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To the memory of

Professor Zdzisław I. Pawlak



Preface

This book is dedicated to the memory of Professor Zdzisław Pawlak, who passed
away almost six years ago. He is the founder of the Polish school of Artificial In-
telligence and one of the pioneers in Computer Engineering and Computer Science
with worldwide influence. He was a truly great scientist, researcher, teacher and a
human being.

Professor Pawlak’s most important discovery was his invention of the rough set
theory in 1982, which gained vast popularity throughout the World. More than 5000
English-language publications and also more than 5000 Chinese-language publica-
tions about Pawlak’s theory and its applications have been published so far, includ-
ing many books. Those publications include both specializations and extensions of
rough set theory. Their goal is to solve new scientific problems, examining connec-
tions between the theory and other approaches and dealing with applications of the
theory in practice. Moreover, a number of books devoted to rough sets theory were
published worldwide. Numerous conferences, e.g., in China, India, Japan, Canada,
USA, in Europe and also recently in Australia and Africa, were organized. The
rough sets theory has an immense following in China and research on rough sets
also is significantly growing in India.

Rough set theory has attracted worldwide attention with many researchers and
practitioners, who have contributed essentially to its development and applications.
Rough set theory overlaps with many other theories. Despite this, rough set the-
ory may be considered as an independent discipline in its own right. The rough
set approach seems to be of fundamental importance in artificial intelligence and
cognitive sciences, especially in research areas such as adaptive and autonomous
systems, bioinformatics, data mining and knowledge discovery, decision analysis,
expert systems, machine learning, intelligent systems, inductive reasoning, pattern
recognition, mereology, digital image processing, digital image analysis and signal
analysis. A wide range of applications of methods based on rough set theory alone
or in combination with other approaches have been discovered in many areas in-
cluding: acoustics, bioinformatics, business and finance, chemistry, computer engi-
neering (e.g., data compression, digital image processing, digital signal processing,
parallel and distributed computer systems, sensor fusion, fractal engineering),
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decision analysis and systems, economics, electrical engineering (e.g., control, sig-
nal analysis, power systems), environmental studies, digital image processing, infor-
matics, medicine, molecular biology, musicology, neurology, robotics, social science,
software engineering, spatial visualization, Web engineering, and Web mining.

Professor Pawlak inspired many computer scientists and mathematicians both in
both Poland and throughout the world. His students and collaborators created re-
search teams in many countries, including, besides of his native Poland, the United
States, Canada, Japan, Norway, Sweden and other places. It would be hardly possi-
ble t o find a computer science institution, in his native Poland without encountering
a faculty influenced by Professor Pawlak. His scientific achievements continue to
inspire his many students still working in these institutions and also the next gener-
ations of students.

This book prepared in two volumes contains more than 50 chapters. This dem-
nonstrates that the scientific approaches discovered by of Professor Zdzisław Pawlak,
especially the rough set approach as a tool for dealing with imperfect knowledge,
are vivid and intensively explored by many researchers in many places throughout
the world. The submitted papers prove that interest in rough set research is growing
and is possible to see many new excellent results both on theoretical foundations
and applications of rough sets alone or in combination with other approaches.

The book is divided into two volumes.

The first volume contains the following chapters.

Chapter “Professor Zdzisław Pawlak (1926-2006): Founder of the Polish School
of Artificial Intelligence” by Andrzej Skowron, Mihir Kr. Chakraborty, Jerzy
Grzymała-Busse, Victor Marek, Sankar K. Pal, James Peters, Grzegorz Rozen-
berg, Dominik §lęzak, Roman Słowiński, Shusaku Tsumoto, Alicja Wakulicz-Deja,
Guoyin Wang, and Wojciech Ziarko is dedicated to the memory of Professor
Zdzisław Pawlak, founder of the Polish school of Artificial Intelligence and one
of the pioneers in Computer Engineering and Computer Science with worldwide in-
fluence. In particular, it contains a few selected speech fragments pointing to Profes-
sor’s scientific achievements along with personal comments by Andrzej Skowron,
one of the authors, on features of Professor Pawlak as a truly great scientist, teacher
and a human being.

The list of works by Professor Zdzisław Pawlak, prepared by Andrzej Skowron, is
included in the chapter “List of Works by Professor Zdzisław Pawlak (1926-2006)”.

Chapter “Rough Sets: From Rudiments to Challenges” by Hung Son Nguyen
and Andrzej Skowron contains a survey about rough sets together with comments
on possible future research directions and challenges.

In Chapter “Zdzisław Pawlak, Databases and Rough Sets”, Victor W. Marek
presents work of Zdzisław Pawlak in the area of databases and the extension of that
work to the theory of rough sets. In particular, the author concentrates on motiva-
tions of Professor Pawlak for introducing information storage and retrieval systems
and describes how this, eventually, led to rough sets theory.
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Chapter “jMAF - Dominance-based Rough Set Data Analysis Framework” by
Jerzy Błaszczyński, Salvatore Greco, Benedetto Matarazzo, Roman Słowiński, and
Marcin Szela̧g, presents a rough set data analysis software jMAF. It employs java
Rough Set (jRS) library in which are implemented data analysis methods provided
by the (variable consistency) Dominance-based Rough Set Approach (DRSA). The
chapter also provides some basics of the DRSA and of its variable consistency ex-
tension.

Chapter “Dynamic Programming Approach for Exact Decision Rule Optimiza-
tion” by Talha Amin, Igor Chikalov, Mikhail Moshkov, and Beata Zielosko, dis-
cusses an extension of dynamic programming approach to sequential optimization
of exact decision rules relative to the length and coverage. The chapter also contains
results of experiments with decision tables from UCI Machine Learning Repository.

Chapter “Approaches for Updating Approximations in Set-Valued Information
Systems While Objects and Attributes Vary with Time" by Hongmei Chen, Tianrui
Li, and Hongmei Tian focuses on studying principles for incrementally updating
approximations in a set-valued information system while attributes and objects are
added. Methods for updating approximations of concepts in set-valued information
systems with attributes and objects changing simultaneously are presented. Experi-
mental evaluation of the proposed methods is included.

Ivo Düntsch and Günther Gediga describe in Chapter “On the gradual evolvement
of things” the generic properties of a visual system without hard coding the envi-
ronment. As a measure of approximation, Pawlak’s approximation quality is used.
The considerations are related to some ideas of the Gibson ecological approach to
perception.

The Chapter “On Empirical Comparison of Rule Sets Induced by LERS and
Probabilistic Rough Classification" by Jerzy W. Grzymała-Busse, Shantan R.
Marepally, and Yiyu Yao explores an extension of rough set theory, based on prob-
ability theory. In particular, parameterized approximations are used together with
the corresponding positive, boundary, and possible rules. The results of parameter
tuning on the quality of the induced classifiers based on such rules are reported.

In Chapter “Exploring Neighborhood Structures with Neighborhood Rough Sets
in Classification Learning”, Qinghua Hu, Leijun Li, and Pengfei Zhu introduce
neighborhoods of samples to granulate the universe and use the neighborhood gran-
ules to approximate classification, thus a model of neighborhood rough sets is de-
rived. Some machine based on the model learning algorithms, including boundary
sample selection, feature selection and rule extraction, are developed.

Chapter “Rough Representations of Ill-Known Sets and Their Manipulations in
Low Dimensional Space” by Masahiro Inuiguchi, focuses on investigations of the
rough representations of graded ill-known sets and the manipulations of possibil-
ity and necessity measures of graded ill-known sets using general conjunction and
implication functions in the universe.
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In Chapter “Property-Driven Rough Sets Approximations of Relations” by
Ryszard Janicki, a problem of approximating an arbitrary relation by a relation with
desired properties is formally defined and analysed. The concepts of α-lower and
upper approximatios are introduced and their properties are discussed. Two special
cases, approximation by partial orders and approximation by equivalence relations
are discussed in detail.

Chapter “Towards a Comprehensive Similarity Analysis of Voting Procedures
Using Rough Sets and Similarity Measures" by Janusz Kacprzyk, Hannu Nurmi,
and Sławomir Zadrożny, presents and approach to the evaluation of similarity of
voting procedures with respect to a set of criteria which are widely used in the so-
cial choice literature. First, a qualitative rough sets based analysis is proposed, and
then an additional quantitative analysis is added by using two measures of simi-
larity of binary patters widely employed in many areas , i.e. the one based on the
Hamming distance and the one due to Jaccard-Needham. The approach proposed
constitutes a step towards the solutution of a difficult problem of determining the
(degree of) similarity of voting procdures by providing a comprehensive qualitative
and quantitative view.

Chapter “Algebras for Information Systems” by Md. Aquil Khan and Mohua
Banerjee, introduces algebraic structures for different kinds of information systems
together with the representation theorems for classes of algebras corresponding to
these structures. Finally, equational logics for deterministic, incomplete and non-
deterministic information systems are presented.

Chapter “DNA Rough-Set Computing in the Development of Decision Rule
Reducts” by Ikno Kim, Junzo Watada, and Witold Pedrycz, introduces a DNA
rough-set computation technique for dealing with the NP-hard problem problem
of optimal reduction of decision rules. The proposed technique is a composition of
computational DNA molecular techniques and is effectively employed to alleviate
the computational complexity of the considered optimization problem.

Chapter “Three-valued Logic for Reasoning about Covering-Based Rough Sets”
by Beata Konikowska, introduces a tool for reasoning about covering-based rough
sets in the form of three-valued logic with logical values corresponding to positive,
negative region and the boundary regions of a set. The author presents a strongly
sound sequent calculus for this logic, together with the proof of strong completeness
for a subset of its language.

In Chapter “Music Information Retrieval in Music Repositories” by Bożena
Kostek, the key concepts associated with automated music information retrieval and
music recommendation are discussed. Experiments on a constructed music database
with different kinds of classifiers are reported. A proposal for music retrieval and
annotation aided by gaze tracking is also discussed.

In Chapter “Rough Support Vectors: Classification, Regression, Clustering” by
Pawan Lingras, Parag Bhalchandra, Cory Butz, and S. Asharaf, it is shown that
the concepts of margins in support vector techniques provides a natural relationship
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with the rough set theory. The authors describe rough set theoretic extensions of sup-
port vector technologies for classification, prediction, and clustering. The theoreti-
cal formulations of rough support vector machines, rough support vector regression,
and rough support vector clustering are supported with a summary of experimental
results.

Chapter “Logic-based Roughification” by Linh Anh Nguyen and Andrzej Szałas
includes novel roughification techniques for constructing equivalence/similarity re-
lations adequate for Pawlak-like approximations. The authors also present applica-
tions of the proposed approach in granulating relational databases as well as concept
learning and approximation in description logic-based information systems.

Chapter “How Near Are Zdzisław Pawlak’s Paintings? Merotopic Distance Be-
tween Regions-of-Interest” by James F. Peters, presents an approach to measuring
the nearness of Pawlak’s paintings in terms of the merotopic distance between col-
lections of neighborhoods in image regions-of-interest.

Chapter “An Implementation of the Zdzisław Pawlak Idea for Reasoning about
Uncertainty. Approximate Reasoning by Parts” by Lech Polkowski and Maria
Semeniuk-Polkowska, presents a mereological calculus of parts, in which concepts
become elementary objects and relations among them are expressed as relations of
being parts to degrees. This analysis allows, in particular, for approximations to
various degrees. A characterization of continuous rough inclusions parallel to the
Menu-Pavelka characterization of continuous t–norms is proposed.

Chapter “Granular Concept Mapping and Applications” by Sumalee Sonamthi-
ang, Kanlaya Naruedomkul, and Nick Cercone, presents a granular concept hier-
archy (GCH) construction and mapping of the hierarchy for granular knowledge.
A granule description language and granule measurements are proposed to enable
mapping for an appropriate granular concept that represents sufficient knowledge to
solve the problem at hand. Applications of GCH are demonstrated through learning
of higher order decision rules.

Chapter “Rough Sets and Medical Differential Diagnosis” by Shusaku Tsumoto,
discusses a correspondence between the core ideas of rough sets and medical differ-
ential diagnosis.

In Chapter “Science and Semantics: A Note on Rough Sets and Vagueness” by
Marcin Wolski, rough set theory is presented against the background of recent philo-
sophical discussions about vagueness and empirical sciences.

The second volume contains the following chapters.

In chapter “From Logic to Computer Science – A Personal Experience”, Anita
Wasilewska explains why she is so grateful to Professor Zdzisław Pawlak whom
was possible to meet on her way from mathematics to computer science.

Chapter "Knowledge algebras and their discrete duality" by Ewa Orlowska and
Anna Maria Radzikowska introduces a class of algebras referred to as knowledge
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algebras and a class of knowledge frames. Representation theorems for these classes
leading to a discrete duality are proved.

Chapter “Comparison of Greedy Algorithms for Decision Tree Optimization” by
Abdulaziz Alkhalid, Igor Chikalov, and Mikhail Moshkov is devoted to the com-
parison of 16 types of greedy algorithms for decision tree construction with optimal
decision trees generated by the dynamic programming approach. Optimization is
performed relative to minimal values of different parameters of decision trees. The
results of experiments are reported and discussed.

In Chapter “A Review of the Knowledge Granulation Methods: Discrete vs Con-
tinuous Algorithms” by Piotr Artiemjew, rough inclusions and some of their weaker
variants are used to define similarity relations. Applications to classification prob-
lems are discussed.

In Chapter “Game-theoretic Rough Sets for Feature Selection” by Nouman Azam
and JingTao Yao, a game-theoretic rough sets based method is formulated for select-
ing important features by combining multiple measures representing importance
levels for a feature. The method incorporates the measures as players in a game
where each player employs a three-way decision in selecting features. The included
demonstrative example suggests that this method may be useful for feature selection
in text categorization.

Chapter “A Clustering Approach to Image Retrieval Using Range Based Query
and Mahalanobis Distance” by Minakshi Banerjee, Sanghamitra Bandyopadhyay,
and Sankar K. Pal, puts forward a new approach to address a general purpose
content-based image retrieval task. The effectiveness of the proposed algorithm is
demonstrated with increased accuracy and reduced retrieval time.

Chapter “Classifiers Based on Data Sets and Domain Knowledge: A Rough Set
Approach” by Jan G. Bazan, Stanisława Bazan-Socha, Sylwia Buregwa-Czuma,
Przemysław Pardel, Andrzej Skowron, and Barbara Sokolowska, presents the ontol-
ogy approximation method for inducing complex classifiers from experimental data
and domain knowledge. The experimental results on different data sets are reported,
in particular on (i) data set generated by a vehicular traffic simulator, (ii) real-life
data set concerning coronary heart disease obtained from Second Department of In-
ternal Medicine, Jagiellonian University Medical College, Cracow, Poland, and (iii)
real-life data set concerning respiratory failure obtained from Neonatal Intensive
Care Unit in the Department of Pediatrics, Jagiellonian University Medical College,
Cracow, Poland.

Chapter “Incorporating Rough Data in Database Design for Imprecise Informa-
tion Representation” by Theresa Beaubouef and Frederick E. Petry, provides dis-
cussions of how it is possible to design relational databases to allow the incorpora-
tion of uncertain data characterized using rough set theory. This included Entity-
Relationship modeling, rough functional dependencies and rough normal forms.
Security issues as dealt with in statistical databases are also discussed as well as
an example of the representation of uncertain spatial data by rough sets.
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The approach based on a pragmatic view of representation of knowledge is used
in Chapter ‘Rough Pragmatic Description Logic” by Zbigniew Bonikowski, Edward
Bryniarski, and Urszula Wybraniec-Skardowska for introducing and for investiga-
tion of a rough description logic.

Chapter “Application of Rough Set Theory to Sentiment Analysis of Microblog
Data” by Chien-Chung Chan and Kathy J. Liszka, presents the use of rough set
theory to formulate sentimental approximation spaces based on key words for as-
sessing sentiment of microblogging messages. The sentimental approximation space
provides contextual sentiment from the entire collection of messages, and it enables
the evaluation of sentiment of different subjects, not in isolation, but in context.
The sentimental approximation space offers potentially more insightful information
about a subject than simple polarity answers of positive or negative.

Chapter “Relationships for Cost and Uncertainty of Decision Trees” by Igor
Chikalov, Shahid Hussain, and Mikhail Moshkov, presents the results of studies on
the relationships between the cost and the uncertainty of decision trees as well as on
the relationships between the number of nodes and the depth in the case of exact de-
cision trees. The developed tools are based on dynamic programming approach and
are applicable only to relatively small decision tables. The results of experiments
are reported and discussed.

Chapter “The Impact Rules of Recommendation Sources for Adoption Inten-
tion of Micro-Blog Based on DRSA with Flow Network Graph” by Yang-Chieh
Chin, Chiao-Chen Chang, Chiun-Sin Lin, and Gwo-Hshiung Tzeng, focuses on the
micro-blog (i.e., a new communication channel with which people share short text
messages on public and private networks) on Facebook. The main purpose of the re-
ported study is to explore and compare what recommendation sources influence the
intention to use micro-blogs and to combine the personal characteristics/ attributes
of gender, daily internet hour usage and past use experience to infer the usage of
micro-blogs decision rules using a dominance-based rough-set approach (DRSA)
with flow network graph.

Chapter “Providing Feedback in Ukrainian Sign Language Tutoring Software”
by M.V. Davydov, I.V. Nikolski, V.V. Pasichnyk, O.V. Hodych, and Y.M. Scher-
byna, focuses on video recognition methods implemented as part of the Ukrainian
Sign Language Tutoring Software. The proposed software system for sign language
recognition supports user interaction with the system during learning of signs and
the verification process. The developed feedback mechanism significant improves
the training experience for users. The results of experiments are reported and dis-
cussed.

Chapter “Hybrid Methods in Data Classification and Reduction” by Paweł Deli-
mata and Zbigniew Suraj summarizes numerous results of the authors on issues of
data reduction, feature subset selection and classifier construction. In particular, ap-
plications of reducts, deterministic and inhibitory decision rules for feature selection
are presented.
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Chapter “Uncertainty Problem Processing with Covering Generalized Rough
sets” by Jun Hu and Guoyin Wang, focuses on applications of the covering gen-
eralized rough set approach. There are proposed two models: knowledge reduction
model and covering generalized rough fuzzy model.

Chapter “Hardware Implementations of Rough Set Methods in Programmable
Logic Devices” by Maciej Kopczynski and Jarosław Stepaniuk, discusses existing
results on hardware realization of rough set algorithms in the Field Programmable
Gate Array (FPGA) logic devices.

In Chapter “Determining Cosine Similarity Neighborhoods by Means of the Eu-
clidean Distance”, Marzena Kryszkiewicz presents a scalable method for computing
cosine similarity neighborhoods of vectors by employing the Euclidean distance ap-
plied to (α−)normalized forms of these vectors and the triangle inequality. There
are considered three types of sets of cosine similar vectors: all vectors the similarity
of which to a given vector is not less than an ε threshold value and two variants of
k-nearest neighbors of a given vector.

Chapter “Time Variability-Based Hierarchic Recognition of Multiple Musical In-
struments in Recordings” by Elżbieta Kubera, Alicja A. Wieczorkowska, and Zbig-
niew W. Raś, focuses on automatic identification of musical instruments in poly-
phonic audio recordings. The reported experiments demonstrate that the perfor-
mance of classifiers enhanced, in particular by new temporal parameters introduced
to supply additional temporal information for the timbre recognition, lead to im-
provement of the classifier performance.

In chapter “Unifying Variable Precision and Classical Rough Sets: Granular Ap-
proach” by Tsau Young Lin and Yu Ru Syau it is shown that neighborhood sys-
tems (NS) can integrate Ziarko’s variable precision rough set model (VPRSM) and
Pawlak ’s classical rough sets into one concept.

Chapter “Fuzzy Hybrid MCDM for Building Strategy Forces” by Mei-Chen Lo
and Gwo-Hshiung Tzeng, adopts Fuzzy multiple criteria decision making methods
and discuss how the technology, marketing and research & development forces oper-
ate and suggests ways of adjusting to them, and, where possible, of taking advantage
of them.

Chapter “Rough Set Based Feature Selection: Criteria of Max-Dependency, Max-
Relevance, and Max-Significance” by Pradipta Maji and Sushmita Paul, reports a
rough set based feature selection algorithm called maximum relevance - maximum
significance (MRMS), and its applications on quantitative structure activity rela-
tionship (QSAR) and gene expression data. The importance of rough set theory for
computing both relevance and significance of the features is also established. The
results of experiments are reported and discussed.

In Chapter “Towards Logics of Some Rough Perspectives of Knowledge” by A.
Mani, semantic frameworks for dealing with such issues as concepts of relative
consistency of knowledge, conflict representation and resolution are introduced and
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developed. The proposed semantics may be of interest for multi-agent systems, dy-
namic spaces and collections of general approximation spaces.

In Chapter “Classifiers Based on Nondeterministic Decision Rules” by Barbara
Marszał-Paszek and Piotr Paszek, classifiers based on rough set theory and nonde-
terministic decision rules are discussed. The reported experiments are showing that
enhancing rule-based classifiers with nondeterministic rules may lead to increasing
of the classification quality.

In Chapter “Approximation and Rough Classification of Letter-like Polygon
Shapes” by Elisabeth Rakus-Andersson, is presented a rough set based method
to classification of discrete two-dimensional point sets resembling some letters to-
gether with a rough set technique for verifying decisions about the primary recog-
nitions of the curves’ appearance as letter shapes. The results are utilized in the
classifications of internet packet streams or in the analysis of wave signals typical
of, e.g., medical examinations.

Chapter “Rough Set-based Identification of Heart Valve Diseases Using Heart
Sounds” by Mostafa A. Salama, Omar S. Soliman, Ilias Maglogiannis, Aboul Ella
Hassanien, and Aly A. Fahmy, presents an application of the rough set approach to
classification of heart sound diseases using heart sounds. The reported experiments
are showing that the rough set based approach outperforms several other well known
machine learning techniques.

In Chapter “Rough Sets and Neuroscience” by Tomasz G. Smolinski and Astrid
A. Prinz, examples of the existing and potential applications of rough set theory (and
its hybridizations) in neuroscience and neurology are presented. Moreover, a discus-
sion of further development of rough-neural computing, stimulated by relationships
of rough sets with neuroscience, is provided.

In Chapter “On Knowledge Representation and Automated Methods of Search-
ing Information in Bibliographical Data Bases: A Rough Set Approach” by Zbig-
niew Suraj, Piotr Grochowalski, and Krzysztof Pancerz, is presented an approach to
searching for information in bibliographical data bases founded on rough set theory
and the domain knowledge represented by ontologies. The reported experiments are
performed on data gathered in the Rough Set Database System (RSDS).

In Chapter “Design and Verification of Rule-Based Systems for Alvis Models”
by Marcin Szpyrka and Tomasz Szmuc, is presented a method of encoding and
verification of rule-based systems with the Haskell functional language in order to
include them into Alvis, a modeling language designed for embedded systems that
provides a possibility of a formal model verification.

Chapter “On Objective Measures of Actionability in Knowledge Discovery” by
Li-Shiang Tsay and Osman Gurdal, is included a rough set method for generating a
set of rules by utilizing the domain experts’ prior knowledge to formulate its inputs
and to evaluate the observed regularities it discovers. The generated rule overcomes
the traditional data-centered pattern mining resulting to bridge the gap and enhance
real-world problem solving capabilities.
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In Chapter “Pseudometric Spaces from Rough Sets Perspective” by Piotr
Wasilewski, relationships between approximation spaces and pseudometric spaces
are presented. Investigations are focused on the class of pseudometric spaces which
are lower bounded in each point since open sets in these spaces coincide with
definable sets of some prescribed approximation spaces.

Editors of this book are proud to present the readers this book.

Andrzej Skowron and Zbigniew Suraj
Warszawa, Rzeszów, March 2012
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Chapter 1
From Logic to Computer Science
– A Personal Experience

Anita Wasilewska

Abstract. The article explains why the author is so grateful to Professor Zdzisław
Pawlak whom was possible to meet on her way from mathematics to computer
science.

Keywords: Polish School of Mathematics, Warsaw and Lvov Schools of Mathe-
matics, Warsaw-Lvov School of Logic, the Rasiowa-Pawlak seminar, rough sets.

The origins of Foundational Studies can be traced back to David Hilbert ( [8]),
a German mathematician, recognized as one of the most influential and universal
mathematicians of the 19th and early 20th centuries. In 1920 he proposed a research
project that became known as Hilbert’s Program. He wanted mathematics to be for-
mulated on a solid and complete logical foundation. He believed that in principle this
could be done, by showing that all of mathematics follows from a correctly-chosen
finite system of axioms and that some such axiom system is provably consistent.
But in 1931 Kurt Gödel ( [3]) showed that Hilbert’s grand plan was impossible as
stated. He proved in what is now called Gödel’s Incompleteness Theorem that any
non-contradictory formal system, which was comprehensive enough to include at
least arithmetic, cannot demonstrate its completeness by way of its own axioms.

Nevertheless Hilbert’s and Gödel’s work led to the development of recursion the-
ory and then mathematical logic and foundations of mathematics as autonomous
disciplines. It inspired works of Alonzo Church and Alan Turing that became the
basis for theoretical computer science and also led to the creation and develop-
ment of a unique phenomenon which became to be known as the Polish School of
Mathematics ( [5]).

The term Polish School of Mathematics refers to groups of mathematicians of
the 1920’s and 1930’s working on common subjects. The main two groups were
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2 A. Wasilewska

situated in Warsaw and Lvov (now Lviv, the biggest city in Western Ukraine). We
talk hence more specifically about Warsaw and Lvov Schools of Mathematics,
and additionally of Warsaw-Lvov School of Logic working in Warsaw.

When examining twentieth century mathematics one can’t not notice the surpris-
ing depth, originality and quantity of Polish contributions to the discipline. Any list
of important twentieth century mathematicians contains Polish names in a frequency
out of proportion to the size of the country. Moreover, such creativity and mathe-
matical influence developed in a country that had little tradition in research, that
was partitioned by Russia, Germany, and Austria and was under foreign domination
from 1795 until the end of World War I, and whose educational institutions were
for over 200 years suppressed by respective foreign powers. What was to become
known as the Polish School of Mathematics was possible because it was carefully
planned, agreed upon, and executed.

University of Warsaw opened in 1918 with Janiszewski, Mazurkiewicz, and Sier-
piński as professors of mathematics. The three initiated Janiszewki’s proposals with
Warsaw serving as the proposed mathematical research center, hence the name of
Warsaw School of Mathematics. They chose logic, set theory, point-set topology
and real functions as the area of concentration. Their journal Fundamenta Mathe-
maticae founded in 1920 and is still in print was the first specialized mathematical
journal in the world. The choice of title was deliberate to reflect that all areas were
to be connected with foundational studies. It should be remembered that at the time
these areas had not yet received full acceptance by the mathematical community.
The choice reflected both insight and courage.

Some other members of Warsaw school were: Kazimierz Kuratowski, Edward
Marczewski, Bronisław Knaster, Stanisław Saks, Karol Borsuk, and after the the
second world war, Roman Sikorski, Nachman Aronszajn, and Samuel Eilenberg
who emigrated in the 1930’s to the USA.

The notable logicians of the Lvov-Warsaw School of Logic, working at Warsaw,
included Stanisław Leśniewski, Adolf Lindenbaum, and Alfred Tarski (since 1942
in Berkeley, [2]), Jan Łukasiewicz, Andrzej Mostowski, and after the second world
war Helena Rasiowa.

After about ten years, with the growth in numbers a second center concentrat-
ing on functional analysis was started in Lvov, where Banach and Steinhaus were
professors, and the journal Acta Arithmetica devoted to functional analysis was
founded in 1929. The Lvov center became consequently known as Lvov School of
Mathematics. Some other members of this school were: Stanisław Mazur, Stanisław
Ulam ( [9]), Juliusz Schauder, and Mark Kac ( [4]).

While both centers were very strong, cooperation between them was very good
and their identities merged into the Polish School of Mathematics. For example,
when the envisioned monograph series was initiated under the series title Mathe-
matical Monographs (Monografie Matematyczne) in 1931, the editor was Wacław
Sierpiński in Warsaw, and the first volume Theorie Operations Lineares by Stefan
Banach appeared in Lvov. By 1936 the Polish Journals and Monographs had be-
come widely read and highly respected, the achievements of Polish mathematicians
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had gained international recognition, and the country’s mathematical community
was spirited and active.

World War II broke out in 1939 and Poland was to suffer great losses to its math-
ematical community. Lvov University ceased to belong to Poland, but Steinhaus
and Knaster carried on their work and recreated some of its original community in
western Poland’s Wroclaw.

Shortly after the war Warsaw University reopened with Kuratowki, Sierpiński,
Mostowski, and Borsuk as Mathematics Professors. They were soon joined there by
Mostowski’s students Rasiowa, Sikorski, and the others, too numerous to be listed.

In the early sixties Rasiowa, by then herself a prominent world logician and a
driving force in the field of Algebraic Logic ( [7]) started her collaboration with
Zdzisław Pawlak ( [6]), an engineer turned mathematician, turned computer scien-
tist. They were one of the first to realize great importance of foundational stud-
ies in newly created field of computer science. Since then until her retirement
they lead, at Mathematic Institute of Warsaw University a weekly Foundations of
Computer Science research seminar. The seminar was designed mainly for faculty
but advanced Mathematics and Computer Science students were allowed to attend.
All students at that time were in what is called a 5 years Master Program and Ph.D.
level Graduate Study didn’t exist yet. After completing a Master degree one would
be employed by the University as a lecturer, progress to senior lecturer, teach and
use these kind seminars for educational and research development. One would solve
problems which were often posed during the meetings, write and publish papers and
in due time, after building evidence of scientific independence would work towards
a Ph.D. Thesis. After obtaining Ph.D one would often be promoted to assistant pro-
fessor and keep building more and more independent research and advise students.
As the next step one would be promoted, after the defence of a next degree called
Habilitation to the position of associate professor. The promotion to a Professor was
(and still is) a State Affair, as it had to be accepted and signed by the President of
the country. The process was long (definitely much longer then current processes
there and everywhere) and not precisely defined. What was precise, at each level,
was the level of scientific results. The seminar attendees formed hence quite a big
crowd of various interests and stages of scientific development. Altogether it was a
very stimulating and exciting place to belong to.

The weekly Rasiowa-Pawlak seminar was, of course not the only one at the Math-
ematics Department, or at the Mathematic Institute of Polish Academy of Science
(IMPAN). There were Logic seminar of Rasiowa and Traczyk (from Warsaw Poly-
technic), Mostowski’ s Foundation of Mathematics seminars at both IMPAN and
University, there also was Pawlak’s student Blikle and Mazurkiewicz seminar at In-
formatics Institute of Polish Academy of Science to mention only these I regularly
attended and collaborated with their participants.

At that time some founders and early members of the Polish School of Math-
ematics were still alive and so one could attend Mazur (Functional Analysis),
Kuratowski-Borsuk (Topology), Sikorski (Real Functions) seminars and one could
even meet one of its most prominent seniors, a gentle and courteous Sierpiński.
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Rasiowa ( [1]) and Pawlak became in 1977 the founders of Fundamenta Infor-
maticae one of the the first world journal specialized in foundation of computer sci-
ence. It was published by the Polish Mathematical Society as Series IV of the annals
“Annales Societatis Mathematicae Polonae". It is currently published by IOS Press
under the auspices of the European Association for Theoretical Computer Science
with Pawlak’s student Andrzej Skowron as its editor in chief since Rasiowa death
in 19941. Pawlak served as its co- Editor until his own death. in 2006. The choice
of the title was again deliberate. It reflects not only the subject, but also stresses that
the new research area being developed is a direct continuation of the tradition of the
Polish School of Mathematics.

Such was the environment and tradition I scientifically and personally grew up
with. Now almost 50 years later I can see and say that it was a very special one and
that I and others of my generation were very lucky. At that time we didn’t see it as
anything special and thought that the whole world was like that—if not better. But
maybe this is the thinking and privilege of the young.

I entered the Mathematic Department of Warsaw University as an undergraduate
student in 1962. I started to work there as a faculty in Mathematic Department in
1967 as a member of Rasiowa’s Logic and Foundations of Computer Science Di-
vision and continued until 1980 (on leave till 1983) when I departed for USA with
my then 18 months old daughter Agatha to visit Mathematics Departments at Yale
and Wesleyan Universities. The World and Polish politics intervened and what was
supposed to be a one year visit became a new life in a new country. The new life also
encompassed a new profession, as in 1986 I joined the faculty at Computer Science
Department at Stony Brook University and became a full time computer scientist.
Looking back at my scientific history this transition from mathematics to computer
science seems now inevitable. Nevertheless I don’t know if it would have happened
if not for a re-appearance in my life and a new influence of Zdzisław Pawlak. It was
year 1983 and I was teaching Mathematics at Lafayette College in Easton, PA., one
hour drive from New York City. Due to my political involvement I couldn’t go back
to Poland and thought I would never see it again but my friends and former col-
leagues started to travel and Pawlak was one of my unexpected, respected and very
welcomed quests. It was a joy to make him visit New York and watch him taking
hundreds of (excellent!) pictures of the city and of my 5 years old daughter making
cart-wheels on the streets. Her freedom of behavior and movements fascinated him.
We, the three of us, would take walks in Pocono Mountains and swim in free float-
ing Deleware river and he would talk about his newest idea and passion: rough sets.
He left for Warsaw leaving me a stack of papers to read and kept sending more over
the years to come. Such was the beginning of my now already lifelong involvement
in Rough Sets based research. It also was the beginning of his frequent visits and of
our friendship that lasted until his death. Two years after his first visit I was ready
for a change and was interviewing for a position in Computer Science Departments
giving talks with all my strength and enthusiasm about Rough Sets and my new re-
sults. The transition to become a full time computer scientists wouldn’t be possible

1 Since 2010 Damian Niwiński became Editor-in-Chief of Fundamenta Informaticae
(eds. note).
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of course without years of my previous foundations of computer science research
and results, many of them influenced, or directly connected to Pawlak’s work at
that time.
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Chapter 2
Knowledge Algebras and Their Discrete Duality

Ewa Orłowska and Anna Maria Radzikowska

Abstract. A class of knowledge algebras inspired by a logic with the knowledge
operator presented in [17] is introduced . Knowledge algebras provide a formaliza-
tion of the Hintikka knowledge operator [8] and reflect its rough set semantics. A
discrete duality is proved for the class of knowledge algebras and a corresponding
class of knowledge frames.

Keywords: Boolean algebra, knowledge operator, knowledge algebra, knowledge
frame, rough set, discrete duality, representation theorem, canonical frame, complex
algebra.

2.1 Introduction

In this chapter we present and discuss a class of algebras referred to as knowledge
algebras. They are Boolean algebras with a unary operator intended to reflect in an
abstract setting the rough-set-based semantics of a knowledge operator introduced
in [17]. We define a class of knowledge frames and prove that the class of knowledge
algebras and the class of these frames are dual to each other in the sense of a discrete
duality.
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Discrete duality is a relationship between classes of algebras and classes of re-
lational systems. Following terminology of non-classical logic, these relational sys-
tems are referred to as frames. Since a topology is not involved in the construction
of frames, they may be viewed as having a discrete topology. Establishing a discrete
duality between these two classes requires the following steps. Let Alg be a class of
algebras and let Frm be a class of frames.

Step 1: For every algebraA∈ Alg, define its canonical frame Cf(A) and show that
Cf(A)∈Frm.

Step 2: For every frame X ∈ Frm, define its complex algebra Cm(X ) and show
that Cm(X )∈ Alg.

Step 3: Show the following theorems:

(a) Every A∈Alg is embeddable into Cm(Cf(A)).
(b) Every X ∈ Frm is embeddable into Cf(Cm(X )).

Canonical frames correspond to dual spaces in the sense of Priestley-style duality
( [3]). Complex algebras of canonical frames correspond to canonical extensions in
the sense of Jónsson and Tarski ( [11]). In the setting of discrete dualities, the canon-
ical extension is built from two structures which explicitly refer to their algebraic
and relational origin.

A discrete duality leads to so-called duality via truth ( [21]). Duality via truth
amounts to saying that the concept of truth associated with an algebraic semantics
of a formal language determined by a class Alg of algebras is equivalent to the
concept of truth associated with its relational (Kripke-style) semantics determined
by a class Frm of frames. In other words, the same formulas are true in both classes
of semantical structures. General principles and applications of discrete duality are
briefly presented in [22].

The chapter is organized as follows. In Section 2.2 we recall the information
operators ( [31], [32], [15], [16]) obtained from a model of information systems as
understood in [30]. In Section 2.3 we present a knowledge operator derived from an
information system ( [17]) and we list some of its properties. In Section 2.4 a Stone
duality ( [36]) for Boolean algebras is recalled in the context of discrete duality. In
Section 2.5 we introduce knowledge algebras and knowledge frames and we apply
a discrete duality framework to these classes of structures. Next, in Section 2.6, we
prove representation theorems for knowledge algebras and knowledge frames. The
chapter is completed by concluding remarks.

2.2 Rough-Set-Style Information Operators

In many applications the available data are represented as a collection of ob-
jects together with their properties. Formally, such an information is a triple Σ =
(Ob,At,{Vala : a∈At}) where Ob is a set of objects, At is a set of attributes and
Vala, a∈At, is a set of values of an attribute a. More specifically, each attribute
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a∈At is a mapping a : Ob → Vala and the pair (a,a(x)) is viewed as a property of
an object x. In a more general setting, an attribute may assign a subset of values to an
object. All the considerations in this chapter are relevant for both of these cases. In
the theory of rough sets originated by Pawlak ( [31], [32]) structures of the form Σ
are referred to as information systems. In the following we will use the more concise
notation (Ob,At) instead of (Ob,At,{Vala : a∈At}).

Given an information system Σ=(Ob,At), various information relations can be
derived from Σ , for a comprehensive survey see [6]. In particular, the well known
indiscernibility relation, defined for every A⊆At by: for all x,y∈Ob,

indA(x,y)
df⇔ a(x) = a(y) for every a∈A,

reflects a kind of “sameness” of objects. It is clear that indA, for every A⊆At, is an
equivalence relation and hence it determines a partition of Ob. Equivalence classes
of ind(A)will be written as [x]A, x∈Ob. Given a set X ⊆Ob, usually it can be charac-
terized only approximately in terms of the attributes from a set A⊆At. In the rough
set theory, two approximation operators are defined as follows: for every X ⊆Ob,

LA(X)
df
= {x∈Ob : ∀y∈Ob, indA(x,y)⇒ y∈X}

UA(X)
df
= {x∈Ob : ∃y∈Ob, indA(x,y) & y∈X}.

For any X ⊆Ob, LA(X) is a A–lower approximation of X and UA(X) is an A–upper
approximation of X . A well known interpretation of these operators is that the ob-
jects in LA(X) are those which certainly belong to X , whereas objects in UA(X) can
only be viewed as possible members of X in view of properties of the elements of
X determined by the attributes from A⊆At. Note that LA and UA are modal opera-
tions of necessity and possibility ( [2]), respectively, determined by indA. We recall
that given a set Z and a binary relation R on Z, the necessity operator [R] and the
possibility operator 〈R〉 determined by R are defined by: for every Y ⊆Z,

[R]Y = {z∈Z : ∀y∈Z, zRy ⇒ y∈Y}
〈R〉Y = {z∈Z : ∃y∈Z, zRy & y∈Y}.

It is known that these operators are monotone, that is for all Y1,Y2⊆Z such that
Y1⊆Y2, [R]Y1⊆ [R]Y2 and 〈R〉Y1⊆〈R〉Y2. Also, from the correspondence theory ( [1])
the following facts follow:

R is reflexive iff ∀Y ⊆Z, [R]Y ⊆Y iff ∀Y ⊆Z, Y ⊆〈R〉Y
R is symmetric iff ∀Y ⊆Z, 〈R〉[R]Y ⊆Y iff ∀Y ⊆Z, Y ⊆ [R]〈R〉Y .

Given an information system (Ob,At) and a set A⊆At of attributes, for a set X ⊆Ob
we define the following three regions of certainty determined by A, called positive,
negative, and borderline instances of X ( [15], [16]):

• PosA(X) = LA(X)
• NegA(X) = Ob−UA(X)
• BA(X) =UA(X)−LA(X).
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Given a set A of attributes, the elements of PosA(X) definitely belong to X , the
elements of NegA(X) definitely do not belong to X , and BA(X) is the region of
uncertainty: we can only say that the elements of BA(X) possibly belong to X , but
we cannot decide it for certain.

In terms of the approximations, we define several types of definability and
indefinability of sets. Given an information system (Ob,At) and a set A⊆At of
attributes, we say that a set X ⊆Ob of objects is:

• A–definable iff PosA(X)=X
• roughly A–definable iff PosA(X) �= /0, NegA(X) �= /0, and BA(X) �= /0
• bottom A–indefinable iff PosA(X)= /0
• top A–indefinable iff NegA(X)= /0
• totally A–indefinable iff PosA(X)=NegA(X)= /0.

If X is A–definable, then we can precisely determine the properties of all its ele-
ments, where by properties we mean the properties expressed by attributes in A.
However, if it is roughly A–definable, we are only able to say which properties
its elements certainly possess and which ones they certainly do not possess but
we may not be able to determine all their properties. Accordingly, for the bottom
(resp. top) A–indefinable set X we cannot indicate properties which it certainly pos-
sesses (resp. does not possess). In the last case we are unable to say anything about
properties of X .

We quote lemmas from [17] which provide a characterization of degrees of
definability of sets.

Lemma 2.1. For every information system (Ob,At), for every A⊆At, and for every
X ⊆OB, the following statements are equivalent:

(a) X is A–definable
(b) UA(X) = X
(c) BA(X) = /0
(d) PosA(X) = Ob−NegA(X)
(e) X =

⋃
x∈X [x]A

Lemma 2.2. For every information system (Ob,At), for every A⊆At, and for every
X ⊆OB,

(a) X is roughly A–definable iff BA(X) �= /0
(b) X is top A–indefinable iff BA(X) = Ob−PosA(X) and X �=Ob
(c) X is totally A–indefinable iff BA(X) = Ob.

2.3 Knowledge Operator

In the literature there is an extensive discussion of characteristics and formal rep-
resentation of knowledge (see, e.g., [8], [13], [35], [38]). In Artificial Intelligence
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and Computer Science, logics of knowledge (epistemic logics) are usually modal
logics where knowledge operator is identified with modal operator of necessity. The
modal system S5 is a familiar logic to model knowledge ( [7], [14], [9], [37]). This
system has nice mathematical properties which often motivate researchers to adopt
it in their exploration of the field. However, it models an idealized notion of knowl-
edge. In particular, it suffers from the problem of veridicality (what the agent knows
is true) and the problem of logical omniscience ( [28,29]) – the agent knows all log-
ical consequences of his knowledge. Formally, these properties are represented by
logical axioms Kaϕ→ϕ and Kaϕ ∧Ka(ϕ→ψ)→Kaψ , where Kaϕ stands for “an
agent a knows ϕ”.

In [17] another definition of knowledge operator is provided in the context of
modelling incomplete or uncertain knowledge. The underlying intuition is the fol-
lowing. It is a common agreement that knowledge of an agent is manifested in his
abilities to find patterns and regularities in a set of data. In the context of information
systems it means that a knowledgeable agent is able to classify the objects in terms
of their properties determined by the attributes.

Let (Ob,At) be an information system and let A⊆At be a set of attributes. Fol-
lowing [17], see also [6], we define the knowledge operator determined by A as
follows: for every X ⊆Ob,

KA(X)
df
= PosA(X)∪NegA(X). (2.1)

This operator may be seen as a rough-set style formulation of the operator “an
agent knows whether” discussed in [8]. Hintikka describes its intuitive meaning
as “Clearly one knows whether ϕ is true if and only if one knows that ϕ is true or
knows that ϕ is false”. In the context of information systems, knowledge of an agent
whose indiscernibility relation is indA, for some A⊆At, is reflected by his ability
of classifying the objects in the system according to their properties determined by
the attributes in A. The agent knows a set X ⊆Ob whenever for every x∈Ob he can
ascertain that x ∈ X or x �∈X . The knowledge operator defined in (2.1) has the prop-
erty that if an object, say x, is such that the equivalence class [x]A = {x}, that is the
agent has a crisp information about x, then for any set X ⊆Ob we have x∈KA(X).
The S5 knowledge operator does not have this property. The disjoint representa-
tion of rough sets developed and studied in [26], see also [27], is based on this
property.

We say that knowledge about a set X determined by attributes from a
set A is:

• complete, if KA(X) = Ob
• rough, if PosA(X) �= /0, NegA(X) �= /0, and BA(X) �= /0
• pos–empty, if PosA(X)= /0
• neg–empty, if NegA(X)= /0
• empty, if it is pos–empty and neg–empty.

Lemma 2.3. [17] For every information system (Ob,At), for every A⊆At, and for
every X ⊆OB, the following statements hold:
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(a) KA(X) is complete iff X is A–definable
(b) KA(X) is rough iff X is roughly A–definable
(c) KA(X) is pos–empty iff X is bottom A–indefinable
(d) KA(X) is neg–empty iff X is top A–indefinable
(e) KA(X) is empty iff X is totally A–indefinable.

The following lemma gives some facts about interaction of information operators.

Lemma 2.4. [6] For every information system (Ob,At), for all A,B⊆At, and for
every X ⊆OB, the following hold:

(a) PosA(KA(X)) = KA(X) and NegA(KA(X)) = BA(X)
(b) BA(KA(X)) = /0
(c) KA(PosA(X)) = KA(NegA(X)) = Ob
(d) KA(KA(X)) = Ob
(e) KA(X) = KA(Ob−X)
(f) KA( /0) = Ob
(g) if A⊆B, then KA(X)⊆KB(X).

The knowledge operator KA defined by (2.1) does not have the undesired property
of veridicality typical for traditional epistemic logic based on S5 modal system. To
see that KA(X) is not necessarily included in X consider the following example.

Example 2.1. Let Ob = {o1, . . . ,o5} and let X ={o1,o2,o3}. Assume that an in-
discernibility relation determined by a set A of attributes generates the following
partition: {{o1,o2},{o3,o4},{o5}}. Then we have: KA(X) = PosA(X)∪NegA(X) =
{o1,o2}∪{o5} which obviously is not included in X .

Similarly, the knowledge operator KA does not have the unwanted property of logical
omniscience as the following example shows.

Example 2.2. Let Ob = {o1,o2,o3,o4} and let an indiscernibility relation deter-
mined by a set A of attributes generates the partition {{o1,o2},{o3,o4}}. Take
X ={o1} and Y ={o2,o3}. Then

KA(X) = PosA(X)∪NegA(X) = /0∪{o3,o4}= {o3,o4}
KA(−X ∪Y ) = PosA(−X ∪Y )∪NegA(−X ∪Y ) = {o3,o4}∪ /0 = {o3,o4}

KA(Y ) = PosA(Y )∪NegA(Y ) = /0.

Hence KA(X)∩KA(−X ∪Y ) = {o3,o4}. Clearly, it is not included in KA(Y ).

However, the agents reasoning according to these knowledge operators are fully in-
trospective: they know what they know (positive introspection) and they know what
they do not know (negative introspection). Formally, positive introspection is re-
flected by KA(X)⊆KA(KA(X)) and negative introspection by−KA(X)⊆KA(−KA(X))
for every X ⊆Ob.
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2.4 Discrete Duality for Boolean Algebras

In this section we recall Stone duality for Boolean algebras ( [36]).
Let (B,∨,∧,−,0,1) be a Boolean algebra where the operations of join (∨), meet

(∧) and complement (−) satisfy the following axioms:

a∨ (b∨c) = (a∨b)∨c a∧(b∧c) = (a∧b)∧c associativity
a∨b = b∨a a∧b = b∧a commutativity
a∨ (a∧b) = a a∧(a∨b) = a absorption
a∨ (b∧c) = (a∨b)∧ (a∨c) a∧(b∨c) = (a∧b)∨(a∧c) distributivity
a∨−a = 1 a∧ − a = 0 complement.

For simplicity, we will write B to denote both a Boolean algebra and its underlying
universe.

The natural ordering on a Boolean algebra B is defined by: for all a,b∈B, a ≤ b
iff a∨b = b (or equivalently, a∧b = a).

A filter of a Boolean algebra B is a subset F ⊆B such that for all a,b∈B,

• if a∈F and a ≤ b, then b∈F
• if a,b∈F , then a∧b∈F .

These two conditions are equivalent to a,b∈F if and only if a∧b∈F .

A filter F is said to be:

• a proper filter iff F �=B (equivalently, 0 �∈F)
• a prime filter iff a∨b∈F implies a∈F or b∈F (equivalently, for any a∈B,

either a∈F or −a∈F)
• an ultrafilter (maximal filter) iff it is a maximal element with respect to set

inclusion in the family of all proper filters
• a filter generated by a set A⊆B iff F ={a∈B : ∃n≥1, ∃a1, . . . ,an∈A,

a1∧ . . . ∧an ≤ a}
• a principal filter iff F = {b∈B : a ≤ b} for some a∈B.

The following facts are well known (see, for example, [12], [34]).

Theorem 2.1. In every Boolean algebra the following are satisfied:

(a) A filter is an ultrafilter iff it is prime and proper.
(b) For every proper filter there is an ultrafilter including it.
(c) If a � b, then there is an ultrafilter F such that a∈F and b �∈F.

A Boolean frame is any non-empty set X . The complex algebra of a Boolean frame
X is the powerset Boolean algebra Cm(X)= (2X ,∪,∩,−, /0,X). Clearly, the complex
algebra of a Boolean frame is a Boolean algebra.

Given a Boolean algebra B, its canonical frame Cf(B) is the set Ult(B) of all
ultrafilters of B.
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The Stone mapping h : B → Cm(Cf(B)) is defined by: for every a∈B,

h(a)
df
= {F ∈Ult(B) : a∈F}.

Since Cm(Cf(B)) = 2Ult(B), h is well defined.

Lemma 2.5. The mapping h is an embedding.

Proof. First, we prove that the mapping h preserves the operations ∨ and ∧. We
show that h(a∨b) = h(a)∪h(b). Let F ∈h(a∨b). Then a∨b∈F . Since F is a prime
filter, a∈F or b∈F . Thus F ∈h(a)∪ h(b). Conversely, let a∈F or b∈F . Since
a ≤ a∨b and b ≤ a∨b, in both cases a∨b∈F . The preservation of meet can be
proved in the similar way.

Since F is an ultrafilter, −a∈F iff a �∈F , hence h(−a) =−h(a).
Clearly, h(0) = /0 and h(1) = Ult(B).
Second, we show that h is injective. Let ≤ be the natural ordering on B. Take

a,b∈B such that a �=b. Then, by antisymmetry of ≤, either a � b or b � a. Without
loss of generality, assume that a � b. Then by Theorem 2.1(c) there is an ultrafilter
F such that a∈F and b �∈F . Hence h(a) �=h(b).

Now, let X be a Boolean frame. Consider a mapping k : X → Cf(Cm(X)) defined as:
for every x∈X ,

k(x)
df
= {A∈2X : x∈A}.

Since Cf(Cm(X))=Ult(2X ) and k(x) is a principal filter generated by {x}, k is well
defined.

Lemma 2.6. The mapping k is an embedding.

Proof. To show that k is one-to-one, take x,y∈X such that k(x) = k(y). This means
that for every A⊆X , A∈k(x) iff A∈k(y), that is x∈A iff y∈A. In particular, since
x∈{x} we have y∈{x} which yields y=x, as required.

By Lemma 2.5 and Lemma 2.6 we get the following discrete duality between
Boolean algebras and Boolean frames.

Theorem 2.2.

(a) Every Boolean algebra is embeddable into the complex algebra of its canonical
frame.

(b) Every Boolean frame is embeddable into the canonical frame of its complex
algebra.

2.5 Knowledge Algebras and Knowledge Frames

In this section we introduce knowledge algebras as Boolean algebras with an op-
erator K which captures in an abstract way the features of the knowledge operator
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discussed in Section 2.3. Next, we present a discrete duality for the class of knowl-
edge algebras.

A knowledge algebra (K-algebra) is a structure K=(B,∨,∧,−,0,1,K) where
(B,∨,∧,−,0,1) is a Boolean algebra and K is a unary operator on B satisfying the
following axioms:

(K1) a∧Ka∧K(−a∨b)≤ Kb
(K2) K(a∨−Ka) = 1
(K3) Ka = K(−a).

A logic with the operator K is presented in [4], see also [6], and the above axioms
are algebraic counterparts of the axioms of this logic. An extension of this logic to
a logic with the family of knowledge operators each of which is explicitly indexed
with a set of agents is presented in [5].

Operator K is not monotone. For example, for all a,b∈B we have a∧b≤a. Fur-
thermore, since K(1)=1 by (K2), we have K(0)=1 by (K3). But it is not true
that for every a∈B, 1=K(a∧0)≤K(a). However, for all a,b∈B, if a≤b, then
a∧K(a)≤K(b). Indeed, assume that a≤b. Then −a∨b=1 and since K(1)=1, we
obtain the required condition by (K1). Similarly, K is not antitone. For example, for
every a∈B we have a≤1 but not necessarily 1=K(1)≤K(a).

By a filter of an K-algebra we mean a filter of its Boolean reduct.
A knowledge frame (K-frame) is a structure X =(X ,R) where X is a Boolean

frame and R is an equivalence relation on X .
The complex algebra of a K-frame is a structure

Cm(X ) = (2X ,∪,∩,−, /0,X ,KR)

where (2X ,∪,∩,−, /0,X) is the complex algebra of a Boolean frame X and for every
A⊆X ,

KR(A)
df
= [R]A∪ [R](−A).

Theorem 2.3. The complex algebra of a K-frame is a K-algebra.

Proof.
(K1) We have to show that for all A,B⊆X ,

A∩KR(A)∩KR(−A∪B)⊆KR(B).

Suppose otherwise, that is there exist A,B⊆X and there is some x∈X such that
x∈A, x∈ [R]A∪ [R](−A), x∈ [R](−A∪B)∪ [R](A∩−B), x �∈ [R]B, and x �∈ [R](−B).
If x∈ [R](−A), then by reflexivity of R, x �∈A, which contradicts the assumption
that x∈A. Then x∈ [R]A. Since x �∈ [R]B and x �∈ [R](−B), there exist y,z∈X such
that xRy, xRz, y �∈B, and z∈B. Now, xRy and x∈ [R]A imply y∈A. Assume that
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x∈ [R](−A∪B). Since xRy, we get y∈ −A∪B, and since y∈A, y∈B, a contradic-
tion. Then x∈ [R](A∩−B). Since xRz, we get z∈A∩−B, thus z �∈B, which is again
a contradiction.

(K2) We have to show that KR(−KR(A)∪A)=X . Suppose that there is some x∈X
such that x �∈KR(−KR(A)∪A). This means that

x �∈ [R](−KR(A)∪A)∪ [R](−(−KR(A)∪A)),

so (i) x �∈ [R](−KR(A)∪A) and (ii) x �∈ [R](−(−KR(A)∪A)). By (i), there exists some
y∈X such that xRy and y �∈−KR(A) ∪ A, so y �∈A and y∈KR(A), i.e., y∈ [R]A ∪
[R](−A). By reflexivity of R, [R]A⊆A, so since y �∈A, we get y �∈ [R]A. Hence, since
y∈ [R]A∪ [R](−A), we get y∈ [R](−A). Also, (ii) means that there is some z∈X
such that xRz and z∈−KR(A)∪ A. By symmetry and transitivity of R, from xRy
and xRz it follows that yRz which together with y∈ [R](−A) yields z �∈A. Since
z∈−KR(A), we get z �∈KR(A), that is z �∈ [R]A∪ [R](−A) which implies z �∈ [R](−A).
Hence there is some u∈X such that zRu and u∈A. Again by transitivity of R,
from yRz and zRu we get yRu which together with y∈ [R](−A) gives u �∈A, a
contradiction.

(K3) Obvious.

The canonical frame of a K-algebra is a structure Cf(K)=(Ult(B),RK) where
Ult(B) is the set of all ultrafilters of B and RK is a binary relation on Ult(B) such
that for all F,G∈Ult(B),

F RK G
df⇔ K(F)⊆G

where K(F)
df
= {a∈B : a,Ka∈F}.

Theorem 2.4. The canonical frame of a K-algebra is a K-frame.

Proof. We have to show that RK is an equivalence relation.
Reflexivity of RK is obvious. For symmetry, take F,G∈Ult(B) and assume that
K(F)⊆G. We show that for every a∈B, a �∈F implies a �∈G or Ka �∈G. Take a∈B
such that a �∈F . Then −a∈F . Since −a≤−a∨−Ka, we get −a∨−Ka∈F . By ax-
ioms (K2) and (K3) we also have 1=K(−a∨−K(−a))=K(−a∨−Ka)∈F . Hence
−a∨−Ka∈K(F). By the assumption, −a∨−Ka∈G. Since G is prime, −a∈G or
−Ka∈G, and hence a �∈G or Ka �∈G.

Now we show that RK is transitive. Let F,G,H∈Ult(B) be such that K(F)⊆G
and K(G)⊆H. Take a∈K(F), that is a∈F and Ka∈F . Then a∧Ka∈F and
a∈G. By axioms (K2) and (K3) we get 1=K(−a∨−K(−a)) =K(−(a∧K(−a)))
=K(a∧Ka)∈F . Since a∧Ka∈F , a∧Ka∈K(F). By the assumption, a∧Ka∈G.
Since a∧Ka≤Ka, Ka∈G. We also have a∈G, so a∈K(G). By the assumption
a∈H, as required.
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2.6 Representation Theorems for Knowledge Algebras
and Knowledge Frames

Now we prove a representation theorem for knowledge algebras.

Theorem 2.5. Every knowledge algebra is embeddable into the complex algebra of
its canonical frame.

Proof. The embedding is provided by the Stone mapping h defined in Section
2.4. By Lemma 2.5, h is an embedding of Boolean algebras. It suffices to show
that h preserves the operator K. That is, we have to show that h(Ka)=KRK (h(a)).
Observe that

F ∈KRK (h(a)) ⇔ F ∈ [RK ]h(a)∪ [RK](−h(a))

⇔ (∀G∈Ult(B), FRKG ⇒ a∈G)

or (∀G∈Ult(B), FRKG ⇒ a �∈G).

(⇒) Assume Ka∈F and take G such that FRKG. Then, for every b∈B, if b,Kb∈F ,
then b∈G. If a �∈F , then −a∈F . Since Ka=K(−a) by (K3), K(−a)∈F . Hence
−a∈K(F). Thus by the assumption −a∈G, whence a �∈G. If a∈F , then since
Ka∈F , a∈K(F), whence a∈G.

(⇐) Assume Ka �∈F . We have to show that there exists some G1∈Ult(B) such that
K(F)⊆G1 and a �∈G1 and there exists some G2∈Ult(B) such that K(F)⊆G2 and
a∈G2. Consider a filter G′

1 generated by K(F)∪{a}. It is a proper filter. Indeed,
if we suppose otherwise, then there is some b∈K(F) such that b∧a=0. Hence
a≤ − b, so −b∨a= − b. Since b∈K(F), we have b∈F and Kb∈F . Hence, by
(K3), K(−b)∈F , thus K(−b∨a)∈F . Therefore, b∧Kb∧K(−b∨a)∈F . Now, by
(K1), Ka∈F which contradicts the assumption.

Let G1 be an ultrafilter containing G′
1. Thus K(F)⊆G1 and a∈G1.

Similarly, let G′
2 be a filter generated by K(F)∪{−a}. It is easy to see that it is

a proper filter, so by Theorem 2.1(b) it can be extended to an ultrafilter including it,
say G2. Then we have K(F)⊆G2 and a �∈G2.

In the following we prove a representation theorem for knowledge frames.

Theorem 2.6. Every knowledge frame is embeddable into the canonical frame of its
complex algebra.

Proof. The embedding is provided by the mapping k defined in Section 2.4. By
Lemma 2.6, k is an embedding of Boolean frames. It suffices to show that k preserves
the relation R. We show that xRy ⇔ k(x)RKR k(y).
Observe that

k(x)RKR k(y) ⇔ KR(k(x))⊆k(y)

⇔ ∀A⊆X , A∈k(x) & KR(A)∈k(x)⇒ A∈k(y)

⇔ ∀A⊆X , x∈A & x∈ [R]A∪ [R](−A)⇒ y∈A.
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(⇒) Assume xRy, x∈A, and (i) ∀z, xRz ⇒ z∈A or (ii) ∀z, xRz ⇒ z �∈A. Suppose
y �∈A. Then taking y for z in (i) and x for z in (ii) we get a contradiction.

(⇐) Assume that for every A⊆X , A∈k(x) and KR(A)∈k(x) imply A∈k(y).
Consider A=〈R〉{x}. Then we have x∈{x}⊆〈R〉{x}. Since R is symmetric, {x}⊆
[R]〈R〉{x}, so 〈R〉{x}∈k(x) and KR(〈R〉{x})⊆k(x). Then 〈R〉{x}∈k(y) which gives
yRx and by symmetry of R we finally obtain xRy.

2.7 Conclusions

In this chapter we have applied a discrete duality framework to a class of knowl-
edge algebras and knowledge frames. This contributes to our project of developing
discrete dualities for algebras and frames relevant to the three major theories of
approximate reasoning, namely fuzzy logics, formal concept analysis, and rough-
set-style information logics. Discrete duality for fuzzy logics has been developed,
among others, for the logic MTL (see [24] and [20]) and for a monoidal fuzzy logic
presented in [10] and some of its axiomatic extensions ( [18], [19]). In the field
of the formal concept analysis discrete duality has been developed for the class of
context algebras ( [23]). Discrete duality for rough-set-style information logics is
discussed in [25] and [33].
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ality. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX.
LNCS, vol. 5390, pp. 212–229. Springer, Heidelberg (2008)

24. Orłowska, E., Rewitzky, I.: Algebras for Galois–style connections and their discrete
duality. Fuzzy Sets and Systems 161(9), 1325–1342 (2010)

25. Orłowska, E., Rewitzky, I., Düntsch, I.: Relational Semantics Through Duality. In: Mac-
Caull, W., Winter, M., Düntsch, I. (eds.) RelMiCS 2005. LNCS, vol. 3929, pp. 17–32.
Springer, Heidelberg (2006)

26. Pagliani, P.: Rough sets and Nelson algebras. Fundamenta Informaticae 27(2–3), 205–
219 (1996)

27. Pagliani, P., Chakraborty, M.: A Geometry of Approximation. Trends in Logic, vol. 27.
Springer (2008)

28. Parikh, R.: Knowledge and the problem of logical omniscience. In: Raś, W.Z., Ze-
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Chapter 3
Comparison of Greedy Algorithms for Decision
Tree Optimization

Abdulaziz Alkhalid, Igor Chikalov, and Mikhail Moshkov

Abstract. This chapter is devoted to the study of 16 types of greedy algorithms for
decision tree construction. The dynamic programming approach is used for con-
struction of optimal decision trees. Optimization is performed relative to minimal
values of average depth, depth, number of nodes, number of terminal nodes, and
number of nonterminal nodes of decision trees. We compare average depth, depth,
number of nodes, number of terminal nodes and number of nonterminal nodes of
constructed trees with minimum values of the considered parameters obtained based
on a dynamic programming approach. We report experiments performed on data sets
from UCI ML Repository and randomly generated binary decision tables. As a re-
sult, for depth, average depth, and number of nodes we propose a number of good
heuristics.

Keywords: Decision tree, greedy algorithms, dynamic programming

3.1 Introduction

Decision trees are widely used as a way for knowledge representation, as predictors
and as algorithms for problem solving in rough set theory [25,29], machine learning,
and data mining [9], test theory [12], etc. To have more understandable decision
trees we need to minimize the number of nodes in a tree. To have faster decision
trees we need to minimize the depth or average depth of a tree. Unfortunately, the
most problems of decision tree optimization are NP-hard [17, 23].

Several exact algorithms of decision tree optimization are known including brute
force algorithms [27], algorithms based on dynamic programming [15, 22, 28], and
algorithms using branch-and-bound technique [7].
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There are different approaches to create approximate algorithm for decision tree
optimization: genetic [10], simulated annealing [16], ant colony [8], and greedy.

The majority of approximate algorithms for decision tree optimization are based
on greedy approach. These algorithms build tree in a top-down fashion and at
each step, minimizing some impurity criteria designed using theoretical-information
[26], statistical [9], and combinatorial [21, 23] reasoning. There are papers devoted
to the comparison of different impurity criteria [3–5, 14, 18–20, 26].

In this chapter, we consider a comparative analysis of 16 greedy algorithms for
decision tree optimization. These algorithms can construct both exact and approx-
imate decision trees. We assume that the decision tables contain only categorical
attributes and are free of inconsistency. Several cost functions are studied that char-
acterize space and time complexity of decision trees: depth, average depth, number
of nodes, number of terminal nodes, and number of nonterminal nodes.

We make experiments with data sets from UCI Machine Learning Repository [6]
and randomly generated binary data sets. We compare the costs of trees constructed
by the greedy algorithms with the cost of optimal trees constructed by a dynamic pro-
gramming algorithm [1,13]. As a result, for the three cost functions (average depth,
depth and number of nodes) we found the 3-4 greedy heuristics that work efficiently.

We propose algorithms for decision tree optimization based on dynamic pro-
gramming. The idea is close to algorithms described in [15,22], but authors devised
it independently and made several extensions: the algorithms are capable of finding
a set of optimal trees, performing sequential optimization by different criteria, and
finding relationships between two criteria [1, 2, 11, 13, 24].

The chapter is organized as follows. Section 3.2 introduces basic notions.
Section 3.3 contains general schema of greedy algorithm. Section 3.4 describes an
algorithm based on dynamic programming. Sections 3.5-3.7 present results of ex-
periments. Section 3.8 is devoted to the analysis of these results. Section 3.9 contains
conclusions.

3.2 Basic Notions

In this section, we consider notions of decision table and α-decision tree for a table,
and describe some uncertainty measures, impurity functions, and cost functions.

3.2.1 Decision Tables and Trees

In this chapter, we consider only decision tables with categorical attributes.
These tables do not contain missing values and equal rows. Consider a decision

table T depicted in Figure 3.1.
Here f1, . . . , fm are names of columns (conditional attributes); c1, . . . ,cN are

nonnegative integers which can be interpreted as decisions (values of the decision
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f1 . . . fm d
δ11 . . . δ1m c1

. . . . . .
δN1 . . . δNm cN

Fig. 3.1 Decision table

attribute d); δi j are nonnegative integers which are interpreted as values of con-
ditional attributes (we assume that the rows (δ11, . . . ,δ1m), . . . ,(δN1, . . . ,δNm) are
pairwise different). We denote by N(T ) the number of rows in the decision table T .

Let fi1 , . . . , fit ∈ { f1, . . . , fm} and a1, . . . ,at be nonnegative integers. Denote
by T ( fi1 ,a1) . . . ( fit ,at) the subtable of the table T , which consists of such and
only such rows of T that at the intersection with columns fi1 , . . . , fit have num-
bers a1, . . . ,at , respectively. Such nonempty tables (including the table T ) will be
called as separable subtables of the table T . For a subtable Θ of the table T we
will denote by R(Θ) the number of unordered pairs of rows that are labeled with
different decisions. Later we will interpret the value R(Θ) as uncertainty of the
tableΘ .

Let Θ be a nonempty subtable of T . A minimal decision value which is attached
to the maximal number of rows in Θ will be called as the most common decision
forΘ .

A decision tree Γ over the table T is a finite directed tree with root in which each
terminal node is labeled with a decision. Each nonterminal node is labeled with a
conditional attribute and for each nonterminal node the outgoing edges are labeled
with pairwise different nonnegative integers.

Let v be an arbitrary node of the considered decision tree Γ . Let us define
a subtable T (v) of the table T . If v is the root, then T (v) = T . Let v be dif-
ferent from the root. In the path from the root to v, nodes be labeled with at-
tributes fi1 , . . . , fit , and edges be labeled with numbers a1, . . . ,at , respectively. Then
T (v) = T ( fi1 ,a1), . . . ,( fit ,at).

We denote by E(T ) the set of attributes (columns of the table T ), each contains
different numbers. For fi ∈ E(T ), let E(T, fi) be the set of numbers from the column
fi.

Let Γ be a decision tree over T and α be a real number such that 0 ≤ α < 1. We
will say that Γ is an α-decision tree for T if any node v of Γ satisfies the following
conditions:

• If R(T (v)) ≤ αR(T ) then v is a terminal node labeled with the most common
decision for T (v).

• Otherwise, v is labeled with an attribute fi ∈E(T (v)). If E(T (v), fi)= {a1, . . . ,at},
then t edges leave the node v, and these edges are labeled with a1, . . . ,at , respec-
tively.

If α = 0, then we have the notion of exact decision tree (0-decision tree) for T .
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3.2.2 Uncertainty Measures

Let rows of a decision table T be labeled with k different decisions d1, . . . ,dk. For
i = 1, . . . ,k, let Ni be the number of rows in T labeled with the decision di, and
pi = Ni/N.

We consider four uncertainty measures for decision tables: entropy ent(T ) =
−∑k

i=1 pi log2 pi (we assume 0log2 0 = 0), Gini index gini(T ) = 1−∑k
i=1 p2

i , mini-
mum misclassification error me(T ) =N−max1≤ j≤k Nj, and the number R(T ) of un-
ordered pairs of rows in T with different decisions (note that R(T ) =
N2gini(T )/2).

3.2.3 Impurity Functions

Let fi ∈ E(T ) and E(T, fi) = {a1, . . . ,at}. The attribute fi divides the table T into
subtables T1 = T ( fi,a1), . . . ,Tt = T ( fi,at). We now define an impurity function I
which gives us the impurity I(T, fi) of this partition. Let us fix an uncertainty mea-
sure U from the set {ent,gini,me,R} and type of impurity function: sum, max,
w_sum, or w_max. Then:

• for the type sum, I(T, fi) = ∑t
j=1 U(Tj);

• for the type max, I(T, fi) = max1≤ j≤t U(Tj);
• for the type w_sum, I(T, fi) = ∑t

j=1 U(Tj)N(Tj)/N(T );
• for the type w_max, I(T, fi) = max1≤ j≤t U(Tj)N(Tj)/N(T ).

As a result, we have 16 different impurity functions.

3.2.4 Cost Functions

We consider cost functions which are given in the following way: values of the
considered cost functionψ , which are nonnegative numbers are defined by induction
on pairs (T,Γ ), where T is a decision table, and Γ is an α-decision tree for T for
some α . Let Γ be an α-decision tree that contains only one node labeled with a
decision. Then ψ(T,Γ ) = ψ0 where ψ0 is a nonnegative number. Let Γ be an α-
decision tree in which the root is labeled with an attribute fi and t edges start in the
root. These edges are labeled with numbers a1, . . . ,at and enter roots of decision
trees Γ1, . . . ,Γt . Then

ψ(T,Γ ) = F(N(T ),ψ(T ( fi,a1),Γ1), . . . ,ψ(T ( fi,at),Γt)).

Here F(n,ψ1,ψ2, . . .) is an operator which transforms the considered tuple of non-
negative numbers into a nonnegative number. Note that the number of variables
ψ1,ψ2, . . . is not bounded from above. Also note that for j = 1, . . . , t, Γj is an
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α j- decision tree for T ( fi,a j) where α j = αR(T )/R(T ( fi,a j)) if R(F( fi,a j)) > 0
and α j = α otherwise.

The considered cost function will be called monotone if for any natural t, from
inequalities c1 ≤ d1, . . . ,ct ≤ dt the inequality F(a,c1, . . . ,ct)≤ F(a,d1, . . . ,dt) fol-
lows. Now we take a closer view of some monotone cost functions.

Number of nodes: ψ(T,Γ ) is the number of nodes in α-decision tree Γ . For this
cost function, ψ0 = 1 and F(n,ψ1,ψ2, . . . ,ψt) = 1+∑t

i=1ψi.
Depth: ψ(T,Γ ) is the maximum length of a path from the root to a terminal node

of Γ . For this cost function,ψ0 = 0 and F(n,ψ1,ψ2, . . . ,ψt) = 1+max{ψ1, . . . ,ψt}.
Total path length: for an arbitrary row δ̄ of the table T , we denote by l(δ̄ ) the

length of the path from the root to a terminal node v of Γ such that δ̄ belongs to
T (v). Then ψ(T,Γ ) = ∑δ̄ l(δ̄ ), where we take the sum over all rows δ̄ of the table
T . For this cost function, ψ0 = 0 and F(n,ψ1,ψ2, . . . ,ψt) = n+∑t

i=1ψi. Note that
the average depth of Γ is equal to the total path length divided by N(T ).

Number of nonterminal nodes: ψ(T,Γ ) is the number of nonterminal nodes in
α-decision tree Γ . For this cost function, ψ0 = 0 and F(n,ψ1,ψ2, . . . ,ψt) = 1+
∑t

i=1ψi.
Number of terminal nodes: ψ(T,Γ ) is the number of terminal nodes in α-

decision tree Γ . For this cost function, ψ0 = 1 and F(n,ψ1,ψ2, . . . ,ψt) = 1 +

∑t
i=1ψi.

3.3 Greedy Approach

Let I be an impurity function. We now describe a greedy algorithm VI which for a
given decision table T and real α , 0 ≤ α < 1, constructs an α-decision tree VI(T,α)
for the table T .

Step 1. Construct a tree consisting of a single node labeled with table T and
proceed to the second step.

Suppose t ≥ 1 steps have been made already. The tree obtained at the step t will
be denoted by G.

Step (t + 1). If no node of the tree G is labeled with a table then we denote
VI(T,α) by the tree G. The work of the algorithm VI is completed.

Otherwise, we choose a node v in the tree G which is labeled with a subtable Θ
of the table T . If R(Θ)≤ αR(T ), then instead ofΘ we mark the node v by the most
common decision for Θ and proceed to the step (t + 2). Let R(Θ) > αR(T ). Then
for each fi ∈ E(Θ), we compute the value I(T, fi). Instead ofΘ we mark the node v
with the attribute fi0 , where i0 is the minimum i ∈ {1, . . . ,m} for which I(T, fi) has
the minimum value. For each δ ∈ E(Θ , fi0), we add the tree G the node v(δ ) and
mark this node with the subtableΘ( fi0 ,δ ), draw the edge from v to v(δ ), and mark
this edge with δ . Proceed to step (t + 2).

Example 1. Let us consider a decision table T0 depicted on Figure 3.2 and the greedy
algorithm which uses the impurity function I with the type max and Gini index as
uncertainty measure.
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Fig. 3.2 Decision table T0

Fig. 3.3 The obtained tree after the second step of greedy algorithm

Fig. 3.4 1
2 -decision tree obtained by the greedy algorithm

We compute the values I(T0, f1) and I(T0, f2). We have two possible values for
f1, so we will have two subtables T1 = T0( f1,0) and T2 = T0( f1,1). We compute
Gini index for each of them: gini(T1) = 1 −∑2

i=1 p2
i = 1 − ((2/3)2 + (1/3)2) =

4/9, gini(T2) = 1 −∑1
i=1 p2

i = 1 − (1/1)2 = 0, and I(T0, f1) = 4/9. For f2, we
have three possible values and hence we have three subtables T ′

1 = T0( f2,0),
T ′

2 = T0( f2,1), and T ′
3 = T0( f2,2). We compute Gini index for each of them:

gini(T ′
1) = 1− (1/1)2 = 0, gini(T ′

2) = 1− (1/1)2 = 0, and gini(T ′
3) = 1− ((1/2)2+

(1/2)2) = 1/2, and I(T0, f2) = 1/2. We select f1 since I(T0, f1) < I(T0, f2). Fig-
ure 3.3 shows the tree obtained after the second step of greedy algorithm.

If we use the algorithm with α = 1/2 then the partitioning stops at this level.
Figure 3.4 shows the 1

2 -decision tree obtained by the greedy algorithm.
If we use the algorithm with α = 0 then the algorithm divides subtable T1 into

subtables. Figure 3.5 shows the obtained tree after the third step of the algorithm
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Fig. 3.5 The obtained tree after the third step of greedy algorithm

Fig. 3.6 0-decision tree obtained by the greedy algorithm

work. Figure 3.6 shows the 0-decision tree obtained by greedy algorithm. Note that
the result of algorithm work for α = 1/4 is the same.

3.4 Dynamic Programming Approach

In this section, we describe a dynamic programming algorithm for a monotone cost
function ψ , a decision table T , and a real α , 0 ≤ α < 1 which finds the minimum
cost (relative to the cost function ψ) of an α-decision tree for T .

Consider an algorithm to construction of a graph Δα(T ). Nodes of this graph are
some separable subtables of these table T . During each step we process one node
and mark it with the symbol *. We start with the graph which consists of one node
T and finish when all nodes of the graph are processed.

Let the algorithm have already performed p steps. Let us describe the step (p+1).
If all nodes are processed then the work of the algorithm is finished, and the resulted
graph is Δα(T ). Otherwise, choose a node (table) Θ that has not been processed
yet. If R(Θ)≤ αR(T ), mark the considered node with the symbol * and proceed to
the step (p+ 2). Let R(Θ) > αR(T ). For each fi ∈ E(Θ), draw a bundle of edges
from the node Θ . Let E(Θ , fi) = {a1, . . . ,at}. Then draw t edges from Θ and label
these edges with pairs ( fi,a1), . . . ,( fi,at) respectively. These edges enter into nodes
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Θ( fi,a1), . . . ,Θ( fi,at). If some nodes of Θ( fi,a1), . . . ,Θ( fi,at) are not present in
the graph then add these nodes to the graph. Mark the node Θ with the symbol *
and proceed to the step (p+ 2).

Let ψ be a monotone cost function given by the pair ψ0, F . Now we describe a
procedure which attaches a number to each node of Δα(T ). We attach the number
ψ0 to each terminal node (node without outgoing edges) of Δα(T ).

Fig. 3.7 The graph Δ 1
2
(T0) and optimal 1

2 -decision tree for T0

Fig. 3.8 The graph Δ 1
4
(T0) and optimal 1

4 -decision tree for T0



3 Comparison of Greedy Algorithms for Decision Tree Optimization 29

Consider a node Θ which is not terminal, and a bundle of edges which starts in
this node. Let edges be labeled with pairs ( fi,a1), . . . ,( fi,at), and edges enter into
nodesΘ( fi,a1), . . . ,Θ( fi,at), to which numbers ψ1, . . . ,ψt are attached already.

Then we attach to the considered bundle the number F(N(Θ),ψ1, . . . ,ψt). Among
numbers attached to bundles starting in Θ we choose the minimum number and at-
tach it to the nodeΘ . We stop when a number will be attached to the node T0 in the
graph Δα(T0). One can show (see [1]) that this number is the minimum cost (relative
to the cost function ψ) of an α-decision tree for T .

Example 2. Let T0 be the decision table depicted in Figure 3.2. We apply to the table
the dynamic programming algorithm along with parameters α = 1/2, α = 1/4, and
α = 0. As cost function we will consider the number of nodes. Results are depicted
on Figures 3.7-3.9.

Fig. 3.9 The graph Δ0(T0) and optimal 0-decision trees for T0

3.5 Experiments with Exact Decision Trees and Decision Tables
from UCI ML Repository

We compare average depth, number of nodes, and depth of exact decision trees built
by greedy algorithms with the minimum average depth, minimum number of nodes
and minimum depth calculated by the dynamic programming algorithm. Tables 3.1-
3.3 show results of experiments with 24 data sets and three cost functions: average
depth, number of nodes, and depth respectively.
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Table 3.1 Results of experiments with average depth

Name Opt
sum w_sum

ent gini me R ent gini me R
adult-stretch 1.50 0.00 0.00 1.33 0.00 0.00 0.00 1.33 0.00
agaricus-lepiota 1.52 0.54 0.54 0.01 0.00 0.00 0.00 0.00 0.30
balance-scale 3.55 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.00
breast-cancer 3.24 0.96 0.96 0.25 0.02 0.08 0.14 0.02 0.03
cars 2.95 0.04 0.04 0.26 0.28 0.00 0.00 0.36 0.49
flags 2.72 2.43 2.58 0.18 0.04 0.16 0.16 0.04 0.03
hayes-roth-data 2.62 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00
house-votes-84 3.54 0.66 0.97 0.49 0.06 0.04 0.07 0.06 0.02
lenses 1.80 0.00 0.00 0.67 0.67 0.67 0.00 0.67 0.67
lymphography 2.67 1.66 1.66 0.26 0.06 0.17 0.17 0.05 0.04
monks-1-test 2.50 0.80 0.80 0.00 0.00 0.00 0.00 0.00 0.00
monks-1-train 2.53 0.71 0.71 0.00 0.09 0.26 0.27 0.00 0.00
monks-2-test 5.30 0.01 0.01 0.01 0.05 0.02 0.02 0.05 0.05
monks-2-train 4.11 0.14 0.14 0.10 0.02 0.06 0.06 0.04 0.04
monks-3-test 1.83 1.24 0.52 0.52 0.00 0.00 0.14 0.00 0.00
monks-3-train 2.51 0.50 0.21 0.08 0.01 0.01 0.01 0.01 0.01
nursery 3.45 0.17 0.22 0.09 0.09 0.01 0.00 0.12 0.21
poker-hand-training-true 4.09 0.60 0.60 0.14 0.01 0.01 0.01 0.01 0.01
shuttle-landing-control 2.33 0.69 0.69 0.26 0.00 0.03 0.03 0.00 0.00
soybean-small 1.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.41
spect-test 2.95 1.01 0.88 0.67 0.18 0.03 0.13 0.17 0.16
teeth 2.78 0.58 0.62 0.00 0.02 0.02 0.00 0.02 0.02
tic-tac-toe 4.35 0.12 0.07 0.11 0.13 0.06 0.05 0.16 0.17
zoo-data 2.29 0.69 0.69 0.07 0.04 0.04 0.04 0.04 0.05
Average 0.565 0.539 0.230 0.073 0.069 0.055 0.131 0.113

The data sets were taken from UCI Machine Learning Repository [6]. Each data
set is represented as a table contains several input columns and an output (decision)
column. Some data sets contain index columns that take unique value for each row.
Such columns were removed. In some tables there were rows that contain identical
values in all columns, possibly, except the decision column. In this case, each group
of identical rows was replaced with a single row with common values in all input
columns and the most common value in the decision column. In some tables there
were missed values. Each such value was replaced with the most common value in
the corresponding column.

Each row in Tables 3.1-3.3 contains data set name, minimum cost of decision tree
(min_cost), calculated with the dynamic programming algorithm (see column Opt),
and information about cost of decision trees built by each of the considered greedy
algorithms. Instead of the cost of decision tree constructed by greedy algorithm
(greedy_cost), we consider relative difference of greedy_cost and min_cost:

greedy_cost−min_cost
min_cost

(3.1)
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Table 3.2 Results of experiments with number of nodes

Name Opt
sum w_sum

ent gini me R ent gini me rt
adult-stretch 5 0.00 0.00 3.60 0.00 0.00 0.00 3.60 0.00
agaricus-lepiota 21 0.57 0.57 0.62 0.38 0.38 0.38 0.38 3.00
balance-scale 501 0.00 0.00 0.07 0.00 0.00 0.00 0.07 0.00
breast-cancer 161 0.45 0.45 0.37 0.32 0.25 0.25 0.29 0.41
cars 396 0.10 0.10 0.38 0.21 0.03 0.03 0.70 1.35
flags 97 0.80 1.01 0.34 0.62 0.25 0.25 0.59 0.61
hayes-roth-data 52 0.06 0.06 0.06 0.02 0.06 0.06 0.02 0.02
house-votes-84 45 1.02 1.38 1.02 0.36 0.18 0.27 0.31 0.27
lenses 8 0.00 0.00 0.88 0.88 0.88 0.00 0.88 0.88
lymphography 53 0.89 0.89 0.53 0.66 0.43 0.43 0.55 0.77
monks-1-test 37 3.51 3.51 0.11 0.11 0.11 0.11 0.11 0.11
monks-1-train 36 1.86 1.86 0.11 0.67 1.28 1.39 0.11 0.11
monks-2-test 403 0.00 0.00 0.09 0.58 0.19 0.19 0.58 0.58
monks-2-train 129 0.16 0.16 0.43 0.35 0.23 0.23 0.34 0.44
monks-3-test 17 3.65 1.71 2.71 0.00 0.00 0.12 0.00 0.00
monks-3-train 38 0.82 0.37 0.18 0.18 0.11 0.11 0.18 0.18
nursery 1066 0.58 1.11 0.96 0.95 0.09 0.02 1.35 1.37
poker-hand-training-true 18832 0.36 0.36 0.23 0.19 0.18 0.17 0.18 0.20
shuttle-landing-control 15 0.13 0.13 0.00 0.00 0.00 0.00 0.00 0.00
soybean-small 6 0.17 0.17 0.17 0.17 0.17 0.17 0.17 2.83
spect-test 29 1.72 1.45 1.66 0.83 0.14 0.34 0.69 0.76
teeth 35 0.09 0.09 0.00 0.03 0.03 0.00 0.03 0.03
tic-tac-toe 244 0.68 0.41 0.48 1.00 0.41 0.32 1.05 1.09
zoo-data 17 0.59 0.59 0.35 0.35 0.35 0.35 0.35 0.47
Average 0.758 0.682 0.639 0.368 0.239 0.216 0.522 0.645

The last line shows average relative difference of greedy_cost and min_cost. We
evaluate greedy algorithms based on this parameter.

Let us remind that each impurity function is defined by its type (sum, max, w_sum
or w_max) and uncertainty measure (ent, gini, me, or R).

Considering the average depth, we noticed that the type sum dominates max, i.e.
it has less value of average relative difference between greedy_cost and min_cost for
each uncertainty measure. Similarly, the type w_sum dominates w_max. Table 3.1
presents results for two best types: sum and w_sum. One can see that the three best
impurity functions are given by combinations of w_sum with Gini index (the crite-
rion used by CART [9]) and entropy (the criterion used by ID3 [26]), and by the
combination of sum with R.

Analysis of experiments for the number of nodes lead us to the same results. The
type sum dominates max and w_sum dominates w_max. Table 3.2 presents results
for two best types: sum and w_sum. One can see that along with the average depth,
the three best impurity functions for the number of nodes are given by combinations
of w_sum with Gini index, entropy, and by the combination of sum with R.
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Table 3.3 Results of experiments with depth

Name Opt
max w_max w_sum

R ent gini me R ent gini me R
adult-stretch 2 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 0.00
agaricus-lepiota 3 0.00 0.00 0.00 0.00 0.33 0.33 0.33 0.33 0.33
balance-scale 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
breast-cancer 6 0.00 0.00 0.00 0.00 0.00 0.17 0.33 0.00 0.00
cars 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
flags 4 0.25 0.25 0.25 0.25 0.25 0.75 0.75 0.25 0.25
hayes-roth-data 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
house-votes-84 6 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
lenses 3 0.33 0.33 0.33 0.33 0.33 0.33 0.00 0.33 0.33
lymphography 4 0.25 0.25 0.25 0.25 0.25 0.50 0.50 0.25 0.25
monks-1-test 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
monks-1-train 3 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00
monks-2-test 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
monks-2-train 5 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
monks-3-test 3 0.33 0.33 0.33 0.33 0.33 0.00 0.00 0.00 0.00
monks-3-train 4 0.00 0.00 0.00 0.00 0.00 0.25 0.25 0.00 0.00
nursery 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
poker-hand-training-true 5 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00
shuttle-landing-control 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
soybean-small 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
spect-test 8 0.13 0.13 0.13 0.13 0.13 0.13 0.50 0.25 0.13
teeth 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
tic-tac-toe 6 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
zoo-data 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average 0.125 0.125 0.125 0.125 0.139 0.173 0.190 0.130 0.083

Experiments with depth lead to different ranking of impurity functions. The type
w_sum dominates sum, and the w_max dominates max for each uncertainty measure
with the exception of R. Table 3.4 shows results for the best functions: combinations
of w_max and w_sum with all four uncertainty measures, and the combination of
max and R.

One can see that the best impurity function is given by the combination of w_sum
with R. The following combinations give us similar results: w_max and ent, w_max
and gini, w_max and me, and max and R. The greedy algorithm based on the last
combination is known to be close (from the point of view of accuracy) to the best
approximate polynomial algorithms for minimization of decision tree depth under
some assumptions about the class NP [23].

The considered results are represented in Table 3.4. Note that for h the combi-
nation (w_sum,R) is on the first place and the other four combinations are on the
second place (not any one on the third position).
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Table 3.4 The best thee greedy algorithms for three cost functions (for h we have four heuris-
tics on the second place)

Cost function The best three greedy algorithms
hav (w_sum, gini), (w_sum, ent), (sum, R)
h (w_sum, R), (w_max, ent), (w_max, gini), (w_max, me), (max, R)
L (w_sum, gini), (w_sum, ent), (sum, R)

3.6 Experiments with Approximate Decision Trees and Decision
Tables from UCI ML Repository

We make experiments with 24 data sets from UCI Machine Learning
Repository [6]: adult-stretch, agaricus-lepiota, balance-scale, breast-cancer, cars,
flags, hayes-roth-data, house-votes-84, lenses, lymphography,monks-1-test, monks-
1-train, monks-2-test, monks-2-train, monks-3-test, monks-3-train, nursery,
poker-hand-training-true, shuttle-landing-control, soybean-small, spect-test, teeth,
tic-tac-toe, zoo-data.We make the same preprocessing of the data sets as described
in Section 3.5.

Table 3.5 Average value of a given cost function in 12024 experiments with a given greedy
algorithm

hav h L Ln Lt

max
ent 1.442 1.652 10.280 2.808 7.472
gini 1.442 1.651 10.374 2.847 7.527
me 1.206 1.294 10.820 2.317 8.503
R 1.183 1.263 10.695 2.202 8.493

sum
ent 1.818 2.222 10.433 3.204 7.229
gini 1.777 2.185 10.345 3.129 7.217
me 1.280 1.420 10.034 2.322 7.712
R 1.170 1.273 10.049 2.019 8.030

w_max
ent 1.190 1.270 10.575 2.218 8.357
gini 1.190 1.266 10.731 2.224 8.507
me 1.186 1.264 10.709 2.213 8.496
R 1.180 1.264 10.866 2.205 8.660

w_sum
ent 1.227 1.392 9.634 2.062 7.572
gini 1.221 1.393 9.558 2.036 7.521
me 1.184 1.273 10.162 2.074 8.089
R 1.167 1.266 10.524 2.066 8.458

Average optimal values
1.137 1.244 6.931 1.750 4.888
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Table 3.6 Number of experiments among 12024 ones in which a given greedy algorithm
constructs an optimal decision tree relative to a given cost function

hav h L Ln Lt

max
ent 8373 9126 4784 8434 4633
gini 8629 9383 4964 8690 4797
me 10188 11516 3114 10464 2963
R 10865 11819 3218 10739 3067

sum
ent 6288 6487 4743 6424 5080
gini 6659 6925 4602 6824 4919
me 9389 10317 3926 9549 3729
R 10996 11671 3584 10874 3373

w_max
ent 10688 11733 3237 10658 3013
gini 10701 11773 3147 10666 2996
me 10718 11802 3160 10679 3009
R 10968 11803 3197 10689 3046

w_sum
ent 9784 10599 3794 10033 3491
gini 9684 10503 3899 10094 3592
me 10826 11691 3415 10701 3204
R 11133 11753 3339 10859 3201

Table 3.7 The best greedy algorithms: three with the minimum average cost of constructed
trees and three with the maximum number of optimal trees among constructed

Cost function
The best three greedy algorithms

Average cost Number of optimal solutions
hav (w_sum, R), (sum, R), (w_max, R) (w_sum, R), (sum, R), (w_max, R)
h (max, R), (w_max, me), (w_max, R) (max, R), (w_max, R), (w_max, me)
L (w_sum, gini), (w_sum, ent), (sum, me) (max, gini), (max, ent), (sum, ent)
Ln (sum, R), (w_sum, gini), (w_sum, ent) (sum, R), (w_sum, R), (max, R)
Lt (sum, gini), (sum, ent), (max, ent) (sum, ent), (sum, gini), (max, gini)

We consider 501 values of α between 0 and 0.5 with step size equal to 0.001. We
study 16 greedy algorithms corresponding to 16 impurity functions. Each impurity
function is defined by a pair (type, uncertainty measure) where uncertainty measure
belongs to the set {ent, gini, me, R} and type belongs to the set {sum, max, w_sum,
w_max}.

We use five cost functions: average depth hav, depth h, number of nodes L, num-
ber of nonterminal nodes Ln, and number of terminal nodes Lt .

For each of 16 greedy algorithms, we make 12024 = 24 × 501 experiments: for
each of the 24 decision tables T considered and for each of the considered 501 values
of α we construct an α-decision tree for T using given greedy algorithm. We find
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values of the cost functions hav, h, L, Ln, and Lt for this decision tree. Also, using
the dynamic programming algorithm we find minimum values of the cost functions
hav, h, L, Ln, and Lt among all α-decision trees for T .

For each 16 greedy algorithms and five cost functions, we find the average value
of the considered cost function for trees constructed by the considered greedy algo-
rithm in 12024 experiments (see Table 3.5), and the number of experiments among
12024 ones in which the considered greedy algorithm constructs an optimal decision
tree relative to the considered cost function (see Table 3.6).

Also, for each five cost functions, we find the average of minimum values of this
function obtained by dynamic programming algorithm in 12024 experiments (see
row “Average optimal values" in Table 3.5).

Table 3.7 shows the best three greedy algorithms for each of the cost functions h,
hav, L, Ln, Lt .

3.7 Experiments with Exact Decision Trees and Randomly
Generated Decision Tables

In this section, we consider results of 40,000 experiments with randomly generated
decision tables. Each table contains 50 rows and 10 conditional attributes. The val-
ues of conditional and decision attributes are from the set {0,1}. We choose values
0 and 1 with the same probability.

In some tables, there were rows that contains identical values in all columns,
possibly, except the decision column. In this case, each group of identical rows was
replaced with a single row with common values in all conditional columns and the
most common value on the decision column.

We divide 40000 experiments into four groups with 10000 experiments in each.
We study only exact decision trees, 16 greedy algorithms and five cost functions: h,
hav, L, Lt , and Ln.

Tables 3.8-3.11 show the values of average relative difference (see (3.1)) for
the definition of relative difference) for each cost function, each heuristic and each
group of experiments.

Table 3.12 shows the best three greedy algorithms for each cost function, (we
have the same best three functions in each group of experiments).

3.8 Analysis of Experimental Results

In this section, we consider only three cost functions: depth h, average depth hav,
and number of nodes L. For these cost functions and 16 greedy heuristics we had
four “competitions". In each “competitions" (see Tables 3.4, 3.7 and 3.12) we have
the first, second and third place winner (with the exception of Table 3.4 when for h
we have the first and the number of second place winners).
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Table 3.8 Average value of relative difference for given cost function for the first 10000
experiments with a given greedy algorithm using randomly generated tables (10 attributes,
50 rows)

hav h L Ln Lt

max
ent 0.304782 0.529542 0.853598 0.881208 0.827686
gini 0.304865 0.529457 0.853706 0.881318 0.827791
me 0.244603 0.377128 0.788759 0.814279 0.764809
R 0.167678 0.206453 0.639100 0.659751 0.619718

sum
ent 0.270057 0.614633 0.662513 0.683836 0.642494
gini 0.269812 0.614177 0.661733 0.683030 0.641739
me 0.203394 0.434292 0.602357 0.621768 0.584135
R 0.114111 0.272645 0.460296 0.475098 0.446399

w_max
ent 0.169921 0.210177 0.639265 0.659926 0.619873
gini 0.173310 0.216563 0.643132 0.663912 0.623629
me 0.175426 0.219522 0.649515 0.670506 0.629814
R 0.165935 0.204393 0.639306 0.659946 0.619933

w_sum
ent 0.128242 0.440730 0.417583 0.431018 0.404970
gini 0.125142 0.427735 0.416971 0.430390 0.404373
me 0.140525 0.269668 0.512560 0.529063 0.497067
R 0.121462 0.221365 0.506136 0.522423 0.490844

Table 3.9 Average value of relative difference for given cost function for the second 10000
experiments with a given greedy algorithm using randomly generated tables (10 attributes,
50 rows)

hav h L Ln Lt

max
ent 0.305162 0.531963 0.853261 0.880867 0.827353
gini 0.305048 0.531873 0.852970 0.880568 0.827069
me 0.245566 0.376347 0.792148 0.817765 0.768106
rt 0.167695 0.206953 0.638269 0.658882 0.618921

sum
ent 0.271280 0.618595 0.664276 0.685647 0.644211
gini 0.271144 0.618103 0.664264 0.685638 0.644197
me 0.203429 0.435148 0.601539 0.620941 0.583326
rt 0.114165 0.272575 0.459519 0.474296 0.445645

w_max
ent 0.170312 0.210923 0.639822 0.660496 0.620417
gini 0.174373 0.215938 0.646212 0.667095 0.626612
me 0.176658 0.219213 0.652403 0.673477 0.632623
rt 0.166464 0.205520 0.640040 0.660695 0.620651

w_sum
ent 0.128920 0.442818 0.419319 0.432807 0.406657
gini 0.125799 0.430868 0.418550 0.432016 0.405907
me 0.140787 0.270515 0.513427 0.529965 0.497901
rt 0.121369 0.222027 0.505065 0.521319 0.489805
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Table 3.10 Average value of relative difference for given cost function for the third 10000
experiments with a given greedy algorithm using randomly generated tables (10 attributes,
50 rows)

hav h L Ln Lt

max
ent 0.305115 0.532015 0.853592 0.881213 0.827670
gini 0.305057 0.531647 0.853340 0.880953 0.827427
me 0.244307 0.375772 0.788406 0.813905 0.764475
rt 0.167766 0.207182 0.639119 0.659763 0.619742

sum
ent 0.271189 0.617525 0.664806 0.686199 0.644722
gini 0.270936 0.616903 0.664500 0.685884 0.644424
me 0.202868 0.436132 0.600668 0.620046 0.582479
rt 0.113847 0.272843 0.458596 0.473350 0.444744

w_max
ent 0.170172 0.210522 0.640091 0.660778 0.620675
gini 0.173779 0.215793 0.644979 0.665826 0.625412
me 0.176172 0.219157 0.651384 0.672429 0.631633
rt 0.166324 0.205603 0.640585 0.661266 0.621173

w_sum
ent 0.129026 0.443065 0.419490 0.432990 0.406816
gini 0.125948 0.430685 0.418858 0.432341 0.406200
me 0.141226 0.269815 0.515113 0.531712 0.499531
rt 0.121313 0.222042 0.504982 0.521238 0.489720

Table 3.11 Average value of relative difference for given cost function for the fourth 10000
experiments with a given greedy algorithm using randomly generated tables (10 attributes,
50 rows)

hav h L Ln Lt

max
ent 0.304364 0.530182 0.850598 0.878099 0.824786
gini 0.304260 0.529727 0.850383 0.877879 0.824577
me 0.245225 0.378018 0.789103 0.814610 0.765163
rt 0.167005 0.207123 0.635668 0.656183 0.616413

sum
ent 0.270566 0.616868 0.661972 0.683266 0.641980
gini 0.270394 0.617112 0.661650 0.682936 0.641665
me 0.203550 0.434280 0.601649 0.621043 0.583443
rt 0.114046 0.271858 0.459410 0.474185 0.445539

w_max
ent 0.169538 0.210553 0.637208 0.657776 0.617903
gini 0.173338 0.216723 0.642447 0.663194 0.622973
me 0.175919 0.218963 0.649086 0.670042 0.629417
rt 0.165750 0.205487 0.638142 0.658726 0.618819

w_sum
ent 0.128567 0.442015 0.417987 0.431433 0.405363
gini 0.125746 0.429720 0.417998 0.431445 0.405374
me 0.140318 0.269610 0.511820 0.528300 0.496349
rt 0.121553 0.221110 0.505367 0.521624 0.490104
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Table 3.12 The best thee greedy algorithms for each cost function

Cost function The best three greedy algorithms
hav (sum, R), (w_sum, R), (w_sum, gini)
h (w_max, R), (max, R), (w_max, ent)
L (w_sum, ent), (w_sum, gini), (sum, R)
Ln (w_sum, ent), (w_sum, gini), (sum, R)
Lt (w_sum, ent), (w_sum, gini), (sum, R)

We choose for each cost function all heuristics which were the first place winners
in at least one “competition”, or were winners in at least three “competitions”. The
results can be found in Table 3.13. The tuple (2, 1, -) means that the considered
heuristic was the first place winner in two “competitions” and the second place win-
ner in one “competition” (and was not the third place winner in any “competition”).

Table 3.13 Good heuristics for optimization of depth h, average depth hav, and number of
nodes L

hav h L
(w_sum, R) (2, 1, -) (max, R) (2, 2, -) (w_sum, gini) (2, 1, -)
(sum, R)(1, 2, 1) (w_max, R) (1, 1, 1) (w_sum, ent) (1, 2, -)
(w_sum, gini)(1, -, 1) (w_sum, R) (1, -, -) (max, gini) (1, -, -)

(w_max, me) (-, 2, 1)

3.9 Conclusions

We compared 16 greedy algorithms for approximate optimization of decision trees
with dynamic programming approach for decision tree optimization. For depth, av-
erage depth, and number of nodes, we chose 3–4 heuristics which looks better than
the other one. The future study will be connected with performing of large number
of experiments with randomly generated data sets from different classes.
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comments and suggestions.
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Chapter 4
A Review of the Knowledge Granulation
Methods: Discrete vs. Continuous Algorithms

Piotr Artiemjew

Abstract. The paradigm of granular rough computing has risen quite recently —
was initiated by Professor Lotfi Zadeh in 1979. This paradigm is strictly connected
with the Rough Set Theory, which was proposed by Professor Zdzisław Pawlak
in 1982. Granular rough computing is a paradigm in which one deals with gran-
ules that are aggregates of objects connected together by some form of similar-
ity. In the rough set theory granules are traditionally defined as indiscernibility
classes, where as similarity relations we use rough inclusions. Granules have a
really wide spectrum of application, starting from an approximation of decision
systems and ending with an application to the classification process. In this arti-
cle, approximation methods are shown in the framework of Rough Set Theory. In
this chapter we introduce both discrete and continuous granular methods known
in the literatureas well as our own modifications along with a practical description
of the application of these methods. For described here granulation methods, we
have chosen suitable methods of classification which can work properly with shown
algorithms.

Keywords: Rough sets, granular computing, granulation of knowledge, decision
systems.

4.1 Introduction

Granular computing is the paradigm in the field of approximative reasoning useful
in research of data structures by introducing into data sets the similarity relation of
objects.
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In the rough set theory, similar objects are collected together and form similarity
classes, which leads to new structures — granular structures.

In this chapter we describe chosen similarity relations — rough inclusions and
some of their weaker variants — with applications to classification problems. These
applications consist of methods for granulation of knowledge in data sets.

Granular structures are useful in two ways,

• as preprocessing of data set,
• as heuristics helpful in the process of classifier design.

This chapter therefore is devoted to the granulation of knowledge theory and some
of its applications. That theory was initiated by L.A. Zadeh [39] in the framework
of fuzzy set theory (1965). We can make an assumption that the uncertainty of the
description of a concept X is expressed by the function of fuzzy inclusion μx : X �→
[0,1], the objects with the same value of function μx are treated as indiscernible and
form the granules - see [31], [38].

4.1.1 Basic on Rough Sets

There is an analogous situation in the rough set theory initiated by Professor
Zdzisław Pawlak [14] (1982), in which objects and concepts are described based
on indiscernibility relations. Classes of indiscernibility relations form the basic set
of objects, which is useful to computations in this theory - those classes are known
as elementary granules of knowledge.

The formalization of knowledge used in this work, was proposed by Professor
Zdzisław Pawlak as information systems i.e. pairs (U,A) where U is the universe of
objects, A is the set of conditional attributes. By ’knowledge’ we understand here
indiscernibility relations, which classify objects by

INDB = {(u,v) ∈U ×U : a(u) = a(v),a ∈ B}, (4.1)

where B ⊆ A, it is some form of logic in the sense of J.M. Bocheński [7].
Classification can be made by means of granules of knowledge in the sense of

rough set theory based on transformation from objects to their granules — indis-
cernibility relations INDB, for the attribute set B.

In the development of rough set theory, it turns out that it is worth trying to con-
sider more general indiscernibility relations - that is similarity relations. Tolerance
relations, which are reflexive and symmetric, were brought into rough set theory
by J.Nieminen [13], L. Polkowski, A. Skowron, J. Żytkow [19], S. Marcus [12]
and A. Skowron, J. Stepaniuk [36, 37], generalization to reflexive not necessarily
symmetric ones comes from L. Polkowski, A. Skowron [20,21] as well as R. Słow-
iński and D. Vanderpooten [32]. Introducing similarity relations by L.Polkowski
and A.Skowron [20, 21] named rough inclusions was significant moment for this
paradigm. In the framework of rough mereology it was developed by L. Polkowski.
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For more information — see an interesting theoretical review of rough set
methods in [17].

4.1.2 From Rough Inclusions to Granular Structures

A rough inclusion on the universe U of an information system (U,A) is defined as a
three-argument relation

μ(u,v,rgran),

where
u,v ∈U,rgran ∈ [0,1],

“ob ject u is a part o f ob ject v in degree ≥ rgran.”

The term “part", leads us to theory of mereology by S.Leśniewski [10]. Mereology
in the sense of S.Leśniewski describes individual objects in terms of part relations,
with assumption, that it is anti-reflexive and transitive.

A relation of an ingredient ing is defined as ‘to be a part’, or ‘identical to’.
Formal definition of μ refers to mereology in the sense that ‘to be part in degree

1’ is identical with ‘to be ingredient’ relation ing:

μ(u,v,1)⇔ u ing v ⇔ (u part v)∨ (u = v). (4.2)

In this article we will apply the formal mechanism of knowledge granulation pro-
posed by L.Polkowski [24, 30]. This mechanism will also be modified. This mech-
anism as the elementary notion assumes a rough inclusion μ(u,v,rgran) and defines
granules of knowledge as mereological classes of μ . In more details, for fixed gran-
ulation radius rgran ∈ [0,1], we consider the property of objects μrgran(v) which
is fulfilled for objects v, when μrgran(v,u,rgran). The granule of knowledge with
a central object u and radius rgran is defined as the class with property μrgran(v):
gμ =Cls μrgran(v), cf. e.g., Polkowski [31], where Cls is the mereological class op-
erator in S.Leśniewski’s sense [10].

The problem of determining specific rough inclusions in the system (U,A) was
considered in L.Polkowski’s works [22–24], see also [30,31], in which the following
methods of μ introducing were described:
1. Inclusions induced from metrics on the universe U .
2. Inclusions induced from Archimedean t-norm.
3. Inclusions induced from continuous t-norms.
4. Some variants of inclusions, which are not rough inclusions, but are considered
as having a measure of similarity between objects, take into consideration the range
of attributes values in the space of attributes.

We present these inclusions with their variants in the short form below.
Ad1. Inclusions induced from metrics on the universe U , are inspired by Henri
Poincaré idea [18], who gave the example of tolerance relation: for metric ρ on
U with δ > 0, we consider relation
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u τρ (δ ) v ⇔ ρ(u,v)< δ . (4.3)

Simply, τρ is reflexive and symmetrical — the tolerance relation is not generally
transitive, if ρ is not a non-Archimedean metric, we cannot fulfil the condition,

ρ(u,v)≤ max{ρ(u,w),ρ(w,v)}. (4.4)

For the metric ρ limited by 1 on U , we let:

μρ(u,v,rgran)⇔ ρ(u,v)≤ 1− rgran. (4.5)

Hence μ is rough inclusion.
The particular and significant example of μρ is obtained for ρ which is equal to

the Hamming distance h modulo attributes set A on U , i.e.,

h(u,v) =
|{a ∈ A : a(u) �= a(v)}|

|A| . (4.6)

Inclusion μh is the basic tool of our work.
Ad2. A t-norm t : [0,1]× [0,1] �→ [0,1] is the increasing in each coordinate,

associative, symmetric and normalized by conditions t(x,0) = 0, t(x,1) = x.
The continuous Archimedean t-norm t fulfils condition t(x,x)< x for x �= 0,1.
The theorem of representation (Ling [11]): was obtained for the following

t-norms

t(x,y) = g( f (x)+ f (y)), (4.7)

a particular case of Kołmogorow–Arnold theorem occurs [1], [9].
The rough inclusion μt is defined as,

μt(u,v,rgran)⇔ g(
|{a ∈ A : a(u) �= a(v)}|

|A| )≥ rgran. (4.8)

In particular for the Łukasiewicz t-norm

L(x,y) = max{0, x+ y− 1}, (4.9)

one obtains μL equal to μh.
Ad3. For continuous t-norm t, there does not generally exist such a simple rep-

resentation (see V.Arnold’s example [1] for minimum t-norm). In L.Polkowski’s
works [24, 30] were proposed other methods, like usage of residual implications,
x ⇒t y. The implication x ⇒t y is defined by duality

x ⇒t y ≥ rgran ⇔ t(x,rgran)≤ y. (4.10)

Thus,

x ⇒t y = max{rgran : t(x,rgran)≤ y}. (4.11)
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For continuous t-norms max{rgran : t(x,y)≤ y} is achieved.
If we assume

μ⇒t (x,y,rgran)⇔ x ⇒t y ≥ rgran, (4.12)

for x,y ∈ [0,1] we define rough inclusion on the interval [0,1], cf. [31].
It is worth saying, that the inclusions mentioned in points 1–3 operate

with the Hamming relation on attribute values and does not take into account
the metrical relations in the attribute value space and between values of various
attributes.

Ad4. We can take into account some basic variants of rough inclusions from [31],
a. we fix value of parameter ε ∈ [0,1] and we let

με
ρ(u,v,rgran)⇔

|{a ∈ A : ρ(a(u),a(v))< ε}|
|A| ≥ rgran, (4.13)

for established metric ρ on attributes’ values (we let, that ρ is common for all at-
tributes).

με
ρ generally is not the rough inclusion, but maintains a basic metrical relation of

similarity between objects, and is measured as a fraction of the attributes number,
whose values on pair u,v are ε close.

In the particular case

με
ρ(u,v,1)⇔ ρ(a(u),a(v))< ε, (4.14)

for all a ∈ A,
b. A more subtle metric relationship between objects — described before in [31] —
is as follows,

indε(u,v) =
INDε (u,v)

|A| and disε(u,v) =
DISε(u,v)

|A| , (4.15)

where

INDε(u,v) = |{a ∈ A : ρ(a(u),a(v))< ε}|, (4.16)

DISε(u,v) = |{a ∈ A : ρ(a(u),a(v))≥ ε}|. (4.17)

The similarity relation με
⇒t

(u,v,rgran) is defined as follows,

με
⇒t

(u,v,rgran)⇔ disε (u,v)⇒t indε(u,v). (4.18)

These similarity relations have been useful in the procedure of granulation of
knowledge, see [2–6], [28, 29].
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4.2 General Strategies of Knowledge Granulation

The general strategy of knowledge granulation with regard to the considered simi-
larity function μ(u,v,r), can be described as follows.

1. The granular radius rgran ∈ [0,1] has been chosen (in case of rgran = 0, we have
only one granule - universe U).

2. For considered granulation radius rgran, we create a set of granules gμ(u,rgran)
with the central object u ∈U .

3. From the set of all granules gμ(u,rgran) we choose covering Cμ(rgran) of uni-
verse U , applying a strategy,℘.

The idea shown in the works [24, 30], consists of representing the system (U,A)
as a granular system (Cμ(rgran), Ā), where Ā = {ā : a ∈ A} is the set of attributes
filtrated by granules.

A definition of attribute ā, refers to the strategy S based on which we can choose
ā(g), of attribute ā on the granule g, that is, ā(g)=S({a(u) : u w granuli g}) System
(Cμ(rgran), Ā) is the granular reflection of system (U,A) relative to strategy℘,S.

In this article we review some strategies of granulation, which are based on the
previously described rough inclusions and their weak variants, we show the follow-
ing methods:

1. Standard strategy.
2. Relative to the decision classes strategy (concept-dependent).
3. Hierarchical strategy (layered granulation).
4. Hybrid strategy (concept-dependent+ layered granulation).
5. Standard ε - strategy.
6. Concept-dependent ε - strategy.

4.2.1 The Decision Systems in Professor Zdzisław Pawlak’s Sense

The decision system in a formal sense is defined as the triple (U,A,d), where

U − set of objects,

A− set of attributes,

d − decision attribute.

The attributes from the set A are the conditional attributes, which are determined
by a system designer, who has based them on a kind of intuition, experience, or
premises of significance. The finite character of the set A is the reason for ambiva-
lence: the objects are described in the rough sense and we cannot discern them
certainly.

The decision attribute (which can assign, for example, decision classes) is impli-
cated by the real world or a well-informed expert in some context of that world.
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The objects form U are represented by information vectors defined as follows:

In fA(u) = {(a,a(u)) : a ∈ A}. (4.19)

The relation between description in terms of attributes in A and in terms of the
decision d, are given in fixed classifier, which is a set of the following decision
rules,

r : ∀a∈B(a,va)⇒ (d,v), where va ∈Va, d ∈Vd ,B ⊆ A. (4.20)

4.3 Approximation of Decision Systems Methods

We start from a description of exemplary methods examined in the recent years
by Polkowski and Artiemjew — see [2–6], [28, 29]. The standard method, concept-
dependent method and the layered method are based on above mentioned algorithms
and are discrete methods, whereas granular methods with parameter ε belonging in
the group of continuous methods.

In the first step we start from a description of our basic standard granulation
method.

4.3.1 Standard Granulation

Standard granulation — in the sense of L.Polkowski — is the method of decision
systems approximation, which works best with discrete values of attributes. It works
very well in the systems, in which conditional attributes and decision attributes are
symbolic or integer. It is possible to granulate decision systems, with fractional val-
ues of attributes, but on condition that the domain of conditional attributes is limited
to a small number of elements. For the decision systems with real value attributes,
which have a huge domain, granules of knowledge can contain a small number of
objects, and even at the small granular radius near zero, the granular systems ap-
proximate the original decision systems in slight degree. For this kind of granules
we can use classifiers which works in discrete manner.

The downside of standard granulation is the possibility of losing decision classes
at small granulation radii, since some classes of original systems may not ap-
pear in the granular system. For this reason standard granulation works best for
an average size of granulation radii. The standard granulation procedure looks as
follows,

The procedure

1. The original decision system (U,A,d) has been input.
2. The granular radius rgran has been fixed.
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3. For all objects u,v ∈U , we compute IND(u,v) = {a ∈ A : a(u) �= a(v)} and we
form granule g of the central object u, i.e.,

v ∈ grgran(u)⇔ μ(v,u,rgran)⇔
|IND(u,v)|

|A| ≥ rgran, (4.21)

hence

grgran(u) = {v :
|IND(u,v)|

|A| ≥ rgran}. (4.22)

We use μ formally derived form the Łukasiewicz t-norm.
4. The granular covering Ucover of the original decision system can be chosen

based on one of the following methods:

- Hierarchical covering (granules are chosen sequentially),
- Random covering,
- Granules with minimal, average or maximal length,
- Granules which add to the covering respectively the least, the most, or an

average number of new objects,
- Random granule choice dependent on decision concepts’ size.

In all of the above covering finding methods, the considered granule can be
added to granular covering, only if it gives at least one new object to the
covering.

5. The original decision system is considered as covered when the sum of objects
from all chosen granules is equal to the original decision system, i.e.,

⋃
{grgran(u) : grgran(u) ∈Ucover}=U. (4.23)

6. The ma jority voting strategy is applied inside covering granules, where ties are
resolved randomly. Finally we obtain new objects, which are granular repre-
sentatives of covering granules. The granular decision system is formed from
obtained objects.

The simplifying pseudo-code of standard granulation look as follows:

Pseudo-code

Granule formation
Data:
decision system (U,A,d)
ganulation radius rgran

for each u in U do
for each v in U do
if |IND(u,v)|

|A| ≥ rgran then grgran(u)← grgran(u)∪ v

return {grgran(u) : u ∈U}
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Searching for granular covering of U
Data:
G = {grgran(u) : u ∈U}
Procedure random
Variables:
Ucover ← {}
temp ← G
loop:
g ← random(temp)
if g ⊆ Ucover then temp ← temp - g
else Ucover ← Ucover ∪ g
if Ucover =U then break

Granular objects creation
Data:
Variables:
GS ← {}
for each g in Ucover do
gs ← ma jority voting (g)
GS ← GS∪ gs
return GS

Finally, we obtain new objects, which are granular representations of covering gran-
ules. The granular decision system is formed from obtained objects.

The obtained object set GS is the granular re f lection o f the system (U,A,d).
The next model of granulation based on approximation in the decision concepts is
the following.

4.3.2 Concept Dependent Granulation

The concept-dependent granulation differs from standard granulation with respect
to granule creation, in this algorithm granules are formed in the range of de-
cision concepts. It means that granules with the fixed central object, take into
account only objects in the same decision class as the central object. Concept
dependent granular decision systems contain at least one object from all classes
of original decision systems. Even for small granulation radii, this method works
effectively, as proven in [2, 6]. Concept dependent granulation is used for the
same kind of data as the standard one. The procedure of this method is anal-
ogous to standard granulation with the difference that granules are defined as
follows,

In
v ∈ gcd

rgran
(u)⇔ μcd(v,u,rgran)∧ (d(u) = d(v)), (4.24)
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hence,

v ∈ gcd
rgran

⇔ (
|IND(u,v)|

|A| ≥ rgran)∧ (d(u) = d(v)), (4.25)

thus,

gcd
rgran

(u) = {v : (
|IND(u,v)|

|A| ≥ rgran)∧ (d(u) = d(v))}. (4.26)

The need for maximal reduction of the size of the original system at fixed granula-
tion degree leads to the idea of multiple-step granulation, which is described in the
next subsection.

4.3.3 Layered Granulation

Layered granulation consists of granulation in the standard sense repeated until the
reduction of the original decision system is maximal so it is impossible to reduce
it further. The effectiveness of the described method can be studied in [2, 6]. The
pseudo-code of the described method looks as follows.

Pseudo-code

layer loop:
Granule firmation
Data:
decision system (U,A,d)
granulation radius rgran

for each u in U do
for each v in U do
if |IND(u,v)|

|A| ≥ rgran then grgran(u)← grgran(u)∪ v

return {grgran(u) : u ∈U}

Searching for granular covering of U
Data:
G = {grgran(u) : u ∈U}
Procedure random
Variables:
Ucover ← {}
temp ← G
loop:
g ← random(temp)
if g ⊆ Ucover then temp ← temp - g
else Ucover ← Ucover ∪ g
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if Ucover =U then break

Granular objects creation
Data:
Procedure of ma jority voting
Variable:
GS ← {}
for each g in Ucover do
gs ← ma jority voting (g)
GS ← GS∪ gs
return GS

if |U |= |GS| then break
else U ← GS
//the end of layer loop

Clearly, this method can be along the layered granulation leading to the hybrid
concept-dependent layered granulation.

4.3.4 Concept Dependent Layered Granulation

In this variant, as with earlier methods, the algorithm differs from the standard
method in granule forming manner, granules are defined as,

gcd
rgran

(u) = {v : (
|IND(u,v)|

|A| ≥ rgran)∧ (d(u) = d(v))}. (4.27)

The substantial difference between the concept-dependent method and the standard
one is the size of granules at fixed granulation radius. The concept-dependent strat-
egy generates smaller granules, and the granular systems contains more objects in
comparison with the standard method.

The last group of approximation algorithms consists of using indiscernibility ra-
tio of descriptors, which leads to the effective granulation of decision systems with
a huge domain of conditional attributes.

4.3.5 ε - Granulation

ε variants of granulation are designed to be used on numerical data, which can
have a huge domain of conditional attributes. In these methods of approximation we
choose objects which are indiscernible to the central object of granule to a degree
at least rgran. Discrete classifiers cannot be applied here because the domain of the
granular system can differ from the domain of the original training system, hence,
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the classification of test objects may not be possible. For these reasons, for that kind
of granules, we have to use more general classifiers, some of which are described in
the subsection 4.4.

The procedure

1. The original decision system has been input (U,A,d).
2. We create the table maxtraining seta and mintraining seta of the original system, for

∀a ∈ A.
We granulate at fixed parameter εgran as following.

3. The training decision system from point 1 is granulated by means of ε - granula-
tion method with the radius rgran and for the parameter εgran, a granular object is
created by averaging the granule attributes. The decision value is assigned based
on the MOM method, where after calculating the average value of decisions, we
choose the closest existing decision value. The decision value is decided by the
majority voting method.

Pseudo-code

Granule formation
Input:
decision system (U,A,d)
granulation radius rgran

granulation epsilon εgran

for each u in U do
for each v in U do
let INDεgran(u,v) = {a ∈ A : |a(u)−a(v)|

|maxtraining set a−mintraining set a| ≤ εgran}

if
|INDεgran (u,v)|

|A| ≥ rgran then grgran,εgran(u)← grgran,εgran(u)∪ v

return {grgran,εgran(u) : u ∈U}

Search for granular covering U
Input:
G = {grgran,εgran(u) : u ∈U}
Procedure random
Variable:
Ucover ← {}
temp ← G
loop:
g ← random(temp)
if g ⊆ Ucover then temp ← temp - g
else Ucover ← Ucover ∪ g
if Ucover =U then break
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Granular object creation
Input:
Procedure MOM
Variable:
GS ← {}
for each g in Ucover do
gs ← MOM (g)
GS ← GS∪ gs
return GS

The obtained set of objects GS is named as the granular reflection of the system
(U,A,d).

4.3.6 Concept Dependent ε Granulation

Similarly as before, the key point of this method is granulation around decision
values, where granules look as follows,

gcd
rgran

(u) = {v : (
|IND(u,v)|

|A| ≥ rgran)∧ (d(u) = d(v))}. (4.28)

For ε− granular decision systems, we have to design appropriate classifiers, previ-
ously mentioned discrete classifiers do not work effectively on this kind of granules.
A good solution is to use methods which can classify with some fixed indiscernibil-
ity ratio. We have to be aware that this kind of rough classifiers cannot be used for
symbolic decision systems. In the next subsection, we will describe an exemplary
method of classification which works well with the ε variants of granular decision
systems.

4.4 Exemplary ε - Classification

The procedure

1. The training and test decision systems have been input.
2. We create the table maxtraining seta and mintraining seta from the training decision

system, for ∀a ∈ A.
3. Outliers of the original test table are mapped on the interval mintraining seta,

maxtraining seta

We granulate the training decision systems at fixed εgran and rgran parameters,
and we obtain the granular decision system GS which is a granular reflection of
the original system (U,A,d).
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4. The descriptors indiscernibility ratio εclass ∈ {0,0.01, . . . ,1.0} has been
fixed.

5. We classify chosen object u by means of granule g obtained from the decision
system in point 4. We compare granular objects with a test object and check
whether all attributes of the considered granule catch descriptors of test objects
to a degree of εclass. For all granules g we check whether

|a(u)− a(g)|
|maxtraining seta−mintraining seta|

≤ εclass, for a ∈ A. (4.29)

If after examination of all conditional descriptors, |INDεklas(u,g)|= |A|,
it means that the granule g catches test object and the decisive parameter
param(decision concept of granule g) is incremented.

6. After classification of test object u by means of all granules, parameters of clas-
sification vote on decision according to

param(decision concept o f training set)
|{v : d(v) = decision concept o f training set}| . (4.30)

The test object u gets decision value from the training concept which has the
highest value of parameter param. Such granular classification is supported by
the training decision system from point 1 by maxtraining seta and mintraining seta.
During the classification process, the size of training concepts is used for the
normalization of parameters deciding on classification. We use those values be-
cause if we would compute maxtraining seta and mintraining seta from granular de-
cision system, for small granulation radii rgran there could be a high disturbance
of test systems during outlier mapping.

4.4.1 Exemplary Results for Combination of ε - Granulation and
Classification

To prove that our ε classifier works well with ε granules, we have carried out ex-
emplary experiments on real data from UCI Repository. We have applied Cross
Validation 5 method (CV5), when the training decision systems from all folds of
CV5 were granulated and used for classification of particular test sets. The results
of classification are shown in Tables 4.1 – 4.3. It is obvious that it is difficult to
find optimal parameters of classification for this kind of method. In this example
we show some exemplary parameters, which have been chosen based on degree of
classification accuracy. As we can see, ε granules are useful and seem to be effective
with the considered classification method, in particular, they reduce the size of the
original training systems.
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Table 4.1 5-fold C-V; Australian Credit; Classification based on ε - granules for rgran =
0.785714. rgran = granular radius, εgran = epsilon o f granulation, εclass = optimal
epsilon o f classi f ication, acc = accuracy, cov = coverage, m_trn = average size o f
training set

rgran εgran εclass acc cov m_trn

nil nil nil 0.845 1.0 552
0.785714 0.0 0.55 0.861673 0.995652 533.4
0.785714 0.01 0.57 0.863133 0.995652 427.6
0.785714 0.02 0.76 0.863345 0.997102 332.2
0.785714 0.03 0.83 0.851909 0.998551 280.0
0.785714 0.04 0.78 0.864826 0.997102 232.4
0.785714 0.05 0.71 0.858754 0.995652 193.0
0.785714 0.06 0.75 0.844462 0.997102 161.2
0.785714 0.07 0.78 0.844081 0.984058 145.8
0.785714 0.08 0.92 0.838877 0.998551 111.2
0.785714 0.09 0.78 0.835978 0.998551 99.4
0.785714 0.1 0.87 0.837406 0.998551 87.6
0.785714 0.11 0.89 0.847625 0.998551 80.4
0.785714 0.12 0.9 0.828721 0.998551 75.4
0.785714 0.13 0.79 0.843579 0.985507 61.8
0.785714 0.14 0.9 0.830213 0.998551 56.2
0.785714 0.15 0.68 0.833055 0.989855 53.8
0.785714 0.16 0.79 0.821411 0.998551 43.8
0.785714 0.17 0.69 0.830808 0.971015 44.2
0.785714 0.18 0.9 0.830181 0.998551 40.2
0.785714 0.19 0.74 0.818114 0.986957 38.4
0.785714 0.2 0.94 0.803988 0.998551 33.8

Table 4.2 5-fold C-V; Heart Disease; Classification based on ε - granules for rgran =
0.769231. rgran = granular radius, εgran = epsilon o f granulation, εclass = optimal epsi-
lon o f classi f ication, acc = accuracy, cov = coverage, m_trn= average size o f training set

rgran εgran εclass acc cov m_trn

nil nil nil 0.804 1.0 216
0.769231 0.0 0.88 0.790172 0.97037 209.8
0.769231 0.01 0.88 0.790172 0.97037 203.8
0.769231 0.02 0.75 0.797864 0.97037 195.8
0.769231 0.03 0.99 0.786398 0.97037 184.6
0.769231 0.04 0.99 0.790172 0.97037 172.2
0.769231 0.05 0.91 0.783315 0.974074 153.2
0.769231 0.06 0.69 0.785014 0.966666 144.6
0.769231 0.07 0.97 0.794969 0.992592 128.0
0.769231 0.08 0.97 0.781482 1.0 120.2
0.769231 0.09 0.95 0.784207 0.996296 110.4
0.769231 0.1 0.93 0.7826 0.988889 99.2
0.769231 0.11 0.92 0.810273 0.996296 90.0
0.769231 0.12 0.88 0.802236 0.992592 83.6
0.769231 0.13 0.92 0.796296 1.0 75.6
0.769231 0.14 0.91 0.788889 1.0 71.0
0.769231 0.15 0.9 0.803145 0.996296 65.0
0.769231 0.16 0.9 0.785185 1.0 61.8
0.769231 0.17 0.93 0.788889 1.0 56.8
0.769231 0.18 0.91 0.777778 1.0 52.8
0.769231 0.19 0.88 0.788889 1.0 50.2
0.769231 0.2 0.89 0.798532 0.992592 46.2
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Table 4.3 5-fold C-V; Pima Indians Diabetes; Classification based on ε - granules for
rgran = 0.625. rgran = granular radius, εgran = epsilon o f granulation, εclass = optimal
epsilon o f classi f ication, acc = accuracy, cov = coverage, m_trn = average size o f
training set

rgran εgran εclass acc cov m_trn

nil nil nil 0.6528 0.9972 615
0.625 0.0 0.3 0.742296 0.989542 607.4
0.625 0.01 0.3 0.741041 0.989542 576.0
0.625 0.02 0.3 0.733645 0.986928 452.0
0.625 0.03 0.3 0.724776 0.983006 357.8
0.625 0.04 0.28 0.739153 0.956862 249.8
0.625 0.05 0.31 0.719509 0.946405 174.0
0.625 0.06 0.32 0.718681 0.933333 111.2
0.625 0.07 0.71 0.654902 1 83.8
0.625 0.08 0.68 0.656132 0.996078 66.0
0.625 0.09 0.52 0.660574 0.989542 49.2
0.625 0.1 0.8 0.653595 1 41.0
0.625 0.11 0.58 0.657892 0.993464 33.8
0.625 0.12 0.61 0.660965 0.994771 24.6
0.625 0.13 0.61 0.659661 0.994771 23.4
0.625 0.14 0.72 0.653604 0.996078 20.0
0.625 0.15 0.8 0.650981 1 16.2
0.625 0.16 0.69 0.654386 0.994771 13.8
0.625 0.17 0.87 0.649673 1 12.0
0.625 0.18 0.87 0.649673 1 11.2
0.625 0.19 0.86 0.649673 1 9.2
0.625 0.2 0.85 0.649673 1 8.4

4.5 Conclusions

Our considerations lead to the conclusion that an important element for the proper
use of approximation methods is choosing the correct methods of classification,
which will work effectively with them. In general, for discrete methods it is bet-
ter to use classification algorithms which are focused on measuring similarity on
symbolic or integer stable data (without any changes in the domain). We show that
the described methods, which form rough granules, sometimes changing the val-
ues of domain attribute by averaging values, can be applied effectively with rough
classifiers.

The need of analyzing a rising amount of information, sooner or later forces us
to focus on some approximation methods which effectively maintain knowledge,
significantly lowering size of data. For this reason, at the very least, granular rough
computing is a promising field of research and worth trying to develop.

One of our future purposes, in addition to theoretical development of granular
rough computing paradigms, is the application of granular methods in practice -
especially in the decision modules of autonomous mobile robots.
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Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 69–79.
Springer, Heidelberg (2007)

26. Polkowski, L.: The paradigm of granular rough computing. In: Proceedings of the 6th
IEEE Intern. Conf. on Cognitive Informatics (ICCI 2007), pp. 145–163. IEEE Computer
Society Press, Los Alamitos (2007)

27. Polkowski, L.: A unified approach to granulation of knowledge and granular computing
based on rough mereology: A Survey. In: Pedrycz, W., Skowron, A., Kreinovich, V. (eds.)
Handbook of Granular Computing, pp. 375–401. John Wiley & Sons, New York (2008)

28. Polkowski, L., Artiemjew, P.: On Classifying Mappings Induced by Granular Structures.
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Chapter 5
Game-Theoretic Rough Sets for Feature
Selection

Nouman Azam and JingTao Yao

Abstract. Feature selection plays an important role in text categorization. Term
frequency and document frequency are commonly used measures in feature selec-
tion methods for text categorization. The term frequency provides document level
information for a word while document frequency highlights dataset level informa-
tion for a word. We introduced a Game-theoretic rough set based method for com-
bining these measures in an effective and meaningful way. The method incorporates
the measures as players in a game where each player employs a three-way deci-
sion in selecting features. The three-way decisions for features received inspiration
from three-way decisions for classification of objects in rough sets. The selected
decisions with respective measures are utilized in finding a corporative solution as
in game-theoretic rough sets. A demonstrative example suggests that this method
may be more efficient for feature selection in text categorization.

Keywords: Feature selection, game-theoretic rough sets, text categorization, three-
way decisions

5.1 Introduction

Feature selection is a process of selecting a subset of features that is considered
as important [10, 14, 15, 24, 32]. It remains as an effective technique in many ap-
plications, such as text categorization and bioinformatics [3, 4, 22, 23]. Feature
selection techniques are helpful in various situations for these applications, such
as high imbalance in data, limited availability of resources and data populated with
noise [1, 5, 11, 35].

Feature selection methods in text categorization commonly employ term
frequency and document frequency measures in calculating a feature’s utility. Term
frequency is the number of times a particular word appears in a given document
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while document frequency is the count of documents containing that word [2]. The
two measures may be considered as complimentary as they provide information
from different perspectives. Term frequencies provide information at a local level,
comprising of an individual document. The document frequencies in contrast, pro-
vide information at a global level consisting of entire document set. The two mea-
sures may be considered as individually important as jointly they provide useful
information which may be utilized in effective selection of features.

Existing feature selection methods are either based on term frequency or doc-
ument frequency [5, 12, 16–18, 20, 25, 28]. This suggests that these methods are
using limited information for calculating utility of a feature. The term frequency
based methods ignore the document frequency information while the document fre-
quency based methods ignore the term frequency. This may affect the ranking of
features with respective methods. However, both measures may be used for effective
ranking and selecting important features.

Table 5.1 Term frequency and document frequency of words

w1 w2 w3 w4 w5 w6 w7 w8 w9

Document Frequency 75 70 65 59 55 50 45 10 10

Term Frequency Per Doc. 2 7 3 2 4 10 4 5 1

We demonstrate a problem in ranking the features with an example. Suppose
that a dataset with nine words represented as w1,w2, ....,w9 is considered. Table 5.1
shows the document frequencies and term frequencies of these words. We examine a
couple of feature selection methods. Document frequency thresholding (DFT) [28]
is chosen as document frequency based method while term frequency thresholding
(TFT) [17] as term frequency based method. Feature ranks with DFT method can
be calculated by sorting the words on their document frequencies. Obtaining ranks
with TFT will require the total term frequency of each word across all documents
which can be obtained by multiplying the term frequency per document by doc-
ument frequency. Feature rankings with respective methods may be calculated as
follows.

Ranking with DFT: { w1, w2, w3, w4, w5, w6, w7, w8, w9 }.
Ranking with TFT: { w6, w2, w5, w3, w7, w1, w4, w8, w9 }.

Words with the highest document frequency and term frequency receive the highest
rank in respective methods. We note that the words are ranked differently with dif-
ferent methods. If we are interested in selecting four words, then DFT would select
w1,w2,w3 and w4 while TFT would select w6,w2,w5 and w3. The word w1 has the
highest document frequency while w6 has the highest term frequency. We expect rel-
atively good ranks for both of these words regardless of the methods. However, w1

is neither selected nor ranked appropriately by TFT. A similar situation is observed
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for w6 with DFT. This suggests that DFT ignores some term frequent information
while TFT ignores some document frequent information. It is plausible to consider
both of the measures for effective selection of features in this case. A method that
incorporates the two measures is desired for such a purpose.

Suppose that we introduce a new method that combines the rankings of the
two methods by calculating an average. The new rankings for words may be
obtained as,

{ w2, [w1, w6, w3], w5, [w7, w4], w8, w9},

where words in square brackets denote equal ranks. We may select important fea-
tures based on the new ranking. If we consider selection of four words again,
w2,w1,w6 and w3 would be selected. The words w1 and w6, which were ignored
earlier are now being selected. This means that the words which have higher term
frequency value or document frequency value are now being selected.

A particular measure may consider a feature as important, relatively important or
unimportant for selection. This intuitively suggests three-way decisions for features
similar to three-way decisions for classification of objects in rough sets. Particu-
larly, the important features may be considered as objects being positively identified
for a set while unimportant features may be considered as objects negatively iden-
tified for a set. The features that are relatively important may be treated as objects
associated with uncertain decisions. We try to find a systematic method which incor-
porates these decisions of measures in a unified framework for selecting a feature.
A game-theoretic rough set (GTRS) based method is proposed for such a purpose.

The GTRS model is a recent extension to rough set theory for analyzing and mak-
ing intelligent decisions [6–8, 21, 29, 30]. The model utilizes ideas from game the-
ory [19] to form a systematic method in analyzing decision problems. We examine
the model in combining measures for feature selection. In particular, the model was
used for formulating a game between the measures of term frequency and document
frequency. Each measure analyzes a feature for its importance using suitable pay-
off functions and may choose from three possible actions: accept (or select), reject
and abstain. The actions of respective measures were used in finding a cooperative
decision on selecting a feature.

This chapter is organized as follows: Section 5.2 reviews some background infor-
mation regarding the GTRS model. Section 5.3 presents the proposed feature selec-
tion method, formulated with the model. Section 5.4 demonstrates the application
of proposed method for text categorization with an example. Section 5.5 concludes
the chapter with directions for future research.

5.2 Game-Theoretic Rough Sets

Game-theoretic rough sets model is a new extension to traditional rough sets.
The model provides formulation for decision making problems in the aim of
finding an effective and efficient solution, obtained with analysis of conflict or
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cooperation among the measures. A game is formulated among the measures that
seek to achieve dominance over others or tries teaming up with others in finding an
optimal position. The basic components in GTRS formulation includes, information
of measures considered as players in the game, the strategies or available actions for
each player, and utility or payoff function for each action.

Yao and Herbert suggested the model for analyzing a major problem in proba-
bilistic rough sets which can found in references [8, 31]. A method for decreasing
the size of boundary region through further explorations of the data was proposed.
A game was proposed between classification measures with actions corresponding
to adjusting risk functions in order to increase the overall classification effectiveness
of the system. New regions were obtained with modified risk functions. The model
was also investigated in other studies [6, 7, 29, 30].

The GTRS model utilizes ideas from game theory [19] for analyzing decision
problems with rough sets. A single game is defined as G = {P,S,F}, where P =
{p1, p2, ...., pn} represents a player set, S = {a1,a2, ....,am} an action or strategy set
for a player, and F = {u1,u2, ....,um} the respective payoff functions for each action.
Each player chooses an action from S according to its expected payoff function in F .

A player set P contains measures in GTRS formulation. Each measure highlights
an aspect of interest in a decision problem. The selection of measures depends on
the desired aims and objectives that we may wish to achieve. For instance, in prob-
abilistic rough sets, we may want to increase the overall classification ability of
the system or obtaining optimal values for region parameters may be of interest.
The former objective may be achieved with classification measures in a game while
the later may be reached with region parameters.

The GTRS formulates strategies for each measure in order to make their effective
participation in a game. We may observe multiple parameters or variables in deci-
sion problems that affect decision making in different ways. For instance, changing
the values of loss functions in decision theoretic rough sets will result in different
regions with different decisions on object classification [34]. A change to such vari-
ables may affect the measures differently. In particular, a measure may experience
a gain, i.e. an increase in its value, in response to a particular change in a variable
value. Different level of gains may be experienced by selecting different variables
with their respective changes. This suggests that a particular measure may attain a
certain level of gain by selecting a suitable variable with its associated change. A
variable along with a change may be realized as an action or strategy for a particular

Table 5.2 Action scenario for a measure

Action Description Method Desired
conditions

Outcomes or
influences

What the action
does?

