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Abstract. In this article, we provide a rigorous a priori error estimate for the sym-
metric coupling of the finite and boundary element method for the potential problem
in three dimensions. Our theoretical framework allows an arbitrary number of poly-
hedral subdomains. Our bound is not only explicit in the mesh parameter, but also
in the subdomains themselves: the bound is independent of the number of subdo-
mains and involves only the shape regularity constants of a certain coarse triangula-
tion aligned with the subdomain decomposition. The analysis includes the so-called
BEM-based FEM as a limit case.

1 Introduction

The coupling of the finite element method (FEM) and the boundary element method
(BEM) has a fruitful tradition, see e.g. [5, 7, 15, 17, 30, 38]. The computational
domain is split into a finite number of subdomains. On some of the subdomains, a
finite element mesh is employed, on the remaining subdomains, a boundary element
mesh. Here we assume that the meshes are matching. One of the most successful
coupling methods is the symmetric coupling introduced by Costabel [5]. A special
case of this method is the BEM domain decomposition (DD) method introduced
by Hsiao and Wendland in [13], see also [14] and [16]. An error analysis of the
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symmetric FEM-BEM coupling has been provided by Steinbach [30], see also [32]
for an analysis of a non-symmetric coupling.

To our best knowledge, in all the available literature on the stability analysis of
such FEM-BEM coupling or BEM-DD, it is assumed that the subdomain decompo-
sition is fixed. When considering classes of subdomain decompositions of a fixed
computational domain, the a priori error estimates depend not only on the mesh
parameters, but on the subdomains themselves.

In the context of pure FEM-DD (see [34], and e.g. the FETI and FETI-DP method
introduced in [8, 9]), such error estimates do not depend on the subdomain decom-
position at all, because the discretization is never changed when keeping the origi-
nal domain fixed. On the contrary, for the case of BEM-DD, already by splitting a
single subdomain into two subdomains, we change the discretization. To our best
knowledge, there is no result available for the symmetric coupling that clarifies the
dependence on the subdomains, not even in the simple case where each subdomain
is a simplicial coarse element of a coarse mesh. Although in most of the practical
applications only a few subdomains are involved, this issue is mathematically un-
satisfactory. A desirable error estimate should be explicit in both the fine and coarse
mesh parameter.

The first paper towards an explicit analysis is [11], where a so-called BEM-based
finite element method is analyzed for the three-dimensional Laplace problem; see
also [10]. The BEM-based FEM discretization can be viewed as a special case of
the BEM-DD of a domain into polygonal/polyhedral domains whose boundaries are
discretized with a few boundary elements, see [3, 4, 10, 37]. If H denotes the typical
subdomain diameter, we can express this fact by

H → h.

Alternatively, the BEM-based FEM can be viewed as a local Trefftz method [35]. A
diagram of all the special cases of FEM-BEM coupling mentioned above is shown
in Fig. 1. It is clear that a general analysis in terms of H and h must include the limit
case of BEM-based FEM.

The analysis in [11] assumes that each subdomain is the union of a few elements
of an auxiliary triangulation with mesh size H � h. Also, the authors of [11] had
to assume that the Poincaré and extension constants of the subdomains and related
subregions are uniformly bounded. The theory in [26] yields explicit bounds for the
boundary integral operators, at least for three space dimensions. Together with a few
more theoretical tools, one obtains “explicit” a priori error estimates.

In the current paper, we provide an analysis for the general symmetric coupling
of FEM-BEM with arbitrary subdomains for the potential equation. This includes
all the cases sketched in Fig. 1. The assumptions are in their nature less restrictive
than in [11]. For the case of three dimensions, we were able to remove all the as-
sumptions on the boundedness of Poincaré and extension constants. We only need
that each subdomain is the union of a few elements of a shape regular coarse triangu-
lation and that the exterior angles of each subdomain do not degenerate. Under these
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Fig. 1 Diagram of general
FEM-BEM coupling and its
special cases.

BEM−DD

BEM−based FEMFEM−DD

FEM−BEM coupling

assumptions, we can show explicit bounds for the Poincaré and extension constants.
For the bounds of the Poincaré constants we use a result from [28] which builds
on [36]. To get the other necessary bounds, we construct an extension operator for
polytopes in the spirit of Stein [29] and finally provide an explicit stability estimate.

On the one hand, it is surprising that it took so long to get an analysis with the
above (satisfactory) properties, although there are many works available discussing
fast solvers for FEM-BEM discretizations with arbitrary many subdomains, see [16,
17, 18, 19, 21, 22, 23, 24, 25, 26]. On the other hand, the analysis below requires
some technical tools that were developed only recently.

In the current article, we try to be self-contained up to a certain degree. The
remainder is organized as follows. Sect. 2 contains a description of our model prob-
lem, the subdomain decomposition, a survey on boundary integral operators, and the
symmetric FEM-BEM coupling. In Sect. 3, we present the assumptions and state-
ment of our main result (with the proof postponed). Explicit bounds for boundary
integral operators are collected in Sect. 4. This section includes the construction
of the explicit extension operator described above (see Sect. 4.2). The proof of the
main result is contained in Sect. 5. We conclude with a few remarks on possible
extensions.

