 27 726 33 148 960 0.756 1
Metal 3 13 63 40 545 56 720 0.757 1
Pop 6 34 73 15 20 1012 1160 0.872 1
True positive rate 0.78 0.78 0.78 0.78 0.78 0.78

17.5 Proposal for Objectivization of Annotation Process

The following factors were taken into consideration in the proposal for the objec-
tivization of the annotation process:

• The way content is perceived which is evaluated through the degree of a user’s
concentration on a particular screen area, based on the heat-map obtained in the
gaze-tracking study,

• Correspondence between the gaze-tracking point (automatic) and mouse (man-
ual) selections.

It was assumed that the file annotation is done automatically by the gaze-tracking
system. However, a user may also use a mouse in order to select an element in
a specially prepared form (manual selection).

17.5.1 Description of Experiment Setup

Before subjects started the experiment, they were asked to fill in a form on musi-
cal preferences. The form included the subject’s age, favorite music genres as well
as the question whether they were musicians or if they listened to music regularly.
This information allowed for dividing the subjects into four categories (musicians
regularly listening to music, non-musicians regularly listening to music, etc.). Such
a separation enabled to assess whether musical experience affects the subjects’ ca-
pability to tag musical pieces. Thirty music files were used in the experiments, five
from each of the six music genres included in the prepared database (jazz, blues,
pop, rock, metal, classical music). The order of presenting a particular track was
random. All the files constituted over half-a-minute-long excerpts of musical pieces
in mp3 quality with a 128 kbps bit rate. Music was presented sequentially, but a user
could listen to an excerpt limitlessly while tagging an individual musical piece.
There was no time limit to run the experiment either. Furthermore, subjects were
not informed about the role of the Cyber-eye system in the experiment, so that more
objective results could have been obtained.
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Apart from specifying a music genre subjects were also asked to classify other
attributes of a given musical piece, that is, the type of the piece (e.g., instrumental,
choral, orchestral), its dynamics, tempo (e.g., very slow, slow, ..., fast, ...), type of
the recording (concert, studio, demo), and the mood of music (e.g., neutral, sad,
calm). The user could also indicate groups of instruments used in the recording.
The obtained data include diverse information about files that were subject to such
tagging.

17.5.2 Platform for Running the Experiment

A special questionnaire was designed in the form of a website within PHP + MySQL
+ jQuery technologies in order to run the experiment. Additionally, a modified
version of WWW Cyber-eye application became the environment for running the
experiment. The Cyber-eye system is based on infrared light (IR) and enables to
measure gaze position.

The gaze-tracking system (Cyber-eye) system has already been described in other
papers [18, 19], thus only its main features will be recalled here. The Cyber-eye
system uses infrared (IR) illumination and allows to track the user’s gaze position on
a computer screen. It was constructed in compliance with the infrared illumination
usage standards and is safe. The IR illumination is emitted by sections of IR LEDs
placed in four corners of the display. This enables to detect a fixation point more
accurately, because the estimation of the pupil shape and the determination of the
pupil center directly associated with the gaze point, is also more precise. Secondly,
the IR sources placed in the corners of the screen produce unique corneal reflections
called glints on the eye cornea. They form a shape of quadrangle because they are
created by four sections of LEDs located in four display corners (see Fig. 17.4).

Also, the localization of glints is characteristic. They are localized in the iris and
the pupil. The pupil is always very bright because of the IR LED illuminator beam-
ing light along the camera optical axis. It is worth to mention that section diodes
along the camera axis cause the fifth glint appearance which is very useful in gaze
estimation. Overall, contrast between the brightness of the iris and the pupil is rela-
tively large, therefore finding an area with glints is possible. The image processing
algorithm analyzes each frame, locating glints. The coordinates of the characteristic
points (the pupil center and four glints) are sufficient to determine the point at which
the user is looking. The gaze-tracking system is sufficiently robust in case the head
of the subject is moving. Thus, a person is not obliged to keep his/her head in a fixed
position. However, the system requires a very short calibration phase which is per-
formed by a user using a specific application. This means that a user is asked to look
at a series of points displayed sequentially on the computer screen and to gaze at
these points for a few seconds. Such a time is sufficient to calibrate the system, that
is, to determine the spatial variation between individual gaze samples. The whole
calibration process takes approximately 1-2 minutes. To summarize, the information
gathered by Cyber-eye provides a direct mapping between a “target point”-the area
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Fig. 17.4. Hardware configuration of the Cyber-Eye developed in the MSD, GUT

at which a user should be looking and the actual gaze point location. As a result of
working with Cyber-eye heat maps, gaze plots, and fixation time, that is, time of
gazing at a target site are registered [18]. A heat map is a two-dimensional repre-
sentation of data in which values are represented by colors. Generated colors-from
blue, the most infrequent to red, the most frequent - denote frequency of looking at
the objects in the image. To simplify, the larger and red (more focused) the area in
the heat map is, the longer the user fixated his/her gaze on a target. A gaze plot rep-
resents a visualization of the path a user’s eyes followed from one point to another
[7]. A line is drawn across the stimulus to represent the path, and circles of varying
sizes signify “fixations” – areas where the user looked for a significant amount of
time. Larger circles represent longer fixation time. An example of such a graph with
a heatmap and gaze plot placed on the user’s interface is presented in Fig. 17.5.

The design of the form was enforced by the display resolution that is, 1280×
1024 and characteristics of the Cyber-eye system. The division of the form into
three subpages was enforced by a larger than usual element size, as well as the
necessity to create a page without the necessity to scroll down its contents. The three
subpages are as follows: genre, music type (page No. 1), dynamics, tempo, recording
type (page No. 2), mood, instruments used (page No. 3). To facilitate navigation,
a constant element in the shape of a time line of a given musical piece as well as
navigation elements through the mentioned pages were displayed in the upper part
of the form on each page.

All choices made by subjects and music preferences provided in the question-
naire were saved in a MySQL database on the server. WWW Cyber-eye provided
additional information in the form of xml files that included a list of selected HTML
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Fig. 17.5. The heatmap generated by WWW Cyber-eye on the designed interface - page No.
2 (in Polish); denotations are as follows: A - dynamic range, B - tempo, C- type of recording,
a - low, b - high, c - changeable, d - very slow, e - slow, f - moderate, g - fast, h - very fast, i -
changeable, j - concert-live, k - studio, l - demo

elements as well as time periods spent on looking at individual elements (with res-
olution of 0.1 s). Data for each musical piece were generated for every subpage.
Musical pieces used in the experiments had selected tags, for example the artist’s
name, song or album titles along with the assigned genre. This information was
obtained on the basis of Gracenote collection. However, data were not presented
to users to avoid suggestion. The platform used to store and play music files was
Soundcloud, integrated with the engineered application.

17.5.3 Annotation-Related Experiment

The experiment was performed in the laboratory of the Department of Multimedia
Systems. Six computers equipped with Cyber-eye and headphones used to listen to
music excerpts were employed. A group of 20 individuals (between 22 and 30 years
old) was tested. After the initial Cyber-eye calibration, all subjects filled in a musi-
cal preference questionnaire and then tagged individual musical pieces. The initial
questionnaire helped to divide subjects into the categories indicated in Table 17.5.

Since the experiment tested numerous aspects of tagging, only some chosen re-
sults are presented below. When analyzing the results, several aspects were taken
into consideration, such as for example, questions about the type of music or tag-
ging the tempo of a musical piece. The conclusions are based on the comparison
between selections done by clicking and those achieved from the analysis of gaze
tracking.
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Table 17.5. Group size

No. of Groups of subjects and their numbers

group Musician Listener Number of subjects

1 Yes Yes 8
2 Yes No 1
3 No Yes 9
4 No No 2

Since, on the basis of the initial questionnaire, every participant was classified
into one of the four groups, only some representatives of the groups were selected
for analysis. Subjects were required to select their favorite genres in the initial ques-
tionnaire. In Table 17.6, preferences of music genres among subjects are presented.
It shows the number of individuals that selected a given genre. All the subjects that
claim to listen to music regularly (3 of 20 claim not to listen to music) chose rock
as their favorite genre.

Table 17.6. Preferences of music genres among subjects

Music genre Number of subjects

Jazz 4
Blues 2
Pop 7
Rock 17
Metal 6
Classical 5

An example of the heat map generated for two pages No. 1 and 2 constructed
is shown in Figure 17.6. Figures 17.6a and 17.6b illustrate that questions about the
type of music or recording were relatively easy to answer for subjects even in the
case when a music piece was not their favorite genre (excerpt from Fig. 17.6a refers
to blues, and from Fig. 17.6b to metal). It should also be noted that the results shown
in Fig. 17.6 refer to the first and the last excerpts presented to the subject thus in this
case there was not a problem with familiarization with the task to be performed.
Based on the analysis performed for these two sub-pages, it may be reported that
for the type of the excerpt or recording there is a clear correlation between the one
given by the tag, indicated by the mouse click and the one by the gaze fixation. In
this case, there were only few misclassifications among subjects.

However, it occurs that the most difficult task was to tag tempo. The first problem
encountered might be probably related to the lack of familiarization with the sub-
page constructed. In Fig. 17.7, one can easily observe that while listening to song
No. 1 the subject’s gaze was not focused, contrarily while listening to excerpt No. 30
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a

b

Fig. 17.6. Sample pages of the web-based form used in experiments (in Polish); denotations
for Fig. 17.6a are as follows: D - music genre, E - type of music excerpt, m - jazz, n - blues,
o - pop, p - rock, q - metal, r - classical, s - instrumental, t - vocal, u - instrumenta&vocal, v -
chorale, w - orchestral and for Fig. 17.6b are as in Fig. 17.5; page No.1 - the element chosen
corresponds to the type of the excerpt, that is, orchestral (left-bottom corner) (a), page No.
2 - the label indicated corresponds to the type of recording, that is, concert-live (left-bottom
corner) (b)
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the subject gaze was fixated on the target elements. Focusing on the target elements
typically started after the fourth or fifth excerpt listened to. This happened with
nearly all subjects.

a

b

Fig. 17.7. An example of answers related to tempo tagging; both heatmaps and gaze plots are
displayed; denotations are as in Fig. 17.5; 1st excerpt (a), 30th excerpt (b)

A more thorough analysis of tempo tagging was performed on one music ex-
cerpt. A musical piece that is referred to as rap metal or funky metal “Know Your
Enemy” performed by the band Rage Against The Machine was randomly selected
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for analysis. Subsequently, a few subjects of a given category were selected from
Table 17.6 for further analysis. Three subjects were chosen from groups No. 1 and
3 each, while two other were chosen from group No. 4. Group No. 2 was omitted in
the analysis (a single case).

Since the purpose of the experiment was to initially assess whether automatic tag-
ging of music files by means of the gaze-tracking system was possible, this number
of subjects seems to be sufficient to draw preliminary conclusions.

17.5.3.1 Result Analysis

First, it was assessed to what extent the choice of the musical piece tempo made
by clicking a mouse depended on the gaze-tracking time. Although the analysis
was not carried out on the basis of all collected data, it allowed to draw preliminary
conclusions. However, the specificity of musical pieces in which the tempo is clearly
changeable is noteworthy.

First, the choices of subjects who claimed not to listen to music or not to play
any musical instrument were analyzed. The first subject selected the “Fast” tempo
with a mouse, while his eyes stopped the longest at the “Very slow” button placed
on the opposite side of the screen. Thus, these choices were completely different.
On the other hand, the heatmap analysis also proved that the subject indicated the
“Fast” button with the eyes. However, time of gazing on this element was much
shorter. The second subject also selected the “Fast” tempo with a mouse. The choice
recorded by the Cyber-eye system was different in this case as well, as it was the
“Very fast” option. What is more, the time spent on looking at this element was
three times longer than in the case of the clicked button. The heatmap, however,
showed again that the subject’s eyes first stopped on the mouse clicked button. In
such a case, it would be reasonable to synchronize manual and system choices with
the excerpts that were listened to. This, however, has not been planned at this stage.

Next, the choices of individuals who are not musicians, but who regularly listen to
music, were verified. The results from three subjects were analyzed in this category.
The first of them selected the “Moderate” tempo, while the Cyber-eye pointed to the
“Fast” tempo next to the “Moderate” button. In this case the gaze-tracking time with
regard to the clicked element was shorter than 0.1 s, but it was 0.8 s on the element
which the gaze-tracking system indicated. The next subject chose the “Changeable”
tempo and again the result did not fully correlate with that of the Cyber-eye which,
on the basis of the longest gaze-tracking point, showed “Very slow”. In the case
of the last subject from this category and similarly to subjects who do not listen
to music and are non-musicians, the “Fast” tempo was selected. In this case, the
element observation time was shorter than 0.1s and was not taken into account by
the Cyber-eye algorithm.

Finally, the data gathered from musicians that regularly listen to music (but of dif-
ferent genres) were analyzed. The first subject from this category made a correlated
choice, that is, it was the same for clicking and Cyber-eye selection. The choice was
the “Moderate” tempo. In this case, the selections with a mouse and the eye were
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identical. It is noteworthy that such a confident selection may have resulted from the
fact that it was the thirteenth track listened by the subject, so the factor of getting
accustomed to the interface might have contributed to the outcome. It was the only
case where the track that was listened to occurred so late. The second subject from
this category showed the accurate tempo with a mouse, but the selection with the
eyes was different (the heatmap, however, was again initially the same as the mouse
selection). The last of the subjects selected the “Fast” option with a mouse, and the
gaze stopped the longest at the “Slow” tempo. The heatmap analysis showed that
the subject’s eyes concentrated on the area around the elements of the form, rather
than precisely inside the buttons.

Since the results are not fully satisfactory, the analysis of the data from the Cyber-
eye considering fixation time must be accompanied by a more precise analysis of
heatmaps and gaze plots. Additionally, these observations must be synchronized
with the musical excerpt that was listened to, to know whether tempo was stable
throughout the whole music excerpt. In many cases, the agreement of the choices
was good, so it seems that in future analysis one should primarily focus on this
aspect and less on the longest time of gaze tracking, especially in the case of the
changeable tempo of a musical piece. Furthermore, the data analysis shows that the
accuracy of the Cyber-eye may not be sufficient, as in many cases, it was possible to
see that subject’s eyes concentrated on the area of a given element, but not directly
on it. It is also noteworthy that the temporal resolution may have been problematic
when testing the correlation between a gaze-tracking point and a mouse selection.

As part of the preliminary analysis, it was observed that users/musicians achieved
greater agreement between mouse and heat map selections of a musical piece tempo
(a more intense red color means a longer gaze-tracking time with regard to a given
element. It is also proved by the size of a circle with a digit in the gaze plots.

The results show, however, that in many cases the selection made with a mouse
was different from that made by the user’s eyes. It may partly depend on the con-
struction of the prepared page. On the other hand, it seems that only the user’s
perfect preparation for this type of task and the agreement of their music tastes with
the assessed musical piece may bring satisfactory results together with the lack of
wrong answers in relation to the meta-description collected in the database. It may
thus be concluded that the objectivization of the annotation process is necessary.

17.6 Conclusions

A review of issues related to music genre retrieval and classification was carried
out in this chapter, Examples of social networking services that recommend music
were provided. Furthermore, examples of experiments on music genre classifica-
tion followed by an attempt to make the music annotation process more objective
were presented. The created music database was tested for accuracy of classifica-
tion performed in the WEKA and RSES environments. Selected classifiers, that is,
SVM, decision trees, the Random Forest and the rough set-based algorithms under-
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went optimized testing. The classification for the proposed feature vector revealed
to be efficient in recognizing over 90% for the SVM method, 84% for the Random
Forest method, 78% for the RS analysis, and around 77% for the J48 algorithm.
The experiments performed also provided preliminary conclusions on the use of the
gaze-tracking system in musical piece annotation, showing that such a system may
be useful when verifying experts who support the process.
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M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS(LNAI), vol. 6804,
pp. 715–724. Springer, Heidelberg (2011)

18. Kunka, B., Kostek, B., Kulesza, M., Szczuko, P., Czyzewski, A.: Gaze-tracking-based
audiovisual correlation analysis employing quality of experience methodology. Intelli-
gent Decision Technologies 32, 217–227 (2010)

19. Kunka, B., Kostek, B.: Exploiting audio-visual correlation by means of gaze tracking.
International Journal of Computer Science and Applications 36, 104–123 (2010)

20. Li, T., Ogihara, M., Li, Q.: A comparative study on content-based music genre classifi-
cation. In: Proceedings 26th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, Toronto, Canada, pp. 282–289 (2003)

21. Lidy, T., Rauber, A., Pertusa, A., Inesta, J.: Combining audio and symbolic descriptors
for music classification from audio. In: Music Information Retrieval Information Ex-
change, MIREX (2007)

22. Lindsay, A., Herre, J.: MPEG-7 and MPEG-7 Audio – An Overview. JAES 49(7/8), 589–
594 (2001)

23. Mandel, M., Ellis, D.: LABROSA’s audio music similarity and classification submis-
sions. In: Music Information Retrieval Information Exchange, MIREX (2007)

24. Ness, S., Theocharis, A., Tzanetakis, G., Martins, L.G.: Improving automatic music tag
annotation using stacked generalization of probabilistic SVM outputs. In: 17 ACM In-
ternational Conf. on Multimedia, Beijing, China, pp. 705–708. ACM, New York (2009)

25. Pampalk, E., Flexer, A., Widmer, G.: Improvements of audio-based music similarity and
genre classification. In: Proc. Int. Symp. Music Information Retrieval, ISMIR, London,
UK, pp. 628–633 (2005)

26. Pachet, F., Cazaly, D.: A taxonomy of musical genre. In: Proc. RIAO Content-Based
Multimedia Information Access Conf. 2000, pp. 1238–1246. Centre des Hautes Etudes
Internationales d’Informatique Documentaire - C.I.D, College de France (2003)

27. Panagakis, I., Benetos, E., Kotropoulos, C.: Music genre classification: a multilinear ap-
proach. In: Proc. Int. Symp. Music Information Retrieval, ISMIR, pp. 583–588. Drexel
University in Philadelphia, PA (2008)

28. Pawlak, Z.: Rough sets. International J. Computer and Information Sciences 11, 341–356
(1982)

29. Peters, J.F., Skowron, A. (eds.): Transactions on Rough Sets. LNCS. Springer,
Heidelberg (2004-2010)

30. Symeonidis, P., Ruxanda, M.M., Nanopoulos, A., Manolopoulos, Y.: Ternary semantic
analysis of social tags for personalized music recommendation. In: Proc. 9th Int. Symp.
Music Information Retrieval, ISMIR, pp. 219–224. Drexel University in Philadelphia,
PA (2008)

31. Schierz, A., Budka, M.: High–Performance Music Information Retrieval System for
Song Genre Classification. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W.
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Chapter 18
Rough Support Vectors: Classification,
Regression, Clustering

Pawan Lingras, Parag Bhalchandra, Cory Butz, and S. Asharaf

Abstract. Support vector techniques were proposed by Vapnik as an alternative
to neural networks for solving non-linear problems. The concepts of margins in
support vector techniques provides a natural relationship with the rough set theory.
This chapter describes rough set theoretic extensions of support vector technologies
for classification, prediction, and clustering. The theoretical formulations of rough
support vector machines, rough support vector regression, and rough support vector
clustering are supported with a summary of experimental results.

Keywords: Support vector machines, clustering, prediction, classification, rough
sets, rough patterns, financial modeling, conservative and aggressive modeling, re-
gression, ε-insensitive loss function.

18.1 Introduction

Support vector machines (SVMs) are based on the statistical learning theory, also
called Vapnik-Chervonenkis (VC) theory, developed by Vapnik and colleagues [3, 7,
25, 26, 27, 28]. Classification based on SVM’s extends single layer perceptrons for
non-linearly separable data sets with the help of kernel functions and optimization.
The original proposal for classification was generalized to regression, followed by
clustering. The concept of margin that was central to the support vector based clas-
sification is a natural conduit to its fusion with rough set theory. The margin can be
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interpreted as the boundary region in rough set theory. Lingras and Butz [11, 12]
described a rough set-based interpretation of support vector classification and pro-
posed an efficient multi-classification extension based on rough set theory. A similar
margin in support vector regression created with the help of ε-loss function led to
the proposal for rough support vector regression by Lingras and Butz [13]. Ashraf
et al. [1] extended the support vector clustering(SVC)[2] to propose a rough sup-
port vector clustering algorithm that can create irregular-shaped soft clusters with
lower and upper bounds. This chapter provides a comprehensive introduction to the
hybridization of rough set theory and support vector techniques for classification,
regression, and clustering. Theoretical foundations are followed by algorithmic im-
plementation as well as experimental results to provide reader with sufficient back-
ground to pursue further developments in rough support vector computing.

18.2 Rough Support Vector Machines for Multi-classification

Support vector machines (SVMs), proposed by Vapnik [25, 26, 28, 27], are used for
creating functions from a set of labeled training data [21]. The function can be a
classification function with binary outputs or it can be a general regression function.
In this section, we will restrict ourselves to classification functions. For classifica-
tion, SVMs operate by attempting to find a hypersurface in the space of possible
inputs that splits the positive examples from the negative examples. The split will
be chosen to have the largest distance from the hypersurface to the nearest of the
positive and negative examples. Intuitively, this makes the classification correct for
testing data that is near, but not identical, to the training data.

Let x be an input vector in the input space X . Let y be the output in Y ∈ {−1,1}.
Let S = {(x1,y1),(x2,y2), . . . ,(xi,yi), . . .} be the training set used for supervised
prediction. Let us define the inner product of two vectors x and w as

〈x,w〉 = ∑
j

x j×wj, (18.1)

where x j and wj are components of the vectors x and w, respectively.
The linear separability restriction in perceptron is overcome by the use of a non-

linear transformationΦ as shown in Fig. 18.1(a). Here, we are using the class labels
{1,2} instead of {−1,1}, since we will be generalizing the binary classification
problem to multi-classification.

The choice of the hyperplane in perceptron algorithm was arbitrary. SVMs use
the size of margin between two classes to search for an optimal hyperplane, which
bifurcates the maximum margin. Fig. 18.1(b) shows the concept of margin between
two classes. The line with intercepts of b1 and b2 enclose the maximum margin
between two classes. The line with intercept b is the optimal line separating the two
classes. The problem of maximizing the margin can be reduced to an optimization
problem [5,28]:

Minimize 〈Φ(w),Φ(w)〉y×〈Φ(x),Φ(w)〉 ≥ 0,∀(x,y) ∈ S (18.2)
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Fig. 18.1. Support Vector Machine Transformation to Linearly Separable Space

Usually, a high dimensional transformation is needed in order to obtain a reason-
able prediction [30, 31]. Computational overhead can be reduced by not explicitly
mapping the data to the feature space, but instead just working out the inner prod-
uct in that space. In fact, SVMs use a kernel function K corresponding to the inner
product in the transformed feature space as K(x,w) = 〈Φ(x),Φ(w)〉.

Vapnik recognized the margin separating the two classes as an important issue in
further theoretical developments. Lingras and Butz [12] described rough set-based
interpretation of SVM binary classifications, where the margin between hyperplanes
with intercept of b1 and b2 represent the boundary region between the two classes.
Lingras and Butz described an algorithm for the calculation of b1 and b2 [12].

This rough set interpretation of SVM binary classification will allow us to create
three equivalence classes, two equivalence classes for the lower bounds of each of
the two classes, and third for the boundary region and define a rough set-based
approximation space. This simple extension of an SVM classifier provides a basis
for a more practical application, when the SVM transformation does not lead to
a linear separable case. Cristianini [5] lists disadvantages of refining feature space
to achieve linear separability. Often this will lead to high dimensions, which will
significantly increase the computational requirements. Moreover, it is easy to overfit
in high dimensional spaces, that is, regularities could be found in the training set
that are accidental, which would not be found again in a test set. The soft margin
classifiers [5] modify the optimization problem to allow for an error rate. In such
a case, boundary region allows us to define an area of ambiguity. The error rate
can also be used to determine the values of b1 and b2 in such a way that a large
percentage of objects below the hyperplane given by b1 belong to class 1, and an
equally large percentage of objects below the hyperplane given by b2 belong to class
2. This concept of soft margin was easily incorporated by Lingras and Butz in the
algorithm for the calculation of b1 and b2. A rough set-based SVM binary classifier
can then be defined by rules:
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(R1) If 〈Φ(x),Φ(w)〉+ b2 ≥ 0 then x belongs to class 2.
(R2) If 〈Φ(x),Φ(w)〉+ b1 ≤ 0 then x belongs to class 1.
(R3) Otherwise, classification of x is uncertain

18.2.1 Extending Binary SVM’s for Multi-classification

The SVM binary classification is extended to mulitclassification using two popu-
lar techniques, 1-v-1 and 1-v-r. The “one versus one” (1-v-1) strategy, also known
as pair wise coupling, consists of constructing one SVM for each pair of classes.
Thus, for a problem with n classes, n× (n− 1)/2 SVMs are trained to distinguish
the samples of one class from the samples of another class. While doing so, the clas-
sification of an unknown pattern is done according to the maximum voting, where
each SVM votes for one class. This makes 1-v-1 more accurate.

The “one versus rest” (1-v-r) strategy consists of constructing one SVM per class,
which is trained to distinguish the samples of one class from the samples of all
remaining classes. Usually, classification of an unknown pattern is done according
to the maximum output among all SVMs. The total training time with the 1-v-1
strategy is larger than with the 1-v-r, because it is necessary to train more binary
classifiers; but it is not necessarily true when the binary classifiers are SVMs. On
the other hand, the individual binary classifiers in 1-v-1 are trained on a smaller
sample set.

Fig. 18.2. Rough set-based 1-v-1 multi-classification
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18.2.1.1 Rough Set-Based 1-v-1 Approach

Knerr et al. [8] suggested combining binary classifiers with an AND gate. While
there are many other attempts to manage the large number of classifiers created by
1-v-1 approach, DAGSVM proposed by Platt et al. [22] is particularly interesting
and popular. DAGSVM uses directed acyclic graphs to reduce the number of SVMs
that need to be used during the testing and operational phase.

Lingras and Butz [12] provided a rough set interpretation of 1-v-1 classification
that can lead to lower storage and lower computations in the operational phase.
Fig. 18.2 depicts the approach for a three class problem. In order to understand the
illustration, let us define some additional terms for pairwise classifications between
class i and j in the 1-v-1 approach. For each pair, (i, j), that is separated by a binary
SVM, we define three equivalence classes, let Pi j(POSi) and Pi j(POS j) be the lower
bounds or positive regions of classes i and j, respectively. These two correspond to
rules (R1) and (R2) Let Pi j(BND) be the boundary region between the two classes
corresponding to rule (R3). All the 1-v-1 classifiers can be combined to create lower
bound and boundary regions for each class i as follows:

lower(classi) =
⋂

j=1,··· ,n, j �=i

Pi j(POSi) (18.3)

upper(classi) =
⋃

j=1,··· ,n, j �=i

(Pi j(BND)− lower(class j)) (18.4)

Detailed derivation of the above formulas can be found in [12].
The rough set-based approach uses the same training time as the classical 1-v-1 or

DAGSVM. It should perhaps be noted here that the upper bound given by eq. (18.4)
will be polygonal, whose calculation needs additional computations. One of the
advantages of rough set approach is that only two rules need to be stored for each
class, one corresponding to the lower bound and another corresponding to the upper
bound, as shown in the eq. (18.3) and eq. (18.4). Therefore, a total of 2× n rules
are stored for the testing and operational phases, as opposed to n× (n−1)/2 SVMs
stored by 1-v-1 and DAGSVM approaches. Moreover, during the operational phase,
the determination of membership of an object in a class will involve simply testing
which lower bound the object belongs to. The time requirement for classification in
the operational phase will be linear, that is, O(n), the same as DAGSVM.

18.2.1.2 Rough Set-Based 1-v-r Approach

Without loss of generality, let us order the n classes such that class i contains at
least as many objects as class i + 1, where 1 ≤ i < n in the training sample. Using
the entire training sample and 1-v-r strategy, for class1, create three equivalence
classes Q1(POS) which is lower bound of class1, Q1(NEG) is the lower bound
of the collection of the rest of the classes, and Q1(BND) is the boundary region.
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Since Q1(POS) definitely belongs to class1, we can eliminate it from the next ap-
plication of SVM classifier, that is, for the subsequent classes. For each subsequent
class i, 1 < i < n, refine Qi−1(BND)∪Qi−1(NEG) by creating Qi(POS), Qi(BND),
Qi(NEG). For the last class, Qn(POS)= Qn−1(NEG) and Qn(BND)= Qn−1(BND).
The upper and lower bounds for all n classes are defined as: lower(classi)= Qi(POS)
and upper(classi) = Qi(POS)∪Qi(BND). As it is possible that some of the bound-
ary regions may overlap with positive regions for subsequent classes, recalculate
values of each of the boundary classes as:

Qi(BND) = Qi(BND)−
n⋃

j=i

Q j(POS). (18.5)

(a) (b)

Fig. 18.3. Rough set-based 1-v-r multi-classification

Fig. 18.3 illustrates the rough-set based 1-v-r approach. For the class1, Q1(POS),
Q1(BND), Q1(NEG) are calculated using an SVM as shown in Fig. 18.3(a). As
Q1(POS) only contains objects belonging to class1, there is no need to further clas-
sify objects in Q1(POS). However, Q1(BND)∪Q1(NEG) should be further refined.
Thus, for the next class (class2), the resulting classification is shown in Fig. 18.3(b).
Note that the shaded triangular area ( Q1(POS) ) in Fig. 18.3(b) was eliminated
from further classification, since it definitely belongs to class1. 1-v-r classification
allows us to identify the objects that definitely belong to class2. In general case, the
process will be further repeated until number of classes is reduced to two. In our
example, we stop after applying the 1-v-r classification to class 2, since we have
already classified class3. That is, according to our algorithm, Q2(NEG) = Q3(POS)
and Q3(BND) = Q2(BND). Fig. 18.3(b) shows the final classification.

An important feature of the rough set-based 1-v-r approach is that the sample
size is reduced in each subsequent step. The reduction is optimized since the classes
are ordered according to their cardinalities with the largest cardinality first. The
lower bound (the positive region) of the largest class is eliminated from further
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classification, followed by the next largest class, and so on. By reducing the size of
training set, this elimination process may increase the training performance over the
traditional 1-v-r approach. Lingras and Butz [12] provide detailed calculations on
the extent of the reduction in training time.

18.2.2 Experiments with 1-v-1 and 1-v-r Approach

Lingras and Butz [12] demonstrated the implementation of rough set-based 1-v-1
and 1-v-r approaches for a synthetic data set shown in Fig. 18.4 consisting of 150
objects. These 150 objects belong to three classes with each class containing 50
objects. As can be seen from Fig. 18.4, it is possible to separate most of the objects
from these three classes using lines, but there will be a certain percentage of false
positives and negatives that should belong to the boundary regions.

The experiments were carried out using Gist (http://svm.sdsc.edu/cgi-bin/nph-
SVMsubmit.cgi), which provides values of discriminants, which can be used as sur-
rogates of the distances from the hyperplane separating the positives from negatives.
Usually, a positive discriminant corresponds to the object above the hyperplane, and
negative discriminant indicates an object below the hyperplane. Therefore, we do

Fig. 18.4. Synthetic data for multi-classification
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Table 18.1. Results of 1-v-1 classification

Region Criteria Cardinality
P12(POS1) 0.2796 ≤ d12 35
P12(BND) 0.2796 > d12 >−0.3897 32
P12(POS2) d12 ≤−0.3897 33
P13(POS1) 0.2767 ≤ d13 28
P13(BND) 0.2767 > d13 >−0.2105 39
P13(POS3) d13 ≤−0.2105 33
P23(POS2) 0.083 ≤ d23 48
P23(BND) 0.083 > d23 >−0.2015 3
P23(POS3) d23 ≤−0.2015 49

not have to explicitly determine b1 and b2. More details about the use of discrimi-
nants can be found in [12].

18.2.2.1 Experimental Results Using 1-v-1

Let us use d12 to denote the discriminant for 1-v-1 classification of classes 1 and 2.
Similarly, we also use d13 as discriminant for classification of classes 1 and 3, and
d23 as discriminant for classification of classes 2 and 3. The results from application
of rough set-based 1-v-1, shown in Table 18.1, can be combined using eq. 18.3 and
eq. 18.4 to write the rules for upper and lower bounds of each class as follow:

• If 0.2796≥ d12 and 0.2767≥ d13 then, the object belongs to lower(class1)
• If d12≤ 0.3897 and 0.083≥ d23 then, the object belongs to lower(class2)
• If d13≤ 0.2105 and d23≤ 0.2015 then, the object belongs to lower(class3)

Similarly,

• If d12 > 0.3897 or d13 > 0.2105 then, the object belongs to upper(class1)
• If 0.2796 < d12 or d23 > 0.2015 then, the object belongs to upper(class2)
• If 0.2767 < d13 or 0.083 < d23 then, the object belongs to upper(class3)

As we can see, we only need to store six rules for the three classes. However, as
mentioned before the rules can be complicated. Simplification and generalization of
these rules is a promising research direction.

18.2.2.2 Experimental Results Using 1-v-1

Lingras and Butz [12] confirmed that 1-v-r classifications tend to produce less accu-
rate results. Since all the classes had the same number of objects, we can choose any
order for application of 1-v-r SVMs. We randomly choose the order class2,class3,
class1, The best results are found for class2 as shown in Table 18.2, where d2r is
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Table 18.2. Results of 1-v-r classification

Region Criteria Cardinality
Q2(POS) 0.584≤ d2r 33
Q2(BND) 0.584 > d2r >−0.153 32
Q2(NEG) d2r ≤−0.153 85
Q3(POS) 0.3521 ≤ d3r 28
Q3(BND) 0.3521 > d3r >−0.2473 44
Q3(NEG) d3r ≤−0.2473 45

the discriminant of the 1-v-r classification to our synthetic data set for class2. Sim-
ilarly, d3r is the discriminant of the 1-v-r classification for class3 after eliminating
the positive region from class2. We do not need to apply the 1-v-r classification to
class1, because the negative region of 1-v-r classification for class3 can be used as
the lower bound for class1. Table 18.2 shows the regions, their criteria, and cardi-
nalities which lead to the following rules:

• If 0.584≥ d2r then, the object belongs to lower(class2).
• If 0.3521≥ d3r then, the object belongs to lower(class3).
• If d3r <−0.2473 then, the object belongs to lower(class1).

Similarly,

• If d2r > 0.153 and 0.3521 > d3r > −0.2473 then, the object belongs to
upper(class2).

• If 0.584 < d2r and d3r > 0.2473 then, the object belongs to upper(class3).
• If 0.584 < d2r and 0.3521 < d3r then, the object belongs to upper(class1).

It should be noted that the number of false positives and negatives in the lower
bounds of all the classes are very high, compared with the 1-v-1 classification.

18.2.2.3 Semantics of Rough Set-Based Multi-classification

The rules corresponding to lower and upper bounds may provide better semantic
interpretations of the multi-classification process than the other SVM approaches,
which have been regarded as black-box models [23]. This is important, since da
Rocha and Yager [23] advocate that describing the relationship between black-box
approaches like SVMs with the logical rules approaches can lead to semantically
enhanced network-based classifiers. It should be noted that the rules created by the
application of Rough Set-based SVM cannot generally be written as a decision table,
similar to conventional rough set approaches. However, the rules may still enable us
to semantically analyze the classification process, especially if it were possible to
associate semantic meaning to the discriminate values used in the rules developed
in this section.
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18.3 Dual Rough Support Vector Regression

Support vector regression (SVR) employs the margin concept for the regression
problem with the help of ε-insensitive loss functions [24, 26]. SVR has been found
especially useful in time series predictions [16, 17, 30, 31].

The following is a brief summary of SVR as described in detail by [30, 31]. We
will use the same notations as SVM classifiers, except let y ∈ ℜ. Furthermore, let
f (x) be a predicted value of y:

f (x) = 〈Φ(x),Φ(w)〉 + b. (18.6)

The objective of SVR is to minimize the regression risk

R( f ) =
1
2
〈Φ(w),Φ(w)〉+C∑

i=1
l( f (xi),yi), (18.7)

where C is called the cost of error. The first term 1
2〈Φ(w),Φ(w)〉 can be seen as the

margin in SVMs. The similarity between actual y and its prediction is given by the
loss function l( f (x),y).

Vapnik [26] proposed an ε-insensitive loss function:

lε( f (x),y) = max(0, |y− f (x)|− ε) (18.8)

shown in Fig. 18.5(a). The vertical axis denotes the loss. The horizontal axis corre-
sponds to the value of f (x). The two axes meet at f (x) = y. If the predicted value
is within ±ε of the actual value, the prediction is considered lossless. Fig. 18.5(b)
shows how the actual values in the margin around the predicted function are consid-
ered acceptable or error-free. Increasing the ε value, reduces the number of support
vectors. A large enough value of ε will lead to a constant regression function. The
ε-insensitive loss function is ideally suited for modeling rough values as can be seen
by the ε-tube around the prediction function in Fig. 18.5(b).

The corresponding SVR is called an ε-SVR. The minimization of Eq. (18.7) is
reduced to a quadratic programming problem. The details of the formulation can
be found in [30, 31]. Lingras and Butz [14] proposed dual extensions of SVR for
modeling the rough patterns.

