
Chapter 18
Time Variability-Based Hierarchic Recognition
of Multiple Musical Instruments in Recordings
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Abstract. The research reported in this chapter is focused on automatic identifica-
tion of musical instruments in polyphonic audio recordings. Random forests have
been used as a classification tool, pre-trained as binary classifiers to indicate pres-
ence or absence of a target instrument. Feature set includes parameters describing
frame-based properties of a sound. Moreover, in order to capture the patterns which
emerge on the time scale, new temporal parameters are introduced to supply addi-
tional temporal information for the timbre recognition. In order to achieve higher
estimation rate, we investigated a feature-driven hierarchical classification of musi-
cal instruments built using agglomerative clustering strategy. Experiments showed
that the performance of classifiers based on this new classification of instruments
schema is better than performance of the traditional flat classifiers, which directly
estimate the instrument. Also, they outperform the classifiers based on the classical
Hornbostel-Sachs schema.
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18.1 Introduction

In recent years, rapid advances in digital music creation, collection and storage tech-
nology have enabled various organizations to accumulate vast amounts of musical
audio data. The booming of multimedia resources in the Internet brought a tremen-
dous need to provide new, more advanced tools for querying and processing vast
quantities of musical data. Many multimedia resources provide data which are man-
ually labeled with some description information, such as title, author, company, and
so on. However, in most cases those labels are insufficient for content-based search-
ing. This problem attracted the attention of academia and industry, and initiated
research in Music Information Retrieval (MIR) some years ago. As the outcome of
this research, various MIR systems emerged, addressing diverse needs of the users
of audio data, including audio identification (finding a title and a performer of a
given excerpt, re-played or even hummed), identification of style or music genre, or
audio alignment (e.g., score following), etc.; examples of systems available at com-
mercial web sites can be found at [15], [23], and systems being part of research are
described in [16], [17], see also papers in [21], [22], and so forth.

Extraction of pitch, so-called pitch tracking, is performed in some of the MIR
systems, and it is quite accurate in the case of melodies when only one sound is
played at a time. Clearly, multi-pitch extraction (for chords) is more challenging
and the problem of assigning each pitch to appropriate part of the score has to be
tackled. Automatic assignment of notes to particular voices would be facilitated if
instruments participating in each chord were automatically identified. The research
presented in this chapter addresses automatic identification of instruments in poly-
phonic multi-instrumental recordings.

Timbre recognition is one of the subtasks in MIR, and it has proven to be ex-
tremely challenging especially in multi-timbre sounds, where multiple instruments
are playing at the same time. Compared with this, automatic recognition of an in-
strument in the case of single sounds (no chords) is relatively easy, and it has been
investigated, starting in the twentieth century, by many researchers. The obtained
accuracy depends on the number of sounds and instruments taken into account, a
feature set used, and a classifier applied, as well as the validation method utilized.
Even 100% can be achieved for a small number of sounds/instruments classified
with an artificial neural network, but usually is lower, and generally decreases with
increasing number of instruments, even below 40% when the number of instruments
approaches thirty and full range of each instrument is taken into account. We should
also notice that audio data, represented as a long sequence of amplitude values
(44100 samples per second per channel is a standard for CD), may vary significantly,
depending on many factors, e.g., recording conditions, playing method, the player
and his or her particular instrument, etc. Therefore, audio data are usually param-
eterized before applying classifiers, and the extracted feature vector also strongly
influences the obtained results. The feature set can be based on the time-domain
representation describing the sound amplitude or the spectrum obtained from the
sound analysis describing frequency contents derived from short audio frames and
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we also believe that temporal changes of various sound features can be beneficial as
the sound may undergo substantial changes in time (see Figure 18.1). Spectral fea-
tures are most often extracted using Fourier transform but other analyses are applied
as well, e.g., wavelet transform yielding time-frequency representation.

