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Abstract. Second order elliptic equations are considered in the unit square, which
is decomposed into subdomains by an arbitrary nonuniform orthogonal grid. For
the elliptic operator we assume that the energy integral contains only squares of
first order derivatives with coefficients, which are arbitrary positive finite numbers
but different for each subdomain. The orthogonal finite element mesh has to satisfy
only one condition: it is uniform on each subdomain. No other conditions on the
coefficients of the elliptic equation and on the step sizes of the discretization and
decomposition are imposed. For the resulting discrete finite element problem, we
suggest domain decomposition algorithms of linear total arithmetical complexity,
not depending on any of the three factors contributing to the orthotropism of the
discretization on subdomains. The main problem of designing such an algorithm
is the preconditioning of the inter-subdomain Schur complement, which is related
in part to obtaining boundary norms for discrete harmonic functions on the shape
irregular domains.

1 Introduction

The aim of this paper is to present fast DD (domain decomposition) algorithms
for the discretization of partial differential equations with piecewise variable or-
thotropism, which is modelled by the discrete problem described below. Suppose,
the domain Ω = (0,1)× (0,1) is decomposed into subdomains

Ω j = (z1, j1−1,z1, j1)× (z2, j2−1,z2, j2), j = ( j1, j2), (1)
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by the rectangular decomposition grid

xk = zk, jk , jk = 0,1, ..,Jk, zk, jk −zk, jk−1 =Hk, jk > 0, zk,0 = 0, zk,Jk = 1 . (2)

The decomposition grid is imbedded in the nonuniform rectangular finer source grid

xk = xk,ik , ik = 0,1, ..,Nk, xk,0 = 0, xk,Nk = 1, (3)

i.e. xk,γk = zk, jk for some numbers γk = κk( jk), k = 1,2. Assume for simplicity,
that this grid is uniform on each subdomain and has sizes hk, jk = Hk, jk/nk, jk , where
nk, jk is the number of the source grid intervals on the decomposition grid interval
(zk, jk−1,zk, jk ).

Fig. 1 Decomposition grid and subdomain wise uniform rectangular source grid.

Let V̊ (Ω) be the FE (finite element) space of globally continuous functions
which are bilinear on each nest of the source grid and which vanish on ∂Ω . We
consider the problem

αΩ (u,v) = 〈 f ,v〉, ∀ v ∈ H̊1(Ω), where αΩ (u,v) =
∫
Ω

∇u(x) ·℘(x)∇v(x)dx, (4)

℘(x) is a 2× 2 matrix satisfying the inequalities

μ1ρ(x)≤℘(x)≤ μ2ρ(x), 0 ≤ μ1,μ2 = const, (5)

and ρ = diag [ρ1,ρ2] is a diagonal matrix with piecewise constant positive functions
ρk(x). In other words, ρk(x) = ρk, j = const > 0 for x ∈ Ω j, and ρk, j are arbitrary
positive numbers. The integral identity (4) on the space V̊ (Ω) is reduced to the
system of linear algebraic equations

Ku = f . (6)

The answer, we are looking for, is whether there exists a DD algorithm, which is ro-
bust and fast uniformly for arbitrary positive Hk, jk , ρk, j and hk, jk . Indeed, we suggest
DD preconditioners KDD of the Dirichlet-Dirichlet type such that
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ops
[
K −1

DD f
]
×
(
κ [K −1

DD K]
)1/2 ≤ cNΩ , c = const, (7)

where NΩ is the number of unknowns in (6), κ [A] is the spectral condition number
of the matrix A, ops [. . .] is the number of arithmetical operations for performance
of the operation inside the brackets, and c is an absolute constant. Therefore, the
bound (7) approves that the DD preconditioner provides a solution procedure for
the system (6) of a linear total arithmetical complexity. The bound retains, if the
number of subdomains J = J1J2 grows along with the number of FE unknowns, but

not too fast, for instance, when Jk ≤ N1/2
k / log3/2 N, N =maxNk. It is worth to stress

that the right part of (7) does not depend on any of the three factors contributing to
the orthotropism of the discretization on subdomains.

The results are retained, if Ω is the union of any number of nests of the decom-
position mesh, they are also retained for the respective FE discretizations by linear
triangular finite elements with vertices at the nodes of the orthogonal discretiza-
tion mesh. Moreover, for both types of discretizations, the preconditioners will
be often defined by means of triangular elements, which provide simpler explicit
representations.

In the DD algorithm, Dirichlet problems in rectangular subdomains Ω j can be
efficiently solved by numerous direct and iterative methods, including FDFT (Fast
Discrete Fourier Transform). Solvers for orthotropic and some more complex types
of discretizations on rectangular domains have been intensively studied. We can
find respective results in Schieweck [47], Wittum [50], Dahmen [17], Griebel & Os-
wald [22], Grauschopf et al. [21], Cohen et al. [14], Schneider [48], Oswald [44],
Pflaum [45], and many other papers. These works allow also to obtain for each sub-
domain optimal low energy prolongation operators and spectrally equivalent Schur
complement preconditioners which are almost optimal for inversion. Therefore, at
designing DD algorithm subordinate to the bound (7), the key problem is obtaining
an interface preconditioner, which would not compromise this bound.

An analysis of DD interface preconditioners for isotropic elliptic equations in
domains, composed of thin rectangles, can be found, e.g., in Chen et al. [13] and
Nepomnyaschikh [40, 42]. In relation with some deteriorating elliptic equations,
DD algorithms for discretizations with a subdomain-wise more general variation
of orthotropism were studied analytically in Korneev [31] and numerically in Rytov
[46] and Anufriev & Korneev [4] for 2-d and 3-d problems, respectively. Other tech-
niques, e.g., boundary element methods, H -matrices, and tensor-train decomposi-
tions were also attracted for obtaining efficient interface preconditioners for elliptic
problems with orthotropism with a subdomain-wise variation which is subjected to
some restrictions. Papers of Hsiao et al. [26], Hackbusch et al. [25], Dolgov et al.
[16] are only a few representatives of this vast area of research.

The case of an assemblage of rectangular subdomains, having different arbi-
trary aspect ratios, accompanied by an orthotropism of the differential equation
which is chaotically strongly changing from subdomain to subdomain, causes spe-
cific difficulties. They are strengthened by a jumping orthotropism of a rectangular
subdomain-wise uniform, but otherwise arbitrary, finer mesh for the discretization.
The results for solvers of uniformly anisotropic problems on arbitrary rectangle or
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corresponding Schur complement solvers are not directly applicable. The reason is
that multilevel decompositions, which are efficient for each subdomain separately,
are not compatible, and, therefore, in general can’t be assembled to obtain an effi-
cient interface preconditioner.

Discrete problems close to (1)-(6) with ℘(x) = ρ(x) were independently ad-
dressed in Khoromskij & Wittum [27, 28], in Kwak et al. [38], Nepomnyaschikh
[43], and in Korneev et al. [33, 34]. In particular [27, 28] concentrated on the inter-
face solvers, whereas the others considered DD Dirichlet-Dirichlet solvers. There
are other differences, pertaining specific components of algorithms and techniques
of their analysis, which resulted in different bounds for the relative condition num-
ber of the DD preconditioner and its total computational complexity. The bounds of
[27, 28, 38] depend on νρ , j, ν2

ρ , j = maxk=1,2 (ρk, j/ρ3−k, j), whereas the bounds of
[33, 34] do not. In this paper, we improve the preconditioner of [33, 34] and come
to estimates of linear complexity.

Compatibility of subdomain Schur complement preconditioners usually included
a splitting of the vertex degrees of freedom from the rest. However, for thin rect-
angles this damages the relative condition number more severely, than for shape
regular rectangles. One way to circumvent these obstacles is the use of an iterative
preconditioner S1,it, resulting from an inexact solver defined by means of two Schur
complement preconditioners Sk, k = 1,2. One is aimed to provide a good relative
condition number and cheap matrix-vector multiplications. The other may have a
not so good relative condition number, but is cheap for inversion. Seemingly, the
idea of such a preconditioning was introduced by Nepomnyaschikh [40]; in Kwak
et al. [38] it was implemented in the DD solver for a model problem, close to (1)-(6),
but with a different, than in this paper, choice of Sk, k = 1,2.

The preconditioner S j
1 , used in this paper for one subdomain Ω = Ω j, stems

from the shape dependent boundary seminorm, which is equivalent to the H1(Ω)-
seminorm for discrete harmonic functions in shape irregular rectangles. The corre-
sponding norm was introduced in Korneev [31], see also Korneev et al. [33, 34],
following the technique of Maz’ya & Poborchi [39] used for harmonic functions.
The validity of this norm for discrete harmonic functions is established with the use
of a Scott & Zhang [49] result on a special interpolation operator for functions from
H1(Ω). Then the shape dependent norm is simplified by means of finite-difference
norms, equivalent to the H1/2-norms on some 1-d sets. It is, by the way, worth not-
ing that it well reflects the fact, known in applications, e.g., of boundary FE methods
and referred as absorption of singularities. Suppose, we have a spectrally equiva-
lent preconditioner for the boundary Schur complement for a FE discretization on
a quasiuniform mesh. Then, this preconditioner retains the spectral equivalence to
the Schur complement generated on any shape regular mesh, which is imbedded in
the quasiuniform mesh and coincides with it on the boundary. Even more general
meshes can be considered. Basic facts related to the preconditioner are presented in
Subsect. 2.1 and 2.2.