18.3.1 Rough Patterns

Pawlak proposed the concept of rough real functions which can be useful for rough
controllers [19]. The notion of rough real functions was defined as an approximate
value in case exact values cannot be represented by the given set of values. How-
ever, the notion can be used in a broader context. Lingras [9] used the rough values
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Fig. 18.5. Support Vector Regression

to develop supervised and unsupervised neural networks [10, 20] and genetic algo-
rithms [15]. This section describes rough values and patterns.

In some cases, a precise value of an entity may not be available. For example, one
may estimate the current temperature to be between 20 and 25◦ C. In other cases,
it may not even be possible to state a precise value. Many spatial (rainfall in Nova
Scotia) or temporal (daily temperature) variables fall in this category. We cannot as-
sociate a precise value for daily temperature, only a range of value using the highest
and lowest temperatures recorded on that day. We use rough or interval values to
measure such quantities. For continuous variables, rough values are special cases
of intervals as they focus on the end points. However, unlike intervals, rough val-
ues can also be used to represent a set of discrete values using the minimum and
maximum values in the set. Let Y = {y1,y2, ...,yn} be a set of values collected for
a variable such as daily temperature or stock market index. Each rough value y is
denoted by a pair (y,y):

y = inf{y ∈ Y},

and

y = sup{y ∈ Y}.

Here, sup is defined as the maximum value from the set, while inf corresponds
to the minimum value. The definitions of inf and sup can be modified to exclude
the outliers. For example, one could use the bottom 5th percentile value for y and

top 5th percentile value for y. The above definition by Pawlak accommodates sets
with continuous as well as discrete values. If the values are continuous, the set will
be infinite and the resulting rough values correspond to the conventional notion of
interval.

Rough patterns are sequences of rough or interval values [9]. We will look at a
real world example of a rough pattern using a stock market index.

The Dow Jones Industrial Average (DJIA) is an index based on stock prices of
the 30 most prominent companies listed on U.S. stock exchanges such as NYSE
and NASDAQ. It is one of the most closely watched stock market indices in the
world. The data used in this study was obtained from Yahoo! (www.yahoo.com). It
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consisted of the date, opening value, closing value, high and low values, as well as
the number of shares traded on the exchange. Data is only available for the trading
days, that is, when the New York stock exchange was open. For example, in the ten
years from May 21, 1997 to May 20, 2007, there were 2514 trading days.

Most of the prediction models are based on the closing values. The closing value
of a stock or stock market index has impact on secondary investment instruments,
such as mutual fund values and overseas markets. However, the traders on the New
York stock exchange are reacting to minute-by-minute changes to stock prices, in
addition to key indices like the DJIA. The stock exchanges are open from 10 a.m. to
3:30 p.m. from Monday through Friday with the exception of holidays. During these
five and a half hours, one can get minute-by-minute updates on the values of DJIA.
That will mean a total of 330 values per day. It will be difficult to manage such a
large amount of data in any financial modeling. It is neither possible nor necessary
to model/predict minute-by-minute values of the index. The traders, however, are
interested in knowing how high or low a stock or index may go on a given day. For
example, a trader who is looking to sell a stock or DJIA based financial derivative
may wait until the high for the day is reached. Conversely, a trader who is looking to
buy a stock or DJIA based financial derivative may wait until the low for the day is
reached. Therefore, accurate prediction of trading range given by the rough pattern
for a stock or stock index is an important part of stock market analysis.

Fig. 18.6(a) shows the rough pattern for the daily values of the DJIA from January
1 to May 20, 2007. The DJIA rough pattern consists of two curves. The top curve
corresponds to the daily high’s and the bottom one corresponds to the daily low
values.

(a) High and Low patterns 
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Fig. 18.6. Dow Jones Industrial Average (DJIA) for early 2007

It is important to realize that there can be a considerable variation in the differ-
ence between high and low values, even though the general trend of the high and
low values is essentially the same. Analysis of ten years of data from May 21, 1997
to May 20, 2007 shows the minimum difference to be 34.42, with a maximum value
of 848.52. Fig. 18.6(b) shows the distribution of differences between highs and lows
to be more or less normal. The average of the difference is 232, which is close to the
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median and mode values. This analysis suggests that the high and low values should
be separately analyzed.

18.3.2 Conservative and Aggressive Modeling of Rough Patterns

The formulation of rough ε-SVR to model rough patterns needs a definition of ± in
the context of rough values. Let us assume that y is a rough value given by (y,y).
Lingras and Butz [14] described dual approaches termed as conservative and aggres-
sive. In the conservative approach, the tube of predicted values will be tucked inside
the tube of actual values. That is, the actual lower value y will not be higher than f (x)
and the actual upper value y will not be lower than f (x). Let f c(x) = ( f c(x), f c(x))
be the conservative prediction of y such that

y = ( f c(x)− ε, f c(x)+ ε). (18.9)

The aggressive model, on the other hand, will tell us how much lower the lower
value can drop and how much higher the upper value can rise. The aggressive pre-
diction, denoted f a, for a rough value f a(x) = ( f a(x), f a(x)) is more formally
described as:

f a(x) = (y− ε,y+ ε). (18.10)

Eq. (18.10) indicates that the actual lower value y will be equal or higher than f a(x)
and the actual upper value y will be equal or lower than f a(x).

The conservative rough ε-insensitive loss function, denoted lcrε( f c(x),y), is de-
fined as:

lcrε( f c(x),y) = lcrε( f c(x),y) + lcrε( f c(x),y), (18.11)

where lcrε( f c(x),y) is the lower component of the loss defined by:

lcrε( f c(x),y) =
{

y− f c(x) if y≥ f c(x)
max(0, f c(x)− y− εd) otherwise

, (18.12)

and lcrε( f c(x),y) is the upper component of the loss given by:

lrε( f c(x),y) =
{

f c(x)− y if f c(x)≥ y
max(0,y− f c(x)− εu) otherwise

. (18.13)

The aggressive rough ε-insensitive loss function, denoted larε( f a(x),y), is now
defined as:

larε( f a(x),y) = larε( f a(x),y) + larε( f a(x),y), (18.14)
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where larε( f a(x),y) is the lower component of the loss given by:

larε( f a(x),y) =
{

max(0, f a(x)− y− εd) if y≤ f a(x)
y− f a(x) otherwise

, (18.15)

and larε( f a(x),y) is the upper component of the loss defined as:

lrε( f a(x),y) =
{

max(0,y− f a(x)− εu) if f a(x)≤ y
f a(x)− y otherwise

. (18.16)
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Fig. 18.7. Conservative and aggressive rough ε-insensitive loss functions
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Fig. 18.8. Conservative and aggressive modeling with dual rough ε-SVR

The conservative rough ε-insensitive loss function is shown in Fig. 18.7(a), which
illustrates that we need to have an ε margin only on the outer side of the lower
and upper prediction functions. The aggressive rough ε-insensitive loss function is
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illustrated in Fig. 18.7(b). As can be seen, we need only to have an ε margin on the
inner side of the lower and upper prediction functions.

The conservative modeling of rough patterns is depicted in Fig. 18.8(a). As can
be seen, the predicted rough pattern will be inside the actual rough values of the
variables as suggested by Eq. (18.9). Fig. 18.8(b) depicts the aggressive modeling
of rough patterns. As suggested by Eq. (18.10), it can be observed that the predicted
rough pattern will be outside the actual rough values of the variables.

The objective of conservative modeling is to construct a f c(x) such that lcrε
is minimized. Aggressive modeling, on the other hand, attempts to minimize larε.
Lingras and Butz [14] describe the optimization process for both of these modeling
approaches.

18.3.3 Empirical Analysis of Dual RSVR

The study data used in Lingras and Butz’s [14] experiments consisted of the daily
high and low values of the DJIA from May 21st to May 20th, 2007. There were a
total of 250 trading days during the study period.

Conservative and aggressive RSVR described in the previous subsection were
applied to model the DJIA rough pattern. The input vector consisted of the previous
ten days high’s and low’s. Therefore, the model was applied to 250−10 = 240 days.
The output was the rough value for the next day.

Lingras and Butz [14] experimented with linear and polynomial Kernels and dif-
ferent values of ε = 150,75,50. The results seemed to significantly improve when
ε was reduced from 150 to 75. The performance gain was not obvious when ε was
further reduced to 50.

Error distribution for the two models is shown in Fig. 18.9. The error is calculated
as actual− predicted. That means negative errors correspond to over-prediction and
positive errors correspond to under-prediction. Fig. 18.9 (a) shows the frequency of
errors using three types of bars for conservative modeling. The hollow bars for the
lower prediction means that the actual value is less than 75 points (the value of εd)
below the predicted value for the conservative model, and hence is acceptable ac-
cording to the loss function lcrε. The striped bars for lower predictions mean that the
values are over-predicted leading to a lower loss (because εd will be deducted for
over-predictions of lower values). The solid bars indicate under-prediction of lower
values. The reverse is true for upper predictions, that is, solid bars indicate over-
prediction, striped bars are under-predictions leading to lower loss (εu will be de-
ducted for under prediction of upper values), and hollow bars are under-predictions
by less than 75 points (the value of εu) leading to zero loss. Based on Eq. (18.9) and
the loss function lcrε, hollow bars are the most desirable, followed by striped bars,
while the solid bars are least desirable.

Fig. 18.9 (b) also shows the frequency of errors using three types of bars for ag-
gressive modeling. However, the meaning of the bars for the aggressive modeling
is a mirror image of that for the conservative modeling. The hollow bars for the
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Fig. 18.9. Error distribution for conservative (top) and aggressive (bottom) rough ε-SVR
modeling of rough DJIA pattern with ε= 75

lower prediction means that the actual value is less than 75 points (the value of εd)
above the predicted value for the conservative model, and hence is acceptable ac-
cording to the loss function larε. The striped bars for lower predictions mean that
the values are under-predicted leading to a lower loss (because εd will be deducted
for under-predictions of lower values). The solid bars indicate over-prediction of
lower values. The opposite is true for upper predictions, that is, solid bars indi-
cate under-prediction, striped bars are over-predictions leading to lower loss (as εu

will be deducted for over prediction of upper values), and hollow bars are over-
predictions by less than 75 points (the value of εu) leading to zero loss. Similar to
conservative modeling, based on Eq. (18.10) and the loss function larε, the hollow
bars are the most desirable, followed by striped bars, leaving solid bars serving as
least desirable.

The abundance of hollow and striped bars, for both conservative and aggressive
models, means that both approaches performed as expected. The errors for conser-
vative modeling are on the outer sides of 0 (negative for lower values and positive
for upper values), while they are on the inner side of 0 (positive for lower values and
negative for upper values) for aggressive modeling. This observation clearly under-
scores the difference between the two philosphies. One can also notice a similarity
between Fig. 18.9 (a) and the conservative loss function lcrε given in Fig. 18.7(a).
Similar correspondence can be drawn between Fig. 18.9 (b) and the aggressive loss
function larε given in Fig. 18.7(b).
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18.4 Rough Support Vector Clustering

Support vector clustering[2] is a clustering method that uses “kernel trick” [4]. Here,
the computation in a high dimensional feature space is achieved using a Kernel func-
tion without explicitly mapping data points to the high dimensional feature space.
In SVC, we look for the smallest sphere in a feature space that encloses the image
of the data such as shown in Fig. 18.10. If this sphere is mapped back to data space,
it forms a set of contours that enclose the data points, such as shown in Fig. 18.11.
These contours are interpreted as cluster boundaries. Points enclosed by each sepa-
rate contour are associated with the same cluster. The kernel parameters can control
the number of clusters. Here, the outliers are handled with the help of a soft margin
formulation.

(x)

Data Space Feature Space

Fig. 18.10. Support Vector Clustering: data space to feature space mapping. Here, φ is the
implicit non-linear transformation achieved by the kernel function.

(x)

Feature Space Data Space

Fig. 18.11. Support Vector Clustering: the data space contours (clusters) obtained by the
reverse mapping of the feature space sphere. Here, φ is the implicit non-linear transformation
achieved by the kernel function.
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To define the formulation, let {ui} ⊆U be an m-dimensional data set having n
points, with ui ∈ Rm being the data space. Now using a nonlinear transformation φ
from U to some high dimensional feature space, we look for the smallest sphere of
radius R enclosing all the points in U . Now the primal problem can be stated as:

min
R,ξi

R2 +C
n

∑
i=1

ξi

s.t. ‖φ(ui)−µ‖2 ≤ R2 + ξi, ξi ≥ 0 ∀i (18.17)

Here, C
n

∑
i=1
ξi is the penalty term for the patterns with distance from the center of

the sphere in feature space being greater than R (patterns that lie outside the feature
space sphere), µ is the center of the sphere in the high dimensional feature space,
and ‖.‖ is the L2 norm.

Since this is a Convex Quadratic Programming problem, it is easy to solve its
Wolfe Dual [6] form. The dual formulation is:

min
αi

n

∑
i, j=1

αiα jK(ui,u j)−
n

∑
i=1
αiK(ui,ui)

s.t. 0≤ αi ≤C f or i = 1....n,
n

∑
i=1

αi = 1 (18.18)

Here, K(ui,u j) represents the Kernel function giving the dot product φ(ui) ·φ(u j)
in the high dimensional feature space, and αis are the Lagrangian multipliers.

The value of αi decides whether a point φ(ui) is inside, outside, or on the sphere.
The points with 0 < αi < C form the support vectors. Hence the radius of the sphere
enclosing the image of the data points is given by: R = G(ui), where 0 < αi < C,
and where

G2(ui) = ‖φ(ui)−µ‖2

= K(ui,ui)−2
n

∑
j=1
α jK(u j,ui)+

n

∑
j,k=1

α jαkK(u j,uk). (18.19)

Now the contours that enclose the points in data space are defined by: {u : G(u) =
R}. Thus, the computation in high dimensional feature space and also reverse map-
ping to find the contours in data space are avoided with the help of Kernel function.
Once these contours are found, the objects are assigned to different clusters. The
cluster assignments employ a geometric method involving G(u), based on the ob-
servation that given a pair of points that belong to different clusters, any path that
connects them must exit from the sphere in the feature space. So we can define an
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adjacency matrix M by considering all pairs of points ui and u j whose images lie in
or on the sphere in the feature space and then looking at the image of the path that
connects them as:

M[i, j] =
{

1 if G(y)≤ R ∀y ∈ [ui,u j]
0 otherwise

. (18.20)

Clusters are now defined as the connected components of the graph induced by M.
The points that lie outside the sphere, known as bounded support vectors, can be
assigned to the closest clusters.

Rough Support Vector Clustering (RSVC)[1, 29] is an extension of the SVC
paradigm that employs rough set theory to achieve soft clustering. To discuss the
method formally, let us use the notion of rough sets to introduce a Rough Sphere. A
Rough Sphere is defined as a sphere having an inner radius R defining its lower ap-
proximation and an outer radius T > R defining its upper approximation. As in SVC,
RSVC also uses a kernel function to achieve computation in a high dimensional fea-
ture space. It tries to find the smallest rough sphere in the high dimensional feature
space enclosing the images of all the points in the data set. Now those points whose
images lie within the lower approximation (A(·)) are points that definitely belong to
exactly one cluster (called the hard core of a cluster) and those points whose images
lie in the boundary region (A(·)−A(·), that is, in the upper approximation A(·) but
not in the lower approximation A(·)) may be shared by more than one cluster (called
the soft core of the cluster). Some points are permitted to lie outside the sphere and
are termed outliers. By using a nonlinear transformation φ from data space to some
high dimensional feature space, we seek the smallest enclosing rough sphere of in-
ner radius R and outer radius T. Now the primal problem can be stated formally
as:

min
R,T,ξi

R2 + T 2 +
1
υn

n

∑
i=1

ξi +
δ
υn

n

∑
i=1

ξ
′
i

s.t ‖φ(ui)−µ‖2 ≤ R2 + ξi + ξ
′
i 0≤ ξi ≤ T 2−R2 ξ

′
i ≥ 0 ∀i (18.21)

Here, 1
υn

n

∑
i=1
ξi is a penalty term for the patterns with distance from the center of the

sphere in feature space being greater than R (patterns falling in the boundary region)

and δ
υm

n

∑
i=1

ξ′ is a penalty term associated with the patterns whose distance from the

center of the sphere in feature space is greater than T (patterns falling outside the
rough sphere).

Since this is a Convex Quadratic Programming problem it is easy to write its
Wolfe Dual. The Lagrangian can be written as:

L = R2 + T2 +
1
υn

n

∑
i=1

ξi +
δ
υn

n

∑
i=1

ξ
′
i +

n

∑
i=1

αi(‖φ(ui)−µ‖2−R2− ξi− ξ′i )
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−
n

∑
i=1
βiξi +

n

∑
i=1
λi(ξi−T 2 + R2)−

n

∑
i=1
ηiξ

′
i, (18.22)

where the Lagrange multipliers αi,βi,λi and ηi are non-negative ∀i. Using the
Karush-Kuhn-Tucker (KKT) [6] conditions on Eq. (18.22), we obtain:

n

∑
i=1
αi = 2 µ =

1
2

n

∑
i=1
αiφ(ui)

βi−λi =
1
υn

−αi
δ
υn

−αi = ηi

αi(‖φ(ui)−µ‖2−R2− ξi− ξ′i) = 0

λi(ξi−T 2 + R2) = 0

βiξi = 0 ηiξ
′
i = 0

From the above equations the Wolfe Dual form can be written as:

min
αi

n

∑
i, j=1

αiα jK(ui,u j)−
n

∑
i=1
αiK(ui,ui)

s.t 0≤ αi ≤ δ
υn

f or i = 1....n,
n

∑
i=1

αi = 2. (18.23)

Here, K(ui,u j) represents the Kernel function giving the dot product
φ(ui).φ(u j) in the high dimensional feature space [2].

If δ> 1, we obtain RSVC. The formulation reduces to the original SVC for δ= 1.
Also the values of αi decide whether the pattern ui falls in the lower approximation,
the boundary region, or outside the feature space rough sphere. From KKT condi-
tions on Eq. (18.22), it can be observed that image of points with

• αi = 0 lie in the lower approximation.
• 0 < αi < 1

υn form the hard support vectors (support vectors marking the bound-
ary of the lower approximation).

• αi = 1
υn lie in the boundary region (patterns that may be shared by more than

one cluster).
• 1
υn < αi <

δ
υn form the soft support vectors (support vectors marking the bound-

ary of the upper approximation).
• αi = δ

υn lie outside the rough sphere (bounded support vectors).
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18.4.0.1 Cluster Assignment

Once the dual problem is solved to find the αi values, the clusters can be obtained
using the following strategy. Let us define:

R = G(ui) : 0 < αi <
1
υn

T = G(ui) :
1
υn

< αi <
δ
υn

, (18.24)

where G(ui) is defined in Eq. (18.19).
From the above equations we can define the contours that enclose the lower ap-

proximation of clusters in data space as: {u : G(u) = R} and the contours that en-
close the upper approximation of clusters in data space as: {u : G(u) = T}. Now the
soft clusters in data space are found using a strategy similar to the one used in SVC.
The algorithm to find clusters can now be given as follows.

• As in SVC, find the adjacency matrix M by considering all pairs of points ui

and u j whose images in feature space either belong to the lower approximation
of the rough sphere or are hard support vectors and then looking at the image of
the path that connects them as

M[i, j] =
{

1 if G(y)≤ R ∀y ∈ [ui,u j]
0 otherwise

• Find connected components for the graph represented by M. Each connected
component found gives the lower approximation of a cluster xi.

• Find the boundary regions as:
ui ∈ A(xi) and pattern uk /∈ A(xj) for any cluster j,
if G(y)≤ T ∀y ∈ [ui,uk] then uk ∈ (A(xi)−A(xi))

18.4.0.2 Role of υ and δ

From Eq. (18.23) it can be seen that the number of bounded support vectors is
nbsv < 2υn

δ . For δ = 1, nbsv < 2υn = υ′n where υ′ = 2υ. This corresponds to
all the patterns ui with ‖φ(ui)−µ‖2 > R2. Since δ> 1 for RSVC, we can say that
υ
′
δ is the upper bound on the fraction of points permitted to lie outside T, and υ′

is the upper bound on the fraction of points permitted to lie outside R. Hence, υ
and δ together give us control over the width of boundary region and the number of
bounded support vectors. Therefore, we can choose the values of υ and δ based on
the percentage of the data we want to put in the soft core of the clusters, and what
percentage we want to treat as outliers.
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18.4.1 Experimental Results with RSVC

Experiments were done with a synthetically generated data set and a real world data
set viz; Wine recognition data set [1], availabel at UCI Machine Learning reposi-
tory from School of Information and Computer Sciences, University of California,
Irvine.

18.4.1.1 Synthetic Data Set

The synthetic data is generated by sampling from four normal distributions with
different mean values and uniform variance values. Thus the data set obtained get
distributed in four clusters with some possible overlap between clusters. This syn-
thetic data set and the clustering results obtained with υ = 0.25 and δ = 1.25 for
RSVC are shown in Figure 18.12. From the clustering results, it may be observed
that RSVC identified four clusters with some of the data points - shown by astericks
- falls in the boundary region between the clusters as expected and some others does
seem to belong to the upper approximation of any one cluster.
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Fig. 18.12. Synthetic Data Set and RSVC result

18.4.1.2 Wine Recognition Data Set

The Wine recognition data set [1] is the results of a chemical analysis of three types
(3 classes) of wines grown in the same region in Italy but derived from three differ-
ent cultivators. This data is described by thirteen measurements (13 attributes) each
representing the quantity of a constituent found in the wines. The data set consists
of 59 instances of Classs 1 type of wine, 71 instances of Class 2 type of wine and
48 instances of Class 3 type of wine yielding a total of 178 patterns. Here we have
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applied principal component analysis to reduce the dimensionality of the data set to
two. The data set thus obtained and the result of applying RSVC with υ= 0.29 and
δ= 3.5 on this data set are shown in Figure 18.13. As expected, the RSVC algorithm
created three clusters roughly identifying the existing cluster sizes. Closer exami-
nation of Figure 18.13 reveals that there are a few objects - indicated by asterisks -
that belong to the boundary region between these three clusters.

From the clustering results obtained from RSVC, it may be observed that there
are some data points that belong to the upper approximation of only one cluster,
but not shared by more than one clusters as demanded by the rough set theory [18].
Therefore, one can regard the clusters created by RSVC more as interval sets than
as rough sets.
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Fig. 18.13. Wine Data Set and RSVC result

18.5 Summary and Conclusions

There is a natural relationship between support vector techniques and the rough
set theory. This chapter describes rough set theoretic extensions of SVM classifi-
cation, regression, and clustering. The concepts of margin in SVM classification
corresponds to the boundary regions in rough set theory. Use of boundary region is
especially useful for soft margin SVM classifiers. Use of rough set view is shown
to improve the performance of multi-classifications using both the 1-v-1 and 1-v-r
approaches.

The ε-loss functions in support vector regression make it possible to create a band
of lower and upper values for a function. The dual rough support vector regression
described in this chapter modify the ε-loss functions using conservative and aggres-
sive philosophies to model rough patterns in a financial time series.

Finally, the extension of support vector clustering using rough set theory al-
lows us to create rough set representation of clusters with irregular boundaries, as
opposed to traditional spherical surfaces in the conventional rough set clustering
algorithms.
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Chapter 19
Logic-Based Roughification

Linh Anh Nguyen and Andrzej Szałas

Abstract. The current chapter is devoted to roughification. In the most general set-
ting, we intend the term roughification to refer to methods/techniques of construct-
ing equivalence/similarity relations adequate for Pawlak-like approximations. Such
techniques are fundamental in rough set theory. We propose and investigate novel
roughification techniques. We show that using the proposed techniques one can of-
ten discern objects indiscernible by original similarity relations, what results in im-
proving approximations. We also discuss applications of the proposed techniques in
granulating relational databases and concept learning. The last application is partic-
ularly interesting, as it shows an approach to concept learning which is more general
than approaches based solely on information and decision systems.

19.1 Introduction

Rough sets are typically used to model vague concepts and relationships. They are
defined in terms of lower and upper approximations of crisp sets/relations, where
approximations are in place when objects may be indiscernible due to incomplete,
imprecise, and approximate data or knowledge. Indiscernibility of objects is mod-
eled by similarity relations, originally assumed to be equivalence relations [19]. In
general, the lower approximation of a set consists of objects whose similarity neigh-
borhoods are contained in the set, while the upper approximation consists of objects
whose similarity neighborhoods intersect the set. Similarity neighborhoods, often
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being equivalence classes, are then substantial ingredients of approximate modeling
and reasoning.1

The current chapter is devoted to roughification. In the most general setting,
we intend that the term roughification refers to methods/techniques of constructing
equivalence/similarity relations adequate for approximations. For example,

• in [19] as well as many later works (see, e.g., [6, 20, 21] and references there),
equivalence relations are constructed from information tables and decision ta-
bles, for example, by reducing the number of attributes

• in [27, 28],2 equivalence relations are constructed by rough discretization and
applied in clustering and classification

• in the light of [7], approximations can be constructed on the basis of logical
theories, by projecting them into weaker languages.

We propose and investigate novel roughification techniques allowing one to con-
struct suitable equivalence relations on the basis of background knowledge. We
assume that knowledge is expressed by means of logical theories in the form of
relational databases (relational roughification) and description logic theories (ter-
minological roughification). The main idea depends on placing objects in the same
equivalence class when they are indiscernible by a given logical theory. We show
that using the proposed techniques one can often discern objects indiscernible by
original similarity relations, so improve approximations. We also discuss applica-
tions of the proposed techniques in granulating relational databases and concept
learning. The last application is particularly interesting, as it shows an approach to
concept learning which is more general than approaches based solely on information
and decision systems.

The first technique we propose is relational roughification, allowing one to ob-
tain congruences on the basis of knowledge contained in relational databases. This
technique, in fact, allows us to granulate arbitrary relational structures. We start with
a simplified case, when such knowledge consists solely of similarity relations on ob-
jects, and show a natural technique (similarity-based roughification) allowing one
to construct equivalence relations. This technique leads to better approximations
than those offered by original similarities. As a general methodological outcome,
we show that indiscernibility can actually be modeled by equivalence relations even
if one initially uses weaker similarity relations, perhaps more intuitive in a given ap-
plication domain. This places those other approaches back in the rough set context
originally proposed and developed by Pawlak.

A more advanced version of roughification introduced in this chapter is based on
bisimulations in the context of description logics. Namely, indiscernibility related
to a given concept can be approximated using the largest auto-bisimulation with
respect to the sublanguage consisting of concept names, role names and construc-
tors the concept depends on. Such bisimulations are equivalence relations. We give

1 For works, where similarity relations are not assumed to be equivalence classes, see [6, 8,
9, 12, 24, 29, 30] and references there.

2 Where the term roughification has most probably been introduced in the context of
discretization.
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a logical account of this approach, investigate its theoretical properties and use it to
study the problems of concept learning and concept approximation in information
systems based on description logics.

Let us emphasize that all solutions we propose are tractable in the sense that
data complexity of computing constructed new equivalence relations is in PTIME in
the size of the underlying domain assuming that the underlying knowledge is given
by means of relational/deductive databases or knowledge databases expressed by
means of description logics.

The chapter is structured as follows. We start with basic definitions and preliminar-
ies (Section 19.2). Then, in Section 19.3 we continue with similarity-based roughi-
fication and, in Section 19.4, with relational roughification. Section 19.5 is devoted
to terminological roughification. Concluding remarks are contained in Section 19.6.

19.2 Preliminaries

Let Δ be a finite set, further called a domain. Elements of Δ are called objects. By
a relational structure we understand a tuple 〈Δ,{ri}i∈I〉, where for each i ∈ I, ri is
a relation on Δ.

For the sake of simplicity, in the chapter we consider one-sorted domains only.
That is, we assume that objects are of the same type. The results we provide can be
generalized in a straightforward manner to many-sorted structures. This, however,
is not necessary for techniques we present.

A signature for relational structures consists of a finite set of individual names
(i.e. object names), a finite set of predicates (i.e. relation names), and an arity map-
ping that associates each of the predicates with a natural number called the arity of
the predicate.3

A relational structure over a signature Σ can be redefined to be a pair I =
〈
ΔI , ·I 〉

consisting of a non-empty set ΔI , called the domain of I , and a function ·I , called the
interpretation function of I , which maps each individual name a of Σ to an element
aI of ΔI and maps each n-argument predicate p of Σ to an n-argument relation pI

on ΔI .
By a congruence on 〈Δ,{Ri}i∈I〉 we understand any equivalence relation ≈ on

Δ which preserves all relations {Ri}i∈I , that is, such that for any i ∈ I, if Ri is an
n-argument relation and x1 ≈ x′1,. . .,xn ≈ x′n, then Ri(x1, . . . ,xn)≡ Ri(x′1, . . . ,x

′
n).

Let further σ ⊆ Δ×Δ be a binary relation on Δ, representing similarity on el-
ements of Δ. It models indiscernibility on Δ in the sense that objects x,x′ ∈ Δ are
indiscernible whenever σ(x,x′) holds. The pair 〈Δ,σ〉 is called a similarity space.

Given a similarity space S = 〈Δ,σ〉 and A⊆ Δ, Pawlak-like approximations of A
w.r.t. S are defined as follows:

3 For first-order logic, one would add to a signature also a finite set of function names and
information about their arities but we concentrate on relations only.
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• the lower approximation of A w.r.t. S , denoted by AS+ is defined by

AS+
def= {x | ∀y[σ(x,y)→ A(y)]} (19.1)

• the upper approximation of A w.r.t. S , denoted by AS⊕ is defined by

AS⊕
def= {x | ∃y[σ(x,y)∧A(y)]}. (19.2)

When S is known from context, we sometimes write A (respectively, A) to denote

the lower (respectively the upper) approximation of A w.r.t. S , that is, A
def= AS+ and

A
def= AS⊕ .
An information system in the rough set theory [19, 21, 20], called an RS infor-

mation system, is usually defined to be a pair 〈Δ,Attrs〉 of non-empty finite sets Δ
and Attrs, where Δ is the universe of objects, and Attrs is a set of attributes, that is,
functions A : Δ→VA, where VA is the set of values of attribute A, called the domain
of A.

19.3 Similarity-Based Roughification

Similarity-based roughification can be viewed as relational roughification intro-
duced in Section 19.4. Namely, a relational structure can contain solely a similarity
relation. However, similarities play a special role in defining relational roughifica-
tions. Also, intended applications make the technique interesting on its own. There-
fore we discuss it separately.

19.3.1 Definitions

Observe that even if two objects x,x′ are indiscernible w.r.t. a given similarity rela-
tion σ, that is, σ(x,x′) holds, it still might be the case that they can be discerned if
there is an object x′′ such that σ(x,x′′) and ¬σ(x′,x′′). The same holds when there
is an object x′′ such that σ(x′′,x) and ¬σ(x′′,x′). The first types of roughification
reflect this phenomenon.

Given a similarity space S = 〈Δ,σ〉, by a forward similarity-based roughification
induced by S we understand relational structure R �

S =
〈
Δ,ρ�

S
〉
, where:

ρ�
S (x,x′)

def≡ ∀x′′
[
σ(x,x′′)≡ σ(x′,x′′)]. (19.3)

By a backward similarity-based roughification induced by S we understand rela-
tional structure R �

S =
〈
Δ,ρ�

S
〉
, where:
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ρ�
S (x,x′)

def≡ ∀x′′
[
σ(x′′,x)≡ σ(x′′,x′)]. (19.4)

By a similarity-based roughification induced by S we understand relational structure
R ��

S =
〈
Δ,ρ��

S
〉
, where

ρ��
S

def= ρ�
S ∩ρ�

S . (19.5)

19.3.2 Properties

We have the following proposition.

Proposition 19.1. Let S = 〈Δ,σ〉 be a similarity space. Then:

• ρ�
S and ρ�

S are equivalence relations on Δ
• ρ��

S is a congruence on S .

Proof. The first claim is obvious by definitions (19.3) and (19.4).
To prove the second claim, note that ρ��

S is the intersection of two equivalence
relations, so it is an equivalence relation, too. To prove that it preserves σ, assume:

ρ��
S (x1,x

′
1) and ρ��

S (x2,x
′
2). (19.6)

We have to show that σ(x1,x2)≡σ(x′1,x′2). By (19.3)–(19.5) and (19.6), in particular
we have:

∀x′′[σ(x1,x′′)≡ σ(x′1,x′′)] and ∀y′′[σ(y′′,x2)≡ σ(y′′,x′2)]. (19.7)

Taking x′′ = x2 and y′′ = x′1 we have σ(x1,x2)≡ σ(x′1,x2) and σ(x′1,x2)≡ σ(x′1,x′2),
so also σ(x1,x2)≡ σ(x′1,x′2). �
We also have the following proposition.

Proposition 19.2. For any similarity space S = 〈Δ,σ〉 with reflexive σ, we have that
ρ�

S ⊆ σ, ρ�
S ⊆ σ and ρ��

S ⊆ σ.

Proof. Assume that ρ�
S (x,x′). By (19.3), for all x′′, σ(x,x′′)≡σ(x′,x′′). In particular,

for x′′ = x′ we have σ(x,x′) ≡ σ(x′,x′). By reflexivity of σ, we have that σ(x′,x′)
holds, so we also have that σ(x,x′) holds.

Analogously, using (19.4) we prove ρ�
S ⊆ σ. Of course, ρ��

S ⊆ ρ�
S , which proves

the last inclusion. �
Observe that reflexivity of σ corresponds to the property that for any set A, AS+ ⊆ A
(see, e.g., [10]). On the other hand, the weakest requirement placed on approxima-
tions, AS+ ⊆AS⊕ , is equivalent to the seriality of σ, that is, the property∀x∃y[σ(x,y)].
The following example shows that seriality is not sufficient to prove Proposition 19.2.

Example 19.1. Let S = 〈{a,b,c},σ〉, where σ= {(a,c),(b,c),(c,c)}. Obviously, σ
is serial. On the other hand, ρ�

S (a,b) holds, while σ(a,b) does not. �
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Using Proposition 19.2 one can show that each R �
S , R �

S and R ��
S approximates sets

better than S , as formulated in the following proposition.

Proposition 19.3. For any similarity space S = 〈Δ,σ〉 with reflexive σ and any A⊆
Δ,

AS+ ⊆ A(R �
S )+ ⊆ A(R ��

S )+ ⊆ A⊆ A(R ��
S )⊕ ⊆ A(R �

S )⊕ ⊆ AS⊕

AS+ ⊆ A(R �
S )+ ⊆ A(R ��

S )+ ⊆ A⊆ A(R ��
S )⊕ ⊆ A(R �

S )⊕ ⊆ AS⊕ . �

19.3.3 Selected Applications

Proposition 19.3 shows that the similarity-based roughification may discern objects
better than the original similarity relation. This allows us to sharpen perceptual ca-
pabilities, improving its accuracy. The following example illustrates this idea.

Example 19.2. Let a set of objects, say Δ = {o1,o2,o3}, be given. Assume that the
accuracy of a sensor platform does not allow us to discern certain objects on the
basis of their features. Such a situation is typically modeled by a similarity space
〈Δ,σ〉 where, for example,

σ(o1,o1),σ(o2,o2),σ(o3,o3),
σ(o1,o2),σ(o2,o1),σ(o2,o3),σ(o3,o2),

that is, o1 is indiscernible from itself and o2, etc. On the other hand, one can discern
o1 and o2 by comparing them with o3. Such a comparison provides different results,
allowing one to detect what object is being perceived. �

Similarity-based roughification can also be useful in decision rules mining. The ob-
tained rules can be judged, among others, w.r.t. their classification accuracy. One
faces here the overfitting/underfitting problem. Overfitting results in too many spe-
cialized rules, while underfitting causes poor classification results. The following
example illustrates how can one tune decision rules using similarities resulting in
better or worse approximations (by using Proposition 19.3).

Example 19.3. In the machine learning process one often obtains rules like:

IF bad condition(x) THEN maintenance(x), (19.8)

where objects are classified to be in “bad condition” on the basis of chosen attributes,
say rust and moisture level. Particular examples in the training sets may be very
specific. For example, an object o with rust level 0.743 and moisture level 0.92 may
be marked as being in bad condition. One could then derive the following rule:

IF rust(x,0.743) AND moisture(x,0.92) THEN maintenance(x),
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which definitely is too specific. One would also like to deduce that all similar (w.r.t.
rust and moisture level) objects require maintenance, too:

IF σ(x,o) THEN maintenance(x),

where σ is a similarity relation of a similarity space S = 〈Δ,σ〉 with Δ consisting of
value pairs 〈rust,moisture〉.

Now, if a given σ results in underfitting, one can use its roughification instead
(or any suitable relation σ′ such that ρ��

S ⊆ σ′ ⊆ σ). Then, by moving σ′ between
the boundaries ρ��

S and σ one can tune rules when new objects appear and are being
classified. �

19.4 Relational Roughification

Relational roughification extends similarity-based roughification. Given a relational
database, one can observe that object can be additionally discern by relations in-
cluded in the database.

19.4.1 Definitions

Assume that a similarity space S = 〈Δ,σ〉 is given and R ��
S =

〈
Δ,ρ��

S
〉

is the similarity-
based roughification induced by S .

Assume now that additional knowledge is provided by a relational or a deductive
database. Even if two objects are indiscernible by ρ��

S , they may still be discernible
by relations included in the database. For example, it might be the case that ρ��

S (o,o′)
holds, while for a relation R in the database, it could be R(ā,o, b̄) and ¬R(ā,o′, b̄). In
such a case we can discern o and o′ using R. We then have the following definition.