 

Fig. 18.1 Spectrogram (sonogram) for A4 (440 Hz) sound of violin, played vibrato. The
spectrogram shows temporal changes of the sound spectrum. Horizontal axis represents time,
and vertical axis represents frequency. The darker the shade of gray, the higher the magnitude.

Feature sets vary depending on the researcher; there is no standard feature set.
However, many low-level audio descriptors from the MPEG-7 standard of multi-
media content description [8] are often used. Mel-Frequency Cepstral Coefficients
(MFCC), originating from speech recognition, can also be applied for MIR pur-
poses [4], including recognition of musical instruments [2]. In our research, we
apply various short-time sound features describing properties of the sound in time
domain and its spectrum; besides, we add temporal features to this basic set in order
to capture time-variability of the sound features. Detailed description of the feature
set used in this research is presented in Section 18.3.

As it was mentioned before, the accuracy of instrument identification also
depends on the classifier. The algorithms applied in experiments on instrument
recognition include k-nearest neighbors (k-NN), artificial neural networks (ANN),
rough-set-based classifiers, support vector machines (SVM), Gaussian mixture
models (GMM), decision trees and random forests, and so on. The review of the
outcomes of this research is given in [6](see also [9]). Although the obtained accu-
racies are far from being perfect when the number of instruments to be recognized
is big, simple algorithm as k-NN may still yield good results. However, algorithms
successfully identifying instruments playing single and isolated sounds can be prone
to errors when executed on continuous polyphonic data (multi-instrumental chords),
as happens in recordings, even when tried on duets [14]. Identification of instru-
ments in the case of chords is much more challenging, and more sophisticated al-
gorithms are advised to be used. For instance, ANN yielded over 80% accuracy for
several four-instrument sets [10]; GMM classifier yielded about 60% accuracy for
duets from five-instrument set [3]; random forests produced about 75% accuracy
on average [11] for 2–5 instruments from 10-instrument sets, with variable accu-
racy obtained for particular instruments. Since random forests are quite robust with
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respect to noise [1], and already proved to be rather successful in the instrument
identification task, we decided to apply this classification technique in the reported
research.

18.1.1 Random Forests

A random forest (RF) is an ensemble of classification trees, constructed using
procedure minimizing bias and correlations between individual trees. Each tree
is built using different N-element bootstrap sample of the training N-element set.
The elements of the sample are drawn with replacement from the original set, so
roughly one-third of the training data is not used in the bootstrap sample for any
given tree.

Let us assume that objects are described by a vector of P attributes (features).
At each stage of tree building, i.e., for each node of any particular tree in RF, p
attributes out of all P attributes are randomly selected (p $ P, often p =

√
P). The

best split on these p attributes is used to split the data in the node. It is determined
as minimizing the Gini impurity criterion, which is a measure how often an element
would be incorrectly labeled if labeled randomly, according to the distribution of
labels in the subset.

Each tree is grown to the largest extent possible (without pruning). By repeating
this randomized procedure M times one obtains a collection of M trees, which con-
stitute a random forest. Classification of each object is made by simple voting of all
trees [1].

18.1.2 Outline of the Paper

The experiments presented in this chapter concern identification of multiple instru-
ments in polyphonic multi-instrumental recordings. Feature sets used here contain
both frame-based audio parameters, as well as new parameters describing temporal
variability of the frame-based features. The training audio data were taken from two
repositories, commonly used in similar research worldwide. Testing data represent
audio recordings of classical music, as we decided to focus our research on this mu-
sic genre. The testing data were manually labeled in a careful way in order to create
ground-truth data. Random forests have been applied as classifiers, also for hierar-
chical classification, including feature-driven hierarchy. The details of this research
are presented in the next sections of our chapter; audio data are described in Section
18.2, features for sound parameterization are shown in Section 18.3, and the exper-
iments are presented and discussed in Section 18.4. The chapter is summarized and
concluded in Section 18.5.
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18.2 Audio Data

Music we listen to can be played by numerous instruments; in various music genres,
typical sets of instruments are usually used. For instance, electric guitars and drums
etc. are commonly used in rock music; violins, violas etc. are commonly used in
classical music; and so on. The music collections available worldwide are often
labelled with these categories, so we can assume that this information is given. In
the research presented in this chapter, we decided to focus on classical music, and
therefore limit the set of investigated instruments to ones which are typical for this
type of music. If someone would like to investigate a different music genre, the same
methodology can be applied.