2 Model Problem and FEM-BEM Coupling

In this section, we describe the model problem and the subdomain decomposition.
On each subdomain, we define the harmonic extension operator, the Neumann trace
operator, the Steklov-Poincaré operator and a Newton potential. Next, we give a
survey on boundary integral operators. In particular, we write the Steklov-Poincaré
operator in terms of boundary integral operators. With these ingredients, we for-
mulate the symmetric coupling, which involves a BEM-based approximation of the
continuous Steklov-Poincaré operator in the BEM subdomains, and the original bi-
linear form in the FEM subdomains.
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2.1 Model Problem

Let Ω ⊂ R
d (d = 2 or 3) be a bounded Lipschitz polytope whose boundary ∂Ω

consists of a Dirichlet boundary ΓD with positive surface measure and a Neumann
boundary ΓN = ∂Ω \ΓD. The outward unit normal vector to ∂Ω is denoted by n.
We consider the weak form of the following boundary value problem. For given
functions f ∈ L2(Ω), gN ∈ L2(ΓN), and gD ∈ H1/2(ΓD),

find u ∈ H1(Ω), u|ΓD
= gD : a(u, v) = 〈�, v〉 ∀v ∈ H1

D(Ω), (1)

where H1
D(Ω) := {v ∈ H1(Ω) : v|ΓD

= 0} and

a(u, v) :=
∫
Ω

α ∇u ·∇vdx, 〈�, v〉 :=
∫
Ω

f vdx+
∫
ΓN

gN vds.

Above, 〈·, ·〉 denotes the duality pairing. We assume that the coefficient α ∈ L∞(Ω)
is uniformly elliptic, i.e.,

α(x) ≥ α0 > 0 ∀x ∈Ω a.e.

From these assumptions, it follows that the bilinear form a : H1(Ω)×H1(Ω) → R

is bounded, i.e.,

a(v, w) ≤ ‖α‖L∞(Ω) ‖v‖H1(Ω) ‖w‖H1(Ω) ∀v, w ∈ H1(Ω) (2)

and H1
D(Ω)-coercive, in particular

a(v, v) ≥ α0

1+C2
F

‖v‖2
H1(Ω) ∀v ∈ H1

D(Ω), (3)

where CF is the Friedrichs constant of Ω with respect to the Dirichlet boundary
ΓD. Since � ∈ H1

D(Ω)∗, the Lax-Milgram theorem delivers the existence of a unique
solution.

2.2 Subdomain Decomposition

Let {Ωi}N
i=1 be a non-overlapping decomposition of Ω into open Lipschitz poly-

topes such that

Ω =
N⋃

i=1

Ω i , Ω j ∩Ω j = /0 for i �= j. (4)
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The skeleton ΓS is given by

ΓS :=
N⋃

i=1

∂Ωi .

Fig. 2 shows a sample domain Ω ⊂ R
2 (with two holes) and a subdomain decom-

position.
For each subdomain Ωi, let ni denote the outward unit normal vector on ∂Ωi.

We assume that the coefficient is piecewise constant with respect to the subdomain
decomposition, i.e.,

α|Ωi
= αi = const ∀i = 1, . . . ,N.

Thanks to the assumptions on f and gN , we have the splitting property

a(u, v) =
N

∑
i=1

ai(u|Ωi
, v|Ωi

), 〈�, v〉 =
N

∑
i=1

〈�i, v|Ωi
〉, (5)

where ai : H1(Ωi)×H1(Ωi)→R and �i ∈ H1(Ωi)
∗ are given by

ai(u, v) = αi

∫
Ωi

∇u ·∇vdx, 〈�i, v〉 =

∫
Ωi

f vdx+
∫

∂Ωi∩ΓN

gN vds.

Note that the theory below can be generalized without any problems to a general
functional � ∈ H1(Ω)∗ that obeys a splitting of the form (5).

2.3 Operators Associated to the Potential Equation

Definition 1 (harmonic extension). For each i = 1, . . . ,N, let Hi : H1/2(∂Ωi) →
H1(Ωi) denote the harmonic extension operator such that for v ∈ H1/2(∂Ωi),

(Hiv)|∂Ωi
= v, ai(Hiv, w) = 0 ∀w ∈ H1

0 (Ωi).

Due to the Ritz minimum principle, we have that

Hiv = argmin
{

ai(ṽ, ṽ) : ṽ ∈ H1(Ωi), ṽ|∂Ωi
= v
}
. (6)

Fig. 2 Example of a sub-
domain decomposition of a
non-convex domain.
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Definition 2 (Neumann trace). Let HΔ (Ωi) := {v ∈ H1(Ωi) : Δv ∈ L2(Ωi)}, where
Δ is the distributional Laplace operator, and let γ1

i : HΔ (Ωi)→ H−1/2(∂Ωi) denote
the Neumann trace operator, given by

〈γ1
i u, v〉 = ai(u, Hiv)+ (Δu,Hiv)L2(Ωi)

for v ∈ H1/2(∂Ωi).

Note that γ1
i u = αi

∂u
∂ni

for smooth functions u, and that ΔHiv = 0 for all functions

v ∈ H1/2(∂Ωi).

Definition 3 (Steklov-Poincaré operator). Let Si : H1/2(∂Ωi) → H−1/2(∂Ωi) de-
note the Steklov-Poincaré operator, given by Si := γ1

i Hi.

We have the relation

〈Si v, w〉 = ai(Hiv, Hiw) ∀v, w ∈ H1/2(∂Ωi). (7)

Definition 4 (Newton potential). For a functional ψ ∈ H1(Ωi)
∗, let uψ ∈ H1

0 (Ωi)
denote the unique solution of

ai(uψ , v) = 〈ψ , v〉 ∀v ∈ H1
0 (Ωi).

The Newton potential Ni : H1(Ωi)
∗ → H−1/2(∂Ωi) is defined by the relation

〈Niψ , v|∂Ωi
〉 = 〈ψ , v〉− ai(uψ , v) ∀v ∈ H1(Ωi),

see also [20].

For any u ∈ H1(Ωi) and ψ ∈ H1(Ωi)
∗ with ai(u, v) = 〈ψ , v〉 for all v ∈ H1

0 (Ωi), we
have Green’s identity

ai(u, v)−〈ψ , v〉 = 〈Si u|∂Ωi
−Niψ , v|∂Ωi

〉 ∀v ∈ H1(Ωi), (8)

such that Siu|∂Ωi
−Niψ is the (generalized) conormal derivative of u.

2.4 Boundary Integral Operators

The fundamental solution of the Laplace operator is given by

U∗(x, y) =

{
− 1

2π log |x− y| if d = 2,
1

4π |x− y|−1 if d = 3.