How to carry out
the action?

When the action
is desired?

Possible effects
on problem

a j .... .... .... ....
.... .... .... .... ....
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measure in obtaining desired performance gain. A gain obtained by a measure in
selecting an action may be considered as payoff or utility for that measure.

Each action is desired by a player in a specific situation of a game. The GTRS
constructs action scenarios for analyzing individual actions with description of a
corresponding desired situation. Table 5.2 presents the general structure for an ac-
tion scenario. Each row in the table represents a particular action by providing its
associated description, method for execution, desired conditions and possible out-
comes or influences on the problem. This means that an action scenario represents
the problem from a single measure perspective.

The objective of GTRS is to assist in analysis of competing or cooperating mea-
sures for intelligent decision making. This is facilitated with payoff tables which
lists all possible strategies with their respective payoffs. A payoff or utility reflects
a player’s happiness in performing an action. The payoff tables are examined with
equilibrium analysis for a possible solution. This means that we try to find a solu-
tion where each measure has maximized its payoff giving their opponents chosen
actions. The solution obtained with equilibrium analysis is considered as an optimal
solution for a problem.

5.3 Feature Selection with Game-Theoretic Rough Set

We will examine a GTRS based method for combining the measures in feature se-
lection. In order to analyze problems with GTRS, we need to formulate them. We
will start the formulation by identifying the main components of the GTRS model,
i.e. a set of players, a set of strategies for each player and a set of payoff functions
for respective actions.

5.3.1 Components

We will present the GTRS components in this section. The components are briefly
explained and discussed in Section 5.2.

The Player Set: A player set in GTRS refers to the measures which may be ana-
lyzed for competition or cooperation. We consider two measures, i.e. T F and DF in
this chapter. The player set is denoted as P = {TF,DF}, where TF represents the
measure of term frequency and DF the document frequency. Each measure will an-
alyze the importance of a feature with its respective payoff functions. The measures
will effectively participate in a game for reaching a final decision on selection of a
feature.

The Strategy Sets: Each player is expected to have a set of possible strategies. In-
dividual strategies may be realized as actions when performed. We have two sets
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of strategies with actions corresponding to the two measures. The strategy sets are
represented as STF and SDF for measures TF and DF , respectively. These sets are
denoted as STF = {a1,a2, .....,an} and SDF = {a1,a2, .....,an}. This means that each
measure can have n actions. Let’s simplify this scenario with three actions, i.e. as,
aa and ar.

as is the action of accepting or selecting a feature.
aa is the action of abstaining in making a definite decision.
ar is the action of rejecting a feature.

The Payoff Functions: A payoff function represents motivation level of a player
towards an action. The set of all payoff functions in a game may be represented as
F . We formulated F = {uTF ,uDF}, where uTF and uDF represent the sets of payoff
functions for measures TF and DF , respectively. Each measure may choose from
three possible actions as discussed above. This suggests that for a given action of a
measure, its opponent may choose from three possible actions. We need to define
nine payoff functions for each measure in this case. Let us denote the payoff of
measure i, performing an action a j, given action ak of his opponent as ui(a j |ak). The
payoff set for a measure mi has nine values of the form ui(a j |ak), where i ∈ {TF,DF}
and {a j,ak} ∈ {as,aa,ar}. The two payoff sets are given as follows.

uTF = {uTF(as|as), uT F(as|aa), uTF(as|ar), uTF(aa|as), uTF(aa|aa), uTF(aa|ar)

uT F(ar |as), uT F(ar|aa), uTF(ar|ar)}

uDF = {uDF(as|as), uDF(as|aa), uDF(as|ar), uDF(aa|as), uDF(aa|aa), uDF(aa|ar)

uDF(ar |as), uDF(ar|aa), uDF(ar |ar)}

We now define individual payoff functions. Let us consider probabilities of term
frequency and document frequency. The probability of term frequency for a word,
i.e. PTF(w), refers to its relative occurrence within a document while probability of
document frequency, i.e. PTF(w), refers to its relative frequency with respect to doc-
uments set. The two probabilities for a particular word w may be defined as follows.

PT F(w) = Term frequency of w in a document / total words in that document.
PDF(w) = Document frequency of w / total documents in the data set.

Each measure will use its respective probability in analyzing available actions.
We utilize an approach inspired from decision-theoretic rough set model (DTRS)

in making decisions with probabilities [9, 13, 27, 34, 36]. The model utilizes a
threshold pair, i.e. α and β representing desired levels of precision in classifying
objects [33]. The thresholds are defined with Bayesian decision-theoretic analy-
sis using notions of risks and losses. A three-way decision for classifying objects
are obtained with these thresholds. Particularly, an object is accepted as belong-
ing to a particular set if its conditional probability with the set is greater than
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or equal to threshold α . If the conditional probability is lesser than or equal to
threshold β , the object is rejected for the set. When the conditional probabil-
ity is between the two thresholds, a definite decision for object is deferred or
abstained.

We adopt a similar idea in making decisions for features. A threshold pair was
defined for each probability. The thresholds αT F and βT F are used for term fre-
quency probability while αDF and βDF for document frequency probability. Three-
way decisions were defined with each probability as in DTRS. This means that
a particular measure mi may decide to accept (select) a word w, if the proba-
bility Pmi (i.e. the probability corresponding to the measure mi) is greater than
or equal to αmi . If the probability for a measure is lesser than or equal to βmi ,
the measure may decide to reject the word. In case when the probability is be-
tween the two thresholds, a measure may decide to abstain from making a definite
decision.

Table 5.3 Action scenarios for measures

Player Action Description Desired Conditions Outcome

as Select PTF(w)≥ αT F Select (accept) the feature

T F aa Abstain βTF < PTF(w)< αT F Abstain from decision

ar Reject PTF(w) ≤ βTF Reject the feature

as Select PDF(w)≥ αDF Select (accept) the feature

DF aa Abstain βDF < PDF(w)< αDF Abstain from decision

ar Reject PDF(w) ≤ βDF Reject the feature

Table 5.3 presents the action scenarios for measures. There are two major rows
in the table corresponding to measures TF and DF , respectively. Each major row
contains three sub rows that represents the individual actions for a measure with
corresponding conditions and an expected outcome. For instance, the first sub row
corresponding to measure T F describes the action of selecting a feature as discussed
above.

The probabilities and thresholds may be used to define three functions for each
measure mi (mi ∈ {T F,DF}), corresponding to its three actions.

umi(as) =

⎧
⎨

⎩

1 Pmi(w) ≥ αmi ,
0.5 βmi < Pmi(w)< αmi ,
0 Pmi(w)≤ βmi

(5.1)
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umi(aa) =

⎧
⎨

⎩

0 Pmi(w)≥ αmi ,
1 βmi < Pmi(w)< αmi ,
0 Pmi(w)≤ βmi

(5.2)

umi(ar) =

⎧
⎨

⎩

0 Pmi(w)≥ αmi ,
0.5 βmi < Pmi(w)< αmi ,
1 Pmi(w)≤ βmi

(5.3)

The function umi(as) represents the utility for a measure in accepting a feature. When
the value for a word is greater than or equal to threshold αmi , the function returns
a maximum value of 1. This means that the action of accepting or selecting the
word is highly desired by the measure. When the value for a word is lesser than
the threshold βmi , the function returns a minimum value of 0. This suggests that
the action of selecting the feature is least desired in this case. A value of 0.5 is
returned when the value for a feature is between the two thresholds. This represents
an uncertain situation for choosing the action. A similar interpretation may be used
for the functions umi(aa) and umi(as).

The above functions describe the utilities for measures when considered in iso-
lation. An interaction among the measures is expected during a game. Individual
beliefs and utilities of players are affected by selected actions of their opponents. To
reflect this, we utilized an average of utilities corresponding to players in obtaining
the payoff functions. This was a reasonable choice as we seek cooperation among
the measures in finding a feature usefulness or importance level. Furthermore, the
opinions of both measures were considered as useful without discrimination. This
means that the payoff for player i in performing action a j given action ak of his
opponent l is given by ui(a j |ak)

= {ui(a j) + ul(ak)
}/2, where {i, l} ∈ {TF,DF} and

{a j,ak} ∈ {as,aa,ar}.

5.3.2 Implementing Competition

We finally express a game between the measures T F and DF in a payoff ta-
ble. This is presented in Table 5.4. The rows represent the actions of measure

Table 5.4 Payoff table for T F and DF

DF

as aa ar

as uT F(as|as), uDF(as|as) uT F(as|aa), uDF(aa|as) uT F(as|ar), uDF(ar|as)

T F aa uTF(aa|as), uDF(as|aa) uTF(aa|aa), uDF(aa|aa) uTF(aa|ar), uDF(ar|aa)

ar uT F(ar |as), uDF(as|ar) uT F(ar |aa), uDF(aa|ar) uT F(ar|ar),uDF(ar|ar)
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T F and columns of measure DF . Each cell in the table represents a payoff pair
< uTF(ai|a j),uDF(a j |ai) >. The pair corresponds to action ai of TF and a j of DF . A
total of nine payoff pairs are required in this game. The payoffs are calculated with
respective payoff functions and the table is populated with these
values.

The GTRS utilizes Nash equilibrium [19] for analyzing payoff tables in order to
obtain possible outcomes for games. This intuitively suggests that none of the play-
ers can be benefited by changing its strategy, given the opponent chosen action. In
suggested game between TF and DF , a pair (u∗TF(ai|a1)

, u∗DF(a j |a2)
) is an equilibrium

if for any action ak, where k �= i, j,

u∗TF(ai|a1)
≥ uTF(ak|a1) and u∗DF(a j |a2)

≥ uDF(ak|a2). (5.4)

The pair (u∗TF(ai|a1)
, u∗DF(a j |a2)

) is thus the optimal solution in determining actions

for the measures.
The actions of measures may be used to define various sets of features. Let us

denote the set of features corresponding to actions ai and a j for the two measures
as F(ai,a j). We can obtain the following six sets of features corresponding to various
actions of measures (the sets F(ai,a j) and F(a j ,ai) are considered as equal).

FS(as, as), both measures choose as.
FS(as, aa), one measure choose as while the other aa.
FS(as, ar), one measure choose as while the other ar.
FS(aa, aa), both measures choose aa.
FS(ar, aa), one measure choose ar while the other aa.
FS(ar, ar), both measures choose ar.

Equilibrium analysis may be used to determine the inclusion of a feature into
one of these sets. We may define various feature selection approaches with these
feature sets. For instance, we may use an aggressive approach, where we select
only those features for which both measures agree to select. This means that fea-
tures with very high importance would be selected. Such selection of features may
be used in an application like customer relationship management, where we are
interested in identifying the most important features of customer behavior for mak-
ing effective business decisions [26]. Alternatively, we may define a moderate ap-
proach, where we select features when atleast one measure agrees to select. This
suggests that this approach selects features that have high importance along with
those that are relatively importance. Such selection may be utilized in text catego-
rization, where there are many features with relative importance. Denoting the se-
lected feature sets for aggressive and moderate as FA and FM , respectively, we have
FA = FS(as, as) and FM = FS(as, as)

⋃
FS(as, aa)

⋃
FS(as, ar), respectively. It may

be noted that |FA| ≤ |FM|, i.e. we select less number of features with an aggressive
approach.
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5.4 A Demonstrative Example

We will demonstrate the application of GTRS based method for feature selection
using the example discussed in introduction. Suppose we have a dataset of hundred
documents with each document containing one hundred words. The document fre-
quency probability, i.e. PDF(w) and term frequency probability, i.e. PT F(w), may
be calculated from Table 5.1 using their respective definitions as explained in Sec-
tion 5.3. For instance, the PDF(w1) can be calculated as the document frequency of
w1 divided by total documents, i.e. 75/100 = 0.75. Similarly, PT F(w1) may be cal-
culated as 2/100 = 0.2. Table 5.5 shows the probabilities PDF(w) and PT F(w) for
the nine words.

Table 5.5 Probabilities of words

w1 w2 w3 w4 w5 w6 w7 w8 w9

PDF(w) 0.75 0.70 0.65 0.59 0.55 0.50 0.45 0.10 0.10

PT F(w) 0.02 0.07 0.03 0.02 0.04 0.10 0.04 0.05 0.01

We define a threshold pair for each measure in order to determine the payoff
functions. The thresholds may be calculated in various ways, such as, inspection
of feature probabilities in a dataset, user perception of tolerance levels for accept-
ing features, or number of features user wish to select. For considered example in
this chapter, we choose the thresholds for T F as [ 0.06, 0.015 ] that is αT F = 0.06,
and βT F = 0.015 while thresholds for DF as [ 0.6, 0.15 ] that is αDF = 0.6 and
βDF = 0.15, respectively.

A payoff table for a particular word can be determined by computing all pay-
off pairs corresponding to individual cells of the table. Considering the payoff table
represented in Table 5.4, the payoff pair < uTF(as|as),uDF(as|as) > corresponds to
the first cell of the table. Let us calculate this payoff pair for the word w1. From
Table 5.5, we note that PTF(w1) = 0.02 while PDF(w1) = 0.75. We may calculate
the utility for a measure mi in selecting a word by using the function umi(as) pre-
sented in Equation 5.1. The utility for selecting w1 by T F , represented as uT F(as)
would be 0.5 as βT F < PT F(w1) = 0.02 < αT F . This means that T F is uncertain
for selecting the word. Similarly, the utility for selecting w1 by DF would be 1.0 as
PDF(w1) = 0.75 ≥ αDF . This suggests that DF has a strong opinion in selecting the
word. The payoff functions corresponding to pair < uT F(as|as),uDF(as|as) > can now
be calculated as follows.

uTF(as|as) =
uTF(as)+ uDF(as)

2
=

0.5+ 1.0
2

= 0.75. (5.5)
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uDF(as|as) =
uDF(as)+ uTF(as)

2
=

1.0+ 0.5
2

= 0.75. (5.6)

A payoff table may be obtained when all payoff pairs for the table are calculated as
above.

We divide the words into three groups for facilitating analysis. The first group
comprises of those words that have probabilities greater than both αDF and αT F .
The second group contains those words that have atleast one probability greater than
either αDF or αT F . The remaining words are considered in the third group. From
Table 5.5, we note that for w2, PDF(w2) = 0.70 ≥ αDF and PT F(w2) = 0.07 ≥ αT F .
This means that w2 belongs to the first group. For w1, we observe that PDF(w1) =
0.75 ≥ αDF while PDF(w1) = 0.02 � αT F . The word w1 is therefore included in the
second group. Similarly, the words w3 and w6 may also be verified as belonging to
the second group. The remaining words, i.e. w4,w5,w7,w8 and w9 are considered in
the third group.

Table 5.6 Payoff table for w2

DF

as aa ar

as 1.0,1.0 0.50,0.50 0.50,0.50

T F aa 0.50,0.50 0.0,0.0 0.0,0.0

ar 0.50,0.50 0.0,0.0 0.0,0.0

Let us consider the word w2 in the first group. Table 5.6 presents its payoff table.
The cell with bold numbers represents a Nash equilibrium. The actions of players in
the state of equilibrium are as for both players. We may note that none of the players
can achieve a higher payoff, given the other players chosen action. For instance,
changing the action of DF from as to aa or ar will decrease the payoff from 1.0 to
0.5. The same is true for T F . The actions of players can be used to include w2 in set
FS(as, as).

We now consider the words in the second group. Table 5.7 shows the payoff table
for w1. The word has a moderate value for term frequency probability, i.e. between
the two thresholds. However, the document frequency probability for the word has
a higher value, i.e. PDF(w1)≥ αDF . The equilibrium analysis suggests action aa for
both players. The word w1 is therefore included in the set FS(as, aa).

The word w6 is considered next. It has a higher term frequency probability while
a moderate document frequency probability. Table 5.8 shows its payoff table. The
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Table 5.7 Payoff table for w1

DF

as aa ar

as 0.75,0.75 0.25,0.25 0.25,0.25

T F aa 1.0,1.0 0.50,0.50 0.50,0.50

ar 0.75,0.75 0.25,0.25 0.25,0.25

Table 5.8 Payoff table for w6

DF

as aa ar

as 0.75,0.75 1.0,1.0 0.75,0.75

T F aa 0.25,0.25 0.50,0.50 0.25,0.25

ar 0.25,0.25 0.50,0.50 0.25,0.25

actions of the measures obtained with equilibrium analysis in this case are as for T F
and aa for DF , respectively. This suggests the inclusion of w6 in set FS(as, aa).

Table 5.9 Payoff table for w3

DF

as aa ar

as 0.75,0.75 0.25,0.25 0.25,0.25

T F aa 1.0,1.0 0.50,0.50 0.50,0.50

ar 0.75,0.75 0.25,0.25 0.25,0.25

The word w3 is finally considered in the second group. Its payoff table is pre-
sented as Table 5.9. We note that this word has similar probabilities as w1. The
equilibrium analysis results its inclusion in set FS(as, aa).
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We now consider words in the third group. We may divide this group into three
subgroups. The first subgroup comprises of words having both probabilities between
the two thresholds. The second subgroup have those words that have atleast one
probability between the two thresholds. Finally, the third subgroup consists of those
words having none of the their probabilities between the two thresholds. This means
that the words w4,w5 and w7 may be considered in the first group, w8 in the second
while w9 in the third subgroup.

Table 5.10 Payoff table for w4

DF

as aa ar

as 0.50,0.50 0.75,0.75 0.50,0.50

T F aa 0.75,0.75 1.0,1.0 0.75,0.75

ar 0.50,0.50 0.75,0.75 0.50,0.50

Let us analyze the words in the first subgroup. Table 5.10 shows the payoff table
for w4. The word has both probabilities in the two thresholds. The bold values in
payoff table indicates its inclusion in set FS(aa, aa).

Table 5.11 Payoff table for w5

DF

as aa ar

as 0.50,0.50 0.75,0.75 0.50,0.50

T F aa 0.75,0.75 1.0,1.0 0.75,0.75

ar 0.50,0.50 0.75,0.75 0.50,0.50

The remaining two words in the first subgroup are w5 and w7. Their payoff tables
are presented as Table 5.11 and 5.12. These two words have similar characteristics
as that of w4, therefore they are also included in the set FS(aa, aa).

The word w8 in the second subgroup is considered next. The actions in equi-
librium suggest that DF can make a certain decision while T F may abstains from
making a decision. The word is therefore included in the set FS(ar, aa).
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Table 5.12 Payoff table for w7

DF

as aa ar

as 0.50,0.50 0.75,0.75 0.50,0.50

T F aa 0.75,0.75 1.0,1.0 0.75,0.75

ar 0.50,0.50 0.75,0.75 0.50,0.50

Table 5.13 Payoff table for w8

DF

as aa ar

as 0.25,0.25 0.25,0.25 0.75,0.75

T F aa 0.50,0.50 0.50,0.50 1.0,1.0

ar 0.25,0.25 0.25,0.25 0.75,0.75

Table 5.14 Payoff table for w9

DF

as aa ar

as 0.0,0.0 0.0,0.0 0.50,0.50

T F aa 0.0,0.0 0.0,0.0 0.50,0.50

ar 0.50,0.50 0.50,0.50 1.0,1.0

Finally, w9 is presented in Table 5.14. The actions of measures in equilibrium
suggests its inclusion in set FS(ar, ar). This means that both measures considers the
word as useless and therefore decides to reject it.

The six sets of features obtained with analysis of payoff tables as discussed
above, may be summarized as,
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FS(as, as) = {w2},
FS(as, aa) = {w1,w3,w6},
FS(as, ar) =∅,
FS(aa, aa) = {w4,w5,w7},
FS(ar, aa) = {w8}, and
FS(ar, ar) = {w9}.

The sets of words corresponding to aggressive and moderate approaches are ob-
tained as follows.

FA = FS(as, as) = {w2}, and
FM = FS(as, as)

⋃
FS(as, aa)

⋃
FS(as, ar) = {w2,w1,w3,w6}.

This means that w2 would be selected with an aggressive approach while w2,w1,w3

and w6 would be selected with a moderate approach. The words w1 and w6 which
were previously considered as important by only one measure, are now being
selected with the moderate approach. The above framework may provide a deeper
insight if relative ranking is introduced among various feature sets. It is suggested
that the GTRS based feature selection method may be useful in feature selection
with multiple measures.

5.5 Conclusion

Existing feature selection methods in text categorization are either based on term
frequency or document frequency measures. These methods may ignore certain
information that is considered as important with other measures. Term frequency
presents local document level information of words while document frequency
presents entire dataset level information of words. For effective selection of fea-
tures, we may consider both measures and treat them equally important. This chap-
ter introduces a game-theoretic rough set (GTRS) based feature selection method in
the aim of combining these measures in a unified framework. The significance of
the method is that it combines the measures in a systematic way for evaluating and
selecting features.

The GTRS model was previously suggested for probabilistic rough sets in com-
bining measures for increasing the classification effectiveness within the rough set
models. In this study the GTRS model was used for selecting features by formu-
lating the measures as players in a game. Each measure uses its respective payoff
functions in analyzing a feature and may choose from three possible actions, namely,
accept (select), abstain and reject. The actions of measures are used in deriving a co-
operative solution for selecting a feature. Particularly, six different types of feature
sets were obtained that corresponds to various actions of measures. Two approaches,
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aggressive feature selection and moderate feature selection, were defined with these
feature sets. The moderate approach was found to be useful in a particular example
considered in this study. Demonstrative examples suggest that the proposed method
may be more efficient in feature selection for text categorization.

The presented formulation with the GTRS model may be utilized in investigating
further problems requiring analysis of multiple measures and criteria for achieving
a desired level of performance. Such problems are evident in many areas, such as
searching, feature selection and rule mining.
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Chapter 6
A Clustering Approach to Image Retrieval Using
Range Based Query and Mahalanobis Distance

Minakshi Banerjee, Sanghamitra Bandyopadhyay, and Sankar K. Pal

Abstract. This chapter puts forward a new approach to address a general purpose
Content-Based Image Retrieval(CBIR) task. Six spatial color moments extracted
from visually significant locations of an image are used as features to characterize an
image. It utilizes information given by a set of queries, as opposed to a single image
query. A set of similar images is posed as a query and Mahalanobis distance is used
to evaluate the similarity between query images and target images of the database.
Given a query set, the mean and covariance for computing Mahalanobis distance is
obtained from the same. Unlike conventional CBIR methods in which images are re-
trieved based on considering similarities between the query image and the database
images through a sequential search, a clustering technique using K-means algo-
rithm is first used to create meaningful groups in the database. As clusters are cre-
ated by considering similarities between images in the database, the image retrieval
search space is reduced if clusters near to the query are searched. The effectiveness
of the proposed algorithm is demonstrated with increased accuracy and reduced
retrieval time.
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6.1 Introduction

Content-Based Image Retrieval (CBIR) research has received intensive attention
over a decade. CBIR aims at searching image databases for specific images that
are similar to a given query image. It focuses on developing new techniques that
support effective searching, and browsing of large digital image libraries based an
automatically derived imagery features like (color, texture, shape etc.). It has exten-
sive applications in accessing World- Wide web and in other application domains
like biomedicine, crime prevention, digital libraries etc. Although, there has been
an abundance of prior works [8] but CBIR research is still immature, owing to its
inefficiency in retrieving semantically meaningful results for a query.

A typical CBIR system views the query image and images in the database (target
images) as a collection of features, and ranks the relevance between the query image
and any target image in terms of feature similarities based on some suitable simi-
larity distance functions [4], [6], [10], [18], [25]. Unlike classical CBIR systems,
which use a single image as a query, recently more emphasis is added towards cate-
gory search in which a set of similar images are used a query [16], [27]. Information
as obtained from the query set is utilized in the similarity evaluation process. Such
information is required to retrieve visually similar images, which are quite close to
human level perception. Despite several feature extraction algorithms and similarity
functions, images with high feature similarities to the query image may be far apart
from the query in terms of the interpretation made by a user (user semantics) arising
due to limited descriptive power of low level imagery features. This is referred as
the semantic gap [21].

To minimize semantic gap, an interactive method popularly known as relevance
feedback is widely used to provide significant boost for meaningful retrieval. A
relevance-feedback based approach allows a user to interact with the retrieval al-
gorithm, by providing the information of which images the user thinks are rele-
vant to the query [5], [13], [17], [20], [30], [33]. Based on the user’s feedbacks,
the model of similarity measure is dynamically updated to give a better approx-
imation of the perception subjectivity. Although, effectiveness of relevance feed-
back is demonstrated for different applications, such a system may add burden to
a user, especially when it is required to decide the degree of user’s involvement
in the retrieval process. On the other hand, a local approximation of the seman-
tic structure of the whole image database may be obtained through some classi-
fication techniques. As an alternative to relevance feedback method, some image
database preprocessing techniques using statistical classification methods, which
group images into semantically meaningful categories may also be used to reduce
semantic gap.

As each image of the database has an obvious semantic meaning, therefore clus-
tering database images leading to a particular semantic concept is very important.
Vailaya et al. [14] classify images into a hierarchical structure leading to differ-
ent semantic concepts like indoor or outdoor scenes. The SIMPLIcity system [31]
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classifies images into graph, textured photograph, or non-textured photograph, and
thus narrows down the search space in a database. In CLUE, clusters are created
depending on which images are retrieved in response to the query. The retrieved
clusters are better associated with the semantic meaning of the images.

In a conventional CBIR, an image is usually represented by a set of features,
where the feature vector is a point in the multidimensional feature space. Fea-
ture vectors extracted from images usually exist in a very high-dimensional space.
However, this involves high computational cost. Better representation with lesser
number of features is desirable for designing an effective CBIR system. There
is an extensive literature, which deals with different low cost feature extraction
mechanisms [7], [9], [12], [22], [23], [24], [32].

Another important aspect is that the same feature space may be endowed with
a number of similarity distance leading to different retrieval results [19]. Sev-
eral distance functions have been proposed and investigated in image retrieval ap-
plications. City block distance, Euclidean distance, Weighted Euclidean distance,
Earth Mover’s Distance [29], Mahalanobis distance etc., are some typical exam-
ples. Therefore, low dimensional feature and a suitable similarity metric which can
produce satisfactory results is an important research issue. Mahalanobis distance is
highly effective among these distance functions. Image retrieval using Mahalanobis
distance has been reported in [15], where analysis of facial expression and facial
pose retrieval is done using the concept of correlation and this distance. It has been
used in an interactive fashion in [28] where this distance is used to update the weight
matrix in every iteration based on users feedback, required to filter out irrelevant re-
gions of the database for a particular query.

In view of the above facts, the proposed CBIR system is designed as follows. This
approach uses six features only by considering the spatial color moments of visually
significant points and the whole image. Before ranking the images according to fea-
ture similarities with respect to the query, we apply K-means clustering algorithm
to analyze image similarities in the database, and generate semantically meaningful
clusters. The pre-clustering technique considers similarities between images in the
database, because it is based on pairwise distances so that within-cluster similarity
is high and between-cluster similarity is low. Such organization into clusters addi-
tionally helps in identifying semantic relevance between images, even if the feature
extraction and the similarity measure remain the same. This makes it possible to
only search the clusters those are close to the query, instead of searching the whole
database. In order to retrieve images which are similar a range of queries are posed
instead of a single query. Here, information extracted from the query set is used in
the similarity evaluation process. Such a range based query along with the cluster-
ing process generates quite promising results even if no relevance feedback mecha-
nism is used. Feature based similarities between the query set and database images
within the clusters are evaluated by comparing Mahalanobis distance between the
same. The query set consist of a set of closely related images which are selected in
a supervised way. All images of this set may not be a part of the database. The mean
and covariance used to compute Mahalanobis distance is computed from the query
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feature set. The database images are ranked and displayed in terms of the distance
between an image of the query set.

The proposed methodology is described in Section 6.2. The important formu-
lations are described in Section 6.3. The experimental procedure and results are
demonstrated in Section 6.4 and the conclusion in Section 6.5.

6.2 System Overview

The overview of the proposed methodology is demonstrated in Fig. 6.1. Steps of
which are also given below. The proposed methodology provides a guideline to
search only those clusters, which have centroids near to the query feature set. The
Mahalanobis distance which considers variability within the data obtained from
the query samples (training set) tends to capture the underlying concept within an
image also.

Algorithm 6.1.
Step1: Extract image features for each image in the database.
Step2: Apply K-means clustering to the feature database. (K is chosen equal to
square root of the number of data points for a better approximation of the semantic
structure of the whole image database.)
Step3: Consider a query set.
Step4: Select three clusters with centroids near to the query images.
Step5: Compute Mahalanobis distances between the query images and those in
the clusters, with the mean and covariance generated from the feature distribution
of the query set.
Step6: Rank the distances of all the images within the three clusters.

6.3 Theoretical Preliminaries

The definitions and the working principles of different parts used in the proposed
work are explained in the following subsections.

6.3.1 Mahalanobis Distance

For a multivariate vector xi= [x1,x2, ..xk]
T with a group of values with mean

μi=[μ1,μ2, ...μk]
T and covariance ∑, the Mahalanobis distance between xi and μi

is given by,
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Fig. 6.1 Block diagram.

D(xi,μi) =

√

(xi − μi)T
−1

∑ (xi − μi) (6.1)

xi is the ith input vector with k attributes and∑−1 is the inverse of covariance matrix.

∑=

⎡

⎢
⎢
⎣

σ11 σ12 −− σ1l

σ21 σ22 − σ2l

− −
σl1 σl2 −− σll

⎤

⎥
⎥
⎦

∑ jk=cov(x j,xk) can be seen as the generalized scalar valued variance to higher di-
mensions. For a scalar valued random variable x, σ2=var(x)=E[(x− μ)2], where
μ=E(X). The diagonal elements are variances of respective x and the off diagonal
elements σ jk are covariances of x j and xk The individual covariance values of ∑−1

are computed from the outer product of the data.
Mahalanobis distance takes into account the variability of data unlike Euclidean

distance. It is a weighted Euclidean distance, where the weighting is determined by
the range of variability of the sample points expressed by its covariance matrix.

6.3.2 K-means Algorithm

Let X={xi}, i = 1, . . . ,n be the set of n, d-dimensional points to be clustered into
a set of k clusters, C={ck}, k = 1, . . . ,k. K-means algorithm finds a partition such
that, the squared error between the empirical mean of a cluster and the points in the
cluster is minimized. Let uk be the mean of cluster ck. The squared error between uk

and the points in cluster ck is defined as S(ck) =∑xi∈ck
||xi − uk||2.
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The goal of K-means is to minimize the within-clusters sum of squares, i.e.,to
obtain argmin∑k

k=1∑xi∈ck
||xi −uk||2. K-means starts with an initial partition with k

clusters, and assign patterns to clusters so as to reduce the squared error. The squared
error always decrease with an increase in the number of clusters k and reduces to 0
when k=n. It can be minimized only for a fixed number of clusters. The main steps
of K-means algorithm are as follows: (1) An initial partition with K=k clusters is
created. (2) A new partition by assigning each pattern to its closest cluster center is
generated. (3) New cluster centers are computed. Steps (2) and (3) are repeated until
cluster membership stabilizes.

6.3.3 Feature Extraction

Visually significant candidate points (high curvature points and corners) are ex-
tracted from each color image of the database. The extracted points are the reduced
representatives of the original image. The detailed algorithm is explained in [1]. To
compute invariant color moments from these locations, the color model (c1,c2,c3)
as proposed by Gevers et. al. [34] is chosen. In addition to traditional color spaces
of HSI family, like Normalized RGB representation, illumination, and viewing ge-
ometry invariant representation, the new invariant color model (c1,c2,c3) discounts
the effects of shading and shadows also. The invariant feature model is defined in
the following.

The RGB plane is converted to (c1,c2,c3)

c1 = arctan(R/max(G,B)) (6.2)

c2 = arctan(G/max(R,B)) (6.3)

c3 = arctan(B/max(R,G)) (6.4)

In the next step, the color property of the selected candidates is extracted
(using (6.5)) from each of the component planes i.e., (c1,c2,c3) for computation
of centralized second moments (μ20,μ02,μ11). The normalized second central mo-
ments are computed from (6.5), which is used for computing invariant moments of
order (p+q).

ηpq =
μpq

μγ
00

(6.5)

where γ = p+q
2 + 1

Based on these, the moment invariant to translation, rotation, and scaling is de-
rived as shown in (6.6). These set of features can also be considered as global de-
scriptor of a shape with invariance properties, and with a built in ability to discern
and filter noise [26], [11].

φ = η20 +η02 (6.6)
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The image is characterized in the following manner. The moment (φ ) of the ex-
tracted significant spatial locations will help to identify color similarity of the re-
gions of interest (ROI). The features computed using the (c1,c2,c3) values of the
significant (ROI) may be used to produce efficient matching between images, due
to its inherent structural information. However, for natural images (consisting of
different objects) the representation obtained from shape signature ( representation
of the original image with groups of high curvature points), although important but
may not be sufficient for discriminating them from other categories. Considering
these facts, three additional set of moments taking all points from each of (c1,c2,c3)
planes are computed [2]. The components of the feature vector Fk = [ f1, f2, f3..., f6]
are as follows, f1, f2, f3 represent the (φ ) values computed, considering all points
of each component plane obtained from (6.4). These values did not vary with the
thresholding levels. The components f4, f5, f6 contain the (φ ) values as obtained
from the {c1, c2, c3 } values of representative high curvature locations (ROI) and
default white at other locations. A generated signature is shown in Fig. 6.2.

Fig. 6.2 (a) Flower image. (b) Fuzzy corner signature.

6.3.4 Range Based Query and Mahalanobis Distance

A set of closely related query images is considered. For computing Mahalanobis
distance between the query images and those in the clusters, μt and ∑ of (6.1) are
estimated from the corresponding query set.

Let the query set St be composed of t distinct images I={Ir1,Ir2,...,Irt}. Let an
image database Sd be composed of d distinct images, i.e., I={I1,I2,...,Id} where I ∈
Sd . An image is represented by a set of features Fk={ fq}N

q=1, where fq is the qth
feature component. This feature vector is a point in the N dimensional feature space.

The distance for each database image (point) with respect to the query set with
mean μt is obtained as, dId=D(Id,μt). The images in the database are ranked accord-
ing to that distance and displayed with respect to a particular image of the query set
to evaluate the retrieval performance. If Irt a point within query set, then the distance
of this image (representing the point) with respect to the mean i.e., dIt=D(Irt,μt)
is estimated. The images in the database are ranked with respect to the value of
did f = dId-dIt and displayed.
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6.4 Experimental Results

In order to show the retrieval performance using K-means clustering algorithm and
Mahalanobis distance function, we perform a series of tests on a general-purpose
image database (from COREL), named SIMPLIcity database, which includes 1000
images from 10 different semantic categories. Experimental results are shown in
Figs. 6.2–Figs. 6.8. The feature vector is composed of six spatial color moments.
The significant locations are extracted using a fuzzy corner detection algorithm pro-
posed earlier in [1]. The significant locations are a representative set of the original
image. This generates a perceptual representation of the original color image. The
significant high curvature points of an example image are shown in Fig. 6.2. For
each example, we examine the precision, and recall by considering the relevance of
image semantics between the query and target images. These are defined by Recall
rate and Precision rate [3]. Let n1 be the number of images retrieved in top n po-
sitions that are close to a query image. Let n2 represent the number of images in
the database similar to the query. Evaluation standards, Recall rate (R) is given by
n1
n2
× 100% and Precision rate (P) are given by n1

n × 100 % .
Top three clusters having centrionds closer to the query set are identified from

minimum average Euclidean distance between the images of the query set and clus-
ter centriods. The mean and covariance matrix are generated from the query set.
The database images are ranked according to their distances with respect to an
image within the set.

The query samples (training set) for a query type are shown in Fig. 6.3 and
Fig. 6.4.

Fig. 6.3 Training query set. Images displayed with respect to the left most image.

Fig. 6.4 Continuation of the training query set. Images displayed with respect to the left most
image.

Experimental results as shown in Fig. 6.5 and Fig. 6.6 considers a category
(elephant) which is quite rich in meaningful semantics.

The displayed results are ranked respect to the leftmost image of the query set.
The upper left corner image of Fig. 6.5 is the retrieved query image itself. In Fig.
6.6, are the other retrieved images. The results in Fig. 6.5 corresponds to those
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Fig. 6.5 Results without clustering (13/30) correctly retrieved.

Fig. 6.6 Results with clustering (16/30) correctly retrieved with improved rank.

obtained without clustering, which is based on the Mahalanobis distance between
the query set and all database images. Fig. 6.5, is having elephants of a special
category. The displayed results are quite satisfactory because images retrieved are
similar to each other and also to the query set. However, there is an outlier which is
a horse with a similar background. It is to note that, this is also not very far apart
from the category of the query. From the results obtained using K-means clustering
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algorithm we observe in Fig. 6.6, this image is removed away and the recall rate is
greater than 80%. It is to note that although this improvement is not very significant
but the images retrieved have quite good semantic relevance.

Intuitively this may be explained as follows. Clustering explores similarities be-
tween images in the database so that within-cluster similarity is high. We observe
that the application of K-means clustering algorithm in the image retrieval can throw
away some images that are visually apart from the query image with a reduced re-
trieval space. The average precision curves with and without clustering, considering
all database images as the query along with a generated training set, are shown in
Fig. 6.7. As can be seen, the retrieval performance is improved with clustering. The
experiment is performed in a Pentium 4 machine in windows XP using Matlab7. The
average CPU time without and with clustering is 2 seconds and 600ms respectively.
This can be accounted from the fact that, in case of the latter only the cluster of im-
ages close to the query are searched. As a result, the search space and the retrieval
time are reduced.

The retrieval performance using Mahalanobis distance is compared against the
popularly used Euclidean distance norms. The result is shown in Fig. 6.8. It is ob-
served from the graph of Fig. 6.8, that the average precision is higher by (10-20)%
than Euclidean distance, where the scope of display varies from 5-to 30 at a step
of five. Euclidean distance is widely used in image retrieval applications owing to
its simplicity and less complexity. However, Euclidean distance computes distances
between feature points i.e., between query and database images and no query set
is required. The enhancement of retrieval performance using Mahalanobis distance
can be explained from the fact that, the distance is calculated considering error vari-
ances of each dimension within the query set. As a result, the variability within
the query feature set is captured in the distance function itself and leading to better
retrieved results.

Fig. 6.7 Overall precision graph for sequential search and using clustering.
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Fig. 6.8 Overall precision graph with Mahalanobis and Euclidean distance using top three
clusters.

6.5 Conclusion

In the present work, similarity based retrieval is done using pre-categorization of
the feature database with K-means clustering algorithm, and Mahalanobis distance
as a similarity measure. Gain in computation time and performance is achieved due
to clustering approach. Mahalanobis distance has been found to be significant in
capturing the semantic relevance between images. In a CBIR system having a large
number of features, the covariance matrix for Mahalanobis distance may be expen-
sive. In an effective CBIR system, the feature dimension is generally very high as
higher dimensional features are expected to capture visual properties more precisely.
Each feature like color, texture, shape etc., tends to capture a particular visual aspect
of an image. All these features may not be equally important for all types of queries.
A feature selection scheme pertaining to a particular type of query may be used with
this distance measure. A good clustering principle should result in a data partition-
ing that is stable with respect to perturbations in the data. The main difficulty using
K-means clustering is the choice of initial K. Regarding computational complexity,
the K-means clustering problem is NP-hard for a general number of clusters. Future
research is necessary to address those issues.
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Chapter 7
Classifiers Based on Data Sets and Domain
Knowledge: A Rough Set Approach

Jan G. Bazan, Stanisława Bazan-Socha, Sylwia Buregwa-Czuma,
Przemysław Wiktor Pardel, Andrzej Skowron, and Barbara Sokołowska

Abstract. The problem considered is how to construct classifiers for approximation
of complex concepts on the basis of experimental data sets and domain knowledge
that are mainly represented by concept ontology. The approach presented in this
chapter to solving this problem is based on the rough set theory methods. Rough
set theory introduced by Zdzisław Pawlak during the early 1980s provides the foun-
dation for the construction of classifiers. This approach is applied to approximate
spatial complex concepts and spatio-temporal complex concepts defined for com-
plex objects, to identify the behavioral patterns of complex objects, and to the auto-
mated behavior planning for such objects when the states of objects are represented
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by spatio-temporal concepts requiring approximation. The chapter includes results
of experiments that have been performed on data from a vehicular traffic simula-
tor and the recent results of experiments that have been performed on medical data
sets obtained from Second Department of Internal Medicine, Jagiellonian Univer-
sity Medical College, Cracow, Poland. Moreover, we also describe the results of
experiments that have been performed on medical data obtained from Neonatal In-
tensive Care Unit in the Department of Pediatrics, Jagiellonian University Medical
College, Cracow, Poland.

Keywords: Rough set, concept approximation, complex dynamical system,
ontology of concepts, behavioral pattern identification, automated planning.

7.1 Introduction

Classifiers also known in literature as decision algorithms, classifying algorithms
or learning algorithms may be treated as constructive, approximate descriptions of
concepts (decision classes). These algorithms constitute the kernel of decision sys-
tems that are widely applied in solving many problems occurring in such domains as
pattern recognition, machine learning, expert systems, data mining and knowledge
discovery (see, e.g., [16, 20, 23, 28–30, 41]).

In literature there can be found descriptions of numerous approaches to con-
structing classifiers, which are based on such paradigms of machine learning theory
as classical and modern statistical methods (see, e.g., [29, 41]), neural networks
(see, e.g., [29,41]), decision trees (see, e.g., [29]), decision rules (see, e.g., [28,29]),
and inductive logic programming (see, e.g., [29]). Rough set theory introduced by
Zdzisław Pawlak during the early 1980s also provides the foundation for the con-
struction of classifiers (see, e.g., [32, 33, 35, 45]).

Recently, it has been noticed in the literature that with the development of mod-
ern civilization, not only the scale of the data gathered but also the complexity of
concepts and phenomena which they concern are increasing rapidly. This crucial
data change has brought new challenges to work out new data mining methods.
Particularly, data more and more often concerns complex processes which do not
give in to classical modeling methods. Of such a form may be medical and financial
data, data coming from vehicles monitoring, or data about the users gathered on the
Internet. Exploration methods of such data are in the center of attention in many
powerful research centers in the world, and at the same time detection of models of
complex processes and their properties (patterns) from data is becoming more and
more attractive for applications (see, e.g., [1, 11, 25, 31, 47,49]).

When modeling complex real-world phenomena and processes mentioned above
and solving problems under conditions that require an access to various distributed
data and knowledge sources, the so-called complex dynamical systems (CDS) are
often applied (see, e.g., [3, 13, 27, 50]), or putting it in other way autonomous mul-
tiagent systems (see, e.g., [19, 26, 27]) or swarm systems (see, e.g., [34]). These
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are collections of complex interacting objects characterized by constant change of
parameters of their components and their interactions over time, numerous rela-
tionships between the objects, the possibility of cooperation/competition among the
objects and the ability of objects to perform more or less compound actions. Ex-
amples of such systems are traffic, a patient observed during treatment, a team of
robots performing tasks, etc. It is also worthwhile mentioning that the description of
a CDS dynamics is often not possible with purely analytical methods as it includes
many complex vague concepts (see, e.g., [22, 40]). Such concepts concern proper-
ties of chosen fragments of the CDS and may be treated as more or less complex
objects occurring in the CDS. Hence, are needed appropriate methods of extracting
such fragments (granules [5]) that are sufficient to conclude about the global state
of the CDS in the context of the analyzed types of changes and behaviors. The iden-
tification of complex spatio-temporal concepts and using them to monitor a CDS
requires approximation of these concepts.

Making a progress in this field is extremely crucial, among other things, for the
development of intelligent systems making decision under uncertainty on the basis
of results of analysis of the available data sets. Therefore, working out methods of
detection of process models and their properties from data and proving their effec-
tiveness in different applications are of particular importance for the further devel-
opment of decision supporting systems in many domains such as medicine, finance,
industry, transport, telecommunication, and others.

However, essential limitations have been discovered concerning the existing data
mining methods for very large data sets regarding complex concepts, phenomena,
or processes (see, e.g., [12,38,51–53]). A crucial limitation of the existing methods
is, among other things, the fact that they do not support an effective approximation
of complex concepts, that is, concepts whose approximation requires discovery of
extremely complex patterns. Intuitively, such concepts are too far in the semantical
sense from the available concepts, e.g., sensory ones. As a consequence, the size
of searching spaces for relevant patterns crucial for approximation are so large that
an effective search of these spaces very often becomes unfeasible using the exist-
ing methods and technology. Thus, as it turned out, the ambition to approximate
complex concepts with high quality from available concepts (most often defined by
sensor data) in a fully automatic way, realized by the existing systems and by most
systems under construction, is a serious obstacle since the classifiers obtained are
often of unsatisfactory quality.

Moreover, it has been noticed in the literature (see, e.g., [15, 24, 38, 46]) that
one of the challenges for data mining is discovery of methods linking detection of
patterns and concepts with domain knowledge. The latter term denotes knowledge
about concepts occurring in a given domain and various relations among them. This
knowledge greatly exceeds the knowledge gathered in data sets; it is often repre-
sented in a natural language and usually acquired during a dialogue with an expert
in a given domain. One of the ways to represent domain knowledge is to record it
in the form of the so-called concept ontology where ontology is usually understood
as a finite hierarchy of concepts and relations among them, linking concepts from
different levels (see, e.g., [17, 21]).
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The main aim of the chapter is to present the developed methods for approxi-
mation of complex vague concepts involved in specification of real-life problems
and approximate reasoning used in solving these problems. However, methods pre-
sented in the chapter are assuming that additional domain knowledge in the form
of the concept ontology is given. Concepts from ontology are often vague and ex-
pressed in natural language. Therefore, an approximation of ontology is used to
create hints in searching for approximation of complex concepts from sensory (low
level) data.

We propose to link automatic methods of complex concept learning, and models
of detection of processes and their properties with domain knowledge obtained in
a dialog with an expert. Interaction with a domain expert facilitates guiding the
process of discovery of patterns and models of processes and makes the process
computationally feasible.

As we mentioned before, our methods for approximating complex spatio-
temporal concepts and relations among them assuming that the information about
concepts and relations is given in the form of ontology. To meet these needs, by
ontology we understand a finite set of concepts creating a hierarchy and relations
among these concepts which link concepts from different levels of the hierarchy. At
the same time, on top of this hierarchy there are always the most complex concepts
whose approximations we are interested in aiming at practical applications. More-
over, we assume that the ontology specification contains incomplete information
about concepts and relations occurring in ontology, particularly for each concept,
sets of objects constituting examples and counterexamples for these concepts are
given. Additionally, for concepts from the lowest hierarchical level (sensor level)
it is assumed that there are also sensor attributes available which enable to ap-
proximate these concepts on the basis of positive and negative examples given (see
example of ontology from Fig. 7.1 and [44]).

In this chapter, we present the following four types of methods for approximating
spatial or spatio-temporal complex concepts.

1. Methods of approximation of spatial concepts — when a complex concept
is a spatial concept not requiring an observation of changes over time (see
Section 7.2).

2. Methods of approximation of spatio-temporal concepts — when a complex con-
cept is a spatio-temporal concept; it requires observing changes of complex ob-
jects over time (see Section 7.3).

3. Methods of behavioral pattern identification — when a complex concept is rep-
resented as a certain directed graph which is called a behavioral graph (see
Section 7.4).

4. Methods of automated behavior planning for complex object - when the states
of objects are represented by spatio-temporal concepts requiring approximation
(see Section 7.5).

The result of the works conducted is also a programming system the Rough Set
Interactive Classification Engine (RoughICE), supporting the approximation of
spatio-temporal complex concepts in the given ontology in the dialog with the user.
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Safe driving

Safe distance from 
the front vehicle

Forcing the 
right of way

Possibility of going 
back to the right lane

Safe 
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stopping before 
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Safe distance from 
the opposite vehicle 
during overtaking

S E N S O R   DATA

Fig. 7.1 An ontology for safe driving

The RoughICE includes an implementation of the algorithmic methods presented in
this chapter and is available on the web side [42]. To simplify the use of RoughICE
algorithms and make it more intuitive, the RoughICE graphical user interface was
constructed that consists of three following parts (see Fig. 7.2):

1. project designer — directed toward visual representation of workflow,
2. graph editor — for representing domain knowledge in the form of ontology,
3. script editor and compiler — for representing domain knowledge in the form

of scripts.

Sections 7.2, 7.4, and 7.5, apart from the method description, contain the results
of computing experiments conducted on real-life data sets, supported by domain
knowledge. It is worth mentioning that the requirements regarding data sets which
can be used for computing experiments with modeling spatio-temporal phenomena
are much greater than the requirements of the data which are used for testing process
of classical classifiers. Not only have the data to be representative of the decision
making problem under consideration but also they have to consist the relevant do-
main knowledge about approximated concepts (usually cooperation with experts in
a particular domain is essential for acquisition of domain knowledge). It is impor-
tant that such data should fully and appropriately represent complex spatio-temporal
phenomena of the environment.

The authors of the chapter acquired such data sets from three sources.
The first source of data is the traffic simulator (see [44] and [4] for more details).

The simulator is a computing tool for generating data sets connected to the traffic on



98 J.G. Bazan et al.

Project 

designer

Graph

editor

Script

editor

Fig. 7.2 The view of RoughICE graphical user interface

the street and at crossroads. During simulation each vehicle appearing on the simu-
lation board behaves as an independently acting agent. On the basis of observation
of the surroundings (other vehicles, its own location, weather conditions, etc.) this
agent makes an independent decision what maneuvers it should make to achieve its
goal which is to go safely across the simulation board and to leave the board using
the outbound way given in advance. At any given moment of the simulation, all cru-
cial vehicle parameters may be recorded, and thanks to this data sets for experiments
can be obtained. The results of experiments with the data sets recorded in the road
simulator were presented in Section 7.2.

The second collection of data sets used in computer experiments was provided
by Second Department of Internal Medicine, Collegium Medicum, Jagiellonian
University, Cracow, Poland. This data includes characteristics of patients with sta-
ble coronary heart disease: clinical status, past history, the laboratory tests results,
electrocardiographic (ECG) recordings, applied therapeutic procedures, and coro-
nary angiography outcomes. In the chapter we present recent results of experiments
performed for this collection of data sets (see Section 7.4).

The third collection of data sets used in computer experiments was provided by
Neonatal Intensive Care Unit, First Department of Pediatrics, Polish-American In-
stitute of Pediatrics, Collegium Medicum, Jagiellonian University, Cracow, Poland.
This data constitutes a detailed description of treatment of 300 infants, i.e., treat-
ment results, diagnosis, operations, medication (see [4, 6–9]). The results for this
data collection we present in Section 7.5.
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7.2 Methods of Approximation of Spatial Concepts

The method of approximating concepts from ontology is proposed when a concept
is a spatial concept (not requiring an observation of changes over time) and it is de-
fined on a set of the same objects (examples) as the lower ontology level concepts;
at the same time, the lower level concepts are also spatial concepts. An exemplary
situation of this type is an approximation of the concept of Safe overtaking (con-
cerning single vehicles on the road) using concepts such as Safe distance from the
opposite vehicle during overtaking, Possibility of going back to the right lane, and
Possibility of safe stopping before the crossroads (see Fig. 7.1).

In the chapter, the method of approximating concepts from ontology is proposed
when a higher ontology level concept is a spatial concept (not requiring an observa-
tion of changes over time) and it is defined on a set of the same objects (examples)
as the lower ontology level concepts; at the same time, the lower level concepts are
also spatial concepts. An exemplary situation of this type is an approximation of the
concept of Safe overtaking (concerning single vehicles on the road) using concepts
such as Safe distance from the opposite vehicle during overtaking, Possibility of
going back to the right lane, and Possibility of safe stopping before the crossroads.

The concept approximation method described in this subsection is an example
of the general methodology of approximating concepts from ontology described
in [4]. That is why its specificity is the domain knowledge usage expressed in the
form of a concept ontology and application of rough set methods, mainly in terms
of application of classifier construction methods.

The basic terms used in the presented method is pattern and production rule.
Patterns are descriptions of examples of concepts from an ontology and they are
constructed by a stratifying classifier, defined as a classifying algorithm stratifying
concepts, that is, classifying objects to different concept layers (see [4] for more
details). Two approaches have been proposed to the construction of these classifiers.
One of them is the expert approach which is based on the defining, by an expert,
an additional attribute in data which describes membership of the object to indi-
vidual concept layers. Next, a classifier differentiating layers as decision classes is
constructed. The second approach called the automated approach is based on the de-
signing algorithms being the classifier extensions which enable to classify objects to
concept layers on the basis of certain premises and experimental observations. In [4]
a method of this type has been proposed which is based on shortening of decision
rules relatively to various coefficients of consistency.

For example, we consider a concept C, where inclusion to this concept is de-
scribed by six linearly ordered layers “certainly NO", “rather NO", “possi-
bly NO", “possibly YES", “rather YES" and “certainly YES". For the concept
C we define a pattern (C ≥ “rather YES”), that has the following interpretation: the
inclusion to the concept C is at least “rather YES". It is easy to see that a stratifying
classifier can be used to judge whether a tested object belongs to this pattern or not.

A production rule is a decision rule which is constructed on two adjacent levels
of ontology. In the predecessor of this rule there are patterns for the concepts from
the lower level of the ontology whereas in the successor, there is a pattern for one
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concept from the higher level of the ontology (connected with concepts from the
rule predecessor) where both patterns from the predecessor and the successor of the
rule are chosen from patterns constructed earlier for concepts from both adjacent
levels of the ontology. In Fig. 7.3 we present an example of production rule for
concepts C1, C2 and C. This production rule has the following interpretation: if in-
clusion degree to a concept C1 is at least “possibly YES" and to concept C2 at least
“rather YES" then the inclusion degree to a concept C is at least “rather YES".

C2 ≥ ”rather YES”C1 ≥ ”possibly YES”

C ≥ ”rather YES” 

Fig. 7.3 The example of production rule

A rule constructed in such a way may serve as a simple classifier or an argument
“for"/“against" the given concept, enabling classification of objects which match
the patterns from the rule predecessor with the pattern from the rule successor. For
example, the object u1 from Fig. 7.4 is classified by production rule from Fig. 7.3 be-
cause it matches both patterns from the left hand side of the production rule whereas,
the object u2 from Fig. 7.4 is not classified by production rule because it does not
match the second source pattern of production rule (the value of attribute C2 is less
than “rather YES").

In [4], there was proposed an algorithmic method of induction of production
rules, consisting in an appropriate search for data tables with attributes describing
the membership of training objects to particular layers of concepts. These tables
(called a layer table) are constructed using the so-called constraints between con-
cepts thanks to which the information put in the tables only concerns those ob-
jects/examples which might be found there according to the production rule un-
der construction. In Fig. 7.5, we illustrate the process of extracting production
rule for concept C and for the approximation layer “rather YES” of concept C.
Is is easy to see that if from the table from Fig. 7.5 we select all objects satis-
fying aC = “rather YES”, then for selected objects minimal value of the attribute
aC1 is equal to “possibly YES” and minimal value of the attribute aC2 is equal to
“rather YES”. Hence, we obtain the production rule:

(C1 ≥ “possibly YES”)∧ (C2 ≥ “rather YES”)⇒ (C ≥ “rather YES”).

Although a single production rule may be used as a classifier for the concept
appearing in a rule successor, it is not a complete classifier yet, i.e., classifying
all objects belonging to an approximated concept and not only those matching
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C1 ≥ ”possibly YES”

C ≥ ”rather YES”

C2 ≥ ”rather YES”

”rather YES””certainly YES”

C2C1
C ≥ ”rather YES”

”possibly YES””rather YES”

C2C1
C ≥ ”rather YES”→/

→u1

u2

Fig. 7.4 Classifying tested objects by single production rule

possibly NOcertainly NOpossibly YES

certainly YESrather YEScertainly YES

certainly NOpossibly NOcertainly NO 

rather YESrather YESpossibly YES

rather NOpossibly NOpossibly YES

possibly YESpossibly NOpossibly YES

rather YEScertainly YESrather YES

certainly NOcertainly NOcertainly NO

certainly YEScertainly YEScertainly YES

aCaC2aC1

C1 ≥ possibly YES

C≥ rather YES

C2 ≥ rather YES

certainly NO < rather NO < possibly NO < possibly YES < rather YES < certainly YES

The target pattern  of 

production rule

The source patterns  of 

production rule

Fig. 7.5 The illustration of production rule extracting

patterns of a rule predecessor. Therefore, in practice, production rules are grouped
into the so-called productions, i.e., production rule collections, in a way that each
production contains rules having patterns for the same concepts in a predecessor and
the successor, but responding to their different layers. In Fig. 7.6 we present three
production rules constructed for some concepts C1, C2, and C approximated by six
linearly ordered layers “certainly NO", “rather NO", “possibly NO", “possi-
bly YES", “rather YES" and “certainly YES". This collection of production rules
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is an exemplary production for concepts C1, C2, and C. Moreover, production rules
from Fig. 7.6 have the following interpretation:

1. if inclusion degree to a concept C1 is at least “rather YES” and to concept C2

at least “certainly YES”, then the inclusion degree to a concept C is at least
“certainly YES”;

2. if the inclusion degree to a concept C1 is at least “possibly YES” and to a concept
C2 at least “rather YES”, then the inclusion degree to a concept C is at least
“rather YES”;

3. if the inclusion degree to a concept C1 is at least “possibly YES” and to a concept
C2 at least “possibly YES”, then the inclusion degree to a concept C is at least
“possibly YES”.

C2 ≥ ”certainly YES” C1 ≥ ”rather YES” 

C3 ≥ ”certainly YES” 

C2 ≥ ” rather YES” C1 ≥ ” possibly YES” 

C3 ≥ ”rather YES” 

C2 ≥ ” possibly YES”C1 ≥ ” possibly YES”

C3 ≥ ”possibly YES” 

Fig. 7.6 The example of production as a collection of three production rules

In the case of production from Fig. 7.6, concept C is the target concept and C1, C2

are the source concepts.
Such production makes is possible to classify much more objects than a single

production rule where these objects are classified into different layers of the concept
occurring in a rule successor. Both productions and production rules themselves are
only constructed for the two adjacent levels of ontology. Therefore, in order to use
the whole ontology fully, there are constructed the so-called AR-schemes, i.e., ap-
proximate reasoning schemes which are hierarchical compositions of production
rules (see, e.g., [10, 14, 39]). The synthesis of an AR-scheme is carried out in a way
that to a particular production from a lower hierarchical level of the AR-scheme
under construction another production rule on a higher level may be attached, but
only that one where one of the concepts for which the pattern occurring in the pre-
decessor was constructed is the concept connected with the rule successor from the
previous level. Additionally, it is required that the pattern occurring in a rule prede-
cessor from the higher level is a subset of the pattern occurring in a rule successor
from the lower level (in the sense of inclusion of object sets matching both patterns).
To the two combined production rules other production rules can be attached (from
above, from below, or from the side) and in this way a multilevel structure is made
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which is a composition of many production rules. The AR-scheme constructed in
such a way can be used as a hierarchical classifier whose entrance are predecessors
of production rules from the lowest part of the AR-scheme hierarchy and the exit is
the successor of a rule from the highest part of the AR-scheme hierarchy. That way,
each AR-scheme is a classifier for a concept occurring in the rule successor from
the highest part in the hierarchy of the scheme and, to be precise, for a concept for
which a pattern occurring in the rule successor from the highest part in the hierarchy
of the AR-scheme is determined.

C5 ≥ ”possible YES” 

C5 ≥ ”rather YES” 

C1 ≥ ”possible YES”   C2 ≥ ”rather YES”    C4 ≥ ”possible YES”

C5 ≥ ”possible YES”

C1 ≥ ”possible YES”    C2 ≥ ”rather YES” 

C3 ≥ ”rather YES”  C4 ≥ ”possible YES” 

C3 ≥ ”possible YES”

C3 ≥ ”rather YES” 

C1 ≥ ”possible YES”    C2 ≥ ”possible” YES” 

C1 ≥ ”possible YES”    C2 ≥ ”rather YES” 

C1 ≥ ”rather YES”   C2 ≥ ”certainly YES” 

C5 ≥ ”certainly YES” 

C3 ≥ ”certainly YES”   C4 ≥ ”certainly YES” 
   C3 ≥ ”rather YES”    C4 ≥ ”possible YES” 

C3 ≥ ”certainly YES”    C4 ≥ ”rather YES” 

C5 ≥ ”possible YES”

AR-scheme 
as a new 

production 
rule 

Production 
for C5

AR-scheme 

C3 ≥ ”certainly YES” 

Production 
for C3

Fig. 7.7 Synthesis of approximate reasoning scheme

For example, in Fig. 7.7 we have two productions. The target concept of the first
production is C5 and the target concept of the second production is the concept C3.
We select one production rule from the first production and one production rule from
the second production. These production rules are composed and then a simple AR-
scheme is obtained that can be treated as a new two-levels production rule. Notice,
that the target pattern of lower production rule in this AR-scheme is the same as
one of the source patterns from the higher production rule. In this case, the common
pattern is described as follows: inclusion degree (of some pattern) to a concept C3

is at least “possibly YES".
In this way, we can compose AR-schemes into hierarchical and multilevel struc-

tures using productions constructed for various concepts. AR-scheme constructed
in such a way can be used as a hierarchical classifier whose input is given by
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predecessors of production rules from the lowest part of AR-scheme hierarchy
and the output is a successor of a rule from the highest part of the AR-scheme
hierarchy.

However, similarly to the case of a single production rule, an AR-scheme is not
a full classifier yet. That is why, in practice, for a particular concept there are many
AR-schemes constructed which approximate different layers or concept regions.

In the paper [4], there are proposed two approaches for constructing AR-schemes.
The first approach is based on memory with AR-schemes and consists in building
many AR-schemes after determining production, which later on are stored and used
for the classification of tested objects.

The second approach is based on a dynamic construction of AR-schemes. It is
realized in a way that during classification of a given tested object, an appropriate
AR-scheme for classifying this particular object is built on the basis of a given
collection of productions (“lazy” classification).

7.2.1 Experiments with Data

To verify effectiveness of classifiers based on AR schemes, we have implemented
our algorithms in the RoughICE (see Section 7.1 and [4]).

The experiments have been performed on the data set obtained from the road
simulator (see [44]). Data set consists of 18101 objects generated by the road simu-
lator. We have applied the train and test method. The data set was randomly divided
into two parts: training and test ones (50% + 50%). In order to determine the stan-
dard deviation of the obtained results each experiment was repeated for 10 random
divisions of the whole data set.

In our experiments, we compared the quality of two classifiers: RS and ARS. For
inducing RS, we use RSES system (see [43]) generating the set of decision rules by
algorithm LEM2 (see [4] for more details) that is next used for classifying situations
from testing data. ARS is based on AR schemes (the implementation from [42]).

During ARS classifier construction, in order to approximate concepts occurring
in ontology we also used the LEM2 algorithm.

For production rule construction, we used the expert method of stratifying clas-
sifier construction. However, to classify objects using the ARS classifier we used
the method of dynamic construction of the AR-schemes for specific tested objects
(see [4]).

We compared RS and ARS classifiers using the accuracy, the coverage, the ac-
curacy for positive examples (also called as the sensitivity or the true positive rate),
the accuracy for negative examples (also called as the specificity or the true negative
rate), the coverage for positive examples, and the coverage for negative examples,
the real accuracy (where Real accuracy = Accuracy * Coverage), the learning time,
and the rule set size.
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Table 7.1 Results of experiments for the concept: Is the vehicle driving safely?

Decision class Method Accuracy Coverage Real accuracy

YES RS 0.977 ± 0.001 0.948 ± 0.003 0.926 ± 0.003
ARS 0.967 ± 0.001 0.948 ± 0.003 0.918 ± 0.003

NO RS 0.618 ± 0.031 0.707 ± 0.010 0.436 ± 0.021
ARS 0.954 ± 0.016 0.733 ± 0.018 0.699 ± 0.020

All classes RS 0.963 ± 0.001 0.935 ± 0.003 0.901 ± 0.003
(YES + NO) ARS 0.967 ± 0.001 0.937 ± 0.004 0.906 ± 0.004

Table 7.2 Learning time and the rule set size for concept: Is the vehicle driving safely?

Method Learning time Rule set size

RS 488 ± 21 seconds 975 ± 28
ARS 33 ± 1 second 174 ± 3

Table 7.1 shows the results of the considered classification algorithms for the
concept Is the vehicle driving safely? (see Fig. 7.1). Together with the results we
present a standard deviation of the obtained results.

One can see that accuracy of algorithm ARS for the decision class NO is higher
than the accuracy of the algorithm RS for analyzed data set. The decision class NO
is smaller than the class Y ES. It represents atypical cases in whose recognition we
are most interested in (dangerous driving a vehicle on a highway).

Table 7.2 shows the learning time and the number of decision rules induced for
the considered classifiers. In the case of the algorithm ARS, we present the aver-
age number of decision rules over all concepts from the relationship diagram (see
Fig. 7.1).

One can see that the learning time for ARS is much shorter than for RS and
the average number of decision rules (over all concepts from the relationship dia-
gram) for ARS algorithm is much lower than the number of decision rules induced
for RS.

The experiments showed that classification quality obtained through classifiers
based on AR-schemes is higher than classification quality obtained through tradi-
tional classifiers based on decision rules (especially in the case of the class NO).
Apart from that the time spent on classifier construction based on AR-schemes is
shorter than when constructing classical rule classifiers. Also, the structure of a sin-
gle rule classifier (inside the ARS classifier) is less complicated than the structure of
RS classifier (a considerably smaller average number of decision rules). It is worth
noticing that the the performance of the ARS classifier is much more stable than
the RS classifier because of the differences in data in samples supplied for learning
(e.g., to change the simulation scenario).
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7.3 Methods of Approximation of Spatio-temporal Concepts

In this section, we propose a method of approximating concepts from hierarchi-
cal ontology when a higher ontology level concept is a spatio-temporal concept (it
requires observing changes of complex objects over time) defined on a set of the
same objects as the lower ontology level concepts; at the same time, the lower on-
tology level concepts are spatial concepts only. This case concerns a situation when
during an observation of a single object in order to capture its behavior described
by a higher ontology level concept, we have to observe it longer than it requires
to capture behaviors described by lower ontology level concepts. For example, in
case of data sets generated from the traffic simulator, lower ontology level concepts
may concern simple vehicle behaviors such as small increase in speed, small de-
crease in speed or small move towards the left lane. However, the higher ontology
level concept may be a more complex concept as, e.g., acceleration in the right
lane. Let us notice that determining whether a vehicle accelerates in the right lane
requires its observation for some time called a time window. On the other hand,
determining whether a vehicle speed increases in the right lane requires only a reg-
istration of the speed of a vehicle in two neighboring instants (time points) only.
That is why spatio-temporal concepts are more difficult to approximate than spa-
tial concepts whose approximation does not require observing changes of objects
over time.

Similarly to spatial concept approximation (see Section 7.2), the method of
concept approximation described in this subsection is an example of the general
methodology of approximating concepts from ontology described in [4]. Its speci-
ficity is, therefore, the domain knowledge usage expressed in the form of a concept
ontology and rough set method application, mainly in terms of application of classi-
fier construction methods. However, in this case more complex ontologies are used,
and they contain both spatial and spatio-temporal concepts.

The starting point for the method proposed is a remark that spatio-temporal con-
cept identification requires an observation of a complex object over a longer period
of time called a time window (see [4]). To describe complex object changes in the
time window, the so-called temporal patterns (see [4]) are used, which are defined
as functions determined on a given time window. These patterns, being in fact for-
mulas from a certain language, also characterize certain spatial properties of the
complex object examined, observed in a given time window. They are constructed
using lower ontology level concepts and that is why identification whether the ob-
ject belongs to these patterns requires the application of classifiers constructed for
concepts of the lower ontology level. Moreover, temporal patterns are often defined
using queries with binary answers such as Yes or No. For example, in the case of
road traffic we have exemplary temporal patterns such as Did vehicle speed increase
in the time window?, Was the speed stable in the time window?, Did the speed in-
crease before a move to the left lane occurred?, or Did the speed increase before a
speed decrease occurred?. We assume that any temporal pattern ought to be defined



7 Classifiers Based on Data Sets and Domain Knowledge 107

by a human expert using domain knowledge accumulated for the given complex
dynamical system.

On a slightly higher abstraction level, the spatio-temporal concepts (also called
temporal concepts) are directly used to describe complex object behaviors (see [4]).
Those concepts are defined by an expert in a natural language and they are usually
formulated using questions about the current status of spatio-temporal objects, e.g.,
Does the vehicle examined accelerate in the right lane?, Does the vehicle maintain
a constant speed during lane changing? The method proposed here is based on ap-
proximating temporal concepts using temporal patterns with the help of classifiers.
In order to do this, a special decision table is constructed called a temporal con-
cept table (see [4]). In case of method presented in this chapter, the rows of this
table represent the parameter vectors of lower level ontology concepts observed in
a time window. Columns of this table (apart from the last one) are determined using
temporal patterns. However, the last column represents membership of an object,
described by parameters (features, attributes) from a given row, to the approximated
temporal concept (see Fig. 7.8).
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Fig. 7.8 The scheme of a temporal concept table

It is worth noticing that the presented above approach to temporal concept ap-
proximation can be extended to the case when higher ontology level concepts
are defined on a set of objects which are structured objects in relation to objects
(examples) of the lower ontology level concepts, that is, the lower ontology level
objects are parts of objects from the higher ontology level. This case concerns a
situation when during a structured object observation, which serves the purpose of
capturing its behavior described by a higher ontology level concept, we must ob-
serve this object longer than it is required to capture the behavior of a single part of
the structured object described by lower ontology level concepts (see [4] for more
details).
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7.4 Methods of Behavioral Pattern Identification

Temporal concepts may be treated as nodes of a certain directed graph which is
called a behavioral graph. Links (directed edges) in this graph are the temporal
relations between temporal concepts meaning a temporal sequence of satisfying two
temporal concepts one after another. These graphs may be used to represent and
identify the so-called behavioral patterns which are complex concepts concerning
dynamic properties of complex objects expressed in a natural language depending
on time and space. Examples of behavioral patterns may be: overtaking on the road,
driving in a traffic jam, behavior of a patient connected with a high life threat.
These types of concepts are much more difficult to approximate even than many
temporal concepts. Fig. 7.9 presents an example of behavioral graph for a single
object-vehicle exhibiting a behavioral pattern of vehicle while driving on a road. In
this behavioral graph, for example, connections between the nodes Acceleration on
the right lane and Acceleration and changing lanes lanes from right to left indicate
that after an acceleration in the right lane, a vehicle can change to the left lane
(maintaining its acceleration during both time windows).

Acceleration
on the right lane

Deceleration
on the right lane

Stable speed
on the right lane

Acceleration and
changing lanes from

right to left

Stable speed and
changing lanes from

right to left

Stable speed and
changing lanes from

left to right

Deceleration and
changing lanes from

left to right

Acceleration
on the left lane

Deceleration
on the left lane

Stable speed
on the left lane

Fig. 7.9 A behavioral graph for a single object-vehicle

In [4] a new method of behavioral pattern identification is presented which is
based on interpreting the behavioral graph of a complex object as a complex clas-
sifier enabling identification of a behavioral pattern described by this graph. This is
possible based on the observation of the complex object behavior for a longer time
and checking whether the behavior matches the chosen behavioral graph path. If
this is so, then it is determined if the behavior matches the behavioral pattern rep-
resented by this graph, which enables a detection of specific behaviors of complex
objects.
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In order to test the quality and effectiveness of classifier construction meth-
ods based on behavioral patterns, there have been performed experiments on data
generated from the road simulator and medical data connected to detection of
higher-death risk in infants suffering from the respiratory failure (see [4,6,8,9]). The
experiments showed that the algorithmic methods presented in this chapter provide
very good results in detecting behavioral patterns and may be useful with complex
dynamical systems monitoring.

Additionally, in this chapter we present recent results of experiments investigat-
ing membership of patients with stable coronary heart disease to behavioral pattern
related to risk of sudden cardiac death (SCD). Using Holter ECG recordings and
well known predictors of SCD, the concepts of SCD risk intensity were defined (see
Section 7.4.1).

7.4.1 Risk Pattern Identification in Medical Data

An identification of some behavioral patterns can be very important for identifi-
cation or prediction of behavior of complex dynamical system, especially when
behavioral patterns describe some dangerous situations. In this case, we call such
behavioral patterns as risk patterns and we need some tools for their identification
(see, e.g., [18]). If in the current situation some risk patterns are identified, then the
control object (a driver of the vehicle, a medical doctor, a pilot of the aircraft, etc.)
can use this information to adjust selected parameters to obtain the desirable behav-
ior of the complex dynamical system. This can make it possible to overcome incon-
venient or unsafe situations. For example, a very important element of the treatment
of the patients with coronary heart disease is the appropriate assessment of the risk
of SCD. The appropriate assessment of this risk leads to the decision of particular
method and level of treatment. Therefore, if some complex behavior of a patient
that causes a danger of SCD is identified, we can try to change her/his behavior by
using some other methods of treatment (may be more radical) in order to avoid the
patients’s death. We describe how the presented approach can be applied to iden-
tify the patient’s SCD risk caused by coronary heart disease (see next subsections).
In this approach, a given patient is treated as an investigated complex dynamical
system, whilst coronary heart disease is treated as a complex object changing and
interacting over time with its environment.

7.4.2 Medical Temporal Patterns

Data sets used for complex object information storage occurring in a given complex
dynamical system may be represented using information systems (see, e.g., [4,32]).
This representation is based on representing individual complex objects by ob-
ject (rows) of information system and information system attributes represent the
properties of these objects at the current time point.
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The concepts concerning properties of complex objects at the current time point
(spatial concepts) can be defined on the basis of domain knowledge by human ex-
perts and can be approximated by properties (attributes) of these objects at the cur-
rent time point (for instance, using the standard rough set approach to classifier
construction [4, 32]).

The concepts concerning properties of complex objects at the current time point
in relation to the previous time point are a way of representing very simple behaviors
of the objects. However, the perception of more complex types of behavior requires
the examination of behavior of complex objects over a longer period of time. This
period is usually called the time window, which is to be understood as a sequence
of objects of a given temporal information system (a kind of information system
with special attribute represents time) registered for the established complex object
starting from the established time point over the established period of time or as
long as the expected number of time points are obtained. Therefore, learning to
recognize complex types of behavior of complex objects with use of gathered data
as well as the further use of learned classifiers to identify the types of behavior
of complex objects, requires working out of the mechanisms of extraction of time
windows from the data and their properties. Hence, if we want to predict such more
complex behaviors or discover a behavioral pattern, we have to investigate values of
attributes registered in the current time window. Such investigation can be expressed
using temporal patterns (see Section 7.3). For example, in the case of the medical
example one can consider patterns expressed by following questions: “Did HRV
increase in the time window?", “Was the heart rate stable in the time window?", “Did
ST interval level increase?", or “Was the QT segment time higher then the right time
at any point in time window?". Notice that all such patterns ought to be defined by a
human, medical expert using domain knowledge accumulated for the coronary heart
disease.

7.4.3 Medical Risk Pattern

The temporal patterns can be treated as new features that can be used to approxi-
mate temporal concepts. In the case of the treatment of patient with cardiovascu-
lar failure, one can define temporal concepts such as “Is the patient’s SCD risk on
low level?", “Is the patient’s SCD risk on medium level?", or “Was high SCD risk
detected?".

Temporal concepts defined for objects from a complex dynamical system and
approximated by classifiers, can be treated as nodes of a graph called a behav-
ioral graph, where connections between nodes represent temporal dependencies.
Fig. 7.10 presents a behavioral graph for a single patient exhibiting a behavioral
pattern of patient by analysis of the circulatory system failure caused by coronary
heart disease. This graph has been created on the basis of observation of medical
data sets and known factors for SCD risk stratification. In this behavioral graph, for
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Fig. 7.10 A behavioral graph of SCD risk by analyzing cardiovascular failure

example, connection between node “Medium SCD risk" and node “High SCD risk"
indicates that after some period of progress in cardiovascular failure on medium
level, a patient can change his behavior to the period, when progress in cardiovas-
cular failure is high.

This behavioral graph is an example of risk pattern. If the patient matches the
“Low SCD risk" concept in the first time window, “Medium SCD risk" in the fol-
lowing window, after which his state returned to the previous one, then the patient’s
behavior does not match this behavioral graph.

7.4.4 Experiments with Medical Data

The next experiments were performed on data obtained from Second Department of
Internal Medicine, Collegium Medicum, Jagiellonian University, Cracow, Poland.
The data collection contains informations about 95 patients with stable coronary
heart disease, collected between 2006 and 2009. It includes a detail description of
clinical status (age, sex, diagnosis), coexistent diseases, pharmacological manage-
ment, the laboratory tests outcomes (level of cholesterol, troponin I, LDL — low
density lipoproteins), Holter ECG recordings (long term, 24-hour signals) and var-
ious Holter-based indices such as: ST-segment deviations, HRV, arrythmias, or QT
dispersion. Sinus (normal) rhythm was observed in 73 patients, while 22 patients
had permanent FA (atrial fibrillation). Two 24-hour Holter ECG recordings were
performed using Aspel’s HolCARD 24W system. There was coronary angiography
after first Holter ECG.

All data was imported to Infobright Community Edition (ICE) environment
(see [48]). ICE is an open source software solution designed to deliver a scalable
data warehouse optimized for analytic queries (data volumes up to 50 TB, market-
leading data compression (from 10:1 to over 40:1)). Database schema was designed
to store all information about patients, including supplementing the target database
in the future. For further processing data have been imported into the RoughICE
environment.
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For the experiment, one table with 744 objects was formed. Each object (row)
contains information about the parameters of one patient with one hour of observa-
tion, being the average hourly values of observed parameters.

The experiments were performed in order to predict the behavioral pattern re-
lated to a high risk of SCD. This pattern was defined by medical experts on the
base of well-known predictors of SCD. The evaluation of SCD risk includes: ad-
vanced age, male sex, coexisting diseases like DM (diabetes mellitus), HA (arterial
hypertension), history of stroke, previous myocardial infarction, CRP (C-phase re-
action protein) level, depressed LVEF (left ventricular ejection fraction), presence
of arrhythmias and ischaemias, high heart rate, decreased HRV, and HRT (heart rate
turbulence). Taking into account simplicity of example model and temporal aspect
of patterns, in this approach only few factors were chosen, such as HRV index:
SDNN (standard deviation of NN intervals — normal to normal beat segments),
average heart rate, ST interval decrease, and QT segment changes. HRV parameter
was calculated upon one hour period, though usually it is analyzed within 24 hour
interval. Because of the lack of the appropriate data, such standard analyzes were
not performed in this experiment.

We have applied the train-and-test method. However, because of the specificity
of the analyzed data the method of data division differed slightly from the standard
method. Namely, in each experiment the whole patient set was randomly divided
into two groups (training group: 60% of patients and testing group: 40% of patients).

As a result of the above mentioned division of patients into training and testing
ones, each of these parts made it possible to create time windows having duration
of 2 time points (2 h of patients observation) and sequences of such time windows
(training part: approximately 400 time windows, testing part: approximately 270 se-
quences of time windows). Time windows created on the basis of training patients
created a training table for a given experiment, while time windows sequences cre-
ated on the basis of tested patients created a test table for the experiment.

In order to determine the standard deviation of the obtained results each experi-
ment was repeated for 10 random divisions of the whole data set.

A single experiment was as follows (see also Figure7.11). First, for the training
data the family of all time windows having duration of 2 time points were gener-
ated. Then, on the basis of temporal patterns proposed by experts, the behavioral
graph from Figure 7.10 and the additional domain knowledge (represented by ex-
perts scripts in RoughICE — see [42] for more details) the temporal pattern tables
were constructed for all concepts from the behavioral graph from the Figure 7.10.
Then for all these tables a family of stratifying classifiers were generated that are
able to classify objects (patients) to different concepts from the sequence of ordered
layers. The first layer in this sequence represents objects which, without any doubt
do not belong to the concept. The next layers in the sequence represent objects be-
longing to the concept more and more certainly. The last layer in this sequence rep-
resents objects certainly belonging to the concept (see [4] for more details). Next,
a complex classifier was constructed on the basis of stratifying classifiers family
that allow us to predict membership of a particular time window to various tempo-
ral concepts from the behavioral graph (see Figure7.11). The main idea of working
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Fig. 7.11 A general scheme of experiments for the risk pattern of SCD

of such classifier is as follows. A given time window is classified to such temporal
concept that a stratifying classifier corresponding to this concept classifies the time
window to the top layer of all layers proposed by stratifying classifiers. Next, for the
testing data, the family of all sequences of time windows having duration of 2 time
windows were generated (the length of every time widow was 2 just as in the case
of time windows for training data set). Then, for every sequence from this family,
a sequence of labels of temporal concepts was generated in two different methods
(see below). Such sequence of labels can be interpreted as a path of nodes from
the behavioral graph. In this interpretation, the sequence of labels represents the an-
swer if a given sequence matches the behavioral graph (behavioral pattern) from the
figure 7.10.

The first method of the sequence of concepts labels generation is based on tem-
poral patterns proposed by experts, the behavioral graph from Figure 7.10, and the
additional domain (expert) knowledge about membership of patients to temporal
concepts from behavioral graph. Therefore, this method we call as a expert method
and the sequence of concepts labels generated with usage of this method as an expert
sequence of concepts labels.

The second method of the sequence of concepts labels generation is based on
the complex classifier generated for the training data. For a given sequence of time
windows, the complex classifier has been used to generation of the concepts label
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for every time window separately. In this way, we obtain the sequence of concepts
labels, that can be also treated as a potential path of nodes from the behavioral
graph. This method we call as an classifier method and the sequence of concepts
labels generated with usage of this method we call as a sequence of concepts labels
based on classifier.

Our method of presented approach evaluation is based on comparison of the ex-
pert and the classifier methods results. For a given sequence of time windows stw,
the accuracy of identification of the sequence stw is computed in the following way:

• if the expert sequence of concepts labels computed for stw matches a path from
the behavioral graph and a sequence of concepts labels based on the classifier
also matches a path from the behavioral graph, the accuracy of identification of
the sequence stw is equal 1,

• if the expert sequence of concepts labels computed for stw matches a path from
the behavioral graph and a sequence of concepts labels based on classifier does
not match a path from the behavioral graph, the accuracy of identification of the
sequence stw is equal 0,

• if the expert sequence of concepts labels computed for stw does not match a path
from the behavioral graph and a sequence of concepts labels based on classifier
matches a path from the behavioral graph, the accuracy of identification of the
sequence stw is equal 0,

• if the expert sequence of concepts labels computed for stw does not match a path
from the behavioral graph and a sequence of concepts labels based on classifier
does not match a path from the behavioral graph, the accuracy of identification
of the sequence stw is equal 1.

The accuracy of identification of the whole family of time windows sequences is
computed as an average value of accuracies computed for every sequence separately.

Table 7.3 shows the results of applying this algorithm for the concept related to the
risk pattern of SCD. We present the accuracy, the coverage, the accuracy for positive
examples (the expert sequence of concepts labels matches a path from the behavioral
graph) and negative examples (the expert sequence of concepts labels computed does
not match a path from the behavioral graph), the coverage for positive and negative
examples and the real accuracy (Real accuracy = Accuracy * Coverage). Together
with the results we present a standard deviation of the obtained results.

Table 7.3 Results of experiments for the risk pattern of SCD

Decision class Accuracy Coverage Real accuracy

Yes (the high risk of SCD) 0.953 ± 0.048 1.0 ± 0.000 0.953 ± 0.048
No (the low risk of SCD) 0.971 ± 0.010 1.0 ± 0.000 0.971 ± 0.010

All classes (Yes + No) 0.967 ± 0.013 1.0 ± 0.000 0.967 ± 0.013

Notice, that the accuracy of decision class Yes in medical statistics [2] is called
a sensitivity (the proportion of those cases having a true positive test result of all
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positive cases tested), whereas the accuracy of decision class No is called a speci-
ficity (the proportion of true negatives of all the negative samples tested). We
see both main parameters of our classifier (i.e., sensitivity and specificity) are
sufficiently high.

Experimental results showed that the suggested method of behavioral patterns
identification gives good results, also in the opinion of medical experts (compatible
enough with the medical experience) and may be applied in medical practice as a
supporting tool for medical diagnosis and treatment evaluation.

Finally, let us notice that the specific feature of the methods considered here is
not only high accuracy (with low standard deviation) but also very high coverage
(equal 1.0).

7.5 Methods of Automated Planning

In this section, we present a method of automated planning behavior planning for
complex object. This method also works on the basis of data sets and a domain
knowledge represented by a concept ontology. A crucial novelty in the method pro-
posed here, in comparison with the already existing ones, is the fact that performing
actions according to plan depends on satisfying complex vague spatio-temporal con-
ditions expressed in a natural language, which leads to the necessity of approxima-
tion of these conditions as complex concepts. Moreover, these conditions describe
complex concept changes which should be reflected in the concept ontology.

Behavior of unstructured complex objects (meaning those which may be treated
as indivisible wholes) is modeled using the so-called planning rules being formulas
of the type: the state before performing an action → action → state 1 after perform-
ing an action | ... | state k after performing an action, which are defined on the basis
of data sets and a domain knowledge (see [4]). Each rule includes the description
of the complex object state before applying the rule (that is, before performing an
action), expressed in a language of features proposed by an expert, the name of the
action (one of the actions specified by the expert which may be performed at a par-
ticular state), and the description of sequences of states which a complex object may
turn into after applying the action mentioned above. It means that the application of
such a rule gives indeterministic effects, i.e., after performing the same action the
system may turn into different states.

Let us consider the planning rule from Fig. 7.12. This is the planning rule for
treating RDS (respiratory distress syndrome) obtained from domain knowledge (see
[4, 7]). The rule may be applied when RDS with very severe hypoxemia is present.
The application of the rule consists in performing a medical action utilizing the
respirator in the MAP3 mode (see [4, 7] for more medical details). As an effect of
the application of this action at the following time point of observation (e.g., the
following morning), the patient’s condition may remain unchanged or improve so
as to reach the condition of RDS with severe hypoxemia.
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Fig. 7.12 The medical planning rule

All planning rules may be represented in a form of the so-called planning graphs
whose nodes are state descriptions (occurring in predecessors and successors of
planning rules) and action names occurring in planning rules. Let us consider plan-
ning graph from the Fig. 7.13, where the states are represented using ovals, and
actions are represented using rectangles. Each link between the nodes of this graph
represents a time dependencies. For example, the link between state s1 and action a1

tells us that in state s1 of the complex object action a1 may be performed, whereas
the link between action a1 and state s3 means that after performing action a1 the
state of the complex object may change to s1. An example of a path in this graph is
sequence (a2,s2,a3,s4) whereas path (s1,a2,s2,a3,s3) is an exemplary plan in this
graph.

Fig. 7.13 An exemplary planning graph

In the graphical interpretation, solving the problem of automated planning is
based on finding a path in the planning graph from the initial state to an ex-
pected final state. It is worth noticing that the conditions for performing an ac-
tion (object states) are described by vague spatio-temporal complex concepts which
are expressed in the natural language and require an approximation. For example,
Fig. 7.14 presents a solution to the problem of finding a plan bringing state s1 to
state s4 in the planning graph from Fig. 7.13.

For specific applications connected with the situation when it is expected that the
proposed plan of a complex object behavior is to be strictly compatible with the de-
termined experts’ instructions (e.g., the way of treatment in a specialist clinic is to
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Fig. 7.14 The output for the planning problem

be compatible with the treatment schemes used there), there has also been proposed
an additional mechanism enabling to resolve the nondeterminism occurring in the
application of planning rules. This mechanism is an additional classifier based on
data sets and domain knowledge. Such classifier (called a resolving classifier) sug-
gests the action to be performed in a given state and show the state which is the
result of the indicated action. A resolving classifier is a kind of stratifying classifier
and is constructed on the basis of resolving table (see Fig. 7.15 and [4] for more
details).
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Fig. 7.15 The scheme of construction of the resolving table for a given state
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7.5.1 Automated Planning for Structured Complex Objects

In planning the behavior of structured objects, an effective planning of the behav-
iors of all objects which are parts of these objects at the same time is not possible.
Therefore, in such cases the behavior of all objects which are parts of a structured
object is planned separately. However, this approach to planning of the behavior for
a structured object requires a certain synchronization of the plans constructed for
individual parts in such a way that these plans would not contradict each other and
even complement each other in order to plan the best behavior for a structured ob-
ject. For example, the treatment of illness A which is the resultant of two illnesses B
and C requires such illnesses B and C treatment that the treatments of both illnesses
would not be contradictory to each other, but even support and complement each
other. For example, it may happen that in treating illness B a certain medicine M1

may be used which is usually an appropriate medicine but it may be applied only
when illness C does not occur. Hence, the synchronization of both illnesses’ treat-
ment should exclude the application of medicine M1. In a different situation it may
happen that as a result of application of medicine M2 for illness C the treatment of
illness B is safer, for instead of giving a certain strong medicine M3, which has neg-
ative side effects, it is enough to give a safer medicine M4 which leads to the same
improvement in the patient’s condition as in the case of giving medicine M3.

The automated planning method for unstructured objects has been generalized
also in the case of planning of the behavior of structured objects (consisting of parts
connected with one another by dependencies) (see [4]). The generalization is based
on the fact that on the level of a structured object there is an additional planning
graph defined where there are double-type nodes and directed edges between the
nodes. The nodes of the first type describe vague features of states (meta-states) of
the whole structured object, whereas the nodes of the second type concern complex
actions (meta-actions) performed by the whole structured object (all its constituent
parts) over a longer period of time (a time window). The edges between the nodes
represent temporal dependencies between meta states and meta-actions as well as
meta-actions and meta states.

In Fig. 7.16, we present an exemplary planning graph for a structured object,
that is a group of four diseases: sepsis, Ureaplasma, RDS, and PDA, related to the
planning of the treatment of the infant during the respiratory failure. This graph was
created on the basis of observation of medical data sets and with support of human
experts (see [4, 7] for more medical details).

As we see, there are two kinds of nodes in the planning graph for structured ob-
ject, namely, meta states nodes (denoted by ovals) that represent the current state of
a structured object specified as complex concepts by a human expert in natural lan-
guage, and meta action nodes (denoted by rectangles) that represent actions defined
for structured objects.

The major difference between the planning graph for the unstructured complex
object and the planning graph for the structured object is that in the last one instead
of actions performed at a single time point meta-actions occur which are performed
over a longer period of time, that is, a time window.
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Fig. 7.16 A planning graph for the treatment of infants during the respiratory failure

At the beginning of planning for a structured object, we have to identify the
current meta state of this object. Any meta state node from a planning graph for
structured objects can be treated as a complex spatio-temporal concept that is spec-
ified by a human expert in natural language. Such concepts can be approximated
by classifiers using data sets and domain knowledge accumulated for a given com-
plex dynamical system. Similarly to states from the planning graph for unstructured
complex objects, any state from the planning graph for structured objects can be
approximated as a temporal concept for structured object using method from Sec-
tion 7.3. As a result, it is possible to recognize the initial state at the beginning of
planning for a particular structured object.

Similarly to the previous case of unstructured objects, planning of a structured
object behavior is based on finding a path in a planning graph from the initial meta-
state to the expected final meta state; and, at the same time, each meta-action occur-
ring in such a path must be planned separately on the level of each constituent part
of the structured object. In other words, it should be planned what actions each part
of a structured object must perform in order for the whole structured object to be
able to perform the meta-action which has been planned. For example, in the case of
the treatment of infants with respiratory failure, if the infant is suffering from severe
respiratory failure, we try to change the patient status using some methods of treat-
ment to change its status to moderate or mild respiratory failure. However, any meta
action from such constructed path should be checked on the lower level, i.e., on the
level of any part of the structured object separately, if such action can be realized in
practice in case of particular part of this structured object. In other words, it means
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that for any part of the structured object, the sequence of action should be planned
in order to obtain meta-action on the level of the structured object.

The plan of execution of a single meta-action, which consists of short plans which
execute this meta-action on the levels of individual parts of the structured object,
is called a g-plan (see [4]). The g-plan is, thus, a family of plans assigned to be
executed for all parts of the established structured object.

Let us notice that determining the plan for a structured object requires not only
determining sets of plans for all parts of the structured object but also synchroniz-
ing them in time. In practise, all constructed plans for objects (parts) belonging to
a given structured object should be compatible. Therefore, during planning a meta-
action for a structured object, we use a special tool for verifying the compatibility
of plans generated for all members of a structured object. This verification can be
performed by using some special decision rules that we call elimination rules. Such
rules make it possible to eliminate combination of plans that are not compatible rel-
ative to domain knowledge. This is possible because elimination rules describe all
important dependencies between plans that are joined together. If any combination
of plans is not consistent with any elimination rule, then it is eliminated. A set of
elimination rules can be specified by human experts or can be computed from data
sets. In both of these cases, we need a set of attributes (features) defined for a single
plan that are used for explaining elimination rules. Such attributes are specified by
human experts on the basis of domain knowledge and they describe some impor-
tant features of the plan (generated for some part of structured object) with respect
to proper joining of a plan with plans generated for other parts of structured ob-
ject. These features are used as a set of attributes in the special table that we call
an elimination table. Any row of an elimination table represents information about
features of plans assigned for structured objects from the training data. For example,
the respiratory failure may be treated as a result of four following diseases: RDS,
PDA, sepsis, and Ureaplasma. Therefore, treating respiratory failure requires simul-
taneous treatment of all of these diseases. This means that the treatment plan of
respiratory failure comes into existence by joining the treatment plans for diseases
RDS, PDA, sepsis, and Ureaplasma, and at the same time the synchronization of
the plans is very important. In this chapter, one of the synchronizing tools for this
type of plans is the elimination table. In constructing the elimination table for treat-
ment of respiratory failure, patterns describing the properties of the joint plans are
needed. Moreover, planning graphs for all four diseases are necessary. In Fig. 7.17
the planning graph for RDS treatment is shown. In a very similar way the features
of treatment plans for PDA, sepsis, and Ureaplasma diseases may be defined.

On the basis of the elimination table, a set of elimination rules can be computed
that can be used to eliminate inappropriate plan arrangements for individual parts of
the structured object. So, the set of elimination rules can be used as a filter of incon-
sistent combinations of plans generated for members of groups. Any combination
of plans is eliminated when there exists an elimination rule that is not supported by
features of a combination, while the combination matches a predecessor of this rule.
In other words, a combination of plans is eliminated when the combination matches
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Fig. 7.17 A planning graph for the treatment of infants during the RDS

to the predecessor of some elimination rule and does not match the successor of
a rule.

Fig. 7.18 shows the scheme of elimination rules of not acceptable g-plans con-
structed in the case of the treatment of respiratory failure, which is a result of the
four following diseases: sepsis, Ureaplasma, RDS, and PDA.

As we see, for any attribute from the elimination table, we compute the set of
rules with minimal number of descriptors treating this attribute as a decision at-
tribute. In this way, we obtain a set of dependencies in the elimination table ex-
plained by decision rules. In practice, it is necessary to filter elimination rules to
remove the rules with low support, because such rules can be too strongly matched
to the training data.

On the basis of the set of elimination rules, an elimination classifier may be con-
structed that enable elimination of inappropriate plan arrangements for individual
parts of the structured object.

If the combination of plans for parts of the structured object is consistent (it was
not eliminated by elimination rules), we should check if the execution of this com-
bination allows us to realize the expected meta action from the level of structured
objects. This can be done by a special classifier constructed for a table called a
meta action table. The structure of a meta action table is similar to the structure
of an elimination table, i.e., attributes are defined by human experts, where rows
represent information about features of plans assigned for parts of exemplary struc-
tured objects from the training data. In addition, we add to this table a decision at-
tribute. Values of such decision attributes represent names of meta actions which are
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Fig. 7.18 The scheme of construction of elimination rules for group of four diseases: sepsis,
Ureaplasma, RDS and PDA

realized as an effect of the execution of plans described in the current row of a
training table.

The classifier computed for an action table makes it possible to predict the name
of a meta action for a given combination of plans from the level of parts of a struc-
tured object. The last step is the selection of combinations of plans that makes it pos-
sible to obtain a target meta action with respect to a structured object (see Fig. 7.19).

After planning the selected meta action from the path of actions from the planning
graph (for a structured object), the system begins the planning of the next meta
action from this path. The planning is stopped, when the planning of the last meta
action from this path is finished.

7.5.2 Estimation of the Similarity between Plans

In construction and application of classifiers approximating complex spatio-temporal
concepts, there may appear a need to construct, with a great support of the domain
knowledge, a similarity relation of two elements of similar type, such as complex
objects, complex object states, or plans generated for complex objects. Hence, in
the paper [4], a new method of similarity relation approximation has been proposed
which is based on the use of data sets and a domain knowledge expressed mainly in
the form of a concept ontology. We apply this method, among other things, to verify
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Fig. 7.19 The scheme of meta action planning

automated planning methods, that is, to compare the plan generated automatically
with the plan suggested by experts from a given domain.

The problem of inducing classifiers for similarity relations is one of the challeng-
ing problems in data mining and knowledge discovery (see bibliography from [4]).
The existing methods are based on building models for similarity functions using
simple strategies for fusion of local similarities. The optimization of the assumed
parameterized similarity formula is performed by tuning parameters relative to lo-
cal similarities and their fusion. For instance, if we want to compare two medical
plans of treatments, e.g., one plan generated automatically by our computer system
and another one proposed by medical expert, we need a tool to estimate the similar-
ity. This problem can be solved by introducing a function measuring the similarity
between medical plans. For example, in the case of our medical data, a formula is
used to compute a similarity between two plans as the arithmetic mean of similarity
between all corresponding pairs of actions (nodes) from both plans, where the sim-
ilarity for the single corresponding pair of actions is defined by a consistence mea-
sure of medicines and medical procedures comprised in these actions. For example,
let M = {m1, ...,mk} be a set consisting of k medicines. Let us assume that actions in
medical plans are specified by subsets of M. Hence, any medical plan P determines
a sequence of actions A(P) = (A1, ...,An), where Ai ⊆ M for i = 1, . . . ,n and n is the
number of actions in P. In our example, the similarity between plans is defined by
a similarity function Sim established on pairs of medical plans (P1,P2) (of the same
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length) with the sequences of actions A(P1) = (A1, ...,An) and A(P2) = (B1, ...,Bn),
respectively as follows

Sim(P1,P2) =
1
n

n

∑
i=1

|Ai ∩Bi|+ |M \ (Ai ∪Bi)|
|M| .

However, such an approach seems to be very abstract and ad hoc, because it does
not take into account any deeper knowledge about the similarity of plans, e.g., do-
main knowledge. Whereas, the similarity relations for real-life problems are usu-
ally more complex objects, i.e., their construction from local similarities cannot be
obtained by simple fusion functions. Hence, such similarity relations cannot be ap-
proximated with the satisfactory quality by employing the existing simple strategies.
For this reason we treat this similarity measure, Sim, only as an example and do not
take into account in our further research (and in our proposed method). Whereas,
to support the process of similarity relation approximation, we propose to use do-
main knowledge represented by concept ontology expressed in natural language.
The ontology consists of concepts used by expert in his explanation of similarity
and dissimilarity cases. Approximation of the ontology makes it possible to obtain
some relevant concepts for approximation of the similarity relation.

7.5.3 Ontology of the Similarity between Plans

According to the domain knowledge, it is quite common, that there are many as-
pects of similarity between plans. For example, in case of comparison of medical
plans used for the treatment of infants with respiratory failure, we should take into
consideration, e.g., the similarity of the antibiotics use, the ventilation mode and the
similarity of PDA closing (see [4] for mor medical details). Moreover, every aspect
of the similarity should be understood in a different way. For example, in estimation
of the similarity in the antibiotic treatment, it should be evaluated the kind of antibi-
otic, as well as the time of administration. Therefore, it is necessary to investigate
and take into account all incompatibilities of the antibiotic use between correspond-
ing pairs of nodes from both plans. Excessive doses are rather acceptable (based on
expert knowledge), whilst the lack of medicine (if it is necessary) should be taken
as a very serious mistake. In such situation, the difference in our assessment is esti-
mated as very significant. A bit different interpretation of similarity should be used
in case of the ventilation. As in antibiotic use, we investigate all incompatibilities of
the ventilation mode between corresponding pairs of nodes from both plans. How-
ever, sometimes, according to expert knowledge, we simplified our assessments,
e.g., respiration unsupported and CPAP are estimated as similar for more medical
details). More complicated situation is present if we want to judge the similarity
in treatment of PDA. We have to assign the ventilation mode, as well as the simi-
larity of PDA closing procedure. In summary, any aspect of the similarity between
plans should be taken into account in the specific way and the domain knowledge
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is necessary for joining all these similarities (obtained for all aspects). Therefore,
the similarity between plans should be assigned on the basis of a special ontology
specified in a dialog with human experts. Such ontology we call similarity ontology.
Using such similarity ontology, we developed methods for inducing classifiers pre-
dicting the similarity between two plans (generated automatically and proposed by
human experts).

In the chapter, we assume that each similarity ontology between plans has a tree
structure. The root of this tree is always one concept representing general similar-
ity between plans. In each similarity ontology there may exist concepts of two-way
type. In this chapter, the concepts of the first type will be called internal concepts
of ontology. They are characterized by the fact that they depend on other ontology
concepts. The concept of the second type will be called input concepts of ontol-
ogy (in other words the concepts of the lowest ontology level). The input concepts
are characterized by the fact that they do not depend on other ontology concepts.
Fig. 7.20 shows an exemplary ontology of similarity between plans of the treatment
of newborn infants with the respiratory failure. This ontology has been provided by
human experts. However, it is also possible to present some other versions of such
ontology, instead of that presented above, according to opinions of some other group
of human experts.
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failure treatment
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treatment of sepsis Similarity in

treatment of RDS

Similarity of a causal
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Fig. 7.20 An exemplary ontology of similarity between plans of the treatment of newborn
infants with respiratory failure
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7.5.4 Similarity Classifier

Using the similarity ontology (e.g., the ontology presented in Fig. 7.20), we devel-
oped methods for inducing classifiers predicting the similarity between two plans
(generated automatically and proposed by human experts).

Condition columns represent concepts C1, ...,Ck
from the similarity ontology  
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Fig. 7.21 The scheme of the similarity table of plans

The method for construction of such classifier can be based on a similarity table
of plans. The similarity table of plans is the decision table which may be constructed
for any concept from the similarity ontology. The similarity table is created in order
to approximate a concept for which the table has been constructed. The approxima-
tion of the concept takes place with the help of classifiers generated for the similarity
table. However, because of the fact that in the similarity ontology there occur two
types of concepts (internal and input), there are also two types of similarity tables.
Similarity tables of the first type are constructed for internal concepts, whereas the
tables of the second type are constructed for input concepts.

Similarity tables for internal concepts of similarity ontology are constructed for a
certain fragment of similarity ontology which consists of a concept of this ontology
and concepts on which this concept depends. In the case of ontology from Fig. 7.20
it may be for instance the concept Similarity of a symptom treatment of sepsis and
concepts Similarity of corticosteroid use, Similarity of catecholamin use, and Simi-
larity of hemostatic agents use. To simplify further discussion, let us assume that it
is the concept C that depends in the similarity ontology on the concepts C1, ..., Ck.
The aim of constructing a similarity table is approximation of concept C using con-
cepts C1, ..., Ck (see Fig. 7.21). Condition columns of such similarity table represent
concepts C1, ..., Ck. Any row corresponds to a pair of plans: generated automatically
and proposed by experts. Values of all attributes have been provided by experts from
the set {0.0,0.1, ...,0.9,1.0}. Finally, the decision column represents the concept C.

The stratifying classifier computed for a similarity table (called a similarity clas-
sifier) can be used to determine the similarity between plans (generated by our
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methods of automated planning and plans proposed be human experts) relatively
to a given internal concept C.

Such stratifying classifiers may be constructed for all concepts from the similar-
ity ontology which depend, in this ontology, on other concepts. However, we also
need stratifying classifiers for input concepts of ontology, that is, those lying on the
lowest level of the ontology. Hence, they are the concepts which do not depend on
other concepts in this ontology. To approximate them, we do not use other ontology
concepts but we apply the features of comparable plans which are expressed in the
form of patterns defined in the special language. Obviously, such types of patterns
are also concepts determined in the set of pairs of plans. However, they are usually
not placed in the similarity ontology between plans. Therefore, approximation ta-
bles of input concepts of the similarity ontology should be treated as a specific type
of similarity table.

Let us notice that the similarity table defined above is constructed in the way that
concept C is approximated on the basis of the features of both plans corresponding
to a given object from the set U .

It is worth noticing that for approximation of complex concepts from the simi-
larity ontology one can use also features (attributes) describing relations between
plans. Such features are formulated in a natural language using special questions
about both plans. Examples of such questions are: Were antibiotics used simulta-
neously in both plans?, Was the average difference between mechanical ventila-
tion mode in both plans significant?. However, it requires a simple extension of the
language.

Classifiers constructed for similarity tables corresponding to all concepts from
the similarity ontology may be used to construct a complex classifier which gives
the general similarity between plans (represented by the concept lying in the root
of the similarity ontology). We provide an example of how such a classifier works.
Let us assume that there is a certain similarity ontology between pairs of plans in
which there occur six following concepts: C1, C2, C3, C4, C5, and C6. The concept
C1 depends on concepts C2 and C3, the concept C2 depends on concepts C4 and C5,
and the concept C3 depends on concepts C5 and C6. In this ontology, concept C1 is
the concept of general similarity between plans, whereas concepts C4, C5, and C6

are input concepts of the similarity ontology (see Fig. 7.22).
First, we construct similarity tables for concepts C4, C5, C6 and stratifying clas-

sifiers μC4 , μC5 , μC6 corresponding to them. Let us also assume that there are given
stratifying classifiers μC1 , μC2 , μC3 which were constructed for similarity tables
which correspond to concepts C1, C2 and C3. Tested object u = (p1, p2) which is
a pair of compared plans is classified to the layer of concept C corresponding to it
in the following way. At the beginning, the object u is classified by classifiers μC4 ,
μC5 , and μC6 . This way we obtain values μC4(u), μC5(u), and μC6(u). Next, values
μC4(u) and μC5(u) are used as the values of conditional attributes in the similarity
table constructed for concept C2. Thus, the object u may be classified by classifier
μC2 , which gives us value μC2(u). At the same time, values μC5(u) and μC6(u) are
used as the values of conditional attributes in the similarity table constructed for
concept C3. It gives the possibility to classify object u by classifier μC3 and obtain
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Fig. 7.22 The scheme of a simple similarity ontology

value μC3(u). Finally, values μC2(u) and μC3(u) are used as the values of conditional
attributes of the similarity table constructed for concept C1. Thus, the object u may
be classified by classifier μC1 to layer μC1(u).

The complex classifier described above can be used to determine the general
similarity between plans generated by our methods of automated planning and
plans proposed by human experts, e.g., during the real-life clinical treatment (see
Section 7.5.5).

7.5.5 Experiments with Medical Data

To verify the effectiveness of the presented in this chapter methods of automated
planning, we have implemented the algorithms in the RoughICE system (see [42]).

It should be emphasized that, in general, automated planning of treatment is a
very difficult and complicated task because it requires extensive medical knowledge
combined with sensor information about the state of a patient. Even so, the proposed
approach makes it possible to obtain quite satisfactory results in the short-term plan-
ning of treatment of infants with respiratory failure. The reason is that medical data
sets have been accurately prepared for purposes of our experiments using the medi-
cal knowledge. For example, the collection of medical actions, that are usually used
during the treatment of infants with respiratory failure, has been divided into a few
groups of similar actions (for example: antibiotics, anti-mycotic agents, mechanical
ventilation, catecholamines, corticosteroids, hemostatic agents). It is very helpful in
the prediction of actions because the number of actions is significantly decreased.

The experiments have been performed on the medical data sets obtained from
Neonatal Intensive Care Unit, First Department of Pediatrics, Polish-American In-
stitute of Pediatrics, Collegium Medicum, Jagiellonian University, Cracow, Poland
(see [4,6,8,9]). We used one data table, that consists of 11,099 objects. Each object
of this table describes parameters of one patient in single time point. There were
prepared 7,022 situations on the basis of this data table, where the plan of treatment
has been proposed by human experts during the real-life clinical treatment.



7 Classifiers Based on Data Sets and Domain Knowledge 129

We have applied the train-and-test method. In each experiment the whole set
of patients was randomly divided into two groups (training and tested one). Each
of these groups allowed creating approximately 4000 time windows which have
duration of 7 time points. Time windows created on the basis of patients from the
training part created a training table for a given experiment (when plans of treatment
have been assigned), whereas time windows created on the basis of patients from the
tested part created a test table for the experiment (when plans have been generated
by automated method and expert plans are known in order to compare both plans)

In the discussed experiments, the distance between time points recorded for a
specific patient was constant (one day). In a single experiment concerning a pa-
tient’s treatment, a 7-point sequence of time points was used. In terms of planning
the treatment each such sequence may be written as s1, a1, s2, a2, s3, a3, s4, a4, s5,
a5, s5, a6, s7, where si (for i = 1, ...,7) is a patient state and ai (for i = 1, ...,6) is
a complex medical action performed in the state si. The first part of the above se-
quence of states and actions, that is, from state s1 to state s3, was used by the method
of automated planning as the input information (corresponding to the values of con-
ditional attributes in the classic approach to constructing classifiers). The remaining
actions and states were automatically generated to create plan (s3, a′3, s′4, a′4, s′5, a′5,
s′6, a′6, s′7). This plan may be treated as a certain type of a complex decision value.
Verification of the quality of the generated plan consisted in comparing plan (s3, a′3,
s′4, a′4, s′5, a′5, s′6, a′6, s′7) with plan (s3, a3, s4, a4, s5, a5, s5, a6, s7). It is worth adding
that a single complex action concerned one time point, meta action concerned two
time points and a single experiment consisted in planning two meta actions. Hence,
in a single experiment four actions were planned (patient’s treatment for 4 days). In
other words, at the beginning of the automated planning procedure the information
about the patient’s state in the last 3 days of his hospitalization was used (s1, s2,
s3) together with the information about complex medical actions undertaken one or
2 days before (a1, a2). The generated plan included information about a suggested
complex medical action on a given day of hospitalization (a′3), information about
actions which should be undertaken in the 3 following days of hospitalization (a′4,
a′5, a′6) and information about the patient’s state anticipated as a result of the planned
treatment in the four following days of hospitalization (s′4, s′5, s′6, s′7).

As a measure of planning success (or failure) in our experiments, we use the spe-
cial classifier that can predict the similarity between two plans as a number between
0.0 (very low similarity between two plans) and 1.0 (very high similarity between
two plans) (see Section 7.5.4). We use this classifier to determine the similarity be-
tween plans generated by our methods of automated planning and plans proposed be
human experts during the real-life clinical treatment. In order to determine the stan-
dard deviation of the obtained results, each experiment was repeated for 10 random
divisions of the whole data set.

The average similarity between plans for all tested situations was 0.802. The
corresponding standard deviations was 0.041. The coverage of tested situation by
generated plans was 0.846 with standard deviation 0.018.

Due to the fact that the average similarity is not too high (less than 0.9) and
the standard deviation is relatively high for our algorithm, we present also the
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Table 7.4 The average percent of plans belonging to the specified interval and the average
similarity of plans in this interval

Intervals Average percent Average similarity
of plans of plans

[0.0, 0.2] 12.1% ± 4.5% 0.139 ± 0.002
(0.2, 0.4] 6.2% ± 1.5% 0.349 ± 0.003
(0.4, 0.6] 7.1% ± 1.7% 0.563 ± 0.002
(0.6, 0.8] 5.8% ± 0.9% 0.773 ± 0.004
(0.8, 1.0] 68.9% ± 5.6% 0.987 ± 0.002

distribution of the results. We describe results in such a way that we present how
many generated plans belong to the specified interval of similarity. For this reason
we divided interval [0.0, 1.0] into 5 equal intervals, i.e., [0.0, 0.2], [0.2, 0.4], [0.4,
0.6], [0.6, 0.8], and [0.8, 1.0]. Table 7.4 shows the average percent of the plans be-
longing to the specified interval and the average similarity of plans in this interval.

It is easy to see that some group of plans generated automatically is not enough
similar to the plans proposed by the experts. If we assume that inadequate similarity
is lower than 0.6, in this group we found about 25% of all plans (see Table 7.4). To
explain this issue, we should observe more carefully plans, which are incompatible
with the proposals prepared by experts. In practice, the main medical actions influ-
encing the similarity of plans in accordance with ontology of the similarity from
Fig. 7.20 are mechanical ventilation, antibiotics, anti mycotic agents, and macrolide
antibiotics. Therefore, it may be interesting how the treatment similarity changed in
the range of applying these actions in the individual intervals of similarity between
the plans.

On Fig. 7.23 we can see that a significant incompatibility of treatment plans most
often concerns mechanical ventilation and perhaps antibiotic therapy — the situ-
ation when a patient develops a sudden and severe infection (e.g., sepsis). Such
circumstances cause rapid exacerbation of respiratory failure are required higher
level of mechanical ventilation and immediate antibiotic treatment. For example, al-
though microbiological confirmation of current infection is achieved after 2-3 days,
physician starts treatment after first symptoms of suspected disease and often inten-
sify mechanical ventilation mode. It would seem that the algorithms of automated
planning presented in this chapter may imitate the strategy of treatment described
above. Unfortunately, in practice, these algorithms are not able to learn this strat-
egy for a lot of information because they were not introduced to the base records or
were introduced with delay. For instance, hemoglobin saturation which is measured
for the whole time, as the dynamic marker of patients respiratory status, was not
found in the data, whilst results of arterial blood gases were introduced irregularly,
with many missing values. So, the technical limitation of the current data collection
lead to the intensive work modifying and extending both, the equipment and soft-
ware, served for gathering clinical data. It may be expected that in several years the
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Fig. 7.23 The average similarity of plans in the specified interval for medical actions

automated planning algorithms, described in this chapter, will achieve much better
and useful results.

A separate problem is a relatively low coverage of the algorithms described in
this chapter which equals averagely 0.846. Such a low coverage results from the
specificity of the automated planning method used which synchronizes the treat-
ment of four diseases (RDS, PDA, sepsis, and Ureaplasma). We may identify two
reasons of a low coverage. First, because of data shortage the algorithm in many
situations may not synchronize the treatment of the above mentioned diseases. It
happens this way because each proposed comparison of plans may be debatable in
terms of the knowledge gathered in the system. Therefore, in these cases the system
does not suggest any treatment plan and says I do not know. The second reason for
low coverage is the fact that the automated planning method used requires applica-
tion of a complex classifier which consists of many classifiers of lesser complexity.
Combining these classifiers together often causes the effect of decreasing the com-
plex classifier coverage. For instance, let us assume that making decision for tested
object u requires application of complex classifier μ , which consists of two classi-
fiers μ1 and μ2. We apply classifier μ1 directly to u, whereas classifier μ2 is applied
to the results of classification of classifier μ1. In other words, to make classifier μ2

work for a given tested object u we need value μ1(u). Let us assume that the cover-
age for classifiers μ1 and μ2 equals respectively 0.94 and 0.95. Hence, the coverage
of classifier μ is equal 0.94 · 0.95 = 0.893, that is the coverage of classifier μ is
smaller than the coverage of classifier μ1 as well as the coverage of classifier μ2.

In summation, we conclude that experimental results showed that the proposed
automated planning method gives good results, also in the opinion of medical
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experts (compatible enough with the plans suggested by the experts), and may be
applied in medical practice as a supporting tool for planning the treatment of infants
suffering from respiratory failure.

7.6 Conclusion

The aim of this chapter was to present new methods of approximating complex
concepts on the basis of experimental data and domain knowledge which is mainly
represented using concept ontology.

At the beginning of the chapter, a method of spatial complex concepts approxima-
tion was presented (see Section 7.2). Next, in Sections 7.3 we presented the method
of approximate spatio-temporal complex concepts. In the further part of the chapter,
the method of behavioral pattern identification was overviewed (see Section 7.4).
Finaly, in Section 7.5, we described the method of automated planning of behavior
of complex objects when the states of objects are represented by spatio-temporal
concepts which require an approximation.

We have also described the results of computer experiments conducted on real-
life data sets which were obtained from the road traffic simulator (see [44]) and
on medical data sets which were made available by Neonatal Intensive Care Unit,
First Department of Pediatrics, Polish-American Institute of Pediatrics, Collegium
Medicum, Jagiellonian University, Cracow, Poland and by Second Department of
Internal Medicine, Collegium Medicum, Jagiellonian University, Cracow, Poland.

In light of theoretical discourse and the results of computer experiments
presented in the chapter the following conclusions may be drawn:

1. The method of approximation of complex spatial concepts, described in the
chapter (see Section 7.2), with the help of approximate reasoning schemes (AR-
schemes) leads to better results than the classical methods based on decision
rules induced directly from sensor data, because the quality of classifier classifi-
cation based on AR-schemes is higher than the quality of classification obtained
by classifiers based on decision rules, particularly for small decision classes rep-
resenting atypical cases in the recognition of which we are most interested in,
e.g., a dangerous driving vehicle on a highway. Moreover, for larger data sets,
the time of constructing classifiers based on AR-schemes is much shorter than
the time of inducing classifiers based on decision rules, and the structure of
classifiers based on AR-schemes is less complex than the structure of classifiers
based on decision rules. It is also worth mentioning that the classifiers based
on AR-schemes are more robust (stable or tolerant) when it comes to changes
in training data sets serving the construction of classifiers, that is, a classifier
based on AR-schemes, constructed for one data set, often proves itself good for
another data set. For example, a classifier constructed for data generated from
the traffic simulator with one simulation scenario proves itself useful in classifi-
cation of objects generated by the simulator with the use of another simulation
scenario.



7 Classifiers Based on Data Sets and Domain Knowledge 133

2. The methodology of modeling complex object behavior with the use of behav-
ioral graphs of these objects, proposed in the chapter (see Section 7.4), is a
convenient and effective tool for identifying behavioral or risk patterns of com-
plex objects. On the one hand this methodology, enables to represent concepts
on a high abstraction level, and on the other hand, owing to the use of a domain
knowledge, it enables to approximate these concepts on the basis of sensor data
and using a domain knowledge.

3. The methods of automated planning of complex object behavior proposed in
the chapter facilitate an effective planning of behavior of objects whose states
are defined in a natural language using vague spatio-temporal conditions (see
Section 7.5). The authenticity of conditions of this type is usually not possible
to be verified on the basis of a simple analysis of available information about
the object and that is why these conditions must be treated as spatio-temporal
complex concepts and their approximation requires methods described in this
chapter which are based on data sets and domain knowledge.

In summation, it may be concluded that in executing real-life projects related to the
construction of the intelligent systems supporting decision-making, apart from data
sets it is necessary to apply domain knowledge. Without its application successful
execution of many such projects becomes extremely difficult or impossible. On the
other hand, appropriate space must be found for the automated methods of classifier
construction wherever it is feasible. It means, thus, finding a certain type of “the
golden mean" to apply appropriate proportions in domain knowledge usage and au-
tomated methods of data analysis. Certainly, it will determine the success or failure
of many projects.
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J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390,
pp. 474–750. Springer, Heidelberg (2008)

5. Bazan, J.G.: Rough sets and granular computing in behavioral pattern identification and
planning. In: Pedrycz, W., Skowron, A., Kreinovich, V. (eds.) Handbook of Granular
Computing, pp. 777–799. John Wiley & Sons, The Atrium (2008)



134 J.G. Bazan et al.

6. Bazan, J.G., Kruczek, P., Bazan-Socha, S., Skowron, A., Pietrzyk, J.: Automatic plan-
ning based on rough set tools: Towards supporting treatment of infants with respiratory
failure. In: Proceedings of the Workshop on Concurrency, Specification, and Program-
ming (CS&P 2006), Wandlitz, Germany, September 27-29. Informatik-Bericht, vol. 170,
pp. 388–399. Humboldt University, Berlin (2006)

7. Bazan, J.G., Kruczek, P., Bazan-Socha, S., Skowron, A., Pietrzyk, J.: Automatic Plan-
ning of Treatment of Infants with Respiratory Failure Through Rough Set Modeling. In:
Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński,
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Chapter 8
Incorporating Rough Data in Database Design
for Imprecise Information Representation

Theresa Beaubouef and Frederick E. Petry

Abstract. This chapter describes issues of database design for databases that pro-
vide representations that allow rough set data. We first present the definition of a
rough relational database. A database can be designed by Entity-Relationship mod-
eling or by defining the functional dependencies for the system. We describe rough
set E-R models and rough functional dependencies. Based on the rough functional
dependencies we provide the various related rough normal forms used in a database
schema design. Finally, we discuss issues of database security and the use of rough
spatial data in a rough relational database.

Keywords: Rough relational database, rough functional dependency, rough spatial
data, imprecise information, database security, rough normal form, rough entropy.

8.1 Introduction

As databases continue to grow in size and complexity they are used in many di-
verse applications. For many real world applications, it is necessary to incorporate
some type of uncertainty management into the underlying data model. One charac-
teristic of many imprecise databases is that they allow sets of values in their tuples.
This is referred to as a non-first form or nested database [30,31]. If the value of an
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attribute is non-atomic, i.e. set-valued, then there is uncertainty as to which one of
the values in the set corresponds to the attribute. There are specific aspects in dif-
ferent uncertain database models such as those using fuzzy sets [7,14,22], but all
share use of set values. An early consideration of incomplete information related to
databases was the approach of Lipski [16]. Of particular interest here is database
modeling utilizing rough set approaches [6] to represent uncertainty.

Rough set theory [19,20] is a mathematical formalism for representing
uncertainty. An approximation region in rough sets partitions some universe into
equivalence classes. This partitioning can be adjusted to increase or decrease its
granularity, to group items together that are considered indiscernible for a given
purpose, or to “bin” ordered domains into range groups.

• U is the universe, which cannot be empty,
• R : indiscernibility relation, or equivalence relation,
• A = (U,R), an ordered pair, called an approximation space,
• [x]R denotes the equivalence class of R containing x, for any element x of U ,
• elementary sets in A — an equivalence classes of R,
• definable set in A — any finite union of elementary sets in A.

A rough set X ⊆U , is defined in terms of the definable sets by specifying its lower
(RX) and upper (RX) approximation regions:

RX = {x ∈U |[x]R ⊆ X} and RX = {x ∈U |[x]R ∩X �= /0}.

RX is the positive region, U −RX is the negative region, and RX −RX is the bound-
ary or borderline region of the rough set X , allowing for the distinction between
certain and possible inclusion in a rough set.

For example: Let U = {medium,small, little, tiny,big, large,huge,enormous},
and let the equivalence relation R be defined as follows:

R∗ = {[medium], [small, little, tiny], [big, large], [huge,enormous]}.

A given set X = {medium,small, little, tiny,big,huge}, can be defined in terms of
its lower and upper approximations:

RX = {medium,small, little, tiny},

and

RX = {medium,small, little, tiny,big, large,huge,enormous}.

The major rough set concepts of interest are the use of an indiscernibility relation
to partition domains into equivalence classes and the concept of lower and upper
approximation regions to allow the distinction between certain and possible, or par-
tial, inclusion in a rough set. The indiscernibility relation allows the grouping of
items based on some definition of ’equivalence’ as it relates to the application do-
main. Those equivalence classes included in their entirety in X belong to the lower
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approximation region. The upper approximation region includes those equivalence
classes that are included either entirely or partially in X . The results in the lower
approximation region are certain, corresponding to exact matches. The boundary
region of the upper approximation contains results that are possible, but not certain.

In Pawlak [21] there was consideration of multi-valued and rough information
systems. This shows that the concept of operating with data similar to relational data
framework has a long-standing background in information systems as an equivalent
form of representing tabular data.

8.2 Rough Relational Databases

The rough relational database model [6] is an extension of the standard relational
database model of Codd [10]. It captures all the essential features of rough sets
theory including indiscernibility of elements denoted by equivalence classes and
lower and upper approximation regions for defining sets which are indefinable in
terms of the indiscernibility.

Every attribute domain is partitioned by some equivalence relation designated by
the database designer or user. Within each domain, those values that are considered
indiscernible belong to an equivalence class. This is compatible with the traditional
relational model where every value belongs to its own class. The indiscernibility
information is used by the query mechanism to retrieve information based on equiv-
alence with the class to which the value belongs rather than equality, resulting in
less critical wording of queries as shown in [6].

Recall is also improved in the rough relational database because rough relations
provide possible matches to the query in addition to the certain matches that are
obtained in the standard relational database. This is accomplished by using set con-
tainment in addition to equality of attributes in the calculation of lower and upper
approximation regions of the query result.

The rough relational database has several features in common with the ordinary
relational database. Both models represent data as a collection of relations contain-
ing tuples. These relations are sets. The tuples of a relation are its elements, and
like elements of sets in general, are unordered and non-duplicated. A tuple ti takes
the form (di1,di2, . . . ,dim), where di j is a domain value of a particular domain set
D j. In the ordinary relational database, di j ∈ D j. In the rough database, however, as
in other non-first normal form (NF2) extensions to the relational model [7, 23, 25],
di j ⊆ D j, and although it is not required that di j be a singleton, di j �= /0. Let P(Di)
denote the powerset of Di without the empty set /0.

Definition 8.1. A rough relation R is a subset of the set cross product

P(D1)×P(D2)× . . .×P(Dm).

A rough tuple t is any member of R, which implies that it is also a member of
P(D1)×P(D2)× . . .×P(Dm). If ti is some arbitrary tuple, then ti =(di1,di2, . . . ,dim)
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where di j ⊆ D j. A tuple in this model differs from ordinary databases in that the
tuple components may be sets of domain values rather than single values. The set
braces are omitted here from singletons for notational simplicity.

Definition 8.2. An interpretation α = (a1,a2, . . . ,am) of a rough tuple

ti = (di1,di2, . . . ,dim)

is any value assignment such that a j ∈ di j for all j.

The interpretation space is the cross product D1 ×D2 × . . .×Dm, but is limited for
a given relation R to the set of those tuples which are valid according to the under-
lying semantics of R. In an ordinary relational database, because domain values are
atomic, there is only one possible interpretation for each tuple ti, the tuple itself.
In the rough relational database, this is not always the case when there is a set of
values.

Let [dxy] denotes the equivalence class to which dxy belongs. When dxy is a set of
values, the equivalence class is formed by taking the union of equivalence classes
of members of the set; if dxy = {c1,c2, . . . ,cn}, then [dxy] = [c1]∪ [c2]∪ . . .∪ [cn].

Definition 8.3. Tuples ti = (di1,di2, . . . ,dim) and tk = (dk1,dk2, . . . ,dkm) are redun-
dant if [di j] = [dk j] for all j = 1, . . . ,m.

In the rough relational database, redundant tuples are removed in the merging pro-
cess since duplicates are not allowed in sets, the structure upon which the relational
model is based.

Since the rough relational database is in non-first normal form there are some
attribute values that are sets. Another definition, which will be used for upper ap-
proximation tuples, is needed to capture redundancy between elements of attribute
values that are sets.

Definition 8.4. Two sub-tuples X = (dx1,dx2, . . . ,dxm) and Y = (dy1,dy2, . . . ,dym)
are roughly-redundant, ≈R, if for some [p] ⊆ [dx j] and [q] ⊆ [dy j], [p] = [q] for all
j = 1, . . . ,m.

There are two basic types of relational operators. The first type arises from the fact
that relations are considered sets of tuples. Therefore, operations which can be ap-
plied to sets also apply to relations. The most useful of these for database purposes
are set difference, union, and intersection. Operators which do not come from set
theory, but which are useful for retrieval of relational data are select, project, and
join. In the rough relational database, relations are rough sets as opposed to ordinary
sets. Therefore, new rough operators (−,∪,∩,σ ,π ,��), comparable to the standard
relational operators, were developed for the rough relational database. Properties of
the rough relational operators can be found in [6].

An example of a question-answering system designed over non-deterministic
data can be found in [25], and a related paper [24] deals with numeric columns
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by introducing conditions based on resolution over their domains which is similar
to this chapter’s approach of partitioning columns’ domains in order to define query
conditions. An extension for relational data is found in [26] which adds an addi-
tional rough data layer (sometimes called database knowledge grid) that contains
non-crisp values (corresponding to statistics of groups of original values stored un-
derneath) and introduces a number of data operations (projection, join, aggregation)
working in particular at rough level.

8.3 E-R Modeling for Rough Databases

We must first design our database using some type of semantic model. We use
a variation of the entity-relationship [8] diagram that we call a fuzzy-rough E-
R diagram. This diagram is similar to the standard E-R diagram in that entity
types are depicted in rectangles, relationships with diamonds, and attributes with
ovals. However, in the fuzzy-rough model, it is understood that membership values
exist for all instances of entity types and relationships. Attributes which allow val-
ues where we want to be able to define equivalences are denoted with an aster-
isk (∗) above the oval. These values are defined in the indiscernibility relation,
which is not actually part of the database design, but inherent in the fuzzy-rough
model.

Our fuzzy-rough E-R model [2] is similar to the second and third levels of fuzzi-
ness defined by Zvieli and Chen [32]. However, in our model, all entity and re-
lationship occurrences (second level) are of the fuzzy type so we do not mark an
’f’ beside each one. Zvieli and Chen’s third level considers attributes that may be
fuzzy. They use triangles instead of ovals to represent these attributes. We do not
introduce fuzziness at the attribute level of our model in this chapter, only rough-
ness, or indiscernibility, and denote those attributes with the ‘∗’. In this present
work, we only consider aspects of the design related to rough databases. How-
ever, this model is general enough to also apply to fuzzy rough databases as
introduced in [6].

Consider, for example, a database to record public concerns about environmental
quality in industrial areas where various chemical or nuclear plants are abundant.
Data is collected through surveys or entered as a “best guess” by interviewers or
recorders at public meetings. Demographic data is not always exact or may include a
mixture of possible domain values. The situation is even less certain when probable
values must be ascertained by observers having little knowledge of the individuals.
A fuzzy-rough E-R diagram for our example appears in Fig. 8.1.

Once a rough entity-relationship semantic design has been established, the logi-
cal model for the rough relational database can be developed. In order to formally
determine the “goodness” of this design, it can be evaluated in terms of increasingly
restrictive normal forms. Normal forms are based on functional dependencies, both
of which are discussed in the following section.
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Fig. 8.1 E-R Diagram

8.4 Rough Functional Dependencies and Normalization

A functional dependency can be defined as in [12] through the use of a universal
database relation concept. Let R = {A1,A2, . . . ,An} be a universal relation schema
describing a database having n attributes. Let X and Y be subsets of R. A functional
dependency between the attributes of X and Y is denoted by X → Y . This depen-
dency specifies the constraint that for any two tuples of an instance r of R, if they
agree on the X attribute(s) they must agree on their Y attributes(s): if t1[X ] = t2[X ],
then it must be true that t1[Y ] = t2[Y ]. Tuples that violate the constraint cannot be
inserted into the database.

Functional dependencies are data dependencies that are functional in the same
sense as functions in mathematics. Therefore, if the functional dependency X → Y
holds, then the values of X functionally determine the values of Y ; equivalently,
Y is functionally dependent on X . The functional dependencies are used to spec-
ify constraints on tuple values based on the semantics of the relation attributes. A
functional dependency must hold for all instances of the database on which it is de-
fined. With these constraints incorporated into the design of the database schema, it
is possible to restrict the tuples that comprise relations. These constraints aid in the
maintenance of data integrity and the prevention of update anomalies.
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The database designer may specify functional dependencies on relation schemas.
However, there are usually many additional functional dependencies that will also
hold. These dependencies can be inferred from those specified through the use of
inference axioms, some of which are shown below; the first three of these are known
as Armstrong’s axioms:

(1) Reflexive: X ⊇ Y ⇒ X → Y
(2) Augmentation: X → Y ⇒ XZ → YZ
(3) Transitive: X → Y,Y → Z ⇒ X → Z
(4) Projective: X → Y Z ⇒ X → Y
(5) Union: X → Y,X → Z ⇒ X → YZ
(6) Pseudotransitive: X → Y,WY → Z ⇒ WX → Z

Because Armstrong’s axioms are sound and complete, all the functional dependen-
cies of a database can be inferred by application of these rules to the set of given
functional dependencies.

The rough functional dependency is based on the rough relational database
model. The classical notion of functional dependency for relational databases does
not naturally apply to the rough relational database, since all the “roughness” would
be lost. In the rough querying of crisp data [1], however, the data is stored in the stan-
dard relational model having ordinary functional dependencies imposed upon it and
rough relations result only from querying; they are not a part of the database design
in which the designer imposes constraints upon relation schemas. Rough functional
dependencies for the rough relational database model are defined as follows [3]:

Definition 8.5. A rough functional dependency, X → Y , for a relation schema R
exists if for all instances T (R),

(1) for any two tuples t, t ′ ∈ RT ,
redundant(t(X), t ′(X))⇒ redundant(t(Y), t ′(Y ))

(2) for any two tuples s,s′ ∈ T ,
roughly−redundant(s(X),s′(X))⇒ roughly−redundant(s(Y),s′(Y )).

Y is roughly functionally dependent on X , or X roughly functionally determines Y ,
whenever the above definition holds. This implies that constraints can be imposed
on a rough relational database schema in a rough manner that will aid in integrity
maintenance and the reduction of update anomalies without limiting the expressive-
ness of the inherent rough set concepts.

It is obvious that the classical functional dependency for the standard relational
database is a special case of the rough functional dependency. Indiscernibility re-
duces to simple equality and part (2) of the definition is unused since all tuples in
relations of a standard relational model belong to the lower approximation region of
a similar rough model.

The first part of the definition of rough functional dependency compares with that
of fuzzy functional dependencies discussed in [28], where adherence to Armstrong’s
axioms was proven. The results apply directly in the case of rough functional depen-
dencies when only the lower approximation regions are considered. It is additionally
necessary to show that axioms hold for upper approximations as in [3].
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Theorem 8.1. Rough functional dependencies satisfy Armstrong’s axioms.

Proof.
(1) Reflexive
If Y ⊆ X ⊆U , then

redundant(t(X), t ′(X))⇒ redundant(t(Y), t ′(Y )), and
roughly− redundant(t(X), t ′(X))⇒ roughly− redundant(t(Y), t ′(Y )).

Hence, X → Y .

(2) Augmentation
If Z ⊆U and the rough functional dependency X → Y holds, then

redundant(t(XZ), t ′(XZ))⇒ redundant(t(YZ), t ′(YZ)), and
roughly− redundant(t(XZ), t ′(XZ))⇒ roughly− redundant(t(YZ), t ′(Y Z)).

Hence, XZ → Y Z.

(3) Transitive
If the rough functional dependencies X → Y and Y → Z hold, then

redundant(t(X), t ′(X))⇒ redundant(t(Z), t ′(Z)), and
roughly− redundant(t(X), t ′(X))⇒ roughly− redundant(t(Z), t ′(Z)).

Hence, X ⇒ Z. �

Hence, rough functional dependencies satisfy Armstrong’s axioms. Given a set of
rough functional dependencies, the complete set of rough functional dependencies
can be derived using Armstrong’s axioms. The rough functional dependency, there-
fore, is an important formalism for design in the rough relational database [4], and
is inherent in the process of normalization.

8.5 Rough Normal Forms

Normalization [10, 12] of relational databases is a process of evaluating the func-
tional dependencies in a relation, and determining whether the dependencies meet
certain conditions, which will minimize redundancy in the database and reduce
the insertion, deletion, and update anomalies that could occur. These normal forms
are based on the traditional definitions of key, superkey, candidate key, and prime
attribute, as can be found in [12]. In general, a key is an attribute on which all
other attributes are functionally dependent, and a prime attribute is one, that is part
of a key.

During the normalization process, if a relation schema does not meet the condi-
tions for a particular normal form, then steps are taken to decompose relations in
order to meet the specified criteria. Although normal forms range from first normal
form (1NF), a basic structure of the standard relational model, through fifth normal
form (5NF), typically 3NF or Boyce-Codd normal form, a stricter version of 3NF,
is used. Each normal form is more restrictive than the previous one. For example, a
relation in 3NF is also in 2NF, but the opposite is not necessarily true. In non-first
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normal form extensions [17, 23] to the relational model, such as the rough relational
model discussed here, we need not concern ourselves with the 1NF restriction.

8.5.1 Rough Second Normal Form

A rough relation schema is in rough 2NF if every non prime attribute is fully roughly
functionally dependent on the key. In such a rough relation, there will be no partial
dependencies [4].

Definition 8.6. Let F be the set of rough functional dependencies for schema R, and
let K be a key of R. Then R is in rough 2NF only if none of the nonprime attributes
is partially roughly dependent on K.

Consider, for example, a rough relation schema R(A,B,C,D,E) having rough func-
tional dependencies B → A,BC → D and BC → E . Here BC is the key, D and E are
fully roughly functionally dependent on BC, and A is partially roughly-functionally
dependent on BC.

In order to normalize R so that our database schema is in rough 2NF, we must do
the following:

1. For each partial key form, a new rough relation containing the partial key and
all of the attributes that are fully roughly-functionally dependent on it.

2. Remove those nonprime attributes from the original rough relation that are in
this new rough relation.

Performing this procedure on the relation schema R above yields the following
database schema: R(B,C,D,E), S(B,A). This is now in rough 2NF since every at-
tribute of R is fully roughly-functionally dependent on the key AB and every attribute
of S is fully roughly-functionally dependent on the key B.

8.5.2 Rough Third Normal Form

A rough relation schema is in rough 3NF if every nonprime attribute is fully roughly
functionally dependent on the key and there exist no transitive dependencies. In
such a rough relation schema, there will be no dependencies on attributes other than
the key.

Definition 8.7. Let F be the set of rough functional dependencies for schema R, and
let K be a key of R. Then R is in rough 3NF if whenever some nontrivial dependency
G → H holds in R, then either (a) G is a superkey or (b) H is a prime attribute.

Consider, for example, a rough relation schema R(B,C,G,H) having rough func-
tional dependencies B →C,B → G,B → H, and also G → H. Here B is the key, but
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notice that H is dependent on G, and G is dependent on B. This is a transitive depen-
dency that prevents rough schema R from being in rough 3NF. G is not a superkey,
and H is not a prime attribute.

In order to normalize our schema so that it will meet the requirements for 3NF,
perform the following:

1. For each transitive dependency form a new rough relation containing the
nonprime attribute that functionally determines the others in the dependency
(this becomes the key) and all of the attributes that are roughly- functionally
dependent on it.