The audio data we decided to use in the experiments represent the following 10
instruments: B-flat clarinet, cello, double bass, flute, French horn, oboe, piano, tenor
trombone, viola, and violin. Obviously, this set is not comprehensive and could be
extended; still, it is sufficient for the purpose of illustrating the task we are dealing
with, i.e., recognition of multiple instruments in polyphonic recordings.

Our experiments included training and testing of random forests. Therefore, we
needed recordings for training RFs to be used to recognize selected instruments.
We used single sounds played in various ways: vibrato (with vibration), pizzicato
(plucking the strings), f orte (loud), piano (soft), etc.; techniques of playing are
called articulation. Also, we used all available pitches for every instrument.

The training data were taken from two commonly used repositories:

• MUMS [19]: all available articulation versions for our 10 instruments;
• IOWA [25]: f ortissimo (very loud) for piano, and mezzo f orte (medium loud)

for other instruments;

• cello, viola, and violin: arco (bowing) and pizzicato;
• flute: vibrato and non-vibrato (no vibration);
• French horn: f ortissimo for notes within C3–B3 (MIDI notation used, i.e.,

A4=440 Hz) and mezzo f orte for the remaining notes.

Some of the sounds were recorded vibrato (e.g., strings – violin, viola, cello, and
double bass from MUMS), and others with no vibration (strings in IOWA repos-
itory). Sounds of strings and tenor trombone were also chosen played muted and
not muted. Flute is represented by vibrato and flutter sounds. Piano is represented
by soft, plucked, and loud sounds. For each instrument, all articulation versions of
sounds of this instrument represent the same class, i.e., the given instrument.

Testing data were taken from RWC Classical Music Database [5], so they were
utterly different from the training data. Since we planned to evaluate temporal fea-
tures, describing evolution of a sound in time (whether this would be a single sound,
or a chord), we needed pieces with long sounds, i.e., long enough to observe time
variability of these sounds in non-transitory parts. Such long-lasting sounds were
manually selected from RWC Classical Music Database. We also wanted our test
set to represent various composers and music styles. Therefore, the following pieces
were used (number of test sounds selected for each piece is shown in parentheses):
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• No. 4: P.I. Tchaikovsky, Symphony no. 6 in B minor, op. 74 ‘Pathétique’, 4th
movement (10 sounds);

• No. 9: R. Wagner, “Tristan und Isolde": Prelude and ‘Liebestod’ (9 sounds);
• No. 12: J.S. Bach, “The Musical Offering", BWV. 1079, ‘Ricercare à 6’ (14

sounds);
• No. 16: W.A. Mozart, Clarinet Quintet in A major, K. 581, 1st movement (15

sounds);
• No. 18: J. Brahms, Horn Trio in E� major, op. 40, 2nd movement (4 sounds).

Test sounds represent homogenous chords (i.e., the instruments playing and the
notes played remain constant throughout the whole sound), played by two to five
instruments. These sounds were manually selected in a careful way and then la-
belled, thus creating ground-truth data for further experiments.

Both training and testing data were recorded with 44.1 kHz sampling rate and
16-bit resolution. If the audio data were recorded stereo, then the left channel was
arbitrarily chosen for processing. Also, as a preprocessing step, the silence before
and after each isolated sound was removed. To do this, a smoothed version of am-
plitude was calculated starting from the beginning of the file, as moving average
of 5 consequent amplitude values, and when this value increased by more than a
threshold (experimentally set to 0.0001), this point was considered to be the end of
the initial silence. Similarly, the ending silence was removed.