Following, e.g., [31], we define the four boundary integral operators

Vi : H−1/2(∂Ωi)→ H1/2(∂Ωi), Ki : H1/2(∂Ωi)→ H1/2(∂Ωi),

K′
i : H−1/2(∂Ωi)→ H−1/2(∂Ωi), Di : H1/2(∂Ωi)→ H−1/2(∂Ωi),
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called in turn single layer potential, double layer potential, adjoint double layer
potential, and hypersingular operator. For smooth functions, they obey the integral
representations

(Viw)(x) =
∫

∂Ωi

U∗(x, y)w(y)dsy, (Kiv)(x) =
∫

∂Ωi

∂U∗

∂ni,y
(x, y)v(y)dsy,

(Div)(x) = − ∂
∂ni,x

∫

∂Ωi

∂U∗

∂ni,y
(x, y)

(
v(y)− v(x)

)
dsy.

Note also that Vi and Di are self-adjoint and K′
i is the adjoint of Ki. We assume

throughout the paper that diam(Ω)≤ 1 if d = 2, which ensures that the single layer
potential operator is elliptic (see e.g. [12, 31]). From the Caldéron identities (cf. [31,
Sect. 6.6]), we get

Si = V−1
i ( 1

2 I +Ki) = Di +( 1
2 I +K′

i )V
−1
i ( 1

2 I +Ki). (9)

We define the subspaces

H−1/2
∗ (∂Ωi) := {w ∈ H−1/2(∂Ωi) : 〈w, 1〉= 0},

H1/2
∗ (∂Ωi) := {v ∈ H1/2(∂Ωi) : 〈V−1

i v, 1〉= 0},

cf. [31, Sect. 6.6.1]. Following [33], we have the contraction property

(1− cK,i)‖v‖V−1
i

≤ ‖( 1
2 I+Ki)v‖V−1

i
≤ cK,i ‖v‖V−1

i
∀v ∈ H1/2

∗ (∂Ωi), (10)

with the norm ‖v‖V−1
i

:=
√

〈V−1
i v, v〉 and the contraction constant

cK,i =
1
2 +
√

1
4 − c0,i ∈

( 1
2 , 1
)
, where c0,i = inf

v∈H1/2
∗ (∂Ωi)

〈Div, v〉
〈V−1

i v, v〉
∈
(
0, 1

4

)
.

2.5 Continuous Domain-Skeleton Formulation

Let IBEM ⊂ {1, . . . ,N} denote the subset of subdomain indices where we want to
discretize with the boundary element method, and set IFEM = {1, . . . ,N}\ IBEM. We
define two subspaces of partially harmonic functions

VS := {v ∈ H1(Ω) : ∀i ∈ IBEM : v|Ωi
= Hi(v|∂Ωi

)},
VS,D := {v ∈ VS : v|ΓD

= 0}.

Equipped with the usual H1-norm, these spaces are Hilbert spaces. We see that the
values on ΓS ∪

(⋃
i∈IFEM

Ωi
)

already determine a function in VS. Moreover, we have
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the a-orthogonal splitting

H1(Ω) = VS ⊕
⋃

i∈IBEM

H1
0 (Ωi).

We consider the variational formulation

find uS ∈ VS, uS|ΓD
= gD : aS(uS, v) = 〈�S, v〉 ∀v ∈ VS,D, (11)

where

aS(u, v) = ∑
i∈IBEM

〈Si u|∂Ωi
, v|∂Ωi

〉+ ∑
i∈IFEM

ai(u|Ωi
, v|Ωi

),

〈�S, v〉 = ∑
i∈IBEM

〈Ni �i, v|∂Ωi
〉+ ∑

i∈IFEM

〈�i, v|Ωi
〉.

Since VS and VS,D are subspaces of H1(Ω) and H1
D(Ω), it follows immediately that

the bilinear form aS(·, ·) : VS ×VS →R is bounded and VS,D-coercive. The following
lemma follows from Green’s identity (8).

Lemma 1. Let uS be the unique solution of (11), and for i ∈ IBEM, let ui ∈ H1
0 (Ωi)

be the unique solution of

ai(ui, v) = 〈�i, v〉− 〈Si uS|∂Ωi
, v|∂Ωi

〉 ∀v ∈ H1
0 (Ωi).

Then problem (1) is solved by
uS + ∑

i∈IBEM

ui.

In other words, uS|Ωi
+ ui solves the Dirichlet problem on Ωi with Dirichlet data

uS|∂Ωi
.

2.6 Symmetric FEM-BEM Coupling

Let T h(ΓS) = {γ} be a simplicial triangulation of the skeleton ΓS into line segments
if d = 2 and into triangular faces if d = 3. For each i ∈ IFEM, let T h(Ωi) = {τ} be
a simplicial triangulation of Ωi (into triangles if d = 2 and tetrahedra if d = 3) that
matches with T h(ΓS) on ∂Ωi. Our discretization space is given by

V h
S :=

{
v ∈VS : v|γ ∈ P1 ∀γ ∈ T h(ΓS),

v|τ ∈ P1 ∀τ ∈ T h(Ωi) ∀i ∈ IFEM

}
,

where P1 are the polynomials of total degree ≤ 1. Functions in V h
S are piecewise

linear on the skeleton. Restricted to a FEM subdomainΩi, they are piecewise linear
with respect to T h(Ωi).
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Assumption 1. The Dirichlet data gD is piecewise linear with respect to the skeleton
triangulation.

Assumption 1 can always be fulfilled by interpolating or projecting the Dirichlet
data. The Galerkin discretization of (11) reads

find uh
S ∈ V h

S , uh
S|ΓD

= gD : aS(u
h
S, vh) = 〈�S, vh〉 ∀vh ∈ V h

S,D, (12)

where
V h

S,D :=
{

vh ∈V h
S : vh

|ΓD
= 0
}
.