There are obvious reasons to use Schur complement preconditioners, in which,
apart from splitting vertices, each edge is split at least from a part of others. In the
DD algorithm of this paper, S2 can be taken as one of the slightly different and
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compatible preconditioners used in Khoromskij & Wittum [27, 28], Korneev [31],
and Korneev et al. [33, 34]. The proof of the bounds of its relative spectrum, inde-
pendent of νρ , j, is made in a way of comparison with the sample preconditioner,
which has a structure similar to S2, but which is more suitable for an analysis.
The purpose of Subsect. 2.3 and Sect. 3 is to describe the sample preconditioner
and to prepare subsidiary results for the analysis of the basic preconditioner S2.
The derivation of the sample preconditioner for one subdomain is accomplished by
means of a secondary DD technique with a secondary shape regular nonoverlap-
ping domain decomposition. The preconditioner S2 is presented in Sect. 4, Sect. 5
summarizes results for separate subdomains, obtained in preceding sections, into a
bound of computational cost of a DD method for the problem (1)-(6).

We do not study solvers for the subproblem of the DD algorithm, which is related
to the vertices of the subdomains. Often its dimension is much smaller than NΩ , and
at varying Jk, we assume that there is a solver, which does not compromise (7).

Obviously, if Jk ≤ N1/3
k , then even a direct elimination procedure will satisfy this

assumption.
Let us list some notations as used in this paper. For matrices we primarily use

capital letters of the styles A, A, A , I stands for identity matrices, small boldface
letters – for vectors. (·, ·)Ω , and ‖·‖0,Ω are the scalar product and the norm in L2(Ω),
whereas | · |k,Ω , ‖·‖k,Ω are the semi-norm and the norm in the Sobolev space Hk(Ω),
i.e.,

|v|2k,Ω = ∑
|q|=k

∫
Ω

(Dq
xv)2dx, ‖v‖2

k,Ω = ‖v‖2
0,Ω +

k

∑
l=1

|v|2l,Ω ,

with

Dq
xv := ∂ |q|v/∂xq1

1 ∂xq2
2 , q = (q1,q2), q1,q2 ≥ 0, |q|= q1 + q2.

H̊1(Ω) is the subspace of H1(Ω) of functions having zero traces on ∂Ω . For I =
(a,b), ‖ · ‖1/2,I and 00‖ · ‖1/2,I are the norms in the space H1/2(I) and the sub-

space 00H1/2(I)⊂ H1/2(I) of functions having zero values at x = a,b, see, e.g., [1].
Expressions for these norms are

‖v‖2
1/2,I = ‖v‖2

0,I + |v|21/2,I, |v|21/2,I =

b∫
a

b∫
a

(
v(x)− v(y)

x− y

)2

dxdy,

00‖v‖2
1/2,I = ‖v‖2

1/2,I +

b∫
a

v2(x)
x− a

dx+

b∫
a

v2(x)
b− x

dx .

The norm ‖ ·‖1/2,γi , when γi is an edge of = (0,1)× (0,1) is defined for the traces
on this edge analogously with ‖ ·‖1/2,I . For instance, for the edge γi, which is on the
line x1 = c, c = 0,1, we have
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‖v‖2
1/2,γi = ‖v‖2

0,γi + |v|21/2,γi, |v|21/2,γi =

1∫
0

1∫
0

(
v(c, t)− v(c,τ)

t − τ

)2

dtdτ.

For a sufficiently smooth and shape regular domain Ω , the norm ‖v‖1/2,∂Ω is given
by the formulas

‖v‖2
1/2,∂Ω = ‖v‖2

0,∂Ω + |v|21/2,∂Ω , |v|21/2,∂Ω =

∫

∂Ω

∫

∂Ω

(
v(x)− v(y)

x− y

)2

dsxdsy,

in which dsx, dsy are the length elements at the points x,y ∈ ∂Ω . In the case, e.g.,
Ω =  := (0,1)× (0,1) this norm is equivalent to the norm

‖v‖2
1/2,∂ = ‖v‖2

0,∂+ |v|21/2,∂ (8)

with

|v|21/2,∂ =
4

∑
i=1

|v|21/2,γi +
4

∑
i=1

1∫
0

(v j(i)(t)− vl(i)(t))

|t|

2

dt,

where u j(i) denotes the restriction of u onto the edge γ j(i), and t is the distance to the
vertex Vi of , which is common for γ j(i) and γl(i). To each Vi, we associate a pre-
ceding edge γ j(i) and a succeeding edge γl(i), e.g., according to a counter-clockwise
orientation of the boundary. The norm and semi-norm defined in this way for the
space H1/2(∂) are equivalent to ‖v‖1/2,∂ := inf‖w‖1, and |v|1/2,∂ := inf |w|1,
with infima taken over w ∈ H1() for which w = v on ∂. We refer to Grisvard
[23], Ben Belgacem [7] and [39] for additional details on the introduced boundary
norms.

A+ is the pseudo-inverse to a matrix A, ‖v‖A = (v�Av)1/2 is the norm or the
seminorm, induced by a nonnegative symmetric matrix A. If A is a nonnegative
symmetric matrix, the notation A1/2 stands for the nonnegative symmetric matrix
B satisfying A = BB, ker [A] = ker [B]. The spectral condition number of a matrix
A is denoted κ [A], ops [·] is the number of arithmetic operations needed for the
procedure in the square brackets. Symbols ≺, � denote one-sided and � – two-
sided inequalities, which hold for some, mostly absolute, constants omitted, whereas
A ≺ B with nonnegative matrices A, B implies v�Av ≺ v�Bv for any vector v, and
similarly for signs �, �. We write v ⇔ v, if the vector v represents the FE function
v in a chosen basis. Whenever we write ”inversion of matrix A” or A−1y, we imply
solving of the system Ax = y.

We avoid the use of special notations for perturbed matrices and matrices ex-
panded by zero entries. Accordingly, sums of matrices are typically understood as
topological sums, and a n× n matrix A, initially defined for some n, is considered,
when necessary, as expanded by zero entries up to a m×m, m > n, matrix without
special explanations.
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2 Single Thin Rectangle

2.1 Discrete Analogues of Boundary Norms for Harmonic
Functions in Thin Rectangles

Let Ω = (0,1)× (0,ε) and ε,δ satisfy 0 < ε , δ ≤ 1. For the traces of functions
v ∈ H1(Ω) on ∂Ω , we consider two norms and two seminorms. Norm and semi-
norm of one pair, denoted by || · || and | · |, minimize the H1-norm and H1-seminorm,
respectively, among all functions φ ∈ H1(Ω) coinciding with a given function on
the boundary:

||v||2∂Ω = inf
φ|∂Ω=v

(
(δε−1)2‖φ‖2

0,Ω + ‖∇φ‖2
0,Ω
)
, |v|2∂Ω = inf

φ|∂Ω=v
‖∇φ‖2

0,Ω . (9)

For another norm and seminorm we use notations ]| · |[∂Ω and ] · [∂Ω and introduce
them by the expressions

]|v|[2∂Ω= δ 2ε−1‖v‖2
0,∂Ω+]v [2∂Ω (10)

with

]v[2∂Ω = ε−1

1∫
0

(v(x1,ε)− v(x1,0))
2dx1 +

1∫
0

∫

|x1−y1|≤ε

(v(x1,0)− v(y1,0))2

(x1 − y1)2 dx1dy1

+

1∫
0

∫

|x1−y1|≤ε

(v(x1,ε)− v(y1,ε))2

(x1 − y1)2 dx1dy1 +

∫
Γ0

∫
Γ0

(v(s)− v(s))2

(s− s)2 dsds

+

∫
Γ1

∫
Γ1

(v(s)− v(s))2

(s− s)2 dsds.

Here Γ0 = {x ∈ ∂Ω : x1 < ε}, Γ1 = {x ∈ ∂Ωε : x1 > 1−ε} and ds, ds are the length
elements of ∂Ω . The set Γ1 is symmetric to Γ0 with respect to the line x1 ≡ 1/2, see
Fig.2.

Theorem 1. For the traces of functions from H1(Ω), the norms (9), (10) are equiv-
alent uniformly in ε,δ ∈ (0,1].

Proof. The proof can be found in Korneev et al. [33, 34]. �

We will call ]| · |[∂Ω and ] · [∂Ω the shape dependent norm and seminorm for boundary
functions.

In this paper, discretizations on rectangular meshes are considered. Accordingly,
we use the FE space V (Ω) of piecewise bilinear functions on the rectangular mesh
xk ≡ xk,l with the steps hk,l = xk,l − xk,l−1, l = 1,2, ..,nk, satisfying the quasiunifor-
mity conditions
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ch ≤ hk,l ≤ ch, 0 < c,c = const, (11)

and xk,0 = 0, x1,n1 = 1, x2,n2 = ε .

Fig. 2 High aspect ratio rectangular domain triangulated by a square mesh.