18.2.1 Hornbostel-Sachs System of Musical Instrument
Classification

Instruments we investigate in the reported research represent various families of
instruments, according to Hornbostel-Sachs system of musical instrument classifi-
cation [7], which is the most commonly used system describing the taxonomy of
instruments. This system classifies instruments of classical music into the follow-
ing groups: aerophones (wind instruments), chordophones (stringed instruments),
membranophones (mostly drums), and idiophones (basically, other percussive in-
struments, where a solid is a source of vibration). Since Hornbostel-Sachs system
provides a hierarchical classification of musical instruments, these categories are
further subdivided into subcategories. According to Hornbostel-Sachs system, the
investigated instruments are classified as follows:

• aerophones

• flutes
� (transverse) flute,

• reed instruments
� single reed: B-flat clarinet,
� double reed: oboe,
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• brass
� French horn,
� tenor trombone,

• chordophones

• bowed: cello, double bass, viola, and violin; these instruments can be
played pizzicato (and this articulation was also investigated), but bowing
is a primary articulation here, this is why these instruments are classified as
bowed;

• piano.

We decided to investigate sounds of definite pitch, with harmonic spectra, as we
planned to monitor harmonic structure of the spectrum, among other sound fea-
tures. Therefore, percussive instruments (membranophones and idiophones) are not
investigated here.

The timbre of a sound may also differ depending on articulation. However, our
goal was to identify musical instruments without taking this property into account.
Therefore, all sounds of each particular instrument represented the same class, i.e.,
this instrument, and no classification according to articulation was investigated in
the reported research.

18.3 Feature Set

Our feature set consists of the main, basic set of features, calculated for a 40-ms
Hamming-windowed frame of the analyzed sound, which is then used twofold: to
calculate average values, constituting the main representation of this sound, and to
observe temporal behavior of the analyzed sound. To start with, average values of
the main features are calculated for a sliding analysis frame with 10 ms hop size.
In order to make sure that long-term behavior is captured, 430 ms are taken for this
calculation. This may not cover the entire sound, but it is sufficient to cover the onset
and a good portion of the steady state, which are usually sufficient to recognize an
instrument by human listeners, so we also follow this philosophy. Next, we calculate
Fits – this proposed feature represents the type of the function which best describes
the temporal behavior of the main feature set; consecutive (and overlapping) parts of
the sound can be described by different functions. Finally, we calculate Peaks; this
multidimensional feature describes relationships between three greatest temporal
local maxima, representing time variability of the given feature throughout the entire
sound. The obtained temporal features are then added to the feature set. The details
of calculations of the above-mentioned features are described below.

The basic feature set consists of the following parameters:

• SpectralCentroid of the spectrum obtained through the discrete Fourier trans-
form (DFT), calculated as Fast Fourier Transform (FFT). In this case, the
frame length must equal to the power of 2. Since 40 ms equals to 1764 audio
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samples in the case of 44.1 kHz sampling rate, this frame is zero-padded to
2048 samples, and next SpectralCentroid Ci is calculated as follows:

Ci =
∑N/2

k=1 f (k) |Xi(k)|
∑N/2

k=1 |Xi(k)|
(18.1)

where: N - number of available elements of the (symmetrical) discrete spectrum,
i.e., frame length, so N = 2048;
Xi(k) - kth element of FFT for ith frame;
f (k) - frequency corresponding to kth element of the spectrum;

• SpectralSpread Si - a deviation of the power spectrum with respect to Spectral
Centroid Ci in a frame, calculated as

Si =

√
√
√
√∑N/2

k=1 ( f (k)−Ci)2 |Xi(k)|
∑N/2

k=1 |Xi(k)|
(18.2)