With Céa’s lemma,

‖uS − uh
S‖H1(Ω) ≤

‖α‖L∞(Ω)

α0
(1+C2

F) inf
vh∈V h

S

‖uS − vh‖H1(Ω).

However, computing the stiffness matrix associated to Si is in general not possible:
although we can express Si via boundary integral operators, we would need the exact
inverse V−1

i that appears in the two representations (9).
For i ∈ IBEM, we use the following approximation of Si in terms of the boundary

integral operators, see [30, Sect. 3.4] and also [5]. Let the space Zh
i of piecewise

constant functions be given by

Zh
i := {z ∈ L2(∂Ωi) : z|γ ∈ P0 ∀γ ∈ T h(∂Ωi)} ⊂ H−1/2(∂Ωi), (13)

where T h(∂Ωi) is the restriction of T h(ΓS) to ∂Ωi.

Definition 5 (Approximate Steklov-Poincaré operator). The approximate Steklov-
Poincaré operator

S̃i : H1/2(∂Ωi)→ H−1/2(∂Ωi)

is defined by
S̃iv := Div+( 1

2 I+Ki)w
h
i (v),

where wh
i (v) ∈ Zh

i is the unique solution of the variational problem

〈zh,Vi wh
i (v)〉 = 〈zh, ( 1

2 I +Ki)v〉 ∀zh ∈ Zh
i .

Let wi(v) ∈ H−1/2(∂Ωi) be given by

wi(v) := V−1
i ( 1

2 I+Ki)v = Si v.

By the Galerkin orthogonality and an energy argument,

〈S̃i v, v〉 = 〈Di v, v〉+ 〈wh
i (v),Vi wh

i (v)〉 ≤ 〈Di v, v〉+ 〈wi(v),Vi wi(v)〉 = 〈Si v, v〉.

Using Cauchy’s inequality and the contraction properties (10), we obtain that for

v ∈ H1/2
∗ (∂Ωi),
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〈Si v, v〉 = 〈V−1
i ( 1

2 I +Ki)v, v〉 ≤ ‖( 1
2 I+Ki)v‖V−1

i
‖v‖V−1

i
≤ cK,i ‖v‖2

V−1
i

≤ cK,i c−1
0,i 〈Di, v, v〉 ≤ cK,i c−1

0,i

(
〈Di, v, v〉+ 〈Vi w

h
i (v), wh

i (v)〉
)
.

Since the first and last term are invariant to adding a constant, we can summarize
that

c0,i

cK,i
〈Siv, v〉 ≤ 〈S̃iv, v〉 ≤ 〈Siv, v〉 ∀v ∈ H1/2(∂Ωi), (14)

see also [6], [30], and [25, Lemma 1.33]. Using the approximations S̃i ≈ Si for
i ∈ IBEM, we define the modified bilinear form

ãS(v, w) := ∑
i∈IBEM

〈S̃iv, w〉+ ∑
i∈IFEM

ai(v, w) for v, w ∈ VS.

For simplicity, we assume that there are no volume sources given in the BEM sub-
domains.

Assumption 2. For all i ∈ IBEM, we have f|Ωi
= 0.

Under Assumption 2, the evaluation of the Newton potential Ni�i simplifies to inte-
grating gN against a test function over ∂Ωi ∩ΓN , and so no approximation of Ni is
necessary.

The inexact Galerkin formulation corresponding to (11) reads

find uh
S ∈V h

S , uh
S|ΓD

= gD : ãS(u
h
S, vh) = 〈�S, vh〉 ∀vh ∈ V h

SD
. (15)

3 Main Result

In this section, we state our main result: an a-priori error estimate for the formula-
tion (15). Not only will this estimate be explicit in the discretization parameters, but
it will in a certain sense be independent of the subdomain decomposition. In order
to parameterize the subdomain decomposition, we could assume that each subdo-
main is an element of a coarse mesh. To be more general and to allow at least for
subdomains that are polytopes, we use the following assumption which is standard
in the theory of iterative substructuring methods, cf. [34, Assumption 4.3].

Assumption 3. Each subdomain Ωi is the union of a few simplicial elements of a
global shape regular triangulation T H(Ω) such that the number of coarse elements
per subdomain is uniformly bounded.

Let Hi = diam(Ωi) denote the subdomain diameters. The above assumption implies
that Hi � Hj if ∂Ωi ∩∂Ω j �= /0, and that each subdomain boundary ∂Ωi splits into a
uniformly bounded number of coarse facets (cf. [11, Assumption 4.4]).
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Fig. 3 Sketch of trian-
gulation T H(Ω̂). In dark:
Ω̂ \Ω , thin lines indicate the
coarse elements of T H(Ω̂).

Ω

The next assumption essentially states that the exterior angles of all subdomains
(including those touching the outer boundary ∂Ω ) are bounded away from zero, see
also Sect. 6.

Assumption 4. The coarse triangulation T H(Ω) from Assumption 3 can be
extended to a shape regular triangulation T H(Ω̂ ) of a larger domain Ω̂ ⊃Ω .

For an illustration see Fig. 3. Our final assumption concerns the fine triangulations
used for the FEM and BEM.

Assumption 5. The triangulations T h(ΓS) and T h(Ωi), i ∈ IFEM, are shape
regular.

We define the local mesh parameters

hi :=

⎧⎪⎨
⎪⎩

max
γ∈T h(∂Ωi)

diam(γ) if i ∈ IBEM,

max
τ∈T h(Ωi)

diam(τ) if i ∈ IFEM,

and set h := maxN
i=1 hi.

Theorem 1. Let d = 3, let Assumptions 1–5 hold, and suppose that the solution u of
(1) satisfies u ∈ H2(Ω). Then for the solution uh

S of (15),

‖uS − uh
S‖H1(Ω) ≤ C

( N

∑
i=1

h2
i |u|2H2(Ωi)

)1/2
≤ C h |u|H2(Ω) .