Given a similarity space S = 〈Δ,σ〉, by a relational roughification induced by
S and an m-argument relation R we understand relational structure R R

S =
〈
Δ,ρR

S
〉
,

where:4

ρR
S

def≡ ρ��
S − {(x,x′),(x′,x) | ∃x1 . . .∃xm−1[R(x1, . . . ,x, . . . ,xm−1)∧

¬R(x1, . . . ,x′, . . . ,xm−1)]}.
(19.9)

Let us emphasize that in (19.9) we do not fix the position of x. For example, if R is
a two-argument relation then (19.9) is to be understood as:

ρR
S

def≡ ρ��
S −

({(x,x′),(x′,x) | ∃x1[R(x1,x)∧¬R(x1,x′)]} ∪
{(x,x′),(x′,x) | ∃x1[R(x,x1)∧¬R(x′,x1)]}

)
.

(19.10)

4 Recall that ρ��
S is the similarity-based roughification induced by S and defined by (19.5).
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Observe that one can also consider tuples of relations rather than single relations.
Namely, let {Ri}i∈I be a (finite) tuple of relations. Then:

ρ{Ri}i∈I
S

def≡
⋂

i∈I

ρRi
S . (19.11)

19.4.2 Properties

Let us first prove that the construction provided in the previous section indeed results
in an equivalence relation.

Proposition 19.4. Let S = 〈Δ,σ〉 be a similarity space and R be a relation,
R⊆ Δ× . . .×Δ. Then ρR

S is an equivalence relation on Δ.

Proof. By Proposition 19.1, ρ��
S is an equivalence relation.

Suppose ρR
S is not an equivalence relation. This could be caused by removing

in (19.9) a pair (x,x′) from ρ��
S . Let us now show that this cannot violate reflexivity,

symmetry nor transitivity.
First note that reflexivity is preserved since there cannot exist x1, . . . ,xm−1 such

that R(x1, . . . ,x, . . . ,xm−1) and, at the same time, ¬R(x1, . . . ,x, . . . ,xm−1).
Suppose now that (x,x′) ∈ ρR

S and (x′,x) �∈ ρR
S . This cannot happen since pairs

(x,x′) and (x′x) are either not removed from ρ��
S or are removed both. Therefore,

symmetry is preserved.
Suppose that (x,x′),(x′,x′′) ∈ ρR

S and (x,x′′) �∈ ρR
S . Since ρR

S ⊆ ρ��
S , we have that

(x,x′),(x′,x′′) ∈ ρ��
S , so also (x,x′′) ∈ ρ��

S . Thus the assumption that (x,x′′) �∈ ρR
S

implies that (x,x′′) has been removed in (19.9), meaning that there are x1, . . . ,xm−1

such that

either R(x1, . . . ,x, . . . ,xm−1)∧¬R(x1, . . . ,x′′, . . . ,xm−1)
or ¬R(x1, . . . ,x′′, . . . ,xm−1)∧R(x1, . . . ,x′′, . . . ,xm−1).

Consider the first case.5 Since R(x1, . . . ,x, . . . ,xm−1) holds and (x,x′) ∈ ρR
S , we con-

clude that R(x1, . . . ,x′, . . . ,xm−1) holds (otherwise the pair (x,x′) was removed
in (19.9)). Now from the fact that R(x1, . . . ,x′, . . . ,xm−1) holds and assumption that
(x′,x′′)∈ρR

S , we also have that R(x1, . . . ,x′′, . . . ,xm−1) and a contradiction is reached.
�

The intersection of any collection of equivalence relations is also an equivalence
relation. We then have the following corollary.

Corollary 19.1. Let S = 〈Δ,σ〉 be a similarity space and {Ri}i∈I be relations such

that for all i ∈ I, Ri ⊆ Δ× . . .×Δ. Then ρ{Ri}i∈I
S is an equivalence relation on Δ. �

5 The second case can be proved analogously.
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Granular computing has been considered an important issue in rough set theory
and applications [15, 23, 25, 26, 17, 22]. The following proposition shows that the
constructed equivalence relation can serve as a basis for granulating relations.

Proposition 19.5. Let S = 〈Δ,σ〉 be a similarity space and R be a relation,
R⊆ Δ× . . .×Δ. Then ρR

S is a congruence on 〈Δ,R〉.

Proof. By Proposition 19.4, ρR
S is an equivalence relation. To show that it preserves

R, assume that:
ρR

S (x1,x
′
1), . . . ,ρR

S (xm,x′m). (19.12)

We have to show that
R(x1, . . . ,xm)≡ R(x′1, . . . ,x

′
m). (19.13)

To prove (19.13), we proceed by induction on 0≤ k ≤ m:

R(x1, . . . ,xk,xk+1 . . . ,xm)≡ R(x′1, . . . ,x
′
k,xk+1 . . . ,xm). (19.14)

1. If k = 0 then (19.14) is obvious.
2. Assume that the theorem holds for 0 ≤ k < m. We shall show that it also holds

for (k + 1):

R(x1, . . . ,xk,xk+1,xk+2, . . . ,xm)≡ (by inductive assumption (19.14))
R(x′1, . . . ,x

′
k,xk+1,xk+2, . . . ,xm)≡ (by definition (19.9), assumption (19.12))

R(x′1, . . . ,x
′
k,x

′
k+1,xk+2, . . . ,xm).

By analogy to Proposition 19.5 one can prove the following proposition providing
a technique for granulating relational databases (see also Section 19.4.3).

Proposition 19.6. Let S = 〈Δ,σ〉 be a similarity space and 〈Δ,{Ri}i∈I〉 be a rela-

tional structure. Then ρ{Ri}i∈I
S is a congruence on 〈Δ,R〉. �

By (19.9), we have that ρR
S ⊆ ρ��

S . By Proposition 19.2 we then have the following
proposition.

Proposition 19.7. For any similarity space S = 〈Δ,σ〉 with reflexive σ and relation
R on Δ× . . .×Δ, we have that ρR

S ⊆ σ. �

As a consequence we have the following proposition.

Proposition 19.8. For any similarity space S = 〈Δ,σ〉 with reflexive σ, any relation
R on Δ× . . .×Δ and any A⊆ Δ,

AS+ ⊆ A(R R
S )+ ⊆ A⊆ A(R R

S )⊕ ⊆ AS⊕ . �
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Remark 19.1. Note that relational roughification starts with some initial similarity
relation and then improves its accuracy. If such a relation is not given, one can start

with the total similarity relation σ def= Δ×Δ. If 〈Δ,{Ri}i∈I〉 is a relational structure

then the resulting equivalence classes of ρ{Ri}i∈I
S consist of objects indiscernible by

relations {Ri}i∈I . However, when σ = Δ× Δ, similarity-based roughification pro-
vides no improvement, as in this case we have ρ�� = σ. �

19.4.3 Granulating Relational Databases

A relational database is a relational structure of the form 〈Δ,{Ri}i∈I〉 with finite Δ
and I. Relational roughification allows us to granulate such databases in the sense
that rather than using objects, we can use equivalence classes. Since an equivalence
class may be represented by an arbitrary object it contains, such a granulation allows
us to reduce the size of the database as well as consider classes of similar objects
rather than singletons.

More precisely, given a relational database DB = 〈Δ,{Ri}i∈I〉 and a similarity
space S = 〈Δ,σ〉, by a granulation of DB w.r.t. S we understand

DB/ρ{Ri}i∈I
S

def=
〈
Δ/ρ{Ri}i∈I

S ,{�i}i∈I

〉
, (19.15)

where:

• Δ/ρ{Ri}i∈I
S

def= {‖x‖ | x ∈ Δ} is the set of equivalence classes of ρ{Ri}i∈I
S

• for i ∈ I, �i(‖x1‖, . . . ,‖xm‖) def≡ Ri(x1, . . . ,xm).

By Proposition 19.6, �i (i ∈ I) are well-defined.
Given a relational database DB = 〈Δ,{Ri}i∈I〉 and a similarity space S = 〈Δ,σ〉,

rather than storing all tuples of relations in DB, it suffices to store tuples with rep-

resentants of equivalence classes only. In addition, one needs to store ρ{Ri}i∈I
S in the

database, but the reduction od database size can be considerable.

19.5 Terminological Roughification

In this section we study roughification for information systems specified using the
formalism of description logics (DLs). Such logics describe the domain of interest
by means of individuals, concepts and roles [3, 4, 16]. A concept stands for a set of
individuals, while a role stands for a binary relation between individuals. DLs are
fragments of classical first-order logic and variants of modal logics. Indiscernibility
in DLs is related to bisimulation.



19 Logic-Based Roughification 527

In Sections 19.3 and 19.4 we had a particular similarity relation as a starting point
for the construction of the final equivalence relation (but see Remark 19.1). Here we
do not need such a starting relation. But whenever it is given, we can place it among
roles.

19.5.1 Description Logics and Information Systems

A DL-signature is a set Σ = ΣI ∪ ΣC ∪ ΣR, where ΣI is a finite set of individual
names, ΣC is a finite set of concept names, and ΣR is a finite set of role names.
Concept names are unary predicates, while role names are binary predicates. We
denote concept names by letters like A and B, role names by letters like r and s, and
individual names by letters like a and b.

We will consider some (additional) DL-features denoted by I (inverse), O (nom-
inal), Q (quantified number restriction), U (universal role), Self (local reflexivity of
a role). A set of DL-features is a set consisting of some of these names.

Let Σ be a DL-signature and Φ be a set of DL-features. Let L stand for ALC reg ,
which is the name of a description logic corresponding to propositional dynamic
logic (PDL). The DL language LΣ,Φ allows roles and concepts defined recursively
as follows:

• if r ∈ ΣR then r is role of LΣ,Φ
• if A ∈ ΣC then A is concept of LΣ,Φ
• if R and S are roles of LΣ,Φ and C is a concept of LΣ,Φ then

• ε, R◦ S , R!S, R∗ and C? are roles of LΣ,Φ
• ,, ⊥, ¬C, C D, C!D, ∀R.C and ∃R.C are concepts of LΣ,Φ
• if I ∈Φ then R− is a role of LΣ,Φ
• if O ∈Φ and a ∈ ΣI then {a} is a concept of LΣ,Φ
• if Q ∈ Φ, r ∈ ΣR and n is a natural number then ≥ nr.C and ≤ nr.C are

concepts of LΣ,Φ
• if {Q, I} ⊆Φ, r ∈ ΣR and n is a natural number then≥ nr−.C and≤ nr−.C

are concepts of LΣ,Φ
• if U ∈Φ then U is a role of LΣ,Φ
• if Self ∈Φ and r ∈ ΣR then ∃r.Self is a concept of LΣ,Φ.

An interpretation in LΣ,Φ is a relational structure I =
〈
ΔI , ·I 〉 over Σ. The interpre-

tation function ·I is extended to complex roles and complex concepts as shown in
Figure 19.1, where #Γ stands for the cardinality of the set Γ.

An (acyclic) knowledge base in LΣ,Φ is a pair KB = 〈T ,A〉, where:

• A is a finite set, called the ABox of KB, consisting of individual assertions of
the form A(a) or r(a,b), where A ∈ ΣC, r ∈ ΣR and a,b ∈ ΣI

• T is a finite list (ϕ1, . . . ,ϕn), called the TBox (terminological box) of KB, where
each ϕi is a definition of one of the following forms:

• A = C, where C is a concept of LΣ,Φ and A ∈ ΣC is a concept name not
occurring in C, A and ϕ1, . . . ,ϕi−1
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(R◦S)I = RI ◦SI

(R!S)I = RI ∪SI

(R∗)I = (RI )∗

(C?)I = {〈x,x〉 |CI (x)}
εI = {〈x,x〉 | x ∈ ΔI }

UI = ΔI ×ΔI

(R−)I = (RI )−1

,I = ΔI

⊥I = /0
(¬C)I = ΔI \CI

(C D)I = CI ∩DI

(C!D)I = CI ∪DI

{a}I = {aI }
(∃r.Self)I = {x ∈ ΔI | rI (x,x)}

(∀R.C)I = {x ∈ ΔI | ∀y [RI (x,y) implies CI (y)]}
(∃R.C)I = {x ∈ ΔI | ∃y [RI (x,y) and CI (y)]

(≥ nR.C)I = {x ∈ ΔI | #{y | RI (x,y) and CI (y)} ≥ n}
(≤ nR.C)I = {x ∈ ΔI | #{y | RI (x,y) and CI (y)} ≤ n}

Fig. 19.1. Interpretation of complex roles and complex concepts

• r = R, where R is a role of LΣ,Φ and r ∈ ΣR is a role name not occurring in
R, A and ϕ1, . . . ,ϕi−1.

The concept (respectively, role) names occurring in A are said to be primitive con-
cepts (respectively, roles), while the concept (respectively, role) names occurring
in the left hand side of ‘=’ in the definitions from T are called defined concepts
(respectively, roles).

An interpretation I in LΣ,Φ is a model of KB = 〈T ,A〉 if

• for every assertion A(a) ∈ A , we have aI ∈ AI

• for every assertion r(a,b) ∈ A , we have
〈
aI ,bI 〉 ∈ rI

• for every definition (A = C) ∈ T , we have AI = CI

• for every definition (r = R) ∈ T , we have rI = RI .

Example 19.4. Let

ΣI = {Alice,Bob,Claudia,Dave,Eva,Frank,George}
ΣC = {Human,Female,Male,Adult,Man,Woman,

Parent,ParentWMC,DecendantOfAlice}
ΣR = {has child,has descendant,has parent,has ancestor}
A = {Female(Alice),Female(Claudia),Female(Eva),Adult(Alice),

Adult(Bob),Adult(Claudia),Adult(Dave),Adult(George),
has child(Alice,Dave),has child(Bob,Dave),
has child(Claudia,Eva),has child(Dave,Eva),
has child(Claudia,Frank),has child(Dave,Frank)}
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T = (Human =,,

Male = ¬Female,

Woman = Human Female Adult,

Man = Human Male Adult,

Parent = ∃has child.,,

ParentWMC = (≥5has child.,),
has descendant = has child ◦ has child∗,
has parent = has child−,

has ancestor = has parent◦ has parent∗,
DecendantOfAlice = ∃has ancestor.{Alice}).

Then KB = 〈T ,A〉 is a knowledge base in LΣ,Φ, with Φ= {I,O,Q}. The definition
Human = , states that the domain of any model of KB consists of human beings.
Note that, Female and Adult are primitive concepts, and has child is a primitive role
of KB. �

A knowledge base as defined above is similar to stratified logic programs [1]. Hence,
we define the standard model of a knowledge base KB = 〈T ,A〉 in LΣ,Φ to be the
interpretation I such that:

• ΔI = ΣI (i.e. the domain of I consists of all the individual names of Σ)
• if A is a primitive concept of KB then AI = {a | A(a) ∈ A}
• if r is a primitive role of KB then rI = {〈a,b〉 | r(a,b) ∈ A}
• if A ∈ ΣC but A does not occur in KB then AI = /0
• if r ∈ ΣR but r does not occur in KB then rI = /0
• if A = C is a definition from T then AI = CI

• if r = R is a definition from T then rI = RI .

An information system specified by a knowledge base in LΣ,Φ is defined to be the
standard model of the knowledge base in LΣ,Φ. Note that such an information system
is finite.

Example 19.5. Consider the knowledge base KB given in Example 19.4. The infor-
mation system specified by KB is the interpretation I with:

ΔI = {Alice,Bob,Claudia,Dave,Eva,Frank,George}
xI = x, for x ∈ {Alice, . . . ,George}

HumanI = ΔI

FemaleI = {Alice,Claudia,Eva}
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MaleI = {Bob,Dave,Frank,George}
AdultI = {Alice,Bob,Claudia,Dave,George}

WomanI = {Alice,Claudia}
ManI = {Bob,Dave,George}

has childI = {〈Alice,Dave〉 ,〈Bob,Dave〉 ,
〈Claudia,Eva〉 ,〈Dave,Eva〉 ,
〈Claudia,Frank〉 ,〈Dave,Frank〉}

has parentI = (has childI )−1

has descendantI = has childI ∪ (has childI ◦ has childI )
has ancestorI = (has descendantI )−1

ParentI = {Alice,Bob,Claudia,Dave}
ParentWMCI = /0

DecendantOfAliceI = {Dave,Eva,Frank}. �

Observe that any RS information system with discrete (or Boolean) attributes can
be represented as an information system in LΣ,Φ with ΣR = /0 and Φ= /0. Namely,

• if an attribute A of an RS information system is Boolean, that is, VA = {true, false},
then it can be treated as a concept name, standing for the set {x ∈ Δ | A(x) =
true}

• if A is a discrete attribute, with VA = {v1, . . . ,vk}, then it can be replaced by
concept names Av1 , . . . ,Avk , where each Avi is interpreted as the set {x ∈ Δ |
A(x) = vi}.6

Example 19.6. Let

Attrs = {Brand,Color,OpenOnSunday}
VBrand = {grocery,RTV}
VColor = {red,green,blue}

Δ= {shop1,shop2,shop3,shop4,shop5}

and let attribute values of the objects be the following:

Brand Color OpenOnSunday
shop1 RTV red true
shop2 RTV green true
shop3 RTV blue true
shop4 grocery red false
shop5 grocery green false

6 For example, if Color is an attribute with possible values red, green and blue, then we
can replace it by concept names Red, Green, Blue, and instead of writing, for example,
Color(x) = red, we can write Red(x).
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Then the RS information system 〈Δ,Attrs〉 can be represented by the information
system I in LΣ,Φ specified as follows:

Φ= /0
ΣR = /0
ΣI = {shop1,shop2,shop3,shop4,shop5}
ΣC = {RTV,Grocery,Red,Green,Blue,OpenOnSunday}
ΔI = ΣI

RTV I = {shop1,shop2,shop3}
GroceryI = {shop4,shop5}

RedI = {shop1,shop4}
GreenI = {shop2,shop5}

BlueI = {shop3}
OpenOnSundayI = {shop1,shop2,shop3}. �

19.5.2 Bisimulation and Indiscernibility

In [5] Divroodi and Nguyen studied bisimulations for a number of DLs. In this sub-
section we generalize their notions and results to model indiscernibility of objects
and study the problem of learning concepts. Let:

• Σ and Σ† be DL-signatures such that Σ† ⊆ Σ
• Φ and Φ† be sets of DL-features such that Φ† ⊆Φ
• I and I ′ be interpretations in LΣ,Φ.

A binary relation Z ⊆ ΔI ×ΔI ′ is called an LΣ†,Φ†-bisimulation between I and I ′ if

the following conditions hold for every a∈Σ†
I , A∈ Σ†

C, r ∈Σ†
R, x,y∈ΔI , x′,y′ ∈ ΔI ′ :

Z(aI ,aI ′) (19.16)

Z(x,x′)⇒ [AI (x)⇔ AI ′(x′)] (19.17)

[Z(x,x′)∧ rI (x,y)]⇒∃y′ ∈ ΔI ′ [Z(y,y′)∧ rI ′(x′,y′)] (19.18)

[Z(x,x′)∧ rI ′(x′,y′)]⇒∃y ∈ ΔI [Z(y,y′)∧ rI (x,y)], (19.19)

if I ∈Φ† then

[Z(x,x′)∧ rI (y,x)]⇒∃y′ ∈ ΔI ′ [Z(y,y′)∧ rI ′(y′,x′)] (19.20)

[Z(x,x′)∧ rI ′(y′,x′)]⇒∃y ∈ ΔI [Z(y,y′)∧ rI (y,x)], (19.21)
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if O ∈Φ† then

Z(x,x′)⇒ [x = aI ⇔ x′ = aI ′ ], (19.22)

if Q ∈Φ† then

if Z(x,x′) holds then, for every r ∈ Σ†
R, there exists a bijection

h : {y | rI (x,y)}→ {y′ | rI ′(x′,y′)} such that h⊆ Z,
(19.23)

if {Q, I} ⊆Φ† then (additionally)

if Z(x,x′) holds then, for every r ∈ Σ†
R, there exists a bijection

h : {y | rI (y,x)} → {y′ | rI ′(y′,x′)} such that h⊆ Z,
(19.24)

if U ∈Φ† then

∀x ∈ ΔI ∃x′ ∈ ΔI ′ Z(x,x′) (19.25)

∀x′ ∈ ΔI ′ ∃x ∈ ΔI Z(x,x′), (19.26)

if Self ∈Φ† then

Z(x,x′)⇒ [rI (x,x)⇔ rI ′(x′,x′)]. (19.27)

A concept C of LΣ†,Φ† is said to be invariant for LΣ†,Φ†-bisimulation if, for ev-

ery interpretations I and I ′ in LΣ,Φ with Σ ⊇ Σ† and Φ ⊇ Φ†, and every LΣ†,Φ† -

bisimulation Z between I and I ′, if Z(x,x′) holds then x ∈CI iff x′ ∈CI ′ .
The following theorem can be proved in a similar way as [5, Theorem 3.4].

Theorem 19.1. All concepts of LΣ†,Φ† are invariant for LΣ†,Φ†-bisimulation. �
An interpretation I is finitely branching (or image-finite) w.r.t. LΣ†,Φ† if, for every

x ∈ ΔI and every r ∈ Σ†
R :

• the set {y ∈ ΔI | rI (x,y)} is finite
• if I ∈Φ† then the set {y ∈ ΔI | rI (y,x)} is finite.

Let x ∈ ΔI and x′ ∈ ΔI ′ . We say that x is LΣ†,Φ†-equivalent to x′ if, for every concept

C of LΣ†,Φ† , x ∈CI iff x′ ∈CI ′ .
The following theorem can be proved in a similar way as [5, Theorem 4.1].

Theorem 19.2 (The Hennessy-Milner Property). Let Σ and Σ† be DL-signatures
such that Σ† ⊆ Σ, Φ and Φ† be sets of DL-features such that Φ† ⊆ Φ. Let I and I ′
be interpretations in LΣ,Φ, finitely branching w.r.t. LΣ†,Φ† and such that for every

a ∈ Σ†
I , aI is LΣ†,Φ†-equivalent to aI ′ . Assume U /∈ Φ† or Σ†

I �= /0. Then x ∈ ΔI is

LΣ†,Φ† -equivalent to x′ ∈ ΔI ′ iff there exists an LΣ†,Φ†-bisimulation Z between I and
I ′ such that Z(x,x′) holds. �
We now have the following corollary.
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Corollary 19.2. Let Σ and Σ† be DL-signatures such that Σ† ⊆ Σ, let Φ and Φ†

be sets of DL-features such that Φ† ⊆ Φ, and let I and I ′ be finite interpretations
in LΣ,Φ. Assume that Σ†

I �= /0 and, for every a ∈ Σ†
I , aI is LΣ†,Φ†-equivalent to aI ′ .

Then the relation {〈x,x′〉 ∈ ΔI × ΔI ′ | x is LΣ†,Φ†-equivalent to x′} is an LΣ†,Φ†-
bisimulation between I and I ′. �
We say that I is LΣ†,Φ†-bisimilar to I ′ if there exists an LΣ†,Φ† -bisimulation between

I and I ′. We say that x ∈ ΔI is LΣ†,Φ†-bisimilar to x′ ∈ ΔI ′ if there exists an LΣ†,Φ† -
bisimulation between I and I ′ such that Z(x,x′) holds.

Remark 19.2. By Theorem 19.1, LΣ†,Φ† -bisimilarity formalizes indiscernibility by
the sublanguage LΣ†,Φ† . This is an important feature with many applications (see [7,
14, 31] for a more general context and numerous applications). Here let us empha-
size that such indiscernibility relation provides the best approximations of a given
concept expressed in the chosen sublanguage. Note that in [7, 14, 31] the underlying
indiscernibility relation has not been constructed. �
An LΣ†,Φ† -bisimulation between I and itself is called an LΣ†,Φ†-auto-bisimulation
of I . An LΣ†,Φ† -auto-bisimulation of I is said to be the largest if it is larger than or
equal to (⊇) any other LΣ†,Φ† -auto-bisimulation of I .

Given an interpretation I in LΣ,Φ, by ∼Σ†,Φ†,I we denote the largest LΣ†,Φ† -auto-
bisimulation of I , and by ≡Σ†,Φ†,I we denote the binary relation on ΔI with the
property that x ≡Σ†,Φ†,I x′ iff x is LΣ†,Φ† -equivalent to x′.

Theorem 19.3. Let Σ and Σ† be DL-signatures such that Σ† ⊆ Σ, Φ and Φ† be sets
of DL-features such that Φ† ⊆Φ, and I be an interpretation in LΣ,Φ. Then:

• the largest LΣ†,Φ†-auto-bisimulation of I exists and is an equivalence relation
• if I is finitely branching w.r.t. LΣ†,Φ† then the relation ≡Σ†,Φ†,I is the largest

LΣ†,Φ†-auto-bisimulation of I (i.e. the relations≡Σ†,Φ†,I and∼Σ†,Φ†,I coincide).
�

Theorem 19.3 can be proved as [5, Proposition 5.1 and Theorem 5.2].
By terminological roughification we mean any technique that uses the largest

LΣ†,Φ† -auto-bisimulation relations as the equivalence relation for defining
approximations.

The intended application areas are, in particular, concept learning and concept
approximation in description logic-based information systems. Such applications
and related techniques are studied in the next two subsections.

19.5.3 Concept Learning

Before presenting a method for learning concepts we first prove a theoretical result.
We say that a set Y is divided by a set X if Y \X �= /0 and Y ∩X �= /0. Thus, Y is not
divided by X if either Y ⊆ X or Y ∩X = /0. A partition P = {Y1, . . . ,Yn} is consistent
with a set X if, for every 1≤ i≤ n, Yi is not divided by X .
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Theorem 19.4. Let I be an information system in LΣ,Φ, and let X ⊆ ΔI , Σ† ⊆ Σ and
Φ† ⊆Φ. Then:

1. if there exists a concept C of LΣ†,Φ† such that X = CI then the partition of ΔI

by ∼Σ†,Φ†,I is consistent with X
2. if the partition of ΔI by∼Σ†,Φ†,I is consistent with X then there exists a concept

C of LΣ†,Φ† such that CI = X.

Proof. As I is finite, it is finitely branching w.r.t. LΣ†,Φ† . By Theorem 19.3,∼Σ†,Φ†,I
coincides with ≡Σ†,Φ†,I .

Consider the first assertion and assume that X =CI for some concept C of LΣ†,Φ† .
Since ∼Σ†,Φ†,I coincides with ≡Σ†,Φ†,I , if x and x′ belong to the same equivalence
class by ∼Σ†,Φ†,I , then x is LΣ†,Φ† -equivalent to x′, and hence x ∈ CI iff x′ ∈ CI ,
that is, {x,x′} is not divided by CI . Therefore, the partition of ΔI by ∼Σ†,Φ†,I is
consistent with X .

Consider the second assertion and assume that the partition of ΔI by ∼Σ†,Φ†,I is
consistent with X . Let the partition be {Y1, . . . ,Ym}∪{Z1, . . . ,Zn}, where X = Y1∪
. . .∪Ym. Since Yi and Zj are different equivalence classes of ≡Σ†,Φ†,I , we have that
for each pair (i, j) with 1≤ i≤m and 1≤ j≤ n there exists a concept Ci, j of LΣ†,Φ†

such that Yi ⊆ CI
i, j and Zj ∩CI

i, j = /0. For each 1 ≤ i ≤ m, let Ci = Ci,1  . . . Ci,n.
Thus, Yi ⊆CI

i , and Zj ∩CI
i = /0 for all 1 ≤ j ≤ n. Let C = C1! . . .!Cm. Then, for

all 1≤ i≤ m, Yi ⊆CI , and for all 1≤ j ≤ n, Zj ∩CI = /0. Therefore, CI = X . �

Let I be an information system in LΣ,Φ, which can be either explicitly given as
a finite interpretation in LΣ,Φ or specified by a knowledge base KB = 〈T ,A〉 in
LΣ,Φ. Let Ad ∈ ΣI be a concept name standing for the “decision attribute”. In the
case when I is specified by KB, assume that Ad is not defined by the TBox T of KB.
Suppose that Ad can be expressed by a concept C in LΣ,Φ not using Ad , and I is
given as a training information system. How can we learn that concept C on the
basis of I ? That is, how can we learn a definition of Ad on the basis of I ?

On the basis of machine learning techniques one can suggest that Ad is definable
in LΣ†,Φ† , for some specific Σ† ⊆ Σ\{Ad} andΦ† ⊆Φ. One can even guide the ma-
chine learning process by extending Σ, Φ and T with new concepts and new roles
together with their definitions before suggesting Σ† and Φ†. Without such sugges-
tions, one can take Σ† = Σ or Φ† = Φ, or use some method to try different possible
values of Σ† and Φ†.

In this subsection we assume that Σ† ⊆ Σ\ {Ad} and Φ† ⊆ Φ are given, and the
task is to study a definition of Ad in LΣ†,Φ† on the basis of I .

Our idea for this problem is based on the following observation:

if Ad is definable in LΣ†,Φ† then, by the first assertion of Theorem 19.4,
AI

d must be the union of some equivalence classes of ΔI w.r.t. ∼Σ†,Φ†,I .

Our general method is as follows:

1. Starting from the partition {ΔI }, make subsequent granulations to reach the
partition corresponding to ∼Σ†,Φ†,I .
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• The granulation process can be stopped as soon as the current partition is
consistent with AI

d (or when some criteria are met).
• The task can be done in the spirit of [5, Algorithm 1] for the case Φ† ⊆
{I,O,U}, which is based on Hopcroft’s automaton minimization algorithm
[13]. That algorithm of [5] runs in polynomial time and it can be extended
to deal also with the other cases of Φ†. Also, one can use another strategy,
optimizing some measure related to “quality” of the generated partition, but
not time complexity.

• In the granulation process, we denote the blocks created so far in all steps
by Y1, . . . ,Yn, where the current partition {Yi1 , . . . ,Yik} consists of only some
of them. We do not use the same subscript to denote blocks of different
contents (i.e., we always use new subscripts obtained by increasing n for
new blocks). We take care that, for each 1≤ i≤ n:
• Yi is characterized by an appropriate concept Ci (such that Yi = CI

i )
• we keep information about whether Yi is divided by AI

d
• if Yi ⊆ AI

d then LargestContainer[i] := j, where 1 ≤ j ≤ n is the sub-
script of the largest block Yj such that Yi ⊆ Yj ⊆ AI

d

2. At the end, let j1, . . . , jh be all the indices from {i1, . . . , ik} such that Yjt ⊆ AI
d

for 1≤ t ≤ h, and let {l1, . . . , lp}= {LargestContainer[ jt ] | 1≤ t ≤ h}. Let C be
a simplified form of Cl1 ! . . .!Clp . Return C as the result.

Example 19.7. Consider the information system given in Example 19.5. Assume
that we want to learn a definition of concept Parent in the sublanguage LΣ†,Φ† , where
Σ† = {Adult,Female,has child} and Φ† = /0. The respective steps are:

1. Y1 := ΔI , partition := {Y1}
2. partitioning Y1 by Adult:

• Y2 := {Alice,Bob,Claudia,Dave,George}, C2 := Adult
• Y3 := {Eva,Frank}, C3 := ¬Adult
• partition := {Y2,Y3}

3. partitioning Y2 by Female:

• Y4 := {Alice,Claudia}, C4 := C2 Female
• LargestContainer[4] := 4 (as Y4 ⊆ ParentI )
• Y5 := {Bob,Dave,George}, C5 := C2 ¬Female
• partition := {Y3,Y4,Y5}

4. partitioning Y3 by Female:

• Y6 := {Eva}, C6 := C3 Female
• Y7 := {Frank}, C7 := C3 ¬Female
• partition := {Y4,Y5,Y6,Y7}

5. partitioning Y4 by has child:

• Y8 := {Alice}, C8 := C4 ∃has child.C5

• LargestContainer[8] := 4
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• Y9 := {Claudia}, C9 := C4 ¬∃has child.C5

• LargestContainer[9] := 4
• partition := {Y5,Y6,Y7,Y8,Y9}

6. partitioning Y5 by has child:

• Y10 := {Bob,Dave}, C10 := C5 ∃has child.,
• LargestContainer[10] := 10 (as Y10 ⊆ ParentI )
• Y11 := {George}, C11 := C5 ¬∃has child.,
• partition := {Y6,Y7,Y8,Y9,Y10,Y11}.

The obtained partition is consistent with ParentI , with Y8, Y9, Y10 contained in
ParentI , and Y6, Y7, Y11 disjoint with ParentI . (It is not yet the partition correspond-
ing to ∼Σ†,Φ†,I .)

Since LargestContainer[8] = LargestContainer[9] = 4, the concept we take into
account before simplification is C4!C10, which is

(Adult Female)! (Adult ¬Female ∃has child.,).

This concept can be simplified to the following equivalent form

Adult (Female!∃has child.,)

which does not match the intended definition Parent = ∃has child.,. However, it
is equivalent in I to an acceptable definition Parent = Adult ∃has child.,, as all
women in I are parents. �

Example 19.8. Consider again the information system given in Example 19.5.
Assume that we want to learn a concept definition of X = {Dave, Eva, Frank} in
the sublanguage LΣ†,Φ† , where Σ† = {Alice, has child, has parent, has descendant,
has ancestor} and Φ† = {O}. This task can be realized as follows:

1. Y1 := ΔI , partition := {Y1}
2. partitioning Y1 by Alice using (19.22):

• Y2 := {Alice}, C2 := {Alice}
• Y3 := {Bob,Claudia,Dave,Eva,Frank,George}, C3 := ¬{Alice}
• partition := {Y2,Y3}

3. partitioning Y3:

• The “selectors” are:
• ∃has child.C3, ∃has parent.C2, ∃has parent.C3,
• ∃has descendant.C3, ∃has ancestor.C2, ∃has ancestor.C3.

• If we apply the entropy gain measure then the best selectors are
∃has parent.C3, ∃has ancestor.C2, ∃has ancestor.C3. Each of them parti-
tions Y3 into the following Y4 and Y5, but uses different C4 and C5:
• Y4 := {Dave,Eva,Frank}
• Y5 := {Bob,Claudia,George}.
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4. Since the current partition {Y2,Y4,Y5} is consistent with X , the returned concept
is C4, which can be one of the following:

• ¬{Alice} ∃has parent.¬{Alice}
• ¬{Alice} ∃has ancestor.{Alice}
• ¬{Alice} ∃has ancestor.¬{Alice}.

5. If we test these solutions on the information system specified by the knowl-
edge base that extends KB with the assertion has child(Bob,George) then the
solution ¬{Alice} ∃has ancestor.{Alice} has the best accuracy. �

Let us now describe our method in more details.
Let the current partition of ΔI be {Yi1 , . . . ,Yik}. Consider partitioning of a block

Yi j (1≤ j ≤ k). We want to find a concept D of LΣ†,Φ† , called a selector, to partition
Yi j . Such a selector should actually partition Yi j into two non-empty parts (i.e. Yi j

should be divided by DI ). It can be proved that to reach the partition corresponding
to the equivalence relation ∼Σ†,Φ†,I it suffices to consider the following kinds of
selectors:

• A, where A ∈ Σ†
C: this is related to (19.17)

• ∃r.Cit , where r ∈ Σ†
R and 1≤ t ≤ k : this is related to (19.18) and (19.19)

• in the case I ∈Φ†:

∃r−.Cit , where r ∈ Σ†
R and 1≤ t ≤ k : this is related to (19.20) and (19.21)

• in the case O ∈Φ†:

{a}, where a ∈ Σ†
I : this is related to (19.22)

• in the case Q ∈Φ†:

≥l r.Cit and≤mr.Cit , where r∈Σ†
R, 1≤ t ≤ k, 0 < l≤ #Cit and 0≤m < #Cit :

this is related to (19.23)

• in the case {Q, I} ⊆Φ†:

≥l r−.Cit and≤mr−.Cit , where r∈Σ†
R, 1≤ t≤ k, 0 < l≤ #Cit and 0≤ m < #Cit :

this is related to (19.24)

• in the case Self ∈Φ†:

∃r.Self, where r ∈ Σ†
R: this is related to (19.27).

Note that the conditions (19.25) and (19.26) are always satisfied when I ′ = I and Z
is an equivalence relation.

In practice, we prefer as simple as possible definitions for the learnt concept.
Therefore, it is worth to consider also the following kinds of selectors (despite that
they are expressible by the above mentioned ones), where n is the largest block
subscript used so far:

• ∃r.Ci, ∃r., and ∀r.Ci, where r ∈ Σ†
R and 1≤ i≤ n

• in the case I ∈Φ†: ∃r−.Ci, ∃r−., and ∀r−.Ci, where r ∈ Σ†
R and 1≤ i≤ n
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• in the case Q ∈Φ†: ≥ l r.Ci and ≤mr.Ci,
where r ∈ Σ†

R, 1≤ i≤ n, 0 < l ≤ #Ci and 0≤ m < #Ci

• in the case {Q, I} ⊆Φ†: ≥ l r−.Ci and ≤mr−.Ci,
where r ∈ Σ†

R, 1≤ i≤ n, 0 < l ≤ #Ci and 0≤ m < #Ci.

A concept C characterizing Ad in the training information system I may not match
the intended meaning of Ad . In particular, all of the above mentioned kinds of se-
lectors do not use role constructors (like R! S, R ◦ S or R∗). However, the user
acquainted with the machine learning problem for Ad may extend Σ and the TBox
of the knowledge base specifying I to define new complex roles and then choose
an appropriate Σ†. One can explicitly consider also selectors that use complex roles.
This latter approach, in our opinion, is not appropriate, as the search space will be
too large.