• AudioSpectrumFlatness, Flat1, . . . ,Flat25 - multidimensional parameter de-
scribing the flatness property of the power spectrum within a frequency bin
for selected bins; 25 out of 32 frequency bands were used for a given frame,
starting from 250 Hz, as recommended in MPEG-7. This feature is calculated
as follows:

Flatb =
hi(b)−lo(b)+1

√
∏hi(b)

k=lo(b) Pg(k)

1
hi(k)−lo(k)+1 ∑

hi(b)
k=lo(b)Pg(k)

(18.3)

where: b - band number, 1 ≤ b ≤ 25,
lo(b) and hi(b) - lower and upper limits of the band b, respectively,
Pg(k) - grouped coefficients of the power spectrum within the band b; grouping
speeds up the calculations;

• RollOff - the frequency below which an experimentally chosen percentage of the
accumulated magnitudes of the spectrum is concentrated (equal to 85%, which
is the most often used setting). RollOff is a measure of spectral shape, used in
speech recognition to distinguish between voiced and unvoiced speech;

• Flux - sum of squared differences between the magnitudes of the FFT points
in a given frame and its preceding frame. This value is usually very small, and
it was multiplied by 107 in our research. For the starting frame, Flux = 0 by
definition;

• Energy - energy (in logarithmic scale) of the spectrum of the parameterized
sound;

• MFCC - multidimensional feature, consisting of 13 Mel frequency cepstral co-
efficients. The cepstrum was calculated as a logarithm of the magnitude of the
spectral coefficients and then transformed to the mel scale. Mel scale is used
instead of the Hz scale, in order to better reflect properties of the human percep-
tion of frequency. Twenty-four mel filters were applied, and the obtained results
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were transformed to twelve coefficients. The thirteenth coefficient is the 0-order
coefficient of MFCC, corresponding to the logarithm of the energy [12], [18];

• ZeroCrossingRate; zero-crossing is a point where the sign of time-domain rep-
resentation of the sound wave changes;

• FundamentalFrequency - pitch; maximum likelihood algorithm was applied
for pitch estimation [26];

• HarmonicSpectralCentroid, HSC - mean of the harmonic peaks of the spec-
trum, weighted by the amplitude in linear scale [8];

• HarmonicSpectralSpread, HSS - represents the standard deviation of the har-
monic peaks of the spectrum with respect to HarmonicSpectralCentroid,
weighted by the amplitude [8];

• HarmonicSpectralVariation, HSV - normalized correlation between ampli-
tudes of harmonic peaks of each two adjacent frames, calculated as:

HSV = 1− ∑N
n=1 An(i− 1) ·An(i)

√

∑N
n=1 A2

n(i− 1) ·
√

∑N
n=1 A2

n(i)

where An(i) - amplitude of nth harmonic partial in ith frame [8]. For the starting
frame, HSV = 1 by definition.

• HarmonicSpectralDeviation, HSD, calculated as:

HSD =
∑N

n=1 |log(An)− log(SEn)|
∑N

n=1 log(An)

where SEn - nth component from a spectral envelope,
An - amplitude of nth harmonic partial.
This feature represents the spectral deviation of the log amplitude components
from a global spectral envelope, where the global spectral envelope of the nth

harmonic partial is calculated as the average value of the neighboring harmonic
partials: no. n− 1, n, and n+ 1, calculated as [8]:

SEn =
∑1

i=−1 An+i

3

• r1, . . . ,r11 - various ratios of harmonic partials in spectrum: r1 – energy of the
fundamental to the total energy of all harmonics, r2: amplitude difference [dB]
between 1st and 2nd partial, r3: ratio of the sum of partials 3-4 to all harmonics,
r4: partials 5-7 to all, r5: partials 8-10 to all, r6: remaining partials to all, r7:
brightness – gravity center of spectrum, r8, r9: contents of even/odd harmonics
in the spectrum, respectively.