The constant C depends only on the coefficient α , on the Friedrichs constant CF ,
and on the shape regularity constants of T H(Ω̂), T h(ΓS) and T h(Ωi), i ∈ IFEM.

Proof. The proof is postponed to Sect. 5.4. 
�

4 Explicit Bounds for the Constants c0,i

In this subsection, we work out an explicit lower bound for the constants c0,i from
Sect. 2.4 in three dimensions which depends only on the shape regularity constants
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of T H(Ω̂). We heavily use the results from [27], where a series of constants related
to the boundary integral operators Vi and Di are bounded in terms of Poincaré and
extension constants. Throughout the rest of the paper, C denotes a generic constant.

4.1 Explicit Bounds for Poincaré Constants

Definition 6. For a bounded Lipschitz domain D ⊂ R
3, the Poincaré constant is

defined as the smallest constant CP(D) such that

‖v− vD‖L2(D) ≤ CP(D)diam(D) |v|H1(D) ∀v ∈ H1(D),

where vD = |D|−1 ∫
D vdx is the mean value of v.

The following lemma is a direct consequence of [28, Lemma 4.1], see also [36].

Lemma 2. Let Assumption 3 hold and let m be a fixed integer. Then there exists a
constant C that depends only on m and on the shape regularity constants of T H(Ω̂ )

such that for any connected union D of at most m coarse elements of T H(Ω̂ ),

CP(D) ≤ C.

4.2 An Extension Operator for Polytopes

In this subsection, we define a Sobolev extension operator for Lipschitz polytopes in
the spirit of Stein [29] and provide an explicit estimate in terms of shape regularity
constants only.

Let D be the connected union of a few elements from T H(Ω) and let its open
surrounding D′ be defined by

D
′
=
⋃{

T : T ∈ T H(Ω̂ ), T �∈ D, T ∩∂D �= /0
}
, (16)

see Fig. 4 (right). Let V∂D = {p} be the set of coarse vertices of T H(Ω̂) that lie on
∂D. For each such coarse vertex, we define the vertex patch ωp by

ω p =
⋃{

T : T ∈ T H(Ω̂), p ∈ T
}
,

and
ω int

p := ωp ∩D, ωext
p := ωp ∩D′,

cf. Fig. 4 (right). Without loss of generality, we assume that ω int
p and ωext

p each
contain at least one coarse node that does not lie on ∂D. This condition can always
be fulfilled by formally subdividing some of the coarse elements.
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Fig. 4 Mapping of a node
patch ωp in two dimensions.
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D’
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intp

p
ext

ω
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ω
int

pF

(0,−1)

We define the reference patch

ω̂ :=

{
conv◦({(−1,0), (1,0), (0,1), (0,−1)}) if d = 2,

conv◦({(−1,0,0), (1,1,0), (1,−1,0), (0,0,1), (0,0,−1)}) if d = 3,

where conv◦(S) denotes the interior of the convex hull of the set S. Furthermore, we
define the subsets

ω̂ int := ω̂ ∩{x : xd < 0}, ω̂ext := ω̂ ∩{x : xd > 0},

where xd refers to the d-th component of x.
Let Tp(ω̂) be a shape regular simplicial triangulation of ω̂ such that there exists

a bijective continuous mapping Fp : ω̂ → ωp with the following properties.

• For each element T ∈ Tp(ω̂), the restricted mapping Fp|T is affine linear,
• Fp(0) = p,
• Fp(ω̂ ∩{x : xd = 0}) = ωp ∩∂D,
• Fp(ω̂ int) = ω int

p and Fp(ω̂ext) = ωext
p ,

• for each element T ∈ Tp(ω̂),

c1 Hd
D ≤ det(F ′

p|T ) ≤ c2 Hd
D ,

‖F ′
p|T‖�2 ≤ c3 HD , ‖(F ′

p|T )
−1‖�2 ≤ c4 H−1

D ,

where HD := diam(D) and the constants c1, c2, c3, and c4 only depend on the
shape regularity constants of T H(Ω̂ ).

For an illustration in two dimensions, see Fig. 4. Under the conditions on T H(Ω̂ )
stated in Assumption 4, such a triangulation and mapping exists for every coarse
vertex p ∈ V∂D.

On the reference patch we define

Ê : H1(ω̂ int)→ H1(ω̂ext), (Êw)(x1, . . . ,xd) := w(x1, . . . ,xd−1,−xd),

i.e., the reflection of v across the hyperplane {x : xd = 0}, where the above definition
first applies to C∞ functions and is then completed by density (which indeed leads
to a bounded operator). For each coarse node p ∈ V∂D we define
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Ep : H1(ω int
p )→ H1(ωext

p ), Epv :=
(
Ê(v◦Fp)

)
◦F−1

p .

Since Fp is continuous and piecewise affine linear, Epv is indeed in H1. Furthermore,
we have by construction that

(Epv)|ωp∩∂D = v|ωp∩∂D .

Finally, we define the extension operator

ED : H1(D)→ H1(Rd), (EDv)|D := v,

(EDv)|D′ := ∑
p∈V∂D

ϕp ·Epv,

where ϕp is the nodal finite element basis function on T H(Ω̂) associated with the
coarse node p.

Lemma 3. Let Assumptions 3 and 4 hold, let D be the connected union of a few
elements from T H(Ω), and let the extension operator ED be defined as above. Then
ED indeed maps into H1(Rd). Let D = {D} be a collection of subregions of Ω
such that every D ∈ D is the connected union of at most m elements of T H(Ω).
Then there exists a constant CE depending only on m and on the shape regularity
constants of T H(Ω̂) such that for all D ∈ D ,

|EDv|2H1(Rd)
+H−2

D ‖ED v‖2
L2(Rd)

≤ CE

(
|v|2H1(D) +H−2

D ‖v‖2
L2(D)

)
∀v ∈ H1(D).