We now describe partitioning the block Yi j using a selector D. Recall that Yi j

should be divided by DI . The partition is done as follows:

• s := n + 1, t := n + 2, n := n + 2, Ys := Cij  D, Yt := Cij  ¬D
• If Yi j ⊆ AI

d then

• LargestContainer[s] := LargestContainer[i j]
• LargestContainer[t] := LargestContainer[i j]

else if Ys ⊆ AI
d then LargestContainer[s] := s

else if Yt ⊆ AI
d then LargestContainer[t] := t.

• The new partition of ΔI becomes {Yi1 , . . . ,Yik} \ {Yi j}∪{Ys,Yt}.

An important matter is: which block from the current partition should be partitioned
first? which selector should be used to partition it? This affects both the “quality”
of the final partition and time complexity of the process. Some guides and possible
strategies are given below:

• If two selectors D and D′ partition Yi j in the same way then the simpler one is
“better”. For example, if D = ∃r.Cl , D′ = ∃r.Cm, Ym ⊂ Yl , and D, D′ partition
Yi j in the same way, then Cl is simpler than Cm and D is more preferred than
D′. This technique together with the use of LargestContainer guarantees that
one can continue granulating the partition without the risk of worsening the
“quality” of the final result. (Remember, however, that different paths resulting
in the same partition may give different results, with different “quality”.)

• One may prefer to partition a block divided by AI
d first. Partitioning such a block,

we may use some measure to choose a selector. A possible way is to use the
entropy gain measure. Among the blocks of the current partition that are divided
by AI

d , to choose a block to partition we can also use some measure. Once
again, it may be the entropy gain measure, taking into account also the possible
selectors.

• Note, however, that one may be able to partition a block divided by AI
d only

after a block not divided by AI
d has been partitioned.
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• Simplicity of selectors and concepts characterizing blocks should be taken into
account (e.g., by combining it with the entropy gain measure). Let’s say the
form A is simpler than ∃r.B and {a}. One may put some limits on the number of
nominals and the nesting depth of ∀ and ∃ in a concept characterizing a block.

• As a possible strategy, one may follow the idea of Hopcroft’s automaton mini-
mization algorithm. The hope is that reducing the total number of created blocks
(in the whole granulation process) makes the concepts characterizing the blocks
of the final partition simpler. Besides, apart from quality of the result, time com-
plexity is also important.

As usual, we may also use backtracking to find different solutions. During the
search, only the best choices are tried and we will keep only a bounded number
of the best solutions (according to some measure). The final solution will be the one
that has the best accuracy on a test information system.

Simplifying a concept C to obtain a final definition for Ad can be done as follows:

1. We first normalize C while preserving equivalence, for example, by using the
method proposed in [18]. Such normalization uses negation normal form, which
may be essential for cutoffs described below.

2. Given a test information system I ′, we then simplify the obtained concept, with-
out preserving equivalence, by representing the concept as a tree and repeat the
following operations until accuracy of the definition cannot be improved on I ′:

• Cut off a leaf of the tree if it improves accuracy of the definition on I ′.
• If a subconcept of the definition can be replaced by a simpler one (e.g., ,

or ⊥) while not decreasing the accuracy on I ′ then do that replacement.
• After each simplification, normalize the concept (preserving equivalence).

The other problems deserving consideration are: allowing a definition C not exactly
matching Ad on I , and classifying a new object when inconsistencies occur. The
first problem can be dealt with by using standard methods and some measures. Con-
sider the second problem. Inconsistencies may occur as in the following situation:
converting a training RS information system I0 with a decision attribute Color and
VColor = {red,green,blue} to a training information system I in DL with concepts
Red, Green, Blue to be learnt, one may get concepts Cred , Cgreen, Cblue as the result
of the learning process, which overlap on a real information system I ′′. A decision
on whether an object x of I ′′ which belongs, for example, to both CI ′′

red and CI ′′
green

should be classified as red or green can be made based on the accuracy of Cred and
Cgreen on a test information system I ′.

Note that an attempt to extend concept approximation using description logics
was taken in [11] by using contextual indiscernibility relations used to represent un-
certain concepts. A context is defined in [11] as a set of concepts. Roughly speaking,
[11] proposes to define new atomic concepts by complex concepts and then to use
those new atomic concepts for machine learning, applying traditional methods not
based on description logics. The method we proposed is based on bisimulations and
we find it much more promising for applications.
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19.5.4 Bisimulation-Based Approximation of Concepts

The next problem we want to address is to learn a concept Ad not by giving its
definition C (where Ad is a concept name and C is a complex concept), but by giving
a pair (C,C) of concepts, where C plays the role of a lower approximation of Ad and
C plays the role of an upper approximation of Ad . This follows the lines of Pawlak’s
rough set theory.

The problem is specified as follows:

• given: a training information system I in LΣ,Φ, a concept name Ad ∈ ΣC, and
a sublanguage LΣ†,Φ† of LΣ,Φ with Σ† ⊆ Σ\ {Ad} and Φ† ⊆Φ

• goal: we want to learn an approximate definition of Ad , that is, a pair (C,C) of

concepts in the sublanguage LΣ†,Φ† such that CI ⊆ AI
d ⊆C

I
and CI , C

I
closely

approximate AI
d .

The result of such learning can be improved by a test information system.
Our method for this problem, as described below, is based on bisimulation:

• Compute the partition of ΔI by ∼Σ†,Φ†,I , further denoted by {Yi1 , . . . ,Yik}, to-
gether with concepts Cit characterizing Yit (i.e. CI

it = Yit for 1 ≤ t ≤ k) as de-
scribed in the previous subsection.

• Take C =Cj1 ! . . .!Cjh , where j1, . . . , jh are all the indices among i1, . . . , ik such
that Yjt ⊆ AI

d for all 1≤ t ≤ h.
• Take C = Cj′1 ! . . .!Cj′

h′
, where j′1, . . . , j′h′ are all the indices among i1, . . . , ik

such that Yj′t ∩AI
d �= /0 for all 1≤ t ≤ h′.

• Normalize C and C, while preserving equivalence.

The pair (C,C), obtained as above, is a pair of concepts in LΣ†,Φ† that approximates

Ad on I most closely (in the sense that CI ⊆ AI
d ⊆ C

I
and the sets AI

d \CI and

C
I \AI

d are the smallest ones).
The accuracy on I does not imply accuracy on other information systems. Fol-

lowing the Ockham’s razor principle, we pay attention to simplicity of (C,C) in
order to increase their overall accuracy. Here, we can use the following techniques:

• We use LargestContainer (see Subsection 19.5.3) to obtain a simpler form for
C.

• In the granulation process of ΔI , we can stop as soon as the current partition is
good enough according to some measure, and use it to compute C and C.

• Using a test information system we can simplify C and C (without preserving
equivalence) by applying different kinds of simplification as discussed in the
previous subsection, taking into account the accuracies of the lower and upper
approximations on the test information system and the relation between them.

Example 19.9. Consider again the information system given in Example 19.5. We
want to learn a concept definition or a concept approximation for the set X = {Alice,
Bob, Claudia} in the sublanguage LΣ†,Φ† , where Σ† = {Adult, has child} andΦ† =
/0. This task can be realized as follows:
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1. Y1 := ΔI , partition := {Y1}
2. partitioning Y1 by Adult:

• Y2 := {Alice,Bob,Claudia,Dave,George}, C2 := Adult
• Y3 := {Eva,Frank}, C3 := ¬Adult
• partition := {Y2,Y3}

3. partitioning Y2 by ∃has child.,:

• Y4 := {Alice,Bob,Claudia,Dave}, C4 := C2 ∃has child.,
• Y5 := {George}, C5 := C2 ¬∃has child.,
• partition := {Y3,Y4,Y5}

4. partitioning Y4 by ∃has child.C2 (we use the selector ∃has child.C2 instead of
∃has child.C4 because it is simpler and has the same effect):

• Y6 := {Alice,Bob}, C6 := C4 ∃has child.C2

• Y7 := {Claudia,Dave}, C7 := C4 ¬∃has child.C2

• partition := {Y3,Y5,Y6,Y7}
5. The current partition cannot be granulated anymore. (It corresponds to∼Σ†,Φ†,I .)
6. Since only Y6 from the current partition {Y3,Y5,Y6,Y7} is a subset of X , the

lower approximation of X is characterized by C6 = Adult  ∃has child., 
∃has child.Adult, which can be simplified to Adult ∃has child.Adult.

7. Since only Y6 and Y7 from the current partition {Y3,Y5,Y6,Y7} overlap with X ,
the upper approximation of X is characterized by C6!C7, which can be simpli-
fied to C4 = Adult ∃has child.,. �

19.6 Conclusions

In the current chapter, we have studied roughification methods allowing one to con-
struct indiscernibility relations on the basis of background knowledge. We have first
studied indiscernibility based on similarity relations, showing that such relations
can be turned into equivalence relations providing more accurate approximations.
Next, we introduced roughifications based on relational databases and finally ter-
minological roughifications, where indiscernibility coincides with indiscernibility
by formulas of considered description logics. To our best knowledge, the proposed
techniques and their applications are novel. It is worth emphasizing that our work
is a pioneering one that uses bisimulation for machine learning in the context of
description logics.

We have considered applications of the proposed techniques for improving
accuracy of approximations, granulating relational databases as well as in concept
learning and concept approximations. The last mentioned application areas have
usually been studied in the context of information systems using only attributes (and
sometimes also “external” relational structures) [21, 20]. In approaches based on
RS information systems, concepts are usually characterized by formulas built from
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unary predicates (corresponding to attributes), using propositional connectives. On
the other hand, concept learning and concept approximation in information sys-
tems based on description logics require new methods and algorithms. Most ideas
for them may be inspired from the traditional ones (like the ones based on deci-
sion rules, decision trees, reducts, and local reducts). However, additional ideas are
needed to generalize such approaches to the case of description logics. We have
shown that bisimulation is a good starting point.

As interesting continuations of the research reported in this chapter we consider
extensions of roughifications techniques by considering other logical formalisms.
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Chapter 20
How Near Are Zdzisław Pawlak’s Paintings?
Study of Merotopic Distances between Digital Picture
Regions-of-Interest

James F. Peters

How Near?
How near to the bark of a tree are the drifting snowflakes,
swirling gently round, down from winter skies?
. . .

—Z. Pawlak and J.F. Peters, Winter 2002 [22].

Abstract. This chapter commemorates the work of Zdzisław Pawlak as a painter
with the focus on the subtleties that come to light in considering the symmetries in
his paintings. Specifically, this chapter considers how merotopic distance functions
can be used as an aid to visual perception in determining the nearness of Zdzisław
Pawlak’s paintings. Eventually, the study of the resemblance of perceptual frag-
ments found in nature (e.g., collections of falling snow flakes) in the poem How
Near? by Z. Pawlak and J.F. Peters in 2002 led to the discovery of descriptively
near sets by J.F. Peters in 2007 and a merotopological approach to measuring the
nearness of collections of subsets recently introduced by J.F. Peters, S.A. Naim-
pally and S. Tiwari. The main contribution of this chapter is the introduction of an
approach to measuring the nearness or apartness of Z. Pawlak’s paintings in terms
of the merotopic distances between collections of neighbourhoods in digital pic-
ture regions-of-interest. This study includes a consideration of ε-approach nearness
spaces as frameworks in the search for patterns in digital pictures. An application
of the proposed approach to measuring visual image nearness is reported relative to
resemblances between Z. Pawlak’s paintings of waterscapes that span more than a
half century, starting in 1954. This study offers a partial answer to the question How
near are Zdzisław Pawlak’s paintings?

James F. Peters
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Keywords: Approach nearness, description, distance, merotopy, painting, percep-
tual image analysis, visual neighbourhood.

20.1 Introduction

Zdzisław Pawlak was not only a pioneer in computer engineering, applied math-
ematics, machine learning, theoretical computer science, and philosophy, he was
also a painter in his own right. His paintings capture various moments in the four
seasons in the Polish countryside and offer his perception of the symmetries and
singular beauty of the woods, gently rolling terrain, farmland furrows, waterways,
lakes, and shorelines found in parts of Poland. He was a gifted painter. In fact, he
was extraordinarily perceptive in his rendition of the changing face of the woods
that border lakes and waterways that he visited.

His paintings reflect his fascination with seasonal changing colours of woodlands
and the subtle shapes of watershadows thrown across the water by the sunlight on
trees overhanging lake shorelines as well as the shadows made by marshland reeds
and cattails shooting out of waterway borders. His interest in and perceptions of the
four seasons in his paintings that span more than half a century, starting during the
early 1950s, parallel his discovery of the secrets of rough sets during the late 1970s
and early 1980s. In some sense, the manner in which Zdzisław Pawlak painted bor-
der regions of elongated watershadows thrown across the water by tall marshland
reeds, shrubs and trees is reminiscent of the basic idea of set approximations in
rough set theory. In effect, a consideration of Pawlak’s perceptions of the compo-
sitions, symmetries and irregularities in border regions in a typical countryside as
well as his portrayal of sunlight on the trees in the formation of watershadows and
the reflections of light in lakeland shoreline scenes tend to reveal the plasticity and
richness not only of nature itself but also the depth, breadth, and richness of rough
sets themselves.

This chapter considers how to measure the nearness of neighbourhoods of points
as well as the nearness of regions-of-interest (ROIs) in paintings by Zdzisław Pawlak.
Briefly, each ROI is a collection of neighbourhoods of ROI points. Each ROI neigh-
bourhood Nx considered in this study is a neighbourhood of a particular ROI point
x (called a reference point) so that Nx contains points that are visually similar to the
reference point appearance.

Measuring the perceptual nearness of visual images has recently led to a new
form of approach distance between pairs of nonempty sets in P (X) [30, 34] (a vari-
ation of the original distance between points in X and nonempty sets in P (X) in-
troduced by R. Lowen in 1997 [14]) and merotopies inspired by M. Katětov’s work
on topologizing parts of sets [9]. Work on a basis for near sets began in 2002, moti-
vated by image analysis and inspired by a study of the perception of the nearness of
physical objects carried out in cooperation with Zdzisław Pawlak in [22]. This ini-
tial work on the perception of typical scenes in nature, especially winter scenes, led
to the introduction of near sets [27], elaborated in [26, 36, 6, 7, 43, 42, 28, 29, 37],
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inspired by pioneering work on proximity spaces by S.A. Naimpally [16, 17, 19, 18]
and my collaboration with A. Skowron and J. Stepaniuk on the nearness of objects
and information granulation [31, 32, 33, 38].

This chapter considers the of Z. Pawlak’s paintings in three different ways. First,
a form of the indiscernibility relation is used to segment sample images. This simple
approach to comparing paintings yields surprisingly remarkable results. Just from
the segmentations alone, it is possible to see some fundamental painting techniques
that Pawlak used in his paintings. In addition, it is possible to detect patterns in the
segmentations that suggest the nearness of the autumn and springtime paintings of
the waterscapes that are considered.

Fig. 20.1. Sample Nx,Ny

Second, visual neighbourhoods of points in
Pawlak’s paintings are considered. In doing this,
the foundation for a study of what are known as ε-
approach merotopic distances between collections
of sets arises. In addition, a distinction is made
between traditional spherical neighbourhoods (also
called open balls) and the more recent visual neigh-
bourhoods of points. In Fig. 20.1, the members of a
visual neighbourhood Ny of a point y are sufficiently
near (visually) in appearance to y (represented by a
feature vector y) to qualify for membership in the
neighbourhood. Sample visual neighbourhoods can
be seen in autumn waterscape by Pawlak in Fig. 20.3, especially in Fig. 20.3.3. Per-
ceptually, the points in a visual neighbourhood are indistinguishable in appearance.
This gives rise to the notion of the distinctness of visual points in separate visual
neighbourhoods.

Let ε ∈ (0,∞]. A description of a point x is a feature vector x containing numbers
representing feature values extracted from a visual object such as a picture element
(pixel) in a painting. Further, let x,y denote the descriptions of points x,y ∈ X , re-
spectively. A point x is visually distinct from a point y if, and only if, d(x,y) > ε,
where d denotes a distance function. In effect, visually distinct points belong to
non-intersecting visual neigbourhoods. Let NxandNy denote a pair of visual neigh-
bourhoods of points x,y, respectively (see Fig. 20.1, for example, for a sample rep-
resentation of such neighbourhoods). In Fig. 20.1, Nx has the conventional shape of
a spherical neighbourhood but Ny has the more usual shape of a visual neighbour-
hood, where the points of Ny are arranged asymmetrically in relation to the point
y. Such visual neighbourhoods are commonly found in Pawlak’s rendition of such
things as watershadows found in many of his paintings of Polish woodland scenes.

The nearness of visual neighbourhoods can be measured with a Čech distance
D(A,B) between sets A and B (in the context of Pawlak’s paintings, the Čech dis-
tance between visual neighbourhoods is measured to quantify the nearness of
painting regions represented by selected visual neighbourhoods). A Čech distance
between sets is the greatest lower bound of the distances between pairs of set mem-
bers [41, §18.A.2]. This approach to measuring distances between sets in Pawlak’s
paintings works well because it captures minimal distances between set objects.
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This approach also implicitly ushers in a new view of the nearness of rough sets,
since many subsets in Pawlak’s paintings are, in fact, visual rough sets.

Finally, the third approach to measuring the nearness of Pawlak’s paintings is
given in terms of approach merotopic distance and ε-approach nearness spaces. This
leads to a more global view of the nearness of Pawlak’s paintings, since merotopic
distance functions and, in particular, ε-approach nearness, make it possible to mea-
sure the distance between collections of neighbourhoods. To give this brief study
of Pawlak’s paintings more focus, regions-of-interest in Pawlak’s paintings are con-
sidered. A region of interest (ROI) is defined to be a collection of visual neigh-
bourhoods. Then the nearness of Pawlak’s paintings is quantified in terms of the
ε-approach merotopic distance between ROIs.

20.2 Preliminaries

Fig. 20.2. Sample A(α)

Let X be a nonempty ordinary set. The
power set of X is denoted by P (X) and
the set of all collections of subsets of
P (X) is denoted by P 2(X). We write
ABSA to denote the cardinality of A,
where A ⊆ X . For collections A , B ∈
P 2(X), we say A ∨B � {A∪B : A ∈
A , B ∈ B}; A corefines B (written as
A ≺ B) if, and only if, for all A ∈ A ,
there exists B ∈ B such that B ⊆ A. For
α ∈ (0,∞], the boundary set A(α) is de-
fined to be

A(α) � {x ∈ X : δ(x,A)≤ α}.

Definition 20.1. A function δ : X×P (X)−→ [0,∞] is called a distance on X [14, 15]
if, for any A,B⊆ X and x ∈ X , the following conditions are satisfied.

(D.1) δ(x,{x}) = 0,
(D.2) δ(x, /0) = ∞,
(D.3) δ(x,A∪B) = min{δ(x,A),δ(x,B)},
(D.4) δ(x,A)≤ δ(x,A(α))+α.

The pair (X ,δ) is called an approach space.

Example 20.1. Let X be a nonempty set and let x ∈ X ,A∈ P (X). The distance func-
tion d : X ×P (X)→ [0,∞] is defined by

d(x,A) = inf{σ(x,y) : y ∈ X},

where σ(x,y) is the standard distance between x and y. Distance d(x,A) is the lower
distance (i.e. greatest lower bound of the distances between the point x and the
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points y in B) from F. Hausdorff [4] (see [5, §22, p. 128]). Observe that (X ,d) is an
approach space.

An approach space extends the usual notion of a point-based metric space to a space
defined with a point-to-set-based distance function δ. In this space, the triangle in-
equality axiom d(x,y) ≤ d(x,z)+ d(z,y) for all x,y in a metric space (X ,d) is re-
placed by D.4 using the boundary set A(α). A sample representation of a boundary
set

A(α) = {x3}∪A.

is shown in Fig. 20.2. The set A is a member of A(α), since d(a,A) = 0 for each
a ∈ A and, by definition, 0 < α.

Pawlak Autumn (3.2) Greyscale view (3.3) Segmentation

Fig. 20.3. Sample Pawlak Autum Painting Segmentation

Definition 20.2. A generalized approach space (X ,ρ) [34, 35] is a nonempty set X
equipped with a distance function ρ : P (X)×P (X)−→ [0,∞] if, and only if, for all
nonempty subsets A,B,C ∈ P (X), ρ satisfies properties (A.1)-(A.5), that is,

(A.1) ρ(A,A) = 0,
(A.2) ρ(A, /0) = ∞,
(A.3) ρ(A,B∪C) = min{ρ(A,B),ρ(A,C)},
(A.4) ρ(A,B) = ρ(B,A),
(A.5) ρ(A,B)≤ ρ(A,B(α))+α, for every α ∈ [0,∞],

where B(α) � {x ∈ X : ρ({x},B)≤ α}.
It has been observed that the notion of distance in an approach space is closely
related to the notion of nearness [11, 10, 40].

Definition 20.3. C̆ech Gap Distance
For a nonempty subset A ∈ P (X) and a nonempty set B ∈ P (X), define a gap func-
tion Dρ(A,B), a variation of the distance function introduced by E.C̆ech in his 1936–
1939 seminar on topology [41] (see, also, [1, 4, 12]), where D : P (X)×P (X)−→
[0,∞] is defined by

D(A,B) �
{

inf
a∈A

{d(a,B)}, if A and B are not empty,

∞, if A or B is empty.
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Observe that (X ,D) is a generalized approach space.

20.3 Perceptual Indiscernibility Relation in Segmenting
Paintings

Fig. 20.4. Sample Autumn Class

Remarkably, an intuition about the nearness of
Pawlak’s paintings can be gleaned from various
segmentations of a digital image obtained by us-
ing a description-based form of the original indis-
cernibility relation [21, 25, 24, 23] that is termed
a perceptual indiscernibility relation ∼B. Let

X = {points in a digital image},
φ : X → [0,∞] probe function,

B = {φ : φ(x) = feature value}.

With this in mind, a relation ∼B is defined by

∼B= {(x,y) ∈ X ×X : ∀φ ∈ B,φ(x) = φ(y)}

Let x/∼B
denote an equivalence class containing x in a partition of a nonempty set X

determined by the relation ∼B. Then, an element y ∈ X is a member of x/∼B
if, and

only if, the descriptions of x and y are the same, that is,

y ∈ x/∼B
, provided ∀φ ∈ B,

same descriptions
︷ ︸︸ ︷
φ(x) = φ(y) .

A sample class extracted from the segmentation of the Autumn painting by Pawlak
in Fig. 20.3.3 is shown in Fig. 20.4. The relation ∼B is inspired by the original
work by Z. Pawlak on classifying objects by means of attributes [20]. Rather than
using attributes, the relation ∼B is defined in terms of probe functions that offer a
convenient way to describe visual objects such as picture elements (pixels) in digital
images. The relation ∼B is termed perceptual, since the probe functions in B, in
some sense, mimic human perception of sensed features of objects such as colour,
texture and shape.

Segmentation is a fundamental part of image analysis. A digital image is seg-
mented by separating the image into regions, where the objects in each region have
similar feature values. The simplest form of segmentation results from identifying
greyscale image regions with similar intensities. This is the approach used in the
examples in this section. This is accomplished rather easily and very beneficially
by employing the perceptual indiscernibility relation to obtain a partition of image
pixel intensities.
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Example 20.2. How to Segment an Image with the NEAR system
Using the NEAR system Eq option1, import the Autumn painting shown in
Fig. 20.3.1, choose subimage size p = 3, and choose one or more image features
used in obtain an image segmentation and display of image classes.

For simplicity in this example, only the average greyscale feature (for p× p
subimages) is chosen. The greyscale image for Pawlak’s Autumn painting is shown
in Fig. 20.3.2. A sample segmentation of Pawlak’s painting is given in Fig. 20.3.3.
In Fig. 20.3.3, each colour represents the points in an equivalence class (see, e.g., the
single class represented by the purple splotches (splash of like-coloured pixels)
in Fig. 20.4).

Using the NEAR system picture point (pixel) touch feature, use the cursor to
touch a particular pixel of interest in an image showing a Pawlak painting. This
pixel-selection operation results in the display of an image class, that is, the set of
all 3×3 subimages with similar average pixel intensities. For a sample segmentation
class, see Fig. 20.4. This particular class reveals Pawlak’s extensive use of the same
shading (pixel intensities) for trees and water. �

Pawlak Springtime (5.2) Greyscale view (5.3) Segmentation

Fig. 20.5. Sample Pawlak Springtime Painting Segmentation

Example 20.3. Sample Pawlak Springtime Painting Segmentation
Using the NEAR system, import the Pawlak Springtime painting shown in
Fig. 20.5.1, choose subimage size p = 3, and again, for simplicity, choose a sin-
gle feature, namely average greyscale feature. The greyscale image for Pawlak’s
painting is shown in Fig. 20.5.2. The segmentation of Pawlak’s painting is given in
Fig. 20.5.3. Using the NEAR system display, use the cursor to touch a particular
pixel of interest in the displayed image. This pixel-selection operation results in the

1

NEAR system tabs

The NEAR system makes it possible to analyse digital images. For instance, image can be
studied either singly using the Eq tab option to determine equivalence classes in segmen-
tations or in pairs using the NI tab. To see the equivalence classes in an image, choose the
Eq tab and use the load button to import an image into the system. The complete NEAR
system, version 1.2, is available at http://wren.ece.umanitoba.ca

http://wren.ece.umanitoba.ca
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display of an image class, that is, the set of all 3× 3 subimages with similar aver-
age pixel intensities. For a sample segmentation class, see Fig. 20.6. This particular
class reveals Pawlak’s extensive use of the same shading (pixel intensities) for trees,
water as well as shoreline reeds shown in the foreground in Fig. 20.5.1. It can also
be observed that higher intensities of light tend to dominate Pawlak’s Springtime
painting (see, e.g. the dominance of the lighter regions shown Fig. 20.5.2.

The dominance of lighter springtime regions in Fig. 20.5.1 contrasts sharply
with the more sombre-shaded regions in the autumn painting in Fig. 20.3.1. In
both Fig. 20.4 (Autumn painting class) and Fig. 20.6 (Springtime painting class),
notice that colour intensities for the shoreline trees chosen by Pawlak are subtly
different and reflect the changing angle of the sun in forming tree shadows (i.e.
various combinations of light and dark of tree leaves, not painted individually but
portrayed as the eye would see them from a distance as varying splotches of greens
and blues). �

Fig. 20.6. Sample Springtime Class

From the sample segmentations, one
can begin to see shading patterns in
Pawlak’s paintings. For example, very
intensities of light are used by Pawlak
in the shading of parts of the distant
shoreline trees separated by white light
between the two groups of trees in the
background, tree watershadows, and
the shading of the foreground reeds.
These patterns become more obvious in
the study of neighbourhoods of points
given in Sect. 20.4 and study of regions
of interest (ROIs) in Sect. 20.6. In ad-

dition, by considering the varying C̆ech (and other) distances between neighbour-
hoods in ROIs in pairs of paintings, it is possible to gain a deeper knowledge of the
subtleties in Pawlak’s paintings, his use of shading to portray in a vivid way signs
of Autumn and Spring.

20.4 Neighbourhoods in Paintings by Z. Pawlak

Fig. 20.7. Nbd Nx

Neighbourhoods of points in Z. Pawlak’s paintings are
briefly considered in this section. Let A be a nonempty
subset of topological space X . Recall that a neighbour-
hood of A is any subset of X that is an open set contain-
ing A [2, §1.2, p. 19]. A set A is open if, and only if, for
each x∈ A, all points sufficiently near x belong to A. In
this study, a neighbourhood of a point x is an open set
A such that all of the points in A that are sufficiently
near x.
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Traditionally, nearness of points is measured in terms of the location of the points.
Let σ : X × X :→ [0,∞] denote the standard distance between points in X2. For
ε ∈ (0,∞], a neighbourhood of x ∈ X (denoted Nx) is the set of all y ∈ X such that
σ(x,y) < ε (see, e.g. Fig. 20.7, where the distance σ(x,y) between each pair x,y is
less than ε in the neighbourhood). In that case, a neighbourhood is called an open
ball [3, §4.1] or spherical neighbourhood [8, §1-4]. In the plane, the points in a
spherical neighbourhood are contained in the interior of a circle.

In this study of Z. Pawlak’s paintings, the focus is on what is known as a visual
neighbourhood Nx of a point x. In such a neighbourhood, points have similar visual
appearance, each represented by a feature vector x (e.g. a vector of feature values for
colour, texture, shape) extracted from a particular picture point or picture element
(pixel). This visual information is extracted from each pixel in the form of probe
function values.

A visual image is viewed as a set of points, where each point is an image pixel.
A nbd Nx of a point x is an open set A such that the visual information values
extracted from all of the points in A are sufficiently near the appearance x of x. In its
simplest form, a neighbourhood of a point x (ignoring point descriptions) is denoted
simply by Nx (cf. W.J. Thron [39, ch.4]) and by Nx for a visual neighbourhood with
reference point x, where the distance between neighbourhood points is less than a
threshold ε ∈ (0,∞]3.

Fig. 20.8. Sample Visual Neighbourhood Nx Inside the · · • · · · · • ·· Border

2 That is, for x,y ∈ X ⊂ �,σ(x,y) =| x−y |.
3 The term threshold is preferred here, since ε is not a radius but rather an upper bound

on the distance between each pair of pixel descriptions for pixels that belong to a visual
neighbourhood. When only one probe function is used in pixel descriptions, then a visual
neighbourhood is denoted by Nφ(x). Similarly, the term reference point is used instead of
centre to call attention to the fact that a reference point is often not in the centre of a visual
neighbourhood.
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Let X denote a set of pixels in a digital image. Each pixel description is deter-
mined by a feature vector containing probe function φ values representing pixel
visual information in a digital image. Let y ∈ X . For simplicity, a feature vector y
for a pixel y (i.e. description of y) is defined by

y = (φ1(y), . . . ,φi(y), . . . ,φn(y)), pixel description,

where φi(y) is a feature value extracted from pixel y and n is the length of a pixel
description. The distance between the description y of each pixel y and the descrip-
tion x of reference point x is less than a threshold ε in the neighbourhood Nx. The
details for the sample visual neighbourhood in Fig. 20.8 are given next.

X = {digital image pixels},
φ : X → [0,∞], (probe),

x,y = descriptions of pixels x,y ∈ X ,

d(x,y) =
n

∑
i=1

ABSφi(x)−φi(y), (Manhattan distance between pixel descriptions),

x ∈ X , (visual neighbourhood reference point),

ε ∈ (0,∞], (sufficient nearness bound),

Nx = {y ∈ X : d(x,y) < ε} (perceptual neighbourhood).

At this point, we again can observe that the appearance of a visual neighbourhood
of a reference point can be quite different from the appearance of a spherical neigh-
bourhood of a point.

Pawlak Springtime (9.2) Greyscale view (9.3) Neighbourhood

Fig. 20.9. Pawlak 1954 Waterscape Painting

Example 20.4. Sample Visual Nbd of a Point
This example focuses on the visual neighbourhood Nx inside the · · • · · · · • ·· border
in Fig. 20.8. Observe that the members in a visual neighbourhood of point have
descriptions that are sufficiently near the visual neighbourhood centre. Let φ : X →
[0,∞] be defined by

φ(x) = pixel intensity.
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For example, each of the points in the green-shaded regions in Fig. 20.8 have inten-
sities that are very close to the intensity of the point x. By contrast, many points in
the yellow-shaded region have higher intensities (i.e. more light) than the pixel at
x, For example, consider the intensities of the points in the visual nbd represented
by the green wedge-shaped region and some outlying green circular regions and the
point x4 in the yellow-shaded region in Fig. 20.8, where

ε= 5 (low-intensity threshold),

d(x,x1) < ε,
d(x,x2) < ε,
d(x,x3) < ε, but

d(x,x4) > ε, where φ(x4) = high intensity (close to pure white)

In the case of the point x4 in Fig. 20.8, the intensity is high (close to white), that
is, φ(x4) ∼ 255. By contrast the point x has low intensity (less light), for exam-
ple, φ(x) ∼ 100. Assume ε = 5. Hence, ABSφ(x)−φ(x4) > ε. As in the case of
Z. Pawlak’s paintings, the distance between feature vectors representing visual in-
formation extracted from image pixels can be sufficiently near (perceptually) the
appearance of a reference point x, but the locations of the pixels themselves can be
far apart, that is, not sufficiently near or far apart, if one considers the locations of
the pixels. �

Fig. 20.10. Sample Nx0 , ε=5

The pronounced visual similarity
between intensities of the points
of light used in filling in skylines
and water surfaces can be fre-
quently observed in different re-
gions in Z. Pawlak’s waterscapes.
This is especially true in the ear-
liest known painting by Pawlak, a
waterscape showing a marshland
in Poland that was probably done
in the fall of the year (shown in
Fig. 20.10). Before we look at the
details and a sample visual neighbourhood in this remarkable painting, observe one
splotch of red indicates a farm building along the distant horizon in the upper right-
hand side of the painting. This tiny bit of red (see splotch in Fig. 20.9.1) contrasts
sharply with the dominant yellows, bits of orange, dark greens of the marshland
reeds, grasses and shrubs, and the reflection of the late afternoon sun on water shown
in yellow as an artist would see the reflections of the light on the water.

Example 20.5. Sample Visual Neighbourhood in Pawlak’s 1954 Waterscape
This example calls attention to one of the visual neighbourhoods in Pawlak’s 1954
waterscape (see Fig. 20.9.1). This is a watercolour that has faded over time. This
1954 waterscape is rendered as a greyscale image in Fig. 20.9.2. Let ε = 5 and
obtain the neighbourhood shown in Fig. 20.9.3 and Fig. 20.10.
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A single visual neighbourhood shown in Fig. 20.10. In this visual neighbourhood,
Nx0 shown in Fig. 20.10, the intensities of all points are sufficiently near the intensity
of point x0. The set of intensities in Nx0 are displayed with splotches of pastel green

in Fig. 20.10, providing a nice example of an open set. Notice that the pixel
intensities for large regions of the water and sky are quite similar. This is the case
with the sample pixels (points of light) x0,x1,x2, where the in ABSφ(x0)−φ(x1) < ε
and ABSφ(x0)−φ(x2) < ε. �

Fig. 20.11. Pawlak Visual Neighbourhood Nx0 , ε=5

Greyscale view (12.2) Sample Visual Nbd

Fig. 20.12. Greyscale Views of Springtime Painting
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The pronounced visual similarity between intensities of the points of light in
Pawlak’s paintings can be found in different regions more recent Pawlak water-
scapes. Consider, next, a recent (sometime before 2006) springtime waterscape by
Pawlak shown as a greyscale image in Fig. 20.12.1. Before we consider one of the
remarkable visual neighbourhoods in this painting, recall that a particular visual
neighbourhood can be derived by using the cursor touch feature available in the
NEAR system.

Example 20.6. Visual Nbd in a Recent Waterscape by Z. Pawlak
Let ε = 5 and obtain the single visual neighbourhood shown in Fig. 20.11. Again,
notice that the pixel intensities a number of different regions of the water and sky
are quite similar. This is the case with the sample pixels (points of light) x0,x1,x2

shown in Fig. 20.11, where the in ABSφ(x0)−φ(x1) < ε and ABSφ(x0)−φ(x2) <
ε. In other words, the intensities of all points in the visual nbd in Fig. 20.11 are
sufficiently near the intensity φ(x0). �

20.5 ε-Approach Nearness

This section briefly introduces what is known as ε-approach nearness spaces. Such
a space provides a framework that is useful in finding pairs of collections of sub-
sets that are sufficiently near or apart. An application of this form of nearness
study framework is given in the sequel in terms of a study of regions-of-interest
in Pawlak’s paintings. Let A ,B ∈ P 2(X), then define

A ∨B � {A∪B : A ∈ A ,B ∈ B},
A ≺ B ⇔∀A ∈ A ,∃B ∈ B : B⊆ A that is, A corefines B .

Assume ε∈ (0,∞]. An ε-approach merotopy on X is a function ν : P 2(X)×P 2(X)→
[0,∞] provided for any collections A ,B ,C ∈ P 2(X), we have

(AN.1) A ≺ B =⇒ ν(C ,A)≤ ν(C ,B),
(AN.2) (

⋂
A)∩ (

⋂
B) �= /0=⇒ ν(A ,B) < ε,

(AN.3) ν(A ,B) = ν(B ,A) and ν(A ,A) = 0,
(AN.4) /0 ∈ A =⇒ ν(C ,A) = ∞,
(AN.5) ν(C ,A ∨B)≥ ν(C ,A)∧ν(C ,B).

The pair (X ,ν) is called an ε-approach merotopic space. There is continuing interest
in the topological closure of a nonempty set (see, e.g. [11, 13]). For an ε-approach
merotopic space (X ,ν), the function clν : P (X)−→ P (X) defined by

clν(A) = {x ∈ X : ν({{x}},{A}) < ε}, for all A⊆ X

satisfies the following properties for all A,B ∈ P (X) :

(cl.1) clν( /0) = /0,
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(cl.2) A⊂ clν(A),
(cl.3) clν(A∪B) = clν(A)∪ clν(B).

That is, clν is a C̆ech topological closure of a set [41, Def. 15.A.1]. Let clν(A) =
{clν(A) : A∈ A}. An ε-approach merotopy ν on X is called an ε-approach nearness
on X for A ,B ∈ P 2(X), provided

(AN.6) ν(clν(A),clν(B))≥ ν(A ,B).

Then clν also satisfies

(cl.4) clν(clν(A)) = clν(A).

That is, clν is a Kuratowski closure operator on X [13, Def. 2.2].