For these basic features, we calculated:

• Averages - vector representing averaged (through 430 ms) values for all fea-
tures; this is our basic feature set;
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• Fits - type of function (from 7 predefined function types) which best describes
the manner of feature values’ variation in time. Analysis was performed in 4
parts of the sound, each described by 10 consecutive 40 ms frames 75% over-
lapped (altogether 280 ms); each of these 4 parts can be assigned to any of these
7 function types. Hop size between parts was equal to 5 frames. Predefined func-
tion types were as follows: linear, quadratic, logarithmic, power, hyperbolic, ex-
ponential, and sinusoidal with linear trend. Original feature vector was treated
as a function of time. Functions of each predefined type were fitted into each
feature function within a given part of the sound. Linear and quadratic functions
were fitted using the method of least squares. In other cases, linearization was
performed before applying the least squares method. R2 value was calculated
for each fit, where R is a Pearson’s correlation coefficient. A function with the
highest R2 value was supposed to fit the data best. If the highest R2 was lower
than 0.8, then it was assumed that none of proposed functions fits data well, and
“no fit" was assigned as a feature value;

• Peaks (new temporal features) - distances and proportions between maximal
peaks in temporal evolution of feature values throughout the entire sound, de-
fined as follows. Let us name original feature vector as p and treat p as a
function of time. We searched for 3 maximal peaks of this function. Max-
imum Mi(p), i = 1,2,3, was described by k - the consecutive number of
the frame where the extremum appeared, and the value of feature p in the
frame k:

Mi(p) = (ki, p[ki]) k1 < k2 < k3.

The temporal variation of each feature can be then represented as a vector T =
[T1, . . . ,T6] of temporal parameters, built as follows:

T1 = k2 − k1 , T2 = k3 − k2 , T3 = k3 − k1 ,
T4 = p[k2]/p[k1] , T5 = p[k3]/p[k2] , T6 = p[k3]/p[k1] .

These parameters reflect relative positions and changes of values representing
maximal peaks in the temporal evolution of each feature [11].

18.4 Experiments and Results

The purpose of this chapter was to investigate automatic identification of musical
instruments in polyphonic recordings, and to verify if new temporal features can be
helpful to better recognize instruments in recordings. Another aim was to check if
hierarchical classifiers yield better results than non-hierarchical ones.
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18.4.1 Training and Testing of Random Forests

Training of the battery of RFs was performed on single isolated sounds of musi-
cal instruments, taken from IOWA and MUMS repositories, and on sound mixes
of up to three instruments. This way we created a set of multi-instrumental audio
samples, in order to train RF to identify the target instrument, even when accompa-
nied by another instrument or instruments. Instrumental sounds added in mixes were
randomly chosen in such a way that the obtained sounds constitute unisons or chords
(major or minor), and the distribution of instruments in the obtained set of mixes
reflects the distribution of instruments playing together in RWC Classical Music
Database. One-label training of binary RFs was performed on these data, aiming at
identification of a target instrument, i.e., whether it is playing in a sound, or not.

Tests of the obtained battery of RFs were performed on RWC Classical Music
data. Predictions were based on the results obtained for all forests (for all instru-
ments). Polytimbral music samples should produce multiple labels. To obtain such
multi-label predictions from our classification system, we derived them in a fol-
lowing way. For each binary classifier we got a percentage of votes of trees in the
forest on “yes" class (presence of an instrument corresponding to a given classifier),
and this percentage was treated as the rate of each corresponding label (instrument
name). Labels were sorted in decreasing order with respect to the corresponding
rates. If the first label on a list had the rate exceeding 80% and next label had the
rate below 20%, then we assumed that this sound was recognized as monotimbral
and prediction contained only one label – an instrument name of the highest rate.
Otherwise, the differences of rates of consecutive labels in the list were calculated,
and the prediction list of labels was truncated where the highest difference was
found.

In the case of hierarchical classification, binary RFs were similarly trained to
recognize groups of instruments in a given node.