2. Remove those attributes from the original rough relation that are nonprime
attributes in this new rough relation.

In order to normalize R(B,C,G,H) in the example above so that it is in rough 3NF, a
new rough relation schema is created: R(B,C,G),S(G,H). Notice that no transitive
dependencies exist.

It is important that decomposition into rough third normal form also results in
additional desirable properties, rough lossless join, and rough dependency preser-
vation. The rough lossless join property insures that the original relations can be
recovered from their decompositions and that spurious tuples are not generated
when the decomposed relations are joined. Such spurious tuples represent erroneous
information that is not part of the database.

A rough dependency preserving decomposition insures that all rough func-
tional dependencies that exist before the decomposition remain after the decom-
position. If this property does not hold, such that rough dependencies cannot be
represented by individual rough relations, inefficient and unnecessary join oper-
ations would be required in order for constraints based on the dependency to be
checked.

We can insure lossless join decomposition that preserves dependencies if the
following steps are taken:

1. For the set of rough functional dependencies F for rough relation schema R,
find a minimal cover G, with no partial functional dependencies.

2. Eliminate from R any attributes that are not included in G and place them in a
separate rough relation schema.

3. For each X , left hand side, of dependencies in G, create new rough relation
schema in the decomposition with attributes {X ∪ {A1} ∪ . . .∪ {Ak}}, where
X → A1, . . .X → Ak are the rough functional dependencies in G with X as the
left hand side.

If no relation schema in the decomposition contains a key of R, then create an ad-
ditional rough relation schema that contains attributes that form a key of R. Each
relation schema in the decomposition will be in rough 3NF, and it can be shown that
the lossless join and dependency preservation properties hold.
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8.5.3 Rough Boyce Codd Normal Form (BCNF)

In terms of reducing redundancy, rough BCNF is the most desirable to achieve. It is
stricter than rough 3NF since it eliminates condition (b) from the definition. Some
decompositions result in “losing” the functional dependency and we must be careful
not to decompose the schema in such a way as to not generate spurious tuples from
a join operation.

Definition 8.8. Let F be the set of rough functional dependencies for schema R,
and let K be a key of R. Then R is in rough BCNF if R is in rough 3NF and for any
nontrivial dependency G → H in F,G is a superkey.

Although more restrictive normal forms have been defined for relational databases,
a database design in BCNF is often considered “good” with respect to functional de-
pendencies. For the rough relational database, rough 3NF or rough BCNF is usually
sufficient. More uncommonly used normal forms such as 4NF are used in special
circumstances such as for multivalued dependencies [12]. These do not commonly
occur in ordinary database design and so are not considered here.

8.6 Security Design Issues

Security, or the protection of the database against unauthorized use, has several as-
pects [11, 13, 15, 27], but our concern here is with protection against unauthorized
viewing of data. In particular for imprecise databases, this means access to some
information if the exact correlations of data items remain unknown which is similar
to the idea of security in statistical databases [9, 18]. For example, statistical infor-
mation such as the average salary of a large group of individuals may be available,
but not the exact salary of any one individual.

8.6.1 Security Approaches

The primary approaches to compromising these databases are to isolate a specific
data value by intersecting a set of queries often based on the isolation of a sin-
gle data value at the intersection of several query sets. Some ways to combat this
include:

1. Minimum query size controls: These restrict very large or small query sets by a
formula giving a lower bound on allowable query set size.

2. Minimum overlap control: This prevents replies to queries based on the number
of records overlapping prior queries.
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A basic consideration for uncertainty data representations in a rough database is the
form of of non first normal form NF2 relations in which an attribute may have
a set of values. Since, we are concerned with security violations we must dis-
cuss the possible meaning or interpretation of such relations. For example, con-
sider a simple tuple with two attributes A1,A2 having the values: A1 = {a}; A2 =
{b1,b2, . . .bm}. Then there are m possible meanings or interpretations for this
tuple:

{[a,b1], [a,b2], . . . [a,bm]}

Assume we are concerned with not allowing some exact values of attribute A2 cor-
responding to A1 to be known. In this case there are m possible correspondences
and a query that returned this one tuple, (a,{b1,b2, . . .bm}), would not directly vi-
olate our security concern. If the value of attribute A1 were also a set of values, the
possible relationship between the attribute values of A1 and A2 would be even more
uncertain.

However, it may be possible that multiple querying of such set valued tuples
could still lead to security violations. We will now carefully consider under what
conditions in NF2 databases, security could still be violated. To do this we must
consider the idea of tuple interpretations more formally.

For a given tuple t(A1,A2, . . .An) let the value of attribute Ai be the set di ⊆ Di.
Then each interpretation of the tuple t has a specific value vi for each attribute Ai:

I = [v1,v2, . . .vn],vi ∈ di.

In general for every interpretation, I j,

I j ∈ d1 × d2 × . . .dn.

To count the number of interpretations Ph of the tuple th, let the cardinality of the
value of the ith attribute be |dhi|= pi. So then

Ph =
n

∏
i=1

pi.

Our discussion of interpretations allows us to address the question of whether a se-
quence of queries can isolate a single interpretation, thus violating security. Consider
the general case in which we want to prevent an exact association between values of
two attributes, A j and Ak, when a set of r tuples {t1, t2, . . . tr} is retrieved by querying.
Then we have for each tuple the set of interpretations for the two attributes:

I1( j,k) = {I11( j,k), I12( j,k), . . . I1n1( j,k)}
I2( j,k) = {I21( j,k), I22( j,k), . . . I2n2( j,k)}
. . .
Ir( j,k) = {Ir1( j,k), Ir2( j,k), . . . Irnr( j,k)},

where Ih( j,k) is a specific interpretation of tuple th for these attributes.
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Let us consider an example of how interpretations can be related to violations of
security in retrieved set-valued tuples with the two attributes A j and Ak. Assume the
following three tuples are retrieved:

t1 = ({a,b,c},{r,s, t})
t2 = ({a,d,e},{r,v,x})
t3 = ({e, f},{s, t,z}).

So these tuples have the interpretations:

I1( j,k) = {[a,r], [a,s], [a, t], [b,r], . . . [c,s], [c, t]}
I2( j,k) = {[a,r], [a,v], [a,x], [d,r], . . . [e,v], [e,x]}
I3( j,k) = {[e,s], [e, t], [e,z], [ f ,s], . . . [ f ,z]}.

Now these interpretations can be pairwise intersected:

I1( j,k)∩ I2( j,k) = {[a,r]},

and the other intersections are null:

I1( j,k)∩ I3( j,k) = I2( j,k)∩ I3( j,k) = /0.

Since the intersection of tuples t1 and t2 produces a set of cardinality 1, we can
definitely say the value a for attribute A j is uniquely associated with the value r of
attribute Ak which represents a security violation with respect to these attributes. So
in general there will be a security violation if for any p,q

|Ip( j,k)∩ Iq( j,k)| = 1, p �= q.

These sort of security violations are similar to the minimum overlap control (2)
mentioned previously. Also if a query can return a large query set size (1), then it is
more likely some tuple interpretations might overlap resulting in a security violation
as described.

As discussed previously in the rough relational database, the nature of rough set
data causes a different view of tuple redundancy. So in the rough relational database,
redundant tuples are removed in the merging process based on this definition. As a
result of the underlying indiscernibility relation, the intersection of tuples in a single
relation cannot produce a security violation. This follows because redundant tuples
are not allowed in a rough relation, and so there cannot be two tuples having the
same interpretation.
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8.6.2 Rough Databases and Security Measures

This section will describe for the rough relational database information-theoretic
measures for uncertainty defined for rough schemas and rough relations [5, 29]: In
order to introduce these a rough entropy form for rough sets must first be given
using the roughness measure for a rough set as given by Pawlak [20].

Definition 8.9. The rough entropy of a rough set X is HR :

HR(X) =−(ρR(X))[Σ Qilog(Pi)]

for i = 1, . . . ,n equivalence classes.

The term ρR(X) denotes the roughness of the set X . The second term is the summa-
tion of the probabilities for each equivalence class belonging either wholly or in part
to the rough set X . There is no ordering associated with individual class members.
Therefore the probability of any one value of the class being named is the recipro-
cal of the number of elements in the class. If ci is the cardinality of, or number of
elements in, equivalence class i and all members of a given equivalence class are
equal, Pi = 1/ci represents the probability of one of the values in class i. Qi denotes
the probability of equivalence class i within the universe. Qi is computed by taking
the number of elements in class i and dividing by the total number of elements in all
equivalence classes combined.

In the rough relational database all domains are partitioned into equivalence
classes and relations are not restricted to first normal form. We therefore have a
type of rough set for each attribute of a relation. This results in a rough relation,
since any tuple having a value for an attribute which belongs to the boundary re-
gion of its domain is a tuple belonging to the boundary region of the rough relation.
There are two things to consider when measuring uncertainty in databases: uncer-
tainty or entropy of a rough relation that exists in a database at some given time
and the entropy of a relation schema for an existing relation or query result. We
must consider both since the approximation regions only come about by set values
for attributes in given tuples. Without the extension of a database containing actual
values, we only know about indiscernibility of attributes. We cannot consider the
approximation regions.

So we can define the entropy for a rough relation schema as follows:

Definition 8.10. The rough schema entropy for a rough relation schema S is HRS is

HRS(S) =−Σ j [Σ Qi log(Pi)], for i = 1, ...n; j = 1, ...,m

where there are n equivalence classes of domain j, and m attributes in the schema
R(A1,A2, . . . ,Am).

This is similar to the definition of entropy for rough sets without factoring in rough-
ness since there are no elements in the boundary region (lower approximation =
upper approximation). However, because a relation is a cross product among the
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domains, we must take the sum of all these entropies to obtain the entropy of
the schema. The schema entropy provides a measure of the uncertainty inherent
in the definition of the rough relation schema taking into account the partitioning of
the domains on which the attributes of the schema are defined.

We extend the schema entropy HRS to define the entropy of an actual rough re-
lation instance of some database D by multiplying each term in the product by the
roughness of the rough set of values for the domain of that given attribute.

Definition 8.11. The rough relation entropy of a particular extension of a schema
is HRR:

HRR(R) =−Σ j Dρ j(R)[Σ DQi log(DPi)], for i = 1, ...n; j = 1, ...,m

where Dρ j(R) represents a type of database roughness for the rough set of values
of the domain for attribute j of the relation, m is the number of attributes in the
database relation, and n is the number of equivalence classes for a given domain
for the database. DQi is the probability of a tuple in the database relation having a
value from class i, and DPi is the probability of a value for class i occurring in the
database relation out of all the values which are given We obtain the Dρ j(R) val-
ues by letting the non-singleton domain values represent elements of the boundary
region, computing the original rough set accuracy and subtracting it from one to
obtain the roughness. The entropy of an actual rough relation instance HRR(R) is an
extension of the schema entropy obtained by multiplying each term in the product
by the roughness of the rough set of values for the domain of that given attribute.

Consider the example relations in Figure 8.2 where domains for soil color and size
have been defined as

COLOR = {[black,ebony], [brown, tan,sienna], [white], [gray], [orange]},
and

PARTICLE-SIZE = {[big, large], [huge,enormous], [medium], [small, little, tiny]}.
The rough relation entropy of the relations SAMPLE-114 and SAMPLE-115

shown in the tables are calculated as follows:

HRS(SAMPLE − 114) =− (4/7)[(2/5) log(2/7)+ (3/5) log(3/7)+ 0+

+(2/5) log(2/7)+ 0]− (2/6)[(2/5log(2/6)+ 0+

+(2/5) log(2/6)+ (2/5) log(2/6)] = .56,

HRS(SAMPLE − 115) =− (7/7)[(1/2) log(1/7)+ (2/2) log(2/7)+

+(2/2) log(2/7)+ (1/2) log(1/7)+ (1/2) log(1/7)]−
− (5/5)[(1/2) log(1/5)+ (1/2) log(1/5)+

+(2/2) log(2/5)+ (1/2) log(1.5)] =

= 3.7821
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SAMPLE-114

BIN-NO COLOR PARTICLE-SIZE
P21 brown medium
P22 {black, tan} large
P23 gray {medium, small}
T01 black tiny
T04 {gray, brown} large

SAMPLE-115

BIN-NO COLOR PARTICLE-SIZE
M43 {black, tan, white} {big, huge, medium}
M46 {brown, orange, white, gray} {medium, small}

Fig. 8.2 Rough relations for entropy analysis.

In the second sample the specific relationships between the values of the color and
particle size are less exactly specified than in first sample and so more secure. This
correlates to the entropy being higher in the second sample. From this example it
is clear that our concept of security in the rough relational database corresponds to
uncertainty in this sense, so we can use these measures of entropy as a quantitative
measure for security in a rough relational database.

8.7 Example of Use of Rough Spatial Data

Many of the problems associated with data are prevalent in all types of database
systems. Spatial databases and geographic information systems (GIS) contain de-
scriptive as well as positional data. The various forms of uncertainty occur in both
types of data, so many of the issues apply to ordinary databases as well, such as
integration of data from multiple sources, time-variant data, uncertain data, impre-
cision in measurement, inconsistent wording of descriptive data, and “binning” or
grouping of data into fixed categories, also are employed in spatial contexts.

First consider an example of the use of rough sets in representing spatially related
data. Let

U = {tower, stream, creek, river, forest, woodland, pasture, meadow}

and let the equivalence relation R be defined as follows:

R∗ = {[tower], [stream, creek, river], [forest, woodland], [pasture, meadow]}.

Given some set

X = {tower, stream, creek, river, forest, pasture},
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we would like to define it in terms of its lower and upper approximations:

RX = {tower,stream,creek,river},

and

RX = {tower,stream,creek,river, f orest,woodland, pasture,meadow}.

A rough set in A is the group of subsets of U with the same upper and lower approx-
imations. In the example given, the rough set is

{ {tower, stream, creek, river, forest, pasture}
{tower, stream, creek, river, forest, meadow}
{tower, stream, creek, river, woodland, pasture}
{tower, stream, creek, river, woodland, meadow} }.

Often spatial data is associated with a particular grid. The positions are set up in a
regular matrix-like structure and data is affiliated with point locations on the grid.
This is the case for raster data and for other types of non-vector type data such as
topography or sea surface temperature data. There is a tradeoff between the resolu-
tion or the scale of the grid and the amount of system resources necessary to store
and process the data. Higher resolutions provide more information, but at a cost of
memory space and execution time.

If we approach these data issues from a rough set point of view, it can be seen
that there is indiscernibility inherent in the process of gridding or rasterizing data.
A data item at a particular grid point in essence may represent data near the point
as well. This is due to the fact that often point data must be mapped to the grid
using techniques such as nearest-neighbor, averaging, or statistics. The rough set
indiscernibility relation may be set up so that the entire spatial area is partitioned into
equivalence classes, where each point on the grid belongs to an equivalence class.
If the resolution of the grid changes, then, in fact, this is changing the granularity of
the partitioning, resulting in fewer, but larger classes.

The approximation regions of rough sets are beneficial whenever information
concerning spatial data regions is accessed. Consider a region such as a forest. One
can reasonably conclude that any grid point identified as forest that is surrounded
on all sides by grid points also identified as forest is, in fact, a point represented by
the feature forest. However, consider points identified as forest that are adjacent to
points identified as meadow. Is it not possible that these points represent meadow
area as well as forest area but were identified as forest in the classification process?
Likewise, points identified as meadow but adjacent to forest points may represent
areas that contain part of the forest. This uncertainty maps naturally to the use of
the approximation regions of the rough set theory, where the lower approximation
region represents certain data and the boundary region of the upper approximation
represents uncertain data. It applies to spatial database querying and spatial database
mining operations.



154 T. Beaubouef and F.E. Petry

If we force a finer granulation of the partitioning, a smaller boundary region re-
sults. This occurs when the resolution is increased. As the partitioning becomes finer
and finer, finally a point is reached where the boundary region is non-existent. Then
the upper and lower approximation regions are the same and there is no uncertainty
in the spatial data as can be determined by the representation of the model.

8.8 Conclusion

We have provided discussions of how it is possible to design relational databases to
allow the incorporation of uncertain data characterized using rough set theory. This
included Entity-Relationship modeling, rough functional dependencies and rough
normal forms. Security issues as dealt with in statistical databases were also dis-
cussed as well as an example of the representation of uncertain spatial data by
rough sets.

Some interesting possible new directions that were pointed out by a reviewer in-
clude how to learn the most efficient (resulting in crispest answers) with at the same
time, the most meaningful (for the database users) columns’ domain partitions and
also how to extend the columns’ domain partitions into coverings.
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Chapter 9
Rough Pragmatic Description Logic

Zbigniew Bonikowski, Edward Bryniarski, and Urszula Wybraniec-Skardowska

Abstract. In this chapter, a rough description logic is built on the basis of a
pragmatic standpoint of representation of knowledge. The pragmatic standpoint
has influenced the acceptance of a broader definition of the semantic network than
that appearing in the literature. The definition of the semantic network is a motiva-
tion of the introduced semantics of the language of the descriptive logic. First, the
theoretical framework of representation of knowledge that was proposed in the pa-
pers [24, 25] is adjusted to the description of data processing. The pragmatic sys-
tem of knowledge representation is determined, as well as situations of semantic
adequacy and semantic inadequacy for represented knowledge are defined. Then,
it is shown that general information systems (generalized information systems in
Pawlak’s sense) presented in the paper [5] can be interpreted in pragmatic systems
of knowledge representation. Rough sets in the set-theoretical framework proposed
in papers [7,8] are defined for the general information systems. The pragmatic stand-
point about objects is also a motivation to determine a model of semantic network.
This model is considered as a general information system. It determines a formal
language of the descriptive logic. The set-theoretical framework of rough sets, which
was introduced for general information systems, makes it possible to describe the
interpretation of this language in the theory of rough sets. Therefore this interpreta-
tion includes situations of semantic inadequacy. At the same time, for the class of
all interpretations of this type, there exists a certain descriptive logic, which — in
this chapter — is called rough pragmatic description logic.
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9.1 Introduction

The passing decade has seen a rapid increase in the number of scientific publica-
tions dealing with description logic, which were inspired by the research program
of semantic network WEB (see cf. [1]). A certain departure from the cognitive stand-
point called here pragmatic standpoint of representation of knowledge about objects
can be observed in the popular trends of this research, referred to, in brief, as SHIF,
SHOIN, SROIQ. This standpoint, making reference to traditional philosophical con-
siderations, links the represented notions (constituents of knowledge about objects)
to the expressions of language which are used by agents and which refer to the rep-
resented objects. It is aimed to precisely describe such situations in processing the
data that lead to semantic adequacy, i.e. an accordance between the represented no-
tions and the objective world being described. Identification of the semantic inade-
quacy that manifests itself in vagueness, uncertainty or fuzziness of the represented
knowledge, becomes possible. A precise description of the pragmatic making use
of: notions, meanings of terms and objective references of terms in processes of
communication between people, allows arriving at an answer to the question: can
AI systems know anything or comprehend anything, thus can they participate in a
discourse with humans, in a pragmatic sense, in the manner that is similar to hu-
man’s (like in Turing’s test [23])? In other words, this is a question about whether
there exist systems of a pragmatic artificial intelligence. For this reason the prag-
matic standpoint of representation of knowledge about objects can be important for
the AI research.

In this chapter, having been inspired by papers [10, 11], in contrast to their au-
thors’ ideas, though, we will build a rough description logic. The pragmatic stand-
point of representation of knowledge will also influence the acceptance of a broader
definition of the semantic network than that appearing in the literature. The defini-
tion of the semantic network will influence the introduced semantics of the language
of descriptive logic. First, we will adjust the theoretical framework of representation
of knowledge that was proposed by U. Wybraniec-Skardowska [24, 25] to the de-
scription of data processing. The pragmatic system of knowledge representation will
be determined, as well as situations of semantic adequacy and semantic inadequacy
for represented knowledge will be defined. Then, it will be shown that general in-
formation systems (generalized information systems in Pawlak’s sense) presented in
the paper (Bonikowski, Wybraniec-Skardowska [5]) can be interpreted in pragmatic
systems of knowledge representation. Rough sets in the set-theoretical framework
proposed by E. Bryniarski [7, 8] are defined for the general information systems.
The pragmatic standpoint of representation of knowledge about objects is also a
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motivation to determine a model of semantic network. This model is considered as
a general information system. It determines a formal language of descriptive logic
DL. The set-theoretical framework of rough sets, which was introduced for general
information systems, makes it possible to describe the interpretation of this lan-
guage in the theory of rough sets. Therefore, this interpretation includes situations
of semantic inadequacy. At the same time, for the class of all interpretations of this
type, there exists a certain descriptive logic, which we call the rough pragmatic
description logic (RPDL).

9.2 The Pragmatic System of Knowledge Representation

In the research into the existence of systems of an artificial intelligence it is vital to
obtain an answer to the question whether AI systems cannot represent only knowl-
edge, but also if they can “know something”, are able to “conceive something”.
According to the traditional pragmatic standpoint relating to usage of language,
knowledge, its representation and understanding this representation, are determined
through making use of specimens, tokens of expressions of language in the commu-
nication process. If we replace the user of language in this process with a certain
system of artificial intelligence, then the subject that understands the represented
knowledge and learns about this knowledge is the vary system itself. In order to
design this behavior of the artificial intelligence system, it is necessary to precisely
define the notion of this system. Such a system will be called a pragmatic system of
knowledge representation.

The most significant properties of natural or artificial languages, such as collo-
quial speech or programming languages, for a description of the objective world, are
specimens, tokens of data, specimens of descriptions of objects in an established sit-
uation, which are available in these languages. Moreover, possible relations between
these specimens, tokens (including operations that can be performed on them) are
also available. Specimens, tokens of data are concrete occurrences, representatives
of an abstractive value called a datum. Simultaneously, for the same datum there
can exist many of its specimens and all these specimens are used in the same way to
indicate an object or objects of a given type. Thus, a datum is a class of specimens
used in the same way (analogously). A set of values possible to use in a natural lan-
guage or a programming language, such as numerical data, inscriptions, records, is
usually infinite, although given communicating (a given program) uses, obviously,
a finite number of them. For this reason we will consider only language structures
determined on finite sets. Any subject of communicating that uses expressions of
a language in a way comprehensible to a human being is called an agent. Agents
are people, means or systems of information technology (e.g. relevant computer
programs, suitably programmed computers, computer networks, programs servicing
WEB network), as well as all kinds of organizations, human or technological, which
process data. Agents group specimens of data and thanks to their analogous usage
they obtain data. Next, they connect the data which represent the same elementary
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features and properties of objects, obtaining types of data. The most frequently en-
countered types of data are types of numerical data and textual types: relevant sets
of numerical data or sets of texts. Classification of specimens of data can occur in
such a way, yet it also can take place according to many other criteria. The clas-
sification can be performed inside and outside the agent’s activity. Due to agents’
communicating with one another only external classification of data will be consid-
ered, that is one established by relations of common usage of the data by the agents.
These relations are a kind of protocols of communicating: algorithms used to obtain
access to data or obtaining the right of access to these data through using specimens
of these data, or obtaining the right of access to a specimen of these data. A re-
sult of agents’ communicating with one another is grouping types of data in certain
classes in which the people communicating with one another normally acknowledge
to knowledge. In this sense, thus in the pragmatic sense, types of data mean some-
thing, they represent certain knowledge. Furthermore, specimens of data refer to
certain objects established by data indicating only one of these objects. These data
are proper names, singular terms, pronouns, including complex names: addresses
of placing the object or addresses of the sources of knowledge which points to this
object (e.g. addresses of the Internet resources). We will identify the set of all such
data with a certain field of ontology: a structure encompassing all of the described
beings. We will denote this set with Ont. Similarly, we will identify the set of all
data such that each of the data is a datum about only one agent, each of the data
points to only one agent, with a set of all agents. We will denote this set by User.
Since agents communicating with one another, identify any agent with the datum
u ∈ User, unambiguously point to agent u, and the object is identified with the da-
tum o∈Ont, pointing — in an unambiguous manner — to this object o, thus the data
u, describing objects that are agents, belong to Ont, which means that User ⊆ Ont.
Precisely speaking, the system of agents’ communicating, in which agents can know
something, can be defined in the following way:

Definition 9.1. (see [24]) A pragmatic system of knowledge representation is the
multi-sort structure KRPS = 〈S,S,User,Ont,use〉, where
A1. S �= /0, User �= /0 and Ont �= /0, S is a set of specimens of data (specimens, tokens

of language expressions-types [24]), User is a set of agents, and Ont is a set of
objects indicated by the specimens of data.

A2. use is a relation: /0 �= use⊆User×S×Ont such that D1(use)=User, D2(use)⊆
S, D3(use) ⊆ Ont; we call relation use — a relation of using of specimens of
data of set S, expression “use(u,e,o)” is read: the agent u uses e as a specimen
of a datum about object o.

Relation ∼⊆ S× S satisfying the condition: for any e,e′ ∈ S,
e ∼ e′ iff there exist u ∈ User,o ∈ Ont, such that use(u,e,o) and use(u,e′,o),

is called a relation of identical usage of specimens of data. The equivalence
class [e]∼ = {e′ ∈ S : e ∼ e′} is called a datum represented by e.

A3. S ⊆ 2S; for all e ∈ S, [e]∼ ∈ S and for any e ∈ S there exists such a set D of
data that

⋃
D = e; User ⊆ Ont, User ⊆ S, Ont ⊆ S; the elements of the set S

are called data types, and the elements of data types — representatives of these
types.
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In compliance with Def. 9.1, in the pragmatic system of knowledge representation,
for any type e of data, agents possess procedures of checking whether a specimen
e ∈ S of a datum about the object o, which is used by them, represents type e, i.e.
whether [e]∼ ⊆ e, and thus e ∈ e. In this sense, an agent u uses a type e of a datum,
when for some e ∈ e and some o ∈ Ont, the agent u uses a specimen e of a datum
about the object o, i.e. use(u,e,o).

Definition 9.2. Let us consider, for the system KRPS, the relation Use = {〈u,e〉 ∈
User×S : for some e ∈ e and o ∈ Ont,use(u,e,o)}. We call the relation Use — a
relation of usage of data types. Instead of “〈u,e〉 ∈Use” we write: u Use e (we read:
the agent u uses the type e of data).

From Def. 9.1 and Def. 9.2 there follows immediately

Corollary 9.1. For each u ∈ User and some o ∈ Ont there is such a specimen e ∈ S
of a datum about the object o that u Use [e]∼.

In other words, for any agent, as well as for an object, there exists a datum about
this object, which is used by this agent. Thus, each relation of the agent and the
object in the pragmatic system of knowledge representation can be interpreted as a
state of representation of knowledge, in which this representation is a datum used
by this agent. This means that an agent u, by using a specimen e of a datum about an
object o, knows something about the object. Hence, it is right to call the pair 〈u,o〉
— an epistemic state in the pragmatic system of knowledge representation. We will
denote the set of all epistemic states by U , and the set of epistemic states, in which
agent u knows something about objects indicated by the examples of data about type
e will be denoted by U(u,e):

U(u,e) = {〈u,o〉 ∈U : there exists e ∈ e, such that use(u,e,o)}.

In different epistemic states, any agent can — in the same way — use (apply the
same procedures of data processing) different data types, e.g. the ones listed below:

1. e = [John-son of Joseph]∼, e′ = [John, whose father is Joseph]∼,
2. e = [triangle, one of the angles of which is right]∼,

e′ = [a right-angled triangle]∼,
3. e =

⋃{[1]∼, [2]∼, [3]∼}, e′ =
⋃{[one]∼, [two]∼, [three]∼}.

This manner of using two data types for each agent is made precise by the following
definition:

Definition 9.3. (of the same manner of using data types)
For any data types e, e′

e ≡ e′ iff for any agent u ∈ User there hold the conditions
(i) u Use e iff u Use e′,
(ii) {o ∈ Ont : there exists e ∈ e such that use(u,e,o)}

= {o ∈ Ont : there exists e′ ∈ e′ such that use(u,e′,o)}.
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We read expression “e ≡ e′": types e , e′ of data are used in the same manner.

One can ask the following question: When are the data types which are used in the
same manner, identical?

Fact 9.1 If, in the system KRPS, for all e ∈ S, for each e ∈ e there holds [e]∼ ⊆ e,
then for any e1,e2 ∈ S, if e1 ≡ e2, then e1 = e2.

Observation 9.1 If two data types e, e′ are used in the same manner by agent u,
then the set of epistemic states in which agent u knows something about the objects
indicated by specimens of e is equal to the set of epistemic states, in which agent u
knows something about the objects indicated by specimens of e′:

U(u,e) =U(u,e′).

Intuitively, if each agent uses different data types about some objects in the same
manner, then he has the same knowledge about the objects described by the first
data type as that described by the second data type, or these data types have the
same meaning.

Definition 9.4. (the meaning and knowledge [24, 25])
We call the equivalence class [e]≡ of the relation ≡ — a unit of knowledge rep-

resented by the data type e or meaning of the data type e, while any subset K of
the set K = {[e]≡ : e ∈ S} of all units of knowledge, will be called knowledge in the
pragmatic system of knowledge representation. The operation that establishes the
meanings is the operation μ : S → K, defined by the formula μ(e) = [e]≡, for any
e ∈ S . We say about the data type e ∈ S, such that a unit of knowledge [e]≡ belongs
to knowledge K that it represents knowledge K.

Does the knowledge represented by specimens of data refer to the same objects
which are indicated by the specimens? Or are the epistemic states, in which agents
possess this knowledge, the same epistemic states, in which the agents — on the
basis of specimens of data types representing this knowledge — find out about the
same? Pragmatics includes these questions in the sphere of determining the denota-
tion and adequacy of knowledge representation. The following definitions and the-
orems define this problem area more accurately.

Definition 9.5. (denotation and operations of denotation of data types as well as
units of knowledge [24, 25])

The operation δ : S → 2Ont defined by the formula

δ (e) = {o ∈ Ont : there exist u ∈ User,e ∈ e such that use(u,e,o)},

is called an operation of denotation of data types, and the values of this operation
are called denotations of data types.

The operation δK : K → 2Ont defined by the formula

δK(k) = {o ∈ Ont : there exists e ∈ S such that k = μ(e) and
there exist u ∈ User,e ∈ e such that use(u,e,o)},



9 Rough Pragmatic Description Logic 163

is called an operation of denotation of units of knowledge, and the values of this
operation are called denotations of units of knowledge.

From the above definition there follows immediately

Corollary 9.2. (of semantic adequacy [24])

δ (e) = δK(μ(e)), for any e ∈ S.

The equation of semantic adequacy permits, for any data type e and knowledge K,
to check whether there exists a solution x of equation δ (e) = δK(x) which belongs
to K and which is the meaning of e, or — in a broader sense — whether there
is a unit of knowledge k ∈ K satisfying the expression δK(k) ⊆ δ (e), i.e. whether
knowledge K is a knowledge about the objects indicated by specimens of data type
e. Intuitively, we are asking about the adequacy of knowledge K represented by e, as
well as whether this knowledge determines exactly the semantic denotation of data
type e, in this sense we are asking whether K is exact for e.

Definition 9.6. We call knowledge K semantically adequate if there is a data type
e such that for any unit of knowledge k ∈ K the following conditions hold:

(a) δK(k)⊆ δ (e),
(b) there is a data type e′ ⊆ e, for which k = μ(e′),
(c) there is such a unit of knowledge k′ ∈ K that k′ = μ(e), i.e. there holds the

condition of semantic adequacy: δ (e) = δK(μ(e)).

In the opposite case, we call this knowledge semantically inadequate.
We call knowledge K semantically exact if there is a data type e that

(d) e satisfies the equation δ (e) =
⋃
δK(K),

(e) for any unit of knowledge k ∈ K there is a data type e′ ⊆ e, for which k = μ(e′)
and e =

⋃{e′ : there is k ∈ K such that k = μ(e′)}.

Knowledge that is not exact is called semantically vague (fuzzy) knowledge.

Corollary 9.3. Knowledge consisting of one unit of knowledge is semantically ade-
quate.

Corollary 9.4. Knowledge represented by each of the data contained in a data type
is a semantically exact knowledge.

Corollary 9.5. Each semantically adequate knowledge is a semantically exact
knowledge.

Corollary 9.6. Each semantically vague knowledge is semantically inadequate.

Agents, by using data type e, establish knowledge about objects indicated by
specimens of the used data of the type e. In this way, it is determined that agent
u possesses knowledge about object o, that is there holds the epistemic state 〈u,o〉,
in which agent u knows something about object o. Thus, data types and their mean-
ings refer to some epistemic states that take place. These references are precisely
defined by the following:
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Definition 9.7. (epistemic extensions of data types and units of knowledge)
The operation ex : S → 2U defined by the formula

ex(e) = {〈u,o〉 : o ∈ Ont,u ∈ User, there exists e ∈ e such that use(u,e,o)},

is called an operation of epistemic denotation of data types, and the values of this
operation are called epistemic denotations of data types.

The operation exK : K → 2U defined by the formula

exK(k) = {〈u,o〉 : o ∈ Ont,u ∈ User, there exists e ∈ S such that k = μ(e) and
there exist e ∈ e such that use(u,e,o)},

is called an operation of epistemic denotation of units of knowledge, and the values
of this operation are called epistemic denotations of units of knowledge.

An agent u possesses knowledge about an object o or the epistemic state 〈u,o〉
holds iff there is a constituent of knowledge k ∈ K such that 〈u,o〉 ∈ exK(k).

Hence, there follows

Corollary 9.7. (of epistemic adequacy)

ex(e) = exK(μ(e)), for any e ∈ S.

Similarly as for the theorem of semantic adequacy, the one of epistemic adequacy
allows checking, for any data type e, as well as for knowledge K, whether there is a
solution x of equation ex(e) = exK(x) which belongs to K and which is a meaning
of e, or — in a boarder way — whether there is a unit of knowledge k ∈ K satisfying
the expression exK(k) ⊆ ex(e), i.e. whether knowledge K is a knowledge obtained
in the same epistemic states as its representation through specimens of data type
e. Intuitively, we are asking about the adequacy of knowledge K represented by
specimens of e in accordance to what agents know about objects, and we are also
asking whether this knowledge determines the epistemic denotation of data type e in
an exact manner. In this sense, we are asking whether K is exact for e in compliance
with what agents know about the objects being described.

Definition 9.8. We call knowledge K epistemically adequate if there is a data type
e such that for any unit of knowledge k ∈ K the following conditions hold:

(a) exK(k)⊆ ex(e),
(b) there is a data type e′ ⊆ e, for which k = μ(e′),
(c) there is such a unit of knowledge k′ ∈ K that k′ = μ(e), i.e. there holds the

condition of epistemic adequacy: ex(e) = exK(μ(e)).

In the opposite case, we call this knowledge epistemically inadequate.
We call knowledge K epistemically exact if there is a data type e that

(d) e satisfies the equation ex(e) =
⋃

exK(K),
(e) for any unit of knowledge k ∈ K there is a data type e′ ⊆ e, for which k = μ(e′)

and e =
⋃{e′ : there is k ∈ K such that k = μ(e′)}.
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Knowledge that is not exact is called epistemically vague (fuzzy) knowledge.

From the above definitions of adequacy and the exactness of knowledge we get the
following theorems:

Corollary 9.8. Knowledge consisting of one unit of knowledge is epistemically ad-
equate.

Corollary 9.9. Knowledge represented by each of the data contained in a data type
is an epistemically exact knowledge.

Corollary 9.10. Each epistemically adequate knowledge is an exact knowledge.

Corollary 9.11. Each epistemically vague knowledge is epistemically inadequate.

Summing up, we are going to a broader justification of equivalence of semantic
adequacy/exactness and epistemic adequacy/exactness of knowledge.

Theorem 9.1. Knowledge is semantically adequate iff it is epistemically adequate.

Proof. (⇒) Let knowledge K be semantically adequate. Then, by conditions (a)
and (c) of Def. 9.6, for some data type e and some unit of knowledge k0 = μ(e) ∈
K, the inclusion δK(k) ⊆ δK(k0) = δ (e) holds for all k ∈ K. Let 〈u,o〉 ∈ exK(k).
From the condition (b) of Def. 9.6 it follows that there is a data type e′ such that
e′ ⊆ e and k = μ(e′). Thus use(u,e,o) holds for some e ∈ e, and, in consequence,
〈u,o〉 ∈ ex(e), according to Def. 9.7. Hence, we get: exK(k) ⊆ ex(e). Since k0 =
μ(e) ∈ K, all conditions of Def. 9.8 hold for the knowledge K. Thus, knowledge K
is epistemically adequate.

(⇐) Now, let us assume, conversely that knowledge K is epistemically adequate.
Then, by conditions (a) and (c) of Def. 9.8, for some data type e and some unit
of knowledge k0 = μ(e) ∈ K, the inclusion exK(k) ⊆ exK(k0) = ex(e) holds for all
k ∈ K. Let o ∈ δK(k). From the condition (b) of Def. 9.8 it follows that there is a
data type e′ such that e′ ⊆ e and k = μ(e′). Thus, for some e ∈ e and some u ∈ User
we have use(u,e,o), which – according to Def. 9.7 – yields o ∈ δ (e). Hence, we
obtain: δK(k) ⊆ δ (e) . Since k0 = μ(e) ∈ K, all the conditions of Def. 9.6 hold for
knowledge K. Thus, knowledge K is semantically adequate. ��

Theorem 9.2. Knowledge is semantically exact iff it is epistemically exact.

Proof. (⇒) Let knowledge K be semantically exact. Then, by the condition (e) of
Def. 9.6, for some data type e and some unit of knowledge k ∈ K, there is a data
type e′ ⊆ e such that k = μ(e′) and e =

⋃{e′ : there is k ∈ K such that k = μ(e′)}.
The following equivalences hold:

〈u,o〉 ∈ ex(e) ⇔ there is e ∈ e,use(u,e,o) ⇔ there are k ∈ K and e′ ⊆ e, such
that k = μ(e′),e ∈ e′ and use(u,e,o) ⇔ there is k ∈ K, such that 〈u,o〉 ∈ exK(k) ⇔
〈u,o〉 ∈ ⋃exK(K).

From this, it follows that ex(e) =
⋃

exK(K). Hence, conditions (d) and (e) of
Def. 9.8 are satisfied. Thus, knowledge K is epistemically exact.
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(⇐) Now, let us assume that knowledge K is epistemically exact. Then, by
the condition (e) of Def. 9.8, for some data type e and some unit of knowledge
k ∈ K there is a data type e′ ⊆ e such that k = μ(e′) and e =

⋃{e′ : there is k ∈
K such that k = μ(e′)}. The following equivalences hold:

o ∈ δ (e)⇔ there are e ∈ e and u ∈ User, such that use(u,e,o)⇔ there are k ∈ K
and e′ ⊆ e, such that k = μ(e′) and use(u,e,o) holds for some u ∈ User and some
e ∈ e′ ⇔ there is k ∈ K, such that o ∈ δK(k) ⇔ o ∈ ⋃δK(K).

Hence, it follows that δ (e) =
⋃
δK(K). Thus, knowledge K is semantically exact

because conditions (d) and (e) of Def. 9.6 are satisfied. ��

The last two theorems allow speaking, in a short way, about adequate, inadequate,
exact, vague knowledge, in the semantic or epistemic sense, as adequate, inade-
quate, exact, vague knowledge.

9.3 Information Systems

Each classification of a specimen e of a datum is carried out in a pragmatic system of
knowledge representation KRPS = 〈S,S,User,Ont,use〉 through assigning a datum
[e]∼ to the epistemic state 〈u,o〉, such that use(u,e,o). Let U = {〈u,o〉 ∈ User×
Ont : there exists e ∈ S,use(u,e,o)} be a set of all the epistemic states and V be a
set of all the data. Any function a : U → V is called an attribute if every epistemic
state 〈u,o〉 corresponds to exactly one datum [e]∼ about the object o. Intuitively, this
is what agent u wants to find out or does learn about object o. Following Z. Pawlak
[14], we will call the function ι : A×U →V , where A is a set of attributes, mapping
every pair 〈a,〈u,o〉〉 to a datum a(〈u,o〉) about the object o — information. Such a
use of the name information justifies calling the systems of data processing, which
are considered further — information systems [14, 19].

Let S′ be a subfamily of the family S of sets, that is a covering of S. At the same
time, let S′ be a set of data types available to all agents. Let set A be a set of attributes
a : U →Va ⊆V such that there is exactly one data type e ∈ S′, for which Va = {v ∈
V : v ⊆ e}. Moreover, for any pair 〈u,o〉 ∈U , there exists such a datum v ∈Va and a
specimen e of this datum that use(u,e,o). Additionally, we assume that for each data
type e ∈ S′ there exists such an attribute a ∈ A that a : U →Va = {v ∈V : v ⊆ e}.

Definition 9.9. We call the system

PIS = 〈S,S,User,Ont,use,U,A,{Va}a∈A〉,

a pragmatic information system.
If determination of the function a ∈ A, as given above, is impossible, then we

will define these functions as functions a : U → 2Va such that there exists exactly
one data type e ∈ S′, for which Va = {v ∈V : v ⊆ e}. Then we will call the system

PIS = 〈S,S,User,Ont,use,U,A,{Va}a∈A〉,

a pragmatic non-deterministic information system.
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We call functions a ∈ A — attributes.

The definition of pragmatic information system allows applying Pawlak’s theory
of information systems to an analysis of processing data in pragmatic systems of
knowledge representation.

Definition 9.10. (Pawlak’s information systems [9, 13, 14, 16])
Let Σ be an ordered system

Σ = 〈U,A,{Va}a∈A〉,

where U is a finite set and A is the set of all attributes, Va is the set of all values of
the attributes a ∈ A. We will call any object x ∈ U an information state, and any
value of an attribute — a datum.

If for any a ∈ A,a : U →Va , then Σ is called an information system.
If for any a ∈ A,a : U → 2Va , then Σ is called a non-deterministic information

system.
Any non-deterministic information system, whose all of the values of the at-

tributes are singletons, will be called a deterministic information system.

Corollary 9.12. Any pragmatic information system is an information system.

Agents’ communicating with one another concerns most often realization of such
pragmatic systems of knowledge representation KRPS = 〈S,S,User,Ont,use〉, in
which knowledge refers also to relations between distinguished simple objects be-
longing to set O, Ont = O∪O2 ∪ . . .∪On. Let S′ ⊆ S be a certain covering of S,
U = {〈u,o〉 ∈ User×Ont : there exists e∈ S,use(u,e,o)} and for each x∈U ∪U2∪
. . .∪Un , if x = 〈〈u1,o1〉,〈u2,o2〉, . . . ,〈uk,ok〉〉, then for o = 〈o1,o2, . . . ,ok〉 ∈ Ont
there exists a datum v contained in a data type e ∈ S′. Moreover, specimens v of da-
tum v, used by an agent u, refer to an object o, according to the relation use(u,v,o).
It can be noticed that in such a system KRPS the following definition possesses its
interpretation.

Definition 9.11. (general information systems [5])
Let Σ be an ordered system

Σ = 〈U,A,A1,A2, . . . ,An,{Va}a∈A〉,

where U is the finite set and A is the set of all attributes, Ak(k = 1,2, . . . ,n) is the
set of k-ary attributes understood as k-ary functions, Va is the set of all cods of the
attribute a ∈ A.

If for any a ∈ A and a ∈ Ak, a : Uk →Va , then Σ is called a general information
system.

If for any a ∈ A and a ∈ Ak, a : Uk → 2Va , then Σ is called a general
non-deterministic information system.

Any general non-deterministic information system, whose all of the values of the
attributes are singletons, will be called a general deterministic information system.
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Accepting for the general non-deterministic information system Σ = 〈U,A,A1,
A2, . . ., An,{Va}a∈A〉 that V ′

a = 2Va , we obtain a general information system Σ ′ =
〈U,A,A1, A2, . . . ,An,{V ′

a}a∈A〉.

Fact 9.2 Each general non-deterministic information system is isomorphic to a
general information system.

Let Σ = 〈U,A,A1,A2, . . . ,An,{Va}a∈A〉 be a general deterministic information sys-
tem. Let us replace each attribute a : Uk → 2Va with an attribute a′ : Uk → Va, such
that if a(x1,x2, . . . ,xk) = {y}, then a′(x1,x2, . . . ,xk) = y. In this way, we obtain, iso-
morphic to Σ , an information system Σ ′ = 〈U,A′,A′

1,A
′
2, . . .,

A′
n,{V ′

a}a′∈A′ 〉.

Fact 9.3 Each general deterministic information system Σ is isomorphic to a gen-
eral information system Σ ′, formed out of system Σ in the way described above.

Let Σ = 〈U,A,A1,A2, . . . ,An,{Va}a∈A〉 be a general information system. Let us re-
place each attribute a : Uk → Va with attribute a′ : Uk → 2Va , such that if
a(x1,x2, . . . ,xk) = y, then a′(x1,x2, . . . ,xk) = {y}. In this way, we obtain a gen-
eral deterministic information system Σ ′ = 〈U,A′,A′

1,A
′
2, . . . ,A

′
n,{V ′

a}a′∈A′ 〉, which
is isomorphic to Σ .

Fact 9.4 Each general information system Σ is isomorphic to the general determin-
istic information system Σ ′, formed out of system Σ in the above-described manner.

Fact 9.5 Each general information system can be considered as a general non-
deterministic information system.

For any general information system Σ = 〈U,A,A1,A2, . . . ,An,{Va}a∈A〉 we can
establish a new set of attributes A′ =

⋃{A′
1,A

′
2, . . . ,A

′
n}, such that

• A′
1 = A1,

• for k > 1,
a′ ∈A′

k ⇔ for some 〈x1,x2, . . . ,xk−1〉 ∈Uk−1 and a∈Ak, a′= ax1,x2,...,xk−1 , where
ax1,x2,...,xk−1 : U →Va and ax1,x2,...,xk−1(x) = a(x,x1,x2, . . . ,xk−1) for x ∈U .

Moreover, we can consider the family of sets {V ′
a′}a′∈A′ , such that

• V ′
a′ =Va, for a ∈ A1,

• V ′
a′ = {a(x,x1,x2, . . . ,xk−1) : a′ = ax1,x2,...,xk−1 ,x ∈U},k > 1.

Then the structure Σ ′ = 〈U,A′,{V ′
a′}a′∈A′ 〉 is an information system. From the man-

ner of determining of this system it can be seen that sometimes there can exist other
general information systems which determine the same information system Σ ′ in
the same manner.

Fact 9.6 Each general information system can be considered as an information
system.

Similarly,
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Fact 9.7 Each general non-deterministic information system can be considered as
a non-deterministic information system.

Fact 9.8 Sometimes there can exist two different general information systems de-
termining the same information system.

The main aim of information systems is to juxtapose the data obtained in individual
states of these systems (to gather information obtained in these states). We can ask
the following question: Which states are described by the distinguished types of
expressions in the same manner, or — in a different way — are they indiscernible
in such a description?

Definition 9.12. (indiscernibility of states in an information system [15])
For any information system Σ = 〈U,A,{Va}a∈A〉, the relation ≈⊆ U ×U such

that for any x,y ∈U,a ∈ A,a(x) = a(y), is called the indiscernibility relation in the
system Σ .

The family C = {[s]≈ : s ∈ U} of the equivalence classes of the relation ≈ is a
partition of the set U of information states. Such a family of equivalence classes of
the relation ≈ is determined uniquely in every information system. For this family
of sets of information states, one can determine — in a unique manner — all sets
X =

⋃
B, for B ⊆ C. We will say about such sets that they are deterministic in an

information system. Is it possible to characterize, by means of exact sets, those that
are not exact?

In an analogous way, we can define indiscernibility of information states in the
general information system Σ = 〈U,A,A1,A2, . . . ,An,{Va}a∈A〉. Since the arguments
of attributes are elements of the set Ugen =U ∪U2 ∪ . . .∪Un, therefore ≈⊆Ugen ×
Ugen, and for any a ∈ A,x,y ∈Ugen, x ≈ y iff a(x) = a(y).

9.4 Approximation in Information Systems

According to the rough set theory of Pawlak [16], in any general information system
Σ = 〈U,A,A1,A2, . . ., An,{Va}a∈A〉 (including also a non-deterministic information
system) the operation of lower approximation C− : 2Ugen → 2Ugen , as well as that of
upper approximation C+ : 2Ugen → 2Ugen for sets ⊆Ugen =U ∪U2 ∪ . . .∪Un can be
determined. Let us accept the notation C = {[s]≈ : s ∈Ugen}. For this reason we use
the letter ‘C’ in operations C−,C+. A system 〈Ugen,C〉 is called an approximation
space of subsets of Ugen [7, 26].

Definition 9.13. (Pawlak [16])
For any X ⊆Ugen,

C−(X) = {x ∈Ugen : [x]≈ ⊆ X},
C+(X) = {x ∈Ugen : [x]≈ ∩X �= /0},
Bn(X) = C+(X)\C−(X),
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where the relation ≈ is a discernibility relation in the general information system Σ .
The operation Bn is called the boundary operation.

Fact 9.9 (cf. [4, 7]) For any X ,Y ⊆Ugen,

1. C−(X) =
⋃{K ∈C : K ⊆ X},

2. C+(X) =
⋃{K ∈C : K ∩X �= /0},

3. C−(X)⊆C+(X),
4. sets C−(X) and C+(X) are exact,
5. if X is exact, then C−(X) =C+(X) = X.

Definition 9.14. (indiscernibility of sets of information states)
Any sets of information states X ,Y ⊆ Ugen are indiscernible, which we write

down as follows: X ∼ Y iff

C−(X) =C−(Y ),
C+(X) =C+(Y ).

The relation ∼ is an equivalence relation. We denote equivalence classes [X ]∼
of this relation with the representative X by XC. We denote /0C by 0C and
(Ugen)C by 1C.

Definition 9.15. We call equivalence classes of the relation ∼ — rough sets in the
information system Σ . We call the rough sets of exact representatives — exact rough
sets.

Definition 9.16. (an element of a rough set [7, 8])
For any X ,Y ⊆Ugen,

X ∈C YC iff X �= /0 and there is such x ∈Ugen, that X ⊆ [x]∼,

C−(X)⊆C−(Y ) and [x]∼ ⊆C+(Y ).

We call the relation ∈C — a rough membership relation. We read the expression
“X ∈C YC": X is a rough element of the rough set YC.

Using the relation ∈C, one can define inclusion of rough sets.

Definition 9.17. For any X ,Y ⊆Ugen,

XC ⊆C YC iff for every Z ⊆Ugen, if Z ∈C XC, then Z ∈C YC.

Fact 9.10

1. XC ⊆C YC iff C−(X)⊆C−(Y ) and C+(X)⊆C+(Y ),
2. XC = YC iff C−(X) =C−(Y ) and C+(X) =C+(Y ),
3. XC = YC iff for every Z ⊆Ugen, Z ∈C XC iff Z ∈C YC,
4. It is not the case, that there is Z ⊆Ugen such that Z ∈C 0C,
5. For every X ⊆Ugen,XC ⊆C 1C.
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Bryniarski, in his works ( [7, 8]), defines the operations of addition ∪C, multipli-
cation ∩C, substraction \C and complement

′C of rough sets in the family of rough
sets:

Definition 9.18. For any rough sets XC, YC, for any Z ⊆Ugen,

Z ∈C XC ∪C YC iff Z ∈C XC or Z ∈C YC,

Z ∈C XC ∩C YC iff Z ∈C XC and Z ∈C YC,

Z ∈C XC \C YC iff Z ∈C XC and not Z ∈C YC,

Z ∈C (XC)
′C iff Z ∈C UC \C XC.

Let us denote the family of all rough sets in the information system Σ by R(Σ).

Fact 9.11 ( [6–8]) For any rough sets XC , YC, there is the set Z ⊆Ugen such that
XC ∪C YC = ZC or XC ∩C YC = ZC or XC \C YC = ZC or (XC)

′C = ZC .

It was shown in [6, 7] that

Theorem 9.3. The structure 〈R(Σ),∪C,∩C,0C,1C〉 is a distributive lattice with the
zero 0C and the unit 1C.

On the other hand, in [3] it is proved that

Theorem 9.4. The structure 〈R(Σ),∪C ,∩C,
′C ,0C,1C〉 is a Stone algebra.

Moreover,

Theorem 9.5. The structure R(Σ) = 〈R(Σ),∪C ,∩C,\C,
′C ,0C,1C〉 restricted to ex-

act rough sets is homomorphic to a set-theoretical field of sets.

Let us extend the structure R(Σ) by relations of rough membership and inclusion of
rough sets. Let us introduce, for any family A ⊆ R(Σ), the generalized sum

⋃
C A:

X ∈C

⋃
CA iff there is YC ∈ A such that X ∈C YC.

Now, in a way analogous with the set-theoretical construction of approximation of
sets (homomorphic with these constructions), one can provide the construction of
approximation of rough sets in the approximation space 〈(Ugen)C,{KC : K ∈C}〉 of
rough sets:

Definition 9.19. (approximation of rough sets)
For any XC ∈ R(Σ),

F−(XC) =
⋃

C{KC : K ∈C,KC ⊆C XC},

F+(XC) =
⋃

C{KC : K ∈C,KC ∩C XC �= 0C},
Fbn(XC) = F+(XC)\C F−(XC).

We call these operations, respectively: lower approximation, upper approximation
and boundary approximation of the rough set XC.
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Fact 9.12 For any XC ∈ R(Σ),

1. F−(XC) = (C−(X))C,
2. F+(XC) = (C+(X))C,
3. Fbn(XC) = (Bn(X))C,
4. F−(XC) = {C−(X)},
5. F+(XC) = {C+(X)},
6. Fbn(XC) = {Bn(X)}.

Theorem 9.6. Let 〈Ugen,C〉 be an approximation space of subsets of Ugen and
〈(Ugen)C, {KC : K ∈C}〉 be a corresponding approximation space of rough sets. The
structure 〈2Ugen ,C−,C+,Bn〉 is homomorphic to the structure 〈R(Σ),F−,F+,Fbn〉.

Proof. (sketch)
Let h : 2Ugen →R(Σ) be a function such that h(X)=XC for X ⊆Ugen. The function

h is a homomorphism from 〈2Ugen ,C−,C+,Bn〉 to 〈R(Σ),F−,F+,Fbn〉, i.e.:

• if X ⊆ Y , then h(X)⊆C h(Y ),
• h(C−(X)) = F−(h(X)),
• h(C+(X)) = F+(h(X)),
• h(BnX)) = Fbn(h(X)),

for any X ,Y ⊆Ugen. ��

The above theorem allows providing the properties of the upper and lower
approximation operations, as well as boundary operation of rough sets as homo-
morphic to the standard properties:

Corollary 9.13. (cf. [17]) For any X ,Y ⊆Ugen,

1. F−(XC)⊆C F+(XC),
2. F−(XC)⊆C XC ⊆C F+(XC),
3. F−(F−(XC)) = F−(XC),
4. F+(F−(XC)) = F−(XC),
5. Fbn(F−(XC)) = 0C,
6. F−(F+(XC)) = F+(XC),
7. F+(F+(XC)) = F+(XC),
8. Fbn(F+(XC)) = 0C,
9. F−(Fbn(XC)) = Fbn(XC),

10. F+(Fbn(XC)) = Fbn(XC),
11. Fbn(Fbn(XC)) = 0C,
12. F−(XC)∪C F−(YC)⊆C F−(XC ∪C YC),
13. F−(XC ∩C YC) = F−(XC)∩C F−(YC),
14. F+(XC ∪C YC) = F+(XC)∪C F+(YC),
15. F+(XC ∩C YC)⊆C F+(XC)∩C F+(YC),
16. If XC is an exact rough set, then F−(XC) = F+(XC) = XC and Fbn(XC) = 0C,
17. XC ⊆C YC iff F−(XC)⊆C F−(YC) and F+(XC)⊆C F+(YC),
18. X ∈C YC iff XC ⊆C YC, F−(XC) = 0C and there is an exact rough set KC such

that F+(XC) = KC.
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We will call the structure F(Σ) = 〈R(Σ),F−,F+,Fbn,∪C,∩C,\C,
′C ,0C,1C,∈C,

⊆C〉 — a set-theoretical structure of rough sets determined by the information
system Σ .

Let PIS = 〈S,S,User,Ont,use,U,A,{Va}a∈A〉 be any non-deterministic prag-
matic information system. Since PIS is a non-deterministic information system,
we can determine — within this system — the operation of lower approximation
C− : 2U → 2U and that of upper approximation C+ : 2U → 2U for sets of epistemic
states X ⊆U , in compliance with the rough set theory of Pawlak. Let us determine
— in the PIS system — the family Ex = {ex(e) : e ∈ S} of all epistemic extensions.

Then, the approximated epistemic extensions in the PIS system are rough sets
determined by representatives of the set Ex. And thus, the pragmatic information
system can be extended not only by approximated epistemic extensions, but also by
rough sets represented by data types and by constituents of knowledge:

Definition 9.20. Two types e1,e2 ∈ S are semantically indiscernible (which we
write down as: e1 ∼S e2) iff

C−(ex(e1)) =C−(ex(e2)),
C+(ex(e1)) =C+(ex(e2)).

We call the equivalence class [e]∼S of the relation ∼S – a rough data type of repre-
sentative e.

Two constituents of knowledge k1,k2 ∈ K are semantically indiscernible (which
we write down as: k1 ∼K k2) iff

C−(exK(k1)) =C−(exK(k2)),
C+(exK(k1)) =C+(exK(k2)).

We call the equivalence class [k]∼K of the relation ∼K – a rough unit knowledge of
the representative k or a rough meaning of the rough data type [e]∼S , when μ(e)= k.

Like in a pragmatic system of knowledge representation, we will define the opera-
tion μC of the rough meaning by means of the formula: for any e ∈ S

μC([e]∼S = [k]∼K , where μ(e) = k,

and the rough epistemic extensions by means of the formulas:

exC([e]∼S) = (ex(e))C,
exC

K([k]∼K) = (ex(e))C , when μC([e]∼S) = [k]∼K .

Hence, there follows

Fact 9.13 (of adequate deffuzzyfication and sharpening of vague knowledge)
For any e ∈ S, exC([e]∼S) = exC

K(μ
C([e]∼S)).

Let us notice that if the knowledge {μ(e)} is vague, then there does not hold the
condition of epistemic adequacy ex(e) = exK(μ(e)), for e ∈ S. Despite this, for
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the rough data type [e]∼S , there holds the equation exC([e]∼S) = exC
K(μ

C([e]∼S)),
corresponding to this condition. Intuitively, one can regard the rough knowledge
{μC([e]∼S)} as adequate. For this reason, we will call the above fact — a fact of
adequate sharpening of vague knowledge.

Observation 9.2 Determining a set of specimens of data for knowledge that con-
sists of units of rough knowledge and determining appropriate data, as well as data
types, we will obtain some other pragmatic system of representation of data, in
which knowledge that is determined by these data types is adequate and exact.

9.5 The Proposed Description Logic – The Rough Pragmatic
Description Logic

In this section we will use the earlier defined concepts to propose an outline of
some description logic, which will be called the rough pragmatic description logic
(RPDL).

Accepting that we have an information system determined by a pragmatic system
of knowledge representation, we can name — in this system — every epistemic state
belonging to the distinguished set NO, and also consider the set RS of all the pairs:
the value dsn of n-argument attribute and n-tuple 〈s1,s2, . . . ,sn〉 ∈ NOn of epistemic
states, for which this attribute has the given value dsn. We obtain, then, another sys-
tem of knowledge representation, other than the information system, determined by
epistemic states and relations between these states. This system is called a semantic
network [12].

Definition 9.21. (semantic network)
We call a semantic network the following ordered system:

SN = 〈NO, IN,RS,{DSi}i∈N,i<n+1〉,

where the sets:
NO (network objects) — a set of nodes of the semantic network representing the

objects being described,
IN (individual names) — a set of unit names of the described objects or pronouns

which point individually to the objects being described,
RS (relational structure) — a set of edges of the network that determines a rela-

tional structure,
DSn,n ∈ N - sets of the descriptions, called sets of descriptions of n-argument

relations,
satisfy the following conditions:

• every name of the set IN corresponds to, mutually unequivocally, only one node;
• RS ⊆ (DS1 ×NO)∪ (DS2 ×NO2)∪ . . .∪ (DSn ×NOn);
• dsi ∈ DSi is a description of the relation R such that

{dsi}×R = ({dsi ×NOi)∩RS.
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When, within the definiton of the set RS, we substitute the set NO by the set IN, the
set RS will transform into the following set

AS ⊆ (DS1 × IN)∪ (DS2 × IN2)∪ . . .∪ (DSn × INn),

where dsi ∈ DSi is a desription of the relation R such that

{dsi}×R = ({dsi}× INi)∩AS.

We call elements of the set AS — assertions. We call any relation R, when it is a one-
argument one, satisfying the above equation — a concept (a notion), and when R is,
at the least, a two-argument one — a role. For example, the role of “filiality” that
links the person bearing the name “John” with the one named “Charles”, the latter
being the father to the former, leads to the assertion: 〈filiality, John, Charles〉, which
we also write down: filiality(John, Charles) or (John,Charles):filiality. We write the
assertion expressed in the sentence “Eve is sitting between John and Charles” in the
following way:

sitting_between(Eve, John, Charles) or (Eve, John, Charles): sitting_between.
Let us notice that when in the following three (Eve, John, Charles), cyclically, we

reverse the names, we will obtain the following three (John, Charles, Eve), which
is also an occurrence of a role, e.g. expressed in the sentence “John and Charles are
sitting beside Eve”. We can write down this assertion as follows: (John, Charles,
Eve):are sitting_beside. We will say about the role sitting_beside that it is cyclically
reverse towards that of sitting_between. When the three (Eve, John, Charles), which
is an occurrence of the assertion sitting_between, is reduced by the first name, then
the pair (John, Charles), is also an occurrence of the assertion, e.g. one expressed
in the sentence “someone is sitting between John and Charles”: (John, Charles):
someone_sitting_between. We will say about this role that it is a reduction of that
sitting_between.

For any description of the relation R (a concept or a role) there is the char-
acteristic function a : INi → Va ⊆ {0,1} such that when 〈dsi,x1,x2, . . . ,xi〉 ∈ AS,
a(x1,x2, . . . ,xi) = 1, and for 〈dsi,x1,x2, . . . ,xi〉 �∈ AS, a(x1,x2, . . . ,xi) = 0. Let us de-
note the set of all such characteristic functions by A. Let Va = a(INi). Then the
structure Σ(SN) = 〈U,A,{Va}a∈A〉, where U = IN, will be an information system.

Definition 9.22. We call the information system Σ(SN) — an information system
determined by the semantic network SN.

In the context of research of Semantic Web (for example in the works [1]),
knowledge representation in the semantic network is determined by two systems
of representation: the terminology called TBox, as well as a set of representation of
assertion called ABox.

A semantic network can be extended with nodes which render available the
knowledge about concepts or roles, and also extended with boundaries determin-
ing dependences between concepts or roles. Descriptions of these dependences
are called axioms, and the system of representing this knowledge is called RBox.
In the presented research trend, the base of the knowledge represented in the
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semantic network, in the descriptive language AL (attributive language) of the logic
DL (Description Logic), is defined as the following triple 〈Ab,Tb,Rb〉, where the
sets Ab, Tb, Rb are finite sets of expressions (descriptions of nodes of a semantic net-
work) that can be computer-processed, respectively: assertions, concepts, axioms.
Describing rough knowledge in information systems determined by the semantic
network SN, we will apply the suitably reformulated and extended language AL. We
will call this language — rough pragmatic language (RPL; a set of its expressions
will be denoted by RPL). It will be the language of the proposed logic RPDL.

9.5.1 Syntax of the Language RPL

Let the data be some non-empty sets: individual variables, individual names, names
of concepts, names of roles and symbols of modifying agents of concepts.

Syntax of occurrences of concepts and roles

Occurrences of a concept are the symbols x,y,z,v, . . . ,x1,y1, . . . variables and
the symbols a,b,c, . . ., a1,b1, . . . , determining individual names. The variables run
over individual names.

Occurrences of a role are tuples (t1, t2, . . . , tk) of occurrences of concepts.

Syntax of TBox

The following names belong to the set of names of concepts and roles:
� (Top) – universal concept and universal role,
⊥ (Bottom) – empty concept and empty role.
Top includes all occurrences of concepts and roles, and Bottom includes knowl-

edge about a lack of any occurrences of concepts and roles.
{t} – singleton of the occurrences of t, a concept determined univocally by an

occurrence of concept t,
{(t1, t2, . . . , tk)} – a role being a singleton of n-tuple of occurrences.
Let A, B be the names of concepts, R be the name of a role, a m — the symbol of

a modifier, then the following are concepts:
¬A — negation of a concept — the expression denoting all the occurrences of

concepts that are not occurrences of the concept A;
A∧B — intersection (conjunction) of the concepts A and B — the expression

denoting all the occurrences of the concepts A and B;
A∨B — union (alternative) of the concepts A and B — the expression denoting

all the occurrences of the concept A or the concept B;
A \B — difference of the concepts A and B — the expression denoting all the

occurrences of the concept A, which are not an occurrence of the concept B;
∃A.R — existential quantification — the concept, whose occurrences are those

of the concept A remaining in the role R in the first place, at least once with appear-
ances of some concepts related to the role R in the successive places of the role;
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∀A.R — general quantification — the concept, whose occurrences are those
of the concept A, remaining in the role R in the first place, together with all the
occurrences of some concepts related to the role R in the successive places of this
role;

m(A) — modification m of the concept A — denoting a concept that is the
concept C altered by the word m, e.g. m can have such occurrences as: very
much, more, the most, or high, higher, the highest; in the approximated calculus,
modifications are lower approximation or upper approximation, or the boundary –
m ∈ {Upper, Lower, Boundary};

m(R) –* modification m of the role R – m ∈ {Upper, Lower, Boundary};
R−1 — the role cyclically reverse to the role R;
A.R — restriction of the occurrences of the role R by the occurrences of the

concept A – such a role that the occurrences of A remain in the role R in the first
place, together with those of some concepts in the other places of the role R;

R− — reduction of the role R by the first argument — is the role for at least a
three-argument role R, and the concept for a two-argument role;

A1 ×A2 × . . .×An — Cartesian product of the concepts A1,A2, . . . ,An.

Syntax of ABox

For any variables x, y, individual names a, b, the names of the concept C and
those of the role R, which is a two-argument one, assertions are denoted by means
of expressions in the form “x : C”, “a : C”, “(x,y) : R”, “(a,y) : R”, “(x,b) : R”,
“(a,b) : R”. Generally, for the n-argument role R, expressions of assertion take on the
form “(t1, t2, . . . , tn) : R”, where ti are any occurrences of the concepts. Inscriptions
of the form “t1, : A", “(t1, t2, . . . , tk) : R” are read as follows: t1 is an occurrence of
the concept A, n-th tuple (t1, t2, . . . , tk) is an occurrence of the role R.

Syntax of RBox

For any names of the concepts A, B, the names of the roles R1, R2, as well as
expressions of the assertion α , β , axioms are expressions rendered in the following
form:

A ⊆ B – inclusion of the concepts A, B,
A = B – identity of the concepts A, B,
R1 ⊆ R2 – inclusion of the roles R1, R2,
R1 = R2 – identity of the roles R1, R2,
α :−β – Horn’s clause for the assertion α , β ; we read this in the following way:

if there holds an occurrence of the assertion β , then there holds an occurrence of
the assertion α .

9.5.2 The Distinguished Axioms for RPDL

Let us distinguish some selected axioms for RPDL, divided into three groups.
For any names of concepts or roles A,B,C and R and any occurences t, t1, t2, . . . , tk
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Ax.1 �= ¬⊥, A ⊆�, ⊥⊆ A, A ⊆ A,
Ax.2 A = A, R = R,
Ax.3 A∨⊥= A, A∧�= A,
Ax.4 A∧⊥=⊥, A∨�=�,
Ax.5 A∨B = B∨A, A∧B = B∧A,
Ax.6 (A∨B)∧C = (A∧C)∨ (B∧C), (A∧B)∨C = (A∨C)∧ (B∨C),
Ax.7 A∨¬A ⊆�, A∧¬A =⊥,
Ax.8 ¬A ⊆�\A,
Ax.9 ∀C.R ⊆ ∃C.R,
Ax.10 (t : �) :− (t : A),
Ax.11 (t : {t} :− (t : A),
Ax.12 (t1, t2, . . . , tk) : {(t1, t2, . . . , tk)} :− (t1, t2, . . . , tk) : R,
Ax.13 ∃{t1}.R :− (t1, t2, . . . , tk) : R,
Ax.14 (t1, t2, . . . , tk) : R :−∀{t1}.R,
Ax.15 (t2, t3, . . . , tk, t1) : R−1 :− (t1, t2, . . . , tk) : R,
Ax.16 (t2, t3, . . . , tk) : R− :− (t1, t2, . . . , tk) : R, for k > 2,
Ax.17 t2 : R− :− (t1, t2) : R,
Ax.18 A− =⊥.

Ax.19 Lower(A)⊆ Upper(A),
Ax.20 Boundary(A)⊆ Upper(A),
Ax.21 Lower(A)⊆ A ⊆ Upper(A),
Ax.22 Upper(Upper(A)) = Upper(A),
Ax.23 Lower(Upper(A)) = Upper(A),
Ax.24 Boundary(Upper(A)) =⊥,
Ax.25 Upper(Lower(A)) = Lower(A),
Ax.26 Lower(Lower(A)) = Lower(A),
Ax.27 Boundary(Lower(A)) =⊥,
Ax.28 Upper(Boundary(A)) = Boundary(A),
Ax.29 Lower(Boundary(A)) = Boundary(A),
Ax.30 Boundary(Boundary(A)) =⊥.

Ax.31 Lower(A∨B)⊇ Lower(A)∨Lower(B),
Ax.32 Lower(A∧B) = Lower(A)∧Lower(B),
Ax.33 Upper(A∨B) = Upper(A)∨Upper(B),
Ax.34 Upper(A∧B)⊆ Upper(A)∧Upper(B).

The above axioms will be satisfied in a selected set-theoretical structure of
rough sets:

F(Σ(SN)) = 〈F,F−,F+,Fbn,∪C,∩C,\C,
′C ,0C,1C,∈C,⊆C〉,

determined by the information system Σ(SN) = 〈U,A,{Va}a∈A〉, where U is a set
of names of all the occurrences of the epistemic states in the semantic network SN
under consideration, and F = R(Σ(SN)) is a set of all the rough sets determined in
the information system Σ(SN).
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9.5.3 Semantics of the Language RPL

Let us determine interpretation I=(RPL, I) of RPL language for which the interpre-
tation function I : RPL → F (we write the values I(E) as EI) satisfies the following
conditions:

I1. any occurrences of concepts and roles are assigned elements of rough sets:

• tI ∈C UC,
• (t1, t2, . . . , tk)I ∈C {〈x1,x2, . . . ,xk〉}C, for 〈x1,x2, . . . ,xk〉 ∈ Uk, tI

1 ∈C {x1}C,
tI
2 ∈C {x2}C, . . . , tI

k ∈C {xk}C,

I2. names of the concepts A, including the singletons {t}, are assigned the follow-
ing rough sets:

• {t}I = {x}C, for some x ∈U ,
• {(t1, t2, . . . , tk)}I = {〈x1,x2, . . . ,xk〉}C, for 〈x1,x2, . . . ,xk〉 ∈Uk, tI

1 ∈C {x1}C,
tI
2 ∈C {x2}C, . . . , tI

k ∈C {xk}C,
• AI ∈ F ,

I3. names of the role R are assigned the rough sets RI ∈ F ,
I4. the modifiers m ∈ {Upper, Lower, Boundary} assign some functions mI : F →

F , from the set {F−,F+, Fbn}:

• LowerI = F−,
• UpperI = F+,
• BoundaryI = Fbn.

Semantics of the concepts of TBox language

For any names of the concepts A, B, the name of the role R and the modifier m

I5. �I = 1C,
I6. ⊥I = 0C,
I7. (¬A)I = (AI)

′C,
I8. (A∧B)I = (AI ∩C BI),
I9. (A∨B)I = (AI ∪C BI),
I10. (A\B)I = (AI \C BI).

For RI ⊆C (Uk)C, where R is a k-argument role, there hold the following condi-
tions of interpretation of concepts and roles:

I11. (∃A.R)I =
⋃

C{{t1}I : ((t1, t2, . . . , tk)I ∈C RI ∧ tI
1 ∈C AI)},

I12. (∀A.R)I =
⋂

C{{t1}I : ((t1, t2, . . . , tk)I ∈C RI ∧ tI
1 ∈C AI)},

I13. (A.R)I =
⋃

C{{(t1, t2, . . . , tk)}I : ((t1, t2, . . . , tk)I ∈C RI ∧ tI
1 ∈C AI)},

I14. (R−1)I =
⋃

C{{(t1, t2, . . . , tk)}I : (t2, . . . , tk, t1)I ∈C RI},
I15. (R−)I =

⋃
C{{(t1, t2, . . . , tk)}I : if for some tk+1,(tk+1, t1, t2, . . . , tk)I ∈C RI},

where the operations
⋃

C,
⋂

C are generalized operations of addition and multiplica-
tion that are defined on subsets of the family F of rough sets. For an empty set the
value of these generalized operations is an empty rough set 0C.
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I16. (m(A))I = mI(AI), for m ∈ {Upper, Lower, Boundary},
I17. (m(R))I = mI(RI), for m ∈ {Upper, Lower, Boundary}.

Semantics of the assertion of ABox language

I18. For any occurences t, t1, t2, . . . , tk concepts or roles, the name of the concept C,
as well as the name of the role R

• (t : C)I iff (tI) ∈C CI ,
• ((t1, t2, . . . , tk) : R)I iff (t1, t2, . . . , tk)I ∈C RI .

Semantics of the RBox axioms

I19. For any A, B the names of concepts or roles and any assertions α,β

• (A ⊆ B)I iff AI ⊆C BI ,
• (A = B)I iff AI = BI ,
• (α :−β )I iff if β I then α I .

Remark. The set of axioms is denumerable infinite. Some axioms, for given in-
terpretations, are satisfied in some structure F(Σ(SN)), but some axioms are not.
The axioms distinguished in this paper are satisfied for any interpretation. This
follows from the fact that interpretations of these axioms are formulas
satisfied in any F(Σ(SN)). For example, Axioms 19 – 24 are satisfied by Corol-
lary 9.13, Axioms 1 - 6 – by Theorems 9.3 - 9.6. Satisfying other axioms fol-
lows easily from these theorems, Facts 9.11 – 9.12, and the definitions given in
Section 9.4.

We call the rule of conceiving of axioms — the expression in the form of
α1,α2, . . . ,αk/β , for any axioms α1,α2, . . . ,αk,β . The rule is adequate for the
given interpretation function I , if — from the fact that there hold the interpretations
α I

1,α I
2, . . . ,α I

k — there follows the fact that the interpretation β I holds.

Distinguished adequate rules of conceiving

Rule 1 A ⊆ B, B ⊆C / A ⊆C,
Rule 2 A ⊆ B, B ⊆ A / A = B,
Rule 3 A ⊆ B / (t : B) :− (t : A),
Rule 4 R1 ⊆ R2 / ((t1, t2, . . . , tk) : R2) :− ((t1, t2, . . . , tk) : R1),
Rule 5 t1 : A1, t2 : A2, . . ., tk : Ak / (t1, t2, . . . , tk) : A1 ×A2 × . . .×An,
Rule 6 ({tk}.(. . . ({t2}.({t1}.R)−)− . . .)−)− =⊥ / (t1, t2, . . . , tk) : R.

The adequate rules of conceiving do not serve the purpose of proving theorems
— they merely determine the logical relations between axioms. If agents of the
pragmatic system of representation of knowledge apply these rules, it means that
they conceive, in an appropriate manner, interpretations of axioms in the structure
of rough sets.
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9.6 Prospects of Being Applied in Research into Artificial
Intelligence

Rough pragmatic descriptive logic defines accurately how to interpret formulas
describing vague (fuzzy) knowledge within the structure of rough sets, which is
determined by a semantic network. This network is determined in some pragmatic
information system, in which agents make use of only some distinguished data
types. And this system is determined by a pragmatic system of knowledge repre-
sentation. It is in this system that, for the distinguished data types, the vague knowl-
edge is determined. Therefore, it is right to say that formulas of the RPDL refer
to vague knowledge. Since, in practice, man most often communicates with other
people, he passes to them data representing vague knowledge, thus, he conceives
his utterances in approximation, approximating their sense. This means that people
communicating with one another apply the RPDL.

Can one, in this communication process, replace man by an agent of an artificial
intelligence? We cannot exclude that it is possible. How to design such an agent?

In compliance with the presented work, the procedure of designing the agent of
an artificial intelligence can take on the following form:

Step 1. Establishing procedures to determine the pragmatic system of representa-
tion of knowledge.

Step 2. Determining the set of data types that will be available to the agent being
designed.

Step 3. Checking whether an information system in Pawlak’s sense can be deter-
mined for the available set of types of knowledge. If so, such a system has to be
determined and we pass on to Step 7. If not, we go on to the next step.

Step 4. Checking whether a non-deterministic information system in Pawlak’s
sense can be determined for the available set of types of knowledge. If so, we pass
on to Step 7; if not — to the next step.

Step 5. Checking whether a general information system can be determined for the
available set of types of knowledge. If so, we determine this system and pass on to
Step 7; if not — we go to the next step.

Step 6. We determine a non-deterministic information system for the available set
of data types and pass on to the next step.

Step 7. We determine a semantic network corresponding to the determined infor-
mation system and go on to the next step.

Step 8. For the semantic network defined in Step 7 we formulate a language of
descriptive logic and provide the syntax of Tbox, ABox and RBox blocks.

Step 9. For the semantic network defined in Step 7 we determine the general infor-
mation system.



182 Z. Bonikowski, E. Bryniarski, and U. Wybraniec-Skardowska

Step 10. For the determined system we define the set-theoretical structure of rough
sets.

Step 11. We establish procedures of interpretation of the language of descriptive
logic in the structure of rough sets.

Step 12. We distinguish primitive axioms.

Step 13. We distinguish a set of rules conceiving the axioms.

Step 14. We determine the base of the knowledge 〈Ab,Tb,Rb〉, where the sets Ab,
T b, Rb are finite sets of expressions (descriptions of nodes of a semantic network),
which are possible to be computer-processed, respectively: 1) assertions, about
which the agent knows, 2) concepts, which the agent has knowledge of and also 3)
axioms, which the agent conceives by means of the rules of conceiving. Since we
say about a human being who is an agent availing himself of the base of knowledge
that he knows something, has knowledge about something and conceives something,
hence by replacing this human being by an AI agent, we can say the same about this
very agent. We will call such an AI agent — a pragmatic agent of an AI and we
will say that he is one who knows something about holding of assertions, knowing
some concepts and conceiving axioms.

Step 15. The agent of an AI is conscious, if he has access to a semantic network
which contains all the concepts relating to himself, known to people-agents, within
the same system of representation of knowledge, and — moreover — this very agent
makes use of all the roles between occurrences of the concepts.

Step 16. Implementation of the rough pragmatic descriptive logic can be performed
in PROLOG language. In this implementation, one can realize translators of pro-
gramming languages of WEB network, and then write a programme of the conscious
agent of an AI, defined in Step 14, Step 15.

Due to the dynamic nature of language communication, it can turn out already at
Step 1 and Step 2 that the relation of using data specimens is fuzzy, and the clas-
sification of data leading to determination of data types can not be carried out ac-
curately. Then, realization of the above-mentioned procedure is not possible and
should be preceded by application of methods of fuzzy sets theories [2, 18, 21, 22]:
fuzzyfication and deffuzzyfication, which lead to sharpening of knowledge neces-
sary to determine the pragmatic system of representation of knowledge. Evolution
methods and other methods of theories of learning machines can be applied as well.
Perception-based methods [20] may be useful too.
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Chapter 10
Application of Rough Set Theory to Sentiment
Analysis of Microblog Data

Chien-Chung Chan and Kathy J. Liszka

Abstract. Microblogging has become a popular medium for broadcasting short text
messages of 140 characters or less through social networks. There are millions of
such posts shared each day, publically expressing sentiment over a variety of topics
using popular Internet sites such as Twitter.com, Plurk.com, and identi.ca. Most of
the existing works have focused on polarity sentiment analysis of these data by ap-
plying machine learning algorithms. In this chapter, we show that the rough set the-
ory introduced by Pawlak provides an effective tool for deriving new perspectives of
sentiment analysis from microblogging messages. More specifically, we introduce
the use of rough set theory to formulate sentimental approximation spaces based
on key words for assessing sentiment of microblogging messages. The sentimen-
tal approximation space provides contextual sentiment from the entire collection of
messages, and it enables the evaluation of sentiment of different subjects, not in
isolation, but in context. Sentiment, itself, is subjective. The degree of emotion that
a word invokes in one person will be different than in another. It is for this reason
that sentimental approximation space offers potentially more insightful information
about a subject than simple polarity answers of positive or negative.

Keywords: Rough sets, approximation space, sentiment analysis, microblogging.

10.1 Introduction

There is a small, but growing body of research in opinion mining from microblog
data. Twitter [1] is one of the free social microblogging services, and is currently
the most popular one. Usage of Twitter is evolving, growing from “I’m feeling
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bored" type messages as the main content to more sophisticated usage in social
networking, politics, and business marketing. This might imply that more recent
data contains significantly different content. Among Twitter users, microblog posts
are called “tweets". The underlying Short Message Service (SMS) protocol allow-
ing up to 140 characters is a common element among the popular microblogging
web sites [2]. In this chapter, we refer to all of these short posts as tweets, not-
ing that the research in sentiment analysis discussed herein encompasses more than
Twitter data.

The seminal work by Pang et al. shows that machine learning is a viable tool for
sentiment analysis using a corpus of movie reviews [5]. They apply three standard
machine learning algorithms: Naïve Bayes, maximum entropy (MaxEnt), and sup-
port vector machines (SVMs). Their positive and negative word lists were relatively
small, from five to 11 in different experiments, but nonetheless, the results are good.
More notable, they bring to light the difficulty of the task compared to topic based
classification. The corpus, however, is not based on microblog data, which has a
unique signature. In tweets, users speak succinctly, often in slang and using sym-
bols. The movie reviews had no 140 character limit, and as such, contained much
more content both in length and in traditional language usage.

Kim et al. give a compelling case for using Twitter lists for a corpus in sentiment
analysis [3]. In this context, lists are groups of people who share a common interest
such as music. They show that even though tweets are brief, they contain enough
information to express identifiable characteristics, interests, and sentiments.

Recent work by Cheong et al. shows an approach to sentiment analysis of tweets
using unsupervised self-organizing feature maps [4]. Once generated, they are used
in visualizations to identify characteristics within select communities that share a
common interest or trending topic. They start by identifying tweets using the API
to search for a “term of interest". User demographics and metadata are collected
with those tweets. They look for clusters of users based on attributes such as gender,
age, number of tweets per day, geographical location, and so forth. Although they
are classifying their case studies as sentiment analysis, they are looking at it from a
different angle than we do.

The work in Go et al. is very similar to Pang in using the same three classi-
fiers, but microblog data from Twitter is used as opposed to the lengthier text movie
reviews [6]. The results are remarkably similar, showing promise that applying
these tools for sentiment analysis cross the boundaries from longer text blocks to
140 character restricted tweets. Their research is polarity based, but excludes neu-
tral sentiments from the corpora. Only positive and negative tweets are collected,
mined through queries in the Twitter search utility using common emoticons. Once
collected, the emoticons are removed from the tweets before training with the
classifiers. Manually collected test data retains emoticons, if present.

Pak and Paroubek [7] collect data from Twitter, filter it and then classify tweets
as positive or negative by the use of popular emoticons (smiley faces, sad faces, and
variations). Neutral tweets are collected from newspaper accounts to round out the
corpora. An analysis indicates the distribution of word frequencies in the collection
is normal. They apply a Naïve Bayes classifier to test the posts. Their best results
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are those experiments using bigrams. This is contrary to the findings of Pang, but
may easily be explained by the very nature of the differing corpora. Movie reviews
may contain more words and users may take more time to think about their post
where tweeters tend to give lightening quick, brief snapshots of a thought sent from
a cell phone or other small device. In fact, one very interesting observation that this
chapter makes is the amount of slang used and frequent misspellings in tweets.

In the work by Read, sentiment analysis is performed on Usenet group data and
movie reviews using the Naïve Bayes and SVM classifiers [8]. His corpus is created
using emoticons to identify positive and negative texts. No neutral or objective texts
are included in either the training or testing data sets. Read also looks at topic,
domain, and temporal dependency classifications.

Several online sentiment tools are freely available. TweetFeel1 claims they use a
limited set of indicators. The site does not provide documentation on their method-
ology or algorithms. At the time of testing, it presented no results for sentiment
on either the iPhone or Microsoft. It appears that they are geared specifically to-
ward trending topics. Its usage is intended for purely entertainment value. Another
site, Twitter Sentiment2 gives 58% positive and 42% negative for the iPhone for
the period July 2010 through November 2010. Sentiment for Microsoft over the
same period was 51% positive, 49% negative. Sample positive, and negative tweets
are presented with user input radio buttons that allows reclassification. This website
was created by Alec Go, Richa Bhayani, and Lei Huang at Standford University and
is based on their machine learning classifier work [6].

Other research exists on the social aspects of tweeters themselves. There is in-
terest on what time of day people tend to tweet the most, what we tweet about, and
what our social network links look like [9, 10].

The rough set theory was introduced by Pawlak in 1982 [14, 17]. It is a theory
for reasoning about data represented as information systems [15, 16], which are
generalizations of relational data bases. No implicit assumptions are required in ap-
plying rough sets, the starting point is an information system used to represent a
finite collection of data characterized by a finite set of attributes or features. Our
knowledge derived from information systems may be uncertain, since the data may
be incomplete or imprecise. The rough set theory provides fundamental concepts
and properties of approximations derived from information systems for studying
and analyzing uncertain information, and for developing systems, and tools to deal
with uncertainty. Rough set theory has led to many interesting applications and ex-
tensions for solving problems in research areas such as machine learning, intelligent
systems, inductive reasoning, pattern recognition, mereology, knowledge discovery,
decision analysis, and expert systems [18, 19].

More specifically, we believe it can be used as an effective tool to the analy-
sis of microblog data represented as information systems. Microblog data are usu-
ally incomplete and imprecise, and collectively, they may contain a wide range of
explicit and implicit topics or subjects. They are one of the major crowd sources

1 http://www.tweetfeel.com
2 http://twittersentiment.appspot.com
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generated by a large number of people on a daily basis. In our previous review of
existing research works, no tools have been developed to address the challenging
issues such as how to measure the quality of information derived from these data,
how to represent contextual information, how to evaluate the contextual impact of
topics, and how to represent evolutionary dynamic changes of data. In rough set the-
ory, contexts can be represented by approximation spaces derived from microblog
information systems. Topics can be defined as subsets of objects in an informa-
tion system, and their contextual quality can be measured by the concept of quality
of approximations introduced by Pawlak [14, 16]. The impact of dynamic changes
of data can be computed from incremental update of approximations [16, 26, 27,
28, 29], and incomplete information can be represented by incomplete information
systems [30, 31].

The contribution of this chapter is a new methodology for determining sentiment
of a topic in short microblog data. We present the application of rough set theory to
the analysis of tweets using sentimental approximation space to provide a common
basis for providing contextual sentiment with respect to different subjects. Dimen-
sionality reduction is a problem in all information retrieval, and the large number
of terms present in a 3-year span tweet corpus is no exception. This is addressed
by demonstrating two different methods of grouping based on term frequency and
by manually ranking sentiment words. Experiments are performed to derive general
sentiment from tweets related to specific topics such as the iPhone, iPod, and Mi-
crosoft. We use the upper and lower approximation to measure accuracy and qual-
ity of results. These can be used for evaluating effectiveness of different grouping
methods and further attribute reduction or refinement.

In Section 10.2, we formulate the problem and the use of sentimental approxima-
tion space to represent sentiment of tweets based on key words. We review the basic
concept of the Bayesian rough set model [23] and describe how to determine lower
and upper approximations in our application. Section 10.3 presents the processes
involved in key word driven sentiment analysis. Here we describe the application
of sentimental approximation space. Section 10.4 presents experiments with a spe-
cific subject word as an example. Finally, we present our concluding remarks in
Section 10.5.

10.2 Problem Formulation

Tweet analysis can be viewed as an application of text categorization, which dates
back to the work on probabilistic text classification by Maron [11]. The main task
of text classification is to label texts with a predefined set of categories. Text cat-
egorization has been applied in other areas such as document indexing, document
filtering, word sense disambiguation, etc. as surveyed in Sebastiani [12]. One of the
central issues in text classification is how to represent the content of a text in order
to facilitate an effective classification. From research in information retrieval sys-
tems, one of the most popular and successful methods is to represent a text by the
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collection of terms that appear in it. The similarity between documents is defined by
using the term frequency inverse document frequency (TFIDF) measure [13]. In this
approach, the terms or features used to represent a text is determined by taking the
union of all terms that appear in the collection of texts used to derive the classifier.
This usually results in a large number of features. Therefore, dimensionality reduc-
tion is a related issue that needs to be addressed. Likewise, this is an issue common
to tweet analysis when a feature set consists of all unique words or symbols, called
tokens, of the set of collected tweets. In addition, each tweet is a short text message
up to 140 characters collected from Twitter. Thus, the context information of a tweet
is much more limited in comparison to a text document. The challenge here is how
to find an effective way to represent a tweet’s context to facilitate the analysis of
tweets.

In this chapter, our main focus is to show the representation of contextual in-
formation using rough sets for sentiment analysis of tweets. The dimensionality
reduction problem may be dealt with by applying existing well-known rough sets
methods or other methods based on Latent Semantic Analysis (LSA) [24, 25]. We
take a direct approach to dimensionality reduction by grouping tokens based on a
set of key words. The contextual information of tweets is collectively represented as
an approximation space in the rough set theory. In the following, we provide a brief
review of related concepts in rough sets that will be used to formulate the problem
considered in the chapter.

Let U be a set of tweets described by a finite set of tokens, which may be words
or symbols; we will treat them equivalently unless mentioned otherwise. Let X be
a specific subject of interest described by a finite set of words. The extension of X
is defined as the set of tweets in U containing some of the subject words. Thus, we
have X ⊆U .

Let A be a finite set of attributes. An approximation space S is a pair S = (U,A)
where A defines an equivalence relation on U . A collection of tweets can be rep-
resented by an approximation space where A is the set of all unique words in the
tweets. We define a sentimental approximation space as a pair SK = (UK ,K) where
K is a finite set of sentimental key words and UK is the set of tweets in U represented
by key words in K. For simplicity, we will use S = (U,K). Note that words used to
define a subject X are not key words.

In the rough set approach, knowledge or information of a subject X that can be
induced from an approximation space S = (U,K) is represented by the lower and
upper approximations of X , denoted by KX and KX , in the approximation space
S. Accuracy of approximations is defined as the ratio of the extensions of the lower
approximation to the upper approximation. More precisely, the lower approximation
of X by K in the approximation space S is defined as

KX = {e ∈U : [e]⊆ X}, (10.1)

and the upper approximation of X by K in S is defined as

KX = {e ∈U : [e]∩X �= /0}. (10.2)
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where [e], called elementary sets, denotes the equivalence class containing e. The
accuracy αK(X) of approximation of X in S is defined as |KX |/|KX |, where |Y |
denotes the cardinality of set Y . The quality of lower approximation is defined as
|KX |/|U |.

One probabilistic extension of rough set theory is called Variable Precision
Rough Sets (VPRS) [20]. The basic idea is to use two thresholds, l and u, to control
the precision of lower and upper approximations with respect to prior probability
P(X). The thresholds are constrained by 0 ≤ l < P(X) < u ≤ 1. The u-lower ap-
proximation of a set X is called u-positive region of X and is defined as

POSu(X) = ∪{E : P(X |E)≥ u}, (10.3)

the l-negative region of X is defined as

NEGl(X) = ∪{E : P(X |E)≤ l}, and (10.4)

the (l,u)-boundary region is defined as

BNRl,u(X) = ∪{E : l < P(X |E)< u} (10.5)

where E denotes an elementary set, which is the same as [e] in previous definitions.
The classical rough sets introduced by Pawlak can be defined as VPRS with l = 0

and u = 1. In practical applications, it might be a challenge to decide the values for
l and u. One way to alleviate this issue is to use the Bayesian Rough Set Model [23]
where the positive, negative, and boundary regions are defined with respect to prior
probability as follows. The positive region of X is defined as

POS∗(X) = ∪{E : P(X |E)> P(X)}, (10.6)

the negative region of X is defined as

NEG∗(X) = ∪{E : P(X |E)< P(X)}, (10.7)

and the boundary region of X is defined as

BND∗(X) = ∪{E : P(X |E) = P(X)} (10.8)

where P(X |E) is the conditional probability of X given an elementary set E .
The Bayesian rough set model will include an elementary set E into a lower

approximation, if it provides an improvement of information related to X as mea-
sured by the conditional probability. In our experiments of sentiment analysis, the
Bayesian rough set model is used to compute the lower and upper approximations
of a subject in a sentimental approximation space.

In summary, the problem we consider in this chapter is how to evaluate
polarity sentiment of different subjects from a collection of tweets on a common
ground.
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10.3 Key Word Driven Sentiment Analysis

The use of Internet slang must be addressed in any work involving microblog data.
The original motivation for users to create these abbreviations was to reduce key-
strokes. Texting on cell phones made this form of writing even more pervasive. In
some cases, this has grown into social cultures with different dialects (ex., leet, net-
speak, chatspeak) rather than a timesaving utility. In our case, we observe that the
words or phrases used in tweets may include many of these abbreviated words such
as abt (about), afaik (as far as I know), alol (actual laugh out loud), and so forth.
This may cause missed matches with words or phrases that appear on the positive
and negative word list. To evaluate the impact of irregular expressions in tweets to
our strategy of tweet labeling, we have compiled our own list of 500 abbreviated
words by personal observation combined with data from various web sites. We ob-
served that the overlap is small between this list and the positive and negative word
lists used in our experiments. Therefore, the impact is minimal, which is confirmed
by our experiments on the iPhone-related tweets where the hit rate of positive words
versus negative words remains quite similar with and without substitutions of abbre-
viated words or phrases. Thus, it does not affect the result of labeling tweets based
on a sentiment word list. However, the excessive amount of abbreviated words in
tweets may need to be dealt with in different types of tweet analysis.

We also note that some emoticons may be neutral, for example “(_/)" indicating
bunny ears or “0w0” meaning representing either a cat’s face or a face with wide
eyes. We do not include these or use them as indicators of a neutral tweet. This is
a possible addition to future work on tweet sentiment analysis since microblogging
use and strategies are constantly evolving.

The following steps were applied for text mining Twitter data for our sentiment
analysis.

10.3.1 Data Collection and Preprocessing

The corpus for testing our work with sentiment analysis came from a publicly avail-
able dataset, provided for research purposes under Creative Commons license from
Choudhury [21]. This data set contains more than 10.1 million tweets collected from
over 200,000 users in the time period from 2006 through 2009. Table 10.1 shows
statistics for three sample subjects of interest used in our experiments. For sub-
jects of interest, we use “iPhone", “iPod" and “Microsoft" as query terms to retrieve
tweets from the raw data.

We collected a set of sentiment terms provided by Twitrratr [22]. The lists contain
emoticons which we have removed, leaving 106 positive and 138 negative words.
Examples from this list include excellent, hilarious, thx (positive), and worried,
creepy, repulsive (negative).

The first step in preprocessing the corpus data was to remove emoticons. This is
necessary so that they do not get confused with normal punctuation and symbols
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Table 10.1 Subjects of interest

Query term Number of re-
lated tweets

Example

iPhone 59,916 I can have a meaningful conversation with
these lil faces! iPhone or die!

iPod 10,566 my iPod is taking forever to back up! :(
Microsoft 14,320 Dear Microsoft - when you do system up-

dates, you download first, and *then* ap-
ply. Sigh.

included in hyperlinks. Once this is accomplished, we separate the tweets into indi-
vidual tokens. Each token retains the original tweet identifier. It is common to find
URLs in tweets, as people often share interesting links with friends. The next pre-
processing task was to identify hyperlinks in the text and replace them with the
tag URL. Symbols were also removed except for those that make up the set of
emoticons listed in Table 10.1. These groupings will be discussed further in Sec-
tion 10.3.2. Overall, we detected 426,540 sentimental emoticons present in the 10.1
million tweet corpus.

Punctuation tends to be puzzling in tweets. Perhaps this is due to the platform
being tweeted on, a keyboard as opposed to a tiny device keypad. Tweeting while
driving, although unadvisable and potentially illegal, may contribute to strange use
of commas and periods, as well as typos. An unprintable control character infre-
quently appears, but human inspection of those affected tweets revealed that there
was absolutely no case where there was an impact on the sentiment of a tweet.
Therefore, we removed all control characters and punctuation from tweets that were
not clearly being used for an emoticon. The punctuation symbols include ( , ; . ? ! ).

At this point in the process, we have 138.5 million “clean" terms from the orig-
inal corpus. Stop words are words commonly filtered out when doing any type of
text processing. In our data, we removed prepositions and pronouns along with com-
mon, nondescript words such as been, have, is, being, and so forth. They can easily
be removed without affecting the sentiment of the message as they do not convey
any positive or negative connotation. After removing stop words, we are left with
86.8 million tokens. Finally, we consider the set of unique terms and tabulate their
frequency. In this corpus, we have 3,373,178 unique terms.

Table 10.2 Set of emoticons

Positive sentiment Negative sentiment
:) :-) :] :D :p ;) ;-)
;] ;D ;p =) =-) =D

:( :-( ;( ;-( =( =-(
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10.3.2 Dimensionality Reduction

In the approximation space, S = (U,A), we have |A| = 3.3 million unique to-
kens. We use simple key word grouping methods for dimensionality reduction to
identify a subset of A. Our set of K sentimental key words consists of the set
of positive and negative words and emoticons mentioned in Section 10.3.1. Thus,
|K|= 263. We further reduce the number of attributes for our analysis by two meth-
ods; word frequency and manually. In Section 10.4, we compare the two methods of
discretization.

10.3.2.1 Grouping by Equal Word Frequency

The first way of grouping is by taking the set of positive sentiment words and rank-
ing them by frequency. Then we divide the words into groups of the same approxi-
mate frequency. The set of positive sentiment words appear in the tweet corpus 2.4
million times. These are divided into four groups of approximately 640K words.
We label the groups Pi. Group 1 consists of two words, good, with a frequency of
325,448, and great, which has a frequency of 314,837. The sizes of the other groups
are 4, 11, and 89 words, respectively. The set of negative sentiment words totals
0.5 million words. Sets are labeled Ni, each approximately 135,000 words in size.
Positive emoticons total 0.4 million occurrences, and are divided into two groups,
Pe1 and Pe2, with a cutoff point of approximately 224,000 words. Similarly, nega-
tive emoticons total 53K words with a cutoff point of 36K words. These groups are
labeled Pn1 and Pn2. Thus, we have

K = P1P2P3P4N1N2N3N4Pe1Pe2Pn1Pn2,

K+ = P1P2P3P4Pe1Pe2, and

K− = N1N2N3N4Pn1Pn2.

The five most frequently occurring positive sentiment words in this corpus are good,
great, thanks, love, and LOL. The :) emoticon ranks highest. Among the negative
sentiment words, the top five are bad, crazy, hate, tired, and wrong. The :( emoticon
ranks highest.

10.3.2.2 Manual Grouping

An alternative to equal weight frequency based classification is to manually rank
the strength of sentiment for the words. For example, thoughtless does not invoke
as negative a sentiment as despise. The word nice does not hold as strong of a
connotation as awesome.
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We divided the positive emoticons into two groups based on perceived intensity
of emotion. For example, a wide grin, :-D, is perceived to convey a stronger positive
emotion than :-]. In the small set of negative emoticons, we did not see a clear
distinction between the degrees of emotion and so we kept them as one group.

The lists of positive and negative sentiment terms were given to a group of univer-
sity students. They were asked to rank the words in terms of intensity of emotion,
they felt the words had a scale of 1 – 5. Their results were averaged and a cutoff
point was manually selected, dividing the words into five groups. In this case, we
have

K = P1P2P3P4P5N1N2N3N4N5Pe1Pe2Pn1,

K+ = P1P2P3P4P5Pe1Pe2, and

K− = N1N2N3N4N5Pn1.

Note that the cutoffs for this method are independent of word frequency, nor are
there an equal number of terms in each group. They were separated by average
rank value, much like assigning a grade in a class. The purpose is not to advocate
this method over the other, but rather to demonstrate an alternative way to express
sentiment. Many reasonable methods could be derived to measure sentiment of a
query term based on what one believes is positive versus negative.

10.3.3 Generation of Sentimental Approximation Space

The following is a description of how sentiments of a set U of tweets can be repre-
sented as a sentimental approximation space S = (U,K) defined by a set K of key
word groups, which are categorized into two types of groups, such as positive and
negative, in polarity based sentiment analysis. The basic idea is to map each tweet
of an arbitrary number of words into a tuple of |K| integers. For each word w in
a tweet, the frequency count of Ki is increased by one, if w is in the i-th group of
K. So, if all the words of a tweet do not belong to any of the K groups, then it is
represented as a tuple of all zeros.

Once we have the mapping of tweets as a collection of tuples, we can use the
SQL group-by operation to generate a sentimental approximation space S = (U,K)
where each elementary set or block denoting tweets contain the same frequency
count for each sentimental word group.

10.3.4 Subject Sentiment Analysis

Subjects are identified by subject words such as “Android tablet", “iPod", etc. For
our purposes, a subject X is a set of tweets containing subject words of X . Typical
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polarity sentiment analysis is to find out if the sentiment towards a subject is positive
or negative from a corpus. The proposed approach can be applied to the analysis
of multi-level or multi-value sentiment. However, for simplicity, we consider only
polarity sentiment in this work.

The first step in determining the polarity sentiment of a subject X from a set U
of tweets is to identify tweets belonging to X , and then divide the tweets of X into
three subsets: X+,X−,andX= denoting positive, negative, and neutral subsets, re-
spectively. In this work, they are defined by comparing the sum of frequency counts
from the positive and negative key word groups. More precisely, given a tweet t, let
P+ be the sum of frequency counts of positive words in the tweet, and N+ be the fre-
quency sum of negative words in t. Then, tweet t is in the positive sentiment set X+

if P+ > N+, else if P+ < N+, then it is in the negative sentiment set X−; otherwise,
it is in the neutral set X=.

In the next step, we determine the sentiments of these subsets in an approxi-
mation space S = (U,K). The results of our sentiment analysis of a subject X are
represented by approximations of X in S such as the positive regions: POS∗(X),
POS∗(X+), POS∗(X−), and POS∗(X=). They denote the number of tweets that can
be regarded certainly with the specific type of sentiment. In addition, the quality
of lower approximation of the subject set X is computed as |KX |/|U | , and the de-
gree of approximation is measured by the accuracy of approximation defined as
|KX |/|KX | where |U | denoting the number of tweets in the collection, and |KX |,
and |KX | denoting the number of tweets in the lower and upper approximations of
X, respectively. In this study, the lower approximation is computed as the positive
region POS∗(X) of X based on definition (6) given in Section 10.2. Upper approx-
imations are computed by using definition (2) of Section 10.2, i.e., an elementary
set E is included in the upper approximation of X if the conditional probability of X
given E is greater than zero, P(X |E)> 0.

10.4 Experimental Results

We present the experimental results of applying the proposed approach to the col-
lection of tweets described in Section 10.3.1. The preprocessing of tweets into to-
kens was performed using programs written in Java. Subsequently, the tweet ids
and their associated tokens were uploaded to Microsoft SQL Server 2005. The gen-
eration of sentimental approximation spaces and the computing of lower and upper
approximations of subjects were implemented using SQL scripts. Similarly, we used
SQL scripts to compute the sentiments of three subjects, “iPhone", “Microsoft", and
“iPod", together with the qualities and accuracies of approximations. Table 10.3
shows the sentiment analysis of the subject X = “iPhone". The approximation
space is generated by using the 4-equal-frequency grouping strategy described in
Section 10.3.2, i.e., the set of keywords are divided based on equal frequency
counts into four groups of positive and negative sentiment words and two groups
of positive and negative emoticons. Thus, we have 12 attributes in this sentimental
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approximation space. Among the set U of 10,157,205 tweets, there are 59,916
tweets containing the token “iPhone" as indicated in the first row of the column X .
The first row BaseLine denotes the number of tweets divided into subsets by com-
paring the frequency counts of the positive and negative words as defined in Sec-
tion 10.3.2.2. The Non-Senti column denotes the number of non-sentimental tweets,
i.e., those whose values of their attributes are all zero. The Senti column denotes
the number of sentimental tweets, which are further divided into positive sentiment
tweets X+, negative sentiment tweets X−, and neutral tweets X=. The P(X) row
shows the prior probability of each sentiment set. It is used as a threshold to de-
termine if an elementary set should be included in the positive region set POS∗(X)
or not. The Upper Approximation row shows the number of tweets in the upper
approximations. The accuracy and quality are shown in the corresponding rows.

Table 10.3 Sentiment analysis of iPhone using four-equal-frequency grouping strategy

X+ X− X= Senti Non −
Senti

X

Baseline 9842 2045 420 12307 47609 59916
POS∗(X) 469938 188864 22964 681766 7706016 8387782
Upper Ap-
prox.

1976991 377902 82765 2437658 7706016 10143674

P(X) Thresh-
old

0.0059 0.0059 0.0059 0.0059 0.0059 0.0059

Accuracy 0.2377 0.4998 0.2775 0.2797 1.0000 0.8269
Quality 0.6893 0.2770 0.0337 0.0813 0.9187 0.8258

Table 10.4 shows the experimental results of the “iPhone" subject based on man-
ual grouping, and Table 10.5 shows the results based on the 5-equal frequency
grouping method.

Experimental results on the “Microsoft" subject based on the three different
methods are shown in Tables 10.6-10.8.

Tables 10.9-10.11 show the experimental results on the “iPod" subject based on
the three different methods.

Table 10.12 shows the comparative performance of the three different group-
ing methods applied to the three different subjects. From the table, the 4-equal-
frequency method performs best in the “iPhone" subject, the manual grouping
method is slightly better than the other two methods in the Microsoft data set, and
the 5-equal-frequency method performs best in the iPod data set.

Discussion
The first distinguishing information derived from the experiments is that in all cases,
most tweets in the subject areas are categorized as non-sentimental. This is not a
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Table 10.4 Results of iPhone based on manual grouping

X+ X− X= Senti Non −
Senti

X

Baseline 9842 2045 420 12307 47609 59916
POS∗(X) 215685 68393 22373 306451 7706016 8012467
Upper Ap-
prox.

1974224 377153 82304 2433681 7706016 10139697

P(X) Thresh-
old

0.0059 0.0059 0.0059 0.0059 0.0059 0.0059

Accuracy 0.1093 0.1813 0.2718 0.1259 1.0000 0.7902
Quality 0.7038 0.2232 0.0730 0.0382 0.9618 0.7888

Table 10.5 Results of iPhone based on 5-equal-frequency grouping

X+ X− X= Senti Non −
Senti

X

Baseline 9842 2045 420 12307 47609 59916
POS∗(X) 388330 156643 24995 569968 7706016 8275984
Upper Ap-
prox.

197207 376947 82755 2431778 7706016 10137794

P(X) Thresh-
old

0.0059 0.0059 0.0059 0.0059 0.0059 0.0059

Accuracy 0.1969 0.4156 0.3020 0.2344 1.0000 0.8163
Quality 0.6813 0.2748 0.0439 0.0689 0.9311 0.8148

Table 10.6 Microsoft results based on 4-equal-frequency grouping

X+ X− X= Senti Non −
Senti

X

Baseline 1413 485 83 1981 12339 14320
POS∗(X) 3041 94302 26827 124170 7706016 7830186
Upper Ap-
prox.

1951435 374688 81915 2408038 7706016 10114054

P(X) Thresh-
old

0.0014 0.0014 0.0014 0.0014 0.0014 0.0014

Accuracy 0.0016 0.2517 0.3275 0.0516 1.0000 0.7742
Quality 0.0245 0.7595 0.2161 0.0159 0.9841 0.7709
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Table 10.7 Microsoft results based on manual grouping

X+ X− X= Senti Non −
Senti

X

BaseLine 1413 485 83 1981 12339 14320
POS∗(X) 21531 87468 18735 127734 7706016 7833750
Upper Ap-
prox.

1945158 373058 71781 2389997 7706016 10096013

P(X) Thresh-
old

0.0014 0.0014 0.0014 0.0014 0.0014 0.0014

Accuracy 0.0111 0.2345 0.2610 0.0534 1.0000 0.7759
Quality 0.1686 0.6848 0.1467 0.0163 0.9837 0.7713

Table 10.8 Microsoft results based on 5-equal-frequency grouping

X+ X− X= Senti Non −
Senti

X

BaseLine 1413 485 83 1981 12339 14320
POS∗(X) 22324 77667 19349 119340 7706016 7825356
Upper Ap-
prox.

1938332 371201 77526 2387059 7706016 10093075

P(X) Thresh-
old

0.0014 0.0014 0.0014 0.0014 0.0014 0.0014

Accuracy 0.0115 0.2092 0.2496 0.0500 1.0000 0.7753
Quality 0.1871 0.6508 0.1621 0.0153 0.9847 0.7704

Table 10.9 iPod results based on 4-equal-frequency grouping

X+ X− X= Senti Non −
Senti

X

BaseLine 1703 366 81 2150 8416 10566
POS∗(X) 120827 104639 46722 272188 7706016 7978204
Upper Ap-
prox.

1959659 371772 81524 2412955 7706016 10118971

P(X) Thresh-
old

0.00104 0.00104 0.00104 0.00104 0.00104 0.00104

Accuracy 0.0617 0.2815 0.5731 0.1128 1.0000 0.7884
Quality 0.4439 0.3844 0.1717 0.0341 0.9659 0.7855
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Table 10.10 iPod results based on manual grouping

X+ X− X= Senti Non −
Senti

X

BaseLine 1703 366 81 2150 8416 10566
POS∗(X) 41851 3833 10971 56655 7706016 8032788
Upper Ap-
prox.

1956858 370855 78168 2405881 7706016 10111897

P(X) Thresh-
old

0.00104 0.00104 0.00104 0.00104 0.00104 0.00104

Accuracy 0.0214 0.0103 0.1404 0.0235 1.0000 0.7944
Quality 0.7387 0.0677 0.1936 0.0071 0.9593 0.7908

Table 10.11 iPod results based on 5-equal-frequency grouping

X+ X− X= Senti Non −
Senti

X

BaseLine 1703 366 81 2150 8416 10566
POS∗(X) 452889 81770 38658 573317 7706016 8279333
Upper Ap-
prox.

1951935 370154 74828 2396917 7706016 10102933

P(X) Thresh-
old

0.00104 0.00104 0.00104 0.00104 0.00104 0.00104

Accuracy 0.2320 0.2209 0.5166 0.2392 1.0000 0.8195
Quality 0.7899 0.1426 0.0674 0.0692 0.9308 0.8151

Table 10.12 Performance of the three different grouping methods

Accuracy (%) Quality of Lower Approx. (%)
iPhone Microsoft iPod iPhone Microsoft iPod

4-Equal-Freq. 82.58 77.42 78.84 82.58 77.09 78.55
Manual 79.02 77.59 79.44 78.88 77.13 79.08
5-Equal-Freq. 81.63 77.04 81.95 81.48 77.02 81.51
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surprise; it merely shows those tweets do not contain any emotional expression as
defined by our word list.

Accuracy is really a measure relative to the size of the base; therefore, it is related
to the distribution. It is an indicator of how well a sentiment is approximated. It can
be used as a weighted summary for the polarity of the sentiment. It is also a measure
of the degree of approximation to the subject. The higher the accuracy, the better the
approximation. How to apply it is a subject of further study and future work.

All three experiments reveal that the different grouping methods yield a similar
performance. We find this to be counter-intuitive. Further study should be done with
the manual grouping of key words. We conjecture that the subject and number of
groups may have an impact. We also applied the Twitrratr key word set, but feel
that a more scientific and systematic study should be done to identify a set of words
that accurately identifies tweet sentiment language. This is a complex issue and a
research topic in itself.

The Microsoft results shown in Tables 10.6-10.8 reveal an interesting result.
Looking at the baseline distribution, one might conclude that tweeters view Mi-
crosoft positively, overall. However, from a contextual sentiment viewpoint, the
lower approximation clearly shows that overall sentiment for Microsoft is negative.
This is also reflected by observing the quality of X+ in Microsoft is low whereas
the X− quality value is much higher. This indicates the value of using sentimental
approximation space for opinion mining tweets.

10.5 Conclusions

We have introduced a new method based on rough sets for assessing sentiment of
microblog messages using key words. The sentimental approximation space pro-
vides contextual sentiment from the entire collection of tweets. It enables the evalu-
ation of sentiment of different subjects, not in isolation, but in context. The accuracy
and quality measures can be used for evaluating effectiveness of different grouping
methods and further attribute reduction or refinement. Furthermore, we demonstrate
different methods for dimensionality reduction. Frequency based grouping appears
to outperform manually ranking sentiment words, but the rankings may be improved
on with more study. Sentiment is subjective. The degree of emotion that a word in-
vokes in one person will be different than in another. It is for this reason that senti-
mental approximation space offers potentially more insightful information about a
subject than simple polarity answers of positive or negative. Much work remains to
be done in the exploding field of microblogging text mining and analysis.
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Chapter 11
Relationships for Cost and Uncertainty
of Decision Trees

Igor Chikalov, Shahid Hussain, and Mikhail Moshkov

Abstract. This chapter is devoted to the design of new tools for the study of deci-
sion trees. These tools are based on dynamic programming approach and need the
consideration of subtables of the initial decision table. So this approach is applicable
only to relatively small decision tables. The considered tools allow us to compute:

1. The minimum cost of an approximate decision tree for a given uncertainty value
and a cost function.

2. The minimum number of nodes in an exact decision tree whose depth is at most
a given value.

For the first tool we considered various cost functions such as: depth and average
depth of a decision tree and number of nodes (and number of terminal and non-
terminal nodes) of a decision tree. The uncertainty of a decision table is equal to
the number of unordered pairs of rows with different decisions. The uncertainty of
approximate decision tree is equal to the maximum uncertainty of a subtable corre-
sponding to a terminal node of the tree. In addition to the algorithms for such tools
we also present experimental results applied to various datasets acquired from UCI
ML Repository [4].

Keywords: Decision tree, cost functions, uncertainty measures, dynamic
programming.

11.1 Introduction

Decision trees are widely used as predictors, as a way of knowledge representation
and as algorithms for problem solving. Each such use has a different optimization
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objective. That is, we need to minimize the number of misclassifications in order to
achieve more accurate decision trees (from the perspective of prediction). To have
more understandable decision trees we need to minimize the number of nodes in
a decision tree (knowledge representation). And decision trees, when used as al-
gorithms, need to be shallow, i.e., we need to minimize either the depth or aver-
age depth (or in some cases both) of a decision tree in order to reduce algorithm
complexity.

Exact decision trees can be overlearned (overfitting), so we need to consider
not only exact but also approximate decision trees. In this chapter, we concen-
trate on consideration of five different cost functions for decision tree optimization:
depth, average depth, number of nodes, number of nonterminal nodes, and num-
ber of terminal nodes. We consider an uncertainty measure R(T ) that is equal to
the number of unordered pairs of rows in the decision tree T labeled with differ-
ent decisions. The uncertainty measure R(T ) for the decision tree T allows us to
define the notion of α-decision trees. For a fixed non-negative integer α , the un-
certainty of subtable corresponding to each terminal node of α-decision tree is at
most α .

The first aim of this chapter is to study the relationships between the cost and the
uncertainty of decision trees. That is, for a given cost function ψ , decision table T ,
and a nonnegative integer α , we should find the minimum cost of α-decision tree
for T relative to ψ . The second aim is to study the relationships between number
of nodes and depth of an exact decision tree (and vice versa). That is, for a given
decision table T , we should find the minimum number of nodes in an exact decision
tree with depth at most d (and vice versa).

To this end we have designed and implemented the two algorithms (one for
each task) based on dynamic programming approach and applied it to differ-
ent datasets from UCI ML Repository [4] and integrated them into our software
system [1, 3]. These tools can be useful for the specialists in the rough set the-
ory [5]. A similar tool is considered in [2] which allows us to study the rela-
tionships between decision tree depth and number of misclassifications (and vice
versa).

This chapter is divided into five sections. Section 11.2 explains basic notions.
Section 11.3 presents the algorithm to compute the relationships between cost and
uncertainty of decision trees, this section ends with the experimental results for
the algorithm. Section 11.4 presents the algorithm to compute the relationships be-
tween number of nodes and depth (and vice versa) of decision trees. This section
also ends with the respective experimental results. References and an appendix for
transformation of functions follow the conclusion in Sect. 11.5.

11.2 Basic Notions

In the following section we define the main notions related with the study of decision
trees and tables and different cost functions for the decision tree construction.
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11.2.1 Decision Tables and Decision Trees

In this chapter, we consider only decision tables with discrete attributes. These tables
do not contain missing values and equal rows. Consider a decision table T depicted
in Fig. 11.1.

f1 · · · fm d

b11 · · · b1m c1
...

...
bN1 · · · bNm cN

Fig. 11.1 Decision table

Here f1, . . . , fm are the conditional attributes; c1, . . . ,cN are nonnegative integers
which can be interpreted as the decisions (values of the decision attribute d); bi j are
nonnegative integers which are interpreted as values of conditional attributes (we
assume that the rows (b11, . . . ,b1m), . . . ,(bN1, . . . ,bNm) are pairwise different). We
denote by E(T ) the set of attributes (columns of the table T ), each of which contains
different values. For fi ∈ E(T ), let E(T, fi) be the set of values from the column fi.

Let fi1 , . . . , fit ∈ { f1, . . . , fm} and a1, . . . ,at be nonnegative integers. We denote
by T ( fi1 ,a1) . . . ( fit ,at) the subtable of the table T , which consists of such and
only such rows of T that at the intersection with columns fi1 , . . . , fit have numbers
a1, . . . ,at , respectively. Such nonempty tables (including the table T ) will be called
separable subtables of the table T .

For a subtableΘ of the table T we will denote by R(Θ) the number of unordered
pairs of rows that are labeled with different decisions. Later we will interpret the
value R(Θ) as the uncertainty of the table Θ . A minimum decision value which
is attached to the maximum number of rows in a nonempty subtable Θ will be
called the most common decision forΘ . The subtableΘ will be called degenerate if
R(Θ) = 0.

A decision tree Γ over the table T is a finite directed tree with a root in which
each terminal node is labeled with a decision. Each nonterminal node is labeled
with a conditional attribute, and for each nonterminal node, the outgoing edges are
labeled with pairwise different nonnegative integers. Let v be an arbitrary node of
Γ . We now define a subtable T (v) of the table T . If v is the root then T (v) = T . Let
v be a node of Γ that is not the root, nodes in the path from the root to v be labeled
with attributes fi1 , . . . , fit , and edges in this path be labeled with values a1, . . . ,at ,
respectively. Then T (v) = T ( fi1 ,a1) . . . ( fit ,at).

Let α be a nonnegative integer. We will say that Γ is an α-decision tree for T if
any node v of Γ satisfies the following conditions:

• If R(T (v))≤α then v is a terminal node labeled with the most common decision
for T (v).
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• Otherwise, v is labeled with an attribute fi ∈ E(T (v)) and, if E(T (v), fi) =
{a1, . . . ,at}, then t edges leave node v, and these edges are labeled with
a1, . . . ,at respectively.

The notion of a (exact) decision tree for T coincides with the notion of a 0-decision
tree for T .

11.2.2 Cost Functions

We will consider cost functions which are given in the following way: values of con-
sidered cost function ψ , which are nonnegative numbers, are defined by induction
on pairs (T,Γ ), where T is a decision table and Γ is an α-decision tree for T . Let
Γ be an α-decision tree represented in Fig. 11.2. Then ψ(T,Γ ) = ψ0, where ψ0 is
a nonnegative number. Let Γ be an α-decision tree depicted in Fig. 11.3. Then

ψ(T,Γ ) = F(N(T ),ψ(T ( fi,a1),Γ1), . . . ,ψ(T ( fi,at),Γt)).

Here N(T ) is the number of rows in the table T , and F(n,ψ1,ψ2, . . .) is an operator
which transforms the considered tuple of nonnegative numbers into a nonnegative
number. Note that the number of variables ψ1,ψ2, . . . is not bounded from above.

The considered cost function will be called monotone if for any natural t, any
nonnegative numbers a,c1, . . . ,ct ,d1, . . . ,dt and the inequalities c1 ≤ d1, . . . ,ct ≤
dt the inequality F(a,c1, . . . ,ct) ≤ F(a,d1, . . . ,dt) follows. We will say that ψ is
bounded from below if ψ(T,Γ ) ≥ ψ0 for any decision table T and any α-decision
tree Γ for T .

Now, we take a closer view of some monotone cost functions, which are bounded
from below.

Number of nodes: ψ(T,Γ ) is the number of nodes in α-decision tree Γ . For this
cost function ψ0 = 1 and

F(n,ψ1,ψ2, . . . ,ψt) = 1+
t

∑
i=1

ψi.

Number of nonterminal nodes: ψ(T,Γ ) is the number of nonterminal nodes in α-
decision tree Γ . For this cost function ψ0 = 0 and

F(n,ψ1,ψ2, . . . ,ψt) = 1+
t

∑
i=1

ψi.

Number of terminal nodes: ψ(T,Γ ) is the number of terminal nodes in α-decision
tree Γ . For this cost function ψ0 = 1 and

F(n,ψ1,ψ2, . . . ,ψt) =
t

∑
i=1

ψi.
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Depth: ψ(T,Γ ) is the maximum length of a path from the root to a terminal node
of Γ . For this cost function ψ0 = 0 and

F(n,ψ1,ψ2, . . . ,ψt) = 1+max{ψ1, . . . ,ψt}.

Total path length: for an arbitrary row δ̄ of the table T we denote by l(δ̄ ) the
length of the path from the root to a terminal node v of Γ such that δ̄ is in T (v).
Then ψ(T,Γ ) = ∑δ̄ l(δ̄ ), where we take the sum on all rows δ̄ of the table T .
For this cost function ψ0 = 0 and

F(n,ψ1,ψ2, . . . ,ψt) = n+
t

∑
i=1

ψi.

Note that the average depth ofΓ is equal to the total path length divided by N(T ).

11.2.3 Constructing the Graph Δ(T )

We consider an algorithm for construction of a directed acyclic graph (DAG) Δ(T )
for a decision table T . Nodes of this graph are some separable subtables of the table
T . During each step we process one node and mark it with the symbol *. We start
with the graph that consists of one node T and finish when all nodes of the graph
are processed.

Let the algorithm have already performed p steps. We now describe the step
number (p+ 1). If all nodes are processed then the work of the algorithm is fin-
ished, and the resulted graph is Δ(T ). Otherwise, choose a node (table) Θ that has
not been processed yet. Let b be the most common decision for Θ . If R(Θ) = 0,
label the considered node with b, mark it with symbol * and proceed to the step
number (p+ 2). Let R(Θ)> 0. For each fi ∈ E(Θ) draw a bundle of edges from the
nodeΘ (this bundle of edges will be called fi-bundle). Let E(Θ , fi) = {a1, . . . ,at}.
Then draw t edges from Θ and label these edges with pairs ( fi,a1), . . . ,( fi,at) re-
spectively. These edges enter into the nodes Θ( fi,a1), . . . ,Θ( fi,at). If some of the
nodes fromΘ( fi,a1), . . . ,Θ( fi,at) are not present in the graph then add these nodes
to the graph. Mark the node Θ with the symbol * and proceed to the step number
(p+ 2).

Now for each node Θ of the graph Δ(T ) we describe the set of (exact) de-
cision trees (0-decision trees) corresponding to it. It is clear that Δ(T ) is a di-
rected acyclic graph. A node of such graph will be called terminal if there are
no edges leaving this node. We will move from terminal nodes, which are labeled
with numbers, to the node T . Let Θ be a node, which is labeled with a num-
ber b. Then the only trivial decision tree depicted in Fig. 11.2 corresponds to the
considered node.

Let Θ be a node (table), for which R(Θ) > 0. There is a number of bundles of
edges starting inΘ . We consider an arbitrary bundle and describe the set of decision
trees corresponding to this bundle. Let the considered bundle be an fi-bundle where
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fi ∈ E(Θ) and E(Θ , fi) = {a1, . . . ,at}. Let Γ1, . . . ,Γt be decision trees from sets
corresponding to the nodesΘ( fi,a1), . . . ,Θ( fi,at). Then the decision tree depicted
in Fig. 11.3 belongs to the set of decision trees, which correspond to this bundle.
All such decision trees belong to the considered set, and this set does not contain
any other decision trees. Then the set of decision trees corresponding to the nodeΘ
coincides with the union of sets of decision trees corresponding to bundles starting
in Θ . We denote by D(Θ) the set of decision trees corresponding to the node Θ in
the graph Δ(T ).

The following proposition shows that the graph Δ(T ) can represent all decision
trees for the table T .

Proposition 11.1. Let T be a decision table andΘ a node in the graph Δ(T ). Then
the set D(Θ) coincides with the set of all decision trees for the tableΘ .

Proof. We prove this proposition by induction on nodes in the graph Δ(T ). For each
terminal node Θ , only one decision tree exists as depicted in Fig. 11.2, and the set
D(T ) contains only this tree. Let Θ be a non-terminal node and the statement of
proposition hold for all its descendants.

Consider an arbitrary decision tree Γ ∈ D(Θ). Obviously, Γ contains more than
one node. Let the root of Γ be labeled with an attribute fi and the edges leaving root
be labeled with the numbers a1, . . . ,at . For j = 1, . . . , t, denote byΓj the decision tree
connected to the root with the edge labeled with the number a j. From the definition
of the set D(Θ) it follows that fi is contained in the set E(Θ), E(Θ , fi) = {a1, . . . ,at}
and for j = 1, . . . , t, the decision tree Γj belongs to the set D(Θ( fi,a j)). According
to the inductive hypothesis, the tree Γj is a decision tree for the tableΘ( fi,a j). Then
the tree Γ is a decision tree for the tableΘ .

Now we consider an arbitrary decision tree Γ for the table Θ . According to the
definition, the root of Γ is labeled with an attribute fi from the set E(Θ), edges leav-
ing the root are labeled with numbers from the set E(Θ , fi) and the subtrees whose
roots are nodes, to which these edges enter, are decision trees for corresponding de-
scendants of the node Θ . Then, according to the definition of the set D(Θ) and to
inductive hypothesis, the tree Γ belongs to the set D(Θ). ��

We applied the algorithm to Table 11.1 and show the resulting DAG in Fig. 11.4.
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Table 11.1 Example decision table

f1 f2 f3 d

0 0 1 0
1 1 1 1
2 1 0 0
3 1 1 1
4 1 1 1

f1 f2 f3 d
0 0 1 0
1 1 1 1
2 1 0 0
3 1 1 1
4 1 1 1

f1 f2 f3 d
1 1 1 1
2 1 0 0
3 1 1 1
4 1 1 1

f1 f2 f3 d
0 0 1 0
1 1 1 1
3 1 1 1
4 1 1 1

f1 f2 f3 d
1 1 1 1
3 1 1 1
4 1 1 1

f1 f2 f3 d
0 0 1 0

f1 f2 f3 d
1 1 1 1

f1 f2 f3 d
2 1 0 0

f1 f2 f3 d
3 1 1 1

f1 f2 f3 d
4 1 1 1

(f2, 1) (f3, 1)

(f1, 0)

(f1, 1)

(f1, 4)

(f1, 3)

(f1, 2)

(f1, 4)

(f1, 3)(f1, 1)

(f3, 1)

(f1, 1)

(f1, 2)

(f3, 2)

(f1, 4)
(f2, 1)

(f1, 0)

(f2, 0)

(f1, 1)

(f1, 3)

(f1, 4)

Fig. 11.4 Directed acyclic graph for Table 11.1

11.3 Relationships: Cost vs. Uncertainty

In the following we present an algorithm for computing the relationships between
the cost functions and the uncertainty measure R. Let T be a decision table with
n columns labeled with f1, . . . , fn and ψ be a monotone and bounded from below
cost function given by the pair (ψ0,F). The algorithm consists of two parts: a)
construction of a directed acyclic graph (DAG) Δ(T ) such that the nodes of this
DAG are some separable subtables Θ of the table T (this is described in detail
in Sect. 11.2.3), and b) computation of Fψ,Θ in the bottom-up fashion for each
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node Θ of Δ(T ) (the function Fψ,Θ is defined in the following). We also show ex-
perimental results of application of this algorithm to some datasets from UCI ML
Repository [4].

11.3.1 The Function Fψ,T

Let T be a decision table and ψ be a monotone and bounded from below cost
function. The function Fψ,T (α) is defined on the set {0, . . . ,R(T )}. For any α ∈
{0, . . . ,R(T )}, the value of Fψ,T (α) is equal to the minimum cost of an α-decision
tree for T , relative to the cost function ψ . This function can be represented by the
tuple.

(
Fψ,T (0), . . . ,Fψ,T (R(T ))

)
.

This function allows us to describe relationship of decision tree cost and
uncertainty.

11.3.2 Computing the Relationship

For each nodeΘ of the graph Δ(T ) we compute the function FΘ =Fψ,Θ (we com-
pute the R(Θ)-tuple describing this function).

A node of Δ(T ) is called terminal if there are no edges leaving this node.
We will move from the terminal nodes, which are labeled with numbers, to the
node T .

Let Θ be a terminal node of Δ(T ) which is labeled with a number b that is the
most common decision for Θ . We know that R(Θ) = 0. Therefore, b is a common
decision for Θ , and the decision tree depicted in Fig. 11.2 is the only 0-decision
tree for Θ . Since R(Θ) = 0, we should consider only one value of α – the value 0.
It’s clear that the minimum cost of 0-decision tree for Θ is equal to ψ0. Thus, the
function FΘ can be described by the tuple (ψ0).

Let Θ be a nonterminal node of Δ(T ) then it means that R(Θ) > 0. Let α ∈
{0, . . . ,R(Θ)}. We need to find the value FΘ (α), which is the minimum cost relative
to ψ of an α-decision tree for Θ . Since R(Θ) > 0, the root of any α-decision tree
for Θ is labeled with an attribute from E(Θ). For any fi ∈ E(Θ), we denote by
FΘ (α, fi) the minimum cost relative to ψ of an α-decision tree for Θ such that the
root of this tree is labeled with fi. It is clear that

FΘ (α) = min{FΘ (α, fi) : fi ∈ E(Θ)}. (11.1)

Let fi ∈ E(Θ) and E(Θ , fi) = {a1, . . . ,at}. Then any α-decision tree Γ for Θ with
the attribute fi attached to the root can be represented in the form depicted in
Fig. 11.3, where Γ1, . . . ,Γt are α-decision trees for Θ( fi,a1), . . . ,Θ( fi,at). Since ψ
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is a monotone cost function, the tree Γ will have the minimum cost if the costs of
trees Γ1, . . . ,Γt are minimum. Therefore,

FΘ (α, fi) = F(N(Θ),FΘ ( fi,a1)(α), . . . ,FΘ ( fi,at )(α)). (11.2)

If for some j, 1 ≤ j ≤ t, we have α > R(Θ( fi,a j)) then FΘ ( fi,a j)(α) = ψ0, since
the decision tree depicted in Fig. 11.2, where b is the most common decision for
Θ( fi,a j), is an α-decision tree for Θ( fi,a j). The cost of this tree is ψ0. Since ψ is
a cost function, which is bounded from below, the cost of any α-decision tree for
Θ( fi,a j) is at least ψ0.

The formulas (11.1) and (11.2) allow us to find the value of FΘ (α) if we know
the values of FΘ ( fi,a j)(α), where fi ∈ E(Θ) and a j ∈ E(Θ , fi). When we reach to
the node T we will obtain the function FT =Fψ,T .

As an illustration we applied the algorithm to Table 11.1 and used number
of nodes as a cost function. We obtained the following results (as depicted in
Fig. 11.5).
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Fig. 11.5 DAG for Table 11.1 with relationships between alpha and number of nodes
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11.3.3 Experimental Results

We implemented the algorithm presented in previous subsection in our software
system codenamed as DAGGER (this is a software system for the study of decision
trees and decision rules, developed at KAUST) and performed several experiments
on datasets (decision tables) acquired from UCI ML Repository [4]. In the follow-
ing, we present the experimental results and show the plots depicting relationships
between the uncertainty measure R(T ) and various cost functions such as the depth,
average depth, number of terminal nodes, etc. We depict here some of the plots
generated by the system.

11.3.4 Tic-Tac-Toe Dataset

We show four plots in Fig. 11.6 and Fig. 11.7 for the decision table (dataset) TIC-
TAC-TOE (9 attributes and 958 rows). Figure 11.6 contains two plots; the first plot
shows the relationship between the depth and alpha and the second plot shows
the relationship between the number of nodes and alpha. Figure 11.7 contains
two plots; the first plot shows the relationship between the average depth and al-
pha and the second plot shows relationship between the number of terminal nodes
and alpha.
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Fig. 11.6 Relationships between depth and alpha and between no. of nodes and alpha for the
dataset TIC-TAC-TOE

11.3.5 Lymphography Dataset

For the decision table (dataset) LYMPHOGRAPHY (18 attributes and 148 rows) we
show four plots in Fig. 11.8 and Fig. 11.9. Figure 11.8 contains two plots; the first
plot shows the relationship between the depth and alpha and the second plot shows
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Fig. 11.7 Relationships between average depth and alpha and between no. of terminal nodes
and alpha for the dataset TIC-TAC-TOE

the relationship between the number of nonterminal nodes and alpha. Figure 11.9
contains two plots; the first plot shows the relationship between the average depth
and alpha and the second plot shows relationship between the number of terminal
nodes and alpha.
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Fig. 11.8 Relationships between depth and alpha and between no. of nonterminal nodes and
alpha for the dataset LYMPHOGRAPHY

11.3.6 Breast-Cancer Dataset

For the decision table (dataset) BREAST-CANCER (9 attributes and 266 rows) we
show two plots in Fig. 11.10. The first plot shows the relationship between the depth
and alpha and the second plot shows the relationship between the number of terminal
nodes and alpha.
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Fig. 11.9 Relationships between average depth and alpha and between no. of terminal nodes
and alpha for the dataset LYMPHOGRAPHY
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Fig. 11.10 Relationships between depth and alpha and between no. of terminal nodes and
alpha for the dataset BREAST-CANCER

11.3.7 Agaricus-Lepiota Dataset

For the decision trable AGARICUS-LEPIOTA (23 attributes and 8125 rows) we show
two plots in Fig. 11.11. The first plot shows the relationship between the average
depth and alpha and the second plot shows the relationship between the number of
nonterminal nodes and alpha.

11.4 Relationships: Number of Nodes vs. Depth

In the following we present an algorithm for computing the relationship between
minimum number of nodes and depth of a decision tree (and vice versa). We also
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Fig. 11.11 Relationships between average depth and alpha and between no. of nonterminal
nodes and alpha for the dataset AGARICUS-LEPIOTA

show experimental results of application of this algorithm to some datasets from
UCI ML Repository [4]. This algorithm has also two parts. The first part constructs
the graph Δ(T ) (as discussed in Sect. 11.2.3) and the second part computes the
relationship.

11.4.1 Computing the Relationships

Let T be a decision table with N rows and m columns labeled with f1, . . . , fm and
D(T ) be the set of all decision trees for T . Let Γ ∈ D(T ), then the depth of Γ ,
depicted as h(Γ ), is the maximum length of a path from the root to a terminal node
of Γ and the number of nodes for decision tree Γ , denoted as L(Γ ), is the total
number of nodes in Γ .

It is clear that m and 2N−1 are upper bounds for h and L, respectively, on the set
D(T ) for any table T .

We denote Bh,T = {β ,β + 1, . . . ,m} and BL,T = {α,α + 1, . . . ,2N − 1}, here β
and α are minimum depth and minimum number of nodes, respectively, of some
decision tree in D(T ) (not necessarily the same tree.) We now define two functions
GT : Bh,T → BL,T and FT : BL,T → Bh,T as follows:

FT (n) = min{h(Γ ) : Γ ∈ D(T ),L(Γ )≤ n} , ∀n ∈ BL,T and

GT (n) = min{L(Γ ) : Γ ∈ D(T ),h(Γ )≤ n} , ∀n ∈ Bh,T .

The function GT can be represented by the tuple (GT (β ),GT (β + 1), . . . ,GT (m)) of
its values. The function FT can also be represented similarly.

We now describe an algorithm which allows us to construct the function GΘ for
any node (subtable) Θ from the graph Δ(T ). We begin from terminal nodes and
move to the node T .
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Let Θ be a terminal node. It means that all rows of Θ are labeled with the same
decision b and the decision tree Γb as depicted in Fig. 11.2 belongs to D(Θ). It is
clear that h(Γb) = 0 and L(Γb) = 1 for the table Θ . Therefore GΘ (n) = 1 for any
n ∈ Bh,Θ .

Consider a node Θ , which is not a terminal node and a bundle of edges, which
start from this node. Let these edges be labeled with the pairs ( fi,a1), . . . ,( fi,at)
and enter into the nodesΘ( fi,a1), . . . ,Θ( fi,at), respectively, to which the functions
GΘ ( fi,a1), . . . ,GΘ ( fi,at ) are already attached.

Let b1, . . . ,bt be the minimum values from Bh,Θ ( fi,a1), . . . ,Bh,Θ ( fi,at ), respectively.
Let Bh,Θ , fi = {βi,βi+1, . . . ,m}, where βi = 1+max{b1, . . . ,bt}. One can show that
βi is the minimum depth of a decision tree from D(Θ) for which fi is attached to the
root and βΘ = min{βi : fi ∈ E(Θ)}, where βΘ is the minimum value from Bh,Θ .

We correspond to this bundle ( fi-bundle) the function G fi
Θ , which for any n ∈

Bh,Θ , fi is defined as follows:

G fi
Θ (n) = min{L(Γ ) : Γ ∈ D(Θ , fi),h(Γ )≤ n} ,

where D(Θ , fi) is the set of decision trees for Θ corresponding to the considered
bundle. In this set we have all trees from D(Θ) in which the root is labeled with fi

and only such trees. It is not difficult to show that for any n ∈ Bh,Θ , fi

G fi
Θ (n) = ∑

1≤ j≤t

GΘ ( fi,a j)(n− 1)+ 1.

We can now prove that for any n ∈ Bh,Θ

GΘ (n) = min
{
G fi
Θ (n) : fi ∈ E(Θ),n ∈ Bh,Θ , fi

}
.