Proof. Let v ∈ H1(D) be arbitrary but fixed. For each p ∈ V∂D, the function ϕp ·Epv
vanishes on R

d \ (D∪ωext
p ). Hence,

(EDv)|Rd\D ∈ H1(Rd \D).

Since

∑
p∈V∂D

ϕp(x) = 1 ∀x ∈ ∂D,

we have (EDv)|∂D = v|∂D and hence EDv ∈ H1(Rd). With standard finite element
techniques (see e.g. [1, 2]), one shows that

|Epv|H1(ωext
p ) ≤ C |v|H1(ω int

p ), ‖Epv‖L2(ωext
p ) ≤ C‖v‖L2(ω int

p ).

The constant C depends only on the shape regularity constants of T H(Ω̂) because
there is only a small number of different triangulations Tp(ω̂).

Since ‖ϕp‖L∞ = 1, it follows from the above that

‖ϕp ·Epv‖2
L2(ωext

p ) ≤ C‖v‖2
L2(ω int

p ).
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Since ‖∇ϕp‖L∞ ≤ C H−1
D , we can conclude from the product rule that

|ϕp ·Epv|2H1(ωext
p ) ≤ C

(
|Epv|2H1(ωext

p ) +H−2
D ‖Epv‖2

L2(ωext
p )

)

≤ C
(
|v|2H1(ω int

p ) +H−2
D ‖v‖2

L2(ω int
p )

)
.

Since the number of coarse elements and coarse nodes in D is bounded in terms of
m, the desired estimate follows by summing the above estimate over p ∈ V∂D. 
�

Let the operator
ED′ : H1(D′)→ H1(D∪D′)

be defined analogously to ED, but exchanging the roles of D and D′.

Lemma 4. Let D = {D} as in Lemma 3 and let D′ denote the surroundings of D as
defined in (16). Then there exists a uniform constant CE ′ depending only on m and
on the shape regularity constants of T H(Ω̂ ) such that

|ED′v|2H1(D) ≤ CE ′ |v|2H1(D′) ∀v ∈ H1(D′).

Proof. The proof follows by combining the proof of Lemma 3 with the Poincaré
inequality in D, see Lemma 2. 
�

4.3 Explicit Bounds for Boundary Integral Operators

Definition 7. For each subdomainΩi, we define the seminorm and norm

|v|�,H1/2(∂Ωi)
:= |Hiv|H1(Ωi)

,

‖v‖�,H1/2(∂Ωi)
:=
(
|Hiv|2H1(Ωi)

+
1

diam(Ωi)2 ‖Hiv‖2
L2(Ωi)

)1/2

(see [27]), which is equivalent to the Sobolev-Slobodeckii norm ‖ · ‖H1/2(∂Ω), and
the associated dual norm

‖w‖�,H−1/2(∂Ωi)
:= sup

v∈H1/2(∂Ωi)

〈w, v〉
‖v‖�,H1/2(∂Ωi)

.

Above and in the following we silently exclude v = 0 from the supremum.

In the sequel, we state ellipticity and boundedness results for the boundary integral
operators Vi and Di. In several of the lemmas below, we have to assume that d = 3.
The two-dimensional case is harder and not further considered in the article at hand.
See also [27, Remark 4] and Sect. 6.

Lemma 5. Let d = 3 and let Assumptions 3–4 hold. Then, for each i = 1, . . . ,N,

〈w,Vi w〉 ≥ 1
2 C−2

E ‖w‖2
�,H−1/2(∂Ωi)

∀w ∈ H−1/2(∂Ωi),
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i.e., the operators Vi are uniformly elliptic with respect to the norms ‖ ·‖�,H−1/2(∂Ωi)

and the ellipticity constant depends only on the shape regularity constants of
T H(Ω̂).

Proof. The statement follows from [27, Lemma 6.1, Corollary 6.2]. The proof there
uses the Jones extension, but remains valid for the extension operator EΩi con-
structed in Sect. 4.2. 
�

Lemma 6. Let Assumptions 3–4 hold and letΩ ′
i be the surrounding ofΩi as defined

in (16). Then

〈Di v, v〉 ≥ 1
2 C−2

E ′ |v|2�,H1/2(∂Ωi)
∀v ∈ H1/2(∂Ωi).

Proof. See [27, Lemma 3.8, Lemma 6.4]. 
�

Lemma 7. Let d = 3 and let Assumptions 3–4 hold. Then

H−2
i ‖Hiv‖2

L2(Ωi)
≤ C∗

P |Hiv|2H1(Ωi)
∀v ∈ H1/2

∗ (∂Ωi),

where the constant C∗
P depends only on the shape regularity constants of T H(Ω̂ ).

Proof. See [27, Lemma 6.7]. 
�

Lemma 8. Let d = 3 and let Assumptions 3–4 hold. Then

‖V w‖H−1/2(∂Ωi)
≤ C∗

V ‖w‖�,H−1/2(∂Ωi)
∀v ∈ H−1/2(∂Ωi),

where the constant C∗
V depends only on the shape regularity constants of T H(Ω̂ ).

Proof. See [27, Lemma 6.8]. 
�

Lemma 9. For d = 3, and each subdomainΩi, we have

c0,i ≥ 1
4 (CE )

−2 (CE ′)−2 (1+C∗
P)

−1,

i.e., there is a uniform lower bound for the constants c0,i just in terms of the shape
regularity constants of T H(Ω̂).

Proof. See [27, Corollary 6.10]. 
�

5 Error Analysis

This section contains the proof of our main theorem. First, we formulate a lemma
à la Strang which bounds the total error in terms of the approximation error of the
Dirichlet data on the skeleton and the H1 approximation error in the FEM subdo-
mains, and the approximation error of the Neumann data in the norm induced by the
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local single layer potentials. Both terms can be estimated explicitly in the fine and
coarse mesh parameter.