By Vtr(∂Ω) we denote the space of traces of functions from V (Ω) on ∂Ω . How-
ever, most of the results hold for much more general discretizations. The mesh as
described above may represent a skeleton mesh, while calculations are performed
on a mesh, called the source or fine mesh, which

α) is finer only in the interior of the domain,
β ) has the same trace with the skeleton mesh on the boundary and
γ) covers the skeleton mesh, whereas the skeleton mesh itself may be a general

quasiuniform quadrangular unstructured mesh with the mesh parameter h.

For simplicity, it is convenient also to assume that there are mesh nodes at the ends
of the sets Γk, k = 0,1, and that the number of nodes on the opposite edges of Ω
are equal, as in the case of an orthogonal mesh. Clearly, the skeleton and the source
meshes can be as well triangular meshes, from which the former is quasiuniform.

For the traces of FE functions v ∈ Vtr(∂Ω), the simpler norm than (9)

||v||2h,∂Ω = inf
φ∈V (Ω):φ|∂Ω=v

(
(δε−1)2‖φ‖2

0,Ω + ‖∇φ‖2
0,Ω
)
, (12)

|v|2h,∂Ω = inf
φ∈V (Ω):φ|∂Ω=v

‖∇φ‖2
0,Ω ,

can be justified, in which inf is taken only over the subspace of FE functions.

Theorem 2. Let the FE space V (Ω) be induced by the quasiuniform triangulation
with the mesh parameter h or by its refinement satisfying α)-γ). Then for any h > 0
and v ∈ Vtr(∂Ω), the norms and seminorms (12), (10), respectively, are equivalent
uniformly in ε,δ ∈ (0,1].

Proof. The proof is based, first, on Theorem 1, and, second, on the quasi-interpolation
result of Lemma 2, given after the proof of the theorem.

Since V (Ω)⊂ H1(Ω), one has the inequalities

]|v|[∂Ω≺ ||v||∂Ω ≤ ||v||h,∂Ω ∀v ∈ Vtr(∂Ω), (13)
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with the first one following from Theorem 1 and the definitions of the norms || · ||∂Ω
and || · ||h,∂Ω . For the proof of the opposite bound

||v||h,∂Ω ≺ ]|v|[∂Ω , ∀v ∈ Vtr(∂Ω) (14)

it is sufficient to use in addition Lemma 2.
Indeed, let H (Ω) be the subspace of V (Ω), induced by the skeleton quasiuni-

form triangulation, and v ∈ Vtr(∂Ω). Suppose also that vinf ∈ H1(Ω) and vd/inf ∈
V (Ω) are the functions on which the inf’s in the first relationships of (9) and (12),
respectively, are reached. Let also ṽ be the interpolation of vinf from the space
H (Ω), satisfying i) and ii) of Lemma 2. First of all, we note that according to
Lemma 2

(δε−1)2‖ṽ‖2
0,Ω + ‖∇ṽ‖2

0,Ω ≺ (δε−1)2‖vinf‖2
0,Ω + ‖∇vinf‖2

0,Ω . (15)

Therefore, we can write

||v||2h,∂Ω := (δε−1)2‖vd/inf‖2
0,Ω + ‖∇vd/inf‖2

0,Ω

≺ (δε−1)2‖ṽ‖2
0,Ω + ‖∇ṽ‖2

0,Ω

≺ (δε−1)2‖vinf‖2
0,Ω + ‖∇vinf‖2

0,Ω ≺ ]|v|[2∂Ω , (16)

where the first inequality follows by the definition of ||v||2h,∂Ω , the second inequality
– by the definition of the same norm and the inclusion H (Ω) ⊂ V (Ω), the third
inequality is simply (15), and the last one is a consequence of Theorem 1.

For the seminorms the proof is similar. �

Lemma 2, used above, is practically a corollary of a result of Scott & Zhang [49] on
a special quasi-interpolation operator, which we present first.

Let Ω ⊂ R
n be a n-dimensional domain with an arbitrary quasiuniform triangu-

lation Sh with nodal points x(i), i = 1,2, . . . , I, and maximal edge size h. To each
node x(i), we relate the (n− 1)-dimensional simplex τi, which is the face of one of
the n-dimensional simplices of the triangulation Sh having the vertex x(i). For n

vertices of the simplex τi, we also use the notations z(i)l , l = 1,2, . . . ,n, assuming

for definiteness that z(i)1 = x(i). The choice of τi is not unique, but for x(i) ∈ ∂Ω we
always take τi ⊂ ∂Ω . By VΔ (Ω) and Vtr(∂Ω) we denote the space of functions,
which are continuous on Ω and linear on each simplex of the triangulation, and the
space of their traces on ∂Ω , respectively. Let θi ∈ P(τi) be the function satisfying

∫
τi

θiλ
(i)
l dx = δ1,l , l = 1,2, ..,n,

where λ (i)
l are the barycentric coordinates in τi related to its vertices z(i)l , and δi,l

is the Kronecker symbol. If φi ∈ VΔ (Ω) are Galerkin FE basis functions such that
φi(x j) = δi, j, i, j = 1,2, . . . , I, then for each v ∈ H1(Ω) the quasi-interpolation Ihv∈
VΔ (Ω) is defined as
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Ihv =
I

∑
i=1

⎛
⎝∫
τi

θivdx

⎞
⎠φi(x).

A triangulation Sh by simplices is called quasiuniform with respect to some mesh
parameter h> 0 in the usual sense, see Ciarlet [15] and Korneev [29]. In two dimen-
sions, quasiuniformity of quadrangular meshes is controlled by the conditions that
lengths of edges and angles at vertices of quadrangles belong to intervals (α(1)h,h)
and (θ ,π−θ ), respectively, with 0 < α(1), θ = const.

Lemma 1. The quasi-interpolation operator Ih satisfies

a) Ihv : H1(Ω) �→ VΔ (Ω), and, if v ∈ VΔ (Ω), then Ihv = v,
b) (v−Ihv) ∈ H̊1(Ω), if v|∂Ω ∈ Vtr(∂Ω),
c) ‖v−Ihv‖t,Ω ≤ cinths−t‖v‖s,Ω for t = 0,1, and s = 1,2,
d) |Ihv|1,Ω ≤ cint|v|1,Ω and ‖Ihv‖1,Ω ≤ cint‖v‖1,Ω for all v ∈ H1(Ω), where cint is

a constant, depending only on α(1), θ from the quasiuniformity conditions.

Proof. The proof was given by Scott & Zhang [49] and can be found also in Xu &
Zou [51]. �

The operator Ih, obviously, is a projection onto the space v ∈ VΔ (Ω).
Now we will formulate for n = 2 the interpolation result used in the proof. Sup-

pose, V (Ω) is the FE space induced by first order quadrangular finite elements. We
define a triangulation of Ω by subdividing each quadrangular nest of the mesh in
two triangles by one of the diagonals of the nest and then denote by VΔ (Ω) the
space of continuous piecewise linear functions, induced by the obtained triangula-
tion. For each v ∈ H1(Ω), we define Πhv by the equality (Πhv)(x(i)) = (Ihv)(x(i))
for all vertices x(i) of the triangulation. It is easy to note that Πh is not a projection
operator, but it retains some other useful properties of the operator Ih.

Lemma 2. For any v ∈ H1(Ω) the interpolation Πhv ∈ V (Ω) is such that

i) if v|∂Ω ∈ Vtr(∂Ω), then the traces of Πhv and v on the boundary ∂Ω coincide,
ii) the interpolation satisfies the stability estimates

|Πhv|1,Ω ≺ |v|1,Ω , ‖Πhv‖1,Ω ≺ ‖v‖1,Ω , (17)

iii) and approximation estimates

‖v−Πhv‖t,Ω ≺ hs−t‖v‖s,Ω , t = 0,1, s = 1,2. (18)

Proof. We omit the proof, which in part can be found in Korneev et al. [33, 34]. �

Obviously, the norm (10) defines a matrix BKPS such that ‖v‖BKPS =]v[∂Ω , ∀v ⇔ v ∈
Vtr(∂Ω). Let the FE matrix A be induced by the Dirichlet integral over Ω and the
FE space V (Ω) with the nodal basis functions. Representing it in the block form

A =

(
AI AI,B

AB,I AB

)
, (19)
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we denote by B the Schur complement

B = AB −AB,IA−1
I AI,B, (20)

where the lower indices I and B are related to the degrees of freedom at the nodes,
living in the interior of the domain Ω and on its boundary, respectively.

Corollary 1. BKPS ≺ B ≺ BKPS uniformly in h.

Thus, BKPS can be used as a spectrally equivalent preconditioner for the Schur com-
plement B. In the next subsection, we introduce a simpler boundary seminorm for
discrete harmonic functions, which is more convenient for matrix vector multiplica-
tions.

2.2 Finite-Difference Shape Dependent Boundary Norm for
Finite Element Functions

Let us turn to a simpler case of the skeleton mesh, whose trace on ∂Ω coincides with
the trace of an auxiliary orthogonal quasiuniform grid satisfying (11). We denote by
γk for k = 0,1 the left and the right vertical edges of Ω , and by γk, k = 2,3, the
horizontal lower and upper edges, respectively.