We can use the following proposition to construct the function FT (using transfor-
mation of functions as defined in the Appendix.)

Proposition 11.2. For any n ∈ BL,T ,

FT (n) = min{p ∈ Bh,T : G(p)≤ n}.

Note that to find the value FT for n ∈ BL,T it is enough to make O(log |Bh,T |) oper-
ations of comparison.

As an illustration we applied the algorithm to Table 11.1 to obtain relationships
between the depth and number of nodes (see Fig. 11.12).

11.4.2 Experimental Results

We implemented the algorithm presented in the previous subsection in our software
system (codenamed as DAGGER) and performed several experiments on datasets
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Fig. 11.12 DAG for Table 11.1 with relationships between depth and number of nodes

(decision tables) acquired from UCI ML Repository [4]. In the following, we present
the experimental results and show the plots depicting relationships between the
number of nodes and depth of decision trees.

11.4.3 Tic-Tac-Toe Dataset

Figure 11.13 contains two plots for the decision table (dataset) TIC-TAC-TOE (9
attributes and 958 rows). The first plot shows the relationship between the number
of nodes and the depth and the second one shows the relationship between the depth
and the number of nodes of decision trees. In fact we need to extend the second plot
up to 2× 958− 1 but the values of the function will be same, i.e., 6. Note that we
have similar situation in each of the considered examples.
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Fig. 11.13 Relationships between the number of nodes and the depth for the dataset TIC-
TAC-TOE

11.4.4 Lymphography Dataset

Figure 11.14 contains two plots for the decision table (dataset) LYMPHOGRAPHY

(18 attributes and 148 rows). The first plot shows the relationship between the num-
ber of nodes and the depth and the second one shows the relationship between the
depth and the number of nodes of decision trees.
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Fig. 11.14 Relationships between the number of nodes and the depth for the dataset
LYMPHOGRAPHY
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11.4.5 Breast-Cancer Dataset

Figure 11.15 contains two plots for the decision table (dataset) BREAST-CANCER (9
attributes and 266 rows). The first plot shows the relationship between the number
of nodes and the depth and the second one shows the relationship between the depth
and the number of nodes.
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Fig. 11.15 Relationships between the number of nodes and the depth for the dataset BREAST-
CANCER

11.4.6 House-Votes-84 Dataset

Figure 11.16 contains two plots for the decision table (dataset) HOUSE-VOTES-84
(16 attributes and 280 rows). The first plot shows the relationship between the num-
ber of nodes and the depth and the second one shows the relationship between the
depth and the number of nodes.

11.4.7 Agaricus-Lepiota Dataset

Figure 11.17 contains two plots for the decision table (dataset) AGARICUS-LEPIOTA

(22 attributes and 8125 rows). The first plot shows the relationship between the
number of nodes and the depth and the second one shows the relationship between
the depth and the number of nodes.
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Fig. 11.16 Relationships between the number of nodes and the depth for the dataset
HOUSE-VOTES-84
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Fig. 11.17 Relationships between the number of nodes and the depth for the dataset
AGARICUS-LEPIOTA

11.5 Conclusion

This Chapter is devoted to the developing of two new tools for studying of decision
trees. The first tool we consider allows us to compute relationship between cost and
uncertainty of decision trees. We have considered a variety of cost functions and a
measure of uncertainty. The second tool presented in this chapter deals with compu-
tation of relationship between number of nodes and depth of decision trees. We also
give a simple mechanism utilizing the “transformation of functions” (as described
in the appendix) to reverse the order of computation of relationship for the second
tool i.e., the relationship between the depth and number of nodes. We have integrated
these tools in our software system (codenamed as DAGGER) and performed several
experiments on datasets from UCI ML Repository [4]. We plan to extend the research
in this area by examining the relationships between various other cost functions such
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as relationship between average depth and number of nodes of decision trees, as well
as other uncertainty measures and inconsistent decision tables [5].
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Appendix: Transformation of Functions

Let f and g be two functions from a set A onto Cf and Cg respectively, where Cf

and Cg are finite sets of nonnegative integers. Let B f = {m f ,m f + 1, . . . ,Mf } and
Bg = {ng,ng + 1, . . . ,Ng} where m f = min{m : m ∈Cf } and ng = min{n : n ∈Cg}.
Furthermore, Mf and Ng are natural numbers such that m ≤ Mf and n ≤ Ng for any
m ∈Cf and n ∈Cg, respectively.

We define two functions F : Bg → B f and G : B f → Bg as following:

F(n) = min{ f (a) : a ∈ A,g(a)≤ n}, ∀n ∈ Bg, and

and
G(m) = min{g(a) : a ∈ A, f (a)≤ m}, ∀m ∈ B f .

It is clear that both F and G are nonincreasing functions.
The following proposition states that the functions F and G can be used inter-

changeably and we can evaluate F using G and vice versa, i.e., it is enough to know
only one function to evaluate the other.

Proposition 11.3. For any n ∈ Bg,

F(n) = min{m ∈ B f : G(m)≤ n},

and for any m ∈ B f ,

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


222 I. Chikalov, S. Hussain, and M. Moshkov

G(m) = min{n ∈ Bg : F(n)≤ m}.

Proof. Let for some n ∈ Bg

F(n) = m0. (11.3)

Furthermore, we assume that

min{m ∈ B f : G(m)≤ n}= t.

From (11.3) it follows that

(i) there exists b ∈ A such that g(b)≤ n and f (b) = m0;
(ii) for any a ∈ A if g(a)≤ n then f (a)≥ m0.

From (i) it follows that G(m0)≤ n. This implies t ≤ m0. Let us assume that t < m0.
In this case, there exits m1 < m0 for which G(m1)≤ n. Therefore, there exists a ∈ A
such that f (a) ≤ m1 and g(a)≤ n, but from (ii) it follows that f (a) ≥ m0, which is
impossible. So t = m0.

Similarly we can prove the second part of the statement. ��

Proposition 11.3 allows us to transform the function G given by a tuple(
G(m f ),G(m f + 1), . . . ,G(Mf )

)
into the function F and vice versa. We know that

G(m f )≥G(m f +1)≥ ·· · ≥ G(Mf ), to find the minimum m∈B f such that G(m)≤m
we can use binary search which requires O(log|B f |) comparisons of numbers. So
to find the value F(n) for n ∈ Bg it is enough to make O(log|B f |) operations of
comparison.



Chapter 12
The Impact Rules of Recommendation Sources
for Adoption Intention of Micro-blog Based
on DRSA with Flow Network Graph

Yang-Chieh Chin, Chiao-Chen Chang, Chiun-Sin Lin, and Gwo-Hshiung Tzeng

Abstract. A micro-blog is a social media tool that allows users to write short text
messages for public and private networks. This research focuses specifically on the
micro-blog on Facebook. The main purposes of this study are to explore and com-
pare what recommendation sources influence the intention to use micro-blogs and
to combine the personal characteristics/attributes of gender, daily internet hour us-
age and past use experience to infer the usage of micro-blogs decision rules us-
ing a dominance-based rough-set approach (DRSA) with flow network graph. Data
for this study were collected from 382 users and potential users. The analysis is
grounded in the taxonomy of induction-related activities using a DRSA with flow
network graph to infer the usage of micro-blogs decision rules. Finally, the study
of the nature of micro-blog reflects essential practical and academic value in real
world.
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12.1 Introduction

A micro-blog is a new communication channel with which people can share infor-
mation for public and private networks. Micro-blog platforms, primarily on social
network sites such as Facebook, Twitter, and Orkut have become popular. The con-
cept of a social network is that two of your friends would have a greater probability
of knowing each other than would two people chosen at random from the popu-
lation [5]. Extensions of micro-blog communications include status updates from
social networks such as Facebook, and message-exchange services such as Twitter.
User growth on Facebook, one of the biggest social networking sites in the world,
is still expanding. Statistics from www.checkfacebook.com showed that Face-
book’s international audience totaled 350 million people at the beginning of 2010,
including more than 5 million Taiwan users engaged in platform applications. A site
that allows users to share daily updates through micro-blog helps people to keep in
touch [23], and businesses can increase sales as well by improving communications
to and collaborations with customers [5]. With the growth of users on the micro-blog
services, the biggest benefit of micro-blog is its ability to generate platform revenues
by means of advertisements [45] and other applications. Thus, how to stimulate the
micro-blog adoption intention becomes a critical issue to platform marketers.

Even though micro-blog offers conveniences and benefits, some people are con-
cerned about the use of micro-blog as another form of background check and
that their privacy may be lost in cyberspace [43]. However, such concerns can be
addressed by better and more accurate recommendations, because people are influ-
enced by others’ recommendations when making decisions [24]. These recommen-
dations can be classified as interpersonal sources, impersonal sources [4] and neutral
sources [12]. Researchers have shed some light on the importance of recommenda-
tion sources in the context of product purchases [33], but little has been done on
the relevance of these recommendation sources in the context of micro-blog usage.
Thus, our primary goal in this study is to fill that gap by increasing our understand-
ing of how the three primary categories of recommendation sources-interpersonal
recommendations (e.g., word-of-mouth recommendations), impersonal recommen-
dations (e.g., advertising recommendations), and neutral recommendations (e.g.,
expert recommendations)-influence users intention to adopt micro-blogs.

The classical rough set theory (RST) was proposed by Pawlak [36] as an effec-
tive mathematical approach for discovering hidden deterministic rules. However,
the main restriction for the use RST in multicriteria decision making (MCDM) was
that the domain of attributes is preference ordered. To help fill the gap, Greco et al.
[20] proposed an extension of the rough set theory based on the dominance prin-
ciple, which incorporate the ordinal nature of the preference data into the classifi-
cation problem. This innovation is called the dominance-based rough set approach
(DRSA). It derived a set of decision rules based on preference-ordered data [21]
and substituted the indiscernibility relation in classical rough set theory with a dom-
inance relation that is reflexive and transitive [9]. Furthermore, the DRSA repre-
sents preference models for multiple criteria decision analysis (MCDA) problems,
where preference orderings on domains of attributes are typical in exemplary-based

www.checkfacebook.com
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decision-making (Liou et al., 2010 [30]; Liou and Tzeng, 2010 [31]; Shyng et al.,
2011 [44]). In the DRSA, these models take the following form: “if object a is pre-
ferred to object b in at least (at most) given degrees with respect to some attributes,
then a is preferred to b in at least (at most) given degree” (Słowiński, 2010 [46]). De-
cision rules derived from the options of users, expressing the relationships between
attributes, values and the intention to adopt a micro-blog, are also considered. Al-
though the rules developed by RST can be directly translated into a path-dependent
flow network to infer decision paths and parameters (Ford and Fulkerson, 1962
[17]; Pawlak, 2002 [37], 2004 [38], 2005 [39]; Wang et al., 2010 [51]; Ou Yang
et al., 2010 [34]; Lin et al., 2011 [29]; Fang et al., 2012 [16]), most studies have
not yet adequately induced and extracted the decision rules using the DRSA and
flow network graph. The flow network graph is heavily exploited by using if-then
rules in easily understanding the impact decision rules of recommendation sources.
Therefore, another purpose of this study is to combine control variables (gender,
daily internet hour usage, and past use experience), grounded in the taxonomy of
induction-related activities using the DRSA, to infer the micro-blog-related deci-
sion rules.

As a result, our primary goal in this study is to fill that gap by increasing our
understanding of how recommendation sources (word-of-mouth recommendations,
advertising recommendations and expert recommendations) and personal charac-
teristics (gender, daily Internet hour usage, and past use experience) influence user
intention by combining the DRSA and flow network graph to infer the micro-blog
adoption decision rules.

The remainder of this paper is organized as follows. Section 12.2 reviews prior
studies on recommendation sources for adoption intention. Section 12.3 intro-
duces the DRSA and Flow Network Graph Algorithm. Section 12.4 illustrates
the empirical example of Facebook to demonstrate the proposed methods. Finally,
Section 12.5 presents conclusions and remarks.

12.2 Review on Recommendation Sources for Adoption
Intention

12.2.1 Micro-blog

Micro-blog systems provide a lightweight, easy form of communication that enables
users to broadcast and share information about their current activities, thoughts,
opinions and status. Compared to regular blogging, micro-blogging lowers the in-
vestment of the time and thought required to generate content and fulfills a need for a
faster and more immediate mode of communication [27]. Micro-blogging, commu-
nication via short, real-time message broadcasts, is relatively a new communication
channel for people to share information about their daily activities that they would
not otherwise publish using other media (e.g., e-mail, phone, instant messaging (IM)
or weblogs). In a micro-blogging community, users can publish brief messages and
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tag them with keywords. Others may subscribe to these messages based on who
publishes them or what they are about [23]. Popular micro-blogging platforms such
as Facebook have risen to prominence in recent years.

12.2.2 Adoption Intention

Adoption is a widely researched process that is often used to investigate the spread
of information technology [15, 41, 42]. According to the literature on information
technology adoption, adoption intention is an individual’s intention to use, acquire, or
accept a technology innovation [42]. Adoption intention is the subjective likelihood
of an individual performing a specified behavior and serves as the major determinant
of actual usage behavior (Ajzen, 1988 [1]; Ajzen and Fishbein, 1980 [2]; Yi et al.,
2006 [52]). In a virtual environment, adoption intention has been shown to predict the
likelihood of an individual performing a conscious act, such as determining to accept
(or use) a technology (Chau and Hu, 2002 [10]). Service providers should encourage
usage when users are willing to use social network. Thus, it becomes necessary to
probe the adoption intentions of users of micro-blogs.

12.2.3 Recommendation Source

Prior studies have suggested that peer communications (such as families, friends,
and colleges) may be considered the most trustworthy type of recommendation
source in making decisions (Richins and Root-Shaffer, 1988 [40]). In addition, ad-
vertising recommendations, such as recommendations from site-sponsored adver-
tisements, may be also regarded as a credibility cue (Smith et al., 2005 [49]). Pre-
vious research has also demonstrated that the perceived level of expertise positively
impacts acceptance of source recommendations (Crisci and Kassinove, 1973 [13]).
These recommendations may be also considered a credibility cue when making de-
cisions [49].

12.3 Basic Concepts of the DRSA and Flow Network Graph
Algorithm

Pawlak (1982) [36] proposed the classical rough set theory (RST) as an effec-
tive mathematical approach for discovering hidden deterministic rules and asso-
ciative patterns in all types of data and for managing unknown data distributions
and information uncertainty. Therefore, many studies have adopted the RST ap-
proach to extract rules and patterns from original data and unclassified informa-
tion. For a long time, however, the main restriction on the use of RST has been the
preference-ordering of domain of attributes because RST cannot handle inconsis-
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tencies due to violations of the dominance principle (Greco et al., 2001 [21]). For
this reason, Greco et al. (1998) [19] proposed the dominance-based rough set ap-
proach (DRSA) to substitute a reflexive and transitive dominance relation for the
indiscernible relation used in the classical RST approach (Greco et al., 2007 [22]).
The DRSA derives a set of decision rules from preference-ordered data (Słowiński
et al., 2009 [48]) that are then used in a classifier (Błaszczyński et al., 2007 [7]).
To understand the construction of decision rules of recommendation sources that
influence the adoption intentions of customers toward micro-blogs, this research
starts by combining the DRSA with flow network graph to extract and discover
recommendation sources.

12.3.1 Data Table

DRSA uses an ordered information table where in each row represents an object,
which is defined a respondent to our survey, and each column represents an attribute,
including preference-ordered domain and regular (no preference-ordered domain).
Thus, the entries of the table are attribute values. Formally, an information system
(IS) can be represented by the quintuple IS = (U,Q,V, f ), where U is a finite and
non-empty set of objects (universe), Q = {a1, . . . ,am} is a non-empty finite set of
ordered or non-ordered attributes, Va is the domain of attribute a, V =

⋃
a∈Q Va, and

f : U ×Q −→ V is a total information function such that f (x,a) ∈ Va for every
a ∈ Q and x ∈ U [7,30,36]. The set Q is usually divided into a set C of ordered or
non-ordered attributes and a set D of decision attributes.

12.3.2 Approximation of the Dominance Relation

In DRSA, it is used as a dominance relation instead of an indisceribility relation
[7]. According to Greco et al. [21], first, let �a be an outranking relation on U
with respect to criterion a ∈ Q, such that x �a y means “x is at least good as y with
respect to criterion a.” Suppose that �a is a complete preorder. Furthermore, let
Cl = {Ct : t ∈ T}, where T = {1, . . . ,n}, be a set of decision classes on U that each
x ∈ U belongs to one and only one class Cl ∈ Cl. Assume that, for all r,s ∈ T such
that r > s, the elements of Cr are preferred to the elements of Cs . Given the set of
decision classes Cl, it is possible to define upward and downward unions of classes,
respectively, by

CL≥
t =

⋃

s≥t

Cls, Cl≤t =
⋃

s≤t

Cls, t = 1, . . . ,n. (12.1)

In dominance-based approaches, we say that x dominates y with respect to P ⊆ C,
in symbols x �P y, if x �a y for all a ∈ P. Given P ⊆C and x ⊆U , let

D+
p (x) = {y ∈U : y �P x},
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represent a set of objects dominating x , called a P-dominating set, and let

D−
p (x) = {y ∈U : x �P y},

represent a set of objects dominated by x, called a P-dominated set. One can adopt
D+

p (x) and D−
p (x) to approximate collections of upward and downward unions of

decision classes.
The P-lower approximation P(Cl≥t ) of Cl≥t (where t ∈ {2,3, . . . ,n}) relative to

P ⊆C contains all objects x from the universe U , such that objects y having at least
the same evaluations as x for all of the considered ordered attributes from P also
belong to class Clt or better (i.e., to Cls, where s > t). More formally P(Cl≥t ) is
defined by

P(Cl≥t ) = {x ∈U : D+
P (x)⊆Cl≥t }. (12.2)

The P-upper approximation P(Cl≥t ) of Cl≥t , t ∈ {2,3, . . . ,n} relative to P ⊆ C is
composed of all objects x from the universe U whose evaluations on the criteria
from P are not worse than the evaluations of at least one object y belonging to class
Clt , or better. More formally P(Cl≥t ) is defined by

P(Cl≥t ) = {x ∈U : D−
P (x)∩Cl≥t �=∅}. (12.3)

Analogously, the P-lower and P-upper approximations P(Cl≤t ) and P(Cl≤t ) of the
class unions Cl≤t (where t ∈ {2, . . . ,n}) relative to P ⊆C are defined by

P(Cl≤t ) = {x ∈U : D−
P (x)⊆Cl≤t }, (12.4)

and

P(Cl≤t ) = {x ∈U : D+
P (x)∩Cl≤t �=∅}, (12.5)

respectively.
The P-boundaries (P-doubtable regions) of Cl≥t and Cl≤t are defined as

BnP(Cl≥t ) = P(Cl≥t )−P(Cl≥t ), (12.6)

BnP(Cl≤t ) = P(Cl≤t )−P(Cl≤t ). (12.7)

For any set P ⊆ U we can estimate the accuracy of approximation of Cl≥t and
Cl≤t by

αp(Cl≥t ) =

∣
∣
∣
∣
∣

P(Cl≥t )

P(Cl≥t )

∣
∣
∣
∣
∣
, αp(Cl≤t ) =

∣
∣
∣
∣
∣

P(Cl≤t )

P(Cl≤t )

∣
∣
∣
∣
∣

(12.8)
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and the ratio

γp(Cl) =

∣
∣
∣
∣
∣
∣

U −
(⋃

t∈{2,...,n} Bnp(Cl≥t )
)

U

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

U −
(⋃

t∈{1...,n−1}Bnp(Cl≤t )
)

U

∣
∣
∣
∣
∣
∣
.

(12.9)

12.3.3 Extraction of Decision Rules

A decision rule can be expressed as a logical manner of the if (antecedent) then
(consequence) type of decision. The procedure of capturing decision rules from a set
of initial data is known as induction (Pawlak, 1982 [36]). For a given upward union
of classes, Cl≥t , the decision rules included under the hypothesis that all objects
belonging to P(Cl≥t ) are positive and the others are negative. There are two types of
decision rules as follows:

(1) D≥ decision rules (“at least” decision rules):
If f (x,a1)≥ ra1 and f (x,a2)≥ ra2 and . . . f (x,ap)≥ rap , then x ∈Cl≥t .

(2) D≤ decision rules (“at most” decision rules):
If f (x,a1)≤ ra1 and f (x,a2)≤ ra2 and . . . f (x,ap)≤ rap , then x ∈Cl≤t .

12.3.4 Decision Rules Based on Flow Network Graph

Under the assumption of decision rules of customer adoption intention characteris-
tics, this research finds a path-dependent figure that depends on the rule and initial
characteristics of adoption intention potential. The basis of the flow network graph
can be traced back to Ford and Fulkerson (1962) [17]. According to the flow network
graph and Bayes’s theorem (Pawlak, 2002 [37]), the model was used to capture and
describe the nature of decision processes within flow network graphs rather than as
a description of flow optimization. The relationship between flow network graphs
and decision algorithms is presented as follows (Pawlak, 2004 [38], 2005 [39]; Ou
Yang et al., 2011 [34]; Wang et al., 2010 [51]; Lin et al., 2011 [29]).

More precisely, a flow graph is a directed acyclic finite graph G = (V,β ,h),
where V is a set of nodes, β ⊆ V ×V is a set of directed branches, h : β → R+

is a flow function and R+ is the set of non-negative real numbers. The through-
flow of a branch (x,y) ∈ β and can be defined as r(x,y). The input of a node x ∈ V
is the set I(x) = {y ∈ V |(y,x) ∈ β}, and the output of a node x ∈ V is defined as
O(x) = {y ∈V |(x,y) ∈ β}. Based on these concepts, the input and output of a graph
G are defined as I(G) = {x∈V |I(x) =∅} and O(G) = {x∈V |O(x) =∅}. For every
node x in flow graph, inflow is defined as h+(x) = ∑y∈I(x) h(y,x), and outflow is de-
fined as h−(x) = ∑y∈O(x) h(x,y). Analogously, the inflow and outflow of the whole
flow graph can be defined as h+(G) = ∑x∈I(G) h−(x) and h−(G) = ∑x∈O(G) h+(x),
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respectively. This research assumes that “flow graph conservation” holds, i.e.,
h+(x) = h−(x) = h(x) for any node in a flow graph G.

To measure the strength of every branch (x,y) in a flow graph G = (V,β ,h), this
research defines the strength ρ(x,y) = h(x,y)/r(G). Obviously, 0 ≤ ρ(x,y) ≤ 1.
The strength of the branch simply expresses the amount of total flow through
the branch. Every branch (x,y) of a flow graph G associates with certainty and
coverage coefficients. The certainty and coverage of every branch are defined
by cer(x,y) = ρ(x,y)/ρ(x) and the cov(x,y) = ρ(x,y)/ρ(y), respectively, where
ρ(x,y) = h(x,y)/h(G), ρ(x) = h(x)/h(G) and ρ(y) = h(y)/h(G) are normalized
through-flow and ρ(x) �= 0, ρ(y) �= 0, and 0 ≤ ρ(x,y) ≤ 1. The meaning of cer-
tainty coefficient expresses outflow distribution between outputs of a node, whereas
the coverage coefficient exhibits the distribution of inflow between inputs of the
node. The above coefficients simply explain properties of flow distribution among
branches in the whole flow network graph. Hence, in this research, combining the
DRSA with a flow network graph also applied influence diagrams to help decision-
makers and managers by presenting a set of adoption intention decision rules to eas-
ily describe appropriate decisions. The influence diagram connects as many rules as
possible from the contextual aspects of the data; hence, the relationship between the
DRSA and influence diagram is complementary.

12.4 An Empirical Example of Micro-blog

Micro-blogging appeals to a wide range of individuals for various purposes, such as
posting personal anecdotes, sharing new information, finding new friends and con-
necting acquaintances. A recommendation source that matches consumer-specified
criteria to the product assortment can help consumers reduce perceived risks and
save time when considering a wide variety of alternative products. In this section,
we design and develop a flow network dependent by combining DRSA and flow
network graph decision rules for adopting micro-blog, such as Facebook, etc. In
this section, we use the JAMM software [47] to generate decision rules. The results
are used to understand the influence of recommendation sources on the intention
to adopt Facebook. The proposed approach was successfully employed in the aca-
demic empirical study.

12.4.1 Selection Variables and Data

In this study, a total of 1,108 undergraduate students from a university in Northern
Taiwan participated in the survey by completing a questionnaire containing study
measures of their intentions to adopt micro-blogs. Student subjects were selected
for this study because the focus of the survey, social networks (and in this case,
Facebook), is relevant for university students. Within the sample population, 585
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(52.8%) were female and 523 (47.2%) were male. More than 83.1% of participants
spent more than an average of three hours on the Internet per day. Only a few par-
ticipants (3.7%) had no micro-blog experience, while 62% of participants had used
micro-blogs, such as Facebook, more than 10 times in the last month. Finally, most
of the participants (90.3%) stated that they were familiar with the term “Facebook”
prior to taking the survey.

Previous studies pertaining to the feeling and the efficacy of communicating
on the Internet have confirmed the effect of gender differences on Internet usage
(Akhter, 2003 [3]; Janda, 2008 [26]). In addition, daily Internet usage (i.e., the av-
erage number of hours a person is on the Internet in a 24-hour period) (Hoadley et
al., 2010 [25]) and past use experience (i.e., past micro-blog use) (Sung et al., 2005
[50]) can also reflect the composition of the users. Therefore, this study also in-
cluded three personal attributes of participants (gender, daily Internet usage, and
past use experience) and the attributes of the recommendation sources (WOM,
advertising, and experts). In addition, one decision attribute, the adoption inten-
tion, was included to pre-process the data to construct the information table, which
represents knowledge in a DRSA model.

The attributes of recommendation sources were measured in three dimensions:
WOM (friend or classmate reviews, e.g., “Your friend/classmate talked to you about
the advantage of a micro-blog, such as Facebook”), advertising (e.g., “The platform
providers presented advertisements on the web page to attract users”), and expert
recommendations (professional comments, e.g., “A relevant professional introduced
the benefits of micro-blogs in a magazine”). The respondents were asked to choose
the recommendation source they would normally consult and to indicate the extent
to which they perceived the influence of the recommendation on a 5-point Likert-
type scale, with anchors ranging from not very important (1 score) to very important
(5 score). Furthermore, the participants were asked to evaluate their micro-blog us-
age intentions using multi-item scales adapted from Ajzen (1988) [1], measured on
a 5-point Likert-type scale from strongly disagree (1 score) to strongly agree (5
score). The domain values of these personal attributes and recommendation sources
are shown in Table 12.1.

12.4.2 Rules for the Intention to Adopt Micro-blog

In this study, we used the jMAF software (Słowiński, 2006 [47]) to generate decision
rules1. The decision rules extraction procedures of the DRSA enable the generation
of a large number of rules related to intentions to adopt micro-blogs. The first results
obtained from the DRSA analysis of the coded information table approximated the
decision classes and the quality of their classifications. These results revealed that
the data were very well categorized and appropriate for understanding how per-
sonal and recommendation source attributes would influence micro-blog adoption

1 Editor comment: See also Chapter 5 on jMAF software in the first volume of this book.
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Table 12.1 Attribute specification for adoption intention of micro-blog analysis

Attribute Name Attribute Values Preference
Condition attributes
Gender (a1) 1: Female; 2: Male Non-ordered
Daily internet 1: <2 ; 2: 2-4; 3: >5 Non-ordered
hour usage (a2)
Past Facebook 1: Yes; 2: No Non-ordered
experience (a3)
Word-of-mouth 1: Not very important; 2: Not important; Ordered
recommendations
(a4)

3: Neutral; 4: Important; 5: Very important

Advertising 1: Not very important; 2: Not important; Ordered
recommendations
(a5)

3: Neutral; 4: Important; 5: Very important

Expert 1: Not very important; 2: Not important; Ordered
recommendations
(a6)

3: Neutral; 4: Important; 5: Very important

Decision attributes
Adoption 1: Strong disagree; 2: Disagree; 3: Neutral; Ordered
intention (d1) 4: Agree; 5: Strong agree

intentions. The results of the accuracy and quality of approximation for the four de-
cision classes are shown in Table 12.2. We classified our samples into four classes:
“at most 3” (corresponds to having no intention to adopt a micro-blog), “at most
4” (corresponds to having no or weak intention to adopt a micro-blog), “at least 4”
(corresponds to having weak or more intention to adopt a micro-blog) and “at least
5” (corresponds to having strong intention to adopt a micro-blog). The accuracy of
the classification of the four decision classes is 0.94, 0.98, 0.99, and 0.96 respec-
tively, so most samples of the data were correctly classified. The overall quality of
approximation is 0.97. In this manner, the results represent that the six condition
attributes play an important role in determining intentions to adopt a micro-blog.

In this study, the “minimum cover rules” approach, involving a set that does not
contain redundant rules, generated rules. Through the DRSA analysis, a total of
37 rules were obtained from the coded informational table. To interpret the rules,
this study set up a threshold value of 100 for each decision class; thus, the reduced
rule set only considered 8 rules, as illustrated in Table 12.3. These rules have been
selected with attention to categorization in terms of correctly classified objects and
in terms of recommendation sources and their intention understanding.

The antecedents of the “at least 5” and “at least 4” classes of rules explain
which attributes micro-blog-related organizations need to attract, and the “at most
3” and “at most 4” classes of rules tell micro-blog-related organizations what
attributes they should avoid. Therefore, as Table 12.3 shows, some variables
have a higher degree of dependence and may impact user intentions to adopt a
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Table 12.2 Accuracy of classification and quality of classification

Behavioral Numbers Lower Upper Accuracy Quality
intentions of objects approximation approximation of classification of classification

d1 - - - - 0.97
at most 3 282 273 291 0.94 -
(d1 ≤ 3)
at most 4 566 559 573 0.98 -
(d1 ≤ 4)
at least 4 826 820 826 0.99 -
(d1 ≥ 4)
at least 5 542 531 553 0.96 -
(d1 ≥ 5)

Table 12.3 Rules on the intention to adopt a micro-blog

Rules Decision Support Certainty Strength Coverage
The user intends to adopt a micro-blog (d1 ≥ 5) or (d1 ≥ 4)
1 (a4 ≥ 5) & (a6 ≥ 5) d1 ≥ 5 430 1 0.39 0.79
2 (a3 ≥ 3) & (a4 ≥ 5) d1 ≥ 5 332 1 0.30 0.61
3 (a3 = 1) & (a4 ≥ 4) d1 ≥ 4 174 1 0.16 0.61
4 (a1 = 1) & (a4 ≥ 4)& (a6 ≥ 4) d1 ≥ 4 147 1 0.13 0.52
5 (a1 = 2) & (a5 ≥ 4) d1 ≥ 4 129 1 0.12 0.45
The user has no or weak intention to adopt a micro-blog ((d1 ≤ 3) or d1 ≤ 3)
6 (a4 ≤ 3) d1 ≤ 4 416 1 0.38 0.73
7 (a2 = 2) & (a5 ≤ 3) d1 ≤ 3 174 1 0.16 0.62
8 (a2 ≤ 2) & (a5 ≤ 3) & (a6 ≤ 3) d1 ≤ 3 163 1 0.15 0.58

a1 = 1 means female; a1 = 2 means male; a2 ≤ 2 means that daily Internet per hour usage is
less than two hours; a2 ≥ 3 means that daily Internet per hour usage is more than five hours;
a3 = 1 means that respondent has past Facebook experience; a4 ≥ 5 means that WOM recom-
mendation sources are very important; a4 ≥ 4 means that WOM recommendation sources are
important or very important; a4 ≤ 3 means that WOM recommendation sources are neutral or
less; a5 ≥ 4 means that advertising recommendation sources are important or very important;
a5 ≤ 3 means that advertising recommendation sources are neutral or less; a6 ≥ 4 means that
expert recommendation sources are very important; a6 ≤ 3 means that expert recommenda-
tion sources are neutral or less; d1 ≥ 4 means having weak or strong intentions to adopt a
micro-blog; d1 ≤ 3 means having no intentions to adopt a micro-blog.

micro-blog more than others. Given these classes of rules, micro-blog-related or-
ganizations could formulate marketing strategies based on “at least 5” and “at least
4” classes (Rules 1 to 5). If micro-blog-related organizations want to achieve an
overall rating of 4 or better, they must achieve a rating of 4 or better from recommen-
dation sources. In addition, the support of a rule corresponds to the number of sur-
veyed students supporting that rule. Because Rule 1 has higher support than Rule 2,
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micro-blog-related organizations should work to satisfy the conditions in Rule 1 first
before working on Rule 2.

12.4.3 The Flow Network Graph

The rules in Table 12.3 can be translated into one decision algorithm represented
by the decision flow network graph shown in Figures 12.1 and 12.2. To simplify
the flow network graph, not only normalized supports are shown in the figure, and
certainty, strength and coverage are omitted. The flow network graphs represent de-
cision algorithms, and each branch describes a decision rule. Flow network graphs
also can represent the causal-and-effect relationships among the recommendation
sources and personal variables of the intention to adopt a micro-blog. Thus, this
study used the DRSA decision rule sets in the algorithms for diagnosing and extract-
ing recommendation source decisions to increase the diagnostic performance and
provide useful information for such algorithms. The analyses also provide the pos-
sible path and useful information regarding the effect of recommendation sources
on the degree of dependencies. Therefore, these flow networks and decision algo-
rithms are valuable for identifying whether there are possible paths and practices
that ensure an appropriate set of decision rules for recommendation sources.
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Fig. 12.1 Decision flow graph and rule-set of d1 ≥ 5 and d1 ≥ 4

a1 = 1 means female; a1 = 2 means male; a2 ≥ 3 means that daily Internet per hour us-
age is more than five hours; a3 = 1 means that respondent has past Facebook experience;
a4 ≥ 5 means that WOM recommendation sources are very important; a4 ≥ 4 means that
WOM recommendation sources are important or very important; a5 ≥ 4 means that adver-
tising recommendation sources are important or very important; a6 ≥ 4 means that expert
recommendation sources are very important; d1 ≥ 4 means having weak or strong intentions
to adopt a micro-blog.
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Fig. 12.2 Decision flow graph and rule-set of d1 ≥ 4 and d1 ≥ 3

a1 = 2 means male; a2 ≤ 2 means that daily Internet per hour usage is more than two hours;
a3 = 1 means that respondent has past use Facebook experience; a4 ≤ 3 means that WOM
recommendation sources are neutral or less; a5 ≤ 3 means that advertising recommendation
sources are neutral or less; a6 ≤ 3 means that expert recommendation sources re neutral or
less; d1 ≤ 4 means having no or weak intentions to adopt a micro-blog; d1 ≤ 3 means having
no intentions to adopt a micro-blog.

12.4.4 Discussions and Managerial Implications of Research
Findings

This investigation examined how personal variables and recommendation sources
influence user intentions to adopt a micro-blog. The “at least 5” and “at least 4”
classes correspond to user behavioral intentions for e-books in academic libraries,
and the antecedents to these classes of rules tell academic libraries what they should
consider. The analytical results show that users who trust recommendation sources
that vouch for micro-blogs are more likely to adopt micro-blogs and that WOM rec-
ommendation sources and expert recommendation sources play a more important
role than advertising recommendation sources in determining the perception and in-
tentions regarding the adoption of micro-blogs from Rule 1. This result agrees with
Gilly et al. (1998), who indicated that the reliability of the level of expert opin-
ions was lower than that of WOM recommendation sources in the decision-making
process. In addition, previous studies pertaining to the feeling and the efficacy of
communication on the Internet have confirmed the effect of gender differences on
Internet usage. Rule 2 indicates that users who conduct more daily Internet usage
rely on recommendation sources to adopt micro-blogs, especially from WOM rec-
ommendation sources and advertising recommendation sources. In addition, users
who conduct more daily Internet usage rely on recommendation sources to adopt
micro-blogs, especially from WOM recommendation sources from Rule 3. Finally,
this study, from Rule 4 and Rule 5, also finds that females who trust WOM recom-
mendation sources and expert recommendation sources and males who trust expert
recommendation sources are more likely to adopt micro-blogs if those recommen-
dation sources give positive feedback.
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The “at most 3” and “at most 4” classes correspond to users who have no or little
intention to adopt a micro-blog. The analytical results (Rule 6 to Rule 8) showed
that the adoption intentions of users who have no confidence in recommendation
sources would decrease, especially with respect to WOM recommendation sources,
as would those users who have fewer hours of daily Internet use. Furthermore, males
who don’t trust advertising recommendation sources are more likely to decrease the
intention to adopt a micro-blog.

The results of this study have implications for industry decision-makers. As men-
tioned previously, users can obtain effective recommendation sources from different
sources. One implication is that the market may use strategies that combine WOM
recommendation sources and expert recommendation sources to promote micro-
blog usage. Platform providers can design recommendation activities to reward
users who recommend e-books to others. In addition, platform providers should
create an exclusive discussion forum to allow greater exposure to information. Such
an approach will increase the desire to adopt micro-blogs and navigate topics users
wish to investigate more easily. In addition, platform providers can use other fa-
mous platforms to allow other micro-blog information exposure, especially consid-
ering the ideas and suggestions of experts, which are useful in influencing usage
intentions and stimulating potential users.

Another implication is that different types of recommendations attract different
types of users. There are differences in how recommendation sources impact the
two genders, so platform providers can apply different recommendation strategies,
such as targeting mass media (e.g., a news report) to male users and alternative
media (e.g., a discussion forum) to female users. Combining the DRSA with flow
network graph-applied influence diagrams will help decision makers and managers
by establishing a set of adoption intention decision rules that describe appropriate
decision paths and directions, which is a significant contribution.

12.5 Conclusions and Remarks

Past research has not widely combined DRSA and a flow network graph to pre-
dict the intention to use micro-blogs. Thus, this research presents a new approach
to identifying micro-blog decision rules that infer the antecedents of the intention
to adopt micro-blogs under the influence of different recommendation sources. The
advantages of combining the DRSA with flow network graphs for recommendation
sources are summarized by two points. The first point is that the platform provider
can discover hidden information regarding recommendation sources and predict and
act on the new information arising from the scale information. The second point is
that such a model will be welcomed for its ability to capture the effect of recom-
mendation sources on behavioral intentions and the ability to turn that information
into useful marketing strategies, eventually improving user adoption intentions for
micro-blogs.
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To sum up, this study draws several implications. Firstly, a better understand-
ing of the relationship between recommendation sources and intentions to adopt-
ing micro-blogs may further develop marketing strategies. For instance, paltform
providers should strengthen micro-blog advantages to receive positive recommen-
dations if users follow all of the recommendations of a source. Understanding the
characteristics of users is also important. Collecting and analyzing the background
information of users, such as gender or daily Internet usage, can provide abundant
information that decision-makers can use to characterize customers for strategic
planning and decision-making purposes, thus increasing usage of certain products.
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Chapter 13
Providing Feedback in Ukrainian Sign
Language Tutoring Software

M.V. Davydov, I.V. Nikolski, V.V. Pasichnyk, O.V. Hodych, and Y.M. Shcherbyna

Abstract. This chapter focuses on video recognition methods implemented as
part of the Ukrainian Sign Language Tutoring Software. At the present time the
sign language training software can easily verify how users understand signs and
sentences. However, currently there is no good solution to the problem of
verifying how the person reproduces signs due to a large variety of training con-
ditions and human specifics. The new approach to user interaction with the Sign
Tutoring Software is proposed as well as new algorithms implementing it. The use
of body posture recognition methods allows interaction with users during learn-
ing of signs and the verification process. The software provides a feedback to the
user by capturing person’s gestures via a web camera improving the success of
training. A single web camera is used without utilising depth sensors. The pro-
cess of human posture reconstruction from a web camera in real-time involves
background modelling, image segmentation and machine learning methods. The
success rate of 91.7% has been achieved for sign recognition on the test set of
85 signs.
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13.1 Introduction

Sign languages are based on hand signs, lip patterns and body language instead
of sounds to convey meaning. The development of sign languages is generally as-
sociated with deaf communities, which may include hearing or speech impaired
individuals, their families and interpreters. The only currently viable ways to en-
able interactive communication between hearing impaired and not impaired people
is to use services provided by interpreters (specially trained individuals or software
applications), or to learn a sign language.

A manual communication has developed in situations where speech is not practi-
cal. For instance, scuba diving or loud work places such as stock exchange. In such
cases learning a sign language is the most effective solution.

Teaching a sign language is a challenging problem, which often requires a pro-
fessional tutor, presence of students in a class room and many hours of practice.
There is a number of commercial software packages and research projects directed
at developing software applications for sign language interpretation. The majority
of such software is directed at interpreting a spoken to sign language, which covers
all major cases where interpretation is required for deaf people (e.g. conventions,
television). For example, researchers at IBM have developed a prototype system,
called SiSi (say it, sign it), which offers some novel approaches by utilising avatars
to communicate speech into sign language [41]. Some other applications, such as
iCommunicator [42], are based on a database of sign language videos and provide
means to adaptively adjust to user’s speech. The are several online sign language tu-
toring software packages such as Handspeek ASL Dictionary 1 that can demonstrate
signs, but cannot provide any feedback to the user. Some systems that provide feed-
back [2] require wearing coloured gloves for better hand shape processing. Other
approaches to capture data for sign language feedback include the use of Kinect
hardware or 3DV Systems ZCam [5].

The problem of tracking head and hands in sign language recognition was studied
by Jörg Zieren and Karl-Friedrich Kraiss [39]. The tracking makes the use of sev-
eral methods of ambiguity prevention such as Bayesian trust network, expectation
maximisation algorithm, CAMSHIFT algorithm [4]. This approach allows tracking
of hands in motion even if they overlap the face. For the dictionary of 152 signs for
one user 2.4% of Word Error Rate (WER) was obtained.

The accuracy of face localisation in case of face/hand overlapping was improved
in the research by Suat Akyol and Jörg Zieren [1]. In this study the Active Shape
Model was applied in order to locate the face. The research conducted by Jörg Zieren
and others [40] resulted in 0.7% of WER for the test based on 232 gestures of the
same person segmented manually in ideal conditions. WER of 55.9% was achieved
for the user who did not participate in the system training based on gestures by six
speakers under controlled light conditions.

1 www.handspeak.com
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In the study by Morteza Zahedi [38] for the video camera-based sign recogni-
tion utilised the hidden Markov model and two image comparison methods (the
comparison method with deformations and the tangent distance method). Based on
BOSTON50 signs the 17.2% of WER was reached. This method was improved
by Philippe Dreuw and others [14] by introducing the trigram-based linguistic
model, motion path determination of the main hand movement and the reduction
in the number of characteristics using the principle component analysis method.
The 17.9% of WER was reached for the RWTH-Boston-104 signs. The applica-
tion of the special algorithm of hand shape tracking [15], the model for image cre-
ation and the sentence model for the sign recognition in the study [16] resulted in
11.24% of WER for the RWTH-Boston-104 signs. This has been the best result
so far.

In the research conducted by authors [10], [11], [12], [9], [13] achieved 91.7%
sign recognition rate on the test set of 85 signs.

This chapter provides a review of the developed by authors methodology for
sign language recognition with an emphasis on video recognition methods used for
developing the Ukrainian Sign Language Tutoring Software. In relation to our pre-
vious publications, this is the first time where the problem of providing feedback as
part of the developed software is presented.

13.2 Problem Formulation

We are working on a generic solution, which could be available to every Ukrainian
School for hear-impaired students. The requirement for such solution is to be in-
expensive. Thus, it has been decided to utilise a commodity hardware — PC and
a web-camera as a video input device. One of the main goals formulated for the
software it to enable a tutor-like experience, where students would be provided with
a feedback about the correctness of the sign they’re trying to reproduce. In order to
reflect this the term tutoring software (or simply tutor) is used instead of training
software.

The developed sign language tutoring software incorporates solutions to the fol-
lowing problems:

• system setup in a new environment;
• tracking position for left and right hands;
• hand shape matching;
• providing feedback during tutoring.

The Ukrainian Sign Language Video Dictionary, which was originally developed by
Ivanusheva and Zueva, has been used to collect the necessary data. This dictionary
consists of three continuous DVD video files, which have indexed in order to extract
separate signs and phrases. For the purpose of providing feedback, the tutoring soft-
ware needs to know the shape and the location of hands and the face in the video
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tutorials. Although, it is possible to pre-process the video data, the developed soft-
ware processes video streams from both the video tutorial being played back and
the web-camera capturing the student simultaneously in real-time during the tutor-
ing process. This approach provides an easy way to extend the database of videos
featuring additional signs without the need for special preparation.

The following sections provide more details on how each of the specified above
problems are addressed in the developed tutoring software.

13.3 System Setup in the New Environment

The initial stage of using the developed tutoring software requires tuning of the sys-
tem parameters to the conditions of the new environment. The feedforward neural
network classifier and Inverse Phong Lighting Model [36] are utilised to identify the
face and hands from the video. Both classifiers require a training set for adjustment
to the new environment.

The problem of hand classifier setup can be solved in different ways. One of
the commonly used approaches requires user to put the hand in a particular place
of the web-camera frame. The approached utilised in this research requires a user
to move the hand in front of and in close proximity to the web-camera in order to
make it the largest object captured by the camera. During this process a method
based on the Self-Organising Map (SOM) is applied to separate the hand from the
background [24, 25].

13.3.1 SOM-Based Image Segmentation

It is well known that SOM operates based on the principles of the brain. One of
the key SOM features is the preservation of the topological order of the input space
during the learning process. Some relatively recent research of the human brain has
revealed that the response signals are obtained in the same topological order on the
cortex in which they were received at the sensory organs [32]. One of such sensory
organs are eyes, thus making the choice of SOM for analysing the visual information
one of the most natural.

Colour is the brain’s reaction to specific visual stimulus. Therefore, in order to
train SOM for it to reflect the topological order of the image perceived by a human
eye, it is necessary to choose the colour space, which closely models the way sen-
sors obtain the visual information. The eye’s retina samples colours using only three
broad bands, which roughly correspond to red, green and blue light [17]. These sig-
nals are combined by the brain providing several different colour sensations, which
are defined by the CIE (Commission Internationale de l’Eclairage (French), Interna-
tional Commission on Illumination) [28]: Brightness, Hue and Colourfulness. The
CIE commission defined a system, which classifies colour according to the human
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visual system, forming the tri-chromatic theory describing the way red, green and
blue lights can match any visible colour based on the eye’s use of three colour
sensors.

The colour space is the method, which defines how colour can be specified, cre-
ated and visualised. As can be deduced from the above, most colour spaces are
three-dimensional. There are more than one colour space, some of which are more
suitable for certain applications than others. Some colour spaces are perceptually
linear, which means that an n-unit change in stimulus results in the same change in
perception no matter where in the space this change is applied [17]. The feature of
linear perception allows the colour space to closely model the human visual system.
Unfortunately, the most popular colour spaces currently used in image formats are
perceptually non-linear. For example, BMP and PNG utilise RGB2 colour space,
JPEG utilises YCbCr, which is a transformation from RGB, HSL3 is another popu-
lar space, which is also based on RGB.

The CIE based colour spaces, such as CIELuv and CIELab, are nearly percep-
tually linear [17], and thus are more suitable for the use with SOM. The CIEXYZ
space devises a device-independent colour space, where each visible colour has non-
negative coordinates X, Y and Z [27]. The CIELab is a nonlinear transformation of
XYZ onto coordinates L∗,a∗,b∗ [27].

The image format used in our research is uncompressed 24-bit BMP (8 bit
per channel), which utilises the RGB colour space. In order to convert vectors
(r,g,b) ∈ RGB into (L∗,a∗,b∗) ∈CIELab it is necessary to follow an intermediate
transformation via the CIE XYZ colour space. These transformations are described
in details in [26] and [27]. Application of the two-step transformation to each pixel
of the original image in RGB space produces a transformed image in CIELab space
used for further processing.

It is important to note that when using SOM it is common to utilise Euclidean
metric for calculation of distances during the learning process [32]4. Conveniently,
in CIELab space the colour difference is defined as Euclidean distance [27].

Instead of using every image pixel for the SOM training process, the follow-
ing approach was employed to reduce the number of data samples in the training
dataset.

The basic idea is to split an image into equal segments n×n pixels. Then for each
such segment find two the most diverged pixels and add them to the training dataset.
Finding the two most diverged pixels is done in terms of the distance applicable to
the colour space used for image representation. Due to the fact that each pixel is a
three dimensional vector, each segment is a matrix of vector values. For example,
below is an image A of 4× 4 pixels in size represented in the CIELab space, and
split into four segments 2× 2 pixels each.

2 Uncompressed BMP files, and many other bitmap file formats, utilise a colour depth of 1,
4, 8, 16, 24, or 32 bits for storing image pixels.

3 Alternative names include HSI, HSV, HCI, HVC, TSD etc. [17]
4 The selection of the distance formula depends on the properties of the input space, and the

use of Euclidean metric is not mandatory.



246 M.V. Davydov et al.

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(L1
1,a

1
1,b

1
1)

T (L1
2,a

1
2,b

1
2)

T (L1
3,a

1
3,b

1
3)

T (L1
4,a

1
4,b

1
4)

T

(L2
1,a

2
1,b

2
1)

T (L2
2,a

2
2,b

2
2)

T (L2
3,a

2
3,b

2
3)

T (L2
4,a

2
4,b

2
4)

T

(L3
1,a

3
1,b

3
1)

T (L3
2,a

3
2,b

3
2)

T (L3
3,a

3
3,b

3
3)

T (L3
4,a

3
4,b

3
4)

T

(L4
1,a

4
1,b

4
1)

T (L4
2,a

4
2,b

4
2)

T (L4
3,a

4
3,b

4
3)

T (L4
4,a

4
4,b

4
4)

T

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Thus, the first segment is:
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The above approach can be summarised as the following algorithm. Let n denote the
size of segments used for image splitting, the value of which is assigned based on
the image size. T — the training set, which is populated with data by the algorithm.
Let’s also denote jth pixel in segment Si as Si( j). Further in the text both terms pixel
and vector are used interchangeably.

Algorithm 13.1. Training dataset composition
Initialisation. Split image into segments of n× n pixels; N > 0 – number of
segments; T ←∅; i ← 1.

1. Find two the most diverged pixels p′ ∈ Si and p′′ ∈ Si using Euclidean distance.

1.1 max ←−∞, j ← 1
1.2 k ← j+ 1
1.3 Calculate distance between pixels Si( j) and Si(k): dist ←‖Si( j)− Si(k)‖
1.4 If dist > max then p′ ← Si( j), p′′ ← Si(k) and max ← dist
1.5 If k < n× n then k ← k+ 1 and return to step 1.3
1.6 If j < n× n− 1 then j ← j+ 1 and return to step 1.2

2. Add p′ ∈ Si and p′′ ∈ Si to the training set: T ← T ∪{p′, p′′}
3. Move to the next segment i ← i+ 1. If i ≤ N then return to step 1, otherwise

stop.

The above algorithm provides a way to reduce the training dataset. It is impor-
tant to note that an excessive reduction could cause omission of significant pixels
resulting in poor training. At this stage it is difficult to state what rule can be used
to deduce the optimal segment size. The segmentation used for the presented re-
sults was obtained though experimentation. However, even applying segmentation
2×2 pixels to an image of 800×600 pixels in size reduces the training dataset from
460000 down to 240000 elements, which in turn enables the use of a smaller lattice
and reduces the processing time required for SOM training.
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There are several aspects to a successful application of SOM, among which are:

• Self-organisation process, which encompasses a problem of selecting a learning
rate and a neighbourhood function.

• The size and structure of the SOM lattice.

In this research the guidelines from [32] and [22] were followed to conduct the
self-organisation process. The structure of the SOM lattice may differ in its dimen-
sionality and neighbourhood relation between elements. The use of 2-dimensional
lattice with hexagonal neighbourhood relation proved to be the most efficient in our
research producing more adequate clustering results comparing to other evaluated
configurations.

Once the SOM structure and parameters for self-organisation process are se-
lected, the SOM is trained on the training set T , which is composed for the image
to be clustered. The trained SOM is then used for the actual image clustering.

The topology preservation SOM feature is fundamental to the developed image
segmentation approach. Its basic underlying principles are:

• Image pixels represented by topologically close SOM elements should belong
to the same cluster and therefore segment.

• The colour or marker used for segment representation is irrelevant as long as
each segment is associated with a different one.

These two principles suggest that the position of SOM elements in the lattice (i.e.
coordinates on the 2D plane) can be used for assigning a marker to a segment repre-
sented by any particular element instead of the elements’ weight vectors. This way
weight vectors are used purely as references from 2D lattice space into 3D colour
space, and locations of SOM elements represent the image colour distribution. As
the result of a series of conducted experiments the following formulae for calculat-
ing an RGB colour marker for each element have produced good results.

R j ← x j + y j ×λ ;G j ← x j + y j ×λ ;B j ← x j + y j ×λ ; (13.1)

Values x j and y j in formula (13.1) are the coordinates of SOM elements in the lattice
j = 1,M, where M is the total number of elements. Constant λ should be greater or
equal to the diagonal of the SOM lattice. For example, if SOM lattice has a rect-
angular shape of 16× 16 elements then λ could be set to 16. Applying the same
formula for R, G, and B components produces a set of grayscale colours. How-
ever, each element has its own colour, and one of the important tasks is grouping
of elements based on the assigned colours into larger segments. There are several
approaches, which are being currently developed to provide automatic grouping of
SOM elements into clusters and have shown good results [23, 25]. One of the pos-
sible approaches is to apply a threshold to the segmented with SOM image, which
requires human interaction in specifying the threshold value. This image segmenta-
tion approach can be summarised as the following algorithm.

The following figures depict the original and segmented images corresponding
to several frames of the same video, which have been processed using the same
trained SOM. The recorded video captured an open palm closing and opening again
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Algorithm 13.2. Image segmentation

Initialisation. p j = (R j,G j,B j) – pixel j; j = 1,K; K > 0 – total number of
pixels; j ← 1; i∗(p j) = (Ri∗ ,Gi∗ ,Bi∗) – a weight vector of the best matching
unit (BMU – winning element) for input vector p j; (xi∗ ,yi∗) – coordinates of
element i∗; choose appropriate values for λ .

1. Find BMU(p j) for vector p j in the trained SOM utilising the distance used for
training (Euclidean for CIELab).

2. Calculate marker for pixel p j: R j ← xi∗ + yi∗ ×λ , G j ← R j, B j ← R j.
3. Move to the next image pixel: j ← j+ 1;
4. If j ≤ K return to step 1, otherwise stop.

during a period of several seconds. The recording was done using an ordinary PC
web camera capable of 30FPS throughput with a frame size of 800×600 pixels. The
background of the captured scene is non-uniform, which increases the complexity
of image segmentation.

Figure 13.1 depicts a fully open palm (frame 25), contracted fingers (frame 35)
and a fully closed palm (frame 40).

The important aspect of the presented results is the use of SOM trained only
on a single frame. This initial frame as well as all subsequent ones have been suc-
cessfully segmented with clear separation of the human palm from the nonuniform
background. The use of only one frame for SOM training allows much faster dy-
namic image segmentation needed for video, avoiding SOM retraining for every
frame.

The trends of the past decade in architecture of the central processing unit show
a clear direction towards multi-core processors with the number of cores increasing
every eighteen months according to the Moore’s law. The shift from fast single-
core to slower multi-core CPUs poses a question of scalability for a vast class of
computational algorithms including algorithm for image processing.

The developed sing tutoring sofrware provides effective utilisation of multi-core
processors, which includes parallelisation of SOM training based on methods for
SOM decomposition published in [18, 19, 33, 34]. The flowchart diagram depicted
on Fig. 13.2 outlines the SOM training algorithm for multi-core processors, which
is incorporated into the tutoring software.

More details on the computational aspects of the developed software is provided
in our monograph [25], which also includes the caching algorithm used to speedup
segmentation of frames in the video stream eliminating the need to search for BMU
for each input pixel.

Once the regions containing hands are identified, the feedforward neural net-
work classifier or Inverse Phong Lighting model classifier is used to segment skin
coloured areas in real-time.
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(a) Original frame 25 (b) Segmented frame 25

(c) Original frame 35 (d) Segmented frame 35

(e) Original frame 40 (f) Segmented frame 40

Fig. 13.1 Frames 25, 35 and 40

13.3.2 Feedforward Neural Network Classifier

In order to segment skin sections the neural network classifier has been applied to
the surrounding area of each pixel in the image matrix M =

{
mi j
}

, i = 1,2, . . . ,w,
j = 1,2, . . . ,h, where w and h are image width and height respectively.

The significant features of the area are selected from the cross-shaped or square
surrounding areas (Fig. 13.3). The best result was achieved when pixel are repre-
sented in the YCbCr colour space.

The feature extraction can be achieved by utilising rough sets for calculating
the upper and lower approximations of the surrounding areas [43]. The developed
software utilises neural network-based classifiers with one hidden layer and one or
two outputs. For the neural network with a single output the area is considered to be
of skin colour if the output value is greater than 0.5.
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Fig. 13.2 Decomposed SOM training

When the neural network with two outputs is applied the area is considered to be
of skin colour if the output value of the first neuron is greater than the output value
of the second one. The neural network classifier with two outputs proved to be
susceptible to noise. Thus, additional smoothing is required, which can be achieved
by averaging each pixel by four neighbouring pixels. The smoothing prevents faulty
reactions. The set of positive training samples is formed from the skin area and the
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Fig. 13.3 The cross-shaped (a) and square (b) surrounding area for image feature extraction.
The image pixel, the surrounding area of which is considered, is marked black. The surround-
ing area has radius r = 2.

negative training samples are formed from the image area not marked as a skin.
The complete training set consists of positive and negative training samples. The
modification of the back-propagation of error algorithm was developed for training
of the feedforward neural network-based classifier [9].

This modification includes the following:

1) training samples are divided into groups according to the value of the required
output providing the uniform selection of training samples from each group;

2) the groups for the areas with the worst results are represented by larger sets of
training samples;

3) additional random value from the interval [−ε,+ε] is added to the neural net-
work weights; the value of this parameter is decreased during the training from
the initial value ε0 to zero;

4) in case where the error cannot be reduced during three iterations of the training
algorithm the weight values of the neural network are reset to original;

5) an additional parameter has been introduced to accelerate the scale shift of the
neural network weights of the hidden network layer.

The application of the developed method reduces the training time 10x in compar-
ison to the classical back-propagation of error algorithm [9]. This result is signif-
icant for the development of interactive software and software trained during the
usage. The result of the trained neural network classifier application is depicted on
Fig. 13.4.

13.3.3 Inverse Phong Lighting Model Classifier

The skin-colour segmentation can be implemented by using the simplified Inverse
Phong lighting model. In this research only the diffuse and ambient components of
the Phong lighting model is utilised to estimate the lighting parameters.
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(a) Original image (b) Processed image

Fig. 13.4 Skin segmentation by neural network classifier
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where I = (IR, IG, IB)
T — the intensity of red, green and blue pixel components,

ka = (kaR,kaG,kaB)
T — ambient dispersion coefficients, ia = (iaR, iaG, iaB)

T — the
intensity of ambient lighting, kd = (kdR,kdG,kdB)

T — diffuse dispersion coeffi-
cients, id = (idR, idG, idB)

T — the intensity of diffusive lighting, L — the unit
vector denoting lighting direction, N — the unit vector normal to the surface,
ε = (εR,εG,εB)

T — the normally diffused error.
In order to setup the illumination model parameters the hand area is used. It is

assumed that the illumination properties are constant for the whole area of the hand.

Equation (13.2) can be rewritten as

I = ca +αcd + ε (13.3)

where ca =(kaR · iaR,kaG · iaG,kaB · iaB)
T — the permanent intensity of ambient light-

ing in the frame, α = (L ·N), α ∈ [0,1] — the coefficient determining how surface
is oriented in respect to the source of light, cd = (kdR · idR,kdG · idG,kdB · idB)

T —
the permanent intensity of the diffuse illumination in the frame, ε = (εR,εG,εB)

T

— the normally distributed error. Parameters of the illumination model ca and
cd are determined by the method of linear regression based on the training
samples.

Thus, having a training set of pixel colours Ii corresponding to the skin colour of
hand it is possible to calculate ca and cd :

I =
1
n

n

∑
i=1

Ii (13.4)
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k = norm

(
n

∑
i=1

(IiR − IR) · (Ii − I)

)

(13.5)

vmin = min
i
(Ii − I,k) (13.6)

vmax = max
i

(Ii − I,k) (13.7)

ca = I+ vmin · k (13.8)

cd = (vmax − vmin) · k (13.9)

The pixel of image with intensity of colour I is classified as similar to the colour of
skin if there is a value α ∈ [0,1] such that

|I − ca −α · cd| ≤ θ (13.10)

where θ is the threshold value.

Once lighting model is determined it is used to calculate the truth level tp of pixel
coloured P = (pr, pg, pb)

T .

tp = max

(

0,
1
θ
· (θ −|P− cd ·max(0,min(1,(P− ca,cd)))|)

)

(13.11)

For each pixel the degree of truth is calculated utilising formula (13.11) in order to
classify the pixel as skin coloured. Formula (13.11) calculates how far is the pixel
from the skin diffuse illumination model. The result of this calculation is a grayscale
image where lighter pixels represent hand or face segments.

Fig. 13.5 depicts the result of skin segmentation with the simplified Phong illu-
mination model. As can be observed the result achieved for depicted example from
the sign dictionary with the illumination model is slightly better for elimination of
the hair colour.

13.4 Hands and Face Extraction

The next step is to find centroids of left and right hand. The K-means clustering and
connected points labelling algorithm are used for this purpose.

There are several cases that should be considered for the application of K-means:
only the head is in the frame, the head and one hand, the head and two well distin-
guished hands, the head and two hands located close to each other. Three clusters
are specified for the initial K-means clustering and then the result is checked as to
how well are the clusters connected with each other.

A better result is achieved when using metric space similarity joins of the skin
regions [29] by providing minimal distance d between the clusters and minimal
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(a) Original image (b) Processed image

Fig. 13.5 Skin segmentation with the simplified Phong illumination model

weight of each cluster w. The task is to divide objects into clusters, so that the
minimal distance between each cluster is more that d, and the cluster cannot be
divided into smaller clusters in order to preserve this property.

The comparison of the results produced by k-means and similarity joins
algorithms is depicted on Fig. 13.6.

(a) K-means clustered image (b) Partitioning by similarity joins

Fig. 13.6 Using k-means (a) and similarity joins (b) for locating hands and face

The K-means clustering produces more errors in comparison to the result pro-
duced by the similarity joins partitioning for the head and neck when hands are
located closer to the face.

The Haar Cascade Classifier face detector from OpenCV library was used for
the face location. The face detection classifier from OpenCV library, which is based
on the integral image classifiers, was used in the dictionary pre-processing stage to
improve the face recognition. However, two major drawbacks have been identified
for the face classifier:
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1) high computational complexity — it takes 100 ms per frame to calculate;
2) inadequate results for cases of hands intersecting the head.

It was proposed to utilise the fact that the head is a large skin-coloured cluster at the
top of an image, which is well separated from segments representing hands. This
was used to apply a fast similarity joins partitioning algorithm for identifying the
exact location of hands and face.

The example of the extracted hand area is depicted on Fig. 13.7.

Fig. 13.7 Example of automatically extracted hand shapes

13.5 Feedback During Tutoring

The results of the undertaken studies [25] lay the foundation for the developed
Ukrainian Sign Language Tutoring software. The software consists of the sign
dictionary and verification modules. The student can observe simultaneously the
sign video and his/her own feedback-image in the main window of the program
(Fig. 13.8).

The extracted hand shapes and the positions of the tutor on the video and the
student hands are used to provide feedback to the student.

As depicted on Fig. 13.8, the tutoring software consists of three windows — the
window on the left listing the words from the dictionary, the window in the middle
plays back the video with a sign corresponding to the selected in the list word, the
window on the right displays the video stream of the student as captured by a web-
camera.
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Fig. 13.8 Main window of the tutor application

The provided feedback allows the student to repeat the sign after the reference
video (middle window) at any speed and correct the way it is being reproduced by
adjusting hand positions. The flowchart of the sign tutoring algorithms is depicted
on Fig 13.9.

Fig. 13.9 Sign tutor feedback algorithm
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The sign dictionary video and the student video from the web-camera are pro-
cessed simultaneously in two different hardware threads. The hand and head posi-
tions are extracted and normalised according the frame size. The best correspon-
dence of hands and face positions is estimated and if the distance from the student
and tutor hands locations is too large then the sign video is paused. If the positions
are close then the hand shapes are compared using pseudo 2-dimensional image
deformation model (P2DIDM) [10]. In case where the student makes a mistake in
reproducing the sign, the video with the tutor is paused, and the system awaits the
student to correct the positions of the hands.

The user can playback the sign at different speeds, frame-by-frame or in a loop
mode. The provided feedback allows synchronisation of the sign performed by the
student and tutor. The interactive part of the tutoring software is intended to improve
the practice experience of speaking the sign language.

13.6 Conclusion

The developed tutoring software has been successfully trialled in several Ukrainian
schools for hearing impaired. The main advantage of the incorporated into the
software methods is their ability to adjust to different light conditions and skin
colour.

The interactive tutoring process with the help of gestures is much more interest-
ing than traditional, and provides the opportunity for students to practice gestures
on their own. This is especially important for distance learning.

The proposed algorithm is not robust enough when processing skin coloured ob-
jects. Another complex problem, which is not fully resolved with the developed
software is the recognition of hand shapes in cases where hands overlap the head.
The robustness of the software can be improved by utilising a depth camera. Cur-
rently the developed algorithms are being adjusted to make the use of additional
depth information provided by the Microsoft Kinect device.

The sign language tutoring software allows teacher to select the necessary ges-
tures for teaching quickly as well as to control gesture reproduction, which increases
the efficiency of the sign language classes in comparison to the use of video materi-
als on tapes or DVDs.

The developed software makes an effective use of the multi-core processors. The
Amdahl’s law

1

(1−P)+
P
N

, where P is the portion of the program that can be paralleled and N —

the number of hardware threads, provides a way to calculate the maximum expected
improvement to an overall system. Formula (13.12) can be used to estimate the
value of P.
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Pest =

1
SU

− 1

1
NP

− 1
, (13.12)

where SU — empirically calculated speedup coefficient for N hardware threads.
Specifically, the estimation for the developed software running on the four-core pro-
cessor provided by formulae (13.13) and (13.14).

Pest =

1
2.8

− 1

1
4
− 1

≈ 0.86 (13.13)

lim
N→∞

1

(1− 0.86)+
0.86

N

≈ 7.14 (13.14)

Fig. 13.10 depicts the charts for different values of P, where the black solid chart
corresponds to the discussed here software.

Fig. 13.10 Amdahl’s Law

The developed tutoring software is not limited to Ukrainian Sign Language and
can easily be adapted to any sign language as it only utilises recorded sign videos as
an input.
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Chapter 14
Hybrid Methods in Data Classification
and Reduction

Paweł Delimata and Zbigniew Suraj

Abstract. In this paper, summary of many experiments for various hybrid methods
will be presented. Hybrid methods combine various methodologies from Data Min-
ing such as data reduction, multiple classifiers systems, feature selection with rough
sets methods. In the paper, three algorithms will be presented which will use the
notion of surroundings and a k-NN method for data reduction. The paper also de-
scribes one multiple classifier system which uses several algorithms such as k-NN,
decomposition trees and neural network. The rest of the paper focuses on five algo-
rithms which use reducts and deterministic or inhibitory decision rules for feature
selection. All the algorithms presented in the paper were tested on well known data
sets from the UCI Repository of Machine Learning Databases. The algorithms pre-
sented in the paper have been implemented and can be tested in the DMES system.

Keywords: Data reduction, multiple classifiers, feature selection, hybrid methods.

14.1 Introduction

In many cases, for real-life data we want to have fast classifying algorithms. Fast
decision making is very important in many situations. The objective of this study
is to summarize results obtained in three aspects of data analysis: data reduction,
feature subset selection and construction of the classifier.

In the section with data reduction methods we introduce a model of data clas-
sification based on preliminary reduction of the training set of examples. Its pur-
pose is to facilitate the use of NN techniques in near real-time applications. The
extraordinary progress in the computer field has made NN techniques, once con-
sidered impractical from a computational viewpoint, feasible for consideration in
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time-constrained, real-world applications. This study accordingly addresses the is-
sue of minimising the computational resource requirements of NN techniques,
memory as well as time, through the use of preliminary reduction techniques pre-
serving the relatively high classification accuracy.

Generally, the training set reduction methods described in the paper eliminate the
examples that do not satisfy some global assumptions about data. Two of the pre-
sented reduction methods eliminate the objects that do not match their neighbors.
In the third one, the elimination of training examples is based on the relation be-
tween the examples and some prototypes representing the centers of the decision
classes. These global assumptions about data seem to be rather in opposition to the
idea of local models because the method with the local model assumes that some
training examples represent the local properties of some specific subsets of the data
set. Eliminating their elements on the basis of global criteria can lead to loss of in-
formation about these local properties. Sometimes this fact can cause the decrease
of the classification accuracy of the local model based on the method with the train-
ing set reduction. Nevertheless, the results of experiments conducted on well known
data sets found in the literature [2] with various combinations of reduction meth-
ods [16], [9] demonstrate the potential benefits of such reduction methods also for
local models. They also highlight the desirability of a more thorough exploration of
combinations of other alternative reduction methods that have been reported in the
literature over the past few decades.

The section with feature selection methods focuses on five methods. The main
one is the RBFS (Reduct Based Feature Selection) algorithm [18]. In the paper we
discuss three ways of improving RBFS algorithm: by reducing the size of the set of
decision-relative reducts on which algorithms work, by applying simplified version
of the bagging algorithm [3] to the feature selection algorithm and by a combination
of these two approaches.

By applying such methods to the RBFS algorithm we want to decrease execu-
tion time of the algorithm by decreasing the number of decision-relative reducts
on which algorithm works and we want to increase the classification accuracy of
the multiple classifier which is created from subsets of the decision table obtained
from the RBFS algorithm. To achieve these aims we propose to use the ARS (Algo-
rithm for Reducts Selection) algorithm. ARS selects reducts from the set of decision-
relative reducts of a given decision table. The second aim (to increase the classifi-
cation accuracy) is achieved by increasing the number of classifiers/subsets created
by the RBFS algorithm, which is formulated by applying the simplified bagging ap-
proach to the classifier ensemble. The RBFS algorithm requires a lot of calculations;
consequently, the computational complexity is very high. In our research the combi-
nation of the ARS algorithm with the RBFS algorithm allowed us to greatly decrease
the computational time of the RBFS algorithm. Subsets created by this method, after
using the ARS algorithm, were tested with a simple multiple classifier (k-NN clas-
sifiers combined with a simple voting scheme). The results were almost identical
to the results obtained with the multiple classifier which worked with subsets cre-
ated by RBFS algorithms without ARS. Applying the simplified bagging algorithm
both to the plain RBFS algorithm and the RBFS algorithm combined with the ARS
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algorithm allowed us to slightly increase the classification accuracy of the classifier
ensemble. We compared these results with the FASBIR algorithm [25] which is a
multiple classifier system. The comparison of the RBFS methods includes the clas-
sification accuracy and classification time of the multiple classifier which uses the
RBFS algorithm for feature selection. The comparison between FASBIR and RBFS
includes the comparison of the classification accuracy of the FASBIR algorithm with
the classification accuracy of the multiple classifier created with the use of the RBFS
algorithm.

In the feature selection section we also describe two algorithms for reducts eval-
uation. Presented algorithms use lazy deterministic and inhibitory rules [6] to cal-
culate reduct usefulness. The purpose of these methods is to present the way of
estimating the value of the reduct or the subset of the attribute set. This value can
be used later in the reduct selection algorithm or in preprocessing stages for various
classifiers.

The presented algorithms calculate the number of deterministic and inhibitory
decision rules for a given reduct or subset of attributes. Deterministic and inhibitory
rules calculation was performed with the use of the lazy algorithms. These algo-
rithms do not calculate the whole rules set. They only provide information if certain
rules exist or not.

Estimation of the value of the reduct or the attribute set obtained from algorithms,
can be used to select reducts or the attribute set for which a given classifier (in this
case k-NN and naive bayesian classifier) will have the best classification accuracy.

Estimation of the value of reducts and classification accuracy obtained with the
use of the classifier have been compared. Experiments showed that a number of
deterministic and inhibitory decision rules calculated by algorithms presented in
this paper can be a good estimate of the accuracy of k-NN and naive bayesian
classifier.

The last algorithm for feature selection presented in this section is RedBoost. The
algorithm uses a set of decision relative or decision and object relative reducts (not
necessarily a set of all reducts), training decision table, classifier (in this case k-NN)
and percentage parameter. The algorithm from a given set of reducts creates feature
subsets which have better, or equal, classification accuracy than reducts before the
use of the RedBoost algorithm (i.e. a classifier that uses decision subtable created
on the basis of reduct or feature subset that has better classification accuracy).

The algorithm reduces the number of created feature subsets by removing du-
plicates that are constructed during their creation by RedBoost and leaves only a
percentage of created subsets (indicated by the percentage parameter).

Several experiments were performed using the RedBoost algorithm on the bench-
mark data tables from the UCI Machine Learning Databases [2]. A simple multiple
classifier system was used for feature subsets testing. The results were compared
with the results of other feature selection algorithms combined with the same mul-
tiple classifier system, and with results obtained with a single classifier k-NN and
FASBIR multiple classifier system.

In the section with construction of the classifier we describe MC2 classifier.
It is a multiple classifier system which uses multiple classifiers to reduce the size
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of training and test sets. These new training and test sets are used during the
classification. MC2 method allowed us to reduce almost 91% of the training set
with a small loss on classification accuracy. MC2 method presented in this paper
is closely related to the stack generalization [23]. Our MC2 method can be also
interpreted as a layered learning presented in [15]. In that case we must treat the
same classifiers, but defined on more generalized data as classifiers with relaxed
conditions.

14.2 Basic Notions

14.2.1 Information Systems

An information system [11,12] is a pair S = (U,A), where U is a non – empty, finite
set of objects and A is a non–empty, finite set of attributes. Each attribute a ∈ A
corresponds to a function a: U → Va, where Va is called the value set of a.

In supervised learning problems, objects (examples) from a training set are pre-
classified into several categories or classes. To deal with such type of data we use
the decision systems of the form S = (U,A,dec), where dec /∈ A is a distinguished
attribute called decision and elements of an attribute set A are called conditions.
In practice, the decision systems contain a description of a finite sample U of ob-
jects from larger (maybe infinite) universe U. Conditions are such attributes that
their values are known for all objects from U, but decision is a function defined
on the objects from the sample U only. Without loss of generality one can as-
sume that the domain Vdec of the decision dec is equal to {1,. . . , d}. The deci-
sion dec determines a partition {CLASS1, . . . , CLASSd} of the universe U, where
CLASSk = {x ∈U : dec(x) = k} is called the k-th decision class of S for 1 ≤ k ≤ d.
By class distribution of any set X ⊆ U we denote the vector ClassDist(X) = < n1, . . . ,
nd >, where nk = card(X ∩ CLASSk) is the number of objects from X belonging to
the k-th decision class [1].

14.2.2 Classical k-NN Method

In the k-NN method, it is necessary to define a distance function ρ between objects,
ρ : U×U→ R+, where R+ denotes the set of positive real numbers. The problem of
searching for a relevant distance function for the given data set is not trivial. In the
following, we assume that such function has already been defined.

In the k-NN method, the decision for a new object x ∈ U \ U is made on the
basis of the set NN(x;k):={x1, . . . , xk} ⊆ U with k objects from U which are nearest
to x with respect to the distance function ρ . Usually, k is a parameter which can be
set up by an expert or constructed from an experimental data. The k-NN classifiers
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often use the voting algorithm for decision making, i.e., the decision value for a new
object x can be predicted by:

dec(x) = Voting(<n1, . . . , nd >),

where ClassDist(NN(x; k))=< n1, . . . , nd > is the class distribution of the set
NN(x;k) satisfying n1 + . . . + nd = k. The voting function can return the most
frequent decision value occurring in NN(x;k). In case of imbalanced data, the
vector < n1, . . . , nd > can be scaled, and after that the voting algorithm can be
employed [1].

14.2.3 Reducts

In the reduction of knowledge the basic role is played by the fundamental concept
of a reduct. Intuitively, a reduct of knowledge is its essential part, which suffices to
define all basic concepts occurring in the considered knowledge, whereas the core is,
in a certain sense, its most important part. We could say that a reduct is a minimal
subset of the attribute set, such that it gives the same set of elementary concepts,
and thus the same ability to express properties of the objects as the original set
of attributes. The remaining attributes are redundant since their removal does not
worsen the classification. In the rough set theory, many different types of reducts
are considered. In the present paper, we use the so called decision-relative reducts.
Reducts of this type are minimal conditional attribute subsets that, for all objects,
enable us to make the same classifications as the full set of attributes does. Further
information can be found in [11, 12], [13, 14].

14.2.4 Leave-One-Out Cross Validation Method

The leave-one-out cross validation method is performed as follows. From a given
set, we take one or more objects. The remaining objects act as a training set, and
object(s) that has/have been taken act as a test set. Next we put back the object(s) that
we have previously taken and we take another object(s). The procedure continues
for every object in a given set. Further information can be found in [5].

14.2.5 Bagging Algorithm

The Bagging approach (Bootstrap aggregating) was introduced by Breiman [3]. It
aggregates by voting classifiers generated from different bootstrap samples. The
bootstrap sample is obtained by sampling objects uniformly from the training set
with replacement. Each sample has the same size as the original set. Although some
examples do not appear in it, others may appear more than once.
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14.2.6 Metric and Single Classifier

In all experiments the classical k-NN algorithm was used. The value of the k pa-
rameter was set to {1, 3, 5, 7, 9}. The distance used by k-NN classifier is called
MinkoVDM [25] which combines Minkowsky and VDM distance. Here x1 and x2

are two objects described by d-dimensional continuous attribute vectors. Minkowsky
distance is obtained from the formula Eq. 14.1

Minkowskyp(x1,x2) = (
d

∑
n=1

|x1,n − x2,n|p)1/p (14.1)

By setting different values to p, different distance metrics can be obtained. In our
case we use p = 2. In general, the smaller the value of p, the more robust the re-
sulting distance metric to data variations; whereas the bigger the value of p, the
more sensitive the resulting distance metrics to variations. Minkowsky distance can
hardly deal with categorical attributes. Fortunately, VDM Value Difference Met-
ric [17], [21] can be a good complement. Let Na,u denote the number of training
examples holding value u on categorical attribute a, let Na,u,c denote the number of
training examples belonging to the c-th class holding value u on a, and let n denote
the number of decision classes. The distance between the two values u and v on a
can be computed by a simplified version of V DM shown in Eq. 14.2.

VDMp(u,v) =
n

∑
c=1

|Na,u,c

Na,u
− Na,v,c

Na,v
|p (14.2)

MinkoVDM metric can be obtained by combining these two metrics in the way
shown by Eq. 14.3, where first j attributes are categorical while the remaining (d− j)
ones are continuous attributes normalized to [0, 1]. It is evident that such a distance
can deal with both continuous and categorical attributes.

MinkoVDMp(x1,x2) = (
j

∑
h=1

VDMp(x1,h,x2,h)+
d

∑
h= j+1

|x1,h − x2,h|p)1/p (14.3)

14.2.7 Measures of Diversity

We use Eq. 14.5 and Eq. 14.6 previously proposed by Yule in [24] and the new mea-
sure Eq. 14.7, proposed in this paper, as measures of diversity between classifiers
Di and Dk, where Di and Dk are classifiers created from subsets of attributes and the
k - NN classifier. The subsets are evaluated with the use of the leave-one-out cross
validation method.

Values a,b,c,d are the percentage of the respective pair of correct/incorect clas-
sifiers outputs. Table 14.1 summarizes these outputs.
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Table 14.1 The 2x2 relationship table with percentages

Dk correct(1) Dk wrong(0)
Di correct(1) a b
Di wrong(0) c d

Total,

a+ b+ c+ d = 1 (14.4)

Using these four values we can construct three diversity measures:

αi,k =
ad− bc

√
(a+ b)(c+ d)(a+ c)(b+d)

(14.5)

βi,k =
ad− bc
ad+ bc

(14.6)

γi,k =−(b+ c)+ d (14.7)

Eq. 14.5, Eq. 14.6, and Eq. 14.7 measure diversity between two binary classifier
outputs (correct/incorrect). When classifier outputs are correlated (many objects are
classified correctly/incorrectly by both classifiers) the value of αi,k,βi,k,γi,k is close
or equal to 1. In the other case when classifier outputs are not correlated (many
objects are classified differently (correct/incorrect) by both classifiers), the value of
this equation is close to -1. γi,k diversity measure does not use a-value from Ta-
ble 14.1 directly. This value is connected with other values by Eq. 14.4. Measure γ
gives good values when b+ c is relatively high and there is a small percentage of
objects classified improperly by both classifiers.

The required value for each of these measures should be as close to -1 as possible.
Values close to 1 are not wanted because they indicate that classifiers gave similar
results for the same objects. Our goal is to obtain diverse classifiers.

14.2.8 Decision Rules

Decision rules make it possible to classify objects, i.e., assign the value of the de-
cision attribute. Having a collection of rules pointing at different decision, we may
perform a voting, in this way obtaining a simple rule-based decision support sys-
tem. The decision rules are a basic tool for data classification. Each decision rule
consists of conditions and the decision. When a given object x satisfies all of these
conditions, then the decision rule can tell us what the decision of the tested object
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x is. One decision rule can classify objects only to one decision class. In order to
classify new objects properly we must have a large set of decision rules. Algorithms
that use decision rules for classification often use voting to obtain the decision made
by the rules.

14.2.9 LTF-c Neural Network

LTF −C (Local Transfer Function Classifier) (see [22]) is a classification-oriented
artificial neural network model similar to that of Radial Basis Function network
(RBF). It consists of two layers of computational neurons (plus an input layer).
The first computational layer (hidden layer) consists of neurons that correspond
to clusters of objects from the same decision class. Each of these neurons has a
decision class assigned, and tries to construct a cluster of objects from this class.
The second computational layer (output layer) consists of neurons which gather
information from hidden (cluster-related) neurons, sum it up, and produce the final
network’s output.

14.2.10 Decomposition Tree

Decomposition trees are used to split a data set into fragments not larger than a
predefined size. These fragments, after decomposition represented as leaves in the
decomposition tree, are supposed to be more uniform and easier to cope with in
a decision wise manner. For more information on underlying methods, please turn
to [10]. Usually, the subsets of data in the leaves of the decomposition tree are used
for calculation of decision rules.

14.2.11 Deterministic and Inhibitory Decision Rules

Let T = (U,A,d) be a decision table, where U = {u1, . . . ,un} is a finite nonempty
set of objects, A = {a1, . . . ,am} is a finite nonempty set of conditional attributes,
and d is the decision attribute.

The set U(T ) is called the universe for the decision table T . Besides objects from
U we also consider objects from U(T ). For any object (tuple) v ∈ U(T ) and any
attribute a j ∈ A the value a j(v) is equal to j-th integer component of v.

By the set Vd(T ) we denote the set of all decisions of table T . Let us consider a
rules

a j1(x) = b1 ∧ . . .∧a jt (x) = bt ⇒ d(x) = b, (14.8)
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a j1(x) = b1 ∧ . . .∧a jt (x) = bt ⇒ d(x) �= b, (14.9)

where t ≥ 0, a j1 , . . . ,a jt ∈ A, b1, , . . . ,bt ∈ ω , b ∈ Vd(T ) and numbers j1, . . . , jt are
pairwise different. Such rules are called deterministic decision rules (14.8) and in-
hibitory decision rules (14.9). The rules (14.8, 14.9) are called realizable for an
object u ∈ U(T ) if a j1(u) = b1, . . . ,a jt (u) = bt or t = 0. The rule (14.8) is called
true for an object ui ∈U if d(ui) = b or (14.8) is not realizable for u. The rule (14.9)
is called true for an object ui ∈ U if d(ui) �= b or (14.9) is not realizable for ui.
The rule (14.8, 14.9) is called true for T if it is true for any object from U . The
rule (14.8, 14.9) is called realizable for T if it is realizable for at least one object
from U . By Det(T ) we denote the set of all deterministic decision rules and by
Inh(T ) we denote the set of all inhibitory decision rules which are true for T and
realizable for T .

Our aim is to recognize for given objects ui ∈ U and v ∈ U(T ), and given value
b ∈ Vd(T ) if there exists a rule from Det(T ) (Inh(T)) which is realizable for ui

and v and has d(x) = b (d(x) �= b) on the right hand side. Such a rule “supports"
(“contradicts") the assignment of the decision b to the new object v.

Let M(ui,v) = {a j : a j ∈ A,a j(ui) = a j(v)} and P(ui,v) = {d(u) : u ∈U,a j(u) =
a j(v) for any a j ∈ M(ui,v)}. Note that if M(ui,v) = /0, then P(ui,v) = {d(u) : u ∈
U}=Vd(T ).

Proposition 14.1. Let T = (U,A,d) be a decision table, ui ∈U, v ∈ U(T ), and b ∈
Vd(T ). Then in Det(T ) there exists a rule, which is realizable for ui and v and has
d(x) = b on the right hand side, if and only if P(ui,v) = {b}.

Proposition 14.2. Let T = (U,A,d) be a decision table, ui ∈U, v ∈ U(T ), and b ∈
Vd(T ). Then in Inh(T) there exists a rule, which is realizable for ui and v, and has
d(x) �= b on the right hand side, if and only if b /∈ P(ui,v).

Proofs of the propositions 1 and 2 can be found in [6].
From Proposition 14.1 and 14.2 it follows that, there exists a polynomial algo-

rithm recognizing, for a given decision table T = (U,A,d), given objects ui ∈U and
v ∈ U(T ), and a given value b ∈ Vd(T ), if there exists a rule from Det(T ) Inh(T ),
which is realizable for ui and v, and has d(x) = b (d(x) �= b) on the right hand side.
This algorithm constructs the set M(ui,v) and the set P(ui,v). The considered rule
exists if and only if P(ui,v) = {b} (b /∈ P(ui,v)).

14.3 Data Reduction Methods

In this section, we describe three reduction methods. These methods eliminate the
objects that do not satisfy some global assumptions about data. We named these
methods as follows: Red1, Red2, Red3. In each method we consider two sets of
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objects. The first, Utrn is a training set. The second, set Ūtrn, is obtained from Utrn

by reduction (Ūtrn ⊆ Utrn). All data sets obtained by reduction were tested with the
classical k-NN. In most of the cases, the reduction gave us a good improvement of
the execution time for the classical k-NN with a small loss of classification accuracy.

Algorithm RED1 presented below eliminates the objects that do not match their
neighbours. It checks surroundings of objects with the use of the specified radius.
The object which is currently tested is being thrown away if its decision is different
from the most frequent decision among objects in surroundings. It is important that
during the execution of the algorithm, objects are only marked. They are thrown
away when the algorithm stops. This algorithm allows throwing away objects which
are badly classified or cause noise.

Algorithm 14.1. Algorithm RED1
Input : Utrn – a training set of objects,

ρ – metric defined on set Utrn,
Par ∈ (0, 1) – a parameter.

Output: Ūtrn – a reduced set of training objects.

Ūtrn = /0 - an empty set of objects,

Max_dist = max
x,y∈Utrn

(ρ(x,y)) maximal distance between training objects

R = Max_dist * Par; radius of spheres

forall the ( x ∈Utrn) do
Rset(x) = {y ∈Utrn : ρ(x,y) < R} a set of objects from the training set that are
in radius R.

d =Voting(ClassDist(Rset(x))) the most frequent decision value in Rset(x).

if (Dec(x) = d) then
Ūtrn = Ūtrn ∪ {x} if a object satisfies the condition, we add it to the Ūtrn

set.

Algorithm RED1 starts with the empty set Ūtrn and a given training set Utrn.
Parameter Par must also be specified. First, we compute maximal distance between
training objects. We can make this process faster by random selection of a subset of
a training set and finding the Max_dist of this subset. Then, we compute the radius
by multiplying Max_dist by Par. Since Par ∈ (0, 1), the radius will never be 0. Next,
for each object from Utrn we find the sphere with radius R, after that, we find the
most frequent value of the decision for objects in that sphere. Finally, we check if
the decision of an object x is the same as the most frequent decision value that we
have found. If so, we add the object x to the set Ūtrn.
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Parameter Par is very important in this method. Too low or too high value of this
parameter can cause total reduction of the training set (all objects can be reduced).
Different values of this parameter gave us different results. In our experiments we
have checked many variants.

The time complexity of this algorithm is O(mn2), where n denotes the number of
training objects in the set Utrn and m denotes the number of attributes.

Algorithm RED2 presented in the following is based on the concept of k nearest
neighbours. It checks k nearest neighbours of objects. The object which is currently
tested is being thrown away if its decision is different from all of its k nearest neigh-
bours decisions. It is important that during the execution of the algorithm objects
are only marked. They are thrown away when the algorithm stops. This algorithm
allows throwing away objects which are badly classified or cause noise.

Algorithm 14.2. Algorithm RED2
Input : Utrn – a training set of objects,

ρ – metric defined on set Utrn,
K ∈ N – a parameter. N - the set of positive integers.

Output: Ūtrn – a reduced set of training objects.

Ūtrn = /0 - an empty set of objects,

forall the (x ∈Utrn) do
if (for all y ∈ NN(x; K); dec(y) = dec(x)) then

Ūtrn = Ūtrn ∪{x}

The algorithm is a modification of Edited Nearest Neighbour Rule considered
in [20]. We assume that Utrn, K are given and set Ūtrn is empty. For all elements x
from Utrn we find the sets NN(x; K). If all elements from set NN(x; K) have the
same decision as the examined object x, we add the object x to set Ūtrn. A proper
value of parameter K is important an thing in this algorithm. If it is too high, it can
cause the reduction of too many objects. In our experiments, we have used many
different values of this parameter. By Num(d, SP) we denote the percentage of
objects in sphere SP with decision different from d. SP(x, R) denotes the sphere
with the middle in x and the radius R.

The time complexity of this algorithm is O(mn3), where n denotes the number of
training objects in Utrn and m denotes the number of attributes.

Algorithm RED3 presented below is based on the relation between the objects
and some prototypes representing the centers of the decision classes. It checks sur-
roundings of objects with a specified radius. We check surroundings but only for
the central objects (These central objects are calculated by Algorithm 5 described
further). Each central object represents one decision class. Iteratively increasing the
radius, the algorithm checks the surroundings of the central objects. If percentage
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of objects with different decision is higher than the parameter, all objects from the
surroundings are marked. All objects that are not marked are thrown away when
the algorithm stops. This algorithm allows throwing away objects which are badly
classified or cause noise.

Algorithm 14.3. Algorithm RED3
Input : Utrn – a training set of objects,

ρ – metric defined on set Utrn,
Central – a set of central objects from all decision classes,
Par ∈ N – a parameter,
Perc – a percentage parameter.

Output: Ūtrn – a reduced set of training objects.

Ūtrn = /0 - an empty set of objects,

Max_dist = max
x,y∈Utrn

(ρ(x,y)) maximal distance between training objects

Min_dist = min
x,y∈Utrn

(ρ(x,y)) minimal distance between training objects

Step 3. Delta := (Max_dist −Min_dist)/Par the radius will be changed by this
value during process

R = Min_dist initial radius of spheres

repeat
forall the (c ∈Central) do

if (Num(dec(c),SP(c,R))< Perc) then
Ūtrn = Ūtrn ∪ SP(c, R)

R = R+Delta – increase radius by Delta

until (ForAll c ∈Central;Num(dec(c),SP(c,R))> Perc OR R ≥ Max_dist);

First, we find the central object for each decision class. Next, we compute the
maximal and the minimal distance between training objects. We can make this pro-
cess faster by a random selection of a subset of a training set and then finding the
Max_dist and Min_dist on this subset. For these values we compute the parame-
ter Delta. For each central object, Algorithm RED3 checks the decisions of objects
from the sphere with the middle c and radius R. If the percentage of objects with
different decision in this sphere is lower than the parameter Perc, then all objects
from SP(c, R) are added to set Ūtrn, otherwise another central object is checked. We
increase the radius of the spheres in each pass of the main loop.

Algorithm RED3 can become less/more sensitive when we, decrease/increase
parameter Par. If parameter Perc is set at a too low level, we can cause total re-
duction of a training set. The meaning of parameter Perc is: the maximum allowed
percentage of objects from different decision classes in a sphere.
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For real values of attributes we can use an arithmetical average to find the central
object for each decision class. In the case of nominal values of attributes, another
method has to be applied.

The time complexity of this algorithm depends on the value of parameter Par.
Let us assume that parameter Par has a value n where n is the number of training
objects in set Utrn and m denotes number of attributes. The time complexity of Al-
gorithm 4 is O(mn3). But for low (i.e., lower than 100) values of parameter Par the
time complexity of the algorithm is O(mn2).

Let ClassAttrib(X , a) = < ka1 , ..., kan > denote a set with the numbers of
occurrence. Each value ka1 , ..., kan is the number of objects with value ai on attribute
a in set X .

Algorithm 14.4. Algorithm Finding central ob jects
Input : Utrn – a training set of objects,

Mod ∈ (0, 1)– a parameter.

Output: Central – a set of central objects.

Central = /0 –an empty set of central objects.

forall the (d ∈Vdec) do
forall the (a ∈ A) do

Max_occ = max(ClassAttrib(CLASSd,a))

occ = max_occ ·Mod

vala = Voting(which element from ClassAttrib(CLASSd,a) is closest to occ)
Central =Central ∪ < vala, ..., vals,d >

Algorithm Central for each decision class finds one central object. It makes this
object from nominal values which occur in the decision class. For each attribute,
first, we find set ClassAttrib(CLASSd,a). Then, we find the value max_occ which is
the maximal number of occurrence of the value in a decision class on attribute a.
Next, we multiply this value by parameter Mod. After that, we find which attribute
value with its occurrence is closest to the number occ. Finally, we make central
object from values vala, . . . , vals, decision d and add it to the central set. The value
of parameter Mod was obtained during experiments, and it can be changed to the
value which fits the experimental data best. In our experiments, we have used this
parameter with the value 0.618.

The time complexity of this algorithm is O(mn2), where n denotes the number of
training objects in Utrn and m - the number of attributes.
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14.3.1 Methodology of Experiments and Results

The experiments were performed for seven large benchmark sets with nominal and
real attributes from the UCI repository [2]. We used the following data Chess(36
attr., 2131 training obj., 1065 test obj.), Nursery(8 attributes, 8640 training obj.,
4320 test obj.), Splice(60 attributes, 2000 training obj., 1186 test obj.), Mush-
rooms(23 attributes, 5461 training obj., 2708 test obj.), Abalone(9 attributes, 2785
training obj., 1392 test obj.), Thyroid(22 attributes, 4800 training obj., 2400 test
obj.), Yeast(9 attributes, 990 training obj., 494 test obj.).

We have made two different comparisons. The first one concerns the comparison
of reduction methods regarding the classification accuracy of the classification algo-
rithms after reduction and reduction effectiveness. Results of these experiments are
presented in Tables 2, 3 and 4. The second one concerns the new reduction methods
which have been compared with the reduction methods described in [4]. The results
of experiments are included in Table 14.5.

Tables 14.2, 14.3 and 14.4 consist of the comparison of testing accuracy for the
classical k-NN on each data set before an after reduction (k-NN org. and k-NN red.
columns). We can also see parameters used in the reduction methods (Par, k, Perc
columns). Columns No. of obj. and No. of red. obj. denote respectively the number
of objects before and after reduction. The last column in this table denotes how
many objects (in percents) have not been removed from the original data set.

For the purpose of speeding up the k-NN algorithm, we prepared the data as
follows: the data sets provided as a single file (Chess, Nursery, Mushrooms, Abalone,
Thyroid, Yeast) have been randomly split into a training set and a test set with the
ratio 2:1. The data set Splice has been tested with the originally provided partition.

For the purpose of comparing the quality of reduction methods we prepared
the data as follows: the data sets provided as a single file (Mushrooms, Abalone,
Thyroid, Yeast) have been randomly split into a training set and a test set with the
ratio 4:1.

Table 14.2 Comparison of the results for RED1 algorithm

Data No. of obj. No. of red. obj. k-NN org. k-NN red. Par % org.

Chess 2131 1321 97.1 95.2 0.01 62.0
Nursery 8640 2858 99.0 94.6 0.004 33.1
Splice 2000 1401 94.0 90.4 0.1 70.0
Mushrooms 5416 3143 100.0 96.7 0.002 58.0
Abalone 2785 1328 55.0 55.5 0.003 47.7
Thyroid 4800 911 93.9 92.6 0.003 19.0
Yeast 990 502 59.5 56.9 0.091 50.7

For each data set, we have conduced several experiments with different parame-
ters. We have used methods Red1, Red2, Red3 mentioned above to preprocess the
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Table 14.3 Comparison of the results for RED2 algorithm

Data No. of obj. No. of red. obj. k-NN org. k-NN red. k % org.

Chess 2131 1469 97.1 94.7 25 68.9
Nursery 8640 7019 99.0 94.4 11 81.2
Splice 2000 509 94.0 90.2 63 25.5
Mushrooms 5416 1072 100.0 85.8 1800 19.8
Abalone 2785 535 55.0 54.2 3 19.2
Thyroid 4800 617 93.9 92.6 64 12.9
Yeast 990 301 59.5 57.1 2 30.4

Table 14.4 Comparison of the results for RED3 algorithm

Data No. of obj. No. of red. obj. k-NN org. k-NN red. Par Perc % org.

Chess 2131 493 97.1 97.8 50 0.39 23.1
Nursery 8640 7013 99.0 95.7 50 0.48 81.2
Splice 2000 738 94.0 93.1 50 0.13 36.9
Mushrooms 5416 1954 100.0 99.7 50 0.05 36.1
Abalone 2785 501 55.0 54.8 50 0 18.0
Thyroid 4800 507 93.9 94.0 100 0 10.6
Yeast 990 743 59.5 57.7 50 0.58 75.1

data and apply them to the classical k-NN or local k-NN algorithms. All results were
compared with the classical k-NN algorithm without preprocessing.

The loss of classification accuracy in all cases is smaller than 6% with the ex-
ception of data Mushrooms where the loss is greater. There are also a few cases
where classification accuracy is greater than original one; see example results for
data Abalone.

In Table 14.5 we can see comparison of six reduction methods. For each reduction
method we can see two columns. The classification accuracy is in the first column.
In the second column we can see how many objects (in percents) have not been
removed from the original set. For example, if value stor. is 20 we have 20% of
objects from the original set after reduction.

Table 14.5 Comparison of testing accuracy and storage requirements for each data set.

Original Wilson RT3 ICF Red1 Red2 Red3
Data Acc. Stor. Acc. Stor. Acc. Stor. Acc. Stor. Acc. Stor. Acc. Stor. Acc. Stor.
Abalone 48.74 100 22.01 19.64 22.11 40.95 22.74 15.11 55.81 16.79 49.7 8.8 48.38 29.89
Thyroid 90.93 100 89.3 91.48 77.91 16.23 86.63 21.85 91.45 3.19 91.67 12.29 90.27 8.54
Yeast 52.7 100 55.39 52.97 55.32 27.03 52.25 16.62 50.68 25.5 53.38 10.19 47.3 31.73
Mushrooms 99.92 100 99.24 99.64 98.89 5.5 98.64 12.8 96.61 66.95 82.88 19.31 99.45 33.34



278 P. Delimata and Z. Suraj

From the results given in Table 14.5 we can see that our results are at the same
level or even at a higher one than the results obtained by the methods presented
in [4]. In many cases we have increased the classification accuracy. If we look at
column stor. it can be seen that our methods also give better results in many cases.

14.4 Feature Selection Methods

14.4.1 RBFS Algorithm

The RBFS algorithm [18] presented here is useful for selecting attributes for each
classifier in multiple classifier methods. It can be applied to any kind of data with
categorical or continuous values. The algorithm allows to create as many classifiers
as needed, the only restriction being the number of decision-relative reducts.

For the simplicity of the algorithm, we use a few assumptions. Let S = (U, A, d)
be a decision table such that U is a set of objects of this table, A is a set of conditional
attributes, d is a decision attribute and Tr is a training table of S. Moreover, let RED
be a set of decision-relative reducts of the decision table Tr.

In the algorithm presented below we use the expressions “classification accuracy
of the reduct" or “classification accuracy of the elements from set AT", where AT is
the family of subsets of the attribute set A. These expressions mean that we evaluate
decision subtables obtained from a given training table Tr with classifier CF . The
subtables are decision tables with attributes from set R∪{d} where d is a decision
attribute and R is a decision-relative reduct of Tr or an element from set AT . In [18]
we used the leave-one-out cross validation method in the process of reduct evalua-
tion (“classification"). Experiments showed that using the train and test method on
a smaller subset of the decision table instead of the leave-one-out method on the
whole decision table was much faster and gave almost identical results.

We can easily create a subtable of a given decision table using a reduct or an
element from set AT . Thus, it is not important whether we talk about subtables of
the decision table or subsets of the attribute set.

The algorithm as an input takes: Tr - a training set of a given decision table S,
RED - a set of decision-relative reducts of Tr, CF - a classifier, CNum - the number
of classifiers for which we obtain the set of attribute subsets, Inc – a parameter
telling us how many sets in line with label 8 will receive a new reduct. As a result,
the algorithm returns the set AT of the subsets which contain CNum sets of attributes
obtained by combining reducts.

In line with label 1, the algorithm from a given reduct set selects CNum reducts
which gave subtables with the highest classification accuracy; the remaining reducts
are placed in set RED1 in line with label 2.

The subtables are obtained from set Tr and evaluated using classifier CF . In
line with label 4, we take one unprocessed reduct R from the remaining set RED1,
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which also gives the best classification accuracy. In the next line, we create a new
set TempAT by adding a selected reduct R to each element of set AT . The next line
evaluates the new set TempAT and the old one AT . We evaluate them by calculating
classification accuracies. In line with label 7, we find Inc elements in set AT which
gain most on classification accuracy after adding in line with label 5. In the next
line, we replace the elements found in line with label 7 by corresponding elements
from set TempAT , so Inc elements in set AT are expanded by reduct R. Such action
is performed only when all subsets gain on classification accuracy or it remains the
same. Next, we repeat line with label 4 to line with label 8 until all reducts from
set RED1 are processed.

The algorithm presented above allows to create subtables for classifiers from de-
cision tables, using reducts. The number of created tables, and what is the equivalent
number of classifiers, is dependent on the number of reducts in the decision table.
Computational complexity of this algorithm is strongly related to the classifier used

Algorithm 14.5. RBFS Algorithm
input : Tr – a training set of S,

RED – the set of decision-relative reducts of Tr,
CF – a classifier,
CNum – the number of subtables (classifiers),
Inc – an increment parameter,
Inc<CNum,
TempAT – a temporary set of subsets of attribute set A.

output: AT – a family of subsets of attribute set A.
AT = a set of CNum reducts from set RED with the highest classification accuracy.//
1

RED1 = RED\AT .// 2

repeat
R = an unprocessed reduct from set RED1 with the highest classification
accuracy. // 4

TempAT = {P: P = B∪R, B ∈ AT}. // 5

Calculate classification accuracy of each element in sets AT and TempAT . // 6

Compare accuracy of sets AT and TempAT and find those Inc elements from
set AT which gained most on classification accuracy. // 7

Replace elements found in line with label 7 with corresponding elements in set
TempAT. (Only those which increased classification accuracy) // 8

until (all reducts from set RED1 are processed);
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for reduct evaluation. Let n denote the number of objects in the training decision
table and let r denote the number of reducts for this table and let us assume that the
computational complexity of the classifier for one classifying object is O(n2), then
RBFS, in the worst case, would have complexity O(r3n3). The number of reducts
for a decision table can be very large. It is possible to use a small subset of all
reducts. One of the purposes of this paper is to present the algorithm which uses
some heuristic to select a small subset of reducts.

Experiments showed that the value of the Inc parameter should be small and the
best value is 1. Small values of the Inc parameter cause that RBFS creates good and
diverse subsets of the original attribute set.

14.4.2 ARS Algorithm

Algorithm ARS was designed to shorten execution time of RBFS algorithms by
decreasing the number of reducts for a given decision table. It is not required to use
all available reducts. A sample of short reducts or reducts generating a small number
of rules can be used however, in this paper, a set of all decision relative reducts was
used for each data set.

Algorithm 14.6. Algorithm ARS
input : Tr – a training set,

RED – set of decision-relative reducts of Tr,
RED2 = /0,
CF – classifier (i.e. k-NN or other classifier),
Perc – percentage parameter,
dvr – diverse limit.
ρi,k = αi,k or ρi,k = βi,k or ρi,k = γi,k

output: RED2 – a set of decision-relative reducts after selection.
Calculate classification accuracy of each reduct in set RED using classifier CF and
table Tr.
Sort reducts in descending order using these classification accuracies.
Take first reduct r with the best classification accuracy, RED2 = {r} and RED =
RED\ {r}.// 2
forall the (ri ∈ RED) do

set counter=0
forall the (rk ∈ RED2) do

calculate ρi,k for ri and rk;
if (ρi,k ≤ dvr) counter = counter+ 1;

if ((counter/card(RED2))≥ perc) then
RED2 = RED2∪{ri}
RED = RED\ {ri}
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Algorithm ARS uses Eq. 14.5, Eq. 14.6, and Eq. 14.7 and a classifier to select
reducts which are diverse to a certain degree. For this purpose two parameters are
used: dvr and the percentage parameter perc. The parameters are used in the fol-
lowing way: a reduct is selected when already chosen perc reducts have values ρ
lower than dvr. The first selected reduct is the reduct which provides the classifier
with the best classification accuracy. ρ is the diversity measure α , β or γ .

The algorithm starts by calculating the classification accuracy of each reduct in
set RED which is the classification accuracy of the decision table created from table
Tr and attributes from a reduct. Classifier CF is used in this process. Next, reducts
are sorted in the descending order, using these classification accuracies. In the third
line we choose the first reduct from set RED which gives the best classification
accuracy. We choose the best reduct because we want other selected reducts to be
good as well. All reducts must differ only to a certain degree. In the loop below the
line with label 2 we check each remaining reduct in the RED set. If the classifier
obtained from reduct ri has ρ coefficient lower than the dvr parameter for more
than perc reducts, it is added to the RED2 set. Parameter dvr causes that incom-
ing reducts are more/less diverse. Parameter perc causes that we have more/less
diverse reducts in the resulting set. Computational complexity of this algorithm is
strongly related to the classifier used for reduct evaluation. Let n denote the number
of objects in the training decision table and let r denote the number of reducts for
this table, and let us assume that the computational complexity of the classifier for
one classifying object is O(n2), then ARS, in the worst case, would have complexity
O(r2n3). However, this complexity is strongly related to the parameters perc and
dvr and vary between O(rn3) and O(r2n3).

14.4.3 Methodology of the Experiments and Results

In the experiments we used data from UCI repository of machine learning databases
[2] to test the RBFS algorithm with a combination of ARS(α,β ,γ) algorithm and
the simplified bagging algorithm. The following data were used: Glass (214x10),
Diabetes (768x9), Autos (205x26), Breast − c (277x10). Objects with missing val-
ues were removed. In all experiments we used ten fold cross validation repeated five
times. The average results of these experiments can be seen in Table 14.6.

Experiments for all data tables were performed by means of following schema.
The RBFS algorithm in all experiments was tested with parameter CNum =
{3,5,7}. Parameter Inc was set to 1 and the train and test method was used for
reducts evaluation. In all cases 1, 3, 5, 7, 9-NN classifier was used with MinkoVDM2

metric, as well simple multiple classifier using k-NN algorithm and majority voting
was used.

Simplified bagging was performed in the following way. First, the training de-
cision table was split randomly into 3 parts. Second, all possible pairs of decision
tables from these 3 tables were created and combined. Finally, the remaining 1

3 of
all objects were randomly selected from the original decision table for each pair.
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Table 14.6 Results for different decision tables and algorithms

Data Algorithm Acc. Red /Red/ ExTm Data Acc Red /Red/ ExTm

Diabetes

kNN 70.05 - - 0.42

Autos

84.38 - - 0.58
RBFS 74.37

27

- 6.85 86.08

146.9

- 1.53
RBFS1 74.73 - 20.73 87.09 - 7.15
ARS α -

16.4
3.60 -

40.3
1.57

RBFS2 α 74.26 3.98 79.25 1.15
RBFS3 α 74.76 8.99 85.75 3.61

ARS β -
12.2

3.37 -
39.5

1.52
RBFS2 β 73.61 2.68 79.46 0.82
RBFS3 β 74.10 9.41 83.56 2.18

ARS γ -
11.5

3.36 -
34.5

1.47
RBFS2 γ 74.66 2.45 82.82 0.54
RBFS3 γ 75.03 7.41 85.64 1.77
FASBIR 74.63 - - - 84.94 - - -

Breast-c.

kNN 74.47 - - 0.52

Glass

59.21 - - 0.21
RBFS 75.65

313.5

- 6.92 78.16

18.4

- 1.26
RBFS1 75.42 - 14.68 81.47 - 1.72
ARS α -

72
3.75 -

11.8
0.05

RBFS2 α 76.97 1.83 77.38 1.10
RBFS3 α 76.66 6.50 79.26 1.48

ARS β -
81.5

3.54 -
13.5

0.04
RBFS2 β 76.47 2.05 77.09 1.19
RBFS3 β 76.04 7.46 81.43 1.71

ARS γ -
27.8

3.53 -
12.1

0.04
RBFS2 γ 76.63 0.72 77.65 1.00
RBFS3 γ 76.60 1.44 80.78 1.67
FASBIR 74.44 - - - 80.04 - - -

As a result, we obtained 3 tables with the same number of objects as in the original
table.

From all results obtained, the best were summarized in Table 14.6.
In Table 14.2 we use the following notation: RBFS - plain RBFS algorithm,

RBFS1 - RBFS algorithm combined with simplified bagging algorithm, RBFS2
(α,β ,γ) - RBFS algorithm combined with ARS (α,β ,γ) algorithm, RBFS3
(α,β ,γ) - RBFS algorithm combined with ARS (α,β ,γ) and simplified bagging al-
gorithms. “Acc” denotes classification accuracy of the algorithms, column “Red” de-
notes the average number of reducts in each approach. Column labelled as “ExT m”
denotes the average execution time of the algorithm in seconds. /Red/ denotes the
number of reducts after the use of the ARS algorithm.

In this table we can see that the execution time of the RBFS algorithm has im-
proved in all cases after the use of the ARS algorithm. ARS allows to reduce the num-
ber of reducts to the value where classification accuracy is not drastically harmed.
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The execution time of the ARS algorithm is also presented in Table 14.6. It is
possible that the ARS algorithm will not be needed for data sets with a small number
of reducts.

In some cases, the classification accuracy of the multiple classifier after the use of
the ARS algorithm slightly decreased. However, the loss on classification accuracy is
relatively small and can be accepted when we see an improvement of the execution
time of the algorithms. This improvement could be many times greater than the
execution time of the plain RBFS algorithm.

In Table 14.6 we can observe, that the classification accuracy of the multiple
classifier which uses RBFS algorithms is almost always greater that the classifica-
tion accuracy of the FASBIR algorithm. The results for the remaining methods are
relatively close to the results obtained by the FASBIR algorithm.

From the results we can conclude that a simple bagging algorithm increased the
classification accuracy in all tested data sets: however, in that case, the classification
time increased.

The results showed that the best diversity measure is γ . It gives the highest re-
duction of the reducts set.

Initial experiments showed that for large data sets with 1000 and more objects a
large number of reducts could present the main obstacle in using our methods. In
such a case a classifier with small computational complexity should be used in both
RBFS and ARS algorithms. Algorithm RBFS should also be used with small value
of CNum parameter, algorithm ARS should use large values of the Perc parameter
(close to 1). Moreover, methods which generate small sets of reducts (e.g. short
reducts or reducts which generate a small number of rules) should be used for reduct
generation.

14.4.4 Reducts Evaluation Using Lazy Algorithms

In this section we present two algorithms which use deterministic and inhibitory
decision rules for reduct evaluation. In our case we actually did not need to generate
all rules for a given reduct. We only needed the information if the rule existed or
not. Our method used two algorithms to calculate the number of deterministic and
inhibitory rules. To calculate the number of such rules for each reduct we used
proposition 1 and 2 from section 2. The first was used to calculate the number of
deterministic decision rules and the second was used to calculate the number of
inhibitory decision rules.

The first algorithm use the value D(T,b,v), b ∈ Vd(T ). This parameter is equal
to the number of objects ui ∈ U for which there exists a rule from Det(T ), that is
realizable for ui and v, and has d(x) = b on the right hand side. From Proposition
14.1 it follows that there exists a polynomial algorithm which for a given decision
table T = (U,A,d), a given object v ∈ U(T ) and a given value b ∈Vd(T ), computes
the value D(T,b,v) = |{ui : ui ∈U,P(ui,v) = {b}}|.
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Algorithm 14.7. Algorithm for Deterministic Rules Counting (ADRC)
input : T – a decision table.
output: rullCnt – number of deterministic decision rules.
rullCnt = 0 U =U
forall the objects v from U do

forall the decisions b from Vd(T ) do
U = U \ {v} calculate D(T,b,v) = |{ui : ui ∈ U ,P(ui,v) = {b}}| rullCnt
= rullCnt + D(T,b,v)

return rullCnt

The purpose of the algorithm is to calculate all deterministic decision rules for
a given decision table. For each object v ∈ U and decision b ∈ Vd(T ) we calculate
the value of D(T,b,v), which is equal to the number of rules from Det(T ) that are
realizable for ui and v, and has d(x) = b on the right hand side. Before calculation of
the D value, object v is subtracted from set U . Such an action allows us to increase
the speed of the algorithm and avoid double counting of the rules.

The second algorithm uses the value I(T,b,v) [6], b ∈ Vd(T ). This parameter is
equal to the number of objects ui ∈U for which there exists a rule from Inh(T), that
is realizable for ui and v, and has d(x) �= b on the right hand side. From Proposition
14.2 it follows that there exists a polynomial algorithm which, for a given decision
table T = (U,A,d), a given object v ∈ U(T ) and a given value b ∈Vd(T ), computes
the value I(T,b,v) = |{ui : ui ∈U,b /∈ P(ui,v)}|.

Algorithm 14.8. Algorithm for Inhibitory Rules Counting (AIRC)
input : T – a decision table.
output: rullCnt – number of inhibitory decision rules.
rullCnt = 0 U =U
forall the objects v from U do

forall the decisions b from Vd(T ) do
U = U \ {v} calculate I(T,b,v) = |{ui : ui ∈ U ,b /∈ P(ui,v)}| rullCnt =
rullCnt + I(T,b,v)

return rullCnt

The purpose of the algorithm is to calculate all deterministic decision rules for
a given decision table. For each object v ∈ U and decision b ∈ Vd(T ) we calculate
value of I(T,b,v), which is equal to the number of rules from Inh(T ) that are real-
izable for ui and v and has d(x) = b on the right hand side. Before calculation of the
I value object v is subtracted from set U . Such an action allows us to increase the
speed of the algorithm and avoid double counting of the rules.

Computation complexity of the ADRC and AIRC algorithms depends on the
computational complexity of the algorithms which calculate D(T,b,v) and I(T,b,v)
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values. These values are computed in the polynomial time complexity, so the com-
plexity of algorithms ADRC and AIRC are also polynomial.

14.4.5 Methodology of the Experiments and Results

Algorithms ADRC and AIRC were tested on several data sets from UCI Repository
of Machine Learning Database Ballance-scale(625 obj., 5 attr., 6 reducts), Ecoli(336
obj., 8 attr., 25 reducts), Glass(214 obj., 9 attr., 178 reducts), Iris(150 obj., 5 attr., 9
reducts), Lymphography(148 obj., 19 attr, 3316 reducts), Zoo(101 obj., 17 attr., 590
reducts). (All reducts numbers are averages from all cross-validation folds).

The data with continuous attributes were discretized. For each data table 10-fold
cross validation was performed. Each data set has three or more decision classes.

For each cross validation fold reducts were generated, and then train and test
subtables were created out of those reducts. Each subtable consisted of attributes
from the reduct and the decision attribute. Then each train subtable(reduct) was
evaluated using ADRC and AIRC algorithms. After that algorithm k-NN and naive
bayesian classifier were used. Algorithm k-NN was used with VDM metric and
parameter k ∈ {1,3,5,7,9}.

Table 14.7 Results of the experiments

Classifier k-NN Naive Bayesian
Data SCdet SDEV SCinh SDEV SCdet SDEV SCinh SDEV
Balance-scale 0.17 0.21 0.15 0.20 0.21 0.17 0.14 0.14
Ecoli 0.35 0.19 0.19 0.14 0.37 0.25 0.14 0.12
Glass 0.37 0.18 0.14 0.1 0.36 0.21 0.16 0.12
Iris 0.19 0.19 0.25 0.18 0.24 0.18 0.28 0.19
Lymphography 0.50 0.19 0.17 0.13 0.39 0.19 0.49 0.19
Zoo 0.31 0.24 0.14 0.11 0.29 0.21 0.47 0.23

Results obtained from algorithms ADRC, AIRC, k-NN, and bayesian classifier
for each reduct in the data tables were scaled to the range [0, 1] using min-max
normalization. After that, the results were compared using the following mean of
the differences between values called SC (Similarity Coefficient).

SC =
1
n

n

∑
i=1

|ei − fi| (14.10)

where e1, . . . ,ei ∈ [0,1], and f1, . . . , fi ∈ [0,1] are two data sets. In this paper ei

denotes the number of deterministic or inhibitory decision rules obtained for reduct
i of the particular data table (normalized to the [0,1] range). fi denotes classification
accuracy obtained from classifier for reduct i (normalized to the [0,1] range). Please
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note that SC ∈ [0,1]. For each SC coefficient we calculated standard deviation of the
differences.

All results can be seen in the Table 14.7. Where SCdet (SCinh) denotes similarity
coefficient calculated for the results obtained using the ADRC (AIRC) algorithm and
classifier (k-NN or naive bayesian), SDEV denotes standard deviation for SC values.

From the results in Table 14.7 we can conclude that algorithm AIDC is more
accurate in evaluating the usefulness of the reducts because it is more sensitive than
the ADRC algorithm. This is caused by the fact that usually the number of inhibitory
decision rules is much greater than the number of deterministic decision rules.

The most important values in Table 14.7 are standard deviations. Small values of
these deviations indicate that values obtained from algorithms AIRC and ADRC are
very well connected with the classification accuracy of the classifiers. Experiments
showed that the large number of deterministic or inhibitory rules for decision table
denotes that k-NN or naive bayesian classifier will have high classification accuracy
for this table.

Experiments showed that decision tables evaluated by the AIRC and ADRC algo-
rithms do not need to be created with the use of reducts. They can be created by a
random selection of attributes from the attribute set.

14.4.6 RedBoost Algorithm

In this section we introduce an algorithm, which is used in the feature selection for
multiple classifier systems. In the process the algorithm uses subsets of the attribute
set, a classifier and a given training decision table. In this paper sets of decision
relative and decision and object related reducts were used. The algorithm allows to
decrease the number of given subsets (reducts) and increase the quality of these sub-
sets (i.e. classifiers which use decision tables created on the basis of these subsets
give better classification accuracies). The algorithm RedBoost takes a given reducts
set, a given training decision table, a classifier and a percentage parameter that indi-
cates how big the part of the created set of attribute subsets should remain.

The main loop of the algorithm is performed until the initial reduct set RED is not
empty. In line with label 3 every reduct from the reduct set RED is tested with the
use of the classifier CF (from the training decision table we create subtables with
conditional attributes like those in the reduct/atribute subsets and then test them
with the use of the classifier CF). In the for loop starting below the line with label
4 an algorithm seeks an attribute, which will be added to the created subsets of the
attribute sets. In for loop in this loop for each conditional attribute the number of
occurrences in the reducts set RED is calculated for each attribute (line with label 8)
and for each attribute, the algorithm calculates the sum of classification accuracies
of each reduct in which a given attribute is included (line with label 9). In line with
label 12 an algorithm calculates the mean value of the classification accuracy of
each attribute. Using the i f . . . then instruction the maxAtr is found.
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Algorithm 14.9. RedBoost
Input : T – training decision table with the m condition attributes.

RED - reducts set
CF - classifier
Perc - ∈ (0,1〉 ⊂ R.

Output: NRED - set of attribute subsets of the training decision table T
NRED = /0;
while (RED �= /0) do

accRED = Classi f (RED,CF); //classification accuracies calculated for each
reduct. // 3

maxVal = 0; // 4
forall the (attributes a ∈ A) do

forall the (reducts R ∈ RED) do
if (a ∈ R) then

numAtra = numAtra + 1; // 8
sumAcca = sumAcca + accREDR;// 9

avgAcca = sumAcca/numAtra // 12
if (maxVal < avgAcca) then

maxVal = avgAcca;
maxAtr = a;

forall the (R ∈ RED) do
R = R∪maxAtr; // 20

accRED2 =Classi f (RED,CF); // 21
forall the (R ∈ RED) do

if (accRED2R− accREDR<=0) then
NRED = NRED∪ (R\maxAtr);
RED = RED\R

NRED = RemoveWorst(NRED,1−Perc) // 29

This attribute has the biggest value of the mean classification accuracy. In the
loop with line with label 20 the best found attribute (maxAtr) is added to every
subset from the reducts set RED. In line with label 21 each new attribute subset
is evaluated with the use of the classifier CF . In the loop below line with label 21
the algorithm checks the difference between classification accuracy after adding at-
tribute maxAtr and before adding it (see i f . . . then instruction below line with label
21). If the difference between these classification accuracies is less than or equal
to zero (classification accuracy for such a subset decreases or remains unchanged)
then the subset after removing attribute maxAtr is added to the result set NRED and
it is removed from set RED. When the algorithm RedBoost finishes, the set of at-
tribute subsets NRED contains subsets, which generally have higher classification
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accuracies than reducts before using the RedBoost algorithm. The NRED set has a
smaller number of subsets than set RED. This is because some of the subsets cre-
ated by RedBoost are identical and they are removed. The algorithm also removes
subsets with the smallest classification accuracy in line 29. Subsets which remain
are percentage Perc of the set NRED (for example when Perc= 0.2 then 20% of the
subsets will remain in set NRED).

If we assume that time complexity of the classifier used for reducts and subsets
evaluation is O(n3) (for one reduct/subset) where n is the number of objects in the
training decision table and r is the number of reducts, then the time complexity of
the RedBoost algorithm in the worst case is O(r2n3).

14.4.7 Methodology of the Experiments and Results

Many experiments were performed using the RedBoost algorithm. In the experi-
ments we used decision relative reducts and object and decision relative reducts. In
all the experiments a simple multiple classifier was used. The results of these experi-
ments were compared with the results obtained with the same multiple classifier but
different feature selection methods (RBFS, RBFS1, RBFS2, RBFS3 [8]), a single k-
NN algorithm and the FASBIR multiple classifier. The experiments were performed
on the data from UCI Machine Learning Databases [2]. Data tables that have been
used are Diabetes, Glass, Autos, Breast − c. For each data table 10–fold cross–
validation method was used. The results of the experiments are in Table 14.8. In
the tables, column Acc denotes classification accuracy, Redboost(1) denotes results
for the RedBoost algorithm which uses decision relative reducts and RedBoost(2)
denotes results for the RedBoost algorithm which uses decision and object relative
reducts, column num. of red. denotes the number of reducts used.

Table 14.8 Results obtained with RedBoost and other algorithms for all data sets

Data table Diabetes Glass Autos Breast-c

Algorithm Acc num. of red. Acc num. of red. Acc num. of red. Acc num. of red.
k-NN 70.05 - 74.47 - 84.38 - 59.21 -
RBFS 74.37 27 75.65 313.5 86.08 146.9 78.16 18.4
RBFS1 74.73 27 75.42 313.5 87.08 146.9 81.47 18.4
RBFS2 74.66 12.2 76.97 72 82.82 34.5 77.65 12.1
RBFS3 75.03 11.5 76.66 72 85.75 40.3 81.47 11.8
FASBIR 74.63 - 74.44 - 84.94 - 80.04 -
RedBoost(1) 74.02 11 77.24 24.4 88.25 27.2 76.19 10.3
RedBoost(2) 75.32 11 76.90 17.4 89.75 17.4 81.81 11.2

We can conclude from the experiments results that in many cases algorithm
RedBoost gave better or similar quality feature subsets to RBFS algorithms. The



14 Hybrid Methods in Data Classification and Reduction 289

Redboost algorithm combined with a simple multiple classifier in many cases gave
better results than the FASBIR algorithm. For all data tables, RedBoost combined
with the simple multiple classifier gave better results than the single k-NN classifier.

The experiments also showed that parameter Perc should have a value such that
the resulting feature subset generated by the RedBoost algorithm should have 10-20
feature subsets.

14.5 MC2 Multiple Classiffier System

For the MC2 algorithm we also have training and test tables split into n parts
{Tr1, . . ., Trn} and {T s1, . . ., T sn}. This stage is critical to the classification. The
parts of training and test tables must be chosen properly.

Algorithm 14.10. Algorithm MC2
Input : {Tr1, . . ., Trn} and {T s1, . . ., T sn} are training and test subtables, respec-

tively.
CF1,CF2, . . .,CFn - classifiers (one of the algorithms: k-NN, decision rules,
LTF-c neural network or decomposition tree),
n - the number of classifiers.

Output: Test - a test table classified by algorithm.

Step 1. Classify objects from training subtables {Tr1, . . ., Trn} using leave-one-
out cross validation method with one of the classifiers (k-NN, decision rules,
LTF − c neural network or decomposition tree). As a result, we obtain n subtables
{Tr′1, . . ., Tr′n} with new decisions.

Step 2. Use {Tr1, . . ., Trn} subtables to classify Test subtables {T s1, . . ., T sn}
with one of the classifiers (k-NN, decision rules, LTF − c neural network or
decomposition tree). As a result, we obtain n subtables {T s′1, . . ., T s′n}.

Step 3. Create a new training table by combining decision attributes from new train-
ing subtables and the original training set
{dec(Tr′1), . . ., dec(Tr′n), dec(Original Training set)}.

Step 4. Create a new test table by combining decision attributes from new test sub-
tables {dec(T s′1), . . ., dec(Ts′n)}.

Step 5. (Optional): Classify the new test table using (k-NN, decision rules, LTF −
c neural network or decomposition tree) and the new training table.

The next part of the MC2 algorithm is the creation of new training and test
tables. We can use n classifiers (k-NN, decision rules, LTF − c neural network
or decomposition tree) to create these tables (in our experiments, we used k-NN
to prepare training and test sets). The new training table is obtained from parts
{Tr1, . . ., Trn} through classification. We use the leave-one-out cross validation
method to classify each object from training subtables. As a result, we obtain n
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decision attributes (from each subtable). Test tables are obtained in a similar way
with one exception. We use original subtables {Tr1, . . ., Trn} to classify test subta-
bles {T s1, . . ., Tsn}.

As a result of the MC2 algorithm we receive two new training and test sets.
We can apply any classifier to such data. In the algorithm above, we included the
optional Step 4 to illustrate this idea.

We also use weights to increase the efficiency of the algorithm. Weights are ap-
plied to a new training set. Each conditional attribute has a weight which tells us how
important this attribute is. The weighing procedure assigns weight to each condi-
tional attribute. Attributes which are more compatible with the decision have higher
weights. In our procedure, a weight is increased when the corresponding classi-
fier gives a correct answer, otherwise the weight is decreased, taking into account
the given class information of the object from the training set. Hence the weigh-
ing procedure uses this information to check whether this attribute is more or less
compatible.

The MC2 Classifier method is a reduction method. It allows to reduce the size
of the training and test data. Most reduction methods decrease the number of ob-
jects, see e.g., [7]. By using this method we can reduce the number of conditional
attributes instead of the number of objects by simply increasing the number of at-
tributes taken to each classifier.

When we apply a classifier to algorithm Step 4, the MC2 method becomes closely
related to the stacked generalization [23].
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Chapter 15
Uncertainty Problem Processing with Covering
Generalized Rough Sets

Jun Hu and Guoyin Wang

Abstract. Rough set theory is useful in processing uncertainty problems. Because
the limitation of classical rough set theory, many extensions have been developed.
Covering generalized rough set model is an important one of them. Although many
theoretical results have been achieved in the past years. However, the application of
covering generalized rough set theory is discussed rarely. In this chapter, two typ-
ical uncertainty problems, incomplete information processing, and fuzzy decision
making, are discussed from the view of covering generalized rough set theory.

Keywords: Uncertainty problem processing, covering generalized rough set, in-
complete information system, knowledge reduction, fuzzy decision making, fuzzy
rough set.

15.1 Introduction

Uncertainty is widely exist in real world. Randomicity and fuzziness are two kinds
of uncertainties which are familiar to us [18]. To solve the problems with randomic-
ity or fuzziness, probability theory and fuzzy set theory were proposed respectively.
Different from these two uncertainties, roughness is another kind of uncertainty,
which wins wide attention in recent years. Generally, roughness is induced by the
incompleteness or imprecision of knowledge. To address the roughness in problems,
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rough set theory was developed by Pawlak in 1982 [24]. Since then, it has been
widely applied in many fields, such as machine learning, data mining, and pattern
recognition.

The classical rough set theory is based on indiscernibility relation. Given an in-
discernibility relation, one can get a partition, where each element in the partition is
called an equivalence class. And then, a subset of the universe which can be repre-
sented by a union of some equivalence classes is called a definable set. For an arbitrary
subset of the universe, one can use two definable sets called lower approximation and
upper approximation to approximate it. To be specific, the lower approximation is the
maximal definable set included in it, and the upper approximation is the minimal de-
finable set including it. This is the basic idea of classical rough sets.

Unfortunately, it might be impossible or cost too much to acquire indiscernibility
relation in some cases. Thus, it is necessary to extend classical rough set theory
to general cases. As we know, an equivalence relation determines a partition on a
universe, and vice versa. However, there is no such one-to-one relationship between
coverings and general binary relations on a universe. So, rough set model is extended
in two different views. One is from the view of general relation [12] [15] [16] [26]
[30] [27] [28], and the other is from the view of covering [36] [1] [22] [37] [38] [29]
[11] [6] [31] [33] [19] [4] [39] [40] [34] [41] [42] [43] [7].

Although, covering generalized rough set theory was proposed by Zakowski in
1983 [36], it does not get much attention until recent years. Here we can classified
all the works about covering generalized rough set theory into four aspects:

(1) The definition of rough operator. Bonikowski gave a concept called minimal
description, and defined a pair of rough operators based on it [1]. Latter, other three
different definitions were developed from different points [22] [29] [40].

(2) The reduction of covering. Zhu studied the reduction of covering, and found
the condition in which two coverings generate the same covering lower and up-
per approximations [37] [38]. Hu proposed the definition of relative reduction of
covering, and proofed that a covering and its relative reduction have the same ap-
proximation ability [7].

(3) The uncertainty measure of covering generalized rough sets. To characterize
the uncertainty of covering generalized rough sets, many methods have been devel-
oped, such as rough entropy and fuzzy degree [11] [6] [34], which provide tools for
quantitatively analyzing the approximation ability of covering.

(4) The combination of rough set theory with other theories. To address some
complex problems, it is necessary to combine rough set theory with other theories.
For example, covering generalized rough fuzzy set model has been developed to
solve the problems with both roughness and fuzziness [31] [33] [4] [41].

This chapter focuses on how to use covering generalized rough set theory to
address some uncertainty problems. The remainder of this chapter is arranged as
follows. The preliminary of rough set theory is recalled in Section 15.2. In Sec-
tion 15.3, the knowledge reduction model of covering is introduced firstly, and then
is applied to process incomplete information system. A covering generalized rough
fuzzy set model is developed to address problems with both roughness and fuzziness
in Section 15.4. Section 15.5 concludes this chapter.
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15.2 Preliminary of Rough Set Theory

U is a finite and non-empty set called the universe, and R ⊆ U ×U is an equiva-
lence relation on U . Then, the ordered pair (U,R) is called a Pawlak approxima-
tion space [25]. The equivalence relation R partitions the universe U into disjoint
subsets, and each subset is called an equivalence class. Such a partition of the uni-
verse is denoted by U/R. If two elements x and y of U are in the same equiv-
alence class, we say that x and y are indistinguishable. The equivalence classes
induced by R, and the empty set /0 are called the elementary sets in the approximation
space (U,R).

The equivalence relation and the induced partition are regarded as the available
information or knowledge about the objects under consideration. Given an arbitrary
set X ⊆ U , if it is the union of one or more elementary sets, then it is definable.
Otherwise, it is undefinable. That is, the available information is not sufficient to
give a precise representation of X . In this case, one may characterize X using a pair
of sets called the lower and upper approximations:

R(X) = ∪{Y ∈U/R|Y ⊆ X} (15.1)

R(X) = ∪{Y ∈U/R|Y ∩X �= /0} (15.2)

The lower approximation R(X) is the union of all the elementary sets which are
subsets of X . It is the largest definable set contained in X . The upper approximation
R(X) is the union of all the elementary sets which have a non-empty intersection
with X . It is the smallest definable set containing X .

Let C be a family of subsets of U . If none subset of C is empty, and ∪C =U , C is
called a covering of U . The ordered pair (U,C) is called a covering approximation
space. Let x be an object of U , the set family Ad(x) = {K ∈ C|x ∈ K} is called the
description of x, and the set family Md(x) = {K ∈ C|x ∈ K ∧∀S ∈ C(x ∈ S∧ S ⊆
K ⇒ K = S)} is called the minimal description of x.

For a set X(X ⊆U), the same as classical rough set theory, one can characterize it
by a pair of sets, called the covering lower and upper approximations. From different
views, four types of definitions have been proposed [8]. They are:

CL(X) = ∪{K|K ∈C∧K ⊆ X} (15.3)

FH(X) =CL(X)∪{∪Md(x)|x ∈ X −CL(X)} (15.4)

SH(X) = ∪{K|K ∈C∧K ∩X �= φ} (15.5)

T H(X) = ∪{∪Md(x)|x ∈ X} (15.6)

RH(X) =CL(X)∪{K|K ∈C∧K ∩ (X −CL(X)) �= φ} (15.7)

Where CL is the covering lower approximation, and FH, SH, TH and RH are the
first, the second, the third, and the fourth types of covering upper approximation
respectively.
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For the convenience of discussion, we use C∗(X) to represent the covering lower
approximation, and C∗(X) to represent the covering upper approximation, which
could be any one of upper approximations introduced above.

15.3 Incomplete Information System Processing with Covering
Generalized Rough Sets

In many problems, we cannot get all attribute values of every object for some rea-
sons. This may result in the description of some objects as incomplete. We call the
information systems, which have unknown attribute values, incomplete information
systems. Incomplete information processing is a typical uncertainty problem.

Generally, there are two methods for incomplete information system processing.
One is to transform an incomplete information system into a complete informa-
tion system, then process it with general methods. The other is to extend general
methods, then use it to process incomplete information system directly. Because the
former method may result in change or reduction of information, people tend to use
the later one to process incomplete information system.

In recent years, many extended models have been developed, such as tolerance
relation based rough set model [15] [16], similarity relation based rough set model
[27] [28], limited tolerance relation based rough set model [30], and characteristic
relation based rough set model [5] [20]. We can find that all of them are from the
view of relation. Here, we will discuss this problem in the view of covering. In the
following, we will firstly develop a knowledge reduction model, and then use it to
process incomplete information system.

15.3.1 Knowledge Reduction Model of Covering Approximation
Space

In order to find the condition in which two different coverings generate the same
covering lower and upper approximations, Zhu gave the definition of reducible ele-
ment and irreducible element of a covering [38].

Definition 15.1. Let C be a covering of a universe U , K be an element of C. If K is
a union of some sets of C−{K}, we say K is a reducible element of C, otherwise
an irreducible element of C.

Definition 15.2. Let C be a covering of U . If every element of C is irreducible, we
say C is irreducible, otherwise, C is reducible.

Proposition 15.1. Let C be a covering of U, K be a reducible element of C, and K1

be another element of C, then K1 is a reducible element of C if and only if it is a
reducible element of C−{K}.
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Definition 15.3. For a covering C of U , the new irreducible covering through elim-
inating the reducible elements of C is called the reduction of C, denoted by red(C).

Example 15.1. Let U = {x1,x2,x3,x4,x5}, C = {K1,K2,K3,K4}, where K1 = {x1,
x2,x3}, K2 = {x1,x2}, K3 = {x2,x3}, and K4 = {x3,x4,x5}.

According to the definition above, K1 is reducible because K1 = K2 ∪K3, and
other elements of C are not reducible. So, red(C) = {K2,K3,K4}.

Because the reduction does not rely on other conditions, we call it absolute
reduction.

Proposition 15.2. Let C be a covering of U, red(C) be the absolute reduction of C,
then C and red(C) generate the same covering lower approximations.

Proposition 15.3. Let C be a covering of U, red(C) be the absolute reduction of C,
then C and red(C) generate the same first type of covering upper approximations.

Proposition 15.4. Let C be a covering of U, red(C) be the absolute reduction of C,
then C and red(C) generate the same third type of covering upper approximations.

However, a covering and its absolute reduction may generate different results for
the second and the fourth types of covering upper approximations.

From the above introduction, we can find that the absolute reduction of a covering
generates the same covering lower approximation, the same first and third types
of covering upper approximations as the given covering. That is, it can simplify a
covering by eliminating all the reducible elements of it, but does not decrease its
approximation ability.

In many cases, we want covering to be as simple as possible. Then, for a given
concept, there are other redundant elements in a covering besides the absolutely
redundant elements? What is the condition in which, two coverings could gener-
ate the same covering lower and upper approximations for a given concept? In the
following, we will discuss these problems.

Definition 15.4. Let C be a covering of U , X be a subset of U , and K be an element
of C. If there is another element K

′
of C such that K ⊆ K

′ ⊆ X , then K is a relatively
reducible element of C with respect to X , or a relatively reducible element for short,
otherwise, a relatively irreducible element.

Definition 15.5. Let C be a covering of U , X be a subset of U . If every element of
C is relatively irreducible, then C is irreducible with respect to X , otherwise, C is
reducible with respect to X .

Proposition 15.5. Let C be a covering of U, X be a subset of U. If K is a relatively
reducible element of C with respect to X, C−{K} is still a covering of U.