In this case predictions were obtained in a similar way, but rates for labels in
leaves of a tree were calculated by multiplying rates from all nodes in a path from
the root to a given leaf.

In this work we used the RF implementation from the R package randomForest
[13], [20].

18.4.2 Feature-Driven Hierarchic Classifications of Musical
Instruments

In our experiments, we aimed at identifying instruments playing in a given snippet
of an audio recording, using several strategies of classification. To start with, we per-
formed non-hierarchical classification using a battery of binary RFs, where each RF
was trained to indicate whether a target instrument was playing in the investigated
audio snippet or not. These classification results are shown in Table 18.1, together
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Table 18.1 Results of the recognition of musical instruments in RWC Classical Music
Database, for the basic feature set

Classification system Precision Recall F-measure
Non-hierarchical 71.63% 58.43% 64.36%

Hierarchical (Hornbostel-Sachs) 70.74% 60.06% 64.97%

Fig. 18.2 Cluster dendrogram for Averages.

with the results obtained for hierarchical classification based on Hornbostel-Sachs
taxonomy of musical instruments, for the basic feature set, i.e., Averages.

Apart from Hornbostel-Sachs hierarchical classification, feature-driven hi-
erarchical classification of musical instruments in recordings was performed.
Hierarchies were obtained through clustering.

Hierarchical clustering was performed by means of Ward’s method, appropri-
ate for quantitative variable as ours [24]. This method uses an analysis of variance
approach to evaluate the distances between clusters. Ward’s method attempts to
minimize the sum of squares of any two hypothetical clusters that can be formed
at each step. It finds compact, spherical clusters, although it tends to create clusters
of small size. This method implements an agglomerative clustering algorithm, start-
ing at the leaves, regarded as n clusters of size 1. It looks for groups of leaves, forms
them into branches, and continues to the root of the resulting dendrogram. Distances
between clusters were calculated using Manhattan distance, as it performed best in
the conducted experiments.

Hierarchical clustering of instrument sounds was performed using R, an envi-
ronment for statistical computing [20]. The clustering based on feature vectors rep-
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Fig. 18.3 Cluster dendrogram for Averages + Peaks.

resenting only average values of our basic features (Averages), and with addition
of temporal observations of these features (Fits and Peaks) are shown in Figures
18.2, 18.4, and 18.3, respectively. Each dendrogram was built on the basis of single
instrumental sounds only, without mixes, thus no foreign sounds distorted represen-
tation of each target instrument. Every instrument was represented by one artificial
object, calculated as averaged value of all objects, i.e., parameterized sounds of this
instrument.

As we can see, the taxonomies of musical instruments obtained through clus-
tering shown in Figures 18.2, 18.4, and 18.3, differ significantly from classic
Hornbostel-Sachs system, in all cases of the feature-driven hierarchical trees.

The results obtained for hierarchical classification in various settings of hierar-
chies are given in Table 18.2. As we can see, precision is almost constant, around
70-72%, so it is practically independent of the hierarchy. However, the obtained
recall changes significantly. For each feature set, the recall improves when feature-
driven hierarchy is used as a classification basis. The best overall results (reflected
in F-measure) are obtained for feature-driven classification, and for Fits added to
the feature set. The trade-off between precision and recall can be observed in some
cases, but it is rather small. In general, adding temporal features improves the ob-
tained results, comparing to the results obtained for Averages; adding Peaks im-
proves accuracy, and adding Fits improves recall.

One can be interested in seeing the details of misclassification. Since we have
multiple instruments labeling both the input and output data, a regular confusion
matrix cannot be produced, since we cannot show which instrument was mistaken
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Fig. 18.4 Cluster dendrogram for Averages + Fits.