The auxiliary coarse (quasiuniform) grid, by its definition, is the coarsest rect-
angular imbedded quasiuniform grid. It has rectangular nests as much as possible
close to the square ε × ε and is obtained by subdividing the domain Ω by vertical
lines x1 = t1,i in such a way that t1,0 = 0, t1,nε = 1 for some integer nε ≥ 1 and sizes
η1,i := t1,i − t1,i−1, i = 1,2, . . . ,nε , satisfy the inequalities

ε ≤ η1,i ≤ c◦ε, (21)

with c◦ = const ≤ 2. The notation Vc(Ω) will stand for the space of functions which
are continuous on Ω and bilinear on each nest of the coarse quasiuniform mesh.
This space will be called the coarse finite element space.

Simultaneously, we have defined overlapping intervals

τ0 = (0, t1,1), τi = (t1,i−1, t1,i+1), i = 1,2, . . . ,nε − 1, τnε = (t1,nε−1,1),

and intersections γk,i of τi, i = 1,2, . . . ,nε − 1, with the edges γk, k = 2,3. We use
the notations γ0 = Γ0, γnε = Γ1 and for simplicity we assume that τ0 ∩∂Ω = Γ 0 and
τnε ∩∂Ω = Γ 1 and that the numbers of nodes on these sets are the same and equal
to ν .
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Let

Δ1/2,k =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1
−1 2 −1 O

· · ·
· · ·

O −1 2 −1
−1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

1/2

, k = 0,1, (22)

be ν × ν matrices, acting on vectors of degrees of freedom corresponding to the
nodes on γk. If νi is the number of the nodes on τ i, then Δ1/2,k,i is the, similar to
(22), νi × νi matrix related to the segment γk,i, k = 2,3. In the (n1 + 1)× (n1 + 1)
matrix

∇=
h
ε

(
I −I

−I I

)
,

the unity matrices I on the diagonal correspond to the nodes on the edges γ2,γ3,
respectively.

Let us remind that, as it was stated in the introduction, matrices Δ1/2,, Δ1/2,k,i and
∇ are considered as defined on degrees of freedom at the nodes of the sets Γ 0, Γ 1,
γ2,i, γ3,i and γ2, γ3, respectively, and continued by zeroes on the degrees of freedom
of the remaining nodes of the boundary, when necessary. This implies that sums like
(23) below should be understood as topological sums.

Lemma 3. The matrix

C = ∇+Δ1/2,0+Δ1/2,1 + ∑
k=2,3

nε−1

∑
i=1

Δ1/2,k,i (23)

is spectrally equivalent to the matrix BKPS uniformly in h and ε ∈ (0,1]. Besides,
for any vector vB the arithmetical costs of the matrix-vector multiplication CvB are
ops [CvB] = O((n1 + n2)(1+ logn2)).

Proof. We outline the proof, omitting details, which is completed in two steps. First,
we introduce the seminorm  · !∂Ω by the expression

 v!2
∂Ω = ε−1

1∫
0

(v(x1,ε)− v(x1,0))
2dx1 (24)

+
nε−1

∑
i=1

∫
τi

∫
τi

[
(v(x1,0)− v(y1,0))2

(x1 − y1)2 +
(v(x1,ε)− v(y1,ε))2

(x1 − y1)2 )

]
dx1dy1

+

∫
Γ0

∫
Γ0

(v(s)− v(s))2

(s− s)2 dsds+
∫
Γ1

∫
Γ1

(v(s)− v(s))2

(s− s)2 dsds

and show that it is equivalent to the seminorm ]v[∂Ω , i.e.,

γ
0
 v!∂Ω≤]v[∂Ω≤ 3 v!∂Ω , 0 < γ

0
= γ

0
(c) = const, ∀v ∈ H1(Ω). (25)
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Result of the second step are the inequalities

γ
C

v�Cv ≤ v!2
∂Ω≤ γCv�Cv, ∀v ⇔ v ∈ V (Ω), (26)

which hold with some constants γ
C

, γC > 0. These bounds follow from the equiva-
lences

ε−1

1∫
0

(v(x1,ε)− v(x1,0))
2dx1 � v�∇v ∀v ⇔ v ∈ Vtr(γ2 ∪ γ3),

∫
τi

∫
τi

(v(x1,0)− v(y1,0))2

(x1 − y1)2 dx1dy1 � v�Δ1/2,2,iv, ∀v ⇔ v ∈ Vtr(γ2),

∫
τi

∫
τi

(v(x1,ε)− v(y1,ε))2

(x1 − y1)2 dx1dy1 � v�Δ1/2,3,iv, ∀v ⇔ v ∈ Vtr(γ3),

∫
Γk

∫
Γk

(v(s)− v(s))2

(s− s)2 dsds � v�Δ1/2,kv, ∀v ⇔ v ∈ Vtr(Γk),

where Vtr(γ2∪γ3), Vtr(γ2), Vtr(γ3) and Vtr(Γk), k = 0,1, are the trace spaces of the FE
space on the corresponding subsets of the boundary. Bounds of the first line follow
by the spectral equivalence of the FE 1-d mass matrix to its diagonal. Lines 1-3 ex-
press another known fact. Suppose, some interval τ is subdivided by a quasiuniform
grid with ν intervals and H (τ) is the corresponding space of continuous piecewise
linear functions. Then the matrix of the quadratic form |v|21/2,τ on the space H (τ)
is spectrally equivalent to the matrix Δ1/2 of the form (22). We found an early proof
of this fact in Andreev [2, 3].

Combining (25) and (26), one comes to

β
C

C ≺ BKPS ≺ βCC (27)

with positive constants β
C

, βC > 0 depending only on the constants from the quasi-
uniformity conditions (11).

The matrix-vector multiplication ∇v requires 6n2 + 1 arithmetical operations.
The matrix-vector multiplications by each matrix Δ1/2,k or Δ1/2,k,i can be completed
by FDFT and requires O(n2 logn2) arithmetical operations. Hence, the vector-matrix
multiplication by the topological sum of these matrices requires in total O((n1 +
n2)(1+ logn2)) arithmetical operations. This approves the estimate of the arithmetic
work for the multiplication Cv given in the Lemma. �
By Theorem 2, the definition of the matrix B∂Ω , and Lemma 3, it follows that:

Corollary 2. For the matrix C and the Schur complement B of (20), it holds B � C.

Similar to (23) we can define preconditioners in the case of orthotropic discretiza-
tions, e.g., by the mesh, which is quasiuniform in each direction and has charac-
teristic sizes h1,h2. We cover such a discretization mesh by a finer mesh, called
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condensed mesh, which has nests as close as possible in the shape to the square
h× h, h = min(h1,h2) and define the matrix (23) for this mesh, which we denote
Ccond. After that, we restrict this matrix to the set of nodes corresponding to the
space Vtr(∂Ω) denoting the new matrix Cff. At that time, we represent it in the form

Cff = ∇+Δ (0)
1/2,ff +Δ

(1)
1/2,ff + ∑

k=2,3

nε−1

∑
i=1

Δ1/2,k,i, (28)

where the matrices ∇, Δ1/2,k,i are defined as above on the discretization mesh,

whereas Δ (k)
1/2,ff, k = 1,2, are defined as the respective matrices Δ1/2,k,i, but for the

condensed mesh with understanding that added nodes are treated as hanging nodes.

Corollary 3. Let the discretization mesh be quasiuniform in each direction with the
characteristic sizes h1,h2, B be the Schur complement, generated by the correspond-
ing FE space V (Ω). Then B � Cff and

ops [Cffv]≺ (n1 + n2) logmax(n2,n1/nε)≺ n logn, n = max(n1,n2), ∀v,

uniformly in h1 ∈ (0,1), h2 ∈ (0,ε).

Note that for matrix vector multiplications by Cff, the FDFT can be used and that for

h1 " h2 or h2 " h1 we have dimΔ1/2,k,i ≤ dimΔ (l)
1/2,ff ≈ 3max(n2,n1/nε), l = 0,1.

2.3 Preconditioning by Nonoverlapping Domain Decomposition

In this paragraph we consider a thin rectangle and derive a preconditioner for
the boundary Schur complement by an implementation of the DD procedure with
nonoverlapping subdomains. It allows to split degrees of freedom of each vertical
edge and degrees of freedom of the pair of longest edges from other degrees of
freedom. Then we additionally split the degrees of freedom at the vertices of the
rectangle from all other ones.

The coarse grid, introduced in the preceding subsection, defines a nonoverlapping
domain decomposition of the rectangleΩ into subdomains

Ω i = (t1,i−1, t1,i)× (0,ε), i = 1,2, . . . ,nε .

For their edges, we use the notations Γ i
k , k = 0,1,2,3, and order them counter-

clockwise starting from the lower edge of Ω i. The FE space can be represented by
the direct sum

V (Ω) = Vc(Ω)⊕Wr(Ω), (29)

where Vc(Ω) is the space of continuous functions which are bilinear on each subdo-
main Ω i. The second subspace in (29) is supplied by the index ”r”, because in what
follows it will play the role of the subspace, induced by the rarefied mesh. Notations
Vc(Ω i) and Wr(Ω i) will stand for restrictions toΩ i of the spaces Vc(Ω) and Wr(Ω).
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We consider any v = (vc + vW ) ∈ V (Ω i), such that v0 ∈ Vc(Ω i) and vW ∈ Wr(Ω i)
is discrete harmonic on Ω i. Subdomains Ω i are shape regular, and according to a
result of Bramble et al. [9]–[12]

1
(1+ logn2)2

(
|vc|21,Ω i +

3

∑
k=0

00|vW |21/2,Γ i
k

)
≺ |v|21,Ω i ≺ |vc|21,Ω i +

3

∑
k=0

00|vW |21/2,Γ i
k
.