Example 20.7. The function νD : P 2(X)×P 2(X)−→ [0,∞] defined as

νD(A ,B) � sup
A∈A ,B∈B

D(A,B), where νD(A ,A) � sup
A∈A

D(A,A) = 0

satisfies (AN.1)-(AN.5). Hence, νD is an ε-approach merotopy on X . Let clνD(A) =
{clνD(A) : A ∈ A}, where clνD is defined by

clνD(A) = {x ∈ X : νD({{x}},{A}) < ε}, for all A⊆ X .

Then νD satisfies (AN.6). Hence, (X ,νD) is an ε-approach nearness space. �

Remark 20.1. ε-approach nearness
It is now possible to consider what is known as ε-approach nearness. The utility
of this form of nearness is considerable in image analysis. In this section, an ap-
plication of ε-approach nearness is given in a study of Z. Pawlak’s waterscapes.
Let ε ∈ (0,∞]. Then the function νd : P 2(X)× P 2(X) −→ [0,∞] defined as: for
A ,B ∈ P 2(X), νd(A ,B) = 0, if (

⋂
A)∩(

⋂
B) �= /0, and νd(A) =∞, otherwise, is an

ε-approach nearness on X and clνd (A) = A, for all A⊆ X . We call (X ,νd) a discrete
ε-approach nearness space. Further, the function νi : P 2(X)×P 2(X)−→ [0,∞] de-
fined as: for A ,B ∈ P 2(X), νi(A ,B) = 0, if /0 /∈ A or /0 /∈ B , and νi(A) = ∞, other-
wise, is an ε-approach nearness on X and clνi(A) = X , for all nonempty subsets A
of X . We call (X ,νi) an indiscrete ε-approach nearness space.

Definition 20.4. Let C ∈ P 2(X) and let (X ,ν) be an ε-approach nearness space.
Then C is a ν-cluster, provided the following conditions are satisfied:

(i) C,D ∈ C =⇒ ν({C},{D}) < ε,
(ii) ν({A},{C}) < ε, for all C ∈ C =⇒ A ∈ C ,
(iii) C∪D ∈ C =⇒C ∈ C or D ∈ C .

Example 20.8. [40]. Let (X ,ν) be an ε-approach nearness space. Denote e(x) =
{A⊆ X : x ∈ clν(A)}, x ∈ X . Then e(x) is a ν-cluster, for all x ∈ X . �

Property 20.1. ε-Approach Nearness Separation Axiom. An ε-approach nearness
space (X ,ν) is called separated, provided ν({{x},{y}}) < ε=⇒ x = y.
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Definition 20.5. An ε-approach nearness space (X ,ν) is said to be complete if, and
only if,

⋂
clν(A) �= /0, for all ν-clusters A ∈ P 2(X)

Remark 20.2. In an extended metric space, Definition 20.5 reduces to the usual defi-
nition of completion, that is, a metric space is complete if, and only if, each Cauchy
sequence is convergent. Let (X ,ν) be an ε-approach nearness space, let X∗ be the set
of all ν-clusters and let f : X −→ X∗ be defined by f (x) = e(x). For Ω,ℑ ∈ P 2(X∗),
define the function ν∗ : P 2(X∗)×P 2(X∗)−→ [0,∞] by

ν∗(Ω,ℑ) = ν(
⋃
{
⋂
ω : ω ∈Ω},

⋃
{
⋂
τ : τ ∈ ℑ}).

Theorem 20.1. (X∗,ν∗) is a complete separated ε-approach nearness space.

The proof of Theorem 20.1 is given in [35] and not repeated, here. There are many
instances of ε-approach nearness on X just as there are many instances of ε-approach
spaces [14] and metric spaces on X .

Let ℑ1 and ℑ2 be a pair of digital images and let X be the set of all pixels of
ℑ1 and ℑ1, that is, X = ℑ1∪ℑ2. If we want to compare these two images, then we
choose a collection A of subimages from ℑ1 and another collection B of subim-
ages from ℑ2. Then A ,B ∈ P 2(X). Here feature values are considered in measur-
ing the nearness of the images [34]. We say that A is similar (near) to B (written
as ν(A ,B) = 0) if and only if there exists subimages A ∈ A and B ∈ B such that
ν({A},{B}) = 0, where ν is an approach merotopy on X (cf. [15, 34]). Practically,
this is a rare situation. For example, if we consider the feature colour in comparing
A and B , then A and B can have many different shades of the same colour (say
blue). So, this observation leads us to consider A and B being sufficiently near with
respect to the feature ‘color’; that is, ν(A ,B) < ε, where ε ∈ (0,∞]. Thus a func-
tion that measures sufficient nearness is required. A recognition of the presence of
sufficient nearness in comparing collections of objects motivated the axiomatization
of ε-approach merotopic spaces, where ε ∈ (0,∞]. That is, an ε-approach merotopy
measures the sufficient nearness of two objects. Imagesℑ1 and ℑ2 are said to be suf-
ficiently near if, and only if, there exist subcollections A ∈ P 2(ℑ1) and B ∈ P 2(ℑ2)
such that ν(A ,B) < ε.
Example 20.9. Let ℑ1 and ℑ2 be two digital images and X = ℑ1∪ℑ2. A nonempty
collection A ∈ P 2(ℑ1) is descriptively ε-near a nonempty collection B ∈ P 2(ℑ2) if,
and only if, the description-based merotopy

νDρ‖·‖ (A ,B) � sup
A∈A ,B∈B

Dρ‖·‖(A,B) < ε,

Fig. 20.13. ε-Near Images

for a chosen ε ∈ (0,∞]. The distance func-
tion ρ‖·‖ : �n × �

n → [0,∞] is defined, by
the ‖ · ‖1 norm called the taxicab distance,
that is, ρ‖·‖(a,b) =‖ a− b ‖1= ∑n

i=1 |ai −
bi|. For example, let a,b denote a pair of
n-dimensional vectors of numbers that are
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positive real values representing intensities of light reflected from objects in a vi-
sual field, i.e., a = (a1, . . . ,ai, . . . ,an),b = (b1, . . . ,bi, . . . ,bn) such that ai,bi ∈ �0+.
For this reason, we introduce a form of Čech gap functional Dρ‖·‖ such that Dρ‖·‖ :

P (X)×P (X)→ [0,∞] is defined by

Dρ‖·‖ (A,B) �
{

inf{ρ‖·‖(a,b) : a ∈ A,b ∈ B}, if A and B are not empty,

∞, if A or B is empty.

Then, for example, consider

νDρ‖·‖
(A ,B) �

⎧
⎪⎨

⎪⎩

inf

{

sup
A∈A ,B∈B

Dρ‖·‖ (A,B)

}

, if A and B are not empty,

∞, if A or B is empty.

The egg-shaped regions labelled A,B in the foreground represent descriptively sim-
ilar neighbourhoods in digital images. If we consider only greylevel intensity of the
pixels in A,B, then, by definition, for some choices of ε, Dρ‖·‖(A,B) < ε. The pair
of • bullets in Fig. 20.13 each has a feature value extracted with probe φ [27, 26].
Observe that (X ,νDρ‖·‖

) is an ε-approach nearness space.

Table 20.1. Comparison Between Pawlak Waterscapes

feature(s) Pawlak 1954 nbd vs. Recent spring nbd ε-value Dρ‖·‖-value

Intensity sky-water nbd (Fig. 20.10 vs. Fig. 20.11) 10 4.00

Intensity sky-water nbd (Fig. 20.10 vs. Fig. 20.11) 5 0.00

It helps to experiment with measurements of the distance between a single pair
of very simple collections of subsets, before considering ε-approach nearness mea-
surements in largescale settings provided by Z. Pawlak’s paintings. The following
example suggests how to do this.

Example 20.10. Sample Nearness Measurements Between Collections
In this example, we first briefly consider measurement of the distance between single
pairs of neighbourhoods in comparing digital pictures. Assume

A =
∣
∣
∣
∣
1 2
3 4

∣
∣
∣
∣ ,B =

∣
∣
∣
∣
5 6
7 8

∣
∣
∣
∣

represent a pair of tiny greyscale images A,B, each containing with four pixels with
the indicated intensities. Also assume that A,B represent a pair of ROIs extracted
with from a pair of larger greyscale images. Next, extract collections A ,B from the
ROIs
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A = {A1,A2},B = {B1,B2,B3}, where

A1 = {1,2},A2 = {3,4},
B1 = {5,6},B2 = {7,8},B3 = {9,10}

D(B1,A1) = inf{inf{d(5,1),d(5,2)}, inf{d(6,1),d(6,2)}},
= inf{inf{4,3}, inf{5,4}},
= inf{3,4}= 3, . . . ,

sup(D(B1,A)) = sup{D(B1,A1),D(B1,A2)},
= sup{3,1}= 3, . . . ,

ν(B ,A) = inf{sup
A∈A

(D(B1,A), sup
A∈A

(D(B2,A), sup
A∈A

(D(B3,A)},

= inf{3,5,7}= 3.

Let ℑ,Ω denote the images in Fig. 20.10 and Fig. 20.11, respectively, and let X =
ℑ∪Ω. In the approach space (X ,Dρ‖·‖ ), consider the sample nearness measure-

ments4 in Table 20.1. �

Fig. 20.14. Sample ROI N

20.6 Regions-of-Interest in Z. Pawlak’s Paintings

In this section, sample regions-of-interest (ROIs) are considered in terms of their
nearness to each other. A image region such as the one in Fig. 20.14 is a collection
N ∈ P (X) of neighbourhoods of points in the interior of the region.

The distance measurement framework provided by ε-approach nearness
considered in the context of ROIs in digital pictures lead to a number of different

4 The measurements in Table 20.1 are from an implementation of (X ,Dρ‖·‖ ) created by H.

Fashandi to handle comparison of pairs of visual neighbourhoods. Let NxandNy denote a
pair of visual image neighbourhoods, then use Dρ‖·‖ ({Nx} ,

{
Ny
}
) to compute values like

those in Table 20.1.
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applications such as classification of fingerprints, authentication of written signa-
tures, analysis of digital images from remote sensors, microfossils in oil explo-
ration core samples, web page regions, and satellite images useful in detecting in
planetary surface or stellar changes. In this section, the focus is on an applica-
tion of ε-approach nearness in comparing regions in Z. Pawlak’s paintings such
as those shown in Fig. 20.15. Notice that Nx ∈ ROI1,Ny ∈ ROI2 in Fig. 20.15, where
ROI1,ROI2 are collections of neighbourhoods. ε-approach nearness is ideally suited
for a study of collections of neighbourhoods, since the assertion that ROIs are near
or apart is made if, and only if, there is at least one pair of neighbourhoods that are
sufficiently near or apart. The end result is that we consider all pairs of neighbour-
hoods in selected ROIs in assessing the nearness or apartness of the ROIs.

The answer to the question How near are Pawlak’s paintings? can be answered
fairly accurately by ε-approach nearness distances between descriptions of members
of collections of neighbourhoods. To give nearness measurements more focus, small
regions-of-interest (ROIs) (e.g. horizon, shoreline) are considered.

Fig. 20.15. Sample Nbds in ROIs

Example 20.11. Sample ROIs in a Pawlak Paintings
Sample ROIs in paintings of brightly-coloured autumn trees by Z. Pawlak are shown
in Fig. 20.15. Assume that each ROI is selected manually. After identifying the
ROIs, it is then possible to identify visual neighbourhoods of each point in the ROIs
(see, e.g. Nx ∈ROI1,Ny ∈ROI2 in Fig. 20.15). To determine the nearnessor apartness
of selected ROIs, it is necessary to identify the features of image pixels needed to
extract the descriptions of the pixels in the form of feature vectors. Detection of
patterns (repetition of shapes or colours or textures like those found in Pawlak’s
paintings) in a visual neighbourhood then reduces to determining the perceptual
distances between neighbourhoods of ROI points. By perceptual distance, we mean
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determining the distance Dρ‖·‖ ({Nx} ,{Ny}) for pairs of neighbourhoods Nx,Ny for

for all pairs of neighbourhoods. �

Example 20.12. Sample ROIs in Pawlak’s Paintings
Consider, first, watershadow ROIs in two of Pawlak’s paintings. Sample water-
shadow ROIs are shown in Fig. 20.16. For example, the tip-of-the-shoreline ROI
in Fig. 20.15 (repeated in Fig. 20.16.2) can be compared with the ROI shown in
Fig. 20.16.1. Other Pawlak watershadows are shown in Fig. 20.16.3 and Fig. 20.16.4.
In addition, watershadows are shown in Fig. 20.16.5 and Fig. 20.16.6. �

Table 20.2. Comparison Between Pawlak Waterscapes

feature(s) Pawlak Autumn ROI vs. Spring ROI ε-value νDρ‖·‖
-value

Edge shoreline ROI (Fig.20.16.1 vs. Fig. 20.16.2) 20 0.23

Intensity shoreline ROI (Fig.20.16.1 vs. Fig. 20.16.2) 4 3.00

Intensity, Edge shoreline ROI (Fig.20.16.1 vs. Fig. 20.16.2) 33 4.97

Edge trees ROI (Fig.20.16.3 vs. Fig. 20.16.4) 54 13.12

Intensity trees ROI (Fig.20.16.3 vs. Fig. 20.16.4) 4 3.00

Intensity, Edge trees ROI (Fig.20.16.3 vs. Fig. 20.16.4) 54 50.12

Edge shadows ROI (Fig.20.16.5 vs. Fig. 20.16.6) 2 1.08

Intensity shadows ROI (Fig.20.16.5 vs. Fig. 20.16.6) 15 14.00

Intensity, Edge shadows ROI (Fig.20.16.5 vs. Fig. 20.16.6) 16 15.08

Example 20.13. Sample ROIs in Pawlak & Monet Waterscapes
In this example, a waterscape painted in 1954 by Pawlak is compared with a water-
scape painted by C. Monet in 1929. The APm toolset5 can be used to select image
ROIs. This is the first step in determining the nearness of ROIs. Sample ROIs are
given in Fig. 20.16 and Fig. 20.17. Probe functions for two features are currently
available in the APm, namely, pixel gradient and intensity (more will be added later).
ROI neighbourhoods are determined after pixel features have been selected. �

Example 20.14. Sample ε-Approach Nearness Measurements
A selection of ε approach merotopic nearness measurements is given in Table 20.2
and Table 20.3. In each case, a ε value is given in the case where the merotopy
νDρ‖·‖ (A ,B) < ε. Pixel gradient (i.e. edge feature in the measurement tables) con-

sistently requires a low ε value to obtain a merotopy measurement that indicates that

5 Available at http://wren.ece.umanitoba.ca. This distribution of APm includes not
only the tool itself but also a report that explains how to use the tool to select and compare
digital image ROIs. Nearness measurements are carried out using an approach merotopy.
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the collections of neighbourhoods in a pair of ROIs are near. From a pixel gradient
perspective, the selected shoreline and building ROIs in the sample paintings by
Pawlak and Monet provide an indicator of the similarities of the painting techniques
of both artists. The results in these measurement tables are inconclusive. Many more
ROIs of varying size should be considered to arrive at an assessment of the nearness
of the patterns represented by the ROIs. �

20.16.1: Pawlak springtime shoreline 20.16.2: Pawlak fall shoreline

20.16.3: Pawlak springtime treeshadows 20.16.4: Pawlak autumn treeshadows

20.16.5: Pawlak springtime watershadows 20.16.6: Pawlak autumn watershadows

Fig. 20.16. Comparing Pawlak Waterscapes
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20.17.1: Pawlak shoreline 1954 20.17.2: Monet shoreline 1929

20.17.3: Pawlak building 1954 20.17.4: Monet building 1929

Fig. 20.17. Sample Measurements

Table 20.3. Comparison Between Pawlak and Monet Waterscapes ROIs

feature(s) Pawlak ROI vs. Monet ROI ε-value νDρ‖·‖
-value

Edge shoreline ROI (Fig.20.17.1 vs. Fig. 20.17.2) 8 0.49

Intensity shoreline ROI (Fig.20.17.1 vs. Fig. 20.17.2) 20 1.00

Intensity, Edge shoreline ROI (Fig.20.17.1 vs. Fig. 20.17.2) 20 20.34

Edge building ROI (Fig.20.17.3 vs. Fig. 20.17.4) 7 6.12

Intensity building ROI (Fig.20.17.3 vs. Fig. 20.17.4) 20 28.00

Intensity, Edge shoreline ROI (Fig.20.17.3 vs. Fig. 20.17.4) 30 11.55

20.7 Concluding Remarks

This chapter offers a tribute to Zdzisław Pawlak’s extraordinary talent as a painter. It
focuses on the some of the subtleties in Pawlak’s paintings that span over 50 years,
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beginning in the early 1950s. These subtleties are especially evident in Pawlak’s
rendition of Springtime and Autumn skies and watershadows cast by lake shoreline
trees and marshland reeds and cattails.

In considering the patterns in Pawlak’s paintings, this chapter introduces a visual
perception approach in digital image analysis (briefly, perceptual image analysis).
This approach has been motivated by a need to solve the image correspondence
problem in terms of perceived resemblances between digital images. What the eye
sees should correspond, to some extent, to measures of nearness between pairs of
images. Pointers on how to go about establishing a perceptual image analysis can
be found in studies of representative space models of physical continua by Poincaré
toward the end of the 19th century and the introduction of approach spaces by R.
Lowen in 1989, elaborated in the years between 1997 and 2003.

In addition, the parallel discoveries about spatially near sets that began with F.
Riesz in 1908 and continued with the introduction of proximity spaces in the sem-
inal work by S.A. Naimpally in 1970, amplified and extended by others, led to the
recent introduction of ε-approach nearness spaces inspired by M. Katětov’s work on
merotopology. This chapter is attentive to two research streams (i.e. approach space
stream and merotopology stream) in presenting a viable approach to solving the im-
age correspondence problem and in arriving at a satisfactory approach to measuring
the nearness of Pawlak’s paintings.
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42. Wang, L., Liu, X., Tian, X.: A Generalization of Near Set Model. In: Yao, J., Ramanna,
S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954, pp. 553–558. Springer,
Heidelberg (2011)

43. Wolski, M.: Gauges, Pregauges and Completions: Some Theoretical Aspects of Near
and Rough Set Approaches to Data. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.)
RSKT 2011. LNCS, vol. 6954, pp. 559–568. Springer, Heidelberg (2011)

http://dx.doi.org/10.1016/j.ins.2009.04.018


Chapter 21
An Implementation of the Zdzisław Pawlak Idea
for Reasoning about Uncertainty: Approximate
Reasoning by Parts

Lech Polkowski and Maria Semeniuk–Polkowska

Keywords: Rough sets, mereology, rough inclusions, concept approximations,
many-valued mappings.

There is no inexact language for discoursing about inexact knowledge
(Zdzisław Pawlak)

21.1 Abstract

Professor Zdzisław Pawlak was the creator of Rough Set Theory, a paradigm for
reasoning about uncertainty, whose underlying ideas were the idea that there are
concepts which are wholly understandable (exact) and the idea of approximation of
other concepts by exact ones. The theory of rough sets was and is written down in the
language of naive set theory with objects of the real world as elements and concepts
as their sets. In that setting, approximations are operators of interior and closure with
respect to the topology induced by exact concepts. Our aim is to propose a higher–
level language of mereology, that is, calculus of parts, in which concepts become
elementary objects and relations among them are expressed as relations of being
parts to degrees. This analysis allows in particular for approximations to various
degrees which are introduced in this work.

This work is a homage to Professor Zdzisław Pawlak, memory of whom is still
with us.
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21.2 Introduction: The Language of Parts

Parts are the primitive notion of Mereology formulated in Leśniewski [4], cf., [5].
We introduce a binary predicate part with the meaning of the formula part(u,v)
that u is a part of v. The predicate part is to satisfy conditions,

(PT1) If part(u,v) and part(v,w) then part(u,w),

(PT2) If part(u,v) then it is not true that part(v,u).

A weaker notion is that of an ingredient (due to T. Kotarbiński, see [4]), formally,
the predicate ingr is defined as,

(INGR) ingr(u,v) if and only if part(u,v) or u = v.

These notions allow for some more precise relations among elements of the mereo-
logical universe. The predicate ov of overlap is defined as,

(OV) ov(u,v) if and only if there is w such that part(w,u) and part(w,v).

Complementary to overlap is the predicate dis of disjointness defined as,

(DIS) dis(u,v) if and only if it is not true that ov(u,v).

We use the term collection in the intuitive sense equivalent to the term property;
as we stay in the realm of a fixed collection of objects, no logical problems may
arise. For a property F , one defines, cf. [4], the class of F, Cls(F) by letting,

(CLS) (i) If F(u) then ingr(u,Cls(F)) (ii) If ingr(u,Cls(F)) then some
v,w satisfy ingr(v,u), ingr(v,w), F(w).

Reasoning with parts rests with the Leśniewski Inference Rule,

(IR) Given u,v, if for each t such that ingr(t,x) there exists z such that
ingr(z,t) and ingr(z,y), then ingr(x,y).

21.3 A Mereological Model for Rough Sets

Consider a collection F along with a sub–collection E , that is, E(u) implies F(u) for
each u. We assume for simplicity, which does not exclude generality of exposition,
that E consists of pair–wise disjoint elements, that is,

(DIS(E)) For u,v, if E(u) and E(v) then dis(u,v).
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A mereological model for rough sets is,

(MRS) Mm = (F,E, part, ingr),

where ingr is an ingredient relation which satisfies along with the part relation
condition (INGR). We call X an exact concept if and only if there exists a collection
H which is a sub–collection of E such that X = Cls(H).

We establish some properties of exact concepts.

Proposition 21.1. Each e such that E(e) is an exact concept.

Proof. It remains to check that e = Cls(e). Condition (i) in CLS is satisfied and
condition (ii) follows by easily verified fact that e is the class of its ingredients. �
For exact concepts X ,Y , with X = Cls(H) and Y = Cls(G), we define X ∨Y =
Cls(K), where K(u) if and only if there exists e such that E(e),H(e) or G(e),
ingr(u,e). Similarly, X ∧Y = Cls(L), where L(u) if and only if there exists e such
that E(e),H(e) and G(e), ing(u,e), provided ov(X ,Y ).

Proposition 21.2. X ∨Y and X ∧Y are exact concepts.

Proof. We rely on the definition CLS of classes; we consider X ∨Y first. Prop-
erty (i) of CLS is satisfied manifestly. For property (ii), we consider v such that
ingr(v,X ∨Y ). There are w,t such that ingr(w,v), ingr(w, t) and there exists e such
that E(e),H(e) or G(e), ingr(t,e). It follows by transitivity of ingr that ingr(w,e)
hence by definition CLS, X ∨Y =Cls(P), where P(e) if and only if H(e) or G(e),
that is, X ∨Y is an exact concept. In case of X ∧Y the proof goes along similar lines.

�
It is known, cf., [4], that the equivalence H ⇔ G implies Cls(H) = Cls(G) and
the implication H ⇒G implies ingr(Cls(H),Cls(G)). In virtue of this facts, logical
tautologies (p∨ q)∨ r ⇔ p∨ (q∨ r), (p∧ q)∧ r ⇔ p∧ (q∧ r), p∧ (q∨ r) ⇔ (p∧
q)∨ (p∧ r), p∨ (q∧ r)⇔ (p∨q)∧ (p∨ r), and p∨q⇔ q∨ p, p∧q⇔ q∧ p imply
the following proposition.

Proposition 21.3. For exact concepts X ,Y,Z, the following identities hold,

(i) (X ∨Y )∨Z = X ∨ (Y ∨Z),

(ii) (X ∧Y )∧Z = X ∧ (Y ∧Z),

(iii) X ∧ (Y ∨Z) = (X ∧Y )∨ (X ∧Z),

(iv) X ∨ (Y ∧Z) = (X ∨Y )∧ (X ∨Z),

(v) X ∨Y = Y ∨X,

(vi) X ∧Y = Y ∧X. �
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For an exact concept X = Cls(H), we define its complement−X as−X = Cls(−H),
where −H denotes the collection of those e such that E(e) which are not in H, that
is, they satisfy dis(e,X) in virtue of our assumption that elements in E are pair–wise
disjoint. Logical tautologies ¬(p∨q)⇔ (¬p)∧ (¬q), ¬(p∧q)⇔ (¬p)∨ (¬q), and
¬(¬p)⇔ p imply

Proposition 21.4. For exact concepts X ,Y, the following hold,

(i) −(−X) = X,

(ii) −(X ∨Y ) = (−X)∧ (−Y ),

(iii) −(X ∧Y ) = (−X)∨ (−Y). �

As ingr is a partial order, the notion of the supremum of a collection of exact con-
cepts is in order. For a collection Z=(Xa : a in A) an exact concept X is the supremum
of Z if and only if ingr(Xa,X) for each a in A and each exact concept Y such that
ingr(Xa,Y ) for each a in A satisfies ingr(Y,X).

Proposition 21.5. For a collection H such that H(e) if and only if there exists a
in A such that Ha(e), where Ha is a collection for each a in A, we have that X =
Cls(H) = supaXa, where Xa = Cls(Ha).

Proof. As Ha(e) ⇒ H(e) it follows that ingr(Xa,X) for each a in A. Assume that
an exact concept Y is such that ingr(Xa,Y ). The inclusion ingr(X ,Y) follows by a
direct application of the inference rule IR to the pair X ,Y . �

Propositions 21.3, 21.4, 21.5 imply that

Proposition 21.6. The collection of exact concepts with operations ∨,∧,− is made
into a complete Boolean algebra with the unit Cls(E) and without the null
element. �

Let us stress here that the fact that each mereological universe carries a structure
of a complete Boolean algebra without the null element was proved first in Tarski
[14], where the definitions of operations ∨,∧,− used above were given; this fact
may not be understood as the statement that each mereological universe is merely
the universe of a complete Boolean algebra without the null element, cf., Clay [1].

Proposition 21.6 generalizes the rough set result, cf., Pawlak [8] that exact sets
generated by the partition by indiscernibility relation IND(B) for a set B of at-
tributes, form a complete Boolean algebra under operations ∪,∩,−; in case the part
relation is the strict containment ⊂, and then the ingredient relation is the contain-
ment⊆, the class operator becomes the union

⋃
of a family of sets, and Proposition

21.6 gives the rough set result when E is the set of indiscernibility classes; the only
difference is the lack of the empty concept.
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21.4 Approximations

For a concept X , in F , we define its lower–E–approximation XE as follows,

(LA) XE = Cls(LX ),

where LX(u) if and only if E(u) and ingr(u,X).

From this definition, the following properties of the lower–E–approximation follow,

Proposition 21.7. The operator .E satisfies,

(i) Each concept XE is exact,

(ii) If X is an exact concept, then X=XE,

(iii) ingr(XE ,X),

(iv) XE E = XE,

(v) If ingr(X ,Y ) then ingr(XE ,Y E).

Proof. (i) follows by definition of an exact concept, (ii), (iv) follow directly from
(i), (iii), (v) are obtained by the inference rule (IR). �

The upper–E–approximation X
E

is defined as

(UA) X
E

=Cls(UX )=−Cls(DX),

where UX(u) if and only if E(u) and ov(u,X), and, DX (u) if and only if E(u) and
dis(u,X).

Proposition 21.8. As with lower approximations, the upper–E–approximation op-
erator satisfies,

(i) Each concept X
E

is exact,

(ii) If X is an exact concept, then X=X
E

,

(iii) ingr(X ,X
E),

(iv) X
E E

= X
E

,

(v) If ingr(X ,Y ) then ingr(XE
,Y

E). �

In case when ingr is the containment ⊆ on sets, in which case the class opera-
tor is the union of a family of sets, and E is the family of indiscernibility classes
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of an indiscernibility relation IND(B) for some set B of attributes, operators of
lower– and upper–E–approximations become operators of B–lower– and B–upper–
approximations of the rough set theory, cf., [8].

21.5 An Extension to Parts to a Degree: Rough Mereology

Rough mereology, cf., [9], is a theory of the notion of a part to a degree. It preserves
mereology by the requirement that part to the greatest degree of 1 be the ingredient.
The formal rendering of the idea of a part to a degree is by means of the predicate µ
of rough inclusion. We use the same symbol µ for predicate and its interpretation as
a relation in any model of mereology.

The predicate µ(x,y,r), under the generic name of rough inclusion [9] is intro-
duced as satisfying in the model (U, ingr) of mereology, the following conditions,

(RINC1) µ(x,y,1)⇔ ingr(x,y),

(RINC2) µ(x,y,1)⇒∀z[µ(z,x,r)⇒ µ(z,y,r)],

(RINC3) µ(x,y,r)∧ s < r ⇒ µ(x,y,s).

The immediate consequences of postulates RINC1–RINC3, obtained directly or by
means of the inference rule (IR), are

(RINC4) µ(x,x,1),

(RINC5) µ(x,y,1)∧µ(y,z,1)⇒ µ(x,z,1),

(RINC6) µ(x,y,1)∧µ(y,x,1)⇔ x = y,

(RINC7) x �= y⇒¬µ(x,y,1)∨¬µ(y,x,1),

(RINC8) ∀z∀r[µ(z,x,r)⇔ µ(z,y,r)]⇒ x = y.

By a model for rough mereology, we mean a quadruple,

(MRM) M = (VM,πM, ingrM,µM),

where VM is a set with a part relation πM ⊆VM×VM, the associated ingredient rela-
tion ingrM ⊆VM ×VM, and a rough inclusion µM ⊆ VM×VM× [0,1] which satisfies
RINC1–RINC3.

A rough mereological model for rough sets is,

(RMRS) Mrm = (F,E,µ, ingr),
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where F,E are as in MRS (sect.) 21.3, µ is a rough inclusion, and ingr is an ingredi-
ent relation related to µ by means of (RINC1).

We restrict ourselves to two cases of rough inclusions, in [9] the reader may find
a more detailed discussion. Both cases are related to continuous t–norms.

We recall that a t–norm T is a function T : [0,1]2 → [0,1], which satisfies the
following postulates,

indext–norm (TN1) T is associative: T (T (x,y),z) = T (x,T (y,z)),

(TN2) T is commutative: T (x,y) = T (y,x),

(TN3) T is non–decreasing in each coordinate: T (z,y)≥ T (x,y) whenever
z≥ x,

(TN4) T (1,x) = x,

(TN5) T (x,0) = 0,

Moreover, T may satisfy an additional postulate,

(TN6) T is continuous.

‘Classical’ t–norms,

the Łukasiewicz t–norm L(x,y) = max{0,x + y−1},

the Product t–norm P(x,y) = x · y,

the Minimum t–norm M(x,y) = min{x,y},

satisfy TN1–TN6. Let us observe that L and P satisfy,

(TN7) T (x,x) < x for each x ∈ (0,1).

A t–norm T (x,y) which satisfies postulates TN6, TN7 is said to be an Archimedean
t–norm.

Given a t–norm T , the residual implication ⇒T is defined via the condition

(RI) x⇒T y≥ z⇔ T (x,z) ≤ y (21.1)

For further reference, we include here a useful list of well–known properties of
residual implications.

Proposition 21.9. For every t–norm T, the residual implication⇒T satisfies the fol-
lowing conditions,
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(RI1) T (x,y)≤ z⇒T u if and only if x≤ T (y,z)⇒T u,

(RI2) y ⇒T (z⇒T u) = T (y,z)⇒T u,

(RI3) y ⇒T z = 1 if and only if y≤ z,

(RI4) x ≤ y⇒T u if and only if y≤ x ⇒T u,

(RI5) y ≤ (y⇒T z)⇒T z,

(RI6) T (x,y)⇒T 0 = x⇒T (y⇒T 0),

(RI7) x ⇒T (y⇒T r)≥ z if and only if (z⇒T x)⇒T r ≥ y,

(RI8) x ⇒T 0≥ 0.

Proof. Properties (RI1)–(RI4) follow straightforwardly by definition. We comment
a bit on the last four. As y ⇒T z ≤ y ⇒T z, we have T (y ⇒T z,y) ≤ z; hence, by
commutativity of T , it follows that T (y,y⇒T z)≤ z which implies y≤ (y⇒T z)⇒T

z, that is, (RI5) follows.
Associativity of T implies that z≤ T (x,y)⇒T 0 if and only if T (z,T (x,y))

≤ 0, that is, T (T (z,x),y) ≤ 0 so equivalently T (z,x) ≤ y ⇒T 0 which is equivalent
to z≤ x⇒T (y⇒T 0). From the equivalence of the first and the last statements (RI6)
follows. Property (RI7) is a paraphrase in terms of⇒T of associativity of T whereas
(RI8) does express the property that T (x,0) = 0. �

We recall, cf., [9], that each continuous t–norm T defines a rough inclusion µT by
means of,

(RES) µT (x,y,r) if and only if x⇒T y≥ r.

We recall that µ(x,y,1) if and only if x ≤ y and that the t–norms L,M,P induce
the following rough inclusions (we give values in cases when x≥ y)

µL(x,y,r) if and only if min{1,1− x + y}≥ r,

µP(x,y,r) if and only if y
x ≥ r,

µM(x,y,r) if and only if y ≥ r.

We recall, cf., [9], Ch. 6, that those rough inclusions obey the transitivity law; we
include a proof.

Proposition 21.10. For each continuous t–norm T , the transitivity rule holds for the
rough inclusion µT : if µT (x,y,r),µT (y,z,s), then µT (x,z,T (r,s)).
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Proof. µT (x,y,r) is equivalent to T (x,r)≤ y, and, µT (y,z,s) is equivalent to T (y,s)≤
z. By coordinate–wise monotonicity of T , it follows that T (T (x,r),s) ≤ z, and, by
associativity of T , one obtains T (x,T (r,s)) ≤ z; hence, µT (x,z) ≥ T (r,s). �

It is well–known, cf., for example, [2], that L,P are the only (up to an isomor-
phism) Archimedean rough inclusions; a theorem due to Ling [6] asserts that for an
Archimedean t–norm a representation holds,

(AR) T (x,y) = g( f (x)+ f (y)),

where f is a continuous decreasing function from [0,1] into [0,1], and g is the
pseudo–inverse to f (cf., for example, [9], Ch. 6).

In case of L, f (x)= 1−x = g(x) for x∈ [0,1]. We recall, cf. [9], that an Archimedean
T defines a rough inclusion µT as,

(ARI) µT (x,y,r)⇔ gT (|x− y|)≥ r,

equivalently,
µT (x,y,r)⇔ |x− y| ≤ fT (r) (21.2)

A specific recipe for µL is

µL(x,y,r)⇔ |x− y| ≤ 1− r (21.3)

The counterpart of Proposition 21.10 obeys for Archimedean rough inclusions,

Proposition 21.11. For each Archimedean t–norm T , the transitivity rule is: if µT (x,
y,r) and µT (y,z,s), then µT (x,z,T (r,s)).

Proof. Assume µT (x,y,r) and µT (y,z,s), that is, |x− y| ≤ fT (r) and |y− z| ≤ fT (s).
Hence, |x−z| ≤ |x−y|+ |y−z| ≤ fT (r)+ fT (s), and hence, gT (|x−z|)≥ gT ( fT (r)+
fT (s)) = T (r,s), that is, µT (x,z,T (r,s)). �

21.5.1 Rough Inclusions in Information and Decision Systems

We recall, cf., [9], that in order to define µT in the setting of an information or de-
cision system (U,A,d), where U is a set of objects, A a set of attributes, and d is a
decision, cf. [8], for each pair u,v ∈U , we define the set,

(DISC) DIS(u,v) = {a ∈ A : a(u) �= a(v)}.
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The rough inclusion µT is defined, cf. loc. cit., by means of,

(MU) µT
I (u,v,r)⇔ gT ( |DIS(u,v)|

|A| )≥ r.

In case of the Łukasiewicz t–norm L, the rough inclusion µL
I is given by means of

the formula,

(AIRI) µL
I (u,v,r)⇔ 1− |DIS(u,v)|

|A| ≥ r.

We introduce the set IND(u,v) = A\DIS(u,v). With its help, a new form is,

µL
I (u,v,r)⇔ |IND(u,v)|

|A| ≥ r (21.4)

We quote from [9]: ’The formula (21.4) witnesses that the reasoning based on the
rough inclusion µL is the probabilistic one. At the same time, we have given a logical
proof for formulas like (21.4) that are very frequently applied in Data Mining and
Knowledge Discovery, also in rough set methods in those areas, see, for example,
Kloesgen and Żytkow [3]. It also witnesses that µL

I is a generalization of indiscerni-
bility relation to the relation of partial indiscernibility.‘

The transitivity property holds in this case as well

Proposition 21.12. If µT
I (u,v,r) and µT

I (v,w,s) then µT
I (u,w,T (r,s)).

We include a proof from [9].

Proof. We begin with the observation that

DIS(u,w)⊆ DIS(u,v)∪DIS(v,w), (21.5)

hence,
|DIS(u,w)|

|A| ≤ |DIS(u,v)|
|A| +

|DIS(v,w)|
|A| (21.6)

We let, ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gT ( |DIS(u,v)|
|A| ) = r

gT ( |DIS(v,w)|
|A| ) = s

gT ( |DIS(u,w)|
|A| ) = t

(21.7)

Then, ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|DIS(u,v)|
|A| = fT (r)

|DIS(v,w)|
|A| = fT (s)

|DIS(u,w)|
|A| = fT (t)

(21.8)
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Finally, by (21.6),
fT (t)≤ fT (r)+ fT (s) (21.9)

hence,
t = gT ( fT (t))≥ gT ( fT (r)+ fT (s)) = T (r,s) (21.10)

witnessing µT
I (u,w,T (r,s)). This concludes the proof. �

21.6 Approximations to a Degree

We apply rough inclusions µT and µT , µT
I denoted jointly with the symbol µ, the two

latter in case T = L, in order to define approximations to a degree of concepts in
F . For such a concept X , and r ∈ [0,1], we define the r–lower–E–approximation,
where E stands for the collection of exact concepts over E ,

(LRA) XE ,µ,r = Cls(RX ),

where RX(u) if and only if E(u) and µ(u,X ,r).