Proposition 15.6. Let C be a covering of U, X be a subset of U. If K is a reducible
element of C with respect to X, and K

′
is another element of C, then K

′
is a relatively

reducible element of C with respect to X if and only if it is a relatively reducible
element of C−{K} with respect to X.
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Proof. If K
′

is a relatively reducible element of C −{K} with respect to X , then
there should be an element K1 ∈ C −{K,K

′} such that K
′ ⊆ K1 ⊆ X . Obviously,

K1 ∈ C −{K}, so K
′

is also a reducible element of C with respect to X . On the
other hand, if K

′
is a relatively reducible element of C with respect to X , then there

should be an element K1 ∈ C−{K
′} such that K

′ ⊆ K1 ⊆ X . If K1 �= K, then K1 ∈
C−{K,K

′ }. So, K
′

is a relatively reducible element of C−{K} with respect to X .
Otherwise, if K1 = K, since K is a reducible element of C with respect to X , then
there should be an element K2 ∈C−{K} such that K ⊆K2 ⊆ X . Thus, K

′ ⊆K2 ⊆ X ,
so K

′
is also a relatively reducible element of C−{K} with respect to X . ��

Proposition 15.5 guarantees that it is still a covering after a relatively reducible ele-
ment of a covering is eliminated. Proposition 15.6 indicates that it will not generate
any new relatively reducible elements or make any other originally relatively re-
ducible elements become relatively irreducible after a relatively reducible element
of a covering is eliminated.

Definition 15.6. Let C be a covering of U , X be a subset of U . The new irreducible
covering through eliminating all relatively reducible elements is called the relative
reduction of C with respect to X , denoted by redX(C).

It can be proofed that each covering has only one relative reduction with respect to
a given concept.

Example 15.2. Let U = {x1,x2, ...,x6}, and C = {K1,K2,K3,K4}, where K1 = {x1,
x2,x3}, K2 = {x3,x4}, K3 = {x3,x4,x5}, and K4 = {x1,x6}.

For X = {x3,x4,x5,x6}, K2 is relative reducible with respect to C because
K2 ⊆ K3 ⊆ X , and other elements of C are not relatively reducible. So, redX(C) =
{K1,K3,K4}.

Proposition 15.7. Let C be a covering of U, X be a subset of U. If K(K ∈ C) is a
relatively reducible element, then the covering lower approximations of X generated
by C and C−{K} are the same.

Proof. Suppose the covering lower approximations of X generated by C and
C−{K} are X1

∗ and X2
∗ respectively. From the definition of the covering lower ap-

proximation, it is evident X2
∗ ⊆ X1

∗ ⊆ X . If x ∈ X1
∗ , then ∃x∈K2∈C(K2 ⊆ X). If K2 �=K,

then x ∈ X2
∗ . If K2 = K, since K is a relatively reducible element with respect to X ,

there should be an element K1(K1 ∈ C−{K}) such that K ⊆ K1 ⊆ X , then x ∈ X2
∗

too. Therefore, X1
∗ ⊆ X2

∗ . So, X1
∗ = X2

∗ , namely Proposition 15.7 holds. ��

Corollary 15.1. Let C be a covering of U, X be a subset of U, and redX(C) be a
relative reduction of C with respect to X, then the covering lower approximations of
X generated by C and redX(C) are the same.

Proposition 15.8. Let C be a covering of U, X be a subset of U. If K(K ∈ C) is a
relatively reducible element, then the covering upper approximations of X generated
by C and C−{K} are the same.
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Proof. Since K is a relatively reducible element with respect to X , there should
be an element K1(K1 ∈ C−{K}) such that K ⊆ K1 ⊆ X . Therefore, we have K ⊆
K1 ⊆ C∗(X) ⊆ C∗(X) no matter which type of covering upper approximation it is.
So, it does not reduce the covering upper approximation after a relatively reducible
element of a covering is eliminated, namely Proposition 15.8 holds. ��

Corollary 15.2. Let C be a covering of U, X be a subset of U, and redX(C) be the
relative reduction of C with respect to X, then the covering upper approximations of
X generated by C and redX(C) are the same.

Example 15.3. Let U = {x1,x2,x3,x4}, and C = {K1,K2,K3}, where K1 = {x1},
K2 = {x1,x2}, K3 = {x2,x3,x4}.

Let X = {x1,x2,x3}. Since K1 ⊆ K2 ⊆ X , K1 is a relatively reducible element of
C with respect to X . So, redX(C) = {K2,K3}. Then, CL(X) = {x1,x2}, FH(X) =
{x1,x2,x3,x4}, and TH(X) = {x1,x2,x3,x4} both in C and redX(C).

However, the covering lower approximation and upper approximations may be dif-
ferent for other concepts in Example 15.3. For example, let Y = {x1}, the covering
lower approximation of Y is {x1} in C, but the covering lower approximation of Y is
/0 in redX(C). So, the relative reduction of a covering with respect to a given concept
has the same approximation ability for the given concept, but it maybe has different
approximation ability for other concepts.

The purpose of data mining is to acquire knowledge (rules) from large data sets.
In general, the more concise the rules are, the better the rules will be. Therefore,
knowledge reduction is an important step in knowledge acquisition.

Let U be a universe of discourse, P be a family of nonempty subsets of U . If
∀p1,p2∈P(p1 �= p2 ⇒ p1 ∩ p2 = φ), and

⋃

pi∈P

pi =U

then P is called a partition of U . Here, we also call it a decision.

Definition 15.7. Let C be a covering of U , and P be a decision. For an element
K(K ∈ C), if ∃pi∈P(K ⊆ pi), we call K a consistent granule with respect to P, or a
consistent granule for short, otherwise, an inconsistent granule.

In knowledge acquisition, rules are often used to represent knowledge. For example,
p → q is a rule, and |p∩ q|/|U | (where |.| is the cardinality of a set) is called its
support degree. Generally speaking, a rule with higher support degree would be
more useful than a lower one.

Let C be a covering of U , P be a decision. For two granules K,K
′
(K,K

′ ∈ C),
if ∃pi∈P(K ⊆ K

′ ⊆ pi), then both K and K
′

are consistent granules. However, we
say rule K

′ → pi is more useful than rule K → pi for its higher support degree,
while rule K → pi is less useful. Therefore, for a consistent granule, if there is
another consistent granule including it, then the rule generated by it is reducible.
So, a consistent granule with lower support degree is a relatively reducible element.
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In the other hand, for a granule K(K ∈ C), suppose K is an inconsistent
granule, and

K =
⋃

ki∈C−{K}
ki

where ki is an absolute irreducible element of C. For a granule ki and an element x
of it, if ∃pi∈P(ki ⊆ pi), then ki is a consistent granule, and x can be classified into
pi definitely according to rule ki → pi. Otherwise, ki is an inconsistent granule. We
know that ki ⊆ K and K is not in Md(x). If x ∈ pi, then x can be classified into pi

approximately by rule ki → pi. Therefore, for an inconsistent granule, if it is a union
of some other granules, the rule generated by it will also be reducible. Apparently,
an inconsistent granule, which is a union of some other granules, is an absolute
redundant element.

Definition 15.8. Let U be a universe, C be a covering of U , and P be a decision. If
K(K ∈C) is relatively reducible with respect to any pi(pi ∈ P), then K is relatively
reducible with respect to P. Otherwise, K is relatively irreducible with respect to P.

Definition 15.9. Let U be a universe, C be a covering of U , and P be a decision. If
every element of C is relatively irreducible with respect to P, C is relatively irre-
ducible with respect to P. Otherwise, C is relatively reducible with respect to P.

Definition 15.10. Let U be a universe, C be a covering of U , and P be a decision. If
any element of C is relatively reducible with respect to P, then delete it from C until,
C is relatively irreducible with respect to P. Thus, one will get a relative reduction
of C with respect to P, denoted by redP(C).

Definition 15.11. Let U be a universe, C be a covering of U , and P be a decision.
The positive region and boundary region of C with respect to P are defined as fol-
lows:

PosC(P) =
⋃

pi∈P

C∗(pi) (15.8)

BNC(P) =
⋃

pi∈P

C∗(pi)−
⋃

pi∈P

C∗(pi) (15.9)

Where PosC(P) is a set composed by all elements which could be classified def-
initely in (U,C), and BNC(P) is the complement of PosC(P). That is, BNC(P) =
U −PosC(P). Since the definitions of covering lower approximation of four types
of covering generalized rough set models are the same, the positive regions and
boundary regions of C with respect to P are also the same in these models.

Proposition 15.9. Let C be a covering of U, P be a decision, and red(C) be the
absolute reduction of C, then red(C) and C generate the same positive regions and
boundary regions.
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Proposition 15.10. Let C be a covering of U, P be a decision, and redP(C) be the
relative reduction of C, then redP(C) and C generate the same positive regions and
boundary regions.

Proposition 15.9 and Proposition 15.10 show that both absolute reduction and rel-
ative reduction do not reduce the positive region, or change the boundary region,
namely the classification ability is not reduced.

From the above discussion, we can develop a diagram for knowledge reduction
of covering approximation space shown in Fig. 15.1.

 
Covering 

approximation 
space 

Relative 
reduction 

Absolute 
reduction 

Knowledge 
acquisition 

Fig. 15.1 knowledge reduction of covering approximation space

The algorithm for knowledge reduction of covering approximation space is as
follows:

Algorithm 1 (Knowledge Reduction of Covering Approximation Space)
Input: An covering approximation space (U,C), and a decision P.
Output: reduct(C|P).
Step 1: Let reduct(C|P) =C.
Step 2: If C �= φ , then choose an element K(K ∈C), and let C =C−{K}. Otherwise,
let T = reduct(C|P), and go to Step 4.
Step 3: If K is a relatively reducible element of reduct(C|P) with respect to P, then
let reduct(C|P) = reduct(C|P)−{K}. Go to Step 2.
Step 4: If T �= φ , then choose an element K(K ∈T ), and let T = T −{K}. Otherwise,
go to Step 6.
Step 5: If K is an absolutely reducible element of reduct(C|P), then let
reduct(C|P) = reduct(C|P)−{K}. Go to Step 4.
Step 6: Output reduct(C|P).

Example 15.4. Let U = {x1,x2,x3,x4,x5}, and C = {K1,K2,K3,K4,K5,K6,K7},
K1 = {x1}, K2 = {x1,x2,x3}, K3 = {x3,x4}, K4 = {x3}, K5 = {x4}, K6 = {x5},
K7 = {x1,x5}. Suppose P = {p1, p2}, where p1 = {x1,x2}, p2 = {x3,x4,x5}.

Since K4 ⊆ K3 ⊆ p2, K4 is relatively reducible with respect to P, and K5 is
also relatively reducible with respect to P for K5 ⊆ K3 ⊆ p2. Moreover, because
K7 =K1∪K6, K7 is absolutely reducible. Therefore, reduct(C|P)= {K1,K2,K3,K6}.
Moreover, we have

PosC(P) = Posreduct(C|P)(P) = {x1,x3,x4,x5},
BNC(P) = BNreduct(C|P)(P) = {x2}.
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In Algorithm 1, relatively redundant elements are reduced at first, and absolutely
redundant elements are reduced then. If the absolutely redundant elements are re-
duced firstly, K3 and K7 will be reduced in Example 15.4. Then, the originally rel-
atively redundant elements, K4 and K5, will become relatively irreducible. In that
way, we need one more rule with lower support degree to cover the objects x3 and
x4. So, these two steps can not be exchanged.

15.3.2 An Example

There are two kinds of semantics of unknown values in incomplete information
system. One is missing, and the other is absent. Next, we will use the reduction
model proposed above to address an incomplete information system with missing
value and absent value. The incomplete information system is shown as Table 15.1,
where “*” denotes missing value, and “�” denotes absent value.

Table 15.1 An incomplete information table

O a1 a2 a3 a4 d

x1 1 * 1 1 ϕ
x2 1 1 � 1 ψ
x3 1 2 2 2 ϕ
x4 2 1 2 � ψ
x5 2 1 3 3 ψ
x6 3 2 * 2 ϕ
x7 2 1 3 3 ψ

a(x) denotes the value of an object x, on an attribute a, and (a1,1) denotes the
set formed by all objects whose attribute values are 1 on attribute a1. For a1, there
are no unknown values. We have (a1,1) = {x1,x2,x3}, (a1,2) = {x4,x5,x7}, and
(a1,3) = {x6}. For a2, there is a missing value. We have (a2,1) = {x1,x2,x4,x5,x7}
and (a2,2) = {x1,x3,x6}. For a4, there is an absent value. We have (a4,1) =
{x1,x2}, (a4,2) = {x3,x6} and (a4,3) = {x5,x7}. For a3, there are both miss-
ing value and absent value. We have (a3,1) = {x1,x6}, (a3,2) = {x3,x4,x6} and
(a3,3) = {x5,x6,x7}. In addition, for d, we have (d,ϕ) = {x1,x3,x6} and (d,ψ) =
{x2,x4,x5,x7}.

Obviously, all the sets induced by {a1,a2,a3,a4} form a covering C = {(a1,1),
(a1,2),(a1,3),(a2,1),(a2,2),(a3,1),(a3,2),(a3,3),(a4,1),(a4,2),(a4,3)}. In ad-
dition, all the sets induced by d form a partition P = {(d,ϕ),(d,ψ)}. Then, the
given incomplete information system is transformed into a classification problem,
based on a covering approximation space.
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According to the definition of positive region and boundary region, we have
PosC(P) = {x1,x3,x4,x5,x6,x7},
BNC(P) = {x2}.
That is, the decision P is inconsistent in (U,C). Since
(a1,3)⊆ (a2,2)⊆ (d,ϕ),
(a3,1)⊆ (a2,2)⊆ (d,ϕ),
(a4,2)⊆ (a2,2)⊆ (d,ϕ),
(a4,3)⊆ (a1,2)⊆ (d,ψ).
(a1,3), (a3,1), (a4,2) and (a4,3) are relatively reducible with respect to P. Then,

we delete them from C. Because
(a1,2)∪ (a4,1) = (a2,1),
(a2,1) is absolutely reducible. Thus, we delete it from C. Then, we get the final

reduction.
reduct(C|P) = {(a1,1),(a1,2),(a2,2),(a3,2),(a3,3),(a4,1)}.
Similarly, we have
Posreduct(C|P)(P) = {x1,x3,x4,x5,x6,x7},
BNreduct(C|P)(P) = {x2}.
That is, the reduced approximation space has the same classification ability

as the unreduced approximation space. Comparing with the unreduced approx-
imation space, the number of elements in the reduced approximation space is
45% off.

15.4 Fuzzy Decision Making with Covering Generalized Rough
Fuzzy Sets

To cope with the problems, both roughness and fuzziness, rough set theory and fuzzy
set theory were put together. Rough fuzzy set and fuzzy rough set were first devel-
oped by Dubois and Prade [2] [3]. Since then, the combination of these two theories
won wide attention [23] [32] [35] [21], and had been successfully applied in many
complicated problems, such as numeric attribute information system processing,
hybrid attribute information system processing, and so on [17] [13] [10] [9] [14].

Generally, classical rough set theory can only address nominal attribute infor-
mation system. For the information system with numeric attribute, attribute dis-
cretization is a necessary step in data preprocessing. However, the nominal values
gotten by discretization are often meaningless and disjoint. And yet, many con-
cepts used in real world have no clear border, such as “young”, “middle” and “old”.
So, the rules mined from data are not understandable or usable for people. In this
section, we will combine rough set theory and fuzzy set theory, and develop a cov-
ering rough fuzzy set model, and then use it to solve the problem of fuzzy decision
making.
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15.4.1 Covering Generalized Rough Fuzzy Sets

Let (U,C) be a covering approximation space, and A be a fuzzy set on U , then A
can be approximated by a pair of fuzzy sets (C(A),C(A)), where C(A) is called the
covering lower approximation of A, and C(A) the covering upper approximation of
A. Their membership functions are defined as follows:

μC(A)(x) = supK∈Ad(x){in fy∈K{μA(y)}} (15.10)

μC(A)(x) = in fK∈Ad(x){supy∈K{μA(y)}} (15.11)

Example 15.5. Let U = {x1,x2,x3,x4}, and C = {K1,K2,K3}, where K1 = {x1,x2},
K2 = {x2,x3},K3 = {x3,x4}.

A = {1/x1,1/x2,0/x3,0/x4} and B = {1/x1,0/x2,1/x3,0/x4} are two fuzzy sets
on U . According to the definition above, we have

C(A) = {1/x1,1/x2,0/x3,0/x4},C(A) = {1/x1,1/x2,0/x3,0/x4}
C(B) = {1/x1,0/x2,1/x3,0/x4},C(B) = {1/x1,1/x2,1/x3,1/x4}

Let x be an arbitrary object of U . Suppose K ∈ Ad(x), but K /∈ Md(x), then
∃L∈Md(x)(L ⊆ K). And then,

μC(A)(x)≥ in fy∈L{μA(y)} ≥ in fy∈K{μA(y)}.
μC(A)(x)≤ supy∈L{μA(y)} ≤ supy∈K{μA(y)}.
That means, the lower and upper approximations do not change after K is deleted.

In other words, the minimal description set has the same approximation ability as
the description set. So, the definition of covering rough fuzzy set can be equivalently
written as:

μC(A)(x) = supK∈Md(x){in fy∈K{μA(y)}} (15.12)

μC(A)(x) = in fK∈Md(x){supy∈K{μA(y)}} (15.13)

Moreover, we can get the following propositions.

Proposition 15.11. Let C be a covering of U, red(C) be the absolute reduction of
C, then C and red(C) generate the same covering rough fuzzy sets.

Proposition 15.12. Let C be a covering of U, and /0 be the empty set. A and B are
two fuzzy sets, and ∼ A is the complement of A. We have

(1) Co-normality: C(U) =C(U) =U
(2) Normality: C( /0) =C( /0) = /0
(3) Contraction & Extension: C(A)⊆ A ⊆C(A)
(4) Duality: C(∼ A) =∼C(A), ∼C(∼ A) =∼C(A)
(5) Monotone: A ⊆ B ⇒C(A)⊆C(B), A ⊆ B ⇒C(A)⊆C(B)
(6) Idempotency: C(A) =C(C(A)),C(A) =C(C(A))
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15.4.2 An Example

The approval of credit card is a complex problem. In the process of approval, the
salary of applicant is a very important information for decision making. However,
applicants are not often willing to tell their own salaries. To address this problem,
we can forecast the income level of an applicant by other information. Next, we will
use the model developed above to help us to address this problem.

To simplify the problem, we only use the educational level to forecast the income
level of applicants. Suppose there are 9 applicants U = {x1,x2, ...,x9}, and their
educational levels labeled by 3 experts are as follows:

E1 : good = {x1,x2,x3},average = {x4,x5,x6}, poor = {x7,x8,x9};
E2 : good = {x1,x2},average = {x3,x4,x5}, poor = {x6,x7,x8,x9};
E3 : good = {x1,x2},average = {x3,x4,x5,x6,x7}, poor = {x8,x9}.
According the evaluation of 3 experts, we can get a covering C = {good, av-

erage, poor}, where good = {x1,x2,x3}, average = {x3,x4,x5,x6,x7}, and poor =
{x6,x7,x8,x9}.

The salaries of all applicants are as Table 15.2.

Table 15.2 Salaries of applicants

U x1 x2 x3 x4 x5 x6 x7 x8 x9

Salary 5000 3800 3500 3300 2500 2000 1600 1300 900

Then, we can get three fuzzy sets, high, middle, and low, according to the fuzzy
membership function shown as Fig. 15.2. They are

high = {1/x1,0.8/x2,0.5/x3,0.3/x4,0/x5,0/x6,0/x7,0/x8,0/x9},
middle = {0/x1,0.2/x2,0.5/x3,0.7/x4,1/x5,1/x6,0.6/x7,0.3/x8,0/x9},
low = {0/x1,0/x2,0/x3,0/x4,0/x5,0/x6,0.4/x7,0.7/x8,1/x9}.
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0 1000 2000 3000 4000 5000
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Fig. 15.2 Fuzzy membership function of salary
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Taking fuzzy set high as example, we can get its lower and upper approximations:
C(high) = {0.5/x1,0.5/x2,0.5/x3,0/x4,0/x5,0/x6,0/x7,0/x8,0/x9}
C(high) = {1/x1,1/x2,0.5/x3,0.5/x4,0.5/x5,0/x6,0/x7,0/x8,0/x9}
Let μC(high)(good) and μC(high)(good) be the maximum and minimum member-

ship degrees of good in high respectively, then
μC(high)(good) = sup{uhigh(x)|x ∈ good}= 1,
μC(high)(good) = in f{uhigh(x)|x ∈ good}= 0.5.
That is, when we know the educational level of an applicant is good, we can

forecast that the membership degree of he/she belonging to high is between 0.5 and
1. Similarly, we have

μC(middle)(good) = 0.5, μC(middle)(good) = 0,
μC(low)(good) = 0, μC(low)(good) = 0,
μC(high)(average) = 0.5, μC(high)(average) = 0,
μC(middle)(average) = 1, μC(middle)(average) = 0.5,
μC(low)(average) = 0.4, μC(low)(average) = 0,
μC(high)(poor) = 0, μC(high)(poor) = 0,
μC(middle)(poor) = 1, μC(middle)(poor) = 0,
μC(low)(poor) = 1, μC(middle)(poor) = 0.
Let μC(high)(x3) and μC(high)(x3) be the maximum and minimum membership

degrees of x3 in high respectively. Then
μC(high)(x3) = in f{μC(high)(good),μC(high)(average)}= 0.5,
μC(high)(x3) = sup{μC(high)(good),μC(high)(average)}= 0.5,
Therefore, for a new applicant, if we can get his/her educational level, then we

can use the method proposed above to forecast his/her income level.

15.5 Conclusion

In this chapter, we discuss how to use covering generalized rough set theory to
address some uncertainty problems. One is incomplete information processing, and
the other is fuzzy decision making. The examples in this chapter give enlightenment
for covering based uncertainty problem processing.
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Chapter 16
Hardware Implementations of Rough Set
Methods in Programmable Logic Devices

Maciej Kopczyński and Jarosław Stepaniuk

Abstract. This paper describes current achievements in hardware realization of
rough sets algorithms in FPGA (Field Programmable Gate Array) logic devices.
At the moment, only few ideas and hardware implementations have been created.
This chapter is a survey of them.

Keywords: Rough sets, hardware implementation, FPGA, programmable logic
devices

16.1 Introduction

Professor Zdzisław Pawlak introduced rough sets assuming that objects are
perceived by values of some attributes (for review see e.g., [9, 10, 12]). Existing
implementations of the rough set methods are implemented using high-level pro-
gramming languages. This type of implementation provides the ability to comply
with any of the algorithms, but the biggest issue is the relative low speed of opera-
tion.

The computer processor is a versatile system that executes an arbitrary list of
compiler-generated instructions dependent on the source code created by the pro-
grammer. For this reason, processors are not optimized to perform specific actions,
such as simultaneous rapid execution of elementary logical operations on large
amounts of data in a set of objects.

Creating hardware implementation allows us a huge acceleration of the calcula-
tion related to the chosen topic, but the disadvantage of this approach is the limit
of the applicability of such system only to given issues. A good example of such
solutions are GPU (Graphics Processing Unit), which are optimized for parallel

Department of Computer Science, Białystok University of Technology
Wiejska 45A, 15-351 Białystok, Poland
e-mail: {m.kopczynski,j.stepaniuk}@pb.edu.pl

A. Skowron and Z. Suraj (Eds.): Rough Sets and Intelligent Systems, ISRL 43, pp. 309–321.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013
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execution of calculations related to computer graphics. Most of the mass-produced
systems are ASIC-type systems (Application Specific Integrated Circuit) that do
not allow changes defined in their logical function. Prototype implementations of
specialized processors may be implemented in programmable logic devices (e.g.,
CPLDs (Complex Programmable Logic Device) and FPGAs) as sequential and
combination systems.

Another possibility is a combination of both implementation techniques of the
algorithms, which can take advantages of versatility known from software imple-
mentations and high-speed calculation of hardware implementations.

Rough sets theory concepts implementation in hardware device can
significantly accelerate the execution time of algorithms compared to software
implementation. Logic devices can execute the whole algorithm or just the most
time-consuming parts of it.

The chapter is organized as follows. In Section 16.2.1, Pawlak’s idea of rough set
processor is discussed. In Section 16.2.2, application of cellular networks in rough
set methods is shortly recalled. In Section 16.2.3, some investigations of Kanasugi
are presented. In Conclusions, we summarize the results of the chapter and present
some directions for further research.

16.2 Solutions Architecture

Designed and implemented rough sets hardware devices use the PC as an external
data source and an element of executing all or part of the main control program.
Hardware systems are used as mechanisms for performing complex calculations,
so it is possible to significantly accelerate the calculation time of algorithms. This
type of devices can be regarded as a kind of coprocessors. Block diagram of such
solutions is shown in Fig. 16.1.

Fig. 16.1 Block diagram of the rough sets hardware implementation
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More powerful FPGA development boards, in addition to the logic device, also
contain RAM, flash memory, external flash memory connectors, communication in-
terfaces (USB, Ethernet, etc. . . ) and extensive microcontrollers, e.g., on the ARM
cores. Moreover, large FPGAs allow us the implementation of the soft-core proces-
sors [14] [15]. Development boards equipped within this type of devices can be used
for the implementation of control software without the need for an external, large
PC. Currently available versions of operating systems (e.g. Linux) support most
common of soft-core processors, which makes it possible to install it on this type of
device. The Computing power of such processors is satisfactory for supporting these
tasks. This leads to minimization of the amount of space occupied by the resulting
device, which finally becomes an independent unit.

Currently, most of the existing softwares implement rough set algorithms in a
sequential manner. However, an important feature of these algorithms is the abil-
ity to perform their parts in parallel (see e.g. [13]), with an emphasis on hard-
ware implementations. In hardware devices, it is easy to duplicate some blocks for
parallel computational calculations. The only problem to be solved concerns the
development of appropriate process control systems.

16.2.1 Pawlak’s Idea of Rough Set Processor

In [8], Pawlak presented an outline of an exemplary RSP (Rough Set Processor)
structure. The organization of a simple processor is based on elementary rough set
granules and dependencies between them. A simplified RSP is shown in Fig. 16.2.

Decision Rule

Register

Decision Table

Memory

Arithmometer

Input

Fig. 16.2 Block diagram of Rough Set Processor [8]
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RSP consists of the following units:

• Decision table memory – this unit keeps the data from the decision table. An
ideal situation would be if the memory is large and fast enough to store the
whole decision table.

• Decision rule register – the main purpose of this unit is to generate a final set
of decision rules. This module cooperates with the arithmometer because of the
need to perform some calculations.

• Arithmometer – is unit the used to perform arithmetic operations for the rest of
the modules.

The idea of RSP design is as follows. At the beginning, only conditions, decisions
and support of each decision rule are given. Condition and decision are parts of
the decision rule. Support is the number of objects from the original decision table
matching a given decision rule.

The next operation step is calculation of strength, certainty and coverage factors
of each decision rule. These values will be used to find the most important decision
rules.

The idea presented by Pawlak was not realized in the programmable logic device.

16.2.2 Cellular Networks

Rybiński and Muraszkiewicz in [6] created the concept of describing rough sets
methods with usage of cellular networks. On this basis, the idea of the imple-
mentation of a device called PRSComp (Parallel Rough Sets Computer) was
presented. This is a device for parallel processing of basic rough set operations. The
description of cellular networks is contained in [7]. A single cell of the network is
able to perform the following operations: write a single character, read the saved
character, compare two characters, move the character to the southern neighbor,
swap characters between two adjacent cells in the column, set the state and move
the bit from the east input to the west output. Cellular network consists of a matrix
of interconnected elements of the same type (cells that can be treated as simple,
single processors) and a set of control registers. Block diagram of a cellular network
with a set of registers is shown in Fig. 16.3.

Registers defined in PRSComp are as follows:

• Column Mask Register (CM) – used to inhibit the processing of matrix cells.
• Comparand Register (C) – used to transfer words from and to the processor

array. Register also takes part in comparison operations.
• Word Selection Register (E) – contains the results of performed comparisons.

The use of cellular network with rough sets is based on the transformation of the
input data set to the matrix and definition of the basic operations associated with
rough sets using matrix notation. In [6], the following notions are presented along
with their pseudocode:
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Fig. 16.3 Block diagram of sample cellular network

• indiscernibility relation,
• upper approximation,
• lower approximation,
• reducts calculation,
• core calculation.

The given pseudocode allows the implementation of the presented matrix notation in
programmable logic devices. Pseudocode in conjunction with the homogenous na-
ture of cellular networks makes it possible to encode algorithms in such a way that
an operation (instruction) causes the simultaneous processing of many data ele-
ments. This mode of operation is called a SIMD (Single Instruction Multiple Data).

Paper [6] provides a basis for the development and expanding PRSComp de-
vice for another, more complex operation associated with rough sets and matrix
notation.

16.2.2.1 Self-Learning Cellular Network

Lewis, Perkowski and Jozwiak [5] described the idea of self-learning rough sets
model representation in hardware device. The Model is based on cellular networks
by Rybiński and Muraszkiewicz. They suggested the possibility of implementing
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the solution on DEC-PERLE-1 board, which is the matrix consisting of 23 type
3090 FPGAs from Xilinx. The general principle of device operation is to perform
the learning process at the higher level (software), while the later results of this
process are transferred to a lower level (hardware). A detailed description of the
system working process is as follows:

1. Creation of cellular network logical structure based on an optimized decision
matrix (the set of examples) and the requirements for the network construction.

2. Cellular network structure developed on the basis of data from the decision
matrix mapped to the FPGA unit, where each device performs the functions
described in the PRSComp system. Mapping is created using standard EDA
software (e.g., from Xilinx).

3. Device’s knowledge is stored in the memory of the DEC-PERLE-1 board as the
patterns representing created cellular networks structures. Previously created
cellular network patterns are multiplexed in order to choose the best one when
working with different data sets. The Switching scheme is supervised by an
external computer with appropriate control software.

4. During the network training phase, when solving new problems, decisions taken
are stored in the memory. Based on this data, the network structure can be re-
organized or built completely from scratch in order to avoid the impact of the
previously created pattern.

Dharmadhikari, Ngo and Lewis in [1] developed a partial implementation of the
PRSComp unit on the DEC-PERLE-1 board. They have created a VHDL source
code describing the operation of two elementary rough sets operations: the lower
and upper approximation. The module performing the comparison of values (in [6]
operation described as EXTCOMP) was also implemented. The authors did not test
the cooperation of the modules; only single units were tested.

16.2.2.2 Didactic Example

Example of finding dispensable attributes will be presented. First, three of the al-
gortihms known from PRSComp must be shown: EXTCOMP, BasicCAT and In-
dispensable [6]. Let m be the number of rows and n be the number of columns in
cellular array.

Routine EXTCOMP (A[m; n]; C[n]; E[m])
/* C[n] is the comparand */

MASK
E[m] := 0
for j = 0 to n if c[j] = a[i; j], then a couple is

transparent by labeled by ‘t’, otherwise it is opaquely
labeled by ‘o’ logic value of 1 is propagated
through rows of the array, if all cells in the
row are transparent then 1 is injected into
that position in the E register

Routine BasicCAT (A[m,n], i, E[m]) /* Basic category */
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/* The E register contains the characteristic vector that
indicates the words belonging to the basic category
generated by a_i */

MASK
C[n] := a_i
EXTCOMP(A[m; n]; i; E[m])

Routine Indispensable (A[m; n]; j) /* Indispensability */
/* j indicates the column number to be checked out */

for i = 1 to m
begin

MASK
BasicCAT (A[m; n]; i; B[m])
(MASK - {j})
BasicCAT (A[m; n]; i; C[m])
if B[m] �= C[m] then {j} is indispensable

end

Finding dispensable attribute can be realized by removing one input variable at a
time and determining whether or not the resulting table is consistent. The provided
example presents how this operation can be performed in PRSComp. The decision
table used in the example is presented in Table 16.1.

Table 16.1 Decision table [5]

U a b c d e f

1 0 0 0 1 1 1
2 0 1 0 0 0 1
3 0 1 1 0 0 1
4 1 1 0 0 0 1
5 1 1 0 1 0 1
6 1 1 1 1 0 1
7 1 1 1 0 0 1
8 1 0 0 1 1 1
9 1 0 0 1 0 1
10 0 0 0 0 0 0

The initial state of the machine is shown in Table 16.2.
Every cell of this table represents one primitive processor in PRSComp. Initially,

the contents of the CM (column mask register), C (comparand) and E (word selec-
tion) registers are undefined. The U column is shown in the tables for the clarity of
example.

First, the Indispensable routine is called. Loop within the routine is executed for
every row of Table 16.1. After the first step, the CM register is initialized to all
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Table 16.2 Initial state of the PRSComp machine [5]

CM
C

E U a b c d e f

1 0 0 0 1 1 1
2 0 1 0 0 0 1
3 0 1 1 0 0 1
4 1 1 0 0 0 1
5 1 1 0 1 0 1
6 1 1 1 1 0 1
7 1 1 1 0 0 1
8 1 0 0 1 1 1
9 1 0 0 1 0 1
10 0 0 0 0 0 0

1s (line MASK), which means that no processors are masked. In the next line, the
BasicCAT routine is called. The BasicCAT routine sets again the CM register with
1s. Then, the current row is copied to the comparand register C. In the next line, the
EXTCOMP routine is called. It sets up the CM register in the first line. The E register
is then initialized to all 0s. The result of the operations performed in the PRSComp
machine is shown in Table 16.3, presenting intermediate state of the internal data.

Table 16.3 Intermediate state of the PRSComp machine [5]

CM 1 1 1 1 1 1
C 0 0 0 1 1 1

E U a b c d e f

0 1 0 0 0 1 1 1
0 2 0 1 0 0 0 1
0 3 0 1 1 0 0 1
0 4 1 1 0 0 0 1
0 5 1 1 0 1 0 1
0 6 1 1 1 1 0 1
0 7 1 1 1 0 0 1
0 8 1 0 0 1 1 1
0 9 1 0 0 1 0 1
0 10 0 0 0 0 0 0
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Then the for loop iterates through all cells of the current row and labels every cell
with “t” or “o” depending on comparision result. PRSComp machine state after the
first execution of EXTCOMP is shown in Table 16.4.

Table 16.4 State of the PRSComp machine after the first call of EXTCOMP [5]

CM 1 1 1 1 1 1
C 0 0 0 1 1 1

E U a b c d e f

1 1 0 t 0 t 0 t 1 t 1 t 1 t
0 2 0 t 1 o 0 t 0 o 0 o 1 t
0 3 0 t 1 o 1 o 0 o 0 o 1 t
0 4 1 o 1 o 0 t 0 o 0 o 1 t
0 5 1 o 1 o 0 t 1 t 0 o 1 t
0 6 1 o 1 o 1 o 1 t 0 o 1 t
0 7 1 o 1 o 1 o 0 o 0 o 1 t
0 8 1 o 0 t 0 t 1 t 1 t 1 t
0 9 1 o 0 t 0 t 1 t 0 o 1 t
0 10 0 t 0 t 0 t 0 o 0 o 0 o

The current value of the E register is saved. Next, the bit in the CM regis-
ter corresponding to the index of column a in decision table is set to 0 (the col-
umn is checked). The EXTCOMP routine is called again and Table 16.5 shows the
PRSComp machine state after complete execution of the EXTCOMP routine.

Table 16.5 State of the PRSComp machine after second call of EXTCOMP [5]

CM 0 1 1 1 1 1
C 0 0 0 1 1 1

E U a b c d e f

1 1 0 t 0 t 0 t 1 t 1 t 1 t
0 2 0 t 1 o 0 t 0 o 0 o 1 t
0 3 0 t 1 o 1 o 0 o 0 o 1 t
0 4 1 t 1 o 0 t 0 o 0 o 1 t
0 5 1 t 1 o 0 t 1 t 0 o 1 t
0 6 1 t 1 o 1 o 1 t 0 o 1 t
0 7 1 t 1 o 1 o 0 o 0 o 1 t
1 8 1 t 0 t 0 t 1 t 1 t 1 t
0 9 1 t 0 t 0 t 1 t 0 o 1 t
0 10 0 t 0 t 0 t 0 o 0 o 0 o
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Previous and current values of the E register are compared. The values are not
equal, which means that attribute a is indispensable — it must be kept in the final
solution. In hardware implementation, all comparisions are done in parallel for every
row. This speeds up all the necessary calculations.

16.2.3 Direct Solutions

Kanasugi and Yokoyama [2] developed a concept of logic device capable of mini-
mizing the large logic functions created on the basis of discernibility matrix. System
output are small logical functions representing important decision rules. Figure 16.4
shows the block diagram of a database knowledge discovery process with proposed
location of the system.

Decision

table

Discernibility

matrix

Large-scale

logical

function

Decision

rule

Proposed processor

location

Fig. 16.4 Block diagram of the database knowledge discovery process with system
location [4]

The presented system is not independent. It requires an external data source and
the mechanisms for creating large logical functions from the database for correct
operation. This system can be treated as a coprocessor supporting the central unit.

A block diagram of the logic device is shown in Fig. 16.5.
The project consists of the following functional elements:

• Discernibility matrix maker – the unit makes the conversion from the database
that represents decision matrix to a binary decision matrix containing boolean
values. This module is theoretical due to the implementation complexity in the
hardware.

• Core selector – the main task of this unit is to select rows of binary decision
matrix, which include the shortest logical formulas (which have the smallest
number of variables with a true value).

• Covering unit – the goal of this unit is to check each row of a binary decision
matrix and denote them as candidates to be removed. Selecting the rows is based
on the data prepared by the core selector.

• Reconstruction unit – the role of this unit is to discover dominant variables in
binary decision matrix, which helps to find most significant decision rules.
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Fig. 16.5 Block diagram of the logic device [4]

System functionality can be divided into two parts: pre-process (data preparation)
and main process (working with prepared data).
In the data pre-process, two units are used: Core Selector and Covering Unit. The
purpose of the two mentioned units is to find the rows which contain the least
amount of boolean variables (search for cores). The modules also select redundant
binary decision matrix rows which can be deleted. Let us assume that the logical
function is given in the following form:

F = (x0 ∨ x2 ∨ x6)∧ (x0 ∨ x1 ∨ x2 ∨ x5 ∨ x6)∧ (x1 ∨ x2 ∨ x6 ∨ x7)

The shortest term is (x0 ∨ x2 ∨ x6). The second term can be removed because it
satisfies the relationship coreterm ⊆ otherterm :

(x0 ∨ x2 ∨ x6)⊆ (x0 ∨ x1 ∨ x2 ∨ x5 ∨ x6).

The purpose of the main process is to review the whole pre-processed binary deci-
sion matrix and select the most important rules (terms). The idea of the algorithm
implemented in Reconstruction Unit is to find dominant variables in pre-processed
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binary decision matrix and then create a new decision matrix. This matrix will con-
tain some amount of important decision rules dependent on the algorithm parameter.
It should be noted that the implemented algorithm uses an approximation technique.
Kanasugi has decided on this solution because of the reduction in time of calcula-
tions and the size of the entire system in the FPGA structure.

The solution proposed by Kanasugi and Matsumoto in [4] allowed nearly 700
times increase in the speed of calculations in comparison to PC. Binary decision
matrix containing 128 rows of data and 2032 attributes was used during the tests.
Table 16.6 shows the results of the experiment.

Table 16.6 Comparison of calculation time between hardware and software solution [4]

Device type Speed [MHz] Time [μs]

Hardware solution 50 7.18
PC 3400 72.54

16.3 Conclusions and Future Research

The hardware implementation is the main direction of using scalable rough sets
methods in real-time solutions. Software implementations are universal, but rather
slow. Hardware realizations are deprived of this universality, however, the allow us
to perform specific calculations in a substantially shorter time.

The authors are working on creating a rough sets hardware system, which has to
be universal for any type of data. The goal of the system is to process the data in
accordance with a set of rules, the rule generation from complex sets of data, fast
reducts and approximation calculations and so on. An important part of the project
is to create low-level input data transformation algorithms, which convert data from
decision matrix or database to low-level form (boolean or binary). Inverse operation
is also required — the conversion of results returned by the system to similar form
found in software implementations. These operations can be performed by software
executing on the main unit.

The system with hardware implementation of rough sets methods can be used
in embedded systems, such as industrial controllers, or as an alternative and very
fast method of process control and data classification. The field of potential usage
of the system can be very wide due to its versatility.
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Chapter 17
Determining Cosine Similarity Neighborhoods
by Means of the Euclidean Distance

Marzena Kryszkiewicz

Abstract. Cosine similarity measure is often applied in the area of information
retrieval, text classification, clustering, and ranking, where documents are usually
represented as term frequency vectors or its variants such as tf-idf vectors. In these
tasks, the most time-consuming operation is the calculation of most similar vec-
tors or, alternatively, least dissimilar vectors. This operation has been commonly
believed to be inefficient for large high-dimensional datasets. However, using the
triangle inequality to determine neighborhoods based on a distance metric, of-
fered recently, makes this operation feasible for such datasets. Although the cosine
similarity measure is not a distance metric and, in particular, violates the triangle
inequality, in this chapter, we present how to determine cosine similarity neighbor-
hoods of vectors by means of the Euclidean distance applied to (α−)normalized
forms of these vectors and by using the triangle inequality. We address three types
of sets of cosine similar vectors: all vectors, the similarity of which to a given vector
is not less than an ε threshold value, and two variants of the k-nearest neighbors of
a given vector.

Keywords: k-nearest neighbors, ε-neighborhood, the cosine similarity measure,
the Euclidean distance, the triangle inequality, normalized vector, data clustering,
text clustering, high-dimensional data.

17.1 Introduction

Cosine similarity measure is often applied in the area of information retrieval, text
classification, clustering, and ranking, where documents are usually represented as
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term frequency vectors or its variants, such as tf-idf vectors. In these tasks, the most
time-consuming operation is the calculation of most similar vectors or, alternatively,
least dissimilar vectors. This operation has been commonly believed to be inefficient
for large high-dimensional datasets. However, using the triangle inequality to deter-
mine neighborhoods based on a distance metric makes this operation feasible for
such datasets [1, 5–8, 10, 11].

Although the cosine similarity measure is not a distance metric and, in particular,
violates the triangle inequality, recently we have proposed in the research report
[9] how to determine cosine similarity neighborhoods of vectors by means of the
Euclidean distance applied to normalized forms of these vectors and by using the
triangle inequality. We have addressed there three types of sets of cosine similar
vectors: all vectors, the similarity of which to a given vector is not less than an ε
threshold value, and two variants of the k-nearest neighbors of a given vector. This
chapter is an extendend version of report [9]. In particular, we show here that cosine
similarity neighborhoods may be determined by means of the Euclidean distance
applied to α-normalized forms of vectors, where α �= 0, and by using the triangle
inequality. We also discuss here possible variants of the approach to calculating
cosine similarity neighborhoods that was proposed in [9].

Our chapter has the following layout. Section 17.2 provides basic notions and
properties used in the chapter. In particular, we examine properties and relationships
among the three types of neighborhoods. In Section 17.3, we recall the methods of-
fered in [5–8], which apply the triangle inequality property to efficiently calculate
neighborhoods using a distance metric. The theoretical results which we derived
in [9] for calculating cosine similarity neighborhoods based on the Euclidean dis-
tance, as well as their current generalizations and consequences, are presented in
Section 17.4. In Section 17.5, we discuss and illustrate the ways of using these re-
sults for calculating the considered three types of cosine similarity neighborhoods.
Section 17.6 concludes our work.

17.2 Basic Notions and Properties

17.2.1 Basic Operations on Vectors and Their Properties

In the chapter, we will consider vectors of the same dimensionality, say n. A vector u
will be sometimes denoted as [u1, . . . ,un], where ui is the value of the i-th dimension
of u, i = 1..n. In Table 17.1, we recall definitions of basic operations on vectors.
Table 17.2 presents their properties, which we will use in the chapter.

A normalized form of a vector u will be denoted by NF(u) and will be defined
as the ratio of u to its length | u |. A vector u will be called a normalized vector (or
alternatively, a unit vector) if u = NF(u). Clearly, the length of a normalized vector
is equal to 1.
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Table 17.1 Definitions of basic operations on vectors

Name of operation Notation Definition

Sum of vectors u and v u+ v [u1 + v1, . . . ,un + vn]

Subtraction of vectors u and v u− v [u1 − v1, . . . ,un − vn]

Multiplication of vector u by scalar α αv [αu1, . . . ,αun]

Division of vector u by scalar α u
α

1
α u

Standard vector dot product of vectors u and v u · v ∑i=1..n uivi

Length of vector u |u|
√

u ·u
Normalized form of a vector u NF(u) u

|u|

Table 17.2 Properties of operations on vectors

Properties of operations on vectors

|u|2 = u ·u = ∑i=1..n u2
i

(u+ v) · (u+ v)= ∑i=1..n(ui + vi)
2 = (u ·u)+ (v · v)+ 2(u · v)

(u− v) · (u− v)= ∑i=1..n(ui − vi)
2 = (u ·u)+ (v · v)− 2(u · v)

NF(u) ·NF(u) = 1

| NF(u) | = 1

In the chapter, we will also refer to notions of an α-normalized form of a vector
and an α-normalized vector. An α-normalized form of a vector u, where α �= 0, is
defined as αNF(u). A vector u is called an α-normalized vector, where α �= 0, if u
= αNF(u). Clearly, the length of an α-normalized vector is equal to | α |. If α = 1,
then obviously an α-normalized form of a vector is a normalized form of a vector
and an α-normalized vector is a normalized vector.

17.2.2 Vector Dissimilarity and Similarity Measures

In the sequel, dissimilarity between two vectors p and q will be denoted by dis(p,
q). A vector q is considered as less dissimilar from vector p than vector r if
dis(q, p) < dis(r, p). In order to compare vectors, one may use a variety of dis-
similarity measures among which an important class is distance metrics.

A distance metric (or shortly, distance) in a set of vectors D is defined as a dis-
similarity measure dis : D×D→ [0,+∞) that satisfies the following three conditions
for all vectors p, q, and r in D:
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1) dis(p,q) = 0 ⇔ p = q;
2) dis(p,q) = dis(q, p);
3) dis(p,r)≤ dis(p,q)+ dis(q,r).

The third condition is known as the the triangle inequality. Often, an alternative
form of this property, presented below, is more useful.

Property 17.2.2.1(Alternative form of the triangle inequality). For any three vectors
p, q, and r in a vector set D:

dis(p,q)≥ dis(p,r)− dis(q,r).

It was shown in [1, 5–8, 10, 11] how to use this property for efficient clustering of
both low- and high-dimensional data.

The most popular distance metric is the Euclidean distance. The Euclidean dis-
tance between vectors u and v is denoted by Euclidean(u, v) and is defined as follows:

Euclidean(u,v) =
√

∑
i=1..n

(ui − vi)2.

Property 17.2.2.2. Euclidean(u,v) =
√
(u− v) · (u− v).

Sometimes, similarity measures are used rather than dissimilarity measures to com-
pare vectors. In the following, the similarity between two vectors p and q will be de-
noted by sim(p,q). A vector q is considered as more similar to vector p than vector
r if sim(q, p)> sim(r, p). Please note that, for example, −sim(q, p) or 1− sim(q, p)
could be interpreted as a measure of dissimilarity between q and p.

In many applications, especially in text mining, cosine similarity measure, which
is a function of the angle between two vectors, is applied. The cosine similarity
measure between vectors u and v is denoted by cosSim(u,v) and is defined as the
cosine of the angle between them; that is,

cosSim(u,v) =
u · v

| u ‖ v | .

Example 17.2.2.1 (The Euclidean distance and the cosine similarity). Figure 17.1
presents three sample vectors p, q, and r. One may note that the Euclidean distance
between p and q is greater than the Euclidean distance between r and q. On the other
hand, in terms of the cosine similarity measure, p is more similar to q than r, since
the cosine of the angle between p and q (cosSim(p,q) = cosα) is greater than the
cosine of the angle between r and q (cosSim(r,q) = cosβ ).

The cosine similarities of these vectors are presented in Table 17.3.
One may note that neither cosSim(p,q) ≤ cosSim(p,r) + cosSim(r,q) nor
−cosSim(p,r) ≤ −cosSim(p,q) + (−cosSim(q,r)) nor (1 − cosSim(p,r)) ≤
(1− cosSim(p,q))+ (1− cosSim(q,r)) (please, see Table 17.4). ��
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Fig. 17.1 The Euclidean distance and the cosine similarity

Table 17.3 The cosine similarity between vectors from Figure 17.1

(u,v) cosSim(u,v)

(p,q) 0.965

(p,r) 0.196

(q,r) 0.447

Table 17.4 The cosine similarity versus the triangle inequality for vectors from Figure 17.1

The triangle inequality property Fulfilled?

cosSim(p, q) ≤ cosSim(p, r) + cosSim(r, q) No

cosSim(p,r)≤ cosSim(p,q)+ cosSim(q,r) Yes

cosSim(q,r)≤ cosSim(q, p)+ cosSim(p,r) Yes

−cosSim(p,q)≤−cosSim(p,r)+ (−cosSim(r,q)) Yes

−cosSim(p, r) ≤ −cosSim(p, q) + (−cosSim(q, r)) No

−cosSim(q, r) ≤ −cosSim(q, p) + (−cosSim(p, r)) No

(1− cosSim(p,q))≤ (1− cosSim(p,r))+ (1− cosSim(r,q)) Yes

(1−cosSim(p, r)) ≤ (1−cosSim(p, q)) + (1−cosSim(q, r))) No

(1− cosSim(q,r))≤ (1− cosSim(q, p))+ (1− cosSim(p,r)) Yes
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Corollary 17.2.2.1.

a) It is false that the triangle inequality holds for cosSim in each vector set.
b) It is false that the triangle inequality holds for −cosSim in each vector set.
c) It is false that the triangle inequality holds for (1− cosSim) in each vector set.

Clearly, the cosine similarity between any non-zero vectors u and v depends
solely on the angle between them and does not depend on their lengths; hence the
calculation of cosSim(u,v) may be carried on NF(u) and NF(v) instead of u and v,
respectively.

Property 17.2.2.3. Let u and v be non-zero vectors. Then:

a) cosSim(NF(u),NF(v)) = NF(u) ·NF(v);
b) cosSim(u,v) = cosSim(NF(u),NF(v));
c) cosSim(u,v) = NF(u) ·NF(v).

17.2.3 Neighbourhoods Based on Dissimilarity Measures

Below, we provide definitions of neighborhoods in a given vector set D with respect
to a given dissimilarity measure dis.

ε-neighborhood of a vector p in D is denoted by ε-NBD
dis(p) and is defined as any

set of all vectors in D\{p} that are dissimilar to p by no more than ε; that is,

ε-NBD
dis(p) = {q ∈ D\{p} | dis(p,q)≤ ε}.

The set of all vectors in D\{p} that are less dissimilar to p than q will be denoted
by LessDissimilarD

dis(p,q); that is,

LessDissimilarD
dis(p,q) = {s ∈ D\{p} | dis(s, p)< dis(q, p)}.

k-neighborhood of a vector p in D is denoted by k-NBD
dis(p) and is defined as the

set of all vectors q in D\{p} such that the number of vectors in D\{p} that are less
dissimilar to p than q is less than k; that is,

k-NBD
dis(p) = {q ∈ D\{p} | | LessDissimilarD

dis(p,q) | < k}.

Please note that for any value k and for each vector p, one may determine a value of
threshold ε in such a way that ε-NBD

dis(p) = k-NBD
dis(p). In the following, the least

value of ε such that ε-NBD
dis(p) = k-NBD

dis(p) will be called the radius of k-NBD
dis(p).

Proposition 17.2.3.1 [8]. Let ε = max({dis(q, p) | q ∈ k-NBD
dis(p)}). Then k-

NBD
dis(p) = ε-NBD

dis(p) and ε is the radius of k-NBD
dis(p).

Proposition 17.2.3.2 [8]. If | ε-NBD
dis(p) | ≥ k, then ε-NBD

dis(p)⊇ k-NBD
dis(p).
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Please note that k-NBD
dis(p) may contain more than k vectors. In some applications,

it is of interest to determine a set of exactly k “nearest” vectors (neighbors) instead
of k-NBD

dis(p).
k-nearest neighbors of a vector p in D are defined as any set of k vectors q in

D\{p} such that the number of vectors in D\{p} that are less dissimilar to p than q
is less than k.

Let k-NND
dis(p) be a set of k-nearest neighbors of a vector p in D. Then the least

value of ε such that k-NND
dis(p)⊆ ε-NBD

dis(p) will be called the radius of k-NND
dis(p).

Proposition 17.2.3.3 [9]. Let k-NND
dis(p) be a set of k-nearest neighbors of a vector

p in D, and ε be the radius of k-NND
dis(p). Then:

a) k-NND
dis(p)⊆ k-NBD

dis(p);
b) ∀q ∈ k-NBD

dis(p)\ k-NND
dis(p),dis(q, p) = ε ;

c) k-NBD
dis(p) = ε-NBD

dis(p);
d) ε is the radius of k-NBD

dis(p);
e) ε is the radius of each set of k-nearest neighbors of vector p in D.

Corollary 17.2.3.1 [9]. Let k-NND
dis(p) be a set of k-nearest neighbors of a vector p

in D.

a) If | ε-NBD
dis(p) |≥ k, then ε-NBD

dis(p)⊇ k-NBD
dis(p)⊇ k-NND

dis(p);
b) If | ε-NBD

dis(p) |= k, then ε-NBD
dis(p) = k-NBD

dis(p) = k-NND
dis(p).

By Corollary 17.2.3.1a, if ε-neighborhood of a vector p contains at least k vectors
in D, then ε-neighborhood of p in D contains k-neighborhood of p in D, which in
turn contains k-nearest neighbors of p in D.

17.2.4 Neighbourhoods Based on Similarity Measures

In this subsection, we provide alternative definitions of neighborhoods in a given set
D in terms of a similarity measure sim.

ε-similarity neighborhood of a vector p in D is denoted by ε-SNBD
sim(p) and is

defined as the set of all vectors in D\{p} that are similar to p by no less than ε;
that is,

ε-SNBD
sim(p) = {q ∈ D\{p} | sim(p,q)≥ ε}.

The set of all vectors in D\{p} that are less similar to p than q will be denoted by
MoreSimilarD

sim(p,q); that is,

MoreSimilarD
sim(p,q) = {s ∈ D\{p} | sim(s, p) > sim(q, p)}.

k-similarity neighborhood of a vector p in D is denoted by k-SNBD
sim(p) and is

defined as the set of all vectors q in D\{p} such that the number of vectors in
D\{p} that are more similar to p than q is less than k; that is,

k-SNBD
sim(p) = {q ∈ D\{p} | | MoreSimilarD

sim(p,q) | < k}.
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Please note that for any value k and for each vector p, one may determine a value
of threshold ε in such a way that ε-SNBD

sim(p) = k-SNBD
sim(p). In the sequel, the

greatest value of ε such that ε-SNBD
sim(p) = k-SNBD

sim(p) will be called the similarity
radius of k-SNBD

sim(p).

Proposition 17.2.4.1 [9]. Let ε = min({sim(q, p) | q ∈ k-SNBD
sim(p)}). Then

k-SNBD
sim(p) = ε-SNBD

sim(p) and ε is the similarity radius of k-SNBD
sim(p).

Proposition 17.2.4.2 [9]. If | ε-SNBD
sim(p)| ≥ k, then ε-SNBD

sim(p)⊇ k-SNBD
sim(p).

k-similarity nearest neighbors of a vector p in D are defined as any set of k vectors
q in D\{p} such that the number of vectors in D\{p} that are more similar to p than
q is less than k.

Let k-SNND
sim(p) be a set of k-similarity nearest neighbors of a vector p in D.

Then the greatest value of ε such that k-SNND
sim(p) ⊆ ε-SNBD

sim(p) will be called
the similarity radius of k-SNND

sim(p).

Proposition 17.2.4.3 [9]. Let k-SNND
sim(p) be a set of k-similarity nearest neighbors

of a vector p in D and ε be the similarity radius of k-SNND
sim(p). Then:

a) k-SNND
sim(p)⊆ k-SNBD

sim(p);
b) ∀q ∈ k-SNBD

sim(p)\ k-SNND
sim(p),sim(q, p) = ε ;

c) k-SNBD
sim(p) = ε-SNBD

sim(p);
d) ε is the similarity radius of k-SNBD

sim(p);
e) ε is the similarity radius of each set of k-similarity nearest neighbors of vector

p in D.

Corollary 17.2.4.1 [9]. Let k-SNND
sim(p) be a set of k-similarity nearest neighbors

of a vector p in D.

a) If | ε-SNBD
sim(p) |≥ k, then ε-SNBD

sim(p)⊇ k-SNBD
sim(p)⊇ k-SNND

sim(p);
b) If | ε-SNBD

sim(p) |= k, then ε-SNBD
sim(p) = k-SNBD

sim(p) = k-SNND
sim(p).

By Corollary 17.2.4.1a, if ε-similarity neighborhood of a vector p contains at least
k vectors in D, then ε-similarity neighborhood of p in D contains k- similarity
neighborhood of p in D, which in turn contains k-similarity nearest neighbors of
p in D.

17.3 The Triangle Inequality as a Mean for Efficient
Determination of Neighborhoods Based on a Distance
Metric

In this section, we present rudiments of the methods offered in [5–9] for speeding
up the determination of the three types of neighboorhods based on a distance metric
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by employing the triangle inequality to efficiently prune non-promising candidates
for neighbors. The methods guarantee that the pruning will not eliminate any true
neighbor.

17.3.1 Efficient Determination of ε-Neighborhoods Based
on a Distance Metric

In this subsection, we recall the basic method of determining ε-neighborhoods
based on a distance metric efficiently, as proposed in [5, 6].

Lemma 17.3.1.1 [5, 6]. Let dis be a distance metric and D be a set of vectors. For
any two vectors p, q in D and any vector r:

dis(p,r)− dis(q,r)> ε ⇒ q �∈ ε-NBD
dis(p)∧ p �∈ ε-NBD

dis(q).

Lemma 17.3.1.1 comes from the fact that dis(p,r)− dis(q,r) > ε (by assumption)
and dis(p,q)≥ dis(p,r)−dis(q,r) (by the triangle inequality). Hence, dis(p,q)> ε .
Thus, the fact that the difference of distances from two vectors p and q to any vector
r is greater than ε implies that q �∈ ε-NBD

dis(p) and p �∈ ε-NBD
dis(q).

Now, let us consider a vector v such that dis(v,r) > dis(p,r). If we know that
dis(p,r)− dis(q,r) > ε , we may conclude that dis(v,r)− dis(q,r) > ε , and thus
q �∈ ε-NBD

dis(v) and v �∈ ε-NBD
dis(q) without calculating the real distance between

v and q. This observation provides intuition behind Theorem 17.3.1.1, as offered
in [5, 6].

Theorem 17.3.1.1 [5, 6]. Let dis be a distance metric, r be any vector and D be
a set of vectors ordered in a non-decreasing way with respect to their distances
to r. Let p be any vector in D, q f be a vector following vector p in D such that
dis(q f ,r)− dis(p,r) > ε , and qb be a vector preceding vector p in D such that
dis(p,r)− dis(qb,r)> ε . Then:

a) q f and all vectors following q f in D do not belong to ε-NBD
dis(p);

b) qb and all vectors preceding qb in D do not belong to ε-NBD
dis(p).

As follows from Theorem 17.3.1.1, it makes sense to order all vectors in a given
vector set D with respect to their distances to a reference vector, say r, as this en-
ables simple elimination of a potentially large subset of vectors that certainly do not
belong to an ε-neighborhood of an analyzed vector.

Example 17.3.1.1. Let us consider a sample set D of two-dimensional vectors pre-
sented in Figure 17.2. We will illustrate the usefulness of Theorem 17.3.1.1 for
determining the ε-neighborhood based on the Euclidean distance for vector p =
F in vector set D, given ε = 0.5. As a reference vector r, we will apply [0,0].
Table 17.5 illustrates the considered set D ordered in a non-decreasing way with
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respect to the distances of its vectors to vector r. We note that Euclidean
(F,r) = 3.2, the first vector q f following vector F in D such that Euclidean
(q f ,r)− Euclidean(F,r) > ε is vector C (Euclidean(C,r)− Euclidean(F,r) =
4.5− 3.2 = 1.3 > ε), and the first vector qb preceding vector p in D such that
Euclidean(F,r)−Euclidean(qb,r)> ε is G (Euclidean(F,r)−Euclidean(G,r) =
3.2 − 2.4 = 0.8 > ε). By Theorem 17.3.1.1, vectors C and G as well as each
vector which either follows C or precedes G in D certainly do not belong to ε-
NBD

Euclidean(F). As a result, only vector H out of eight vectors in D has a chance
to belong to ε-NBD

Euclidean(F). So, H is the only vector for which it is neces-
sary to calculate its actual distance to F in order to determine ε-NBD

Euclidean(F)
properly. ��

Fig. 17.2 Set of vectors D

The experimental evaluation of the usefulness of Theorem 17.3.1.1 was carried
out in [5, 6] by comparing the performance of density-based clustering carried out
with the TI-DBSCAN algorithm and its variants, which used this theorem, and the
DBSCAN algorithm [2] which used the R-Tree index [4]. As follows from the exper-
iments reported in [5,6], the algorithms using the theorem were always faster, and in
almost all cases speeded up the clustering process by at least an order of magnitude,
also for high dimensional large vector sets consisting of hundreds of dimensions and
tens of thousands of vectors.

17.3.2 Efficient Determination of k-Neighborhoods Based
on a Distance Metric

In this subsection, we recall the basics of the methods of determining ε-
neighborhoods based on a distance metric efficiently, as proposed in [7, 8]. Also
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Table 17.5 Ordered set of vectors D from Figure 17.2 with their Euclidean distances to ref-
erence vector r[0,0]

Q X Y distance(Q,r)

K 0.9 0.0 0.9

L 1.0 1.5 1.8

G 0.0 2.4 2.4

H 2.4 2.0 3.1

F 1.1 3.0 3.2

C 2.8 3.5 4.5

A 4.2 4.0 5.8

B 5.9 3.9 7.1

in this case, all vectors in a given vector set D are assumed to be ordered with re-
spect to a reference vector r. Then, for each vector p in D, its k-neighborhood can
be determined in the following steps:

1) The radius, say ε , of k-neighborhood of p is estimated based on the real dis-
tances of k vectors located directly before and after p in the ordered set D.

2) Next the ε-neighborhood is determined in a way similar to the one described
in Subsection 17.3.1. Clearly, the real distances to p from vectors considered in
phase 1 do not need to be calculated again.

3) The k-neighborhood of p is determined as a subset of ε-neighborhood found in
step 2.

The above description is a bit simplified. In [7, 8], steps 2 and 3 were not split,
and the value of ε was adapted (narrowed) with each new candidate vector having
a chance to belong to k-neighborhoods of p. Please see [7, 8] for a more detailed
description. The presented approach was justified by Theorem 17.3.2.1, which has
been offered.

Theorem 17.3.2.1 [7, 8]. Let dis be a distance metric, r be any vector and D be
a set of vectors ordered in a non-decreasing way with respect to their distances to
r. Let p be any vector in D and ε be a value such that | ε-NBD

dis(p)| ≥ k,q f be
a vector following vector p in D such that dis(q f ,r)− dis(p,r) > ε , and qb be a
vector preceding vector p in D such that dis(p,r)− dis(qb,r)> ε . Then:

a) q f and all vectors following q f in D do not belong to k-NBD
dis(p);

b) qb and all vectors preceding qb in D do not belong to k-NBD
dis(p).

Example 17.3.2.1. We will illustrate the usefulness of Theorem 17.3.2.1 for de-
termining the k-neighborhood based on the Euclidean distance for vector p = F in
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vector set D from Figure 17.2, given k = 3. As a reference vector r, we will ap-
ply [0, 0]. Table 17.5 illustrates the considered set D ordered in a non-decreasing
way with respect to the distance of its vectors to vector r. Let us assume that we
have calculated the distances between F and its two preceding vectors H, G, and
one following vector C, respectively, and they are as follows: Euclidean(F, H) =
1.64, Euclidean(F, G) = 1.25, Euclidean(F, C) = 1.77. Now, we set the value of ε
to max(Euclidean(F, H), Euclidean(F, G), Euclidean(F, C)); that is, ε = 1.77. This
means that vectors H,G,C ∈ ε-NBD

Euclidean(F) and | ε-NBD
Euclidean(F) |≥ k. Thus, k-

NBD
Euclidean(F) will be found within the ε radius from F. Now, we note that the first

vector q f following vector F in D such that Euclidean(q f ,r)−Euclidean(F,r)> ε
is vector A (Euclidean(A,r)−Euclidean(F,r)= 5.8−3.2= 2.6 > ε), and the first
vector qb preceding vector F in D such that Euclidean(F,r)−Euclidean(qb,r)> ε
is K (Euclidean(F,r)−distance(K,r)= 3.2−0.9= 2.3> ε). By Theorem 17.3.2.1,
vectors A, K as well as each vector that either follows A (that is, vector B) or pre-
cedes K in D (here, no vector precedes K) do not belong to k-NBD

Euclidean(F). ��

The experimental evaluation of the usefulness of Theorem 17.3.2.1 was carried out
in [7, 8] by comparing the performance of the NBC density based clustering [13]
carried out with differently calculated k-neighborhoods; namely, by means of the
index created by the TI-k-Neighboorhood-Index algorithm and its variants [7, 8],
which used this theorem, as well as by means of the VA-File index [3] and the R-
Tree index [4]. As follows from the experiments reported in [7, 8], the algorithms
determining k-neighborhoods by means of the theorem were always faster, and in
almost all cases speeded up the clustering process by at least an order of magnitude,
also for high-dimensional large vector sets consisting of hundreds of dimensions
and tens of thousands of vectors.

17.3.3 Efficient Determination of k-Nearest Neighbors Based
on a Distance Metric

Let k-NND
dis(p) be a set of k-similarity nearest neighbors of a vector p in D. Since

k-NBD
dis(p) ⊇ k-NND

dis(p), then the vectors that do not belong to k-NBD
dis(p) do

not belong to k-NND
dis(p) either. This observation allows us to derive Proposi-

tion 17.3.3.1 from Theorem 17.3.2.1.

Proposition 17.3.3.1 [9]. Let dis be a distance metric, r be any vector and D be a set
of vectors ordered in a non-decreasing way with respect to their distances to r. Let
p be any vector in D, k-NND

dis(p) be a set of k-similarity nearest neighbors of vector
p in D, and ε be a value such that | ε-NBD

dis(p) |≥ k,q f be a vector following vector
p in D such that dis(q f ,r)− dis(p,r) > ε , and qb be a vector preceding vector p in
D such that dis(p,r)− dis(qb,r)> ε . Then:

a) q f and all vectors following q f in D do not belong to k-NND
dis(p);

b) qb and all vectors preceding qb in D do not belong to k-NND
dis(p).
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Clearly, if |k-NBD
dis(p) |= k, then k-NND

dis(p) = k-NBD
dis(p). Otherwise, k-

NND
dis(p) can be obtained by calculating k-NBD

dis(p), for instance, as presented in
Section 17.3.2, and then removing all but one of the vectors from k-NBD

dis(p) that
are distant from p by the radius of k-NBD

dis(p).

17.4 The Cosine Similarity Measure and Neighborhoods
versus the Euclidean Distance and Neighborhoods

In Section 17.3, we described how neighborhoods expressed in terms of a distance
metric can be calculated efficiently by using the triangle inequality property for
skipping vectors that do not have a chance to belong to these neighborhoods. On the
other hand, as we showed in Example 17.2.2.1, the cosine similarity measure is not
a distance metric as the triangle inequality is not guaranteed to hold for it. However,
in this section, we will show that cosine similarity neighborhoods are equivalent to
corresponding neighborhoods based on the Euclidean distance.

17.4.1 Relationship between the Cosine Similarity
and the Euclidean Distance

We start with formulating and proving two lemmas: one showing that the cosine sim-
ilarity between two non-zero vectors can be expressed as a function of their lengths
and the Euclidean distance between them (Lemma 17.4.1.1), and the next one show-
ing that the cosine similarity between two normalized (forms of) non-zero vectors
can be expressed as a function of solely their Euclidean distance (Lemma 17.4.1.2).

Lemma 17.4.1.1 [9]. Let u and v be non-zero vectors. Then:

a) cosSim(u,v) =
(u ·u)+ (v · v)− (u− v) · (u− v)

2 | u ‖ v | ;

b) cosSim(u,v) =
| u |2 + | v |2 −Euclidean2(u,v)

2 | u ‖ v | .

Proof. Ad a) Since (u−v)·(u−v)= (u ·u)+(v ·v)−2(u ·v) and cosSim(u,v)= u·v
|u‖v| ,

then (u − v) · (u − v) = (u · u) + (v · v) − 2(cosSim(u,v) | u ‖ v |). Hence,

cosSim(u,v) = (u·u)+(v·v)−(u−v)·(u−v)
2|u‖v| .

Ad b) Follows immediately from Lemma 17.4.1.1a, the fact that u · u = | u |2,
v · v = | v |2 and Euclidean(u,v) =

√
(u− v) · (u− v). ��

Lemma 17.4.1.2 [9]. Let u,v be non-zero vectors. Then:
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cosSim(NF(u),NF(v)) =
2−Euclidean2(NF(u),NF(v))

2
.

Proof. cosSim(NF(u),NF(v)) = |NF(u)|2+|NF(v)|2−Euclidean2(NF(u),NF(v))
2|NF(u)‖NF(v)| by

Lemma 17.4.1.1b. Hence, since | NF(u) |=| NF(v) |= 1, we conclude that

cosSim(NF(u),NF(v)) = 2−Euclidean2(NF(u),NF(v))
2 . ��

Now, as the cosine similarity of two non-zero vectors is equal to the cosine simi-
larity of their normalized forms, we conclude from Lemma 17.4.1.2 that the cosine
similarity between two non-zero vectors can be expressed as a function of solely the
Euclidean distance of their normalized forms (Theorem 17.4.1.1).

Theorem 17.4.1.1 [9]. Let u,v be non-zero vectors. Then:

cosSim(u,v) =
2−Euclidean2(NF(u),NF(v))

2
.

Also, based on Theorem 17.4.1.1, we may conclude further that the cosine similarity
between two non-zero vectors can be expressed as a function of solely α and the
Euclidean distance of their α-normalized forms (Proposition 17.4.1.1).

Proposition 17.4.1.1. Let α �= 0 and u,v be non-zero vectors. Then:

cosSim(u,v) =
2− 1

α2 Euclidean2(αNF(u),αNF(v))

2
.

Proof. By Theorem 17.4.1.1, cosSim(u,v) = 2−Euclidean2(NF(u),NF(v))
2 =

2−Euclidean2(
αNF(u)

α ,
αNF(v)

α )

2 =
2− 1

α2 Euclidean2(αNF(u),αNF(v))

2 . ��

Corollary 17.4.1.1. Let α �= 0 and u,v be α-normalized non-zero vectors. Then:

cosSim(u,v) =
2− 1

α2 Euclidean2((u),(v))

2
.

17.4.2 Vector Cosine Similarity Neighborhoods and Normalized
Vector Neighborhoods based on the Euclidean Distance

In this subsection, we will use Theorem 17.4.1.1 to derive relationships between
vector cosine similarity neighborhoods and corresponding normalized vector neigh-
borhoods based on the Euclidean distance [9]. First, we start with Lemma 17.4.2.1a,
in which we formulate and prove that a comparison of the cosine similarity be-
tween two non-zero vectors with an ε threshold is equivalent to a comparison of the
Euclidean distance between their normalized forms with an ε ′ threshold being a
function of ε . In Lemma 17.4.2.1b, we formulate and prove that a comparison of
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the cosine similarity between any two non-zero vectors s and p with the cosine
similarity between vector p and any vector q is equivalent to a comparison of the
Euclidean distances between their normalized forms.

Lemma 17.4.2.1 [9]. Let p, q and s be non-zero vectors, ε ∈ [−1,1] and ε ′ =√
2− 2ε. Then:

a) cosSim(p,q)≥ ε iffEuclidean(NF(p),NF(q))≤ ε ′;
b) cosSim(s, p)> cosSim(q, p) iff Euclidean(NF(s),NF(p))<

Euclidean(NF(q),NF(p)).

Proof. Ad a) cosSim(p,q)≥ ε iff (by Theorem 17.4.1.1)
2−Euclidean2(NF(p),NF(q))

2 ≥ ε iffEuclidean(NF(p),NF(q))≤
√

2− 2ε = ε ′;
Ad b) cosSim(s, p)> cosSim(q, p) iff (by Theorem 17.4.1.1)

2−Euclidean2(NF(s),NF(p))
2 > 2−Euclidean2(NF(q),NF(p))

2 iff
Euclidean(NF(s),NF(p))< Euclidean(NF(q),NF(p)). ��

Lemma 17.4.2.1 enables us to formulate and prove Lemma 17.4.2.2, in which we
show that the problem of determining vectors in D that are more cosine similar
to a given vector p(i) than another vector p( j) can be treated as the problem of
determining the normalized forms of vectors from D that are less distant in the
Euclidean sense from NF(p(i)) than NF(p( j)).

Lemma 17.4.2.2 [9]. Let D be an ordered set of m non-zero vectors (p(1), . . . , p(m)),
D′ be the ordered set of m vectors (u(1), . . . ,u(m)) such that u(i) = NF(p(i)), i = 1..m,
ε ∈ [-1, 1] and ε ′ =

√
2− 2ε. Then for any vectors p(i), p( j) in D:

a) MoreSimilarD
cosSim(p(i), p( j)) =

{p(l) ∈ D\{p(i)} | u(l) ∈ LessDissimilarD′
Euclidean(u(i),u( j))};

b) | MoreSimilarD
cosSim(p(i), p( j)) |< k iff

| LessDissimilarD′
Euclidean(u(i),u( j)) |< k.

Proof. Ad a) MoreSimilarD
cosSim(p(i), p( j)) =

{p(l) ∈ D\{p(i)} | cosSim(p(l), p(i))> cosSim(p( j), p(i))}=
(by Lemma 17.4.2.1b)
{p(l) ∈ D\{p(i)} | u(l) ∈ D′\{u(i)}∧Euclidean(u(l),u(i)))<
Euclidean(u( j),u(i))}=
{p(l) ∈ D\{p(i)} | u(l) ∈ LessDissimilarD′

Euclidean(u(i),u( j))}.
Ad b) Follows immediately from Lemma 17.4.2.2a. ��

Now, we are ready to formulate and prove the equivalence of cosine similarity neigh-
borhoods and corresponding neighborhoods based on the Euclidean distance.

Theorem 17.4.2.1 [9]. Let D be an ordered set of m non-zero vectors
(p(1), . . . , p(m)), D′ be the ordered set of m vectors (u(1), . . . ,u(m)) such that u(i) =
NF(p(i)), i = 1..m, ε ∈[-1,1] and ε ′ =

√
2− 2ε. Then:
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a) ε-SNBD
cosSim(p(i)) = {p( j) ∈ D\{p(i)} | u( j) ∈ ε ′-NBD′

Euclidean(u(i))};

b) k-SNBD
cosSim(p(i)) = {p( j) ∈ D\{p(i)} | u( j) ∈ k-NBD′

Euclidean(u(i))};

c) If k-NND′
Euclidean(u(i)) is a set of k-nearest neighbours of u(i) in D′, then {p( j) ∈

D\{p(i)} | u( j) ∈ k-NND′
Euclidean(u(i))} is a set of k-similarity nearest neighbors

of p(i) in D.

Proof. Ad a) ε-SNBD
cosSim(p(i)) =

{p( j) ∈ D\{p(i)} | cosSim(p(i), p( j))≥ ε}= (by Lemma 17.4.2.1a) =
{p( j) ∈ D\{p(i)} | u( j) ∈ D′\{u(i)}∧Euclidean(u(i),u( j))≤ ε ′}=
{p( j) ∈ D\{p(i)} | u( j) ∈ ε ′-NBD′

Euclidean(u(i))}.
Ad b) k-SNBD

cosSim(p(i)) =
{p( j) ∈ D\{p(i)} || MoreSimilarD

cosSim(p(i), p( j)) |< k}=
(by Lemma 17.4.2.2b) = {p( j) ∈ D\{p(i)} | u( j) ∈ D′\{u(i)}∧
| LessDissimilarD′

Euclidean(u(i),u( j)) |< k} =
{p( j) ∈ D\{p(i)} | u( j) ∈ k-NBD′

Euclidean(u(i))}.

Ad c) Let k-NND′
Euclidean(u(i)) be a set of k-nearest neighbours of u(i) in D′.

Then, k-NND′
Euclidean(u(i))} contains k vectors and thus

{p( j) ∈ D\{p(i)} | u( j) ∈ k-NND′
Euclidean(u(i))} also contains k vectors.

In addition, the fact that {k-NND′
Euclidean(u(i))} ⊆ {k-NBD′

Euclidean(u(i))}
implies that {p( j) ∈ D\{p(i)} | u( j) ∈ k-NND′

Euclidean(u(i))} ⊆
{p( j) ∈ D\{p(i)} | u( j) ∈ k-NBD′

Euclidean(u(i))}=
(by Theorem 17.4.2.1b) = k-SNBD

cosSim(p(i)).

Therefore, {p( j) ∈ D\{p(i)} | u( j) ∈ k-NND′
Euclidean(u(i))} is a set of k-

cosine similarity nearest neighbors of p(i) in D. ��
One may easily observe that the equivalence of cosine similarity neighborhoods and
neighborhoods based on the Euclidean distance that was stated in Theorem 17.4.2.1
becomes the equality in the case of normalized vectors.

Corollary 17.4.2.1. Let D be a set of normalized non-zero vectors, p ∈ D, ε ∈[-1,1]
and ε ′ =

√
2− 2ε. Then:

a) ε-SNBD
cosSim(p) = ε ′-NBD

Euclidean(p);
b) k-SNBD

cosSim(p) = k-NBD
Euclidean(p);

c) NN is a set of k-cosine similarity nearest neighbours of p in D iff NN is a set of
k-nearest neighbours of p in D with regard to the Euclidean distance.

17.4.3 Vector Cosine Similarity Neighborhoods and
α-Normalized Vector Neighborhoods based on the
Euclidean Distance

In this subsection, we will generalize the results from Section 17.4.2, in that
we will derive relationships between vector cosine similarity neighborhoods
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and corresponding α-normalized vector neighborhoods based on the Euclidean
distance.

Lemma 17.4.3.1. Let α �= 0, p, q and s be non-zero vectors, ε ∈ [−1,1] and ε ′ =
| α |

√
2− 2ε. Then:

a) cosSim(p,q)≥ ε iff Euclidean(αNF(p),αNF(q))≤ ε ′;
b) cosSim(s, p)> cosSim(q, p) iff Euclidean(αNF(s),αNF(p))<

Euclidean(αNF(q),αNF(p)).

Proof. Follows from Proposition 17.4.1.1. It can be proved in an analogous way as
Lemma 17.4.2.1. ��
Lemma 17.4.3.2. Let α �= 0, D be an ordered set of m non-zero vectors (p(1), . . . ,
p(m)), D′ be the ordered set of m vectors (u(1), . . . ,u(m)) such that u(i) = αNF(p(i)),
i = 1..m, ε ∈ [-1, 1] and ε ′ =| α |

√
2− 2ε. Then for any vectors p(i), p( j) in D:

a) MoreSimilarD
cosSim(p(i), p( j)) =

{p(l) ∈ D\{p(i)} | u(l) ∈ LessDissimilarD′
Euclidean(u(i),u( j))};

b) | MoreSimilarD
cosSim(p(i), p( j)) |< k iff

| LessDissimilarD′
Euclidean(u(i),u( j)) |< k.

Proof. Ad a) Follows from Lemma 17.4.3.1b.
Ad b) Follows immediately from Lemma 17.4.3.2a. ��
Theorem 17.4.3.1. Let α �= 0, D be an ordered set of m non-zero vectors (p(1), . . . ,
p(m)), D′ be the ordered set of m vectors (u(1), . . . ,u(m)) such that u(i) = αNF(p(i)),
i = 1..m, ε ∈[-1,1] and ε ′ =| α |

√
2− 2ε. Then:

a) ε-SNBD
cosSim(p(i)) = {p( j) ∈ D\{p(i)} | u( j) ∈ ε ′-NBD′

Euclidean(u(i))};

b) k-SNBD
cosSim(p(i)) = {p( j) ∈ D\{p(i)} | u( j) ∈ k-NBD′

Euclidean(u(i))};

c) If k-NND′
Euclidean(u(i)) is a set of k-nearest neighbours of u(i) in D′, then {p( j) ∈

D\{p(i)} | u( j) ∈ k-NND′
Euclidean(u(i))} is a set of k-similarity nearest neighbors

of p(i) in D.

Proof. Analogous to the proof of Theorem 17.4.2.1.
Ad a) Follows from Lemma 17.4.3.1a.
Ad b) Follows from Lemma 17.4.3.2b.
Ad c) Follows from Theorem 17.4.3.1b. ��
Corollary 17.4.3.1. Let D be a set of α-normalized non-zero vectors, p ∈ D, ε ∈[-
1,1] and ε ′ =| α |

√
2− 2ε. Then:

a) ε-SNBD
cosSim(p) = ε ′-NBD

Euclidean(p);
b) k-SNBD

cosSim(p) = k-NBD
Euclidean(p);

c) NN is a set of k-cosine similarity nearest neighbours of p in D iff NN is a set of
k-nearest neighbours of p in D with regard to the Euclidean distance.
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17.5 Determination of Cosine Similarity Neighborhoods
as Determination of Neighborhoods Based
on the Euclidean Distance

Theorem 17.4.3.1 (Theorem 17.4.2.1) tells us that cosine similarity neighborhoods
in vector set D can be determined as respective neighborhoods based on the Eu-
clidean distance in vector set D′ consisting of α-normalized (normalized) forms of
the vectors from D. Thus, we propose the following approach for the determination
of cosine similarity neighborhoods:

First, a set of original vectors, say D = (p(1), . . . , p(m)), should be transformed to
the set D′ = (u(1), . . . ,u(m)) of their α−normalized forms. Then, ε-cosine similar-
ity neighborhoods (or alternatively, k-cosine similarity neighborhoods or k-cosine
similarity nearest neighbors, respectively) in vector set D should be found as ε ′-
neighborhoods, where ε ′ =| α |

√
2− 2ε, (or alternatively, k-neighborhoods or k-

nearest neighbors) in vector set D′ with regard to the Euclidean distance by means
of the triangle inequality property.

Examples 17.5.1 and 17.5.2 illustrate this approach for the determining cosine
similarity neigboorhoods.

Example 17.5.1 (Determination of an ε-cosine similarity neighborhood). In this ex-
ample, we will consider determination of ε-cosine similarity neighborhood of vector
p(3) in vector set D = (p(1), . . . , p(8)) from Fig. 17.3 (and Table 17.6) applying, for
instance, α = 1. We assume that the cosine similarity threshold ε = 0.9856, which
roughly corresponds to the angle 9.74◦. Figure 17.4 shows set D′ = (u(1), . . . ,u(8))
that contains α-normalized forms of vectors from D. Clearly, the lengths of all of
them are equal to | α |; that is, 1. Now, we will determine the corresponding Eu-
clidean distance threshold ε ′ as | α |

√
2− 2ε (according to Theorem 17.4.3.1a).

Hence, ε ′ ≈ 0.1697 ≤ 0.17. At this moment, we may start the procedure of de-
termining ε-cosine similarity neighborhood for vector p(3) in vector set D as the
procedure of determining ε ′-neighborhood for vector u(3) in vector set D′ of α-
normalized vectors with regard to the Euclidean distance.

The vectors in D′ need to be sorted with regard to their Euclidean distances to
a same reference vector. For the sake of the example, we choose r = [1,0] as a
reference vector. Table 17.7 shows set D′ ordered in a non-decreasing way with
regard to the Euclidean distances of its vectors to vector r.

As follows from Table 17.7, the first vector q f following vector u(3)
in D′ for which Euclidean(q f ,r) − Euclidean(u(3),r) > ε ′ is vector u(4)
(Euclidean(u(4),r) − Euclidean(u(3),r) = 1.15 − 0.87 = 0.28 > ε ′), and the
first vector qb preceding vector u(3) in D′, for which Euclidean(u(3),r) −
Euclidean(qb,r) > ε ′ is vector u(6)(Euclidean(u(3),r) − Euclidean(u(6),r) =
0.87− 0.68 = 0.19 > ε ′). Thus, by Theorem 17.3.1.1, neither vector u(4) nor the
vectors following u(4) in D′ as well as neither vector u(6) nor the vectors preced-

ing u(6) in D′ belong to ε ′-NBD′
Euclidean(u(3)). Hence, only vectors u(1) and u(8)

may belong to ε ′-NBD′
Euclidean(u(3)), and only for these vectors it is necessary to
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Fig. 17.3 Sample set D of vectors

Table 17.6 Sample set D

Vector p(i) p(i)1 p(i)2

p(1) 4.20 4.00

p(2) 5.90 3.90

p(3) 2.80 3.50

p(4) 1.10 3.00

p(5) 0.00 2.40

p(6) 2.40 2.00

p(7) 1.50 0.50

p(8) 1.00 1.50

calculate their real Euclidean distances to u(3). These distances are as follows,
Euclidean(u(1),u(3)) = 0.13 and Euclidean(u(8),u(3)) = 0.07. Since both values

are less than ε ′, then ε ′-NBD′
Euclidean(u(3)) = {u(1),u(8)}, and by Theorem 17.4.3.1a,

ε-SNBD
cosSim(p(3)) = {p(1), p(8)}. Similarly, one may determine ε-cosine similarity

neighborhood for the remaining vectors in D using already sorted set D′. ��
Example 17.5.2 (Determination of a k-cosine similarity neighborhood and k-cosine
similarity nearest neighbors). In this example, we will first consider determination
of a k-cosine similarity neighborhood, where k = 2, of vector p(3) in the vector set
D = (p(1), . . . , p(8)) from Figure 17.3 (and Table 17.6). Then we will determine k-
cosine similarity nearest neigbors k-SNND

cosSim(p(3)). In the example, we will apply
α = 1.
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Fig. 17.4 Set D′ containing normalized forms of vectors from D

Table 17.7 Normalized vectors in set D′ sorted w.r.t. their distances to vector r = [1,0]

Vector u(i) u(i)1 u(i)2 Euclidean(u(i),r)

u(7) 0.95 0.32 0.32

u(2) 0.83 0.55 0.58

u(6) 0.77 0.64 0.68

u(1) 0.72 0.69 0.74

u(3) 0.62 0.78 0.87

u(8) 0.55 0.83 0.94

u(4) 0.34 0.94 1.15

u(5) 0.00 1.00 1.41

We start with the calculation of set D′ = (u(1), . . . ,u(8)) of α-normalized forms
of vectors from D. Figure 17.4 presents D′. Now, the determination of k-cosine
similarity neighborhood for vector p(3) in vector set D can be performed as the

determination of k-neighborhood k-NBD′
Euclidean(u(3)) of vector u(3) in set D′ of α-

normalized vectors with regard to the Euclidean distance. This procedure starts with
ordering D′ with regard to the Euclidean distances of its vectors to a same reference
vector r. In the example, we assume r = [1,0]. Table 17.7 shows the result of this
sorting.

Now, we need to estimate the radius within which k-nearest neighbors of u(3) oc-
cur. Let us assume that we have calculated the distances between u(3) and its directly
preceding and following vectors in D′; that is, u(1) and u(8), respectively. These
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distances are as follows: Euclidean(u(1),u(3)) = 0.13 and Euclidean(u(8),u(3)) =
0.07. Let ε ′ = max(Euclidean(u(1),u(3)), Euclidean(u(8),u(3))); that is, ε ′ = 0.13.

Please note that u(1),u(8) ∈ ε ′-NBD′
Euclidean(u(3)) and | ε ′-NBD′

Euclidean(u(3)) |≥ k. The

latter fact implies that ε ′-NBD′
Euclidean(u(3)) contains k-neighborhood of u(3) in D′ (by

Corollary 17.2.3.1). Nevertheless, it is yet not certain if u(1) and/or u(8) belong to
this neigborhood of u(3) in D′.

As follows from Table 17.7, the first vector q f following vector u(3)
in D′ for which Euclidean(q f ,r) − Euclidean(u(3),r) > ε ′ is vector u(4)
(Euclidean(u(4),r) − Euclidean(u(3),r) = 1.15 − 0.87 = 0.28 > ε ′), and the
first vector qb preceding vector u(3) in D′, for which Euclidean(u(3),r) −
Euclidean(qb,r) > ε ′ is vector u(6) (Euclidean(u(3),r) − Euclidean(u(6),r) =
0.87− 0.68 = 0.19 > ε ′). Thus, by Theorem 17.3.2.1, neither vector u(4) nor the
vectors following u(4) in D′ as well as neither vector u(6) nor the vectors preceding

u(6) in D′ belong to k-NBD′
Euclidean(u(3)). Hence, only vectors u(1) and u(8) may be-

long to k-NBD′
Euclidean(u(3)) and only for these vectors it is necessary to calculate their

real Euclidean distances to u(3). As k = 2 and only two vectors: u(1) and u(8) were

not eliminated, they constitute k-NBD′
Euclidean(u(3)). Thus, by Theorem 17.4.3.1b, k-

SNBD
cosSim(p(3)) = {p(1), p(8)}.

Please note that in our example we had to calculate the Euclidean distance to
vector u(3) only from two out of eight vectors in D′.

Now, let us consider the determination of k-SNND
cosSim(p(3)). In our example, k-

NBD′
Euclidean(u(3)), and consequently k-SNBD

cosSim(p(3)), have exactly k vectors each.
Hence, k-SNND

cosSim(p(3)) = k-SNBD
cosSim(p(3)) = {p(1), p(8)}. In the following, how-

ever, we present how k-SNND
cosSim(p(3)) could be determined if we ignored the fact

that the cardinality of k-NBD′
Euclidean(u(3)) (and the cardinality of k-SNBD

cosSim(p(3))})
is k. First, one could determine k-nearest neighbors of (u(3)) in D′ based on k-

NBD′
Euclidean(u(3)), the radius of which is known and equals the maximum of the

Euclidean distances between u(3) and the vectors in k-NBD′
Euclidean(u(3)); that is,

0.13. Thus, k-nearest neighbors of u(3) in D′ would contain all vectors from k-

NBD′
Euclidean(u(3)) that are less distant from u(3) than 0.13 (here: only vector u(8))

and exactly one arbitrary vector in k-NBD′
Euclidean(u(3)) that is distant from u(3) by

0.13 (here: vector (u(1)). Next, by Theorem 17.4.3.1c, k-SNND
cosSim(p(3)) would be

found as {p(1), p(8)}. ��
Please note that it is not necessary to verify if an α-normalized vector u(l) is a
true neighbor of an analyzed α-normalized vector u(i) in D′ by calculating the Eu-
clidean distance between them. The verification can be carried out by calculating
cosSim(u(l),u(i)) as 1

α2 (u(l) ·u(i)) (or simply u(l) ·u(i) if vectors u(l),u(i) are normal-

ized) and, eventually, employing the cosine threshold ε provided ε ′ = | α |
√

2− 2ε.
In fact, it is not even necessary to store α-normalized forms of vectors from D. It
is sufficient to store only a sorted index containing the Euclidean distances of α-
normalized forms of vectors from D to a reference vector. When the α-normalized
forms are not stored, the verification for a (non-stored)α-normalized vector u(l) can
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be carried on the corresponding original vectors in D as follows: cosSim(u(l),u(i)) =

cosSim(p(l), p(i)) =
p(l)·p(i)
|p(l)‖p(i)|

.

17.6 Conclusions

In this chapter, we have offered a new solution to determining vector cosine
similarity neighborhoods that consists in transforming the original problem into
the problem of determining neighborhoods of (α-)normalized forms of the original
vectors with regard to the Euclidean distance. We have discussed possible variants
of the approach to calculating cosine similar neighborhoods that was proposed
in [9] and based on applying normalized forms of vectors. The fact that the the
problem of determining cosine similarity neighborhoods is transformable to the
problem of determining neighborhoods based on the Euclidean distance allows
applying the triangle inequality, which was proved in [1, 5–8, 10, 11] to be a
powerful tool for making the neighboorhod determination efficient even in the case
of high dimensional large vector sets consisting of hundreds of dimensions and tens
of thousands of vectors. As a consequence, our solution helps to surpass the curse
of dimensionality in the case of determining cosine similarity neighborhoods.
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Chapter 18
Time Variability-Based Hierarchic Recognition
of Multiple Musical Instruments in Recordings

Elżbieta Kubera, Alicja A. Wieczorkowska, and Zbigniew W. Raś

Abstract. The research reported in this chapter is focused on automatic identifica-
tion of musical instruments in polyphonic audio recordings. Random forests have
been used as a classification tool, pre-trained as binary classifiers to indicate pres-
ence or absence of a target instrument. Feature set includes parameters describing
frame-based properties of a sound. Moreover, in order to capture the patterns which
emerge on the time scale, new temporal parameters are introduced to supply addi-
tional temporal information for the timbre recognition. In order to achieve higher
estimation rate, we investigated a feature-driven hierarchical classification of musi-
cal instruments built using agglomerative clustering strategy. Experiments showed
that the performance of classifiers based on this new classification of instruments
schema is better than performance of the traditional flat classifiers, which directly
estimate the instrument. Also, they outperform the classifiers based on the classical
Hornbostel-Sachs schema.
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18.1 Introduction

In recent years, rapid advances in digital music creation, collection and storage tech-
nology have enabled various organizations to accumulate vast amounts of musical
audio data. The booming of multimedia resources in the Internet brought a tremen-
dous need to provide new, more advanced tools for querying and processing vast
quantities of musical data. Many multimedia resources provide data which are man-
ually labeled with some description information, such as title, author, company, and
so on. However, in most cases those labels are insufficient for content-based search-
ing. This problem attracted the attention of academia and industry, and initiated
research in Music Information Retrieval (MIR) some years ago. As the outcome of
this research, various MIR systems emerged, addressing diverse needs of the users
of audio data, including audio identification (finding a title and a performer of a
given excerpt, re-played or even hummed), identification of style or music genre, or
audio alignment (e.g., score following), etc.; examples of systems available at com-
mercial web sites can be found at [15], [23], and systems being part of research are
described in [16], [17], see also papers in [21], [22], and so forth.

Extraction of pitch, so-called pitch tracking, is performed in some of the MIR
systems, and it is quite accurate in the case of melodies when only one sound is
played at a time. Clearly, multi-pitch extraction (for chords) is more challenging
and the problem of assigning each pitch to appropriate part of the score has to be
tackled. Automatic assignment of notes to particular voices would be facilitated if
instruments participating in each chord were automatically identified. The research
presented in this chapter addresses automatic identification of instruments in poly-
phonic multi-instrumental recordings.

Timbre recognition is one of the subtasks in MIR, and it has proven to be ex-
tremely challenging especially in multi-timbre sounds, where multiple instruments
are playing at the same time. Compared with this, automatic recognition of an in-
strument in the case of single sounds (no chords) is relatively easy, and it has been
investigated, starting in the twentieth century, by many researchers. The obtained
accuracy depends on the number of sounds and instruments taken into account, a
feature set used, and a classifier applied, as well as the validation method utilized.
Even 100% can be achieved for a small number of sounds/instruments classified
with an artificial neural network, but usually is lower, and generally decreases with
increasing number of instruments, even below 40% when the number of instruments
approaches thirty and full range of each instrument is taken into account. We should
also notice that audio data, represented as a long sequence of amplitude values
(44100 samples per second per channel is a standard for CD), may vary significantly,
depending on many factors, e.g., recording conditions, playing method, the player
and his or her particular instrument, etc. Therefore, audio data are usually param-
eterized before applying classifiers, and the extracted feature vector also strongly
influences the obtained results. The feature set can be based on the time-domain
representation describing the sound amplitude or the spectrum obtained from the
sound analysis describing frequency contents derived from short audio frames and
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we also believe that temporal changes of various sound features can be beneficial as
the sound may undergo substantial changes in time (see Figure 18.1). Spectral fea-
tures are most often extracted using Fourier transform but other analyses are applied
as well, e.g., wavelet transform yielding time-frequency representation.

 

Fig. 18.1 Spectrogram (sonogram) for A4 (440 Hz) sound of violin, played vibrato. The
spectrogram shows temporal changes of the sound spectrum. Horizontal axis represents time,
and vertical axis represents frequency. The darker the shade of gray, the higher the magnitude.

Feature sets vary depending on the researcher; there is no standard feature set.
However, many low-level audio descriptors from the MPEG-7 standard of multi-
media content description [8] are often used. Mel-Frequency Cepstral Coefficients
(MFCC), originating from speech recognition, can also be applied for MIR pur-
poses [4], including recognition of musical instruments [2]. In our research, we
apply various short-time sound features describing properties of the sound in time
domain and its spectrum; besides, we add temporal features to this basic set in order
to capture time-variability of the sound features. Detailed description of the feature
set used in this research is presented in Section 18.3.

As it was mentioned before, the accuracy of instrument identification also
depends on the classifier. The algorithms applied in experiments on instrument
recognition include k-nearest neighbors (k-NN), artificial neural networks (ANN),
rough-set-based classifiers, support vector machines (SVM), Gaussian mixture
models (GMM), decision trees and random forests, and so on. The review of the
outcomes of this research is given in [6](see also [9]). Although the obtained accu-
racies are far from being perfect when the number of instruments to be recognized
is big, simple algorithm as k-NN may still yield good results. However, algorithms
successfully identifying instruments playing single and isolated sounds can be prone
to errors when executed on continuous polyphonic data (multi-instrumental chords),
as happens in recordings, even when tried on duets [14]. Identification of instru-
ments in the case of chords is much more challenging, and more sophisticated al-
gorithms are advised to be used. For instance, ANN yielded over 80% accuracy for
several four-instrument sets [10]; GMM classifier yielded about 60% accuracy for
duets from five-instrument set [3]; random forests produced about 75% accuracy
on average [11] for 2–5 instruments from 10-instrument sets, with variable accu-
racy obtained for particular instruments. Since random forests are quite robust with
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respect to noise [1], and already proved to be rather successful in the instrument
identification task, we decided to apply this classification technique in the reported
research.

18.1.1 Random Forests

A random forest (RF) is an ensemble of classification trees, constructed using
procedure minimizing bias and correlations between individual trees. Each tree
is built using different N-element bootstrap sample of the training N-element set.
The elements of the sample are drawn with replacement from the original set, so
roughly one-third of the training data is not used in the bootstrap sample for any
given tree.

Let us assume that objects are described by a vector of P attributes (features).
At each stage of tree building, i.e., for each node of any particular tree in RF, p
attributes out of all P attributes are randomly selected (p $ P, often p =

√
P). The

best split on these p attributes is used to split the data in the node. It is determined
as minimizing the Gini impurity criterion, which is a measure how often an element
would be incorrectly labeled if labeled randomly, according to the distribution of
labels in the subset.

Each tree is grown to the largest extent possible (without pruning). By repeating
this randomized procedure M times one obtains a collection of M trees, which con-
stitute a random forest. Classification of each object is made by simple voting of all
trees [1].

18.1.2 Outline of the Paper

The experiments presented in this chapter concern identification of multiple instru-
ments in polyphonic multi-instrumental recordings. Feature sets used here contain
both frame-based audio parameters, as well as new parameters describing temporal
variability of the frame-based features. The training audio data were taken from two
repositories, commonly used in similar research worldwide. Testing data represent
audio recordings of classical music, as we decided to focus our research on this mu-
sic genre. The testing data were manually labeled in a careful way in order to create
ground-truth data. Random forests have been applied as classifiers, also for hierar-
chical classification, including feature-driven hierarchy. The details of this research
are presented in the next sections of our chapter; audio data are described in Section
18.2, features for sound parameterization are shown in Section 18.3, and the exper-
iments are presented and discussed in Section 18.4. The chapter is summarized and
concluded in Section 18.5.
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18.2 Audio Data

Music we listen to can be played by numerous instruments; in various music genres,
typical sets of instruments are usually used. For instance, electric guitars and drums
etc. are commonly used in rock music; violins, violas etc. are commonly used in
classical music; and so on. The music collections available worldwide are often
labelled with these categories, so we can assume that this information is given. In
the research presented in this chapter, we decided to focus on classical music, and
therefore limit the set of investigated instruments to ones which are typical for this
type of music. If someone would like to investigate a different music genre, the same
methodology can be applied.

The audio data we decided to use in the experiments represent the following 10
instruments: B-flat clarinet, cello, double bass, flute, French horn, oboe, piano, tenor
trombone, viola, and violin. Obviously, this set is not comprehensive and could be
extended; still, it is sufficient for the purpose of illustrating the task we are dealing
with, i.e., recognition of multiple instruments in polyphonic recordings.

Our experiments included training and testing of random forests. Therefore, we
needed recordings for training RFs to be used to recognize selected instruments.
We used single sounds played in various ways: vibrato (with vibration), pizzicato
(plucking the strings), f orte (loud), piano (soft), etc.; techniques of playing are
called articulation. Also, we used all available pitches for every instrument.

The training data were taken from two commonly used repositories:

• MUMS [19]: all available articulation versions for our 10 instruments;
• IOWA [25]: f ortissimo (very loud) for piano, and mezzo f orte (medium loud)

for other instruments;

• cello, viola, and violin: arco (bowing) and pizzicato;
• flute: vibrato and non-vibrato (no vibration);
• French horn: f ortissimo for notes within C3–B3 (MIDI notation used, i.e.,

A4=440 Hz) and mezzo f orte for the remaining notes.

Some of the sounds were recorded vibrato (e.g., strings – violin, viola, cello, and
double bass from MUMS), and others with no vibration (strings in IOWA repos-
itory). Sounds of strings and tenor trombone were also chosen played muted and
not muted. Flute is represented by vibrato and flutter sounds. Piano is represented
by soft, plucked, and loud sounds. For each instrument, all articulation versions of
sounds of this instrument represent the same class, i.e., the given instrument.

Testing data were taken from RWC Classical Music Database [5], so they were
utterly different from the training data. Since we planned to evaluate temporal fea-
tures, describing evolution of a sound in time (whether this would be a single sound,
or a chord), we needed pieces with long sounds, i.e., long enough to observe time
variability of these sounds in non-transitory parts. Such long-lasting sounds were
manually selected from RWC Classical Music Database. We also wanted our test
set to represent various composers and music styles. Therefore, the following pieces
were used (number of test sounds selected for each piece is shown in parentheses):
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• No. 4: P.I. Tchaikovsky, Symphony no. 6 in B minor, op. 74 ‘Pathétique’, 4th
movement (10 sounds);

• No. 9: R. Wagner, “Tristan und Isolde": Prelude and ‘Liebestod’ (9 sounds);
• No. 12: J.S. Bach, “The Musical Offering", BWV. 1079, ‘Ricercare à 6’ (14

sounds);
• No. 16: W.A. Mozart, Clarinet Quintet in A major, K. 581, 1st movement (15

sounds);
• No. 18: J. Brahms, Horn Trio in E� major, op. 40, 2nd movement (4 sounds).

Test sounds represent homogenous chords (i.e., the instruments playing and the
notes played remain constant throughout the whole sound), played by two to five
instruments. These sounds were manually selected in a careful way and then la-
belled, thus creating ground-truth data for further experiments.

Both training and testing data were recorded with 44.1 kHz sampling rate and
16-bit resolution. If the audio data were recorded stereo, then the left channel was
arbitrarily chosen for processing. Also, as a preprocessing step, the silence before
and after each isolated sound was removed. To do this, a smoothed version of am-
plitude was calculated starting from the beginning of the file, as moving average
of 5 consequent amplitude values, and when this value increased by more than a
threshold (experimentally set to 0.0001), this point was considered to be the end of
the initial silence. Similarly, the ending silence was removed.

18.2.1 Hornbostel-Sachs System of Musical Instrument
Classification

Instruments we investigate in the reported research represent various families of
instruments, according to Hornbostel-Sachs system of musical instrument classifi-
cation [7], which is the most commonly used system describing the taxonomy of
instruments. This system classifies instruments of classical music into the follow-
ing groups: aerophones (wind instruments), chordophones (stringed instruments),
membranophones (mostly drums), and idiophones (basically, other percussive in-
struments, where a solid is a source of vibration). Since Hornbostel-Sachs system
provides a hierarchical classification of musical instruments, these categories are
further subdivided into subcategories. According to Hornbostel-Sachs system, the
investigated instruments are classified as follows:

• aerophones

• flutes
� (transverse) flute,

• reed instruments
� single reed: B-flat clarinet,
� double reed: oboe,
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• brass
� French horn,
� tenor trombone,

• chordophones

• bowed: cello, double bass, viola, and violin; these instruments can be
played pizzicato (and this articulation was also investigated), but bowing
is a primary articulation here, this is why these instruments are classified as
bowed;

• piano.

We decided to investigate sounds of definite pitch, with harmonic spectra, as we
planned to monitor harmonic structure of the spectrum, among other sound fea-
tures. Therefore, percussive instruments (membranophones and idiophones) are not
investigated here.

The timbre of a sound may also differ depending on articulation. However, our
goal was to identify musical instruments without taking this property into account.
Therefore, all sounds of each particular instrument represented the same class, i.e.,
this instrument, and no classification according to articulation was investigated in
the reported research.

18.3 Feature Set

Our feature set consists of the main, basic set of features, calculated for a 40-ms
Hamming-windowed frame of the analyzed sound, which is then used twofold: to
calculate average values, constituting the main representation of this sound, and to
observe temporal behavior of the analyzed sound. To start with, average values of
the main features are calculated for a sliding analysis frame with 10 ms hop size.
In order to make sure that long-term behavior is captured, 430 ms are taken for this
calculation. This may not cover the entire sound, but it is sufficient to cover the onset
and a good portion of the steady state, which are usually sufficient to recognize an
instrument by human listeners, so we also follow this philosophy. Next, we calculate
Fits – this proposed feature represents the type of the function which best describes
the temporal behavior of the main feature set; consecutive (and overlapping) parts of
the sound can be described by different functions. Finally, we calculate Peaks; this
multidimensional feature describes relationships between three greatest temporal
local maxima, representing time variability of the given feature throughout the entire
sound. The obtained temporal features are then added to the feature set. The details
of calculations of the above-mentioned features are described below.

The basic feature set consists of the following parameters:

• SpectralCentroid of the spectrum obtained through the discrete Fourier trans-
form (DFT), calculated as Fast Fourier Transform (FFT). In this case, the
frame length must equal to the power of 2. Since 40 ms equals to 1764 audio
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samples in the case of 44.1 kHz sampling rate, this frame is zero-padded to
2048 samples, and next SpectralCentroid Ci is calculated as follows:

Ci =
∑N/2

k=1 f (k) |Xi(k)|
∑N/2

k=1 |Xi(k)|
(18.1)

where: N - number of available elements of the (symmetrical) discrete spectrum,
i.e., frame length, so N = 2048;
Xi(k) - kth element of FFT for ith frame;
f (k) - frequency corresponding to kth element of the spectrum;

• SpectralSpread Si - a deviation of the power spectrum with respect to Spectral
Centroid Ci in a frame, calculated as

Si =

√
√
√
√∑N/2

k=1 ( f (k)−Ci)2 |Xi(k)|
∑N/2

k=1 |Xi(k)|
(18.2)

• AudioSpectrumFlatness, Flat1, . . . ,Flat25 - multidimensional parameter de-
scribing the flatness property of the power spectrum within a frequency bin
for selected bins; 25 out of 32 frequency bands were used for a given frame,
starting from 250 Hz, as recommended in MPEG-7. This feature is calculated
as follows:

Flatb =
hi(b)−lo(b)+1

√
∏hi(b)

k=lo(b) Pg(k)

1
hi(k)−lo(k)+1 ∑

hi(b)
k=lo(b)Pg(k)

(18.3)

where: b - band number, 1 ≤ b ≤ 25,
lo(b) and hi(b) - lower and upper limits of the band b, respectively,
Pg(k) - grouped coefficients of the power spectrum within the band b; grouping
speeds up the calculations;

• RollOff - the frequency below which an experimentally chosen percentage of the
accumulated magnitudes of the spectrum is concentrated (equal to 85%, which
is the most often used setting). RollOff is a measure of spectral shape, used in
speech recognition to distinguish between voiced and unvoiced speech;

• Flux - sum of squared differences between the magnitudes of the FFT points
in a given frame and its preceding frame. This value is usually very small, and
it was multiplied by 107 in our research. For the starting frame, Flux = 0 by
definition;

• Energy - energy (in logarithmic scale) of the spectrum of the parameterized
sound;

• MFCC - multidimensional feature, consisting of 13 Mel frequency cepstral co-
efficients. The cepstrum was calculated as a logarithm of the magnitude of the
spectral coefficients and then transformed to the mel scale. Mel scale is used
instead of the Hz scale, in order to better reflect properties of the human percep-
tion of frequency. Twenty-four mel filters were applied, and the obtained results
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were transformed to twelve coefficients. The thirteenth coefficient is the 0-order
coefficient of MFCC, corresponding to the logarithm of the energy [12], [18];

• ZeroCrossingRate; zero-crossing is a point where the sign of time-domain rep-
resentation of the sound wave changes;

• FundamentalFrequency - pitch; maximum likelihood algorithm was applied
for pitch estimation [26];

• HarmonicSpectralCentroid, HSC - mean of the harmonic peaks of the spec-
trum, weighted by the amplitude in linear scale [8];

• HarmonicSpectralSpread, HSS - represents the standard deviation of the har-
monic peaks of the spectrum with respect to HarmonicSpectralCentroid,
weighted by the amplitude [8];

• HarmonicSpectralVariation, HSV - normalized correlation between ampli-
tudes of harmonic peaks of each two adjacent frames, calculated as:

HSV = 1− ∑N
n=1 An(i− 1) ·An(i)

√

∑N
n=1 A2

n(i− 1) ·
√

∑N
n=1 A2

n(i)

where An(i) - amplitude of nth harmonic partial in ith frame [8]. For the starting
frame, HSV = 1 by definition.

• HarmonicSpectralDeviation, HSD, calculated as:

HSD =
∑N

n=1 |log(An)− log(SEn)|
∑N

n=1 log(An)

where SEn - nth component from a spectral envelope,
An - amplitude of nth harmonic partial.
This feature represents the spectral deviation of the log amplitude components
from a global spectral envelope, where the global spectral envelope of the nth

harmonic partial is calculated as the average value of the neighboring harmonic
partials: no. n− 1, n, and n+ 1, calculated as [8]:

SEn =
∑1

i=−1 An+i

3

• r1, . . . ,r11 - various ratios of harmonic partials in spectrum: r1 – energy of the
fundamental to the total energy of all harmonics, r2: amplitude difference [dB]
between 1st and 2nd partial, r3: ratio of the sum of partials 3-4 to all harmonics,
r4: partials 5-7 to all, r5: partials 8-10 to all, r6: remaining partials to all, r7:
brightness – gravity center of spectrum, r8, r9: contents of even/odd harmonics
in the spectrum, respectively.

For these basic features, we calculated:

• Averages - vector representing averaged (through 430 ms) values for all fea-
tures; this is our basic feature set;



356 E. Kubera, A.A. Wieczorkowska, and Z.W. Raś

• Fits - type of function (from 7 predefined function types) which best describes
the manner of feature values’ variation in time. Analysis was performed in 4
parts of the sound, each described by 10 consecutive 40 ms frames 75% over-
lapped (altogether 280 ms); each of these 4 parts can be assigned to any of these
7 function types. Hop size between parts was equal to 5 frames. Predefined func-
tion types were as follows: linear, quadratic, logarithmic, power, hyperbolic, ex-
ponential, and sinusoidal with linear trend. Original feature vector was treated
as a function of time. Functions of each predefined type were fitted into each
feature function within a given part of the sound. Linear and quadratic functions
were fitted using the method of least squares. In other cases, linearization was
performed before applying the least squares method. R2 value was calculated
for each fit, where R is a Pearson’s correlation coefficient. A function with the
highest R2 value was supposed to fit the data best. If the highest R2 was lower
than 0.8, then it was assumed that none of proposed functions fits data well, and
“no fit" was assigned as a feature value;

• Peaks (new temporal features) - distances and proportions between maximal
peaks in temporal evolution of feature values throughout the entire sound, de-
fined as follows. Let us name original feature vector as p and treat p as a
function of time. We searched for 3 maximal peaks of this function. Max-
imum Mi(p), i = 1,2,3, was described by k - the consecutive number of
the frame where the extremum appeared, and the value of feature p in the
frame k:

Mi(p) = (ki, p[ki]) k1 < k2 < k3.

The temporal variation of each feature can be then represented as a vector T =
[T1, . . . ,T6] of temporal parameters, built as follows:

T1 = k2 − k1 , T2 = k3 − k2 , T3 = k3 − k1 ,
T4 = p[k2]/p[k1] , T5 = p[k3]/p[k2] , T6 = p[k3]/p[k1] .

These parameters reflect relative positions and changes of values representing
maximal peaks in the temporal evolution of each feature [11].

18.4 Experiments and Results

The purpose of this chapter was to investigate automatic identification of musical
instruments in polyphonic recordings, and to verify if new temporal features can be
helpful to better recognize instruments in recordings. Another aim was to check if
hierarchical classifiers yield better results than non-hierarchical ones.
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18.4.1 Training and Testing of Random Forests

Training of the battery of RFs was performed on single isolated sounds of musi-
cal instruments, taken from IOWA and MUMS repositories, and on sound mixes
of up to three instruments. This way we created a set of multi-instrumental audio
samples, in order to train RF to identify the target instrument, even when accompa-
nied by another instrument or instruments. Instrumental sounds added in mixes were
randomly chosen in such a way that the obtained sounds constitute unisons or chords
(major or minor), and the distribution of instruments in the obtained set of mixes
reflects the distribution of instruments playing together in RWC Classical Music
Database. One-label training of binary RFs was performed on these data, aiming at
identification of a target instrument, i.e., whether it is playing in a sound, or not.

Tests of the obtained battery of RFs were performed on RWC Classical Music
data. Predictions were based on the results obtained for all forests (for all instru-
ments). Polytimbral music samples should produce multiple labels. To obtain such
multi-label predictions from our classification system, we derived them in a fol-
lowing way. For each binary classifier we got a percentage of votes of trees in the
forest on “yes" class (presence of an instrument corresponding to a given classifier),
and this percentage was treated as the rate of each corresponding label (instrument
name). Labels were sorted in decreasing order with respect to the corresponding
rates. If the first label on a list had the rate exceeding 80% and next label had the
rate below 20%, then we assumed that this sound was recognized as monotimbral
and prediction contained only one label – an instrument name of the highest rate.
Otherwise, the differences of rates of consecutive labels in the list were calculated,
and the prediction list of labels was truncated where the highest difference was
found.

In the case of hierarchical classification, binary RFs were similarly trained to
recognize groups of instruments in a given node.

In this case predictions were obtained in a similar way, but rates for labels in
leaves of a tree were calculated by multiplying rates from all nodes in a path from
the root to a given leaf.

In this work we used the RF implementation from the R package randomForest
[13], [20].

18.4.2 Feature-Driven Hierarchic Classifications of Musical
Instruments

In our experiments, we aimed at identifying instruments playing in a given snippet
of an audio recording, using several strategies of classification. To start with, we per-
formed non-hierarchical classification using a battery of binary RFs, where each RF
was trained to indicate whether a target instrument was playing in the investigated
audio snippet or not. These classification results are shown in Table 18.1, together
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Table 18.1 Results of the recognition of musical instruments in RWC Classical Music
Database, for the basic feature set

Classification system Precision Recall F-measure
Non-hierarchical 71.63% 58.43% 64.36%

Hierarchical (Hornbostel-Sachs) 70.74% 60.06% 64.97%

Fig. 18.2 Cluster dendrogram for Averages.

with the results obtained for hierarchical classification based on Hornbostel-Sachs
taxonomy of musical instruments, for the basic feature set, i.e., Averages.

Apart from Hornbostel-Sachs hierarchical classification, feature-driven hi-
erarchical classification of musical instruments in recordings was performed.
Hierarchies were obtained through clustering.

Hierarchical clustering was performed by means of Ward’s method, appropri-
ate for quantitative variable as ours [24]. This method uses an analysis of variance
approach to evaluate the distances between clusters. Ward’s method attempts to
minimize the sum of squares of any two hypothetical clusters that can be formed
at each step. It finds compact, spherical clusters, although it tends to create clusters
of small size. This method implements an agglomerative clustering algorithm, start-
ing at the leaves, regarded as n clusters of size 1. It looks for groups of leaves, forms
them into branches, and continues to the root of the resulting dendrogram. Distances
between clusters were calculated using Manhattan distance, as it performed best in
the conducted experiments.

Hierarchical clustering of instrument sounds was performed using R, an envi-
ronment for statistical computing [20]. The clustering based on feature vectors rep-
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Fig. 18.3 Cluster dendrogram for Averages + Peaks.

resenting only average values of our basic features (Averages), and with addition
of temporal observations of these features (Fits and Peaks) are shown in Figures
18.2, 18.4, and 18.3, respectively. Each dendrogram was built on the basis of single
instrumental sounds only, without mixes, thus no foreign sounds distorted represen-
tation of each target instrument. Every instrument was represented by one artificial
object, calculated as averaged value of all objects, i.e., parameterized sounds of this
instrument.

As we can see, the taxonomies of musical instruments obtained through clus-
tering shown in Figures 18.2, 18.4, and 18.3, differ significantly from classic
Hornbostel-Sachs system, in all cases of the feature-driven hierarchical trees.

The results obtained for hierarchical classification in various settings of hierar-
chies are given in Table 18.2. As we can see, precision is almost constant, around
70-72%, so it is practically independent of the hierarchy. However, the obtained
recall changes significantly. For each feature set, the recall improves when feature-
driven hierarchy is used as a classification basis. The best overall results (reflected
in F-measure) are obtained for feature-driven classification, and for Fits added to
the feature set. The trade-off between precision and recall can be observed in some
cases, but it is rather small. In general, adding temporal features improves the ob-
tained results, comparing to the results obtained for Averages; adding Peaks im-
proves accuracy, and adding Fits improves recall.

One can be interested in seeing the details of misclassification. Since we have
multiple instruments labeling both the input and output data, a regular confusion
matrix cannot be produced, since we cannot show which instrument was mistaken
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Fig. 18.4 Cluster dendrogram for Averages + Fits.

Table 18.2 Results of the recognition of musical instruments in RWC Classical Music
Database for different feature sets and hierarchic classification systems

Instruments hierarchy Feature set Precision Recall F-measure
Hornbostel-Sachs Averages 70.74% 60.06% 64.97%

Feature-driven Averages 70.24% 65.74% 67.91%
Hornbostel-Sachs Avg+Peaks 72.67% 60.42% 65.98%

Feature-driven Avg+Peaks 72.35% 62.47% 67.04%
Hornbostel-Sachs Avg+Fits 70.91% 64.74% 67.69%

Feature-driven Avg+Fits 71.88% 70.67% 71.27%

for which one. Still, in order to illustrate the details of RF-based classification, ex-
emplary results are presented in Figures 18.5 and 18.6, showing what types of clas-
sification errors we encountered.

Let us analyze the graphs presented in Figure 18.5. In the 1st graph, violin and
cello were identified correctly, but double bass and viola were additionally indicated
by the battery of RFs classifiers. Since double bass sound is similar to cello, and vi-
ola sound is similar to violin, it is not surprising that the corresponding RFs fired.
In the case of the 2nd graph, the errors are more serious, since the violin and viola
duo, although indicated correctly, was also accompanied by additional indication
of cello and double bass. Even though cello and viola are relatively closely related
instruments, the indication of double bass is considered to be a serious error here.
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Fig. 18.5 Exemplary results of RF-based recognition of duo sounds. The numbers correspond
to the instruments in the following order: 1. piano, 2. oboe, 3. cello, 4. trombone, 5. double
bass, 6. French horn, 7. clarinet, 8. flute, 9. viola, 10. violin. The values shown represent
outputs for each RF representing the given instrument
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Fig. 18.6 Exemplary results of RF-based recognition of instruments in polyphonic record-
ings. Each input sound represented a chord played by violin, viola, and cello.

In the case of the 3rd diagram, oboe and flute were recognized correctly, but addi-
tionally violin (higher rate than flute), piano, cello, clarinet, viola, French horn and
double bass were listed by our battery of RFs. This indicates that by adjusting the
way of outputting the recognition list we may improve precision, but most probably
at the expense of lower recall. Since recall is generally lower than precision in this
research, we believe that cutting of more instruments listed by the RFs classifiers
can deteriorate the overall results.

The graphs presented in Figure 18.6 show the results for three sounds, all rep-
resenting violin, viola, and cello playing together. The 1st diagram shows correct
identification of these three instruments, without errors. In the case of the other two
diagrams, besides of recognizing the target instruments, our battery of RFs classi-
fiers additionally indicated double bass. Again, double bass is similar to cello, so it
is not considered to be a serious mistake.
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18.5 Summary and Conclusions

In this chapter, we presented automatic hierarchical identification of musical instru-
ments in recordings. The Sachs-Hornbostel classification is the most common hier-
archic classification of musical instruments, but feature-driven classification yields
better results in automatic recognition of instruments in recordings. The audio data
are described here by means of various sound features, automatically calculated
for short audio frames. These features are then used to calculate the main feature
vector (Averages), as well as two additional feature types, Peaks and Fits, describ-
ing temporal changes of the basic features. Automatic recognition of instruments
in polyphonic recordings was performed using Random Forests, for ten instruments
commonly found in classical music pieces. Training of RFs classifiers was based
on 2 repositories of instrumental sounds. Single sounds and sound mixes were used
in this training; probability of adding an instrument to the training mix reflected
the distribution of instruments playing together in classical music recordings, taken
from RWC Classical Music Database.

Our experiments showed that hierarchical classification yields better results
than non-hierarchical one. Feature-driven hierarchic classification always im-
proves recall, which tends to be lower than precision (since identification of all
instruments in a chord is difficult even for a human), so the increase of recall
is valuable, and we consider it to be a success. Also, we observed that adding
Peaks improves accuracy of instrument recognition, and adding the proposed
feature Fits improves recall. We plan to continue experiments, with an extended
feature vector, including both Peaks and Fits added to Averages. We also plan to
add more detailed temporal features, and conduct experiments for more instruments.
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26. Zhang, X., Marasek, K., Raś, Z.W.: Maximum Likelihood Study for Sound Pattern Sep-
aration and Recognition. In: 2007 International Conference on Multimedia and Ubiqui-
tous Engineering, MUE 2007, pp. 807–812. IEEE (2007)

http://www.chiariglione.org/mpeg/
http://www.midomi.com/
http://www.R-project.org
http://www.R-project.org
http://www.sonyericsson.com/trackid
http://www.stat.psu.edu/online/courses/stat505/18_cluster/09_cluster_wards.html
http://www.stat.psu.edu/online/courses/stat505/18_cluster/09_cluster_wards.html
http://www.stat.psu.edu/online/courses/stat505/18_cluster/09_cluster_wards.html
http://theremin.music.uiowa.edu/MIS.html


Chapter 19
Unifying Variable Precision and Classical Rough
Sets: Granular Approach

Tsau Young Lin∗ and Yu Ru Syau∗

Abstract. The primary goal of this paper is to show that neighborhood systems
(NS) can integrate Ziarko’s variable precision and Pawlak ’s classical rough sets
into one concept. NS was introduced by T.Y. Lin in 1989 to capture the concepts
of “near” (in generalized topology) and “conflicts” (studied using non-reflexive and
symmetric binary relation). Currently, NS’s are widely used in granular computing.

Keywords: Rough sets, granular computing, variable precision rough set model
(VPRS), neighborhood systems, binary neighborhood systems.

19.1 Introduction

In 1996, Professor Lotfi Zadeh explained the concept of Granular Mathematics
(GrM) as follows:

If we view classical mathematics as the mathematics of points, then granular mathe-
matics (GrM) is a new mathematics, in which points are replaced by granules.

To limit the scope, T.Y. Lin proposed the label granular computing [37]. Since then,
many significant theories and applications have appeared under this label (see, e.g.,
[1–3, 12–18, 20–23, 28]). In particular, Lin used the neighborhood system (NS) to
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model Zadeh’s granule, NS was called Local GrC Model (or First GrC model) in
the Encyclopedia [21, 22] and relationships with general topology [7, 11, 31] were
studied. Moreover, T.Y. Lin in his keynote talk at GrC2011 proposed the granular
framework based on the point free concept. The framework is related to studies of
pointless topologies (see [9, 31]).

Note that the concept of NS was used in late 80-ties for totally different consid-
erations. In [13] are considered approximate retrieval and approximate reasoning
in generalized topological spaces, in which a neighborhood is a granule of uncer-
tainty (a list of indistinguishable objects). While in [14], the concept of conflicts is
considered. A neighborhood is an enemy list which forms an elementary granule of
knowledge in computer security. These investigations were stimulated by [5, 6, 8].
Let us also note that neighborhood systems (of clopen spaces) were used in rough
sets since the beginning of rough sets in direct or indirect form (see Section 19.2)
and recently are used more complex structures (see, e.g., (see, e.g., [34]).

The primary goal of this paper is to show that neighborhood system (NS) can
integrate Ziarko’s variable precision rough set model [41] and Pawlak’s classical
rough sets [24–27] into one concept.

19.2 Neighborhood Systems (NS)

Let us recall the neighborhood system definition.

Definition 19.1. A neighborhood system (NS) is a mapping

NS : U −→ 2P(U), (19.1)

where P(U) is the family of all crisp/fuzzy subsets of U and 2(P(U) is the family of
all crisp subsets of Y , where Y = P(U).

In the discussed framework, the granule corresponding to a point p is defined by
NP(p), i.e., this granule is a family of fuzzy/crisp subsets of U (a mathematical
object in the powerset of 2(P(U))).

Example 19.1. Consider the set U = {p0, p1, p2, p3} to be the universe of discourse
and let us assume

1. NS(p0) = /0, i.e., there are no neighborhoods at p0.
2. NS(p1) = { /0}, i.e., there is a neighborhood at p1 which is an empty set.
3. NS(p2) = {{p1, p2}}, i.e., there is a neighborhood that is not an empty set at

p2.
4. NS(p3) = {{p0, p1},{p0, p3}}, i.e., there are more than one neighborhood at

p3.
5. {p0, p3} is called a reflexive neighborhood of p3.

6. {p0, p1} is called an anti-reflexive or punctured neighborhood of p3.
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Remark 19.1.

1. The NS given in Definition 19.1 is actually a base of NS. Such a NS will become
the largest one, denoted by (LNS), if we add the following axiom:
• Super Set Condition (SSC): If M ⊇ N(p) for some nonempty N(p) ∈ NS(p),
then M ∈ NS(p). Observe that NS and LNS are topologically equivalent.

2. A topological neighborhood system (TNS) is a special LNS that requires three
more axioms [21].

3. The approximation space of rough set theory with indiscernibility defined by
equivalence relation is a clopen topological space whose NS consists of equiv-
alence classes [23–26]. Its LNS is denoted by RNS.

4. A covering C is a special NS, in which the NS(p) consists of all the members of
C that contain p. Its LNS is denoted by CNS. C is an open NS.

Let us observe that in rough set theory some neighborhood systems were used start-
ing form the beginning [24–27]. For example, let us consider the language L of
boolean combinations of descriptors, i.e., formulas of the form (a,v), where a is an
attribute and v is its value. Any such formula α defines in the information system
(U,A) a set ‖α‖A ⊆ U of all objects from U satisfying α . Then for a given x we
define NS(x) = {‖α‖A | x ∈ ‖α‖A & α ∈ L}. In the construction of the rule-based
classifiers are often used neighborhood systems defined by a subset of L consisting
conjunction of descriptors only. In this case, quite often instead of crisp membership
of x ∈ ‖α‖A are used some conditions of expressing closeness (or partial inclusion)
of granule defined by A-signature of x (i.e., In fA(x) = {(a,a(x)) | a ∈ A}) to the
granule defined by α . This leads to neighborhood systems such that for a given ob-
ject its neighborhoods not necessarily are including the object. Such neighborhoods
are used in matching of decision rules by objects in inductive extension (generaliza-
tion) of decision rule extensions.

For a neighborhood system NS over U and X ⊆ U we define the NS-lower
approximation NSX of X and the NS-upper approximation NSX of X by

NSX = {x ∈U :| ∃Y ∈ NS(x)Y ⊆ X}, (19.2)

and

NSX = {x ∈U | ∀Y ∈ NS(x) Y ∩X �= /0}. (19.3)

Remark 19.2.

1. Observe that (19.2) and (19.3) are topological concepts.
2. To obtain Pawlak’s knowledge approximation, observe the followings:

a. NS induces a Derived Partition (Equivalence Relation): p ≡ q if and only
if LNS(p)=LNS(q).

b. Observe that the given π is the Derived Partition [17, 18].
c. These equivalence classes are called center sets and the knowledge repre-

sented by each center set is called a central knowledge.
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3. Theorem 19.1 implies that these topological concepts are approximations of
central knowledge.

In a special case of NS(U) = {NS(p) | p ∈U}, where NS(p) is a singleton {Bp} we
replace NS by

B : U −→ 2U . (19.4)

where B(p) = Bp for p ∈U .
Such special neighborhood systems are called binary neighborhood systems

(BNS). (U,B) is called binary granular model [21,22]. Each set B(p) can be treated
as an example of (elementary) granule. One can easily observe that BNS is equiva-
lent to binary relation. If B(U) is a partition, then B is an equivalence relation.

Let us note that binary neighborhoods were considered in rough set theory since
the beginning. The basic binary neighborhood system is defined by B(x) = [x]A,
where [x]A is the indiscernibility relation defined by the set of attributes A [24–27].
This was the main research direction at the beginning of rough set theory. How-
ever, next rough set theory was extended to more general cases such as tolerance
(or similarity) rough sets, where we deal with coverings of the universe of objects
which are not necessarily partitions (see, e.g., [32, 33]). For tolerance approxima-
tion spaces are defined approximation spaces [32, 33]. They consists together with
the covering defined by a binary neighborhood system some rough inclusion mea-
sures. The simplest case is when the rough inclusion measure is identical with crisp
set theoretical inclusion. However, one may consider more general cases. One of
these cases is related to variable precision rough set model (VPRS) [41]. Some
more general are related to function approximation or to cases investigated in rough
mereology [29, 30].

Approximation spaces defined by Professor Zdzisław Pawlak in 80-ties, are
based on partitions and they lead to clo-open topologies. The further research on
rough sets, e.g., based on coverings instead of partitions resulted in generalized ap-
proximation spaces related to more general topologies on the universe of objects.
The neighborhood systems proposed by T.Y. Lin create a general framework for
studying such topologies and their relationships to concept approximation.

19.3 Variable Precision Rough Sets

Professor Skowron has communicated the following to us:

In [27,32,33] it was shown that the variable precision rough set model (VPRS) model
can be defined by approximation spaces with binary neighboorhood systems together
with some specific rough inclusion measure. In this section, we show that for any ap-
proximation space AS defined by the VPRS model one can define a new approximation
space determined by a neighborhood system and a rough inclusion measure identical
with crisp set theoretical inclusion in which the lower and upper approximations of X
are the same as in the original approximation space AS. In this way, the approxima-
tions in VPRS model for a given concept X can be defined by neighborhood systems.
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However, one should note that this fact cannot be generalized for approximation
spaces with arbitrary rough inclusion measures. Moreover, please note that when we
move from partitions to coverings then one can consider many different approxima-
tions of concepts.

We thank Professor Skowron for his comments. In addition, we would like to ob-
serve that VPRS can be extended to the cases that have different degrees of rough
inclusions for different equivalence classes; and in all these cases VPRS can all be
modeled by NS-theory.

Let us recall the definition of concept approximation in VPRS model. Any VPRS
model over U is defined by a partition π = {π1,π2, · · · ,πm} of U and a parameter β
such that 0 ≤ β < 0.5.

Let X be a subset, we define that πi is approximately included in X with error
β , if

πi ⊆β X iff e(πi,X)≤ β

where

e(πi,X) = 1− |πi∩X |
|πi| .

| · | is the set cardinality and e(πi,X) is the inclusion error of πi in X ; the equation
can be re-written as

|πi −πi ∩X |= e(πi,X) · |πi|.

Definition 19.2. The upper and lower approximations are defined by (Ziarko, 1993):

Rβ (X) = ∪{πi | πi ⊆β X}
= ∪{πi | e(πi,X)≤ β}
= ∪{πi | |πi −πi∩X | ≤ β · |πi|}.

R
β
(X) = ∪{πi | πi ∩β X �= /0}

= ∪{πi | e(πi,X)< 1−β}
= ∪{πi | |πi ∩X |> β · |πi|}.

Rough set theory with such approximations is called the variable precision rough
set theory (VPRS) (Ziarko, 1993).

We we define define a NS for it.

Definition 19.3. The Neighborhood System for VPRS.
Let π and β be fixed. Let p be an arbitrary point in U , and p ∈ πi. Let mi be the
maximal positive integer such that mi ≤ β · |πi|. Let

Ti = {T j
i ⊆ πi | |T j

i | ≤ mi, j = 1,2, . . .}.
Nβ

T j
i

(p)≡ πi −T j
i .

NSβ (p) = {Nβ
T j

i

(p) | πi ∈ π ,T j
i ∈ Ti}.
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NSβ (U) = {NSβ (p) | p ∈U} is referred to as the neighborhood systems of U under
the given threshold β .

The idea of the neighborhood system construction for VPRS is illustrated in Fig-
ure 19.1.

Fig. 19.1 The idea of neighborhood system constructing for VPRS: The idea of neighbor-
hood system constructing for VPRS: each equivalence class is substituted by a family of
neighborhoods obtained by cutting all possible ’small’ parts from it.

One can prove that the approximations of concepts defined in VPRS model in the
corresponding to it approximation space are identical with approximations defined
by the defined above neighborhood system. More precisely, we have the following
theorem:

Theorem 19.1. For any VPRS model over U one can define a neighboorhood system
NS over U such that the (lower) upper approximation of any subset of U in NS is
equal to the (lower) upper approximation of this subset in the VPRS model.

19.4 Conclusions

In this paper, we focuses on integrating variable precision rough sets with neighbor-
hood systems. More works will be reported. Here we shall present some motivation
of this approach.

1. In 1979, Zadeh observed that

[...] the assumption that real numbers can be characterized and manipulated with
infinite precision.

situations, [...] cannot be dealt with through an appeal to continuity. In such
cases, the information may be said to be granular [...]



19 Unifying Variable Precision and Classical Rough Sets 371

2. We shall present a mathematical example:

a. Based on the axioms of real numbers, the only solution of the inequalities
{ negative reals }< Z < { positive reals } is Z = 0.

b. If the axioms are expressed in First Order Logic (FOL), then we lost the
infinite precision power and granules appear [10].

c. The topological version of this granule is T NS(p), for p = 0.

3. So the NS(p), is the model of granule. By abuse of language, we may also use
granule to mean the neighborhood.
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Abstract. The nature and degree of competition in an industry hinge on four basic
forces: Production, Technology, Marketing and Research & Development (R&D).
To establish a strategic agenda for dealing with these contending currents and to
grow despite them, a company must understand how they work in its industry and
how they affect the company in its particular situation. This study adopts Fuzzy
MCDM methods and details how these forces operate and suggests ways of ad-
justing to them, and, where possible, of taking advantage of them. Knowledge of
these underlying sources of competitive pressure provides the groundwork for a
strategic agenda of action. The result highlights the critical strengths and weak-
nesses of the company, animate the positioning of the company in its industry, clar-
ify the areas where strategic changes may yield the greatest payoff, and highlight
the places where industry trends promise to hold the greatest significance as either
opportunities or threats.
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20.1 Introduction

Every industry has an underlying structure, or a set of fundamental economic and
technical characteristics, that gives rise to these competitive forces. Decision maker,
wanting to position his company to cope best with its industry environment or to
influence that environment in the company’s favor, must learn what makes the envi-
ronment tick. The essence of strategy formulation is coping with competition. Yet it
is easy to view competition too narrowly and too pessimistically. Awareness of these
forces can help a company stake out a position in its industry that is less vulnerable
to attack.

The nature and degree of competition in an industry hinge on four forces: Pro-
duction, Technology, Marketing and R&D [4]. To establish a strategic agenda for
dealing with these contending currents and to grow despite them, a company must
understand how they work in its industry and how they affect the company in its
particular situation. This study details how these forces operate and suggests ways
of adjusting to them, and, where possible, of taking advantage of them. Knowledge
of these underlying sources of competitive pressure provides the groundwork for a
strategic agenda of action [9]. They highlight the critical strengths and weaknesses
of the company, animate the positioning of the company in its industry, clarify the
areas where strategic changes may yield the greatest payoff, and highlight the places
where industry trends promise to hold the greatest significance as either opportuni-
ties or threats. Understanding these sources also proves to be of help in considering
areas for diversification.

The remainder of this paper is organized as follows. In Section 20.2, about strat-
egy forces for business development is reviewed and the framework of dynamic
strategy forces for efficiency business is built. In Section 20.3, the methodology of
fuzzy hybrid MCDM model based on DEMATEL is proposed for applying strategy
forces. An empirical case and result are illustrated in Section 20.4. Discussions and
implications are presented in Section 20.5. Conclusion is offered in Section 20.6
and Future study in Section 20.7.

20.2 About Strategy Forces (SF)

The essence of strategy formulation is coping with competition. For a company in
the fight for market share, competition is not manifested only in the other players.
Rather, competitive strategies in an industry are rooted in its underlying economics,
and competitive forces exist not only from internal considerations but also that go
well beyond the established combatants in the high-tech industry. The forces sources
may gestate from customers, suppliers, potential entrants, and substitute products
which are all competitors that may be more or less prominent or active depending
on a particular industry.
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The nature and degree of competition in a company within the high-tech industry
hinge on strategy forces [4, 18], such as Production Capability (PC), Technology
Competence (TC), R&D (RD), Marketing & Service (MS).

1. Production Capability (PC): Manufacturing flexibility and production control.
2. Technology Competence (TC): Applications compatibility, core technology,

system integration.
3. R&D (RD): Innovative projects, science research, technology milestone.
4. Marketing & Service (MS): Customer satisfaction, channels, promotion, one-

stop-shopping.

Strategy-Forces based on answers to four generic questions about the strategy to
be pursued by the organization which also assume the financial support and or-
ganizational deployment is available for high-tech competition game. Therefore, as
Fig. 20.1 these four questions, one about production, one about marketing, one about
Technology, and one about R&D evolved quickly into a standard set of "perspec-
tives". The weaker the forces collectively, however, the greater the opportunity for
superior performance. Whatever their collective strength, the corporate strategist’s
goal is to find a position between company and industry where can best defend itself
against these forces or can influence them in its favor [9].