(30)
From here, for a FE function v ∈ V (Ω) which is discrete harmonic inΩ , we directly
come to the inequalities

1
(1+ logn2)2

(
|vc|21,Ω + 00|vW |21/2,Γ 1

3
+ 00|vW |21/2,Γ nε

1
+

nε

∑
i=1
∑

k=0,2
00|vW |21/2,Γ i

k

)

≺ |v|21,Ω ≺ |vc|21,Ω + 00|vW |21/2,Γ 1
3
+ 00|vW |21/2,Γ nε

1
+

nε

∑
i=1
∑

k=0,2
00|vW |21/2,Γ i

k
. (31)

Let BW be the matrix which is spectrally equivalent to the matrix of the quadratic
form (31) on the subspace W (Ω), i.e.,

v�
W BW vW ≺ 00|vW |21/2,Γ 1

3
+ 00|vW |21/2,Γ nε

k
+

nε

∑
i=1
∑

k=0,2
00|vW |21/2,Γ i

k
≺ v�

W BW vW . (32)

Then (31) is equivalent to the inequalities

1
(1+ logn2)2 v�

Chiv ≺ v�Bhiv ≺ v�
Chiv, (33)

where

Chi =

(
BW 0

0 Bc

)

and the notation Bhi for the Schur complement reflects that it is written in the two
level basis, corresponding to the representation V (Ω) = Vc(Ω)⊕Wr(Ω) of the FE
space. The matrix Bc is the block, corresponding to the subspace Vc(Ω).

Let the notation BHi stand for the Schur complement corresponding to the three
level representation of the FE space

V (Ω) = Wr(Ω)⊕Wc(Ω)⊕V0(Ω),

and let B(w) and B(v) be the notations for the blocks on the diagonal of BHi, cor-
responding to the subspaces Wc(Ω) and V0(Ω), respectively, and n = min(n1,n2),
n = max(n1,n2). With a slightly changing reasoning, one also can get

min

(
1

nε(1+ logn)
,

1
(1+ logn)2

)
v�CHiv ≺ v�BHiv ≺ v�CHiv, (34)
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where

CHi =

⎛
⎝BW 0 0

0 B(w) 0
0 0 B(v)

⎞
⎠ . (35)

We reorder the sets Γ i
k ⊂ ∂Ω consecutively counter clockwise, starting from Γ 1

0 ,
introduce for them the notations T i, i = 1,2, . . . ,2nε + 2, and by νi the number of
the intervals of the source mesh on T i. Estimates (32) and therefore (33), (34) hold
for

BW = diag[Δ1/2,i]
2(nε+1)
i=1 (36)

with Δ1/2
1/2,i = tridiag [−1,2,−1]νi−1

1 . Thus, we have proved:

Lemma 4. With BW defined in (36), the estimates (34) hold for all ε ∈ (0,1] and
h ≤ (0,ε].

The preconditioner Chi is sufficiently simple. In particular, it is given explicitly, is
easily invertible, and, therefore, can be used for assembling the Schur complement
preconditioner for a domain which is decomposed into rectangular subdomains. The
system of algebraic equations with the preconditioner Chi of Lemma 4 for the matrix
is solved in O(nεn logn) = O(n logn) arithmetical operations, where for the case
under consideration n = n1, n = n2. However, the subspaces V0 and Wr depend on
the aspect ratio of the rectangle Ω , and, therefore, even the assembling procedure
of the interface Schur complement preconditioner can be not simple, not to speak
about its inversion.

3 Orthotropic Discretization with Arbitrary Aspect Ratio on
Thin Rectangles

3.1 Finite Element Space Decomposition

A more complicated situation arises, when we consider a heat conduction problem
in a slim domain with different heat conduction coefficients along different axes, and
a uniform rectangular mesh is used for discretization. No restrictions are imposed
on the aspect ratios of conductivity coefficients and sizes of the mesh, except that
they are finite. Therefore, the model problem, we turn here to, is

αΩ (u,v) = 〈 f ,v〉, αΩ (u,v) =
∫
Ω

∇u(x) ·ρ(x)∇v(x)dx, ∀v ∈ H1(Ω), (37)

in a slim rectangleΩ = (0,1)× (0,ε). Now, ρ = diag [ρ1,ρ2] with an arbitrary con-
stant ρk > 0. For simplicity, we restrict ourselves to a uniform rectangular mesh of
arbitrary sizes h1,h2 > 0.
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For the ease of future references, we use, different from the previously used no-
tations, Q, Y for the FE stiffness matrix and its boundary Schur complement

Q =

(
QI QI,B

QB,I QB

)
, Y = QB −QB,IQ−1

I QI,B. (38)

The derivation of a good preconditioner for the Schur complement will be com-
pleted in three steps. At step 1), we change variables and reduce the problem (37) to
a transformed isotropic problem on some domain Ωξ . At step 2), we introduce the
rarefied transformed mesh, which is the finest and, if possible, quasiuniform mesh
imbedded in the transformed source mesh. It is obtained by rarefication of the trans-
formed source mesh in one direction, corresponding to the smallest size of the latter
mesh. Then the block diagonal preconditioner for the FE matrix Q is introduced,
containing two independent blocks on the diagonal, one of which is the FE stiff-
ness matrix, induced by the rarefied transformed mesh. In turn, the preconditioner
for the FE matrix Q allows us to obtain the block diagonal preconditioner for the
Schur complement Y with two independent blocks. At step 3), a further decoupling
is accomplished. The block of the Schur complement preconditioner, correspond-
ing to the transformed rarefied mesh, obviously, can be handled as in the preceding
section. Another block does not require an additional treatment, because it itself is a
block diagonal matrix with simple explicitly written down blocks, specified on the
unknowns, subjected to rarefication.

The domain Ω represents one subdomain Ω = Ω j of the decomposition. The
described process is based on the sequence of the FE spaces, which is related to the
sequence of the image spaces

V= Vr ⊕W, Vr = Vc ⊕Wr, Vc = V0 ⊕Wc, (39)

with
V=W⊕Wr ⊕Wc ⊕V0, V0 ⊆ Vc ⊆ Vr ⊆ V,

defined for the transformed problem and its discretization on the transformed sub-
domain Ωξ = Ω j,ξ . In other words, the spaces V(Ωξ ), Vr(Ωξ ), Vc(Ωξ ), V0(Ωξ )
are induced by the transformed source FE mesh, rarefied and coarse meshes, imbed-
ded in the transformed source mesh, and by the space of bilinear functions on Ωξ ,
respectively. The spaces Vr(Ωξ ), . . . ,Wc(Ωξ ) define preimage spaces denoted by
Vr(Ω), . . . ,Wc(Ω). In the preceding sections, the space V (Ω) played the role of
Vr(Ωξ ).

3.2 Reducing to Isotropic Discretization

The change of variables ξ1 = x1, ξ2 =
√
ρ1/ρ2 x2 transforms the bilinear form

αΩ (·, ·) into
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αΩ (u,v) =
√
ρ1ρ2 α̃(u,v), α̃(u,v) =

∫
Ωξ

∇ξ u ·∇ξvdξ , (40)

with the notations∇ξ for the gradient in the variables ξ , Ωξ = (0,1)× (0, ε̃) for the

new domain and ε̃ = ε
√
ρ1/ρ2. With this the FE space V (Ω) is transformed into the

space V(Ωξ ) of piecewise bilinear functions on the rectangular transformed source

mesh of the sizes h̄1 = h1, h̄2 =
√
ρ1/ρ2 h2 with the mesh lines ξk ≡ ξk,l = lh̄k. We

have Q =
√ρ1ρ2Q, Y =

√ρ1ρ2Y,

Y=QB −QB,IQ
−1
I QI,B (41)

where QI , QI,B, QB are blocks of the stiffness matrix Q generated by the bilinear
form α̃(u,v) on the space V(Ωξ ). Therefore, the preconditioning of Y is reduced to
the preconditioning of the Schur complement Y.