Proposition 21.13. The following properties may be established for this approxi-
mation,

(i) In case of µ = µL,µL
I , which are symmetric, ingr(XE ,µ,1,X),

(ii) In case of µ = µL,µL
I , XE ,µ,1 = XE,1,

(iii) s≤ r implies ingr(XE ,µ,r,XE ,µ,s),

(iv) In case of µ = µL,µL
I , ingr((XE ,µ,r)E ,µ,r,XE ,µ,r).

Proof. In case (i), it suffices to verify (ii) thanks to Proposition 21.7(iii). For (ii),
it is manifest that ingr(XE,1,XE ,µ,1) by definitions of the two. Concerning the con-
verse, let ingr(t,XE ,µ,1); by the class definition, there are u,w such that ingr(u, t),
ingr(u,w), and, E(w), µ(w,X ,1). Thus, µ(u,w,1), µ(u,t,1), hence, µ(t,u,1) and by
transitivity, µ(t,w,1), hence, µ(t,X ,1). By the inference rule IR, ingr(XE ,µ,1,XE,µ,1)
follows.

Properties (iii) and (iv) follow on the same lines by a direct appeal to the inference
rule (IR). �
Let us observe that usage of rough inclusions in approximations makes it possible to
place ourselves in abstract symbolic representation spaces of objects and indiscerni-
bility classes: an approximation needs not in general be a subset of the approximated
concept, contrary to the standard rough set approach. Virtues of this approach have
been demonstrated in applications to classifier synthesis, cf., for example, [12].
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A dual definition of the r–upper–E–approximation follows,

(UAR) X
E ,µ,r = Cls(UX ),

where UX(u) if and only if E(u) and µ(X ,u,r).

Proposition 21.14. The following properties of the upper–E–approximation may be
established similarly to those of the lower approximation,

(i) If s≤ r then ingr(XE ,µ,r
,X

E ,µ,s),

(ii) X
E ,µ,r

is an exact concept,

(iii) If the extension property: if E(u) and ov(X ,u) then there exists w

such that E(w) and ingr(X ,w) holds, then ingr(XE,1
,X

E ,µ,1). �

21.7 A Characterization of µL

The t–norm of Łukasiewicz as well as the residual implication of Łukasiewicz were
characterized by Menu and Pavelka [7] in topological terms. In order to state their
results, we recall necessary topological notions.

Each rough inclusion µ(x,y,r) can be regarded as a set–valued mapping, its values
r in a convex subset of the interval [0, 1] containing 0; the topology in question
is therefore the topology of set–valued mappings. For those mappings a notion of
continuity is fused from two notions of semi–continuity; a mapping f : X → 2Y

from a topological space X into the collection of closed subsets of a topological
space Y is upper–semi–continuous (usc) (respectively, lower–semi–continuous (lsc))
if and only if for each open set P ⊆ Y , the set f←(P) = {x : f (x) ⊆ P} is open in
X (respectively, the set f∩(P) = {x : f (x)∩P �= /0} is open in X). The mapping f is
continuous if and only if it is upper– and lower–semi–continuous.

As, clearly, every mapping f : X → Y is a set–valued mapping with singleton
values, the above notions can be easily translated into semi–continuity notions for
those ordinary mappings: the mapping f : X → Y is upper–semi–continuous (re-
spectively, lower–semi–continuous) if and only if for every r, the set {x : f (x) ≥ r}
is closed (respectively, for every r, the set {x : f (x) ≤ r} is closed).

The couple of results established by Menu and Pavelka are, cf. [7],

Proposition 21.15. (Menu–Pavelka [7]) Any t – norm T is lower–semi–conti–
nuous; moreover, any associative and commutative function T with T (0,x) = 0,
T (1,x) = x which is lower–semi–continuous is a t–norm. In this case the residual
implication ⇒T is given by the condition y ⇒T z = max{x : T (x,y)≤ z}. �

Proposition 21.16. (Menu–Pavelka [7]) For every t–norm T , continuity of ⇒T im-
plies continuity of T . In this case, T is isomorphic to L. �
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We follow these line of research and we apply these idea to the rough inclusion µL,
cf., [10]. The first statement sets conditions for a residual implication.

Proposition 21.17. ([10]) Each function φ(x,y) : [0,1]2 → [0,1] which is
non–increasing in the first argument x, non–decreasing in the second argument y,
and it does satisfy conditions (RI3), (RI4), (RI7), (RI8), is of the form ⇒T for some
t–norm T, and it is necessarily upper–semi–continuous.

Proof. The function T (x,y) defined by the duality (i) T (x,y)≤ r ⇔ φ(x,r) ≥ y sat-
isfies conditions T1–T5, as observed earlier, (RI4), (RI7) do express commutativity
and associativity of T , and (RI3), (RI8) are responsible for boundary conditions
for T . Hence, duality (i) qualifies φ as the residuum ⇒T which is upper–semi–
continuous by the same duality and lower–semi–continuity of T demonstrated in
Proposition 21.15. �

As each rough inclusion µT takes as its values closed intervals of the form [0,µ(x,y)],
we use the symbol µ(x,y) . r for the fact that µ(x,y,r).

Proposition 21.18. ([10]) Each function µ(x,y) : [0,1]2 → 2[0,1], whose values are
closed intervals [0,µ(x,y)] and which satisfies conditions,

(MI1) µ(x,y) . 1 if and only if x ≤ y,

(MI2) µ(y,u) . x if and only if µ(x,u) . y,

(MI3) µ(x,µ(y,r)) . z if and only if µ(µ(z,x),r) . y,

(MI4) µ(x,0) . 0,

and is non–increasing in x and non–decreasing in y is of the form µT for some
t–norm T.

Proof. We let φ(x,y)≥ r if and only if µ(x,y) . r; it is straightforward to verify that
conditions (MI1)–(MI4) correspond to conditions (RI3), (RI4), (RI7), (RI8) for φ
and accordingly, φ is of the form ⇒T by Proposition 21.17, hence, µ is µT . �

Proposition 21.19. ([10]) The set ET (s) = {(x,y) ∈ [0,1]2 : µ(x,y) < s} is open for
each s, that is, µT is upper–semi–continuous as a many–valued mapping.

Proof. It follows by upper–semi–continuity of µ as a single-valued map. �

Proposition 21.16 has a counterpart for rough inclusions.

Proposition 21.20. ([10]) Each rough inclusion µT continuous, as a multi–valued
mapping is isomorphic to µL in the sense that T is isomorphic to L.

Proof. We consider the corresponding residuum x ⇒T y = µ(x,y) and prove its
continuity. Let µ(x,y) ∈ U for an open set U ; let µ(x,y) ∈ (a,b) ⊆ U .
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Let V = [0,a]∪ (a,b), and consider W = {(x,y) : [0,µ(x,y)] ⊆ V and [0,µ(x,y)]∩
(a,b) �= /0}; clearly, W is open by continuity of µT and (x,y) ∈ W if and only if
x ⇒T y ∈U , hence, x ⇒T y is continuous and Proposition 21.16 implies that T is
isomorphic to L. �
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21.9 Conclusions

The approximations described in this work have the primary feature that they are
induced in abstract spaces of concept representations allowing for a greater flexi-
bility in their definitions and, a fortiori, for possibly better application results. The
ideas presented in this work of mereology have found applications, among others,
in classification of data (classifier synthesis) and intelligent robotics. For some de-
scriptions of these applications, the reader will be pleased to consult [11], [12], [13].
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13. Polkowski, L.: Ośmiałowski, P.: Spatial reasoning with applications to mobile robotics.
In: Jing, X.-J. (ed.) Motion Planning for Mobile Robots: New Advances, pp. 433–453.
InTech, Vienna (2008)

14. Tarski, A.: Zur Grundlegung der Booleschen Algebra. I. Fundamenta Mathematicae 24,
177–198 (1935)



Chapter 22
Granular Concept Mapping and Applications

Sumalee Sonamthiang, Kanlaya Naruedomkul, and Nick Cercone

Abstract. This chapter presents a granular concept hierarchy (GCH) construction
and mapping of the hierarchy for granular knowledge. A GCH is comprised of mul-
tilevel granular concepts with their hierarchy relations. A rough set based approach
is proposed to induce the approximation of a domain concept hierarchy of an infor-
mation system. A sequence of attribute subsets is selected to partition a granularity,
hierarchically. In each level of granulation, reducts and core are applied to retain
the specific concepts of a granule whereas common attributes are applied to exclude
the common knowledge and generate a more general concept. A granule descrip-
tion language and granule measurements are proposed to enable mapping for an
appropriate granular concept that represents sufficient knowledge so solve problem
at hand. Applications of GCH are demonstrated through learning of higher order
decision rules.

Keywords: Information granules, granular knowledge, granular concept hierarchy,
granular knowledge mapping, granule description language, higher-order rules, mul-
tilevel partitioning, attribute selection

22.1 Introduction

An information system in a rough set paradigm [10], [11] is a basic knowledge repre-
sentation method in an attribute-value system. An information system is
represented in a table in which a row keeps an object and each column keeps the
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value of the corresponding attribute. The tabular representation simplifies record-
ing the objects into an information system, especially in real-time transactions by
capturing a transaction separately and using a single global representation for every
record in every situation. However, an occurrence of a transaction may be related to
other transactions in the problem space. Representation in this fashion is seen as a
flat and unconnected structure that hides the meaningful relations in the data.

An information analysis based on an attribute-value system considers the val-
ues of the attribute subsets to extract relationships within data. The relationships
can be classified into two types: internal and external. An internal relationship is
the relation between attributes’ values within a single object, whereas an external
relationship provides connections between many objects. Classical rule discover-
ing methods extract internal relationships from a decision table; however, the ob-
tained rules represent fragmented knowledge and hide the meaningful relationships
among objects of a universe. An example of an internal relation rule is expressed
by: IF < x,a >= va1THEN < x,d >= vd1 . The rules obtained from internal rela-
tionships can be superfluous. Postprocessing is necessary to reduce rules’ conflicts,
shorten the rule premise, shrink the size of the rule set, or group together similar
rules. The rules obtained from internal relations represent fragmented knowledge
and remain embodied in hidden meaningful relationships among objects in a uni-
verse. Postprocessing to improve quality of the rules has been studied, for example,
evaluation of association rules’ importance [9] and mining higher-order decision
rules [26].

Unlike internal relationships, an external relationship among objects does not
only provide knowledge of higher-order rules but also for concept approximation.

Table 22.1. Some examples of animal data set

label hair feathers eggs milk airborne aquatic predator toothed ... class

aardvark 1 0 0 1 0 0 1 1 ... 1
antelope 1 0 0 1 0 0 0 1 ... 1

bass 0 0 1 0 0 1 1 1 ... 4
bear 1 0 0 1 0 0 1 1 ... 1
boar 1 0 0 1 0 0 1 1 ... 1

buffalo 1 0 0 1 0 0 0 1 ... 1
calf 1 0 0 1 0 0 0 1 ... 1
carp 0 0 1 0 0 1 0 1 ... 4

catfish 0 0 1 0 0 1 1 1 ... 4
cavy 1 0 0 1 0 0 0 1 ... 1

cheetah 1 0 0 1 0 0 1 1 ... 1
chicken 0 1 1 0 1 0 0 0 ... 2

clam 0 0 1 0 0 0 1 0 ... 7
crab 0 0 1 0 0 1 1 0 ... 7

crayfish 0 0 1 0 0 1 1 0 ... 7
crow 0 1 1 0 1 0 1 0 ... 2
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For example, given animal data in the information system in Table 22.1, a human
categorizes and conceptualizes a concept differently.

One may give a name of concept represented by class 1 as mammal class with-
out concerning surrounding data. But for a machine, it can learn that only the at-
tribute value milk=1 is sufficient to determine the class 1 precisely (based on given
data sets). In this example, however, some attributes’ values such as egg=0, hair=1,
toothed=1 are correlated with (but not necessary dependent) milk=1. These features
can be seen as dominate attribute subset in which together the attribute subset has
more gravity to draw animal class abstraction. Therefore, a machine can form a
concept by using the most dominant attribute subset on the decision class to mimic
human granular conceptualization. On the other hand, if one is asked to differentiate
animal in class 1, one needs to granulate knowledge relative to more of the detailed
features such as size, domestic/wild, and legs based on given data.

Various attribute subsets can be considered to obtain external relations from dif-
ferent dimensions; thus, groups of related objects can be discovered. The knowledge
obtained from this type of relationship is represented as clusters attached with each
clusters’ description[4],[5], [20]. Moreover, the relationships among the objects can
be local or global; specifically, relations can be extracted in many levels of granu-
larity. We hypothesize that discovering external relationships between objects in a
universe can be used to approximate the connections of objects and form multilevel
granular concepts.

Rough set theory (RST) [10], [11] provides a formal framework that focuses on
both internal and external relations. For extensions on rough sets please refer to
[12], [13], [14]. In rough sets, the indiscernibility relation expresses the external re-
lations between objects and the relation can be used to form a granular concepts.
Rough sets also influence Granular Computing (GrC), an emerging paradigm for
computing of concept approximation [1], [15]. A granular concept represents suffi-
cient information to solve a problem at hand. How coarse or how specific should a
granular concept be to convey such sufficient information?

In this study, a granular concept hierarchy (GCH) and granular concept mapping
are presented. GCH is a multilevel of granularity of a domain knowledge in hierar-
chical structure. This structure provides rich information for a problem solver and
mapping mechanism to search for an appropriate level of granularity. GCH com-
prises of a root node, a set of nonroot nodes, a non empty set of leaves, and the
hierarchy relations. A node in a tree can be seen as a granule in which instances in
the node hold similar properties to a certain degree, and they are part of their parent.
Thus, a parent holds the common properties of its children, and the siblings have a
certain degree of similarity to each other by the common properties.

We present two algorithms to construct a GCH. The first algorithm is to recur-
sively partition an information system into a GCH. The second algorithm computes
the selection of a sequence of attribute subsets which is necessary to partition a
granularity hierarchically. Common attributes (defined as the subset of attributes
that forms indiscernibility relations among the objects of a granule) and the at-
tributes’ values are united to form the granular concept’s description. At each level
of granulation, reducts and core are applied to retain the specific concepts of a gran-
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ule, whereas common attributes are applied to exclude the common knowledge and
generate a more general concept. We also present a granule description language
that provides semantic encoding as well as an interpretation of which semantics a
granule concept conveys. The semantics are encoded by rough set approximation.
Degree of coarseness/specificity of a granular concept, then, can be interpreted for
a target concept.

The chapter is outlined as follows: In the next section, related works in hierar-
chical information granulation are explored. A formal definition of a GCH and an
example are given in Section 22.3. Section 22.4 details two algorithms to construct
a GCH hierarchically. Section 22.5 reports our evaluation and results of higher-
order rules learning from a GCH of an artificial Zoo database. Finally, Section 22.6
presents conclusion and discussion of possible extensions.

22.2 Related Study

In this section, previous studies on multilevel granular concept approximation are
reviewed. There are various approaches to approximate uncertain concepts from
uncertain data. Four main approaches are focused which are rough sets, fuzzy sets,
near sets, and shadowed sets.

The fuzzy sets and shadowed sets provide contributions to GrC [1] for information
processing by using continuous membership grades induction [2], [16],[17],[27]. Hi-
erarchical fuzzy sets and shadowed sets can be identified by further refinement of the
sets. Multilevel fuzzy sets can be approximated based on previous layer of fuzzy sets
in order to obtain multilevel granular concepts. Therefore, defuzzification is needed
to map for granular fuzzy concept indexing. It is preferable if the approximated con-
cept mechanism provide descriptive knowledge and knowledge evaluation for hier-
archical granular mapping.

RST was proposed by Zdzisław Pawlak (1926-2006) in 1982. The theory is to
model indiscernible (similar) objects and forms a basic granule of knowledge about
a domain, based on given observations (see, e.g.,[18],[21]). However, the observa-
tions can be imperfect: inconsistent, insufficient and uncertain. These characteristics
of observations, consequently, cause basic granules being rough which are defined
as rough sets. Defining rough sets does not require priori probabilistic information
about data. Moreover, the rough sets permits induction of rules about uncertainty
[6], namely the certain classes as certain rules, and the uncertain classes as possible
rules.

In [19], James F. Peters proposed a special theory of near sets. Near sets are dis-
joint sets that resemble each other to a certain degree. Resemblance of near sets can
be obtained using a probe function such as closeness (qualitatively near) between
objects as well as other probe functions that return values of object features such
as color, shape, texture, and duration. The closeness is determined by the objects’
features. Near sets is an extension of rough sets with nearness function for granular
concept approximation. A granular knowledge approximation based on near sets is
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to identify family of an instance x to an instance y by link relation. Therefore, a
granule X and a granule Y are near sets to each other if and only if mapping the link
relation of x with y is sufficiently large. The author also proposed a framework to
enable searching for relevant nearness relation relative to the problem being solved
through a distance measurement. Based on the rough sets, we proposed an idea
of domination attribute subset partitioning to granulate an information granule into
lower level granules. Like the near set approach, using domination attributes has
advantages in linking a family of an object together. We also apply reduct and core
attributes to retain specific information until the lowest level of granulation.

Hoa and Son [7] introduced a complex concept approximation approach based
on a layered learning method together with RST. The authors used taxonomy as
the domain knowledge and attribute values in the data set to guide composing at-
tributes into intermediate concepts until the target concept is obtained. The target
concepts are the concepts in the decision attribute. However, the domain taxonomies
are usually unavailable to guide the layer learning and need to be discovered before
applying this approach.

A study of granularity-based formal concepts is presented in [21], [25], for exam-
ple. In [25], the authors defined a formal concept by a pair consisting of its intension
and extension (φ,m(φ)), where φ is a logical rule of a subset of attributes with the
attributes’ values and m(φ) is a granule obtained by partitioning the universe of
objects using the attribute subset φ. Moreover, Yao [24] presented an approach to
hierarchical granulation based on rough sets called stratified rough approximation.
The stratified rough set approximation is a simple multi-level granulation based on
nesting of one-level granulation (e.g., granulation by the equivalence relation). Yao
[24] presented three methods for multi-layered granulation which are as follows:

• nested rough set approximations induced by a nested sequence of equivalence
relations,

• stratified rough set approximations induced by hierarchies, and
• stratified rough set approximations induced by neighborhood systems.

In the nested granulation approach, the granulation starts with indiscernibility rela-
tions on a set of objects represented by attribute-value vectors. Then the subsequent
indiscernibility relations are defined by successively removing attributes from the
set of remaining attributes. Sequencing of attribute subsets for partitioning is de-
termined by dependencies between condition attributes. The sequence of attribute
subsets for partitioning affects a granules’ extension and the hierarchy structure. By
this approach, the obtained hierarchy structures are predefined by the attributes’ de-
pendencies. Thus, the approach is unconcerned about the objects similarities which
are very important in the sense of clusters. Moreover, there are some information
systems that have no attribute dependency. In the stratified rough set approxima-
tions induced by hierarchies, levels of hierarchies provide the sequence of granula-
tion. As mentioned earlier, the hierarchy of a domain may be unavailable. In [23],
the authors also described the use of neighborhood systems to induce hierarchial
partitioning. The neighborhood system NS(x) is a nested family of subsets of the
universe, with each neighborhood representing a specific level of similarity to x.
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However, an information system can contain a huge number of attributes. The issue
of attribute subset selection for measuring the closeness, similarity or proximity in
an information system is not studied.

Yao [24] recommended a motivating idea for our approach, that is, stratified ap-
proximation can be used to search for an appropriate level of accuracy for an ap-
plication. Therefore, a map of granular concepts which provides rich information
about domain structure is developed.

22.3 Granular Concept Hierarchy

In this section, we shall formally define elements and the hierarchy structure of our
granular concept mapping approach. Definitions of a GCH with its syntax and se-
mantics are given and detailed in the next subsection. Then, the granular knowledge
evaluation is also presented through the semantics of the target concept approxima-
tion using a rough set-based approach.

22.3.1 Formal Definitions of a Granular Concept Hierarchy

A GCH is a hierarchical granular knowledge organization that provides multilevel
granular knowledge units, evaluation of knowledge, and knowledge mapping mech-
anism.

A hierarchy of granular concept mapping is formally defined as a quadruple

GCH =< G,R,T,α>, (22.1)

where G is a non-empty set of nodes, and the nodes themselves are non-empty set.
R denotes a relationship between two nodes. T denotes the target concept of a node,
and α denotes the accuracy approximation of the target concept T .

R is a binary relation of parent-child and child-parent relation on g. If < g,g′ >∈
R then g is the parent of g′ and g′ is a child of g. There is a designated element
r of G called root. r holds the universe of elements such that ¬r = /0. A branch
BR = g0,g1,g2, ...,gn is the maximal sequence of element of G such that g0 = r,
and for every i ≥ 0,< gi,gi+1 >∈ R. Nodes g which R(g) = /0 are called leaves.
The level of g, denoted by ‖g‖, is defined by n if and only if there is a branch
BR = g0,g1,g2, ...,gn, where g = gn . Obviously, ‖r‖ = 0.

T is the target concept of granule which is defined by a set of decision attribute
values.
α is knowledge evaluation of a granule g. The knowledge evaluation in our ap-

proach is defined by accuracy of rough approximation:

α(g) =
|LOWER(g)|
|UPPER(g)| . (22.2)
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LOWER(g) is lower approximation and |UPPER(g)| is upper approximation of a
granule g induced by a subset of attribute. |X | denotes the cardinality of a set X . The
approximation accuracy is in the range of 0≤ α(X)≤ 1, and α( /0) = 1.

A GCH comprises of nodes in which the coarsest concept is represented at the
root level, whereas the most specific concept is represented at the leaf levels. We ar-
ticulate a concept by using the idea of the most dominant attribute subset: the more
dominant degree attribute subset, the more gravity to draw the objects into concepts
by that subset. Once a concept is granulated by the most dominant attributes subset,
we obtain the more specific concepts which are drawn by common attribute subset.
The common attribute subset forms the indiscernibility relations among the con-
cept’s extension. This structure allows mapping of appropriate granular knowledge
in order to solve a problem at hand. The essences of GCH knowledge organization
are as follows.

• In order to map to an appropriate granular knowledge, the problem solver must
identify satisfaction criterions. One of satisfaction criterion is that the granular
knowledge is evaluated by sufficient knowledge for solving a particular prob-
lem. If the problem is to find decision rules to predict unseen objects, then the
appropriate levels of granularity can be found in the granules which no children
of them have smaller boundary regions. If the problem is to predict missing
values of condition attributes of an object, then the appropriate levels of gran-
ularity can be found at the leaf levels where the objects are indiscernible. One
may define a satisfaction criterion by setting precision tolerance of applying the
granular knowledge. This criterion permits reducing cost of computation where
precisiation is expensive or unavailable.

• Because GCH provides multilevel of granular knowledge ranging from the
coarsest level at the root and the most specific level at the leaves, GCH struc-
ture provides system of granular knowledge mapping through a tree traversal.
Searching for a granular concept in a GCH can be achieved through several
techniques such as the depth first search and breadth first search.

• Core attributes are essential to form the more specific concepts since they con-
tains specific characteristics of an object. In GCH construction, core attributes
are preserved to retain such specific concepts until the latest granulation.

We shall define the syntax and semantics of GCH and present algorithms to con-
struct a GCH as follows.

22.3.2 Syntax and Semantics of a Granular Concept

This section explains what knowledge is represented in the granular concepts and
how to interpret and evaluate knowledge in a granular concept. The section is started
by definitions of basic notions, followed by syntax and semantics of a granular
concept.
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Definition 22.1. Let g be a node in a map of granular concepts M and g is a decision
table, g⊆ D. A common attribute of g is the attribute that forms the indiscernibility
relation on g×g. The set of common attributes is denoted by CA,CA ⊆ A.

Definition 22.2. The set of target concepts of g, denoted by τ(g), is defined by the
set of decision values in the decision attribute o f x ∈ g.

τ(g) =
⋃

vd |< x,d >= vd ,∀x ∈ g. (22.3)

Definition 22.3. The most dominant target concept, τ̂, is defined by the decision
value of the largest decision class in g.

Definition 22.4. A granular concept description phrase of g, denoted by π(g), com-
prises of atomic predicates. A predicate is defined by a pair of a common attribute’s
name and a value of the attribute. Each predicate is conjuncted by the ∧ operator
to form a phrase.

π(g) = ca0(Vca0)∧ ca1(Vca1)∧ ca2(Vca2)∧ ...∧ can(Vcan), (22.4)

where cai ∈CA and |CA|= n,1≤ i≤ n.

Definition 22.5. A granular concept description language of g is denoted by λ(g).
The language λ(g) is generated by traversing M from g0 to g. The phrases of the
traversed granules are ∧ conjuncted successively to form λ(g).

λ(g) = π(g0)∧π(g1)∧ ...∧π(g). (22.5)

Definition 22.6. Syntax of a granular concept g is denoted by a pair:

ψ=< φ(g),λ(g) > if and only if x |= λ(g),∀x ∈ g. (22.6)

φ(g) = {x|x ∈ g} is called concept’s extensions and every member of φ(g) is under-
stood by λ(g). Note that λ(g) is the granular concept’s intension.

Definition 22.7. Semantics of a granular concept is the accuracy of rough approx-
imation of the granule toward the most dominant target concepts and the concept’s
intension. The semantics of g is denoted by ξ(g)

ξ(g) =
|LOWER(g)|
|UPPER(g)| , (22.7)

where

LOWER(X) =
⋃

[g]B|x ∈ g, [g]B ⊆ g,

UPPER(X) =
⋃

[g]B|x ∈ g, [g]B∩g �= /0,

[g]B =
⋃{[< a,v >]|a ∈ B,B = CA∪{d}}, f (x,a) = τ̂.
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A granular concept is indexed by its intension. The granular concept conveys a
semantic of being a target concept (τ̂.). To interpret the concept’s semantic, one can
measure the rough approximation accuracy toward the target concept based on the
granular concept intension. Example 1 provides an illustrative explanation.

Example 1. The decision table of Flu diagnosis in Table 22.2 contains four condition
attributes of symptoms {Temperature, Headache, Nausea, Cough} and one decision
attribute {Flu}.

Table 22.2. Flu diagnosis

Cases Temperature Headache Nausea Cough Flu

1 high yes no yes yes
2 very high yes yes no yes
3 high no no no no
4 high yes yes yes yes
5 normal yes no no no
6 normal no yes yes no

There are six cases of patient. If the first partitioning is {Headache}*, two gran-
ular concepts of g1 and g2 are obtained as shown in Table 22.3. If the equivalence
relation is used to discern patients, there is one common attribute CA = {Headache}
for both g1 and g2. The description language is λ(g1) = Headache(yes) and λ(g2) =
Headache(no). The target concept of g1 is having Flu, and the semantics conveyed
by g1 is the patients who have headache also get flu, with the accuracy of approxi-
mation is 3/4. For g2, the target concept is having no Flu. The semantics of having
no Flu is 2/2 of the patients who have no headache.

Table 22.3. Granulated concepts of Flu diagnosis

g1 : λ(g1) = Headache(yes)
Cases Temperature Headache Nausea Cough Flu

1 high yes no yes yes
2 very high yes yes no yes
4 high yes yes yes yes
5 normal yes no no no

g2 : λ(g2) = Headache(no)
Cases Temperature Headache Nausea Cough Flu

3 high no no no no
6 normal no yes yes no

By the definitions, granular concepts can be approximated and interpreted to ob-
tain their semantic. The next section gives details of GCH construction. A recursive
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partitioning algorithm is proposed as well as an attribute subset selection algorithm
to partition the granularity hierarchically.

Fig. 22.1. A granular concept hierarchy for the Flu case base

22.4 Granular Concept Hierarchy Construction

The GCH construction is a recursive granulation in top-down manner. Specifically,
the recursive construction is given in Section 22.4.1, where the symbols are the
ones defined in Section 22.3. We also present an algorithm for attribute subset se-
lection based on the most dominant degree of the attribute subset as illustrated in
Section 22.4.2. In Section 22.4.3, the mapping for an appropriate granularity on the
GCH is detailed.

22.4.1 An Algorithm for Recursive Granulations

Given a data set as an information system format, all observations start in one clus-
ter, and granulations are performed recursively as one moves down the hierarchy.
We design a recursive hierarchy construction as given in Algorithm 22.1. The input
to this algorithm is an information system and the output is a GCH. The process
begins with finding common attribute subset. Then, a temporary decision (TempD)
table is derived from the current decision table by removing the common attributes.
The TempD is not necessary if there is no common attribute. The attribute sequenc-
ing is accomplished through local attributes subset selection in the recursive parti-
tioning. We select the most dominant attribute subset based on the attributes’ values
available in the decision table. We determine the domination using Algorithm 22.2.
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Algorithm 22.1. Granular Concept Hierarchy Construction
Input : a decision table, D =< g,(A∪{d}),(Va)a⊂A,Vd , f >.
Output: a granular concept map, M =< G,R >.
g←−D.
g0 ←− g. // the root of the hierarchy
TempD←−D.
B←− /0. // attribute subset for partitioning
CA←− /0. // the set of common attributes
granulatedStatus(g) = f alse. //mark the granulated concepts
Function GCHconstruct(g)
begin

if (g is discernible) then
1. Find common attribute subset CA of g;
2. Generate a granule description phrase //See Definition 22.4.
3. if (CA �= /0) then

A←− A−AC
TempD←−< g,(A∪{d}),(Va)a⊂A,Vd , f >

4. B ←−MostDAselect(TempD).
//Select the most dominant attribute subset B, see Algorithm 22.2.
5. Partition the TempD by B, {B}∗= g1,g2, ...,gn.
6. Generate relations of < g,g1 >,< g,g2 >,...,< g,gn >∈ R.
for all gi,< g,gi >∈ R do

7. Find τ̂, the most dominant target concept of gi.
// see Definition 22.3
8. Compute semantics of gi.
// see Definition 22.7
9. granulatedStatus(gi)←− f alse.

10. granulatedStatus(g) ←− true; //mark g as granulated.
11. g←− g1.
12. TempD =< g,(A∪{d}),(Va)a⊂A,Vd , f >

else
Make a leaf granule.

end
for all gi, (R(gi) = R(g)) and (granulatedStatus(gi) = f alse) do

GCHconstruct(gi).

The selected attributes subset is then used to partition TempD and assign relation-
ships between the obtained granules (children) and the original granule (parent).
If a granule cannot be partitioned by the indiscernibility relation, a leaf node is
generated.

22.4.2 An Algorithm for Level-Wise Attribute Selection

In this section, we present an algorithm for attribute subset selection which
the selected attribute subset is used in partitioning a granule at each level by
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Algorithm 22.2. Most Dominant Attribute Subset Selection
Input : a decision table (TempD), CORE, parameter N and ε.
Output: The most dominant attribute subset B // this attribute subset will be used to partition

the TempD in Algorithm 22.1.
MostDA ←− /0.
TopDA ←− /0.
B←− /0.
for each a ∈ A do

for each va ∈Va do
1. [x]a∪d ←−

⋃{[a,v]| f (x,a) = va, f (x,d) = vd}
2. domDegree(ai)←− argmax(|[x]a∪d |)

MostDA ←− argmax(domDegree(ai)).
TopDA ←− TopN argmax(domDegree(ai))
B←−MostDA
for each TopB, TopB ⊆ TopDA and |TopB|> 1 do

[x]TopB ←−⋃{[a,v]| f (x,a) = va,a ∈ TopB}
if argmax(|[x]topB|) > ε then

B←− topB

if B−CORE �= /0 then
B←− B−CORE

Return B

Algorithm 22.1. Algorithm 22.2 is designed to compute the most dominant attribute
subset selection.

The rough set exploration system (RSES version 2.2) [3] is used to calculate
reducts of the universe. Then CORE can be derived from intersection of all reducts.
Given a decision table (temporary), we find the N most dominant attributes toward
the decision class. CORE is used to preserve the specific feature(s) of instances
in the granule by retaining CORE until the latest granulations. N can be tuned up
to the number of condition attributes to compose a concept. In other words, our
algorithm allows a flexible number of attributes in a subset for partitioning. We use
co-occurrence counting of attributes’ values and decision classes to determine the
domination degree. Once the most N dominant attributes are obtained, we determine
the co-occurrences within the N attributes to find if any combination of them can
be used to approximate a concept by threshold ε. A count of co-occurrence among
condition attributes’ values implies the degree of which these attribute values can
be used to compose a common concept. We tune the ε by the number of instances in
working granule. The subset of attributes with the greatest domination degree, and
the greatest domination degree is greater than the threshold, is selected to partition
the current granule. If no domination degree of the N combination attributes meets
the threshold ε, the single most dominant attribute is selected.

Example 2 illustrates the recursive construction of a GCH using Algorithm 22.1
and Algorithm 22.2.
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Example 2. A GCH construction for the Flu diagnosis decision table (Table 22.1)
is described step by step. The granulation starts by partitioning the universe (Ta-
ble 22.1). In this example, the equivalence relation is used. The size of attribute
subset to partition is one (N = 1) since the number of condition attributes is rel-
atively small. The objects in the universe are discernible by the equivalence rela-
tion. Thus, we find reducts for this table which are, {Temperature, Headache, Nau-
sea}, {Temperature, Nausea, Cough}, and {Headache, Nausea, Cough}, and core
is {Nausea}. There is no common attribute value in this granule. We select the
first attribute subset by determining the degree of attribute dominations. Headache
has the highest domination degree (domDegree = 3) compared with the rest of the
condition attributes (domDegree = 2). Thus, the first attribute subset to partition is
{Headache} and g1 = {1,2,4,5} and g2 = {3,6} are obtained. Then we continue
granulate g1 selecting the most dominant attributes for g1. Temperature,Nausea
and Cough attributes have the same degree of domination. Nausea is the core; thus,
it is retained at this granulation. We can select Temperature or Cough to partition g1.
If we apply Temperature, we obtain granule g3 = {1,4}, g4 = {5}, g5 = {2} which
are children of g1. The granule g4 and g5 are indiscernible so they are leaf gran-
ule. We then granulate g3 by finding common attribute subset which is {Cough}.
The Cough attribute can be now removed. The remaining attribute {Nausea} is then
used to partition g3 to obtain g6 = {2},g7 = {3}. Since all siblings are now leaf
nodes we can return to the higher levels. We continue granulate g2. Note that the
temporary table can be generated as the common attribute {Headache} is removed.
Like partitioning g1, Nausea is retained. If we partition g2 by Temperature, the in-
discernible granule g8 = {3} and g9 = {6} are obtained. Fig. 22.1 shows the GCH
for the Flu diagnosis domain.

22.4.3 Mapping for Appropriate Granularity in a GCH

Our approach of GCH does not only provide a multilevel of granular concept rep-
resentation of variables, but also enables searching and evaluating techniques for a
granular variable. In order to solve a problem, an application can perform a search
in the GCH for an appropriate level of granularity. As a result, the appropriate level
of granularity is evaluated by sufficient knowledge for solving a particular problem.
If the problem is to obtain decision rules to diagnose unseen objects, then the ap-
propriate levels of granularity can be found in the granules which no children of
them have smaller boundary regions. If the problem is to predict missing values of
condition attributes of an object, then the appropriate levels of granularity can be
found at the leaf levels where the objects are indiscernible. Searching for a granular
concept in a GCH can be achieved through several techniques such as the depth first
search and breadth first search.
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Table 22.4. Higher-order rules for the Zoo database

Rules Accuracy Coverage

Rule 1:
IF animals have the same values in condition attribute
{C,E,J,K}
THEN they are in the same class of {R} 0.956 0.979
Rule 2:
IF animals have the same values in condition attributes
{C,E,J,K}
and animals have the same values in condition attributes
{B,D,F,H, I,M,O,P}
THEN they are in the same class of {R} 0.972 0.209
Rule 3:
IF animals have the same values in condition attributes
{C,E,J,K}
and animals have the same values in condition attributes
{D,L,M,P}
and animals have the same values in condition attributes
{B,F,G, I,N,O}
THEN they are in the same class of {R} 1.0 0.266
Rule 4:
IF animals have the same values in condition attributes
{C,E,J,K}
and animals have the same values in condition attributes
{D,P}
and animals have the same values in condition attributes
{G, I,M,Q}
THEN they are in the same class of {R} 0.961 0.293
Rule 5:
IF animals have the same values in condition attributes
{C,E,J,K}
and animals have the same values in condition attributes
{F}
and animals have the same values in condition attributes
{B,D,M,O}
THEN they are in the same class of {R} 0.988 0.562
Rule 6:
IF animals have the same values in condition attributes
{C,E,J,K}
and animals have the same values in condition attributes
{B,D, I,L,M,N,O}
THEN they are in the same class of {R} 0.998 0.534
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Fig. 22.2. A granular concept hierarchy for the Zoo data set
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22.5 Evaluation

We evaluate the usefulness of a GCH through higher-order decision rules learning.
The definition of higher-order rules are introduced by Yao [26]. A higher order
rule expresses connections of different objects based on their attribute values. An
example of a higher-order rule is ”if object x is related to object y with respect to
an attribute set a, then x is related to y to another attribute set b.” Yao recommends
a mining of higher-order rules from a transformed decision table, where an entity
is a pair of objects from the original table. However, transforming the n objects
table generates n!