Fig. 20.1 The Hierarchy Structure

Understanding these sources also proves to be of help in considering areas for
diversification. A strategy map is a diagram that is used to document the primary
strategic goals being pursued by an organization or management team and to help
managers focus their attention more closely on the interventions necessary to ensure
the strategy is effectively and efficiently executed. By providing managers with the
direct feedback on whether the required actions are being carried out, and whether
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they are working. A performance management system is deciding what activities
and outcomes to monitor. By providing a simple visual representation of the strate-
gic objectives to be focused on, along with additional visual cues in the form of
the perspectives and causal arrows, the strategy map has been found useful in en-
abling discussion within a management team about what objectives to choose, and
subsequently to support discussion of the actual performance achieved.

20.3 Measuring the Forces Track

This section is based on what factors the past scholars in the study of strategy forces
considerations indicated and to further discuss the result of the study; hence, identify
the flow of facts. This study uses the four main aspects indicated by four-factor
model as PC, TC, RD and MS factors to implement the strategies can be evaluated in
dynamical considerations in time; identify the sub-factors that would affect the main
factors, thus firmly develop evaluating criteria and its dynamic track of mapping.

20.3.1 Methodologies

The field of multiple criteria decision making (MCDM) concerns the problems that
how decision makers should ideally do when facing multiple conflicting criteria.
Group decision-making solve problems through a group of experts form their spe-
cific knowledge domain and help on business strategies decision-making [2, 19].
This study adopt a Decision-Making Trial and Evaluation Laboratory (DEMATEL)
method which was developed by the Battelle Geneva Institute to analyze complex
‘world problem’ dealing mainly with interactive man-model techniques, and to eval-
uate qualitative and factor-linked aspects of societal problems. DEMATEL analyses
the complicated problems in the real world via building a network interrelation.
Therefore, the considerable methods and models have been proposed for various
MCDM problems (as Fig. 20.2) with respect to different perspectives and theories.

A fuzzy hybrid MCDM model is proposed using expert groups. According to
Fig. 20.2, the hierarchy structure is build by literature and experts’ input. Each of
methodology that applied on this study can be independently discussed its unique
function as well as its characteristics. Although, the hybrid concept in method-
ologies application on problem solving is widely accepted while handle multiple
stages on decision making process, combined those of methodologies can bring
the case study serious and deep to look inside the problem itself by solving tech-
niques in fitting the real life. The DEMATEL is used to detect complex relationships
and to build a network relation map (NRM), including the calculation of dimen-
sion and criteria for direct/indirect influence forces and ranking. Then, the DANP
(DEMATEL-based ANP approach) can be used to calculate the influential weights
(WD, WC as of global weights and local weights) of criteria to overcome problems of
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Fig. 20.2 Framework of Hybrid Methodologies Application

dependence and feedback among criteria, which we adopt the concept of ANP (an-
alytic network of process) theory by Saaty [14]. Finally, VIKOR is used to evaluate
the total performance to discover the performance scores and gaps. This study at-
tempts to bridge this gap, using an empirical case of an improvement plan, and
hopefully contributes to a complex strategic system with a useful evaluation model
based on a hybrid MCDM method. Some future related work also is presented with
grey print.

20.3.2 Fuzzy Theory with AHP and ANP

Because of the subjective of the attributes used in the evaluation, Analytic Hierar-
chy Process (AHP) [11–14, 16] is the most appropriate method for this problem.
However, since the experts prefer natural language expressions rather than sharp
numerical values in their assessments, the classical AHP may not yield satisfactory
results. Expressions such as “not very clear”, “probably so”, and “very likely”, are
used often in daily life, and more or less represent some degree of uncertainty of
human thought. The fuzzy set theory proposed by Zadeh (1965) [20], an impor-
tant concept applied in the scientific environment, has been available to other fields
as well. Consequently, the fuzzy theory has become a useful tool for automating
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human activities with uncertainty-based information. This study proposes a fuzzy
hierarchy framework to implement factors analysis. This study helps organizations
identify the differences between the desired and current situations, and then iden-
tify the improvement areas and develop the strategies for the business operation and
implementation.

In addition, the company can also use the results as a benchmark with competi-
tors and other “best-in-class” organizations. To manage strategy deployment suc-
cessfully, its measurement indicators must be defined and prioritized. Because of
the subjectivity of the attributes used in the evaluation, ANP [15] considers the re-
lationship of mutually interactive and self-feedback as the most appropriate method
for this problem. The ANP is an extension of AHP by Saaty to overcome the prob-
lem of interdependence and feedback between criteria or alternatives. Although the
AHP and the ANP derive ratio scale priorities by making paired comparisons of el-
ements of a criterion, there are differences between them. The first is that the AHP
is a special version of the ANP; the ANP handles dependence within a cluster (inner
dependence) and among different clusters (outer dependence). Secondly, the ANP
is a nonlinear structure, while the AHP is hierarchical and linear, with the goal at
the top and the alternatives in the lower levels [14]. The initial step of the ANP is
to compare the criteria in the entire system to form a supermatrix through pairwise
comparisons by asking “How much importance does one criterion have compared to
another criterion, with respect to our interests or preferences?” The relative impor-
tance is determined using a scale of 1–5 representing equal importance to extreme
importance.

The ANP is used to transform qualitative judgments into quantitative values and
obtain the weights of perspectives. ANP was published by Saaty in 1999 [15]; the
purpose is to solve the relaying and feedback problems of criteria. ANP overcomes
one of the AHP limitations; in other words, ANP generalizes AHP. The biggest dif-
ference between AHP and ANP is that ANP has decision problem when applied to
cases and criteria. However, AHP neglects the problem and presumes its indepen-
dent relationship. Thus, when feedback occurs to exclude the cases and criteria, de-
cision making might be affected. ANP will yield a more practical result. Moreover,
the ANP is valuable for MCDM involving intangible attributes that are associated
with strategies factors.

The ANP is a coupling of two parts. The first consists of a control hierarchy or
network of criteria and sub-criteria that control the interactions. The second is a
network of influences among the elements and clusters. The network varies from
criterion to criterion and a different supermatrix of limiting influence is computed
for each control criterion. Finally, each of these supermatrices is weighted by the
priority of its control criterion and the results are synthesized through the addition
for all the control criteria [16]. The ANP method [14] provides a general frame-
work to deal with decisions without making assumptions about the independence
of higher-level elements from lower-level elements and about the independence of
the elements within a level as in a hierarchy. Compared with traditional MCDM
methods, e.g., AHP, TOPSIS, ELECTRE, etc., which usually assume the indepen-
dence between criteria, ANP, a theory that extends AHP to deal with dependence in
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feedback and utilizes the supermatrix approach [10], is a more reasonable tool for
dealing with complex MCDM problems in the real world. In this section, concepts
of the ANP are summarized based on Saaty’s earlier works [14, 16].

20.3.3 Fuzzy Decision-Making

When people encounter uncertain or vague decision-making problems in the real
world, they often express their thinking and subjective perception in words instead
of probability and statistics. But the problem with words is that their meanings are
often vague. Furthermore, even when people use the same words, individual judg-
ment of events is invariably subjective and may differ. Moreover, even if the mean-
ing of a word is well defined (e.g., the linguistic comparison labels in the standard
AHP questionnaire responses), when we use the word to define a set, the boundary
that separates whether an object does or does not belong to the set is often fuzzy or
vague. This is why fuzzy numbers and fuzzy sets have been introduced to charac-
terize linguistic variables. The preferences in AHP are essentially human judgments
based on one’s perception (this is especially true for intangibles), and we believe
the fuzzy approach allows for a more accurate description of the decision-making
process.

The Fuzzy ANP (FANP) approach applies a network, which connects the compo-
nents of a decision system presented to prioritize strategy implementation factors for
a manufacturing business to implement one of its most critical parts, used in man-
agement decision process and under multiple criteria decision-making in the fuzzy
environment [16]. The main criteria and attributes have been decided which are
based on the current business scenario and experience of the experts in the respec-
tive fields. The large number of criteria and attributes demonstrated the complexities
involved in the strategy implementation factors. Each affecting factor [10], as strat-
egy forces and implementation, has been analyzed and discussed. This paper has
made a significant contribution to identifying the important criteria and paves the
way to consider these practically relevant and interesting issues of strategy forces
factors in the fuzzy environment.

We emphasize that the study contributes to build up and apply the theoretical
model of strategy implementation priority. This study takes a step in the direction of
setting priorities of clarifying, guiding, and integrating terms and concepts relevant
to strategy implementation and management aspects in the firm process.

Fuzzy sets or fuzzy numbers is a way to cope with uncertain judgments and to
incorporate the vagueness that typifies human thinking in expressing preferences.
Fuzzy idea can be used in a wide range including possible related factors, which
cover or overlap the concerns from one to another. Therefore, the defuzzification
skill needs to be clarified for making sure that the final result can lead and help
precisely in the right direction for decision-making.

For future studies, this study combines with fuzzy concept and uses the rough sets
theory (first introduced by Pawlak in 1982 [8], is a valuable mathematical tool) for
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dealing with vagueness and uncertainty. The use of the rough set approach (RSA)
as a data mining techniques in general has been restricted to classification problems
where the data is either non-ordered or the ordinal nature of the preference data is
ignored. Therefore, that the data mining technique called Dominance-based Rough
Set Approach (DRSA) analyzes a survey on strategy forces for dynamic decision
space (DDS) is suggested. A set of “if antecedent, then consequent” decision rules
are induced from the preference data that express the relationships between attribute
values and the overall performance ratings. There are several advantages in using
DRSA. First, the strategy decision rules are formulated in natural language and are
easy to understand. Second, strategy decision associated with changeable attributes
could be eliminated without affecting the company’s overall performance rating.
Third, decision rules that combine both technology development and innovation
attributes could be used for mass customization.

20.3.4 Mapping Tools

A network connects the components of a decision system. According to size, there
will be a system that is made up of subsystems, with each subsystem made up
of components, and each component made up of elements. The elements in each
component interact or have an influence on some or all of the elements of an-
other component with respect to a property governing the interactions of the entire
system.

20.3.4.1 DANP

DANP is the combined method of DEMATEL and ANP. This method is effective is
solving the complicated problems between communities by the hierarchical struc-
ture, and to understand the complicated causalities. ANP relaxes the restriction of
hierarchical structure [14] from AHP and is applied to solve interdependence prob-
lems and complicated network relations. We use the basic concept of ANP com-
bining the total influential matrix of DEMATEL to build super-matrix of ANP for
finding the influential weights among criteria.

The applicability of the method is widespread, ranging from industrial plan-
ning and decision-making to urban planning and design, regional environmental
assessment, analysis of world problems, and so forth. It has also been successfully
applied to many situations, such as marketing strategies, control systems, safety
problems, developing the competencies of global managers, and group decision-
making. Furthermore, a hybrid model combining the two methods has been widely
used in various fields, for example, e-learning evaluation, airline safety measure-
ment, and handset design for next-generation handset. Therefore, in this paper, we
use DEMATEL not only to detect complex relationships and build an NRM of the
criteria, but also to obtain the influence levels of each element over others; we then
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adopt these influence level values as the basis of the normalization supermatrix for
determining ANP weights to obtain the relative importance.

The DEMATEL method is based upon graph theory, enabling us to plan and solve
problems visually, so that the relationship between the causes and effects of criteria
is converted into an intelligible structural model of the system, to better understand
causal–effect relationships. Directed graphs (also called digraphs) are more useful
than directionless graphs, because digraphs will demonstrate the directed relation-
ships of sub-systems. A digraph typically represents a communication network, or
a domination relationship between individuals, etc. [3, 17].

Suppose a system contains a set of elements, S = {s1,s2, . . . ,sn}, and particular
pair-wise relationships are determined for modeling, with respect to a mathematical
relationship. Next, portray the relationship as a direct-relation matrix that is indexed
equally in both dimensions by elements from the set S. Then, extract the case for
which the number 0 appears in the cell (i, j), if the entry is a positive integer it has
the meaning of:

1. the ordered pair (si,s j) is in the mathematical relationship;
2. it has the kind of relationship where element si causes element s j.

The digraph portrays a contextual relationship between the elements of the system,
in which a numeral represents the strength of influence. The elements s1, s2, s3, and
s4 represent the factors that have relationships in Fig. 20.3. The number between
factors is influence or influenced degree. For example, an arrow from s1 to s2 repre-
sents the fact that s1 influences s2 and its influenced degree is two. The DEMATEL
method can convert the relationship between the causes and effects of criteria into
an intelligible structural model of the system.

Fig. 20.3 An example of the directed influence graph

The influences of a given set of elements (determinants) in a component on any
element in the decision system are represented by a ratio scale priority vector de-
rived from paired comparisons of the comparative importance of one criterion and
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another criterion with respect to the interests or preferences of the decision makers.
This relative importance value can be determined using a scale of 1–9 to represent
equal importance to extreme importance.

20.3.4.2 VIKOR Method

The VIKOR (Vlsekriterijumska Optimizacija I Kompromisno Resenje in Serbian,
means Multicriteria Optimization and Compromise Solution) method introduced
the multicriteria ranking index based on the particular measure of closeness to the
ideal/aspired level solution and was introduced as one applicable technique to im-
plement within MCDM [6, 7]. The compromise solution is a feasible solution clos-
est to the ideal/aspired level, and a compromise means an agreement established by
mutual concessions. The VIKOR method was developed as a multicriteria decision-
making method to solve discrete decision problems with non-commensurable and
conflicting criteria. This method focuses on ranking and selecting from a set of alter-
natives in the presence of conflicting criteria, which could help the decision makers
to reach a final decision. These methods rank and select alternatives based on all es-
tablished criteria, using the same criteria for each alternative. However, in practice
the decision maker often simultaneously manages or improves the achieved rate of
progress in one or several projects (plans); therefore we needs to know the unim-
proved gaps of the projects or aspects of a project (‘projects or aspects of a project’
is abbreviated to ‘Alternatives’) so as to improve them to achieve the minimum/zero
gaps.

The compromise-ranking method (VIKOR method) determines the compromise
solution [5–7]; the obtained compromise solution is acceptable to the decision mak-
ers because it provides a maximum group utility of the majority (represented by
min S), and a minimum individual maximal regret of the opponent (represented by
min Q).

The VIKOR method began with the form of Lp − metric, which was used as an
aggregating function in a compromise programming method and developed into the
multicriteria measure for compromise ranking.

We assume the alternatives are denoted as A1,A2, ...,Ai, ...,Am. wj is the weight
of the jth criterion, expressing the relative importance of the criteria, where j =
1,2, ...,n, and n is the number of criteria. The rating (performance score) of the jth
criterion is denoted by fi j for alternative Ai. The form of Lp− metric was introduced
by Duckstein and Opricovic [1] and is formulated as follows:

Lp
i =

( n

∑
j=1

[wj
(| f ∗j − fi j|)
(| f ∗j − f−j |)

]p
) 1

p

, (20.1)

1 ≤ p ≤ ∞; i = 1,2, ...,m.
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The VIKOR method is not only generated with the above form of Lp − metric, but
it also uses Lp=1

i (as Si in Eq. 20.2) and Lp=∞
i (as Qi in Eq. 20.3) to formulate the

ranking measure.16,18,19,23

Si = Lp=1
i =

n

∑
j=1

[wj
(| f ∗j − fi j|)
(| f ∗j − f−j |)

] (20.2)

Qi = Lp=∞
i = max

j
{wj

(| f ∗j − fi j|)
(| f ∗j − f−j |)

]; j = 1,2, ...,n. (20.3)

When p is small, the group utility is emphasized (such as p = 1) and as p increases,
the individual regrets/gaps receive more weight. In addition, the compromise so-
lution min

i
Lp

i will be chosen because its value is closest to the ideal/aspired level.

Therefore, in min
i

Si and min
i

Qi, min
i

Si expresses the minimum of the sum of the

individual regrets/gaps and min
i

Qi expresses the minimum of the maximum from

individual regret. In other words, min
i

Si emphasizes the maximum group utility,

whereas min
i

Qi emphasizes selecting minimum among the maximum individual

regrets. Based on the above concepts, the compromise ranking algorithm VIKOR
consists of the following steps.

Step 1. Determine the best f ∗j , and the worst f−j values of all criterion functions,
j = 1,2, ...,n. If we assume the jth function represents a benefit, then f ∗j = max

i
fi j

(or setting an aspired level) and f−j = min
i

fi j(or setting a tolerable level). Alterna-

tively, if we assume the jth function represents a cost/risk, then f ∗j = min
i

fi j (or

setting an aspired level) and f−j = max
i

fi j (or setting a tolerable level). Moreover,

we propose an original rating matrix and a normalized weight-rating matrix of risk
as follows:

alternatives

criteria

c1 · · · c j · · · cn

A1
...

Ai
...

Am

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

f11 · · · f1 j · · · f1n
...

...
...

fi1 · · · fi j · · · fin
...

...
...

fm1 · · · fm j · · · fmn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

normalized
⇒
×wj

criteria

c1 · · · c j · · · cn

A1
...

Ai
...

Am

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

w1r11 · · · wjr1 j · · · wnr1n
...

...
...

w1ri1 · · · wjri j · · · wnrin
...

...
...

w1rm1 · · · wjrm j · · · wnrmn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

f ∗1 · · · f ∗j · · · f ∗n
f−1 · · · f−j · · · f−n

(Original data) (Normalized data)
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where, ri j =
(| f ∗j − fi j |)
(| f ∗j − f−j |) , f ∗j is the aspired/desired level and f−j is tolerable level for

each criterion.
Step 2. Compute the values Si and Qi, i = 1,2, · · · ,m, using the relations

Si =
n

∑
j=1

wjri j , (20.4)

Qi = max
j
{wjri j| j = 1,2, ...,n}, (20.5)

Step 3. Compute the index values Ri, i = 1,2, · · · ,m, using the relation

Ri = v
(Si − S∗)
(S−− S∗)

+ (1− v)
(Qi −Q∗)

(Q−−Q∗)
(20.6)

where S∗ = min
i

Si (or setting the best S∗ = 0), S− = max
i

Si (or setting the worst

S− = 1), Q∗ = min
i

Qi (or setting the best Q∗ = 0), Q− = max
i

Qi (or setting the

worst Q− = 1), and 0 ≤ v ≤ 1, where v is introduced as a weight for the strategy of
maximum group utility, whereas 1−v is the weight of the individual regret. In other
words, when v > 0.5, this represents a decision-making process that could use the
strategy of maximum group utility (i.e., if v is big, group utility is emphasized), or
by consensus when v ≈ 0.5, or with veto when v < 0.5.

Step 4. Rank the alternatives, sorting by the value of {Si, Qi and Ri|i= 1,2, ...,m},
in decreasing order. Propose as a compromise the alternative (A(1)) which is ranked
first by the measure min{Ri|i = 1,2, ...,m} if the following two conditions are
satisfied:

C1. Acceptable advantage: R(A(2))−R(A(1)) ≥ 1
m−1 , where A(2) is the alternative

with second position in the ranking list by R; m is the number of alternatives.
C2. Acceptable stability in decision-making: Alternative A(1) must also be the best
ranked by {Si or/and Qi|i = 1,2, ...,m}.

If one of the conditions is not satisfied, then a set of compromise solutions is pro-
posed, which consists of:

1. Alternatives A(1) and A(2) if only condition C2 is not satisfied.
2. Alternatives A(1),A(2), ...,A(M) if condition C1 is not satisfied. A(M) is deter-

mined by the relation R(A(M))−R(A(1))< 1
m−1 for maximum M (the positions

of these alternatives are close.

The compromise solution is determined by the compromise-ranking method; the
obtained compromise solution could be accepted by the decision makers because it
provides maximum group utility of the majority (represented by min S, Eq. 20.4),
and minimum individual regret of the opponent (represented by min Q, Eq. 20.5).
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The VIKOR algorithm determines the weight stability intervals for the obtained
compromise solution with the input weights given by the experts.

The model uses the DEMATEL and ANP procedures to obtain the weights of
criteria with dependence and feedback and uses the VIKOR method to obtain the
compromise solution.

20.4 Empirical Case and Results

An empirical case of a high-tech company, as the example illustrates, shows the
proposed method. The empirical findings these four factors have the relationship
of mutually interactive and self-feedback. Therefore, this study provides a set of
patterns, and take major player of High-Tech company, explained that manufacturer
of using the way of business strategies in a dynamic industry nature. The result
presents a comprehensive framework for making judgments and to move forward in
business strategies development that is essential. The function is refers to completes
this position or duty group of important abilities, therefore the application function
examines whether matches is a very good concept.

Empirical case of high-tech company as an example is illustrated to show the
proposed method. Empirical findings of these four factors (through DANP calcula-
tion) have a mutually interactive and self-feedback relationship (as Table 20.1 and
Table 20.2).

Table 20.1 The distance of influences by aspects

Aspect A B C D R R+S R-S Rank
A PC 0.297 0.286 0.310 0.301 1.193 2.414 -0.029 3
B TC 0.321 0.284 0.321 0.289 1.216 2.342 0.090 1
C RD 0.298 0.275 0.284 0.289 1.146 2.367 -0.075 4
D MS 0.306 0.282 0.306 0.284 1.178 2.341 0.014 2

S 1.222 1.126 1.221 1.164 - - - -

Table 20.1 “Technology Competence” will be important to fit the change of the
outside environment close to the real requirement and get the real necessity of
customer needs. Besides, it shows the “Marketing and Service” can be a poten-
tial for challenge and to complete with rivals in a speedy growth industry. Since
Fig. 20.4 demonstrates the strategy forces from the calculation of influences degree
and demonstrates a strategic mapping for the decision maker to clarify the moment
of strategy implementation, it may provide a picture to simulate the situations.

However, NRM may also provide a guide as a strategic consideration base for
forecasting and simulating, leading those dimensions in dynamic concerns (one
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Fig. 20.4 NRM as of the Strategy Forces by Dimensions

factor change may cause the others’ change).Then, this static NRM is expected to
turn into dynamic NRM, be re-shaped with pre-defaults influence forces, and to be
planed for the future study.

As the rank result (Table 20.2), “b4” and “a1” both locate at higher position of
the company’s strengths. Instantly, for the manufacturing business, the “Response”
tasks have been always discussed based on high-tech work environment. Due to
the sensitivity of market and economic changes, globalized changes may lead the
change of corporate business strategies to fit the requirement of market (customers)
needs. In contrast, “a3” and “c4” both locate at a lower position as the company’s
weaknesses. Therefore, this study suggests that a continuous and monitored “Pro-
duction Flexibility” is required for deployment of internal resources and providing
a well mechanism for feedback to end-users in time.

The essential alternatives are provided for problems solving. According to Ta-
ble 20.3, “R7: Financial support/ incentive program” and “R6: Competitiveness
Evaluation System” are the most favorable and satisfying issues, while the perfor-
mance evaluation is measured. It is not surprising that “R1: Innovation/Intelligent
Property” reveals the lowest credit which shows the importance of knowledge shar-
ing and accumulation that can possibly create a new hope of ideas generated toward
a new challenge on the next business strategic move. The definitions of those alter-
natives are as follows:
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Table 20.2 The distance of influences by criteria

Criteria R S R+S R-S Rank

A

a1 Production Flexibility 5.222 4.241 9.463 0.981 2
a2 Information Transparency 4.517 5.329 9.846 -0.812 14
a3 Simplify operation – Process Complexity 4.222 5.676 9.898 -1.454 16
a4 Quality – Yield control 5.120 4.299 9.419 0.821 3

B

b1 Production Application 4.387 5.140 9.527 -0.753 13
b2 Compatibility 5.102 4.336 9.438 0.766 5
b3 Innovation 5.104 4.308 9.412 0.796 4
b4 Response 5.224 4.235 9.459 0.989 1

C

c1 Key components 4.691 4.726 9.417 -0.035 10
c2 Patent 4.795 4.669 9.464 0.126 7
c3 IP Library 4.627 4.747 9.374 -0.120 11
c4 Device Mapping 4.227 5.392 9.619 -1.165 15

D

d1 Response 4.524 4.924 9.448 -0.400 12
d2 Sensitivity 4.725 4.691 9.416 0.034 8
d3 Service modes 4.773 4.795 9.568 -0.022 9
d4 Growth 4.820 4.572 9.392 0.248 6

Table 20.3 Performance Evaluation by VIKOR

Local Global Aspire
Criteria / Alternatives weight weight (ANP) level R1 R2 R3 R4 R5 R6 R7

A. Production capability (PC) 0.257 - - 7.267 7.504 8.006 6.996 6.743 7.496 8.251
a1 Production Flexibility 0.251 0.0644 10 8 7 9 8 7 8 9
a2 Information Transparency 0.253 0.0650 10 9 8 8 5 4 7 8
a3 Simplify operation – Process 0.245 0.0629 10 5 7 7 7 7 8 8

Complexity
a4 Quality – Yield control 0.251 0.0645 10 7 8 8 8 9 7 8

B. Technology competence (TC) 0.257 - - 4.765 5.214 5.509 5.692 5.481 5.959 6.226
b1 Production Application 0.239 0.0614 10 5 6 6 8 7 9 8
b2 Compatibility 0.255 0.0655 10 6 8 8 9 9 8 7
b3 Innovation 0.239 0.0613 10 6 8 7 8 7 7 8
b4 Response 0.267 0.0686 10 8 7 9 7 8 8 9

C. R&D (RD) 0.257 - - 5.852 5.756 5.726 8.000 7.364 7.480 7.852
c1 Key components 0.209 0.0538 10 4 6 7 8 6 8 6
c2 Patent 0.271 0.0695 10 7 6 5 8 9 8 9
c3 IP Library 0.276 0.0708 10 6 6 7 8 8 7 8
c4 Device Mapping 0.244 0.0627 10 6 5 4 8 6 7 8

D. Marketing & service (MS) 0.257 - - 7.202 7.735 6.786 6.743 6.980 7.471 6.284
d1 Response 0.265 0.0679 10 7 7 8 7 7 6 7
d2 Sensitivity 0.276 0.0710 10 6 8 7 6 7 8 6
d3 Service modes 0.239 0.0615 10 9 8 5 8 6 8 7
d4 Growth 0.220 0.0564 10 7 8 7 6 8 8 5

TOTAL 5.027 1.0272 10 6.272 6.552 6.507 6.858 6.642 7.101 7.153
Performance Ranking for Alternative (Priority) - - 7 5 6 3 4 2 1
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R1 : Innovation/Intelligent Property: Build an innovative environment for continu-
ous technology development achievement.

R2 : Knowledge Platform: provide a knowledge platform for knowledge accumu-
lation, problem solving, lesson learned, and information sharing.

R3 : Response System: External environmental change to cause Market/Operation
strategies to be adjusted.

R4 : Communication System: a wide channel for customer services in viewing the
progress of the online production and 24-h online service.

R5 : Efficiency Evaluation System: Internal and external factors to move the oper-
ation work effectively.

R6 : Competitiveness Evaluation System: Evaluate the way of technology adoption
and shorten the time of technology development into the production phase.

R7 : Financial support/ incentive program: Budget plan and financial support.

20.5 Discussions and Implications

Where there was most evidence of improvements in team performance attributed
to management development, these were typically related to process issues such as
innovative activities, cost control, knowledge management, quality of service, bet-
ter focus on customer needs, and improved customer relations, etc. Managers in
some organizations cited evidence of more strategic behavior and identified better
procedures and monitoring of actions. Technology improvement from cost reduc-
tions, efficiency gains, and more effective quality control were also reported. To
face external change and to fit the requirement of business opportunities, appropri-
ate dynamical strategies give a challenged team performance arising from strategy.

Major difficulties of measurement of strategy forces and of attributing improve-
ments to strategy in management development were encountered, especially where
the same measures were used for function and business performance, or where the
performance was regarded as a function of a manager’s performance. Equally, busi-
ness performance was difficult to separate from organizational performance and was
affected by extraneous factors.

The alternatives which were ranked highest in terms of organizational perfor-
mance improvements displayed quantified, written, and corroborated evidence and
respondents were unequivocal that strategic management development had con-
tributed to all prime measures of business efficiency. The framework appears to
be intuitive to managers and applicants who quickly adopt the terminology of the
strategy forces. It offers a means of guiding easily recognized environmental com-
ponents and provides a framework for combining these components to describe
possible scenarios. In addition, it clearly distinguishes between the perspectives of
different industry nature and increases the likelihood that decision makers will in-
corporate these perspectives into their decisions.
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The decision-making and influence processes operating in decision events are
likely to be advanced through a closer alignment with the problem solving and
decision-making in the real world.

20.6 Conclusion

The conclusions and learning points to be drawn from the research outlined above
relate both to the substantive findings, which contribute to the debate on the role of
business in improving performance, and the procedural aspects of the methodology
developed to undertake the study.

A case-study approach was necessary in order to capture qualitative information,
including such ‘soft’ measures as perceptions of individuals, as well as exploring the
relevant development and performance processes within organizations at different
levels. In adopting such a methodology, however, there was a risk of marginalizing
the findings because policy makers invariably seek ‘hard’ measures, with quantita-
tive data that can be subject more easily to statistical tests. The challenge, therefore,
was to devise a methodology that could permit hard conclusions from soft data.

The strategy force describes the structure of business systems and the industry
nature of the influence mechanisms that determine outcomes. The strategy force’s
reliance on business decisions rather than operation activities as the key struc-
tural component of the framework provides a flexible and generalizable frame-
work around which existing strategy force research can be arrayed. It also provides
a means of aligning technology research with the problem solving and decision-
making literatures. More work remains to be done to fully identify and understand
influence mechanisms in strategy force systems. The strategy force can assist these
efforts by offering a simple and easily recognizable structure for organizing research
and practice in a complex field where a great deal is yet to be learned.

20.7 Future Study

The future study is subject to dynamic decision space (DDS), with the efficient
consideration on improving hybrid MCDM method which this study proposed; the
rough set concept [8] and Markov process are both suggested to be applied to DDS
system (see Figure 20.2 in gray print) in further study for conducting effective and
feasible strategies deployment.
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Chapter 21
Rough Set-Based Feature Selection: Criteria
of Max-Dependency, Max-Relevance,
and Max-Significance

Pradipta Maji and Sushmita Paul∗

Abstract. Feature selection is an important data pre-processing step in pattern
recognition and data mining. It is effective in reducing dimensionality and redun-
dancy among the selected features, and increasing the performance of learning al-
gorithm and generating information-rich features subset. In this regard, the chapter
reports on a rough set-based feature selection algorithm called maximum relevance-
maximum significance (MRMS), and its applications on quantitative structure ac-
tivity relationship (QSAR) and gene expression data. It selects a set of features from
a high-dimensional data set by maximizing the relevance and significance of the
selected features. A theoretical analysis is reported to justify the use of both rel-
evance and significance criteria for selecting a reduced feature set with high pre-
dictive accuracy. The importance of rough set theory for computing both relevance
and significance of the features is also established. The performance of the MRMS
algorithm, along with a comparison with other related methods, is studied on three
QSAR data sets using the R2 statistic of support vector regression method, and on
five cancer and two arthritis microarray data sets by using the predictive accuracy
of the K-nearest neighbor rule and support vector machine.

Keywords: Rough sets, feature selection, dependency, relevance, significance,
classification, regression, quantitative structure activity relationship, microarray
data, gene selection.

21.1 Introduction

Feature selection or dimensionality reduction of a data set is an essential preprocess-
ing step used for pattern recognition, data mining, and machine learning [10, 11]. It
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is an important problem related to mining large data sets, both in dimension and
size. Prior to analysis of the data set, preprocessing the data to obtain a smaller
set of representative features and retaining the optimal salient characteristics of the
data not only decrease the processing time, but also lead to more compactness of
the models learned and better generalization. Hence, the general criterion for reduc-
ing the dimension is to preserve the most relevant information of the original data
according to some optimality criteria [10, 11].

In feature selection process, an optimal feature subset is always relative to a cer-
tain criterion. In general, different criteria may lead to different optimal feature sub-
sets. However, every criterion tries to measure the discriminating ability of a feature
or a subset of features to distinguish different class labels. To measure the feature-
class relevance of a feature, different statistical and information theoretic measures
such as the F test, t test [28], entropy, information gain, mutual information [41],
normalized mutual information [31], and f -information [32] are typically used, and
the same or a different metric like mutual information, f -information, the L1 dis-
tance, Euclidean distance, and Pearson’s correlation coefficient [20,41] is employed
to calculate the redundancy among different features. However, as the F test, t test,
Euclidean distance, and Pearson’s correlation depend on the actual values of the data
set, they are very much sensitive to noise or outlier of the data set [20, 41]. On the
other hand, as information measures depend only on the probability distribution of a
random variable rather than on its actual values, they are more effective to evaluate
both relevance and redundancy of the features [15, 31, 41, 49].

Rough set theory, proposed by Pawlak [40, 47], is a powerful paradigm to deal
with uncertainty, vagueness, and incompleteness. It has been applied to fuzzy rule
extraction [9], reasoning with uncertainty, fuzzy modeling, feature selection [26],
microarray data analysis [12,49,53], and so forth. It is proposed for indiscernibility
in classification according to some similarity [40]. The rough set theory has been
applied successfully to feature selection of discrete valued data [19]. Given a data
set with discretized attribute values, it is possible to find a subset of the original
attributes using rough set theory that are the most informative; all other attributes
can be removed from the data set with minimal information loss. From the dimen-
sionality reduction perspective, informative features are those that are most useful
in determining classifications from their values [7].

One of the popular rough set-based feature selection algorithms is the quick
reduct algorithm [8, 9] in which the dependency or quality of approximation of sin-
gle attribute is first calculated with respect to the class labels or decision attribute.
After selecting the best attribute, other attributes are added to it to produce bet-
ter quality. Additions of attributes are stopped when the final subset of attributes
has the same quality as that of maximum possible quality of the data set or the
quality of the selected attributes remains same. Other notable algorithms include
discernibility matrix-based method [25, 46], and dynamic reducts [3]. However, all
these approaches are computationally very costly. The variable precision rough set
model [17, 56], tolerance rough sets [22, 39], and probabilistic rough sets [57] are
the extensions of the original rough set-based knowledge representation. Differ-
ent heuristic approaches based on rough set theory are also developed for feature
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selection [35]. Combining rough sets and genetic algorithms, different algorithms
have been proposed in [4, 48] to discover optimal subset of features.

In this chapter, a feature selection method called maximum relevance–maximum
significance (MRMS) is reported, which selects a set of features from a high-
dimensional data set by maximizing both relevance and significance of the selected
features. It employs rough set theory to compute the relevance and significance of
the features. Hence, the only information required in the MRMS algorithm is in the
form of equivalence partitions for each feature, which can be automatically derived
from the given data set. This avoids the need for domain experts to provide infor-
mation on the data involved and ties in with the advantage of rough sets is that it
requires no information other than the data set itself. The use of both relevance and
significance criteria for selecting features with high predictive accuracy is theoreti-
cally justified based on the rough set theory. The effectiveness of the MRMS algo-
rithm, along with a comparison with other feature selection algorithms, is demon-
strated on two different types of problems. The first problem comprises quantitative
structure activity relationship (QSAR) data and the second one constitutes gene ex-
pression data. The performance of the MRMS method on three QSAR data sets is
assessed by using the R2 statistic of support vector regression method, while for
evaluating effectiveness of the MRMS algorithm over gene expression data sets, the
predictive accuracy of the K-nearest neighbor rule and support vector machine is
used.

The structure of the rest of this chapter is as follows: Section 21.2 introduces the
necessary notions of rough sets. The theoretical analysis on the relationships of de-
pendency, relevance, and significance is presented in Section 21.3 using rough sets.
The rough set-based feature selection method is described in Section 21.4 for select-
ing relevant and significant features from high-dimensional data sets. Section 21.5
presents the application of rough set-based feature selection algorithm on QSAR
data sets, while Section 21.6 describes the effectiveness of the algorithm on cancer
and arthritis gene expression data sets. Finally, the concluding remarks are given in
Section 21.7.

21.2 Rough Sets

The theory of rough sets, proposed by Pawlak [40, 47], begins with the notion of
an approximation space, which is a pair < �,� >, where � = {x1, · · · ,xi, · · · ,xn}
is a non-empty set, the universe of discourse, and � is a family of attributes, also
called knowledge in the universe. V is the value domain of � and f is an informa-
tion function f : �×�→ V . An approximation space is also called an informa-
tion system [40]. Any subset � of knowledge � defines an equivalence, also called
indiscernibility, relation IND(�) on �

IND(�) = {(xi,x j) ∈ �×�|∀a ∈ �, f (xi,a) = f (x j ,a)}.
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If (xi,x j) ∈ IND(�), then xi and x j are indiscernible by attributes from �. The par-
tition of � generated by IND(�) is denoted as

�/IND(�) = {[xi]� : xi ∈ �} (21.1)

where [xi]� is the equivalence class containing xi. The elements in [xi]� are indis-
cernible or equivalent with respect to knowledge�. Equivalence classes, also termed
as information granules, are used to characterize arbitrary subsets of �. The equiv-
alence classes of IND(�) and the empty set /0 are the elementary sets in the approx-
imation space < �,�>.

Given an arbitrary set X ⊆ �, in general, it may not be possible to describe X
precisely in <�,�>. One may characterize X by a pair of lower and upper approx-
imations defined as follows [40]:

�(X) =
⋃
{[xi]� | [xi]� ⊆ X} and �(X) =

⋃
{[xi]� | [xi]�∩X �= /0}. (21.2)

Hence, the lower approximation �(X) is the union of all the elementary sets which
are subsets of X , and the upper approximation �(X) is the union of all the elemen-
tary sets which have a non-empty intersection with X . The tuple < �(X),�(X)>
is the representation of an ordinary set X in the approximation space < �,�>
or simply called the rough set of X . The lower (respectively, upper) approxi-
mation �(X) (respectively, �(X)) is interpreted as the collection of those ele-
ments of � that definitely (respectively, possibly) belong to X . The lower ap-
proximation is also called positive region, sometimes denoted as POS�(X). A
set X is said to be definable or exact in < �,� > iff �(X) = �(X). Otherwise,
X is indefinable and termed as a rough set. BN�(X) = �(X) \ �(X) is called a
boundary set.

An information system < �,� > is called a decision table if the attribute set
� = �∪�, where � is the condition attribute set and � is the decision attribute
set. An important issue in data analysis is discovering dependency between at-
tributes. Intuitively, a set of attributes � depends totally on a set of attributes �,
denoted as �⇒ �, if all attribute values from � are uniquely determined by val-
ues of attributes from �. If there exists a functional dependency between values
of � and �, then � depends totally on �. The dependency can be defined in the
following way:

Definition 21.1. Given �,� ⊆ �, it is said that � depends on � in a degree κ , de-
noted as �⇒κ �, if

κ = γ�(�) =
|POS�(�)|

|�| , where 0 ≤ κ ≤ 1. (21.3)

where POS�(�)=∪�Xi, Xi is the ith equivalence class induced by� and | · | denotes
the cardinality of a set. If κ = 1, � depends totally on �, if 0 < κ < 1, � depends
partially (in a degree κ) on �, and if κ = 0, then � does not depend on � [40].
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The change in dependency when an attribute is removed from the set of condition
attributes is a measure of the significance of the attribute. The higher the change in
dependency, the more significant the attribute is. If the significance is 0, then the
attribute is dispensable.

Definition 21.2. Given �,� and an attribute A ∈ �, the significance of the attribute
A is defined as [40]:

σ�(�,A) = γ�(�)− γ�−{A}(�). (21.4)

21.3 Relationships of Max-Dependency, Max-Relevance,
and Max-Significance

This section presents the relationships among Max-Dependency, Max-Relevance,
and Max-Significance using the rough set theory.

21.3.1 Max-Dependency

Let � = {A1, · · · ,Ai, · · · ,A j , · · · ,Am} denote the set of m condition attributes or
features of a given data set. In terms of rough sets, the task of attribute or feature
selection is to find a feature subset � ⊆ � with d < m features {Ai}, which jointly
have the largest dependency on the target class or decision attribute set �. This
scheme, called Max-Dependency, has the following form:

max D(�,�), D = γ{Ai,i=1,··· ,d}(�), (21.5)

where γ{Ai ,i=1,··· ,d}(�) represents the dependency between the feature subset � =
{Ai, i = 1, · · · ,d} and target class label � and is given by (21.3).

Obviously, when d equals 1, the solution is the feature that maximizes γA j (�);
(1 ≤ j ≤ m). When d > 1, a simple incremental search scheme is to add one feature
at one time. This type of selection is called the first-order incremental search. By
definition of first-order search, it is assumed that �d−1, that is, the set of d − 1
features has already been obtained. The task is to select the optimal dth feature
Ad from the set {�−�d−1} that contributes to the largest increase of γ�(�). The
quick reduct algorithm of Chouchoulas and Shen [8] is based on the principle of
Max-Dependency, which is explained in Figure 21.1.

The dependency D in (21.5) is represented by the dependency of (21.3), that is,
D = γ�d (�), where �d = {�d−1,Ad}. Hence, from the definition of dependency
in rough sets, the first-order incremental search algorithm optimizes the following
condition to select dth feature from the set {�−�d−1}:
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1. �← {}
2. do
3. T ← �

4. ∀Ai ∈ (�−�)
5. if γ�∪{Ai}(�)> γT (�)
6. T ← �∪{Ai}
7. �← T
8. until γ�(�) == γ�(�)
9. return �

Fig. 21.1 Quick Reduct Algorithm

max
A j∈{�−�d−1}

{
γ{�d−1,A j}(�)

}
, (21.6)

which is equivalent to optimize the following condition given the set of selected
features �d−1:

max
A j∈{�−�d−1}

{γ{�d−1,A j}(�)− γ�d−1(�)}= max
A j∈{�−�d−1}

{σ�d (�,A j)}. (21.7)

Obviously, the Max-Dependency is equivalent to either maximizing the joint de-
pendency between selected feature set and the target class label or maximizing the
significance of the candidate feature with respect to the already-selected features.

Despite the theoretical value of Max-Dependency, it is often hard to generate
the resultant equivalence classes due to two difficulties in the high-dimensional
space: the number of samples is often insufficient and the generation of resultant
equivalence classes is usually an ill-posed problem. Another drawback of Max-
Dependency is the slow computational speed. These problems are most pronounced
for real-life applications. If each feature has c categorical or discrete states and n
samples, then d features could have a maximum min{cd,n} equivalence classes.
When the number of equivalence classes increases very quickly and gets compara-
ble to the number of samples n, the joint dependency of these features cannot be
estimated correctly. Hence, although Max-Dependency feature selection might be
useful to select a very small number of features when n is large, it is not appropriate
for real-life applications where the aim is to achieve high classification accuracy
with a reasonably compact set of features.

21.3.2 Max-Relevance and Max-Significance

As Max-Dependency criterion is hard to implement, an alternative is to select fea-
tures based on maximal relevance criterion (Max-Relevance). Max-Relevance is
to search features satisfying (21.8), which approximates D(�,�) in (21.5) with
the mean value of all dependency values between individual feature Ai and class
label �:
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max R(�,�), R=
1
|�| ∑Ai∈�

γAi(�). (21.8)

It is likely that features selected according to Max-Relevance could have rich redun-
dancy, that is, the dependency among these features could be large. When two fea-
tures highly depend on each other, the respective class discriminative power would
not change much if one of them were removed. Therefore, the following maximal
significance (Max-Significance) condition can be added to select mutually exclusive
features:

max S(�,�), S =
1

|�|(|�|− 1) ∑
Ai �=A j∈�

{σ{Ai,A j}(�,Ai)+σ{Ai,A j}(�,A j)}.

(21.9)
The criterion combining the above two constraints is called “maximum-relevance–
maximum-significance” (MRMS) [33,34]. The operatorΦ(R,S) is defined to com-
bine R and S, and the following simplest form is considered to optimize R and S
simultaneously:

max Φ(R,S), Φ =R+S. (21.10)

In practice [32,41], incremental search methods can be used to find the near-optimal
features defined byΦ(.). Given the feature set �d−1 with d−1 features, the task is to
select the dth feature from the set {�−�d−1}. This is done by selecting the feature
that maximizes Φ(.). The respective incremental algorithm optimizes the following
condition:

max
A j∈{�−�d−1}

[

γA j (�)+
1

d− 1 ∑
Ai∈�d−1

σ{Ai,A j}(�,A j)

]

. (21.11)

Hence, the combination of Max-Relevance and Max-Significance, that is, the
MRMS criterion, is equivalent to maximizing the dependency between the candi-
date feature Ad and class label � as well as maximizing the average value of all
significance values of the candidate feature Ad with respect to the already-selected
feature Ai ∈ �d−1. The above discussions lead to the following conclusions:

1. Maximizing the first term of (21.11), that is, maximizing R(�,�) of (21.8),
only leads to Max-Relevance. Clearly, the difference between Max-Relevance
and Max-Dependency of (21.5) is rooted in the different definitions of depen-
dency in terms of rough set theory. Equation (21.8) does not consider the joint
effect of features on the target class �. On the contrary, Max-Dependency
of (21.5) considers the dependency between the data distribution in multi-
dimensional space and the target class �. This difference is critical in many
circumstances.

2. Maximizing the second term of (21.11) only, that is, maximizing S(�,�) of
(21.9), is equivalent to searching mutually exclusive or independent features.
This is not sufficient for selecting highly discriminative features.
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3. The equivalence between Max-Dependency and Max-Significance indicates
that Max-Significance is an optimal first order implementation of Max-
Dependency.

4. Compared to Max-Dependency, the MRMS criterion avoids the estimation of
resultant equivalence classes for multiple features. Instead, computing the re-
sultant equivalence classes for two features could be much easier and more
accurate. This also leads to a more efficient feature selection algorithm.

21.4 Maximum Relevance-Maximum Significance Algorithm

In real data analysis such as the QSAR and microarray data, the data set may contain
a number of insignificant features. The presence of such irrelevant and insignificant
features may lead to a reduction in the useful information. Ideally, the selected fea-
tures should have high relevance with the classes and high significance in the feature
set. The features with high relevance are expected to be able to predict the classes
of the samples. However, if insignificant features are present in the subset, they may
reduce the prediction capability. A feature set with high relevance and high signif-
icance enhances the predictive capability. Accordingly, a measure is required that
can enhance the effectiveness of feature set.

21.4.1 The Algorithm

In the MRMS algorithm, the rough set theory is used to select the relevant and
significant features from high-dimensional data sets. Let � = {A1, · · · ,Ai, · · · ,
A j, · · · ,Am} denote the set of m features of a given data set and � the set of features.
Define f̂ (Ai,�) as the relevance of the feature Ai with respect to the class labels �,
while f̃ (Ai,A j) as the significance of the feature A j with respect to the feature Ai.
The total relevance of all selected features is, therefore, given by

Jrelev = ∑
Ai∈�

f̂ (Ai,�) (21.12)

while the total significance among the selected features is

Jsignf = ∑
Ai �=A j∈�

f̃ (Ai,A j). (21.13)

Therefore, the problem of selecting a set � of relevant and significant features from
the whole set � of m features is equivalent to maximize both Jrelev and Jsignf, that
is, to maximize the objective function J , where

J = Jrelev +βJsignf = ∑
Ai∈�

f̂ (Ai,�)+β ∑
Ai �=A j∈�

f̃ (Ai,A j) (21.14)
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with β a weight parameter. To solve the above problem, the following greedy algo-
rithm can be used.

1. Initialize �←{A1, · · · ,Ai, · · · ,A j, · · · ,Am},�← /0.
2. Calculate the relevance f̂ (Ai,�) of each feature Ai ∈ �.
3. Select the feature Ai as the most relevant feature that has the highest relevance

value f̂ (Ai,�). In effect, Ai ∈ � and �= �\Ai.
4. Repeat the following two steps until the desired number of features is selected.
5. Calculate the significance of each of the remaining features of � with respect to

the selected features of � and remove it from � if it has zero significance value
with respect to any one of the selected features.

6. From the remaining features of �, select features A j that maximize the follow-
ing condition:

f̂ (A j,�)+
β
|�| ∑Ai∈�

f̃ (Ai,A j). (21.15)

As a result, A j ∈ � and �= �\A j.

Both the relevance and significance of a feature are calculated based on the rough
set theory. The relevance f̂ (Ai,�) of a feature Ai with respect to the class labels
� is calculated using (21.3), while significance f̃ (Ai,A j) of the feature A j with
respect to the already-selected feature Ai is computed using (21.4).

21.4.2 Computational Complexity

The rough set-based feature selection method has low computational complexity
with respect to the number of features in the original data set.

1. The computation of the relevance of m features is carried out in step 2 of the
MRMS algorithm, which has O(m) time complexity.

2. The selection of the most relevant feature from the set of m features, which is
carried out in step 3, has also a complexity O(m).

3. There is only one loop in step 4 of the MRMS feature selection method, which
is executed (d− 1) times, where d represents the number of selected features.

a. The computation of significance of a candidate feature with respect to the
already-selected features takes only a constant amount of time. If ḿ repre-
sents the cardinality of the already-selected feature set, the total complexity
to compute the significance of (m− ḿ) candidate features, which is carried
out in step 5, is O(m− ḿ).

b. The selection of a feature from (m− ḿ) candidate features by maximizing
both relevance and significance, which is carried out in step 6, has also a
complexity O(m− ḿ).
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Hence, the total complexity to execute the loop (d−1) times is (O((d−1)((m−
ḿ)+ (m− ḿ)))) =O(d(m− ḿ)).

In effect, the selection of a set of d relevant and significant features from the whole
set of m features using rough set-based first-order incremental search method has
an overall computational complexity of (O(m)+O(m)+O(d(m− ḿ))) =O(m) as
d, ḿ << m.

21.4.3 Generation of Equivalence Classes

Different discretization methods, such as discretization based on equal frequency
binning [16], and roughfication method [49] can be employed to discretize the con-
tinuous values. In real data set, the feature values of samples are generally con-
tinuous. In many cases, class labels are also continuous. Hence, to measure both
relevance and significance of features using rough set theory, the continuous feature
values are usually divided into several discrete partitions to generate equivalence
classes. The discretization method reported in [32] is employed to discretize the
continuous feature values. The values of an attribute or feature are discretized us-
ing mean μ and standard deviation σ computed over n values of that attribute: any
value larger than (μ+ σ

2 ) is transformed to state 1; any value between (μ− σ
2 ) and

(μ+ σ
2 ) is transformed to state 0; any value smaller than (μ− σ

2 ) is transformed to
state -1 [32]. The equivalence classes are then generated to compute both relevance
and significance of features.

21.5 Molecular Descriptor Selection for Fitting QSAR Model

The quantitative structure activity relationship (QSAR) is the process by which
chemical structure is quantitatively correlated with a well-defined process such as
biological activity or other molecular property. Biological activity can be expressed
quantitatively as in the concentration of a substance required to give a certain bio-
logical response. Additionally, when physiochemical properties or structures are ex-
pressed by numbers, one can form a mathematical relationship or quantitative struc-
ture activity relationship between the two. The mathematical expression can then
be used to predict the biological response of other unknown chemical structures.
The properties that describe the molecule quantitatively are known as molecular
descriptors. Molecular descriptors can be obtained by calculated methods or exper-
imental methods. In the calculated method, a mathematical procedure is used that
transforms chemical information into a number such as surface areas (polar, non-
polar), dipole moment, and volume. On the other hand, in the experimental method,
some standardized experiments are conducted to measure a molecular descriptor
such as melting point, partition coefficients, and refractive index. The molecular
descriptors describe different aspects of a molecule, compare different molecular
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structures, different conformations of the same molecule, and database storage, and
relate structure to activity [21, 27, 29].

However, among the large amount of descriptors, only a small fraction is effective
for performing the predictive modeling task. Also, a small subset of descriptors is
desirable in developing the QSAR data-based predicting tools for delivering precise,
reliable, and interpretable results. With the descriptor selection results, the cost of
biological experiment and decision can be greatly reduced by analyzing only the
effective descriptors. Hence, identifying a reduced set of most relevant descriptors is
the goal of descriptor selection. The small number of molecules and a large number
of descriptors make this a more relevant and challenging problem in the QSAR
method. This is an important problem in machine learning and referred to as feature
selection [10].

The performance of rough set-based MRMS method on the QSAR data sets is
extensively studied and compared with that of some existing algorithms [33]. All
the algorithms are implemented in C language and run in LINUX environment hav-
ing machine configuration Pentium IV, 2.8 GHz, 1 MB cache, and 512 MB RAM.
To analyze the performance of different algorithms, the experimentation is done on
three QSAR data sets. The major metric for evaluating the performance of differ-
ent algorithms is the R2 statistic of support vector regression method. The weight
parameter β of the MRMS algorithm is set to 1.0 for the QSAR data sets [33].

21.5.1 QSAR Data Sets

In this chapter, the following three QSAR data sets are used that are available at
http://www.cheminformatics.org.

1. Steroid Data Set: This data set contains 31 steroid molecules presented in MOL
format, which is used in cheminformatics applications for storing atomic coor-
dinates, chemical bond information, and metadata of the 3D structure of a single
chemical compound in plain text tabular format. The log(1/k) values of these
molecules are also given. All these molecules are categorized into three activity
classes. Among them, 11 are reported as high activity molecules, 9 moderate
and rest 11 as lowest activity molecules.

2. Small Dopamine Data Set: It contains 26 dopamine molecules given in MOL
format. The biological activity of these molecules is also available.

3. Large Dopamine Data Set: This data set consists of 116 dopamine molecules
that are given along with their molecular descriptors in binary form. The con-
tinuous valued biological activity of each molecule is also given.

Both steroid and small dopamine data sets are available in MOL format. The molec-
ular descriptors of these data sets are obtained using MODEL software [29], which
calculates approximately 4000 molecular descriptors for each molecule. The calcu-
lated descriptors cover different aspects of the molecular structure including topo-
logical, electronic, constitutional, geometrical, and physical descriptors.
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21.5.2 Support Vector Machine

The support vector machine (SVM) [54] is a margin classifier that draws an optimal
hyperplane in the feature vector space; this defines a boundary that maximizes the
margin between data samples in different classes, therefore leading to good general-
ization properties. A key factor in the SVM is to use kernels to construct nonlinear
decision boundary. In the present work, radial basis function kernels are used.

The performance of the SVM is analyzed using R2 statistic or coefficient of de-
termination value. The R2 statistic tells about the goodness of fit of a model and how
well a regression approximates its attributes. The value of R2 statistic ranges from
0 to 1. The nearer the value reaches to 1, the better is the approximation. The R2

statistic can be calculated as follows:

R2 = 1− SSerr

SStot
(21.16)

where SStot = Σi(yi − ȳ)2 represents the total sum of squares, which is proportional
to the sample variance, and SSerr = Σi(yi - fi)2 is the sum of squared errors, also
called the residual sum of squares. Here, ȳ represents the mean of the observed data,
while yi and fi are the ith observed and modeled or predicted values, respectively.

21.5.3 Performance Analysis

The experimental results on three QSAR data sets are presented in Fig. 21.2-21.6.
Subsequent discussions analyze the results with respect to the R2 statistic of the
SVM. To compute the R2 statistic of the SVM, both leave-one-out cross-validation
(LOOCV) and 10-fold cross-validation (10-fold CV) are performed on each QSAR
data set. The number of molecular descriptors selected ranges from 1 to 50.

Fig. 21.2(a) presents the performance of the MRMS method on steroid molecules
obtained by both tenfold CV and LOOCV, while Fig. 21.2(b) and 21.2(c) depicts
that for small and large dopamine molecules, respectively. From Fig. 21.2(a), it is
seen that as the number of selected descriptors of steroid molecules ranges from 1
to 15, the R2 statistic of the SVM fluctuates in case of both tenfold CV and LOOCV.
It indicates that the MRMS method gets stuck into local minima of the search space
for this range. However, the R2 statistic continuously increases with the increase in
the number of selected descriptors for more than 15. Finally, the MRMS method
attains its maximum R2 statistic of 0.88 and 0.89 using only 44 descriptors for the
LOOCV and tenfold CV, respectively. That is, the MRMS method is able to find
out an optimum or near to optimum solution using 44 descriptors for both tenfold
CV and LOOCV. On the other hand, from Fig. 21.2(b), it can be seen that in case
of small dopamine molecules, two most relevant and significant descriptors are suf-
ficient to achieve the maximum R2 statistic values of 0.45 and 0.37 of the MRMS
method for the LOOCV and tenfold CV, respectively. Finally, Fig. 21.2(c) depicts
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(a) Steroid molecules

(b) Small dopamine (c) Large dopamine

Fig. 21.2 Results obtained by tenfold cross-validation and leave-one-out cross-validation

the results for large dopamine molecules. From the results presented in Fig. 21.2(c),
it is seen that the MRMS method attains maximum R2 statistic of 0.53 with nine
descriptors using the LOOCV, while for tenfold CV, the best R2 statistic is 0.52 with
the same number of descriptors. In other words, the MRMS method is able to find
out optimum or near to optimum solutions using two and nine molecular descriptors
for small and large dopamine molecules, respectively.

Figs. 21.3-21.5 present the comparative performance analysis of the MRMS
method and one of the most popular rough set-based algorithm, called quick reduct
algorithm [8]. All the results are reported for three QSAR data sets based on the
LOOCV. The actual and obtained biological activity values of different molecules
for three QSAR data sets are reported for comparison. The R2 statistic values of
quick reduct algorithm are 0.82, 0.45, and 0.56 for steroid, small dopamine, and
large dopamine molecules, respectively. For tenfold CV, the R2 statistic values of
quick reduct algorithm are 0.83, 0.37, and 0.52 on steroid, small dopamine, and
large dopamine, respectively. From the results reported in Figs. 21.3-21.5, it is seen
that the performance of the MRMS method is better than quick reduct algorithm
in case of steroid data set and comparable with quick reduct algorithm for both
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small and large dopamine molecules. In this regard, it should be noted that another
rough set-based algorithm, called discernibility matrix-based method [46], attains
the R2 statistic values of 0.79, 0.43, and 0.39 for steroid, small dopamine, and large
dopamine molecules, respectively, using tenfold CV,
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Fig. 21.3 Results for steroid molecules obtained by leave-one-out cross-validation
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Fig. 21.4 Results for small dopamine molecules obtained by leave-one-out cross-validation

while the corresponding values for the LOOCV are 0.79, 0.61, and 0.41, respec-
tively. However, as the computational complexity of both quick reduct method [8]
and discernibility matrix-based method [46] is very high, they require significantly
higher execution time compared to that of the MRMS algorithm.

Table 21.1 compares the execution time (in millisecond) of the MRMS algorithm
and that of quick reduct algorithm [8] and discernibility matrix-based method [46]
for three QSAR data sets. From the results reported in Table 21.1, it is seen that the
execution time required for the MRMS algorithm is significantly lower than that of
the other two algorithms, irrespective of the data sets used. As the computational
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Fig. 21.5 Results for large dopamine molecules obtained by leave-one-out cross-validation

Table 21.1 Execution Time of Different Algorithms

Data Set Quick Reduct Discern. Matrix MRMS
Steroid 383253 55061 3498

Small Dopamine 350015 54044 4299
Large Dopamine 487735 35027 1755

complexity of both quick reduct algorithm and discernibility matrix-based method
is polynomial in nature [8,46], they require significantly higher execution time com-
pared to that of the MRMS algorithm. The significantly lesser execution time of the
MRMS algorithm is achieved due to its linear computational complexity.

21.5.4 Comparative Performance Analysis

The MRMS method performs significantly better than different existing QSAR meth-
ods. To establish the superiority of the MRMS method, extensive experimentation is
carried out on different QSAR data sets. Fig. 21.6(a) presents the predicted biologi-
cal activity values of the MRMS method and Compass [18], an well-known existing
QSAR model, along with the actual activity values. Results are reported based on
the LOOCV. The R2 statistic values corresponding to the MRMS method and Com-
pass are 0.89 and 0.79, respectively. Next, the steroid data set is divided into two
sets: training set of 21 molecules and test set of 10 molecules. The LOOCV results
of 21 molecules obtained by the MRMS method as well as two well-known existing
approaches, namely, Compass [18] and CoMFA [52], are reported in Table 21.2.

Fig. 21.6(b) and 21.6(c) depicts the actual and predicted values of the MRMS
method and Compass [18] for 21 training and 10 test steroid molecules, respectively.
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(a) LOOCV on 31 molecules
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Fig. 21.6 Results of MRMS and Compass on steroid molecules

Table 21.2 Result on Training Set of Steroid Data

Methods R2 statistic
Existing CoMFA 0.69
Models Compass 0.89

Rough Sets MRMS 0.97

A detailed comparison of the MRMS method with other existing 3D QSAR meth-
ods, namely, QS-SM [2], MS-WHIM [5], PARM [6], Compass [18], MEDV [30],
COMSA [42], TQSAR [43], SOMFA [44], EEVA [51], EVA [52], and CoMFA
[52] is presented in Table 21.3 on test set of steroid data, that is, molecules
22 to 31.

From the R2 statistic reported in Tables 21.2 and 21.3, along with the results
reported in Fig. 21.6(a)-21.6(c), it can be seen that the MRMS method outperforms
different existing QSAR approaches in case of steroid data set. Also, the MRMS
method predicts biological activity of 21 training and 10 test molecules significantly
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Table 21.3 Result on Test Set of Steroid Data

Methods R2 statistic
Compass 0.16

MS-WHIM 0.28
PARM 0.33

TQSAR 0.16
SOMFA 0.20

Existing EVA 0.36
Models CoMFA 0.25

COMSA 0.09
MEDV 0.45
QS-SM 0.36
EEVA 0.36

Rough Sets MRMS 0.67

better than the Compass [18]. Moreover, the model building phase of Compass takes
about 1 min per molecule for steroid data set [18], which is significantly higher than
that of the MRMS method.

Finally, the tenfold CV result of the MRMS method for large dopamine data
is compared with the existing approach Boosting of Sventik et al. [50]. While the
MRMS method achieves the R2 value of 0.52 with nine attributes, the best result
obtained by the Boosting method is 0.48, that is, the MRMS method performs sig-
nificantly better than the existing method.

21.6 Gene Selection from Microarray Data

Recent advancement and wide use of high-throughput technology are producing an
explosion in using gene expression phenotype for identification and classification
in a variety of diagnostic areas. An important application of gene expression data
in functional genomics is to classify samples according to their gene expression
profiles such as to classify cancer versus normal samples or to classify different
types or subtypes of cancer [13].

A microarray gene expression data set can be represented by an expression table,
where each row in the expression table corresponds to one particular gene and each
column to a sample [13]. However, for most gene expression data, the number of
training samples is still very small compared to the large number of genes involved
in the experiments. The number of samples is likely to remain small for many ar-
eas of investigation, especially for human data, due to the difficulty of collecting
and processing microarray samples [13]. When the number of genes is significantly
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greater than the number of samples, it is possible to find biologically relevant corre-
lations of gene behavior with the sample categories [36].

However, among the large amount of genes, only a small fraction is effective in
performing a certain task. Also, a small subset of genes is desirable in developing
gene expression-based diagnostic tools for delivering precise, reliable, and inter-
pretable results. With the gene selection results, the cost of biological experiment
and decision can be greatly reduced by analyzing only the marker genes. Hence,
identifying a reduced set of most relevant and significant genes is the goal of gene
selection. The small number of training samples and a large number of genes make
gene selection a more relevant and challenging problem in gene expression-based
classification. This is an important problem in machine learning and referred to as
feature selection [10, 23, 24].

The performance of rough set-based MRMS method is extensively studied and
compared with that of some existing algorithms, namely, quick reduct algorithm
[8], discernibility matrix-based approach [46], roughfication [49], and the methods
proposed by Valdes and Barton [53] and Fang et al. [12]. The performance of the
MRMS method is also compared with that of Max-Dependency and Max-Relevance
criteria.

To analyze the performance of different algorithms, the experimentation is done
on five cancer and two arthritis microarray data sets. For each data set, 50 top-ranked
genes are selected for analysis, and each data set is preprocessed by standarizing
each sample to zero mean and unit variance. The major metrics for evaluating the
performance of different algorithms are the classification accuracy of the K-nearest
neighbor (K-NN) rule and support vector machine (SVM).

In the present work, linear kernels are used in the SVM to construct nonlinear de-
cision boundary. The K-nearest neighbor (K-NN) rule [11] is used for evaluating the
effectiveness of the reduced gene set for classification. It classifies samples based
on closest training samples in the feature space. A sample is classified by a majority
vote of its K-neighbors, with the sample being assigned to the class most common
among its K-nearest neighbors. The value of K, chosen for the K-NN, is the square
root of the number of samples in the training set. To compute the prediction accu-
racy of both the SVM and K-NN rule, leave-one-out cross-validation (LOOCV) is
performed on each gene expression data set.

21.6.1 Gene Expression Data Sets

In this chapter, publicly available five cancer and two arthritis data sets are used.
Since binary classification is a typical and fundamental issue in diagnostic and prog-
nostic prediction of both cancer and arthritis, different methods are compared using
the following binary class data sets.

1. Breast Cancer: The breast cancer data set contains expression levels of 7129
genes in 49 breast tumor samples [55]. The samples are classified according to
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their estrogen receptor (ER) status: 25 samples are ER positive, while the other
24 samples are ER negative.

2. Leukemia: It is an affymetrix high-density oligonucleotide array that contains
7070 genes and 72 samples from two classes of leukemia [13]: 47 acute lym-
phoblastic leukemia and 25 acute myeloid leukemia.

3. Colon Cancer: The colon cancer data set contains expression levels of 2000
genes and 62 samples from two classes [1]: 40 tumor and 22 normal colon
tissues.

4. Lung Cancer: This data set contains 181 tissue samples: among them 31 are
malignant pleural mesothelioma and the rest 150 adenocarcinoma of the lung
[14]. Each sample is described by the expression levels of 12533 genes.

5. Prostate Cancer: In this data set, 136 samples are grouped into two classes:
77 prostate tumor and 59 prostate normal samples [45]. Each sample contains
12600 genes.

6. Rheumatoid Arthritis versus Osteoarthritis (RAOA): The RAOA data set con-
sists of gene expression profiles of 30 patients: 21 with RA and 9 with OA [37].
The Cy5-labeled experimental cDNA and the Cy3-labeled common reference
sample were pooled and hybridized to the lymphochips containing ∼18,000
cDNA spots representing genes of relevance in immunology [37].

7. Rheumatoid Arthritis versus Healthy Controls (RAHC): The RAHC data set
consists of gene expression profiling of peripheral blood cells from 32 patients
with RA, 3 patients with probable RA, and 15 age and sex matched healthy
controls performed on microarrays with a complexity of ∼26K unique genes
(43K elements) [38].

21.6.2 Importance of Rough Sets

In the MRMS method, both the relevance and significance of a gene are calculated
based on the rough set theory. The relevance of a gene with respect to the class
labels is calculated using (21.3), while significance of a gene with respect to the
already-selected gene is computed using (21.4). However, other measures such as
mutual information can also be used to compute both relevance and significance of
a gene. In order to establish the importance of rough sets over mutual information
with respect to the classification accuracy of both SVM and K-NN rule, extensive
experimental results are reported in Table 21.4 for seven microarray data sets. The
value of β is set to 1.0 for the MRMS method [34].

From the results reported in Table 21.4, it is seen that the performance of rough
sets is better than that of mutual information in most of the cases. Out of total 14
cases, the MRMS criterion achieves significantly better results for rough sets in 9
cases. However, the mutual information provides better accuracy of the SVM for
leukemia, prostate cancer, and RAHC data sets and that of the K-NN for colon and
prostate cancer data sets.
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Table 21.4 Comparative Performance of Rough Sets and Mutual Information Using LOOCV

Microarray Quantitative Rough Sets Mutual Information
Data Set Measures Accuracy Gene Accuracy Gene
Breast SVM 100 18 97.96 11

K-NN 100 45 93.88 6
Leukemia SVM 97.2 22 98.61 19

K-NN 98.6 47 95.83 25
Colon SVM 87.1 5 87.1 5

K-NN 83.9 3 88.71 40
Lung SVM 100 34 99.45 2

K-NN 100 38 99.45 2
Prostate SVM 89.7 44 96.32 47

K-NN 88.2 7 92.65 27
RAOA SVM 100 5 100 7

K-NN 100 3 100 11
RAHC SVM 90 20 98 10

K-NN 100 11 100 16

21.6.3 Effectiveness of MRMS Criterion

To establish the effectiveness of the MRMS criterion-based feature selection method
over Max-Dependency and Max-Relevance criteria, extensive experimental results
are reported in Table 21.5 for seven microarray data sets.

Table 21.5 Performance of Max-Dependency, Max-Relevance, and MRMS Using LOOCV

Microarray Quantitative Max-Dependency Max-Relevance MRMS (β = 1.0) MRMS (0.0 < β < 1.0)
Data Set Measures Accuracy Gene Accuracy Gene Accuracy Gene Accuracy Gene Value of β
Breast SVM 85.7 3 98 11 100 18 100 18 0.6-0.9

K-NN 83.7 2 98 17 100 45 100 45 0.8-0.9
Leukemia SVM 100 3 97.2 32 97.2 22 98.6 36 0.1

K-NN 98.6 2 98.6 43 98.6 47 100 50 0.1-0.3
Colon SVM 80.7 2 80.7 23 87.1 5 87.1 5 0.9

K-NN 80.7 3 82.3 50 83.9 3 85.5 9 0.9
Lung SVM 99.5 3 99.5 7 100 34 100 34 0.6-0.9

K-NN 99.5 3 99.5 42 100 38 100 39 0.9
Prostate SVM 84.6 4 81.6 47 89.7 44 89.7 44 0.9

K-NN 88.2 4 91.2 5 88.2 7 88.2 7 0.1-0.9
RAOA SVM 86.7 1 90 50 100 5 100 3 0.5-0.6

K-NN 90 2 90 2 100 3 100 3 0.7-0.9
RAHC SVM 70 1 94 16 90 20 94 36 0.1-0.4

K-NN 84 3 90 11 100 11 100 11 0.5-0.9

Subsequent discussions analyze the results with respect to the classification accu-
racy of both SVM and K-NN rule. The best results obtained using Max-Dependency
and Max-Relevance criteria on these data sets are also presented in this table for the
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sake of comparison. The value of β varies from 0.0 to 1.0 for the MRMS criterion.
In this context, it should be noted that the Max-Relevance criterion is equivalent to
the MRMS criterion with β = 0.0, while the quick reduct algorithm of Chouchoulas
and Shen [8] follows the Max-Dependency criterion.

21.6.3.1 Optimum Value of β

The parameter β regulates the relative importance of the significance of the can-
didate gene with respect to the already-selected genes and the relevance with the
output class. If β is zero, only the relevance with the output class is considered for
each gene selection. If β increases, this measure is incremented by a quantity pro-
portional to the total significance with respect to the already-selected genes. The
presence of a β value larger than zero is crucial to obtain good results. If the signif-
icance between genes is not taken into account, selecting the genes with the highest
relevance with respect to the output class may tend to produce a set of redundant
genes that may leave out useful complementary information.

The values of β for which the MRMS criterion-based feature selection algorithm
achieves its best performance are reported in Table 21.5 on seven microarray data
sets. From the results reported in this table, it is seen that the MRMS criterion attains
its best performance at β = 0.9 for breast, colon, lung, and prostate cancer data sets
using both SVM and K-NN rule, and for RAOA and RAHC data sets using only
the K-NN rule. On the other hand, the MRMS algorithm provides its best results at
β = 0.1 for leukemia data set using both SVM and K-NN rule and for RAHC data
set using only the SVM. Hence, the MRMS criterion achieves its best performance
for 0.1 ≤ β ≤ 0.9 irrespective of the data sets and classifiers used.

21.6.3.2 Comparative Performance Analysis

From the results reported in Table 21.5, it is seen that the performance of MRMS
criterion is better than that of Max-Dependency and Max-Relevance criteria in most
of the cases. Out of 14 cases, the MRMS criterion achieves significantly better
results than Max-Dependency or Max-Relevance in 11 cases. However, the Max-
Dependency criterion provides better accuracy of the SVM for leukemia data set and
the same accuracy of the K-NN rule with lower number of genes for prostate cancer
data set than the MRMS criterion. Also, the Max-Relevance criterion achieves bet-
ter accuracy of the K-NN rule for prostate cancer data set and the same accuracy of
the SVM with lower number of genes for RAHC data set than the MRMS criterion.
That is, both Max-Dependency and Max-Relevance criteria are useful to select a
very small number of genes, but not appropriate to achieve high classification accu-
racy. Hence, the MRMS criterion must be used to get a reduced set of genes with
high classification accuracy.
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21.6.4 Performance of Different Rough Set Based Algorithms

Finally, the best results of different algorithms on seven microarray data sets are
presented in Table 21.6. Subsequent discussions analyze the results with respect
to the prediction accuracy of the SVM and K-NN rule. The best performance of
some existing algorithms such as roughfication [49], quick reduct algorithm [8],
discernibility matrix-based approach [46], and the methods proposed by Fang and
Busse [12] and Valdes and Barton [53] is provided on same data sets for the sake of
comparison.

Table 21.6 Comparative Performance Analysis of Different Algorithms

Microarray Quantitative Fang & Busse Roughfication Valdes & Barton Quick Reduct Discern. Matrix MRMS
Data Set Measures Accuracy Gene Accuracy Gene Accuracy Gene Accuracy Gene Accuracy Gene Accuracy Gene
Breast SVM 73.5 7 77.6 7 81.7 1 85.7 3 71.4 5 100 18

K-NN 71.4 6 79.6 49 89.8 1 83.7 2 73.5 3 100 45
Leukemia SVM 86.1 6 84.7 16 93.1 1 100 3 95.8 4 98.6 36

K-NN 79.2 6 80.6 7 93.1 1 98.6 2 91.7 1 100 50
Colon SVM 64.5 1 85.5 241 85.5 1 80.7 2 83.9 4 87.1 5

K-NN 61.1 2 80.7 6 85.5 1 80.7 3 82.3 5 85.5 9
Lung SVM 99.5 4 * * 97.2 1 99.5 3 99.5 5 100 34

K-NN 98.9 3 * * 97.2 1 99.5 3 93.9 5 100 38
Prostate SVM 56.6 3 * * 74.3 7 84.6 4 75.0 10 89.7 44

K-NN 78.7 4 * * 84.6 1 88.2 4 75.0 10 88.2 7
RAOA SVM 70.0 1 86.7 1 83.3 1 86.7 1 76.7 4 100 3

K-NN 73.3 1 93.3 3 90.0 1 90.0 2 86.7 3 100 3
RAHC SVM 70.0 1 82.0 6 86.0 1 70.0 1 * * 94.0 36

K-NN 80.0 1 84.0 8 84.0 1 84.0 3 * * 100 11

From the results reported in Table 21.6, it is seen that out of a total of 14 cases,
the MRMS method achieves 100% classification accuracy in 8 cases, while quick
reduct algorithm attains this accuracy in 1 case. However, the method proposed
by Valdes and Barton attains the same K-NN accuracy for colon cancer and quick
reduct algorithm attains the same K-NN accuracy for prostate cancer as that of the
MRMS method with lesser number of genes. The better performance of the MRMS
feature selection algorithm is achieved due to the fact that it can identify relevant
and significant genes from microarray data sets more accurately than the existing
algorithms.

21.7 Conclusion

In this chapter, a rough set-based feature selection algorithm is presented. It selects
a set of features from a high-dimensional data set by maximizing the relevance and
significance of the selected features. A theoretical analysis is reported to justify the
use of both relevance and significance criteria for selecting a reduced feature set
with high predictive accuracy. The importance of rough set theory for computing
both relevance and significance of the features is also established.
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The effectiveness of the algorithm, along with a comparison with other related
methods, is demonstrated on three QSAR data sets using the R2 statistic of support
vector regression method, and on five cancer and two arthritis microarray data sets
by using the predictive accuracy of the K-nearest neighbor rule and support vector
machine. All the results reported in this chapter establish the fact that an optimal
subset of features can be obtained using the rough set-based feature selection algo-
rithm by maximizing both relevance and significance of the selected features, which
has a significant relation with the class label as well as low redundancy among the
selected features, and thus has a property of generating more generalized classifiers.
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Chapter 22
Towards Logics of Some Rough Perspectives
of Knowledge

A. Mani

Abstract. Pawlak had introduced a concept of knowledge as a state of relative exact-
ness in classical rough set theory (RST) [30]. From a theory of knowledge and ap-
plication perspective, it is of much interest to study concepts of relative consistency
of knowledge, correspondences between evolvents of knowledges and problems of
conflict representation and resolution. Semantic frameworks for dealing with these
are introduced and developed in this research paper by the present author. New mea-
sures that deal with different levels of contamination are also proposed. Further, it
is shown that the algebraic semantics are computationally very amenable. The pro-
posed semantics would also be of interest for multi-agent systems, dynamic spaces
and collections of general approximation spaces. Part of the literature on related
areas is also critically surveyed.

Keywords: Knowledge interpretation, concepts, rough sets, algebraic seman-
tics, contamination problem, granular measures of knowledge consistency, power
knowledge algebras.

22.1 Introduction

In Pawlak’s concept of knowledge in classical RST [30], if S is a set of at-
tributes and P an indiscernibility relation on it, then sets of the form Al and Au
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represent clear and definite concepts. If Q is another stronger equivalence (Q ⊆
P) on S, then the state of the knowledge encoded by 〈S, Q〉 is a refinement of
that of S = 〈S, P〉. Subsequent work on logics and semantics for comparing dif-
ferent types of knowledge and measures of relative consistency have been very
limited.

The knowledge interpretation has been extended in a natural way to another gen-
eral approximation space-based RST (including TAS) [24]. Relative this interpreta-
tion any non-degenerate use of choice operations over granules in the more general
cases for the construction of definite objects (in any of the rough senses) can be seen
to result in clear concepts or beliefs with ontology. In general, the distinction be-
tween belief and knowledge cannot be made without additional information about
the evolution of the context and applicable concepts of justification. So this applies
to knowledge as well.

Measures for consistency between two knowledges have been introduced in [5]
and a related problem of forming a logic for the same has been proposed. In [25],
these have been generalised from a different paradigm. The resulting measures con-
tain more information than the measures of [5] if viewed from a classical perspec-
tive. These are surveyed in some detail and the latter is improved in this paper.
Algebraic logics for all of the situations are introduced and it is also shown that the
algebras are also very amenable from the computation point of view.

Some of the general aspects that may qualify different approaches related to
knowledge interpretation of RST are as below.

1. Knowledge of multiple agents (real or abstract).
2. Comparability of knowledges.
3. Consistency of two or more knowledges.
4. Knowledges with special emphasis on properties generated by derived indis-

cernibility predicates.
5. Knowledges that have special relationship with subsets of attributes
6. Algebraic logics for the context.
7. Modal/multi-modal logics for the context.
8. Relationship of knowledge with multiple concepts of rough equalities.
9. Contamination problem.

The first, second and seventh along with application domain-based aspects have
been the main motivations for the divergent approaches of [10, 12], [17, 31, 32]
and [29]. Corresponding to a set τ of ’terms’, multi-agent systems of the form
〈S, (Rt)t∈τ 〉 are considered (with S being a set and Rt being an equivalence on S
for each t ∈ τ) in [31]. If Ra, Rb are, respectively, the ’knowledge bases’ of agents
a, b , then weak and strong distributed knowledge bases (Ra∨b, Ra∧b, respectively)
derived from them are defined via

• (∀a,b ∈ τ)U |Ra∨b = {[x]Ra ∩ [y]Rb ; [x]Ra ∩ [y]Rb �= /0}
• (∀a,b ∈ τ)U |Ra∧b = {[x]Ra ∪ [y]Rb ; [x]Ra ∩ [y]Rb �= /0}
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In these, it is assumed that the set of agents is finite. In [17] and related papers,the
primary focus is on four different approximations generated by the set of agents.
In [10,12], the focus is on collections of approximation spaces. Concepts of consis-
tency of knowledges in different senses and contexts concerning conflicting infor-
mation would be still relevant in applications of collections of approximation spaces
and multi-agent distributive systems. In all of these approaches, the relation between
possible rough equalities and indiscernibility relations involved does not play a
major role.

Preliminary connections between the knowledge interpretation and set of all
rough equalities on a given set can, in retrospect, be traced to [27] where it is shown
that an equivalence on a power set is a rough equality precisely when the union
of the singleton classes contained in its quotient forms a Boolean subalgebra un-
der induced operations of the natural Boolean algebra on the power set. Section 10
of [15] has more information on the relation between rough equalities and equiva-
lences. The nature of rough equalities in partially ordered approximation spaces [19]
will be relevant in the context of the sixth class of problems mentioned above.

Apart from the fourth and seventh, all of the nine aspects mentioned are among
the primary motivations of the present paper. The contamination problem is par-
ticularly relevant in applications to human reasoning contexts. The primary goal
of the present paper is towards forming logics that can represent any concept
that can be expressed in terms of granules in a rough perspective of knowledge.
This includes concepts of relative consistency of knowledge, correspondences be-
tween granules and conflict representation. Eventually, we intend to deal with
knowledge generated by arbitrary subsets of relations subject to attribute-level
constraints. Another goal is to deal with inverse problems of forming rough
evolutions of knowledge in applications to human learning contexts – where applica-
tions of RST are hindered by its more common measures. The connection between
classical RST and concept lattices has been examined by different authors in the
literature. But, this will not be taken up in the present paper for reasons of space.

In the next section, some background, a summary of part of earlier work and basic
results is presented. In the third section, the nature of semantic domains, meta levels,
granules and granulations is clarified. In the following section, the contamination
problem and a method of counting is presented. These are used in the introduction of
new generalised measures in the fifth section. In the sixth section, basic knowledge
algebras are introduced and characterized. Power knowledge algebras are introduced
in the next section. Computational aspects also taken up in the same section. Abstract
aspects of knowledge granularity are taken up in the penultimate section.

22.2 Some Background and Terminology

The set of all equivalence, tolerance and reflexive relations on a set S will be denoted
by EQ(S), Tol(S) and Re f (S), respectively. For any ρ , σ ∈ EQ(S), if we define the
operations ∧, ∨ as per
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σ ∧ ρ = σ ∩ ρ and σ ∨ ρ = Cl(σ ∪ ρ),

where Cl is the transitive closure operator, then we have:

Proposition 22.1. 〈EQ(S),∨,∧,Δ ,1〉 is an algebraic lattice with the least element
Δ being the diagonal of S and the greatest element 1 = S2. If S is finite, then EQ(S)
is atomistic (A lattice is atomistic if it is generated by its atoms).

Definition 22.1. A non-empty subset H of a poset P is said to be directed if and
only if (∀x,y ∈ H)(∃z ∈ P)x ≤ z&y ≤ z. If every directed subset of a poset has a
least upper bound, then it is said to be a directed complete partial order.

It is well known that:

Theorem 22.1. If P is an algebraic lattice, then

1. the set of compact elements K(P) is a join semilattice with least element in the
induced order;

2. P is order-isomorphic to the lattice of order ideals of the compact elements,
that is P ∼= I(K(P)). The associated map is : x �→ x ↓ ∩K(P) (x ↓ being the
principal order ideal generated by x).

Theorem 22.2. If L is a join-semilattice with least element, then

1. the collection I(L) of all order-ideals of L is an algebraic lattice (the join cor-
responds to set union);

2. L is order-isomorphic to K(I(L)). The associated map is : x �→ x ↓.

Definition 22.2. A collection C of subsets of a set A that is closed under the intersec-
tion of arbitrary subcollections is called a closure system over A. If C is also closed
under the union of subcollections that are (upward) directed (under set inclusion),
then it is said to be an algebraic closure system (or an algebraic closed-set system).

An algebraic closure system C forms an algebraic lattice under the set-theoretic
inclusion order. The elements of C are also called filters. If C is an algebraic closure
system over a non-empty set A and if B is a non-empty subset of A, then {F ∩B :
F ∈ C} is also an algebraic closure system over B. If h : B �−→ A is a map, then
h−1(C) := {h−1(F) : F ∈ C} is an algebraic closure system over B.

Definition 22.3. A cardinal κ is inaccessible if and only if all of the following hold:

1. ℵ0 < κ
2. (n < κ −→ 2n < κ)
3. If L is a set of cardinals such that Card(L) < κ and (∀n ∈ L)n < κ , then

Sup{n; n ∈ L}< κ .
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Definition 22.4. A Partial Algebra P is a tuple of the form

〈P, f1, f2, . . . , fn,(r1, . . . , rn)〉

with P being a set, fi’s being partial function symbols of arity ri. The interpretation
of fi on the set P should be denoted by f P

i , but the superscript will be dropped in
this paper as the application contexts are simple enough. If predicate symbols enter
into the signature, then P is termed a Partial Algebraic System. See [4, 18] for the
basic theory.

In a partial algebra, for term functions p, q, the weak equality is defined via,

p
ω
= q iff (∀x ∈ dom(p) ∩ dom(q)) p(x) = q(x).

The weak-strong equality is defined via,

dom(p) = dom(q), & p
ω∗
= q iff (∀x ∈ dom(p)) p(x) = q(x).

For two terms s, t, s
ω
= t shall mean, if both sides are defined, then the two terms are

equal (the quantification is implicit). s
ω∗
= t shall mean if either side is defined, then

the other is and the two sides are equal (the quantification is implicit).

Definition 22.5. A t-norm is a function t : [0,1]2 �→ [0,1] that satisfies all of (Note
that we omit initial quantifiers uniformly):

1. t(a,1) = a (this is the same as (∀a)t(a,1) = a).
2. (b ≤ c −→ t(a,b)≤ t(a,c)); t(a,b) = t(b,a)
3. t(a, t(b,c)) = t(t(a,b),c); t(a,0) = 0

An s-norm s : [0,1]2 �→ [0,1] is a function for which there exists a t-norm t such
that:

(∀a,b)s(a,b) = 1− t(1− a,1− b).

22.2.1 EQ(S) and Approximations

The behaviour of rough approximations relative to the order structure of EQ(S) is
considered in this subsection. Subscripts as in lσ , lσ∨ρ , lσ∧ρ will be used to indicate
lower approximations relative σ , σ ∨ρ and σ ∧ρ , respectively, and so on.

Theorem 22.3. (∀A ⊆ S)(∀σ ,ρ ∈ EQ(S))

Alρ ∩Alσ ⊆ Alρ ∪Alσ ⊆ Alρ∧σ ⊆ Auρ∧σ ⊆ Auσ ∩Auρ ⊆ Auσ ∪Auρ .
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Proof. For each x ∈ S, the granule [x]ρ∧σ generated relative ρ∧σ is the same as the
intersections of the granules generated relative ρ and σ separately, that is

[x]ρ∧σ = [x]ρ ∩ [x]σ .

So, Alρ∧σ =
⋃{[x]ρ ∩ [x]σ : [x]ρ ∩ [x]σ ⊆ A}. This set contains Alρ ∪Alσ . Similarly,

the other parts can be checked.

Proposition 22.2. For each x ∈ S,

[x]ρ ∪ [x]σ ⊆ [x]ρ∨σ .

Proof. If y ∈ [x]ρ , then y ∈ [x]ρ∨σ , but as the transitive closure of ρ ∪σ is ρ ∨σ , it
is possible that z ∈ [x]ρ∨σ and z /∈ [x]ρ ∪ [x]σ . So [x]ρ ∪ [x]σ ⊆ [x]ρ∨σ .

Because of the above results, it is not easy to reduce the study of all equivalences
to a study of the approximations without taking recourse to higher order construc-
tions. Naturally for other kinds of relations, granules and granulations, the situation
becomes more complex.

22.2.2 Relative Consistency of Knowledge

In this subsection, the approach of [5, 6] on consistency of knowledges is summa-
rized. The authors assume that:

1. S is finite ( [5, 30]).
2. Knowledge is characterized by granules ( [5, 30]).
3. Knowledge K1 is fully consistent with another knowledge K2 if and only if both

generate the same granules [5].
4. Knowledge K1 is fully inconsistent with another knowledge K2 if and only if no

granule of one is included in a granule of the other [5].
5. (Apparently) granules need not be restricted in any special way.

The finiteness assumption amounts to permitting only a finite number of relevant
attributes, granules and finite number of viewpoints. Such a position may not always
be useful from practical points of view especially in contexts where such cannot be
predicted because of apparent randomness or indeterminacy. From a semantic point
of view, the finite and infinite situations are very different – this is explained in the
section on algebraic semantics.

According to Pawlak’s approach [30] to theories of knowledge from a classi-
cal rough perspective, if S is a set of attributes and R an indiscernibility relation
on it, then sets of the form Al and Au represent clear and definite concepts. If Q
is another stronger equivalence (Q ⊆ R) on S, then the state of the knowledge en-
coded by 〈S, Q〉 is a refinement of that of S = 〈S, R〉. The R-positive region of Q is
defined to be
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POSR(Q) =
⋃

X∈S|Q
XlR : XlR =

⋃
{[y]R; [y]R ⊆ X}.

The degree of dependence of knowledge Q on R, δ (Q,R), is defined by

δ (Q,R) =
Card(POSR(Q))

Card(S)
.

As the set S is common to all of the considerations, knowledges of the form 〈S, R〉
can be abbreviated by R.

Definition 22.6. In the notation, P & Q if and only if (∀x) [x]P ⊆ [x]Q.

Definition 22.7. In the above context, P depends on Q to a degree k or in symbols
P �k Q if and only if k = δ (P,Q).

Proposition 22.3. In the above context, all of the following hold:

1. (P � Q&P & R −→ R � Q)
2. (P � Q&R & Q −→ P � R)
3. (P � Q&Q � R −→ P � R)
4. (P � R&Q � R −→ P∩Q = R)
5. (P � R∩Q −→ P � R&P � Q)
6. (P � Q&R � T −→ P∩R � Q∩T )

Proposition 22.4. In the above context, all of the following hold:

1. (Q & P −→ XlP ⊆ XlQ)
2. (P �a Q&R & P −→ (∀a ≤ b)R �b Q)
3. (P �a Q&P & R −→ (∀b ≤ a)R �b Q)
4. (P �a Q&R & Q −→ (∀b ≤ a)P �b R)
5. (P �a Q&Q & R −→ (∀a ≤ b)P �b R).

Proposition 22.5. In the above context, all of the following hold:

1. (R �a P&Q �b P,−→ (∃cmax(a,b)≤ c)R∩Q �c P)
2. (R∩P �a Q −→ (∃b,c ≤ a)R �b Q&P �c Q)
3. (R �a Q&R �b P −→ (∃c ≤ min(a,b))R �c Q∩P)
4. (R �a Q∩P −→ (∃a ≤ b,c)R �b Q&R �c P)
5. (R �a P&P �b Q −→ (∃c ≥ a+ b− 1)R�c Q).

Definition 22.8. In [5], the consistency degree between two knowledges P, Q, when
P �a Q, Q �b P is defined by

Cons(P,Q) =
a+ b+ nab

n+ 2

for a constant n ∈ Z+.
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Proposition 22.6. If

C(a,b) =
a+ b+ nab

n+ 2
,

then the function δ (a,b) = 1−C(1− a,1− b) is an s-norm.

The above concept is extended to four types of cover-based RST in the same way
without any constraints on the granules in [6] and the preliminary nature of the study
is admitted. Based on the perspective of the contamination problem, more general
measures for the purpose have been proposed by the present author in [25]. Disjoint-
ness of granules at a local level has been an important requirement in the knowledge
interpretation in [23, 24]. These aspects including the contamination problem are
taken up in subsequent sections.

22.3 Semantic Domains and Granules

In classical RST (see [30]), an approximation space is a pair of the form 〈S, R〉,
with R being an equivalence on the set S. On the power set℘(S), lower and upper
approximation operators, apart from the usual Boolean operations, are definable.
The resulting structure constitutes a semantics for RST (though not satisfactory) in
a classicalist perspective. This continues to be true even when R is some other type
of binary relation. More generally (see fourth section), it is possible to replace℘(S)
by some set with a part-hood relation and some approximation operators defined
on it. The associated semantic domain in the sense of a collection of restrictions on
possible objects, predicates, constants, functions and low level operations on those
will be referred to as the classical semantic domain for general RST. In contrast,
the semantics associated with sets of roughly equivalent or relatively indiscernible
objects with respect to this domain will be called the rough semantic domain. It
is well known that various types of rough equalities can be defined using differ-
ent number of approximation operators. The concept of bottom and top equalities
(see [28, 35]) can also be relevant from a semantic perspective. Many other seman-
tic domains including hybrid semantic domains can be generated (see [20–22]) for
different types of rough semantics, but these two broad domains will always be -
though not necessarily with a nice correspondence between the two. In one of the
semantics developed in [21], the reasoning is within the power set of the set of
possible order-compatible partitions of the set of roughly equivalent elements. The
concept of semantic domain used is, therefore, similar to the sense in which it is
used in general abstract model theory [26] (though one can object to formalisation
on different philosophical grounds).

The term object level will mean a description that can be used to directly inter-
face with fragments (sufficient for the theories or observations under consideration)
of the concrete real world. Meta levels concern fragments of theories that address
aspects of dynamics at lower meta levels or the object level. Importantly, we per-
mit meta level aspects to filter down to object levels relative a different object level
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specification. So it is always possible to construct more meta levels and expressions
constructed in these can be said to carry intentions.

Despite all this, two particular meta levels namely Meta-C (or Meta Classical),
Meta-R (or Meta Rough) and an object level will be used for comparing key notions
introduced with the more common approaches in the literature. Meta-R is the meta
level corresponding to the observer or agent experiencing the vagueness or reason-
ing in vague terms (but without rough inclusion functions and degrees), while Meta-
C will be the more usual higher order classical meta level at which the semantics is
formulated. It should be noted that rough membership functions and similar mea-
sures are defined at Meta-C, but they do not exist at Meta-R. A number of meta levels
placed between Meta-R and Meta-C can possibly be defined and some of these will
be implicit in the section on rough naturals.

Many logics have been developed with the intent of formalising ’rough sets’ as
’well-formed formulae’ in a fixed language. They do not have a uniform domain of
discourse and even ones with category theoretically equivalent models do not nec-
essarily see the domain in the same way (though most meanings can be mapped in a
bijective sense). For example, the regular double Stone algebra semantics and com-
plete rough algebra semantics correspond to different logical systems of classical
RST (see [2, 3]). The super rough algebra semantics in [20] actually adds more to
the rough algebra semantics of [1]. It is possible to express the ability of objects to
approximate in the former, while this is not possible in the latter. This is the result
of a higher order construction used for generating the former.

22.3.1 Granules

Granules are essentially the objects that can be seen to construct approximations at
Meta-C. At Meta-R they may or may not be perceived as objects. Other features
like atomicity, which are more commonly associated with granules may or may not
be true in general. In [24], a brief version of the axiomatic theory of granules by
the present author along with related philosophical aspects may be found. Here we
mention a few concepts.

Granulations can be seen as collections of granules that contain every object of
the universe in question. The concept of granules actually evolves across the tem-
poral space of the construction of a theory and may be essentially a priori or a
posteriori (relative the theory or semantics) in nature. Possible concepts of granules
are also naturally dependent on the choice of semantic domain in the contexts of
RST and ’a priori’ granules may even be identified at some stage after the identifi-
cation of approximations.

A particular tolerance space (for example) can have multiple admissible granula-
tions — the same approximation can be viewed as being constructed out of different
sets of granules (see [21] for example). We state this to stress that the definition of
knowledge should be based on the granulation and not on that of the relation alone.
Finer aspects of the definition of knowledge with respect to granulation are taken up
in the penultimate section.
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22.4 Contamination Problem and IPC

Suppose the problem at hand is to model vague reasoning in a particular context
and relative the agents involved in the context. It is natural for the model to become
contaminated with additional inputs from the classicalist perspective imposed on the
context by the person doing the modelling. In other words, meta level aspects can
contaminate the perception of object level features. From an algebraic perspective,
if the model concerns objects of specific types like ’roughly equivalent objects in
some sense’ then the situation is relatively better than a model that involves all
types of objects. But the operations used in the algebra or algebraic system can still
be viewed with suspicion.

By the contamination problem, I mean the problem of minimising or eliminating
the influences of the classicist perspective imposed on the context. In other words,
the problem is of minimising the contamination of models of meta-R fragments by
meta-C aspects. One aspect of the problem is solved partially in [25] by the present
author. In the paper, a more realistic conception of rough membership functions and
other measures of RST have been advanced from a minimalist perspective avoiding
the real numbers or rationals based rough measures that dominate the rough litera-
ture. Most of the rough measures based on cardinalities are of course known to lack
mathematical rigour and have the potential to distort analysis.

In the mathematics of exact phenomena, the natural numbers arise in the way
they do precisely because it is assumed that things being counted are well defined
and have exact existence. When a concrete collection of identical balls on a table is
being counted, then it is their relative position on the table that helps in the process.
But there are situations in real life, where

• such identification may not be feasible,
• the number assigned to one may be forgotten while counting subsequent ob-

jects,
• the concept of identification by way of attributes may not be stable,
• the entire process of counting may be ’lazy’ in some sense,
• the mereology necessary for counting may be insufficient.

To count a collection of objects in the usual sense, it is necessary for them to be
distinct and well defined. So a collection of well-defined distinct objects and in-
discernible objects can be counted in the usual sense from a higher meta level of
perception. Relative to this meta level, the collection must appear as a set. In the
counting procedures developed, the use of this meta level is minimal and certainly
far lesser than in other approaches. It is dialectical as two different interpretations are
used simultaneously to complete the process. These two interpretations cannot be
merged as they have contradictory information about relative discernibility. Though
the classical interpretation is at a relatively higher meta level, it is still being used in
the counting process and the formulated counting is not completely independent of
the classical interpretation.
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A strictly formal approach to these aspects and a system of rough naturals will be
part of a forthcoming paper. The concept of Rough Y-System(RYS) was introduced
by the present author in [24]. As the technical aspects are not explicitly used in
the present paper, it suffices to consider RYS as some subset of a power set along
with multiple lower and upper approximation operators, inclusion operation and
a granule indicating operation. The concept of a rough object is intended to be
expressed by sets of approximations that cover the inexact object in a order-theoretic
sense.

Counting of a set of objects of an approximation space and that of its power set is
very different as they have very different kinds of indiscernibility inherent in them.
The latter possess a complete evolution for all of the indiscernibility present in it
while the former does not. Counting of elements of a RYS is essentially a generali-
sation of the latter. In general, any lower level structure like an approximation space
corresponding to a 1-neighbourhood system [36] or a cover need not exist in any
unique sense. The axiomatic theory of granules developed in the previous sections
provides a formal exactification of these aspects.

Let S be a RYS, with R being a derived binary relation (interpreted as a weak
indiscernibility/ weak rough equality relation) on it. As the other structure on S
will not be explicitly used in the following, it suffices to take S to be an at most
countable list of elements : {x1, x2, . . . , xk, . . . , } (actually the set of axioms re-
quired to define lists is a consequence of the set of ZF axioms). Taking (a,b) ∈ R
to mean ’a is weakly indiscernible from b’ concepts of primitive counting regu-
lated by different types of meta level assumptions are defined below. The adjec-
tive primitive is intended to express the minimal use of granularity and related
axioms.

Indiscernible Predecessor Based Primitive Counting (IPC)

In this form of ’counting’, the relation with the immediate preceding step of count-
ing matters crucially. s is the successor operation, while f is the operation that im-
plements the count.

1. Assign f (x1) = 11 = s0(11)
2. If f (xi) = sr(1 j) and (xi,xi+1) ∈ R, then assign f (xi+1) = 1 j+1

3. If f (xi) = sr(1 j) and (xi,xi+1) /∈ R, then assign f (xi+1) = sr+1(1 j)

The 2-types of the expression sr+1(1 j) will be j. Successors will be denoted by the
natural numbers indexed by 2-types.

The following example illustrates IPC:
Let S = { f ,b,c,a,k, i,n,h,e, l,g,m} and let R, Q be the reflexive and transitive

closure of the relation

{(a,b), (b,c), (e, f ), (i,k),(l,m), (m,n), (g,h)}
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and

{(a,b), (e, f ), (i,k), (l,m), (m,n)}

respectively. Then, 〈S, R〉 and 〈S, Q〉 are approximation spaces. The IPC procedure
on the set in the given order proceeds as follows: assign 11 to f , then as (b, f ) /∈ R
assign 21 to b, next as (c,b) ∈ R we assign 12 to c. Continuing in this way, we get
the IPC-count (relative R) as :

{11,21,12, 13, 23,14,24,34,15,25,16,26}

Apart from examples in [25], the most glaring examples for avoiding the measures
come from attempts to apply rough sets to modelling conceptual development. The
’same’ concept X may depend on ten other concepts in one perspective and nine
other concepts in another perspective and concepts of knowing the concept X and
gradation does not admit a linear measure in general. Using one in fields like edu-
cation or education research would only encourage scepticism. The quality of mea-
sures like ’impact factor’ of journals provides a supportive example.

The underlying assumptions behind rough measures are much less than in a cor-
responding statistical approach (subject to being possible in the first place in the ap-
plication context in question) and do not make presumptions of the form -’relative
errors should have some regularity’. Still the contamination problem is relevant in
other domains of application of RST and more so when the context is developed
enough to permit an evaluation of semantic levels.

There may be differences of the semantic approach of proceeding from algebraic
models to logics in sequent calculus form in comparison to the approach of directly
forming the logic as a sequent calculus, or the approach of forming the logic in
Kripke-like or frame-related terminology but one can expect one to feed the other. It
should also be noted that this has nothing to do with supervaluationary perspectives,
where the goal is to reduce vagueness by improving the language. Moreover, the
primary concerns in the contamination problem are not truth values or gaps in them.
The contamination problem is analogous to the problem of intuitionist philosophers
to find a perfect logic free from problematic classicist assumptions. A difficult ap-
proach to the latter problem can be found in [11]. The important thing to note in [11]
is the suggestion that it is better to reason within a natural deduction system to gener-
ate the ’pure logic’. In case of the contamination problem, the general understanding
stems from model theoretic interpretations and so should be more appropriate.

If a model-theoretic perspective is better, then it should be expected to provide
justification for the problem. The problems happen most explicitly in attempts to
model human reasoning, in conceptual modelling, especially (in learning contexts)
in attempts to model counting processes in the presence of vagueness and others. In
applications to machine intelligence, an expression of contamination would be ’are
you blaming machines without reason?’

From a blunt practical view point, I prefer to avoid using rough-theoretical mea-
sures (like membership functions), excess of meta-levels, and questionable valua-
tions in semantic and syntactic approach till may be the last step. This modifies
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the basic approach to rough semantics and is explained in detail in a forthcoming
research paper. The following figure gives an idea about the orientation of compo-
nents.

The link between ’Rough Semantics’ and ’Rough Measures’ should be read as
’possibly related’.

22.5 Generalized Measures

In [25], the following concepts were introduced:

Definition 22.9. The granular dependence degree of knowledge Q on R, gk(Q,R)
will be the tuple (k1, . . . ,kr), with the ki’s being the ratio of the number of granules
of type i included in POSR(Q) to card(S).

Note that the order on S induces a natural order on the granules (classes) generated
by R, Q respectively. This vector cannot be extracted from a single IPC count in
general (the example in the last section should be suggestive). However, if the gran-
ulation is taken into account, then much more information (apart from the measure)
can be extracted.

Proposition 22.7. If gk(Q,R) = (k1,k2, . . . ,kr), then δ (Q,R) = ∑ki.

The concepts of consistency degrees of multiple models of knowledge introduced
in [5] can also be improved by a similar strategy:

If δ (Q,R) = a and δ (R,Q) = b, then the consistency degree of Q and R,

Cons(Q,R) is defined by Cons(Q,R) =
a+ b+ nab

n+ 2
, where n is the consistency con-

stant. With larger values of n, the value of the consistency degree becomes smaller.
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Definition 22.10. If gk(Q,R) = (k1,k2, . . . ,kr) and gk(R,Q) = (l1, l2, . . . , lp), then
the granular consistency degree gCons(Q,R) of the knowledge represented by Q,R
will be

gCons(Q,R) = (k∗1, . . . ,k
∗
r , l

∗
1 , . . . , l

∗
p,nk∗1l1, . . .nk∗r lp),

where k∗i =
ki

n+2 for i = 1, . . . ,r and l∗j =
l j

n+2 for j = 1, . . . , p.

The knowledge interpretation can be extended in a natural way to other general RST
(including TAS) and also to choice inclusive rough semantics [24]. With respect to
the counting procedures defined, these two general measures are relatively construc-
tive, provided granules can be extracted. This is possible in many of the cases though
not always. They can be replaced by a technique of defining atomic sub-measures
based on counts and subsequently combining them. These aspects will be taken up
in a future paper.

Though the measures above are proper generalisations and avoid contamina-
tion to some extent, the essence of the avoidance has not been fully achieved by
gCons(Q,R). Cons(Q,S) is of course worse. To improve the situation, I propose a
more minimalistic version.

Definition 22.11. For two knowledges R, Q, let GR, GQ be the associated granula-
tions (sets of granulations). In the granular perspective, GR and GQ can be regarded
as the knowledge generators in a general rough structure like RYS. The dependence
of Q on R will be the map : �RQ : GR �−→℘(GQ) subject to:

�RQ(x) = Max{y : (∀a ∈ y)x ⊆ a}.

Max is to be computed over the collections of collections of sets. In a RYS, ⊆ can
be replaced by the part-hood relation P.

Definition 22.12. The pair (�RQ, �QR) shall be called the general consistency pair.

These two definitions do not force the introduction of ’suspect’ numbers and permit
wide variety of local variations. Further, they allow a more coherent internalisation
of the degree in the semantics developed in the following sections. In case R, Q are
equivalences, then �RQ would be the set of granules in the positive region.

22.6 Algebraic Semantics-1

In this section, an algebraic semantics using all of the equivalences, the knowledge
order between them and approximation operators is developed through a higher
order operation (Rough equalities can be easily incorporated into both the algebras,
but have not been done in the light of the contamination problem). The basic idea
of the semantic approach is an extension of the k-dimensional deductive systems
of [9, 13, 14] to partial algebras. The main steps are:
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1. Form a partial algebra S corresponding to the desired semantic processes with
the intent of expressing all relevant well-formed formulas.

2. Form a set of closed endomorphisms En(S) of S.
3. On Sk for a suitable integer k, define an algebraic closure system τ(S).
4. If (∀σ ∈ En(S))(∀(A1, . . . ,Ak) ∈ τ(S))(σ−1(A1), . . . ,σ−1(Ak)) ∈ τ(S),

then 〈S, TH(S)〉 is a general k-deductive system.
5. The consequence operator will correspond to the algebraic closure system τ(S).
6. In the present paper k ≤ 2 will suffice, but I will not be dealing with the ques-

tion of weak algebraizability in any of the general senses in the present paper
because of reasons of space. The interpretation also does not fall within known
versions.

It may seem that the algebraic structure of the set of all equivalences on a set should
be able to express the basic aspects of the relation of knowledge consistency, but
this is

Construction:

For each σ ∈ EQ(S), let

x · y =

{
x, if (x,y) ∈ σ
y, otherwise

Relative to this operation, the following theorem [16] holds:

Theorem 22.4. 〈S, ·〉 is a groupoid that satisfies the following axioms (braces are
omitted when the binding is to the left, e.g. ’abc’ is the same as ’(ab)c’):

E1 xx = x
E2 x(yz) = (xy)(xz)
E3 xyx = x
E4 yzxyuz = yuz
E5 u(yzxy)z = uyz

Let � be the variety of groupoids defined by the above five equations and let �0

be the variety of groupoids defined by the first three equations in the above and
xyzyx = xzyx. All the parts of the following theorem can be found in [16]:

Theorem 22.5. 1. The HSP closure of the class of equivalence algebras is �.
2. The variety � is contained in the non locally finite variety �0.
3. The five equations mentioned above form an equational base for the variety �.

Theorem 22.6. The following are consequences of the defining equations of �0:

1. x(yx) = x; x(xy) = xy; (xy)y = xy (from E1,E2,E3).
2. x(xyz) = x(yz); (xz)(yz) = xz; (xy)(zx) = xyzx (from E1,E2,E3).
3. xyzxy = xy; xyzyz = xyz; xcyzyxy = xyzy.
4. (xyzx)(zy) = x(zy); x(yz)y = xyzy; (xyz)(yx) = (xzy)(zx); xyzxz = xzyz.
5. (∀x)(ex = ey −→ x = y) is equivalent to (∀x)xe = e (from E1,E2,E3).
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The set of all equivalence operations on a set S will be denoted by E(S). Taking
K = E(S)× S2, the following partial operations can be defined on the product K
(we abbreviate the quantifier (∀α,β ∈ E(S))(∀x,y,a,b ∈ S) by Q ):

(∀α ∈ E(S))(∀x,y ∈ S)u(α,x,y) = (α,xy,xy)

(∀α ∈ E(S))(∀x,y,z,a ∈ S)(α,x,y)⊗ (α,z,a) = (α,xz,ya)

(Q)(α,x,y)� (β ,a,b) =
{
(α ∧β ,x,y) if x = a, y = b
undefined, else

(Q)(α,x,y)� (β ,a,b) =
{
(α ∨β ,x,y) if x = a, y = b
undefined, else

(Q)(α,x,y)� (β ,a,b) = (α ∨β ,xa,yb)

(Q)(α,x,y)� (β ,a,b) = (α ∧β ,xa,yb)

In the definition of the operations u and ⊗, xy means the product corresponding to
α . (α,x,y)⊗ (β ,x,y) will be taken to be undefined if α �= β . In the definition of
�,�, the products are with respect to α ∧β and α ∨β , respectively.

Definition 22.13. By a basic knowledge algebra will be meant a partial algebra of
the form K = 〈K,⊗,�,�,�,�,u,(2,2,2,2,2,1)〉 with K and operations being as in
the above.

Proposition 22.8. The operations above are well defined.

Theorem 22.7. A basic knowledge algebra K satisfies all of the following:

1. (∀a ∈ K)u2(a) = u(u(a)) = u(a)
2. (∀(α,x,x) ∈ K)u(α,x,x) = (α,x,x)
3. (∀a ∈ K)a⊗ a = a

4. (∀a,b ∈ K)(a⊗ b)⊗ a
ω
= a

5. (∀a,b,c ∈ K)a⊗ (b⊗ c)
ω∗
= (a⊗ b)⊗ (a⊗ c)

6. (∀a,b,c,e ∈ K)b⊗ c⊗ a⊗ b⊗ e⊗ c
ω∗
= b⊗ e⊗ c

7. (∀a,b,c,e ∈ K)(e⊗ (b⊗ c⊗ a⊗ b))⊗ c
ω∗
= e⊗ b⊗ c

8. (∀a ∈ K)a�a = a&a�a = a

9. (∀a,b ∈ K)a�b
ω∗
= b�a&a�b

ω∗
= b�a

10. (∀a,b,c ∈ K)(a�b)� c
ω∗
= a� (b� c)&(a�b)� c

ω∗
= a� (b� c)

11. (∀a,b ∈ K)(a�b)�a
ω
= a&(a�b)�a

ω
= a

12. (∀(α,x,y) ∈ K)(α,x,y)� (1,x,y) = (1,x,y), 1 corresponding to the largest
equivalence on S.

13. (∀(α,x,y) ∈ K)(α,x,y) � (Δ ,x,y) = (α,x,y), Δ corresponding to the
diagonal on S.
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14. (∀a,b ∈ K)a�a = a, a�a = a(a�b)�a = a, (a�b)�a = a
15. (∀a,b,c ∈ K)(a�b)� (a� c) = (a�b)� c, (a�b)� (a� c) = (a�b)� c

Proof. 1. u(u(α,x,y) = (α,(xy((xy),(xy)(xy)) = (α,xy,xy (since xx = x).
2. u(α,x,x) = (α,xx,xx) = (α,x,x)
3. If a = (α,x,y), then a⊗ a = (α,xx,yy) = (α,x,y).
4. If (a⊗ b)⊗ b is defined then the first component of a and b must be the same.

So the term will have the form

((α,x,y)⊗ (α,z,h))⊗ (α,x,y) = (α,xzx,yhy) = (α,x,y) = a.

5. If (a⊗b)⊗c is defined then the first component of a, b and c must be the same.
So the product will have the general form (α,x,y)⊗ ((α,v,w)⊗ (α,g,h)) =
(α,x(vg),y(wh)) = (α,(xv)(xg),(yw)(yh)) = (α,xv,yw)⊗ (α,xg,yh). Simi-
larly if (a⊗ b)⊗ (a⊗ c) is defined, then we have a reversed sequence of equal-
ities.

6. This corresponds to xyzxwy = xwy in an equivalence algebra.
7. This corresponds to u(yzxy))z = uyz in an equivalence algebra.
8. a�a = (α ∨α,x,y) = (α,x,y) = a.
9. If a � b is defined, then a � b = (α ∨ β ,x,y) = (β ∨ α,x,y) = (β ,x,y)�

(α,x,y) = b�a. Note the symmetry of the argument in the above.
10. Similar to the above.
11. Follows from the absorptivity property of the lattice operations in E(S).
12. The proof is obvious.
13. The proof is obvious.
14. If a = (α,x,y) and b = (β ,g,h), then ((α,x,y)� (β ,g,h))� (α,x,y) = ((α ∨

β )∧α,xgx,yhy) = (α,x,y) = a.
15. See proof of the 5th item for the essential part.

Theorem 22.8. The following hold in a basic knowledge algebra K:

1. For each x,y ∈ S, 〈{(α,x,y) : α ∈ E(S)},�.�〉 is an algebraic lattice.
2. (∀a,b ∈ K)(a�b = a�b −→ a�b = a�b = b�a = b�a, &a�b = a�b =

b�a = b�a)
3. (∀a,b ∈ K)(a�b = a�b −→ a�b = a�b = b�a = b�a, &a�b = a�b =

b�a = b�a)
4. For each x,y ∈ S, 〉{(α,x,y) : α ∈ E(S)},�.�〉 is an algebraic lattice isomor-

phic to 〈{(α,x,y) : α ∈ E(S)},�.�〉.
5. a� ((a�b)� c) = a� (b� c).

Proof. 1. 〈E(S),�,�〉 is isomorphic to the lattice of equivalence relations and the
lattice.

2. If a�b = a�b, then a�b is defined and so the second and third components
of a and b must be correspondingly equal. If a = (α,x,y) and b = (β ,g,h),
then it is easy to check a∧b = a�b = b�a and others.

3. Proof is similar to the above.
4. Follows from 1, 2 and 3.
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5. Since x((xy)z) = (x(xy))(xz) = (xy)(xz) = x(yz), therefore a� ((a�b)�c) =
a� (b� c).

The last property may be called demi-associativity. It follows that �,� are almost
lattice like operations. One motivation for using E(S)× S2 instead of E(S) as the
base of the algebra is to express S-related features of knowledge consistency. If the
goal was to base it on equivalences, then a suitable deductive system would be

〈E(S), E〉 ,

where E is the algebraic closure system constructed out of order-filters in E(S). The
main problem then would be the excessive generality of the structure (an abstract
representation theorem would be an issue) and its inability to express very little be-
yond the predicate "is consistent with". It is, however, possible to extend 〈E(S), E〉
using a product with the rationals Q to form a two-valued logic.

22.6.1 Topology

Topological aspects have not been explicitly considered in the above and cannot be
found in the literature on the structure of set of all equivalences or other relations on
a set.

Theorem 22.9. The algebraic closure operator α associated with the algebraic lat-
tice EQ(S) satisfies:

α( /0) = /0 ; (∀A,B ⊆ S2)α(A∪B) = α(A) ∪ α(B).

That is, the operator is also topological.

Proof. EQ(S) is an algebraic lattice, such that all elements are representable as
joins of compact elements that are also join-irreducible. This happens because the
compact elements are the atoms of EQ(S) that are obtainable by adjoining exactly
one non-trivial pair to the diagonal of S. These are obviously join-irreducible.

That this much is necessary and sufficient for ensuring the topological property
of α was proved recently in [34]. In our terminology, the algebraic operator asso-
ciated with an algebraic lattice L is topological if and only if every element of L is
representable as the join of compact elements that are also join-irreducible.

So the result holds.

22.7 Algebraic Semantics at Meta-C

One problem with a basic knowledge algebra is that the algebraic lattice structure
of EQ(S) is hidden, and � and � are not explicit lattice operations. Further ap-
proximation operations cannot be easily expressed in K. To improve the situation, it
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makes sense to take the base of the algebra as H = E(S)× (℘(S))2. This way even
approximation operators can be accommodated into the discourse.

Definition 22.14. By a power knowledge algebra will be meant a partial algebra of
the form

H = 〈H,�,�,⊗,�,�,�,�,�,J,G,L,U,θ ,�,⊥〉

of type (2,2,2,2,2,2,2,1,1,1,1,1,1,0,0)with H being as in the above and the other
operations being defined as below (Q being as in the previous section):

1. J(σ ,x,y) = (σ ,xy,xy) ; Here, xy should be understood in the global sense with
respect to σ , that is xy = {ab : a ∈ x, b ∈ y}.

2.

θ (σ ,x,y) =
{
(σ ,x,y), if x,y are singletons
undefined, otherwise

3.

G(σ ,x,y) =
{
(σ ,x,y), if x,y are granules relative σ
undefined, otherwise

4. L(σ ,x,y) = (σ ,xl ,yl), the approximations xl , yl being with respect to σ .
5. U(σ ,x,y) = (σ ,xu,yu), the approximations xu, yu being with respect to σ .
6.

(Q)(α,x,y)� (β ,a,b) =
{
(α ∧β ,x,y) if x = a, y = b
undefined, else

7.

(Q)(α,x,y)� (β ,a,b) =
{
(α ∨β ,x,y) if x = a, y = b
undefined, else

8.
(Q)(α,x,y)� (β ,a,b) = (α ∨β , x∪a, y∪b)

9.
(Q)(α,x,y)� (β ,a,b) = (α ∧β , x∩a, y∩b)

10. (∀α ∈ E(S))(∀x,y ∈℘(S)) (α,x,y)� = (α, xc, yc)
11.

(Q)(α,x,y)⊗ (β ,a,b) =
{
(α,xa,yb) if α = β
undefined, else

12.
(Q)(α,x,y)� (β ,a,b) = (α ∨β , xa, yb)

13.
(Q)(α,x,y)� (β ,a,b) = (α ∧β , xa, yb)

14.
� = (1, S, S), ⊥ = (0, /0, /0).

(Here, 1 corresponds to the equivalence S2 and 0 corresponds to the smallest
equivalence ΔS).
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In comparison to the basic knowledge algebra, a power knowledge algebra has a
very rich structure. This is shown in the following theorems:

Theorem 22.10. All of the following hold in a power knowledge algebra of the form
H = 〈H,�,�,⊗,�,�,�,�,�,J,G,L,U,θ 〉 :

1. 〈H,�,�,�,⊥〉 is a bounded lattice.
2. Given α ∈ E(S), 〈{(α,x,y) : x,y ∈℘(S)},�,�, �,�,⊥〉 is a Boolean algebra.
3. Given (x,y) ∈ (℘(S))2, 〈{(α,x,y) : α ∈ E(S)},�,�,�,⊥〉 is an algebraic lat-

tice.
4. For each α ∈ E(S), 〈dom(θ ),⊗〉 is a groupoid with the finite equational base

of equivalence algebras.
5. (∀a ∈ H)a�� = a&(L(a�))� = U(a)&(U(a�))� = L(a)
6. (∀a,b,c ∈ H)(a�b = c −→ a�b = c)
7. (∀a,b,c ∈ H)(a�b = c −→ a�b = c)
8. (∀a,b ∈ H)(θb = b −→ G(U(b)) = U(b)
9. (∀a,b ∈ H)(a�b = b −→ L(a)�L(b) = L(b))

10. (∀a ∈ H)L(a)�a = a&L(L(a)) = L(a)&U(a)�a =U(a)&U(U(a)) =U(a)
11. (∀a ∈ H)(L(a)�⊥=⊥−→ L(a) = a)
12. (∀a ∈ H)(U(a)�⊥=⊥−→U(a) = a)
13. (∀a,b ∈ H)L(a)�L(b) ⊆ L(a�b)&L(a)�L(b) = L(a�b)
14. (∀a,b ∈ H)U(a)�U(b) = U(a�b)&U(a�b) ⊆ U(a)�U(b).

Proof. 1. The structure 〈H,�,�,⊥,�〉 is a product of bounded lattices, so it is a
bounded lattice relative the induced operations �, �,⊥ and �.

2. α ∈ E(S), 〈{(α,x,y) : x,y ∈℘(S)},�,�,�,�,⊥〉 is a product of two Boolean
algebras and so is a Boolean algebra.

3. The collection of all equivalence relations on a set forms an algebraic lattice
with respect to lattice operations defined before. These operations are induced on
the collection of all equivalence operations. So the result follows.

4. For each α ∈ E(S), the structure of 〈dom(θ ),⊗〉 is equivalent to the product
of two equivalence algebras on S. So it is an equivalence algebra with its usual
equational base.

5. � acts on the last two components of elements of H to form their complements.
So the property follows from known properties of complementation and approx-
imations.

6. If a� b = c, then it is necessarily defined for the pair and so the conclusion
follows.

7. Proof is similar to that of the previous assertion.
8. θ (b) = b means the last two components of b are singletons. The upper ap-

proximation of singletons must be granules. So G(U(b)) = U(b) follows.
9–14. The rest of the assertions follows from the basic properties of rough ap-

proximation operators.

Theorem 22.11. The following hold in a power knowledge algebra of the form

H = 〈H,�,�,⊗,�,�,�,�,�,J,G,L,U,θ ,�,⊥〉 ,
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1. (∀(σ ,x,x), b ∈ H)(J(J(b)) = J(b)&J(σ ,x,x) = (σ ,x,x))
2. (∀b ∈ H)(G(b) = b −→ U(b) = b&L(b) = b)
3. (∀(σ ,x,y), (α,g,h) ∈ H)

(G(σ ,x,y) = (σ ,x,y), G(α,g,h) = (α,g,h) −→ G(U((σ ,x.y)� (α,g,h))) =
U(σ ∨α,xg,yh))

4. (∀t, p ∈ H)(G(t) = t & t � p = t −→ G(U(p)) = U(p) = t).
5. (∀t, p ∈ H)(G(t) = t & t � p = p −→ G(U(p)) = U(p) = t).

Proof. 1. J(σ ,x,x) = (σ ,xx,xx) = (σ ,x,x) as x is the range of the global
groupoidal operation.

J(J(σ ,x,y)) = J(σ ,xy,xy) = (σ ,(xy(xy),(xy)(xy)).

Now (xy)(xy) includes the groupoidal operation on the diagonal of xy. So
(xy)(xy) = xy and J(J(σ ,x,y)) = J(σ ,x,y).

2. If G(σ ,x,y) = (σ ,x,y), then x, y must be granules. So the upper and lower
approximations of these must, respectively, be x, y and U(σ ,x,y) = (σ ,x,y),
L(σ ,x,y) = (σ ,x,y).

3. If x, y are granules relative to σ ,α , respectively, then (xg)u, (yh)u will be gran-
ules relative σ ∨α . So the result follows.

4. If the last two components of an element are granules and p is an element below
it, then the upper approximations of the last two components of p must coincide
with the granules x, y, respectively.

5. The proof is similar to that of the above.

Definition 22.15. A subset K of H, H being a power knowledge algebra, will be
said to be a bar filter of H if the following conditions hold:

• (∀x ∈ K)(∀y ∈ H)(x� y = x −→ y ∈ K)
• K is closed under �.

Obviously, bar filters are lattice filters with respect to the forgetful structure. Fur-
ther, the following properties hold:

Theorem 22.12. If K is a bar filter of H, then

1. K is closed under �, �,
2. the collection of all bar filters forms an algebraic closure system.

For expressing relative consistency of knowledge using the contaminated approach
of [5], the basic knowledge algebra can be combined with a ’depends to a degree k’
operator or the expression can be externalised through valuations. Power knowledge
algebras would be overkill for the purpose as the ’depends to a degree k’ operators
are actually present in such an algebra.

For the granule based approach and the granular correspondence based measures,
valuations /extensions over the power knowledge algebras would be suitable. Impor-
tantly, the valuations can be internalised as granules that are expressible within such
algebras.
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22.7.1 Algebraic Computational Aspects

Power knowledge algebras are computationally very amenable. This stems from the
structure of the equivalence lattice EQ(S) (and E(S)). A brief reformulation of fairly
recent results on the generation of EQ(S) is provided below to clarify this.

Theorem 22.13 ( [33]).

1. If S is finite, then EQ(S) is atomistic.
2. If Card(S) ≥ 4 and is finite, then EQ(S) is generated by four elements, but it

cannot be generated by three elements.
3. If S is finite and Card(S) ≥ 7, then EQ(S) would be 1+ 1+ 2-generable, that

is it would be generable by four equivalences with exactly two of them being
comparable.

If completeness of the lattice is assumed, and it is required that there is no inacces-
sible cardinal less than the cardinality of EQ(S), then also it is generated by four
elements [7]. But, this result is not particularly relevant in computational contexts.
In [8], it is shown that completeness is not required when S is countable (long proof).
Moreover EQ(S) would be 1+ 1+ 2-generated.

The generation process is as below: (〈a,b〉 means the smallest equivalence con-
taining a,b, while x,y are variables to be selected as per range of sub or superscript)

1. Let S = {ak
i ; k ∈ℵ0, 0 ≤ i ≤ k+ 12}∪{bk

i ; k ∈ℵ0, 0 ≤ i ≤ k+ 11}
2. Let {Bk ; k ∈ℵ0} be a partition of S with each Bk = {ak

i ; i ≤ k+12}∪{bk
i ; i ≤

k+ 11}
3. Define α = 〈ax

y,a
x
y+1〉 + 〈bx

y,b
x
y+1〉

4. Define β = 〈ax
y,b

x
y〉 + 〈bx

6,a
x+1
6 〉

5. Define γ = 〈ax
y+1,b

x
y〉+ 〈bx

4,a
x+1
2 〉+ 〈bx

3,a
x+1
3 〉+ 〈bx

x+7,a
x+1
x+11〉+ 〈bx

x+8,a
x+1
x+12〉

6. Define δ = 〈ax
0,a

x
x+12〉 + 〈bx

0,b
x
x+11〉

α,β ,γ and δ would be the generators of EQ(S).

22.8 Abstraction

A set of granular axioms for knowledge are proposed in this section. The essential
content is clarified in the light of fundamentally distinct approaches adopted in [5,6]
and by the present author in [25].

Consider the following principles:

1. Individual granules are atomic units of knowledge.
2. If collections of granules combine subject to a concept of mutual independence,

then the result would be a concept of knowledge. The ’result’ may be a single
entity or a collection of granules depending on how one understands the concept
of fusion in the underlying mereology. In set theoretic (ZF) setting, the fusion
operation reduces to set-theoretic union and so would result in a single entity.
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3. Maximal collections of granules subject to a concept of mutual independence
are admissible concepts of knowledge.

4. Parts common to subcollections of maximal collections are also knowledge.
5. All stable concepts of knowledge consistency should reduce to correspondences

between granular components of knowledges. Two knowledges are consistent if
and only if the granules generating the two have ’reasonable’ correspondence.

6. Knowledge A is consistent with knowledge B if and only if the granules gener-
ating knowledge B are part of some of the granules generating A.

7. Knowledge A is consistent with knowledge B if and only if each of the granules
generating knowledge A is part of some of the granules generating B.

8. Knowledge B is consistent with knowledge A if and only if the granules gener-
ating knowledge B are part of some of the granules generating A.

9. Knowledge B is n-consistent with knowledge A if and only if each of the
granules generating knowledge A is union of at most n of the granules
generating B.

The last four axioms are intended to give a feel of possible non-equivalent defini-
tions of ’knowledge consistency’ among the many possible. In a general context, in-
teresting choices of axioms can be {1,2}, {1,3,4}, {1,3,5} and {1,23,4,5} among
others. Choice functions have been used in [24], for imposing independence of gran-
ules at a local level. This leads to more complicated concepts of ’knowledge consis-
tency’. The correspondence-based measure would have to depend on the granules
chosen.

Among the principles, the second one should be compulsory for any concept
of knowledge as knowledge is also a question of involving clear concepts alone
and clarity is usually understood with respect to forms of independence. In [6], the
authors do not follow this principle and so the quality of the extension should be
doubted. Pawlak’s concept was of course formulated in relation to approximation
spaces, where the second principle would be trivially valid. The main issue that I
see is that far too many things would qualify as knowledge if the second principle is
violated.

Definition 22.16. Let

1. X , Y be two RYS,
2. G(X), G(Y ) be two sets of granules associated with them respectively,
3. Z be a RYS that has surjective relational morphisms into both X and Y ,
4. G(XZ), G(Y Z) be the sets of granules induced by the relational morphisms,
5. ξ be an injective map of G(XZ) into G(Y Z).

If ξ is such that
(∀x ∈ G(XZ))(∃y ∈ G(Y Z))Pξ (x)y ,

P being the part-hood relation on Z, then the knowledge expressed by the pair
〈Y, G(Y )〉 will be said to be consistent with the knowledge expressed by 〈X , G(X)〉
relative Z and ξ .

It is possible to deal with knowledge consistency between two granulations on the
same RYS (〈X , G〉 and 〈X ,H〉 say) as a special case of this definition.
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22.9 Further Directions

In this research paper, the use of RST for modelling theories of knowledge has been
critically examined from the usual viewpoint and in the light of the contamination
problem. The relevance of the contamination problem in modelling human knowl-
edge has also been explained. Two different semantics capable of expressing most of
the desired features including consistency, cumulation, rough approximation, com-
monality and granularity of knowledge have been proposed. From a computational
viewpoint the structures are directly applicable in practical contexts provided the set
of attributes is at most countable. From the point of view of algebraic logic, a new
concept of algebraizability using partial algebras is implicit in the presented pro-
posal. These will be clarified in a subsequent paper for reasons of space. Abstract
representation theorems for power knowledge algebras have also been omitted for
the same reason.

The compatibility of measures of knowledge consistency proposed in [5, 6, 25]
with the proposed semantics have also been considered in detail. The entire ap-
proach would also be relevant in the study of multi-agent systems and collections
of approximation spaces. A concept of knowledge consistency based on granular
correspondences has also been introduced. It can be viewed as a proper extension of
the view that ’positive regions reflect dependence’.

The definition of knowledge from a granular perspective has also been considered
in the light of the axiomatic approach to granules [24] from a philosophical perspec-
tive. It is argued that knowledge should be different from ’collections of objects or
objects representing approximations’.

Acknowledgements. I would like to thank the referee for many useful remarks that led to
improvement of the presentation of this paper.
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Chapter 23
Classifiers Based on Nondeterministic
Decision Rules

Barbara Marszał-Paszek and Piotr Paszek

Abstract. In the chapter, we discuss classifiers based on rough set theory and non-
deterministic decision rules. We used two kinds of nondeterministic rules called the
first and second type. These rules have a few decision values but the rules of the
second type can have on the left-hand side one generalized descriptor. i.e., a condi-
tion of the form a ∈V , where V is a two-element subset of the attribute value set Va.
We show that these kinds of rules can be used for improving the quality of classi-
fication and we propose classifications algorithms based on nondeterministic (first
and second type) rules. These algorithms are using not only nondeterministic rules
but also minimal rules in the sense of rough sets. In the chapter, these classifiers
were tested on several data sets from the UCI Machine Learning Repository and the
results were compared. The reported results of experiments show that the proposed
classifiers based on nondeterministic rules can improve the classification quality but
it requires tuning some of their parameters relative to analyzed data.

Keywords: Nondeterministic decision rules, conflict resolution, rough sets,
rule-based classifiers.

23.1 Introduction

The knowledge background of this article is the rough set theory (RST) which was
created by Professor Zdzisław Pawlak in 1982 [10]. Over the years many methods
based on rule induction and rough sets [2, 5, 13, 14, 16] were developed.

At this time rule-based classification systems [6,8,15] are very useful in real-life
data analysis. The chapter presents methods for improving the rule-based classifica-
tion systems. We propose two methods for rule inducing. These methods are based
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on two types of nondeterministic decision rules. In both cases, we are searching for
strong rules for a union of a few relevant decision classes — first type. For rules
of the second type, one of the conditions of the left-hand side of such rules can be
generalized, i.e., it can be of the form a ∈V , where V is a two-element subset of the
value set Va of attribute a.

In the chapter, an application of first and second type nondeterministic rules in
construction of rule-based classifier is presented.

We include the results of experiments showing that by combining rule-based clas-
sifiers based on minimal decision rules [11] with the classifier based on first and sec-
ond type nondeterministic decision rules, it is possible to improve the classification
quality and reduce classification error.

The following classification problem is considered: for a given decision table
T [10, 11] and a new object x generate a value of the decision attribute on x using
values of conditional attributes on x.

The chapter consists of five sections. In Section 23.2, we recall the basic rough
set notions and we describe notions of first and second type nondeterministic deci-
sion rules. Section 23.3 contains a description of classification algorithm. Results of
experiments are discussed in Section 23.4. Section 23.5 contains short conclusions.

23.2 Basic Notions

In 1982, Pawlak proposed the rough set theory as an innovative mathematical tool
for describing knowledge, including the uncertain and inexact knowledge [10]. In
this theory, knowledge is based on possibility (capability) of classifying objects.
The objects may be for instance real objects, statements, abstract concepts and
processes.

Let T = (U,A,d) be a decision table, where U = {u1, . . . ,un} is a finite nonempty
set of objects, A = {a1, . . . ,am} is a finite nonempty set of conditional attributes
(functions defined on U), and d is the decision attribute (function defined on U).

We assume that for each ui ∈U and each a j ∈ A the value a j(ui) belong to Va j(T )
and the value d(ui) belong to Vd(T ), where Vd(T ) denotes the set of values of the
decision attribute d on objects from U .

Every decision system T is associated formal language L(T ). The alphabet of
L(T ) is a set [10]:

A∪{d}∪
⋃

a j∈A

Va j ∪Vd ∪{¬,∨,∧,→,≡}∪{),(},

where {¬,∨,∧,→,≡} is the set of propositional connectives.
An elementary formula is an expression of the form (a j = v) (called descriptor)

where a j ∈ A and v ∈ Va j(T ). A generalized descriptor is a formula of the form
a ∈V , where V ⊆Va.
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The set of condition formulas (F(A)) of L(T ) is the least set satisfying the fol-
lowing conditions:

1. Elementary formulas belong to the set F(A);
2. Set F(A) is closed with respect to propositional connectives.

The set of decision formulas (F(d)) of L(T ) consists of formulas d = v or d =
v1 ∨·· ·∨d = vk, where v,v1, . . . ,vk ∈Vd .

In general, the deterministic decision rule in T has the following form:

(a j1 ∈V1)∧·· ·∧ (a jk ∈Vk)→ (d = v),

where a j1 , . . . ,a jk ∈ A, Vj ⊆Va j , for j ∈ {1, . . . ,k} and v ∈Vd(T ).
The predecessor of this rule is a conjunction of some formulas from F(A). The

successor of this rule is an elementary formula from F(d).

In this paper, we also consider nondeterministic decision rules. A nondetermin-
istic decision rule in a given decision table T is of the form:

(a j1 ∈V1)∧·· ·∧ (a jk ∈Vk)⇒ d = (c1 ∨ . . .∨ cs), (23.1)

where a j1 , . . . ,a jk ∈ A, Vj ⊆ Va j , for j ∈ {1, . . . ,k}, numbers j1, . . . , jk are pairwise
different, and /0 �= {c1, . . . ,cs}⊆Vd(T ). Some notation about rules of the form (23.1)
are introduced in [3].

Let us introduce some notation. If r is the nondeterministic rule (23.1) then by
lh(r) we denote its left-hand side, i.e., the formula (a j1 ∈V1)∧·· ·∧ (a jk ∈Vk), and
by rh(r) its right-hand side, i.e., the formula d = (c1 ∨·· ·∨ cs).

By ||lh(r)||T (or ||lh(r)||, for short), we denote all objects from U satisfying
lh(r) [11]. To measure the quality of such rules, we use coefficients called the sup-
port and the confidence [1]. They are defined as follows. If r is a nondeterministic
rule of the form (23.1), then the support of this rule in the decision system T is
defined by

supp(r) =
|||lh(r)|| ∩ ||rh(r)|||

|U | , (23.2)

and the confidence of r in T is defined by

con f (r) =
|||lh(r)|| ∩ ||rh(r)|||

|||lh(r)||| . (23.3)

We also use a normalized support of r in T defined by

norm_supp(r) =
supp(r)
√
|V (r)|

, (23.4)

where V (r) ⊆ Vd(T ) is a decision values set from right-hand side of the rule
(rh(r)).
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23.2.1 First Type Nondeterministic Rules

Now we can define a parameterized set of first type nondeterministic decision rules
that are used in Section 23.3 for enhancing the quality of classification of rule-based
classifiers.

This parameterized set is defined as the set of all nondeterministic rules r (over
attributes in T , see (23.1)) such that:

1. On the left-hand sides of such rules are only conditions of the form a ∈ {v},
where v ∈Va. We write a = v instead of a ∈ {v};

2. con f (r)≥ α, where α ∈ [0.5,1] is a threshold;
3. norm_supp(r)≥ β , where β ∈ (0,1] is a threshold;
4. |V (r)| ≤ k < |Vd(T )|, where k is a threshold used as an upper bound on the

number of decision values on the right-hand sides of rules — k is assumed to
be small.

Hence, the first type nondeterministic decision rules are of the form:

(a j1 = b1)∧ . . .∧ (a jk = bk)⇒ d = (c1 ∨ . . .∨ cs), (23.5)

where a j1 , . . . ,a jk ∈ A, for j ∈ {1, . . . ,k}, b j ∈ Vb j(T ), numbers j1, . . . , jk are pair-
wise different, and /0 �= {c1, . . . ,cs} ⊆Vd(T ).

The algorithm searching for the first type nondeterministic rules with sufficiently
large support and relatively small sets of decisions defined by the right-hand sides
of such rules for the decision table T was proposed in [9]. This algorithm is based
on greedy strategy which is used to minimize the length of rules.

23.2.2 Second Type Nondeterministic Rules

A nondeterministic rule is of the second type if on its left-hand side all but one con-
ditions are descriptors and the generalized descriptor on its left-hand side is of the
form a ∈ V , where V ⊆ Va is a two-element set. Hence, the second type nondeter-
ministic decision rules are of the form:

(a j1 = b1)∧ . . .∧ (a ji = (bi1 ∨bi2))∧·· · ∧ (a jk = bk)→ d = (c1 ∨ . . .∨cs), (23.6)

where a j1 , . . . ,a jk ∈ A, b j ∈ Va j(T ), for j ∈ {1, . . . ,k}, numbers j1, . . . , jk are pair-
wise different, /0 �= {c1, . . . ,cs} = V (r) ⊆ Vd(T ) and bi1 �= bi2 . The rule of the form
(23.6) has nondeterminism on one condition attribute beside nondeterminism on
decision part of rule. This attribute has two values but it is different from other at-
tributes which have exactly one value. This type of nondeterministic rules appears
as a result of shortening rules according to the principle MDL (minimum description
length) [12].