We can restrict ourselves to the consideration of the case ε̃ < 1, since the case
ε̃ > 1 is reduced to the former one by the interchange of variables. Under the con-
dition ε̃ ≤ 1, three cases can be distinguished:

i) h̄2 ≤ h̄1 ≤ ε̃, ii) h̄2 ≤ ε̃ ≤ h̄1, iii) h̄1 ≤ h̄2 ≤ ε̃, (42)

and we start with i). Under the stated conditions, the embedded rarefied quasiuni-
form rectangular grid

ξk ≡ ξ̃k,i, k = 1,2, with the steps ηk,i = ξ̃k,i − ξ̃k,i−1,

is introduced by coarsening only in one direction ξ2. In other words, it is the same
uniform grid in the direction ξ1 with η1,i ≡ h̄1 ≡ h1 and nonuniform in the direction

ξ2 with the sizes η2, j as much close as possible to h̄1. The mesh lines ξ2 ≡ ξ̃2, j can
be defined as follows. We find m2 = integer [ε̃/h1], then define the uniform mesh
ζ2, j = j ε̃/m2, j = 0,1, . . . ,m2, and then shift the lines of this uniform nonembedded
coarse mesh ξ2 = ζ2, j to the nearest lines ξ2 ≡ ξ2,l = lh̄2 of the transformed source
mesh of the size h̄2 in the direction ξ2. We retain the notation m2 for the number
of the rarefied mesh intervals in the direction ξ2 whereas the number of the rarefied
mesh intervals in the direction ξ1 is m1 = n1. Obviously, the sizes of this mesh
satisfy inequalities

ch1 ≤ ηk,i ≤ ch1, c > 0, k = 1,2, (43)

with positive constants, for which we retain the notations as in (11).
The space V(Ωξ ) may be represented by the direct sum

V(Ωξ ) = Vr(Ωξ )⊕W(Ωξ ), (44)
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Fig. 3 Transformed rectangular domain and the source, rarefied and coarse grids.

where Vr(Ωξ ) is the space of FE functions which are continuous onΩξ and bilinear
on each nest of the rarefied grid. Obviously, the space W(Ωξ ) contains FE functions,

which vanish on the lines ξ2 ≡ ξ̃2, j of the rarefied grid. Let Vtr(∂Ωξ ) be the space
of traces of functions from V(Ωξ ) on ∂Ωξ . For u ∈ V(Ωξ ) and v ∈ Vtr(∂Ωξ ),
respectively, we introduce the norms

|u|1,Ωξ = ||u||Ωξ = (α̃(u,u))1/2, ||v||h,∂Ωξ = inf
φ∈V(Ωξ ):φ|∂Ω=v

||φ ||Ωξ . (45)

The matrix Q can be represented in the block form

Q=

(
Qs Qsr

Qrs Qr

)
, (46)

with blocks Qs and Qr corresponding to subspaces W(Ωξ ) and Vr(Ωξ ), respec-
tively. Let ν2, j denote the number of the fine mesh intervals on the rarefied mesh

interval (ξ̃2, j−1, ξ̃2, j) and

Δ2, j = tridiag [−1,2,−1]
ν2, j−1
1 . (47)

An intermediate preconditioner Q∗ for Q may be defined in the following block
form:

Q∗ = diag [Qs,Qr], Q2
s = diag [Δ2, j,Δ2, j, . . . ,Δ2, j︸ ︷︷ ︸

(n1+1) times

]m2
j=1. (48)

Note that kerQ∗ = kerQr. For a given j, the i-th block Δ2, j in the square brackets is

related to the nodes on the interval (ξ̃2, j−1, ξ̃2, j) of the mesh line ξ1 ≡ ξ̃1,i.
In the case ii), the rarefied quasiuniform mesh of the characteristic size ε̃ does

not exist, and we introduce the transformed rarefied uniform rectangular mesh of
the characteristic sizes h1, ε̃ . Therefore, we have only one layer of n1 cells h1 × ε̃ ,
meaning m2 = 1, and similarly to (48) we can set
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Q∗ = diag [Qs,Qr], Q2
s = diag [Δ2,Δ2, . . . ,Δ2︸ ︷︷ ︸

(n1+1) times

],

with the (n2 − 1)× (n2 − 1) blocks Δ2. The matrix Qr is defined on the uniform
rectangular coarse transformed grid, which coincides with the rarefied transformed
grid and has all nodes on ∂Ωξ . This matrix is block-tridiagonal with the blocks 2×2
and does not require preconditioning.

If we have iii), the mesh parameter for the quasiuniform rectangular coarse grid
is h̄2 and it satisfies

ch̄2 ≤ ηk,i ≤ ch̄2, c > 0, k = 1,2. (49)

At a proper ordering of unknowns, we have again Q∗ = diag [Qs,Qr], but

Q2
s = diag [Δ1,i,Δ1,i, . . . ,Δ1,i︸ ︷︷ ︸

(n2+1) times

]m1
j=1, Δ1,i = tridiag [−1,2,−1]

ν1,i−1
1 , (50)

where ν1,i is the number of the fine mesh intervals on the coarse mesh interval

(ξ̃1,i−1, ξ̃1,i). For a given i, the j-th block Δ1,i in the square brackets is related to the

nodes on the interval (ξ̃1,i−1, ξ̃1,i) of the mesh line ξ2 ≡ ξ̃2, j.

Lemma 5. For any positive h1, h2, ρ1, ρ2 and ε ,

1
1+ log δ

Q∗ ≺Q≺ Q∗, δ = max
k

min

(
nk,

h3−k
√ρk

hk
√ρ3−k

)
. (51)

Proof. In the case i), we consider the transformed discretization mesh and add mesh
lines subdividing each interval (ξ̃1,i−1, ξ̃1,i) in ν2 = integer [h1/h̄2] parts and come
to a shape regular orthogonal mesh. To FE spaces on this mesh, we can apply results
of Bramble et. al [9], which allow us to write

1
1+ logν2

Q∗ ≺Q≺ c2 Q∗. (52)

For ii), we have

ν2 = min(n2,ch1/h̄2) = min

(
n2,

h1
√ρ2

h2
√ρ1

)
, (53)

which in the general case should be replaced by δ . �

We will now use Lemma 5 for defining some preconditioner for the Schur com-
plement Y, see (41), restricting ourselves for simplicity to the case i). Taking into
account, similar to (19) and (20), representations for the matrices Qr and Qs
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Qr =

(
Q

r
I Q

r
I,B

Q
r
B,I Q

r
B

)
, Qs =

(
Qs

I Qs
I,B

Qs
B,I Qs

B

)
,

Yr =Q
r
B −Q

r
B,I(Q

r
I)

−1
Q

r
I,B, Gs = Qs

B −Qs
B,I(Q

s
I )

−1Qs
I,B,

(54)

we conclude that the Schur complement G ∗ for Q∗ has the form

G ∗ = diag [Gs,Yr]. (55)

According to (48), in the matrix Qs internal degrees of freedom are not coupled
with the boundary degrees of freedom, i.e., Qs

I,B = (Qs
B,I)

� = 0. Therefore,

Gs = Qs
B =

h1

h̄2
diag [Δ2, j,Δ2, j]

m2
j=1, (56)

where the two matrices in the square brackets correspond to nodes in the interval
(ξ̃2, j−1, ξ̃2, j) on the left and right vertical edges of ∂Ωξ , respectively.

Corollary 4. Let G ∗ = diag [Qs
B,Yr]. Then for all positive h1, h2, ρ1, ρ2, and ε we

have
1

1+ log δ
G ∗ ≺ Y≺ G ∗. (57)

For the reason of a complete analogy between the Schur complements BHi and
Yr, Corollary 4 reduces the Schur complement preconditioning to the case, con-
sidered in the preceding section. There, the FE space V (Ω) = Wr(Ω)⊕Wc(Ω)⊕
V0(Ω) plays here the role of the rarefied transformed space Vr(Ωξ ) = Wr(Ωξ )⊕
Wc(Ωξ )⊕V0(Ωξ ). Hence, we can introduce the preconditioner for Yr

Cr =

⎛
⎝BWr 0 0

0 BWc 0
0 0 B0

⎞
⎠ (58)

in a completely similar way to the preconditioner CHi of (35) for BHi and the pre-
conditioner for the Schur complement Y

G = diag [Qs
B,Cr] = diag [Qs

B,BWr ,BWc ,B0]. (59)

For the cases (42), the proof of the bounds

1
(1+ log δ )(1+ logm)

min

(
1

mε
,

1
(1+ logm)

)
G ≺ Y≺ G , (60)

where m = min(m1,m2) and mε = 1/ε̃, follows by combining the bounds of
Lemma 5 and Lemma 4.

For a general rectangle Ω = H1 ×H2, in the same way we introduce the rarefied
source and the coarsest meshes, while the role of ε is played by mink (Hk/H3−k).
The above form of the preconditioner is retained, if after the transformation to the
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isotropic problem the shortest edge is directed along the axis x2. In general, with the
notation

θ = max
k

min

(
mk,

Hk
√ρ3−k

H3−k
√ρk

)
,

the counterpart of (60) for all positive Hk,hk ≤ Hk,ρk is

μ G ≺ Y≺ G (61)

with

μ =
1

(1+ log δ )(1+ logm)
min

(
1
θ
,

1
(1+ logm)

)
. (62)

For slim rectangular domains Ω , a Schur complement preconditioner with a less
degree of decoupling can be introduced. It is based on the FE space decomposition

V(Ωξ ) =Wd(Ωξ )⊕Vc(Ωξ ), Vc(Ωξ ) =Wc(Ωξ )⊕V0(Ωξ ),

where Wd(Ωξ ) is the space of functions v ∈ V(Ωξ ) with zero values at the nodes
of the coarse mesh. The preconditioner, for which we retain the notation G , gets the
form

G = diag [BWd ,BWc ,B0] (63)

with the same BWc , B0 as in (59). The block BWd looks like BW in (36), i.e.,

BWd = diag [Δ1/2,i]
2(nε+1)
i=1 , Δ1/2

1/2,i = tridiag [−1,2,−1]νi−1
1 ,

but now νi denotes the number of the discretization mesh on the corresponding
coarse mesh interval belonging to ∂Ω . In the proof of the relative spectrum bounds
results of Bramble et. al [9] are applied to the domain decomposition mesh by the
coarse mesh. For this, FE functions are considered as elements of the space Vff(Ω),
induced by the condensed transformed discretization mesh, which is the coarsest
shape regular orthogonal mesh, covering the transformed discretization mesh. In
the resulting inequalities (61)

μ =
1

(1+ log nff)
min

(
1
θ
,

1
(1+ log nff)

)
, nff = max

k=1,2

nk

max[1,
Hk

√ρ3−k
H3−k

√ρk
]
. (64)

Thus, we have proved:

Theorem 3. For all positive Hk, hk ≤ Hk, ρk, the Schur complement preconditioners
G of (59) and (63) satisfy (61) with μ from (62), (64), respectively.