Table 18.2 Results of the recognition of musical instruments in RWC Classical Music
Database for different feature sets and hierarchic classification systems

Instruments hierarchy Feature set Precision Recall F-measure
Hornbostel-Sachs Averages 70.74% 60.06% 64.97%

Feature-driven Averages 70.24% 65.74% 67.91%
Hornbostel-Sachs Avg+Peaks 72.67% 60.42% 65.98%

Feature-driven Avg+Peaks 72.35% 62.47% 67.04%
Hornbostel-Sachs Avg+Fits 70.91% 64.74% 67.69%

Feature-driven Avg+Fits 71.88% 70.67% 71.27%

for which one. Still, in order to illustrate the details of RF-based classification, ex-
emplary results are presented in Figures 18.5 and 18.6, showing what types of clas-
sification errors we encountered.

Let us analyze the graphs presented in Figure 18.5. In the 1st graph, violin and
cello were identified correctly, but double bass and viola were additionally indicated
by the battery of RFs classifiers. Since double bass sound is similar to cello, and vi-
ola sound is similar to violin, it is not surprising that the corresponding RFs fired.
In the case of the 2nd graph, the errors are more serious, since the violin and viola
duo, although indicated correctly, was also accompanied by additional indication
of cello and double bass. Even though cello and viola are relatively closely related
instruments, the indication of double bass is considered to be a serious error here.
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Fig. 18.5 Exemplary results of RF-based recognition of duo sounds. The numbers correspond
to the instruments in the following order: 1. piano, 2. oboe, 3. cello, 4. trombone, 5. double
bass, 6. French horn, 7. clarinet, 8. flute, 9. viola, 10. violin. The values shown represent
outputs for each RF representing the given instrument
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Fig. 18.6 Exemplary results of RF-based recognition of instruments in polyphonic record-
ings. Each input sound represented a chord played by violin, viola, and cello.

In the case of the 3rd diagram, oboe and flute were recognized correctly, but addi-
tionally violin (higher rate than flute), piano, cello, clarinet, viola, French horn and
double bass were listed by our battery of RFs. This indicates that by adjusting the
way of outputting the recognition list we may improve precision, but most probably
at the expense of lower recall. Since recall is generally lower than precision in this
research, we believe that cutting of more instruments listed by the RFs classifiers
can deteriorate the overall results.

The graphs presented in Figure 18.6 show the results for three sounds, all rep-
resenting violin, viola, and cello playing together. The 1st diagram shows correct
identification of these three instruments, without errors. In the case of the other two
diagrams, besides of recognizing the target instruments, our battery of RFs classi-
fiers additionally indicated double bass. Again, double bass is similar to cello, so it
is not considered to be a serious mistake.
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18.5 Summary and Conclusions

In this chapter, we presented automatic hierarchical identification of musical instru-
ments in recordings. The Sachs-Hornbostel classification is the most common hier-
archic classification of musical instruments, but feature-driven classification yields
better results in automatic recognition of instruments in recordings. The audio data
are described here by means of various sound features, automatically calculated
for short audio frames. These features are then used to calculate the main feature
vector (Averages), as well as two additional feature types, Peaks and Fits, describ-
ing temporal changes of the basic features. Automatic recognition of instruments
in polyphonic recordings was performed using Random Forests, for ten instruments
commonly found in classical music pieces. Training of RFs classifiers was based
on 2 repositories of instrumental sounds. Single sounds and sound mixes were used
in this training; probability of adding an instrument to the training mix reflected
the distribution of instruments playing together in classical music recordings, taken
from RWC Classical Music Database.

Our experiments showed that hierarchical classification yields better results
than non-hierarchical one. Feature-driven hierarchic classification always im-
proves recall, which tends to be lower than precision (since identification of all
instruments in a chord is difficult even for a human), so the increase of recall
is valuable, and we consider it to be a success. Also, we observed that adding
Peaks improves accuracy of instrument recognition, and adding the proposed
feature Fits improves recall. We plan to continue experiments, with an extended
feature vector, including both Peaks and Fits added to Averages. We also plan to
add more detailed temporal features, and conduct experiments for more instruments.
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