Since the original domain Ω is fixed, we assume without loss of generality that
diam(Ω) = 1.

5.1 A Lemma à la Strang

Lemma 10. Let uS ∈VS and uh
S ∈V h

S be the solutions of (11) and (15). For i ∈ IBEM,
let wi(uS) ∈ H−1/2(∂Ωi) be given by

wi(uS) := V−1
i ( 1

2 I+Ki)uS|∂Ωi
= Si uS|∂Ωi

.

Then, we have the error estimate

‖uS − uh
S‖H1(Ω) ≤ δ

[
inf

vh∈V h
S

‖uS − vh‖H1(Ω) +
(
∑

i∈IBEM

inf
zh∈Zh

i

‖wi(uS)− zh‖2
Vi

)1/2
]
,

where
δ = max(1+β , β ‖α‖L∞(Ω)) max

(
1, max

i∈IBEM

cK,i√
1− cK,i

)
,

and

β =
1+C2

F

α0
max
(

1, max
i∈IBEM

cK,i

c0,i

)
.

Proof. First, we homogenize (11) and (15). Let g ∈ V h
S be an arbitrary but fixed

extension of the Dirichlet datum gD (i.e., g|ΓD
= gD). Then uS = g+ uS,0 and uS,h =

g+ uh
S,0 where

uS,0 ∈ VS,D : aS(uS,0, v) = 〈�S, v〉− aS(g, v) ∀v ∈ VS,D ,

uh
S,0 ∈ V h

S,D : ãS(u
h
S,0, vh) = 〈�S, vh〉− ãS(g, vh) ∀vh ∈ V h

S,D .

From (14), (7), (2), and (3) it follows that

ãS(v, v) ≥ α0

1+C2
F

min
(

1, min
i∈IBEM

c0,i

cK,i

)
‖v‖2

H1(Ω) ∀v ∈ VS,D,

ãS(v, w) ≤ ‖α‖L∞(Ω) ‖v‖H1(Ω) ‖w‖H1(Ω) ∀v, w ∈VS.

The Strang lemma from [11, Lemma 4.1] implies that

‖uS,0 − uh
S,0‖H1(Ω) ≤ max(1+β , β ‖α‖L∞(Ω)) ×[

inf
vh∈V h

S,D

‖uS,0 − vh‖H1(Ω) + sup
vh∈V h

S,D

ãS(uS, vh)−〈�S, vh〉
‖vh‖H1(Ω)

]
.
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Using that 〈�S, vh〉 = aS(uS, vh), we obtain

ãS(uS, vh)−〈�S, vh〉 = ∑
i∈IBEM

〈S̃iuS − SiuS, vh〉.

Following the proof of [11, Lemma 4.2], we get

〈S̃iuS − SiuS, vh〉 ≤ cK,i√
1− cK,i

|vh|H1(Ωi)
‖wi(uS)−wh

i (uS)‖Vi .

The rest of the proof follows from Cauchy’s inequality and the fact that uS − uS,0 =
g ∈ V h

S . 
�

5.2 Error Estimate for the Dirichlet Data

Theorem 2. Let Assumptions 1–3 and Assumption 5 hold. Assume further that the
solution u of (1) satisfies u ∈ H2(Ω). Then there exists a constant C only depending
on the shape regularity constants of T h(ΓS), T H(Ω), and T h(Ωi), i ∈ IFEM, such
that

inf
vh∈V h

S

‖uS − vh‖H1(Ω) ≤ C
( N

∑
i=1

h2
i |u|2H2(Ωi)

)1/2
≤ C h |u|H2(Ω).

Proof. The proof is analogous to [11, Theorem 4.8]. First, recall that due to As-
sumption 2, f|Ωi

= 0 for i ∈ IBEM, and so

uS = u.

From Assumption 3 and Assumption 5 it follows that for each i ∈ IBEM, the tri-
angulation T h(∂Ωi) can be extended to an auxiliary triangulation T̃ h(Ωi) with
mesh parameter hi, such that the shape regularity constants of T̃ h(Ωi) are bounded
in terms of the shape regularity constants of T h(ΓS) and T H(Ω). This implies a
global triangulation T̃ h(Ω) of the entire domainΩ . Let

Ṽ h(Ω) := {v ∈ H1(Ω) : v|T ∈ P1 ∀T ∈ T̃ h(Ω)},

and let IhuS ∈ Ṽ h(Ω) denote the nodal interpolant of uS ∈ H2(Ω). Due to the min-
imizing property (6) of the harmonic extension and a standard interpolation result
(see [2]), we obtain

inf
vh∈V h

S

‖uS − vh‖H1(Ω) ≤ inf
vh∈Ṽ h(Ω)

‖uS − vh‖H1(Ω)

≤ ‖uS − IhuS‖H1(Ω) ≤ C
( N

∑
i=1

h2
i |uS|2H2(Ωi)

)1/2
,

where C depends only on the mentioned shape regularity constants. 
�
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5.3 Error Estimate for the Neumann Data

Throughout this subsection, assume that d = 3 and that Assumptions 3–5 hold. Let
Fi = {F} denote the set of triangular coarse faces on ∂Ωi (cf. Assumption 3). We
define the face seminorms

|v|
H1/2
∼ (F)

:=

(∫
F

∫
F

|v(x)− v(y)|2
|x− y|3 dsx dsy

)1/2

for v ∈ H1/2(F), F ∈ Fi,

and the piecewise seminorm

|v|
H1/2
∼pw(∂Ωi)

:=
(
∑

F∈Fi

|v|2
H

1/2
∼ (F)

)1/2
.

The space H1/2
∼pw(∂Ωi) is the subspace of L2(∂Ωi) where the above seminorm is

bounded.

Definition 8. For each i ∈ IBEM, the L2-projector Qh
i : L2(∂Ωi)→ Zh

i is given by

(Qh
i v, zh)L2(∂Ω) = (v, zh)L2(∂Ωi)

∀zh ∈ Zh
i ,

with the space Zh
i from (13).