Solving systems G vB = fB requires not more than O(n logn) arithmetical opera-
tions, but the relative condition depends on θ ≤ mk. At the same time this Schur
complement preconditioner, as others previously considered, has an obvious draw-
back, if we turn to the problem (1)-(5). Let G = G j be such a preconditioner for the
subdomainΩ j and S be the preconditioner for the interface Schur complement S=

KB −KB,IK−1
I KI,B of the matrix K, assembled from preconditioners

√ρ1ρ2G j. For
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different subdomainsΩ j, decompositions V (Ω j) =W(Ω j)⊕Wr(Ω j)⊕Wc(Ω j)⊕
V0(Ω j) are not compatible and, therefore, a fast solving procedure for systems with
such a matrix S requires a new consideration.

4 Compatible Schur Complement Preconditioner

Khoromskij & Wittum [27, 28], Korneev [31], Korneev et al. [33, 34] and Rytov
[46] used in relation with the problem (37) slightly different compatible subdomain
edge Schur complement preconditioners. They were obtained from the Schur com-
plement Y by decoupling some of its blocks on the diagonal. In [31], the precondi-
tioner has on the diagonal the independent block of vertex degrees of freedom and
two independent blocks each related to a pair of parallel edges of the rectangle Ωξ ,
whereas in [27, 28] two short edges were additionally decoupled. In this section, we
present bounds of the relative condition numbers of these preconditioners, which
follow from (61).

We call by the source triangulation the one obtained by subdivision of each
rectangular nest of the source mesh in two triangles by the diagonal of the same
direction and denote UΔ (Ω) the space of continuous functions which are linear
on each triangle. It is represented by the direct sums U (Ω) = UI(Ω)⊕U B(Ω),
U B(Ω) = U E(Ω)⊕U V(Ω), spanned over internal, boundary, edge and vertex FE
functions, which are a nodal basis for the source triangulation. Respectively, the
stiffness matrix induced by the space U (Ω), which is denoted L, is represented in
the block forms

L =

(
LI LIB

LBI LB

)
=

⎛
⎝ LI LIE LIV

LEI LE LEV

LV I LV E LV

⎞
⎠ , (65)

and LIV = L�
VI = 0. Therefore, the Schur complement L = LB − LBIL−1

I LIB has
the form

L =

(
LE LEV

LV E LV

)
, LE = LE −LEIL−1

I LIE ,

and, due to the spectral equivalence L ≺ Q ≺ L, we have

L ≺ Y ≺ L .

Let us represent LE in the 4 × 4 block form LE =
{
L E

k,l

}3

k,l=0
with the blocks

corresponding to the edges γk and note that all 16 blocks are nonzero, see, e.g.,
Korneev [31] and Rytov [46]. If θ is not big, say θ ≤ 2, it is possible to use the
preconditioner

Y E = diag [L E
0,0,L

E
1,1,L

E
2,2,L

E
3,3] .
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For θ > 2 any of the two preconditioners

Y E =

⎛
⎜⎜⎝

L E
0,0 L E

0,1 0 0
L E

1,0 L E
1,1 0 0

0 0 L E
2,2 L E

2,3
0 0 L E

3,2 L E
3,3

⎞
⎟⎟⎠ , Y E =

⎛
⎜⎜⎝

L E
0,0 0 0 0
0 L E

1,1 0 0
0 0 L E

2,2 L E
2,3

0 0 L E
3,2 L E

3,3

⎞
⎟⎟⎠ (66)

can be used. The first one is obtained by decoupling adjacent edges, and the second
one additionally assumes a decoupling the pair of parallel edges, which became
shortest after mapping to Ωξ and are the edges γ0, γ1 in the above expression. Edge
Schur complement preconditioners can be defined similarly by means of the matrix
Q or Q̃ with the latter obtained from Q by setting QIV = Q�

VI = 0.
The Schur complement preconditioner

Y = diag [Y E,Y0], Y0 =
√
ρ1ρ2 B0 (67)

corresponds to the two-level decomposition U B(∂Ω) =U E(∂Ω)⊕U0(∂Ω), of the
boundary FE space, written for the traces of the spaces entering the decomposition
U B(Ω) = U E(Ω)⊕U0(Ω). Here B0, is the matrix generated by the space U0(Ω)
of continuous functions which are linear on each of the two triangles, having vertices
at the vertices of Ω . This matrix may be also generated by the subspace V0(Ω) of
bilinear polynomials on Ω .

Theorem 4. For all positive ρk, Hk, and hk ≤ Hk the preconditioners Y E, Y satisfy
the inequalities

β
E
Y E ≺ YE ≺ Y E, (68)

μY ≺ Y ≺ Y , (69)

with μ , defined by the maximum of the values (62), (64) and

β
E
= max

[
1

(1+ logδ )(1+ logm)2 ,
1

(1+ lognff)2

]
.

Proof. We will consider the case of θ > 2 and the preconditioner Y E defined by the
second expression in (66). Suppose, that for some positive μ , μ the preconditioner
ϒ = diag [ϒE ,ϒ0] satisfies

μϒ ≤ Y ≤ μϒ , (70)

whereϒE has the structure, similar to Y E, i.e.,

ϒE =

⎛
⎜⎜⎝
ϒE,0 0 0 0

0 ϒE,1 0 0
0 0 ϒE,2 ϒE,23

0 0 ϒE,32 ϒE,3

⎞
⎟⎟⎠ . (71)

Then
(μ/μ)Y ≺ Y ≺ 4μY . (72)
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Indeed, let V0, VE0 , VE1 , VE2,E3 be the vector spaces of degrees of freedom corre-
sponding to the independent blocks on the diagonal of the matrix Y . From (70),
considered on these subspaces, and (66), (71) it follows that

μϒE ≺ Y E ≺ μϒE , μϒ0 ≺ Y0 ≺ μϒ0, (73)

and combining (70) and (73) we get

Y ≥ μ diag [ϒE ,ϒ0]≥ (μ/μ)diag [Y E,Y0] = (μ/μ)Y .

This proves the left inequality (72). The right inequality (72) follows from the in-
equality of Cauchy and the last one in (73).

Let us turn now to the block GE = diag [Qs
B,BWr ,BWc ], of the preconditioner G

in Theorem 3. It has the same structure as Y E. If we repeat the derivation of (60),
however omitting steps related to the splitting of vertices, we come to the bounds

β
E

GE ≺ YE ≺ GE , (74)

where without change of the notation it is implied that G is transformed to the basis
common with Y. Therefore, one can take

√ρ1ρ2 GE forϒE and obtain (68).
Similarly, on the basis (72) and Theorem 3, inequalities (69) are proved, includ-

ing the case of the use of the preconditioner given by first expression (66). �

Several facts are important for numerical implementations of the preconditioners
(66). For each subdomain, we have introduced the discretization, transformed rar-
efied and transformed coarse imbedded meshes, and in general all these meshes can
be nonuniform. However, in the DD preconditioner they all can be replaced by uni-
form orthogonal non-imbedded meshes, what is assumed in what follows. This does
not influence the asymptotic computational cost. FDFT, applied edge-wise to the
first of the preconditioners (66), makes the preconditioner a block diagonal matrix
with 2× 2 blocks. Obviously, the matrix of FDFT, which is designated FE , is the
block diagonal matrix with the identical blocks for the opposite among edges γk,
k = 0,1,2,3:

FE = [F0,F0,F2,F2]. (75)

For the problem (37) the block diagonal matrix Λ := F�
E Y EFE has the form

Λ = diag
[

diag [Λ (0)
i ]n2−1

i=1 ,diag [Λ (2)
k ]n1−1

k=1

]
,

Λ = diag
[
diag [diag [Λ0,i,Λ0,i]]

n2−1
i=1 ,diag [Λ (2)

k ]n1−1
k=1

]
,

respectively to the first and second expressions (66). Each block Λ (0)
i couples a pair

of opposite nodes (0,x2,i) and (1,x2,i) on the vertical edges and each block Λ (2)
k

couples a pair of opposite nodes (x1,k,0) and (x1,k,ε) of the horizontal edges. For

the second preconditioner (66), the 2 × 2 matrix Λ (0)
i is diagonal with two equal

nonzero entries. Due to the pointed out property the system with the matrix Y E
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can be solved in O((n1 + n2) logn) arithmetical operations. The Schur complement
YE and the preconditioners Y E can be calculated in the trigonometric basis for
n1 × n2 arithmetical operations, whereas matrix vector multiplications by Y E re-
quire O((n1 + n2) logn) arithmetical operations, see, e.g., Korneev [31] and Rytov
[46]. Costs of some of these operations can be considerably reduced, if some up to
date techniques are applied, such as H -matrices and tensor-train decompositions
Hackbusch et al. [25], Khoromskij & Wittum [28], Dolgov et al. [16]. For instance,
the H -matrix approximation technique provides the cost O(n∂Ω logg n∂Ω ) for the
computation of the matrix YE , n∂Ω = 2(n1 + n2), as well as for storage operations
and matrix vector multiplications.