The rule r of the form (23.6) can be represented by distribute on two nondeter-
ministic rules of the form (23.5) such as:
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r1 : (a j1 = b1)∧ . . .∧ (a ji = bi1)∧·· ·∧ (a jk = bk)→ d = (c1 ∨ . . .∨ cs),

r2 : (a j1 = b1)∧ . . .∧ (a ji = bi2)∧·· ·∧ (a jk = bk)→ d = (c1 ∨ . . .∨ cs).

The support of the second type nondeterministic rule in the decision table T is de-
fined by

supp(r) = supp(r1)+ supp(r2)

where for i = 1,2 the supp(ri) looks like (23.2). We also use a normalized support
of r in T . The confidence of r in T is defined by

con f (r) = con f (r1)+ con f (r2)

where for i = 1,2 the con f (ri) looks like (23.3).
By RULEND(T,α) we denote the set of all second type nondeterministic rules r,

over attributes in T such that

1 ≥ con f (r1)+ con fT (r2) = con fT (r)≥ α,

where parameter α ∈ [0.5,1].
The main steps of the algorithm which was developed for generation of second

type nondeterministic rules from RULEND(T,α) are as follows.

Input: T — decision table, parameter α ∈ [0.5,1];
Output: RULEND(T,α) — the set of second type nondeterministic decision rules.

Step 1. RULEND(T,α) is empty set.
Step 2. For all condition attributes of T do the following:

• Find often appearing two values for this attribute;
• Generate subtable with restriction to these attribute values;
• Delete an attribute which was chosen;
• Generate the set of rules of type (23.5);
• Add to these rules attribute which was deleted

(now rules have the form (23.6));
• Add these generated rules to the set RULEND(T,α);

23.3 Classifiers

In this section, we present an application of first and second type nondeterministic
rules for classification process. We constructed two classifier C1 and C2. The set
of first type nondeterministic rules and the set of minimal rules generated by the
system RSES [14] were used to induce our first classifier (C1). The set of second
type nondeterministic rules and the set of minimal rules generated by the system
RSES are used in inducing of our second classifier (C2).



450 B. Marszał-Paszek and P. Paszek

Because we have two groups of rules in each classifier we should negotiate be-
tween them.

For any new object, using C1 or C2 classifier, the decision value set is generated
as follows.

First, for any new object, all nondeterministic rules matching the object are ex-
tracted. Next, from these matched rules, a rule with the largest (normalized) support
is selected. In the case when several rules have the same support, the decision value
set V (r) of the nondeterministic rule r with the smallest set of decision value set
(|V (r)|) is selected. If still several nondeterministic rules with the above property
exist then first of them is selected.

Next, for this object, all minimal rules matching the object are extracted. We
obtain a single decision value using standard voting procedure.

In this way, for any new object we obtain a decision value v ∈ Vd(T ) and a de-
cision value set V (r), where r is the rule selected from the set of nondeterministic
rules.

The final decision for a given new object is obtained from the decision value v
and decision value set V (r) by the following strategy for resolving conflicts [7].

1. If for a given new object the standard voting based on minimal rules predicts
the decision value v and v ∈ V (r), (i.e., no conflict arises) then we take as the
final decision the single decision v.

2. If for a given new object the standard voting based on minimal rules predicts the
decision value v and v /∈ V (r) (i.e., conflict arises) then we take as the final de-
cision value the single decision value v if support of the minimal (deterministic)
rule (i.e., the support of the rule lh(r1)∨ . . .∨ lh(rk)⇒ d = v in the considered
decision table T , where r1, . . . ,rk are all minimal rules matched by the new ob-
ject) is larger than the normalized support of nondeterministic decision rule r
and selected for the given new object. In the opposite case, we take as the final
decision a single decision value from the set V (r), with the largest support in T
among decisions from V (r).

3. If for a new object, the standard voting based on minimal rules predicts the
decision value v and this object does not match any nondeterministic rule then
we assign the decision v as the final decision.

4. If a given new object does not match any of the minimal rules then we assign as
the final decision the single decision from V (r) with the largest support among
decisions from V (r), where r is the rule selected by voting on nondeterministic
rules.

5. In the remaining cases, a given new object is not classified.

23.4 Experiments

We have performed experiments on decision tables from UCI Machine Learn-
ing Repository [4] using proposed classification algorithms C1 and C2. The clas-
sification algorithm C1 is based on all minimal decision rules and the first type
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nondeterministic rules. The classification algorithm C2 is based on all minimal de-
cision rules and the second type nondeterministic rules.

The data sets selected for the experiments included the following: Balance Scale,
Dermatology, Ecoli, Iris, Lymphography, Postoperative, Primary Tumor and Zoo.
Decision table BalanceScale was generated in 1976 to model psychological experi-
mental results. Decision table Dermatology contains information about differential
diagnosis of erythemato-squamous diseases. Decision table Ecoli concerns the pro-
tein localization sites in Escherichia coli bacteria. Iris is the best known database
to be found in the pattern recognition literature. Lymphography and PrimaryTumor
data are two of three domains provided by the University Medical Center, Institute
of Oncology from Ljubljana. The classification task of decision table Postoperative
is to determine when patients in a postoperative recovery area should be sent to
the next one. Decision table Zoo is a simple database containing information about
animals from the zoo.

Table 23.1 Accuracy of classifiers based on first type nondeterministic decision rules —
cross-validation method

Classification algorithm
Decision table Classification Alga C1, αb

name # atr. # obj. factor 1.0 0.9 0.8 0.7 0.6 0.5

Balance 5 625 acc × cover 78.30 80.74 81.86 81.83 80.79 79.78 76.83
Scale mrd 0.020 0.032 0.024 0.024 0.023 0.026 0.024
Derma- 35 366 acc × cover 84.62 85.04 84.97 85.27 85.21 84.62 84.59
tology mrd 0.012 0.008 0.014 0.011 0.014 0.012 0.009
Ecoli 8 336 acc × cover 54.76 55.45 56.01 54.52 54.40 50.63 50.63

mrd 0.036 0.040 0.033 0.026 0.027 0.020 0.020
Lympho- 19 148 acc × cover 37.47 37.47 37.47 37.47 37.50 37.47 37.47
graphy mrd 0.038 0.038 0.038 0.038 0.037 0.038 0.038
Post- 9 90 acc × cover 65.00 65.00 65.00 64.72 66.39 68.28 68.83
Operative mrd 0.061 0.061 0.061 0.058 0.064 0.072 0.033
Primary 18 339 acc × cover 59.71 60.09 60.09 60.09 60.09 60.09 60.09
Tumor mrd 0.016 0.020 0.020 0.020 0.020 0.020 0.020

Iris 5 150 acc × cover 90.47 90.10 89.93 88.87 87.16 87.17 86.17
mrd 0.018 0.028 0.026 0.031 0.048 0.0783 0.0583

Zoo 17 101 acc × cover 92.48 89.01 82.38 83.76 84.95 86.04 86.34
mrd 0.044 0.0485 0.022 0.034 0.032 0.029 0.032

a In the column marked by Alg the classification is defined by the classification algo-
rithm based on deterministic rules. In the column marked by C1 the classification is
defined by the algorithm based on first type nondeterministic rules and deterministic
rules.
b Confidence of nondeterministic rules generated by the algorithm is not smaller
than the parameter α .



452 B. Marszał-Paszek and P. Paszek

Table 23.2 Accuracy of classifiers based on second type nondeterministic decision rules —
cross-validation method

Classification algorithm
Decision table Classification Alga C2, αb

name # atr. # obj. factor 1.0 0.9 0.8 0.7 0.6 0.5

Balance 5 625 acc × cover 78.61 81.14 81.33 81.10 80.61 79.13 76.64
Scale mrd 0.020 0.026 0.026 0.022 0.028 0.023 0.040
Ecoli 8 336 acc × cover 54.99 55.51 56.01 54.52 54.40 50.63 50.63

mrd 0.038 0.037 0.033 0.026 0.027 0.020 0.020
Lympho- 19 148 acc × cover 38.06 38.06 38.06 38.06 38.06 38.06 38.06
graphy mrd 0.022 0.022 0.022 0.022 0.022 0.022 0.022
Post- 9 90 acc × cover 65.00 65.44 65.44 65.44 65.67 67.89 69.11
Operative mrd 0.061 0.066 0.066 0.034 0.034 0.034 0.024
Primary 18 339 acc × cover 59.71 60.09 60.09 60.09 60.09 60.09 60.09
Tumor mrd 0.016 0.020 0.020 0.020 0.020 0.020 0.020
Iris 5 150 acc × cover 90.47 90.47 90.47 90.47 90.47 90.47 90.47

mrd 0.018 0.018 0.018 0.018 0.018 0.018 0.018

Zoo 17 101 acc × cover 92.48 88.22 83.96 85.74 86.63 87.33 87.43
mrd 0.044 0.051 0.042 0.026 0.035 0.022 0.022

a In the column marked by Alg the classification is defined by the classification
algorithm based on deterministic rules. In the column marked by C2 the classifica-
tion is defined by the algorithm based on second type nondeterministic rules and
deterministic rules.
b Confidence of nondeterministic rules generated by the algorithm is not smaller
than the parameter α .

In evaluation of the accuracy of classification algorithms on a decision tables (i.e.,
the percentage of correctly classified objects) the fivefold cross-validation method
was used. For any considered data table, we used the classification algorithms C1

and C2 (for different values of parameter α). On testing sets the accuracy and the
coverage factor were calculated. Also the maximal relative deviation (mrd) was cal-
culated.

Table 23.1 and Table 23.2 contain the results of our experiments.
Classifier C1 was compared with classifier from RSESlib (Rough Set Exploration

System library) [2] based on all minimal decision rules and standard voting (indi-
cated in the Table 23.1 as Alg), and results are included in Table 23.1. For six deci-
sion tables — Balance Scale, Dermatology, Ecoli, Lymphography, Post-Operative,
Primary Tumor — the classification quality measured by accuracy × coverage was
better for the classification algorithm C1 than in the case of the classification algo-
rithm from RSESlib based only on minimal rules with standard voting. For two data
sets (Iris, Zoo), using only deterministic rules in the classification process, result
was better than in case of the classification algorithm C1.
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Classifier C2 was compared with classifier from RSESlib based on all mini-
mal decision rules and standard voting (indicated in the Table 23.2 as Alg) and
these results are shown in Table 23.2. For four decision tables — Balance Scale,
Ecoli, Post-Operative, Primary Tumor — the classification quality measured by
accuracy× coverage was better for the classification algorithm C2 than in the case
of the classification algorithm from RSESlib based only on minimal rules with stan-
dard voting (indicated in the Table 23.2 as Alg). For two data sets (Lymphography,
Iris), the classification quality for both classifiers C2 and Alg was equal. For data set
Zoo, using only deterministic rules in classification process (classifier Alg), result
was better than in case of the classification algorithm C2.

For obtaining those better results, it was necessary to optimize the threshold
for each data table. This means that the parameter α should be tuned for each
data set.

23.5 Conclusions

Results of experiments with nondeterministic rules are showing that these rules
can improve the classification quality. We have demonstrated this by using clas-
sification algorithms based on minimal decision rules and nondeterministic rules.
Experiments have shown that proposed classifiers can improve classification ac-
curacy, in our experiments the improvement was for the most decision tables.
The second type of nondeterministic rules are very similar to the first type. One
can say that it is another searching method for the first type of nondeterministic
rules.

Proposed classifiers C1 and C2 are comparable in case of the classification quality.
For Balance Scale data set, we got better result for the classifier C1 then for the
classifier C2. For post-operative data set, we got better result for the classifier C2

then for the classifier C1. For the rest data sets, the classification quality for both
classifiers C1 and C2 is the same.

Our algorithms for first and second type nondeterministic rules generation has
polynomial computational complexity, which depends on number of objects and
number of attributes.

At this moment, the proposed classification algorithm uses nondeterministic
rules and minimal rules (from RSESlib). Since the algorithm for constructing
minimal rules has exponential computational complexity, then we plan to use
others classifiers (e.g. based on subsets of minimal decision rules or decision
trees).

Acknowledgements. We wish to express our thanks to Professor Andrzej Skowron for his
helpful comments during the processing of this work.
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Chapter 24
Approximation and Rough Classification
of Letter-Like Polygon Shapes

Elisabeth Rakus-Andersson

Abstract. It is a privilege for the author to be involved in composing a book chapter
in the anthology devoted to the life and scientific occupation of Professor Zdzisław
Pawlak. The author made a personal acquaintance with the outstanding scientist Pro-
fessor Pawlak and still remembers him as a warm and gentle human being. Professor
Pawlak’s theory of rough sets was taught to students during the courses in Compu-
tational Intelligence established at Blekinge Institute of Technology in Karlskrona,
Sweden. In some Master of Science theses, the principles of rough set theory were
discussed in the aspects of technical applications. In this context, we can feel that
the theory is still alive and very useful.

In this work, we recall again the basics of rough sets to apply them to the clas-
sification of discrete two-dimensional point sets, which form the shapes resembling
some letters. These possess very irregular patterns and cannot be approximated by
standard curves without committing large errors. Since the approximation of letter-
like point sets is required by the latter classification of their shapes then we, due
to own model, wish to find a continuous curve which fits best for each distribution
of points. To accomplish the thorough approximation of finite point sets, we test
parametric s-truncated functions piecewise, which warrants a high accuracy of ap-
proximating. By operating on the functions, replacing samples of points obtained
during experiments carried out, we are able to adopt the rough set technique to
verify decisions about the primary recognitions of the curves’ appearance as letter
shapes. Even if the curves are stretched and shaped differently in the plane, we will
divide them in classes gathering similar objects. Our investigations have not a char-
acter of pure art — on the contrary — their results are utilized in the classifications
of internet packet streams or the analysis of wave signals typical of, e.g., medical
examinations.
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Keywords: s-truncated parametric function, approximation of letter-like point
sets, rough classification, indiscernibility relation, lower approximation, upper
approximation.

24.1 Introduction

Some observations of the behavior of two variables X and Y provide us with se-
quences of values x and y, which can be included in the pairs (x,y), x ∈ X , y ∈ Y ,
treated further as the coordinates of points in the two-dimensional system. We sup-
pose that a finite set A consists of the points (x,y); therefore, A can be illustrated as
a polygon with the nodes joined by segments of straight lines.

Certain experiments, in which y ∈ [ymin,ymax],ymin < 0,ymax > 0, provide us with
the polygon (the set A) composed of parts looking like bells, e.g., like A sketched in
Fig. 24.1.

53.752.51.250

0.375

0.25

0.125

0

-0.125

y

 x

y

A

Fig. 24.1 The example of the multi-shaped polygon reflecting A = {(x,y)}

The polygon that ties a lot of straight-line segments cannot constitute a good in-
terpolation of the points since a number of first degree polynomial equations are too
large for further efficient analysis and, moreover, such interpolation is not smooth
enough.

The most popular classical method of approximating applied to a set of points
is known as the least-square regression that inspires scientists to develop plenty of
modern variants [2]. Other algorithms of approximating adopt such technical tools
as cubic polynomials based on four points [8], tangent curves [1], free algebras [6],
weighted approximations [32] or 1-corner polygonal chains [4]. Lately, the meth-
ods of constrained optimization [3], the human perception approaches [7] and the
observations of localities [9] have appeared to widen a spectrum of approximation
tools.
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We consider an approximation of multi-shapes from Fig. 24.1 by s-truncated
functions used piecewise as another model assisting the numerical curve fitting to
point sets. The y-coordinates of the points, constituting the vertices of A, belong to
the interval [0,ymax] or [ymin,0]; therefore, it will be desirable to approximate pieces
of the polygon A by the clock-like s-functions after adjusting their heights from
[0,1] to [0,ε], ε ∈ [ymin,ymax]. The procedure of forming the approximation of A
by truncated s-functions tied by pieces of straight lines, if needed, is developed in
the second section of the chapter. “The sampled truncated s”, as we call an entire
approximation curve, consists of first and second degree polynomials. It follows the
polygon’s shape very closely and it cumulates a very low error measuring devia-
tions between the approximating curve and the polygon. This should be regarded
as an important advantage of the sampled truncated approximation method when
comparing it to other procedures. We should add that the approach proposed as the
approximation of non-standard curve shapes contributes an original own solution in
numerical mathematics. We conduct the discussion concerning “sampled truncated
s” in Section 24.2.

Let us assume that changes in the y values of curves, similar in shape to the set
depicted in Fig. 24.1, are important indicators in the further classification process
of these curves. They can resemble some letters, e.g., N, W , or M, and can occur
in different places along the x axis. The shapes of the letters mentioned can point
out important states of the processes considered, like in the internet protocol pattern
recognition.

The internet protocol patterns involving the shapes of N, W and M appear, e.g.,
in a problem of complex bottleneck recognition [5]. A shape of the bottleneck con-
tains information of its nature. We assign the letter of “M” to the shared bottleneck,
the “W” letter to a shaping bottleneck and, finally, “N” stands for an overloaded
bottleneck. The patterns sometimes are mixed and they do not resemble basic let-
ters, but we still want to find for them an appropriate class, which has most of their
attributes.

Therefore the reliable classification of patterns N, W and M is very important.
To assign the curves to adequate classes denoted by N, W or M, we should com-
pare their y-coordinate values. It is not possible if the curves under consideration
are scattered in different segments of the x axis. To be able to make the curves com-
parable, which aims at estimating their deviations in y values stated at the same x,
we should move the curves over the interval [0,1] ⊂ X . The procedure developed
by the author [25-26] transfers the curves over a common interval and preserves
their original shapes. In Section 24.3, we outline all transformations derived for this
purpose.

When remembering that the letters correspond to certain states, like in the ex-
ample of bottleneck [5], we accomplish the letter classifications by a very thorough
approximation of point sets combined with rough set techniques [11-22, 33]. The
internet protocol shape recognition has stimulated us to develop the final solution,
which appears in Section 24.4.
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24.2 Sampled Truncated S-Functions in the Approximation
of Letter-Like Polygons

The approach to approximation of irregular polygons presented below constitutes
an own original solution [23-26], which differs from other procedures of seeking
approximation curves [1, 2, 3, 6, 7, 8, 32].

We discover that the x values of pairs included in A belong to the interval
[xmin(A),xmax(A)], in which xmin(A) is the smallest and xmax(A) is the largest x-
value in A. Next, we divide [xmin(A),xmax(A)] in subintervals (xmin(A j),xmax(A j))
where A j, j = 1, . . . ,Q, are parts of A. In the parts A j, we can experience either the
growth or the decrease of the y values corresponding to these x that are placed be-
tween the borders xmin(A j), and xmax(A j) standing for the smallest and, respectively,
the largest value of x in A j. S-functions or segments of straight lines attached to two
adjacent s-curves approximate the A j components.

Example 1
The pairs, which create the polygon depicted in Fig. 24.1, are the members of

A ={(1.1, 0.05),(1.15, 0.03),(1.19, 0.01),(1.3, 0.05),

(1.54, 0.15),(1.76, 0.27),(1.87, 0.33),(2.4, 0.25),

(2.55, 0.2),(2.76, 0.12),(2.87, 0.1),(2.96, 0.08),

(3.1, 0.02),(3.14, 0),(3.21, 0.07),(3.48, 0),

(3.49, −0.03),(3.67, −0.12),(3.84, −0.15),(3.9, −0.19),

(4.02, −0.15),(4.09, −0.06),(4.12, −0.01),(4.16, −0.02),

(4.3, −0.03)}.

By measuring the direction of changes in the y values, which point out extreme
nodes in A’s shape, we consider the subintervals [1.1, 1.19], [1.19, 1.3], [1.3,
1.87], [1.87, 3.14], [3.14, 3.21], [3.21, 3.43], [3.43, 3.9], [3.9, 4.12], [4.12, 4.16],
[4.16, 4.3]. Over the intervals either s-functions or straight lines will be applied as
approximation tools.

The s-function with the standard parameters α,β ,γ introduced by [10, 11, 34,
35] as

y = s(x,α,β ,γ) =

⎧
⎪⎪⎨

⎪⎪⎩

(1) ε
(

2
(

x−α
γ−α

)2
)

for α ≤ x ≤ β ,

(2) ε
(

1− 2
(

x−γ
γ−α

)2
)

for β ≤ x ≤ γ,
(24.1)

is fitted best for the appearances of the “half-bells” A j. Since the y values of the
classical s belong to the interval [0,1] (−s has its y values in [−1,0]) then we should
insert an additional parameter ε in (24.1) to accommodate a height of the function
to the real data existing in the set A j, j = 1, . . . ,Q. The parameter β is estimated
as the arithmetic mean of α and γ . We have already introduced the partition of A
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by means of the subsets A j, looking like “half-bells”, then we should denote each
s-function that approximates A j by sA j (x,αA j ,βA j ,γA j ,εA j ).

Example 2
We intend to recall in mind how the s-function (24.1) looks like. If we choose, e.g.,
α = 0, γ = 2.1, β = 1.05, and ε = 0.26 as some casual numbers, then the function
will have a graph drawn in Fig. 24.2.

21.510.50
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0.2
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y

Fig. 24.2 The s-function for α = 0,γ = 2.1 and ε = 0.26

In the next part of the section, we discuss different cases of A j’s approximation
that is dependent on the sizes of y-coordinates in the set A j.

Let us assume that the values of the y-coordinates in A j associated with the
x-values belonging to [xmin(A j),xmax(A j)] appear in the ascending order, and let

us notice that no y-coordinate is equal to zero. The pair
(

xmin(A j), y(xmin(A j))
)

(y(xmin(A j)) corresponds to xmin(A j)) begins the set A j, but we cannot identify
xmin(A j) as αA j . Thus, the value of αA j in the sA j -function, which is expected to
approximate A j, is unknown. To find αA j we, at first, accept the value of εA j as the
largest y-coordinate in A j, assigned to the x-coordinate xmax(A j) = γA j . We can now
reconstruct the value of the remaining parameter αA j according to the following
patterns:

a) αA j =
Xmin(A j )

−γA j

√
y(xmin(A j )

)

2·εA j

1−

√
y(xmin(A j )

)

2·εA j

for y(xmin(A j))<
ε
2 - this modifies (24.1) as

y =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1) εA j

(

2

(
x−αA j
γA j

−αA j

)2
)

for xmin(A j) ≤ x < βA j ,

(2) εA j

(

1− 2

(
x−γA j

γA j
−αA j

)2
)

for βA j ≤ x < γA j ;

(24.2)
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b) αA j = γA j −
γA j−xmin(A j )√
εA j

−y(xmin(A j )
)

2·εA j

for y(xmin(A j))≥
ε
2 - then the sA j (x) formula, yielded

by (24.1), appears as

y =

⎧
⎪⎨

⎪⎩

(1) 0 for x < xmin(A j),

(2) εA j

(

1− 2

(
x−γA j

γA j−αA j

)2
)

for xmin(A j) ≤ x ≤ γA j .
(24.3)

It happens that the positions of pairs in the set A j introduce the descending or-
der among points with respect to the y-coordinate values. We assume that none

of them is equal to zero. The pair
(

xmax(A j),y(xmax(A j))
)

will end the set A j, but

xmax(A j) �= γA j . Let us assign the largest value of y in A j, regarded as εA j , to the x-
coordinate xmax(A j) =αA j . Then, it is possible to restore the missing value of γA j that
is one of the parameters included in a function 1− sA j(x,αA j ,βA j ,γA j ,εA j ) applied
to approximate A j.

We distinct between two cases of adjusting the parameter γA j to the data set A j:

c) γA j =
Xmax(A j )

−αA j

√
y(xmax(A j )

)

2·εA j

1−

√
y(xmax(A j )

)

2·εA j

for y(xmax(A j))<
ε
2 - thus we suggest the changes in

(24.1) due to

y =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1) εA j

(

1− 2

(
x−αA j
γA j −αA j

)2
)

for αA j ≤ x < βA j ,

(2) εA j

(

2

(
x−γA j

γA j −αA j

)2
)

for βA j ≤ x ≤ xmax(A j);

(24.4)

d) γA j = αA j +
xmax(A j )

−αA j√
εA j

−y(xmax(A j )
)

2·εA j

for y(xmax(A j))≥
ε
2 - and we convert formula (24.1)

of sA j (x) to

y =

⎧
⎪⎨

⎪⎩

(1) εA j

(

1− 2

(
x−αA j
γA j

−αA j

)2
)

for αA j ≤ x ≤ xmax(A j),

(2) 0 for x > xmax(A j).

(24.5)

The modified sA j constitutes a section of the classical s-function. Because of that
we will name it a truncated s-function. By selecting the minimal and the maximal
x value and the maximal y value, which exist in the set A j, we prepare the math-
ematical apparatus with (24.2)-(24.5) for computing unknown parameters αA j or
γA j . The point, in which the y-coordinate takes the εA j value and the x-coordinate
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is equal to the γA j value for sA j (x,αA j ,βA j ,γA j ,εA j ) (respectively the αA j value for
1− sA j(x,αA j ,βA j ,γA j ,εA j )), is one of the vertices in A. The total approximation sA

of A consists of all sA j , j = 1, . . . ,Q, and is called “sampled truncated s”.
To preserve the right shape of the approximating curve, it is advisable to

tie two functions sA j ,sA j+1 , between the points
(

xmax(A j),y(xmax(A j))
)

,
(

xmin(A j+1),y(xmin(A j+1))
)

by the equation of a straight line in the form

y = lineA j(x) = kA j x+ lA j for xmax(A j) ≤ x < xmin(A j+1). (24.6)

Example 3
The “sampled truncated s”, accommodated to the data from Ex.1, is shown in
Fig. 24.3.
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43.532.521.51
0

-0.125
xx

Fig. 24.3 The approximation of A by “sampled truncated s”

The first subset of points A1 ⊂ A, in which the y coordinates establish the de-
scending order, is placed over [1.1,1.19]. Since no y value is equal to zero we will
reconstruct

γA1 =
1.19− 1.1

√
0.01

2·0.05

1−
√

0.01
2·0.05

= 1.2316

for εA1 = 0.05,αA1 = 1.1,xmax(A1) = 1.19, and y(xmax(A1)) = 0.01 in accordance
with c).

In the next interval A2 = [1.19,1.87], the value of αA2 should be estimated. If we
request the values of εA2 = 0.33, γA2 = 1.87, xmin(A2) = 1.19 and y(xmin(A2)) = 0.01
then
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αA2 =
1.19− 1.87

√
0.01

2·0.33

1−
√

0.01
2·0.33

= 1.0945

due to a).
The formula of sA for A is expanded as the split definition

y = sA(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.05
(

1− 2
(

x−1.1
1.1−1.2316

)2)
for 1.1 ≤ x < 1.1658,

0.05
(

2
(

x−1.1968
1.1−1.2316

)2)
for 1.1658 ≤ x < 1.19,

...
...

...
(−0.31818)x+ 1.0914 for 3.21 ≤ x < 3.43,

...
...

...

−0.03
(

1− 2
(

x−4.3
3.9958−4.3

)2)
for 4.1479 ≤ x < 4.3.

We can prove some additional operations on the s-function values, e.g., y = (s(x))2

or y = (s(x))
1
2 to match a shape of the function to the given polygon in the best way.

It is worth noticing that the total error that collects the deviations of sA(x) from A
is very small. This is entailed in further analysis of curves, where even small differ-
ences between approximating curves and point sets can lead to wrong conclusions.

24.3 Sampled S-Functions over the X-Interval [0,1]

The curve created for A has a particular pattern as it resembles the letter N. In some
technical problems, we obtain the sets of points looking like three letters, namely, N,
M and W . The shapes of mentioned letters can be disturbed or vague, which makes
difficult to classify them properly, i.e., we do not know exactly how to include the
curves in classes determined by N, M and W . To ensure if a vague or unknown object
can belong to the considered class or not, we accomplish a classification according
to the rules of rough set theory. Definitely, we can model some other shapes as well
but we need the mentioned letters in the unsolved bottleneck problem [5], which
inspires us to lead the further discussion.

If we are given several polygons then we should wish to collect all approximated
objects over a common interval [0, 1] in the X-space to measure their deviations in
y-values with respect to the same x value.

Example 4
Suppose that we have obtained different shapes of the curves originating from the
point sets A1 −A5. Each of them is approximated by a continuous function, com-
posed of s-sections and pieces of straight lines that link the parts of s-functions if it
is necessary. Figure 24.4 reveals the polygons and the approximating functions over
their original intervals along the x axis.
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Fig. 24.4 The approximated polygons A1 −A5

We suggest the polygon memberships in the following way: A1, A3 and A5 be-
long to the “N” class, A4 is a member of the “W” class while the origin of A2 is
unknown. The hypothesis is primary and should be verified. This information will
be introduced in the decision table constructed for curves in the next section.

In the further analysis, we use only the continuous curves, also named
A1 −A5.

To move all curves, generally denoted by A1, . . . ,Ap, to the same start point set-
tled as the origin of the xy coordinate system we suggest the following transforma-
tions.

Suppose that the Ai-curve, i = 1, . . . , p, is placed in the x-interval
[
xmin(Ai),

xmax(Ai)
]
. We move the jth segment sAi

j
, approximating the subset Ai

j, of

Ai, i = 1, . . . , p, j = 1, . . . ,Q, to a position close to the origin by introducing the
formula

y = (24.7)
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1) εAi
j

⎛

⎝2

(
x−(αAi

j
−xmin(Ai))

γAi
j
−αAi

j

)2
⎞

⎠ for xmin(Ai
j)
−xmin(Ai)≤ x < βAi

j
−xmin(Ai),

(2) εAi
j

⎛

⎝1−2

(
x−(γAi

j
−xmin(Ai))

γAi
j
−αAi

j

)2
⎞

⎠ for βAi
j
−xmin(Ai)≤ x ≤ γAi

j
−xmin(Ai).

The function (24.7), with xmin(Ai
j)

being the least x-value in the set of pairs Ai
j, should

be previously suited to Ai
j by applying (24.2) (or (24.3)). The choice of the (1− s)-

function induces the application of (24.4) (or (24.5)).
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The straight line (24.6) is transferred nearby the origin by the action of an
equation

y = lineAi
j
(x) =

kAi
j
x+ lAi

j
+ kAi

j
· xmin(Ai) for xmax(Ai

j)
− xmin(Ai)≤ x < xmin(Ai

j+1)
− xmin(Ai)

= KAi
j
x+LAi

j
.

(24.8)

Example 5
Figure 24.5 shows A1 −A5 attached to the origin after performing (24.7) and (24.8).
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Fig. 24.5 The curves A1 −A5 with their start points at the origin

In Fig. 24.5, we recognize A2 as A from Ex. 1. We decide and modify “sampled
truncated s” for A2 = A, as a function

y = sA2(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.05

(

1− 2
(

x−(1.1−1.1)
1.1−1.2316

)2
)

for 1.1− 1.1≤ x < 1.1658− 1.1,

0.05

(

2
(

x−(1.2316−1.1)
1.1−1.2316

)2
)

for 1.1658− 1.1≤ x < 1.19− 1.1,

...
...

...
(−0.31818)x+ 0.7414 for 3.21− 1.1≤ x < 3.43− 1.1,

...
...

...

−0.03

(

1− 2
(

x−(1.43−1.1)
3.9958−4.3

)2
)

for 4.1479− 1.1≤ x < 4.3− 1.1.

which displaces A2’s beginning to the origin.
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The comparison of all curves will be successful if we can observe them at a
common interval of the X-space. Let us determine the interval [0, 1] as a new domain
for all split-functions A1 −Ap. Each piece sAi

j
or lineAi

j
, i = 1, . . . , p, j = 1, . . . ,Q,

should be shrunk or widened proportionally to fit it for the interval [0, 1] together
with other pieces.

To achieve the required movements of si
j over [0,1], we initiate the

parameter δAi = 1
xmax(Ai)−xmin(Ai)

. After inserting δAi in (24.7), we generate a new
formula [10]

y =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) εAi
j

⎛

⎝2

(
x−(α

Ai
j
−xmin(A

i))δAi

(γ
Ai

j
−α

Ai
j
)δAi

)2
⎞

⎠

for (xmin(Ai
j)
− xmin(Ai))δAi ≤ x < (βAi

j
− xmin(Ai))δAi ,

(2) εAi
j

⎛

⎝1− 2

(
x−(γ

Ai
j
−xmin(A

i))δAi

(γ
Ai

j
−α

Ai
j
)δAi

)2
⎞

⎠

for (βAi
j
− xmin(Ai))δAi ≤ x ≤ (γAi

j
− xmin(Ai))δAi .

(24.9)

Before equipping Eq. (24.8) with the parameter δAi , we should find another form
of (24.8), adapted to the range [0, 1]. We suggest a new appearance of (24.8) in the
form of

y = KAi
j
x+LAi

j
=

x+
L

Ai
j

K
Ai

j

1
K

Ai
j

for xmax(Ai
j)
− xmin(A

i)≤ x < xmin(Ai
j+1)

− xmin(A
i).

(24.10)
We can now place δAi in (24.10) according to a pattern

y =

x+
L

Ai
j
δAi

K
Ai

j

δAi
K

Ai
j

for (xmax(Ai
j)
− xmin(A

i))δAi ≤ x < (xmin(Ai
j+1)

− xmin(A
i))δAi .

(24.11)

Example 6
The applications of (24.9) and (24.11) to every s-section and every line segment of
A1 −A5 yield the effects of collecting all curves over the x-domain [0, 1] as plotted
in Fig. 24.6. The new formula of A2 is a function
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y = sA2(x) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.05

(

1−2
(

x−(1.1−1.1)0.31
(1.1−1.2316)0.31

)2
)

for (1.1−1.1)0.31 ≤ x < (1.1658−1.1)0.31,

0.05

(

2
(

x−(1.2316−1.1)0.31
(1.1−1.2316)0.31

)2
)

for (1.1658−1.1)0.31 ≤ x < (1.19−1.1)0.31,

...
...

...
x+ 0.7414·0.31

−0.31818
0.31

−0.31818
for (3.21−1.1)0.31 ≤ x < (3.34−1.1)0.31,

...
...

...

−0.03

(

1−2
(

x−(1.43−1.1)0.31
(3.9958−4.3)0.31

)2
)

for (3.9958−1.1)0.31 ≤ x < (4.3−1.1)0.31,

in which we have added δA2 = 1
4.3−1.1 ≈ 0.31.
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Fig. 24.6 The curves A1 −A5 over the common x-interval [0, 1]

The mathematical tools used for polygons result in the creation of a common
collection of curves over a substantial part of the x axis determined as the interval
[0, 1]. By researching the y values related to selected x values, we can prepare data
to a decision table, being a crucial part of further empirical examinations in which
the selected elements of rough set theory constitute a foundation.
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24.4 Rough Set Theory in Polygon Classification

As a method of classifying the different letter shapes, we have selected a classifica-
tion made by means of rough set theory. Let us insert a general description of that
efficient classification rule [11-22, 33].

Rough set philosophy is founded on the assumptions that with every object of the
universe of discourse, we associate some information in the form of data or knowl-
edge. Objects characterized by the same information are indiscernible (similar) in
view of the available information about them. The indiscernible objects are called
elementary sets, and form basic granules of knowledge about the universe.

The classical rough set analysis is based on the indiscernibility relation that de-
scribes indistinguishbility of objects. Each rough set has boundary line cases, i.e.,
the objects which cannot be with certainty classified as the members of the set or
its complement. With any rough set, a pair of precise sets called its lower and upper
approximation is associated. The lower approximation consists of all objects, which
surely belong to the set and the upper approximation contains all objects which
possibly are members of the set. The difference between the upper and the lower
approximation constitutes the boundary region of the rough set.

The main purpose of rough set analysis is the induction of approximation of con-
cepts from the acquired data. Data are often represented as information tables. The
information systems are data tables or decision tables whose columns are labeled by
attributes, rows are labeled by objects and entries of the tables are attribute values.
The decision tables or the data tables describe decisions in terms of conditions that
must be specified in the decision tables.

Roughness can be seen as another approach to vagueness similar to fuzzy set
theory.

Advanced Internet Protocol network applications, such as IP video conferences,
Voice-over-IP or on-line games, involve IP network operations. These generate data
streams, which are sensitive to specific delays and throughput requirements. The
streams resemble letters N, M and W , like bottleneck shapes already mentioned in
Introduction.

To include unknown sets defined as “internet protocols” within classes N, M and
W we apply some elements of rough set theory [11-22, 33], which have proven
useful in the process of a polygon classification [23-26].

The comparison of y values, characterizing different curves, is now regarded as
the most essential moment of classification. To build a technique of their differen-
tiation let us first divide interval [ymin,ymax] in n levels Yt , t = 0, . . . ,n− 1, verbally
defined. The name of the Yth

t level assists a fuzzy set given by two s-class functions
aggregated as a membership function

μYt (y) =

{
left μYt (y)
right μYt (y),

(24.12)

for [27-31, 36]
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left μYt (y) = (24.13)
⎧
⎪⎨

⎪⎩

2
(

y−((ymin−hγ )+hγ ·t)
hγ

)2
for (ymin − hγ)+ hγ · t ≤ y ≤

(
ymin − hγ

2

)
+ hγ · t,

1− 2
(

y−(ymin+hγ ·t)
hγ

)2
for
(

ymin − hγ
2

)
+ hγ · t ≤ y ≤ (ymin)+ hγ · t.

and

right μYt (y) = (24.14)
⎧
⎪⎨

⎪⎩

1− 2
(

y−(ymin+hγ ·t)
hγ

)2
for (ymin)+ hγ · t ≤ y ≤

(
ymin +

hγ
2

)
+ hγ · t,

2
(

y−((ymin+hγ )+hγ ·t)
hγ

)2
for
(

ymin +
hγ
2

)
+ hγ · t ≤ y ≤ (ymin + hγ)+ hγ · t.

The formula depends on the minimal y value ymin, the number of the level t and
the parameter hγ =

ymax−ymin
n−1 . The parameter hY is equal to a distance between the

beginnings of two adjacent membership functions of Yt and Yt+1.

Example 7
Since the y values of the curves from Examples 1 to 6 are located in [ymin,ymax] =
[−0.35,0.35] then we can distinguish the list “Changes in y-values” = {Y0 = “neg-
ative”, Y1 = “zero”, Y2 = “positive”. For ymin =−0.35, t = 0,1,2 and hY = 0.35, the
membership functions of sets Yt , t = 0,1,2 are drawn in Fig. 24.7.
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Fig. 24.7 The fuzzy sets Y0 −Y2

If we regard the membership values greater than 0.5 as the most essential, then
we should select the appropriate intervals corresponding to them in [ymin,ymax] =
[−0.35,0.35]. These intervals represent fuzzy sets from the list “Changes in
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y-values”. We thus differentiate [−0.35,−0.175] as the representative support of
Y0 = “negative”, [−0.175,0.175] - as the interval typical of Y1 = “zero” and [0.175,
0.35] as the substantial piece of the set Y2 = “positive”. The changes in y values
accompanying the patterns of A1 −A5 will be treated as characteristic signals that
help us to recognize the curves’ letter shapes. The three differentiated intervals of y
values will be coded in the further procedure of classification. We assign code −1 to
[−0.35,−0.175], code 0 to [−0.175,0.175] and code 1 to [0.175, 0.35] as designed
in Fig. 24.8.

Each considered polygon has an envelope created by a continuous function Ai,
i = 1, . . . ,5, that approximates it over [0, 1] (see Ex. 6). For every value x belonging
to [0, 1], we can establish the association between x and one of the codes by utilizing
(24.9) and (24.11).

Let us state a universe set U = {A1, . . . ,Ap} composed of the polygons resem-
bling the letters M, N and W . The objects of U are determined by two groups of
attributes, the so-called condition and decision attributes included in sets B and D,
respectively. We assume that the set B consists of sizes xk ∈ [0,1], k = 1, . . . ,m, as-
sociated with values codeAi(xk), i = 1, . . . , p, which are equal to the integers −1,
0 and 1.
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Fig. 24.8 Code values in the partition of the interval [ymin,ymax]

Assume that we wish to assign some members to the “N” class. Then, the set
D obtains an attribute stated as “the membership of a polygon in “N””, where the
membership is expressed as “yes”, “no” and “unknown”.
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The triple I = (U,B,D) forms the decision table, which is treated as the data basis
for an equivalence relation I(B) called the indiscernibility relation and defined by a
relationship

I(B) =
{
(Ai,As) : codeAi(xk) = codeAs(xk)

}
for each size xk , (24.15)

where k = 1, . . . ,m; i,s = 1, . . . , p.
We find the equivalence classes of the relation I(B), i.e., the blocks IB(Ai) as

the sets
IB(Ai) =

{
As : (Ai,As) ∈ I(B)

}
. (24.16)

The values of decision D constitute the entries of the last column in Table I.
By following a general rough set procedure [11-22], we create a set X = {Ai

: which have the decision “yes” assigned in the last column with respect to the
shape “N”}.

The lower approximation set of X

B∗(X) =
{

Ai : IB(Ai)⊆ X
}

(24.17)

contains the curves (thus polygons), which match the “N” class without doubts (they
are sure members of “N”).

The upper approximation of X

B∗(X) =
{

Ai : IB(Ai)∩X �= 0
}

(24.18)

samples the members of U , which may belong to the considered class “N”.
The elements of a boundary set

Bborder(X) = B∗(X)−B∗(X) (24.19)

are the members of “N” in a certain grade.
The membership degree of Ai, interpreted as a degree of being a member in “N”,

is computed as

μ“N′′(Ai) =
|X ∩ IB(Ai)|
|IB(Ai)| . (24.20)

Example 8
We refer to the data concerning A1 − A5 and sampled after transformations over
[0, 1] due to Fig. 24.8. A1 −A5 are pictures of different letter patterns. We state
U = {A1,A2,A3,A4,A5}. The decision triple I = (U,B,D), prepared for sizes xk =
0.125,0.250,0.375,0.500,0.625,0.750,0.875 is expanded in Table 24.1. As the ex-
ample has rather a didactic character then we have selected only a few sizes from
[0, 1] to match the table width to the breadth of the page. In real-life applications,
we can prepare a dense set of sizes by selecting many of them from the continu-
ous set [0, 1]. We are also able to add more shapes Ai to make them the objects of
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classification but, unfortunately, the transmitted data from technicians concerned
only five patterns to compare.

Table 24.1 The decision table I = (U,B,D)

Ai\xk 0.125 0.250 0.375 0.500 0.625 0.750 0.875 Class“N”
A1 1 1 1 0 −1 −1 0 Yes
A2 1 1 1 1 0 0 −1 unknown
A3 0 1 1 1 0 0 0 yes
A4 −1 0 0 1 0 0 0 no
A5 1 1 1 1 0 0 −1 yes

The code values −1, 0 and 1 have been determined in conformity with the mem-
bership function values of Ai in xk, k = 1, . . . ,7.

The equivalence relation I(B), provided in accordance with (24.15), is formed by
a set of pairs

I(B) = {(A1,A1),(A2,A2),(A3,A3),(A4,A4),(A5,A5),(A2,A5),(A5,A2)}.

The equivalence classes of I(B) are decided as the sets

IB(A1) = {(A1}, IB(A2) = {A2,A5}, IB(A3) = {A3},
IB(A4) = {A4}, IB(A5) = {A2,A5}.

The value of the decision attribute “N” = “yes” generates the set X = {A1,A3,A5},
which, in turn, is an essential factor implementing

B∗(X) = {A1,A3}, B∗(X) = {A1,A2,A3,A5} and Bborder(X) = {A2,A5}.

The curve membership degrees, whose sizes confirm the membership in the “N”
class, are obtained as

μ“N′′(A1) = 1, μ“N′′(A2) =
1
2
, μ“N′′(A3) = 1, μ“N′′(A4) = 0, μ“N′′(A5) =

1
2
.

When comparing the results above to the primary decision, concerning the member-
ship of curves in class “N” due to the decision table (see Table 24.1), we interpret the
obtained results as a verification constituting the secondary decision. We can now
conclude that A1 and A3 are the true members of “N”-class in U , whereas A2 and
A5 may belong to the investigated class to certain grades. We can also notice that A2

affects a status of A5 negatively and, on the contrary, we can see that A5 upgrades
an importance of A2 in the “N”-class. A2, which has not been recognized at the first
stage of classification, has joined the group of possible members of “N”. The recog-
nition of the “N” shapes like, e.g., overloaded bottleneck, is very important in some
internet processes when we want to eliminate these shapes as disturbances.
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The effects of rough classification have been compared to results of fuzzy clus-
tering. The fuzzy cluster method concerns sampling points (x,y), with intuitively
predetermined membership degrees, in three clusters M, W and N. After perform-
ing an iterative process of clustering procedure, we can only improve thoroughness
of the membership degrees of strings (x,y) in different clusters. In that way, we are
furnished with a hint to prioritise some clusters to be more suitable than the others,
when moving (x,y) to them.

Rough classification allows accomplishing a very subtle analysis of deviations in
y values, which should be regarded as an advantage of the methodology. Moreover,
we could find exact objects shaped like N, something, which clustering cannot offer.

24.5 Conclusions

Some finite sets of pairs are often interpolated by polygons, which seldom have con-
venient equations mathematically expanded. Although there exists a large number of
approximation methods applied to point sets — especially the different variations of
least square regressions — we suggest applying a new procedure of approximation.
This originates from the standard s-functions in truncated forms that approximate
the irregular parts of the polygons very smoothly.

The functions, called by us “the sampled, truncated s” are composed of the first
and second degree-polynomials in the form of split definitions. The low degrees of
approximating functions make further operations on them rather easy. One truncated
s-segment can approximate many nodes belonging to the point set. In this manner,
we reduce a number of piecewise functions involved in the general definition of an
approximating collection. But most of all we notice that “the sampled, truncated s”
follows the changes of the polygon’s pattern very sensitively to guarantee the high
thoroughness of approximation results.

A new process of approximation is sometimes invented in mathematics as an
interesting theoretical item without greater practical validity. To prove the empiri-
cal aspect of “sampled truncated s” we want to consider praxis of recognizing sig-
nals forming point sets, which resemble some letters. These are approximated by
s-functions to be later moved over the interval [0, 1]. The set [0, 1] is approved as an
appropriate domain for all functions to compare them. The operations on functions,
transferring the curves over [0, 1], are the own contributions in the solution.

The accomplishment of a successful classification of unknown objects, possess-
ing only some features typical of the considered class, is not an easy task. By apply-
ing the rough set theory combined with earlier achievements in approximation, we
could classify polygons within the same class even if they had an unknown origin.
We could also state sure and possible members of the group under control with the
degrees of membership.

Rough set technique is thus a very powerful and easy tool of a successful classifi-
cation of objects. It is worth emphasizing once again that rough set theory provides
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us with the appealing approach to dividing members of a certain universe in clearly
interpretable groups.
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Chapter 25
Rough Set-Based Identification of Heart Valve
Diseases Using Heart Sounds

Mostafa A. Salama, Omar S. Soliman, Ilias Maglogiannis, Aboul Ella Hassanien,
and Aly A. Fahmy

Abstract. Taking into account that heart auscultation remains the dominant method
for heart examination in the small health centers of the rural areas and generally
in primary healthcare set-ups, the enhancement of this technique would aid signifi-
cantly in the diagnosis of heart diseases. In this context, this chapter introduces the
ability of rough set methodology to successfully classify heart sound diseases with-
out the need applying feature selection. Heart sound data sets represents real life
data that contains continuous attributes and a large number of features that could
be hardly classified by most of classification techniques. Discretizing the raw heart
sound data and applying a feature reduction approach should be applied prior any
classifier to increase the classification accuracy results. The capabilities of rough
set in discrimination, feature reduction classification have proved their superior in
classification of objects with very excellent accuracy results. The experimental re-
sults obtained, show that the overall classification accuracy offered by the employed
rough set approach is high compared with other machine learning techniques in-
cluding Support Vector Machine (SVM), Hidden Naive Bayesian network (HNB),
Bayesian network (BN), Naive Bayesian tree (NBT) [9], Decision tree (DT), Se-
quential minimal optimization (SMO).
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25.1 Introduction

Heart auscultation, defined as listening and interpretation of the sound produced by
the heart, has been a very important method for diagnosing heart diseases from the
early stages of medicine, since most heart diseases are reflected to the sound that
the heart produces [4, 15]. It is an operationally simple, low cost and non-invasive
method of high sensitivity to most heart diseases. Although some new methods,
such as Echocardiography, and Medical Imaging modalities (i.e. Ultra sound Imag-
ing (US); Computed Tomography (CT); Magnetic Resonance Imaging, (MRI), etc.),
can provide more direct and accurate evidence of heart disease than heart ausculta-
tion, these methods require sophisticated and expensive equipment and specialized
personnel, being costly and operationally complex [4]. These methods are suitable
for use in well organized healthcare environments, but not in small health centers
of the rural areas and generally in primary healthcare set-ups. In these healthcare
establishments, the heart auscultation remains the basic tool for a first screening
of patients and deciding which of them should be referred to more costly medical
examinations and tests (e.g. based on advanced imaging techniques) and/or special-
ized cardiologists. Also, many heart diseases cause differentiations of heart sound
in much earlier stages before they can be observed in other comparable techniques,
such as the Electrocardiogram(ECG) [15]. Therefore increasing the accuracy and
the whole effectiveness of heart auscultation is of critical importance for improv-
ing both the health level of the populations (by diagnosing heart diseases in their
early stages) and also the economics of the health systems (by avoiding unnecessary
costly medical examinations and tests due to incorrect screening). Furthermore, it
should be taken into account that in some circumstances, such as in the developing
countries, the auscultation is the only available tool for diagnosis of heart diseases
for most of their population.

Related work on automated SW tools for diagnosis of heart disease using sound
signals may be found in the literature. Maglogiannis et al in [15] have applied differ-
ent classification algorithms including support vector machine with different param-
eters to find the best classification accuracy. Due to the high number of features, 100
features, the classification accuracy could be enhanced if non-informative features
are removed. Another study have been applied on heart sound data set by Kumar
in [10]. In this work, 17 features are extracted including time, frequency and in the
state space domain. It have selected only 10 features for performing the classifica-
tion. The importance of such techniques appears in an application that implements
heart sound analysis software that can run in real time on a standard cellphone con-
nected to a hands-free kit [3]. In most of the surveyed systems of the classification
staged is preceded by discretization and/or feature selection reducing occasionally
the classification accuracy and performance [25]. The main conditions that the se-
lected discretization method should be a supervised based method is to fit the nature
of the classification problem. Also the feature selection method should be applied
after the discretization method, which shows the dependence on such method for
producing appropriate results. If any of these two pre-processing stages fails to
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act probably, the results will be deteriorated accordingly. Finally, a classification
technique is applied to perform the class label ,disease type, prediction. Numerous
machine learning-based classification techniques, especially artificial neural net-
work (ANN) and support vector machine (SVM) [20] have received lots of atten-
tions. But both of the ANN and SVM techniques are black-box models and their
generated results are difficult to interpret [15]. Decision tree-based method suffers
from the problem that some attributes may be redundant and this could affect neg-
atively on the classification accuracy [18]. Bayesian network assumes the attributes
to be independent which not the case in many real life cases [22].

Applying machine learning such as support vector machine or rough sets for
the heart disease detection is a very important direction in electronic healthcare as
it simplifies and decrease the cost of both, the early diagnosis of the heart diseases
and the detection of its types [3]. In this study, the heart diseases under consideration
are heart valve diseases categorized into four classes corresponding to the four most
usual heart valve diseases: aortic stenosis (AS), aortic regurgitation (AR), mitral
stenosis (MS) and mitral regurgitation (MR) [7]. The heart sound is represented
by 100 extracted features that is divided into six parts. The implemented feature
extraction methodology is presented in Section 25.2.

On the other hand, rough set theory [19] provides the tools that could successfully
produce high classification accuracy and generate an interpretable rules. The main
goal of the rough set analysis is the induction of approximations of concepts, as it
is based on the premise that lowering the degree of precision in the data makes the
data pattern more visible. In order to applying classification, first the input data will
be discretized using a rough set and boolean reasoning discretization method [16],
then rules are generated, and finally classification is applied based on the generated
rules. Also the reducts concept in rough set theory allows to keep only the attributes
that are not redundant and their removal could not worsen the classification, where
this could be a privilege for rough set over decision trees [24]. Rough set put into
account the relation among attributes. [23, 26]

On applying rough set discretization and disease prediction on the heart disease
data sets, the need of applying feature selection is not required due to the reducts
concept, the rough set produces the highest classification accuracy. Also the rules
generated that are used in classification are also useful to detect some of the knowl-
edge and facts that exist in the input data set. It is also shown from the resulted rules
that the rules generate from the rough set are dependents on the attributes selected
by features like chimerge technique and information gain methods. The experimen-
tal study shows the results of applying rough set in classification with and without
feature selection, also includes comparison between the classification results of dif-
ferent machine learning methods and rough set as a classifier. Finally, it shows the
rules generated by rough set and how these rules depends, partially, on features se-
lected by feature selection methods [8].

The rest of this paper is organized as follows: Section 25.2 reviews the basic
concepts of the heart sound valve diseases and rough sets. Section 25.3 discusses
in details the proposed system and its phases including the pre-processing, analysis
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and rule generating and identification and prediction. The experimental results and
conclusions are presented in Section 25.4.

25.2 Background Information

25.2.1 The Heart Valve Diseases

A lot of research have been applied on heart sound for the detection of heart valve
disease. Features are extracted from the heart sound signal into a data set that is
composed of a number of features. Then a classification algorithm is applied on
such data set for detection of heart valve disease. Features are extracted in three
phases:

• Phase 1: In the first phase of the segmentation of the heart sound signals is
performed, i.e. the cardiac cycles in every signal are detected by locating the
S1 and S2 peaks. For this purpose, the collected heart sound samples were an-
alyzed with the Wavelet decomposition method described in [11, 12], with the
only difference being that the 4th and 5th level detail was kept (i.e. frequencies
from 34 to 138 Hz), followed by calculation of the normalized average Shannon
Energy. Then a morphological transform was applied aiming at the amplifica-
tion of the sharp peaks and the attenuation of the broad ones [5]. The method
described in Ref. [11, 12] is used next to locate the peaks corresponding to S1
and S2 and reject the others. Heart sound segmentation was completed with an
algorithm that determines the boundaries of S1 and S2 in each heart cycle, while
a method, similar to the one described in Ref. [6], was used to distinguish S1
from S2 peaks.

• Phase 2: In a second phase, for each of the transformed heart sounds that were
produced in the first phasewere calculated the standard deviation of the duration
of all the heart cycles it includes, the standard deviation of the S1 peak values of
all heart cycles, the standard deviation of the S2 peak values of all heart cycles
and the average heart rate. These values are the first four scalar features (F1�F4)
of the feature vector of each heart sound signal.

• Phase 3: In a third phase, the rest of the features used for classification are ex-
tracted. For this purpose, we calculated for each transformed heart sound signal
two mean signals for each of the four structural components of the heart cycle,
namely two signals for the S1, two for the systolic phase, two for the S2 and
two for the diastolic phase. The first of these mean signals focused on the fre-
quency characteristics of the heart sound, while the second mean signal focused
on the morphological time characteristics of the heart sound. In particular, the
first signal is calculated as the mean value of each component, after segment-
ing and extracting the heart cycle components, time warping them and align-
ing them. The second signal is calculated as the mean value of the normalized
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average Shannon Energy Envelope of each component, after segmenting and
extracting the heart cycles components, time warping them and aligning them.
The second S1 mean signal is then divided into 8 equal parts, for each part the
mean square value is calculated and the resulting 8 values are used as features
(F5 - F12). Similarly 24 scalar features for the systolic period (F13 - F36),
8 scalar features for S2 (F37 - F44) and 48 scalar features for the diastolic
period (F45 - F92) were calculated. Finally, the systolic and diastolic phase
components of the above first mean signal were passed from four band-pass
filters:

• a 50�250 Hz filter giving its low frequency content,
• a 100 - 300 Hz filter giving its medium frequency content,
• a 150 - 350 Hz filter giving its mediumŰhigh frequency content and
• a 200 - 400 Hz filter giving its high frequency content. For each of these

8 outputs, the total energy was calculated and was used as a feature in the
heart sound vector (F93 - F100).

The above three processing phases result in a heart sound feature vector consisting
of 100 components for each signal. These extracted feature are 100 features that
represents the four stages of a heart signal which are S1 signal, systolic period, S2
signal and diastolic period as shown in Figure 25.1. These features are divided into
six groups as follows:

• F1:F4 are the standard deviation of all heart sounds, S1, S2 and average heart
rate.

• F5:F12 represents signal S1.
• F13:F36 represents the systolic period.
• F37:F44 represents signal S2.
• F45:F92 represents the diastolic period.
• F93:F100 the four stage of a heart signal are passed from four band-pass fre-

quency filters. The energy of each output is calculated to form these last 8
features.

Fig. 25.1 Heart signal: systolic period and diastolic period [15]
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25.2.2 Rough Sets: Basics

Rough sets theory proposed by Pawlak [19] is a new intelligent mathematical tool.
It is based on the concept of approximation spaces and models of the sets and con-
cepts. In rough sets theory, feature values of sample objects are collected in what
are known as information tables. Rows of a such a table correspond to objects and
columns correspond to object features.

Let O,F denote a set of sample objects and a set of functions representing
object features, respectively. Assume that B ⊆ F ,x ∈ O. Further, let x∼B denote
x/∼B

= {y ∈ O | ∀φ ∈ B,φ(x) = φ(y)}, i.e., x/∼B
(description of x matches the de-

scription of y). Rough sets theory defines three regions based on the equivalent
classes induced by the feature values: lower approximation BX , upper approxima-
tion BX and boundary BNDB(X). A lower approximation of a set X contains all
equivalence classes x/∼B

that are proper subsets of X , and upper approximation BX
contains all equivalence classes x/∼B

that have objects in common with X , while the

boundary BNDB(X) is the set BX \ BX , i.e., the set of all objects in BX that are not
contained in BX .

Some strategies for discrimination of real-valued features must be used when
we need to apply learning strategies for data classification (e.g., equal width and
equal frequency intervals). It has been shown that the quality of learning algorithm
is dependent on this strategy, which has been used for real-valued data discritiza-
tion. In the context of supervised learning, an important task is the discovery of
classification rules from the data provided in the decision tables. The decision rules
not only capture patterns hidden in the data as they can also be used to classify
new unseen objects. Rules represent dependencies in the data set, and represent ex-
tracted knowledge which can be used when classifying new objects not in the orig-
inal information system. When the reducts were found, the job of creating definite
rules for the value of the decision feature of the information system was practically
done. To transform reduct into a rule, one only has to bind the condition feature
values of the object class from which the reduct originated to the corresponding
features of the reduct. Then, to complete the rule, a decision part comprising the
resulting part of the rule is added. This is done in the same way as for the condi-
tion features. To classify objects, which has never been seen before, rules generated
from a training set will be used. These rules represent the actual classifier. This
classifier is used to predict to which classes new objects are attached. The nearest
matching rule is determined as the one whose condition part differs from the fea-
ture vector of re-image by the minimum number of features. When there is more
than one matching rule, we use a voting mechanism to choose the decision value.
Every matched rule contributes votes to its decision value, which are equal to the
times number of objects matched by the rule. The votes are added and the deci-
sion with the largest number of votes is chosen as the correct class. Quality mea-
sures associated with decision rules can be used to eliminate some of the decision
rules.
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25.3 The Proposed Rough Set-Based Identification of Heart
Valve Diseases System

Figure 25.2 illustrates the overall steps of the proposed identification of heart valve
diseases system. It is composed of three consecutive phases, which are elaborated
in the following subsections. These phases are:

• Pre-processing phase. This phase includes tasks such as extra variables
addition and computation, decision classes assignments, data cleansing, com-
pleteness, correctness, feature creation, feature selection, feature evaluation and
discretization.

• Analysis and rule generating phase. This phase includes the generation of pre-
liminary knowledge, such as computation of object reducts from data, deriva-
tion of rules from reducts, rule evaluation and prediction processes.

• Identification and prediction phase. This phase utilizes the rules generated
from the previous phase to predict the stock price movement.

Fig. 25.2 Rough set-based identification of heart valve diseases system
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25.3.1 Pre-processing Phase

25.3.1.1 Feature Reduction

The reducts resulted in rough set technique is compared to a feature selection tech-
nique. One of the most popular feature selection methods is the chi-Square χ2

method, which measures the lack of independence between each feature A and
the target class c. ChiMerge or Chi2-Square [13, 14] is a χ2-based discretization
method. The reason of using this method is due to the nature of extracted features
of heart sound, which represents a continuous feature. Nearly most of the feature
selection method discretize the continuous feature which could leads to the dis-
tortion of data and loose of its characteristics [22] and hence the decrease feature
classification. Chimerge technique determines the Chi-Square χ2 value while per-
form the discrimination of features which leads to more accurate results. It uses the
χ2 statistic to discretize numeric features repeatedly until some inconsistencies are
found in the data that achieves feature selection via discretization. The χ2 value
is calculated for each continuous feature as follows: Initially, each distinct value
of a numeric feature A is considered to be one interval. The values,intervals, of
feature A are sorted and the χ2 is applied for every pair of adjacent intervals as
follows:

χ2 = ∑
i:1..2

∑
j:1..k

(Ai j −Ei j)
2

Ei j
(25.1)

Where:

• Ai j is the number of values in the ith interval and jth class,

• Ri j is the number of values in the jth class = ∑ j:1..k Ai j,

• Ci j is the number of values in the ith interval = ∑i:1..2 Ai j,

• N is the total number of values = ∑i:1..2 Ri j,and

• Ei j is the expected frequency of Ai j =
Ri j∗Ci j

N

Adjacent intervals with the least χ2 values are merged together, because low χ2 val-
ues for a pair indicates similar class distributions. This merging process proceeds
recursively until all χ2 values of all pairs exceeds a parameter signlevel (initially
0.5). Then repeat the previous steps with a decreasing signlevel until an inconsis-
tency rate is exceeded, where two patterns are the same but classified into different
categories.
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25.3.1.2 Discretization Based on RSBR

A real world data set, like medical data sets, contains mixed types of data includ-
ing continuous and discrete valued data sets. The discretization process divides the
attributeŠs value into intervals [2]. The discretization based on RS and Boolean
Reasoning (RSBR) proposed in [17], [16] shows the best results in the case of heart
disease data set. In the discretization of a decision table S = (U , A

⋂ {d}), where U
is a non-empty finite set of objects and A is a non-empty finite set of attributes. And
Va = [xa, xa) is an interval of real values xa, wa in attribute a. The required is to a
partition Pa of Va for any a ∈ A. Any partition of Va is defined by a sequence of the
so-called cuts x1 < x2 < .. < xk from Va. The main steps of the RSBR discretization
algorithm are provided in algorithm 25.1.

Algorithm 25.1. RSBR discretization algorithm [1]

Input: Information system table (S) with real valued attributes Ai j and n is the
number of intervals for each attribute.
Output: Information table (ST ) with discretized real valued at-
tribute

1: for Ai j ∈ S do
2: Define a set of boolean variables as follows:

B = {
n

∑
i=1

Cai,
n

∑
i=1

Cbi

n

∑
i=1

Cci, ...,
n

∑
i=1

Cni} (25.2)

3: end for
4: Where ∑n

i=1 Cai correspond to a set of intervals defined on the variables of at-
tributes a

5: Create a new information table Snew by using the set of intervals Cai

6: Find the minimal subset of Cai that discerns all the objects in the decision class
D using the following formula:

ϒ u = ∧{Φ(i, j) : d(xi �= d(x j)} (25.3)

7: Where Φ(i, j) is the number of minimal cuts that must be used to discern two
different instances xi and x j in the information table.

25.3.2 Analysis and Rule Generating Phase

Unseen instances are considered in the discovery process, and the uncertainty of
a rule, including its ability to predict possible instances, can be explicitly repre-
sented in the strength of the rule. The rule generation from the extracted reducts is
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maintained in a method named in [27]. The quality of rules is related to the cor-
responding reduct(s). We are especially interested in generating rules which cover
largest parts of the universe U . Covering U with more general rules implies smaller
size of a rule set. The algorithm in 25.2 presents the soft hybrid induction system
GDT-RS constituting the core in the discovery of classification rules from databases
with uncertain and incomplete data.

Algorithm 25.2. Rule generation and classification [2]

Input: reduct sets R f inal = {r1 ∪ r2 ∪ ....∪ rn}
Output: Set of rules

for each reduct r do
2: for each correspondence object x do

Contract the decision rule (c1 = v1 ∧ c2 = v2 ∧ ....∧ cn = vn)−→ d = u
4: Scan the reduct r over an object x

Construct (ci,1 ≤ i ≤ n)
6: for every c ∈C do

Assign the value v to the correspondence attribute a
8: end for

Construct a decision attribute d
10: Assign the value u to the correspondence decision attribute d

end for
12: end for

25.3.2.1 Identification and Prediction Phase

Classification and prediction are the last phase of our proposed approach. To trans-
form a reduct into a rule, one only has to bind the condition feature values of the
object class from which the reduct originated to the corresponding features of the
reduct. Then, to complete the rule, a decision part comprising the resulting part of
the rule is added. This is done in the same way as for the condition features. To clas-
sify objects which have never been seen before, the rules generated from a training
set will be used. These rules represent the actual classifier. This classifier is used to
predict to which classes the new objects are attached. The nearest matching rule is
determined as the one whose condition part differs from the feature vector of the re-
object by the minimum number of features. When there is more than one matching
rule, we use a voting mechanism to choose the decision value. Every matched rule
contributes votes to its decision value, which are equal to the t times number of the
objects matched by the rule. The votes are added and the decision with the largest
number of votes is chosen as correct class. Quality measures associated with deci-
sion rules can be used to eliminate some of the decision rules. The global strength
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defined in [1] for rule negotiation is a rational number in [0, 1] representing the
importance of the sets of decision rules relative to the considered tested object.

Let us assume that T = (U ;A
⋃

d) is a given decision table, ut is a test object,
Rul(Xj) is the set of all calculated basic decision rules for T , classifying objects
to the decision class Xj(v

j
d = vd),MRul(Xj;ut) ⊆ Rul(Xj) is the set of all decision

rules from Rul(Xj) matching tested object ut . The global strength of the decision
rule set MRul(Xj;ut) is defined as given in [1]. The measure of the strengths of
the rules defined above is applied in constructing classification algorithm. To clas-
sify a new case, rules are first selected matching the new object. The strength of
the selected rule sets is calculated for any decision class, and then the decision
class with maximal strength is selected with the new object being classified to
this class.

25.4 Experimental Results and Discussion

25.4.1 The Heart Sound: Data Sets Declaration

The identification of heart valve diseases proposed system were applied on three
different data sets of heart sound signals with the same number of instances in every
class. The first data set “HS_AS_MR" is about systolic diseases where it contains
37 instances of aortic stenosis AS cases and 37 instances of mitral regurgitation
MR cases. The second data set “HS_AR_MS" is about diastolic diseases where it
contains 37 instances of aortic regurgitation AR cases and 37 instances of mitral
stenosis MS cases. The third data set “HS_N_S" contains 64 instance, where 32
instances represent healthy patients and the other 32 represents unhealthy, murmur
diseased patients. The tool that has been used in this chapter is the rough set
exploration system tool [21]

25.4.2 Analysis, Results and Discussion

25.4.2.1 The Set of Reducts in Comparison to the Chimerge Feature
Selection Technique

For each data set, we reach the minimal number of reducts that contains a combina-
tion of attributes which have the same discrimination factor for each data set. Table
25.1 shows the final generated reducts for each data set, which are used to generate
the list of the rules for the classification.
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Table 25.1 Rough reducts sets of the three data sets

Data set Reduct sets
HS_AR_MS 3, 8, 31, 38,82
HS_AS_MR 3, 6, 36,39

HS_N_S 1, 9, 87, 94, 97

In order to evaluate the proposed rough sets classifier, we will study the lets
discuss the reducts in comparison to the feature selection using chimerge approach
and find the results of the classifiers after feature selection for each data set.

For the first data set HS_AR_MS, the selected number of features by the chimerge
technique are:

{F32, {F31}, F30, F29, F100, F28, F33, F27, {F3}, F5, F4, F49, F48, F45, F46,
F50, F25, F26}.

It noticed that the selected features by the chimerge technique includes feature F31
and feature F3, where feature F31 is the second most important feature.

In regard to the second data set HS_AS_MR, the selected features using the
chimerge technique are:

{{F36}, F13, F12, F14, F15, F35, F4, F2, F18, F17, F11, {F3}, F92, F5, F16, F20,
F19, F23, F21, F93, F54, F22, F95, F10, F1, F94, F24, F28, F37, F25, F41, F29,

F100, F40, F26, F88, F55, F96}.

It noticed that the selected features by the chimerge technique includes feature F36
and feature F3, where feature F36 is the second most important feature. Also it is
noticed that in both data sets, HS_AR_MS and HS_AS_MR data sets, feature F3 is
selected and it is common in chimerge selected features and reducts.

For the third data set “HS_N_S", the selected features using the chimerge tech-
nique are as follows:

{F54, F58, F53, F65, F64, F67, F59, {F97}, F61, F70, F96, F98, F55, F60, F66,
F51, F52, F49, F62, F63, F23, F22, F45, F50, F2, F56, F57, F71, F28, F27, F24,

F26, F25, F47, F46, F99, F21, F72, F68, F69, F3, F75, F73, F92, F48, {F87}, F7,
F76}.

It noticed that the selected features by the chimerge technique includes feature F97
and feature F87, where feature F97 is the eightth most important feature. Also it is
noticed that feature F3 is appears in all the reducts in the three data sets.

25.4.2.2 The Set of Extracted Rules

The extracted rules from HS_AR_MS, HS_AS_MR and HS_N_S data sets are shown
in Tables 25.2, 25.3 and 25.4, respectively.
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Table 25.2 Generated rules for the HS_AR_MS data set

Matches Decision rules
22 (3="(0.590,Inf)")&(31="(0.004,Inf)")&(38="(0.01,Inf)")=>(D=1[22])
22 (31="(0.00,Inf)")&(38="(0.01,Inf)")&(82="(-Inf,0.00)")=>(D=1[22])
21 (3="(-Inf,0.59)")&(31="(-Inf,0.004)")=>(D=0[21])
20 (8="(0.04,Inf)")&(31="(0.004,Inf)")&(38="(0.012,Inf)")=>(D=1[20])
12 (8="(0.04,Inf)")&(31="(-Inf,0.004)")=>(D=0[12])
11 (3="(0.59,Inf)")&(8="(-Inf,0.04)")&(82="(-Inf,0.00)")=>(D=1[11])
11 (8="(-Inf,0.04)")&(31="(0.004,Inf)")&(82="(-Inf,0.00)")=>(D=1[11])
9 (3="(-Inf,0.59)")&(8="(-Inf,0.04)")&(82="(0.00,Inf)")=>(D=0[9])
9 (3="(0.59,Inf)")&(8="(-Inf,0.04)")&(31="(0.004,Inf)")=>(D=1[9])
8 (3="(-Inf,0.59)")&(38="(-Inf,0.01)")&(82="(0.00,Inf)")=>(D=0[8])
7 (3="(-Inf,0.59)")&(8="(0.04,Inf)")&(38="(-Inf,0.01)")=>(D=0[7])
6 (3="(0.59,Inf)")&(31="(0.004,Inf)")&(82="(0.00,Inf)")=>(D=1[6])
5 (31="(-Inf,0.004)")&(38="(0.01,Inf)")&(82="(0.00,Inf)")=>(D=0[5])
5 (3="(0.59,Inf)")&(8="(0.04,Inf)")&(82="(0.00,Inf)")=>(D=1[5])
4 (8="(0.04,Inf)")&(38="(-Inf,0.01)")&(82="(-Inf,0.00)")=>(D=0[4])
3 (3="(0.59,Inf)")&(8="(-Inf,0.04)")&(38="(-Inf,0.01)")=>(D=1[3])
3 (3="(0.59,Inf)")&(31="(-Inf,0.004)")&(38="(-Inf,0.01)")=>(D=1[3])
2 (3="(0.59,Inf)")&(38="(-Inf,0.01)")&(82="(0.00,Inf)")=>(D=1[2])

Table 25.3 Generated rules for the HS_AS_MR data set

Matches Decision rules
26 (3="(-Inf,0.31)")&(36="(0.047,Inf)")=>(D=0[26])
25 (6="(0.05,Inf)")&(36="(-Inf,0.04)")=>(D=1[25])
18 (3="(-Inf,0.31)")&(6="(-Inf,0.05)")=>(D=0[18])
14 (3="(0.31)")&(39="(0.001,Inf)")=>(D=1[14])
13 (3="(0.31,0.76)")&(36="(-Inf,0.04)")=>(D=1[13])
11 (3="(0.76,Inf)")&(36="(-Inf,0.04)")=>(D=1[11])
6 (3="(0.31)")&(6="(-Inf,0.05)")=>(D=1[6])
5 (3="(0.76,Inf)")&(6="(0.05,Inf)")&(36="(0.04,Inf)")=>(D=0[5])
3 (3="(0.76,Inf)")&(6="(-Inf,0.05)")&(39="(0.001,Inf)")=>(D=1[3])
2 (6="(-Inf,0.05)")&(36="(-Inf,0.04)")&(39="(-Inf,0.001)")=>(D=0[2])
2 (3="(0.76,Inf)")&(39="(-Inf,0.001)")=>(D=0[2])
2 (6="(0.05,Inf)")&(36="(0.04,Inf)")&(39="(-Inf,0.001)")=>(D=0[2])

25.4.2.3 Classification Accuracy of the Proposed Model in Comparison
to the Other Classification Techniques

The comparison shown in table 25.5 contains a comparative study between the pro-
posed model of rough set classifier and other conventional and known classifiers.
Feature selection will be applied before the the conventional classifier in order to
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Table 25.4 Generated rules for the HS_N_S data set

Matches Decision rules
20 (94="(0.16,Inf)")&(97="(0.04,Inf)")=>(D=1[20])
12 (94="(-Inf,0.16)")&(97="(-Inf,0.04)")=>(D=0[12])
9 (1="(0.12,Inf)")&(9="(0.00,Inf)")&(97="(-Inf,0.04)")=>(D=0[9])
8 (9="(0.00,Inf)")&(87="(-Inf,0.00)")&(97="(-Inf,0.04)")=>(D=0[8])
8 (1="(0.12,Inf)")&(87="(0.00,Inf)")&(94="(-Inf,0.16)")=>(D=0[8])
8 (9="(-Inf,0.00)")&(87="(-Inf,0.00)")&(97="(0.04,Inf)")=>(D=1[8])
7 (1="(0.12,Inf)")&(87="(0.00,Inf)")&(97="(-Inf,0.04)")=>(D=0[7])
6 (9="(-Inf,0.00)")&(87="(0.00,Inf)")&(94="(-Inf,0.16)")=>(D=0[6])
4 (1="(0.12,Inf)")&(87="(-Inf,0.00)")&(97="(0.04,Inf)")=>(D=1[4])
3 (9="(-Inf,0.00)")&(87="(0.00,Inf)")&(97="(-Inf,0.04)")=>(D=0[3])
3 (9="(-Inf,0.00)")&(87="(-Inf,0.00)")&(94="(0.16,Inf)")=>(D=1[3])

enhance the corresponding percentage of classification accuracy. On the other hand,
rough set model will not preceded by feature selection, where it will depends only
the set of generated reducts. For example, in the case of HS_AS_MR data set, the
classification accuracy of DT and SVM after feature selection are 89.0 and 94.5 re-
spectively, where these results are still less than that of rough set accuracy results.
Although, Sequential minimal optimization, (SMO) has the percentage of classifica-
tion accuracy slightly greater than the Rough set system in the case of HS_AS_MR
data set, rough set model has a greater percentage of classification accuracy in
HS_AR_MS and HS_N_S data sets.

Table 25.5 Accuracy results: Comparative analysis among Hidden Naive Bayesian network
(HNB), Bayesian network (BN), Naive Bayesian tree (NBT), Decision tree (DT), Sequential
minimal optimization (SMO)

Classifier HS_AS_MR HS_AR_MS HS_N_S
SVM 90.54 90.54 85.93
HNB 90.54 91.89 90.625
BN 86.48 83.78 84.37
DT 89.18 83.78 82.81

SMO 93.24 94.59 87.50
NBT 87.83 89.18 89.06
RS 92.90 97.1 90.0

Figure 25.3 illustrates the overall rough sets classification accuracy in terms of
sensitivity and specificity compared with Hidden Naive Bayesian network (HNB),
Bayesian network (BN), Naive Bayesian tree (NBT), Decision tree (DT), Sequential
minimal optimization (SMO). Empirical results reveal that the proposed rough set
approach performs better than the other classifiers.
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Fig. 25.3 Classification accuracy: Comparative analysis among Support Vector Machine
(SVM), Hidden Naive Bayesian network (HNB), Bayesian network (BN), Naive Bayesian
tree (NBT), Decision tree (DT), Sequential minimal optimization (SMO)

25.5 Conclusions

Heart sound data sets represents a real life data that contains continuous attributes
and a large number of features that could be hardly classified by most of classifica-
tion techniques. This chapter introduces the ability of rough set theory to success-
fully classify heart sound diseases without the need for applying feature selection.
Discretizing the raw heart sound data and applying a feature reduction approach
should be applied prior any classifier to increase the classification and prediction
accuracy results. The experimental results obtained, show that the overall classifi-
cation accuracy offered by the employed rough set approach is high compared with
other machine learning techniques including Support Vector Machine (SVM), Hid-
den Naive Bayesian network (HNB), Bayesian network (BN), Naive Bayesian tree
(NBT), Decision tree (DT), Sequential minimal optimization (SMO).
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Chapter 26
Rough Sets and Neuroscience

Tomasz G. Smolinski and Astrid A. Prinz

Abstract. It has been almost exactly 10 years since the publication of the Neuro-
computing Special Volume on Rough-Neuro Computing, and nearly 8 years since
the seminal book “Rough-Neural Computing” came out. Rough-Neuro (or Neural)
Computing (RNC) generalizes traditional artificial neural networks by incorporat-
ing the concepts of information granularity and computing with words. It provides
solid theoretical foundations for hybridization of neural computing with the theory
of rough sets, as well as rough mereology, and has many interesting practical appli-
cations. Interestingly, while the RNC paradigms directly or indirectly draw exten-
sively from the field of neuroscience, not many applications of the theory of rough
sets (in the form of RNC or otherwise) to solve problems in that field exist. This is
somewhat surprising as many problems in neuroscience are inherently vague and/or
ill-defined and could potentially significantly benefit from the rough sets’ ability to
deal with imprecise data, and those applications that have been proposed, have been
very successful. In this chapter, we describe a few examples of the existing applica-
tions of the theory of rough sets (and its hybridizations) in the field of neuroscience
and its clinical “sister,” neurology. We also provide a discussion of other potential
applications of rough sets in those areas. Finally, we speculate on how the new in-
sights into the field of neuroscience derived with the help of rough sets may help
improve RNC, thus closing the loop between the two fields.
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26.1 Introduction

Rough-Neuro (or Neural) Computing (RNC) generalizes traditional artificial neu-
ral networks by incorporating the concepts of information granularity and com-
puting with words. It provides solid theoretical foundations for hybridization of
neural computing with the theory of rough sets [33], as well as rough mereol-
ogy [34], and has many interesting practical applications. The applications include,
for example, acquisition of audio signals [4], analysis of dyslexia of Kanji charac-
ters [53], financial time series prediction [43], or even XML prefetching for ac-
cessing Facebook from mobile environments [51]. Interestingly, while the RNC
paradigms directly or indirectly draw extensively from the field of neuroscience,
not many applications of the theory of rough sets (in the form of RNC or oth-
erwise) to solving problems in that field exist. This is somewhat surprising as
many problems in neuroscience are inherently vague and/or ill-defined and could
potentially significantly benefit from the rough sets’ ability to deal with impre-
cise data. Furthermore, those applications that have been proposed, have been very
successful. For example, Szczuka and Wojdyłło implemented a rough sets-based
neuro-wavelet classifier for analysis of EEG signals [52], Smolinski, et al., de-
signed a methodology for classificatory decomposition of cortical evoked potentials
based on hybridization of rough sets and multi-objective evolutionary algorithms
[42,45,46] and a system to classify neuronal models using rough sets [49], and Przy-
byszewski developed a framework for cognitive computation using the rough set
theory [36].

This chapter is organized as follows: first, we provide some background informa-
tion on the theory of rough sets and selected branches of the field of neuroscience.
Then, we review a few existing applications of rough sets in the field of neuroscience
and its clinical “sister,” neurology. This is followed by a discussion of potential ap-
plications of rough sets in those areas. Finally, we speculate on how the new insights
into the field of neuroscience derived with the help of rough sets may help improve
RNC, thus closing the loop between the two fields.

26.2 Background

26.2.1 Theory of Rough Sets

The theory of rough sets (RS) deals with the classificatory analysis of data ta-
bles [31]. The main idea behind it is the so-called indiscernibility relation that de-
scribes objects indistinguishable from one another [23,32]. The main goal of rough
set analysis is to synthesize approximation of concepts from acquired data. The con-
cepts are represented by lower and upper approximations [18].
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26.2.1.1 Information Systems and Decision Tables

In the theory of rough sets, a dataset is in a form of a table, in which each row
represents an object, and every column represents an attribute that can be observed
or measured for that object. Such a table is called an information system, which can
be represented formally as a pair: IS = (U, A), where U is a non-empty finite set of
objects (universe) and A is a non-empty finite set of attributes such that a : U ⇒Va
for every a ∈ A. The Va is called the value set of a.

In many situations, some classification of objects is given a priori. This knowl-
edge is expressed by one or more distinguished attributes called the decision at-
tributes. Information systems of this kind are called decision tables. Such a system
can be formally represented by DT = (U, A∪ d), where d /∈ A is the decision at-
tribute and the elements of A are the conditional attributes. An example of a decision
table actually utilized in one of the projects described later in this chapter is shown
in Fig. 26.5.

26.2.1.2 Indiscernibility

A decision table represents the entire available knowledge about a given problem.
However, the table may be unnecessarily large because it is redundant in at least two
ways: “vertical” (i.e., object-wise) and “horizontal” (i.e., attribute-wise). In other
words, the same, or indistinguishable from one another, objects may be represented
several times, or some of the attributes may be overabundant.

In order to take a closer look at those issues, let us first recall the notion of equiv-
alence. A binary relation R⊆ X ×X that is reflexive (i.e., an object is in relation with
itself xRx), symmetric (if xRy, then yRx) and transitive (if xRy and yRz, then xRz)
is called an equivalence relation. This relation divides a given set of elements (ob-
jects) into a certain number of disjoint equivalence classes. The equivalence class of
an element x ∈ X consists of all objects y ∈ X such that xRy.

Let IS = (U, A) be an information system, then for any B ∈ A there exists an
equivalence relation INDIS(B), as shown in Eq. 26.1.

INDIS(B) =
{
(x,x′)⊂U2

∣
∣∀a ∈ B,a(x) = a(x′)

}
. (26.1)

If (x,x′) ∈ INDIS(B), the so-called B-indiscernibility relation, then objects x and x′

are indistinguishable from each other, in light of the attributes in B.

26.2.1.3 Set Approximation

The indiscernibility relation induces a partitioning of the universe, by dividing it
into disjoint equivalence classes, denoted as [x]B. These partitions can be used to
build new subsets of the universe. Usually, those subsets that contain objects that
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belong to the same decision class are of interest. However, it is possible that a de-
cision class (or concept) cannot be defined in a crisp manner. The main goal of
rough set analysis is to synthesize approximations of such concepts from acquired
data. The concepts are represented by lower and upper approximations. Although
it may be impossible to precisely define some concept X , it may be possible to
approximate it using the information contained in B by constructing the B-lower
and B-upper approximations of X , denoted by BX and BX respectively, where,
BX =

{
x
∣
∣[x]B ⊆ X

}
and BX =

{
x
∣
∣[x]B ∩X �= /0

}
. Only the objects in BX can be

classified as members of X with certainty, based on the knowledge conveyed by B.
Consequently, only the objects located in U −BX (i.e., B-outside region), can be
classified with certainty as those not belonging to the concept X . Figure 26.1 illus-
trates the idea of rough sets-based approximation with a synthetic, two-dimensional
example.

Fig. 26.1 An illustration of rough sets-based set approximation using two fictitious attributes
(i.e., dimensions) B. The squares represent disjoint equivalence classes, i.e., circles in each
square are considered indiscernible from one another in light of the two attributes. The black
circles represent data points belonging to some concept X . The concept is approximated by its
B-lower (dark gray squares) and B-upper (light gray squares and dark gray squares combined)
approximations. The white squares represent equivalence classes constituting the outside re-
gion, i.e., objects that certainly do not belong to the concept X .

A rough set can be characterized numerically by the accuracy of approximation
coefficient:

αB(X) =
card(BX)

card(BX)
, (26.2)

or the quality of classification coefficient:

γB(X) =
card(BX ∪B¬X)

card(U)
, (26.3)
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where BX is the lower approximation of X , BX is the upper approximation of X ,
B¬X is the lower approximation of the set of objects that do not belong to X , U is
the set of all objects, and card stands for cardinality of a set.

26.2.1.4 Reducts

All the considerations discussed so far represent one way of reducing data by
identifying equivalence classes, i.e., objects that are indistinguishable using the
available attributes. That is a much more efficient representation, since only one
element of the equivalence class is needed to characterize the entire class. The
other consideration in terms of data reduction is to keep only those attributes
that preserve the indiscernibility relation and, consequently, the set approxima-
tion. The rejected attributes are redundant since their removal cannot worsen the
classification.

There are usually several such subsets of attributes and those that are minimal are
called reducts. The following presents a formal definition of a reduct: a “minimal”
R ⊆ A, such that:

∀k,n ∀ai ∈ R :
(
(ai(ok) = ai(on))⇒ (d(ok) = d(on))

)
, (26.4)

where k,n = 1..N (N is the number of objects in the decision table), ok|n is the kth|nth

object, d(ok|n) is the value of the decision attribute for the kth|nth object, and i = 1..M
(M is the number of conditional attributes). The reduct is “minimal” if ¬∃P ⊂ R :
(26.4) is satisfied for P.

Computing equivalence classes is straightforward. Finding a global minimal
reduct, on the other hand (i.e., reduct with a minimal cardinality among all reducts),
is NP-hard. There are many heuristics designed to deal with this problem. For more
details and examples of reduct-finding algorithms see e.g., [27, 59].

26.2.1.5 Extensions of the Theory of Rough Sets

Since its proposal in the early 1980s, the theory of rough sets has been continuously
adapted and expanded. For example, in order to better represent imprecise informa-
tion, nondeterministic information systems have been proposed [30]. In other works,
the original indiscernibility relation has been relaxed to a tolerance relation, where
the transitivity property is not required [41]. However, although all those extensions
are unquestionably important and can be potentially used in future applications of
rough sets in the field of neuroscience, they are beyond the scope of this chapter.

26.2.2 Neuroscience

Neuroscience (or neural science) is the study of the nervous system, which is a
complex organ system comprising a network of nerve cells called neurons [14].
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Neurons can be studied at various levels: molecular, cellular, structural, functional,
developmental, etc. While all those aspects are very important in themselves, as
knowing the specific characteristics of nerve cells is critical for diagnosis and treat-
ment of many neurological disorders, the ultimate goal of neuroscience is to un-
derstand the biological basis of consciousness and the mental processes through
which we perceive, reason, act, learn, and remember. Modern neuroscience rep-
resents an amalgam of cell and molecular biology, neurophysiology, anatomy,
embryology, and psychology. Furthermore, areas that have not been traditionally
equated with ground-breaking discoveries in the biological sciences, such as math-
ematics or computer science, play an increasing role in the field. Due to the re-
cent technological advances in both experimental instrumentation and data col-
lection methods in various branches of neural science, there is an ever-growing
need for automated analysis tools and database systems capable of handling such
vast amounts of data. Since many problems in neuroscience are very complex
in nature, data mining and knowledge discovery methods, including rough sets,
lend themselves well to solving those problems. Below, we present a few selected
sub-areas of neuroscience, where such techniques may be, or already have been,
utilized.

26.2.2.1 Neurophysiology

Neurophysiology is a part of physiology that deals specifically with the study of
the nervous system. The fundamental neurophysiological techniques include intra-
and extra-cellular electrophysiological recordings, patch clamp recordings, calcium
imaging, as well as messenger-RNA (mRNA) expression analysis and other tools
used in molecular biology [14]. Another very important technique in neurophysiol-
ogy is the dynamic clamp, which uses a real-time interface between one or several
living cells and a computer or analog device to simulate dynamic processes such
as membrane or synaptic currents in the living cells [35]. Regardless of the specific
technique, as recording quality improves, neurophysiological experiments result in
ever growing amounts of data, making it harder for conventional analysis methods to
keep pace. Therefore, the need for automated analysis tools, with emphasis on com-
putational intelligence techniques, and database systems has become widespread in
neurophysiology [9].

Spike sorting is one of the most important problems in neurophysiology. It is
the process of identifying and classifying spikes recorded by one or more elec-
trodes as having been produced by particular neurons, and thus distinguishing
their activity from the background noise, by only using the recorded data [7]. An-
other closely related problem is that of detection and characterization of bursts
of neuronal electrical activity. Figure 26.2 presents an example of bursting neu-
ral activity, along with an illustration of the attributes that could be used for its
characterization.
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Fig. 26.2 An example of bursting electrical activity of a single neuron (generated by a
model). ISI stands for Inter-Spiking Interval (i.e., time between spikes in a burst) and
AHP stands for After-Hyperpolarization Potential (i.e., trough voltage between bursts)
(source: [49]).

In both these problems, as well as many other tasks in neurophysiology, rough
sets can be applied after some preprocessing and/or transformation of the recorded
signals has been performed.

26.2.2.2 Behavioral and Cognitive Neuroscience

Behavioral neuroscience, also referred to as biological psychology, biopsychology,
or psychobiology, is the study of physiological, genetic, and developmental mech-
anisms underlying the relationships between the brain and behavior [16]. Cogni-
tive neuroscience is concerned with the scientific study of biological structures and
mechanisms underlying cognition and mental processes in general [3]. Obviously,
both those fields are very closely related and often studied in parallel. They are
also highly inter-disciplinary drawing from such diverse fields as neurobiology and
physiology, psychology and psychiatry, philosophy, linguistics, as well as physics,
bioengineering, computer science, and mathematics.

Typically, experiments in behavioral neuroscience involve non-human animal
models (e.g., rats, mice, insects, and non-human primates). Therefore, most of the
research in the field deals with behaviors that are shared by various animal models
including sensation and perception, movement control, learning and memory, sleep
and other biological rhythms, emotion, etc. The application of intricate research
methods in behavioral neuroscience, such as disabling, decreasing, or enhancing
neural function, via genetic manipulation or otherwise (e.g., lesion induction, elec-
trical stimulation, etc.), and the utilization of various neurophysiological methods
for measuring neural activity, facilitates the collection of huge amounts of data de-
scribing the processes underlying the behaviors in question. Such data are usually
in desperate need of efficient data mining techniques capable of explaining the phe-
nomena responsible for the differences between normal and abnormal behaviors.

Researchers in cognitive science often employ imaging and visualization meth-
ods such as functional magnetic resonance imaging (fMRI) to study various topics
including consciousness, attention, language, decision-making, learning, memory,
etc. Yet again, such experiments yield vast amounts of multi-modal data that are
well suited for rough sets-driven analysis.
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26.2.2.3 Computational Neuroscience

Computational modeling of neurons is a very important aspect of today’s neuro-
science research. It allows for exploration of many parameter combinations and
various types of neuronal activity, without requiring a prohibitively large number
of “wet-lab” experiments. This is especially important in light of recent discoveries
suggesting that functional neuronal electrical activity can be produced on the basis
of widely varying cellular parameter combinations [22].

There exist various types of neuronal models, such as integrate-and-fire [1],
Hodgkin-Huxley [11], Morris-Lecar [26], and others. In a multi-compartmental
model, each part of the neuron (e.g., soma–the neuron’s cell body, neurites–
branched projections of a neuron that conduct the electrical stimulation received
from other cells, axon–the nerve fiber that conducts electrical impulses away from
the cell body, etc.) is represented by a compartment, or a collection of compartments,
each described by appropriate differential equations with a set of parameters [5].

As an example, let us consider one of the best-characterized neural networks in
biology and a popular subject for studies of rhythmic activity in the central nervous
system: the pyloric network in crustaceans (e.g., lobster, crab) [25, 39]. Rhythmic
activity is crucial for any living organism as it is responsible for such critical func-
tions as breathing, chewing, running, etc. The pyloric network consists of up to 14
neurons of 6 distinct types. The AB (anterior burster) neuron is one of the three neu-
rons forming the pacemaker kernel which drives the rhythmic activity of the pyloric
neural network, which is responsible for filtering of food in the animal. The AB neu-
ron produces rhythmic bursts of electrical activity of a specific profile, even when
isolated from other cells in the network. The two-compartment model shown in
Fig. 26.3 represents the AB neuron in the conductance parameter space [50], mean-
ing that the model is described by a set of parameters that represent the maximum
membrane conductances for different ions in the neuron. The first compartment in
the model represents the soma and the neurites (S/N), and the second compartment
corresponds to the axon (A). The figure also shows the ionic currents determined by
the membrane conductances used in the model (arrows indicate the directionality of
the currents–inward vs. outward).

The parameters for such a neuronal model can be varied independently yield-
ing many possible combinations of the parameter values. The parameter space can
be explored by simulating all of those parameter value combinations and check-
ing which of the solutions match the behavior of their biological counterparts. Not
only can a thorough analysis of the characteristics of physiologically realistic mod-
els help determine the ranges for the neuronal models’ parameter values (and thus
the cellular properties of the real cells), but it can also shed some light on the rela-
tionships between those parameters, which is a tremendously “hot topic” in today’s
field of neuroscience, as it relates to co-regulations of ionic currents in a cell and
thus provides some insights into how biology responds to the changing environment
and other perturbations.
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Fig. 26.3 A model of the AB (anterior burster) neuron of the pacemaker kernel in the
crustacean pyloric neural network. S/N: Soma/Neurite compartment. A: Axon compartment.
Arrows indicate inward and outward ionic currents as marked by labels (source: [50]).

26.2.2.4 Neurology

Neurology is a medical specialty concerned with the diagnosis and treatment of dis-
eases involving the central, peripheral, and autonomic nervous systems, including
blood vessels and all effector tissue, such as muscle [40]. It is arguably one of the
most difficult and exciting medical specialties. Practitioners in that field must have
solid foundations in neuroscience, including neuroanatomy, neurophysiology, neu-
ropathology, and many other aspects spanning the complexity of the nervous system.
Moreover, neurologists have to be familiar with numerous medical tests used in neu-
rologic diagnosis, such as lumbar puncture, electroencephalography (EEG), com-
puter tomography (CT), magnetic resonance imaging (MRI), and many more [37].
Neurologic examination includes numerous procedures that are designed to test the
patients’ level of consciousness, cognitive functioning, orientation, common knowl-
edge, memory, insight and judgment, concentration, calculations, verbal fluency,
etc. Furthermore, the data resulting from such examinations can be supplemented
by a whole plethora of other types of neurophysiological data, as described in Sec-
tions 26.2.2.1-26.2.2.2. However, in addition to the inherent complexity of the neu-
rophysiology in itself, analysis of neurological data becomes even more difficult
when all the aspects of the urgency and criticality of medical diagnoses are con-
sidered. Thankfully, many medical databases, including neurological ones, can be
relatively easily transformed into decision tables and thus lend themselves to rough
sets-based data mining. This is especially true when the underlying task is a classi-
fication problem. For example, based on the neurological attributes collected from a
sample of previously diagnosed and treated patients, a classifier capable of detecting
a specific disease (or a stage of a disease) can be built. Obviously, not only can such
a classifier be tremendously useful as a diagnosis support tool, but it may also help
determine which tests are really needed for a given diagnosis (e.g., by discovering
reducts in the dataset), which in turn can save patients from having to go though
potentially invasive, painful, and costly, yet unnecessary, procedures.
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26.3 Rough Sets in Neuroscience: Selected Applications

There have been some successful applications of the theory of rough sets imple-
mented in the “neuro world.” Here, we present some of them. Since most of those
applications concern neurology, we begin our overview with those pertaining to that
field. We conclude the overview with the description of applications devoted to more
basic neuroscience research, and describe two of those in more detail. Although the
works described in this chapter are obviously not the only ones, we believe that they
are quite representative of the current state of the area of applications of rough sets
in neuroscience.

26.3.1 Clinical Neurology

Mitochondrial encephalomyopathies (MEM) are a group of neurological disorders
caused by dysfunctional mitochondria, the organelles that convert the energy of food
molecules into the ATP that powers most cell functions [54, 55]. The diseases af-
fect many children around the world and are tainted by bleak prognosis. Wakulicz-
Deja and Paszek [57] proposed an application of rough sets to diagnosis of MEM
in children using data obtained from the Department of Pediatrics of the Silesian
Academy of Medicine, Bytom, Poland. The decision support system significantly
limits the need for invasive diagnostic procedures such as lumbar puncture or mus-
cle/nerve biopsies. The authors achieved such a high performance by applying rough
sets-driven attribute reduction and classification independently at three stages of the
overall process of diagnosis, with increasing levels of invasiveness: 1) classification
based on the clinical symptoms; 2) classification on the basis of biochemical data
(i.e., levels of lactic and formic acids in the blood serum and cerebrospinal fluid);
and 3) classification on the basis of enzyme levels (i.e., enzymatic activity in biop-
sied segments of muscles or nerves).

Epilepsy is a chronic neurological disorder characterized by seizures [2]. It af-
fects about 50 million people worldwide. EEG is one of the most important tools
used in diagnosis and treatment of epilepsy. Szczuka and Wojdyłło proposed a rough
sets-based neuro-wavelet system, called WaRS, for noise-resistant classification of
EEG signals [52]. The WaRS method provides a significant reduction in the dimen-
sionality of the original problem, while keeping the essential information needed for
accurate classification. The goal is achieved by first applying wavelet transformation
to the original signals to extract descriptive features, which are then supplied to the
rough sets-based algorithm for best discretization cuts selection and rough set rule
generation. Experiments performed by the authors showed that the proposed method
provides extended robustness and generalization, and allows a direct interpretation
of the analysis results.

As mentioned in Section 26.2.2, magnetic resonance imaging is a very important
tool in both basic neuroscience research, as well as neurology. Kobashi, et al., [17]
implemented a rough sets-based system to analysis of human brain MRI images.



26 Rough Sets and Neuroscience 503

The authors proposed a clustering method that extracts features of each pixel in
an image using thresholding and labeling algorithms. Thus, the image features are
transformed into nominal values, which are well-suited for rough set analysis. Widz,
et al., [58] introduced an automated MRI segmentation technique based on approx-
imate reducts derived from the theory of rough sets. They utilized multi-spectral
MRI images from a simulated brain database as a gold standard to train and test
the segmentation algorithm. The results suggested that approximate reducts, used
alone or in combination with other classification methods, may provide a novel and
efficient approach to the segmentation of volumetric MRI data sets.

26.3.2 Cognitive Computation

Humans can effortlessly recognize complex objects, such as faces, even if they have
never seen them in a given context before. Przybyszewski [36] proposed to look
into anatomical and neurophysiological basis of how object shapes are classified by
the brain and to describe its computational properties by the means of the theory of
rough sets. Many psychophysical experiments suggest that not only do we perform
object classifications based on partial information about that object, but that the in-
formation about variations in the object’s context, such as its rotation, is insignificant
(illustrated, among others, by the so-called Thatcher effect, in which it is difficult
to detect local feature changes in an upside-down face, while identical changes can
be immediately spotted in an upright face). This suggests that the brain may be uti-
lizing vague concepts to process approximate information about perceived objects
to classify them. This assumption allows for an application of the rough sets theory
in which, as described in Section 26.2.1, concepts are approximated via their lower
and upper approximations. Here, we describe some aspects of the experiments and
analyses performed by Przybyszewski.

In the experiments done on macaques, the brain’s “expertise” in classifying
objects’ components was estimated by analyzing single cell responses to visual
stimuli collected from multiple neurons in the area responsible for simple shape
recognition–the visual area V4. The stimuli were described by a set of attributes
such as spatial frequency, spatial frequency bandwidth, x and y axis position,
stimulus shape, etc. The neuron responses were classified into three categories: 0
– activity below the threshold of 10–20 spikes/second; 1 – activity above the thresh-
old labeled; 2 – activity above 30–40 spikes/second. Given this representation of
the data, the results of the experiment were represented by a decision table, where
each analyzed neuron was characterized by the stimuli properties (i.e., conditional
attributes) and the characteristics of its response to the stimuli (i.e., decision at-
tribute), for each of the applied stimuli.

Such representation of the data allowed for a direct application of rough set-based
analysis through calculation of equivalence classes, concept approximations, and
classification rules. This analysis facilitated discovery of interesting rules that seem
to corroborate previous studies which associated area V4 with shape processing.
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This, in turn, may indicate that the brain indeed uses rough sets-like reasoning for
object classification.

26.3.3 Classificatory Decomposition of Cortical Evoked Potentials

As described in Section 26.2.2, many experiments in neuroscience produce traces
of neuronal electrical activity. Often, such signals need to be classified into one or
more predefined classes (e.g., specific neuron type, presence vs. absence of a par-
ticular disease, etc.). Classification of such signals is possible when some measure
D, which describes distances (e.g., Euclidean, L2, etc.) between particular signals in
the dataset, is introduced. However, it is often very difficult to come up with a dis-
tance measure that is not only accurate and insensitive to measurement errors, but
also efficient computationally. Thus, in the problem of signal classification, extract-
ing particular features that distinguish one process from another (i.e., preserve the
original distances) is crucial. Extraction of such feature vectors can be based upon
a determination of a set of simple characteristics of a given signal (e.g., minimum,
maximum, average, etc.) or can be in the form of a more complex transformation or
signal decomposition technique. The general idea behind these more complex trans-
formations is to represent the original time series x in terms of some fixed (for all
series in the database) basis functions M and a set of coefficients (possibly different
for each series) a, with an addition of some error e:

x = Ma+ e. (26.5)

Various transformation/decomposition techniques, such as principal component
analysis (PCA) [8] or independent component analysis (ICA) [12], have been ap-
plied to signal classification with relative success. However, statistical criteria uti-
lized in those methodologies are often insufficient to build a reliable classifier.

The main concept of classificatory decomposition was motivated by the hy-
bridization of evolutionary algorithms (EA) with sparse coding with overcomplete
bases (SCOB) introduced in [24]. Using this approach, the basis functions as well
as the coefficients are being evolved by a genetic algorithm optimizing a fitness
function that minimizes the reconstruction error and at the same time maximizes
the sparseness of the basis function coding. This methodology produces a set of ba-
sis functions and a set of sparse (i.e., “as few as possible”) coefficients. This may
significantly reduce dimensionality of a given problem but, as any other traditional
decomposition technique, does not assure the classificatory usefulness of the gener-
ated model.

Classificatory decomposition (CD) is a general term that describes attempts to
improve the effectiveness of signal decomposition techniques by providing them
with “classification-awareness” [44]. In CD, the sparseness term is replaced by
a rough sets-derived data reduction-driven classification accuracy measure. This
should assure that the result will be both “valid” (i.e., via the reconstruction
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constraint) and useful for the classification task. Furthermore, since the
classification-related constituent also searches for a reduct, the classification is done
with as few as possible basis functions. Finally, the single-objective EA utilized
in the aforementioned technique is replaced by a multi-objective optimization ap-
proach, in which the EA deals with the reconstruction error and classification accu-
racy, both at the same time. Since the approach utilized in CD is based upon find-
ing a solution satisfying two potentially conflicting goals (i.e., component-based re-
construction accuracy vs. classification accuracy), an application of multi-objective
evolutionary algorithms (MOEA) seems natural.

The implementation of CD described in this section utilizes an extension
of the Vector Evaluated Genetic Algorithm (VEGA), called end-VEGA (elitist-
non-dominated-VEGA), which improves and enhances the original algorithm by
supplying it with considerations of elitism and non-dominance [46]. To address
non-dominance, the algorithm employs a simple approach based on multiplying the
fitness of a given individual by the number of solutions that this individual is dom-
inated by (+ 1 to ensure that the fitness function of a non-dominated solution is not
multiplied by 0). Since all fitness functions in CD are set to be minimized (maxi-
mization of the classification accuracy can be easily translated into minimization of
the classification error), the dominated solutions will be adequately penalized. To
include elitism, end-VEGA utilizes the idea of an external sequential archive [20] to
keep track of the best-so-far (i.e., non-dominated) solutions, and to make sure that
their genetic material is in the active gene pool.

The problem of minimization of the reconstruction error is intuitively simple.
Once a particular distance measure has been decided upon, virtually any optimiza-
tion algorithm can be used to minimize the distance between the original signal and
the reconstructed one. The measure employed in CD is the well known 2-norm, re-
ferred to in signal processing as the signal energy-based measure [19]. In order to
deal with raw signals which can be large (thus causing the energy-based distance
measure to be large as well), a simple normalization of the energy-based measure
by the energy of the original signal is proposed [44]:

DNORM =
∑n

t=1(xt − (Ma)t)
2

∑n
t=1(xt)2 , (26.6)

where x represents the original signal, M is the matrix of basis functions, a is a set
of coefficients, and t = 1..n where n is the number of samples in the signal.

Subsequently, the reconstruction error fitness function fREC for a representative
p takes the following form:

fREC(p) =
∑N

i=1 Di
NORM

N
, (26.7)

where Di
NORM is the normalized reconstruction error for the ith signal and N is the

total number of the input signals.
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The problem of maximizing the classificatory competence of the decomposition
process, and at the same time reducing the number of computed basis functions, can
be dealt with by the application of rough sets. In CD, the rough sets-based quality
of classification, as introduced in Eq. (26.3), is used for the purpose of estimating
the classificatory aptitude.

The quality of classification is estimated directly on the candidate reduct, which
can be computed by any of the existing algorithms/heuristics. Note that the main
objective that deals with the classificatory capability of decomposition can actually
be considered a bi-objective optimization problem itself. On the one hand, we are
looking for the best possible classification accuracy, but on the other, we want to use
as few basis functions as possible. However, based on previous applications of EAs
in the search for reducts, as described in [59], minimization of a single-objective
fitness function that is simply a summation of the classification error and the relative
length of the reduct was utilized, as shown in Eq. (26.8).

fCLASS(p) =
(
1− γR

)
+

L(R)
M

, (26.8)

where p is a given representative (i.e., chromosome), L(R) is the length of the po-
tential reduct R (i.e., the number of attributes used in the representative), normalized
by the total number of conditional attributes M, and γR is the quality of classification
coefficient for the reduct R.

Classificatory decomposition has been successfully applied, at various stages
of its development, in two projects involving cortical evoked potentials. First, the
methodology was employed to investigate the influence of short cooling events ap-
plied to the surface of the cortex of the rat’s brain, which temporarily disabled spe-
cific parts of the animal’s brain [42]. Secondly, the approach was used to analyze
the differences between rats that had been exposed to cigarette smoke in utero (i.e.,
their mothers were exposed to cigarette smoke during pregnancy), while the oth-
ers had not [45, 46]. The research problem was to investigate how treatments (like
nicotine) could alter the brain’s responses to discrete stimuli. In both cases, classifi-
catory decomposition aided neuroscientists in their research pursuits and produced
interesting insights into the science of the brain.

26.3.4 Classification of Functional and Non-functional Neuronal
Models

As described earlier, computational modeling of neurons allows for exploration of
many parameter combinations and various types of neuronal activity in silico. In
this section, we describe an exploration and analysis of a large parameter space of
the AB neuron introduced in section 26.2.2.3 [49].

To investigate the differences between functional and non-functional models
of the AB cell, an extensive database of 21,600,000 of models was created by
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systematically varying 12 parameters describing the model neurons (i.e., maximal
conductances of membrane currents, as shown in Fig. 26.3) from a “hand-tuned”
AB model [50]. First, to determine the extent of the variations in the parameter val-
ues that the model can withstand and still produce functional activity, the maximal
conductances of membrane currents were independently varied around their canon-
ical values. To reduce the computational time and the size of the output database,
parameters were first varied one at a time to determine physiologically reasonable
value ranges and step sizes for each conductance separately. The “variation matrix”
of all the explored values for the parameters in the AB model is shown in Fig. 26.4.

Fig. 26.4 Explored parameter values for the AB neuron models, expressed as % deviation
from the hand-tuned values (the quantity on the gray background shows the number of pos-
sible values for a given parameter) (source: [49]).

Each of the 21.6 million “candidate” model neurons was simulated and classi-
fied as functional if it produced biologically realistic activity under four scenarios:
spontaneous activity, spontaneous activity with neuromodulator deprivation (i.e.,
removal of the influence of neurotransmitters descending from other parts of the
nervous system), activity with external current injections, and activity with neuro-
modulator deprivation and current injections. Whether the activity generated by the
AB models was biologically realistic was judged based on experiments performed
on their biological counterparts in isolation from the rest of the pyloric network and
under each of the four conditions [48]. There were 353,208 (1.6352% of the the en-
tire database) models meeting all the above criteria. The identified “good” models,
as well as those which failed the test of functionality, were then subject to a rough
sets-based rule-mining analysis in an attempt to explain the differences between the
two groups via a set of concise and understandable IF/THEN classification rules.
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Each model (i.e., a particular combination of the parameter values) was coded in
the database by integer numbers corresponding to the indices in the variation matrix
(with 1 being the smallest possible index, and 3 always indicating the canonical
value, as shown in Fig. 26.4). A binary classification attribute was also added to
differentiate between functional and non-functional entries, thus transforming our
model database into a full-fledged decision table. An example of a portion of the
decision table is shown in Fig. 26.5.

Fig. 26.5 An example of a portion of the decision table constructed for the AB model
neurons.

To reduce the computational complexity of the analysis, the approach was first
tested on a sampled subset of the models. Based on previous experiments, it was
determined that a 1% random sample adequately preserves the characteristics of
the original dataset [49]. In addition, to deal with the problem of huge dispropor-
tion between the numbers of functional and non-functional models, the following
sampling protocol was utilized: first, a random 1% sample of the “good” models
was selected, and then 10 random samples of the same size of the “bad” models
were drawn, thus creating 10 datasets with equal distributions of the two classes,
which would be subject to further analyses in parallel. This was based on a quite
well-known approach to balancing class distributions, especially useful in artificial
neural network training [21], with existing applications in neuroscience [10].

One of the most natural ways to explain the differences between “good” and
“bad” models could be via classification rules of the form “IF some pattern
within the parameter space, THEN functional model” and “IF some other pattern
within the parameter space, THEN non-functional model.” The theory of rough
sets lends itself naturally to this kind of analysis, especially since it is very well
equipped to deal with imprecise and somewhat ambiguous data, which is a “part
of life” in neuroscience. Not only can similar functional activity be produced by
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neurons with disparate cellular characteristics, but also quite intricate interactions
and relationships between the neurons’ (and therefore models’) parameters have
been discovered [15, 38]. What this means is that it not only may be difficult to
identify interesting and trustworthy IF/THEN rules, but that they also will most
likely not be 100% accurate. In other words, even if a particular rule adequately
explains the functional behavior of a subset of models, it may fail to elucidate the
mechanisms governing a different subset, due to some hidden interactions char-
acterizing that subset. The theory of rough sets by definition allows this kind of
uncertainty in data, by the means of approximation of concepts via the indis-
cernibility relation and the equivalence classes determined upon it, as described in
Section 26.2.1.

Since the AB models in the database are represented by sequences of integers
(i.e., indices in the variation matrix), which correspond to percentages of the hand-
tuned values of the maximal membrane conductances, a direct application of rough
sets-based analysis is possible. However, generating classification rules based on
precise values of the specific membrane conductances makes for a difficult biolog-
ical interpretation. Therefore, a discretization algorithm, the Equal Frequency Bin-
ning, which divides a sorted variable into k bins, where, given n instances, each bin
contains m/k adjacent values [6] was applied. The k was purposely set to 3 to gen-
erate bins, which could be, without a loss of too much fidelity, referred to as “low,”
“intermediate” (always close to the hand-tuned value), and “high” conductance,
independent of the actual value in μS.

A “by-product” of classification rules-based analysis is the ability to identify
“important” attributes in a decision table. Obviously, if a given attribute is utilized
in a trustworthy rule, it must be important from the standpoint of the underlying
classification problem. The theory of rough sets provides a straightforward approach
to the problem of selection of important features via the concept of reducts. In this
particular project, the following two algorithms were utilized: 1) the well-known
simple greedy Johnson’s algorithm [13], which computes a single reduct only, and 2)
a genetic algorithms-based implementation, which is capable of computing multiple
reducts from a single dataset [56].

The methodology of genetic algorithms-driven pseudo-association rule mining
[47,49] was applied to the reduced and discretized data, and yielded 9 concise rules
with support of between 1% and 20%, and confidence of at least 75% in the data.
The rules provided very useful insights into the problem of analysis of how the
activity of neurons depends on their cellular parameters. For instance, some of the
rules described an intuitive dependence of the neural activity of the AB neuron on
its axon’s sodium (Na) current. The current is known to play a critical role in the
process of spike generation, thus it makes sense that its corresponding conductance
must be at least intermediate (i.e., close to the hand-tuned value) to produce proper
bursting. The understanding of these kinds of phenomena is extremely important to
neuroscientists.
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26.4 Rough Sets in Neuroscience: Open Problems

Although, as presented above, the theory of rough sets has found some successful
applications in neuroscience and related areas, there is still plenty of untapped po-
tential left. Since many problems in neuroscience are inherently complex, imprecise
and/or ill-defined, research in the field could significantly benefit from the rough
sets’ ability to deal with vague or incomplete data. Potential applications in neu-
rology are obvious–there is always going to be a need for efficient and accurate
data mining and knowledge discovery methods in tackling such critical diseases
as Parkinson’s, Alzheimer’s, Huntington’s, Amyotrophic Lateral Sclerosis, to only
name those few, for which there are clinical datasets available, but there is no cure.

There is also a tremendous potential for applications of rough sets in behavioral
studies, where many experiments can be described in the form of decision tables and
the task is to investigate the phenomena underlying the differences between normal
and abnormal behaviors.

While rough sets have been successfully applied to analysis of computational
neuronal models, as described in Section 26.3.4, the methodology could also be
potentially utilized in the very process of the generation of physiologically realis-
tic models. For example, combined with evolutionary algorithms that explore the
parameter space in search for functional models, rough sets-based feature selection
could be used to dynamically determine which of the model’s parameters are critical
at a given point for differentiation between functional and non-functional models,
and therefore need additional tuning. The other parameters, deemed unimportant in
the given segment of the parameter search space, may be temporarily ignored, thus
simplifying the problem and speeding up the computations.

26.5 Conclusions

In this chapter, we reviewed selected applications of the theory of rough sets in the
broadly defined field of neuroscience. We described problems ranging from clin-
ical neurology to cognitive and computational neuroscience. As we hope to have
shown, the existing applications in the neuro domain have been very successful,
therefore, it is even more surprising that rough sets are not more commonly used in
that field. With this chapter, we hope to promote the theory of rough sets amongst
the researchers and practitioners in the “neuro world,” but at the same time, we
hope to foster a greater interest of the members of the rough sets community, and
data mining and knowledge discovery as a whole, in the fascinating and rich field of
neuroscience.

Importantly, we believe that by participating in the research efforts in the
field of neuroscience, the rough sets community will benefit tremendously by
finding inspiration and ideas for extensions of the now well-established field of
rough-neural computing. After all, many RNC paradigms are directly or indirectly
based on neuroscientific principles. By helping enhance the understanding of those
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principles, we can improve the efficiency of RNC methods by incorporating new
ideas for how humans perceive and process granules of knowledge; by aiding in
the creation and analysis of realistic neuronal models and their networks, we can
propose new architectures and training algorithms for artificial neural networks.
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Chapter 27
Knowledge Representation and Automated
Methods of Searching for Information
in Bibliographical Data Bases: A Rough Set
Approach

Zbigniew Suraj, Piotr Grochowalski, and Krzysztof Pancerz

Abstract. In this paper, we present an approach to searching for information in
bibliographical data bases founded on rough set theory and the domain knowledge.
The additional knowledge of the information searched by the user is represented in
the form of two kinds of ontologies: a general ontology and a specific ontology. The
general ontology is built by domain experts. In research carried out, this ontology
covers information about fundamental notions in the area of rough set theory and
its applications as well as about significant relationships between these notions. The
specific ontology delivers us the additional knowledge of a bibliographical descrip-
tion of a paper searched in a data base. This knowledge is extracted automatically
from data gathered in the Rough Set Database System (RSDS). This system, be-
sides a typical utility function, constitutes an environment for conducting research
with a view to verify the validity of the proposed methods and algorithms devoted
to searching for information in its data base.
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27.1 Introduction

These days each of us is exposed to a lot of information. The man, being a think-
ing creature, is able to select the obtained information himself. In everyday life,
we meet computers almost everywhere. They expose us to an uncountable amount
of information which must be processed to select it properly. The greatest, and the
most popular source of information for the computer users today, is the Internet. The
Internet contains countless information concerning different fields of knowledge. In
such immensity of information, it is really hard to find something that interests us in
particular. Although a lot of more or less intelligent browsers have been constructed,
there is still vast research conducted to find new methods of browsing broad re-
sources of information (data bases). This is a scientific challenge in the field of
equipment, programming, as well as conception. It also concerns such fields as: ar-
tificial intelligence, reading comprehension, processing and understanding images,
speech recognition, etc.

In recent years, we take more and more attempts related to the development of
tools for semantic searching for information [4, 7, 12, 17, 27]. Support for seman-
tic searching for information occurs at very different levels. Some systems expect,
from the end-user, knowledge of the technology used in creating and describing on-
tologies representing data [4, 7], or specialized knowledge of languages based on
ontologies [36, 37]. Other techniques use natural language processing (NLP) [17].
Methodology developed by us and the semantic search system that uses it in the
RSDS system may be classified into a group of Keyword-Based Search Engines.
An example of a semantic search system that belongs to this group is the Aragog
system [18]. In comparison to Aragog, our system does not require knowledge of
the construction used in the ontology and specialized query languages, the whole
search process is "invisible" to the user. The main mechanism of semantic search-
ing is not based on any specialized search language, but on the data stored in a
relational database using an ontology and theory of rough sets. Additionally, our
system is based only on one ontology describing the domain of exploration, which
is enlarged on the basis of the ontology automatically constructed from data in the
RSDS system.

In the research that moves to create the mechanisms, which would allow ma-
chines (computers) to search for information (mainly text resources) in the way that
the man does, the key role is the ability to understand the obtained information auto-
matically. Until now, machines are not able to understand the obtained information.
In order to eliminate that barrier, the intensive research is conducted. This research
mainly concerns the methods of analyzing great reserves of information, often with
an undefined structure. We can classify these methods into one of two groups [8,9]:
knowledge-rich methods or knowledge-poor methods. The knowledge-rich methods
require the "initial knowledge" — semantic information on the basis of which they
perform further operations. Unfortunately, they are often limited to a part of reality,
which is represented by a reconsidered resource of information (a set of documents).
At present, a big role in this research is played by ontologies [11] which are treated
as a source of semantic knowledge. Ontologies are examined in different aspects,
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e.g. building (learning) ontologies on the basis of the text [3], defining new terms
for ontologies, defining various relationships between particular fragments of the
text [8, 26, 28], building intelligent browsers of information [1, 14], etc.

The knowledge-poor methods are characterized mainly by the abstraction from
the specification of the processed documents, and they are often based on the statis-
tical approach to the text analysis [2,6,35]. Moreover, the research concerning both
groups is conducted to try to join them [5].

The realized research aims at equipping the hitherto existing "data carriers" with
additional data, called metadata [19], which help to perform various operations
connected with generally defined information processing, e.g. the concept of the
Semantic Internet [13], including semantic browsers [1, 14], semantic digital li-
braries [16, 39–43].

The structure of the remaining part of this paper is as follows. Section 27.2 in-
cludes basic definitions of the concepts used in further parts of the paper. The for-
mulated methods and algorithms related to semantic searching for information have
been described in Section 27.5. That chapter also contains general characteristics of
the defined field ontology, i.e., concerning rough set theory and its applications. The
description of the RSDS system and its basic applications have been presented in
Section 27.6. Section 27.7 shows briefly the conducted experiments and the conclu-
sions. The final conclusions have been presented in Section 27.8.

27.2 Basic Concepts

In this section, the definitions of basic terms concerning rough sets [21–24, 30],
ontologies [15, 20], metrics and the angle between two vectors have been gathered.

27.2.1 Rough Sets

Rough set theory is mainly based on binary relation between objects of some uni-
verse. Let U be a nonempty set of objects and u∈U . Any subset R⊆U ×U is called
a binary relation on U . R(u) denotes a set of all objects v ∈ U such that (u,v) ∈ R.
The pair (u,v) ∈ U ×U will be read as "u is in the relation R with v". We say that
the relation R is:

• reflexive, if and only if, for any u ∈U , it is true that (u,u) ∈ R,
• symmetric, if and only if, for any u,v ∈ U , it is true that if (u,v) ∈ R, then
(v,u) ∈ R,

• transitive, if and only if, for any u,v,w ∈ U , it is true that if (u,v) ∈ R and
(v,w) ∈ R, then (u,w) ∈ R.

If R is reflexive, symmetric and transitive, then R is called the equivalence relation.
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Let U be a nonempty, finite set called the universe, R⊆U ×U be a binary relation
defined on U , and X ⊆U be a given subset of U .

Definition 27.1. The lower approximation R(X) of the set X with respect to the
relation R is the set R(X) = {u ∈U : R(u)⊆ X}.

The lower approximation R(X) is such a set of objects in U , which are only in
relation R with objects from the set X .

Definition 27.2. The upper approximation R(X) of the set X with respect to the
relation R is the set R(X) = {u ∈U : R(u)∩X �= /0}.

The upper approximation R(X) is such a set of objects in U , which are in the relation
R with the objects from the set X and which can be in the relation R with the objects
from the set U −X .

Definition 27.3. The boundary region BNR(X) of the set X with respect to the rela-
tion R is the set BNR(X) = R(X)−R(X).

The boundary region BNR(X) is a set of objects in U , which are in the relation R
with the objects from the set X as well as with the objects from the set U −X .

Definition 27.4. Accuracy of approximation αR(X) of the set X with respect to the

relation R is a ratio αR(X) = card(R(X))

card(R(X))
, where card(A) denotes the cardinality of

the set A.

The values of the coefficient αR(X) fulfill the dependence: 0 ≤ αR(X) ≤ 1. If
αR(X) = 1, then the set X is uniquely defined by the relation R. This coefficient
is a dispersal measure of the relation R on different objects.

27.2.2 Ontologies

Definition 27.5. Let U be a nonempty, finite set called the universe of concepts,
C ⊆U , and R be a family of relations defined on the set C. An ontology O is a pair
O = (C,R). C is called the set of concepts in the ontology O.

Definition 27.6. Let O= (C,R) be an ontology. An ontology graph OG is a directed
graph: OG = (N,E,γ,ρ), where N is a finite set of nodes, E ⊆ N ×N is a set of
directed edges, γ : N → C is a function which attributes the concept to the graph
nodes, and ρ : E →R is a function which attributes relations to the graph edges.

In the graph OG nodes correspond to concepts whereas edges correspond to re-
lationships between concepts.

Let O = (C,R) be an ontology. In the research, we distinguish five binary rela-
tions between concepts from the set C, i.e., R= {R��,R⊂,R�,R�,R∼}. We call these
relations adequately:

• R��: a connection relation. We assume, that this relation is reflexive and sym-
metric. If (x,y)∈R��, then we say that the concept x is "semantically connected"
with the concept y.
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• R⊂: an inclusion relation. We assume, that this relation is reflexive and tran-
sitive. If (x,y) ∈ R⊂, then we say that the concept x is "part of" the concept
y.

• R�: a generalization relation. We assume, that this relation is reflexive and tran-
sitive. If (x,y) ∈ R�, then we say that the concept y is a "generalization" of the
concept x.

• R�: a specification relation. We assume, that this relation is reflexive and tran-
sitive. If (x,y) ∈ R�, then we say that the concept y is a "specification" of the
concept x.

• R∼: a synonym relation. We assume, that this relation is an equivalence relation.
If (x,y) ∈ R∼, then we say that the concept x is a "synonym" of the concept y.

Using the definitions from Subsection 27.2.1, we can modify the definitions of the
lower and the upper approximation as follows. Let C be a set of concepts in the
ontology O, D ⊆ C, R be a set of binary relations on C. For every relation R ∈ R,
we define the lower and the upper approximation of the set D as R(D) = {c ∈ C :
R(c) ⊆ D} and R(D) = {c ∈ C : R(c)∩D �= /0}, respectively. The boundary region
of the set D is denoted as BNR(D) = R(D)−R(D).

We will further consider only a particular subset C of concepts from the whole
ontology. That is why we define the the lower and the upper approximation of a
given set D restricted to the subset C. Restricted approximations have the forms
as follows: R(D)|C = {c ∈ C : R(c) ⊆ D} and R(D)|C = {c ∈ C : R(c)∩D �= /0},
respectively. Analogically, the boundary region of the set D restricted to the set C,
is defined as: BNR(D)|C = R(D)|C −R(D)|C.

For every relation R from R, we define accuracy of approximation of the set D
in such a way, that αR(D)|C = card(R(D)|C)

card(R(D)|C)
.

We slightly modify accuracy of approximation for the use it in ontological search-
ing (see Subsection 27.5.2).

27.2.3 Generators of Weights

In this subsection, we recall the formulas for generators of weights used in experi-
ments described in Section 9.5.

Definition 27.7. Arithmetic generator
Let n be a fixed natural number (n > 0). An individual weight ai of the sequence of
weights is defined as ai =

2i
n(n+1) for i = 1,2, . . . ,n.

Definition 27.8. Pseudo-geometric generator
Let n and p be fixed natural numbers (n > 0, p > 1). An individual weight ai of
the sequence of weights is defined as ai = (p− 1) 1

pi for i = 1,2, . . . ,n and the rest

rn =
1
pn .
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Definition 27.9. Ordinary generator
Let n be a fixed natural number (n > 0). An individual weight ai of the sequence of
weights is defined as ai =

1
i(i+1) for i = 1,2, . . . ,n and the rest rn =

1
n+1 .

Definition 27.10. Golden generator
Let n be a fixed natural number (n > 0). An individual weight ai of the sequence of
weights is recursively defined in the following way:

ai =

{ √
5−1
2 for i = 0,√
5−1
2 (1−∑i−1

j=0 a j) for i > 0

and the rest rn = 1−∑n−1
i=0 ai.

Individual weights ai of the sequence of weights are created as a result of a golden
division of number 1 as well as the "remaining" parts of this number.

27.2.4 Metrics

In this subsection, we recall definitions of selected metrics used in experiments. Let
x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn) be vectors with n real coordinates.

Definition 27.11. Euclidean metric
The Euclidean distance dE between vectors x and y is defined by the following
formula:

dE(x,y) =

√
n

∑
i=1

(xi − yi)2.

Definition 27.12. Minkowski metric
The Minkowski distance dM between vectors x and y is defined by the following
formula:

dM(x,y) = (
n

∑
i=1

|xi − yi|p)1/p, p ∈ [1,∞).

Definition 27.13. City metric
The city distance dC between vectors x and y is defined by the following formula:

dC(x,y) =
n

∑
i=1

|xi − yi|.

Definition 27.14. Hamming metric
The Hamming distance dH between vectors x and y is defined by the following
formula:

dH(x,y) =
n

∑
i=1

f (xi,yi) where f (xi,yi) =

{
0 if xi = yi

1 if xi �= yi
.
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Definition 27.15. Chebyschev (maximum) metric
The Chebyschev distance dT between vectors x and y is defined by the following
formula:

dT (x,y) = max
i=1,2,...,n

|xi − yi|.

27.2.5 Angle between Vectors

In order to define the similarity of two vectors, we can use the angle between vectors
defining whether two vectors are near each other.

Definition 27.16. Let x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn) be vectors with n
real coefficients. The formula for the cosine of the angle α between vectors x and y
has the form:

cosα =
d2(x,0)+ d2(y,0)− d2(x− y,0)

2d(x,0) ·d(y,0)
where d(z,0) denotes the length of the vector z according to a given metric d defined
in Subsection 27.2.4, 0 = (0,0, . . . ,0) is the zero vector with n coordinates, while
vector x− y = (x1 − y1,x2 − y2, . . . ,xn − yn).

27.3 Main Aims of the Paper

The aim of the author’s research is an attempt to formulate effective methods and
mechanisms which would allow automatized administration of information, search-
ing for information as well as representation of possessed information in biblio-
graphical databases. An intelligent activity of the proposed mechanisms will depend
on the ability to understand (at least partly) the possessed information, i.e., obtaining
the knowledge which so far could have been read only by human beings. The ex-
perimental environment for the conducted research is the formulated system of the
RSDS data base (Rough Set Database System). This system includes bibliographi-
cal descriptions of publications related to the methodology of rough set theory and
its applications. Despite the fact, that this system does not include various kinds of
information, it is still a good tool allowing to test the correctness of the proposed
solutions.

27.4 The Results Obtained So Far

Within the conducted research, we have formulated the field (general) ontology, con-
stituting an attempt to systematize rough set theory. The creation of such a formal
description will allow to conduct different research related to rough sets. We have
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also proposed the methodology allowing creation of an ontology of a bibliograph-
ical description for every publication, for the next step in the process of intelligent
administration of information in the system. This ontology will represent the mean-
ing of the content of a given publication. On the basis of the formulated kinds of
ontologies, we have proposed the mechanism which allows to realize the intelligent
information searching in bibliographical systems on the example of the RSDS sys-
tem. The intelligent activity of this system can be observed through the ability to
understand the possessed information. This mechanism has been implemented in
the RSDS system which helped to verify it in practice. The conducted experiments
demonstrate the effectiveness of the mechanism.

27.5 Methods and Algorithms Related to “Intelligent"
Searching for Information

The existing techniques of searching for information, i.e., database engines, the
web search engines (Google, etc.) are very dependent on the man, as they are not
directed to try to understand expectations of the system’s user to enhance the effec-
tiveness of searching. In the approaches proposed by the authors, such an aspect of
searching for information is treated as a key aspect. As a consequence, we propose
to broaden the present RSDS system and add further "intelligent" mechanisms
of searching for information. This system is a bibliographical database related to
rough set theory and its applications, but it is also the experimental environment
for the conducted research. The theoretical foundation to build such extensions for
this system are e.g. the rough set methods and those ontologies, which are treated
as the reserves of additional information about publications collected in the RSDS
system. The ontologies used in the research allow to describe a set of publications
and the dependencies between the main elements (concepts) existing in those
ontologies, in a more detailed way. In this research, the descriptions of publications
are formulated in English.

27.5.1 Methodology of Creating a Detailed Ontology

In the approach that we have presented, we take into consideration two kinds of
ontologies: a general ontology and a detailed one. The first of them, i.e., the general
(field) ontology, describes the concepts related to a considered field of applications,
and it also describes covert and overt dependencies between such concepts. For the
RSDS system, the general ontology deals with rough set theory and its applications.
This ontology has been formulated and presented in [10]. A part of this ontology is
shown in Figure 27.1.
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Fig. 27.1 Part of general (field) ontology.

Building the general ontology was the first step to construct an "intelligent"
mechanism of searching for demanded information. In this case, it means more "apt"
information finding in the RSDS system, i.e., finding one particular publication or
if it is for some reason impossible, pointing out other publications covering similar
topics. The second kind of ontology, called the detailed (publication) ontology, con-
cerns the concepts and relations between the concepts in the descriptions of publica-
tions placed in the RSDS system. A description of a publication put into that system
includes such elements as: a title of a publication, sometimes a subtitle, authors of a
publication, summary, key words, etc. In those elements of a description of a publi-
cation, there is a vast reserve of overt semantic (meaningful) information, and also
covert information which can be discovered using e.g. the rough set methods. The
detailed ontology is built for every publication separately, by looking for the general
ontology concepts in the publication. In case of finding such a concept, it is incor-
porated to the created detailed ontology for that particular publication. In order to
make searching for the concepts in descriptions of publications more effective, first
we submit the concepts of the general ontology and descriptions of publications to
preprocessing. The general idea of preprocessing depends on:

1. Defining basic grammatical forms (roots) for particular words existing in de-
scriptions and concepts of the main ontology. Thanks to that, we avoid the
situations where every word, existing in different grammatical forms in a de-
scription of a publication, would define many new concepts. This process is
realized with the use of the quite popular Porter stemming algorithm [25]. This
algorithm contains, in its knowledge base, a defined list of well known, and the
most often appearing, word endings. We try to obtain the root of a word by ana-
lyzing the endings of the processed word, and using a defined knowledge base.
That process is repeated in several turns. In every further step it deals with a
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different element of the word analysis, e.g. making the word singular, putting
the word into the present tense, eliminating the ending, etc.

2. Eliminating words with little semantic value, e.g. a, about, etc. Such words bring
very little essential information from the point of view of a considered problem,
and they can introduce unnecessary interference to the process of searching for
the demanded information.

After the preprocessing has been done, we start to identify the existence of the gen-
eral ontology concepts in the elements of a description of publications available in
the RSDS system. In case of finding a particular concept from the general ontology
in a description of a given publication, it is added in the form of a node into a created
graph, representing the detailed ontology for a given publication. However, if there
is no concept from the main ontology identified, we start to search for "important"
words in a description of a publication (in present research, we consider defining
the measure of importance of particular words). In this case, the system awaits for
an expert to help and to take a final decision for the importance of the concept on
the basis of such information. The system tells the expert which words in a descrip-
tion of a publication appear most often (probably they have the greatest meaning in
the considered text). Next, the expert decides whether the proposed concept is vital
or not for the phase of building a particular ontology for a publication. During the
research conducted at present, we consider only the nodes of the created graph in
view of the further development of the created methodology, and we consider defin-
ing the relations between particular concepts. The exemplary nodes of the graph for
a single detailed ontology are: Knowledge Discovering, Data Reduction, Rough Set,
Attribute, Characteristic Rule, Classification Rule, Decision Rule, Knowledge Rule.

It is worth adding, that detailed ontologies, in the proposed approach, are auto-
matically built for every publication, separately with the use of the general ontology
and bibliographical descriptions made available through the database of the RSDS
system. When the detailed ontologies are defined, they are recorded in the system
to use them later in the created process.

27.5.2 The Mechanism of “Intelligent" Searching
for Information

Another step to create a formulated mechanism was creating a searching mecha-
nism on the basis of defined ontologies. For that purpose, we additionally used the
rough sets methodology, in particular, the concepts of the lower and the upper ap-
proximation defined in it (see Section 27.2.1). The mechanism of that step looks as
follows:

• At the beginning, one has to define a demanded concept c in relation to which
information will be searched for, i.e., publications in the RSDS system. At
present, the mechanism allows to define only individual concepts for search-
ing, defined in the domain ontology. However, we are trying to work out how
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to extend the abilities of the mechanism. The formulated extension will depend
on a possibility of defining complex concepts, i.e., concepts consisting of some
individual concepts connected with adequate operators.

• In the next step, a demanded concept c is searched for in the field ontology,
particularly, in an ontology graph, defined on the basis of the field ontology.
That graph is built according to Definition 27.6. The concept c has in such a
graph its own nearest surrounding consisting of other concepts, i.e., it has its
neighbors. Two concepts (the nodes of the ontology graph) are neighbors if
there exists an edge between them. Taking into consideration the fact that in
the considered graph, there are five different relations (connections) between
the concepts, we can distinguish five different surroundings of the concept c ac-
cording to the kind of the relation. For every surrounding of the concept c, we
define its approximation on the basis of the definition of the lower and the upper
approximation from rough set theory, which are defined in Subsection 27.2.2.
In definitions of both approximations, we use some slightly modified relation
R∗. If R is reflexive, then we exclude the trivial situation that (u,u) ∈ R. There-
fore R∗ = R−{(u,u)}. Hence R∗(u) = R(u)−{u}. Let C be a set of concepts
included in a given publication and D = {c}, the lower and the upper approxi-
mation can be intuitively defined as follows:

• concepts from C, which are connected by a given relation R∗ only with
a considered concept c, belong to the lower approximation R∗(D)|C of D
according to R∗ restricted to C,

• concepts from C, which are connected by a given relation R∗ with a con-
sidered concept c, and through that relation they are connected with other
concepts, belong to the upper approximation R∗(D)|C of D according to R∗

restricted to C.

Taking into consideration the fact, that there is a need to define the extent to
which the information (publication) approximates the concept c, the above ap-
proximations are defined for every considered publication. In order to achieve
it, we take into account the detailed ontology of a publication. It is checked,
whether the concepts from that ontology are in the nearest surrounding of the
concept c, and whether they are connected with it by the considered relation R∗.

• On the basis of the assigned sets, we calculate the accuracy of approximation
αR∗(D)|C of D, where D = {c} for a given publication consisting of concepts
included in C, with respect to the relation R∗:

αR∗(D)|C =

⎧
⎪⎨

⎪⎩

1 if c ∈C,
0 if R∗(D)|C = /0,
card(R∗(D)|C)
card(R∗(D)|C)

otherwise.

That coefficient is calculated according to the definition shown in
Subsection 27.2.2 for each distinguished relation. In this way, we obtain
five coefficients of approximations. In order to attribute only one value,
describing a degree of approximation for the concept c, to a given publication,
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we connect those values into one, using an aggregation operator. For that
purpose, we have used the following operators: minimum, maximum, median,
arithmetic average, average weighted with different ways of defining weights.
The ways of defining weights, i.e., their generators, have been described in
Subsection 27.2.3. The value obtained in this way is still modified ("improved")
by taking into consideration the date and place of publication. There have been
established the rankings for the year of publishing and the place of publication,
i.e., for articles in journals - the ranking of journals, for books - the ranking of
publishers, for conference articles - the ranking of conferences. For instance,
the ranking for the year of publishing is computed as a ratio of a number of
publications in a given year in the system to a number of all publications in the
system, and it is established in an identical way for the remaining variants of
the rankings. The final coefficient of the publication importance is computed as:

importance=importance of accuracy of approximation
+importance of the place of publishing
+importance of the year of publishing,

where

• the importance of accuracy of approximation is defined as a product of the
value of the average accuracy of approximation of the concept c for a given
publication and weight1;

• the importance of the place of publishing is defined as a product of the
value taken from the assigned ranking, if the place of publishing is there,
and weight2;

• the importance of the year of publishing is established as a product of
weight3 and the value taken from the assigned ranking, if a given publi-
cation is not older than three years;

• the values of weights: weight1, weight2, weight3 are assigned experimen-
tally, i.e., they are set up manually, e.g. values 0.5;0.3;0.2 or with the use of
defined generators, i.e., arithmetic, pseudo-geometric, ordinary and golden
generator. Their definitions have been given in Subsection 27.2.3.