Of course, the above equation can be localized and

(Qh
i v)|γ =

1
|γ|

∫
γ

vds for γ ∈ T h(∂Ωi).

Lemma 11. The operator Qh
i satisfies, for all w ∈ H1/2

∼pw(∂Ωi), the approximation
properties

‖w−Qh
i w‖L2(∂Ωi)

≤ C h1/2
i |w|

H
1/2
∼pw(∂Ωi)

,

‖w−Qh
i w‖�,H−1/2(∂Ωi)

≤ C hi |w|
H1/2
∼pw(∂Ωi)

,

where the constant C depends only on the shape regularity constants of T H(Ω) and
T h(ΓS).

Proof. First, we split the local boundary ∂Ωi into the (plane) triangular faces F ∈
Fi. Each such face can be mapped to a reference face. Applying [31, Theorem 10.2]
to each face and summing over the faces, we obtain the first estimate (the proof of
that theorem is constructed by interpolating estimates in the L2- and H1-seminorm
at 1/2).
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The second estimate is shown along the lines of [31, Corollary 10.3]: Using the
definition of the dual norm, the projection property of Qh

i , Cauchy’s inequality, and
the first estimate of the current lemma, we obtain

‖w−Qh
i w‖�,H−1/2(∂Ωi)

= sup
v∈H1/2(∂Ωi)

(w−Qh
i w, v)L2(∂Ωi)

‖v‖�,H1/2(∂Ωi)

= sup
v∈H1/2(∂Ωi)

(w−Qh
i w, v−Qh

i v)L2(∂Ωi)

‖v‖�,H1/2(∂Ωi)

≤ ‖w−Qh
i w‖L2(∂Ωi)

sup
v∈H1/2(∂Ωi)

‖v−Qh
i v‖L2(∂Ωi)

‖v‖�,H1/2(∂Ωi)

≤ C h1/2
i |w|

H
1/2
∼pw(∂Ωi)

C h1/2
i sup

v∈H1/2(∂Ωi)

|v|
H1/2
∼pw(∂Ωi)

‖v‖�,H1/2(∂Ωi)
.

Using (A9) and (A12) from [11], we can conclude that

|v|
H1/2
∼pw(∂Ωi)

≤ C‖v‖�,H1/2(∂Ωi) ∀v ∈ H1/2(∂Ωi).

The (generic) constants in both estimates depend only on the shape regularity con-
stants of T H(Ω). 
�

Our last prerequisite is a Neumann trace inequality. For a proof see [11, Theo-
rem 4.10 and Sect. A.2].

Lemma 12. There exists a constant C depending only on the shape regularity con-
stants of T H(Ω) such that

|γ1
i v|

H
1/2
∼pw(∂Ωi)

≤ C |v|H2(Ωi)
∀v ∈ H2(Ωi).

Combining the tools and estimates above we get the following error estimate.

Theorem 3. Let d = 3 and let Assumptions 3–5 hold. Then there exists a constant C
only depending on the shape regularity constants of T H(Ω̂) and T h(ΓS) such that

inf
zh∈Zh

i

‖γ1
i v− zh‖Vi ≤ C hi |v|H2(Ωi)

∀v ∈ H2(Ωi).

Proof. Using Lemma 8 and Lemma 11, we obtain

inf
zh∈Zh

i

‖γ1
i v− zh‖Vi ≤ C∗

V inf
zh∈Zh

i

‖γ1
i v− zh‖�,H−1/2(∂Ωi)

≤ C∗
V ‖γ1

i v−Qh
i γ

1
i v‖�,H−1/2(∂Ωi)

≤ C∗
V C hi |γ1

i v|
H

1/2
∼pw(∂Ωi)

.

An application of Lemma 12 concludes the proof. 
�
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5.4 Proof of Theorem 1

Noticing that wi(uS) = γ1
i u and combining Lemma 10 and Theorem 2, we obtain

‖uS − uh
S‖H1(Ω) ≤ C

[( N

∑
i=1

h2
i |u|2H2(Ωi)

)1/2
+
(
∑

i∈IBEM

inf
zh∈Zh

i

‖γ1
i u− zh‖2

Vi

)1/2
]

Because of Lemma 9 and because cK,i depends monotonically decreasingly on c0,i,
the constant C above is bounded only in terms of the shape regularity constants
of T H(Ω̂ ), T h(ΓS), and T h(Ωi), i ∈ IFEM. Applying Theorem 3 on each BEM
subdomain concludes the proof of Theorem 1.

6 Conclusion and Extensions

First, we would like to note that we can relax Assumption 4 to the weaker assump-
tion that there exists a shape regular coarse triangulation for the neighborhood of
each subdomain (with uniform shape regularity constants). This way, small exterior
angles of the computational domain Ω are allowed as long as there are no small
exterior angles of the subdomains themselves.

We believe that with careful effort, the above theory can be extended to the two-
dimensional case, see [27, Remark 4]. Also, it should be possible to drop Assump-
tion 2 and incorporate an approximation of the Newton potential, see [30].

Using the explicit bounds for the boundary integral operators, it is possible to
lift the results in [16, 17] on BETI and coupled FETI/BETI methods to the current
setting. Hence, the convergence of these solvers does not depend on the subdomains,
but only on the shape regularity of the subdomain decomposition.

For the case of reduced regularity (uS �∈ H2(Ω)), we first show a stability result.
By choosing vh = 0 and zh = 0 in the infima in the statement of Lemma 10, and
using [27, Lemma 5.4], one can show that

‖uS − uh
S‖H1(Ω) ≤ C |uS|H1(Ω),

under the minimal assumption that uS ∈ H1(Ω). Interpolating the H2 and H1 error
estimate, we immediately get that

‖uS − uh
S‖H1(Ω) ≤ C hs ‖uS‖H1+s(Ω)

if uS ∈ H1+s(Ω).
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