5 Piecewise Orthotropic Discretizations on Domains Composed
of Rectangles with Arbitrary Aspect Ratios

5.1 Schur Complement and Domain Decomposition Algorithms

We turn now to the piecewise orthotropic problem (4) and its piecewise orthotropic
FE discretization (6) by means of decomposition and discretization meshes (2)-(3).
The bilinear form αΩ (u,v), ∀u,v ∈ V̊ (Ω), induces the FE stiffness matrix K and its
inter-subdomain Schur complement S = KB −KB,IK−1

I KI,B, which, obviously, may
be viewed as assembled from the stiffness matrices K j and the corresponding Schur
complements S j for subdomains Ω j. Preconditioners for subdomain matrices K j,
S j, studied in the preceding sections, will be used in the fast solvers for the systems
(6) and

SuB = FB (76)

and we start from the Schur complement solver. It is based on the use of the two
preconditioners Sk, k = 1,2, for the matrix S with different properties. It is implied
that S1 is as close as possible to S in the spectrum and is cheap, at least much
cheaper than S, for matrix-vector multiplications. The preconditioner S2 is allowed
to be less close to S in the spectrum, but is cheap for operations S −1

2 y and at least
much cheaper than S and S1 for operations S−1y, S −1

1 y. Under these assumptions,
we solve the system (76) by a PCG with the preconditioner S1, whereas systems
S1x= y, arising at each PCG iteration, are solved inexactly by means of the iterative
processes

xk+1 = xk −σkS
−1

2 (S1xk − y), k = 1,2, . . . ,ks, (77)

with Chebyshev iteration parameters σk for some fixed numbers ks of iterations. In
other words, the system SuB = FB is solved by a PCG with the preconditioner S1,it

which inverse is

S −1
1,it =

[
I−

ks

∏
k=1

(I−σkS
−1

2 S1)
]
S −1

1 . (78)
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Proposition 1. Suppose that

ι) preconditioners Sk satisfy

γ
1
S1 ≺ S ≺ γ1S1, γ

2
S2 ≺ S1 ≺ γ2S2,

ιι) matrix-vector multiplications by S and S1 spend NS and NS1 arithmetical
operations, respectively, and

ιιι) solving the system S2vB = FB, ∀FB, requires NS2 operations.

Then solving the system (76) with the prescribed accuracy ε ∈ (0,1) in the norm
‖ · ‖S requires not more than

c
√
γ1/γ1

[
NS +

√
γ2/γ2

(NS1 +NS2)
]

logε−1

arithmetical operations, c = const.

Proof. The proof of these statements can be found in Nepomnyaschikh [40] and
many other places, see, e.g., Korneev & Langer [32]. �

Preconditioner S1

We transform each subdomain Ω j to Ω j,ε and by means of the condensed trans-
formed mesh we define the preconditioner (28), denoted now Cff,j. Setting S1, j =√ρ1, jρ2, j Cff,j , we assemble S1 from these subdomain matrices. As it follows from
these definitions and Corollary 3,

S1 ≺ S ≺ S1 (79)

and
ops [S1v]≺ (logn)∑

j
(n1, j + n2, j)≺ (J1N2 + J2N1) logn, ∀v.

Preconditioner S2

For each subdomain Ω j, we consider the preconditioner S2, j = Y j, where Y j =
diag [Y E

j ,
√ρ1, jρ2, j B0, j] is defined in the same way as Y in (67) for the domain

Ω = Ω j. Then S2 is assembled from subdomain preconditioners S2, j and has the
block diagonal form S2 = diag [SE ,KV ], where KV is the block of the FE matrix
K for vertices. Obviously, SE is assembled from the matrices SE, j = Y E

j , and
according to Theorem 4

min
j
μ

j
S2 ≺ S ≺ S2, (80)

where μ
j

is the value of μ in (69) for a particular subdomainΩ j.
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Taking into account the representation of the FE stiffness matrix in the block
form

K =

(
KI KIB

KBI KB

)
, (81)

we define the inverse to the DD preconditioner KDD by the expression

K −1
DD = K +

I +PS −1
1,it P

�. (82)

Here the matrix KI is related to the interior degrees of freedom for each subdomain
and, like the block KI = diag [KI, j]

J1,J2
j1, j2=1, has the block diagonal structure KI =

diag [KI, j ]
J1,J2
j1, j2=1, P is the prolongation matrix P

� = (P�
I ,I)

�. It is assumed that

KI, j ≺ KI, j ≺ KI, j, ‖PB j vB j‖K j ≺ ‖vB j‖S j , (83)

where PB j is the restriction of the prolongation operator P to the subdomainΩ . It is
assumed additionally that

ops [K −1
I fI] = NΩ , ∀f, ops [PvB]≺ NΩ , ∀vB. (84)

There is a variety of such preconditioners and prolongation operators in the liter-
ature, and we refer only to papers by Oswald [44], Griebel & Oswald [22] and
Nepomnyaschikh [41] for examples.

We restrict our considerations to the problem with subdomain-wise constant co-
efficients℘= ρ . Clearly, the numerical complexity of DD preconditioners KDD for
(1)-(5) will differ only by a constant depending on μ1,μ2. However, an implemen-
tation of the DD Schur complement solver will in general differ noticeably, since
it requires the calculation of S and multiplications by it, which can be expensive.
For instance, an implementation of H -matrix techniques for the calculation of S
gives the complexity O(NΩ logNΩ ), NΩ = N1N2. At the same time, the complexity
of the same operation and of the matrix vector multiplication by S is O(NΓ logNΓ ),
NΓ = J1N1 +J2N2, if℘= ρ , cf. Hackbusch [24] and Hackbusch et al. [25]. The last
estimates are assumed to hold in what follows.

Theorem 5. Let Hk, jk ∈ (0,1), nk, jk ≥ 1, ρk, j > 0 be arbitrary in the pointed out
ranges. Then the total arithmetical costs QK, QS of the DD and Schur complement
algorithms satisfy the bounds

QK ≺ N1N2 +[NΓ (1+ logN)+ϒ(J1J2)]
√

N(1+ logN)1/2,
(85)

QS ≺ NΓ (1+ logNΓ )+ [NΓ (1+ logN)+ϒ (J1J2)]
√

N(1+ logN)1/2,

where N =maxk Nk andϒ (J1,J2) stands for the cost of the solution of the subsystem
with the matrix KV .

Proof. Let us list the main factors contributing to the complexity of the Schur com-
plement algorithm:
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– the number of external PCG iterations kPCG = const,
– the cost NS ≺ NΓ logNΓ arithmetical operations of one matrix-vector multipli-

cation by S,
– the number of secondary iterations (77)

ks ≺ 1/
√
μ

12
≺
√

max
j

n j(1+ logn j)≺
√

N(1+ logN),

* the cost of the matrix-vector multiplication by S1 at each secondary iteration

NS1 ≺ NΓ (1+ logN),

* the cost of solving the system with the preconditioner S2 at each secondary
iteration

NS2 ≺ NΓ (1+ logN)+ϒ (J1,J2).

Taking into account the proof of Theorem 4, we conclude that

μ
12

S2 ≺ S1 ≺ S2, μ
12

= min
j

[
1

(1+ logmj)
min

(
1
θ j

,
1

(1+ logm j)

)]
, (86)

and, therefore, the given number ks of secondary iterations provides the spectral
equivalence S1, it � S1.

Now, the last relationship and (79) guarantee that kPCG logε−1 PCG iterations
provide the relative error in the norm ‖·‖S bounded by the prescribed ε > 0. The first
term in the expression for NS2 bounds the arithmetical cost of solving the system
with the matrix SE . Implementing above bounds according to Proposition 1, we
come to the bound (85) for QS.

The DD peconditioner KDD is spectrally equivalent to the FE matrix K, what
follows from Corollary 3 and (83). The estimate of the DD solver cost is obtained
by taking additionally into account the above costs of operations, related to the
interface, and (84). �

Suppose that N1 = N2 = N, J1 = J2 = J and the decomposition mesh is fixed. Then

QK ≺ N2. (87)

If the number of subdomains grows with the growth of the numbers Nk of the source
mesh lines, the contribution ϒ (J1J2) of the solver for the vertex subproblem can
compromise this bound. Assuming that a direct solver for systems with the matrix
KV is sufficiently fast, the bound (87) is retained under the condition

Jk ≤ N1/2/(1+ logN)3/2.

It is worth emphasizing that the above estimates are relatively crude, since we prac-
tically made no restrictions on Hk, jk , nk, jk , and ρk, j > 0 and their change from sub-
domain to subdomain. It can help to improve the bounds, if the variation of these
values can be characterized by some functions.
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6 Concluding Remarks

The properties of the interface Schur complement preconditioners in relation to the
discretization meshes were discussed in Subsect. 2.1, and, clearly, the Schur com-
plement exhibits the same properties. Therefore, DD algorithms with the same type
of Schur complement preconditioning can be efficiently used for a much wider class
of discretizations.
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