The value of the coefficient of importance for the concept c assigned in this
way for a considered publication, is attributed to it, and it causes setting its po-
sition in the result ranking, which is created for all publications, and which is
presented as the result of searching. In order to take into consideration differ-
ent kinds of publications and their importance depending on the type, and the
convenience of looking through the results of searching, they have been divided
into groups according to the type of publication, i.e., into 12 groups reflecting
the types of publications defined in the BibTeX specification. They are e.g. arti-
cle, book, booklet, inbook, incollection, inproceedings, manual, mastersthesis,
phdthesis, proceedings, techreport, unpublished [38].

For the process of searching for information (publications) defined in this way, we
have conducted the experiments which have been described briefly in Section 27.7.
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The presented process of defining publications semantically suitable for the
searched concept can be shown by means of the algorithms described below.

Algorithm 27.1. The algorithm describing the process of an “intelligent" searching
for bibliographical data on the basis of semantic reflection of the searched concepts,
by the summaries of publications (abstracts).
Input : A - a set of summaries (abstracts) from the RSDS system database, c -

a searched concept, μmin - an established minimum level of accuracy of
approximation.

Output: Ac ⊆ A - a subset of summaries of publications from A, which semanti-
cally match the concept c.

Ac ← /0 for every summary A ∈ A do
Calculate μ(A,{c}) defining the importance of A for c using Algorithm 27.5.2
if μ(A,{c})> μmin then

Ac ←Ac ∪A

Return Ac

The aim of Algorithm 27.5.2 is to assign the result set which will contain selected
publications, i.e., publications, whose coefficient of attribution to the concept fulfills
a particular minimal level.

Algorithm 27.2. The algorithm assigning the importance of the summary of a pub-
lication for the searched concept.
Input : O - the field ontology, recorded in the format of an ontology graph, A -

a summary of a publication (abstract), c - a searched concept, o - an ag-
gregation operator, e.g. minimum, maximum, median, arithmetic average,
average weighted with different kinds of defining weights.

Output: imp(A,{c}) - the importance of A for c.
Attribute neutral element for o to μ(A,{c}) Create the set C of concepts from the
field ontology O occurring in the summary A for every relation R ∈R do

μR(C,{c}) ←

⎧
⎪⎨

⎪⎩

1 if c ∈C,
0 if R∗({c})|C = /0,
card(R∗({c})|C)
card(R∗({c})|C)

otherwise.
μ(A,{c}) ←

o(μ(A,{c}),μR(C,{c}))
imp(A,{c})←importance of μ(A,{c}) + importance of the place of publishing +
importance of the year of publishing Return μ(A,{c})

Algorithm 27.5.2 assigns accuracy of approximation of a given publication with
respect to a searched concept, on the basis of the following steps:

1. Defining the approximations (upper and lower) of the searched concept c in
relation to the concepts of the general ontology, existing in a given summary
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for each type of relation (connection, inclusion, generalization, specification
and synonym relation).

2. Assigning the coefficient to the concept c for every type of relation.
3. Aggregation of the obtained coefficients into one value reflecting the entire ad-

hesion of the concept to a given summary with the use of e.g. minimum, max-
imum, arithmetic average, average weighted with different kinds of defining
weights.

This algorithm is repeated for all publications (abstracts) present in the RSDS
system.

27.5.3 The Outline of the General Ontology for Rough Set
Theory and Its Applications

The ontology defined by an expert, constitutes a proposal of the concept model,
concerning rough set theory and its applications. In order to create it, we have dis-
tinguished the most essential concepts, the definitions concerning rough sets, and
we have defined the dependencies between them. This allowed to try to systematize
and regulate widely considered rough set theory.

The model of the ontology consists of the concepts defined on a high level of ab-
straction, e.g. System, Model, which are detailed with the concepts of lower levels.
Accepting such a way of defining the dependencies between the concepts, allows
free introduction of the concept hierarchy. On the basis of Definition 27.6, the rela-
tions have been defined between particular concepts at different levels of hierarchy.
Those relations enable us to realize different ways of connections. Every relation is
a binary relation, and it connects two concepts together: the source concept and the
target concept.

• Connection relation R�� - that relation defines whether a given concept (source)
depends on the other concept (target) as for meaning, and whether it is con-
nected with it in any way, e.g. the concept Lower Approximation is connected
with the concept Rough Set. For this relation, we can define the reverse relation
between the concepts, i.e., for a reverse direction, e.g. Rough Set is connected
with Lower Approximation.

The further relations (see paragraph 27.2.2) caused regulation of the defined con-
cepts in the graph structure, representing the described model. The ontology editor
Protégé works on such a structure. This editor is used at the initial phase of research.
Creating such a structure in order to describe the designed model, allows easy and
intuitive recording, interpretation and modification.

• Inclusion relation R⊂ - it states that the extent of meaning of the source con-
cept is included in the extent of meaning of the target concept, e.g. the extent
of meaning of the concept Model includes the extent of meaning of the con-
cept Data Model. For this relation, we cannot define a reverse relation, i.e., the
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reverse statement saying that the extent of meaning of the concept Model is
included in the extent of meaning of the concept Data Model is not true.

• Specification (detailing) relation R� - this relation states, that the source concept
is defined more precisely than the target concept. The reverse relation for the
specification relation is the generalization relation.

• Generalization relation R� - it defines, that the source concept is the concept
which is generalized by the target concept. The reverse relation for the general-
ization relation is the specification relation.

• Synonym relation R∼ - it defines two concepts: the source concept and target
one, which are equivalent in meaning.

At the beginning of the research, we used the Protégé editor to create and define the
ontology. However, as the processing and visualizing were difficult, the ontology
has been written in the GraphML format, which made its further formulation inde-
pendent from the Protégé editor. The further edition of the ontology is now possible
in any tool which allows to use the GraphML format. In the conducted research, in
order to achieve the aim, we used our own software and the yED Graph Editor for
visualization.

The formal record of the definitions of the ontologies and the defined relations,
together with their features, is presented in paragraph 27.2.2. The ontology proposed
by an expert, was formally verified, i.e., it was checked, whether the specified re-
lations fulfill the defined features. After such verification, the number of relations
enlarged significantly. This process has been conducted automatically with the use
of our own software.

The highest level of abstraction (first level) defines the general concepts of rough
set theory and its applications. These are such concepts as: System, Domain, Rea-
soning, Model, Lower Approximation, Upper Approximation, Discernibility Ma-
trix, Covering, Decision Making, Decision Class, Attribute, Reduct, Operator, Rule,
Reduct Set, Rough Set Theory, Classifier Evaluation, Classifier, Object, Neurons,
Database.

27.6 The Description of the RSDS System

The created and formulated RSDS bibliographical system is an experimental envi-
ronment for the conducted research. This system contains bibliographical descrip-
tions of publications related to rough set theory and its applications [21–24, 30].
The system is available at http://rsds.univ.rzeszow.pl. At present, in
the database of the system, there are 3857 bibliographical descriptions of scientific
publications. The RSDS system also contains:

• information related to the software connected to rough set theory and its
applications,

• biographies of people meritorious for rough set theory and its applications,

http://rsds.univ.rzeszow.pl


530 Z. Suraj, P. Grochowalski, and K. Pancerz

• the contact data of the authors of those publications which are present in the
data base of that system.

The system has been formulated in the client-server technology. This means that the
data for the system as well as the mechanisms servicing these data are located on
the server, while a user, by means of the client-Internet browser, uses the content of
the system.

Fig. 27.2 The main window of the system.

27.6.1 The Logical Structure of the System

The construction of the RSDS system can be divided into four functional layers.
Each of the layers fulfills particular tasks by means of the modules included in it:

• The presentation layer with the module of a graphical interface.
• The application layer with the modules of logging, adding / editing, searching,

statistics-graph, downloading, supplementary (biographies of people, software,
maps).

• The communication layer with the module of communication with the database.
• The physical layer with the database.

The aim of the modules from the presentation layer is to communicate with the user.
In the application layer, there are modules which realize the main functionality

of the system. The module of logging is responsible for the correct service of the
process of logging the users in and out, as well as storing the information about the
users logged into the system. The module of adding and editing, operates the process
of introducing new data into the system or editing the existing data. It checks the
correctness of the data introduced into the system, and the correct attribution of the
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Fig. 27.3 The logical structure of the system.

data to the user - "their owner". The module of searching is a module, which realizes
the process of searching for the descriptions of publications which fulfill the user’s
criteria. This is the module whose role is to facilitate the conducted research. The
statistics-graph module is the module which analyzes the data included in the sys-
tem as well as the users’ activity . The data analysis takes place in different aspects,
i.e., concerning publications, authors of publications, and the dependencies between
them. The aim of this module is also to present the obtained results of analysis. The
module of downloading gives the users access to different variants of downloading
data from the system in the form of prepared bibliographical lists. The supplemen-
tary modules expand the basic functionality of the system by adding the biographies
of people meritorious to the development of rough set theory and its applications,
available software related to rough sets, the map of the world illustrating where in
the world the theory mentioned above develops.

The communication layer has a module which is responsible for correct commu-
nication with the database, in which the data stored in the system are kept.

The physical layer includes the relational database where the data represented in
the system are stored.

27.6.2 The Functional Capabilities of the System

The basic functionalities of the system are:

• Adding data – online or automatically.
• Editing the existing data.
• Searching for the data.
• Registration of the users in the system.



532 Z. Suraj, P. Grochowalski, and K. Pancerz

• Saving data in the files.
• Sending files with data to the administrator.
• Servicing the users’ comments.
• Statistics, statistics-graph analysis, publication classifier.
• Help.

The scope and the content of the system is still being broadened.
The RSDS system is a bibliographical system . In order to store the possessed in-

formation in the simplest possible form, eliminating the overload (data redundancy),
the data for the system are stored a relational data base. The data of the system are
saved in the BibTeX format [38]. The reasons for that choice were well defined and
unified structures of a description. In addition, there was one more capability of the
system added to it, which is the ability to obtain, from the system, bibliographical
descriptions in the BibTeX format. This allows for automatic generation of biblio-
graphical lists, and adding them to the prepared publications.

The system had to be equipped with the data to give access to it. The introduction
of data, as well as other operations allowing data modification require to confirm
credibility of a user through logging into the system. New users, who want to get an
access to the full functionality of the system, must register in it.
Introducing data can be done in two independent ways:

1. Introducing data online by means of predefined forms. According to this
method, the data are introduced in two phases. In the first phase, one has to
fill the form with the data describing a publication. In the second phase, one has
to introduce information about authors or editors of a publication. The data of
particular authors (editors) must be introduced separately, until the moment of
introducing information about every person. Each of the introduced persons will
be attributed to information about a publication, introduced at the beginning of
the whole process. This process is illustrated in Figure 27.4.

Fig. 27.4 A block diagram representing the process of adding data (publications) into the
RSDS system.
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2. Introducing data by means of a script, allowing to read the files in the BibTeX
format and saving information in the system properly.

Until now, the available ways of searching allowed only searching for information
by matching the result to a demanded template included in a query. So far, searching
for information in the RSDS system has been done in two main ways (Figure 27.5):

• alphabetical searching, according to the defined keys, i.e., titles of publications,
their authors, publishers, names of conferences, journals, or years of issue,

• advanced searching, based on defining the criteria which must be fulfilled by a
demanded description of a publication.

Fig. 27.5 A block diagram representing the process of searching for information in the RSDS
system.

Each of the possibilities of searching for information in the RSDS system available
now, has both, positive and negative aspects. Thus, alphabetical searching works
well, when a user knows e.g. the author of the demanded publication, the title of
the journal, where the publication appeared, the editor who issued the publication,
or the year of issue. The weaker aspect of this kind of searching is, however, the
fact, that with the lack of fairly precise information about a demanded publication,
the system usually finds a great number of descriptions of publications which ful-
fill the criteria of searching. As a result, the criteria often must undergo a laborious
selection. Whereas in advanced searching, the user defines the criteria which a de-
manded publication must fulfill, and depending on accuracy of choice of the criteria,
we obtain more or less adequate results of searching. Still, the problem of further
selection of results is, in many cases, unavoidable. The current course of the process
of searching for information in the RSDS system is displayed in Figure 27.6.

Apart from bibliographical information (represented in a descriptive form or in
the BibTeX format), the system gives access to a whole range of different statistics
and the results of analysis of the included data.
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Fig. 27.6 The current course of the process of searching for information in the RSDS system.

For more information about the destination of the system and its functional
capabilities, the reader can see papers [31–34].

27.7 Experiments

27.7.1 Methodology of Experiments

In order to verify the correctness of the proposed methodology for searching infor-
mation in data bases we have performed a series of tests and experiments, especially
the following ones:

• We have made automatic verification of the general ontology from the point of
view of the correctness of relationships defined in it. A special software tool has
been created to make this verification.

• We have evaluated a quality of searching information in the RSDS system us-
ing our approach. In this case, we have performed experiments consisting in
sending queries to the system. Obtained results, semantically matched to the
query, have been compared with results of similar experiments using the VSM
(Vector Space Model) method [29]. First, this method has been used to rep-
resent data included in RSDS. Next, this method has been used to calculate
a membership degree of a searched publication to the resulting set by means
of determining the similarity of vectors describing a query and a publication.
The similarity has been calculated using the cosine metric (the cosine of the
angle between vectors). In our experiments, we have used only vectors with
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non-negative coordinates. It causes that the cosine values are included in the
interval [0,1]. The value equal to 1 means that the similarity of two vectors
is complete (vectors overlap, both methods give the same results). The value
equal to 0 means that two vectors are completely dissimilar (vectors are or-
thogonal, methods give extremely different results). Resulting sets containing
publications have been compared using several metrics (Euclidean, Minkowski,
Hamming, City, Chebyschev) mentioned in Subsection 27.2.4 enabling us to
determine the mutual orientation of the two vectors representing resulting sets.

27.7.2 Comments

Detailed results of experiments are omitted in this paper due to their large size. In
this subsection, we give only some important comments. They are as follows:

• The resulting set for the ontological method is a superset of the resulting set for
the VSM method, i.e., it includes additional descriptions of publications in com-
parison with the VSM method. Publications covered by both methods include a
searched concept in their descriptions. The vector method gives only those pub-
lications. Searching based on the ontology enables us to add new descriptions
semantically matched (i.e., not only exactly matched) to our query. It is worth
noting that publications including exactly searched concepts sometimes do not
satisfy well expectation of the user putting the query.

• Verification of the general ontology from the point of view of the formal cor-
rectness of relationships between concepts causes a complement the original
ontology to missing relationships. It causes a significant growth of the number
of relationships between concepts. An extension of the ontology to new rela-
tionships affects positively a quality of the process of information searching.

• Selection of the aggregation operator for accuracy of approximation for partic-
ular relations as well as a value of the first weight used in calculations have a
big impact on the disparity of results for ontological searching. Simultaneously,
we can observe a smaller impact of selection of the two remaining weights for
calculation of the final value of accuracy of approximation. For selection of
weights, we have used the special generators shown is Subsection 27.2.3.

• Using the general ontology in the experiments, after a formal verification of
relationships, we can see a general trend toward increasing of the angle between
vectors. It means that some additional information appears, it is not present in
results obtained on the basis of the VSM method.

27.8 Summary and Final Conclusions

The aim of the conducted research is to create the mechanisms of automatic admin-
istration of information (bibliographical description) in the bibliographical system,
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such as the already described RSDS system. The research is based on rough set
theory, enriched with the field knowledge, represented by the ontology. This allows
automatic - "intelligent" recognition of what a given publication concerns and de-
scribes. At the moment, the formulated mechanism is used during the process of
searching for a demanded information (publication). The use of such an approach
in operating the system which contains a large amount of information allows the
improvement of its work during an interaction with the user. It seems, that general-
ization of that mechanism will be the origin of the "intelligence" of different kinds
of systems and browsers available in the Internet.

27.8.1 Directions of Further Research

On the basis of the results achieved, we are planning the following progress of the
research:

• formulating the mechanism of logical verification of the defined connections in
the field ontology;

• improving the effectiveness of the process of searching for information;
• formulating the mechanism of automatic broadening of the field ontology;
• automatization of the procedure of processing the possessed information,

limiting the interference of an expert.
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Chapter 28
Design and Verification of Rule-Based Systems
for Alvis Models

Marcin Szpyrka and Tomasz Szmuc

Abstract. Alvis is a modelling language designed for embedded systems that pro-
vides a possibility of a formal model verification. Because of the fact that many
embedded systems contain a rule-based system as a part of them, it is necessary
to provide a possibility to include such systems into Alvis models. Alvis combines
flexible graphical modelling of interconnections among agents with a high level
programming language used for the description of agents behaviour. The most nat-
ural way of including a rule-based system into an Alvis model is to encode it in
the Haskell functional language. Some Haskell features like lazy evaluation, pat-
tern matching, high level functions etc. make it a very attractive proposition from
the rule-based systems’ engineering point of view. The paper presents a method of
encoding and verification of rule-based systems with Haskell to include them into
Alvis models.

Keywords: Rule-based systems, railway traffic management system, Haskell,
Alvis, formal modelling and verification.

28.1 Introduction

Rule-based systems are widely used in various kinds of computer systems, e.g. ex-
pert systems, decision support systems, monitoring and control systems, diagnostic
systems, etc. They constitute an easy way of knowledge encoding and interpreta-
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tion, however, the design and verification of them are often a time-consuming and
difficult task [7], [10].

Various approaches to rule-based systems analysis and verification are consid-
ered, and most of them is based on Prolog programming language ( [5]). Prolog
(PROgramming in LOGic) is a declarative programming language and seems to be
perfect for building rule-based systems. However, some Prolog features like side-
effects (assert, retract, cut operator) can seriously reduce confidence in the correct-
ness of an implemented rule-based system. This chapter deals with a Haskell [11]
approach to encoding rules and algorithms for rule-based system verification. One
of the main advantages of this approach is the possibility of including such systems
into Alvis models.

Alvis [17], [15] is a formal modelling language designed especially for embed-
ded systems. It combines possibilities of formal models verification with flexibility
and simplicity of practical programming languages. Moreover, Alvis combines a hi-
erarchical graphical modelling with a high level programming language. An Alvis
model consists of three layers:

Graphical layer is used to define data and control flow among distinguished parts
of the system under consideration that are called agents. The layer takes the form
of a hierarchical graph and supports both top-down and bottom-up approaches to
systems development.

Code layer is used to describe the behaviour of individual agents. It uses both
Haskell functional programming language and original Alvis statements (Alvis
Code Language).

System layer depends on the model running environment i.e. the hardware and/or
operating system. The layer is the predefined one and is necessary for a model
simulation and verification.

Alvis uses Haskell to define data types for parameters and to define functions for
data manipulation. Encoding a rule-based system as a Haskell function is the sim-
pliest way to include the system into the corresponding Alvis model. As it has been
presented in this chapter, Haskell can be also used to verify the most important
properties of a rule-based system.

In the presented approach, rule-based systems take the form of a decision
table [12], but non-atomic values of attributes are possible. Each cell of such a deci-
sion table should contain a formula, which evaluates to a Boolean value for condi-
tion attributes, and to a single value (that belongs to the corresponding domain) for
decision attributes ( [13]). It means that for any condition attribute, we can write a
formula that describes suitable values of the attribute in the corresponding rule. On
the other hand, for any decision attribute we can write a formula that contains names
of condition attributes and evaluates to a single value belonging to the domain of the
decision attribute.

The scope of the paper is as follows. A railway traffic management system used to
illustrate the presented approach is described in Section 28.2. The proposed Haskell
form of rule-based systems and Haskell verification algorithms are presented in
Section 28.3. A short presentation of the Alvis modelling language is given in
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Section 28.4. Section 28.5 contains parts of an Alvis model of the considered rail-
way traffic management system. The model is used to point out the place of rule-
based systems in Alvis models. A short summary is given in the final section.

28.2 Example

To illustrate the presented approach, an example of a railway traffic management
system for a real train station has been choosen. Czarna Tarnowska is a small train
station belonging to the Polish railway line no. 91 from Cracow to Medyka. The
topology of the train station with original signs is shown in Fig. 28.1. The letters A,
B, D, etc. stand for color light signals, the symbols Z3, Z4, Z5, etc. stand for turnouts
and JTA, JTB, JT1, etc. stand for track segments. Some simplifications have been
introduced to reduce the size of the model. We are not interested in controlling
the local shunts so the track segment JT6 will not be considered. We assume that
the light signals display only two signals: stop and way free. Moreover, outside the
station, the trains can ride using the right track only.

The considered system is used to ensure safe riding of trains through the station. It
collects some information about current railway traffic and uses a rule-based system
to choose routes for trains. A train can ride through the station only if a suitable route
has been prepared for it, i.e., suitable track segments must be free, we have to set
turnouts and light signals and to guarantee exclusive rights to these elements for the
train. Required positions of turnouts for all possible routes are shown in Table 28.1,
where the used symbols stand for:

• + closed turnout (the straight route);
• – open turnout (the diverging route);
• o+ closed turnout (for safety reasons).

Let us focus on selected symbols from Table 28.1. The symbol B4 stands for the input
route from the light signal B to the track no. 4. The symbol F2W stands for the output
route from the track no. 2 (from the light signal F) to the right (to Wola Rzȩdzińska),
etc. The route B4 can be used by a train only if: turnouts 7, 8, 15, 16 are closed, turnouts
3, 4, 6 are open, and the track segments JTB, JT4, JZ4/6 (a segment between turnouts
4 and 6), JZ7 (diagonal segment leading to the turnout 7) and JZ16 are free.

Some routes cannot be set at the same time because of different position
of turnouts or for safety reasons. Mutually exclusive routes are presented in
Table. 28.2, where the used symbols stand for:

• x – mutually exclusive (different position of turnouts);
• xx – mutually exclusive (safety reasons).

The system is expected to choose suitable routes for moving trains. It should take
under consideration that some trains should stop at the platform, while others are
only moving through the station and two routes (an input and an output one) should
be prepared for them. In such a case, if it is not possible to prepare two routes, only
an input one should be prepared.
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Fig. 28.1 Czarna Tarnowska – topology of the train station
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Table 28.1 Required position of turnouts for all possible routes

Turnouts
Routes 3/4 5 6 7/8 15/16 17 18 19/20 21/22
B1 + +
B2 – + o+
B3 + –
B4 – – + o+
R2 o+ o+ + + +
R4 o+ + – + +
F2W + + o+
G2W + – +
K1D + – – +
L1D o+ + – +
M1D + + +
N1D – + +

Table 28.2 Relationships between routes

B
1

B
2

B
3

B
4

R
2

R
4

F2
W

G
2W

K
1D

L
1D

M
1D

N
1D

B1 – x x x xx
B2 x – x x xx x x
B3 x x – x
B4 x x x – xx xx x x
R2 xx xx – x xx x x
R4 xx x – x x

F2W x x – x
G2W x x xx x –
K1D x x – x x x
L1D x x x – x x

M1D x x – x
N1D xx x x x –

The decision table for the considered system is presented in Table 28.3. The table
contains 20 conditions and 2 decision attributes. The condition attributes provide
information about:

• current position of the train (attribute JT) — before the light signal B, F, G, etc.;
• type of the train (attribute TT) — only moves through the station (1) or must

stop at the platform (2);
• current status of track segments (attributes JT1, JT2, JT3, JT4, JOA, JOP) —

a segment is free (0) or it is taken (1);
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Table 28.3 Decision table

JT TT JT1 JT2 JT3 JT4 JOA JOP B1 B2 B3 B4 R2 R4 F2W G2W K1D L1D M1D N1D In Out

R1 B 1 0 0 0 0 0 0 0 0 0 0 B1 M1D
R2 B 1 1 0 0 0 0 0 0 0 0 0 0 B3 N1D
R3 B 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 B2 L1D
R4 B 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B4 K1D
R5 R 1 0 0 0 0 0 0 0 0 0 0 R2 F2W
R6 R 1 1 0 0 0 0 0 0 0 0 0 0 R4 G2W
R7 B 2 0 0 0 0 0 0 B1 None
R8 B 2 1 0 0 0 0 0 0 0 0 B2 None
R9 B 2 0 0 0 0 0 0 0 0 0 0 0 1 B2 None
R10 R 2 0 0 0 0 0 0 0 0 R2 None
R11 B 1 0 1 0 0 0 0 0 B1 None
R12 B 1 0 0 0 0 0 1 0 0 0 B1 None
R13 B 1 0 0 0 0 0 0 1 0 0 B1 None
R14 B 1 0 0 0 0 0 0 0 1 0 B1 None
R15 B 1 1 0 1 1 0 0 0 0 0 0 0 B2 None
R16 B 1 1 0 1 0 0 0 0 0 1 0 0 0 0 B2 None
R17 B 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 B2 None
R18 B 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 B2 None
R19 B 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 B2 None
R20 B 1 0 1 0 0 0 0 0 0 0 0 0 0 1 B2 None
R21 B 1 1 0 1 0 0 0 0 B3 None
R22 B 1 1 0 0 0 0 0 1 0 0 0 B3 None
R23 B 1 1 0 0 0 0 0 0 1 0 0 B3 None
R24 B 1 1 0 0 0 0 0 0 0 1 0 B3 None
R25 B 1 0 0 0 0 0 0 0 0 1 B3 None
R26 B 1 1 1 1 0 1 0 0 0 0 0 0 0 0 B4 None
R27 B 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 B4 None
R28 B 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 B4 None
R29 B 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 B4 None
R30 B 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 B4 None
R31 R 1 0 1 0 0 0 0 0 0 0 R2 None
R32 R 1 0 0 0 0 0 1 0 0 0 R2 None
R33 R 1 1 0 1 0 0 0 0 0 R4 None
R34 R 1 0 0 1 0 0 0 0 0 0 R4 None
R35 R 1 1 0 0 0 0 1 0 0 0 R4 None
R36 R 1 0 0 0 0 0 1 0 0 R4 None
R37 K 1 1 0 0 0 0 0 0 0 None K1D
R38 L 1 0 0 0 0 0 0 0 None L1D
R39 M 1 0 0 0 0 0 None M1D
R40 N 1 1 0 0 0 0 0 0 None N1D
R41 F 1 0 0 0 0 0 None F2W
R42 G 1 1 0 0 0 0 0 0 None G2W

• already prepared routes (attributes B1, B2, B3, etc.) — a route is already set (1)
or not (0).

The decision attributes In and Out represent the input and output routes (that will
be prepared for the train), respectively. Domains for these attributes are defined as
follows:

• DJT = {B,F,G,K,L,M,N,R},
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• DTT = {1,2},
• DJT1 = DJT2 = · · ·= DN1D = {0,1},
• DIn = {B1,B2,B3,B4,R2,R4,None},
• DOut = {F2W,G2W,K1D,L1D,M1D,N1D,None}.

28.3 Haskell Form of Rule-Based Systems

A decision table, from the Haskell point of view, can be treated as a function that
takes values of condition attributes as its arguments and provides values of decision
attributes as its result. It is convenient to define two composite data types (tuples)
e.g. Condition and Decision to denote the Cartesian product if condition and de-
cision attributes, respectively. Such data types for the rule-based system shown in
Table 28.3 are defined as presented in Listing 28.1.

data JTDomain = B | F | G | K | L | M | N | R
data InDomain = B1 | B2 | B3 | B4 | R2 | R4 | INone
data OutDomain = F2W | G2W | K1D | L1D | M1D | N1D | ONone
type Condition = (JTDomain,Int,Int,Int,Int,Int,Int,Int,Int,Int,

Int,Int,Int,Int,Int,Int,Int,Int,Int,Int)
type Decision = (InDomain,OutDomain)

Listing 28.1 Data type used for the considered rule-based system

Because a construction function name must be unique, we used names INone and
ONone instead of None.

Haskell functions can be defined piece-wise, meaning that we can write one ver-
sion of a function for certain parameters and then another version for other param-
eters. This approach uses the so-called pattern matching, in which a sequence of
syntactic expressions called patterns is used to choose between a sequence of re-
sults of the same type. If the first pattern is matched, then the first result is chosen;
otherwise, the second pattern is checked, etc. The wild card pattern _ (underscore)
can be also used that matches any value. Using the wild card pattern, we can in-
dicate that we do not care what is present in a part of a pattern. Of course, more
than one wild card can be used in a single pattern. Moreover, each piece of a func-
tion definition can take the form of the so-called guarded equation. In such a case,
a Boolean expression is put after the | symbol (read as ”such that”) that must be
satisfied beside the pattern matching.

The rbs function shown in Listing 28.2 is a Haskell implementation of the consid-
ered rule-based system. The listing contains the source code for the first five decision
rules only. Other decision rules from the table have been implemented similarly. The
function takes information about an input state and provides a single decision (the
first matching decision rule is used).
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rbs :: Condition -> Decision
rbs(B,1,0,_,_,_,_,0,0,0,0,0,_,_,_,_,0,0,0,0) = (B1,M1D)
rbs(B,1,1,_,0,_,_,0,0,0,0,0,_,_,_,_,0,0,0,0) = (B3,N1D)
rbs(B,1,1,0,1,_,_,0,0,0,0,0,0,0,0,0,0,0,0,0) = (B2,L1D)
rbs(B,1,1,1,1,0,_,0,0,0,0,0,0,0,0,0,0,0,0,0) = (B4,K1D)
rbs(R,1,_,0,_,_,0,_,_,0,_,0,0,0,0,0,0,0,_,_) = (R2,F2W)

Listing 28.2 Haskell implementation of the considered decision table

To verify a Haskell implementation of a decision table, we have to define another
function that determines all possible decisions for an input state or generates an
empty list, if none decision can be undertaken. The Haskell code for the allDecisions
function is shown in Listing 28.3.

allDecisions’ :: Int -> Condition -> [(Int, Decision)]

allDecisions’ 1
(B,1,0,jt2,jt3,jt4,joa,0,0,0,0,0,r2,r4,f2w,g2w,0,0,0,0)
= [(1,(B1,M1D))] +!+ allDecisions’ 2
(B,1,0,jt2,jt3,jt4,joa,0,0,0,0,0,r2,r4,f2w,g2w,0,0,0,0)

allDecisions’ 2
(B,1,1,jt2,0,jt4,joa,0,0,0,0,0,r2,r4,f2w,g2w,0,0,0,0)
= [(2,(B3,N1D))] +!+ allDecisions’ 3
(B,1,1,jt2,0,jt4,joa,0,0,0,0,0,r2,r4,f2w,g2w,0,0,0,0)

allDecisions’ 3
(B,1,1,0,1,jt4,joa,0,0,0,0,0,0,0,0,0,0,0,0,0)
= [(3,(B2,L1D))] +!+ allDecisions’ 4
(B,1,1,0,1,jt4,joa,0,0,0,0,0,0,0,0,0,0,0,0,0)

-- ...
allDecisions’ i _ | i > 42 = []
allDecisions’ i s = allDecisions’ (i + 1) s

allDecisions :: Condition -> [(Int, Decision)]
allDecisions = allDecisions’ 1

Listing 28.3 allDecisions function

The +!+ operator states for lists concatenation with dropping duplicates. The
allDecisions function checks all rules and generates the list of all possible decisions
for a given input state. The list contains pairs — a decision rule number and the
corresponding result.
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28.3.1 Input States

To be useful, a generalised decision table should satisfy some qualitative properties
such as completeness, consistency (determinism) and optimality. A decision table
is considered to be complete if for any possible input situation at least one rule can
produce a decision. A decision table is deterministic if no two different rules can
produce different results for the same input situation. The last property means that
any dependent rules were removed.

Let A denote a set of attributes selected to describe important features of the
system under consideration, i.e., conditions and actions, A = {A1,A2, ...,An}. For
any attribute Ai ∈ A, let Di denote the domain (finite set of possible values) of
Ai. It can be assumed that Di contains at least two different elements. The set A is
divided into two parts. Ac = {Ac1 ,Ac2 , . . . ,Ack} will denote the set of conditional at-
tributes, and Ad = {Ad1 ,Ad2 , . . . ,Adm} will denote the set of decision attributes. For
the sake of simplicity, it will be assumed that Ac and Ad are non-empty, finite, and
ordered sets.

Let R = {R1,R2, . . . ,Rl} denote the set of all decision rules in the considered
rule-based system. A formula for an attribute Ai ∈A in a rule R j ∈R will be denoted
by R j(Ai). To every attribute Ai ∈ Ac, there will be attached a variable Ai that may
take any value belonging to the domain Di.

Let us focus on the decision table show in Table 28.3. We applied a few simplifi-
cation to reduce the table size. First of all, we have omitted attributes variables, e.g.
R2(JT1) = JT1 > 0 but it is written as ”> 0”. Moreover, an empty cell in row i and
column j means that Ri(A j) = A j ∈ D j. In other words, the value of the attribute A j

is not important in the rule Ri (any value is accepted).
Besides attributes domains, a rule-based system domain D ⊆ Dc1 ×Dc2 × ·· ·×

Dck can be considered. The domain represents all permissible combinations of val-
ues of condition attributes. To calculate the domain D, we remove from the set
Dc1 ×Dc2 × ·· · ×Dck states excluded by the so-called domain contradictions that
state in an explicit way that the particular combination of input values is impossible
or not allowed. In the case of the considered decision table 27 contradictions fol-
low directly from Table 28.2. For example, the C1 contradiction B1 = 1∧B2 = 1
means that these attributes cannot take the value 1 at the same time. Other contradic-
tions are presented in Table 28.4. All these contradictions follow from the relation-
ships presented in Tables 28.1 and 28.2. Elements of the set D will be called input
states.

To check a decision table properties, we have to generate the set D for the rule-
based system under consideration. An argumentless function states is used for this
purpose. The function code is presented in Listing 28.4. The function takes under
consideration the attributes domains and contradictions, and generates a list of all
admissible input states. The set D for the considered example contains 6.920 input
states.
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Table 28.4 Domain contradictions for the considered decision table (part 1)

JT TT JT1 JT2 JT3 JT4 JOA JOP B1 B2 B3 B4 R2 R4 F2W G2W K1D L1D M1D N1D

C28 B 2 0 1 1
C29 B 2 0 1 1
C30 B 2 0 1 1
C31 B 2 1 1
C32 B 2 1 1
C33 B 2 1 1
C34 B 2 1 1
C35 B 1 1 1 1
C36 B 1 1 1 1
C37 B 1 1 1 1
C38 B 1 1 1 0 1 1
C39 B 1 1 1 1 1
C40 B 1
C41 B 1
C42 B 1
C43 B 1
C44 B 1 1 1
C45 B 1 1 1
C46 B 1 1 1
C47 B 1 1 1 1
C48 B 1 1 1 1
C49 ∈{G,K,N} 2
C50 B 2 1 1
C51 R 2 1
C52 R 2 1
C53 R 2 1
C54 R 1
C55 R 1
C56 R 1
C57 R 1
C58 R 1
C59 R 1 1
C60 R 1 1
C61 R 1 1
C62 K 0
C63 L 0
C64 M 0
C65 N 0
C66 ∈{K,L} 1
C67 ∈{K,L} 1
C68 ∈{K,L,M,N} 1
C69 ∈{K,L,M,N} 1
C70 ∈{K,L,M,N} 1
C71 ∈{K,L,M,N} 0 1
C72 N 1
C73 ∈{K,L,M,N} 1
C74 F 0
C75 G 0
C76 ∈{F,G} 1
C77 ∈{F,G} 1
C78 ∈{F,G} 1
C79 ∈{F,G} 1
C80 ∈{F,G} 1
C81 G 1
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states :: [Condition]
states = [((jt,tt,jt1,jt2,jt3,jt4,joa,jop,b1,b2,

b3,b4,r2,r4,f2w,g2w,k1d,l1d,m1d,n1d)) |
jt <- [B,F,G,K,L,M,N,R],
tt <- [1,2],
jt1 <- [0,1],
jt2 <- [0,1],
-- ... another attributes domains
n1d <- [0,1],
not (b1 == 1 && b2 == 1),
not (b1 == 1 && b3 == 1),
-- ... another contradictions
not ((jt == F || jt == G) && joa == 1),
not (jt == G && r2 == 1)]

Listing 28.4 states function

28.3.2 Completeness Verification

Definition 28.1. An input state ϕ ∈ D is said to satisfy the conditional part of a rule
R j ∈ R (ϕ ∼= R j|Ac) iff each formula R j(Ai), where Ai ∈ Ac, evaluates to true, for
values of attributes compatible with ϕ .

Definition 28.2. A set of decision rules R is complete iff for any input state
ϕ ∈ D there exists a rule Ri ∈ R such that ϕ satisfies the conditional part of the
rule Ri.

notCovered :: Condition -> Bool
notCovered s = allDecisions s == []

notCoveredStates :: [Condition]
notCoveredStates = filter notCovered states

Listing 28.5 Completeness verification algorithms

The result of the completeness analysis is a list of input states that are not cov-
ered by decision rules. To check whether an input state is covered, the notCovered
function is used (see Listing 28.5). The function is used by the notCoveredStates
function, which filters not covered states from the list generated by the states func-
tion. The result provided by the function for the considered decision table is the
empty list. It means that the table is complete.
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28.3.3 Consistency Verification

Definition 28.3. A set of decision rules R is consistent (deterministic) iff for any
input state ϕ ∈ D, and any two rules Ri,R j ∈R if ϕ satisfies the conditional parts of
the rules Ri and R j, then both rules provide the same decision for the input state ϕ .

notDeterministic :: Condition -> Bool
notDeterministic s = length (removeDuplicates

(secondElements (allDecisions s))) > 1

notDeterministicStates :: [Condition]
notDeterministicStates = filter notDeterministic states

notDeterministicStates’ :: [(Condition, [(Int, Decision)])]
notDeterministicStates’ = [(state, allDecisions state) |

state <- (filter notDeterministic states)]

Listing 28.6 Consistency verification algorithms

A rule-based system is indeterministic, if for at least one input state, two different
decision rules provide two different results. To check whether an input state is de-
terministic, the notDeterministic function is used (see Listing 28.6). The function
secondElements takes the list of pairs provided by the allDecisions function and
provides a list of decisions (rule numbers are omitted). Then, duplicates from the
list are removed and its length is checked. The notDeterministicStates function fil-
ters inconsistent states from the list of all admissible states. The result provided by
the function for the considered decision table is the empty list. It means that the
table is consistent.

From practical point of view, the notDeterministicStates’ function presented is
more convenient. It provides not only the list of indeterministic states, but also de-
cisions produced for these input states and numbers of fired rules. Such a list can be
used to improve the decision table and to eliminate the indeterminism if any.

28.3.4 Optimality Verification

Definition 28.4. Let R be a complete and consistent set of decision rules. A rule
Ri ∈R is independent iff the set R−{Ri} is not complete. A rule Ri ∈R is depen-
dent iff the rule is not independent. The set R is semi-optimal iff any rule belonging
to the set R is independent.

The optimality analysis allows designer to remove some rules that are not necessary
to take decisions. First of all, we can check whether each decision rule can be fired
(see the possiblyFired shown in Listing 28.7). The concat function transforms a list
of lists into one list, while the firstElements generates the list of first elements from
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possiblyFired :: [Int]
possiblyFired = sort (removeDuplicates (firstElements

(concat [allDecisions state | state <- states])))

oneRuleTrigger :: Condition -> Bool
oneRuleTrigger s = length (allDecisions s) == 1

independentRules = sort (removeDuplicates (firstElements
(concat [allDecisions state |
state <- (filter oneRuleTrigger states)])))

Listing 28.7 Optimality verification algorithms

a list of pairs. A decision rule is independent, if for at least one input state, it is the
only fired rule. The oneRuleTrigger function checks whether for a given input state
exactly one rule can be fired. The independentRules function generates the list of all
independent rules. For the considered decision table, the function returns a list that
contains numbers of all decision rules. It means that all rules are independent.

begin

Is the set R
complete?

Is the set R
consistent?

Is the set R
optimal?

Remove
dependent rules

Modify rules
No

Yes

Yes

Yes

No

No

end

Fig. 28.2 Scheme block of the verification procedure

The semi-optimality should be verified after a set of rules is complete and con-
sistent. The verification algorithm is presented in Fig. 28.2.

28.4 Alvis Modelling Language

Alvis is a successor of the XCCS modelling language [2], [8], which is an exten-
sion of the CCS process algebra [9], [1]. In contrast to process algebras, Alvis uses
a high level programming language based on the Haskell syntax, instead of alge-
braic equations. Moreover, it combines hierarchical graphical modelling with high
level programming language statements.
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The key concept of Alvis is an agent that denotes any distinguished part of the
system under consideration with a defined identity persisting in time. From the Alvis
point of view, a system is seen as a set of agents that usually run concurrently, com-
municate one with another, compete for shared resources etc [17]. Each agent has
assigned a set of ports used for a communication with other agents or, if embedded
systems are considered, with the corresponding system environment. Ports are used
both to collect data (e.g. sensors reading) and to provide results of the agent activity
(e.g. control signals for external devices). The behaviour of an agent is defined with
AlvisCL statements. If necessary, a rule-based system encoded in Haskell is used to
make decisions. From the behaviour description points of view, agents are treated
as independent individuals and defined components that can be used to compose a
concurrent system. Communication diagrams are used to point out pairs of ports that
make up communication channels used to exchange information between agents.

28.4.1 Code Layer

The code layer is used to define the behaviour of agents. Each agent is de-
scribed with a piece of source code that may contain Alvis statements presented in
Table 28.5. Moreover, Alvis uses the Haskell programming language [11] to define
parameters, data types and data manipulation functions [15].

From the code layer point of view, agents are divided into active and passive ones.
Active agents perform some activities and are similar to tasks in Ada programming
language [3]. Each of them can be treated as a thread of control in a concurrent or
distributed system. Passive agents do not perform any individual activity, and are
similar to protected objects (shared variables). Passive agents provide mechanism
for the mutual exclusion and data synchronisation. They provide a set of procedures
that may be called by other agents.

28.4.2 Communication Diagrams

The graphical layer takes the form of a communication diagram [Szpyrla et al.
(2011b)]. The layer is used to define interconnections (communication channels)
among agents. A communication diagram is a hierarchical graph whose nodes may
represent both kinds of agents (active or passive) and parts of the model from the lower
level.Thediagramsallowprogrammers to combinesetsof agents into modules thatare
also represented as agents (called hierarchical ones). Active and hierarchical agents
are drawn as rounded boxes, while passive ones as rectangles. Hierarchical agents
are indicated by black triangles. Ports are drawn as circles placed at the edges of the
corresponding rounded box or rectangle. Communication channels are drawn as lines
(or broken lines). An arrowhead points out the input port for the particular connection.
Communication channels without arrowheads represent pairs of connections with op-
posite directions. Elements of Alvis communication diagrams are shown in Fig. 28.3.
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Table 28.5 Alvis statements

Statement Description
cli Turns off the interrupts handlers.
critical {...} Define a set of statements that must be executed as a

single one.
delay ms Delays an agent execution for a given number of

miliseconds.
exec x = e Evaluates the expression and assign the result to the

parameter; the exec keyword can be omitted.
exit Terminates the agent that performs the statement.
if (g1) {...} Conditional statement.
elseif (g2) {...}
...
else {...}

in p Collects a signal via the port p.
in p x Collects a value via the port p and assigns it to the

parameter x.
jump label Transfers the control to the line of code identified

with the label.
jump far A Transfers the control to the agent A.
loop (g) {...} Repeats execution of the contents while the guard if

satisfied..
loop (every ms) {...} Repeats execution every ms miliseconds.
loop {...} Infinite loop.
null Empty statement.
out p Sends a signal via the port p.
out p x Sends a value of the parameter x via the port p; a

literal value can be used instead of a parameter.
proc (g) p {...} Defines the procedure for the port p of a passive agent

(guard is optional).
select { Selects one of the alternative choices.
alt (g1) {...}
alt (g2) {...}
... }

start A Starts the agent A if it is in the Init state, otherwise
do nothing.

sti Turns on the interrupts handlers.
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Fig. 28.3 Elements of Alvis communication diagrams

28.4.3 System Layer

The system layer depends on the model running environment, i.e. the hardware
and/or operating system. The layer is necessary for a model simulation and veri-
fication. From the users point of view, the layer is the predefined one and it works
in the read-only mode. Agents can retrieve some data from the layer, but they can-
not directly change them. The system layer provides some functions that are useful
for the implementation of scheduling algorithms or for retrieving information about
other agents states. A user can choose one of a few versions of the layer and it af-
fects the model semantic. System layers differ about the scheduling algorithm and
system architecture mainly. The most universal one is the α0 system layer. This
layer makes Alvis a universal formal modelling language similar to Petri nets [14]
or process algebras [4]. The α0 system layer is based on the following assumptions.

• Each active agent has access to its own processor and performs its statements
as soon as possible.

• The scheduler function is called after each statement automatically.
• In case of conflicts, agents priorities are taken under consideration. If two or

more agents with the same highest priority compete for the same resources, the
system works indeterministically.
A conflict is a state when two or more active agents try to call a procedure of
the same passive agent or two or more active agents try to communicate with
the same active agent.

28.4.4 Communication in Alvis

Alvis uses two statements for the communication. The in statement for collecting
data and out for sending. Each of them takes a port name as its first argument and
optionally a parameter name as the second. A communication between two active
agents can be initialised by any of them. The agent that initialises it performs the
out statement to provide some information and waits for the second agent to take
it, or performs the in statement to express its readiness to collect some information
and waits until the second agent provides it.
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A communication between an active and a passive agent can be initialised only
by the former. Any procedure in Alvis uses only one either input or output parameter
(or signal in case of parameterless communication). In case of an input procedure, an
active agent calls the procedure using the out statement (and provides the parameter,
if any, at the same time). In case of an output procedure, an active agent calls the
procedure using the in statement and waits for the result. A procedure is finished
after executing its last step.

Alvis agents may contain ports that are not used in any connection. Such ports
are called border ports and are used for a communication with the considered sys-
tem environment [16]. Border ports can be used both for collecting or sending some
information to the embedded system environment. Properties of border ports are
specified in the code layer preamble with the use of the environment statement.
Each border port used as an input one is described with at least one in clause. Sim-
ilarly, each border port used as an output one is described with at least one out
clause. Each clause inside the environment statement contains the following pieces
of information:

• in or out key word,
• the border port name,
• a type name or a list of permissible values to be sent through the port,
• a list of time points, when the port is accessible,
• optionally some modifiers: durable, queue, signal.

It should be underlined that only the signal modifier should be used in the final
model of an embedded system. Other modifiers are defined mainly for the verifica-
tion purposes, if reduced models are considered [16]. This modifier is used mainly
for interrupt signals modelling.

28.4.5 Formal Verification

One of the main advantages of Alvis is a possibility of a formal model verification.
States of an Alvis model and transitions among them are represented using a la-
belled transition system (LTS graph for short). An LTS graph is an ordered graph
with nodes representing states of the considered system and edges representing tran-
sitions among states.

Due to practical reasons, such an LTS graph generated automatically for an Alvis
model takes the textual form. Then, it is converted into the Binary Coded Graphs
(BCG) format and used as input data for the CADP toolbox [6]. CADP offers a wide
set of functionalities, ranging from step-by-step simulation to massively parallel
model-checking.

28.5 Railway Traffic Management System – Case Study

The considered rule-based system is used as an element of an Alvis model of the rail-
way traffic management system. Part of the communication diagram for the model
is shown in Fig. 28.4.
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-- ...
type Request = (JTDomain,Int);

environment {
in jt1 [0,1] [] signal;
in jt2 [0,1] [] signal;
in jt3 [0,1] [] signal;
in jt4 [0,1] [] signal;
in joa [0,1] [] signal;
in jop [0,1] [] signal;
in request Request [] signal;

}

agent TC {
jt1s :: Int = 0;
jt2s :: Int = 0;
-- ...
n1ds :: Int = 0;
requests :: [Requests] = [];
route :: Decision = (INone, ONone);
req :: Requests = (B, 1);

select {
alt (ready [in(jt1)]) { in jt1 jt1s; }
alt (ready [in(jt2)]) { in jt2 jt2s; }
alt (ready [in(jt3)]) { in jt3 jt3s; }
alt (ready [in(jt4)]) { in jt4 jt4s; }
alt (ready [in(joa)]) { in joa joas; }
alt (ready [in(jop)]) { in jop jops; }
alt (ready [in(request)]) {

in request req;
requests = requests ++ [req];

}
-- track unset if possible
if(requests \= []) {

req = head requests;
route = rbs (fst req, snd req, jt1s, jt2s, jt3s, jt4s,

joas, jops, b1s, b2s, b3s, b4s, r2s, r4s,
f2ws, g2ws, k1ds, l1ds, m1ds, n1ds);

if(route /= (INone, ONone)) {
requests = tail requests;
out set route;

}
}
else {

-- try to handle another request if any
}

}
}

Listing 28.8 Part of the code layer for the railway traffic management system
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Fig. 28.4 Part of the communication diagrams for the railway traffic management system

The SignalBox agent is a hierarhical one. It represents the subsystem used for set-
ting light signals and turnouts states. From this paper point of view, more interesting
is the TC agent, which uses the decision table to make decisions. This is the main
agent in the considered model. The most interesting parts of its implementation are
presented in Listing 28.8. The agent uses seven border ports to collect information
about the current state of the truck segments and about the requests sent from trains.
The empty lists in the environment clauses mean that any of these signals may ap-
pear at any time. The TC agent contains parameters used to preserve information
about:

• the current states of truck segments;
• currently set routes;
• requests waiting for handling.

After changing a value of at list one of these parameters, the TC agent try to handle
one request from its requests queue. It calls the rbs function for this purpose.

28.6 Summary

A Haskell approach to rule-based systems implementation and verification has been
presented in the paper. The approach has been worked out for the Alvis modelling
language. Encoding of a decision table as a Haskell function allows the designer to
include a rule-based system into the code layer of an Alvis model.

Moreover, it has been shown that Haskell can be useful from rule-based systems
analysis point of view. Algorithms used to verify selected rule-based systems prop-
erties have been also presented in the paper. Their source code illustrates how short
and intuitive can be Haskell. Thus, even a rule-based system is not implemented to
be included into an Alvis model, Haskell can be used to verify its properties.
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Chapter 29
On Objective Measures of Actionability
in Knowledge Discovery

Li-Shiang Tsay and Osman Gurdal

Abstract. One of the main goals of knowledge discovery is to find nuggets of use-
ful knowledge that could influence or help users in a decision-making process. This
task can be viewed as searching in an immense space for possible actionable con-
cepts. Most of the KDD researchers believe that the task of finding actionable pat-
terns is not easy and actionability is a purely subjective concept. Practitioners report
that applying the KDD algorithms comprises not more than 20% of the knowledge
discovery process and the remaining 80% relies on human experts to post-analyze
the discovered patterns manually. To improve the effectiveness of the process, ac-
tionability can be defined as an objective measure via providing a well-defined strat-
egy of pattern generations that allow guidance from domain experts at key stages in
the search for useful patterns. The approach tightly integrates KDD and decision
making by solving the decision-making problems directly on the core of KDD algo-
rithms. In this paper, we present a granular computing-based method for generating
a set of rules by utilizing the domain experts’ prior knowledge to formulate its inputs
and to evaluate the observed regularities it discovers. The generated rule overcomes
the traditional data-centered pattern mining, resulting to bridge the gap and enhance
real-world problem-solving capabilities.
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29.1 Introduction

The actionability in Knowledge Discovery (KD) refers to the discovered patterns
that suggest workable, concrete, and profitable strategies to the decision-maker. Dis-
covering actionable patterns is one of the greatest challenges in data mining [4, 7,
11, 20, 21]. Several approaches have been proposed in KDD literature to define var-
ious measures of actionable patterns with the goal of developing KDD tools that
automatically discover only the patterns that will allow users to directly take action
to gain advantage [17, 22, 23].

In the last decade, research in the field has made tremendous progress and KDD
has greatly impacted the industry and society [8]. Nevertheless, there is a gap be-
tween the discovered patterns and the formulated solutions [6, 7]. Currently, this gap
is filled by manual or semi-automatic analyses [6], which is time consuming, biased,
and limits the efficiency of KDD’s overall process and capabilities. Practitioners re-
port that applying the KD algorithms comprises no more than 20% of the knowledge
discovery process and the remaining 80% relies on human experts to post-analyze
the discovered patterns manually [1]. The limitation of current tools is that they do
not incorporate human user’s knowledge and reuse the discovered knowledge. It is
well known that purely empirical induction is infeasible to produce non-trivial re-
sults and some amount of the domain expert’s knowledge must be considered at an
early stage in the search for data patterns.

It is a remarkable fact that machine-learning algorithms incorporate very little
knowledge of domain experts into its standard learning process and adequately ob-
tain useful results in many domains [6]. To define good measures of actionability
that would allow the KD system to discover the real workable plans is of vital im-
portance. With such measures, the input of algorithms includes data as well as do-
main expert’s knowledge and the output of algorithms is the expected benefit that
could be realized by taking a specific action. Mined results are the potential solution
to users and reduce the need of going through all of the discovered rules manually.
The gap between data and action is reduced and the overall knowledge discovery
process can be greatly improved.

In general, the evaluation of the actionability of discovered patterns has both an
objective and subjective aspect. Objective measure is when the judgment is made by
computer-derived methods or strategies, and subjective measure is when the judg-
ment is made by people. Most researchers believe that the evaluation of the pattern’s
actionability is inherently subjective. There are several issues concerning subjective
interestingness measure. First, users may not know or cannot precisely specify what
interests them. Second, the users may not know enough about their domain. Third,
the users may have difficulty to list all of their beliefs about the domain. Fourth,
the result of analysis varies between individual users. Finally, it may require a lot
of time to analyze the result in order to form a timely solution for making a better
decision.

Conventionally, objective measure is defined as data-driven and domain-
independent. It is mainly to remove irrelevant, spurious, and insignificant rules
rather than to discover really interesting ones to human users. Because it does not
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include domain knowledge and usually does not capture all the complexities of the
pattern discovery process, the number of rules left after pruning can still be very
large and most of the patterns left can still be considered redundant, obvious, and
useless to users. That means, by itself alone, it is not sufficient in determining the ac-
tionability of extracted patterns; subjective concepts of actionability are also needed
in order to define true actionability of patterns. Therefore, in this paper, we study
the objective measure of actionability, but unlike others, we study them in a domain-
dependent context.

29.2 Related Work

Actionability has long been identified as an important problem in the knowledge
discovery area. There are two possible approaches in dealing with the actionabil-
ity. One strategy is the employment of a post-analysis module at the back-end of
the knowledge discovery system [12]. They do not use the domain experts’ prior
knowledge input to guide the rule generation process. The post-analysis module is
purely subjective. Another strategy that is purely objective utilizes the users’ input
knowledge about the domain to guide the rule generation process and then discovers
useful knowledge by comparing it with some forms of beliefs. Any mining results
that will either support or contradict these beliefs are considered as interesting. This
strategy can avoid generating uninteresting and useless rules, it reduces labor and
time to evaluate the discovered patterns, and it improves the overall KD process.

We focus on objective approaches for actionability. Some recent work has specif-
ically focused on the construction of workable plans by comparing the profiles of
two sets of targeted objects - those that are desirable and those that are not. Each ac-
tion plan was constructed from two groups, each with different desirable classes. It
was assumed that the values of some attributes listed in both groups are unchange-
able and had to be the same, e.g. for a customer database, the date of birth is an
attribute that a decision maker cannot change. Other attributes, the ones that the de-
cision maker does have influence on, are used to form workable strategies. Based on
construction methods, the actionable patterns can be further divided into two types:
rule-based and object-based.

Rule-based actionable patterns [14, 18, 19, 24, 25, 26, 28] are built on the foun-
dations of previously discovered classification rules, so the quality and quantity of
action rules is dependent on the adopted classification methods. Object-based ac-
tionable patterns [10, 27, 29], are built directly from the dataset and aimed to move
the mined results to the final application, which does not rely on post-processing
techniques and/or a great deal of a manual evaluation. In [10], authors explicitly
formulated it as a search problem in a support-confidence-cost framework and next
they presented an ID3-like algorithm for mining action rules. However, they did
not take into account the dependencies between attributes which are especially im-
portant because the cost of rules decides as to whether to accept or reject a rule.
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In [27, 29], authors presented an algorithm similar to Apriori [2] for constructing
actionable rules directly from a decision table.

29.3 Actionable Rules

In this section, we introduce the theoretical background for actionability min-
ing. First, the definition of an information system and its example are presented,
Secondly, the definition of an object-based actionable rule jointly with the notions
of their right support, left support, and confidence are given. Finally, the objectivity
of object-based actionable rules will be further discussed in Section 29.4.

29.3.1 Information Systems

An information system S = (U,A) is used for representing knowledge [16], where:

• U is a non-empty, finite set of objects,
• A is a non-empty, finite set of attributes, i.e. a : U → Va is a function for any

a ∈ A, where Va is called the domain of a.

Elements of U are called objects. For the purpose of clarity, the objects can be
viewed as customers, patients, students, etc. Attributes are interpreted as features
such as, offers made by a bank, medical treatments for patients, characteristic con-
ditions, etc. We only consider a special type of information systems called decision
systems.

By a decision system we mean an information system S = (U,AS ∪AF ∪{d}),
where d �∈ (AS ∪AF) is a distinguished attribute called the decision. Attributes in
S are partitioned into stable conditions AS and flexible conditions AF . The num-
ber of elements in d(U) = {k : (∃x ∈ U)[d(x) = k]} is called the rank of d and
it is denoted by r(d). Clearly, the attribute d determines the partition PartS(d) =

Table 29.1 Decision system Example

Objects a b c D
x1 0 2 0 I
x2 2 2 0 I
x3 2 1 2 W
x4 2 3 0 I
x5 2 1 1 W
x6 3 3 1 N
x7 3 4 0 N
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{X1,X2, . . . ,Xr(d)} of objects in U into decision classes, where Xk = d−1({k}) for
1 ≤ k ≤ r(d).

Table 29.1 presents an example of a decision system, which consists of 7 objects
described by 4 attributes. Attributes in {b,c} are flexible, attribute a is stable, and d
is the decision attribute.

29.3.2 Object-Based Action Rule, Left Support, Right Support,
Confidence

Action rule mining constructs workable and useful strategies by comparing the pro-
files of two sets of targeted objects U : those that are desirable and those that are un-
desirable. This model goes beyond learning to predict likely outcomes, and learns to
suggest preemptive actions that achieve the desired outcome. The discovered patterns
provide an insight of how relationships should be managed so that the undesirable
objects can be moved to a group of desirable ones. For example, in a school, one
would like to not only identify students’ learning barriers, but also to find a way to
improve his or her academic performance. Another example can be found in the situ-
ation of modeling a mortgage bank. It is clearly helpful to predict which mortgagees
are at high risk of failing to repay their loans; it is even more helpful if it would help
the customer to learn which preventive actions might help to reduce their risk.

By an object-based action rule r in a decision system S, we mean an expression:

r = [[(a1 = ω1)∧ (a2 = ω2)∧ . . .

∧(aq = ωq)]∧ (b1,α1 → β1)∧ (b2,α2 → β2)∧ . . .

∧(bp,αp → βp)]⇒ [(d,k1 → k2)],

where {b1,b2, . . . ,bp} are flexible attributes and {a1,a2, . . . ,aq} are stable in S. In
addition, we assume that ωi ∈ Dom(ai), i = 1,2, . . . ,q and αi,βi ∈ Dom(bi), i =
1,2, . . . , p. The term (ai = ωi) states that the value of the attribute ai is equal to ωi,
and (b j,α j → β j) means that value of the attribute b j has been changed from α j to
β j. We say that object x ∈ U supports an object-based action rule r in S, if there is
an object y ∈U such that:

(∀i ≤ p)[[bi(x) = αi]∧ [bi(y) = βi]],

(∀i ≤ q)[ai(x) = ai(y) = ωi],

d(x) = k1 and d(y) = k2.

Action plans are constructed by comparing the profiles of two sets of targeted cus-
tomers. So, we can assume that there are two patterns associated with each object-
based action rule, a left-hand side pattern PL and a right-hand side pattern PR. There
are three objective measures of rule interestingness including Left Support, Right
Support, and confidence.
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The Left Support defines the domain of an object-based action rule which identi-
fies objects in U on which the rule can be applied. The larger its value is, the more
interesting the rule will be for a user. The left-hand side pattern of an object-based
action rule is defined as the set

PL =VL ∪{k1}, where VL = {ω1,ω2, . . . ,ωq,α1,α2, . . . ,αp}.

The domain DomS(VL) of the left pattern PL is a set of objects in S that exactly match
VL. Card[DomS(VL)] is the number of objects in that domain. Card[DomS(PL)] is the
number of objects in S that exactly match PL and Card[U ] is the total number of
objects in the decision system S. By the left support supL of an object-based action
rule r, we mean:

supL(r) = Card[DomS(PL)]/Card[U ].

The RightSupport shows how strongly the rule is supported by objects in S from the
preferable decision class. The higher its value is, the stronger case of the reclassifi-
cation effect will be. The pattern PR of an object-based action rule r is defined as:

PR =VR ∪{k2}, where VR = {ω1,ω2, . . . ,ωq,β1,β2, . . . ,βp}.

By domain DomS(VR) we mean the set of objects in S matching VR. Card[DomS(PR)]
is the number of objects that exactly match PR. By the right support supR of action
rule r, we mean:

supR(r) = Card[DomS(PR)]/Card[U ].

The confidence of rule r shows the success measure in transforming objects from a
lower-preference decision class to a higher one. The support of an action rule r in S,
denoted by SupS(r), is the same as the left support supL(r) of action rule r. This is
the percentage of objects that need to be reclassified into more preferable class. By
the confidence of an action rule r in S, denoted by con fS(r), we mean:

con fS(r) =(Card[DomS(PL)]/Card[DomS(VL)])·
(Card[DomS(PR)]/Card[DomS(VR)]).

29.4 Objectivity

The aim of this research is to look at the actionability in an objective way. Object-based
action rules, as we already stated, provide a structure used to mathematically analyze a
data set. Since mining object-based action rules do require information about domain
knowledge in its initial state, we cannot get rid of some degree of subjectivity in deter-
mining which attributes should remain stable and how to take an action. Obviously,
the partition of attributes into stable and flexible has to be done by users. This deci-
sion is a purely subjective one. A flexible attribute (occupation, interest rate, medical
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treatment, etc.) means that its values can be changed and this change can be influenced
and controlled by the users. A stable attribute (race, gender, etc.) is on the other end
and its value cannot be changed. Stable attributes can also be used to define constraints
(for example, “patient who does not smoke, can not start smoking”) which objects in
S have to satisfy in order to be processed by certain object-based action rules.

Basically, an object-based action rule shows that some selected objects can be
reclassified from an undesired state to a desired one by changing some of the values
of the corresponding flexible features. How to take action on those flexible attributes
can be determined using either objective or subjective approach. It depends on the
characteristic of the corresponding flexible attributes. If the attribute is an interest
rate on the bank account, then banks can take action as the rule states (i.e., lower
the mortgage rate to 4.75%). In this case, we have a purely objective step. However,
if the attribute is a fever, then doctors have several options to follow to decrease the
temperature. So, this will be a subjective step. Basically, object-based action rule
mining cannot eliminate some amount of subjectivity in the process.

29.5 The Straightforward StrategyGenerator Approach

The StrategyGenerator algorithm is proposed to find the set of the most concise
object-based action rules by considering a change of value within a single flexible
attribute and each value of a stable attribute as atomic expressions from which more
complex expressions are built. The algorithm follows a breath-first-type strategy
and does not require prior extraction of classification rules. It guarantees that all
discovered action rules are the shortest and the same, so they avoid unnecessary
information.

There are two basic steps in the proposed approach.
(1) Partition the decision table and select target sub-tables:
The original decision table S is first partitioned into a number of sub-tables

S1,S2, . . . ,Sp according to the decision attribute in the decision table. Relevant sub-
tables are selected based on the reclassification goal for forming workable strategies,
most of the time only two sub-tables will be chosen. Usually, a practical data-mining
application has a specific task, such as to find preventative actions to reduce the high-
risk pregnancies, or those at high risk of requiring an emergency Cesarean-section
delivery. Only some subsets of objects are important and need to be mined.

(2) Form actionable plans:
An object-based action rule is a structure of the form

[(AS,ω)∧ (AF ,α → β )]⇒ (d,φ → ψ),

where (AS,ω) is a premise-type stable atom, (AF ,α → β ) is a premise-type flexible
atom, and (d,φ → ψ) is a decision-type atom.

First, a single candidate atom is formed for each attribute and a candidate atom
is selected if its support meets a minimum criteria. The anti-monotonic property
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is applied to filter candidate terms. When the support value of an atom is below
the threshold, a negative mark is placed on the term and it is eliminated from the
candidate list immediately.

Second, formation of an action rule assumes to concatenate a premise-type flex-
ible atom with a decision-type atom. The rule is generated and a positive mark is
placed on its premise-type atom, if its Left Support, Right Support, and confidence
satisfy the thresholds α1,α2,α3, respectively. When an atom is marked with positive
sign, it is removed from the candidate list as well. By doing this, we guarantee that
the discovered rules are the most concise ones. At this step, stable atomic terms are
not considered, because they cannot be solely used to construct action rules.

Third involves forming one element longer from the unmarked premise-type
atoms. If its support is below the threshold value, then the negative mark is placed.

Fourth involves construction of the object-based action rule, which is a conjunc-
tion of newly-formed premise-type atoms with a decision-type atom, and then mak-
ing the decision as to whether the rule can be accepted. The algorithm recursively
takes unmarked candidate terms and extends them by one new unmarked atomic
term till no new candidates are found.

The StrategyGenerator SG(S,α1,α2,α3,R(r)) algorithm for extracting object-
based action rules from a complete decision system S is presented in Fig. 29.1.

Fig. 29.1 StrategyGenerator Algorithm
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Now, referring back to Table 29.1, we illustrate the StrategyGenerator for the
construction of object-based action rules step by step. We assume that W, I, and N
denote the ranking of patients’ health conditions as wellbeing, ill, and incurable
status, respectively. The direction of reclassification is from I to W . The minimum
support threshold for both supR and supL is 14%, and the minimum confidence
threshold for rules is 75%.

Partition the decision table. In this example, the domain of the decision attribute
is defined as {I,W,N} and the reclassification direction is from I to W . That means
the customers with decision value N are not the focus point in this case. Therefore,
the decision table S can be divided into S1 and S2 according to the decision values I
and W as represented in Fig. 29.2. Actionable strategies will be constructed based
on sub-tables S1 and S2 only.

Fig. 29.2 Partition and Selection of Objects

Forming actionable strategies. The main idea of the reclassification goal is to
move objects from an undesirable group into a more desirable one. Objects in S that
have property PL are denoted by L∗

S and objects in S that have property PR are denoted
by R∗

S. These two sets are also called granules. StrategyGenerator algorithm starts
with atomic terms for S generated in its first loop. These terms are classified into
two groups: premise-type and decision-type. Premise-type atomic terms are split
into stable and flexible. As we mentioned before, any action rule without at least
one flexible premise-type atomic term is meaningless. Stable atomic terms cannot
be solely used to construct action rules, but they are important in boosting their
confidence [25]. In this example, one valid candidate term which is a stable atom
(a,2) is generated. In order to create atomic terms for a flexible attribute we check
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its domain in both sub-tables. Referring back to Example 1, the values of attribute
b are “2” and “3” in sub-table S1 and “1” in sub-table S2. It means that the action
recommendations for attribute b say that its value should be changed from 2 to 1
or from 3 to 1. The corresponding atomic terms are presented as (b,2 → 1) and
(b,3 → 1). Following the same procedure for attribute c, its corresponding atomic
terms can be formed and they are listed below.

One-element term loop:
//Granules corresponding to values of a decision attribute
Decision-type atomic term: (d, I →W ),
Granules: L∗ = {x1,x2,x4}, R∗ = {x3,x5}.
//Granules corresponding to values of condition attributes

Premise-type stable atomic expressions:
(a,0), L∗ = {x1},R∗ = /0 Marked “-”
(a,2), L∗ = {x2,x4}, R∗ = {x3,x5}.

Premise-type flexible atomic expressions:
(b,2 → 1), L∗ = {x1,x2},supL(r) = 2/7; R∗ = {x3,x5},

supR(r) = 2/7; Con f (r) = (2/2)× (2/2) = 100% Marked “+”

(b,3 → 1), L∗ = {x4}, supL(r) = 1/7; R∗ = {x3,x5},
supR(r) = 2/7; Con f (r) = (1/3)× (2/2) = 33%

(c,0 → 2), L∗ = {x1,x2,x4}, supL(r) = 3/7; R∗ = {x3},
supR(r) = 1/7; Con f (r) = (3/3)× (1/1) = 100% Marked “+”

(c,0 → 1), L∗ = {x1,x2,x4}, supL(r) = 3/7; R∗ = {x5},
supR(r) = 1/7; Con f (r) = (3/3)× (1/2) = 50%.

The object-based action rule r linking each premise-type term and the decision-
type term is acceptable when the values of the corresponding supL(r),supR(r),
and Con f (r) meet the user-specified thresholds. The primary idea of the
StrategyGenerator algorithm lies in the anti-monotonic property of the support.
It is used to prune unqualified candidates. This is achieved by placing a “-” mark
when a term does not have sufficient support. Going back to the example, the sup-
port of the atomic term (a,0) does not satisfy the minimum support requirement, so
it is marked with “-” symbol and it is not considered in later steps of the algorithm.
The goal of this algorithm is to find the shortest actionable patterns. It means when
a premise-type term t1 jointly with a decision-type term form an acceptable action
rule, then t1 is not investigated any further.

In this example, the term (b,2 → 1) jointly with (d,W → I) meet all three thresh-
olds, so the action rule (b,2→ 1)⇒ (d,W → I) is discovered and the term (b,2→ 1)
is marked as “+”.

Building two-element premise-type terms by concatenating any two unmarked
premise-type terms that have different attributes. Below is the list of two-element
terms. There are three action rules generated in this step.
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Two-elements term loop:

(a,2)∧ (b,3 → 1), L∗ = {x2},supL(r) = 1/7; R∗ = {x3,x5},
supR(r) = 2/7; Con f (r) = (1/1)× (2/2) = 100% Marked “+”

(a,2)∧ (c,0 → 1), L∗ = {x2,x4}, supL(r) = 2/7; R∗ = {x5},
supR(r) = 1/7; Con f (r) = (2/2)× (1/1) = 100% Marked “+”

(b,3 → 1)∧ (c,0 → 1), L∗ = {x4},supL(r) = 1/7; R∗ = {x5},
supR(r) = 1/7; Con f (r) = (1/1)× (1/1) = 100% Marked “+”

Since all the premise-type atoms are marked, the algorithm is terminated and five
object-based action rules are generated as follows:

(b,2 → 1)⇒ (d, I →W ), supL(r) = 2/7, supR(r) = 2/7, Con f (r) = 100%

(c,0 → 2)⇒ (d, I →W ), supL(r) = 3/7, supR(r) = 1/7, Con f (r) = 75%

((a,2)∧ (b,3 → 1))⇒ (d, I →W ), supL(r) = 1/7, supR(r) = 2/7,
Con f (r) = 100%

((a,2)∧ (c,0 → 1))⇒ (d, I →W ), supL(r) = 2/7, supR(r) = 1/7,
Con f (r) = 100%

((b,3 → 1)∧ (c,0 → 1))⇒ (d, I →W ), supL(r) = 1/7, supR(r) = 1/7,
Con f (r) = 100%.

The discovered rules presented to a decision maker should only consist of simple,
understandable, and complete strategies that allow a reasonably easy identification

Fig. 29.3 StrategyGenerator Interface
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of preferable rules. We claim that the new presented method guarantees that the
actionable patterns are concise, general, and reliable. As we can see, the discovered
action rules contain relatively few attribute-value pairs on the classification side and
the number of these rules is also relatively small. Such rules are more readable,
easier to understand and apply later on.

The algorithm, StrategyGenerator, was implemented in Windows XP (see
Fig. 29.3).

It was tested on several public domain datasets and on the medical database HEPAR
created in 1990, and thoroughly maintained in the Clinical Department of Gastroen-
terology and Metabolism at the Institute of Food and Feeding, Warsaw, Poland.

In all the cases, the recall of the new algorithm was higher than the recall of
DEAR [18, 24, 25, 28].

29.5.1 Experiment I

Let us compare the object-based action rules generated by StrategyGenerator with
action rules constructed by the tree-based algorithms DEAR [18, 24, 25, 28]. In the
case of a decision table presented as Example 1 from the previous section, nine
classification rules have been generated and they are listed below:

(a,0)→ (d, I); (b,2)→ (d, I) (c,0)→ (d, I)
(a,3)→ (d,N) (b,1)→ (d,W ) (c,2)→ (d,W )

(a,2)∧ (b,3)→ (d, I) (b,3)∧ (c,1)→ (d,N) (a,2)∧ (c,1)→ (d,W ).

For the reclassification direction from I to W, DEAR algorithm generates from them
only 4 action rules listed below:

(b,2 → 1)⇒ (d, I →W ), supL(r) = 2/7, supR(r) = 2/7, Con f (r) = 100%

(c,0 → 2)⇒ (d, I →W ), supL(r) = 3/7, supR(r) = 1/7, Con f (r) = 75%

((a,2)∧ (c,0 → 1))⇒ (d, I →W ), supL(r) = 2/7,
supR(r) = 1/7, Con f (r) = 100%

(b,3 → 1)⇒ (d, I →W ), supL(r) = 1/7, supR(r) = 1/7, Con f (r) = 100%.

The new method generates more action rules than DEAR as we have seen in the
previous example. Because DEAR constructs actionable patterns from the classifi-
cation rules, their quantity and quality is affected by the strategy chosen for clas-
sification rules extraction. StrategyGenerator is an object-based action rule mining
while DEAR is a rule-based one. The comparison of these two approaches is pre-
sented in Fig. 29.4.
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Fig. 29.4 StrategyGenerator v.s. DEAR

29.5.2 Experiment II - HEPAR Database

As the application domain for this research, we have chosen the HEPAR system
built in collaboration between the Institute of Biocybernetics and Biomedical Engi-
neering of the Polish Academy of Sciences and physicians at the Medical Center of
Postgraduate.

Education in Warsaw, Poland [3, 15]. HEPAR was designed for gathering and
processing clinical data about patients with liver disorders. It contains information
on 758 patients described by 106 attributes (including 31 laboratory tests with val-
ues discretized to: “below normal”, “normal”, “above normal”). It has 14 stable at-
tributes. Two laboratory tests are invasive: HBsAg (in tissue) and HBcAg (in tissue).
The decision attribute has 7 values: I (acute hepatitis), IIa (subacute hepatitis [types
B and C]), IIb (subacute hepatitis [alcohol-abuse]), IIIa (chronic hepatitis [curable]),
IIIb (chronic hepatitis [non-curable]), IV (cirrhosis-hepatitis), V (liver-cancer).

The diagnosis of liver disease depends on a combination of the patient’s his-
tory, physical examinations, laboratory tests, radiological tests, and frequently a
liver biopsy. Blood tests play an important role in the diagnosis of liver diseases.
However, their results should be analyzed along with the patient’s history and phys-
ical examination. The most common radiological examinations used in the assess-
ment of liver diseases are ultrasound and sonography. Ultrasound is a good test for
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the detection of liver masses, assessment of bile ducts, and detection of gallstones
present. However, it does not detect the degree of inflammation or fibrosis of the
liver. Ultrasound is a non-invasive procedure and there are no risks associated with
it. Liver biopsy enables the doctor to examine how much inflammation and how
much scarring has occurred. Liver biopsy is an example of invasive procedure that
carries certain risks to the patient. Therefore, despite the importance of its results
to the diagnosis, clinicians try to avoid biopsy as often as possible. However, liver
biopsy is often the only way to establish correct diagnosis in patients with chronic
liver disorders.

A medical treatment is naturally associated with re-classification of patients from
one decision class into another one. In this research we were mainly interested in
the re-classification of patients from the class IIb into class I and from the class IIIa
into class I, but without referring to any invasive test results in action rules.

Database HEPAR has many missing values. Following the approach proposed in
[17], we removed all its attributes with more than 90% of null values assuming that
these attributes are not related to invasive tests. Also, subjective attributes (like “his-
tory of alcohol abuse”) have been removed. Next, we used one of the classical null
value imputation techniques (provided in Rough Sets Exploration System (RSES))
to make the resulting database complete.

For testing purposes, we have chosen the same d-reduct R= {m,n,q,u,y,aa,ah,
ai,am,an,aw,bb,bg,bm, by,c j,cm} as in [17] because it does not contain any inva-
sive tests. By d-reduct we mean a minimal subset of attributes which by itself can
fully characterize the knowledge about attribute d in the database. The description
of attributes (tests) listed in R is given below:

m - Bleeding am - History of hospitalization (stable)
n - Subjaundice symptoms ah - History of viral hepatitis (stable)
q - Eructation bb - Cysts
u - Obstruction bg - Sharp liver edge (stable)
y - Weight loss bm - Blood cell plaque
aa - Smoking by - Alkaline phosphatase
ai - Surgeries in the past (stable) cj - Prothrombin index
an - Jaundice in pregnancy cm - Total cholesterol
aw - Erythematous dermatitis dd - Decision attribute

StrategyGenerator discovered eight action rules. Three of them have a very high
confidence (close to 100) and they are given below:

[(am,2)∧ (ah,2)∧ (bg,2)]∧ (q,2→ 1)∧ (cm,2 → 1)⇒ (dd, IIIA → I).

The first rule is applicable to patients with a history of hospitalization, history of
viral hepatitis, and with a sharp liver edge which is not normal. It says that if we
get rid of eructation and decrease the cholesterol level to normal, then we should be
able to reclassify such patients from the category IIIA to I.
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[(am,2)∧ (bg,2)∧ (ai,1)]∧ (u,2→ 1)∧ (y,2 → 1)⇒ (dd, IIIA → I).

The second rule is applicable to patients with a history of hospitalization, with a
sharp liver edge which is not normal, and with no surgeries in the past. It says that if
we get rid of obstruction and change the weight loss level to normal, then we should
be able to reclassify such patients from the category IIIA to I.

[(am,2)∧ (bg,2)∧ (ai,1)]∧ (q,2→ 1)∧ (u,2 → 1)∧ (n,2 → 1)⇒ (dd, IIIA → I).

The third rule is applicable to patients with a history of hospitalization, with a sharp
liver edge which is not normal, and with no surgeries in the past. It says that if we
get rid of eructation, get rid of obstruction, and change the subjaundice symptoms
to normal, then we should be able to reclassify such patients from the category
IIIA to I.

29.6 Conclusion

Knowledge Discovery and Data mining (KDD) has been widely used both in the
government and the private sector for making better management decisions and im-
proving services or performance. However, successful KDD still requires skilled
technical and analytical specialists who can structure, analyze, and interpret the
mined results. To address this issue, we proposed StrategyGenerator to discovery
actionable patterns by utilizing the domain experts’ prior knowledge to formulate
its inputs and to evaluate the observed regularities. The mined results provide an
insight of how relationships should be managed so the undesirable objects(patients)
can be moved to a group of desirable ones. In our future work, we plan to investi-
gate the notion of a cost associated with changes of values of an attribute. Our goal
is to extract actionable patterns with the lowest cost to enlarge decision-support
power in the real world. Related module will be added to the StrategyGenerator
system.
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Chapter 30
Pseudometric Spaces from Rough Sets
Perspective

Piotr Wasilewski

Abstract. Pseudometric spaces are presented form the point of view of their con-
nections with approximation spaces. A special way of determining equivalence re-
lations by pseudometric spaces is considered and open sets in pseudometric spaces
are studied. Investigations focus on the class of pseudometric spaces which are
lower bounded in each point since open sets in these spaces coincide with definable
sets of some prescribed approximation spaces. It is also shown that all equivalence
and non transitive tolerance relations can be determined by pseudometric spaces in
specified ways.

Keywords: Rough sets, pseudometric spaces, approximation spaces, information
systems, indiscernibility relations, informational representability.

30.1 Introduction

We study pseudometric spaces from a perspective of their connections with approxi-
mation spaces from rough set theory [11–13] (see also e.g. [14–16]). A fundamental
connection is based on the fact that every pseudometric space determines an equiv-
alence relation identifying elements such that their distance with respect to a given
pseudometric is equal to zero. We also show that every equivalence relation can be
determined in that way. We call such relations atomizing, since they divides pseu-
dometric spaces into atoms: a given pseudometric does not differentiate between
elements of equivalence classes of its atomizing relation. This is closely related to
the Pawlak’s idea of information atoms [11–13]. We consider the form of open sets
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in pseudometric spaces and show that every open set in arbitrary pseudometric space
is a union of equivalence classes of its atomizing relation, thus it is a definable set
in an approximation space determined by this atomizing relation.

We study some properties of pseudometric spaces including a property of be-
ing lower bounded in each point characterizing pseudometric spaces where ev-
ery atom is an open set. This implies that open sets in lower bounded in each
point pseudometric spaces coincide with definable sets of approximation spaces
determined by corresponding atomizing relations of these spaces. This makes this
property interesting from the Rough Sets perspective applied in this paper so it is
studied in sections 30.4–30.7. We characterize continuous functions between pseu-
dometric spaces which are lower bounded in each point (Section 30.4). We discuss
pseudometrics determined by families of sets, they are examples of pseudometric
space which are lower bounded in each point and we show that any equivalence
relation determines a pseudometric space such that it is atomized by this relation
(Section 30.5). We show that clo-open topological spaces are exactly spaces pseu-
dometrizable by pseudometric spaces which are lower bounded in each point (Sec-
tion 30.6). Then we show that every lower bounded in each point pseudometric
space is equivalent to double bounded pseudometric spaces determined by some
partition of the space (Section 30.7). We finish our presentation by providing a topo-
logical characterization of attribute dependency. Then we generalizing this concept
for information systems with different object domains and we provide a topological
characterization of this generalized attribute dependency (Section 30.8).

Such study of pseudometric spaces is motivated by rough set theory and possible
applications in analysis of incomplete information. However, in this paper we focus
on theoretical aspects only, leaving discussion of applications for future work.

30.2 Rough Sets and Indiscernibility Relations

Rough sets were introduced by Zdzisław Pawlak as a tool for analyzing information
systems – formal counterparts of information tables, where rows are labeled by
names of objects and columns – by names of attributes. An information system
is a triple S = 〈Ob,At,Vala〉 where Ob is a set of objects, At is a set of attributes,
and each Vala is a value domain of an attribute a ∈ At, where a : Ob −→ P(Vala)
(P(Vala) is a power set of Vala). If a(x) �= /0 for all x ∈ Ob and a∈ At, then S is total.
If card(a(x)) = 1 for every x∈ Ob and a∈ At, then S is deterministic. Otherwise S is
indeterministic. Referring to deterministic information systems we will use simply
information systems.

According to Zdzisław Pawlak, knowledge is based on ability to discern ob-
jects by means of attributes [8, 10–13]. In information systems, this ability is pre-
sented by indiscernibility relation. This idea can lead also to introducing a notion
of a distance based on distinguishability of objects where a distance between ob-
jects is, loosely speaking, equal to the number of attributes distinguishing them
(Section 30.5). For analyzing indiscernibility relations determined by information
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Table 30.1 Example of indeterministic information system.

Height (cm) Degrees Height (cm) Degrees
x1 196 {BSc,MSc,PhD} x6 183 {BA,MA}
x2 174 {BSc,BA,MA,PhD} x7 190 {BSc}
x3 173 {BSc,MSc} x8 192 {BSc,MA,PhD}
x4 179 {BA,MA,PhD} x9 187 {BA,MA}
x5 178 {BSc} x10 184 {BSc,MSc,PhD}

systems Zdzisław Pawlak proposed approximation spaces and on their basis Pawlak
introduced rough sets as tools for representing knowledge contained in information
systems.

Let S = 〈U,At,Vala〉 be an information system, B ⊆ At and x,y ∈U . Indiscerni-
bility relation ind(B) is a relation such that (x,y) ∈ ind(B) ⇔ a(x) = a(y) for all
a ∈ B. ind(B) can be further analyzed from abstract perspective of approximation
spaces [11, 12]. An approximation space is a pair (U,R) where U is a non-empty
set and R is an equivalence relation on U . (the family of all equivalence relations on
a set U we denote by Eq(U)). The equivalence classes of R are called atoms [12].
Subsets of U which are unions of atoms are called definable (or composed). Other-
wise they are called rough [11–13]. De fR(U) denotes the family of all definable sets
in (U,R). For (U,R) and X ⊆U , lower and upper approximations of X in (U,R) are
defined as follows

R∗(X) =
⋃
{Y ∈U/R

: Y ⊆ X} R∗(X) =
⋃
{Y ∈U/R

: Y ∩X �= /0}.

Approximation spaces can be investigated by means of set spaces (see [29–31]
where they are called general approximation spaces). They appeared to be appro-
priate tools for general investigations into approximation spaces and indiscernibility
relations and their connections with concept lattices [30, 31]. Set spaces can also
serve as basic structures for in foundations of granular computing [28].

A pair (U,C) is a set space if U is non-empty set and C ⊆ P(U). For any C ⊆
P(U), Sgc(C) denotes the least complete field of sets containing C. Elements of
Sgc(C) are called definable sets in the set space (U,C). For any set space (U,C) two
operators can be defined:

C∗(X) :=
⋃
{A ∈ Sgc(C) : A ⊆ X} C∗(X) :=

⋂
{A ∈ Sgc(C) : X ⊆ A}.

Let C ⊆ U then an indiscernibility relation with respect to C and indiscernibility
relation with respect to family C are defined respectively as follows:

x ≈C y ⇔de f x ∈C ⇔ y ∈C (x,y) ∈ ≈C ⇔de f (x,y) ∈
⋂

C∈C
≈C .

Observe that ≈C,≈C∈ Eq(U). Set spaces can represent information systems. More-
over, set spaces and information systems are mutually information representable
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[2, 9] (with keeping the discernibility of objects, i.e. determining the same indis-
cernibility relation, for mutual informational representability of set spaces and in-
formation systems see [31]). For an information system 〈Ob,At,{Va : a ∈ At}, f 〉
there is a set space (U,C) such that ind(At) = ≈C. To show this, for every a ∈ AT
and v ∈ Va one can define a set Cv

a := {x ∈ Ob : f (x,a) = v} whereas a family CAt

can be defined as follows CAt := {Cv
a : a ∈ At,v ∈Va}. Thus (OB,CAt) is a set space

and now one can prove that ind(At) = ≈CAt . In the reverse direction, for any general
approximation space (U,C) there is an information system 〈Ob,At,{Va : a ∈ At}, f 〉
such that ≈C = ind(At). To show this, for a set space (U,C) one can consider an
information system 〈U,C,{VC : C ∈ C}, f 〉, where VC = {0,1} for each C ∈ C and a
function f assigns each pair (a,C) the value of the characteristic function χC for the
object a and prove that ≈C = ind(C).

It can be shown also that for any equivalence relation R ∈ Eq(U) there is a fam-
ily C ⊆ P(U) such that R = ≈C . To show this one can prove that R =≈U/R

. More-
over, approximation spaces can be adequately represented by set spaces since the
following conditions are equivalent: R = ≈C iff for any X ⊆ U R∗(X) = C∗(X)
and R∗(X) = C∗(X) iff De fR(U) = Sgc(C) [30, 31]. If A ⊆ U is a field of sets on
U , then At(A) denotes the family of all atoms of A. For any family C ⊆ P(U) it
can be shown that At(Sgc(C)) = U/≈C , i.e. atoms of Sgc(C) are precisely equiva-
lence classes of ≈C . Thus B ∈ Sgc(C) if and only if B is a union of classes from
U/≈C [30, 32]. Rough set theory allows us also to investigate dependency between
attributes in information systems: for information system S = 〈U,At,Vala〉 and
B,D ⊆ At, D depends on B in S, symbolically B ⇒S D, iff ind(B)⊆ ind(D).

30.3 Pseudometric Spaces: Definition, Examples and Basic
Properties

Let us recall now definition of pseudometric space [3]. �+ denotes the set of non-
negative reals, i.e. �+ := [0,+∞), �∗

+ denotes the set of positive reals, i.e. �∗
+ :=

(0,+∞). Let U be any nonempty set. A function p : U2 → �+ is pseudometric iff
the following conditions hold:

(PM1) ∀x ∈U : p(x,x) = 0
(PM2) ∀x,y ∈U : p(x,y) = p(y,x)
(PM3) ∀x,y,z ∈U : p(x,z)≤ p(x,y)+ p(y,z)

A pair of the form (U, p) is called a pseudometric space while a function p is called
a pseudometric on the set U . We refer to the condition (PM2) as the symmetry con-
dition and to the condition (PM3) as the triangle inequality condition.

Let us note that every metric is also pseudometric, so pseudometric which is
not a metric we will call proper pseudometrics. Now we present some examples of
pseudometrics (| · | denotes the absolute value of a real number).
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Example 30.1. Let a function p : �2 → �+ be given by formula: for any x,y ∈ �

p(x,y) := |x2 − y2|.

Let us note that a function p pseudometric on the set �. Notice that p(−2,2) = 0
and since 2 �=−2, then p is a proper pseudometric on �.

In order to give the next example, let us mention that 	 denotes the set of integral
numbers.

Example 30.2. Let a∈	 and b∈
. Let r(a,b) denote a reminder of division of a by
b. Let n ∈ 
 and let a function pn : 	2 → �+ be given by formula: for any a,b ∈ 	

pn(a,b) := |r(a,n)− r(b,n)|.

Let us note that pn(a,a) = 0 for every n ∈ 
 while symmetry and triangle inequal-
ity conditions follow from properties of the absolute value operation. Thus a pair
(	, pn) is pseudometric space. Let us note also that if numbers a i b are multiples
of a number n, then pn(a,b) = 0. Let k and l be mutually different multiples of a
number n, so pn(k, l) = 0, but k �= l. Thus a function pn is proper pseudometric on
the set 	.

Let us observe also that n = 1 if and only if pn(a,b) = 0 for all a,b ∈ 	.

Notice that every pseudometric is determined uniquely by some equivalence rela-
tion. This is relation which identify elements such that a distance between them,
according to a given pseudometric, is equal to zero. Equivalence classes of this re-
lation consist of elements which are not distinguish by a given pseudometric. Thus
these classes play role of the basic components of a pseudometric space. Particu-
larly, open sets in a given pseudometric space do not separate elements from equiv-
alence classes of such relation. So, this remark justify call such equivalence classes
atoms. Let us introduce the next definition:

Definition 30.1. Let (U, p) be a pseudometric space and let x,y∈U . Then we define
a relation ∼p putting:

x ∼p y := p(x,y) = 0.

We say that a relation ∼p atomize the space (U, p) or more generally, since
∼p∈ Eq(U), a relation θ ∈ Eq(U) (an approximation space (U,θ )) atomizes a
space (U, p) iff θ = ∼p. Equivalence classes of ∼p are called atoms of a pseu-
dometric space (U, p), or shortly atoms.

Above definition directly entails the following corollary:

Corollary 30.1. If a pseudometric space (U, p) is a metric space, then (U, p) is
atomized by the identity relation on the space U, i.e. ∼p = ΔU .

Thus, for example, the relation atomizing of every metric space on �n is the identity
relation on the set �n. Here are next examples of atomizing relations:
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Example 30.3. Let (�, p) be a pseudometric space from the example 30.1. Let us
note that the relation atomizing this space has the following form:

∼p = {(x,y) ∈ �2 : |x|= |y|}.

Example 30.4. Let (	, pn), for n ∈ 
, be a pseudometric space from the example
30.2. Let ≡n denotes a relation of congruence modulo n between integral num-
bers, i.e.

≡n := {(a,b) ∈ 	2 : r(a,n) = r(b,n)}.

This relation is compatible with operation from the field of integral numbers or using
universal algebraic terminology, it is a congruence in the field of integral numbers.
Let us note that ≡n = ∼pn , that is for any a,b ∈ 	, pn(a,b) = 0 ⇔ a and b are
multiples of n and a congruence ≡n atomizes the space (	, pn).

Definition 30.2. Let U be any non-empty set and θ ∈ Eq(U). We say that a function
p : U2 →�+ and a relation θ satisfy generalized determinacy condition (GM), when
for any x,y ∈U :

p(x,y) = 0 ⇔ (x,y) ∈ θ .

Proposition 30.1. Let U be any set and let p : U2 → �+ be a function. p is pseu-
dometric on U if and only if there is a relation θ ∈ Eq(U) such that the following
conditions are satisfied:

(GM) p(x,y) = 0 ⇔ (x,y) ∈ θ
(PM2) ∀x,y ∈U : p(x,y) = p(y,x)
(PM3) ∀x,y,z ∈U : p(x,z)≤ p(x,y)+ p(y,z)

In other words p is pseudometric if and only if it satisfies generalized determinacy
condition with some equivalence relation θ and it satisfies symmetry and triangle
inequality conditions. If (U,d) is pseudometric space, then the relation satisfying
with metric d the generalized determinacy condition is ΔU , i.e. the identity relation
on the set U .

Proposition 30.1 shows that the concept of a pseudometric space is a natural
generalization of the concept of a metric space. Thus for the class of pseudometric
space one can naturally generalize the concepts defined for metric spaces such as
the concepts of open ball, open set, closed set, continuous function.

Definition 30.3. Let (U, p) be a pseudometric space and let x0 ∈U , r ∈ �∗
+.

The set K(x0,r) of the form:

K(x0,r) = {x ∈U : p(x0,x)< r}

is called the open ball in the space (U, p) with a centre x0 and radius r or simply
the r-ball about x0.

A set A ⊆U is called open set in the space (U, p) iff for any x ∈ A there is r ∈�∗
+,

such that K(x,r) ⊆ A.
A set A ⊆ U is called closed set in the space (U, p) iff it is a complement of an

open set in the space (U, p), i.e. there is an open set B ⊆U such that A =U \B. If
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it will not lead to misunderstanding, we will say shortly open balls, open sets and
closed sets.

An open set A ⊆ U in the space (U, p) is called the neighborhood of the point
x0 ∈U in the space (U, p), shortly the neighborhood of the x0 if and only if x0 ∈ A.
top(U, p) denotes the family of all open sets in the space (U, p), i.e.

top(U, p) = {A ⊆U : A is open in the space (U, p)}.

Above definition directly entails the following proposition, which is a generalization
of the well known fact from the theory of metric spaces for the class of pseudometric
spaces:

Corollary 30.2. Let (U, p) be a pseudometric space. Then

(1) A set A⊆U is open in (U, p) if and only if A is a union of open balls contained
in it.
(2) Every open ball in (U, p) is an open set in (U, p).

Proposition 30.2. Let (U, p) be a pseudometric space and let K(x,r) be open ball
in (U, p). Then:

(1) K(x,r) is a union of atoms of the space (U, p).
(2) For any y ∈U the following implication holds:

y/∼p ∩K(x,r) �= /0 ⇒ y/∼p ⊆ K(x,r).

(3) If an atom x/∼p is an open set in the space (U, p), then there is a number
r ∈ �∗

+ such that x/∼p = K(x,r).

In other words every open ball in arbitrary pseudometric space is a union of its
atoms.

Proof. (3.2.1) Let (U, p) be a pseudometric space while K(a,r) an open ball in
space (U, p). Note that for arbitrary x,y ∈U and r ∈ �∗

+ the following holds x/∼p ⊆
K(x,r) and if y ∈ K(x,r), then y/∼p ⊆ K(x,r), thus:

⋃

x∈K(a,r)

x/∼p = K(a,r).

Therefore every open ball in space (U, p) is a union of atoms of (U, p).

(3.2.2) Let y ∈ U . Assume that y/∼p ∩ K(x,r) �= /0, thus there is z ∈ U such that
z ∈ y/∼p ∩ K(x,r), then p(z,y) = 0 and p(x,z) < r. From the triangle inequality
condition we know that p(x,y) � p(x,z)+ p(z,y) = p(x,z) + < r, thus p(x,y) < r,
and so y ∈ K(x,r), therefore y/∼p ⊆ K(x,r).

(3.2.3) Let atom x/∼p be an open set in space (U, p), then there is radius r, such that
K(x,r) ⊆ x/∼p . Point 2 of this proposition implies that for every ball of the form
K(x, l) it holds that x/∼p ⊆ K(x, l), therefore x/∼p = K(x,r).
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Notice that the reverse proposition to proposition 30.2 does not hold, i.e. it is not
true that every union of atoms in any pseudometric space is an open ball in that
space. It is shown by the following counter examples:

Example 30.5. Let (	, p5) be a pseudometric space from the example 30.2. Let us
note that reminders of division of numbers 6,7,8,9 by 5 are respectively r(6,5) =
1, r(7,5) = 2, r(8,5) = 3, r(9,5) = 4. Thus equivalence classes 6/≡5

, 7/≡5
, 8/≡5

,
9/≡5

are mutually different. Let us note also that p5(7,8) = 1 i p5(8,9) = 1, so
p5(7,8) = p5(8,9). We will show that a set 7/≡5

∪ 8/≡5
can not be an open ball in

the pseudometric space (	, p5). For non-direct proof assume contrary that 7/≡5
∪

8/≡5
= K(a,r), where K(a,r) is an open ball in the pseudometric space (	, p5). So

a ∈ 7/≡5
∪ 8/≡5

.
Assume that a ∈ 7/≡5

. Since 8 ∈ K(a,r), then p5(a,8)< r. Because p5(a,7) = 0,
so p5(7,8)� p5(7,a)+ p5(a,8) = 0+ p5(a,8) = p5(a,8)< r, thus p5(7,8)< r. Let
us note that p5(7,6) = 1 = p5(7,8), and that p5(a,6) � p5(a,7)+ p5(7,6) = 0+
p5(7,8)= p5(7,8)< r so p5(a,6)< r. Thus 6∈K(a,r) and so 6/≡5

⊆K(a,r). Since
equivalence classes 6/≡5

, 7/≡5
, 8/≡5

are mutually different, then 6/≡5
�⊆ 7/≡5

∪ 8/≡5

and 6/≡5
∪ 7/≡5

∪ 8/≡5
�= 7/≡5

∪ 8/≡5
. So, K(a,r) = 6/≡5

∪ 7/≡5
∪ 8/≡5

, which
contradicts assumption that K(a,r) = 7/≡5

∪ 8/≡5
.

Similarly one can show a contradiction assuming that a ∈ 8/≡5
. Thus the set

7/≡5
∪ 8/≡5

can not be an open ball in the pseudometric space (	, p5).

Example 30.6. Let (�, p) be a pseudometric space form the example 30.1. Let us
choose from �+ a decreasing sequence (xn) which is convergent to 0. We have
noted in the example 30.3 that

∼p = {(x,y) ∈ �2 : |x|= |y|},

so 0/∼p = {0}. Thus one can not find r ∈�+ such that K(0,r) = 0/∼p , since for each
choice of r ∈ �+ the ball K(0,r) contains infinitely many elements of the sequence
(xn) such that their equivalence classes modulo ∼p are mutually different.

Proposition 30.3. Every open set in arbitrary pseudometric space is a union of
atoms of that space.

Proof. It is enough to note that:

A =
⋃

x∈A

x/∼p ,

where (U, p) is a pseudometric space and A ⊆U is an open set in (U, p).

Notice that the converse proposition to the above proposition does not hold, i.e.
not every union of atoms of arbitrary pseudometric space is an open set in that
space. Consider as a counterexample arbitrary metric space which is not discrete.
As counterexamples in the class of proper pseudometric spaces one can take into
account pseudometric spaces from the earlier examples 30.5 i 30.6. Notice also that
one can find pseudometric spaces such that every union of its atoms is an open set
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in that spaces. As an example of such spaces can serve the pseudometric space from
the example 30.2:

Example 30.7. Let (	, pn) be a pseudometric space from the example 3.3 for some
n ∈ 
. Let us note that a function pn takes its values in the set of natural numbers,
so a distance between any two objects form considered space is either equal to 0 or
is greater or equal to 1. Thus for arbitrary number a ∈ 	 and for a radius r < 1 holds
K(a,r) = a/∼pn

. Since every atom is an open ball, then every union of atoms of the
space (	, pn) is an open set in (	, pn).

Corollary 30.3. Let (U, p) be pseudometric space such that every union of its atoms
is an open set, then

top(U, p) = Sgc(U/∼p).

In other words all open sets in the space (U, p) create a complete field of sets which
is completely generated by the atoms of (U, p).

Proof. Given proposition 30.3 it is enough to show inclusion (⊇). From theorem
on generalized normal form we know that field of sets Sgc(U/∼p) consist of ex-
actly unions of g-components over family U/∼p , whereas for fakt 1.14 we know that
∏∗

U/∼p
= U/≈U/∼p

, therefore field Sgc(U/∼p) consist of exactly unions of elements

from family U/≈U/∼p
, i.e. unions composed of blocks of the partition determined

by indiscernibility relation with respect to partition U/∼p . Since ∼p ∈ Eq(U), then
since for every equivalence relation R ∈ Eq(U) it holds that ≈U/R

= R, we con-
clude that ≈U/∼p

= ∼p, thus from the Abstraction Principle we get U/≈U/∼p
=U/∼p .

Therefore field of sets Sgc(U/∼p) consist of exactly sets being unions of elements of
U/∼p , and so unions of atoms of space (U, p). Since (U, p) is a pseudometric space
in which every union of atoms is an open set, then Sgc(U/∼p)⊆ top(U, p).

In the theory of metric spaces, the class of bounded spaces is distinguished.
In such spaces there is the least upper bound of distances between its points
called a diameter of a given space (see [3, 7]). For example the real plane with
Euclidean metric is not a bounded space, but arbitrary circle with metric induced
by Euclidean metric is a bounded metric space. A diameter of this space is ordinary
diameter of this circle and this justify used name. Thus one can note that concepts
of diameter and bounded space are some generalizations of concepts form a classi-
cal geometry. These concepts can be also defined for pseudometric spaces. Here we
also consider concepts of a lower diameter lower bonded spaces.

Definition 30.4. Let (U, p) be a pseudometric space.
A space (U, p) is upper bounded iff there is a number a0 ∈ �+ such that

a0 = sup{p(x,y) : x,y ∈U}.

The number a0 is called the upper diameter of the space (U, p).



586 P. Wasilewski

A space (U, p) is lower bounded iff there is a number a0 ∈ �+ such that

a0 = inf{p(x,y) : x,y ∈U and p(x,y) �= 0}.

The number a0 is called the lower diameter of the space (U, p).
If a space (U, p) is upper and lover bounded, then it is called double bounded.

Example 30.8. Let (	, pn) be the pseudometric space from Example 30.2 for n ∈ 

and n �= 1. Notice that the space (	, pn) is double bounded. Since n 	 2, then the
lower bound of the space (	, pn) is 1, i.e.

1 = inf{pn(x,y) : x,y ∈U and pn(x,y) �= 0}.

Notice also that in the space (	, pn) the greatest reminder from division by n is equal
to n−1, and the least reminder from division by n is equal to 0. Thus |(n−1)−0|=
|n− 1|. Since n 	 2, then n− 1 	 0 and |n− 1| = n− 1. Thus n− 1 is the upper
diameter of the space (	, pn).

Let us note also that the pseudometric space from Example 30.1 neither is upper nor
lower bounded. The following proposition holds:

Proposition 30.4. If a pseudometric space (U, p) is lower bounded, then every
union of atoms of (U, p) is an open set in the space (U, p).

Proof. Assume that pseudometric space (U, p) is lower bounded. Let r0 ∈ � be the
lower diameter of space (U, p). Therefore for every x ∈ U it holds that K(x,r0) =
x/∼p , then every atom is an open ball with the center in its arbitrary element and a
radius r0.

Let us recall a definition of a clo-open topology.

Definition 30.5. Let (U,O) be a topological space. A family of closed and open sets
in the space (U,O), clo-open sets for short, is denoted by Clop(U,O). A topology
O on the set U is called closed - open, shortly clo-open iff O =Clop(U,O). Then
a topological space (U,O) is called closed - open, clo-open for short.

Notice that clo-open sets create field of sets (see e.g. [6]): if (U,O) is a topological
space, then (Clop(U,O);∩,∪,′ , /0,U) is a field of sets over U . One can show that a
topological space (U,O) is clo-open iff O is a complete field of sets over U .

For metric spaces it holds that the family of open sets of any metric space (U,d)
is a topology on U . This fact can be generalized for the class of pseudometric spaces.

Proposition 30.5. If (U, p) is a pseudometric space, then top(U, p) is a
topology on U.

Let us note that it does not hold for every pseudometric space that every atom is an
open set in that space. Moreover, in each pseudometric space an atom is an open ball
if and only if it is an open set in that space. In order to characterize pseudometric
spaces in which every atom is an open set we shall introduce a new concept.
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Definition 30.6. Let (U, p) be a pseudometric space. A space (U, p) is lower
bounded in the point x ∈ U if and only if there is a number r ∈ �∗

+, such that r
is a lower bound of the set

{p(x,y) : y ∈U and p(x,y) �= 0}

with respect to the natural order in the set of real numbers. Such number r ∈ �∗
+ is

called the lower bound of the space (U, p) in the point x ∈U .

Definition 30.4 and above definition directly imply the following corollary:

Corollary 30.4. If a pseudometric space (U, p) is lower bounded, then it is lower
bounded in each its point (in each point x ∈U).

Theorem 30.1. Let (U, p) be a pseudometric space and let A ⊆ U. The following
conditions are equivalent:

(1) A pseudometric space (U, p) is lower bounded in each its point.
(2) U/∼p ⊆ top(U, p), i.e. every atom of the space (U, p) is an open set in (U, p).
(3) Every union of atoms of the space (U, p) is an open set in (U, p).
(4) A is an open set in the space (U, p) if and only if A is a union of atoms of the
space (U, p).
(5) i) top(U, p) is a clo-open topology on U and
ii) U/∼p ⊆ top(U, p).
(6) i) top(U, p) is a complete field of sets and
ii) At(top(U, p)) =U/∼p , i.e. equivalence classes of the relation ∼p are exactly
atoms of top(U, p) as a complete field of sets.
(7) top(U, p) = Sgc(U/∼p), i.e a topology top(U, p) as a complete field of sets is
completely generated by the family U/∼p .
(8) The family of atoms of the pseudometric space (U, p) is a base of topology
top(U, p).

Proof. We first prove equivalence (1) ⇔ (2), and then the following implications:
(2)⇒ (3)⇒ (4)⇒ (5)⇒ (6)⇒ (7)⇒ (2).

Let (U, p) be a fixed pseudometric space.

(1)⇒ (2) Let us assume that pseudometric space (U, p) is lower bounded in every
point. Let B = x/∼p for x ∈U . Let r be an arbitrary lower bound of space (U, p) in
point x. Since for every y ∈ x/∼p , p(x,y) = 0, then x/∼p ⊆ K(x,r).

Let y ∈ K(x,r), and so p(x,y)< r. Therefore p(x,y) = 0, because if p(x,y) �= 0,
then r � p(x,y). Thus y ∈ x/∼p , so K(x,r)⊆ x/∼p . Thus K(x,r) = B. Since B∈U/∼p

was chosen arbitrary, then every atom of space (U, p) is an open ball, so is an open
set in space (U, p).

(2) ⇒ (1) Assume that every atom of pseudometric space (U, p) in an open set
in this space. For arbitrary x ∈ U atom x/∼p is then an open set in space (U, p).
Therefore from proposition 30.2.3 we get that there is a radius r, such that x/∼p =
K(x,r). Let us note that radius r is a lower bound of the set
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{p(x,y) : y ∈U and p(x,y) �= 0}.

Otherwise, if there was z ∈U , such that p(x,z) �= 0 and p(x,z)� r, then z ∈ K(x,r),
so z ∈ x/∼p , thus p(x,z) = 0, which would give the contradiction. Therefore radius r
is a lower bound of pseudometric space (U, p) in a point x. Since x ∈U was chosen
arbitrarily, then we claim that space (U, p) is lower bounded in every point.

(2) ⇒ (3) Assume that every atom of space (U, p) is an open set in (U, p), i.e.
U/∼p ⊆ top(U, p). From proposition 30.5 we know that top(U, p) is a topology on
U . Thus every union of atoms of (U, p) is an open set in pseudometric space (U, p).

(3)⇒ (4) Let A ⊆U . The implication: if A is a union of atoms of space (U, p), then
A is an open set in space (U, p) follows from the point 3 of the above proposition
whereas the converse implication follows from proposition 30.3.

(4)⇒ (5) From Proposition 30.5 we know that top(U, p) is a topology on U , thus

Clop(top(U, p))⊆ top(U, p).

We have to show that top(U, p)⊆Clop(top(U, p)). Let B ∈ top(U, p), thus B is an
open set in space (U, p). Therefore for point 4 of the above proposition we know
that B is a union of atoms of space (U, p). Note that B′ - the complement of set B - is
also an open set in space (U, p) ( from the point 4 and the fact that the complement
of a union of atoms of space (U, p) is also a union of atoms of (U, p) - it holds since
the family of atoms of a pseudometric space (U, p) is a partition of that space),
and so B is also a closed set. Thus B ∈ Clop(top(U, p)), therefore top(U, p) =
Clop(top(U, p)).

It is enough to note that every atom is a union of atoms of a pseudometric space,
thus form point 4 of this proposition we get that it is an open set, therefore U/∼p ⊆
top(U, p).

(5)⇒ (6) Since top(U, p) is a topology on U , then we know that Clop(top(U, p)) is
a union of sets. Since top(U, p) =Clop(top(U, p)), then Clop(top(U, p)) is a com-
plete field of sets, so also top(U, p) is also a complete field of sets, thus top(U, p)
is an atomic filed of sets.

We will show that At(top(U, p)) = U/∼p . Let B ∈ U/∼p . Let us recall a more
general fact that every element of a complete filed of sets is a union of atoms of that
sets. From the assumption we have that U/∼p ⊆ top(U, p), so B is a union of atoms
of field top(U, p). Because U/∼p and At(top(U, p)) are partitions of set U , so we
can find set A ∈ At(top(U, p)), such that A∩B �= /0. Thus there is x ∈ U , such that
x ∈ A∩B. Since A is an atom of field top(U, p), then A ⊆ B. Because A is an open
set, then we can find r ∈ �∗

+, such that K(x,r)⊆ A. Therefore K(x,r)∩B �= /0, from
this anf from proposition 30.2.2 we get that B ⊆ K(x,r), thus B ⊆ A. Then we have
shown that A = B thus B jest is an atom of field top(U, p). Because B ∈ U/∼p was
chosen arbitrary, then U/∼p ⊆ At(top(U, p)).
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Let A ∈ At(top(U, p)). Since At(top(U, p)) i U/∼p are partitions of set U , then
we can find B ∈ U/∼p , such that A∩B �= /0. Analogically, as above, one can show
that A = B and A ∈U/∼p , therefore At(top(U, p))⊆U/∼p .

(6)⇒ (7) Suppose that top(U, p) is a complete field of sets and that At(top(U, p))=
U/∼p . Thus U/∼p ⊆ top(U, p), therefore Sgc(U/∼p)⊆ top(U, p). Because top(U, p)
is a complete field of sets, then every element of top(U, p) is a union of atoms of
top(U, p). Since At(top(U, p)) =U/∼p , then every element of top(U, p) is a union
of elements form U/∼p , so top(U, p) ⊆ Sgc(U/∼p). Therefore we have shown that
top(U, p) = Sgc(U/∼p).

(7)⇒ (2) From assumption top(U, p) = Sgc(U/∼p) it follows directly that U/∼p ⊆
top(U, p), i.e. every atom of pseudometric space (U, p) is an open set in (U, p).

Applications of Theorem 30.1 in rough set theory and rough set interpretations of
construction given in Theorem 30.1 are presented in Sections 30.5 and 30.6.

30.4 Continuity

Here we will consider an issue of a continuity in the pseudometric spaces. It should
be clear that the concept of a continuous functions in the pseudometric spaces is a
natural generalization of respective concept from metric spaces

Definition 30.7. Let (X , p), (Y,q) be pseudometric spaces. A function f : X −→ Y
is continuous in a point a ∈ X if for every B ⊆ Y - a neighborhood of f (a) there
is A ⊆ X - a neighborhood of a such that f (A) ⊆ B. A function f : X −→ Y is
continuous if it is continuous in every point a ∈ X .

The next two propositions are natural generalizations of facts about continuous func-
tions between metric spaces.

Proposition 30.6. Let (X , p), (Y,q) be pseudometric spaces and let f : X −→ Y be
a function. Then the following conditions are equivalent:

(1) f is continuous in a point a ∈ X.
(2) For arbitrary ε > 0 it can be found δ > 0 such that f (K(a,δ ))⊆ K( f (a),ε).
(3) For arbitrary ε > 0 it can be found δ > 0 such that for every x ∈ X p(a,x)<
δ ⇒ q( f (a), f (x)) < ε .

Proposition 30.7. Let (X , p), (Y,q) be pseudometric spaces and let f : X −→ Y be
a function. Then the following conditions are equivalent:

(1) f is continuous function.
(2) For every set B ⊆Y which is open in the space (Y,q), a set f−1(B) is open in
the space (X , p).
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We have shown that relations atomizing pseudometric spaces are connected with
open sets in all pseudometric spaces and that they are closely related to open sets in
pseudometric spaces lower bounded in each point. Now we characterize continuity
of functions between pseudometric spaces lower bounded in each point by means
of atomizing relations.

Theorem 30.2. Let (X , p), (Y,q) pseudometric spaces lower bounded in each point
and let f : X −→ Y be a function. Then the following conditions are equivalent:

(1) f is continuous function.
(2) x ∼p y ⇒ f (x)∼q f (y) for all x,y ∈ X.

Proof. Let (X , p) and (Y,q) be fixed pseudometric spaces lower bounded in every
point.

(⇒) Assume that a function f : X −→ Y is continuous. Chose x,y ∈ X , such that
x ∼p y. Since space (Y,q) is lower bounded in every point, then from proposition
30.1.2 we know that its atoms, particularly f (x)/∼q and f (x)/∼q , are open sets in
this space. Thus from assumption about continuity of function f we conclude that
f−1( f (x)/∼q) and f−1( f (y)/∼q) are open sets in space (X , p), thus also they are

unions of atoms (from proposition 30.1.4). Therefore since x ∈ f−1( f (x)/∼q) and

y ∈ f−1( f (y)/∼q), then

x/∼p ⊆ f−1( f (x)/∼q) i y/∼p ⊆ f−1( f (y)/∼q),

because f−1( f (x)/∼q) and f−1( f (y)/∼q) are unions of atoms of space (X , p). Be-
cause x ∼p y to x/∼p = y/∼p , thus

x,y ∈ f−1( f (x)/∼q)∩ f−1( f (y)/∼q).

Thus, e.g. x ∈ f−1( f (y)/∼q), therefore f (x) ∈ f (y)/∼q , thus f (x) ∼q f (y). Thus we
have shown that for all x,y ∈ X , if x ∼p y, then f (x)∼q f (y).

(⇐) Assume that f : X −→Y is a function and that for all x,y ∈ X the following im-
plication holds x∼p y ⇒ f (x)∼q f (y). We will show that a function f is continuous.
Let a ∈ X . Since space (Y,q) is lower bounded in every point, then by proposition
30.1.2 atom f (a)/∼q is an open set in space (Y,q). Note also that a ∈ f−1( f (a)/∼q).

We will show that set f−1( f (a)/∼q) is open in space (X , p). Let x ∈ f−1( f (a)/∼q),
then f (x) ∈ f (a)/∼q , thus f (x) ∼q f (a). Since space (X , p) is lower bounded in ev-
ery point, then atom x/∼p is an open ball in space (X , p). Thus there is r ∈ (0,+∞)
such that K(x,r) = x/∼p . Since by the assumption we have that

x ∼p y ⇒ f (x)∼q f (y),

thus if z ∈ x/∼p , then f (z)∼q f (x), and because f (x)∼q f (a), then f (z)∼q f (a), so

f (z) ∈ f (a)/∼q , thus f (x/∼p)⊆ f (a)/∼q . Therefore f−1( f (x/∼p))⊆ f−1( f (a)/∼q).

Because for every set A⊆X the following inclusion holds A⊆ f−1( f (A)), so x/∼p ⊆



30 Pseudometric Spaces from Rough Sets Perspective 591

f−1( f (x/∼p)), thus x/∼p ⊆ f−1( f (a)/∼q), therefore K(x,r) ⊆ f−1( f (a)/∼q). Since

point x∈ f−1( f (a)/∼q) was chosen arbitrarily, then function f is continuous in point
a, what because arbitrary choosing a ∈ X implies that function f is continuous.

30.5 Pseudometrics Determined by Families of Sets

We have pointed out that every pseudometric space determines some approximation
space: namely an approximation space such that its equivalence relation atomizes
initial pseudometric space. So the natural question arises: whether every approxi-
mation space determines a pseudometric space which is atomized be an equivalence
relation taken from that approximation space. In order to answer this question we
define here some distance functions determined by some families of sets,

Definition 30.8. Let U be arbitrary non-empty set and let C ⊆ U . A function dC :
U2 → �+ is defined as follows:

dC(x,y) =de f

{
0 : x ≈C y
1 : x �≈C y,

i.e. dC is a characteristic function of the relation �≈C.
We say that a function dC is determined by the set C or that the set C determines

a function dC.
Let C = {Ci}i∈I ⊆ P(U). A function dC : U2 → �+ is defined as follows:

dC(x,y) :=∑
i∈I

dCi(x,y).

We say that a function dC is determined by the family C or that the family C deter-
mines a function dC.

Proposition 30.8. Let U be arbitrary non-empty set and let C ⊆U. Then the follow-
ing conditions hold:

(1) A function dC is a pseudometric on U.
(2) ∼dC=≈C, i.e a relation ≈C atomizes a pseudometric space (U,dC).

Let us note that not every family of sets determines a pseudometrics, i.e. it can be
found such family C such that a function dC is not a pseudometric, as it is shown by
the following example:

Example 30.9. Let us choose from the set � two positive mutually different numbers
r1 i r2. Let Γ (r1,r2) := {[0,a) : a ∈ (r1,r2)∩�}. It is well known that between
any two real numbers there are infinitely many rational numbers. Since the set �
is denumerable, then Γ (r1,r2) is an infinite and denumerable family of sets. Let
us note that for every A ∈ Γ (r1,r2), r1 ∈ A and r2 �∈ A, so d[0,a)(r1,r2) = 1 for all
a ∈ (r1,r2). Thus a series ∑a∈(r1,r2) d[0,a)(r1,r2) is divergent, so a function dΓ is not
a pseudometric.
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Of course a series ∑i∈I dCi for any finite family of sets {Ci}i∈I is convergent, thus
the following corollary holds:

Corollary 30.5. Let U be any non-empty set, let C ⊆ P(U) and |C| < ℵ0. Then a
function dC is a pseudometric on U.

Let us note also that a reverse implication to the above corollary 30.5 does not hold,
i.e it is not true that if a function dC is a pseudometric on U , then a family C is finite.
It is shown b the next example:

Example 30.10. Let us choose from � the following family of sets {[0,n]}n∈�. No-
tice that {[0,n]}n∈� is a denumerable increasing family of sets. Notice also that
all negative real numbers are mutually indiscernible with respect to the family
{[0,n]}n∈�. Let us note that any two positive and different real numbers x,y are dis-
cernible with respect to family {[0,n]}n ∈ 
 if and only if there is a number n ∈ 

such that x < n < y or y < n < x. Let us also note that between any two positive dif-
ferent real numbers there are only finitely many natural numbers. Thus for arbitrary
mutually different real numbers x,y the series ∑n∈� d[0,n](x,y) is convergent, so a
function d{[0,n]}n∈� is a pseudometric on �.

Proposition 30.9. Let U be arbitrary non-empty set. Then the following conditions
hold:

(1) Every partition of a set U determines a pseudometric on U.
(2) If Π is a partition of a set U, then (U,dΠ ) is a pseudometric spaces double
bounded, so it is also lower bounded in each point.
(3) If Π is a partition of U, then a relation ≈Π atomizes a pseudometric space
(U,dΠ ).

Proof. (1) Let Π be a partition of a set U and let A ∈ Π . Note that for all x,y ∈ U
dA(x,y) = 1 if and only if x ∈ A and y �∈ A or contrary x �∈ A and y ∈ A. In other cases
dA(x,y) = 0, thus independently on the cardinality of partition Π , it determines
pseudometric dΠ on U .

(2) Let Π be the partition of set U . In point (1) we have shown that function dΠ
is a pseudometric on U , consequently pair (U,dΠ ) is a pseudometric space. Note
that dΠ (x,y) = 0 if and only if there is a set A ∈Π , such that x,y ∈ A, in all remain
cases dΠ (x,y) = 2. This is because if x and y are chosen from different blocs of
partition Π , say x ∈ B, y ∈ C, then dB(x,y) = 1 and dC(x,y) = 1, whereas for other
D ∈Π , dD(x,y) = 0, thus dΠ =∑E∈Π dE(x,y) = 2. Therefore both upper and lower
diameters of space (U,dΠ ) are equal to 2. Thus particularly space (U,dΠ ) is lower
bounded in every point.

(3) Let Π be a partition of set U . Since dΠ (x,y) = 0 if end only if there is set A ∈Π ,
such that x,y ∈ A, then for every x ∈ U and for every B ∈ Π such that x ∈ B the
following holds x/∼dΠ

= B. Therefore U/∼dΠ
= Π . From the Abstraction Principle

it follows that Π = U/≈Π , consequently U/∼dΠ
= U/≈Π and therefore ∼dΠ = ≈Π .

Thus relation ≈Π atomizes space (U,dΠ ).



30 Pseudometric Spaces from Rough Sets Perspective 593

Proposition 30.10. Let U be a non-empty set, let also a family C ⊆P(U) determine
a pseudometric on U and let ≈C �= ∇U . Then:

(1) Pseudometrics dC takes its values in the set of natural numbers, i.e. dC(U ×
U)⊆ 
.
(2) A relation ≈C atomizes a space (U,dC), i.e. ∼dC = ≈C .
(3) A pseudometric space (U,dC) is lower bounded, so it is lower bounded in
each point.
(4) top(U,dC) = Sgc(U/≈C), i.e. open sets in the pseudometric space (U,dC) are
exactly definable sets in an approximation space (U,≈C).

Proof. Point (1) follows directly from definition 30.8.

(2) From definition of function dC we have that for arbitrary x,y ∈ U , dC(x,y) = 0
iff for every C ∈ C, x ≈C y. Thus, by the definitions of the relations ∼dC and ≈C we
have that (x,y) ∈ ∼dC ⇔ (x,y) ∈ ≈C. Thus ∼dC = ≈C .

(3) Since ≈C �=∇U , then there are elements x,y∈U such that dC(x,y)> 0. Note that
number 1 is a lower diameter of space (U,dC),thus space (U,dC) is lower bounded,
so by corollary 30.4 we get that space (U,dC) is lower bounded in every point.

(4) From point (3) of this proposition we know that pseudometric space (U,dC)
is lower bounded in every point. By virtue of proposition 30.1 this is equiva-
lent to top(U,dC) = Sgc(U/∼dC

). From point (2) we know that ∼dC = ≈C . Thus

top(U,dC) = Sgc(U/≈C ).

Notice that not every pseudometric space determined by a family of sets is upper
bounded. As an example of a pseudometric of such type can serve the space from
Example 30.10:

Example 30.11. Let {[0,n]}n∈� be a family of sets from Example 30.10. Thus
(�,d{[0,n]}n∈�) is a pseudometric space. Let a ∈ 
 and a �= 0. Let us choose arbi-
trary positive real number r ∈ �+. Notice that d{[0,n]}n∈�(r,r + a) = a. Notice also
that for arbitrary choice of a ∈ 
∗ a function d{[0,n]}n∈� can take arbitrary big value
in the set 
. Thus a pseudometric space (�,d{[0,n]}n∈�) is not upper bounded.

Considerations of this section lead to the following theorem which gives an answer
to the question posed at its beginning: from Proposition 30.10.2 it follows that

Theorem 30.3. Every approximation space atomizes some pseudometric space.

In other words, every equivalence relation can be represented by or derived from
some pseudometric space. One of the main directions of developing rough set
theory is based on generalizing approximation space to the case of tolerance
approximation spaces and tolerance approximation operators defined for arbitrary
tolerance relations, i.e. for not necessary transitive tolerances [21]. Thus another nat-
ural question arises: whether every tolerance relation can be represented by means
of pseudometric spaces?
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In order to answer this question let us consider some way od determining toler-
ance relations by pseudometric space. Let (U, p) be a pseudometric space and let
ε ∈ [0,+∞). Elements x,y ∈ U are in the relation pε if and only if p(x,y) � ε . It is
easy to show that pε is a tolerance relation on U . It turns out that there is a positive
answer to the last question: an arbitrary tolerance relation can be determined in this
way as it is shown by the following “technical” example.

Example 30.12. Let (U,τ) be a tolerance space (i.e. τ is a tolerance relation on U).
A function ρ : U ×U −→ [0,+∞) is defined as follows:

ρ(x,y) =de f

⎧
⎨

⎩

0 : x = y
1 : (x,y) ∈ τ & x �= y
2 : (x,y) /∈ τ.

>From this definition it follows that for arbitrary x ∈ U , ρ(x,x) = 0. The sym-
metry condition is also obvious and one can easy check that the triangle inequal-
ity conditions also holds. Thus a function ρ is a pseudometric on U . Let us note
that ρ(x,y) � 1 ⇔ (x,y) ∈ τ , for any x,y ∈ U . Thus ρ1 = τ , i.e. a tolerance rela-
tion determined by the pseudometric ρ and the number 1 is equal to a tolerance
relation τ .

30.6 Pseudometrizability of Topological Spaces

Let us recall that a topological space (X ,O) is metrizable iff there is a metric space
(X ,d) such that top(U,d) =O, i.e. a family O exactly consists of open sets in the
metric space (X ,d). It is well known that not all topological spaces are metrizable.
The problem of characterization of metrizable topological spaces is one of the main
in topology and it has been extensively studied (see [3]). For pseudometric spaces
we can consider an analogical notion.

Definition 30.9. A topological space (U,O) is pseudometrizable if there is a
pseudometric space (U, p) such that

O = top(U, p).

Then a topological space (U,O) is said to be metrizable jest by the space (U, p).

Theorem 30.4. A topological space (U,O) is clo-open if and only if it is
pseudometrizable by a pseudometric space which is lower bounded in each point.

Proof. (⇒) Let space (U,O) be clo-open so that Clop(U,O) =O. Therefore O is
a complete field of sets thus every element of family O, taken as a complete field
of sets, is a union of atoms of this field. Other words At(O) is a basis of topol-
ogy O. As we mention at the end of Section 30.2, it can be shown that know that
for arbitrary C ⊆ P(U) it holds that At(Sgc(C)) = U/≈C [30, 32], and with this,
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substituting for C topology O, we get At(Sgc(At(O))) = U/≈At(O)
. Since O is a

complete field of sets, since every element of a complete field of sets is a union of
its atoms, then O = Sgc(At(O)) [30, 32]. From both these equalities we get equal-
ity At(O) = U/≈At(O)

. From proposition 30.10.1 we know that ∼dAt(O)
= ≈At(O),

so that U/∼dAt(O)
= U/≈At(O)

and thus At(O) = U/∼dAt(O)
. Therefore we conclude

that topology O is exactly composed of sets being unions of atoms of pseudometric
space (U,dAt(O)). From proposition 30.10.3 we know that space (U,dAt(O)) is lower
bounded in every point. Thus from proposition 30.1 we conclude that open sets in
space (U,dAt(O)) are exactly the sets being unions of atoms of space (U,dAt(O)).
We have shown that top(U,dAt(O)) = O. Thus topological space (U,O) is pseu-
dometrizable via space (U,dAt(O)), which is lower bounded in every point.

(⇐) Let topological space (U,O) be pseudometrizable via pseudometric space
(U, p), which is lower bounded in every point. Thus O = top(U, p). Lower bound-
ness of space (U, p) in every point by proposition 30.1 is equivalent to top(U, p) =
Sgc(U/∼p). Thus O = Sgc(U/∼p), so that O is a complete field of sets. Hence O
is a clo-open topology.

30.7 Equivalence of Pseudometric Spaces

The next concept which can be naturally generalized from the class of metric space
onto the class of pseudometric spaces is that of equivalence of metric spaces.

Definition 30.10. Let X be any non-empty set and p i q be pseudometrics on X .
Spaces (X , p) i (X ,q) are said to be equivalent if and only if

top(X , p) = top(X ,q).

In other words pseudometric spaces are equivalent iff they determined the same
open sets.

Example 30.13. Let n ∈ 
\{0} and (	, pn) be a pseudometric space from Example
30.2. >From this example we know that a congruence ≡n atomizes a space (	, pn)
and from Example 30.8 we know that a space (	, pn) is double bounded and so by
the proposition 30.4 (	, pn) is also lower bonded in each point. The proposition 30.1
it is equivalent to the fact that top(	, pn) = Sgc(	/≡n).

Since ≡n ∈ Eq(	), then 	/≡n is a partition of the set 	, thus from the propo-
sition 30.9 we get that a function d�/≡n

is a pseudometrics on 	. A pseudo-
metric space (	,d�/≡n

) is lower bounded in each point and ≈�/≡n
is a relation

atomizing this space The proposition 30.1 this is equivalent to top(	,d�/≡n
) =

Sgc(	/≡n). >From the principle of abstraction it follows that ≡n = ≈U/≡n
, so

Sgc(	/≡n) = Sgc(	/≈�/≡n
). Then top(	, pn) = top(	,d�/≡n

). Thus we have shown

that pseudometric spaces (	, pn) and (	,d�/≡n
) are equivalent. Let us note also that
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pseudometrics pn and d�/≡n
are different functions, so spaces (	, pn) and (	,d�/≡n

)
are also different.

Now we can present next characterization of pseudometric spaces which are lower
bounded in each point.

Theorem 30.5. Every pseudometric space lower bounded in each point is
equivalent to a double bounded pseudometric space.

Proof. Let (U, p) be a pseudometric space lower bounded in every point. Thus from
proposition 30.1 we know that top(U, p) = Sgc(U/∼p). From proposition 30.9.1 we
know that function dU/∼p

is a pseudometric on U , whereas from proposition 30.9.3

we know that ≈U/∼p
atomizes space (U,dU/∼p

), then ∼dU/∼p
=≈U/∼p

. From propo-

sition 30.9.2 we get that space (U,dU/∼p
) is lower bounded in every point, what by

proposition 30.1 is equivalent to top(U,dU/∼p
) = Sgc(U/≈U/∼p

). From the Abstrac-

tion Principle it follows that U/∼p =U≈U/∼p
, therefore Sgc(U/∼p) = Sgc(U/≈U/∼p

),

so top(U, p) = top(U,dU/∼p
). Thus pseudometric spaces (U, p) and (U,dU/∼p

) are

equivalent. From proposition 30.9.2 it follows that space (U,dU/∼p
) is bounded.

We have thus proved that space (U, p) is equivalent to a double bounded space
determined by a partition of set U .

30.8 Topological Characterization of Attribute Dependency

Results presented in this chapter can be applied to provide a topological characteri-
zation of dependencies in information systems and to generalization of this concept
to attribute dependencies in information systems with different object domains. In
Section 30.2 we mention the fact that every information system can be represented
by some set space. Now we use this fact for the sake of presentation simplicity and
assume that for information system S= 〈U,At,Vala〉 and attribute families B,D⊆At
we have families of sets B,D ⊆ P(Ob) such that ind(B) = ≈B and ind(D) = ≈D
(another way would be redefining discernibility functions dC and dC for attributes
instead of sets). Let us remind that D depends on B in S, symbolically B ⇒S D, iff
ind(B) ⊆ ind(D). Let us mention also that we denote identity function on domain
X by idX , i.e. id : X −→ X and id(x) = x for every x ∈ X . In order to prove a topo-
logical characterization of attribute dependency let us recall also the well know fact
from topology:

Lemma 30.1. Let (X ,O) and (X ,V) be topological spaces, then the following con-
ditions are equivalent:

(1) function idX : (X ,O)−→ (X ,V) is continuous,
(2) V ⊆O.
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Theorem 30.6. Let S = 〈U,At,Vala〉 be an information system and let B,D ⊆ At.
Thus (U,dB) and (U,dD) are pseudometric spaces and the following conditions
are equivalent:

(1) B ⇒S D,
(2) function idU : (U,dB)−→ (U,dD) is continuous.

Proof. Assume that S = 〈U,At,Vala〉 is an information system and let B,D ⊆ At.
Thus from proposition 30.10 it follows that (U,dB) and (U,dD) are pseudometric
spaces lower bounded in each point.

(1) ⇒ (2) If D depends on B, then ind(B) ⊆ ind(D) an so ≈B⊆≈D. One can
note that in such case every set from U/≈D is a union of some sets from U/≈B i.e.
for every A ∈ U/≈D there is B1 ⊆ B such that A =

⋃B1. From the facts mentioned
at the end of section 30.2 we know that U/≈B = At(Sgc(B)) and that every set from
Sgc(B) is a union of classes from U/≈B [30, 32]. Therefore U/≈D ⊆ Sgc(B). We
know also that every set in a complete field of sets is a union of atoms of this field.
Thus Sgc(U/≈D)⊆ Sgc(B). For the same reason it holds that Sgc(B) = Sgc(U/≈B).
Therefore Sgc(U/≈D)⊆ Sgc(U/≈B).

From proposition 30.10 we know that ∼dB = ≈B and ∼dD = ≈D i.e. relations
≈B and ≈D atomize pseudometric spaces (U,dB) and (U,dD) respectively and
from theorem 30.1 we know that top(U, p) = Sgc(U/∼p) for pseudometric space
U(U, p) which is lower bounded in each point. Since pseudometric spaces (U,dB)
and (U,dD) are lower bounded in each points, then top(U,dB) = Sgc(U/≈B) and
top(U,dD) = Sgc(U/≈D). Therefore top(U,dD) ⊆ top(U,dB). Thus from lemma
30.1 we get that function idU : (U, top(U,dB)) −→ (U, top(U,dD)) is continuous
for topologies top(U,dB) and top(U,dB). Therefore by proposition 30.7 it follows
for pseudometric spaces (U,dB) and (U,dD) that function idU : (U,dB)−→ (U,dD)
is continuous as well.

(2) ⇒ (1) Assume that function idU : (U,dB) −→ (U,dD) is continuous. Then
by proposition 30.7 we get that for every set A ⊆U which is open in pseudometric
space (U,dD), the set id−1(A) is open in space (U,dB). Since id−1(A) = A for every
set A ⊆U therefore top(U,dD)⊆ top(U,dB). As it was shown above top(U,dB) =
Sgc(U/≈B) and top(U,dD) = Sgc(U/≈D) and thus Sgc(U/≈D)⊆ Sgc(U/≈B). Since
U/≈D ⊆ Sgc(U/≈D) and so U/≈D ⊆ Sgc(U/≈B), then by the fact mentioned at the
end of section 30.2 (see also [30,32]) in particular every equivalence class A∈U/≈D
is a union of equivalence classes from U/≈D. Since since both U/≈B and U/≈D are
partitions of space U , then one can show that every equivalence class B ∈ U/≈B is
contained is some equivalence class D ∈U/≈D (see for example [30,32]). Thus it is
easy to note that ≈ B ⊆≈D and so ind(B)⊆ ind(D). Therefore family of attributes
D depends on family of attributes B in information system S. Q.E.D

Theorem 30.6 shows a direction for generalization of concept of attribute
dependency for information systems with different object domains.

Definition 30.11. Let S = 〈X ,At1,Vala〉 and V = 〈Y,At2,Vala〉 be information sys-
tems and let B ⊆ At1 and D ⊆ At2. We say that D depends on B with respect
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to function f : X −→ Y , symbolically B ⇒ f ,D if for all x,y ∈ X the following
implication holds

x ind(B) y ⇒ f (x) ind(D) f (y).

Theorem 30.7. Let S = 〈X ,At1,Vala〉 and V = 〈Y,At2,Vala〉 be information systems
and let B ⊆ At1 and D ⊆ At2. Thus (X ,dB) and (Y,dD) are pseudometric spaces
lower bounded in each point and the following conditions are equivalent:

(1) B ⇒ f D,
(2) function f : (X ,dB)−→ (Y,dD) is continuous.

Proof. Assume that S = 〈X ,At1,Vala〉 and V = 〈Y,At2,Vala〉 are information sys-
tems and let B ⊆ At1 and D ⊆ At2. From proposition 30.10.3 we know that pseu-
dometric spaces (X ,dB) and (Y,dD) are lower bounded in each point. Then from
theorem 30.2 immediately we get equivalence (1)⇔ (2).

One of the domains when this generalized concept of dependency can be applied is
hierarchical information processing and perception based computing, for example
in hierarchical approximation of complex vague concepts where where information
systems from higher levels are are constructed on the basis of information systems
from lover levels (see e.g. [23, 25–27]).

30.9 Conclusions

We discussed pseudometric spaces from the perspective of rough set theory. This
discussion is based on a fundamental connection between pseudometric spaces and
approximation spaces: namely that every pseudometric space determines an approx-
imation space which atomizes it. We investigated open sets in pseudometric spaces
from that perspective. We specially focused on pseudometric spaces which are lower
bounded in each point since their open sets coincide with definable sets in approx-
imation spaces which atomize them. We have shown also that every equivalence
relation atomizes some pseudometric space.

Results presented within this paper can be used for defining approximation op-
erators based on pseudometric spaces: namely operators which depend both on at-
omizing relations and distances with respect to appropriate pseudometrics. They
are essential in tolerance rough sets methods. They can be also used in a study on
the notion of nearness and its connections with rough sets. An interesting thing
is to investigate connections of pseudometric spaces with near sets [17, 18] as
well as with tolerance relations and proximity spaces which are closely related to
nearness [34, 35].

Obtained results, by their connection with tolerance spaces, can be used for con-
struction new, generalized attributes which are essential for interactive information
systems [24,26,27]. Tolerance and pseudometric spaces are promising in modelling
complex vague concepts [20] both for hierarchical approximation of complex vague
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concepts from lower-level data (e.g. sensory data) [1, 22, 23] and for decision mak-
ing using Wisdom technology [4, 5], where intelligent autonomous agents make
adaptively of correct judgments to a satisfactory degree in the face of real-life con-
straints (e.g. time constraints). Therefore rough set methods based on pseudometric
as well as tolerance spaces are important part or rough-granular approach to in-
teractive computing [26, 27] whereas they are indispensable in perception based
computing [25].
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Machine Learning II. SCI, vol. 263, pp. 23–42. Springer, Heidelberg (2010)

23. Skowron, A., Wang, H., Wojna, A., Bazan, J.G.: A Hierarchical Approach to Multimodal
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