((n−2)!∗2!) pairs of objects. We present an alternative approach to
extract higher-order decision rules from a GCH where no transformation process is
required.

The data set used in the experiment is the Zoo database from the UCI machine
learning repository. This database contains 101 objects, 17 condition attributes and
one decision attribute. The condition attributes include 16 boolean-valued attributes
and a numerical attribute. The decision attribute contains 7 classes of animal type.
There is no missing value in this datas et. We construct a GCH for the Zoo data set
as shown in Fig 22.2.

There can be several groups of animals that hold the same attributes’ values in a
subset of condition attributes. For example, there are 6 groups of animals clustered
by attribute set {C,E,J,K} which are Feathers, Milk, Backbone, Breathes respec-
tively. These attributes draw a concept of mammal when C = 0,E = 1,J = 1, and
K = 1. The concept of bird is drawn when C = 1,E = 0,J = 1, and K = 1, the
concept of amphibia is formed by C = 0,E = 0,J = 1, and K = 1. The arthropod
(bug) concept is formed by C = 0,E = 0,J = 0, and K = 1. The concept of fish
is formed by C = 0,E = 0,J = 1, and K = 0. The concept of being crustacean is
formed when C = 0,E = 0,J = 0, and K = 0. Note that, these groups will be gran-
ulated until all the member of the group are indiscernible. The concept descriptions
of the animal groups are used to generate the higher-order rules. Once the hierar-
chy is obtained, a depth first tree search is performed to find the maximum level of
accuracy of each branch. The higher-order rules are obtained from conjunctive con-
nection of granular concepts’ intensions along the visited branches. The extracted
higher-order decision rule set for the Zoo data base is given in the first column in
Table 22.3. Number of conjunction shows the level of hierarchy, starting from level
0 at the root. The higher-order rules are applied to the total of 5,050 pairs of animals,
and there are 1,177 pairs of animals that belong to the same class. We measure the
rules’ accuracy and coverage which were used by [22] as follows:

accuracy(premise⇒ conclusion) =
|φ(premise∧ conclusion)|

|φ(premise)| , (22.8)

coverage(premise⇒ conclusion) =
|φ(premise∧ conclusion)|

|φ(conclusion)| , (22.9)
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where φ(g) is the granule’s extension, and |x| denotes the cardinality of the set x.
The results of the rules’ accuracy and coverage are shown in the second and the
third column of Table 22.4, respectively.

We shall discuss the interestingness of the higher-order decision rules as follows.
The higher-order rule is the type of knowledge in more abstract level. This knowl-
edge should be firstly applied to solve a problem. Naturally, given two animals, one
can differentiate them by the concepts, not by the detailed of each attribute value if
not necessary. The higher-order rules provide the concepts upon the domain which
the rules can be applied for only some groups. The rules obtained from our approach
have much higher accuracy degree than the coverage degree. This is because of the
tree traversal searches for the maximum accurate level of each branch, where their
children do not have smaller boundary regions than the parents. Once the target
granules are found, the granules’ language can be used to express the connections
between objects in the same granule directly. The connections are multi-dimension
which reflect the relationships between attributes in the attribute subset (e.g., depen-
dencies) and also the relationships between the condition attribute subset and the
decision attribute. On the other hand, if one prefers the rule with higher coverage
degree, the bread first search for the coarser granules can be achieved.

22.6 Conclusion

An approach to automatically construct a GCH from a decision table is presented. A
GCH represents knowledge in different level of specificness/coarseness. A granular
concept is formally defined for its syntax, semantic, and interpretation. With this
rich information, an application can map from a granular concept that conveys suffi-
cient information to solve a problem. The usefulness of the GCH is shown from the
ability to extract higher-order rules from the GCH structure without postprocessing
required. Extensions of this work include granular concept mapping based on a con-
ceptual network of a domain for real world applications such as the educational and
instructional area.
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Chapter 23
Rough Sets and Medical Differential Diagnosis

Shusaku Tsumoto

Abstract. This chapter discusses a correspondence between the core ideas of rough
sets and medical differential diagnosis. Classically, a disease is defined as a set of
symptoms, each of which gives the degree of confidence and coverage for the di-
agnosis. Diagnostic procedure mainly consists of the following three procedures:
First, focusing mechanism (characterization) selects the candidates of differential
diagnosis by using a set of symptoms. Secondly, additional set of symptoms make a
differential diagnosis among the selected candidates. Finally, complications of other
disease will be considered by symptoms which cannot be explained by the final can-
didates. This chapter mainly focuses on the first and second process and shows that
these processes correspond to rules extracted by upper and lower approximation of
supporting set of a given disease.

Keywords: Rough sets, data mining, rule induction, focusing mechanism, medical
diagnostic model.

23.1 Introduction

Due to the rapid progress of biomolecular technologies, medical diagnostic, and
therapeutic process are chaging very rapidly. In other words, laboratory examina-
tions, radiological examinations, and molecular- based drug development are indis-
penable for clinical activities. However, the etiology of many diseases are still un-
known, whose diagnosis should be made by classical methods, such as interviewing
patient history and physical examinations.

Classical medical diagnosis of a disease assumes that a disease is defined as a
set of symptoms. If symptoms are observed enough, a set of symptoms give some
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confidence to diagnosis of a corresponding disease. Thus, correspondence between
a set of manifestations and a disease will be used to make its diagnosis. Such sets of
symptoms may be used for differential diagnosis, and similarity of diseases will be
infered by sets of symptoms.

This chapter shows that such a diagnostic process can be modeled by the core
ideas of rough sets: selection of candidates (screening) and differential diagnosis are
closely related with diagnostic rules obtained by upper and lower approximations of
a given concept.

The chapter is organized as follows. Section 23.2 shows characteristics of med-
ical diagnostic process. Section 23.3 discusses correspondence between medical
diagnosis and the core ideas of rough sets. Section 23.4 provides algorithms for
induction of diagnostic rules. Section 23.5 gives an extention of the above ideas
in probabilistic domain, which can be viewed as application of variable precision
rough set model [19]. Section 23.6 discussed what has not been achieved yet. Fi-
nally, Section 23.7 concludes this chapter

23.2 Medical Diagnostic Process

23.2.1 Differential Diagnosis of Headache

Headache is one of the most important chief complaints in Neurological Diseases.
Although most of the etiology of headache is unknown and classified into Primary
Headache, headache with other disorders, called Secondary Headache may need
emergent care. In some cases, neuroimaging or other laboratory/physiological ex-
aminations cannot capture the need for emergency action, classical empirical ex-
aminations are still very important, compared with other medical fields The crucial
point of differential diagnosis is whether its focus is intracranial or not: if the dis-
ease is caused by intracranial disorders, intensive care should be taken immediately.
However, most of cases of headache (70%) are coming from muscle pain, which
may not need emergency action. Thus, differential diagnosis is very important

23.2.2 Classification of Headache

Due to the importance of classification and diagnosis of headache, International
Headache Society published the second version of International Classification of
Headache (ICHD-II) in 2004 [1]. This classification gives the definition and diag-
nostic criteria of a disease. The basis of this classification is the following:

1. Single classification for all purposes
2. Comprehensive
3. Evidence-based as far as possible
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4. Symptom-based for the primary headaches, aetiological for the secondary
headaches

5. Unambiguous terms such as sometimes, often, usually are avoided
6. Specificity weighted over sensitivity
7. Separate codes for probable cases

The classification system is hierarchical and phenomenological: the major groups
consist of three types: (1) primary headache, (2) secondary headache and (3) cranial
neuralgias, central and primary facial pain and other headaches. Primary headache
disorders are headache without any causative disorder, and consists of the following
four types:

1. Migraine
2. Tension-type headache
3. Cluster headache and other trigeminal autonomic cephalalgias
4. Other primary headaches

The above classification can be summarized into the following interesting charac-
teristics:

(a) Hierarchical classification is used.
(b) A set of Symptoms is used to describe each disease.
(c) Description is based on specificity weighted over sensitivity, which shows that

reasoning about frequency is implicitly included.
(d) For coverage, exceptions are described.
(e) Diagnostic criteria give temporal information about episodes of headache.

Since the author was involved in developing an expert system for differential di-
agnosis of headache [2], he focused on the nature of description and frequency as
shown in Section 23.3. The informal history about how the author reached rough
sets is shown in Appendix.

23.2.3 Examples: Migraine and Tension-Type Headache

For example, Figures 23.1 and 23.2 show the cases of migraine without aura, for-
mally called common migraine and infrequent episodic tension-type headache.

These examples give us several interesting characteristics for differential diag-
nosis: the diagnostic criterion [D.] of tension-type headache is negation of that of
migraine. The criteria [C.] show different symptoms, which are useful for differen-
tial diagnosis. Thus, [D.] can be applied to negation of one of the diseases, and [C.]
can be applied to confirmation of one of the diseases. Therefore, such combination
of negation and confirmation is very important for diagnosis of headache, which we
call focusing mechanism, discussed later.
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1.1 Migraine without aura G43.0
Previously used terms common migraine, hemicrania simplex
Description: Recurrent headache disorder manifesting in attacks lasting 4-72 hours. Typ-
ical characteristics of the headache are unilateral location, pulsating quality, moderate, or
severe intensity, aggravation by routine physical activity and association with nausea and/or
photophobia and phonophobia
Diagnostic criteria:
A. At least 5 attacks 1 fulfilling criteria B-D
B. Headache attacks lasting 4-72 hours (untreated or unsuccessfully treated)
C. Headache has at least two of the following characteristics:

a. unilateral location
b. pulsating quality
c. moderate or severe pain intensity
d. aggravation by or causing avoidance of routine physical activity (eg, walking or

climbing stairs)

D. During headache at least one of the following:

a. nausea and/or vomiting
b. photophobia and phonophobia

E. Not attributed to another disorder

Fig. 23.1. Migraine without aura[1]

23.2.4 Focusing Mechanism

One of the characteristics in medical reasoning is a focusing mechanism, which
is used to select the final diagnosis from many candidates [18], [10]. For exam-
ple, in differential diagnosis of headache, more than 60 diseases will be checked
by present history, physical examinations, and laboratory examinations. In diagnos-
tic procedures, a candidate is excluded if a symptom necessary to diagnose is not
observed.

This style of reasoning consists of the following two processes: exclusive rea-
soning and inclusive reasoning. Relations of this diagnostic model with another di-
agnostic model are discussed in [8]. The diagnostic procedure proceeds as follows
(Fig. 23.3): First, exclusive reasoning excludes a disease from candidates when a
patient does not have a symptom that is necessary to diagnose that disease. Sec-
ond, inclusive reasoning suspects a disease in the output of the exclusive process
when a patient has symptoms specific to a disease. These two steps are modeled as
two kinds of rules, negative rules (or exclusive rules) and positive rules; the former
corresponds to exclusive reasoning, the latter to inclusive reasoning. In the next two
sections, these two rules are represented as deterministic rules, which can be viewed
as special kinds of probabilistic rules.
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2.1 Infrequent episodic tension-type headache G44.2
Description: Infrequent episodes of headache lasting minutes to days. The pain is typically
bilateral, pressing or tightening in quality and of mild-to-moderate intensity, and it does not
worsen with routine physical activity. There is no nausea but photophobia or phonophobia
may be present.
Diagnostic criteria:
A. At least 10 episodes occurring on ¡1 day per month on average (¡12 days per year) and

fulfilling criteria B-D
B. Headache lasting from 30 minutes to 7 days
C. Headache has at least two of the following characteristics:

a. bilateral location
b. pressing/tightening (non-pulsating) quality
c. mild or moderate intensity
d. not aggravated by routine physical activity such as walking or climbing stairs

D. Both of the following:

a. no nausea or vomiting (anorexia may occur)
b. no more than one of photophobia or phonophobia

E. Not attributed to another disorder

Fig. 23.2. Infrequent episodic tension-type headache[1]

Focusing mechanism Characterization

(selection of candidates) (negative rules)

Differential diagnosis Discrimination

(positive rules)

Detection of complications Complications

Fig. 23.3. Illustration of focusing mechanism

23.3 Definition of Rules

23.3.1 Rough Sets

In the following sections, we use the following notation introduced by Grzymała-
Busse and Skowron [7], based on rough set theory [3]. Let U denote a nonempty
finite set called the universe and A denote a nonempty, finite set of attributes, that
is, a : U → Va for a ∈ A, where Va is called the domain of a, respectively. Then
a decision table is defined as an information system, A = (U,A∪{d}). The atomic
formulas over B⊆ A∪{d} and V are expressions of the form [a = v], called descrip-
tors over B, where a ∈ B and v ∈Va. The set F(B,V ) of formulas over B is the least
set containing all atomic formulas over B and closed with respect to disjunction,
conjunction, and negation.
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For each f ∈ F(B,V ), fA denotes the meaning of f in A, that is, the set of all
objects in U with property f , defined inductively as follows:

1. If f is of the form [a = v], then fA = {s ∈U |a(s) = v}.
2. ( f ∧g)A = fA∩gA; ( f ∨g)A = fA∨gA; (¬ f )A = U − fa.

23.3.2 Classification Accuracy and Coverage

23.3.2.1 Definition of Accuracy and Coverage

By use of the preceding framework, classification accuracy and coverage, or true
positive rate are defined as follows.

Definition 23.1. Let R and D denote a formula in F(B,V ) and a set of objects
that belong to a decision d. Classification accuracy and coverage(true positive rate)
for R→ d is defined as:

αR(D) =
|RA∩D|
|RA| (= P(D|R)), (23.1)

κR(D) =
|RA∩D|
|D| (= P(R|D)), (23.2)

where |S|, αR(D), κR(D), and P(S) denote the cardinality of a set S, a classification
accuracy of R as to classification of D, and coverage (a true positive rate of R to D),
and probability of S, respectively.

Figure 23.4 depicts the Venn diagram of relations between accuracy and coverage.
Accuracy views the overlapped region |RA ∩D| from the meaning of a relation R.
On the other hand, coverage views the overlapped region from the meaning of a
concept D.

R
A

D

Symptoms
Disease

Fig. 23.4. Venn diagram of accuracy and coverage
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It is notable that αR(D) measures the degree of the sufficiency of a proposition,
R→ D, and that κR(D) measures the degree of its necessity. For example, if αR(D)
is equal to 1.0, then R→D is true. On the other hand, if κR(D) is equal to 1.0, then
D→ R is true. Thus, if both measures are 1.0, then R↔ D.

23.3.3 Probabilistic Rules

By use of accuracy and coverage, a probabilistic rule is defined as:

R
α,κ→ d s.t. R = ∧ j[a j = vk],αR(D)≥ δα and κR(D)≥ δκ. (23.3)

If the thresholds for accuracy and coverage are set to high values, the meaning of the
conditional part of probabilistic rules corresponds to the highly overlapped region.
Figure 23.5 depicts the Venn diagram of probabilistic rules with highly overlapped
region. This rule is a kind of probabilistic proposition with two statistical measures,
which is an extension of Ziarko’s variable precision model (VPRS) [19]1.

R
A

D

Symptoms

Disease

Fig. 23.5. Venn diagram for probabilistic rules

It is also notable that both a positive rule and a negative rule are defined as special
cases of this rule, as shown in the next sections.

23.3.4 Positive Rules

A positive rule is defined as a rule supported by only positive examples, the classi-
fication accuracy of which is equal to 1.0. It is notable that the set supporting this
rule corresponds to a subset of the lower approximation of a target concept, which
is introduced in rough sets [3]. Thus, a positive rule is represented as:

R→ d s.t. R = ∧ j[a j = vk], αR(D) = 1.0.

1 This probabilistic rule is also a kind of rough modus ponens [5].
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Figure 23.6 shows the Venn diagram of a positive rule. As shown in this figure,
the meaning of R is a subset of that of D. This diagram is exactly equivalent to the
classic proposition R→ d.

R
A

D

Symptoms

Disease

Fig. 23.6. Venn diagram of positive rules

This positive rule is often called a deterministic rule. However, we use the term,
positive (deterministic) rules, because a deterministic rule supported only by nega-
tive examples, called a negative rule, is introduced in the next section.

23.3.5 Negative Rules

Before defining a negative rule, let us first introduce an exclusive rule, the contra-
positive of a negative rule [18]. An exclusive rule is defined as a rule supported by
all the positive examples, the coverage of which is equal to 1.0. That is, an exclu-
sive rule represents the necessity condition of a decision. It is notable that the set
supporting an exclusive rule corresponds to the upper approximation of a target con-
cept, which is introduced in rough sets [3]. Thus, an exclusive rule is represented
as:

R→ d s.t. R = ∨ j[a j = vk], κR(D) = 1.0.

Figure 23.7 shows the Venn diagram of an exclusive rule. As shown in this figure,
the meaning of R is a superset of that of D. This diagram is exactly equivalent to the
classic proposition d → R.

From the viewpoint of propositional logic, an exclusive rule should be
represented as:

d →∨ j[a j = vk],
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R
A

D

Symptoms

Disease

Fig. 23.7. Venn diagram of exclusive rules

because the condition of an exclusive rule corresponds to the necessity condition of
conclusion d. Thus, it is easy to see that a negative rule is defined as the contraposi-
tive of an exclusive rule:

∧ j¬[a j = vk]→¬d,

which means that if a case does not satisfy any attribute value pairs in the condition
of a negative rule, then we can exclude a decision d from candidates.

In summary, a negative rule is defined as:

∧ j¬[a j = vk]→¬d s.t. ∀[a j = vk] κ[a j=vk](D) = 1.0,

where D denotes a set of samples that belong to a class d. Figure 23.8 shows the
Venn diagram of a negative rule. As shown in this figure, it is notable that this
negative region is the “positive region” of “negative concept.”

R
A

D

Symptoms

Disease

Exclusive

Negative

Fig. 23.8. Venn diagram of negative rules
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Negative rules should also be included in a category of deterministic rules, be-
cause their coverage, a measure of negative concepts, is equal to 1.0. It is also no-
table that the set supporting a negative rule corresponds to a subset of negative
region, which is introduced in rough sets [3].

In summary, positive and negative rules correspond to positive and negative re-
gions defined in rough sets. Figure 23.9 shows the Venn diagram of those rules.

R
A

D

Symptoms

Disease

Exclusive Positive

Negative

Fig. 23.9. Venn diagram of defined rules

23.4 Algorithms for Rule Induction

The contrapositive of a negative rule, an exclusive rule, is induced as an exclusive
rule by the modification of the algorithm introduced in PRIMEROSE-REX [18, 8],
as shown in Fig. 23.10 [12, 11]. This algorithm works as follows. (1) First it selects
a descriptor [ai = v j] from the list of attribute-value pairs, denoted by L. (2) Then it
checks whether this descriptor overlaps with a set of positive examples, denoted by
D. (3) If so, this descriptor is included in a list of candidates for positive rules and
the algorithm checks whether its coverage is equal to 1.0. If the coverage is equal
to 1.0, then this descriptor is added to Rer, the formula for the conditional part of
the exclusive rule of D. (4) Then [ai = v j] is deleted from the list L. This procedure,
from (1) to (4), will continue unless L is empty. (5) Finally, when L is empty, this
algorithm generates negative rules by taking the contrapositive of induced exclusive
rules.

On the other hand, positive rules are induced as inclusive rules by the algorithm
introduced in PRIMEROSE-REX [18], as shown in Fig. 23.11. For induction of pos-
itive rules, the threshold of accuracy and coverage is set to 1.0 and 0.0, respectively.
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procedure Exclusive and Negative Rules;
var

L : List;
/* A list of elementary attribute-value pairs */

begin
L := P0;
/* P0: A list of elementary attribute-value pairs given in a database */
while (L �= {}) do

begin
Select one pair [ai = v j] from L;
if ([ai = v j]A∩D �= φ) then do /* D: positive examples of a target class d */

begin
Lir := Lir +[ai = v j]; /* Candidates for Positive Rules */
if (κ[ai=v j ](D) = 1.0)
then Rer := Rer ∧ [ai = v j];

/* Include [ai = v j] into the formula of Exclusive Rule */
end

L := L− [ai = v j];
end

Construct Negative Rules:
Take the contrapositive of Rer.

end {Exclusive and Negative Rules};

Fig. 23.10. Induction of exclusive and negative rules

This algorithm works in the following way. (1) First it substitutes L1, which de-
notes a list of formulas composed of only one descriptor, with the list Ler generated
by the former algorithm shown in Fig. 9.1. (2) Then, until L1 becomes empty, the
following steps will continue: (a) A formula [ai = v j] is removed from L1. (b) Then,
the algorithm checks whether αR(D) is larger than the threshold. (For induction of
positive rules, this is equal to checking whether αR(D) is equal to 1.0.) If so, then
this formula is included a list of the conditional parts of positive rules. Otherwise,
it will be included in M, which is used for making conjunctions. (3) When L1 is
empty, the next list L2 is generated from the list M.

23.5 Extension into Variable Precision Rough Set Model

Although the above diagnostic model clearly shows the coresspondence to the origi-
nal rough set model, unfortunately, medical domain is not deterministic. High speci-
ficity is preferable, but it is very difficult to obtain the full specificity without loss
of predictability. This is why RHINOS focuses on inclusive rules, which can be
viewed as an probabilistic extention of positive rule. Interestingly, this extension
corresponds to lower approximation of variable precision rough set model [19]. The
definition of inclusive rules can be obtained as Equation 23.3 with high accuracy and
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procedure Positive Rules;
var

i : integer; M,Li : List;
begin

L1 := Lir;
/* Lir: A list of candidates generated by induction of exclusive rules */
i := 1; M := {};
for i := 1 to n do
/* n: Total number of attributes given

in a database */
begin

while ( Li �= {} ) do
begin

Select one pair R = ∧[ai = v j] from Li;
Li := Li−{R};
if (αR(D) > δα)

then do Sir := Sir +{R};
/* Include R in a list of the Positive Rules */

else M := M +{R};
end

Li+1 := (A list of the whole combination of the conjunction formulae in M);
end

end {Positive Rules};

Fig. 23.11. Induction of positive rules

high coverage. Thus, an algorithm for induction of inclusive rules can be achieved
by small modification of Fig 23.11, as shown in Fig 23.12.

The author conducted several experimental evaluations on several neurological
datasets [8, 12, 11], which shows that the performance of these algorithms are better
than conventional methods.

23.6 Discussion: What Has Not Been Achieved?

In Section 23.2, the author discusses the characteristics of classification of headache:
(a) hierarchical classification is used. (b) A set of Symptoms is used to describe
each disease. (c) Description is based on specificity weighted over sensitivity, which
shows that reasoning about frequency is implicitly included. (d) For coverage, ex-
ceptions are described. (e) Diagnostic criteria give temporal information about
episodes of headache.

In the above studies, automated extraction of knowledge with respect to (b), (c),
and (d) has been solved. Concerning (a), the author proposed several approach to
mining taxonomy from a dataset in [9, 13, 14].

However, acquisition of temporal knowledge has not been achieved yet. When
the author interviewed the domain expert for RHINOS, he found that temporal
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procedure Positive Rules;
var

i : integer; M,Li : List;
begin

L1 := Lir;
/* Lir: A list of candidates generated by induction of exclusive rules */
i := 1; M := {};
for i := 1 to n do
/* n: Total number of attributes given

in a database */
begin

while ( Li �= {} ) do
begin

Select one pair R = ∧[ai = v j] from Li;
Li := Li−{R};
if (αR(D) > δα) and (κR(D) > δκ)

then do Sir := Sir +{R};
/* Include R in a list of the Inclusive Rules */

else M := M +{R};
end

Li+1 := (A list of the whole combination of the conjunction formulae in M);
end

end {Positive Rules};

Fig. 23.12. Induction of positive rules

reasoning is very important for complicated cases. For example, one patient suf-
fers from both common migraine and tension headache. According to the diagnos-
tic rules, RHINOS diagnoses the case as migraine. However, the main complaint
came from tension headache. Since the onset of tension headache is persistent but
the severity is mild, the patient focuses on the symptoms of migraine. If the system
can focus on the differences in temporal natures of headaches, then it can detect
the complications of migraine and tension headache. Thus, temporal reasoning is
a key to diagnose completed cases especially when all the symptoms may give a
contradict interpretation.

Research on temporal data mining is ongoing, and now the authors realized that
temporal data mining is very important for risk management in several fields [15, 17,
16]. It will be our future work to develop methodologies for temporal rule mining
in clinical data.

23.7 Conclusion

This paper focuses on medical diagnostic process and discusses correspondence be-
tween the process and rough set model. The key characteristics in medical reasoning
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is a focusing mechanism: First, exclusive reasoning excludes a disease from candi-
dates when a patient does not have a symptom that is necessary to diagnose that
disease. Second, inclusive reasoning suspects a disease in the output of the exclu-
sive process when a patient has symptoms specific to a disease. These two steps
are modeled as two kinds of rules obtained from representations of upper and lower
approximation of a given disease. Thus, rule induction based on rough set model
is a powerful tool for automated extraction or mining of rules following a focusing
mechanism from dataset.
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Appendix: RHINOS

RHINOS is an expert system which diagnoses clinical cases on headache or fa-
cial pain from manifestations. In this system, a diagnostic model proposed by Mat-
sumura
[2] is applied to the domain, which consists of the following three kinds of rea-
soning processes: exclusive reasoning, inclusive reasoning, and reasoning about
complications.

First, exclusive reasoning excludes a disease from candidates when a patient does
not have a symptom which is necessary to diagnose that disease. Secondly, inclusive
reasoning suspects a disease in the output of the exclusive process when a patient
has symptoms specific to a disease. Finally, reasoning about complications suspects
complications of other diseases when some symptoms which cannot be explained
by the diagnostic conclusion are obtained.

Each reasoning is rule-based, and all the rules needed for diagnostic processes
are acquired from medical experts in the following way.

(1) Exclusive Rules

These rule correspond to exclusive reasoning. In other words, the premise of this
rule is equivalent to the necessity condition of a diagnostic conclusion. From the dis-
cussion with medical experts, the following six basic attributes are selected which
are minimally indispensable for defining the necessity condition: 1. Age, 2. Pain
location, 3. Nature of the pain, 4. Severity of the pain, 5. History since onset,
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6. Existence of jolt headache. For example, the exclusive rule of common migraine
is defined as:

In order to suspect common migraine,
the following symptoms are required:
pain location: not eyes,
nature :throbbing or persistent or radiating,
history: paroxysmal or sudden and
jolt headache: positive.

One of the reasons why the six attributes are selected is to solve an interface prob-
lem of expert systems: if all attributes are considered, all the symptoms should be
input, including symptoms which are not needed for diagnosis. To make exclusive
reasoning compact, we chose the minimal requirements only. It is notable that this
kind of selection can be viewed as the ordering of given attributes, which is expected
to be induced from databases. This issue is discussed later in Section 6.

(2) Inclusive Rules

The premises of inclusive rules are composed of a set of manifestations specific to a
disease to be included. If a patient satisfies one set, this disease should be suspected
with some probability. This rule is derived by asking the medical experts about the
following items for each disease: 1. a set of manifestations by which we strongly
suspect a disease. 2. the probability that a patient has the disease with this set of
manifestations:SI(Satisfactory Index) 3. the ratio of the patients who satisfy the set
to all the patients of this disease: CI(Covering Index) 4. If the total sum of the
derived CI(tCI) is equal to 1.0 then end. Otherwise, goto 5. 5. For the patients
with this disease who do not satisfy all the collected set of manifestations, goto
1. Therefore, a positive rule is described by a set of manifestations, its satisfactory
index (SI), which corresponds to accuracy measure, and its covering index (CI),
which corresponds to total positive rate. Note that, SI and CI are given empirically
by medical experts.

For example, one of three positive rules for common migraine is given as follows.

If history: paroxysmal, jolt headache: yes,
nature: throbbing or persistent,
prodrome: no, intermittent symptom: no,
persistent time: more than 6 hours,
and location: not eye,
then common migraine is suspected with
accuracy 0.9 (SI=0.9) and this rule covers
60 percent of the total cases (CI=0.6).
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(3) Disease Image

This rule is used to detect complications of multiple diseases, acquired by all the
possible manifestations of the disease. By the use of this rule, the manifestations
that cannot be explained by the conclusions will be checked, which suggest compli-
cations of other diseases. For example, the disease image of common migraine is as
follows:

The following symptoms can be explained by
common migraine: pain location: any or
depressing: not or jolt headache: yes or ...

Therefore, when a patient who suffers from common migraine is depressing, it is
suspected that he or she may also have other diseases.
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Chapter 24
Science and Semantics: A Note on Rough Sets
and Vagueness

Marcin Wolski

Abstract. In the chapter we present rough set theory against the background of
recent philosophical discussions about vagueness and empirical sciences. Weiner,
in her article about this topic, discusses the supervaluationist semantics of vague
predicates and its criticism offered by Fodor and Lepore. She argues that neither the
former nor latter approach is consistent with the scientific methodology of dealing
with vague concepts such as “obese”. In actual fact, it is Frege’s philosophical ap-
proach that concepts must have sharp boundaries, which is the closest to scientific
practice. In this context, rough set theory can be viewed as a modified supervalu-
ationist semantics. To be more precise, rough sets provide a modal version of this
semantics, where the super-truth is replaced by a local one. However, there are flies
in the ointment: firstly, rough set theory is philosophically weaker than supervalu-
ationism (in consequence, more vulnerable to the criticism of Fodor and Lepore);
secondly, Weiner’s arguments concerning scientific methods apply to rough sets as
well. Yet there is also good news: this philosophical weakness stays actually in full
accordance with scientific practice. Thus, rough set theory may be seen as a su-
pervaluationism shifted toward the scientific methodology. In the chapter we shall
make a further step into this direction and also present how rough set theory would
be like when made fully consistent with the scientific approach to vague predicates.
In other words, we also offer a Fregean rough set methodology.
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24.1 Introduction

So far, rough set theory and the theories of vagueness have been discussed together
mainly in connection to fuzzy sets, see e.g., [1, 15, 16]. As is well known, the the-
ory of fuzzy sets belongs to the category of degree theories of vagueness or, to use
a different term, many-valued logics approach. This theory is widely recognized as
very important in computer science; yet, in philosophy, it is much less popular; as
Kefee put it in her book [6]: [b]ut Zadeh will not figure centrally in this chapter
since his philosophical contribution is less significant. In this chapter, we would
like to connect rough sets with some other theories of vagueness which are also
philosophically important. To this end, we shall present recent philosophical discus-
sions concerned with vagueness as it is dealt with in both philosophy and empirical
sciences.

Weiner in her excellent article [19] observes that the methods and results of sci-
ence have not yet been taken into account in the philosophical discussions of the
semantics for vague predicates. Worse still, it is widely assumed that in these dis-
cussions no empirical data need to be considered seriously. In the Stanford Ency-
clopedia of Philosophy in the entry “Vagueness” one can find:

Vagueness is standardly defined as the possession of borderline cases. For exam-
ple, ‘tall’ is vague because a man who is 1.8 meters in height is neither clearly tall
nor clearly non-tall. No amount of conceptual analysis or empirical investigation
can settle whether a 1.8 meter man is tall. Borderline cases are inquiry resistant.
Indeed, the inquiry resistance typically recurses. For in addition to the unclarity of
the borderline case, there is normally unclarity as to where the unclarity begins.
In other words ’borderline case’ has borderline cases. This higher-order vagueness
shows that ’vague’ is vague.

Thus, vagueness is defined as the possession of borderline cases which are in-
quiry resistant. Furthermore, vagueness is always higher-order (’borderline case’
has borderline cases). However, as Weiner argues, this view stays in conflict with
the scientific methodology. She observes that such vague predicates as “obese” play
also a central role in science, for example in medical research. On the National In-
stitute of Health Obesity Research web page one can find:

Obesity is a major contributor to serious health conditions in children and adults,
including type 2 diabetes, cardiovascular disease, many forms of cancer, and numer-
ous other diseases and conditions.

Thus, this vague concept has already been scientifically examined. Better still,
in order to compute statistical correlations between obesity and cardiovascular dis-
ease, we have to understand what the vague term “obesity” exactly (sic!) means in
medical sciences. It turns out that vague predicates which might be used in scien-
tific empirical investigations must be tied to the process of precisification, that is,
the process of ruling out borderline cases. Thus, scientific practice is opposite to the
basic philosophical assumptions concerning vagueness.

Of course, the above philosophical assumptions are shared by computer scientists
as well. As Pawlak observes [12]:
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For example, the concept of an ’odd’ (’even’) number is crisp, whereas the con-
cept of a ’beautiful woman’ is vague because for some women we cannot decide
whether they are beautiful or not (they are boundary-line cases).

In the rough set approach vagueness is due to lack of information about some
elements of the universe. If with some elements the same information is associated,
in view of this information these elements are indiscernible. [...] It turns out that
indiscernibility leads to the boundary-line cases, i.e. some elements cannot be clas-
sified to the concept or its complement in view of the information available and thus
form boundary-line cases.

The main aim of this article is to discuss the rough set methodology against the
background of recent philosophical discussions concerning vagueness and empirical
sciences. As said above, vague concepts in empirical sciences are defined by means
a process of precisification. Since the very similar idea is also present in supervalu-
ationism [2, 6], Weiner [19] starts her research with the supervaluationist semantics
for vague predicates and its criticism offered by Fodor and Lepore [3]. Then she
argues that neither former nor latter approach can be accepted without abandoning
the scientific methodology. Finally, it turns out that an approach offered by Frege
[5, 4] – for whom a vague predicate is not actually a predicate – is a philosophical
approach expressing the way in which empirical sciences deal with vague concepts.1

Writing about rough sets in the above context needs a few words of caution.
Rough set theory is a successful field of research, what has resulted in the divers ex-
tensions of this theory on other fields, including also the phenomenon of vagueness,
for example [1, 16]. In consequence, the framework of rough set is very broad and
one can connect it with a number of different approaches. In this chapter, we focus
our attention on (basic) rough set theory as it was originally designed by Pawlak in
his early papers; that is, a given decision table is fixed and the main goal of rough set
analysis is to approximate a decision attribute. In our opinion, it is the best way to
extract basic methodological and philosophical assumptions staying behind rough
sets. Thus, in what follows when we write about rough set theory we mean basic
rough set theory.

In the above context, rough set theory – as we shall show – is very closely related to
the supervaluationist semantics [2, 6]. In spite of that, there is also a major difference:
the supervaluationist semantics assumes the super-truth (which is global); in the case
of rough sets, the super-truth is replaced by a local-truth, what results in S5 modal
logic. Furthermore, rough set theory starts with information systems (i.e. concrete
structures) instead of classical models (abstract structures). This difference touches
the problem of higher-order vagueness, which in both theories is not obvious. Kefee
argues that in the case of supervaluationism, there is a place for this type of vagueness
mainly due to vagueness in meta-theory [6]; however, the issue is still disputable. Our
standpoint on this issue agrees with Kefee’s view, mainly due to usage of classical
models. In the case of the basic rough sets, where the set of conditional attributes

1 As is well known, in philosophy the concept of “concept” is very problematic and there are
many definitions in use. However, in empirical sciences what a “concept” really is does not
play any role. Therefore we put aside all philosophical discussions concerning the nature
of a concept itself.
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from an information system is fixed, one cannot model this type of vagueness. In
order to do so, authors must extend the basic model and consider different sets of
attributes or allow for change of data; in this way, the boundary region ceases to be
crisp, for example [16]. As said above, in this chapter, we want to deal with basic
rough set theory; therefore, we assume that rough set theory does not actually model
higher-order vagueness. The lack of higher-order vagueness is – in our opinion – an
advantage: there is no need to satisfy all philosophical requirements concerned with
the concept of vagueness, especially when they stay in a conflict with good scientific
practice.

Summing up, the basic treatment of vague predicates in both rough set theory and
supervaluationism is essentially the same. This type of representation results in, as
demonstrated by Weiner, a conflict with good scientific practice. On the other hand,
the lack of higher-order vagueness stays in accordance with the scientific methodol-
ogy. Therefore, in the article, we make further steps in this direction and show how
rough set theory would be like when made fully consistent with scientific practice.
Thus, given that Frege’s view on vagueness is actually the scientific view [18], we
also offer a Fregean rough set theory.

24.2 Obese: A Case Study

In this section, we present some philosophical remarks which are relevant to the se-
mantics of vague predicates as it is defined in philosophical studies and in scientific
research. Fortunately, there is at least one paradigmatic vague predicate which has
become a subject of both philosophy and science, that is,“obesity”. The section is
based on two papers by Weiner [18, 19] and one paper by Fodor and Lepore [3]. To
make the material accessible, we omit abstract philosophical discussions and focus
on the case study of “obesity”, which is the first predicate given as an example by
the Stanford Encyclopedia of Philosophy in the entry “Vagueness”.

Let us look at this Encyclopedia once again.
For instance, a boy may count as a borderline case of ’obese’ because people

cannot tell whether he is obese just by looking at him. A curious mother could try to
settle the matter by calculating her boy’s body mass index. The formula is to divide
his weight (in kilograms) by the square of his height (in meters). If the value exceeds
30, this test counts him as obese. The calculation will itself leave some borderline
cases. The mother could then use a weight-for-height chart. These charts are not
entirely decisive because they do not reflect the ratio of fat to muscle, whether the
child has large bones, and so on. The boy will only count as an absolute borderline
case of ’obese’ if no possible method of inquiry could settle whether he is obese.
When we reach this stage, we start to suspect that our uncertainty is due to the
concept of obesity rather than to our limited means of testing for obesity.

As one can see, this description of the term “obese” takes into account also a
medical context, that is, the body mass index (BMI). It is very interesting, since
Weiner in her article [19] also takes this index to define obesity, but her conclusions
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are opposite to the ones offered by the Encyclopedia (we shall return to this issue
soon). The entry suggests also that even in medical sciences we must encounter
borderline cases when dealing with vague predicates.

This approach is defended by Fodor and Lepore [3] in their criticism of superval-
uationist theory of vagueness. According to supervaluationism, a vague predicate,
such as “obese”, is given no definite extension. Rather, there is a range of possible
extensions. These various possible extensions correspond to different ways of mak-
ing the predicate precise; for example “obese” may be given the following exten-
sions (in the literature these extensions are called precisifications): (1) BMI greater
than 30, (2) BMI greater than 27, (3) BMI greater than 24. The supervaluationist
semantics assumes that truth conditions involve quantifying over all these ways of
making language precise. Thus, Adam who has BMI = 26 will be settled in the bor-
derline area (he is obese only under the interpretation 2), whereas if Bruno’s BMI =
35, then “Bruno is obese” will be settled as true, because on all the ways of making
“obese” precise (i.e., 1, 2, 3), Bruno is classified as obese. According to Fodor and
Lepore, this idea of making vague predicate precise is, however, implausible [3]. If a
sentence “Adam is obese” is indeterminate in one model, then it must be so in every
model. They reason as follows. The point of precisification is actually bivalence;
it excludes models at which this sentence is neither true nor false. For a sentence
“Adam is obese”, the supervaluationism requires models at which the sentence is
true and models at which the sentence if false. But, Fodor and Lepore argue, there
can be no models of either kind [3], because it is what actually vagueness means.

Summing up, from the standpoint of philosophy what is vague is, indeed con-
ceptually necessary, vague and if “Adam is obese” is unsettled in the actual world,
then it is unsettled in every world [3]. However, from the standpoint of empirical
science, this issue looks quite different. At the National Cancer Institute web page
one can find out that:

In 2002, about 41,000 new cases of cancer in the United States were estimated
to be due to obesity. This means that about 3.2 percent of all new cancers are linked
to obesity. A recent report estimated that, in the United States, 14 percent of deaths
from cancer in men and 20 percent of deaths in women were due to overweight and
obesity.

If obesity must have borderline cases, then the following question must arise:
how these statistics are computed? According to Fodor and Lepore, in science we
deal with a “new-obese” which is not in actual fact and English expression (as they
put it: you cannot precisify English [3]). However, it means that we must abandon
the widely accepted scientific methodology. Worse still, it also means that the above
citation from the National Cancer Institute web page is not even written in English.
Weiner gives the following answer to the question at issue [19]:

What is the researcher to do?
She does not simply hope for the best and decide to deal with borderline cases

when they arise – perhaps failing to classify them at all. Each study subject must
be classified, otherwise there will be no way to determine proportions. [...] The
solution, in obesity research, is to use a measurable index of weight relative to height
– typically, body mass index (BMI). And the researcher will decide, antecedent to
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beginning the study, on a sharp cut-off (say, BMI > 30) between the obese and
non-obese. It is essential to such an investigation to draw a line.

Thus, even the supervaluationist semantics cannot be accepted by scientist, be-
cause in science, we need a single precisification. Of course, not whole philosophy
is against scientific practice. As Weiner explains, Frege’s standpoint on vague pred-
icates is along the line of the scientific methodology [18]:

Frege says,
If something fails to display a sharp boundary, it cannot be recognized in logic

as a concept [...] [1984, p. 133)
[...] there can be no doubt that Frege believed, for almost all his career, that

concepts must have sharp boundaries [Weiner. 1990, pp. 92-97]. The above quo-
tation about the need for sharp boundaries is from a paper published in 1891, but
the same view appears in “Foundations”, which was published in 1884. And in the
second volume of “Basic Laws”, which was printed in 1903, Frege says that some-
thing that appears to be a concept but does not have sharp boundaries is “wrongly
termed a concept” [1952, p. 139] and is “an inadmissible sham concept” [1952, p.
145].

Of course, Frege’s requirement that concepts must have sharp boundaries is
recognized among many philosophers as very implausible (it is no accident that
the Stanford Encyclopedia of Philosophy in the entry “Vagueness” does not even
mention Frege and his philosophy). However, Weiner’s point is that this require-
ment may be made plausible in some contexts and that, as above, it is no accident
that these contexts can be found in science. As a matter of fact, in empirical studies
if one wants to obtain valid inferences (conclusions), one must start with precise
classifications. Therefore, Weiner concludes that [18]:

If, as Dummett argues, it is not enough to regard Frege as a philosopher of logic,
then Frege should be regarded not as a philosopher of language, but as a philoso-
pher of science.

Before we go further with the analysis of obesity, we shall introduce in the next
section rough set theory [9, 10, 11]. In this way, the further analysis can be made
within the conceptual framework of rough sets.

24.3 Rough Set Theory

In the present section, we briefly recall basic concepts from rough set theory which
are relevant to our study [9, 10, 11].

Definition 24.1 (Information System). A quadruple I = 〈U,Att,Val, f 〉 is called
an information system, where:

• U is a non–empty finite set of objects;
• Att is a non–empty finite set of attributes;
• Val =

⋃
A∈Att ValA, where ValA is the (non-empty) value–domain of the

attribute A;
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• f : U×Att /→Val is a partial information function, such that for all A ∈ Att and
a ∈U , when f (a,A) is defined, then f (a,A) ∈ValA.

If f is a total function, that is, f (a,A) is defined for all a∈U and A∈Att, then the in-
formation system I is called complete; otherwise, it is called incomplete. The reader
may also consult [8], where the concept of information system was elaborated.

When f is generalized to a function from U ×Att to P (Val), where P (Val) is the
powerset of Val, then the information system is nondeterministic. In what follows,
we focus our attention on complete and deterministic systems.

If we distinguish in an information system two disjoint classes of attributes C
and D, called condition and decision attributes, respectively, then the system will be
called a decision table.

An information system I gives rise to an equivalence relation E , called an indis-
cernibility relation, defined as:

E = {(a,b) : ∀A ∈ Att.∀X ∈Val ( f (a,A) = X ⇔ f (b,A) = X)}.

Customarily, E is often written as IND(Att), the partition induced by the relation
IND(Att) is denoted by U/IND(Att), and [a]IND(Att) denotes the equivalence class
of IND(Att) defined by a ∈U . A simple generalization of (U, IND(Att)) is given
by the concept of an approximation space:

Definition 24.2 (Approximation Space). A pair (U,E), where U is a non-empty
set, and E is an equivalence relation on U , is called an approximation space. A
subset X ⊆U is called definable if X =

⋃
Y for some Y ⊆U/E , where U/E is the

family of equivalence classes of E (the quotient set of E).

Definition 24.3 (Approximation Operators). Let (U,E) be an approximation
space. For every concept X ⊆U , its E-lower and E-upper approximations are de-
fined as follows, respectively:

X = {a ∈U : [a]E ⊆ X},

X = {a ∈U : [a]E ∩X �= /0}.
By the usual abuse of language and notation, the operator : P (U)→ P (U) send-
ing X to X will be called the lower approximation operator, whereas the operator

: P (U)→ P (U) sending X to X will be called the upper approximation operator.

Definition 24.4 (Increasing Representation of Rough Sets). For an approximation
space (U,E) and X ⊆U , a pair (X ,X) is called an increasing representation of X .

Definition 24.5 (Disjoint Representation of Rough Sets). For an approximation
space (U,E) and X ⊆U , a pair (X ,U \X) is called a disjoint representation of X .

The set U \ X is often called an exterior of X and denoted by Ext(X), whereas
Bnd(X) = X \X is the boundary region of X . Of course, the choice of representation
depends on a context of application. In the context of modal systems, the increasing
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representation is more handy. On the other hand, in the context of abstract algebras
the disjoint representation is more preferable.

The language for object description in an information system 〈U,Att,Val, f 〉 is
the descriptor language LDesc [11]; its primitive formulas (atoms) are descriptors of
the form [A = val], where A ∈ Att and val ∈ ValA, which is read as an attribute A
has a value val:

α ::= [A = val] | ¬α | α∧β | α∨β
The set of atoms is denoted by Φ, and FDesc denotes the set of all well-formed
formulas.

Definition 24.6 (LDesc Model). Let LDesc be a descriptor language over a complete
and deterministic information system 〉U,Att,Val, f 〉. Then 〉U,v〉 is a model, where
v : U ×Φ→ {0,1} is a function assigning to each pair (a, p), where a ∈ U and
p ∈ Φ, a truth value. We usually write v(a, p) = 1 (or va(p) = 1), which is read as
for the object a, p is true.

• va([A = val]) = 1 if f (a,A) = val, and 0 otherwise.

The function v is extended to every formula α ∈ FDesc in the standard way:

• va(¬α) = 1 if va(α) = 0, and 0 otherwise,
• va(α∧β) = 1 if va(α) = 1 and va(β) = 1, and 0 otherwise.

Let be given a decision table, where C consists of n attributes and D consists of l
attributes. Then each object x ∈U defines two formulas:

[A1 = f (x,A1)]∧ [A2 = f (x,A2)] . . . [An = f (x,An)],

where each Ai ∈ C. This formula is abbreviated as C(x). The second formula is
defined by:

[B1 = f (x,B1)]∧ [B2 = f (x,B2)] . . . [Bn = f (x,Bl)],

where each Bi ∈D. We abbreviate this formula by D(x). The sequence C(x)→D(x)
is called a decision rule induced by x.

For any formula α, let |α| denote the set of objects satisfying α, and for any finite
set X , let #(X) denote the number of elements of X . Then, with every decision rule
C(x) → D(x), where both |C(x)| and |D(x)| are non empty, rough set theory asso-
ciates the certainty factor of the decision rule, denoted by cerx(C;D) and defined as
follows:

cerx(C;D) =
#(|C(x)| ∩ |D(x)|)

#|C(x)|
If cerx(C;D) = 1, then C(x) → D(x) will be called a certain decision rule; if 0 <
cerx(C;D) < 1, then the decision rule will called an uncertain decision rule. Another
important factor is a coverage of the decision rule, denoted covx(C;D) and defined
as:

covx(C;D) =
#(|C(x)| ∩ |D(x)|)

#|D(x)|
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If C(x)→ D(x) is a decision rule then

⋃

y∈|D(x)|
= {|C(y)| : |C(y)| ⊆ |D(x)|}

is the lower approximation of the decision class |D(x)|, whereas

⋃

y∈|D(x)|
= {|C(y)| : |C(y)| ∩ |D(x)| �= /0}

is the upper approximation of |D(x)|.

24.4 Supervaluationist Semantics

In this section, we discuss in some detail supervaluationism. Firstly, we present an
informal (philosophical) introduction and then define a formal account. Our aim is to
show affinities between supervaluationism and rough set theory in ways of dealing
with vague predicates.

Fine, the leading supervaluationist philosopher, introduced the notion of a spec-
ification space as a formal tool to deal with vagueness [2]. Such a space is a set
of points (i.e., specification-points) at which some or all sentences of a given lan-
guage L are assigned truth-values. Some specification-points may be complete, yet
some points may be incomplete. The former points correspond to ways of mak-
ing all vague terms completely precise; the latter correspond to ways where some
or all expressions are left vague and some sentences lack a truth-value. A specifi-
cation space is additionally equipped with a binary extends relation, which should
satisfy certain important restrictions. The stability requirement states that the sen-
tences which are true (false) at a specification-point must remain unchanged at any
point which extends it. The requirement of fidelity states that a complete point is
in actual fact a classical valuation. Another requirement is the completability con-
dition: every specification-point can be extended to a complete specification-point.
The stability requires that if a sentence is true at a partial specification-point, then it
must be true at all complete points that extend this point. Finally, every specification
space must have a base point; all other points must extend the base point.

Supervaluationism, as it is often put, quantifies over complete and admissible
specifications. Thus, truth (or better still, super-truth) is truth at the base-point, and
hence, at all complete specification-points which extend the base-point. Surpris-
ingly, this model preserves many classical tautologies, yet it gives new semantics
to logical connectives. Let us once again consider Adam whose BMI = 26. “Adam
is obese or Adam is not obese” is always true, that is, true at any complete point,
yet both “Adam is obese” and “Adam is not obese” lack a truth (super-truth) value.
Thus, although neither of two sentences is true, their disjunction may be true.

These philosophical requirements can be formalized as follows [7]:
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Definition 24.7 (Partial Model). Given a first-order language L, a partial model M
for L is an ordered pair 〈U, I〉 , where U , the domain of discourse, is a non-empty
set, and I is a function assigning

• to each name of L a member of U ;
• to each n-place function symbol of L an n-place function on D;
• to some, all or none of the propositional variables of L a member of {t, f} so

that I restricted to the propositional variables is a partial function;
• to each n-place relation symbol R of L an ordered pair I(R) = 〈I+(R), I−(R)〉

with I+(R)⊆Un, I−(R)⊆Un and I+(R)∩ I−(R) = /0. I+(R) and I−(R) are the
extension and the anti-extension of R.

Partial model is actually a base point. Other models to be considered are precisifi-
cations of this base model. As one can easily see, the extension and anti-extension
are very similar to the disjoint representation of rough sets.

Definition 24.8 (Precisification). A partial model M′ = 〈U, I′〉 is a precisification
of M = 〈U, I〉 (in symbols, M ≤M) iff

• I′(c) = I(c) for each name or function symbol c;
• for each propositional variable p, if I(p) is defined then I′(p) = I(p);
• I+(R)⊆ I′+(R) and I−(R)⊆ I′−(R) for each relational symbol.

A partial model M = 〈U, I〉 is classical iff both I(p) is defined for each propositional
variable and I+(R)∪ I−(R) = Un for each n-place relation symbol R.

Precisifications allow one to make a partial model more precise by adding new ob-
jects to an extension I+(R) of a relational symbol R of L.

Now, let us come back to an information system. Each atomic formula [A = val]
of LDesc can be regarded as a predicate [A = val](x), and thus, an information system
gives rise to first-order language (consisting of only monadic predicates). Of course,
in the case of a Boolean attribute A, one can abbreviate [A = Yes](x) as [A](x).
Then, a model is actually a function from first-order LDesc to an information system.
Suppose, that we are dealing with a vague predicate “obese”; Fig. 24.1 presents a
partial model for this predicate.

Segment BMI Obese
1 0 < BMI ≤ 15 No
2 15 < BMI ≤ 20 No
3 20 < BMI ≤ 24
4 24 < BMI ≤ 27
5 27 < BMI ≤ 30
5 30 < BMI ≤ 35
6 35 < BMI ≤ 40 Yes
7 40 < BMI Yes

Fig. 24.1. A data table (i.e. information system) corresponding to a partial model for “obese”
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This model is regarded as a base-point, where

I+([Obese]) = {6,7} and I−([Obese]) = {1,2}.

The complete precisifications of this partial model are presented in Fig. 24.2. Of
course, it is only part of possible precisifications. In rough set theory, one could

Segment BMI Obese
1 0 < BMI ≤ 15 No
2 15 < BMI ≤ 20 No
3 20 < BMI ≤ 24 No
4 24 < BMI ≤ 27 Yes
5 27 < BMI ≤ 30 Yes
6 30 < BMI ≤ 35 Yes
7 35 < BMI ≤ 40 Yes
8 40 < BMI Yes

Segment BMI Obese
1 0 < BMI ≤ 15 No
2 15 < BMI ≤ 20 No
3 20 < BMI ≤ 24 No
4 24 < BMI ≤ 27 No
5 27 < BMI ≤ 30 Yes
6 30 < BMI ≤ 35 Yes
7 35 < BMI ≤ 40 Yes
8 40 < BMI Yes

Segment BMI Obese
1 0 < BMI ≤ 15 No
2 15 < BMI ≤ 20 No
3 20 < BMI ≤ 24 No
4 24 < BMI ≤ 27 No
5 27 < BMI ≤ 30 No
6 30 < BMI ≤ 35 Yes
7 35 < BMI ≤ 40 Yes
8 40 < BMI Yes

Fig. 24.2. Complete precisifications of “obese”

merge these precisifications into a single complete information system; such a sys-
tem for “obese” is depicted by Fig. 24.3. As usual, Obese ∈ Att is regarded as a

Segment BMI Obese
1 0 < BMI < 15 No
2 15 < BMI < 20 No
3 20 < BMI < 24 No
4 24 < BMI < 27 Yes
4 24 < BMI < 27 No
5 27 < BMI < 30 Yes
5 27 < BMI < 30 No
6 30 < BMI < 35 Yes
7 35 < BMI < 40 Yes
8 40 < BMI Yes

Fig. 24.3. Information system representing precisifications of “obese”
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decision attribute, whereas BMI ∈ Att is a conditional attribute. Of course, the in-
discernibility relation is computed with respect to conditional attributes (i.e., BMI).

The supervaluationist semantics emphasizes that there are many precisifications
(of any vague predicate) and all of them should be take into account: [T]here are
many equally good precisifications corresponding to different positive and negative
extensions. According to supervaluationism, by taking account of all precisifications
we can provide the logic and semantics of vague language [6]. Suppose that Adam’s
BMI = 26, that is, Adam is a borderline case of obesity. As one can see, there is a
precisification which places him in positive extension of “obese”, but others place
him in negative extension (i.e., anti-extension). Thus, “Adam is obese” is neither true
on all precisifications nor false on all of them; hence, it counts as neither true nor
false. Furthermore, different precisifications draw boundaries to the obese people
at different values of BMI. And, as Fodor and Lepore observe, actually there are
infinitely many such precisifications and, in consequence, for no value n, it is the
case that on all precisifications only people whose BMI is equal or greater than
n are counted as obese. In this way, supervaluationism is able to model higher-
order vagueness: the boundary region is vague. But, as Keefe argues, even in the
finite case supervaluationism is able to maintain higher-order vagueness: super-truth
is vague because it is a matter of truth in all admissible specifications and ‘all
admissible specifications’ is itself vague [6]. Thus, since the metalanguage used by
supervaluationists is vague, vagueness must occur also on object level.

However, in rough set theory, a complete information system must be well-
defined and finite, and, as a result, we can actually compute such a value n. Thus,
and it is no surprise, the boundary region of “obese” in the theory of rough sets is
strict. Let |α| denote the set of all objects satisfying a formula |α| of LDesc. Then

|[Obese = Yes]|= {6,7,8}

|[Obese = Yes]|= {4,5,6,7,8}
Ext(|[Obese = Yes]|) = {1,2,3}
Bnd(|[Obese = Yes]|) = {4,5}

Anyway, according to supervaluationist semantics if n ∈ |[Obese = Yes]|, then “n is
obese” is true (supertrue); if n ∈ Ext(|[Obese = Yes]|), then “n is obese” is false;
and if n∈ Bnd(|[Obese = Yes]|), then “n is obese” is neither true nor false. Thus, the
supervaluationism on the level of atomic sentences coincides with rough set theory.

Let us consider the information system at issue as a decision table: C = {BMI},
D = {Obese}. Then for every x ∈ |[Obese = Yes]|, it holds that

cerx(C;D) =
#(|C(x)| ∩ |D(x)|)

#|C(x)| = 1,

for every x ∈ |[Obese = Yes]|, it holds that
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cerx(C;D) =
#(|C(x)| ∩ |D(x)|)

#|C(x)| > 0,

and for every x ∈ Ext(|[Obese = Yes]|)

cerx(C;D) =
#(|C(x)| ∩ |D(x)|)

#|C(x)| = 0.

Of course, logics stemming from both approaches are different. Yet, as is well
known, the lower approximation operator and the upper approximation operator are
actually � and ♦ of modal system S5, respectively.

Definition 24.9 (Modal Language). Let be given a set of proposition letters Φ
whose elements are usually denoted p, q, r, and so on, and a unary modal opera-
tor ♦ (’diamond’). The well-formed formulas of the basic modal language are given
by the rule:

α ::= p|¬α|α∨β|♦α,

where p ranges over elements of Φ. The set of well-formed formulas is denoted by
F .

As usual, we also make use of the classical abbreviations for conjunction ∧, impli-
cation →, bi-implication ↔, the constant true ,, and the modal operator box �.

Definition 24.10 (Kripke Model). A Kripke model is a triple 〈W,R,v〉, where W is
a non-empty set of worlds, R is a binary relation on W , and v : W ×Φ→ {0,1} is
function assigning to each pair (w, p) a truth value. We usually write vw(p) = 1 (or
vw(p) = 1), which is read as at the world w, p is true (or false). The function v is
extended on every formula α ∈ F in the standard way:

• vw(¬α) = 1 if vw(α) = 0, and 0 otherwise,
• vw(α∧β) = 1 if vw(α) = 1 and vw(β) = 1, and 0 otherwise,
• vw(♦α) = 1 if, for some w′ ∈W such that wRw′, vw′(α) = 1, and 0 otherwise,
• vw(�α) = 1 if, for all w′ ∈W such that wRw′, vw′(α) = 1, and 0 otherwise.

Every Kripke model induces Prop : F → P (W ), defined by

Prop(α) = {w ∈W : vw(α) = 1}.

Definition 24.11 (Semantic Consequence). Let Σ⊆ F and α ∈ F :

• Σ |= α iff for all Kripke models 〈W,R,v〉 and all w ∈W , if vw(β) = 1 for all
β ∈ Σ, then vw(α) = 1;

• |= α iff /0 |= α.

Proposition 24.1. Every approximation space (U,E) and a map φ :Φ→ P (U) give
rise to a Kripke model 〈U,E,v〉 of S5, where va(p) = 1 iff a ∈ φ(p). Furthermore

Prop(�α) = Prop(α) and Prop(♦α) = Prop(α).
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Now, coming back to supervaluationism, we can obtain the following characteriza-
tion [7]:

Proposition 24.2
Σ |= α iff �Σ |=S5 �α,

where |= is a supervaluationist consequence operator, whereas |=S5 is an S5 conse-
quence operator, and

�Σ= {�α : α ∈ Σ}.
The reader interested in formal properties of supervaluation-based consequence
should consult [7]. Here, in the chapter, we would like to focus on how rough set
theory is closely related to supervaluationist approach to vagueness.

Philosophically, the rough set approach is weaker than supervaluationism be-
cause the boundary region is crisp. On the other hand, it allows one to exactly de-
fine borderline cases. As Weiner observes: as sometimes happens in such research,
the decision is made to exclude borderline cases from the study. [...] For obvious
reasons – the exclusion of borderline cases requires two sharp distinctions: a dis-
tinction between those who are obese and those who are borderline-obese and a
distinction between those who are borderline-obese, and those who are not obese
[19]. Please observe, that it is exactly what we have in rough set theory. Following
the line offered by Weiner, one could say that rough set theory is a formalization of
scientific version of supervaluationism. Or better still, since it is Frege’s philosophy
which is the closet to everyday scientific practice, rough sets may be regarded as a
step from supervaluationism toward Frege.

In the next section, we discuss in detail such a Fregean variant of rough sets.

24.5 Vagueness in Science

In this section we consider a scientific approach to vague predicates. We focus
our attention on the usage of the term “obesity” in medical sciences. Of course,
as noted above, one can regard the term “obesity” used in medical research as a
non-English technical term which is not relevant to philosophical discussions about
vagueness [3]. However, as Weiner observed, this term was not introduced to de-
scribe some well-understood and determinate property. On the contrary, among obe-
sity researches, it is regarded as a vague term not appreciably different from the ev-
eryday word ’fat’ [19]. Thus, since we seriously consider research results about, for
example, heart disease, we should also seriously consider what researches do with
vague predicates.

As cited in the introductory section, obesity is a major contributor to serious
health conditions in children and adults, including cardiovascular disease. In order
to determine whether this hypothesis is true, a scientist would take a group of indi-
viduals who suffer from cardiovascular disease and a group of individuals who do
not (a control group), and then she would compute the proportion of each group that
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is obese. The problem is that “obese” is a vague term and therefore such computa-
tion would seem impossible. Weiner writes:

The solution, in obesity research, is to use measurable index of weight relative
to height – typically, body mass index (BMI). And the researcher will decide, an-
tecedent to beginning the study, on sharp cut-off (say, BMI > 30) between the obese
and non-obese. It is essential to such an investigation to draw a line.

Thus, scientists use one single classical precisification (i.e. BMI > 30). Their
aim is defined by a theory that some diseases may be related to obesity. If there is
a particular value of BMI where negative effects on health begin, then a scientist
may conclude that it is a line between obese and non-obese and that the hypothesis
is true. If there is no such a value, then the hypothesis is false. This methodology is
quite different form the supervaluationist approach. Suppose that BMI > 31 is also
an admissible precisification of “obese”. Suppose further that actually only people
whose BMI is greater than 31 suffer from cardiovascular disease. Then according
to supervaluationism the hypothesis is neither true nor false: it is false under the
precisification BMI > 30 and true under BMI > 31. But for a scientist such an
answer is wrong: the hypothesis must eventually be true or false. That is why the
single classical precisification must be used; in this case, it would be BMI > 31.

Segment BMI Heart Disease Number
1 0 < BMI ≤ 15 No 100
2 15 < BMI ≤ 20 No 100
3 20 < BMI ≤ 24 No 100
4 24 < BMI ≤ 27 Yes 5
4 24 < BMI ≤ 27 No 95
5 27 < BMI ≤ 30 Yes 95
5 27 < BMI ≤ 30 No 5
6 30 < BMI ≤ 35 Yes 100
7 35 < BMI ≤ 40 Yes 100
8 40 < BMI Yes 100

Fig. 24.4. Information system representing precisifications of “obese”

Interestingly, the rough set approach to data is close to the scientific methodology,
despite the fact that the concept of a rough set is actually close to supervaluationism.
Of course, as long as we start with an approximation space, we must end with the
borderline cases. However, most of Pawlak’s papers start with a decision informa-
tion system, where we have distinguished condition and decision attributes and our
aim is actually to approximate decision attributes in terms of conditional ones. To
do so we must generate decision rules and thus, as in empirical science, we must
assume a hypothesis that some conditional attributes are related to a given decision
attribute. In consequence, as “obese” is defined by means of BMI and cardiovascu-
lar disease, similarly, in rough set theory, a decision attribute is defined in terms of
conditional attributes. However, there is a substantial difference between rough set
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theory and empirical sciences in treating these hypothesises: in rough set theory we
always assume that there is a very strong correspondence between the conditional
attributes and the decision attribute (that is why decision rules presented in papers
have always very high quality), whereas in science the correspondence is viewed in
a theoretical context (e.g. a rule that a smoking person suffers from lungs cancer has
a weak certainty factor, but this factor is much higher than the certainty of the rule
that a non-smoking person suffers lungs cancer) – we shall return to this issue soon.

Consider a modified version of our previous information system; see Fig. 24.4.
Suppose that in each range of BMI we examined 100 patients whether they suffer
from cardiovascular disease. The results are presented in the column Number. Then,
as once can easy compute:

cerx([BMI ≤ 24]; [HeartDisease = No]) = 1,

cerx([BMI ≤ 27]; [HeartDisease = No]) =
95

100
,

cerx([27 < BMI]; [HeartDisease = Yes]) =
95

100
,

cerx([30 < BMI]; [HeartDisease = Yes]) = 1.

A scientist would say that obesity starts with BMI greater than 27 and that
hypothesis concerning the relationship between obesity and cardiovascular disease
is true. However, from the standpoint rough set theory (based on approximation
spaces) things look a bit different: the lower approximation of [27 < BMI] →
[HeartDisease = Yes] is {6,7,8}, the upper approximation is {4,5,6,7,8}; thus the
boundary region is {4,5}. In consequence, we obtain two different classifications;
the comparison of these two classifications is presented by Fig. 24.5 and Fig. 24.6.

Segment BMI Heart Disease Number Obese
1 0 < BMI ≤ 15 No 100 No
2 15 < BMI ≤ 20 No 100 No
3 20 < BMI ≤ 24 No 100 No
4 24 < BMI ≤ 27 Yes 5 No
4 24 < BMI ≤ 27 No 95 No
5 27 < BMI ≤ 30 Yes 95 Yes
5 27 < BMI ≤ 30 No 5 Yes
6 30 < BMI ≤ 35 Yes 100 Yes
7 35 < BMI ≤ 40 Yes 100 Yes
8 40 < BMI Yes 100 Yes

Fig. 24.5. Scientific classification of obese

As one can see, the answer based on rough set theory would be that “obese” for sure
starts with BMI > 30, and “obese” might begin with BMI > 24. But intuitively, the
answer given by a scientist, that is, “obese” starts with BMI > 27, seems to be better:
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Segment BMI Heart Disease Number Obese
1 0 < BMI ≤ 15 No 100 No
2 15 < BMI ≤ 20 No 100 No
3 20 < BMI ≤ 24 No 100 No
4 24 < BMI ≤ 27 Yes 5 ?
4 24 < BMI ≤ 27 No 95 ?
5 27 < BMI ≤ 30 Yes 95 ?
5 27 < BMI ≤ 30 No 5 ?
6 30 < BMI ≤ 35 Yes 100 Yes
7 35 < BMI ≤ 40 Yes 100 Yes
8 40 < BMI Yes 100 Yes

Fig. 24.6. Rough set classification of obese

in actual fact almost all people with BMI greater than 27 suffer from cardiovascular
disease. But, when we begin the analysis with decision rules and their quality (as
Pawlak in his papers) then the resulting classification will change. Let us consider
decision rules of the type

[the range o f BMI]→ [HeartDisease = Yes]

and compute their certainty for each range of BMI. Since the certainty of the above
rule is high for BMI > 27, we would count as obese all persons whose BMI is greater
than 27, see Fig. 24.7. Thus, on the level of decision rules we would obtain exactly
the same results as in empirical sciences; compare Fig. 24.5 and Fig. 24.7. Therefore
decision rules may be seen as a scientific core of the rough set methodology.

Segment BMI Heart Disease Number Cert Obese
1 0 < BMI ≤ 15 No 100 0 No
2 15 < BMI ≤ 20 No 100 0 No
3 20 < BMI ≤ 24 No 100 0 No
4 24 < BMI ≤ 27 Yes 5 0.05 No
4 24 < BMI ≤ 27 No 95 – No
5 27 < BMI ≤ 30 Yes 95 0.95 Yes
5 27 < BMI ≤ 30 No 5 – Yes
6 30 < BMI ≤ 35 Yes 100 1 Yes
7 35 < BMI ≤ 40 Yes 100 1 Yes
8 40 < BMI Yes 100 1 Yes

Fig. 24.7. Rough set classification of obese based on certainty of decision rules

However, this coincidence of the rough set classification based on the quality of
decision rules and the scientific classification does not mean that there is no differ-
ence between these two approaches. In order to better explain differences between
the rough set methodology and the scientific one, let us briefly consider a few more
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examples. Suppose now that in all rows equal or higher than 4 we have got 30 pa-
tients suffering from a heart disease and 70 patients who do not. Then according to
the (classical) rough set analysis the lower approximation is empty, and the upper
approximation is {4,5,6,7,8}. This time, the rough set analysis based on decision
rules would give the same answer as the classical approach: the highest quality of
the rules is 0.3, which seems very low. However, a scientist would say that obesity
starts with BMI greater than 24 and all people with BMI less than this value are
non-obese. The reason is that for this value of BMI negative effects on health be-
gin and as in the case of lungs cancer and smoking, it is the difference between the
quality of decision rules computed for different values of BMI which is important.
As a result, the scientific answer would still bring dichotomic division on obese
and non-obese. More interestingly, given that in all rows the number of healthy per-
sons and the number of ill persons are similar, we would have a boundary region
{1,2,3,4,5,6,7,8} in both classical and decision rule based rough set analysis, but
a scientist would stay with a previous (default) definition of obesity (i.e. BMI >
30) and say that this time the hypothesis is false. Of course, in rough set theory we
would also say that on the basis of such data we cannot build a good classifier. Any-
way, the main methodological difference is that in science we start with a default
definition of obesity (e.g. BMI > 30) and a null hypothesis (e.g. that there is no rela-
tionship between obesity and heart a heart disease). Then a scientist checks whether
collected data reject the null hypothesis. If the hypothesis can be rejected under a
slight modification of the default definition of obesity, then the term is redefined,
and the alternative hypothesis is accepted. The reason for this procedure is that one
cannot prove a hypothesis, but only reject it; that is why one must have two hypoth-
esizes: a null hypothesis to reject, and an alternative hypothesis to corroborate. On
the other hand, rough set theory attempts to obtain all pieces of information from
data, and that is why in the last scenario, this theory would give no answer who is
obese (all segments belong to the boundary region).

The first thing which we can learn from the above examples is that in some cases
the quality of decision rules must not be regarded as absolute, but rather as relative
to the context of application. Of course, if one deals with crisp concepts which have
borderline cases due to the incompleteness of one’s knowledge, then the standard
rough set analysis will usually be appropriate. But when one deals with a vague con-
cept such as “obese”, then one must read the quality of decision rules in a context.
As above, sometimes the quality 0.3 is good enough to define a decision attribute
precisely. Here, the change of quality is more important than its numerical values.
Furthermore, the example shown by Fig. 7 demonstrates that sometimes the border-
line area actually makes things look worse than it is the case, and that by making
the vague concept precise we may obtain much better (adequate) classification than
the original based on approximation operators.

The second thing suggested by the above examples is to assume a definition of
a given vague concept and some default (null) hypothesis, and then, if necessary,
to change this definition so as to make it better fit to collected data. Concerning
the former, since for a given non-empty set X its upper approximation X is always
non-empty, we could regard it as a default crisp definition of X . Then our aim would
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be to modify this definition while maintaining its crispness. Concerning the latter,
this suggestion is against the basic methodological assumptions underlying rough
set theory: hypothesis (decision rules) must come from data (no a priori rules). Yet,
we can try to obtain a posteriori hypothesizes which would allow us to modify X .

The procedure would be as follow. Firstly, we would compute cerx(C;D) for
every x ∈ X . Given that, we would define a tolerance relation T ⊆ U ×U as it is
done in near set theory [13, 14]:

Tε = {(x,y) ∈U ×U : abs(cerx(C;D)− cery(C;D)) ≤ ε},
where abs(n) denotes the absolute value of n.

Definition 24.12 (Preclass, Class). Let T be a tolerance relation. Then X ⊆ U is
called a preclass of T iff, for all x,y ∈ X , it holds that xTy. A preclass X is called a
class, if it is a maximal preclass.

Now let us consider a decision table with a single – for simplicity – decision attribute
d ∈D and its distinguished value vd ∈Vald (e.g. Obese and Yes). As said above, we
would like to replace a rough set (|[d = vald ]|, |[d = vald ]|) (e.g. (|[Obese = Yes]|,
|[Obese = Yes|) which represents a vague predicate “obese”) by a crisp set. To this
end, we can take a set of classes (or preclasses) of

Tε∩|[d = vald]|× |[d = vald ]|,

e.g. Tε∩|[Obese = Yes]|× |[Obese = Yes]|.
For each class (preclass) W , we could take its set of decision rules

{C(x)→ D(x) : x ∈W}

and compute the average certainty defined in one way or the other, for example
arithmetic mean. Finally, it suffices to choose a class (preclass) Z whose average
certainty is the highest and regard Z as a new precisification of d. In this way, we
can made a dichotomic division on d (i.e., Z) and non-d (i.e., U \Z). Of course, in
this method we can use any form of decision rules (not necessarily complete rules
defined for all conditional attributes): for example, F(x)→ D(x), F ⊆C. Needless
to say, it is only one of many possible methods of how we can convert d into a crisp
concept. We have chosen the framework of near sets due to the parameter ε which
can be tuned so as to make the modification of |[d = vald]| fit better to data.

Of course, these remarks need not be treated as a criticism of rough set theory
but as an offer how we can modify it. As Weiner puts it [19]:

I offer these arguments, not as an attempt to urge the rejection of supervaluation-
ism (or any other account of the semantics of vague predicates) but as a challenge
– to come up with an account that does not do violence to our views about what we
have learned from empirical research.

In our opinion, rough set theory is a close cousin of supervaluationism which
is a bit more scientific. The methodology based on decision rules actually is very



642 M. Wolski

close to what is done is science. Yet, we can make it even closer, and on the basis
of the quality of decision rules, try to define a decision attribute as a crisp concept.
Actually, the quality measures of decision rules considered by Pawlak seem to be a
good tool to make the final classification precise.

Summing up this section, let us come back to Frege. Weiner asks: Why should
the laws of truth require sharp boundaries? Then she answers: Because the realm
of truth is the realm of science, and that is why Frege with his demands concerning
sharp boundaries of concepts should be regarded not as a philosopher of language,
but as a philosopher of science [18]. As a matter of fact, Frege is quite often cited in
papers about rough sets, for example [12]; but the true application of his philosophy
to rough sets consists on making decision attributes crisp.

24.6 Conclusions

Rough set theory is often presented as a mathematical tool to deal with vagueness
in data, yet there is lack of information how rough sets are really related to present
approaches to vagueness. In the chapter, we have presented rough set theory against
the background of philosophical discussions about vagueness. We have chosen the
recent discussion concerned with vagueness in empirical sciences. In our opinion,
the rough set approach to vagueness is closely related to supervaluationism, but
it is a bit shifted towards the scientific methodology. The final step towards this
direction would be an attempt to make – on the basis of the quality of decision
rules – a decision attribute a crisp concept. In this way, we would obtain a true
mathematization of Frege’s approach to vague predicates.
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